2.0 INTRODUCTION

fal

The diserete Fourier transform (DFT) plays an important role in the analysis, design,
and implementation of discrete-time signal processing algorithms and systems beeause
the basic properties of the discrete-time Fourier translorm and diserele Fourier lrans
form, discussed in Chapters 2 and 8, respectively. make iU particulardy convenient Lo
analyec and design systems in the Fourier domain, It 15 equally impertant that eflicient
algorithms exist tor explicitly computing the DITT As a result, the DEL is an important
component in many practical applications of discrete-time svstems.

In this chapter. we discuss several methods for computing values of the DFLL
The major focus of the chapter is a particularly efficient class of algorithms for the
digital computation of the ¥ point DFT. Collectively, these efficient algorithms, which
are discussed in Sections 9.2, 9.3, and 9.5, ate called FFT algorithms. To achieve the
highest efficiency, the FFT algorithms must compute all & valoes of the DFT. When
we reguire values of the DU at only a few [requencies in the range ) = » = 2,
other algorithims may be more efficient and fAexible, even though they are less efficient
than the FFI1 algorithms for computation of all the values of the DFT. Examples of
such algorithms are the Goertzel alporithm, discussed in Section 9.1.7, and the chirp
trapsform algorithm, discussed in Section 9,6.2.

There are many ways to measure the complexity and efficiency of an tmplementa-
Lion or alporithm, and a linal assessmenl depends on both the available implementation
lechnology and the micnded application. We will use the number ol arithmetic mul-
tiplications and additions as a measure of computational complexity. 'This measure is
simple to apply, and the number of multiplications and additions s directly related to
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the computational speed when algorithms are implemenied on general-purpose digi-
tal computers or special-purpase processors. However, other measures are sometimes
more appropriale. For cxample. in custom VST implementiations, the area of the chip
and power requirements are imporlant considerations and may not be direcetly related
to the number of arithmetic operations

o terms of multiplications and additions. the class of FET alporithms can be or-
ders ol magnitude more efficient than competing algorithms. 'The efficiency of FFI
alporithms is so high, in fact, that in many cases the most efficient procedure for imple-
menling a convolution is 1o compute the transform of the sequences to be convalved,
multiply their transforms, and then compute the inverse transform of the product of
transforms. The details of this technique were discussed in Section 8.7, o seeming con-
tradiction to this, there is a set of algorithms (mentioned briefiv in Section 9.6} for
evaluation of the DFT (or a more peneral set of samples of the Fourier transform)
that derive their efficiency from a reformulation of the Fourier transform in terms of a
canvolution and thereby implement the Fourier translorm computation by using effi-
cienl procedures for evaluating the associated convolution. This suggests the possibility
of implementing a convolution by multiplication of DFTs, where the DFTs have becn
unplemented by hrst expressing them as convolutions and then taking advantage of
clficient procedures for implementing the associated convolutions. While this secms on
the surface Lo be a basic contradiction, we will see in Scelion 9.6 thal in cerlain cases 11
i5 an entirely reasonable approach.

In the sections that follow, we consider a number of algorithms for computing the
discrete Fourier transform. We begin in Section 9.1 with discussions of direet computa-
tion methods, i.e., methods based on direct use of the defining relation for the DFT as a
computational formula. We include in this discussion the Goertzel algorithm (Goertzel,
1958, which requires computation proportional to N2, but with a smaller constant of
proportionality than that of the direct evaluation of the defining formula, One of the
principal advantages of the direct evaluation method or the Goertzel algorithm is that
they are not restricted to computation of the DFT, but can be used to compute any
desired set of samples of the DTFET of a finite-length sequence.

In Sections 4.2 and 9.3 we present a detailed discussion of FFT algorithms for
which computation is proportional to N log; . This class of algorithms is considerably
more efficient in lerms of arithmetic operations than the Goertzel algorithm, but is
specifically orienled toward computation of all the values of the DFT. We do nol atlempt
Lo be exhaustive in our coverage of that class of algorithms, butl we illustrale the general
principles common Lo all algonthms of this type by comsidering in dedall only a few of
the more commonly used schemes,

In Section %4, we consider some of the practical issues thal arise in implementing
the power-of-two-length FFT algorithms discussed in Sections 9.2 and 9.3, Section 4.5
provides a brief overview of algorithms for N a composile number including a brief
reference to FEFT algorithms thal are optimized [or a particular computer architecture,
In Section 9.6, we discuss alporithms that rely on formulating the computation ol the
DFT in terms of a convolution. In Section 9.7, we consider effects of arithmetic round-off
in FET algorithms.



718 Chapoer 9 Computation of the Discrete Fourier Transform

2.1 DIRECT COMPUTATION OF THE DISCRETE FOURIER TRANSFORM

As defined in Chapter 8, the DET of a finite-length sequence of length & is

-1
X[k =Y x[nlWy, k=01,... . N=-1, (9.1}
n=(l

where Wy = ¢~/ The inverse diserete Fourier transform is given by
x[n] = E XIKW,  n=0,1,...,] N — 1. {9.2)

In Eqgs. (9.1} and (9.2), both x[#] and X [k] may be complex.! Since the expressions on
the right-hand sides of those equations dilfer only nthe sign of the cxponent of Wy and
in the scale factor 1/, a discussion of computational procedures for Eq. (9.1} applics
with straightforward modifications to Eq. (2.2). {See Problem %.1.)

Most approaches to improving the efficiency of computation of the DFT exploit
the symmetry and periodicity properties of W; specifically,

WJ:.{N_’” = W_J‘" = (WS)* (complex conjugale symmetry) (9.34)

WES = whahT) = NI (periodicity in s and £), (9.3b)

{Since W_f..” = cos(2mkn/ N} — j sin{2mkn /N ) these properties are a direct consequence
of the symmetry and penodicity of the underlying sine and cosine functions.) Because
the complex numbers WE have the role of coefficients in Eqgs. (%.1) and (2.2}, the re-
dundancy implied by these conditions can be used to advantage in reducing the amount
of compulation required for their evaluation,

9.1.1 Direct Evaluation of the Definition of the DFT

To create a frame of reference, consider first the direct evaluation of the defiming DET
expression in Eq. (9.1). Since x[n] may be complex. N complex multiplications and
{N — 1) complex additions are required to compute each value of the DFT if we use
Eq. (9.1} directly as a formula for computation. To compute all ¥ values therefore re-
quires a total of N2 complex multiplications and N (N - 1) complex additions. Expressing

I discussing abporithms [or vomputing the DET of a finite-tength sequence x[x), iz i= worhwhile to
recall from Chapter 8 that the 1T valugs defined by Eq. (.13 can be thought of cither as samples of the
DTFT Xied ™) at frequencics cg = 20 kN of as coefficients in the discrete 1ime Fourier series for the periodic
seyuence

fa ]
Enl= 3 xinrN
F=—x0
H will be helpful s keep both interpretations in mind and (o be able 10 switch focos from one to the ather as
15 convenicnt.
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Eqg. (9.1} in terms of operations on real numbers, we obtain

M=l
Xkl =3 [Eﬁf[-trni}’-’iflw,’;”; — Imix[n Y Im{ Wi
=il + j{--R..f{x[u_]}Im{ﬂr'_iF}+Iﬂl{x|,l'j!ﬂf.{-wilnh]: (9.4)
hk=0.1,.... 8 =1,
I

which shows that cach complex multiplication x[s] - Wi requires four real multipli-
cations and two real additions, and cach complex addition requires two real additions.
Therefore, for each value of &, the direct computation of X[k] requires 4& real multi-
plications and (45 — 2) real additions? Since X l&] must be computed for & different
values of &, the direct compuration of the discrete Fourier transform of a sequence
x[ni requires 4N real multiplications and N (4N — 2} real additions, Besides the mul-
tiplications and additions called for by Eq. (2.4), the digital computation of the DFT
on a general-purpose digital computer or with special-purpose hardware also requires
prowision for storing and accessing the ¥ complex input sequence values x|#| and val-
ues of the complex coefficients W:‘.". Since the amount of computation, and thus the
computalion Ome, 35 approximately proportional to N7 it is evident that the number
ol arithmetic operations required to compute the DFT by the direct method becomes
very large for large values of N, Tor this reason, we are interesied in computational
procedures that redoce the number of multiplications and additions.

As an illustration of how the properties of Wi can be exploited, using the sym-
metry property in Eq. (Y.3a), we can group terms in the summation in Eq. (9.4) for »
and (N — »). Por example, the grouping

|’CI'J"|I'—J'."_I-II

Refx[n]}Re W™} + RelxIN — n]JRe{ Wy
= (Relx{nl] + Re{x[N — nj})RefW}"}

chminates one real multiplication, as does the grouping

(N —n)
'

—Tmix|n|1Zm] H"I:':."} — Imix|N —nliTm{W, !

= —{Tmix|nf] — Im{x|N — ut]}ImEW:,-”}.

Similar groupings can be used for the other terms in Eq. {9.4). In this way, the number
of multiplications can be reduced by approximately a factor of 2. We can also take
advaniage of the fact that forcertain values of the prodact &4, the implicit sine and cosine
lunctions take on the value 1 or (), thereby eliminating the need for multiplications.
However, reductions of this type still leave us with an amount of computation that is
proportional to N2, Fortunately, the sceond property [Eq. (9.3b)], the periodicity of the
complex sequence Wi can be exploited with recursion to achieve significantly greater
reductions of the computation.

9.1.2 The Goertzel Algorithm

The Goertzel alporithm (Goertzel, 1958) is an example of how the periodicity ol the
sequence Wi can be used to reduce computation. To derive the alporithm, we begin

?'mrﬂnghnur the discussion, the formula for the pumber of computations mayv he only approximate.
MuBtiplication by H'IE.. for example, does not require @ multiplicaton, Nevertheless, when N 5 laree, the
estimate of computational complexity obtained by including such multiplications is sufficiently accurate o
]'h’_'TITlit coamparisons hetween different elasses of algorithms.
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by noting thal
W_.‘l,.'t"‘r = IIMINNE  E 1, U:}q}
since k15 an integer, This 1s a resull of the peniodicity with period N of H-’;j““ i either n

o &, Because of Eq. (Y.5), we may multiply the right side of Eq. (9.1) by WJ..,*""" without
affecting the equation. Thus,

N1 N-1
Xlk) = Wi 3 el = 3 alrwit (9.6)
e} e
To suggest the final result, we define the sequence
e
wlnl= 3 xlr 1wy uln — 1], (9.7)
P
From Eqs (9.6) and (9.7} and the fact that x[n} = Ofors « Dand r = &, it follows that
X[k] = sl " (9.8)

Equation (9.7) can be interpreied as a discrete convolution of the finite-duration se-
quence x[n], I = n = N — 1, with the sequence W_,.,'.*"es[r:]. Consequently, vi|a] can be
viewed as the response of 4 svstem with impulse response Wl.:.i"ufn] Lo a limite-length
input x{r]. In particular, X[k] is the value of the outpul whenn = N

The signal low graph of a sysiem with impulse response W,}""nln] 15 shown in
Figure 9.1, which represents ihe difference cquation

velnl = Wt veln — 11+ x[n], (9.9)

where initial rest conditions are assumed. Since the generalinput x|#| and the coefficient
14-"'.,.'.‘c are both complex, the computation of each new value of yi[n] using the system
of Figure 9.1 requires 4 real multiplications and 4 real additions, All the intervening
values yiell], wel2]. ... . 3| N — 1] must be computed in order to compute » [N] = X[k],
s the vse of the system in Figure %.1 as a computational algorithm requires 4N real
multiplications and 4& real additions to compute X[&] for a particular value of k. Thas,
this procedure is slightly less efficient than the direct method. However, it avoids the
computation or storage of the coefficients W‘:E.”, since these guantities are implicitly
computed by the recursion implied by Figure 9.1,

It is possible to relain this simplification while reducing the number of multiplica-
tions by a factor of 2. To see how this may be done, note that the system function of the
system of Figure 9.1 is

1

Hyizl=s ————.
. 1 =Wy hat

(9.100

wo— —r - —
xfn] ¥iln]

Ti':: — Figure 9.1 ’quxr.' graph of 1_"‘—ur[[e1
n CcOmplex recursive computation of X[£).
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Multiplying both the numerator and the denominator of Hi{z) by the factor {1 —Wkz =),
we obtain

1—wie!

Hylz} =
(1— W, 21l — whz 1y

{9.11)
1 - H’,ﬁ.z‘]
T 1—2cos(2kiN)z"l + 272

The signal low graph of Figure 9.2 corresponds to the direct form IT implementation of
the sy=tem function of Eq. (9.11) for which the difference equation for the poles is

teln] = 2c0s(2xk/ Nive[n — 1] — ug[r — 2] + x[nL {9.12a)

After & iterations of Eq. (9.12a) starting with initial rest conditions wy[-2] = w11 =
{}, the desired DFT value can be obtained by implementing the zero as in

Xlk| = yelnl| = welN] - W N = 1]. (9.12b)

If the inpui is complex, only two real multiplications per sample are required (o
implement the poles of this system, since Lhe cocfficients are real and the factor —1 need
not be counted as a mubliplication. As in the case of the 1™ -order system, for a complex
input, four real additions per sample are required to implement the poles (if the input
is complex). Since we only necd to bring the system (o a state from which w[N] can be
computed, the complex multiplication by — Wﬁ required to implement the wero of the
system function need not be performed at every ileration of the difference equation,
but only after the NP iteration. Thus, the total computation is 2N real multiplications
and 4N real additions for the poles.” plus 4 real multiplications and 4 real additions for
the zero. The total computation is therefore 2(& +2) real muliiplications and 4{N + 1)
real additions, about half the number of real multiplications required with the direct
method. In this more efficient scheme, we still have the advantage that cos{2mwk /M)
and W are the anly coefficients that must be computed and stored. The coefficients
Wf.".’r are again computed implicitly in the iteration of the recursion formula implied by
Figure 0.2

Agan additional advantage of the use of this network, let uy consider the compu-
tation of the DFT of x[r] al the Lwo symmetre frequencies 2ok /N and 22(N — k)N,

e - - - - o
x[n] Yeinl
& S ¥l
2o () |y
i Figure 9.2 Flow graph of aud_prder
|zt recursive computation of X&)
-1 {Goerizel algorithmb.

1'his assumes that x[n] is eomplex. 16 x[#] is real, the operation count s & real multiplications sod
2N real addicions for implementing the poles.
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that is, the computation of X[k} and X[N — &), 1L s straightforward o verily that the
network in the form of Figure .2 required to compute XN — k] has exactly the same
poles as thal in Figure 9.2, but the coeficient for the zero is the complex conjugate of
that in Figure 9.2, {(Sce Problem 9.21.) Since the zero is implemented only on the linal
Heratiom, the 2N multiplications and 4 additions required for the poles can be used
for the computation of two DEFT values. Thus, for the computation of all N values of the
discrete Fourier ransform using the Goertzel algorithm, the number of real multiphea-
tions required is approximately &° and the number of real additions is approximately
257, While this is more efficient than the direct computation of the discrete Fourier
transform, the amount of computation is still proportional to N7,

In either the direct method or the Goertzel algorithm we do not need to evaluate
X{k] at all N values of k. Tndeed, we can evaluate X k] for any M values of &, with
each DFT value being computed by a recursive system of the form of Figure 9.2 with
appropriate coefficients. In this case, the total computation is proportional to N M. The
Goertzel method and the ditect method are attractive when M is small; however, as
indicated previously, algorithms are available for which the computation is proportional
to Nlogs & when N is a power of 2. Therefore, when M s less than log,; ¥, elther the
Goertzel algonthm or dircet evaluation of the DET may in fact be the most efficient
method, but when all N values of XTk] arc reguired. the deamation-in-time algorithms,
to be considered next, are roughly (N log, N) times more efficient than either the direct
method or the Goortzel alporithm,

As we have derived it the Goertzel algorithm computes the DFT value X[kl,
which is identical to the DTET X (e/*) evalualed at frequency e = 2wk /N, With only a
minor modification of the above derivation, we can show that X (#/*) can be evaluated
at any frequency w, by iterating the difference equation

taln] = 2cosluglug(n — 1] — valn — 2] + x|nl. {9.13a)
N times with the desired value of the DTFT obtained by
X(eftay = il fy IN] = ey, [N - 1]). (9.13b)

MNote that in the case wm, = 2ak/N Egs. (%.13a) and (9.13h) reduce to Egs (2.12a)
and {9.12h). Because Eq. (2.13h) must only be computed once, it is only slightly less
efficient to compute the value of X (/™) at an arbitrarily chosen frequency than at a
DFT frequency.

Stll another advantage of the Goertzel algorithm n some real-time applications
is thal Lthe computation can begin as soon as the first input sample is available. The
computation then involves iterating the difference equation Eg. (%.12a) or Eq. (9.13a)
as each new input sample becomes available. Aller N ilerations, the desired value of
Xie™) can be computed with either Eq. (9.120) or Eq. (9.13h) as is appropriate.

9.1.3 Exploiting both Symmetry and Periodicity

Computational algorithms that exploit both the symmetry and the periodicity of the
sequence Wi were known long before the era of high-speed digital computation. At
that time, any scheme that reduced manual computation by even a factor of 2 was
welcomed, Heideman, Johnson and Burrus {1983) have traced the origins of the basic
principles of the FFT back to Gauss, as early as 1805, Runge (1903} and later Danielson
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and Lanczos (1942} described alporithms for which computation was roughly propor-
tional to & log; N rather than N2 However, the distinction was not of great importance
for the small values of & that were feasible for hand computation. The possibility of
greatly reduced computation was generally overlooked until about 1965, when Cooley
and Tukey (1965) published an algorithm for the computation of the discrete Fourier
transform that is applicable when ¥ is a composite number, ie., the product of two
or more integers. The publication of their paper touched off a flurry of activity in the
application of the discrets Fourier transform to signal processing and resulted in the
discovery of a number of highly efficient computational algorithms. Collectively, the
entire set of such algorithms has come Lo be known as the fast Fourier transform, or the
FFT.*

In contrast to the direct methods discussed above, FFT algonthms are hased on
the fundamental principle of decomposing the computation of the discrete Fourier
transform of a sequence of length N into smaller-length diserete Fourier transforms
that are combined to form the N-point transform. These smaller-length transforms may
be evaluated by direct methods, or they may be further decomposed into even smaller
transforms. The manner in which this principle is imnplemented leads to a variety of
different alporithms, all with comparable improvements in computational speed. In this
chapter, we are concerned with two basic classes ol FFT alporithms, The first class, called
decimation in time, derives its name {rom the fact that in the process of arranging the
computation into smaller transformations, the sequence x[r] (generally thought of as
a time sequence) is decomposed into successively smaller subsequences. In the second
general class ol algorithms, the sequence of discrete Fourier transform coefficients X [k]
is decomposed into smaller subsequences—hence its name. decimation in frequency.

We discuss decimation-in-time algorithms in Section 9.2. Decimation-in-frequency
algorithms are discussed in Section 9.3, This is an arbitrary ordering. The two sections
are essentially independent and can therefore be read in either order.

9.2 DECIMATION-IN-TIME FFT ALGORITHMS

Dramatic efficiency in computing the DFT results from decomposing the computation
into successively smaller DFT computations while exploiting both the symmetry and
the periodicily of the complex exponential Wa? = ¢~/ 27*N¥7 - Algorithms in which
the decomposition 1s based on decomposing the scguence x[n] into successively smaller
subsequences are called decimation-in-time algorithms.

The principle of decimation-in-time 15 conveniently illustrated by considering the
special case of N an integer power of 2, i, ¥ = 2% Since N is divisible by (wo,
wi can consider computing XTk] by scparating x[a] mto two {N;’Z‘i-pﬂinlﬁ' Seguences
consisting of the cven-numbercd points glr] = x[2n] and the odd-numbered points
RIn] = x[2n + 11, Fgure 9.3 shows this decomposition and also the (somewhat obvious,
bul crocial) [act that the original sequence can be recovered simply by re-interleaving
the two sequences.

Agee Cowley, Lews and Welch (1967 and Hewdeman, Johnson and Borrws {1984} for histoncal sum-
marics of algorithmic developments related o the FFT.

When discussing FFT algorithms, it is commen Lo use the words somple and point interehungeably w
mean sequence valiee, 1.e., a single number. Also, we refer in a sequence of length & as an N-poinl spquence,
and the DFT of a sequence of lesaih N will be called an & -point DFT.
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rl] glr| = x[2n] g.[r] xln
—| +2 S B e e
& xfr - 1§

Lefi Right

Shift | Shift |

| . Kln] = x| 2+ 1 Al F
T vl —>1 12 Figure 8.3  lllustration of the basic
===z N2~ h==rpm=N-1 principla of decimation-in-time.

To understand the significance of Figure 9.3 as an organizing principle for comput-
ing the DFT, it is helpful to consider the frequency-domain equivalents of the operalions
depicted in the block diagram. First, note that the time-domain operation labeled “Left
Shift 1" corresponds in the frequency domain to multiplying X (/) by ¢/, As discussed
inSectiond.6.1, corresponding to the compression of the time sequences by 2, the DTEF1s
Giely and H (/™) {and therefore (k| and H[k]) are obtained by frequency-domain
aliasing that occurs after expanding the frequency scale by the substitution o — /2 in
X (e/®y and ¢/ X (/). That is, the DTFTs of the compressed sequences g[n] = x[2#]
and k[n] = x[2n + 1] are respectively

Glel®) = ]E (x,:f}'w_-f.’::l + X [E,.."[w—-E:: .I.-"E}) (9.14a)

. 1 i y ) i
.ffl:e“'lm} == (xl:e_rr.ﬂ_.-l:'ejr;.-,l’z_i_ X{e_fn:u:-—h,l,-ﬂl}f_,l [r.-.l—-r-J'!}_..E) ) (g_ ]."”:f]

The sequence-cxpansion-by-2 shown in the right hall of the block diagram in Figure 9.3
resultsin the frequency-compressed DTFTs G (e52) = G {ei20y and H, (/%) = H (e 2oy,
which, according to Figure 9.3, combine Lo form X (e} through

X(e/°) = Gele/®) 4 e/ H (o)
= Gle/?) + e H ), (9.15)

Substituting Eqgs. (9.14a) and (9.14b) into Eq. (9.15) will verify that the DTFT X e/} of
the N-point sequence x[n] can be represented as in Lig. {9.15) in terms of the DTFs of
the N /2-point sequences gln] = x[2n] and iln] = x[2r + 1]. Therefore, the DL Xk]
can likewise be represented in terms of the DFT's of gln) and f[r]

Specifically, X[k] corresponds to evaluating X (e/®) at frequencies wy = 21k/N
withkt =10, 1,.... & — 1. Therefore, using Eq. (9.15) we obtain

X[k] = X{Ef'..‘:““'?*"w} -G f'._,_.iﬁnk_.-'h’li&} 4+ g AN Htequvrk,-'.’ﬁ'}E i (9.16)
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From the definition of g{n] and G{e#), it follows that

g
GlelERRiNI2y — hilx[hqe—jlznk,:mzn
n=ll
Ni2-1
= 3" cxcfdnje TN
n=(l
M2

Y x[2n]W,. (9.17a)

n=(}

If

and by a similar manipulation, it can be shown that

N2
H (ol (BRRINIZy x[2n + W), (9.17b)

L]

-]
=

Thus, [rom Eqs. (9.17a) and (%.17b) and Eq. (2.16), it follows that

e I Nia—1
Xlkh= ) xl2alWh, + Wi D xl2n+ WY, k=01, N-1 (918
ne=l LECH

where the & -point DF1 X |&] is by definition

NI
Xlkl= Y xlnWif, k=01... N-1 (9.19)

we=l)
Likewise, by definition, the (&) 2}-point DFTs of glr] and Alx] are

w21
Glkl= 3 x2mWit,  k=0.1,... N2-1 (9.20a)
=l
Ap2-1
I = L ek Ciy P 2
HIk = é 20+ IWES. k=01 N2 (9.20h)

Equation (9.18) shows that the N-point DFT X|] can be computed by evaluating the
(N2)-point DFTs Glé]and Hk]overk =01, .. .. N -1linsteadofk = 0,1, ..., N /21
as we normally do for (N /2)-point DFTs. This is easily achieved even when Glk] and
H\k] are computed only for & = 0,1, .... N/2 - |, because the {N/J)-point transforms
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an N-point DFT computation inko two
{N/2}-peint DFT computations (N = 8).

are implicitly periodic with period N /2. With this observation, Eq. (9.18) can be rewrit-
ten as

X1kl = GUA N w2 ] + Wﬁ. H(k) o] k=01.....N-1 (321)

The notation ((k))y ;7> convemently makes it explicit that even though Gk] and H[k]
are only computed for k = 0.1, ..., N/2 — |, they are extended periodically (with no
additional computation) by interpreting & modulo N/2.

After the two DFTs ate computed, they are combined according to Eq. (2.21)
to yield the N-point DFT X[k, Figure 9.4 depicts this computation for N = 8. La this
figure, we have used the signal low graph conventions that were introduced in Chapter &6
for representing difference equations. Thal is. branches entering a node are summed to
produce the node variable. When no coefficient is indicated, the branch transmittance
is assumed to be unity, For other branches, the transmittance of a branch is an integer
power of the complex number Wp,.

In Figure 2.4, two 4-point DFTs are computed, with &|%| designating the 4-point
DFT of the even-numbered points and H{k| designating the 4-point DFT of the odd-
numbered points. According to Eq. (2.21), X|0] is obtained by multiplving #/]0] by Wﬂr
and adding the product to ([(]. The DFT value X[1]is obtained by multiplying #7[1] by
'Hf?,, and adding that result to G[1]. Equation (%9.21) stales that, because of the implicit
periodicity of G[&] and H[k], to compule X{4], we should multiply H[(i4))4] by WJI:.
and add the result to G{{(d))4). Thus, X[4] is obtained by mulliplying H[0] by W:. and
adding the result to Gi0]. As shown in Figure 9.4, the values X[3], X[6], and X[7] arc
obilained similarly.

With the computation restructured according to Eq. (9.21), we can compare the
mumber of multiplications and additions required with those required for a direct com-
putation of the DF1. Previously we saw that, for direct computation without exploiting
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symmetry, N° complex multiplications and additions were required.* By comparison,
Eq. (*.21) requires the computation of two (N /2)-point DEFLs, which in turn requires
20N /2 complex multiplications and approximately 2(¥ /2y complex additions if we
do the { ¥ /2}-point DFTs by the direct method. Then the two (& /2}-point DIFLs must
be combined. requiring N complex multiplications, corresponding to multiplving the
second sum by Wﬁ.. and N complex additions, corresponding to adding the product
obtained to the first sum. Coasequently, the computation of Eq. (9.21) for all values
of k requires at most N + 2(N/2)* or N + N?/2 complex multiplications and complex
additions It is easy to verify that for N = 2, the total ¥ + N2 /2 will be less than N2

Equation {921} corresponds to hreaking the original N-point computation into
two (N /2)-point DFT computations. If N /2 is even, as it is whan ¥ is equal to a power
of 2, then we can consider computing each of the (N /2)-poinl DFTs in Eq. (9.21) by
breaking cach of the sums in thal equation into two (N /4)-point DFTs, which would
then be combined to yield the (N/2)-point DFTs Thus, G[4] in Eq. (9.21) can be
represented as

(A 2-1 (N1 (A =1
Glkl= Y girIWia= Y s2OWRE+ 3 gl2e+ “H’}[E_,-E;M, 9.22)
r==[) f==I0b i)
or
(N1 (411
Glkl= 3. s20Iwie+Why 3 s+ Wik, ©23)
£=() =

Similarly, ATk} can be represented as

(W i—1 (N fd)—1
HIKb= 3 K20Weh, + Wi D B2+ TIWEEL. (9.24)
£=lk =)

Consequently, the (N /2)-point DFL G[£] can be obtained by combining the { ¥ /4)-point
DFTs of the sequences gl2¢] and g|2¢ + 11, Similarly, the {~/2)-point DFT #|&] can
be obtained by combining the (& /4)-point DEFTs of the sequences £[2€] and A|2¢ + 1.
Thus, if the 4-point DFTs in Figure 94 are computed according 1o Egs. (#.23) and
(2,24}, then that computation would be carried out as indicated in Figure 9.5, Inserting
the computation of Figure 9.5 into the Aow graph of Figure 9.4, we ohtain the complete
flow graph of Figure 9.6, where we have expressed the coefficients in terms of powers
of Wx rather than powers of Wy 2, using the fact that Wy, = H;’;

For the &-point DFT that we have been using as an illustration, the computation
has been reduced to a computation of 2-point DFTs For example, the 2-point DFT of
the sequence consisting of £ |0} and x|4] is depicted in Figure 9.7, With the computation
of Figure 9.7 inserted in the flow graph of Figure 2.6, we obtain the complete flow graph
for computation of the 8 point DFT, as shown in Figure 9.9,

AFor simplicity, we sssume that & is large, so that (N — 1) can be approximsted accurately by ¥,
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For the more gencral case, but with N stll a power of 2, we would proceed hy
decomposing the (N /4)-point transforms in Egs. (9.23) and (9.24) into {V/8)-point
translorms and continue until we were left with only 2-point lranslomms. This reguires
v = log; & stages of computation, Previously, we found that in the onginal decomposi-
tion of an N-point transform into two (N /2)-point transforms, the number of complex
multiplications and additions required was N + 2(N/2)*. When the (N /2)-point trans-
forms are decomposed into (N /4)-point transforms, the factor of (N /2)% is replaced by
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N/2 4+ 2(N/4), 50 the overall computation then requires N + N + 4(N/4)° complex
multiplications and additions. If ¥ = 2", this can be done at most v = log, & times,
so that after carrving out this decomposition as many times as possible, the number of
complex multiplications and additions is equal to Nv = N log, N,

The flow graph of Figure 9.9 displays the operations explicitly. By counting branches
with transmittances of the form W[, we note that each stage has ¥ complex multiplica-
tions and & complex additions. Since there are log, N stages, we have atotalof N log, N
complex multiplications and additions. This can be a substantial computational saving,.
For cxample, if ¥ =210 = 1024, then N7 = 270 =1 048,576, and M log, N = 10,240, a
reduction of more than twao orders of magnitude!

The computation in the low graph of Figure 9.5 can be reduced further by exploit-
ing the symmetry and periodicity of the coefficients Wi, We first note that, m procecding
from one stage to the next in Figure 9.9, the basic cr_m'lpumuuﬂ is in the form of Fig-
ure 3.8, Le itinvolves obtaining a pair of values in one stage from a pair of values in the
preceding stape, where the coefficienls are always powers of Way and the exponents are
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separated by N /2. Because of the shape of the flow graph, this elementary computation
is called a bunerfiy, Since

e (9.25)

the factor Wi, can be written as
AN N2
wiHNE Wiy - _wr, (9.26)

With this observation, the butterfly computation of Figure 9.8 can be simphified 1o the
form shown i Figure 910, which requires one complex addition and one complex
subtraction, but only one complex multiplication instead of two. Using the basic Aow
eraph of Fipure %.10 as a replacement for butterflies of the form of Figure 9.8, we oblain
from Figure 9.9 the fow graph of Figure %.11. In particular, the number of complex
multiplications has been reduced by a factor of 2 over the number in Figure 9.9,
Figure .11 shows log, N stages of computalion each involving a set ol N/2 2-
point DEFT computations (butterflies). Between the sets of 2-pmnt transforns are com-

using the butterfly computation of
Figure 9.10.

:i Figure 9.11 Flow graph of 8-point DFT
=

1 ) 2y
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plex multipliers of the form W{ . These complex multipliers have been called “twiddle
faclors™ because they serve as adjustments in the process of converting the 2-point
transforms inlo longer transforms.

9.2.1 Generalization and Programming the FFT

The Aow graph of Figure .11, which describes an algorithm for computation of an
B-point discrete Fourier transform, is casily generalized 10 any N — 2", so il serves
both as a proof that the computation requires on the order of ¥ log N operations and
as a graphical representation from which an implementation program could he writ-
ten. While programs in high-level computer lanpuages are widely available, it mav be
necessary in some cases to construct a program for a new machine architecture or to
optimize a piven program to take advantage of low-level features of a given machine
architecture, A refined analysis of the diagram reveals many details that are important
for programming or for designing special hardware for computing the DFT. We call
attention fo some of these details in Sections 9.2.2 and 9.2.3 for the decimation-in-time
algorithms and in Sections 9.2.1 and 9.3.2 for the decimation-in-frequency algarithms.
In Section 9.4 we discuss some additional practical considerations, While these sections
are not essential for ubtaining; a basic underslanding of FFT principles, they provide
useful puidance for programming and system design.

9.2.2 InPlace Computations

The essential features of the Mow graph of Figure 9.11 are the branches connecting the
nodes and the transmittance of cach of these branches. No matier how the nodes in
the flow graph are rearranged, it will always represent the same computation, provided
that the connections between the nodes and the transmittances of the connections are
maintained. The particular form for the flow graph in Figure 9.11 arose out of deriving
the algorithm by separating the original sequence into the even-sumbered and odd-
numbered points and then continuing to create smaller and smaller subsequences in
the same way, An interesting by-product of this derivation is that this Alow graph, in
addition to describing an efficient procedure for computing the discrete Fourier trans-
form, also suggests a useful way of storing the original data and storing the resulls of
the computation in intermediate anays.

To see this, it is useful to note thal according to Figure 911, each stage of the com-
putation takes a set of ¥ complex numbers and transforms them into another set of N
complex numbers through basic butterfly computations of the form of Figure 9.10. This
process is repeated v = log, N times, resulling in the computation of the desired dis-
crete Fourier transform. When implementing the computations depicted in Figure 9.11,
we can imagine the use of lwo arrays of {complex) slorage registers, one [or the array
being computed and one for the data being used in the computation. For example, in
cornputing the first array in Figure 9.11, one sel of slorage registers would contain the
mnput data and the sccond sel would contain the computed results for the first stage,
While the walidity of Figure %11 is not ted 1o the order in which the input data are
stored, we can order the set of complex numbers in the same order that they appear
in the fipure (from top to bottom). We denote the sequence of complex numbers re-
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-1 Figure 9.12 Flow graph of cos. (9.28).
sulting from the mth stage of computation as X, |f], where £ = (L 1,... N - 1, and

m =12, .. ,v. Furthermore, lor comvenience, we define the set of inpul samples as
Xalf]. We can think of X, ([¢]as the input array and X,,[{] as the output array for the
m™ stage of the computations. Thus, for the case of N = 8. as in Figure 9.11,

Xl = 10,
Xall] = =141,
Apl2] = x[2],
Xal3] = x[6],

Xold] = x[1]. k221
Xql5] = x([5],
Xal6] = x[3],
Xol7) = (7]

Lsing this notation, we can fabel the input and output of the butterfiv computation
Figure .10 as indicated in Figure 9.12, with the associated eguations

Xmlpl = Xmalpl + Wi Xn_1lgl. (Y.28a)
Xmlgl = Xm_1ipl — Wi Xm_1lgl {9.28b)

In Eqs (2.28), p, g, and r vary from stage to stage in a manner that is readily
inferred from Figure %.11 and from Eqgs (921}, (%.23}, and (9.24) and. It is clear from
Figures 9.11 and 2.12 that only the complex numbers in locations p and g of the {m — 1)
array are required to compute the elements p and g of the m™Y array. Thus, only one
complex array of ¥ storage registers is physically necessary to implement the complete
compulationif X[ p] and X, lg ] are stored in the same storage registers as X, —1f pj and
X m—1lgl, respectively. This kind of computation is commonly referred 1o as an in-place
computation. The fact that the flow graph of Figure 9,11 {or Figure 9.9} represents an
in-place computation is tied to the fact that we have associated nodes in the flow graph
that are on the same horizontal line with the same storage location and the fact that the
computation between two arrays consists of a butterfly computation in which the input
nodes and the cutpul nodes are horizontally adjacent.

In order that the computation may be done in place as just discussed, the input
sequence must be stored {or al leasl accessed) in a nonscquential order, as shown in
the llow graph of Figure 9.11. In fact, the order in which the input data are stored and
aecessed s relerred to as bit-reversed order. To sce what is meant by this terminology,
we nole that Tor the B-point low graph thal we have been discussing, three binary digits
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are required toindex through the data, Writing the indices in Egs. (9.27) in binary form,
we obtain the following set of equations:

Xa[(H] = x[(HHN],
XolO1) = «|104],
Xp|010] = x[010],
Xal011] = x[1100,
Xp[100] = x[001],
Xa[101] == x|101],
Xol110] = x[0117,
Xg[111] = x[111].

Lf (w2, my, ngy is the binary representation of the index of the sequence yjx], then the
sequence value xfag, ry, np] s stored in the array position Xplag, sy, 22]. That s, in
determining the position of x[ra, ny, np] in the oput array, we must reverse the order
of the bits of the index .

Consider the process depicted in Figure 4.13 for sorling a data sequence in normal
order by successive examination of the bits representing the data index. If the most
significant it of the data index is zero, x|n] belongs in the top half of the sorted array;
otherwise it belongs in the bottom half. Nexi, the top half and bottom half subsequences
can be sorted by examining the second most significant bit, and so on,

To see why bit-reversed order is necessary for in-place computation, recall the
process that resulted in Figure 9.9 and Figure 9.11. The sequence x{n] was first divided
into the even-numbered samples, with the even-numbered samples occurring in the top
half of Fgure 9.4 and the odd-numbered samples occurring in the bottom half, Such
a separation of the data can be carried outl by examining the least significant bit [mq]
in the index n. Il the least significant hit is 0, the sequence value corresponds to an
cven-numbercd sample and therefore will appeart in the top half of the array Xpl£].
and if the least significant bit is 1, the sequence value corresponds (o an odd-numbered

(9.29)
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sample and consequently will appear in the botiom bhalf of the array. Next, the cven-
and odd-indexed subseguences are sorted into their even- and odd-indexed parts, and
this can be done by examining the second least sigrnificant bit in the index. Considering
first the even-indexed subsequence, if the second least significant bit is (0, the seguence
value is an even-pumbered term in the subsequence, and if the second least significant
bit 15 1, then the sequence value has an cdd-numbered index in this subsequence. The
same process is carried out for the subsequence formed from the original odd-indexed
sequence values, This process is repeated until N subsequences of length | are abtained.
This sorting into even- and odd-indexed subsequences is depicted by the tree diagram
of Figure %.14.

The tree diagrams of Figures 9.13 and %.14 are identical. except that for normal
sorfing, we examine the bits representing the index from left to right, whereas for the
sorting leading naturally to Figure 2.9 or 9.11, we examine the bits in reverse order. right
ta left. resulting in bil-reversed sorting. Thus, the necessity for bil-reversed ordering of
the sequence x[rn | results from the manner in which the DFT computation 1s decomposed
inte successively smaller DIFT computations in artiving at Figures 9.9 and 9.1 1

9.2.3 Alternative Forms

Although it is reasomable to store the results of each stage of the computation in the
arder in which the nodes appear in Figure 9.11, it is certamly not necessary to do so,
Nomatter how the nodes of Figure 9,11 are rearranged, the resull will always be a valid
computalion of the discrete Fourier transform of x(#], as lang as the branch transmit-
lances are unchanged. Only the order in which data are accessed and stored will chanpe,
Il we associgte the nodes with indexing of an array of complex storage localions, it i
clear from our previous discussion that 4 flow graph corresponding Lo an in-place com-
putation tesults only il the rearrangement of nodes is such thut the input and output
nodes for cach butlerlly computation are horizgontally adjacent. Otherwise lwo complex
storage arrays will be reguired. Figure Y.11, 15, of course, such an arrangement. Anciher
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15 depicted in Figure 9.15. In this case, the input sequence js in normal order and the
seguence of BFT values is in bit-reversed order. Figure 9.15 can be obtamed from Fg-
ure 9.11 as follows: All the nodes that are honzontally adjacent to x[4] in Figure 9,11
are interchanged with all the nodes horizontally adjacent to x[1], Similarly. all the nodes
thatl are honzontally adjacent to x[6] in Figure 911 arc imerchanged with those that are
honzontally adjacent 1o x[3]. The nodes honzontally adjacent to x[0], 2[2], x[5], and
x[7] are not disturbed. The resulting flow graph in Figure 9.15 corresponds o the form
of the decimation-in-time algorithm originally given by Cooley and Tukey (1963).

The only difference hetween Figures %11 and 9,15 15 in the ordering of the nodes.
This implics that Figures 9.11 and 9.15 represent Uwo dilferent programs for carrying
cut the computations. The branch transmittances (powers of Wy) remain the same,
and thercfore the inlermediate results will be exactly the same—they will be computed
in a different order within each stage. There are, of course, a latge varictly of possible
orderings. However, most do not make much sense from a computational viewpoint, As
one cxample, suppose that the nodes are ordered such that the input and output both
appear in normal order. A flow graph of this type is shown in Figure 9.16. In this case,
heowever, the computation cannot be carried out in place because the butterfly siructure
does not continue past the tirst stage. Thus, two complex arrays of length ¥ would be
required to perform the computation depicted in Fipure 4,16,

In realizing the computations depicted by Figures 9.11, 9,15, and 9.16, it is clearly
necessary 1o access elements of intermediate arravs in non-sequential order. Thus, for
greater computational speed, the complex numbers must be stored in random-access
memory,’ For example, in the computation of the first array in Figure 9.11 from the
input array, the inputs to each butterfly computation are adjacent node variables and
are thought of as being stored in adjacent storage locations. In the computation of
the second intermediate array from the first, the inputs to a buiterfly are separated by
two storage locations; and in the computation of the third array from the second, the
mpuis (o a bullerfly computation are separtated by four stotage locations. If & = & the
separation between butterfly inpuis is 8 for the fourth stage, 16 tor the fifth stage, and
siron. The separation in the last {-uﬂ'"} slage is & /2.

In Figure 9.15 the situation 1s similar in that, lo compute the first array from the
mnpul data we use data separated by 4 1o compit te the second array from the [irst array we
use inpul data separated by 2, and then finally, to compate the last array we use adjacent
data. It is straightforward to unagine simple algorithms for modifying index registers
Lo access the data in the low graph of either Fipure Y.11 or Figure .15 if the data are
stored in random-access memory. Hlowever, in the flow graph of Figure 9.16, the data are
accessed non-sequentially, the computation is not in place, and a scheme for indexing
the data iz considerably more complicaied than in either of the two previous cases
Even given the availahility of large amounis of random-access memory, the overhead
for index computations could easily nullify much of the computational advantage that
iz implied by eliminating multiplications and additions. Consequently, this structure has
no apparent advantages.

MWhen the Coolev-Tukeyv slgorithms firsl appeared in 1965, digital memory was expeosive and of
lirmzed siee. The size and availability of random access memory is nao lnger an isswe except [or exceedingly
large values of &,
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Figure 9.15 Rearrangement of
Figura 8.11 with input in normal arder
and putput in bit-reversed ondear.

Fioure .16 Rearrangement of
Figure 9.11 with both input and output in
normal order

Figure 9.17 Rearrangemant of
Figure 9.11 having the same geometry
for each stage, thereby simplifying data
ACCess,
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Some forms have advantages even If they do not allow in-place compulation,
A rearrangement of the flow graph in Figure 211 that 1s particularly useful when an
adequate amount of random -access memaory is not available 15 shown in Figure 217, This
How graph represents the decimation-in-time algorithm onginally given by Singleion
(1969, Nole first that in this low graph the input is in bit-reversed order and the output
15 10 notmal order, The important fecature of the Aow graph is that the geomelry is
identical for each stage; only the branch transmittances change from stage Lo stage. This
makes 1L possible (o aceess dala sequentialy. Suppose, for example that we have [our
separale mass-storage files, and suppose that the first hall of the input sequence {in
bit-reversed order’ is stored m one [ile and the second hall is stored in a second fle,
Then the sequence can be accessed sequentially in files 1 and 2 and the results written
sequentially on files 3 and 4, with the lirst half of the new array being written to file 3
and the second half to file 4. Then at the next stage of computation, files 3 and 4 are the
input, and the output is written {o files 1 and 2. This 15 repeated for each of the v stages,

Such an algorithm could be nseful in computing the DFT of extremely long se-
quences, This could mean values of & on the order of hundreds of millions since random-
access memories of giga-byte size are routinely available. Perhaps a more interesting
feature of the diagram in Figure .17 is that the indexing is very simple and it is the same
from stage-to-stage. With two banks of random-access memory, this algorithm would
have very simple index calculations,

2.3 DECIMATION-IN-FREQUENCY FFT ALGORITHMS

The decimation-in-time FFT algorithms arc bascd on strucluring the DFT compulation
by forming smaller and smaller subsequences of the input sequence x[r]. Alternatively,
we can consider dividing the DFT sequence X k] into smaller and smaller subsequences
in the same manner. FIFT algorithms based on this procedure are commonly called
decimition-in-frequency algorithms,

To develop this class of I'FT algorithms, we again restrict the discussion to &
a power of 2 and consider computing separaiely the N /2 even-numbered frequency
samples and the & /2 odd-numbered frequency samples. We have depicted this in the
block diagram representation in Figure 9. 18 where Xjfk] = X[24] and X [k] = X[2k+-1].
In shifting left by 1 DFT sample so that the compressor selects the odd-indexed samples,
it is important to remember that the DFT X[k | is implicitly periodic with period &'. This
is denoted “Circular Left Shift 1 (and correspondingly “Circular Right Shift 1) in
Figure 9.18. Observe that this diagram has a similar structure to Figure 9.3, where the
same operations were applied to the time sequence x[n] instead of the DFT X{k]. In
this case, Figure 9.18 directly depicts the fact that the & -point transform X [k] can be
obtained by interleaving its even-indexed and odd-indexed samples after expansion by
4 factor of 2,

Figure 9,14 is a correct representation of X[&], bul in order (o usc 1t as the basis
for compuiing XTk], we first show that X[2k} and X[2k 4+ 1] can be computed [rom
the tme-domain sequence x[n]. In Section 8.4 we saw thal the DFT is related 1o the
DTFT by sampling at frequencies 27k /N with the resull that the corresponding time-



738

Chapter 9 Computation of the Discrote Fourier Transform

XK] Ay[k] = X2k} X|&]
RE ot
F
Carcular Circular
Right
Shifc 1 Shiit 1
| EIR = X2 1) i
Xk +1] 12 = 12 : Figure 8.18 ustration of the basic
=ik = N2-1 D=fsN-1 principle of decimation-in-frequency.

domatn operation is Ume-aliasing with repetition length (period) N, As discussed in
Section 8.4, if & 1s greater than or equal to the length of the sequence xinr], the inverse
DFT vields the original sequence over 0 = n = N — 1 because the N-point copies of
¥[n] do not overlap when time-aliased with repetition offset &, However, in Figure
9.18, the DIFT is compressed by 2, which 1s equivalent to sampling the DTFT X {2/} at
frequencies 2o k(N /2). Thus, the implicit periodic time-domain signal represented by
Xulk] = X[2k] is

3

Infnl| = Z xln +mN /2] — o0 = o0 (9.30)

e L 4]

Since xa] has length N, only two of Lhe shifted copics of x|n] overlap in the interval
0=n=N/2 -1, s0the corresponding finilc-length sequence xpln] i

salr] = xlnl+ xla + N2 O0=n=N72-1, (D.31a)

To obtlain the comparable result for the odd-indexed DFT samples, recall that the cir-
cularly shifted DFT X[k + 1| corresponds 1o Wlxin| (see Property 6 of lable 8.2).
Therefore the N/2-point sequence x[n] corresponding to X&) = X[2k + 1]1is

xln] = xln|W +xln + N 2|wy Y2
= {xln]| —xln + N/ZDHW O<n<eN2—1, (9.31b)

F I'~r .'I :

since Wy = -1,
From Eqgs. {9.31a) and {9.31h), it follows that

MIZ-1

Xylk] = Z ixln] 4+ xim + a"'afl.-‘Z]}ilL’I”}2 (9.32a)
m=(0
M=t

Xkl =3 lxln] - xln + N/2DWRIWET, (9.32b)
n=t

k=00, .. N/2-1.
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Equation (9.32a}) is the (& /2 )-point DET of the sequence xy|n] obtained by adding the
second half of the input sequence o the first half. Equation {9.32b] is the { & /2)-point
DFT of the sequence x;|# ] obtained by subtracting the second half of the input sequence
from the first half and multiplyving the resulting sequence by W,

Thus, using Eqgs. (9.32a) and {9.32h), the even-numbered and odd-numbered out-
put points of X[k]| can be compuled since X[2k] = Xg[k] and X[2% + 1] = X[k
respectively, The procedure suggested hy Fgs. {9.32a) and (9.32b) is illustrated for the
case of an S-point DFT in Figure 9.19.

Proceeding in a manner similar to that followed in deriving the decimation-in-time
algorithm, we note that for ¥ a power of 2, N /2 s divisible by 2 so the (N /2)-point DFTs
cun be computed by computing the even-numbered and odd numbered outpul poeints
for those DFT's separately. As in the case of the procedure leading o Egs. (9.32a)
and (9.32b), this is accomplished by combining the first hall and the last half of the
input points for each of the {N/2)-point DFTs and then computing (N /4)-point DEFTs
The fow graph resulting from taking this step for the 8-point example is shown in
Figure %.20. For the 8-poinm example, the computation has now been reduced 1o the
computation of 2-point DI Ts, which are implemented by adding and subtracting the
input points. as discussed previously. Thus. the 2-point DFTs in Figure 9.20 can be
replaced by the computation shown in Fipure 9.21, so the computation of the 8-point
DFET can be accomplished by the algorithm depicted in Figure 9.22. We again see log, &
stages of 2-point transforms coupled topether through twiddle factors that in this case
occur at the oulput of the 2-point transforms.,

By counting the arithmetic operations in Figure 9.22 and generalizing to & = 2",
we sz that the computation of Figure 9.22 requires {N/2}log, ¥ complex multiplica-
tions and N log, & complex additions. Thus, the total number of computations is the
same for the decimation-in-frequency and the decimation-in-time algonthms.
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Figure 9.20 Fow graph of
decimation-in-frequency decomposition
of an 8-point OFT into four 2-poink BFT
computations.

Figure 9.21  Flow grapn af a typical
2-point OFT as required in the last stage
of decimation=in-frequancy
decompasition.

Figure 8.22 Flow graph of complete
decimation-in-trequency decomposition
of an 8-point DFT computation.
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2.3.1 In-Place Computation

The flow graph in Figure 922 depicts one FIT algorithm based on decimation in fre-
quency, We can observe a number of similanties and also a number of differences in
comparing this graph with the flow graphs derived on the basis of decimation in time.
As with decimation 1 time, of course, the Qow graph of Figure 9.22 corresponds 1o a
computation of the discrete Fourier transform, regardiess of how the graph s drawn,
as long as the same nodes are connected to each other with the proper branch trans-
mitiances. In other words, the flow graph of Figure %.22 is not based on any assumption
about the order in which the input sequence values are siored. However, as was done
with the decimation-in-time algorithms, we can interpret successive vertical nodes in
the flow graph of Figure 2.22 as corresponding to successive storage repisters in a digital
memory. Io this case, the flow graph in Figure 9.22 begins with the lnput sequence in
normal order and provides the output DFT in bit-reversed order. The basic computa-
tion again has the form of a butterfly computation, although the butterfly is different
from that arising in the decimation-in-time algorithms. However, because of the but-
terfly nature of the computation. the flow graph of Figure 922 can be interpreted as an
in-place computation of the discrete Fourier transform.

9.3.2 Alternative Forms

A variety ol alternative forms for the decimation-in-frequency algorithm can be ob-
tained by transposing the decimation-in-time forms developed in Section 9.2.3. 1f we
denote the sequence of complex numbers resulting from the m'™ stage of the computa-
tion as X, (€], where ¢ = 0,1, .. .. N —Landm = 1.2,.._, v, then the basic butierfly
computation shown in Figure 9.23 has the form

Xu[pl = Xptlpl + Xpptlgl (9.33a)
Xulgl = {Xplpl — Xpoalg Wy (9.33h)

Comparing Figures 912 and 9,23 or Egs. {9.28) and {%.33), it appears that the
butterfly computations are different for the two classes of FEFT algorithms, However,
the two butterfly ffow graphs are, in the terminology of Chapter 6, transposes of one
another, That is, if we reverse the direction of arrows and redefine the input and output
nodes in Figure 9,12, we obtain Figure 9.23 and vice-versa, Since the FFT flow graphs
consist of connected sets of butterflies, it is not surprising, therefore, that we also note

ot X.-.nl-"]

W Flgure 9.23 Flow graph: of a typical
Y ox [q]  Outterfly computation required in
" Fgume 9.22.
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Figure 9.24 Flow graph of &
decimation-in-frequency OFT algorithm
abtained from Figure .22, [nput in
bit-reversed order and output in normal
arder. {Transpose of Figurs 9.15.)

w

a resemblance between the FFT flow graphs of Fgures 9.11 and Y.22, Specifically, Fip-
ure .22 can be obtained from Figure 9.11 by reversing the direetion of signal flow and
interchanging the input and output. That is, Fipure 9.22 isthe transpose of the How graph
inFigure 9.11. In Chapter € we stated a transposition theorem that applies only to single-
input/single-output low graphs. When viewed as flow graphs, however, FF1 algorithims
are multi-input/multi-output systems, which require a more general form of the transpo-
sition theorem, (See Claasen and Mecklenbriuker, 1978.) Nevertheless, it is intuitively
clear that the input—output characteristics of the flow graphs in Figures 9.11 and 9.22
are the same based simply on the above observation that the butterflies are transposes
of cach other. This can be shown more formally by noting that the butterfly equations in
Egs. (9.33) can be solved backward, starting with the output array. (Problem 9.31 out-
lines a proof of this result.} More generally, it is true that for each decimation-in-time
FFT algorithm, there exists a decimation-in-frequency FFT algorithm that corresponds
to interchanging the input and output and reversing the direction of all the arrows in
the flow graph.

This result implics that all the Aow graphs of Section 9.2 have counterparts in the
class of decimation-in-frequency algorithms, This, of course, also corresponds Lo the fact
that, as before, it is possible to rearrange the nodes of a decimation-in-frequency flow
graph without altering the linal resull.

Applying the transposition procedure to Figure 915 leads to Figure 9.24. In this
flow graph, the output 15 in normal order and the mput is 10 bit-reversed order. The
transpose of the Mow graph of Figure 9.16 would lead to a flow graph with both the
input and output in normal order. An algorithm base on the resulting low graph would
suffer from the same limitations as for Figure 9,16,

The transpose of Figure 9.17 is shown in Figure 9.25, Each stage of Figure %.25 has
the same geometry, a property that simplifies data access, as discussed before,
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2.4 PRACTICAL CONSIDERATIONS

In Sections 9.2 and 9.3, we discussed the basic principles of efficient computation of the
DF1 when N is an integer power of 2. Tn these discussions, we favored Lhe use of signal
flow graph representations rather than expheitly writing out in detail the equations that
such flow graphs represent. Of necessity, we have shown flow graphs for specific values
of . However, by considering a flow graph such as that in Figure 9.11, for a specific
value of N, it is possible 10 see how Lo structure a general computational algorithm that
would apply to any N = 2%, While the discussion in Sections 9.2 and 9.3 is completely
adequate for a basic understanding of the FFL principles, the material of this section is
intended to provide useful puidance for programming and system desizn,

Although it is true that the flow graphs of the previous sections capture the essence
of the FFT algorithms that they depict, a variety of details must be considered in the
implementation of a given algorithm, Tn this section, we briefly suggest some of these,
specifically, in Section 9.4.1 we discuss issues associated with accessing and storing data
in the intermediate arrays of the FFT. Tn Section 2.4.2 we discuss issues associated
with compuling or accessing the branch coefficients in the fow graph. Our cmphasis
15 on algorithms for N a power of 2, bul much of the discossion applies 1o the general
case as well. For purposes of illustralion, we focus primarly on the decimation-in-lime
algorithm of Figure 9.11.

9.4.1 Indexing

In the algorithm depicted in Figure 9.11, the input must be in bit-reversed order so
that the computation can be performed in place. The resulting DFT s then in normal
order. Generally, sequences do not ariginate in hit-reversed order, so the first step in the
implementation of Figure %11 is to sort the inpul sequence into bit-reversed order. As
can be seen from that figure and Egs. (9.27) and (4.29), bit-reversed sorting can be done
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in place, since samples arc only pairwise interchanged; Le., a sample at a piven index is
interchanged with the sample in the location specified by the bit-reversed index. 'This
is conveniently done in place by using two counters, one in normal order and the other
in bit-reversed order. 'The data in the two positions specified by the two counters are
simply interchanged. Once the inpul is in bit-reversed order, we can proceed with the
first stage of computation. In this case, the inputs to the butterllics are adjacent ¢lements
of the array Xy[-]. In the second stage. the inputs to the butterflies are separated by 2, In
the m'™ stage, the butterfly inputs are separated by 27-L, The coefficients are powers of

Wy **'in the m™ stage and are required in normal order if computation of butterflies
begins at the top of the flow graph of Figure 9.11. The preceding statemants define the
manner in which data must be accessed at a given slage, which, of course, depends on
the low graph that is implemented. For example, in the m stage of Figure 9.15, the
hutterfly spacing is 2" ™. and in this case the coefficients arc required in hit-reversed
order. The input is in normal erder; however, the oulput is in bit-reversed order, so it
generally would be necessary Lo sort the output into normal order by using a normal-
order counter and a bit-reversed counter, as discussed previously,

In general, if we consider all the flow graphsin Sections 9.2 and 9.3, we see that each
algorithm has its own characteristic indexing issues. The choice of a particular algorithm
depends on a number of factors. The algorithms utilizing an in-place compuiation have
the advantage of making etficient use of memory. Two disadvantages, however, are
that the kind of memory required is random-access rather than sequential memory
and that either the input sequence or the output DFT sequence is in bit-reversed order.
Furthermore, depending on whether a decimation-in-time or a decimation-in-frequency
algorithm is chosen and whether the inputs or the outputs are in bit-reversed order, the
coefficients are required to be accessed in either normal order or bit-reversed order. If
non-random-access sequential memory is used, some fast Fourier transform algorithms
utilize sequential memory, as we have shown, but either the inputs or the outpuls must
be in bit-reversed order. While the flow graph for the algorithm can be arranged so that
the mputs, ihe oulputs, and the coellicients are in normal order, the indexing situcture
required to implement these algonithms 15 complicated, and twice as moch random
dccess memaory 15 required. Consequently, the use of such algorithms does not appear
tar be advantageous,

The in-place FFT algorithms of Figures 911, Y.15. 9.22, and 9.24 are among the
most commonly used. If a sequence is 1o be transformed only once, then bit-reversed
sorting must be implemented on either the input or the outputl. However, in some
situations a sequence is transtormed, the result is modified in some way, and then the
inverse DFT iz compuied. For example, in implementing FIR digital filters by block
convolution using the discrete Fourier transform, the DFT of a section of the input
sequence is multiplied by the DFT of the filter impulse response, and the result is inverse
transformed to obtain a segment of the output of the filter. Similarly, in computing
an autocorrelation function or cross-correlation function using the discrete Fourier
transform, a sequence will be fransformed, the DFTs will be multiplied, and then the
resulting product will be inverse transformed. When two transforms are cascaded in
this way, it is possible, by appropriate choice of the FFT algorithms, to avoid the need
for hit reversal. For example, in implementing an FIR digital filter using the DFT.
we can choose an algorithm for the direct transform that vtilizes the data in normal
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order and provides a DFT in bit-reversed order. Either the flow graph corresponding
Lo Fipure 9.15, based on decimation in time, or that of Figure 9.22, based on decimation
in frequency, could be used in this way. The difference between these two forms is that
the decimation-in-time form requires the coefficients in bit-reversed order, whereas the
decimation-in-frequency form requires the coefficicnts in normal order.

MNote that Figure 9.11 utilizes cocfficients in normal order, whereas Figure 9.24
reguites the cocfficients in bit-reversed order. TF the decimation-in-time form of the
algorithm s chosen for the direct transform, then the decimation-in-frequency form
of the algorithm should be chosen for the inverse transform, requiring coefficients in
bit-reversed order, Likewise, the decimation-in-frequency algorithm for the direct trans-
form should be paired with the decimation-in-time algorithm for the inverse transform.
which would then utilize normally ordered cocfficients.

%.4.2 Coefficients

We have abserved that the coeflicients W, (twiddle Faclors) may be required in cither
bit-reversed order or in normal order. In cither case we must store 4 table suflicient
to ook up all required values, or we must compute the values g5 needed. The first
alternative has the advantage of speed, but of course requires extra storage. We obscrve
from the How graphs that we require W forr =10, 1,..., (W21 — 1. Thus, we require
N2 complex storage regisiers for a complete table of values of W.;"H In the case of
alzorithms n which the coelficients are required in bit-reversed order, we can simply
stare the table in bit-reversed order.

The computation of the coefficients as they are needed saves storage, but is less
efficient than storing a lookup table. If the coctficients are to be computed. it is generally
most efficient to use a recursion formula. At any given stage, the required coefficients
are all powers of a complex number of the form W; where ¢ depends on the algorithm
and the stage. Thus, if the coefficients are required in normal order. we can vse the
recursion formula

s (£-1)
H.‘.'?J - W_.f,- : H-";- (9.34)

to abtain the £'7 coefficient from the (£ — 1)® coefficient, Clearly, algorithms that require
coefficients in bit-reversed order are not well suited to this approach. It should be
noted that Eq. (9.34) is essentially the coupled-form oscillator of Problem 6.21. When
using finite-precision arithrmetic, errors can build up in the iteration of this difference
equation, Therefore, it 1s generally necessary to reset the value at prescribed points

e, E-i"l,,":r'ﬂ = — j} 50 that errors do not become unacceptable.

2.5 MORE GENERAL FFT ALGORITHMS

The power-of-two alporithms discussed in detail in Sections 9.2 and 9.3 are straight-
forward, highly cfficient and casy to program. However, there are many apphcations
where elficicnl alizornithms for other values of N are very usclial.

8 This numbser can be reduesd usmg svmmebry al the cosl of preater complexity in aceessimg desirad
values,
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2.5.1 Algorithms for Composite Values of N/

Although the special case of N a power of 2 leads to algorithms that have a partic-
ularly simple structure, this is not the only restriction on & that can lead to reduced
computation for the DFT. The same principles that were applied in the power-of-two
decimation-in-time and decimation-in-frequency algorithms can be employed when N
is a composite integer, i.e., the product of two or more integer factors, For example, if

= N1 N3, il is possible to express the A-point DFT as cither 4 combination of &y ¥a-
point DFTs or as a combination of N3 Ny-point DFTs, and thereby obtain reductions in
the number of computations, To see this, the indices r and k are represented as follows:

mp=0.1,..., Ay —1
n= N +n {"3 01, Ny—1 {9.35a)
- i R iy
ko= k! e 4"."1.‘:;2 |::‘ . g. il : ;_ Jl- fE}_‘iEb}

Since N = N1Np, these index decompositions ensure that n and & range over all the
values 0,1, ..., N - 1, Substitgting these representations of # and & into the definition
of the DFT leads after a few manipulations Lo

X[kY = X[k + Nkl

Myp— Ni—1
=5 (S v 4 i | whes | wie (9.36)
Ra=d) L iy =A)

where by = 0.1, ... & —land & = 0,1,...,. ¥ — 1. The part of Eq. (9.36) inside
the parentheses represents Nz &p-point DFTs, while the ovter sum corresponds to A
My-point DFTs of the outputs of the first set of transforms occurring afier modification
by the twiddle factors Hr*“",

If Ny = 2and My = /2, Eg. (9.36) reduces to the first stage decomposition of
the decimation-in-frequency power-of-two alporithm depicted in Figure 9.19 of Section
9.3, which consists of N/2 2-point transforms followed by two N /2-point transforms.
Conversely, if ¥y = N/2 and Ny =2, Eq. (9.30) reduces to the first stage decomposition
of the decimation-in-time power-of-two algorithm depi.:md in Fipure 9.4 Section 9.2,
which consists of two ¥ /2-point transforms followed by ¥ /2 2-point transforms.”

Coaley-Tukey algorithms for general composite N are uhl tined by first doing the
Ni-point transforms and then agam applying Eq. (9.36) to another remaining factor N,
of N/ N until all the factors of N have been used, The repeated application ol Eq. (3.36)

"Far Figure 9.4 o he an exact representation of Bg. (936}, the two-point butterfiics of the last stage
must be replaced by the butlerflies of Figure $10.
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Figure 9.26 Number of fioating-point oparations as a function of & for MATLAR
££0( ) tuncton {revision 5.2).

leads to decompositions similar to the power-of-two algorithms. These algorithms re-
quire only slightly more complicated indexing than the power of 2 case. If the factors
of ¥ are relatively prime, the number of multiplications can be further reduced at the
cost of more complicated indexing. The “prime factor” algorithms use different index
decompositions from those of Egs. (9.35a) and (9.35h) so as to eliminate the twiddle
factors in Eq. (9.36), and thus save a significant amount of computation. The details of
the more peneral Cooley-Tukey and prime factor algorithms are discussed in Burrus
and Parks (1985), Burrus (1988), and Blahut (1985).

As an illustration of what can be achieved using such prime factor algorithms,
comsider the measurements plotied in Figure 926, These measurements of the number
of floating-point operations (FLOPS) as a function of ¥ are for MATLAB's ££t(
function in Rev. 5.2 of MATLAR.IY As we have discussed, the total number of lloating
puint operations should be proportional to N log, & for N a power of two and propor-
tional o N? for direct computation. For other values of A the total operation count will
be dependent on the number (and cardinality) of the factors,

When & is a prime number, direct evaluation is required so the nuwmber of FLOPS
will be proportional to 2. The upper (solid) curve in Figure 9.26 shows the function

FLOPS{N) = 6N + 2NN -1} (9.37)
All the points falling on this curve are for values ¥ a prime number, The lower dashed
curve shows the function

FLOPS(N) = 6N log, N. (9.38)
Hiphiy graph was created with o modified version of a program wriiten by C 8 Burrus, Sioce 1€ 15

no longer possible to measare the pomber of Hoating-point operations in recent revisions of MATLAR, the
reader may not be able 1o repeat this experiment.
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The points falling on this curve are all for ¥ a power of two. For other composite
numbers the number of operations falls between the two curves. To see how efficiency
varies from integer to integer, consider values of N from 199 to 202. The number 199 is
a prime. so the number of operations (318004) falls on the maximum curve. The value
N = 2(H) has the factorization & = 2-2-2-5-5, and the number of operations {27134}
is near the minimum curve, For N = 2001 = 3. 07, the number of FLOFPS is 113788, and
for N = 202 = 2-101 the number is 167676, This wide difference between & = 201
and N = 202 is because a 101-point transform requires much more computation than
a 67-point transform. Also note that when A has many small factors (such as ¥ = 200
the efficiency is much greater,

9.5.2 Optimized FFT Algorithms

An FFT algorithm is based on the mathematical decomposition of the DFT intlo a com-
hination of smaller transforms as we showed in detail in Sections 9.2 and 9.3, The FFT
algorithm can be expressed in a high-level programming language that can be translated
into machine-level instructions by compilers running on the larget machine, In gencral,
this will lead to implementations whose efficicncy will vary with machine archilecture.
To address the issuc of maximizing ciicicney over & range of machines, Frigo and John-
son {1998 and 2005), developed a free-software library called FFTW (¥ Fasiest Fourler
Transform inthe West™). FFT'W uscs a “planner™ to adapt its gencralized Coley - Tokey-
type FFT algorithms to a given hardware platform, thercby maximizing efficiency. The
syslem operates in iwo stages, the fArst being a planning stage in which the computations
are organized so as to optimize performance on the given machine, and the second being
4 compuiation stage where the resulting plan (program) is executed. Omnce the plan is
determined for a given machine, it can be executed on that machine as many times as
needed. The details of FETW are beyond our scope here. However, Fripo and Johnson,
2003 have shown that over a wide range of host machines, the FFTW algorithmm is sig-
nificantly faster than other implementations for values of & ranging from about 16 up
10 8192, Above 8192, the performance of FFTW drops drastically due to memory cache
issues.

2.6 IMPLEMENTATION OF THE DFT USING

CONVOLUTION

Because of the dramatic efficiency of the FFT, convolution is often implemented by
explicitly computing the inverse DFL of the product of the DELs of cach sequence to he
convolved. where an FFT alporithm is used to compute both the [orward and the inverse
DITs In contrast, and even in apparent (but, of course, not actual) contradiction, it is
sometlimes preferable to compute the DFT by first reformulating it as a convolution.
We have already seen an example of this in the Goertzel alporithmn. A number of other,
more sophisticated, procedures are based on this approach as discussed in the following
sections.
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9.6.1 Overview of the Winograd Fourier Transform
Algorithm

One procedure proposed and developed by 5. Winograd {1978), often referred to as
the Winograd Fourier transform algorithm (WFTA), achieves its efficiency by express-
ing the DFT in terms of polynomial multiplication or, equivalently, convolution. The
WEFTA uses an indexing scheme corresponding to the decompaosition of the DFT into a
multiplicity of short-length DI'Ts where the lengths are relatively prime. Then the short
DFTs are converted into periodic convolutions. A scheme for converting a DFT into a
convolution when the number of input samples is prime was proposed by Rader (1968},
bulits applicalion awaited the development of efficient methods for compuling periodic
convolutions, Winograd combined all of the foregoing procedures together with highly
efficient algorithms for computing cyclic convolutions into a new approach 10 com-
puling the DFT The technigues for deniving efficient algonithms for compuling short
convolutions are based on relatively advanced number-theoretic concepts, such as the
Chincse remainder thearem for polynomials, and consequently, we do nol explore the
details here. However, excellent discussions of the details of the WFTA are avalable
in McClellan and Rader {1979), Blahut {1985), and Burrus {1988).

With the WYFTA approach, the number of mulliplications required for an N-point
DFET is proportional 1o N rather than N log . Although this approach leads Lo algo-
rithims that are oplimal in terms of minimizing multiplications, the number of additions
is significantly increased in comparison with the FFT. Therefore, the WFTA is most
advantageous when multiplication is significantly slower than addition, as is often the
case with fixed-point digital arithmetic. Ilowever, in processors where multiplication
and accumulation are tied together, the Coolev—Tukey or prime factor alporithms are
generally preferable. Additional difficulties with the WEFTA are that indexing is more
complicated, in-place computation is not possible, and there arc major structural dif-
ferences in algorithms for different values of N

Thus, although the WFTA s extremely important as a benchmark for delermining
how eltficient the DFT computation can be {in terns of number of multiplications), other
tactors often dominate in determining the speed and efficiency of a hardware or software
implementation of the DFT computation.

9.6.2 The Chirp Transform Algorithm

Another algorithm based on expressing the DFT as a convolution is relerred to as
the chirp transform alporithm (CTA). This algorithm is not optimal in minimizing any
measure of computational complexity, bat it has been useful in a variety of applications,
particularly when implemented in technologies that are well suited to doing convolu-
tion with a fixed, prespecified impulse response. The CTA s also more flexible than the
FFT, since it can be used to compute any set of equally spaced samples of the Fourier
transform on the unit circle.

To derive the CTA, we let z|n] denote an N-point sequence and X (¢} its Fourier
transform. We consider the evaluation of M samples of X (/) that are equally spaced
in angle an the unit circle, as indicated in Figure 9.27, L.e., at frequencies

tery = e+ kA, k=01, ....M—1, (9.39)
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Figure 8.27 Frequency samples for
chirp transform algarithm.

where the starting frequency wy and the frequency increment Aw can be chosen arhi-
trarilv. (For the specitic case of the DFT eopy =L, M = N, and Aw = 27 /N.) The Fourier
transform corresponding to this more general set of frequency samples is given by

e |
X{el™) = Z xlnjeimn E=01,....,M—1, (9.40)
n=[¥
of, with W defined as
W = o de (9.41)
and using Eq. (9.39),
N-1
X{el™y = Z e fran ek (9.42)
1=t

To express X («/**) as a convolution, we use the identity

nk = il-r:2 + k2 =k - H)gl (9.43)
to express Eq. (9.42) as
- K-l - = 3
X ey = ZI{H]E_‘HW"?H’”";: “;i J-'E.F..,-—I:k—r:] i [9.4‘1}
m=Al
Letling
gln] = x[n]e Fomnwnti?, (9.45)
we can then write
. a IV_I L .
Xteiﬂii‘} = Wﬂ".-'z Z g{nlw—f}('—ﬁi';’i . E =1, II o M—1 {'q_#ﬁ}

n=i}



Gection 9.6

Implementation of the DFT Using Convalytion 751

I

- Dpen _
o iy e S0 Wh

_1['['._.“.':!_.| ]

Figure 9.28  Block diagram af chirp
transtorm algerithm.

iz

In preparation for interpreting Fo. (9.46) as the output of a linear time-invariant system,
we oblain more familiar notation by replacing & by r and & by k in Eg. (9.44);

-1 :
xt‘HJl'm,.-:l i w_rg-"'l,l': (Z I!’r[ll_]-“;—lﬂ—k}--,-'ﬂ) - o= ﬂ, 1. R M=1. Eg-d?.}
k=il

In the form of Eq. (9.47), qu‘“"*] ceortesponds to the convolution of the sequence
g[n] with the sequence W™ 2 followed by multiplication by the sequence W%, The
oulpul sequence, indexed on the independent variable r, 15 the sequence of frequency
samples X (e ). With this inter prLl.luﬂn the computation of Eg. (9.47) is as depicted in

Figure 9.28. The sequence W2 can be thought of as a complex exponential sequence
with linearly increasing frequency nAw, In radar systems, such signals are called chirp
signals—hence the name chirg Iransform, A system similar 1o Figure 928 is commonly
used in radar and sonar signal processing for pulse compression (Skolnil, 2002 ),

For the evaluation of the Fourier transform samples specified in Eq. (9.47), we
need only compute the output of the system in Figure 9.28 over a finile interval. Tn
Figure 929, we depict illustrations of the sequences gln]. W™ /% and gla} + W /2,
Since gla| is of finite duration, only a finite portion of the sequence W =n*12 55 used in

ublaining gln] * W2 gver the interval n =0, 1,..., M — 1. specifically, that portion
froma=—(N—1Dtonr=M— L. Let us define
2
By fa AN =11=n=M-=1
hin] = ) i == ' 9.48)
tn] { i}, otherwise, ( :

as illustrated in Figure 9.30. 1t is easily verified by considering the graphical represen-
tation of the process of convolution that

zlu]= Wi glal = klnl, w=01,.. ., M1 (9.49)

Consequently, the infinite-duration impulse response W "2 inthesystem of Fi gure 928
can be replaced by the finite-duration impulse response of Figure 2.3k The system 15
now as indicated in Figure 9,31, where h[n] is specificd by Eq. {9.48) and the frequency
samples are given hy

X{el™y = yinl, n=0.1...M-1 (9.50)

Evaluation of frequency samples using the procedure indicated in Figure %31 has
a number of potential advantages. In general, we do not require N = M as in the FFT
algorithms, and neither N nor M peed be composite numbers. In lacl, they may be
prime numbers if desired. Furthermore, the parameter ) is arbitrary. This increased
Mexibility over the FFT does nol preclude efficient computation, since the convolution
in Figure 9.31 can be implemented efficiently using an FFT algorithm with the technique
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Figure 9.29 An ilustration of the secuences used in the chirp transform
algorithm. Mote that tha actual sequences involved are complex valued.
(a) g[n} = x{nle R0t W2 (B) W02 jch gla]w W2,
Aln|

B L1 TSERE3 1k

SN -1)

Figure 8.30  An illustration of the regicn of support for the ©IR chirp fiter. Note
that the actual values of A[7] as given by Eq. [$.48) are complex.

ftfu]

¥l

Figure 9.31  Block diagram of chim
: i, transform system for finite-length
it VTS impulse response.
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of Section 8.7 to compute the convolution. As discussed in that section, the FFT size
must be greater than or equal to (M + & - 1) in order that the circular convolution will
be equal to g[a]+«k[r]for (= # = M - 1. The FFT size is otherwise arbitrary and can, for
example, be chosen o be a power of 2. [tis interesling to nole that the FFT algorithms
used lo compute the convolulion implied by the CTA could be of the Winograd type.
These algonithms themselves use convolution to mplement the DFT computation.

In the system of Figure 9.31 Aln]is noncausal, and for certain real-time implemen-
tations it must be modified Lo oblain a causal svstem. Since h[n] is of finile duration,
this moditication is casily accomplished by delaying hln] by (N — 1) to obtain a cansal
impulse response:

WoneNE2 0L M N =2, .
hqln] = : o ' 9.51
1] 0, otherwise. 1)
Since both the chirp demodulation factor at the output and the output signal are also
delayed by (¥ — 1) samples, the Fourier transform values are

Xigl™y = wln+ N — 1], n=01,.... M1, (9.52)

Moditying the svstem of Figure 9.31 to obtain a causal system results in the system
of Figure 9.32. Anadvantage of this system stems from the fact that it involves the convo-
lution of the input signal {modulated with a chirp) with a fixed, causal impulse response.
Certain technologies, such as charge-coupled devices (CCD) and surface acoustic wave
{SAW] devices, are particularly useful for implementing convolution with a fixed, pre-
specified impulse response. These devices can be used to implement FIR filters, with the
tilter impulse response being specified at the time of fabrication by a geometric patlern
of electrades, A similar approach was followed by Hewes, Broderson and Buss {1979}
in implementing the CTA with CCDs,

Further simplification of the CTA resulls when the frequency samples to be com.
puted correspond to the DFT, i.e., when ey = Dand W = ¢ 25N sothat ey, = 2aa/N.
In this case, it is convenient to modify the system of Figure 9.32. Specifically, with ey = 0
and W = &~ = Wy, consider applying an additional unit of delay to the impulse

e -y
AL ol (9.53)
Therefore, the syslem now is as shown in Fipure 933, where
kel A W 7 2= LM {9.54)
{, olherwise.

In this case. the chirp signal modulating xr] and the chirpsignal modulating the output
of the FIR filter are identical, and

X (e 7Ny = oy 4 N, m=0h1,. . M1 (9.55)

haln
xh1C3nM i winl

1 Figure 9.32 Block diagram of chirp
transform system for causal Hnite-length
mpulse response.

gy e PRCEE 1972
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() gl ()

Aln] glal yofn]
Figure 9.33 Block diagram of chirp

3 oo Wit ente  transtorm system for atdaning OFT
Wi Wy =Wy samples.

Example 9.1 Chirp Transform Parameters

Suppose we have a finite-length seqguence «[a] thatl is nonzero only on the interval
= o= 0,00 25, and we wish lo compule 16 samples of the DTTT X (e/™) al the fre-
quencies wmy = Za /27 + 2ok/1024 for £ = (0, .., 15 We can compute the desired
= frequency samples through convolution with a causal impulse response using the sys-
ootem in Figure 932 with an appropriate choiee of parameters We set M = 16, the
o number of samples desired, and & = 26, the lenpth of the sequence. The frequency of
¢ themnitial sample, ey, is 27 /27, while the interval belween adjacent [Tequency samples,

S A, 18 2 /1024, With these choices for the parameters, we know from Eg. (9.41) that
Lo W=ed & and so the causal impulse response we desire is from Eq. (9.31})

— i 1024 —(n— 25V 2
hyln) =1 [¢ ] R
i utherwiz:,
z: For this causal impulse response, the output yq x| will be the desived frequency samples
5 bepinning at w[25],i.e.,

_"-‘1[” + 3‘3] = x[FJ:M- ”w..:Er_-’l‘T-|-?_f.ra|,-'1{f2-li H= ﬂ_' focy 15.

An algorithm similar to the CTA was first proposaed by Bluestein {19703), who
showed that a recursive realization of Figure 932 can be obtained for the case
A = Ix /N, N a perfect square, {See Problem 948.) Rabiner, Schafer and Rader
(1969) generalized this algorithm to obtain samples of the :-transform equally spaced
in angle on a spiral contour in the z-plane. This more general form of the CTA was
called the chirp z-transform (CZT) algorithm. The algorithm that we have called the
CTA 15 a special case of the CZT algorithm.

9.7 EFFECTS OF FINITE REGISTER LENGTH

Since the fast Fourier transform algorithm is widely used for digital filtering and spec-
trum analysis. il is important to understand the effects of finite register length in the
computation, As in the case of digital ilters, a precise analysis of the effects is difficult,
However, asimplified analysis is often sufficient for Lhe purpose of choosing the required
register length. The analysis that we will present is similar in style to that carried out
n Section 6.9, Specifically, we analyze arithmetic round-off by means of a linear-noise
model oblained by nserting an additive noise source al each point in the computation
algorithm where round-off vecurs. Furthermore, we will make a number of assumptions
to simphly the analysis. The results that we obtain lead lo several simplified, but useful,
estimates of the effect of arithmetic round-off. Although the analysis is for rounding, it
15 generally easy Lo modily the results for truncation.
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We have seen several different algorithmic structures for the FFT. However, the
effects of round-off noise are very similar among the different classes of algorithms
Therefore, even though we consider only the radis-2 decimation-in-time algorithm, cur
results are representative of other forms as well.

The flow graph depicting a decimation-in-time algorithm for ¥ = 8 was shown
in Figure 9.11 and is reproduced in Figure .34, Some key aspects of this diagram are
common to all standard radix-2 algorithms. The DFT is computed in v = logy N stages.
At each stage a new array of N numbers is formed from the previous array by linear
combinations of the clements, taken two at a time, The v'¥ array contains the desired
DFT. For radix-2 decimation-in-time algorithms, the basic 2-point DFT computation is
of the form

Xmlpl = Xpalpl + W;-'an—ll-“?L {Biﬁa}
Xulgl = X alpl — WL X, —ilg]. {%.56h)

Here the subscripts m and (m — 1) refer to the m't array and the (m — 1) array,
respectively. and p and g denote the location of the numbers in each array. {Note that
m = [ refers to the input array and m = » refers to the output array.) A flow graph
representing the butterfty computation is shown in Figure 9.33.

Atleach stage, N /2 separate butterfly computations are carried out to produce the
next array. The integer r varies with p. g, and m in a manner that depends on the speafic
form of the FFT algorithm used. However, our analysis is not tied 1o the specific way

Keoalol o ¥ X lpl

x,[g) Figure 8.35 Butterfly computation for

W
Xoslglo—as sttt
" decimation-in-time.
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Xw:-liF]D :\a\ o HXMLPJ
\\\ ﬁfff
fixed-point round-off noise ina

L
Xru-alg] o= I g ) - ¥ml3l dacimation-in-time butterfy
el g computation.

Figure 9.36 Linear-naise model for

in which r varies. Also, the specific relationship among p, g. and m. which determines
how we index through the m™ array, is not important for the analysis. The details of
the analysis for decimation in time and decimation in frequency differ somewhat due
to the different buiterfly forms, but the basic results do not change significantly. In our
analysis we assume a butterfly of the form of Fgs. (9.56a}) and (9.56b), corresponding,
Lo decimation in time.

We model the round-off noise by associating an additive noise generator with each
fixed-point multiplication. With this model, the butterfly of Figure 935 is replaced by
that of Figure 9.36 for analyzing the round-off noise effects, The notation £[m, ] repre-
senis the complex-valued error introduced in computing the m'™ array from the (m —1)®
array; specifically, it indicates the error resulting from guantization of mulliplication of
the g*" element of the (m — 1) array by a complex coefficient.

Since we assume that, in general, the input to the FI'T is a complex sequence,
each of the multiplications is complex and thus consists of four real multiplications. We
assume thai the errors due to each real multiplication have the following properties:

1. 'The errors are uniformly distributed random variables over the range —(1/2)-2 ¢
to (1;2) - 2%, where, as defined in Section 6.7.1, numbers are Tepresented as
(8 + 1)-bit signed fractions. Therefore, each error source has variance 272412,

2. The errors are uncorrelated with one another.

3. All the errors are uncorrelated with the input and, consequently, also with the
output.

Since each of the four noise sequences 15 uncorrelated zero-mean white noise and all
have the same variance,

28

Ellelm, g} =4 - e {9571

sel
2z
To delermine the mean-square value of the outpul noise at any outpul node, we must
account for the contribution from each of the noise sources that propagate to that node.
We can make the lollowing observations from the How graph of Figure 9.34:

L The transmission function [rom any node in the Qow graph o any other node to
which it is connected is multiplication by a complex constant of unity magnitude
(because each branch transmittance is either unity or an integer power of Wy,

2. Each output node connects to seven butterflies in the Alow graph. ([n general, each
output node would connect to (& — 1} butterflies.) Por example, Figure 9.37{a)
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shows the flow graph with all the butterflies removed that do not connect to X[,
and Figure 9.37(kh) shows the flow graph with all the butterflies removed that do
nol connect to X]2].

These observations can be peneralized 1o 1he case of N an arbitrary power of 2,

Asaconsequence of the first observation, the mean-square value of the magnitude
of the component of the output noise due to cach elemental noise source is the same and
equal Lo o3, The Lotal output noise at each output node is equal to the sum of the noise
propapated to that node. Since we assume that all the noise sources are uncorrelated,
the mean-square value of the magnitude of the output noise is equal 1o ¢ times the
number of noise sources that propagate to that node. At most one complex nojse source
is introduced at each butterfly; consequently, from observation 2, at most (¥ — 1) noise
sources propagate to each output node, Infact, not all the butterflies penerate round-off
noise, since some {for example, all those in the first and second stages for ¥ = B) involve
only multiplication by unitv. However. if for simplicity we assume that round-off ocours
for each butterfly, we can consider the result as an upper bound on the output noise.
With this assumption, then, the mean square value of the output noise in the 4™ DFT
value, FL&l, 15 given by

ENFLEI} = (N — Do, (9.58)
which, for large N, we approximate as
ENFLRIFY = Nog. (9.59)

According to this result, the mean-square vatue of the output noise is proportional 1o
N, the number of points transformed, The effect of doubling &, or adding another stage
in the FFT, is to double the mean-square value of the cutput noise. In Problem 9,52, we
consider the modification of this result when we do not insert noise sources for those
butterflies that involve only multiplication by unity or §, Note that for FFT algorithms,
a double-length accumulator does not help us reduce round-off noise, sincc the outputs
of the butierfly computation must be stored in { B + 1}-bit registers at the output of each
stage.

In implementing an FFT algorithm with fixed-point arithmetic, we must ensure
against overflow. From Egs, (9.56a) and {9.56b), it follows that

max{| X121, [ Xm—1lgll) = max(|XIpll. (Xnlgll) (9.601)
and also
max([Xwlpll 1 Xmlg 1} = 2maxi’X .1 [pll. (X Lgli). (9.61)
{Sec Problem 2.51.) Equation (9.60) implies that the maximum magnitude is non-
decreasing from stapge to stage. If the mapgnitude of the output of the FFT is less than
unity. then the magnitude of the points in each array must be less than unity, L.e, there
will be no overflow in any of the arrays.!!

To express this constraint as a bound on the input sequence, we note that the
condition

[x[n]! = % O=n=N-1, {9.62)

LA choally, ene should discuss overlow in terms of the real and imaginary parts of the data rather
than the magnitude. However, x| = 1 imphes that [Rer]] = 1 and (Zetfx}| < 1, and only @ slight incease in
atlowablc signal level is achieved by scaling on the basiz of real and imaginary parts
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is both necessary and sufficient to puarantee that
X[k}l <1, O=k<N-1 (9.63)

This follows rom the definition of the DFT, sinee

N-1 =1
Xkl = |3 xlrlW < 3 lxlall k=0,1,...N - 1. (9.64)
n=il [ N

Thus, Eq. (9.62) is sufficient to guarantee that there will be no averflow for all stages of
the algorithm.

To obiain an explicit expression for the noise-to-signal ratio at the output of the
FFT algorithm, consider an input in which successive scguence values are uncorrelated,
i, # white-noise inputl signal. Also, gssume that the real and imaginary pares of the
nput sequence are uncorrelated and that cach has an amplitude deosity that is uniform
between —1/(v/2N) and +1/(v/2ZN). (Note that this signal satishies Eg. (9.62).) Then
the average squared magnitude of the complex input scquence s

3 ;
T 2 .
E{lx[n] "} = ﬁ =,. (9.635)

The DET of the input sequence is

=1
Xkl =Y x[nwhn, ! (9.66)
=}

from which it can be shown that. under the foregoing assumplions on Lthe input,

-1
EQXIEIRY = ) Ellxla) ) w?
=}k ["9!‘57
1
O N AL el
= Na; R
Combining Eqgs. (9.59) and (2.67), we obtain
il SRV S P (9.68)
ENXTE} '

According to Eq. (9.68), the noise-to-signal ratio increases as N2, or | bit per stage.
That is. if & is doubled, corresponding to adding one additional stage 1o the FFT. then
to maintain the same noise-to-signal ratio, 1 bit must be added to the register length.
The assumption of a white-noise input signal is, in fact. not critical here. For a varicty of
other inputs, the noise-to-signal ratio is still proportional to N2, with omly the constant
af proportionality changing.
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¥ teil =
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Km_ila]e = L ¥ml?l  Figure 0.38 Butterfly showing scaling
multipliers and associated fixed-point

round-off nokse.

Equation {(4.61) sugeests an alternative scaling procedure, Since the maximum
magnitude increases by no more than a factor of 2 from stage to stage, we can prevent
overflow by requiring that jxir]l = 1 and incorporating an attenuation of 5 at the
input to each stage. In this case, the output will consist of the DFT scaled by 1/N.
Although the mean-square output signal will be 1/N times what it would be if no
scaling were introduced, the input amplitude can be NV fimes larper without causing
overflow. For the white-noise input signal, this means that we can assume that the real
and imaginary parts are vniformly distributed from —1 Iv2101/42, s0 that |x[n]! < 1.
Thus, with the v divisions by 2, the maximum expected value of the magnitude squared
of the DFT that can he attained (for the white input signal} is the same as that given in
Fq. (9.67}). However, the output noise level will be much less than in Eq. (9.59), since
the noise introduced at early stages of the FFT will be attenuated by the scaling that
takes place in the later arrays. Specifically, with scaling by 1/2 introduced at the inpui
1o each butterfly, we modity the butterfly of Figure 9.36 to that of Fipure 9.38, where,
in particular, two noise sources are now associated with each butterfly. As before, we
assume thal the real and imaginary parts of these noise sources are uncorrelated and
arc also uncorrelated with the other noise sources and that the real and imaginarvy paris
are uniformiy distributed between +(1,2) - 2=8 Thus, as before,

Ellelm, q11*} = 65 = 12728 = £ljam, p] 12} (9.69)

Because the nolse sources are all uncorrelated, the mean-squared magnitude of the
noise al cach output node is again the sum of the mean-sguared contributions of each
noise source in the fow graph. However, unlike the previous case, the attenuation that
each nolse source experiences through the Qow praph depends on the array at which it
originates. A noise source originating at the m'™ array will propagate to the output with
multiplication by a complex constant with magnitude (1,2)"~"~!, By examination of
Figure 934, we sce that for the case N = ¥, each output node connects o

1 butterfly originating at the (v — 1)% array,
2 butterflies originating at the (1 — 2)™ array,
4 butterflies originating at the (v — 3)™ array, etc.



Seetion 8.7 Eftects of Finite Registar Length 761

tior the peneral cuse with & = 2, each output node connects to 2*===1 hutterflies
and therefore to 2*~* noise sources that originate at the m'™ array. Thus, al each output
node, the mean-square magmtude of the noise is

w1
EFIkIP =g } 20" (0.5)2-2m-2

m=0
W
P (9.70)

k=f]
-1-0235"

—_ i a :4{]2 I —{].51‘]1
5T 03 B '

For large N, we assume that 0.3" {1.e, 1/N) is negligible compared with unity, so
E(FIK) Zdag = 72728, (9.71)

which is much less than the noise variance resulting when all the scaling is carried out
on the input data.

Mow we can combine Eq. (2.71) with Eq. (9.67) to obtainthe output noise-to-signal
ratio for the case of step-by-step scaling and white input. We obtain

E[FIKIPY

= 1INgj =4aN - 2778, 9,72
ENIXIKIP "F | 7

a result proportional to ¥ rather than to N, An interpretation of Eq. (9.72) is that the
putput noise-to-signal ratio increases as N, corresponding to half a bit per stape, a result
first obtained by Welch (1969), It is important to note again that the assumption of a
white-noise signal is not essential in the analysis. The basic result of an increase of half
a bat per stage holds for a broad class of signals, with only the constant multiplier in
Eq. (9.72) being dependent on the signal.

We should also note that the dominant factor that causes the increase of the noise-
to-signal ratio with N is the decrease in signal level {required by the overflow constraint)
as we pass from stage to stage. According to Eq. (9.71), very little noise (only a bit or
twa) is present in the final array. Most of the noise has been shifted out of the binary
word by the scalings.

We have assumed straight fixed-point computation in the preceding discussion;
1.e., only presel attenuations were allowed, and we were not permitied Lo rescale on
the basis of an overflow test. Clearly, il the hardware or programiming facility is such
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that straight fixed-point computation must be used, we should, if possible, incorporate
altenuators of 1 /2 al each array rather than use a large atienuation of the input array,

A third approach to avoiding overflow is the use of block floating poinr. In this
procedure Lhe onginal array is normalized to the far lelt of the computer word, with the
restnction that [x[#]] = |; the computation proceeds in a lixed-point manner, except
that afier every addition there is an overflow test. If overflow is detected, the entire
array is divided by 2 and the compulation continues. The number ol necessary divisions
by 2 are counted to determine a scale factor for the entire final array. The output noise-
to-signal ratio depends strongly on how many overflows occur and al what stages of the
computation they oceur. The positions and timing of overflows are determined by the
signal being transformed; thus, to analyze the noise-to-signal ratio in a block Hoating-
point implementation of the FET, we would need to know the input signal.

The preceding analysis shows that scaling to avoid overflow is the dominant factor
in determining the noise-to-signal ratio of fixed-point implementations of FF1' algo-
rithms, Therefore, floating-point arithmetic should improve the performance of these
algorithms. The effect of Aoating-point round-off on the FET was analyzed both theoret-
ically and experimentally by Gentleman and Sande (1966), Weinstein and Oppenheim
(1969), and Kaneko and Tio (1970} These investigations show that, since scaling is no
longer necessary, the decrease of noise-to-signal ratio with increasing N is much less
dramatic than for lixed-point arithmetic.

For example. Weinstein (19%9) showed theoretically thal the noise-to-signal ratio
15 proportional to v for N = 2¥, rather than proportional to N as in the fixed-point case.
Therefure, guadrupling v {raising N to Lthe fourth power) increases the noise-to-signal
ratia by only 1 bit.

9.8 SUMMARY

In this chapter we have consideted technigues for computation of the discrete Fourier
transform, and we have seen how the periodicity and symmetry of the complex factor
e =i 2MINER cap e exploited to increase the efficiency of DFT computations.

We considered the Goertzel algorithm and the direct evaluation of the DFT ex-
pression because of the importance of these techniques when not all &' of the TFT
values are required. However, our major emphasis was on fast Fourier iransform (FFT)
algorithms, We described the decimation-in-time and decimation-in-frequency classes
of FFT algorithms in some detail and some of the implementation considerations, such
as indexing and coeflicient guantization. Much of the detailed discpssion concerned al-
gorithms that require & to be a powerof 2, since these algorithms are easy tounderstand,
simple o program, and most often used,

The use of convolution as the basis for computing the DFT was briefly discussed.
We presented a brief overview of the Winograd Fourier transform algorithm, and in
somewhat more detail we discussed an algorithm called the chirp transform algorithm,

The linal section of the chapter discussed elfects of linite word length in DFT
computations. We used linear-noise models to show that the noise-to-signal ratio of a
DFT computation varies differently with the length of the sequence, depending on how
scaling is done. We also commented briefly on the use of Hoating-point representations.
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Basic Problems with Answers

9.1. Suppose that a computer program is avatlable for compuating the DFT

A&=1
X[y = Y an]e{CniNRa E=01,..., N1

r=ll

i.€., the input w the program 1% the seguence on] and the outpot is the DFT X[E]. Show
how the inpuk and/or output sequences may be rearranged such that the program can also
be used 1o compute the inverss DFT

N--1
1 Ty
Alnl =+ ;? . Xikje! BRI g 1L N -1

i.e., the input to the program should be Xk or 2 sequence simply related to X[£], and the
output should be either sl | or a sequence simply related to x{n ). There are several possible
approaches.

92, Computing the DFT generally requires complex multiplications. Consider the product
K+ Jj¥ ={A+iBWC 4+ jin = {AC — BO} + jiB8C + Ay, In this [orm, a comples
multiplication requires four real multiplications and two real additions, Verify that a com-
plex multiplication can be performed with three real multiplications and five additions using
the algorithm

X
¥

(A= BHD + (0O — DA,

il

(A— B0 4+iC+ A,

9.3. Suppose that vou time-reverse and delay a realvalued 32-point sequence x|n] to obtain
vy[m| = x[32—n) I xq[n]is used asthe imput for the syslem in Figure P94, find an cxpression
for ¥ 32] in terms of X e/}, the D'TFT of the original sequence x[nl.

9.4. Consider the system shown in Figure P94, If the input to the system, x[n].li:s a 32-point
sequence in the interval § = i = 31, the oulpat y[(af ala = 32 is egual o X (e evaluated
a1 a specific frequency wy. What is my for the coefficients shown in Figure P9.47

[ » 1} " o
xln] !
=t |
I.l.lrr L3 b <. a
3 - LA
e J g r"l_:
f 7
———— 3

-1 Figure P9.4
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9.5 Consider the signal flow graph in Figure P25 Suppose that the inpul to the system xix] is
an 8-point sequence. Choose the values of a and b such that v[&] = X (/078

. = -

:r:[n} J'l":i

. Figure P9.5

%.6. Figure %6 shows the graph representation of a decimation-in-time FFT algoritlhim for
N = B Thc heavy ine shows a path from samplc x[7] to DFT sample £12)

x[0] o—a . P — o+ o o X0

“><\//\\ _/
e X0

w3
x[f] o—s ﬂfé\ g :1\\:
il
x[1] ——o . . asspriosh
V X /
T
x[5] o—r .. v_
-1 X
el e
]3] o—s c.>< Wy % Wi
w3 /\
X[7] oo * et
Figure P2.6

{a) What is the “gain™ along the path that is emphasized in Figure P9.67

(b} Fow many other paths in the low graph begin a «f77 and end at X217 Is this trec
in general? That is, how many paths are there between each input sample and each
oulpul sample?

(o) Now consider the DET sample X[2]. By traciog paths in the fow graph of Figere POA,
show that each input sample contributes the proper amount to the output DF 1 sample;
i.e, verify that

N=1

X[2]= E_,;E_nje.—_.'f.z.‘r.-'-'n.’]zﬂ_
n={l
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0.7. Figure P47 shows the flow araph for an #-peint decimation-in-time FFT algorithm. Let xjn]

A0 o

A =

be the sequence whose DFT is X&), In the flow graph, Aj-]. 8.1, Cf-]. and (-] represent

separate arrays (hat are indexed consecutively in the sarmne order as the indicsted nodes,

{a) Specify how the elements of the sequence xin| should be placed in the array Alr],
po=101..... 7. Also, specify how the elements of the DFT sequence should be ex-
tracted from the array Dirl, r =0,1.... 7.

{b} Without determining the values in the intermediate arrays, 8(-} and O[], determine and
sketch the array segquence Orl,r = 0,1...., T,ooa0 the anpul  seguence &
]l =Wy, n=>01...,7

{e} Dewrmine and sketch the sequence Cfel e = 0,1, ..., 7, if the oulput Fourier trans-

formis X[(x]=1.k=01,....7.
)—q-\ ..7[}“1]
)

o]

B0

Wi ~f><;i[ll j\\
o - A

B2 wy

A L:'l [j—’—f]-‘-:r‘--hww e .Jf_l_-,_._...“_ ________ z - . - n[z]

ey 2

P
il -""\-\.‘_\. .3
i O e T BRI Vs oo

p— : ;HI Cl4] wy i
Al Wy :1 ~ 5051 Cl5] W bS]
AB] o :TT-—/;E!-:W'Q. D]
Al e T ">_§\Hm Wi / o[

=1 1
Figura P9.7

WA Lo implementing an FFT algorithm, it is sometimes useful to generate the powers of Wy

with a recursive difference equation, or oscillator. In this problem we consider a radix-2
decimnatinn-in-time algorithm for A" = 2%, Figure 901 demcts (his type of algonthm for
N = H. To generate the coefficients efficiently, the frequency of the oscillator would change
from stage to stage.

Agsume that the arrays are numbered () through v = logs N, 50 the array holding the
initial input sequence is the zero! array and the DFT is in the ™M array. In computing the
butterflies in a given stage, all butterlies requiring the same coeflficients Wi, arc evaluated
before obtaining new coefficients, In indexing through the arcay, we assume Lhat the data in
the artay are stored in consecutive complex registers numbered 0 through (& — 1% All the
following questions are concerned with the computation of the mth array from the (m - 1%
array. where 1 = m = v, Answers should be expressed in terms of m.
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(a) How many butterflies most be computed in the mihh stape? How many different coef-
ticients are required in the m'h stage?

(b} Write a difference equation whose impulse responsc &|a) contains the coefficients WJ-‘.,'_.
reqguired by the butterflies in the mh stape.

(¢) The dillerence equation from part {b) should have the form of an oscillator, 1.e., An)
should be periodic for n = L Whal is the period of k[e]? Based on this, write an
expression for the frequency of this oscillator as a function of m.

Consider the butterfly in Figure I9.9_ This butterfly was extracted from a signal Aow graph
implementing an FFT alporithm, Choose the most aceurate statement from the following
list:

1. The buiterfy was extracted from a decimation-in-time FFT algorithm,

2. The buttertly was extracted from a decimation-in-frequency FFT algorithm.

3. Itis not possible to say from the figure which kind of FFT algorithm the butterfly
came from.

Wi } Figure P9.9
A fimite-length signal x[nf 15 nonezero i the mierval 0 =< < 19, This signal is the mput Lo
the system shown in Figure %10, where

S 2 a— 1) 2 - a
hinj =1 ¢ o=l L0028,

£ otherwise.
W — g Fl2T L1}
The cutput of the system, v|al, for the interval v = 19, ., ., 28 can be expressed in terms of

the DTET ine-flf"] for appropriale values of o, Wrile an expression [or vlaj m fhis interyval
in terms of X ().

hlrl

x{n) L

3 ]

2 M hnggrnti2 Iy 22 :
il AR Figure P9.10

The butterfly Aow graph in Figure 9.10 can be used to compute the DFT of a sequence of
length & = 2Y “in-place,” Le., vsing a single array of complex-valued registers. Assume this
array of registers ALF] i indexed on 0 = ! = N — |, The input sequence s initially stored
in Al€) in bil-reversed order. The array is then processed by » stages of butterflies, Each
Bulterfly takes two armay elements Alfg] and A€ ] as inpets, then slorgs 1ls oulputs nlo
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those same array locations. The values of £5 and £; depend on the stage number and the
location of the butterliy in the signal Now graph. The stages of the compufation are indexed

(o) What is |f] — £ as a function of the stape number m?
(b} Many stages contain butterflies with the same “twiddle™ factor Wy, For these stages,
how [ar apart are the values of £y for the bunerflies with the same W7

212, Consider (he system shown in Figure P2, with

hinl = LETAM-11%02 o 1S,
1. ot herwise,

It is desired that the ourpui of the system, y[n + 11] = X[e-f“'“}, where w, = 2 /19 4
2/l fore =1,.... 4. Give the cotrect value for the sequence rix | i Figure P12 such
that the output y |l provides the desired samples of the DTFT.

k]

xfu] ¥[n]

g Ton
rl"l & MEZmiln - L 1HE

Figure PO.12

243 Assume thal you wish to sort a sequence x|n) of length & = 16 into bit-reversed order for
inpg te an FET algorithm. CGive the new sample order for the Dit-reversed sequence.

9.14. For the following statement, assume that the sequence x|n) has length & = 2¥ and that
X k] 1s the M-paint DFT of x(n]. Indivate whether the statement 1s true or Lalse, and justily
VoL answer,
Statement: 1t is impossible to construct a signal fow graph to compute X[k | from x|# |
such that both x[n] and XTk] are in normal sequential {nof bit-revarsed) order.

9.15. The butterfly in Figure P2.15 was taken from a decimation-in-frequency FFT with & = 16,
where the input sequence was arranged innormal order, Note that a 16-point FET will have
four stages, indexed e = 1, ... 4 Which of the four stapes have butterflies of this form?
Justify your answer.

-1 Wit Figure P9.15
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9.16. The butterlly in Figure P9.16 was taken from a decimation-in-time FFL with & = 16

Acssiime that the Tour stages of the signal Aow graph are indexed bym =1, ... . 4. What are
the possible values of » for each of the four stapes?

o = o e P a

Wi £ Figure P9.16

1.17. Suppose you have two programs for computing the DET of a sequence x]a] that has & = 2¥
nenzera samples. Program A compultes the DFT by direetly implementing the definition
of the DFT sum from Eg. (.67} and takes N? seconds to run. Program B implements
the decimation-in-time FFT algorithm and takes 108 logs &V seconds to run. What is the
shorlest sequence N such that Program B runs faster than Program A7

9.18. The butterfly in Fipure P9.18 was taken from a decimation-in-time FFT with A = 4.

Assume that the four stages of the signal fow praph are indexed by m = 1., 4, Wh:ch
of the four stages have buttertlies of this form

gt - Figure P9.18

49.19. Suppose you are told that an N = 32 FFT algorithin has a “twiddle™ factor of W"- for cne
of the butterflics in its fifth {last) stage. Is the FFT a decimation-in-time or dammatmnam
freguency algorithm?

024, Suppose vouhave asignal x[n]with 1021 nonzerosamples whose IXI'F L you wish toestimate
by computing the DFT. You find that it takes vour computer 100 seconds to compule the
1021 -paint DFT of cn]. You then add three sero-valoed samples at the end of the sequence
to form a 1024-point sequence 1 [#]. The same program on your computer requires only
1 second o compute Xq[k] Reflecting, you realize thal by using xq(n], you are able to
compute more samples of X{e™) in a much shorter time by adding some zeros to the
end of kjn[ and pretending that the sequence is longer. How do you explain this apparent
paracdoy?

Basic Problems

9.2]1. In Section 9.1.2, we used the fac| that 'IK\'_']“""I = | o derive a recurrence ﬂlgunlhm for
compuring a specific DFT value X[&] tor a ﬁmre -fength sequence x[nf =01, ..., ¥ - L

(a) Using the fact that Wi."" . Wﬂ” = |, show that X [¥ -] can be obtained as the ourput
after A iterations of the difference cquation depicted in Figure P9.21-1, That is, show
thad

XN — k] = wN].
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o
xln] ¥ ln]

L&

W Figure P9.21-1

(b) Show that X[% — &] is also equal to the outpur atter N iterations of the differance
equation depicted in Figure P3.21-2. Note that the system of Figure P9.21-2 has the
same poles as the system in Figure Y2, but the coefficient required o implement
the complex zero in Figure P9.21-2 is the complex conjugate of the corresponding
coefficient in Figure 9.2; i.e,, Wl.?jc = fW.{:;.)q.

[= * 7 i o - |
r[n] l AL

I { 2ark’ £k

| 2oty | cug

ki

L B |
e
-1 Figure P9.21-2

0.21. Consider the system shown in Figure P9.22, The subsystem from x[n] to v[x] is a causal,
LTT svslem implementing the difference cgquation

¥lal = x[n] + avie — 11,
xQ#] 15 a finite length sequence of length 91 ie.,

xel=0 forn <Dandn = HY.

a Figure P9.22

Determine a choice for the complex constant @ and a choice for the sampling insiani
M zothat
M= X (ef
M : ! co=T1m /),

9,23, Construct a flow graph for a 16-point radis-2 decimation-in-time FFT algorithm, Label all
multipliers in terms of powers of Wy, and also label any branch transmittances that are
equal te =1, Label the inpul and outpat nodes with the appropriate values of the input
and DFT sequences, respectively. Determine the number of real multipheations and the
number of real additions required to implement the fow graph.
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Tt i stigrested thal of you have an FFT subroutime [or computiog & length-& DFT, the
inverse DFT of an N-point sequence X[k| can be implemented using this subroutine as
Follows:
1. Swap the real and imaginary parts of each DFT coefficient X&),
Apply the FFT routine to this input sequence.
« Swap the real and imagimary parts of the oulpul sequence,
. Scale the resulting sequence by ,L to obtain the sequence x|n], corresponding to the
mverse DFT of Xk].
Determine whether this procedare works as claimed. If it doesn’, propose a simple modi-
ficalion that will make it work,

4= 2 b

The DFT 15 4 sampled version of the DTFT of a finile-length sequence; 1.2,

X[k] = X(ed 2N,

= K{pgi™%
B g == o AN P
Wl N
= Y afalem RN pop ) N1 (P9.25-1)
n={]

Furthermore, an FET algorithm is an efficient way 1o compute the values XT&].
Mow consider a finite-length sequence x s whose length is ¥ samples. We wanl to cvaluate
Xiz). the o-iransform ol the finile-length sequencs, st the Ioflowing points in the o-plang

rp = et BRINE N1,

where ris a positive number. We have available an FFT algorithm.

(a2} Plol the points zp m the z-plane for the case ¥V = Band r = 0.5,

(b} Write an equation [similar to Fg (P9.25-1) above] for Xz ) that shews that X {z;) 8
the DFT of 2 modified sequence ¥[n | What is £[a)?

(v} Deseribe an algorithm for compuiing Xz ) using Lhe given FFT function. | Mireci
evalteation iv il @i opfion.) You may describe vour algorithm using any combination
of English text and equations. but you must give a slep-by-step procedure that slarts
wilh the sequence x[m] and ends with Xz,

We are given a finite-length sequence xln| of length 627 (e, xin| = 0 for n < © and
n = 620]), and we have available a program that will compuaie the DFT of a sequence of any
length N =2V,
For the given sequence, we wanl 1o compute samples of the TTFT at frequencies

2m 1 2wk
) = —

" 627 256
Specify how to obtain a new sequence v[n]from.e| ] such that the desired frequency samples
can by obtained by applying the available FFT program o yix | with v as smell gs possible,

k=01, ..., 255

A finite-length signal of length L = 50 (x[r] = Ofore < Oand e = L — 1) is ob-

tained by sampling a continuous-time signal with sampling rate 10,000 sampies per second.

We wish o compute samples of {he s-iransform of x[#] at the & equally spaced poeints

2 = (0R)e/2TRN far i) = & = N - 1, with an effective frequency spacing of 50 Hz or less

(a) Determing the mimimum value for & il ¥ = 2"

(b) Determine asequence v[u] of length N, where N is as determined in part (a), such that
its DFT ¥|&| is equal to the desired samples of the s-transform of x|# .
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Y28, You are asked 1o buid a svatem that computes the IYFT of a d-point sequence
x[0], x[1], xi2], x{3].
You can purchase any number of computational units at the per-unit cost shown in Table 9.1,

TABLE 9.1

Module Per-Unit Cost

B-poinl DFT | &1

S-paint IDFT" | $1

atkder §141

. 1
mulliplicr | $1¢0

—

Desipn a system of the lowest possible cost. Diraw the associated block disgram and
indicate the swatem cost.

Advanced Problems

9.29. Consider an N-point sequence x[q] with DFT X[&].k = 0, 1.....! N — 1. The following
algorithm computes the cven-indexed DFT values Xkl & =02, ... N =2, for ¥ even,
using omly a single & 2-poing TIFT:

1. Form the sequence y|n| by time aliasing, i.e.,
W] = xal+xfn+ N2 D=m=NZ-1,
skttt 1) atherwise.

2, Compute Flrl,r =001, ... (N/2) — L the N/ 2-point DET of v|a].

3. Then the even-indexed values of X[k} are X[&] = Fl/ 2] for bk =002, ... N - 2.

{u} Show that the preceding alponthm produces the desired results,
(b} MNow suppose that we form a finite-length sequenge yir] from a sequence x[a] by

[ =]
vlal = r;ﬂ""”"'"‘“]- O=n=M-1,

a, otherwise,

Dietermine the relationship between the M-point DFT ¥k and Xce/™), the Fourier

transform of x[n]. Show that the resule of part (a) 5 a special case of the result of part

(b).

(¢} Develop an algerithm similar o the one in part (4} to compule the odd-indexed DFT
values X[kl &k =1.3,..., N — 1, for & even, using only a single N /2-point DFET.
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9.30. The systerm in Figure P23 computes an N-point (where N is an even number) DFT X[&]

231

of an N -point sequence x|n] by decomposing x[#] into two N /2-point sequences gq[n] and
ga[a), compuling the & /Z-pomt DFT's G4 (4] and Ga[4], and then combining these lo form
X[k

galnl ';'I-pninl Gyl
DFT !
ATk]
Combine  |fe—p
£a0nl %;pu:in'l i
DFT (ra[ k]

Figure P9.30

If g In¥ s the even-indexed values of x[x ] and g2 [#] s the odd-aindexed values of x[#]
i gpin] = £[2n] and galn] = x[2n 4 1] then X[E] will be the DFT of «[x].

Ty using the system in Figure PY.30 an eeror s made in forming 2q[n] and gaia], such that
#1tr] is incorrectly choscn as the odd-indexed values and gp|n) as the even indexed values
but Gq[k] and Gz[k] are siill combined as in Figure P9.30 and the incorrect sequence £Tk]
results. Express X[k] in terims of XTE].

I'm Section 9.3.2, it was asserted that the transpose of the fow graph of an FFT algorithm
is also the flow graph of an FET algorithm, The purpose of this problem is to develop that
result for radix-2 FFT algorithms.

() The basic butterfly for the decimation-in-frequency radix-2 FFT algorithm is depicted
in Figure P231-1. This flow graph represents the equations

xm rF-l = A1 1P] + Am—1 [‘ff]:
Xelg]l = (Xg_1lp]l - -‘irm---ﬁ':'lljw.f*;l"

Starting with these equations, show that X, _;[p]and X, _[g] can be computed from
Xplpland Xglgl, respectively, using the butterfiv shown in Figure P31-2,

X.,._;Iplcl\ —=——0 X, |p|
Wi
Ko 17 —+—0 X
-1 mldl Figure P9.31-1

Figure P9.31-2
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(b}

{c)

(d)

773

In the decimation-in-frequency algorithm of Fipure 922, X, lrl,r =0 1,... N - 1 ks
the DFT X[k] arranged in bit-reversed order, and Xglr] = xlrfr =0,1,....08 = 1;
ie., the zeroll array is the input sequence arranged in normat order. If each butterfly
in Figure 9.22 is replaced by the appropriate butterfly of the form of Figure P31, the
result would be a fow graph for computing Lhe sequence xin] (in normal order) from
the DFT X|«} {in bit-reversed order). Draw the resulting flow graph for & = &

The Aow graph obtained in part (b) represenls an froverse DFT algorithm, ie., an
algorithm for computing

N1
1
xfl= 5 2 XMW =01, N1

mexl
Maodify the flow graph oblained in part (b)Y so that it computes the DFT

N=1
X[k] = E;[um‘;", =01, .N-=1,

n=i}

rather than the inverse DFT.

Observe that the resull in part {¢) is the transpose of the decimation-in-frequency
algorithm of Fipure 9.22 and that it is identical to the decimation-in-time algorithm
depicted in Figure 9,11 Poes it follow that, to cach decima ion-in-time algorithm {c.g.,
Figures ¥.15-9.17), there corresponds a decimation-in-frequency algorithm that is the
transpose of the decimation-in-time algorithm and vice versa? Explain.

We want o implement a 6-point deamation-in-lime FTT wsing & mixed cadix approach.
Une option is to first take three 2-point DFTs, and then use the results to compute the
&-point DFT. For this option:

(a)

Xy T

Ay S

Xy O

Draw a Aoweraph to show what a 2-point DFT caloulates. Also, fill m the parts of the
flowaraph in Figure P2.32-1 involved in calculating the DDFT values Xg, X, and X 4.

Xa
2-point
DFT

2—point
OFT

2—paint
DFT

P

= X Figure P9.32-1

{b} How many complex multiplications does this option require? (Multiplving a number

by —1 does not count as a comples multiplication.)
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A second option is to start with two 3-point DFTs, and then use the results to cormpute the

Gepeint DFT.

(e} Drawafowgraph toshow what a 3-pomt DFFT caleulates, Also, fllin all of the (loweraph
in Figure PY.32-2 and briefly explain how vou derived your implementation:
id) How many complex multiplications does this option require?

Xy ar - "t-':l
3—point A’ﬁ\ - [ -

X O—— DFT X,

‘#’ﬁ

Ky G g - - - A,

Xy * 3 Xy
3paint +/><

Y25 DFT / = \\ =3 - Xy

5
X Drmaslpnn e -- \‘:\‘Eh -X.

W Figure P9.32-2

The decimation-in-frequency FEI algorithm was developed i Section 9.3 for radix 2, ie.,

N =2" A similar approach leads (o a radix-3 algorithm when N = 3¥,

{a} Draw a low graph for 2 9-point decimation-in-frequency alzgorithm using a 3 » 3
decomposition of the DFL

{(b) For & = 3%, how many complex multiplicalions by powers of Wy oare needed 1o
complete the IDFT of an &M-pmnt complex sequence using a radix-3 decimation-in-
trequency FFT algorithm?

{} For N = 3" is it possible 1o use in-place computation for the radix-3 decimation-in-
frequency algorithm?

We have seen that an FFT algorithm can be viewed as an interconnection of butterfly com-
pulational elements For examgple, the butterlly for a radix-2 decimation-in-frequency FFT
alporithen is shown in Fipure P9.54-1. The butterfly takes two complex numbers as input
and produces two complex numbers as output, [ts implementation requires a complex mul-
tiphication by W:' . where r 15 an indeger that depends on the location of the butterly in
the Aow graph of the algorithm. Since the complex mulliplier is of the form W, = PILS
the CORDIC {coordinate rotation digital computer) rotator algorithm (see Problem 946}
can be used to implement the complex mulliplication efficiently. Unfortunately, while the
CORDIC rotator algorithm accomplishes the desired change of angle, it also introduces a
fixed magnification that is independent of the angle #. Thus, if the CORIDNC rotator algo-
rithm were used (o Implement the mulliplications by Wg,, the butterlly of Figure P9.34-1
wolld be replaced by the butterfly of Figare P2.34.2, where (F represents the fixed magni-
fication factor of the CORDIC rotater. {We assume no error in approximating the angle of
ratation. } ITeach butterfly in the llow graph of the decimation-in-lrequency FFT algorithm
is replaced by the butterfly of Figure P9.34-2, we obtain a modified FFT algorithm for which
the fAlow graph would be as shown in Figure P9.34-3 for N = 8, The output of this modified
algorithm would not be the desired DFT.
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3] ‘vm |-|7}

a X,
lal Figure P9.34-1

X alpl o— 0 X 7]

GWY,
K
91 iqure P.34-2

.

\ :fn i - S .
/ \/ )( W
+1] foo » o o B 1L
\ e !

/ N GWA GW
i 1

x[7] e & i

Figare P9.34-3

(a) Show that the ouiput for the modified FIT algonthm s Y(k] = WX [&], where Xfk]
is the correct DFT of the input sequence «[n] and W[&] is a function of & NV, and k.

(b} The sequence Wik] can be desceribed by a particularty simple rule. Find this rule and
indicate its dependence on 7, W, and k.

(c} Supposethat wewish to preprocess the inputsequence x|a] to compensate for the effect
of the modificd FFT algorithm, Determine a procedure (or oblaining a sequence $fn)
from xfn] such that if £{r] 15 the input 1o the modified FFT algorithm, then the curput
will be X[, the comrect DFT of the original sequence xfn].
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This problem deals with the efficient computation of samples of the z-transform of a finite-
lenath sequence. Using the chirp transform algorithm, develop a procedure for computing
vilues of Xz} al 25 points spaced uniformiy on an arc of a arele of radius 0.5, begmmning at
an angle of —:r 6 and ending at an angle of 27 /3. The length of the sequence is 100 samples.

Consider a 1024-point sequence 1 |a] constructed by interleaving two 512-point sequences
xe il and xaln]. Specificafly,

Ia'ﬂ;?_:. fn=0 2 4,... . H22:
xlnl = xplin =132 iln =1 3, 5 ..., 1023
(1, far n outside of the range 0 < n = 1023,

Let &1 denote the 1024-point IFT of cfr] and X k] and Xal&] denate the 512-point
DF s of x.[n] and x[n], respectively. Given X [&| we would like eo obtain X, (k] from X[&]
in a compidationally elficient way where computational eficiency 1s measurced in terms of
the wolal mumher of complex multiplies and adds required. One not-verv-ellicient approach
is as shown in Figure P9.36:

Xlk| ,
—— 1124-point [DFT

Xk|
.I. 2 =1 512-puint DFT f———s

¥

Figure P3.36

Specify the most efficient algorithm that you can {certainly more efficient than the
black disgram of Figure P936) 1o obtain X (5] from Xjk).
Suppose that a propram is available that computes the DFT of a complex sequence. 1 we
wish to compute the DET of 8 real sequence, we may simply specily the imaginary part Lo
be wero and use the program divectly, Flowever, the syvmmetry of the DET of a real sequence
can be used to reduce the amount of computation.
{a) Let x|m) be a real-valved sequence of Tength &, and let X&) be its TFT with real and

imaginary parls denoted X p[k] and X;[&], respectively; e,

Xkl = Xplk] + j X 1k]

Show that if x[x| is real, then Xglt] — Xgih — &) and Xk = X0y — k] for
k=1,....N_-1.

{b) Now consider two real-valued sequences xp|n) and x;le] with DFTs X [k] and Xa[k],
respectively, Let gln] be the comples sequence glr] = ny(n] + jxz(n], with corme-
sponding DFT GIk] = G glk| + iG k). Also, let Gopltl. GER[E], Goylk] and Geylk]
denote, respectively, the odd part of the real part. the even parl of the real part, the odd
part of the fmagmary part, and the even parn of the imaginacy part of GIE]. Specifically,
forl <k =N-1,

Gorikl = JGglk] — GrlN — &1},
GERIK] = J{GRIK; + GrlV — K]},
Gotlkl = F1Glk] — GV — &I},
Gpilkl = ${G kI + GyLV — kI,

and Gor(0] = Goil0] = 0. Ger(l] = G0, Ggl0] = G;[0] Determine expres-
sions for X [k] and Xa[k] in teems of Gryp k], G lEl, Gey [kl and Gkl
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{ey Assume that ¥ = 2V and that o radix-2 FFI program i available to compute the
DFT., Determine the number of real multiplications and the number of real additions
required o compute both X0&] ancd Xa[k] by (1) nsing the program twice (with the
imapinary part of the input set o zero] o compute the two complex N -point DFTs
Xqlk] und Xo|&] separalely and (i) using the scheme supgested im purt (b)), which
requires only one N-point DFT w0 be computed.

(d) Assume that we have only one real N-peint sequence xln], where & is a power
af 2, Let xqfm] and xzfe] be the twao real V/2-point seguenses o [r] = x[2m] and
asfa] = x[2n -+ 1}, where n = (L1, . (N/2) - L Determine X[} in eerms of the
(A 2)-point DFTs X (4] and X3[4].

(&) Ulsing the results of paris (b), {c), and (d). describe a procedure Tor computing the
DET of the real ¥N-point sequence x{n| utilizing only one & /2-point FFT computation.
Determme the numbers of Teal multiplications and real additions required by this pro-
cedure, and compare these numbers with the numbers required if the X[k] is computed
using one A-point FFT computation with the imaginary part sct (o zero,

Let z(n] and fln] be two real finite-length sequences such that
x[n] =t for n outside the interval ) = n = L = 1,
fin| =10 for n outside the mlerval 0 =g = F — 1.

We wish to compute the sequence y|n] = x[r]4h[n], where + denotes ordinary convolation.

{a) What is the length of the sequence v[n]?
th) For direct evaluation of the convelution sum, how many real multiplications are re-
guired o compute all of the nonsero sumples of v|n]? The following identity may be
useful:
i‘-’— NN +1)
= 5 ;
=1

(c) State a procedure for nsing the DFT o compute all of the nonzero samples of y|a).
Determine the minimum size of the DFTs and inverse [3FTs in terms of £ and 7.

(d) Assume that L = P = N/2, where N = 2V (s the size of the DFT. Determine a
formula for the number of real multiplications regquired 1o compuate all the nonzero
valees of vlx] using the method of part (e) if the DFEs are computed using a radis-
2 FFT algorithm. Use this formula to determine the minimum value of & for which
the FFT method reguires fewer real multiplications than the direct evaluation aof the
conyolution sarm.

lm Section #.7.%, we showed that linear time-irvariant filtering can be implemented by sec-
tioning the input signal inte finite-length segments and using the DFT toimplement circular
convilutions on these sepments. The two methods discossed were called the overlap-add
and the overlap-save methods If the DTS are computed using an FFT algorithm, these
sectioning methods can require fewer complex multiplications per output sample than the
drrect evaluation of the convoluion sum.

(a) Assume that the complex input sequence x[a] 15 of infinite duration and that the
complex impulse response ke is of length & samples, so that Ala] # 0 anly for
= n = F— 1 Al assume that the ealpen is compuied using the overlap—save
method, witk the DFT's of length L = 2%, and suppose that these DFTs are computed
using 4 radiz-2 FFT algorithm. Determine an expression for the number of complex
mialtiplications required per output sample a8 a unction of v znd £,
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(b} Suppose that the length of the impulse response is P = 5000 By evalusting the formula
obtained in part (a). plot the number of multiplications per cutput sample as a function
of v for the values of v = 20 such thal the overlap—save method apphes, For what
value of ¢ 15 the number of multiplications minimal? Compare the number of complex
multiplications per cutput sample for the overlap-save method using the FET with the
number of complex mulliplications per output sample required for direel evaluation
af the convolution sum.

{c) Show that for large FFT lengths, the number of complex multiplications per output
sample i3 approximately v. Thus, beyvond acertain FFT length. the overlap—save method
is less efficiant than the direct method. If P = S0, for what value of v will the direct
method be more cHicient?

(1) Assumne that the FFT length is twice the length of the impulse response (Le., L = 2P,
and assume that L = 2¥. Using the formula obtained in part (a), determine the smallest
value of F such that the overlap—save method using the FFT requires [ewer complex
multiplications than the direc) convolution frethod.

xfar] is & 1024-poind sequence that is nomeero only for 0 = 0 = 23, Lot X7k} be the 1024-
point DFT of x[s]. Given X[k], we want to compute xin} in the ranges 0 =< n < 3 and
L2 = p = 1023 using the system in Figure P9.40. Note thal the input to the system is the
sequence of DFT coellicients. By selecting sy [n], mz(n], and A]n], show how The system can
be used to compute the desired samples of x[r]. Note that the samples y[n]for0 =n =7
musl contain the desired samples of x|n|.

s[n] = A7)y - T ¥l = sl{ln + 10200 bz
miln] mal] Figure P9.40
A systemt has been built for computing the 8-pont DET F[0). ¥[1], ..., ¥[7] of a sequence

¥{01. ¥, ..., ¥17] However, the system is not working properly: only the even DFT samples
FIOY, Y21 ¥[4], YI6] are being computad correctly. To help you solve the problem, the data
VOU CAD ACCESS Are!

« ihe (correct) even DFT samples, Y[, ¥[2], F[4]. ¥[&];

s the first 4 input values »[0], ¥[1], y[2]. ¥|3} (the other inputs are unavailable).

(@) 1 y[}] =1, and ¥[1] = +[2] = ¥|3| = 0. and ¥[0)] = ¥[2] = ¥[4] = F[#] = 2. what are
the missing valwes YL, ¥{3], ¥[3]. ¥[7]? Explain,

(b) You need to huoild am efficient system  that computes the odd samples
FIL) FE3L ¥IS) Y17 for any set of inpats. The computational modules vou have avail-
able are one 4-point DFT apd one 4-point IDFT, Both are free. You can purchase
adders, subtracters, or multipliers for $10 each. Design a system of the lowest possible
cost that tukes as input

¥I01, #1101, 9121, ¥[3], FIOL FI2], Y41, FI6]
and procluces as ouipt
F[11. ¥[3], ¥[3]. Y[7].

Draw the assocviated block diagram and indicate the total cost.
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9.42. Consider aclass of DFI-based algorithms for implementing a cavszal FIR filter with impulse

response Ajn ] that is wero outside the interval & < a = 63, The input signal {for the FIR
filter) xla] is sepmented into an nfinite pumber of possibly overlapping 128-point blocks
apla], for i an inteper and - oc <= 7 = oo, such that
oo | alale il = m=dL 4127,
xilnl = 0, otherwise,
where I is a posilive inteper
Specify a method for computing

¥iln) = x¢lnl+ hln]

for any i. Your answer should be 1o the form of a block diagram wiilbizing only the types of
modules shown in Figures PP942-1 and PPY.42-2. A module may be used more than once
ur not at all.

The four moedules in Figure PR.42-2 either wse radin-2 FFTS o compule X[k, the
N-point DFT of 1[x], or use radix-2 inverse FF1's to compute x[#| from X[&].

Your specilication must include the lengibs of the FFTs and IFFTs vsed. For each
“shift by ayp™ module, you should also specity a value for g, the athount by which the input
sequence is to be shifred.

: Y
—_— Ehm . kyin] Muitiply f————a
x[n] ¥in | aln- ) ——] talnlxdn]
xl] Figure P9.42-1
FITE-1 where F[k] i= X[k]in
1] (N-point) Plk] bit-reversed order.
FFT-Z where g [n] isx[n]in
gln] [ N-poind X[k] bit-reversed order,
-1 where r[n] is z[n] in
X1#] i V-point) rln] hit-reversed order.
IFFT-2 where §[&] is X[#] in
- {N¥-point) ; bit-reversed order T
S[&l ] Figura PD.42-2

Extension Problems

%43 In many applications (such as evalpating frequency responses and interpolation), it is of

interest to compute the DFT of a short sequence that is “zero-padded.” In such cases, a

specialiced “pruned™ FET algorithm can be used toancrease the efficiency of computation

(Markel, 1971). In this problem, we will consider pruning of the radixz-2 decimation-in-

frequency algorithm when the length of the input sequence is M < 2% and the length of the

DFT is ¥ = 2%, where @ < v,

{a) Dmawthecomplete low graph of a decimation-in-frequency radin-2 FFT algorithm for
N = 16. Label all branches appropriately.
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{b} Assume Lhat the input sequence is of length M = 2; Le., xf#| # O only for N = 0 and
& = 1. Draw a new Qow graph for & = 16 that shows how the nonzero input samples
propagate to the output DFT, i.e., eliminate or prune all branches in the flow praph of
part {4} that represent operalions on Zero-inputs,

{¢) Inpart (b}, all of the butterflics in the first three stages of computation should bave been
effectively replaced by a hali-butterfly of the form shown in Figure P9.43_ and in the
fast stage, all the butterflies should have been of the regular form, For the general case
where the length of the input seguence s M = 2 and the length of the DFT s &% = 2Y,
where i = v, determine the number of stages in which the pruned butterflies can be
used. Also, determine the number of complex multiplications required to compute the
N-point DFI of an M-point sequence using the pruned FF1 algorithm. Express your
answers in terms of v and .

X1l

— e o X [0

W,
% X 4] Figure P9.43

%.44. In Section 9.2, we showed that if ¥ is divisible by 2. an ¥-point DFT may be expressed as
XTK] = G ) + WEHUE w2, O=k=N-L {P9.44-1)
where Glk] is the N /2-paint DFT of the sequence of even-indexed samples,
gln] = x[2n]. D=n= (N1,
and [k} is the ¥ /2-point DFT of the odd-indexed samples,
hin] = x[2n+ 1], O=n= (N -1,

Mote that F[k] and HTE] must be repeated periodically for /2 = & = N -1 for
Eq. {P9.44-1) to make scnse. When N = 2%, repeated application of this decomposition
leads to the decimation-in-time FIT algorithm depicted for &% = 8 in Figure 911, As we
have seen, such alporithms require complex multiplications by the “rwiddle™ facrors I.-'r-'IEr.
Rader and Brenner {(1976) derived a new algonithm in which the multipliers are purely imag-
inary, thus requiring only two real multiplications and no real additions. In this algorithm,
Eqg. {P9.44-1) iz replaced by the equations

K01 = GO + FioL, (P2.44-2)

XIN/2Y = Gl FIO), (PU.44-3)
s L. FIR] i

Xk] = G[x] EJsinLer.kmy R0, N2 (Fo.44-4)

Here, F[k] is the N 2-point 13FT of the sequence
flal=z2n 4+ 1] —x2n - 114+,

where
5 (V21
o=y ZD x[2n + 1]
H=l

is a quanlity that necd be computed only once.
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{a) Show that F[O] = H[0] and therefore thal Fgs {P9.44-2) and (PY.44-3) give the same
result as Eq. (P244-1) fork = (} N /2
(h} Show that

FIk] = HIKWE WS — wip

for b = 1,30, (N/2) — 1. Use this result 10 obtain By, (P9.44-4). Why musl we
compute X[0] and X[ M /2] using separate equations?

(e} When N = 2Y, we can apply Fqgs. {P9.44-27—{P9.44-4) repealedly Lo oblain 4 com-
plete decimation-in-time FFT algorithm. Determine formulas for the number of real
multiplications and for the number of resl additions as a function of . In counting
operations due to Eq. (P9.44-4), take advantage of any symimetries and periodicities,
but do not exclude “trivial” mulliplications by £ /2. ’

{4} Raderand Brenner {19760 stale thal FFT algorithms based on Bos. (P9.44-21-(P2.44-4)

have *poor noise properties” Explain why this might be true.

945, A modificd FFT algorithm caled the splis-radix FFL, or SREFT, was proposed by Duhamel

and Hollman (1984 and Duhamel (1986). The flow graph for the split-radix algorithm is
similar to the radix-2 flow graph, but it requires fewer real multiplications. In this problem,
we illustrate the prineiples of the SRFFT for compuling the DFT X[k] of a sequence xx]
of length V.

{a} Show that the cven-indexed terms of X [&] can be expressed as the & 2-point DET

(NZ-1
X2k = 3 ixlal-txln+ N2WEE
=)

fork =i, 1..... (Nj2) =1

(b} Show that the odd-indexed lerms of the DET X4} can be cxpressed as the N /4-point
s

X4k +1]
v idp-1
= E Uxln] — xle -+ N /2D — Jlxla + N 4] — xln -+ 38 /4] Wi Wik
n=f{l

fork =11, .., iN/M) - 1,and

X[k -+ 3]
| _
= 3 {lalnl - xla -+ N1+ flela + N 4] — xln + 3N DWW
=}
fork=01,_.., (N4 —1.

(¢} The flow graph in Figure P9.435 represents the preceding decomposition of the DFI fora
l6-point transform. Redraw this Aow graph, labeling cach branch with the appropriate
multiplier coefficient.
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Figure P9.45

(d} Determing the number of real multiplications reguirgd o implement the 16-pomnt
transform when the SRFFT prineiple is applied to compuate the other DFTs in Fig-
ure P9.43, Compare Lhis number with the number of real multiplications required to
imglement a 16-point radie-2 decimation-in-frequency algorithm. Tn both cases, as-
sume that multiplications by H’ﬁ are not done.

9.46, In computing the 1JFT, it is necessary to multiply a complex number by another complex
number whose magnitude is unity, Le., (X + j ¥ied?, Clearly, such a complex multiplication
changes only lhe angle of the complex number, leaving the magnitude unchanged. For
this reason, multiplications by a complex number «/7 are sometimes called rofations. In
DFT or FFT algorithms, many differcnt angles £ may be needed. However, it may be
undesirable o store a table of all required values of sin@ and cos 2, and compuling these
functions by a power series requires many multiplications and additions. With the CORDIC
algorithm given by Volder (1959, the product (X + 7¥1e#” can be evaluated efficiently by
a combination of additions, binary shifis, and table lookups from a small table.

{a) Define d; = arctang2™ 3. Show that any angle O < & = 7/2 can be represented as
M-1
ﬂ= Z: E.'El'}r'—FE:I';'-I-F,
i=fl
where o; = £1 and the ervor ¢ is boundad by
el < arctan(2—¥),
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The angles &; may ke computed in advanee and stored in a small table of length M.
State an algorithm for obtaining the sequence {og] for ¢ = 0,1, ... M — 1, such that
o = +1. Use vour algorithm to determine the sequence (o | for representing the angle
0= Wb /512 when M = 11,

Using the result of part {a), show that the recursion
Xg=1X,
Yg=7Y,
_!:I. = x[—l Oy }rj'—'lg_!-l-]‘ i '—.|12---'1 IM‘"‘
Yi =¥ rup X 27 i=12,... M,

Will produce the complex number
(Xpr+ i¥a) = (X + JY)Gpretd,

where § = EJ‘"_:G' e and &y s eal, is positive, and does not depend on d. ‘That
is, the original complex number is rotated in the complex plane by an angle & and
magnified by the constant 5y,

Dretermine the magnification constant Gy as a lunction of M.

247, In Section 9.3, we developed the decimation-in-frequency FET algorithm for radix 2. 1.2,
N =2V, Ttis possible to formulate a similar algorithe for the peneral case of ¥ = m", where
i 15 an integer, Such an algorithm is known as a radix-m FET algerithm. In this problem,
we will examine the radix-3 decimation-in-frequency FFT for the case when N = 9, e, the
input sequence x|i] = Oforw < 0and s = &,

(a)

(b

(c)

(d)

(e)

(f}

Formulate 8 method of computing the DFT samples X[3&] for & = 0,1, 2. Consider
defining X |k] = X (&5 )|, w274 3. How can vou define a lime sequence x [#] in lerms
of x[n] such that the 3point DFT of x5 X1k = X[3k]?

Now define a sequence x;fn] in terms of x]a| such that the 3-point DFT of x;2in] 15
Eqlkl = K13k + N ior & = 0,1, 2, Simalarly, define vy[n| such that its 3-pmnt DFT
X3fk] = X534 4 2] for k =1, 1, 2. Note that we have pow defined the 9-point DFY as
three 3-point DFTs from appropriately constructed 3-point sequences,

Drraw the signal Mow graph for the & = 3 TIFT, e, the radix-3 buiterly.

Using the results for parts (a) and (b}, sketch the signal flow graph for the system that
constructs the sequences 5 |a |, 2zls], and x30a], and then wse S-point TIFT boxes on
these sequences to produce X[E] for b =0 . Mote that in the interest of clariry,
you should not draw the signal flow graph for the &' = 3 DIFTs, but simply use boxes
labeled N = 3 DFT The interior of these brxes is the system you drew Tor part {¢),
Appropriate factoring, of the powers of Wy in the system you drew in pait (d) allows
these systems lo be drawn as & — 3 DFTs, followed by “twiddle™ factors snalogous
L those in the radix-2 &lgorithm. Redraw (he system in part () sach that it consisls
entirely of & = 3 DFT's with “twiddle" factors. This is the complete formulation of the
radix-3 decimation-in-frequency FET for NV = 9.

How many comples multiplications are required to compule a 9-point DEFT using a
direct implementation of the DFT equation? Contrast this with the number of com-
plex multiphications required by the system you drew in parl (g). In pencral, how
manv complex multiplications are required for the radix-3 FFYL of a sequence of length
No=37
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9,48, Blucsicin (1970} showed that i N = M2, then the chirp transiorm algorithm bias a recursive
implementation.

(a} Show that the DFT can be eapressed as the convolution
W=}
X[ET = h*[k] Z[x[n]h*[n':]h{k —nl.
=l

where = denoles complex conjugation and

A
hlr] = el lmitnT AR TR TN

(b} Show that the desired values of X&) e, fork =01, ..., & — 1) can also be obained
by evuluating the convolution of part (adfork =N N +1,..., 28 = 1,
ic} Ulse the result of part {b) to show that X&) is alse equal to the ontput of the system
shown in Figure PRaBlor b= &, % — 1, ..., 2% — 1, where #4] 15 the Gnite-duration
!-il‘.:LlIJ.I'_'ﬂCE
. JimiNE e e
I'El.t]— [ 1 []_'I;u_'l-:l?\ |.|
i, octherwise.
(d) Using ihe fact that ¥ = M*_ show that the system function corresponding to the
impulse response k] is
281 s
fi'{;) . 2: rj(:‘:_u"-'lx*q__—k
k=t
M| 24"
= ¥ Ut -2
' JrimiMr .~ M
=i bk ¢

Hinr Express k as & = + £M,

te) The expression for Hi:) obtained in part (d) suggests a recuesive realization of the FIR
sysiem. Draw the fow graph of such an implementation,

i) Ulse the result of part (&) to determine the otal numbees of complex multiplications
and addilions required to compute all of the & desired values of X[£]. Compare those
numbers with the numbers required [or direct computation of X (&),

Bk] —»—@—»
rlk) T vik]

(i) kK] Figure P9.48

2.49. In the Goertzel algorthm for computation of the discrete Fouder transform, X|&] is com-
puted as

Xk = v 1N]

where ve[r] 15 the outpol of the telwork shown in Figore P49, Consider the implemen-
ation of the Goertzel algorithm nsing fixed-point arithmetic with rounding. Assume thai
the register fength is 8 bits plus the sign, and assume that the products are rounded before
addilions. Also, assume that round-off noise sources are independent.
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Figure P9.49

{a) Assuming that x|r] is rcal, draw a flow graph of the lincar-noise model for the finite-
precision computation of the real and imaginary paris of X[k]. Assume that multiph-
cation by +1 produces no round-off noise.

(b} Compulc the variance of the round-eff noise in both the real part and the imaginary
part of X[k]

9.50. Consider dircot computation of the DFT using fixed-point anthmetic with rounding, As-
sume thal the register length is # bits plus the sign (i, o tofal of 8 41 bilsy and that
the round-cff noise introduced by any real multiplication is independent of that produced
by any other real multiplicalion. Assuming (hat x{n| is real. determine the variance of the
round-off noise in both the real part and the imaginary part of each DFT value XTE].

0.5L In implementing a decimation-in-time FFT algorithm, the basic butterfly computation is
Xmlp) = X lpl + Wa Xp 110l
Xlgl = Xpe_1lpl - Wi Xo1[g].
In using bxed-point arithmetic le implement the computations, it iscommonly assumaed that
all mumbers are scaled v be less than unii:,.'. Therefore, to avoid overflow, i s necessary
to ensure that the real numbers that result from the hutterfly computations do not exeead
ity
{a) Show that if we require
Xo—ifpll < 5 and  Xaoifgll = 5.
then overflow cannot occur in the buetterfly computation; ie.,

ReiXmlpl)| =< 1, T Xnlplll =1,

and
|Re{Xply b < 1, |Zon | X el 10} < 1.
(b) In practice, it 5 easier and maost convenient o reéguire
|Relm 1ol = 3. 1ZmiXpe_ (ol = §
and
Re(Xp_tlalll = 5. | Zm{ Xy 1lg1) = 1.

Are these condilions sufficient 1o puarantee that overflow cannol occur in the decima-
tiom-in-time butterfly computation? Explain.

852 Inderiving [ommulas for the noisc-to-signal raiio for the fised-point radix-2 decimation-in-

time FFT algorichm, we assumed that each outpot node was connected to (N — 1) buttertly

computations, cach of which contributed an amount rr?g = L. 2728 15 the output nuise
variance. However, when Wi, = L1 or £, the multiplications can in fact be done without
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arror. Thus, if the results derived m Section 9.7 are modified to account for this fact, we
obtain a less pessimistic cslimate of quantization noise cffects,

(a) For the decimation-in-time algorithm discossed in Section 9.7, determine, for cach
stage, the number of butterflies that involve maultiplication by either L1 or £ 5.

(by Use the result of parl (a) to find improved estimates of the output noisc variance,
Egp. (9.58), and nolse-to-signal ratio, Eq. (9.68), for odd valees of k. Discuss how these
estimates are different for even values of &. Do not attempt to find a closed form
expression of these quantities for cven values of &

(e} Repeat paris (a) and () for the case where the output of each stage s attenialed
by a factor of %; L., derive modified expressions corresponding to Eq, (9.71) for the
oulput noise variance and Bg. (4.72) for the output noise-to-signal ratio, assuming that
multiplications by +1 and = do not introduce error,

In Section 9.7 we considercd a noise analysis of the dedmation-in-time FFT algorithm
of Figure 9.11. Carry out a similar analysis for the decimation-in-frequency algorithm of
Figure 9.22, obtaining cquations for the outpul noisc variance and nojse-to-signal ratio for
scaling at the input and also for scaling by % at each stage of computation.

In this problem, we consider & procedure {or compuling the TXFT of four real symmelric
or antisymmetric N-point sequences using only one & -point DFT computation. Since we
arc considering only finite-length sequences, by svmmetric and antisymmerric, we explicitly
mean perigdic symmetric and periedic andsymmedric, 25 defined in Section 8.6.4. Tet xyfa],
xalnl, x30r], and x4|r] denote the four real sequences of length &, and let Xy [&], Xa[&],
Kalk], and X4lk] denote the corresponding DFTs. We assume frst that x [=] and xa|a| arc
symmetric and x3[n] and xy[n] are antisymmelric; ie.,

xyfn] = x| [N =n], xan] = xa[N - w],
xinl=—nxsl¥ —nl, xqln] = —xal ¥ —nl,
forre=1,2 .. N -1and x[0] = x,[0] =10

{ay Define yyln] = sqlrl + xaln! and let ¥(1&] denale the DFT of v lr] Determine how
Xil[k] and X3[k] can be recovered from F[4].

(b} viln] as defined in part (a} is a real sequence with symmetric part x;{n] and antisym-
melric parl x| a). Similarly, we define the real sequence va(r] = xaln| + 2400 |, and we
let wyinl be the complex sequence

viln] = wlel + fyalnl

First, determine how ¥qp|k] and Ya[4] ean be determined from ¥5[k|, and then, wsing
the results af part (a), show how (o abtain Xq[£], X2[kl, £30k], and X4[%] from F5lk),

The result of part (b) shows that we can compute the DFE of four real sequences simultta-
ncously with only one M-point DFT computation it two sequences are symmetric and the
olher two are anlisymmetric. Now consider the case when all four are symmetric; i.e.,

xn] = x N —nl, i=1,2,3.4,

form =0 1...., N — L. For parts (e)-(f}, assume x3{n] and x4[n] are real and symmetric,
not antisymmetric,
(¢) Consider a real symmeiric sequence x3in . Show (hat the sequence

aln] = xail{ln+ 1yl — 2a[iie — 1141

is an antisymmetric sequence; 12, #aln] = asWN — n] forn = 1
0] = 0.

S A N o~ | and
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Let z[k] denote the N-point DFT of wafs]. Determine an expression for Dafk] in
terms of X4[k].

By using the procedure of part (c), we wan form the real sequence v [#] = xp(n) +
u3[r], where xq[n] is the syrmetric part and us[r] is the antisvmmetrie part of ¥, [=].
Determine how X4 |k] and X4[%] can be recoverad from ¥i[&].

Wow fet y3in] = ¥ [n1+ faaln], where
yiln] = xq 0]+ wzlnl, valnl = xolml + uglnl
with
wifa] = x3l{{n + 1p] — xaliln = 1}n],
wgln] = xgliln = 1idy] — xglitn — Laba],
fora=10,1,....! N — 1. Determinc how to obtain Xq[k]. X2[£], X31], and X4[&] from

¥a[k]. (Wote rthat X3[0] and X4[0] cannot be recovered from Fa[k], and il & is even,
X5IA /2] and Xy| & /2] also canniot be recovered from F3lk]}

9,55, The input and outpul of a Engar lime-invariant system satisly a dilference equation of the
form

N M
] = Ea,,_v[n — k] + E brcln k]
=1 k=l

Assume that an FFT program is available for computing the DFT of any finite-length
sequence of length £ o= 2%, Describe a procedure that utilizes the available FET program
Lo compute

Hial@MBhy paep 1, 511,

where H(z)is the svster function of the sysigm.

9.56. Suppose that we wish to multiply two very large numbers (possibly thousands of bits long)
on a l&-bil compuier. In this problem, we will investipaie a technique for doing this using
FFTs

fa}

ih)

i)

d)

Let pix) and gix) be the two polynomials

E< . M-l
plei = Ea,-.t'. gixl = E byxt
il fd)

Show that the coefficents of the polynomial Fix) = plrig(xy can be computed vsing
circular convolution.

Show how to compule the cocfficients of v (x) using 4 radix-2 FFT program, For what
orders of magnitude of {1 + ) is this procedure more efficient than direct computa-
tion? Assume that £ 4 M = 2" for some integer v.

MNow suppose that we wish 1o compute the product of two very long positive binary
integers u and w. Show that their product can be computed using polvoomial multipli-
cation, and describe an algorithm for computing the product using an FFT algorithm.
If ¢ is an 8000-bit pumber and v ix 2 [000-bi number, approximately how many real
multiplications and additions are required o compute the product « - v using this
method?

Crive a qualitative discussion of the effect of Gnite-precision arithimetic in implementing
the algorithm of part {c).
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Chapter 3 Computation of the Discrete Fourer Transtorm

9.57. The discrete Hartley transform (DHT) of a sequence x|x| of length & is defined as

9.58.

ali]

—e . . —yw-— - % }p w— flOf

bV 1] © ] e[1} .

alt] | - - 7 flL
B wi CiX\:g:_' el2 \ /

i M [ Vi EPAVAN. I e l_}qﬂ 12l

i

Bl :

bls
a[5] —= /i.-\[ I

m7] W3
al?] 1 -

s A W Bl Ay el
: |

Xylk] = E xla]Hylnk], k=01, _, g
n=ll
where
Hylal = Cwlal + Sylal.
with

Cala] = cos(dora N, Syla] = sin2ra /N
Problem 8.6% explores the properties of the discrete Hartley transform in detail, particularly
15 circular convolution properiy,
fa) Verify that Hylaf = Hyle + N, and verify the fullqwing uscful property of Hy[a]:

Huba + &) = HylalCa bl + Hyl—alSxlb]
= Hy[hCulal = Hu[-H15xTal.

{b) By decomposing x[r] into its even-numbered points and odd-numbered pointg, and
by using the identity derived in part {a). derive a fast DHT algorithm based on the
decimation-in-time principle.

In this problem, we will write the FFT as a seguence of matrix operations. Consider the
S-point deamation-in-tune FITT algorithm shown in Figure P25, Let 4 and [ denote the
input ard output vectors, respectively. Assume that the input is in bit-reversed order and
that the output is in normal order (compare with Figure 9.11). Let b, ¢, d. snd ¢ denote the
intermediate vectors shown on the fow graph.

b|a| cfd| e | e} o

b4} cl4]

-1
bl Wi

-1
Figure P4.58
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{ay Determine the matrices Fy, Ty, Fa, Ta, and F5 such that
b= Fya,
c="Tyb,
d = Fac,
e = Tad,
f = Fe.
(b} Theoverall FET, takinginput a and vielding cutput { can be described in matrixnotation

as | = (Ja, where
= F3TaF2 T Fy.

Let OF e the complex {Hermutian) transpose af the matrix Q. Draw the flow graph

for the sequence of operations described by Q. What does this structure compute ?
ey Determine {1/A07 0.

In many applications, there is a need to convolve long sequences x| x| and k| #] whose sam-
ples are inlegers, Since the sequences have inleger coellicients, the result of the convolution
vlal = xl#] = #Hln] will naturally alse have integer cocfficients as well.

A major drawhback of computing the convolulion of integer sequences with FFTs is
that floating-point arithmetic chips are more expensive than integer arithmetic chips. Also,
rounding noise introduced during a floating-point computation may corrupl the resull, In
this problem., we comsider o class of FIT algorithms known as numtber-theseefic transforns
(INTTs), which overcome these drawbacks.

(a) Let x[n] and Alx] be N-point sequences and denote therr DFTs by X[k] and F k]
respectively, Derive the circular convelution property of the DFT. Specifically, show
that Yk] = X[k]H[k], where v[a] is the A-point citcular convolulion of t(a] and hlg].
Show that the circelar convalution property hokds as long as Wy, in the DFT satisfies

N1

s [ Nk=1 Ty
P _lt:r. k<0 (PU.59-1)

n=I()

The ke (o defining NTTs is 1o find an inleger-valued Wy that sabisfies Fog. (P95
L). This will enforce the orthogonality of the basis vectors required for the DFT o
function properly. Unfortunately, no integer-valued Wy cxists that has this property
for stumddard inleger anthmelic.

In order to overcome this problem, NTTs use integer arithmetic defined modulo some
integer £, Throughout the current problem, we will assume that P = 17, That is,
addition and multiplication are defined as standard integer addition and multiplication,
followed by medulo P = 17 reduction. For example, (2341837 = 7. ({Ll0+T) i =0
23 = 1837 = Goand ({10 = 71l = 2, (Jusl compute the sum ot product in the normal
way, and then take the remainder modulo 17.)

{b} Let P =17 N =4, and Wy = 4. Verifv that

N-1 !
B T —_ N k=10,
L a T k£
n=0 P

(ch Let x[r] and k[a] he the sequences

xTi} = 8] 4 3E AT S8 = 2]
hn] = 38[n] + d[n — 1)



Chapter 9 Computation of the Discrate Fourier Transform

Compute the 4-point N'TT X[E] of x[n] as follows:

W1
X[k] = ((E x[wk

n=il P

Compute H1k]in asimilar ashion. Also, compute YTk) = H [k X% Assume the values
of P, &, and Wy given in part (a). He sure ro wse modido 17 arithereric fior each apevation
throwghout the comprtation, not just for the fine result!

{d) The inverse NTT of ¥{&] is defined by the equation

N1
vin] = (((.ﬂ" E F;k]l.if;,“] ; (PY.59-2)
. k=0 Frlp

In order o compute this quantity properly, we must determine the irfegers (167
and W,.'.t such that

I
-

((n'v)),
((wew')),

Use the values of £, &, and Wy given in part (a), and determing the aforesaid integers,

(e) Compute the inverse NTT shown in Eq. (PY.59-2) using the values of (N)~! and Wﬁi
determined in part (d). Check your result by manually computing the convolution
¥lrl =xfr] = Ainl.

1.

0.6, Scctions 9.2 and 9.3 focus on the fast Fourier transform for sequences where & is a power
of 2. However, it s also possible (o find efficient algonithms (o compute the DFT when
the lenpth & has more than one prime factor, ie, cannol be expressed as N = m" for
soame integer oo In this problem, you will examine the case where N = 6. The techniques
described extend easily to other composite numbers. Burrus and Parks (1985) discuss such
alporithms in more detail,

(2} The key to decomposing the FFT for N = & is to use the concept of an index map,
proposed by Cooley and Tukey (1965} in their oripinal paper on the FFT. Specifically,
for the case of ¥ = 6, we will represent the indices n and k as

=3y sy form = Liny =012 (P6-1)
k=i +2k lork) =01 k=012 (P a0-2)

Verily that using each possible value of aq and az produces each value of n =10, ..., 5
oncz and only once. Demonstrate that the same holds for & with each choice of &
and k.

{b} Substitute Eqgs. (PY.A0-1) and {(PRAD-2Z) indo the definition of the DFT 1o get a new
expression for the DFT in terms of £y, 82, &y, 8nd &>, The resulting equation should
have a double summation over ny and na mhleurl of & simgle SUmmalion over 8.

{c} Examine the Wy terms in vour equation carefully. You can rewrite some of these as
equivalen! cxpressions in Wo and Ws.

{d} Based an part (<}, growp the terms in your TOFT such that the ps summation is outgdde
and the »; summation is irside. You should be able to wrile this expression so that
il can be interpreled as three DFTs with & = 2, [ollowed by some “twiddle™ factors
(powers of We), followed by two N = 3 DFTs.
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(¢} Draw the signal fow graph implementing your expression rom part (d), How many
complex multiplications does this require? How does this compare with the number
of complex meltiplications required by a dircct implementation of the DFT equation
for N =67

(f) Find an alternative indexing similar to Eqs (P9.80-1) and (P2.60-2) that reselts ina
signal flow graph that s two & = 3 DFTs followed by three & = 2 DFTs,



