Random Signals

Inthis appendix, we callect and summarize a number of resilts and establish the notation
relating to the representation of random signails. We make no attempt here to provide a
detailed discussion of the difficult and sobile mathematical issues of the underlying the-
ary, Although our approach is not rigorous, we have summarized the important results
and the mathematical assumptions implicit in their dervivation, Defailed presentation
of the theory of random signals are found in texts such as Davenport (1970}, Papoulis
(1984), Ciray and Dravidson (20045, Koy (2000, and Bertsekas and Tsitsiklis (2008),

A.1 DISCRETE-TIME RANDOM PROCESSES

The fundamental concept in the mathematical representation of random signals 15 that
of a rardowm process. In our discussion of random processes as models for discrete-time
signals, we assume that the reader is familiar with the basic concepts of probability, such
as random variables, probability distributions, and averages.

In wsing the random-process model in practical signal-processing applications, we
consider a particular sequence to be one of an ensemble of sample sequences. Given
a discrete-tune signal, the structure, Le., the underlying probahility law, of the corre-
sponding random process is generally not known and must somehow he inferred. Tt
may be possible to make reasonable assumptions about the structure of the process, or
it may be possible to estimate the properties of a random-process representation [rom
a finte segment of a typical sample sequence.

Formally, & random process s an indexed family of random vanables (x, } charac-
terized by a set of probability discribution functions that, in general, may be a function
of the index 7. In using Lhe concept of a random process as a model for discrete-time
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signals, the index r is associated with the time index. In other words, each sample value
x[n] of a random signal is assumed to have resufted from a mechanism thal is poverned
by a probability law. An individual random variable x, is described by the probability
distribution function

Py, (x,, n) = Probability [x, < xx]. (A1)

where x, denotes the random varable and x, s a particular value of x,. ) If x, takes
on a continuous range of values, it is equivalently specified by the probability density
function

P (x,.n
Prgltn, 1) = —22 ) (A2)
' g
or the probability distribution function
Py, (Xn, 1) = [ P, (x, . (A3)
o — 0

The interdependence of two random variables x, and x,, of a random process is
described by the joint probability distribution function

P

Xp.Xg

(X, M, X, i) = Probability [x, = v, and x, < 1] {Ad)

and by the joint probability density

_ APy, a (X 11, Xy, 110
Prgx X 1 K 1) = : —.

(A5

iy, iy ) )

Two random vanables are statisfically independent if knowledge of the value of

one does not affect the probability density of the other. [f all the random variables of a
callection of random variables, [x, ], are statistically independent, then

I’I.-r.i_“["tﬂ‘ 1. Xms m} = ln:,‘ {_r”. R_J x; P&I‘__‘Inh .fJ'iJ M # . ‘.f‘i.ﬁ}

A complete characterization of 4 tandom process requires the specification of all
pussible joint probability distributions. As we have indicated, these probability distribu-
tions may be a lunciion of the me indices m and n. Inthe case where all the probability
distributions are independent ol a shift of time origin, the random process is said to be
stationary. For example, the 2™ -order distribution of a stationary process satisfies

Py btk Xppk Tk Emga.m k) = Py, (Xn, B X, ) for all &. {AT)

In many of the applications of discrete-time signal processing, random processes
serve as models for signals in the sense that a particular signal can be considered a sample
sequence of a random process. Alihough the details of such signals are unpredictable
making & deterministic approach to signal representation mappropriate—certamn av-
erage properties of the ensemble can be determined, given the probability law of the
process. These average properties often serve as a useful, although incomplete, charuc-
terization of such signals

i this appendix, boldface type is wsed to denote the random variables and regular (vpe denotes
dumeny varisbies of probabeliny functons
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A.2 AVERAGES

It is often useful to characterize a random variable by averages such as the mean and
variance. Since a random process is an indexed set of random variables, we may likewise
characterize the process by statistical averages of the random varables making up the
random process. Such averages are called ervernble averages. We begin the discussion
of averages with some definitions.

A Z.1 Definitions

The average. or mean, of a random process is defined as
s ]
Mix, = £[Xy) =f xpy, {x, mhdx, {A8)
o

where £ denotes an operator called mathemeatical expectution. In general, the mean
{expected value) may depend on a. In addition, if g(.) is a single-valued function, then
g%, ) is a random variable, and the set of random variables | g(x, y} defines a new random
process. To compute averapes of this new process, we can derive probabilily distributions
of the new random variables. Alternatvely. it can be shown that

[ 44
Elexq)l =f plx)py {a, m)d. (A9

—o4

If the random variables are diserete— e, if they have quantized values—the inlegrals
become summations over all possible values of the random vanable. In that case £ g(x)]
has the form

£lg(xe)] = 3 g(x) py,(x, n). (A.10)

In cases where we are interested in the relationship between multiple random
processes, we must be concerned with multiple sets of random variables. For example,
for two sets of random variables, (x,] and {y_ |, the expected value of a function of the
iwo random variables is defined as

L L]
E{pix,. v )1 t-f f B, ¥py, 5 (aom, yomhdxdy, (A1)
- -

where py, y (X R, ¥ i) is the joint probability density of the random variables x,
andy, .

The mathematical expectation operatoris 4 linear operator; that is, it can be shown
that

L Eix, 4+ ¥, ) = Elxa.) + £y, |: Le. the average of a sum is the sum of the averages.

2. Elnx,] = af|x,}; i.e., the average of a constant times x,, 15 equal to the constant
times the average of X,,.

In general, the average of a product of two random variables is not equal to the
product of the averages. When this property holds, however, the two random variables
are said to be linearly independent or uncorrelated, That is, x, and y,, are linearly inde-
pendent or uncorrelated if

Elxn¥n} = Elxml - £y, ) (AI2)



ApD. A Randam Signals

Tt is easy to see from Egs. (A.11) and (A.12) that a sufficient condition for linear inde-
pendence is

P‘xn.jr,,,':-'fﬂs”- Yo, MU} = Py, Xy, 0y P, {3y 1)L ['A.L:'!-}

However, Eg. (A.13) is a stronger statement of independence than Eq. (A12), As
previously stated. random variahles satisfving Fq. (A13) are said to be swsistically
independent. 1 Eq. ( A.13) holds for all values of a and m, the random processes {x,,} and
{¥,, } Are said to be statistically independent. Statistically independent random processes
are also lincarly independent: but the converse is not true: Linear independence does
not imply statistical independence.

Tt can be scen from Eqs. (A9)-(A.11) that averages generally are functions of the
time index. For stationary processes, the mean 15 the same for all the random variahles
thal constitute the process; Le., the mean of a stationary process is a constant, which we
denote simply my .

In addition 1o the mean of a random process, as defined in Eq. (A8), a number
ol other averages are particularly important within the context of signal processing.
These are delined next. For notational convenience, we assume that the probabality
distributions are continuous. Corresponding definitions for discrete random processes
can be obtained by applying Eq. (A 10}

The mean-square value of 1, is the average of |x, 1% 1.2,

o
E1x, 17} = mean square = f Ix 2 Px lx.mhd s, (A1)

-
The mean-square value is sometimaes referred to as the average power,
The varignce of X, is the mean-square value of [x, — m,, | i.e.,

varfx,] = £{|(x, —m, )} =0, . (A.15)

Since the average of a sum is the sum of the averages, it folfows that Eq. {(A.15) can be
written as

var(X,] = E{[xa |’} — Imy, 1*. (A.16)

In peneral, the mean-square value and the variance are functions of time; however, they
are constant for stationary processcs

The mean, meansquare, and vanance are simple averages that provide only a smalt
amount of information about a process. A more uselul average 18 the autocorrelation
seguence, which is defined as

thee[n, m] = Efx.x})

20 poo (A1T)

o f [ 'x”x.:if']xu.lm{xﬂl"me:m']dxn X,
o= — 00
where * denotes complex conjugation. The autocovariance sequence of a random pro-
cess 1s defined as
Faxlmom| = EHXy — my, W —myg )|, (A18)

which can be wrillen as

Vaxln.ml = gyln, m] — m.x‘.'m_:.._.- (A19)
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MNote that, in general, both the autocorrelation and autocovariance are two-dimensional
sequences, i.e., functions of two discrete variables,

The autocorrelation sequence is a measure of the dependence between values of
the random processes at different times. In this sense, it partially describes the time
variation of a random signal. A measure of the dependence between two different
random signals is obtained from the cress-correlation sequence. If {X,} and (¥} are
two random processes, their cross-correfation is

eyl m| = E{xay, |

e (A.20)
— f I‘ .'['_}:*Fa.".rm{.ﬁ-.ﬂl ¥ H'UI‘JI.I E-f_'}:,

=0 e =00
where py_ ¢ (x,n, ¥, m)isthe joint probability density of x, and y,, . The cross-covariance
function is defined as

Yoyl m] = E{(Xy — my ¥, — my, )]

K
= rpt_'l-";": ml B m.‘tnm}'n'

(A.21)

As we have pointed out. the statistical properties of a random process generally
vary with time. However, a stationary random process is characterized by an equilibrium
condition in which the statistical properties are invariant to a shift of time origin, This
means that the 1¥-order probability distribution is independent of time, Similarly, all the
juint probability functions are also invariant to a shift of time origin; i.e., the 209 _grder
joint prabability distributions depend only on the time difference (m — n). First-order
averages such as the mean and variance are independent of lime; 2".order averages,
such as the avtocorrelation ¢, [n, m], are dependent on the time differcnee (m — u).
Thus, for a stationary process, we can write

my = £fxal {AZE)
ol = &fl(x — mo )} (A23)

both independent of n. If we now denote the time difference by m, we have
Poxln +mon] = golm] = ElxpimX, ] (A.23)

That is, the avtocorrelation sequence of a stationary random process is a one-dimensional
sequence, a function of the time difference m.

In many instances, we encounter random processes that are not stationary in the
strict sense—i.e., their probability distributions are not time invariant—but Eqgs. (A.22)—
{A 24 still hold. Such random processes are said to be wide-sense siationary,

A.2.2 Time Averages

In a signal-processing context, the notion of an ensemble of signals is a convenient math-
ematical concept that allows us to use the theory of probahility to represent the signals.
However, in a practical situation, we always have available at most a finite number
of finite-length sequences rather than an infinite ensemble of sequences, For example,
we mighl wish to infer the probahility law or certain averages of the random-process
representation from measarements on a single member of the ensemble. When the
probahility distributions are independent of time, intuition suggests that the amplitude
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distribution (histogram) of a long segment of an individual sequence of samples should
be approximately equal to the single probability density that describes cach of the ran-
dom vanables of the random-process model. Similarly, the arithmetic average of a large
number of samples of a single sequence should be very close to the mean of the process.
To formalize these intuitive notions, we define the time average of a random process as

{x,' = lim ! Z Xy (A25)

a 2 x
X 1 m x:} = 1!.[11 — Xn [-_lﬂxn - {:‘51..26]

It can be shown that the preceding hmits exist if [x,;} is a stationary process with fi-
nite mean. As defined in Eqs. (A25) and (A.26), these time averages are functions
of an infinite set of random variables and thus are properly viewed as random vari-
ables themselves. However, under the condition known as ergodicriy, the time averapes
in Eqgs. (A25) and {A.26) are equal to constants in the sense that the time averages
of almost all possible sample sequences are equal to the same constant. Furthermore,
they are equal to the corresponding ensemble average.” That is. for any single sample
sequence {x[r|} for —o¢ <« n = 20,

L
Vo= Jj — 23 — - FaM
(xfn]) LlE[.:I'e TR ,-.Z_:: ] = Xy} = my (A27)
and
£
(x[n+ m]e"[n]) = J_]ij T ]I-H:z_‘LXIH + m]x*[a] = E(XurmXy)} = pcbn]. (A28)

The time-average operator {3 hasthe same properties as the ensemble-average operator
£i-}. Thus, we penerally do not distinguish between the random variable x,, and ite value
in a sample sequence, rin]. For example, the expression E{x|n]} should be interpreted
as £{x,} = {x[nl}. In general, for ergodic processes, time averapges equal ensembic
averages.

In practice, it is common to assume that a given sequence is a sample sequence of
an ergodic random process so that averages can be computed from a sinple sequence.
Of course, we generally cannot compute with the limits in Eqs. {A.27) and {A.28), but
instead the quantitias

 fetas

Ay = 2 Y adnl, (A.29)
n=i}
s

52 = = lelnl — R (A.30)
B el

3 i . - ; I
*A morc precise statement @5 that the random varahles (X, and (X, m X5 ) have mosns coual oo s,
and g [l respectively, snd their vari anees arg zero,
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and
L—1
. ! "
txln + mlx"[nli = 2 z x[n +mix*|n] (ALY
n=il
or similar quantities are often computed as estirmares of the mean, variance, and au-
tocorrelation. i, and &2 are referred to as the sample mean and sample variance.

respectively, The estimation of averages of a random process from a finite segment of
data is a problem of statistics, which we touch on briefly in Chapter 10,

A.3 PROPERTIES OF CORRELATION AND COVARIANCE
SEQUENCES OF STATIONARY PROCESSES

Several useful properties of correlation and covariance functions follow in a siraight-
forward way from the definitions. These properties are given in this section,

Consider two real stationary random processes |x, ] and (v, with autocorrelation,
autocovariance, cross-correlation, and cross-covariance being given, respectively, by

duclm] = EiXpmxy b (A32)
Veelm! = E{(Xqm = M )X — )] (A.33)
doylm] = EXgrm¥y b (A.34)
veulml = El(Xnim — mo 0¥, —my )" {A35)

where m; and rr, are the means of the two processes. The following properties are easily
derived by simple manipulations of the definttions;

Property |
Prcln] = o clm] = |mr:2~ (A 3bHa)
Veelm] =y [m) — meml. (A.36h)

These resulis follow directly from Egs (A 19) and {A.21), and they indicate that the
correlation and covariance sequences are identical for zero-mean processes,

Property 2
2 10] = EL|%a|"] = Mean-square value, (A.37a)
L f:f = Varance. {A37R)

Property 3
$uy|—m| = @7 tm]. { A3Ra)
Vexl—mi = y . im], (A.38h)
heyl—m) = @ im], {A38c)

Veyl—m] = ] lmi. (A38d)
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Property 4
ey [m] * = 1016y, 101, (A.392)
[ [m 11 < pecl01y4,101. (A.39h)
In particular,
|tz D] < e [O], (A.d0a)
[¥eclml] = yec [0 { A 400)
Property 5. If'y, = X,_,, then
drpfm] = gy ], fAdla)
Foplm] = puylml. {A4lb)

Properly 6. For many random processcs, the random variables become
uncorrclaled as they become more separated in time. [F this is true,

lim polm] =10, iA42a)
s
Lim_deulm] = |my o (A42M)
litn gyl =10, (A42e)
=5 Ol g
r”l'L'rnm ey [m] = m Im;. (A 42d)

The essence of these results is that the correlation and covariance are finite-energy
sequencesthat tend to die out for larpge values of m. Thus, it iz often possible 1o represent
these sequences in terms of their Fourier transforms or z-transforms.

A.4 FOURIER TRANSFORM REPRESENTATION
OF RANDOM SIGNALS

Although the Fourier transform of a random signal docs not exist execplin a gencralized
sense, the autocovariance and autocorrelation sequences of such a signal are aperiodic
sequences for which the transform does exist. The spectral representation of the cor-
relation functions plays an important role in desceribing the input-owtput relations for
a lincar time-invariant system when the input 5 a random signal. Therefore, it is of
interest to consider the properties of correlation and covariance sequences and their
corresponding Fourier and z-transforms.

We define @, (™), Dax(e?®), @rpde®), and Uyp{e’™) as the DTELs of ¢y m],
veelmls gy ml and py,lm). respectively. Since these functions are all DTTTs of se-
quences, they must be periodic with period 2r. From Egs. (AJ36a) and {A.360), it
follows that, over one period |w| = .

Doole’™) = Doale!™) + 2mlone P8 lw),  lw <, (A.d3a)
amd

O, e’y = Ty (o) - 2rm m8(w),  fl = (A.43b)
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In the case of zero-mean processes (m, = Uand m, = U0), the correlation and covariance
functions are identical so that &, {e/™) = Dye(e!™) and &y (e/™) = Myyle!™),
From the inverse Fourier transform equation, it follows that

1 = ; :
¥eelm] = 5= f [ e e ™ s, (A.dda)
l k4
Pealm] = =— [ D (e/0e " dw, {A.44b)
2m o
and, consequently,
3 2 g L {7 i
Elixin]l*} = ¢yl =07 = - D (e ™1 d e, {A.45a)
LU o
1 & ;
o7 = peedl = 5= [ Taxle!)dos, {A 45b)

Sometimes it is notationally convenient to define the quantity
FPrylw) = Py f.f-"jm}- {Hq-ﬁ)

in which case Eqs. (A.453a) and {A.45b) are expressed as

Ellslnl?) = 5 j Poxlwio, (A.472)

g 1 f © Pdwldae, (A.47b)
2r Jon

Thus, the area under Py, {t) for —r = @ = m is proportional to the average power in
the signal. In fact. as we discussed in Section 2.10. the integral of P, (w) over a band
of frequencies is proportional to the power in the signal in that band. For this reason,
the function P, {w) is called the power density spectrum, or simply, the power specirunt.
When P (e is a constant independent of w, the random process is referred to as a
white-noise process, or simply, white noise. When P () is constant over a band and
zero otherwise, we refer to it as bandlimited white noise.

From Eqg. {A38a), it can be shown that P, {w) = I Amh e, Poolw) 13 always
real valued. Furthermore, for real random processes, doc[m] = de [—], 50 1n the real
case, Polm) s both real and even; e,

Fyrlm) = Pyr{-w). (A 4B}

An additional important property is that the power density spectrum is nonnegative;
i.e. Pro{w) = 0 for all w. This point is discussed in Section 2.10.
The cross power density spectram is defined as

Prylo) = Dy (e). (A.49)
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This function is generally complex, and from Eq. (A.38¢), it follows that
Poylw) = P (). (A.50)

Finally, as shown in Section 2.10, if x[#] is a random signal input to a linear time-invariant
discrete-time system with frequency response H{e/}. and if ¥[«] is the corresponding
ourput, then

¢.j-}-[3'|:uj_} = I",I(P-‘I.‘”:I!1¢’tx ft."ru'l':l [.l.dl.rﬁ ]-}
and
D (6) = Hie! )b, (77, {A.52)

Example A.1 Noise Power Output of Ideal Lowpass Filter

gur Suppose that xf#s] is a zero-mean white-noise sequence with ¢e[w] = w.t:—isml and

. power speetrum @y () = af for @ = m, and furthcrmore. assume that e|a] is

* the input to an ideal lowpass filter with catoff frequency .. Then from Eg. (AS1). 01

% follows that the output ¥l would be a bandlimited white noise process whose power
& spectrum would be

a
by iel®) = ["s v e = e, {A53)

0, g = || < o,

Using tha inverse Fourier transform. we obtain the autocorrzlation sequenca

a ¢
m) o= — s A5
i #yylen] am ' )

Mow, using Eq. (A 45a), we get for the average power of the output,

f’L‘&
o

e 1}
5 1 o £
< £l = eyl = 5 | ofdw= o}t (A55)
s i 2 . ]
]

A.5 USE OF THE z-TRANSFORM IN AVERAGE POWER
COMPUTATIONS

To carry out average power calculations using Eg. (A 45a), we must evaluate an in-
tegral of the power specirum as was done in Fxample A 1. While the integral in that
example was easy (o evaluate, such integrals in general are difficult to evaluate as real
intcgral& However, a result based on the g-transform makes the calculation of average
ouwtput power straightforward in the important case of systems that have rational system
functions.

In peneral, the -transform can be used to represent the covariance [unction but
not a correlation function. This is because when a gignal has nonzero average value, its
correlation function will contain an additive constant component that does not have a
g-iransform representation. When the average value is zero, however, the covariance
and correlation functions are, of course, equal. I the z-transform of p,, {m] exists, then
sinee y[—m] = p2. [m] it follows that in general

Tepizl = r'_:; (1720, {A36)
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Furthermore, since y.lm] 15 two sided and conjugate-symmetric, it follows that the
region of convergence of [';; (z) must be of the form
I
ry <zl = —
Fa
where necessarily (| = vy < 1. Inthe important case when T, {2) 15 a rational function of
z, Bq. (A.56) implies that the poles and zeros of T', ; (z) must oceur in complex-conjugate
reciprocal pairs,
The major advantage of the r-transform reprosentation is that when Ty, (7) s 2
rational function, the average power of the random signal can be compuited easily using
the relation

Inverse r-transform
Ellxln] = m ) = a2 =y, (0] = of Tilzy ; (A.5T)
evaluated form =0

Ttisstraightforward to evaluate the right-hand side of this equation using a method based
on the observation that when ', (z) is a rational function of z, 3 . [im] can be computed
for all m by employing a partial fraction expansion. Then to obtain the average power,
we can simply evaluate y;.[m] for m =0,

The z-transform is also useful in determining the autocovariance and average
power of the putput of an LTT system when the input is a random signal. Generalizing
Eg. (A.51) leads to

Tyy(2) = HEH (12 exl2), (A.58)

and from the properties of the z-transform and Eq. {A.58), it follows that the autoco-
variance of the output is the convolution

Youlm] = hm] # B¥ [ =mt] w oy [m]. {A.5Y9)

This result is particularly useful in quantization noise analysis where we need to com-
pute the average output power when the input to a linear difference equation is a
zero-mean white noise signal with average power o2, Since the autocovariance of
such an input is yi[m] = n_ESLrnJ. it follows that the autocovariance of the output is
Viplml = o2 (h[m] + h*|—m]), 1.c., the covariance of the output is proportional to the de-
terministic aulocorrelation of the impulse responsc of the LTT system. From this resull
1t forllovars thatl

o

Eimll =yl =0af 3 |hinll% {A.60)

=
Asg yn alternative o computing the sum of sgquares of the impulse response sequence,
which can be rather difficult for IR systems, we can apply the method suggested in
Eq. (A 57) to obtain £{y*[n]} from a partial fraction cxpansion of Tyyizh. Recall that
for a white noise input with yy,m] = nf&'[m].the z-lransformis [y, () = U_tz sol'y iz =
ol Hiz)H*(1/z*). Therelore, By, (A.57) applicd to the output of the system gives
Inverse z-transform of

E[yj*[ﬂ]} =yl = § [plz) = Hiz}H“{],-’:“}nf. . {A.nl)
evialuated for m =1}



1054

App. A Random Signals

Now consider the special case of a stable and causal system having a rational
system function of the form

M

l_ltl - ml 1}

H@y = AT —— |z > max(ldi[}, (A62)

[T —dzh
=1

where maxg{|di|} = 1 and M = N, Such a system function might describe the relation-
ship between an inlernal round-off noise source and the output of a system implemented
with fixed-point arithmetic. Substituting Eq. (A.62) for Hiz) in Eq. (A 58) gives

M
JT0 = emz™ il — eha
[y (2 = 2 H@H* (/%) = a2 AP L A8
[T = diz=Hal - dtz)
kel
Since we have assumed that || < 1 for all &, all of the original poles are inside the
unit circle and therefore the other poles at ()~ are at conjugate reciprocal locations
oulside the unit circle. The region of convergence for Iy, (z) is therefore maxy |di| <

lz] = ming {{d;‘}" |. For such rational functions, it can be shown that since M = N, the
parital fraction expansion has the form

il *
et 0 (i e A . (A.64)
e * l—dpzl 1 —(d}-1z-t i

k=1
where the coefficients are found froam

Ar = H@H (/20 = dea™)| e (A.65)
T=dy

Since the poles at z = dp are inside the inner boundary of the reglon of convergence,
cach of them corresponds 1o a right-sided sequence, while the poles al 7 = (¢ y~! each
correspond to a left-sided sequence. Thus, the autocovariance function corresponding
to Eqg. (A.64) is
w
Vislnl = a2 3 (AL uln] + A (d]) "ul—n — 1),

k=l

from which it follows that we can obtain the average power from

N
ol = y,,[0] = o’ (}: .eu) ; (A-66)
k=]

where the quantities Ag are given by Eq. (A.65).

Thus, the computation of the total average power of the oulput of a system with
rational systern function and white noise input reduces to the straightforward problem
of finding partial fraction expansion cocllicients for the z-transform of the output auto-
correlation function. The utility of this approach is illustrated by the following example.
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Section 4.5 f
Example A.2 Noise Power Output of a 2"-Order IR Filter
i Consider a system with impulse response
i
Py PO it S (A6T)
i sind
" and system function
1
innt AAH
ey o { AL6H)

¢ P
(=) iL—redz=by1
When the input is white noise with total average power o, the z-transform of the

awlocovariance Tunction of the oulpot is
: 2 1 ) 1
i Pyl = ay —————————— | [A.60
R ({1 —redfz=T)l - re= iz ({t re Izl re;ﬁzn) e
; from which we obtain, using Eg. (A.83)
E[ullnl}—uz[( : )( ! )
£ ' T N — e Py SN (L e oKL = redf2) f e
o (AT
( 1 : ( 1
+ i R e ey — ) .
(1= reff; 'Jj) (1 —re=d¥s001 — ifJ"""z}) st
Making the indicated substitutions, placing both terms over a common denominator
and deing some algebra leads to
! ) ; (A7)

1

£1y2inn = o2 [ LE S
nijf = E’ Y '
h1- L —2r% cos(28) + ¥
[hs, using the partial raciion expansion of Dy, (2], we have effectively evaluated the

EXpTEssion
= aa an 2
9 + br smﬁl{u+1]
£ -t 2 Bl = a2 E
{¥*[all = ay [e[n]|® =y Z o |

=02

which would be diffcull to sum in cosed form, and the expression
dw

T o
al i H (el 2w = ,,"j‘ -
2 [(1 = reifemiuyil — pe jfle=imysl

1
£l )} = o f
22"[ — £3T =t
which would be difficult to evaluate as an integral over the real variable e

The result of Example A2 is an illustration of the power of the partial fraction

method in evaluating average power formulas. In Chapter 6, we make use of this tech
nique in the analvsis of quantization effects in the implementation of digital filters.
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The techniques discussed in Chaprer 7 for designing [IR digital filters rely oo the avail-
ability of appropriate continucus-time filter designs, In this appendix,we bnefiv sum-
marize the characteristics of several classes of lowpass filter approximations that we
referred o in Chapter 7. More detailed discussions of these classes of Alters appear in
Guillemin {1957}, Weinberg (1975) and Parks and Bwrus (1987). and extensive design
Labics and formulas are found in Zverey (1967). Design programs [or all the commaon
continuous-time approximations and transtormations to digital fillers are available in
MATLAL, Simulink, and LabVIEW,

B.1 BUTTERWORTH LOWPASS FILTERS
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Bullerworth lowpass Olters are delined by the properly that the magnitede responss is
maximally flat in the passband. For an ¥ -order lowpass Llter, this means that the lirst
(2N — 1) derivatives of the magnitude-sguared function are zero at 2 = . Another
property is that the magnitude response is monotoenicin the passhand and the stophand,
The magnitude-squared function for a continuous-time Butterworth lowpass filter has
the form

. 1
|H 8] = 1T S (13.1)
Thixs function is ploted in Figure B
A the parameter & in g, (B yincreases, the filter characteristics become sharper:
that is, thev remain close to unity over more of the passband and become close to zero
more rapidly in the stopband, although the magoitude-squared function at the cutaff

frequency £, will alwavs be equal to one-half because of the nature of Fq, (B.11. The
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| EACHIE

Figure B.1 Magnitude-squared
- function for continuous-time
£ putterworth fingr,

|HA |

Figure B.2 Dependence of Butterworth
magnitude characteristics on the
order .

0}

dependence of the Butterworth flter characteristic on the parameter N is indicated in
Figure B2, which shows |H,(j )| for several values of V.

From the magnitude-squared function in Ey. {B.1), we observe by substituting
J82 = s that M, (s)H, {—s) must be of the form

i
T (s
The roots of the denominator polynomial (the poles of the magnitude-squared function)
are therefore located at values of s satisfying 1 + (/2,0 = 0; Le.,
s = (=¥ (jg) = QMNEEN-D  p =01, 2¥N-1. (B3

Thus, there are 2N poles equally spaced in angle on a cirele of radius £3, in the s-plane.
The poles are svmmetrically located with respect to the imaginary axis. A pole never
falls on the imaginary axis, and one occurs on the real axis for ¥ odd. but not for &
even. The angular spacing between the poles on the cirele is 7/ N radians For example,
for N = 3, the poles are spaced by = /3 radians, or 60 degrees, as indicated in Figure B.3.
To determine the system function of the analog filter o associate with the Butterworth
magnitude-squared function, we perform the factorization H_(s)H (—s). The poles of
the magnitude-squared function always occur in pairs; i.e., if there is a pale at 5 = s,
thena pole alsooccursat y = -- v, Consequently, (o construct H, (s} from the magnitude-
squared function, we would choose the one pole from each such pair. To obtain astable
and causal filter, we should choose all the poles on the left-half-plane part of the s-plane.

With this approach, H-(s) would be

Heis 1 H-(—5) (B.2)

g

fi.i5) = ; = ;
) T R0t — el TP s = G T

which can be written as
Qj
H.(5) = -t .
[ $3 42050 20,05 + 6

In general the numerator of H.(s) would be ¥ to ensure that |H.(0) = 1.
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\n. )/ Figure B.3  sz-plane pale incations for

T the magnitude-sguared function of
. 39-proer Butterwarth filter.

B.2 CHEBYSHEV FILTERS

In & Butterworth filter, the magnitude response is monotonic in both the passband
and the stopband. Consequently, if the filter specifications are in terms of maximum
passband and stopband approximation error, the specifications are exceeded toward the
low-frequency end of the passband and above the stopband cutoff frequency. A more
efficient approach, which usually leads toa lower order filter, is to distribute the accuracy
of the approximation uniformly over the passband or the stopband (or both}. This is
accomplished by choosing an approximation that has an equiripple behavior rather
than a monotonic behavior, The class of Chebyshev filters has the property that the
magnitude of the frequency response is either equiripple in the passband and monotonic
in the stopband (referred to as a type I Chehyshev filter) or monotonic in the passband
and equiripple in the stopband (a type 11 Chebyshev filter}. The frequency response of
a type [ Chebyshery filter is shown in Figure B4, The magnitude-squared function for
this filter 15 of the form

1
Ak = . ‘ B.4)
HLI) 1+ e2VE (R, s
where Vy(x}is the NM.order Chebyshev polynomial defined as
Vi (x) = cos{N cos ™! r). (B.5)

For example, for ¥ = 0, Vala) = L for ¥ = 1, ¥jix) = cosfecos ' x) = x; for N = 2,
Va(x) = cos{2cos™) x) = 2x* — l: and so on.

HAjT

Figure B.4 Type | Chebysheyv lnwpass
filter approsimation.
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= o ;
Winw V.
L W Figura B.5 Location of poles for the
N N magnitude-squared furction of 3 -order
type | lowpass Chabyshev filter,

From Eg. (B3), which defines the Chebyshev polynomials, il is straightforward
to oblain a recurrence formula from which Wy (x) can be obtained from Vy(x) and
Vu_1ix}). By applying trigonometric identities 1o Eq. (B.5), it follows that

Vaortx) = 2x Varlx) = V1 ix). (B.6)

From Eg. {B.3), we note that V% {x} varies between zero and unity for0 < » = 1, For
x = 1, cos"! ¢ is imaginary, so Vy{x) behaves as a hyperbolic cosine and consequently
increases monotonically. Referring to Eq. (B4}, we see that |H,{j£1|* ripples belween
1and 11 + F.'?"} for 0 = 2/, =1 and decreases monotonically for £2/Q,. = 1. Three
parameters are required 1o specify the filter: £, £, and N, In a typical design, ¢ i
specified by the allowable passhand ripple and £, is specified by the desired passhand
cutolf frequency. The order N is then chosen so that the stopband specilications are
met.

The poles of the Chebyshev filter lie on an ellipse in the s-plane. As shown n
Figure B.5, the ellipse is delined by two circles whose diameters are equal 1o the minor
and major axes ol the ¢llipse. The length of the minor axis is 282, where

a= %{.’11"'” — gy (B.7)
with

@ =p"1 + *-,fm. {B.5)
The length of the major axis is 2882, where

h:%[u”-“'+a""""']_ (B.9)

To locate the poles of the Chebyshev filter on the ellipse, we first identily the points on
the major and minor cireles equally spaced in angle with a spacing of /N in such a way
that the points are symmetrically located with respect to the imaginarv axis and such
that a point never talls on the imapinary axis and a point occurs on the real axis for N
oddd but not for & even. This division of the major and minor circles corresponds exactly
to the manner in which the circle is divided in locating the poles of a Butterworth filter
as in Eg. (B.3). The poles of a Chebyshev filter fall on the ellipse, with the ordinate
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specilied by the points identificd on the major circle and the abscissa specilied by the
points identified on the minor circle, In Figure B3, the poles are shown for N = 3.

A type [ Chebyshev lowpass filter can be related o a type 1 lilter through a
transformation. Specifically, if in Eq. (B4) we replace the term £2VI(R/0,) by its
reciprocal and also replace the argument of V3 by its reciprocal, we obtain

1
1+ 2V~
This is the analytic form for the type II Chebyvshev lowpass filter. One approach to

designing a type Il Chebyshev filter is to first design a type I filter and then apply the
transtormation of Eq. (B.10}.

H. @ = (B.10)

B.3 ELLIPTIC FILTERS

If we distribute the error uniformly across the entire passband or across the entire stop-
band, as in the Chebyshev cases, we are able to meet the design specifications with
a lower order filter than if we permit a monotonically varying errar in the passband
and stopband, as in the Butterworth case. We note that in the type 1 Chebyshew ap-
proximation, the stopband error decreases monotonically with frequency, raising the
possibility of further improvements if we distribute the stopband error uniformly across
the stopband. This suggests the lowpass lilter approximation in Figure B.&. Indeed. it
can be shown (Papoulis, 1957) that this type of approximation {i.e., equiripple error in
the passhand and the stophand) is the best that can be achieved for a given filter order
N, in the sense that for given values of €2, §;, and §;, the transition band (£, — £,) is
as small a5 possible.

This class of approximations, referred to as elliptic lliers, has the form

1
1+ 2050
where L'y (£2) is a Jacoblian elliptic function. To obtain equiripple error in both the
passband and the stopband, elliptic filters must have both poles and zeros. As can be
seen from Figure B.6, such a filter will have zeros on the j-axis of the s-plane. A
discussion of elliptic liller design, even on a superficial level, is beyond the scope of this
appendix. The reader is referred to the texts by Guillemin (1957), Storer (1957}, Gold
and Rader {1969} and Parks and Burrus (1987} for more detailed discussions.,

IH(j)° = (B.11)

11,1483)

Figure B.6 Equiripp'a approximation
in both passhand and stopband.




This appendix contains the answers to the first 20 basic problems in Chapler 2
through 10,

Answers to Basic Problems in Chapter 2

1. (a) Always (2),(3). (5). I g[n]is bounded, (1)
(b} (3).
(e} Always (1), (3). (44 I ng =11, (2) and (5).
(d) Always (1), (3). (4). I ng = 0,(3). Iny = 0, (2).
(e) (1), (2}, (4), (3).
(0 Alwavs (1), (2), (4). (5. THh =11, (31
(g (1343}
{h) (1).(5).
22.0(8) Ng=Np+ N, Ng =N | N5
(h) Atmost & + M — 1 noneero poinls,

2.3
n
4 R R U
¥lal=§17¢%
n=i
1—a" 7

24, y[n] = BI(1/2}" — (1/4)" Julal.
L5 (a) ypln] = Ar(@)7 + 420307,

1061
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(b) hln] = 2(3" - 2"uln].
(e} sin] = =821 + 9031 } 1 ufn),
2.6, (a)

14 lé?_jm+ & J2u

1 — %l.’_f"“'

Hgty =

(b} ylnl+ 3yl — 11+ $yln — 2] = xln] — Lxfn — 1] + x[n — 3],
2.7. (a) Periodic. N = 12

(b} Periodic. ¥ = 8.

{e}) Not periodic,

{d) Not periodic,
28, y[n] = 30-1/29"u(a] -+ 2013 "uln].

29, (a)
irfn] =2 [(21) - (é] I } ulnl,

1 —jen
2L O ... S
%‘,--_fm + %f.—_.izm
L]

sln) = [—2(;) + (%) P + l]u[n].

(b} wifn]= A {1/ + A5(1/3)",

(e) ¥lr] = 401/20" - 3(1/3" - 201, 2)%u[—n — 1] + 2013y u[—n -~ 1], Other
answers are possible,

2.1 {a)
a‘l,-’(i a b om= -1,
i [u”fﬂ -a™1, = =2
(b)
1, no= 3,
¥ln) = | 23 n =2
(e)
n] = 1 n=0
FU=048, o = —]
(d}
a, =4
vlml=31 2#-9 B=n=—1,
z[n-H_:- AE E[HI—U'I, Bl ] =n

211, y[n] =2+ Zsin(ain + 1)/4).
212, (a) w[n] = nluln|.
{b} The system iz lincar.
{c} The system is not time invariant,
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2.13. (a), {b), and (e} are eigenfuncticns of stable LTI systems
214, (@) (iv).
(b) {i).
(€} (i) Aln] = (1/2)"ulal.
2.15. (a) Not LTL Inputs &[r] and §|n — 1] violate TL
{h) Mot causal. Consider x|n| = 8jn — 1)
{c) Stable
2.16. qa) yuln] = A(1/2)" 4 Aa(-1/8"™
{b) Causal: i [n] = 201/ 2 "ufn] + (—1/40"u|r].
Anticavsal: b fn] = —2(1/2)"u]—n — 1] — {—1/4) "u][—n — 1].
{c) f.[n]is absolutely summable, f,.[n] is poL
(d) ypln] = (/30174 uln] ¢ (230012 ulng + 4 + 112" Muln + 1],
2.17. {a)

e g
sin (r_u (—,— J
o dmM {2 * }

Bie™) = N (E}

(h) Wie/™) = (1/2)R (/=) = (1/4)R (efle 274y _ (14 R (eHwt2nid0y
218, Systerns (a) and (b) are causal,
2,19, Systems {b). (¢}, {¢), and ([} are stable.
220, (a) hln] = (/)" luln — 11.

{h) The system will be stable for |a] = 1.

Answers to Basic Problems in Chapter 3

1
3l (a) — « 2l =4
1— 3z~ l B
1
5 RN |
{h) I—l2_11 |ﬂ. "az.
te) —4—. =i
—— 3
{(d) 1, all:.
(e) 271, 240
0z |lzl=0
1_(;)i ;M
(g PRI fz| £ 0.
N
- W o e S
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e - a1y , R
33 () X, = e T e e ROC: la| = !z! < e
1] —z—N
(h) Xuiz)= T oo ROC: z £ 0.
1— — a2
(€) X.z)= Eﬁfz T:? ROC: z 0.

34 (a) (1,3 = |z| = 2, two sided.

(b) Twosequences (1/3} < |7/ = Z2and 2 < |z] = 3.

{¢) No. Causal sequence has |z| = 3, which does not include the vnit circle.
A5, x[n] =28[a+ 1] 4 38[n] — 48{n — 1] = 3d[n = 2]

3.6, {a) x| = (—%)" sln]. Fourier transform exisls,

() x(n]= —g—*%}”‘ w|—n — 1], Fourier lransfurm.-:mns not exisl.

14" i\" L ;
{e) xin]= 4(—1) uln]l =3 (—3\‘] ifn], Founer ransform exists.

M
{d) x|n] = (—:1;) i[n], Fourier transform exists,

{e) x[n]= —ta " Dyuln] +a " Yyln - 1} Fourier transform exists if ja| = 1.
| N

14z
(b) ROCIY (23] = |z] = 1.

(© stm=[-3(3)"+1 (=1 |uln].

37 {a) Hizy = Izf = 1.

3.8, {(a) hn] = (“%)ﬁ MLE (_..i)n_] #fm — 11

®) slnl = §(-3) utri = (1)t
{c) The syslem is stable,
A9 (a) |z| = (1/2).

{b) Yes The ROC includes the unit circle,

1—3z71
{t} X[.ﬁ}zr'zz T

(8) h[n] =2 (%)” o (—g]" L
310, (a) |z > 3.

() 0 < iz] = o

() |z] = 2.

(d) |z| = 1.

(e) |z| < oe.

(0 5 <21 = V13,

ROC: 2| = 2.



Apn. G Anzwars to Selected Basic Problems 1065

3.11. (a) Causal.
{b} Not cavsal.
(o) Causal.
{dy Mol causal.

312, (a)
Re
Figure P3.12
(b}
Figure P3.12
(€)

Tm

Figure P32
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1 2 2
33, glil =~ 5~
Jld A=A =1/2, a1 =—1/2, @1=1/2.

3.15. kln] = (%)n {w|n] — uln — 10]). The system is causal.

_ 1-2:"1 2
Al6. (a) Hiz) = l—i--'_l vzl = 7.

®) hin = (3) uln1 -2 (3)" Y din — 11

ic) vln] - %_vln — 1j = x[n] — 2xln — 1].
{d) The system is stable and causal.

317, A[0] can be 0, 1/3, or 1. To be painstakinaly literal, 210} can also be 2/3, dug
to the impulse response &fn] = (2/342)%uw(n] — (1/30(1/2) "u]—n — 1], which
satisfies the difference equation but has no ROC, This noncausal system with no
BOC can be implemented as the parallel combination of its causal and anticansal
Components.

318, {a) hin]= —28[n] + ${—3)"uln] + Fuln].
{b) yin]= %2".
3.19. (a) [z = 1/2.
(h) 1/3 = {z = 2.
() |z| = 1/3.
3.20. (a) 2| = 2/3.
(b) Iz, = 1/6.

Answers to Basic Problems in Chapter 4

4.1. x[n] —-'.si.ﬂfn'ﬂ,-“?].
4.2, £y = 230, 1730m,
4.3 (a) T =1/12,000, (b)Notunique. T = 571200,
44, (a) T =1,/100. (b) Mot unique. T = 11/100.
4.5 (a) T = 110,000, (b) 625 Hz, (e) 1250 Hz.
46, (a) H.(j@) =1/{a~ )

(b)Y Hgied™) = T/ — gl gmimy,

(£) |Hg(el™) = T/l e ).
4.7. {a)

X (82 = S (R + we™170),

o 1 feo R
Juy [ 2 i grorg f T =
Xie j_('f')SL(_'I')(}--'-ﬂf ) for jeo| = m.

‘.b.} H (f"‘"ﬂ?:] =1 e --,l'arr,,._."ll'l
(_ﬂ} {l} hln] = ,_-gl”J | el — 11

i . L sl 1
(i} hlnj = 8ln] + o 0T L2N
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4.8, (a) T = 120,000,
(b i) = Tulx)
() TX e/} e,
(dy 7 =1/10,000.
49, (a) X (/@) = X (e0tT-M) = ) (el

(by 3] =1,
; | elni21 noeven,
vl al=ty n odd.
4.10. (a) x|n] = cos(lxn/3)
(h) xcin] = —sin(2rn/3).

(ch xin) = sini2mn/3)/ (rn /5000,
411 (a) T = 140, T = 3/4,
(by T = 1720, unique,

412, (a) (1) ¥.01) = —for sinibrrh,
{11} vo(s) = —6m sin(bmt)

(b} (i) Yes

{1i) No.

4.13. (a) y|n] =sin{(5 - §}.
ib} Same virl.
{c) b0 has no effect on 7',
4.14. {a) No,
{b) Yes
(c) No
{d) Yes

{e) Yes (WNoinformation is lost: however, the signal cannot be recovered by the
system in Figure P3.21.)

4.15, (a8) Yes
{b) No.
(e} Yes
416, (a) M/L =372, unique,
(h) M/L =2/3 unique,
417, (ah iiln] = (4/3sin a2y S r).
(h)y #gln] =10
418, (a) wy =2x/3,
(b} wyp = 3n/5
(c} wp = .
419, 1V < x/0%.
4.20. {a) F; = 2000 Hz,
ib) F; = 40 He,
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Answers to Basic Problems in Chapter 5

51, x[n] = ¥[n) s =,
52. (a) Poles:z =3, 1/3, Zeros: z =0, oo,
(b) Aln] = — (/8301 /3 "ufn] — 3/B)53 u[—n — 11
5.3. (a), (d} are the impulse responses,
5.4. (a) Hiz) = t—_z‘f—_ lz| = 3/4.
1— gzt
() ] = (3/4"uln] — 203/4)" luln — 1},
(c) vin] — (3/Dyln —1] = x[n] — 2x[n — 1].
{d} Stable and causal.
55 (a) y¥n]—(7/12)¢[n =11 +(1/ 123yl —2] = 3x|n]—{19/61x[mn — 1] 4-(2/3x|n- 2].
(b) kln] = 38n] — (2/30(1/3)" Yuln — 1] — (3/9(1/ 4" Vuln — 11.
() Stable.

5

1
(1= dz-Ha=2:-1
h) L <zl =2
() kin] = 8&[n] — é[n — 2]
1—z71 1<l 3
¥ | > =.
(1—d:Ha+3:-N

5.6. (8) X (z) =

< |zi = 2.

ba| =

57 (a) H(z) =

4

{b) Ain] = —{(2/501/2) "uln] + (7 /50 —=3/4)"u[n].

() vin]l + (1/Bv[r — 1] — (3/8B)v[n — 2] = x[n] — xin — 1]
-1

[

SISH [ﬂ]‘ H{?] = ?_3 1 i a1 |-z|I - 2'

— fh il z e
(b} Alnl = —(2/50(—1/2) "uln} + (2/5)(2)"uln].
(€) Aln] = —(2/50—1/2)"uln] — (2/5)(2)  uf—n — 1].

59
et _14 Fi‘—l..£ .l..)ﬂ_] i I ]'
fil“!—|: inl +3(2? ul—nl, L..ﬁ,j.

4 n—1 171 el
hln] = —E{Z} uf—n} — 3 (E) ufr — 11,

< lz| =2,

2
2

3
5.10. H;(z)cannot be causal and stable. The zero of a H{z)at z = acisa pole of #;(2).
The existence of a pole at z = oo Implies that the system is not causal.
511, (a) Cannot be determined,
(b)) Cannot be determined,
() False.
(d) True,

p 1 /130!
hn] = i(l}“_]uin—”*- —(2) uln - 1], lz| = 2.
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12, (a} Stable.
(b}

A+02:7H(1—§277) (1 +3z7Y)
- j09z Lyl + 0971

Hqiz) =9

513, H 2k Halz), and H4(z) are allpass systems.
514. (a) 5.
(b} 3.
S5 (apue =1,=0.4A (ef%) = | +4cosia). The systemn is a generalized linear-
phase system but not a linear-phase system, because A (/) is nat nonneg-
ative for all s
(b} Mol a generalized linear-phase or a linear-phase system.
(c) o = L, # = 0. A (/) = 3 + 2cos(w). Linear phase, since | M) =
Ale!™) = 0 for all w.
(dp o = 1/2,8=10,4 (edt) = 2 cos(af2). (Generalized linear phase, because
A{e!™) is not nonnegative at ali w.
(eda = 1.8 = /2, A(e’™) = 2sin{w). Generalized lincar phase, because
g #0
5.16. An] is not necessarily causal. Both k[n] = §ln — ] and k[n] = 8[n + 1] +
dlr — (2o + 13] wall have this phase.
5.17. Hz{z) and H3(z) are minimum-phase systems
2 (l — =1;: ‘])
518. {(a) Huyinlz) = —I—+—.

(b) Hpiniz) =13 (1 _
)(

(1
2
(1)
5.19. fy{n]: 2, halnl 342, Bslnl : 2, haln]: 3, ks[rl @ 3, heln] : 7/2.

5.M). Systems Hq(r) and Haiz) have a linear phase and can be implemented by a
real-valued difference equation.,

L]
1

* R

|
s,

(4]

P L o
&
&
i T

=
I
|
(]
|
R

1
3

| D

(€) Hpnlz) =

Answers to Basic Problems in Chapter 6

f.l. Network 1:

1
Hizl = —— — .
\ 1-2rcoséz-Y iz 2
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MNetwork 2:

rsings 1

| - 2rcoséiz=1 4 rig—2

Hiz} =

Both systems have the same denominators and thos the same poles,
6.2, vip] = 3vlm — 1| = wlr =2 = »ln — 3] = xln] —2x[n — 1] 4 xn — 2]
6.3. The system in Part {d) is the same as that in Part (a).

6.4, {a)
2 |
Hizi = 1+1“ 35
] g gEt = prne
(b}
e 1 3 21 = 2x +'1 I
}["]Ta-‘l”_ J—Ejlr:— | = Zx|n] Exlﬂ— 1.
6.5, (a)
vin] — dyln — 1] 4 Tyln = 31 4 2yv[n — 4] = x[u].
(b)
Hizl = ———- 2, -
B T R

(¢} Two multiplications and Tour additions.
(d} Now bt reguires at teast four delays to implement 3 4" -order system.
XN

L
1 4 [ 4 T
-1 O 2 3 6 7 i} 2 1 5 & 7
l ' [ 224
2 o
(2] ihl
3 3
e 2 Is 2
| | AL
wigiad) e : : ; et
A TR B -1 0 1 | 3 1 56 7 &
| - 1 I
(s i)

Figure P5.6
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6.7,

O L

..Q—r
xin] L

o ¥in] =2y — 2] =3xn — 1] +x[n— 2],
6.9. (a) A1)l = 2.
by pln]l+ ¥ln— 1] —8uln -2 =xin] + 3xln — 1] + x[n — 2] — Bxln — 3|,
6.10, (a)

_1
4
—

T T
B

|k

Figure PG.7

¥lal = x[a]+ vin — 11

vln] = 2xln) + 1_'!-'[1'1] 4+ wln —1].

2

1
win] = xinj + 5 ¥lnl.

S

Figure PG.10

{c} The poles are at z = =12 and ¢ = 1. Since the second pole s on the unit
circle, the system is not stable.

6.11. (a)
<] yIl
\ Z'.

Poa =

b Figure P6.11
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(b)
W T
s -l 2
s ]
.
_ .B_t Figure P§.11

6.2, ylnl - Byln — 1] = —2x[n] 4 6x[n - 1] + 2xfu = 2,

613,
B e i
x[r| i J-'T:I
7=l J 1 2!
4
£ l I T
L. ;
2 Figure P5.13
6.14.
o
x|n|
Figure P6.14
.15,
[n,
v[a]

Figure P6.15
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6.16. (a)

x[n]

S — - —r

T
4,

(b} Both systems have the system function

1073

Figure PB.16

H[:}:

1- é:."z
6.17. {a)
41 ot 4]
o o - 2 o = #
ln] |
L 1 :
) £ £ ‘
= L - Lr o ot
#1n]
()
:—l Z-'l Z_I
v[a]
1 1 1
5] 3
——
xin]
6.18. 1f a = 2/3, the overall system function is
] + 227!
Hiz) = —ag— ——
1+ i Al A
If @ = —2, the overall system funetion is
L= %:' !
Hizl = =-
T T g
6.19. ;
9
T -8
cr < = - ' = L ]
z[n] [ ]; w¥in
# i
f‘ ; |
| o |
S f—— T .
sl |

(! _%z—l)“ —2:7 4378

Figure P5.17-1

Flgura P&.17-2

Figure P6.19
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o.M,
B > i Lt * A r— fu— .
x[m] i | »lA]
1 2714 _]- z 5]
z | | 7
:——I—T | [_A_T
set 1 |y
1. : :—}—| Figure P&.20

Answers to Basic Problems in Chapter 7

7.1. (a)
() = 1 = g—aT ms[bT}z"‘ ROC: [z > 64T
1 —2e=97 pog(hT Yz~ & g—2aT -2
(b}
Hi(z)=(1— z ")52(z), ROC: 2| = ¢ where
i R 1 1 1 1

aZ+ b2l —z-1  Aa+ jh)1—e @t WT =1 (g jby ] — g~ la—jbil g -1

{c} Thev are not equal,
7.2. (a)

i '”-\'. ii4E)

1

0.89125 oo

0217 03y ]
Ly 14 Figura PT.2

b}y N =6, 0.7, =0.7032.

(¢} The polesin the s-plane are on a circle of radius B = 0.7032/T ;. They map
to poles in the z-plane at 2 = #*%7¢, The factors of Ty cancel out, leaving the
pole locations in the z-plane for A(z) independent of Ty,
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7.3 (a) ﬁ;-_ = dafil -|—ﬁ1]|1..’§| =28 /(1 + &
(by
fa = (LIREDG, & = 105750
(13036 — 0.4723z —2.26600+ 121147 '

R e T o vt Bt i e o b e et Bt e
L 1-12971:-1 £+ 06949z -2 | — 106912~ + 0360072
. 1.9624 — (.6665; !
1 —0.9972: ! 4+ (025707 2

(¢) Llse the same §) and &.

0.0007802(1 42 1y®
(1 — 12686z —1 +0.7051z - 2)(1 — 10106z ~1 + 0.3583z -2)(1 — 0.9044: -1 4 0.2155: %)’
T4, (a)

Hiz) =

1 0.3
s+01 5402
The answer is nol unigue. Another possibility is
1 0.5
s+0I+ 2r  s+02+ 20

Hc{.f} =

H.ish=

(b)
PRI St T
5 0.1813 + L8187y 0.3297 + 1.6703s
This answer is unique.
TS5 {a) M+ 1 =491, g =33954.
{b} M/2 =45
o =min [A25ria — 45) sin [(0.3w(n — 45}
(€} haln] = [ TR ;-;-15] i - Eir(ﬂ-:-ﬁ; ]
T (ah & = 0,03, # = 2.181.
(b} Aer = 0.057, M = 63,
7.7

099 = |H(e/*) = 101,  |wl=02m,
[H{ef*) < 001, 0227 < |w| <x
7.8. (a) Six alternations. L = 5, 50 this does not satisfy the alternation theorem and
is nol optimal.
(b} Seven alternations, which satisfies the alternation theorem for L = 5.

79, e =047
710, fw. = 238472 rad,
TAL 2. = 2712500 rad/sec.
TA2. 2. = 2000 rad/sec.
TA3 T =30ps This T is unique.
T14. T = 146 ms. This T is unique.
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7.15. Hamming and Hanning: Af 4+ 1 = 81, Blackman: M +1 = 121,
Ta6. #=2.6524 M =181

T.17.
\H (S| = 0.02, Q) = 2m(20) rad/sec,
0.95 < |H.(j2)| = L.05, 2 (30) = |R] = 2=(70) radisec,
[ H 08 < 0,001, 2w {75 radfsec < |9,
T.18.

|H:(52)| = 0.04, [€2] = 324.91 rad/sec,
(L995 « [H(jE)] = 1.ODS, [£2] = 509.52 rad/sec,

719, T = 041667 ms. This ' is unique.
7.20, True.

Answers to Basic Problems in Chapter 8

8.1 {a) x[n]is periodic with period & = 6.
fb) T will not avoad aliasing.
{c)

anp+dg +d_g,
@1 +dar+a-s,
Rk} =2n {92 a8t da
a3 dg i g,
aa bz g,
T ol T L

- e

-

1 | | A 1

= o - I P g
R

B2 (a)

3X1k/3),  fork =34,
£, otherwise.

Xa[k] = {

()

i 9 k=10,
Xqlk] = 3 0, k=1,2,4.35
-3, k=3
8.3 (a) ip[n].
(b) MNone of the sequences.

(c) Fy|n]and Za(n].
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8.4. (a)
Jar
Al = [ —e—Jo
(b}
— 1
Xlb]:= 1 —ug"ﬁ?}?”?f'
(<)

X1k = X (/™) w2k vy
RS, (a) X k= 1.
() X(kj=Ww."

(c)
N2 k=0,N/2,
k)= { i, otherwise.
(d)
N2, . k=10,
X[kl=14e JimkiN 'I-{NJI’L,—].'.I(__ ]}fk—l.-l. Lm‘ & oudd,
0, otherwise,
{e)
'[ i a:'ﬁr
Xjkl=———3.
I—ea Wl,f-
8.6. (a)
tg_.l'[.:\:lﬁ—n;,;.l'l"".-'
T M S
X (") = 1 — eftwn—uwi k
{b)
1 — euo¥
X[k = ——.
1 — gl W
(ch
LN k=ko
Xkl = %U. otherwise.
7.
L 2t 2 o [7]
1]
L .- —
1 & 1 2 3 4 5 n FigurePa.7
8R

124 1" e
Fln]:lm(?’)- ll:«ﬂ_T‘::l,
u. atherwise,
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89. (a) L Letyinl=3} xln+Smlforn=0,1,_ . 4.
2. Let X1[k] be the five-point FFT of xy[n]. M = 5.
3. X1[2]is X (/) at e = d4m /5.
(b) Definc x:[n] = En W.;F""Hm]ﬂn + 9m]forn=0,..., 84

Compute X aik], the ﬁ-puint DFT of xz[n].
Xz021 = X(eiv)]

w=10w 27"
B0, X5k = (=104 X 1k]
K11,
o
5
4
3
2
1]
¢ ;
-1 2 3 4 5 6 7 n Figue P81
812 (a)
2, k=13,
xm:{n k=02
(b)
15 k=1,
=3+ g8, k=1,
Bk = ~5, k=12
~3—j6, k=3

{ch y[n]= —38n] — 65ln — 1]+ 36[n — 2] + bi[n — 3],
{d) yirl= —3§n| —6in — 11 < 3ln — 2] + 68fn - 31
8.13.
¥in|

4

LA

Flgure P8.13

Bld. 132 =9

815, a = —1. This is unigue.

B.16. & = 3. This is unique.

817. N =9

B8, =2

8.19. m = 2. This is not unigue, Any m = 2 + 6¢ for integer £ works.
.20, N = 5, This is unigue.
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Answers to Basic Problems in Chapter 9

92.1.

w2

9.3

9.4,
9.5.

9.6,

2.7,

9.8,

9.9,
92.10.

9.1,

9.12,

TF the inpist is {1/ 50X [{({—n))n ], the output of the DFT program will be xfn],
the IDFT of X |£].

X=AD-BD+CA-DA=AC- RD
F=AD-BD+BC+ B =BT 4 A

¥32] = Xie™ U =y (o200,
oy = T f160
1 = —'\'E
b= —e—d00/H
(a) The gainis —W_.

(b) There is one path. In general, there is only one path from any input sample
Lo any output sample,

(<) By tracing paths, we sec
X[2] = x[0]- 1+ x| 1IWS — x[2] — x[31W + ...
x[4] + x[SIW — x[6] — [TIW:.

fa) Store x[r] in A[-| in bit-reversed order, and D-] will contain X [£] in se-
guential {(normal} order.

(b}
A r=3,
Dizl= {U, otherwise.
{c)
. r=0123
Cirl= I 0, otherwisc.

{a) N/2butterflics with 2/~ different coefficients.
(h) v[a]= w_l,?;" "yln = 1]+ xln).

(¢) Period: 2™, Freguency: 22277,

Statement 1.

yinl = X Ae™ Y aizn v izm i 2hhin 19
(a) 2™ L
[h] lr.-ll
Fin) = a= ST (2 L papan W p= 12ES10
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0.13. =[0], »[B]. #14], x[12], 2], <[10], =[6], x[14], & [1]. x[9]. £[5), x[13], =}3]. #[11].

|71, x[15].
9.14. False.
915, mi = 1.
0.16.
{}. m=1,
0.4, m=2,
F=V0.2.4.6, m=3,
1,2.3.4,5,67, m=4.
017 N =6d

908 m =301 4

019, Deomation-in-lime,

9.20. 1021 is prime, so the program must implement the full DFT equations and cannot
exploit any FET algorithm. The computation time goesas N ©, Contrastingly, 1024
is a power of 2 and can exploit the N log ¥ computation time of the FFT,

Answers to Basic Problems in Chapter 10

101, {a)} f =1500Hz.

(b} F = —=2000 He
10,2, N = 2048 and 100 Hz = f = 10240 Hz,
13 (a) T = 2okg/INQg).

(h}y Notunique. T = (27 /820001 = by /W)

10.4.
X (j2m(d200)) = 5 x 107
X (—j2m{d2000) = 5 % 1074
X A2 1000y = 10~*
X o (—j2mi1000)) = 1071
10.5. I = 1024.

10.6. xz|r] will have two distinet peaks.
17, AD = 2r(2.44) rad/sec.

10.8. & = 1600,
19,
|8, k=23, 33,
X olkl = [{J, otherwise.
o |18 k=927,
X1lk] = {{], otherwise.

Xkl =01orr #0, 1.

100 op = 0,257 radfsample, 2 = /76000 ]'ﬂd.l'HiiTn]_'rli:z.
10.11. Af =977 Hz.
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12, The peaks will not have the same height. The peak from the rectangular window
will be bigger.
16,13, {a) A =21 dB
{b) Weak components will be visible if their amplitude exceeds 0.0891.
114, {a) 320 samples.
{h) 40 DET fsecond.
{c) N =250,
{d) 62.5 Hz.
10,15, (a) X [200] =1 - j.
(b) ;
X (2w (01 = 5 = 1077(1 — j)
X (—f2{4000)) = 5 = 10791 + .

10.16. Bectangular, Hanning, Hamming, and Bartlett windows work.
1017, T = 1/1024 sec.

10.18. xa]n), xa[w], xs|n].

10.1%. Methods 2 and 5 will improve the resolution.

1ML L =M 4 1 =262,



