
LAPLACE
TRANSFORMS

MURRAY R. SPIEGEL, Ph. D.

Laplace transforms applications completely
explainedv
Works with all major texts

450 fully solved problems

Perfect for brushup or
exam prep

Use with these courses: Operational Calculus 9 Electrical Engineering

9 Mechanics RT College Ikthematics



SCHAUM'S OUTLINE OF

THEORY AND PROBLEMS

OF

LAPLACE
TRANSFORMS

.

MURRAY R. SPIEGEL, Ph.D.
Former Professor and Chairman.

Mathematics Department

Rensselaer Polytechnic Institute

Hartford Graduate Center

.

SCHAUM'S OUTLINE SERIES
McGRAW-HILL

New York San Francisco Washingtun. D.C. Auckland Rogoid Caracas Lisbon
London Madrid Alexien City ,Milan Aluntrcal New Delhi

San Juan Singapore Sydney lbkva "lomnro



Copyright © 1965 by McGraw-Hill. Inc. All Rights Reserved. Printed in the
United States of America. No part of this publication may be reproduced,
stored in a retrieval -system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher.

60231

12131415S11SH754321069



Preface

The theory of Laplace transforms or Laplace transformation, also referred to as
operational calculus, has in recent years become an essential part of the mathematical
background required of engineers, physicists, mathematicians and other scientists. This
is because, in addition to being of great theoretical interest in itself, Laplace transform
methods provide easy and effective means for the solution of many problems arising in
various fields of science and engineering.

The subject originated in attempts to justify rigorously certain "operational rules"
used by Heaviside in the latter part of the 19th century for solving equations in electro-
magnetic theory. These attempts finally proved successful in the early part of the 20th
century through the efforts of Bromwich, Carson, van der Pol and other mathematicians
who employed complex variable theory.

This book is designed for use as a supplement to all current standard texts or as a
textbook for a formal course in Laplace transform theory and applications. It should also
be of considerable value to those taking courses in mathematics, physics, electrical engi-
neering, mechanics, heat flow or any of the numerous other fields in which Laplace
transform methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective learning. Numerous proofs of theorems and derivations of formulas
are included among the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material in each chapter.

Topics covered include the properties of Laplace transforms and inverse Laplace
transforms together with applications to ordinary and partial differential equations, integral
equations, difference equations and boundary-value problems. The theory using complex
variables is not treated until the last half of the book. This is done, first, so that the
student may comprehend and appreciate more fully the theory, and the power, of the
complex inversion formula and, second, to meet the needs of those who wish only an
introduction to the subject. Chapters on complex variable theory and Fourier series and
integrals, which are important in a discussion of the complex inversion formula, have
been included for the benefit of those unfamiliar with these topics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful
book of reference and to stimulate further interest in the topics.

I wish to take this opportunity to thank the staff of the Schaum Publishing Company
for their splendid cooperation.

M. R. SPIEGEL
Rensselaer Polytechnic Institute
January, 1965
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Chapter 1

The Laplace Transform

DEFINITION OF THE LAPLACE TRANSFORM
Let F(t) be a function of t specified for t> 0. Then the Laplace transform of F(t),

denoted by 4 (F(t)), is defined by

{F(t)) = f(s) = f e-St F(t) dt (1)
0

where we assume at present that'the parameter s is real. Later it will be found useful
to consider s complex.

The Laplace transform of F(t) is said to exist if the integral (1) converges for some
value of s; otherwise it does not exist. For sufficient conditions under which the Laplace
transform does exist, see Page 2.

NOTATION
If a function of t. is indicated in terms of a capital letter, such as F(t), G(t), Y(t), etc.,

the Laplace transform of the function is denoted by the corresponding lower case letter,
i.e. f (s), g(s), y(s), etc. In other cases, a tilde (-) can be used to denote the Laplace trans-
form. Thus, for example, the Laplace transform of u(t) is is (s).

LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS

The adjacent table shows
Laplace transforms of various
elementary functions. For de-
tails of evaluation using defini-
tion (1), see Problems-1 and 2.
For a more extensive table see
Appendix B, Pages 245 to 254.

F(t) -C {F(t)} = f(8)

1. 1 1 8>0
s

2. t
s2

s>0

3. to
! 8 > 0sn

n = 0, 1, 2, ... Note. Factorial n = n! = 12 n
Also, by definition 0! = 1.

4. eat 1 s > a
s-a

5. sin at a > 0s_82 +a2

6. cos at 8 8 > 082 a2

7. sinh at a 8 > jai
82 - a2

8. cosh at 8 > lat
82 a2

1



2 THE LAPLACE TRANSFORM [CHAP. 1

SECTIONAL OR PIECEWISE CONTINUITY
A function is called sectionally continuous or piecewise continuous in an interval

c< t-< a if the interval can be subdivided into a finite number of intervals in each of
which the function is continuous and has finite right and left hand limits.

F(t)

I/
j

i

t
a ti t2 1t3 R

Fig. 1-1

An example of a function which is sectionally continuous is shown graphically in
Fig. 1-1 above. This function has discontinuities at ti, t2 and t3. Note that the right and
left hand limits at t2, for example, are represented by lim F(t2 + E) = F(t2 + 0) = F(t2+)

e 0

and lim F(t2 - E) = F(t2 - 0) = F(t2-) respectively, where c is positive.
E-+0

FUNCTIONS OF EXPONENTIAL ORDER
If real constants M > 0 and y exist such that for all t > N

I e-It F(t) I < M or I F(t) 1 < Melt

we say that F(t) is a function of exponential order y as t- - or, briefly, is of exponential
order.

Example 1. F(t) = t2 is of exponential order 3 (for example), since ;t2j = t2 < eat for all t > 0.

Example 2. F(t) = et3 is not of exponential order since I e-vt et' 1 = et3-yt can be made larger than
any given constant by increasing t.

Intuitively, functions of exponential order cannot "grow" in absolute value more rapidly
than Me"' as t increases. In practice, however, this is no restriction since M and y can be
as large as desired.

Bounded functions, such as sin at or cos at, are of exponential order.

SUFFICIENT CONDITIONS FOR EXISTENCE OF LAPLACE TRANSFORMS
Theorem 1-1. If F(t) is sectionally continuous in every finite interval 0 < t< N and

of exponential order y for t > N, then its Laplace transform f (s) exists for all s > y.
For a proof of this see Problem 47. It must be emphasized that the stated conditions

are sufficient to guarantee the existence of the Laplace transform. If the conditions are
not satisfied, however, the Laplace transform may or may not exist [see Problem 32].
Thus the conditions are not necessary for the existence of the Laplace transform.

For other sufficient conditions, see Problem 145.
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SOME IMPORTANT PROPERTIES OF LAPLACE TRANSFORMS
In the following list of theorems we assume, unless otherwise stated, that all functions

satisfy the conditions of Theorem 1-1 so that their Laplace transforms exist.

1. Linearity property.

Theorem 1-2. If c1 and C2 are any constants while F1(t) and F2(t) are functions
with Laplace transforms f i (s) and f2 (s) respectively, then

.({C1F1(t)+C2F2(t)I = C14 {Fi(t)} + c2a({F2(t)} = clfl(s) + C2f2(s) (2)

The result is easily extended to more than two functions.

Example. C (4t2 - 3 cos 2t + 5e-1} = 4.C {t2} - 3.C {cos 2t} + 5.4 {e-t}

4(83) --3(s2+4)+5Cs+1)

8 3s + 5

s3

_
s2+4 s+1

The symbol C, which transforms F(t) into f (s), is often called the Laplace trans-
formation operator. Because of the property of t expressed in this theorem, we say
that e( is a linear operator or that it has the linearity property.

2. First translation or shifting property.
Theorem 1-3. If aC {F(t)} = f(s) then

a( {eal F(t)} = f(s - a) (3)

Example. Since e {cos 2t} = S

.32+ 4 , we have

.C{e-tcos2t} = s+1 = s+1
(s+1)2+4 s2+2s+5

3. Second translation or shifting property.

Theorem 1-4. If (F(t)) s and G(t) = td(t - a) t <
a , then

.({G(t)) = e-as f(s) (4)

Example. Since i {t3} =
s4

= s4 , the Laplace transform of the function

G(t) = j(t - 2)3 t>2
10 t<2

is 6e-2s/g4

4. Change of scale property.

Theorem 1-5. If .( {F(t)} = f(s), then

.t {F(at)}

Example. Since .( {sin t} = s2 + 1 we have

(5)

{sin 3t} = 1 1 _ 3
3 (s/3)2 + 1 s2 + 9
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5. Laplace transform of derivatives.

Theorem 1-6. If t {F(t)} = f(s), then

i (F'(t)) = s f(s) - F(O)

[CHAP. 1

(6)

if F(t) is continuous for 0 < t < N and of exponential order for t > N while F'(t) is
sectionally continuous for 0 < t < N.

Example. If F(t) = cos 3t, then r {F(t)} = 82 + 9 and we have

{F'(t)} {-3 sin 3t} = s (82+9 ) - 1 82+

`

9

The method is useful in finding Laplace transforms without integration [see
Problem 151.

Theorem 1-7. If in Theorem 1-6, F(t) fails to be continuous at t = 0 but
lim F(t) = F(0+) exists [but is not equal to F(0), which may or may not exist], then
t-.o

.C {F'(t)) = sf(s) - F(0+) (7)

Theorem 1-8. If in Theorem 1-6, F(t) fails to be continuous at t = a, then

J (F'(t)) = s f (s) - F(O) - e -°s { F(a+) - F(a-) } (8)

where F(a+) - F(a-) is sometimes called the jump at the discontinuity t = a. For
more than one discontinuity, appropriate modifications can be made.

Theorem 1-9. If {F(t) } = f (s), then

{F"(t)} = s2 f(s) - sF(0) - F'(0) (9)

if F(t) and F'(t) are continuous for 0 = t < N and of exponential order for t > N
while F"(t) is sectionally continuous for 0 t-:5 N.

If. F(t) and F'(t) have discontinuities, appropriate modification of (9) can be made
as in Theorems 1-7 and 1-8.

Theorem 1-10. If (' {F(t)} = f(s), then

4 (Fcn)(t) } = sn f(s) - sn-' F(0) - sn 2 F'(0) - s Fcn-2,(0) - Fcn 1)(0) (10)

if F(t), F'(t), ..., F`n-"(t) are continuous for 0 t N and of exponential order
for t > N while F(n)(t) is sectionally continuous for 0 < t < N.

6. Laplace transform of integrals.

Theorem 1-11. If C {F(t)} = f(s), then

of if foF(u) du1

Example. Since t {sin 2t} =
-

+4 , we have

J sin 2u du - 2
(J

r1
U

S(82+4)

as can be verified directly.
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7. Multiplication by tn.
Theorem 1-12. If . {F(t)} = f(s), then

-(' {tn F(t)} _ (-1)n
dsn

f(s)

Example. Since C {e2t} = _1_
s - 2 ' we have

.e {te2t}

.e {t2e2t}

= (-1)n f(n)(s)

d 1 1 1

ds
(s-2

(s-2)2

d( 1 ) _ 2 2

d82 s-2 (s-2)

8. Division by t.
Theorem 1-13. If . {F(t)} = f(s), then

provided lim F(t)/t exists.
t-.o

f f (u) du (13)
s

Exam le. Since 1 sin tp ({sin t} - 82 + 1 and Eo = 1, we have
t

sin t l __ f x du
t j J u2 + 1 - tan' 1(11s)

9. Periodic functions.
Theorem 1-14. Let F(t) have period T > 0 so that F(t + T) = F(t) [see Fig. 1-2].

Then

F(t)

T

f° e-" F(t) dt
{F'(t)} _ (14)1 - e-ST

Fig. 1-2

10. Behavior of f (s) as s -* co .

Theorem 1-15. If e (F(t)} = f(s), then

lim f (s) = 0
S -. 'Jo

11. Initial-value theorem.
Theorem 1-16. If the indicated limits exist, then

lim F(t) = lim s f (s)
t--0 s-

(15)

(16)
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12. Final-value theorem.
Theorem 1-17. If the indicated limits exist, then

lim F(t) = lim s f (s)
t-. o s-.o

[CHAP. 1

(17)

13. Generalization of initial-value theorem.
If urn F(t)/G(t) = 1, then we say that for values of t near t = 0 [small t], F(t) is

t-.o
close to G(t) and we write F(t) - G(t) as t- 0.

Similarly if lim f(s)/g(s) = 1, then we say that for large values of s, f (s) is
-4 00

close to g(s) and we write f (s) - g(s) as s
With this notation we have the following generalization of Theorem 1-16.

Theorem 1-18. If F(t) - G(t) as t - 0, then f(s) - g(s) as s -> oo where f (s)
.C (F(t)) and g(s) _ .( {G(t)}.

14. Generalization of final-value theorem.
If lim F(t)/G(t) = 1, we write F(t) - G(t) as t Similarly if lim f(s)/g(s) = 1,

tW So
we write f (s) -- g(s) as s - 0. Then we have the following generalization of Theorem
1-17.

_Theorem 1-19. If F(t) ~ G(t) as t - oc, then f (s) - g(s) as s - 0 where f (s)
.C {F(t)} and g(s) _ .({G(t)}.

METHODS OF FINDING LAPLACE TRANSFORMS
Various means are available for determining Laplace transforms as indicated in the

following list.

1. Direct method. This involves direct use of definition (1).

2. Series method. If F(t) has a power series expansion given by

F(t) = ao + ait + a2t2 + =I ante (18)
n-o

its Laplace transform can be obtained by taking the sum of the Laplace transforms
of each term in the series. Thus

ao a, 2!-a2 n! an
.C {F(t)}

= + + + _ (19)
S S- s'3 n-U $n+1

A condition under which the result is valid is that the series (19) be convergent
for s > y. See Problems 34, 36, 39 and 48.

3. Method of differential equations. This involves finding a differential equation satis-
fied by F(t) and then using the above theorems. See Problems 34 and 48.

4. Differentiation with respect to a parameter. See Problem 20.

5. Miscellaneous methods involving special devices such as indicated in the above theo-
rems, for example Theorem 1-13.

6. Use of Tables (see Appendix).
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EVALUATION OF INTEGRALS
If f (s) = C {F(t) }, then

Taking the limit as s -> 0, we have

7

f0 e-StF(t) dt = f(s) (20)

f F(t) dt = f(0) (21)
0

assuming the integral to be convergent.
The results (20) and (21) are often useful in evaluating various integrals. See Problems

45 and 46.

SOME SPECIAL FUNCTIONS
1. The Gamma function.

If n > 0, we define the gamma function by

r(n) = f un- ' e-u du (22)
0

The following are some important properties of the gamma function.

1. r(n + 1) = n r(n), n > 0

Thus since r(1) 1, we have I'(2) = 1, r(3) = 2 ! = 2, or(4) = 3! and in general
r(n + 1) = n!, if n is a positive integer. For this reason the function is some-
times called the factorial function.

2. r(:) = N5

3.

4. For large n,
r(n+1) - 27rnn11 e-n

[Here - means "approximately equal to for large n". More exactly, we write
F(n) ~ G(n) if lim F(n)/G(n) = 1.] This is called Stirling's formula.

n < 0 we can define r(n) by
r(n) = r(n + 1)

n

II. Bessel functions.
We define a Bessel function of order n by

_ t2(t) = 2nr(n+1) 1 2(2n+2)

Some important properties are

0 _ ... (23)2.4(2n + 2)(2n + 4)

1. J-n (t) (-1)n Jn (t) if n is a positive integer

2. Jn+Z (t) =
2tJ, (t) - (t)

3. dt to Jn-i (t). If n = 0, we have Jo(t) = -J1(t).

4. e 'h"-1/u) = 1' Jn(t)un

r(p) r(1- p) - sin per '
0 < p < 1

9!=-a

This is called the generating function for the Bessel functions.
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5. J. (t) satisfies Bessel's differential . equation.

t2 Y11(t) + t Y'(t) + (t2 - n2) Y(t) _

It is convenient to define J0(it) = i-nIn(t) where I0(t)
Bessel function of order n.

III. The Error function is defined as

erf (t) = 2 e-u2 du
0

IV. The Complementary Error function is defined as

erfc (t) = 1 erf (t). 1 - 2 ft e-u2du
0

V. The Sine and Cosine integrals are defined by
t

Si (t) = f sin u du
0 u

Ci (t) =

VI. The Exponential integral is defined as

f Cos u du
t u

00

eu du5Ei (t) =

(26)

(27)

(28)

VII. The Unit Step function, also called Heaviside's unit function, is defined as

'U(t - a) _ {0 t < a
(29)

See Fig. 1-3. 1 t > a

u(t - a)

i

a t

0

[CHAP. 1

is called the modified

(24)

5e_u2du (25)

I

1/E

Fig. 1-3 Fig. 1-4

VIII. The Unit Impulse function or Dirac delta function...

Consider the function

FE (t)
1/E

0 t>

Fe(t)

t.

(30)

where e > 0, whose graph appears in Fig. 1-4.
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It is geometrically evident that as e - 0 the height of the rectangular shaded
region increases indefinitely and the width decreases in such a way that the area

F,(t) dt = 1.is always equal to 1, i.e. f
0

This idea has led some engineers and physicists to think of a limiting function,
denoted by S(t), approached by FE(t) as E-0. This limiting function they have
called the unit impulse function or Dirac delta function. Some of its properties are

1. 58(t)dt = 1
0

2. f 3(t) G(t) dt = G(0) for any continuous function G(t).
0

3. f 8(t - a) G(t) dt = G(a) for any continuous function G(t).
0

Although mathematically speaking such a function does not exist, manipulations
or operations using it can be made rigorous.

IX. Null functions. If N(t) is a function of t such that for all t > 0

f t

'((u) du = 0

we call N (t) a null function.
1 1 t - 1/2

Example. The function F(t) 1 t = 1 is a null function.
0 otherwise

In general, any function which is zero at all but a countable set of points [i.e. a set
of points which can be put into one-to-one correspondence with the natural numbers
1, 2, 3, ... ] is a null function.

LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS
In the following table we have listed Laplace transforms of various special functions.

For a more extensive list see Appendix B, Page 245.

Table of Laplace transforms of special functions

F(t) f(s) = C {F(t)}

1. to r(n + 1)
gn+1

Note that if n = 0,1,2,... this
reduces to entry 3, Page 1.

2. J0(at)
1

s2 -+a2

( s2 + a2 - 8)n
3. Jn(at)

an s2 + a2

4. sin vt- V-7
20/2 0-114s

5.
COS X Ft e-1/4s
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Table of Laplace transforms of special functions (cont.)

F(t) f (s) _ i {F(t)}

6. erf (t) e32/4 erfc (s/2)
8

7. e r f (Vi)
1

8 a+1

8. Si (t) tan-1
s 8

9. Ci (t) In (82 + 1)
2s

10. Ei (t) In (s + 1)
8

11. 1f(t - a) a ns

8

12. S (t) 1

13. S(t - a) a-as

14. `Nf t) 0

Solved Problems

LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS

1. Prove that: (a) ( (1) = 1, s > 0; (b) {t} = 1, s > 0; (c) {eat} = 1 , s > a.
S s s-a

p
(a) .i {1} =

fo
e-st (1) dt = lim J e-st dt

P.4,0 00

(b) -C (t)

lim
e-st IP

-.m -3 to

oa

e-st (t) dt = lim J t e-st dt
P...m op

lim (t) (e-8t) - (1)(e824t )

= 1 if 8>0
82

where we have used integration by parts.

if s>0

P = lim
(1

e-SP Pe-sP\
P-.w 82 82 8 /)
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(c)

For methods not employing direct integration, see Problem 15.

_2. Prove that (a) . {sin at)

(a) {sin at}

if s > a

s2+a2, (b) . {cos at} = s2+t12 if s>0.

J e-st sin at dt =
x P

plim
f e-st sin at dt

0

limP-
e-st (- s sin at - a cos at) (P

82 + a2 0

lim J a
P-. 1 S2 + a2

a

S2 + a2

P

(b) {cos at} e-st cos at dt = lim
0

f e-st cos at dt
P-. .e 0

limP-.
e`st (- s cos at + a sin at) IP

82 + a2 0

lim f s - e-sP (a cos aP - a sin aP)
P-.x 1s2+a2 S2+a2

8
S2+ a2

We have used here the results

P

{eat} = e-$t (eat) dt = lim f e-- (s-a)t dtfoP" °° 0

1
lim

e-(s-a)t 1- e-<s 011IP
= liraP-+oo -(s -a) 0 P-.m s-a s-a

eat sin /it dtf
eat cos /3t dtf

J

.C {etat}

(1)

(2)

Another method. Assuming that the result of Problem 1(c) holds for complex numbers (which can
be proved), we have

But eiat = cos at + i sin at. Hence

.C {etat}
a

e-st (cos at + i sin at)

e-sP (s sin aP + a cos aP)1
S2 + a2 J

if 8>0

if s>0

eat (a sin /3t - /3 cos /3t)
a2 + /32

eat (a cos /3t + /3 sin /3t)
a2+/32

1

a - ta
s + ia
s2 + a2

f. e-st cos at dt + if ,
e-st sin at dt

0
.C {cos at} + i .e {sin at}

From (3) and (4) we have on equating real and imaginary parts,

(S)

a
.C {cos at} = s2

+
a2 0 C {sin at} = 82 + a2
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3. Prove that (a) ( (sinh at) = s2
a

a2, (b) . {cosh at) = s2 S
a2 if s > jal.

(a)

= 1[ 1 _ a
2 [s-a +a) g2-a2

eat 2e-atl = -e-It /eat 2e-atl
dtf

1\ J

t e-st eat dt
2 0

.e (sinh at)

2

f e-st e-at dt
0

2 .e {eat} {e-at}

a1 1 1_ -2 s-a
_

s-+--a j s2-a2

(b) As in part (a),

for s > laj

e {cosh at}
= : ( eat + e-at _

2

1 C {eat} +
2

C {e-at}{l 2 -
- s for s > IalIf I

13-a + s+a j -" s2-a22

5 0<t<3
4. Find C {F(t)} if F(t) _ {0 t > 3

By definition,

.i {F(t)} =
J0

e-stF(t) dt

3

5 0 a-st dt
0

3 m

= o e-st (5) dt + f e-st (0) dt
0 3

5 e_ tit 3 - 5(1 - e-35)
-s to S

THE LINEARITY PROPERTY
5. Prove the linearity property [Theorem 1-2, Page 3].

Let e {Fi(t)} = f1(s) = f, e -st F1(t) dt and ,.C {F2(t)) = f2(s) = f
,

e-stF2(t) dt.
o °

ci and c2 are any constants,

.( {c1 F1(t) + c2 F2 (t)} J.

= cifx e-st F1(t) dt +
c2J

a-$t F2(t) dt
0 0

= c1.C {Fl(t)} + c2.i {F2(t)}

clfl(8) + c2f2(e)

for s > Ial

Another method. Using the linearity property of the Laplace transformation, we have at once

.e {sinh at)
eat 2e-at

2 .
{eat} - 2 .t; {e-at}

M

e-st {c1 F1(t) + c. F2(t)} dt

Then if

The result is easily generalized [see Problem 61].
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6. Find C (4e5t + 6t3 - 3 sin 4t + 2 cos 2t }.

By the linearity property [Problem 6] we have

4 {4e5L + 6t3 - 3 sin 4t + 2 cos 2t} = 4.C {e5t} + 6.C {t3} - 3.4 {sin 4t} + 2.( {cos 2t}

1 3' 4 84(s-5)+6(84) -3 32+16)+2`82+4

4 36 12 2s
s-5 + s4 s2+16 + 82+4

where s > 6.

TRANSLATION AND CHANGE OF SCALE PROPERTIES

7. Prove the first translation or shifting property: If .1 {F(t)} = f(s), then ., (eatF(t)) _
f(s - a).

We have C {F(t)} = f e-atF(t) dt = f(s)
0

Then e {eat F(t)} = f *0 e-at {eat F(t)} dt
0

so

W

e-(s-a)tF(t) dt = f(s-a)

8. Find (a) .t {t2e3t}, (b) .e (e-2t sin 4t), (c) 4 {e4t cosh 5t}, (d) I {e-2t(3 cos 6t - 5 sin 6t)}.

22{t2} = 83 = s . Then C {t2e3t} = (8-3)3'

4 4 - 4(b) C {sin 4t} = 82
+

16 . Then 4 {e-2t sin 4t} =
(8 + 2)2 + 16 s2 + -4s+ 20 '

(c) . {cosh 5t} = s Then C {e4t cosh 5t} = 8-4 = s-4
8225 ' (a-4)2-25 82-8s-9*

Another method

.( {e4t cosh 5t}
fe4t /e5t+e-5t) 14 {e9t+e-t}

l 1I\\ 2 2

= 1 J 1 + 1 _
18-9 8+1

s-4
82-8s-9

(d) e {3 cos 6t - 5 sin 6t} = 3.C {cos 6t} - 5 -C {sin 6t}

Then

_ s 6

=
38 - 30

3(82+36 - 5 (82+36 82+36

. {e-2t (3 cos 6t - 5 sin 6t)} = 3(8+2)-30 = 3s - 24
(8+2)2+86 s2+4s+40
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9. Prove the second translation or shifting property:

If C {F(t) } = f (s) and G(t) =
{o (t - a) t < a

r then X {G(t)} = e-as f (s).

w a o0

.t {G(t)} = e-st G(t) dt = f e-st G(t) dt + f e-st G(t) dtf0 a

f a e- st (0) dt + f e-st F(t - a) dt
0

e-st F(t -a) dt
af

oo

e-s(u+a) F(u) du

e-as f e--F(u) du
0

e -as f (s)

where we have used the substitution t = u + a.

r
10. Find e (F(t)) if F(t) =

cos (t - 27r/3)
j 0

t > 2zr/3
t<27r/3

02rr/3

KF/3
Method 1. C {F(t)} = f e-st (0) dt + e-st cos (t - 2rr/3) dt

0

fo

00

e-s(u+27r/3) cos u du

= e-21rs/3f e-su cos u du =
0

se - 2vs/3
S2+1

Method 2. Since C (cos t} =
s2

+ it follows from Problem 9, with a = 27r/3, that

t {F(t)} se -gas/3
82+1

11. Prove the change of scale property: If e {F(t)} = f(s), then

f e-st F(at) dt
0f e-s(u/a) F(u) d(u/a)
0

1 f e-su/a F(u) dua o(1)

of
using the transformation t = u/a.
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12. Given that C
lsin t 1 = tan- 1(1/s), find (siat

By Problem 11,

at

Then {sinat). =
tI

a-C Isi tat I

tan-1(a/8).

a tan (als)

LAPLACE TRANSFORM OF DERIVATIVES

13. Prove Theorem 1-6: If . {F(t) } = f (s), then Z (F'(t) } = s f (s) - F(O).

Using integration by parts, we have

.C {F'(t)} I00 P
e-st F'(t) dt = lim f e -st F'(t) dt

P-.00 0

lim j e-st F(t)
P- .o l

a

tan-1 {1/(sla)}

P P

+ s f e-st F(t) dtl
0 0

P

lim {e_SPF(P) - F(0) + s f e-st F(t) dt }
P -. oO o

s fo, e-s1 F(t) dt - F(O)

a f(8) - F(O)

using the fact that F(t) is of exponential order y as t so that lim a-4P F(P) = 0 for s > y.P-'
For cases where F(t) is not continuous at t = 0, see Problem 68.

14. Prove Theorem 1-9, Page 4: If C {F(t) } = f (s) then . {F"(t) } = s2 f (S) - s F(0) - F'(0).

By Problem 13,
., {G'(t)} = s .1 {G(t)} - G(0) = s g(s) - G(0)

Let G(t) = F'(t). Then

.C {F"(t)} s.i {F'(t)} - F'(0)
s [s C {F(t)} - F(0)] - F'(0)

82.C {F(t)} - s F(O) - F'(0)

82 f(8) - s F(0) - F'(0)
The generalization to higher order derivatives can be proved by using mathematical inductiofi

[see Problem 651.

15. Use Theorem 1-6, Page 4, to derive each of the following Laplace transforms:

(a) -C (1) = 1
, (b) {t} = s , _(c) -((eat)

1

s-a
Theorem 1-6 states, under suitable conditions given on Page 4, that

.. {F'(t)} = 8 {F(t)} - F(0) (1)
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(a) Let F(t) = 1. Then F'(t) = 0, F(0) = 1, and (1) becomes

,C {0} = 0 = s .I {1} - 1 or .C {1} = 1/s

(b) Let F(t) = t. Then F'(t) = 1, F(0) = 0, and (1) becomes using part (a)

.C {1} = 1/s = s C {t} - 0 or of {t} = 1/32

(2)

(3)

By using mathematical induction we can similarly show that {t') = n!/sii+1 for any positive
integer n.

(c) Let F(t) = eat. Then F'(t) = aeat, F(O) = 1, and (1) becomes

.e {aeat} = s p {eat} - 1, i.e. a C (eat) = s .1 {eat} - 1 or .1 {eat} = 1/(s - a)

2.16. Use Theorem 1-9 to show that e (sin at) = a
s2 +a

Let F(t) = sin at. Then F'(t) = a cos at, F"(t) = -a2 sin at, F(O) = 0, F'(0) = a. Hence
from the result

J {F"(t)}

we have X {- a2 sin at)

92.C {F(t)} - s F(0) - F'(0)

= 92 ^e {sin at} - s (0) - a

i.e. -a2.C {sin at) = S2.( {sin at} - a

or X {sin at} = a
s2 + a2

LAPLACE TRANSFORM OF INTEGRALS

17. Prove Theorem 1-11: If C {F(t)} = f(s), then .1
fo

t
F(u) du

f
= f(s)/s.

t

Let G(t) _ F(u)dn. Then G'(t) = F(t) and G(0) = 0. Taking the Laplace transform
0

of both sides, we have

.t {G'(t)} = s.C {G(t)} - G(0) = s.C {G(t)} = f(s)

Thus .( {G(t)} = f $) or .e
t

F(u) du ( = f S )
o J

18. Find ,e Jo t siu u du j> .

We have by the Example following Theorem 1-13 on Page 5,

s1 t tan-lt
s

Thus by Problem 17,

J
rt sin u dul = 1 tan-1 1

,J0 u 8 8
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MULTIPLICATION BY POWERS OF t

19. Prove Theorem 1-12, Page 5:
n

If {F(t) } = f (s), then { to F(t) } = (-1)n dsn AS) = (-1)n f n)(s)

We have

d e-St {tk F(t)} dt
as f

Then by Leibnitz's rule for differentiating under the integral sign,

where n = 1, 2, 3, ....

TI; d
f

e xt F(t) dt = J « s a-st F(t) dt
0 0

J : -te-3t F(t) dt
0

_ - f 'e-st{tF(t)} dtJ0

= -.C It F(t))

Thus C It F(t)} dsf = -f'(s) (1)

which proves the theorem for n = 1.

To establish the theorem in general, we use mathematical induction. Assume the theorem true
for n = k, i.e. assume

i e- $t {tk F(t)} dt

Then

or by Leibnitz's rule,

i.e.

I

- f e-st {tk+1 F(t)} dt
0

J:

f(s) _ ! e-st F(t) dt00

W

e-st {tk+1 F(t)} dt =

(-1)k f(k)(s)

(_1)k f(k+1)(s)

(_1)k f(k+1)(s)

(_1)k+1 f(k+1)(s)

(2)

(3)

It follows that if (2) is true, i.e. if the theorem holds for n = k, then (3) is true, i.e. the theorem holds
for n = k + 1. But by (1) the theorem is true for n = 1. Hence it is true for n = 1 + 1 = 2 and
n = 2 + 1 = 3, etc., and thus for all positive integer values of n.

To be completely rigorous, it is necessary to prove that Leibnitz's rule can be applied. For this,
see Problem 166.

20. Find (a) e {t sin at}, (b) (' {t2 cos at).

(a) Since {sin at) =
a

,

s2 + a2
we have by Problem 19

.( It sin at} =
(32 + a2)2
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Another method.

Since t{cos at } - T e It cos at dt =
o

-.C {t sin at}

we have by differentiating with respect to the parameter a [using Leibnitz's rule],

from which

qt cos at dt

2as

2as
(S2+0)2

fx
e-st {- t sin at} dt =

do( 82Ta2)

X {t sin at} =

dNote that the result is equivalent to a
(cos at) _ . as cos at

(b) Since ,t {cos at} S we have by Problem 1932+a2'

({ t2 cos at} 2 s2+a2)
-j1- ( S

We can also use the second method of part (a) by writing

f d2 1'.1 {t cos at} = e 1- dal (cos at)

which gives the same result.

or

DIVISION BY t

21. Prove Theorem 1-13, Page 5: If ;F(t)} = f(s), then
F(t)

f f(u) du.} =
Let G(t) = Flt) . Then F(t) = t G(t). Taking the Laplace transform of both sides and using

Problem 19, we have

{ {F(t)}
do

{G(t)}

Then integrating, we have

s

82 + a2

(82 + a2)2

2s3 - 6a2s
(82 + a2)3

d2
- Cla2 .( {cos at)

f(s) = ds

g(s) = -J f (u) du = f f (u) du (1)f
I

JF(t) f(u) du
I t r Js

Note that in (1) we have chosen the "constant of integration" so that lim g(s) = 0 [see Theorem
1-15, Page 51.

22. (a) Prove that f x

Ft t) dt = f f (u) du provided that the integrals converge.

(b) Show that
fo,

sin t dt = 7T

(a) From Problem 21,
f:0 a-3t F(t) dt = f x f(u) du. i t s
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Then taking the limit as s -> 0+, assuming the integrals converge, the required result is obtained.

(b) Let F(t) = sin t so that f (S) = 1/(82 + 1) in part (a). Then

f x sin t =
x

du _
J0 t dt

0 u2 + 1 tan-I u
0

PERIODIC FUNCTIONS
23. Prove Theorem 1-14, Page 5: If F(t) has period T > 0 then

.C {F(t)} =

We have

.i {F(t)} = o e-st F(t) dt
0

2

fT 2T IT
e-st F(t) dt + f e-st F(t) dt 4 ` e --It F(t) dt +

T 2T

a

fT
e-8t F(t) dt

1 - e vT

In the second integral )et t = n + T, in the third integral let t = u + 2T, etc. Then

T T

fo

T

J {F(t)} f e-su F(u) du + f e-s(u+T) F(u + T) du + e-;('" 42T) F(u + 2T) du +.
0 0

of

T

e-su F(u) du + e-sT J
T e-su

F(u) du + e 2., 1' JoT e--su F(v) du + .. .
0

(1 + e`sT + e-28T + ...)
Tf

e-sn F(u) du
0

1 - e-sT

J. e-su F(u) du
T

where we have used the periodicity to write F(u + T) = F(u), F(?+ 2T) = F(u), .... and the fact that

1+r+r2+r3+ = 1

1-r Irl<1

24. (a) Graph the function

F(t) = sin t 0 < t < 71-f0
?r < t < 2 ;r

extended periodically with period 27-

(b) Find t {F(t)}.

(a) The graph appears in Fig. 1-5.

F(t)

0
t

,r 2rr 3s 4a

Fig. 1-5
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(b) By Problem 23, since T = 21r, we have
.2,r

- (F(t)) = 1 - e- 2,rs J e st F(t) dt
0

1 "`J e -5t sin t dt1 - e-2,rs
0

1 J e - st (- s sin t - cos t)
a2+1

I J1+e-,rsl -
2rrs s2 + 11 - e-}l

[CHAP. 1

using the integral (1) of Problem 2, Page 11.

The graph of the function F(t) is often called a half wave rectified sine curve.

INITIAL AND FINAL VALUE THEOREMS
25. Prove the initial-value theorem: lim F(t) = lim s f (s).

t -+ 0 s - x
By Problem 13,

.C {F'(t)} = f st F'(t) dt = s f(s) - F(0) (1)
0

But if F'(t) is sectionally continuous and of exponential order, we have

lim a st F'(t) dt = 0
s-.m 0

a

(2)

Then taking the limit as s --> oo in (1), assuming F(t) continuous at t = 0, we find that

0 = lim s f(s) - F(O) or lim s f(s) = F(0) = lim F(t)a- S- t-.0

If F(t) is not continuous at t = 0, the required result still holds but we must use Theorem 1-7, Page 4.

26. Prove the final-value theorem: lim F(t) = lim s f(s).
t-.00 S-0

By Problem 13,

.e {F'(t)}

Sr

1

0

(1 - e Ts)(32 + 1)

f e-st F'(t) dt = s f (s) - F(0)
0

The limit of the left hand side as s 0 is
r

lim f e-st F'(t) dt = J F'(t) dt = lim J F'(t) dt
s-.o

f
0 0 P-.. 0

lira {F(P) - F(0)}
P-.oo

The limit of the right hand side as s -> 0 is

lira s f(s) - F(0)
s-.o

Thus

or, as required,

lira F(t) - F(0)
t -coo

lim F(t) - F(0) = lim s f(s) - F(0)
t-.oo s-.O

lim F(t) = lim s f(s)
t-aao s-»0

If F(t) is not continuous, the result still holds but we must use Theorem 1-7, Page 4.
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27. Illustrate Problems 25 and 26 for the function F(t) = 3e-2t.

We have F(t) = 3e-2t, f(s) _ . {F(t)} = 3s f2'

By the initial-value theorem (Problem 25),

lim 3e-2t = Jim 3s
t-+0 s-.aos+2

or 3 = 3, which illustrates the theorem.

By the final-value theorem (Problem 26),

lim 3e-2t = Jim 3s
i . s-.o s+2

or 0 = 0, which illustrates the theorem.

THE GAMMA FUNCTION
28. Prove:

(a)

(a) r (n + 1) = n i'(n), n > 0; (b) l,(n + 1) = n!, n = 1, 2, 3, ... .

r(n 1- 1) = 3 un e u du =
0

lim J0 it" e-u du
-+mP

P 1'

lim {un)_e_u)1 - (-e-u)(nun-1) du
10

}

)' l
lim {_-Pn a-P + o f un-1 a-u du
P-.ao o

= n I
u"-t

a-u du = n r(n) if n>0
o

(b) r(1) e-u du
j.

lim e-u du = lim (1- a-P) = 1.P.. J P-+m

Put n = 1,2,3,... in r(n + 1) = nr(n). Then

r(2) = 1 r(1) = 1, r(3) = 2 r(2) = 2.1 = 2!, r(4) = 3 r(3) = 3.2!

In general, 1`(n + 1) = n! if n is a positive integer.

29. Prove: fe-U2 du =
0 2

P P
Let Ip = J e-T2 dx = J e-y` dy and let

0 0

lim IP = I, the required value of the integral. ThenP-w

I _ (J P e-x2 dx l ( f e-J2 dy
/

P P

J f e-(J-Y2) dx dy
o

fj1 e-(X2+y2)dx dy

qzQ

where `RP is the square OACE of side P [see Fig. 1-61.
Fig. 1-6

3!

21
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Since the integrand is positive, we have

ff e-(X2+y$) dx dy 5 IP ff e-(a:%+y2) dx dy (1)
9z' 9z,

where `RI and '2 are the regions in the first quadrant bounded by the circles having radii P and PxF2
respectively.

Using polar coordinates (r, e) we have from (1),

ar/2 P 7r/2 P'f e-2 r dr do P f- e-r4 r dr de (2)
e 0 r=0 0-0 r=0

or

4 (1 - e-P2) < Ip
4

(1 - e--- 2P2)

Then taking the limit as P -- in (8), we find lim Ip = 12 = ,/4 and I =
P-.oo

30. Prove: r(j) = jf7r.
0

r( ) = fx u-1/2 a-u du. Letting u = v2, this integral becomes on using Problem 29

2f' e-v2dv = 2
2

\\

31. Prove: C (P) = r(n + 1)
sn+1 if n > -1, s > 0.

e-st to dt. Letting st = u, assuming s > 0, this becomes.i {tn} = f'
0

t49 = Oxa-u` $ Jnd(8) = 8n+1 f0'uria-udu = 1'(n+1)

32. Prove: C {t-112} = Tr/s, s > 0.

Let n = -1/2 in Problem 81. Then

.(' (t-1/2) _ r(4)
81/2

VT
81/2

Note that although F(t) = t-1/2 does not satisfy the sufficient conditions of Theorem
the Laplace transform does exist. The function does satisfy the conditions of the theorem

33. By assuming r(n + 1) = nr(n) holds for all n, find:

(a) r(-4), (b) r(-J), (c) r(-J), (d) r(0), (e) r(-1), (f) r(-2).

(a) Letting n = -4, r(.-) = -jt'(- .). Then r(-4) = -2r(4-) = -2f.
(b) Letting n Then r(-J) = -Ir(-2) _ (2)(4)V = sV-,r-

1-1, Page 2,
in Prob. 145.

by part (a).

(c) Letting n = -1, r(-!) = -M-4). Then r(-J) = -*r(-I) _ -(2)( )( ) / = - V by part (b).
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Letting n = 0, 1'(1) = 0 1'(0) and it follows that r(0) must be infinite, since r(1) = 1.

Letting n = -1, 1'(0) = -1 r(-1) and it follows that 1'(-1) must be infinite.

Letting n = -2, 1'(-1) = -2 r(-2) and it follows that 1'(-2) must be infinite.

In general if p is any positive integer or zero, 1'(-p) is infinite and [see Problem 170],

1'(-p-) _ (-1)D+1 C13/ 5
... ( 2p+2

1)

BESSEL FUNCTIONS

34. (a) Find {Jo(t)} where Jo(t) is the Bessel function of order zero.

(b) Use the, result of (a) to find .( {h(at)}.

(a) Method 1, using series. Letting n = 0 in equation (23), Page 7, we find

t2 t4 t6
Jo (t) = 1 -

22
+ 22 42 - 22 42 62 + .. .

Then J t 1 1 2! 1 4! _ 1 6!
. { 0 ( )} =

s - 22 8.4 + 22 42 85 22 42 62 87

s
1 -2082) + (1

2 4,6 (8 +

/ 1/2}1 i 2
s

\ Jl( _ 1

1\ 8 82 + 1

using the binomial theorem [see Problem 172].

Method 2, using differential equations. The function Jo(t) satisfies the differential equation

tJo (t) + J0, (t) + tJO(t) = 0

23

(1)

[see Property 5, Page 8, with n=01. Taking the Laplace transform of both sides of (1) and
using Theorems 1-6 and 1-9, Page 4, and Theorem 1-12, Page 5, together with J0(0) = 1, Jp(0) = 0,
y = C {Jo(t)}, we have

- _{a2y - s(1) - 0) + {sy - 1) - dy -

from which

Thus

and by integration

dy

ds

sy
82+1

dy ads
y 32+ 1

Y =
C

82 + 1

0

Now lim a y(s) = ca = c and lim Jo(t) = 1. Thus by the initial-value theorem [Page 5],
S-CO 82+1 ty(

we have c = 1 and so C {Jo(t)} = 1/,r,-2 + 1.

For another method, see Problem 165.

(b) By Problem 11,

(Jo(at)) = 1 1 = 1a (8/a)2 + 1 82 + a2
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35. Find e {J1(t)}, where J1(t) is Bessel's function of order one.

From Property 3 for Bessel functions, Page 7, we have Jo (t) _ -J1(t). Hence

{Ji(t)} _ -.e {Jo(t)} [s.c {Jo(t)} - 1]

1 - S = S2 + 1 - s

S2 + 1 VS2 + 1

The methods of infinite series and differential equations can also be used [see Problem 178,
Page 41].

THE SINE, COSINE AND EXPONENTIAL INTEGRALS

sin u
du .

=
s tan_' s36. Prove: C {Si (t)) = C fo t

Method 1. Let F(t) = f t sin u
du. Then F(O) = 0 and F'(t) _

0 U

Taking the Laplace transform,

sin t or t F'(t) = sin t.t

.C (t F'(t)) _ . {sin t} or - - { 8 f ( 8 ) - F(0)} = 82+1

d8{sf(s)}
_

Integrating, s f (S)

-1
82+1

-tan-1s + c

By the initial value theorem, lim s f(8) = lim F(t) = F(0) = 0 so that c = 7/2.
S.-,.o t-.o

s f(s) = 2 - tan-i s = tan-i s or f(s) = tan-1s

8

Method L See Problem 18.

Method 3. Using infinite series, we have

t 3 5 7f slue du = f t

t3 t5 t7t 3.3!
5.5!

7.7!
...

Then
{ft

1 1 3! 1 5! 1 7!- 82 3.3!'s4 + 55!'ss 7.7!'88

1 1 1 1

82 _ 3s4 + 586 _ 7s8 + ...

1 ((1/8) (1/s)3

s
+ (1/s)5 - (1/s)7

+1 3 5 7

= tan-11

s s

Thus

using the series tan-1 x = x - x3/3 + x5/5 - x7/7 + , lxi < 1.



CHAP. 11 THE LAPLACE TRANSFORM 25

Method 4. Letting u = tv,

Then {ft0
sin u

u

i
t sin u du = tintv

dv
J0

u fo v

du} _ -C U. ti! !-V dv
v

I

` sin tv
e-8t

v
dv dt

.f t

i
IJfO e--'t sin tv dt} dv

_ f C {sin tv} dv = dv
v J0 S2 + y2

l

-
I

S tan-1
0

where we

tan-1 s

have assumed permissibility of change of order of integration.

` l =37. Prove: . { Ci (t))
cos u du In (s2+1)= . J U 2s

We use the principle of Method 1 in Problem 36. Let F(t)

and t F'(t) _ - cos t. Taking the Laplace transform, we have

- ds Is f (s) - F(0)} =
s2 4- 1

or

Jt cos u du
u

ds IS f(s)}

Then by integration, s f(s) _ 4- In (82 + 1) + c

so that F'(t) =

S

82+ 1

By the final-value theorem, lim s f (s) = lim F(t) = 0 so that c = 0. Thus
s -.0 t-. ao

s f(s) _ 4- In (S2 + 1) or f(s) = In (82 + 1)

2s

We can also use Method 4 of Problem 36 [see Problem 153].

38. Prove: .e {Ei (t)} ff a
euu

du } = In (s+ 1)
J

Let F(t) ey° du. Then tF'(t) = -e-t. Taking the Laplace transform, we find
u

f ( s )Is - F(0)} = $+I or ds IS f (s)} = 8+1

Integrating, s f(s) = In (s + 1) + c

Applying the final-value theorem as in Problem 37, we find c = 0 and so

f(s) = In (s + 1)

s

cos t
t

For another method similar to that of Method 4, Problem 36, see Problem 153.
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V T

39. Prove: C (erf VT) = .i {
2 f e-u8 du}

o

Using infinite series, we have

2 a-u$ du}lr o
( Vt 4 !3!62 J (l_u2+-_+...)du

(t112 +t3/2 t5/2 t712_ 2

"e ll 3 7.3!

2 (r(3/2) r(7/2) - r(9/2)
r 5l 83/2 385/2 + 5 . 2 ! 57/2 7 . 3! S9/2 +

1 1 1 1.3 1 1.3.5 1

88/2/z 2 ss/2 + 2 --4 s7/2 T- -4- 6 ss/2
+ .. .

1 J 1.3 _1 1-3-5.1
83/2/2 1

_11+
2 s 2.4 62 2.4 6 63 +

1/'1

$32(1-1 $ = 1

s g+1
using the binomial theorem [see Problem 172].

For another method, see Problem 175(a).

IMPULSE FUNCTIONS. THE DIRAC DELTA FUNCTION.

40. Prove that a)} - e as

S

We have u(t - a)

}

}

where 'u(t - a) is Heaviside's unit step function.

1 t>a
0 t<a'

,r {U(t - a)}

P st P
= lim f e-stdt = lim

e-l
P.. oo a P-.oo -8

!a

hm
e-as - e-sP

= P-.., 8

e-as

S

Another method.
Since C {1} = 1/s, we have by Problem 9, C {U(t - a)} = 6-as/s.

41. Find .i {FE (t)} where FE (t) is defined by (30), Page 8.

We have FE (t)
I1/E O -5 t'-E

0 t>E

Then

0e-at (0) dt + f e e-st (1) dtaf
a

Then

. {FE (t)} = J e-st FE(t) dt
0

f E e-st (1/E) dt +
fw

e-st (0) dt
0 E

e-at dtf0

1 - e-sE
Es



CHAP. 1] THE LAPLACE TRANSFORM 27

42. (a) Show that lim . {FE (t)) = 1 in Problem 41.
E -. O

(b) Is the result in (a) the same as e lim FE (t) ? Explain.
E 0

(a) This follows at once since

1 - e-SE 1 - (1 .- ge + 82E2/2 ! - ...) ' 8elira = lim = innC1-- = 1
e-.O 8e E-+0 8E E-+O \ 2!

It also follows by use of L'Hospital's rule.

(b) Mathematically speaking, lim FE (t) does not exist, so that lim Fe(t) is not defined.
Y0 E-+o

))

Nevertheless it proves useful to consider 8(t) = lim F, (t) to be such that . {8(t)} = 1. We
E-0

call 8(t) the Dirac delta function or impulse function.

43. Show that C (8(t - a)) = e--, where 8(t) is the Dirac delta function.
This follows from Problem 9 and the fact that .1 {8(t)} = 1.

44. Indicate which of the following are null functions.

1 t=1 1
(a) F(t) =

0 otherwise ' (b) F(t) _ f
0 otherwise

t
(a) F(t) is a null function, since f F(u) du = 0 for all t > 0.

0

t

(b) If t < 1, we have f F(u) du = 0.
0

t t
If 1 < t < 2, we have fn F(u) du = J (1) du = t - 1.

n I

t 2
If t > 2, we have f F(u) du = J (1) du = 1.

0 1

(c) F(t) = 8(t).

Since F(u) du 0 for all t > 0, F(t) is not a null function.
fo

t

(c)Since J 8(u) du = 1 for all t > 0, 8(t) is not a null function.
0

EVALUATION OF INTEGRALS

45. Evaluate (a)
fo

t e-2t cos t dt, (b) f M
e-t -

e-8t
dt.

0 t

(a) By Problem 19,

{t cos t} = f t e-8t cos t dt.
to

- ds C {cos t} = - d s - 82 -1
dS 82 -+1 (82 -+1)2
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(b) If F(t) = e-t - e-3t, then f (s) _ . {F(t)} = a + 1 s + 3 ' Thus by Problem 21,

e-t - e-3t _ `° 1 _

or

Then letting s = 2, we find f te--2t cos t dt = 3
0 26

a t-e-3tf e st ( dt In

Taking the limit as s -> 0+, we find f x
e-t - e-3t

dt = In 3.
0

t

46. Show that (a) 5J0(t) dt = 1, (b)
fw eerf /dt =

(a) By Problem 34, f. e-stJO(t) dt =
0

Then letting s --> 0+ we find f x J0(t) dt = 1.
0

(b) By Problem 39, 0 e-$t erf dt -
J0

Then letting a 1, we find J e-t erf / dt = N/-2/2.
0

MISCELLANEOUS PROBLEMS

47. Prove Theorem 1-1, Page 2.
We have for any positive number N,

f e-stF(t) dt
0

OfN a-st F(t) dt + f e-$t F(t) dt

Since F(t) is sectionally continuous in every finite interval 0 -- t < N, the first integral on the
right exists. Also the second integral on the right exists, since F(t) is of exponential order y for
t > N. To see this we have only to observe that in such case

f x e-st F(t) dt
N

JN'

I e-st F(t) I dt

< (o e-stlF(t)I dt

f x e-stMert dt = M,J 8-y
0

Thus the Laplace transform exists for 8 > y.
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48. Find e Vrt-}.

Method 1, using series.
(/I)5 t3'2 t5/2 t7/2

1/Lsin
t = t -

3!
+ -

7!
+ ... = t -

3!
+ 51 - q!

Then the Laplace transform is

x {sin VT} _ 1'(3/2) - r(5/2) r(7/2) _ 1'(9/2)
83/2 3! 85/2 + 5! 87/2 7! 89/2

11 - (2)1 + (1/22 s)2 (1/22 s)3 +
233/2 2! 3!

283/2
e

Method 2, using differential equations.

Let Y(t) = sin Nft-. Then by differentiating twice we find

4tY"+2Y'+Y = 0

Taking the Laplace transform, we have if y = C {Y(t)}

-4 dd-8 (s2 y - 8 Y(0) - Y'(0)} + 2{s y - Y(0)} + y = 0

or 4 82 y' + (6 s - 1)y = 0

Solving, y = sa/z e-' /4s

For small values of t, we have sin NFt - NFt and C {/i} _ V-r-/2s312. For large s, y
follows by comparison that c = V-7r-'2. Thus

(sin Vt-) = 22 e-1148

49. Find cos

Let F(t) = sin i. Then F'(t) = Cos /, F(0) = 0. Hence by Problem 48,
2Vt-

2
_ -. {F'(t)} - 1 IcoT t } _ 8 f(s) - F(0) _ 2st/z

from which V A -1/4s
81/2 e

The method of series can also be used [see Problem 175(b)].

50. Show that

s s

1' 1/228e-
23.3/2

v'r -1/4s

_y+lns
.C{ln t} = r'(1) - ins

where y = .5772156... is Euler's constant.

-1/4s

C/83'2 It

We have r(r) = J u'-1e-udu
0
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Then differentiating with respect to r, we find

J
x

r'(r) = u*-I a-u In u du
0

from which

Letting u = at, a > 0, this becomes

r'(1)

1''(1) = sf e-St (Ins + In t) dt
0

Hence .,C {in t}

f e-St tk In t dt =

- f e-St In t dt
0

I11(1) -Ins - y + In s
8 8 8

Another method. We have for k > -1,

f e-It tk dt
0

Then differentiating with respect to k,

Letting k = 0 we have, as required,

I"(1) -Ins y + In a
8

JOB

r'(1)
s

- Ins
.0

e ulnudu

r(k + 1)
8k+1

r'(k + 1) - I'(k + 1) In s
3k+1

e -ItIntdt = I' {1n t} _
8

Supplementary Problems
LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

51. Find the Laplace transforms of each of the following functions. In each case specify the values of s
for which the Laplace transform exists.

(i')

2e4t

3e-2t

5t - 3

2t2 - e-t

3 cos 5t

10 sin 6t

6 sin 2t - 5 cos 2t
(t2 .+. 1)2

(sin t - cos t)2

(5) 3 cosh 5t - 4 sink 5t

Ans. (a) 2/(s-4), s > 4

(b) 31(s+2), s > -2

(c) (5 - 38)/32, s > 0

(d) (4+48-s3)/s3(s+1), 8.> 0

(e) 38/(82 + 25), s > 0

(f) 60/(82 + 36), s > 0

(g) (12 - 5s)/(s2 + 4), 8 > 0

(h) (s4 + 482 + 24)/x3, s > 0

(Z) (82 - 28 + 4)/8(82 + 4), 8 > 0

(j) (3s - 20)/(82 - 25), s > 5

f e-St dt
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52. Evaluate (a) .t {(562t - 3)2}, (b) C {4 cost 2t}.

2 2aAns. (a) 254 - s 302 + 8 , s > 4 (b) s + 82+16
, a > 0

53. Find ( {cosh2 4t}. Ans. s2 - 32
s(82-64)

0 0 <
t >

2 , (b) F(t) = fit 0

t >
55

54. Find C {F(t)} if (a) F(t) = f4

Ana. (a) 4e-2s/8 (b) g2 (1 -
e-58) -

8
e-5s

55. Prove that C (0) = ngn+ n = 1,2,3,....

56. Investigate the existence of the Laplace transform of each of the following functions.

(a) 1/(t+ 1), (b) etY-t, (c) cos t2 Ana. (a) exists, (b) does not exist, (c) exists

LINEARITY, TRANSLATION AND CHANGE OF SCALE PROPERTIES

57. Find C {3t4 - 20 + 4e-3t - 2 sin 5t + 3 cos 2t}.
72 12

+
4 _ 10 3s

Ans. s4 - s4 s+3 s2+25 + s2+4

58. Evaluate each of the following.

4 {tse-3t}

{e-t cos 2t}

.t {2e3t sin 40

{(t + 2)2et}

{e2t (3 sin 4t - 4 cos 4t)}

{e-4t cosh 2t}

(g) .1 {e-t (3 sinh 2t - 5 cosh 2t)}

Ans. (a) 6/(s + 3)4

(b) (8 + 1)/(82 + 2s + 5)

(c) 8/(82 - 6s + 25)

(d) (482 - 4s + 2)/(s - 1)3

(e) (20 - 4x)/(82 - 4a + 20)

(f) (8 + 4)/(82 + 8s + 12)

(g) (1 - 5s)/(s2 + 2s - 3)

59. Find (a) C {e-t sine t}, (b) .,C {(1 + to-t)3}.

2 1 3 6 6Ana. (a) (s + 1)(82 + 2s + 5) (b) 8 + (s -+1 ) 2 + (a+ 2)3 + (s+3)4

60. Find t {F(t)} if F(t) = {(t - 1)2 t > 1
0 0<t<1 Ans. 2e-s/s3

31

61. If Fl (t), F2 (t), ..., Fn (t) have Laplace transforms f l (a), f2 (s), .. , f,,(a) respectively and
Cl, c2, . . ., c, are any constants, prove that

.i {cl F1 (t) `l' C2 F2 (t) + ... + cn F. (t)} = cl f 1 (s) + CZ J 2 (8) + ... + Cn f n (a)
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62. If t {F(t)} = 2 - s + 1 , find C {F(2t)}. Ans. (s2 - 2s + 4)/4(8 + 1)2(8 - 2)
(28 + 1)2(8 - 1)

63. If C {F(t)} find C {e-t F(3t)}. Ans. e -si(s+i)
8+1

64. If f (s) = C {F(t)}, prove that for r > 0,

.C {rt F(at)} _ 1 s-lnr
s - lnrfCa

LAPLACE TRANSFORMS OF DERIVATIVES

65. (a) If .i {F(t)} = f(s), prove that
i {F'"(t)} _ 80 f(8) - 82 F(0) - s F'(0) - F"(0)

stating appropriate conditions on F(t).

(b) Generalize the result of (a) and prove by use of mathematical induction.

[CHAP. 1

66. Given F(t) = itt 0

t > 11
. (a) Find C {F(t)}. (b) Find C {F'(t)}. (c) Does the result

i {F'(t)} = s.L {F(t)} - F(O) hold for this case? Explain.

Ans. (a)
2 - e-3 - es2s, (b)

2 - e-9

67. (a) If F(t) =
fo >

t2
0 < t

;g
1 , find C {F"(t)}.

(b) Does the result C {F"(t)} = s2.C {F(t)} - s F(0) - F'(0) hold in this case? Explain.

Ans. (a) 2(1 - a-s)/s

68. Prove: (a) Theorem 1-7, Page 4; (b) Theorem 1-8, Page 4.

LAPLACE TRANSFORMS OF INTEGRALS

r
u2 - u + e-u) du} = s C {t2 - t + e-t}.69. Verify directly that C ffo (

t t
70. If f (s) _ . {F(t)}, show that C f dtl f F(u) du} _

0 0

f-8)
82

[The
t t

double integral is sometimes briefly written as f f F(t) dt2.1
0 0 JJ

71. Generalize the result of Problem 70.

72. Show that ff t 1-e-u du}
U

$]n(1+8 ).

w t

73. Show that f_f 8 -t sin u du dt
t

- '- 4-0 u=o U
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MULTIPLICATION BY POWERS OF t

74. Prove that (a) e {t cos at}

(b) C {t sin at}

s2-a2
(82 + a2)2

2as
(s2 + a2)2

75. Find t {t(3 sin 2t - 2 cos 2t)}. Ans. 8 `i" 128 - 282
(82+4)2

76. Show that C {t2 sin t} = 60-2
(82.+ 1)3

77. Evaluate (a) C {t cosh 3t}, (b) C {t sinh 2t}. Ana. (a) (82 + 9)/(82 - 9)2, (b) 48/(s2 - 4)2

78. Find (a) i {t2 cos t}, (b) C {(t2 - 3t + 2) sin 3t}.

An8. (a) (20 - 68)/(82 + 1)3, (b) 684 -1883 + 12682 - 162s + 432
(82+9)3

79. Find i. {t3 cost). Ans. 684 - 3682 + 6
(g2+1)4

80. Show that t e-3t sin t dt = 3
6 50

DIVISION BY t

81. Show that e-at e-btl
= In (s + a)

82. Show that .i f cos at
t

cos btl = 2 In ( 82
82

+ ab2).
1 J 2

83. Find
f sink t 1 '

Ana. In ($ + i )

84. Show that f e-3t
t

e-6t dt = In 2.
0

[Hint. Use Problem 81.]

85. Evaluate f ° cos 6t
t

cos 4t dt. Ana. In (3/2)0

86. Show that
JO

sing t 7r
t2 dt = 2.

PERIODIC FUNCTIONS

87. Find C {F(t)} where F(t) is the periodic function shown graphically in Fig. 1-7 below.

Ans. I tanh 8
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F(t)

2

1

T1 i2_13 4 -t
I I

F(t)

Fig. 1-7 Fig.l-8

88. Find C {F(t)) where F(t) is the periodic function shown graphically in Fig. 1-8 above.

Ans. 1 - e-s
g2 s(1 - e-s)

< 2
89. Let F(t) = {3t

6

20<<tt<4

Ans. (b) 3 - 3e-2s - 6se-4s
S2(1 - a-4s)

where F(t) has period 4. (a) Graph F(t). (b) Find t {F(t)}.

90. If F(t) = t2, 0 < t < 2 and F(t + 2) = F(t), find i {F(t)}.

Ans. 2 - 2e-28 - 4se-2s - 4s2e-2s
s3(1 - 6-2q)

91. Find C {F(t)} where F(t)
fO

t 0< t< 1 and F(t + 2) = F(t) for t > 0.1<t<2
Ans. 1-0-s(8+1)

822(1 - e-2s)

92. (a) Show that the function F(t) whose graph
is the triangular wave shown in Fig. 1-9

has the Laplace transform 1 tanh 2 .

(b) How can the result in (a) be obtained
from Problem 87? Explain.

F(t)

Fig. 1-9

4

INITIAL AND FINAL-VALUE THEOREMS

93. Verify the initial-value theorem for the functions (a) 3 - 2 cos t, (b) (2t + 3)2, (c) t + sin 3t.

94. Verify the final-value theorem for the functions (a) 1 + e-t (sin t + cos t), (b) t3 a-2t.

95. Discuss the applicability of the final-value theorem for the function cos t.

96. If F(t) - ctP as t - 0 where p > -1, prove that f (s) - c r(p + 1)/sP+l as s -+ .

97. If F(t) - W as t - oo where p > -1, prove that A8) - c F(p + 1)/s"+ I as s

-t
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THE GAMMA FUNCTION

98. Evaluate (a) r(5), (b) r(3) r(4) (c) r(5/2), (d) 1'(3/2) r(4)
j'(7) 1'(11/2)

Ans. (a) 24, (b) 1/60, (c) 3'14, (d) 32/315

99. Find (a) C f ti/2 + t-1/2}, (b) C (t-1/3), (c) C {(1 + V t )4}.

Ans. (a) (2s + 1)\/2s3/2, (b) r(2/3)/s2/3, (c) (82 + 2V-7-r 83/2 + 6s + 3V st/2 + 2)/s3

100. Find

Ans.

J e-2t
(a)

j ,
(b)

'C {t7/2
eat}.

(a) (b) 105f/16(s - 3)9/2

BESSEL FUNCTIONS

101. Show that C {e-at Jo(bt)} =

102. Show that ( {t J0(at)} _

1

82 - gas + a2 + b2

8

82 + a2)3/2

103. Find (a) C {e-3t Jo(4t)}, (b) C {t J0(2t)). Ans. (a)
2

1 , (b) (s2 +4)3/2s +6s+25

104. Prove that (a) J. (t) Jt (t), (b)
d {tn J (t)} = to J,,_, (t).

105. If 10(t) = J0(it), show that .C (10(at)) = 1 , a > 0.
s2 - a2

106. Find C {t J0 (t) e-t}. Ans. (s -1)/(s2 - 2s + 2)3/2

107. Show that (a) f Jo(t) dt = 1, (b) f e-t Jo(t) dt = 2 .

108. Find the Laplace transform of at2 {e2t Jo(2t)}. Ans. 82 - s - 2
Vs2-4s+8

109. Show that .C {t Jl (t)} = 1(S2+ 1)3/2 '

110. Prove that C {J0(aNft-)} _ e-0/4s
8

111. Evaluate
I.

t e-3t Jo(4t) dt. Ans. 3/125
0

112. Prove that ,C {J,, (t))
S )

and thus obtain C {J (at)).
s2 + 1

THE SINE, COSINE AND EXPONENTIAL INTEGRALS

113. Evaluate (a) C {e2t Si (t)}, (b) C (t Si (t)}.
i

Ans. (a) tan -I (s - 2)/(s - 2), (b)
to

s2
s
-

s(821+1)

35



36 THE LAPLACE TRANSFORM [CHAP. 1

114. Show that .( {t2 Ci (t)} = In (82 + 1) - 382 + 1
83 8(82 + 1)2

115. Find (a) C {e-3t Ei (t)}, (b) C {t Ei (t)}.

Ans. (a) In (s + 4) (b) In (s + 1) - 1
3+3 ' 82 8(s+1)

116. Find (a) C {e-t Si (2t)}, (b) i (to-2t Ei (3t)}.

Ans. (a) tan-1 (s + 1)/2 (b) 1
In

(s + 5
s+1 (s+2)2 3 (s+2)(s+5)

THE ERROR FUNCTION

117. Evaluate (a) C {eat erf NFt ), (b) C {t erf (2')}.

Ans. (a) 1 (b) 82(8+43/2(s-3) a-2

118. Show that C {erfc V } _ 1

s+1{ s+1+1}
t

l

119. Find C ifo erf' du } . Ans. 1/82 8 + 1

THE UNIT STEP FUNCTION, IMPULSE FUNCTIONS, AND THE DIRAC DELTA FUNCTION

120. (a) Show that in terms of Heaviside's unit step function, the function F(t) = {e_t 0 < t < 3
0 t>3

can be written as a-t (1 - 'u(t - 3)). (b) Use j {U(t - a)) = e-as/s to find e {F(t)}.

Ans. (b) 1 - e acs+11

s+1

121. Show that F(t) _ Fl(t) 0 < t < a
1'2(t) t>a can be written as

F(t) = F1 (t) + (F2 (t) - F1(t))U(t - a)

122. If F(t) = Fl(t) for 0 < t < a1, F2(t) for a1 < t < a2, .. . (t) for a. -2 < t < aiand F,, (t)
for t > a,, _1, show that

F(t) = Fl(t) + {F2(t)-Fi(t))U(t-a1) + .. +

123. Express in terms of Heaviside's unit step functions.

V O 2
sint O<t<r

(a) F(t) _ {4t < t > 2 (b) F(t) = sin 2t r < t < 2r
sin 3t t > 2r

Ans. (a) t2 + (4t - t2) U(t - 2), (b) sin t + (sin 2t - sin t) U(t - r) + (sin 3t - sin 2t) U(t - 2r)

LY

124. Show that C {t2 U(t - 2)} = s3 - 2
s3 (1 + 2s + 2s2), 8 > 0.
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125. Evaluate (a) f cos 2t S(t - 7r13) dt, (b) f e t u(t - 2) dt. Ans. (a) -1/2, (b) e_2

126. (a) If 3'(t - a) denotes the formal derivative of the delta function, show that

(b) Evaluate e-4t S'(t - 2) dt.
o

Ans. (b) 4e-3

f F(t) 8'(t - a) dt = -F'(a)
0

37

127. Let Ge(t) = 1/e for 0 < t < e, 0 for e C t < 2e, -1/e for 2e < t < 3e, and 0 for t -!l 3e.

(a) Find .i {Ge(t)}. (b) Find lirm C {Ge(t)}. (c) Is l6-0im C (Ge(t)) {iim Ge(t) } ? (d) Discuss

geometrically the results of (a) and (b). J

128. Generalize Problem 127 by defining a function G,(t) in terms of a and n so that lim Ge(t) = sn
where n = 2, 3, 4, ... , e-+o

EVALUATION OF INTEGRALS

129. Evaluate f a
t3 e-t sin t dt. Ans. 0

0

130. Show that J 'Ce-stint dt =
40

131. Prove that (a) f Jn(t) dt = 1, (b) f t Jn(t) dt = 1.
0 0

132. Prove that f u e-112 J0(au) du
0

133. Show that fo

a
t e-t Ei (t) dt = In 2 - I.

134. Show that
f W

u e- u' erf u du
0

MISCELLANEOUS PROBLEMS

Isint 0<t<7r135. If F(t) =
0 t>7r'

Icos t 0136. If F(t) < t < 7
lint t >7r'

show that
. {F(t)} = I+ e- rS

82+1

find C {F(t)}.

3 6

Ans. s + (s - 1)e--
S2 + 1

137. Show that C {sin t} =
(82 + 1) (82 + 9)
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138. Establish entries (a) 16, (b) 17, (c) 20, (d) 28 in the Table of Page 246.

139. Find (a) i {sinh3 2t}, (b) C {t3 cos 4t}.

48
(b)

6s4 - 576x2 + 1536Ans. (a) (82 - 36)(82 - 4) ' (82 + 16)4

[CHAP. 1

140. If F(t) = 5 sin 3 (t - 7r/4) for t > r/4 and 0 for t < it/4, find .(' {F(t)}. Ans. e--/4/(82+9)

141. If C {t F(t)} -
8(82+ 1) ,

find .e {e t F(2t)}.

142. Find (a) C {sinh 2t cos 2t}, (b) .( {cosh 2t cos 2t}.

Ans. (a) 2(s2 - 8)/(s4 + 64), (b) 83/(84 + 64)

143. Let F(t) t + n 2n < t < 2n + 1 Show thatn-t 2n+1 < t < 2n+2' it = 0,1,2, ... .

-C {F(t)} = 1 2ns - (2n+1)s (2n+2)s{(3ns + 1) e- 2[(2n + 1)s + 1 ] e- + [(n + 2)s + 1] e- }
S2 n=0

144. (a) Show that C {sing t} - 120
(82 + 1)(82 + 9)(S2 + 25)

(b) Using the results of part (a) and Problem 137, can you arrive at a corresponding result for
..( {sin2n -1 t} where n is any positive integer? Justify your conjectures.

145. Suppose that F(t) is unbounded as t--° 0. Prove that C {F(t)} exists if the following conditions are
satisfied:

(a) F(t) is sectionally continuous in any interval N1 < t < N where N> > 0,

(b) lim to F(t) = 0 for some constant n such that 0 < n < 1,
t-.o

(c) F(t) is of exponential order y for t > N.

146. Show that (a) f {Jo(t) sin t} = 41 sin { - tan-1 (2/s)}
s2 + 4

(b) e {Jo(t) cost) = J- 4 s2
+ 4

cos { tan (2/8))

147. Let F(t) = f t G(t) t > 1
0 0<t<1 Prove that .e {F(t)} _ -$ [e'a {G(t + 1)}].

148. If C {F"(t)} = tan- 1 (11s), F(0) = 2 and F'(0) = -1, find C {F(t)}.

Ans. 2s - 1 + tan- 1 1/s
82

149. Prove that .( feat F(/lt)} =:= S f (8 a
al where a and a are constants and C {F(t)} = f(s).

150. Show that the Laplace transform of eel does not exist, while the Laplace transform of a-et does exist.
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S282
151. (a) Show that ,e {sin2t} =

4
in C

sls 4
/

.

(b) Evaluate J e-t sin? t dt.
0

Ans. (b) I In 5

152. (a) Find .; { 1 Jo(t)}
. (b) Show that J w

e-t {1
E

Jo(t)} dt = In (,12+1).
2o

154. Suppose that P {F(t)} exist% for s = a where
a is real. Prove that it also exists for all
s>a.

155. Find the Laplace transform of the periodic
function F(t) shown graphically in Fig. 1-10.

Ans. 1 _ e-us - wn) - as tan e0s2(1 - e--

.(' {sin t2} = (-1)n-1 (4n-2)!
n=1 (2n-1)! s2n+1

157. Show that .( {sins t} = 6!

8(82 + 4)(s2 + 16)(s2 + 36)

F(t)

Fig. 1-10

and generalize [see Prob. 144].

39

t

s+2158. Find t. {t a-2t J0 (tN2)}. Ans. (s2 + 4s + 6)3/2

159. Find t. {t 11(t - 1) + t2 6(t -1)}. Ans. a-s (82 + a + 1)/s2

160. Find C {cos t In t &(t - 7r)}. Ans. -e-- In 7r

161. Let F(t) and G(t) be sectionally continuous in every finite interval and of exponential order as t -
Prove that i {F(t) G(t)} exists.

162. The Laguerre polynomials Ln(t) are defined by
et dn

t d n, {tn a-t}Ln(t) = n

(a) Find L0(t), L1(t), ..., L4(t). (b) Find C {L,(t)}.

n = 0,1, 2, ...

163. (a) Let a, b, a, J and A be constants. Prove that

.t {at-a + bt-s} = A {as-a + bs-a}

if and only if a + /3 = 1 and A = ± 7r -ca"...

(b) A function F(t) is said to be its own Laplace transform if C {F(t)} = F(8). Can the function
F(t) = at-a + bt-s be its own Laplace transform? Explain.
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164. If F(t) and G(t) have Laplace transforms, is it true that F(t) G(t) also has a Laplace transform?
Justify your conclusion.

165. Use the result J0(t) = 1 f IT

cos (t sin e) do to show that . {Jo(t)}
IT

° 82 + 1

166. Prove that Leibnitz's rule can be applied in Problem 19, stating suitable restrictions on F(t).

167. (a) Prove that f e-8t (1 -tcos t) dt
o

t)

= 2(b) Prove that f 1 -tcos t dt
00

IT

2 (

2

s In ` s2 + + 2 tan -1 s.

168. Let F(t) = 0 if t is irrational and 1 if t is rational. (a) Prove that C {F(t)} exists and is equal to
zero. (b) Is the function a null function? Explain.

169. Show that fa
t2 Jo(t) dt = -1.

0

170. Prove that if p is any positive integer,

r(-p - (-1)P+1(1)13/(5)...(2p-11)lr

171. Verify the entries (a) 55, (b) 61, (c) 64, (d) 65, (e) 81 in the Table of Appendix B, Pages 248
and 250.

172. Using the binomial theorem show that for jxj < 1,

(1+x)-112 1 - 1x + 1.3x2 -
2 2.4

1.3.5 x3 +2.4.6
and thus verify the summation of the infinite series in Problems 34 and 39.

173. Use infinite series to find the Laplace transforms of (a) sin t, (b) cos t, (c) eat, (d) cos Vrt-.

es2/4

174. Prove that .1 {erf (t)} =
s erfc (s/2) and thus find i (erf (at)).

175. (a) Find {erf N& } by using the method of differential equations.
(b) Find {cos V/ f} using infinite series.

176. Show that (a) f J0 (2 tu) cos u du = sin t,
0

(b) f W Jo (2 tu) sin u du = cos t.o
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177. Show that f » J0 (2 tu) Jo (u) du = Jo (t).
0

178. Use (a) infinite series, (b) differential equations to find C {Jj(t)'. See Problem 35.

179. If 8 > 0 and n > 1, prove that

+ .. ,jr(n) lsn + (s + 1)n + (8+2)"

180. Prove that if n > 1,
1 ('°° tn`1 1 1 1

i(n) _
`(n) U

et -1 dt = In + 2n + n + .. .

The function $(n) is called the Riemann zeta function.

181. If f(s) _ .4 {F(t)}, show that

182. If L,, (t), n = 0,1, 2, ... ,

°` to F(u) _ f(ln s)

I
('

o
l'(u+l)duj stns

are the Laguerre polynomials [see Problem 1621, prove that

eJo(2AFt)
n==o n

183. Let J(a, t) = J 6-"t cos au du. (a) Show that
0

solving the differential equation in (a) show that

J(a, t)
so

00

aJ=_aj
as 2t

e-u2t cos au du

41

where J(0, t) _ \ /2/. (b) By

V e-a2/4t
2V

184. Use Problem 183 to find C f co tl [see Problem 49, Page 29].
Jt

1-17T-

t sie-185. Prove that f x th t sin t dt = 8.
0



Chapter 2

The nverse aplace Transform

DEFINITION OF INVERSE LAPLACE TRANSFORM

If the Laplace transform of a function F(t) is f (s), i.e. if {F(t)} = f (s), then F(t) is
called an inverse Laplace transform of f (s) and we write symbolically F(t) _ -' { f (s) }
where C-' is called the inverse Laplace transformation operator.

Example. Since e-3t) = 1{
s + 3 we can write

e-st

UNIQUENESS OF INVERSE LAPLACE TRANSFORMS.
LERCH'S THEOREM

Since the Laplace transform of. a null function N(t) is zero [see Chapter 1, Page 9],
it is clear that, if C {F(t)} = f(s) then also e {F(t) + {(t)} = f(s). From this it follows
that we can have two different functions with the same Laplace transform.

t = 1 have theExample. The two different functions Fl(t) = e-at and F2(t) =
fe-st 0otherwise

same Laplace transform, i.e. 11(s+3).

If we allow null functions, we see that the inverse Laplace transform is not unique.
It is unique, however, if we disallow null functions [which do not in general arise in cases
of physical interest]. This result is indicated in

Theorem 2-1. Lerch's theorem. If we restrict ourselves to functions F(t) which are
sectionally continuous in every finite interval 0 < t N and of exponential order for
t > N, then the inverse Laplace transform of f (s), i.e. -' { f (s)) = F(t), is unique. We shall
always assume such uniqueness unless otherwise stated.

SOME INVERSE LAPLACE TRANSFORMS

The following results follow at once from corresponding entries on -Page 1.

42
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Table of Inverse Laplace Transforms

f(s) -l ff(s)) = F'(t)

1. ( 1
s

2. z t
s

3. n = 0, 1, 2, ...n t'is

4. 1 eat

s-a

5.
1 sin at

82 + a2 a

6. cos at
82 + a2

7
1 sinh at

82 - a2 a

8.
S

cosh at
s2 a2

SOME IMPORTANT PROPERTIES OF INVERSE LAPLACE TRANSFORMS
In the following list we have indicated various important properties of inverse Laplace

transforms. Note the analogy of Properties 1-8 with the corresponding properties on
Pages 3-5.

V

1. Linearity property.
Theorem 2-2. If c1 and C2 are any constants while f l (s) and f2(s) are the Laplace

transforms of Fl (t) and F2(t) respectively, then

{Clfl(s) + C2f2(s)} = C1'-1 (f1(s)) + C2 °l 1 (f2 (S)) (1)

ciFi(t) + c2F2(t)

The result is easily extended to more than two functions.
Example.

1 _ _3s
e

fi_4
-2 s2+16 +

_ 4.(-L 1

s-2} - 3-l { s
1s2+16

+ 5 . C ' ) - - - 4 (
f

= 4e2t - 3 cos 4t + 2 sin 2t

Because of this property we can say that (-' is a linear operator or that it has the
linearity property.

2. First translation or shifting property.
Theorem 2-3. If 1 { f (s)) = F(t), then

.C-1(f(s - a)} = eat F(t) (2)
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Example. Since -1 1 a2 + 4 5 = 2 sin 2t, we have

s2 - 2s + 5} = e-1
l

(s - 1)2 + 4}
-

2
et sin 2t

3. Second translation or shifting property.

Theorem 2-4. If -' { f (s)) = F(t), then

t-1 {e-a, f(s)) _ F(t-a) t > a
0 t<a

Example. Since sin t, we have

f sin (t - ,r/3) if t>,,/3
10 if t<r,/3

4. Change of scale property.

Theorem 2-5. If .( I (f (s)) = F(t), then

Example. Since

as is verified directly.

{f(ks)} =

fs l
s2 + 16 f = cos 4t, we have

.e-1 1 2s
l =

1
cos 2t = 2 cos2tl(2s

5. Inverse Laplace transform of derivatives.

Theorem 2-6. If ('-1 {f(s) } = F(t), then
n

(fc,,>(s) } = e(-' Ids As)} = (-1)n t" F(t)

I -2s
Example. Since (-'

s2
+ 1 } = sin t and ds (s2 + (s2 + 1)22 '

we have

-2s -tsint or s 1tsint
(s2+1)2 j (52+1)2} - 2

6. Inverse Laplace transform of integrals.

Theorem 2-7. If C- I { f (s) } = F(t), then

.-'{f f(u)du _
s 1

Example. Since 1 1 ( lri - 1 5
s(s +

,
(s

F(t)
t

= 1 - e-1, we have

X-1 if (U u 1 1) du In (1 + s) l =
s 4

1

1-e-t
t

(3)

(4)

(5)

(6)
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7. Multiplication by s".

Theorem 2-8. If .( ' If (s)) = F(t) and F(0) = 0, then

-(-' {s f(s)) = F'(t)

Thus multiplication by s has the effect of differentiating F(t).

If F(0) 0, then

or

.(-' {s f(s) - F(0)} = F'(t)

o('-' {s f (s)} = F'(t) + F(0) S(t)

where S(t) is the Dirac delta function or unit impulse function [see Page 9].

Example. Since 4-t {s2 + 1 l sin t and sin 0 = 0, then

{s2 i 1 - dt (sin t) = cost

Generalizations to ( I (s" f (s) ), n = 2, 3, ... , are possible.

8. Division by s.

Theorem 2-9. If .(' {f (s)) = F(t), then

-t
i

f
f ss)}

_ f t

F(u) du

45

(7)

(10)

Thus division by s (or multiplication by 11s) has the effect of integrating F(t) from
0 to t.

Example. Since 2 sin 2t, we have

2 sin 2u du= ro cos 2t)

Generalizations to e(- t n = 2, 3, ..., are possible [see Problem 70].

9. The Convolution property.

Theorem 2-10. If .(--1 {f(s)} = F(t) and -( t {g(s)} = G(t), then

e(-1 {f(s) g(s)} = f F(u) G(t - u) du = F * G (11)

We call F * G the convolution or faltung of F and G, and the theorem is called the
convolution theorem or property.

From Problem 21, we see that F * G = G * F.

Example. Since -t
s 1

= et and t-' f 1

is-2} = e2t we have

t l 1 = f eu e2(t-u) du e2t - et
`e 1(s - 1)(s - 2)}

0
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METHODS OF FINDING INVERSE LAPLACE TRANSFORMS
Various means are available for determining inverse Laplace transforms, as indicated

in the following list. Compare with Page 6.

1. Partial fractions method. Any rational function P(s)/Q(s) where P(s) and Q(s) are
polynomials, with the degree of P(s) less than that of Q(s), can be written as the sum of

rational functions [called partial fractions I having the form A As + B
(as + b)r' (as2 + bs + c)r

where r = 1, 2, 3, .... By finding the inverse Laplace transform of each of the
partial fractions, we can find { P(s)/Q(s)}.

E l 1
B

A + C D
xamp e .

(3s - 4)(2s + 1)'3 (2,s+1)33s 4 + (2s 1)2 + 2s + 1

Example 2 3s2-4s+2 Cs+D E_= _As+B _

++ -

.
(s2+2s+4)2(s-5) 4 2s+4s"(s2+2s+4)2 s -5

The constants A, B, C, etc., can be found by clearing of fractions and equating of
like powers of s on both sides of the resulting equation or by using special methods
[see Problems 24-281. A method related to this uses the Heaviside expansion formula
[see below].

2. Series methods. If f(s) has a series expansion in inverse powers of s given by

f(s) = a°+a, +az+a3+ ...
.3 sz St s4

then under suitable conditions we can invert term by term to obtain

F(t) = ao + a,t +
2'1

+ 3 i3 +

(12)

(13)

See Problem 40. Series expansions other than those of the form (12) can sometimes

3.

be used. See Problem 41.

Method of differential equations. See Problem 41.

4. Differentiation with respect to a parameter. See Problems 13 and 38.

5. Miscellaneous methods using the above theorems.

6. Use of Tables (see Appendix B).

7. The Complex Inversion formula. This formula, which supplies a powerful direct
method for finding inverse Laplace transforms, uses complex variable theory and is
considered in Chapter 6.

THE HEAVISIDE EXPANSION FORMULA
Let P(s) and Q(s) be polynomials where P(s) has degree less than that of Q(s). Suppose

that Q(s) has n distinct zeros ak, k = 1, 2, 3, ..., n. Then

P(s) P(ak)
j

Q(s) I Q,(ak) ak` (14)
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This is often called Heaviside's expansion theorem or formula. See Problems 29-31.
The formula can be extended to other cases [see Problems 105 and 111].

THE BETA FUNCTION

If m > 0, n > 0, we define the beta function as

B(m, n)
I

um-I (1 - u)n-I du
fo

We can show the following properties [see Problems 32 and 33]:

1.

2.

B(m, n) r(m) r(n)
r(m + n)

rr/2
Sln2m-1 cos2n-1 B do

0

EVALUATION OF INTEGRALS

1 B(m, n) = r(m) r(n)
2 2 r(m + n)

47

(15)

The Laplace transformation is often useful in evaluating definite integrals. See, for
example, Problems 35-37.

Solved Problems

INVERSE LAPLACE TRANSFORMS
n

1. Prove that (a) e 1 is
1

a j = eat, (b) '
sn1 t n = 0,1, 2, 3, ..., where 0! = 1,

1 sin at
(c) -1 ts2+a2} a ' (d) .t ' {s2-a2} =

(f) s2
s

_ a2 (= cosh at.

(a) .C {eat) = s
1 a. Then

to
1 n!

1 {8'n at) = 1 -e 1

eat.

= i
Thengn+I'

a 1= s2+a2.
a ` a 82 + a2

cos at, (e) 1
1 1 ` sink at- s2azj a

for n = 0,1,2,3,n ....

Then .(-1 1

82+a2
sin at

a

(d) .( (cos at) = 82 + a2 . Then .C-1 5 82 + a21 = cos at.
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(e)
sinh atl

= a.C {sinh at} =
a

s2 a 1a2 = s2 a2 Then C -1

(f) e {cosh at} =
72

s
a2 . Then {82_a2f = cosh at.

t
2. Prove that a('-1 _,

o ., for n > -1.

to
1 ( {tn} _ 1 I'(n + 1)

r(n+1)} 1'(n+l) 1'(n+1) sn+1

by Problem 31, Page 22.

1

f 1 1 - sirh at
182-a2[ a

8nli.

Then -1 j sn+1t = (n f )n > -1. Note that if n = 0,1, 2, 3, ... , then

and the result is equivalent to that of Problem 1(b).

3. Find each of the following inverse Laplace transforms.

(a) p r(214-91 (C) -C-1 s
1

'(b)-1

{s 42} kd)-1 {s2+2}

1 sin 3t
(a) ^e-1 J82+9} _

3

(b) c~1
4

s-2} = 4eSa

1 t3
(c)

4
= 31

Is
(d) s2+2} _

68
(e) -1182-16} =

=(f) 1821 3f

t3

6

cos V2-t

6 cosh 4t

sink ' t

Jr ti/2 t112
(g) .C-1 l 3 2 1 - (3/2)1 ()

(e)
1

Js2 -
s16}

}s2 3

2t1/2

Y

(g)
1

n > -1

1'(n+l) = nl

[Problem 1(c)]

[Problem 1(a)]

[Problems 1(b) or 2]

[Problem 1(d)]

[Problem 1(f)]

[Problem 1(e)]

[Problem 2]

LINEARITY, TRANSLATION AND CHANGE OF SCALE PROPERTIES
4. Prove the linearity property for the

Page 43].
By Problem 5, Page 12, we have

inverse Laplace transformation [Theorem 2-2,

.e {c1 F1(t) + c2 F2 (t)} = cl J {F3 (t)} + C2 (' {F2(t)} =

to

c1f1(s) + c2f2(8)
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Then .e-1{cif1(s) + C2f2(s)} = C1F1(t) + C2F2(t)

Cl,('1 {f1(8)} + C2,e-1 {f2(8)}

The result is easily generalized [see Problem 52].

15s+4 - 2s-18 24 - 30h l5. Find (a) .-1 ss s2-+9 + s4 J

} +
(a)

2
4

b 4 2s 18 24 _30

}S2 + .43 s2+9 + s2+9 + 34 s7/2

5t + 4(t2/2!) - 2 cos 3t + 18(* sin 3t) + 24(t3/3!) - 30{t5/2/r(7/2)}

5t + 2t2 - 2 cos 3t + 6 sin 3t + 4t3 - 16t5/2/V

since F(7/2) = 2 .- r(j) =
s
.

f 6 _ 3+48 8-6s
(b) °e _ 1 }2s - 3 9s2 - 16 +

682+91

1s3/2 3\82-16/9) 9(82-1619)+ Cs-9/16) 3(s2+9/16)J

= 3e3t/2 - 3 sink 4t/3 - 9 cosh 4t/3 + sin 3t/4 - cos 3t/4

6. Prove the first translation or shifting property: If C-1 { f (s) } = F(t), then

.(' ' {f(s-a)) = eatF(t)

By Problem 7, Page 13, we have .1 {eat F(t)) = f(s - a.). Then

,C-1{f(s-a)} = eatF(t)

Another method. Since f (s) = J
a

e--St F(t) dt, we have
0

1(8 - a) = e-(s-ait F(t) dt = f x e-St {eat F(t)} dt

Then .i-1 { f(s - a)} = eat F(t)

7. Find each of the following:

6s-4 3s+7
(a) }s2-4s+20} (e) s2-2s-3}

}(b) 4s+12
s2+8s+16

1 f 6s-4
(a) . - 182-4s+20 J

{2s+3}

{eat F(t)}

6s-4 t = C_1 6(s-2)+8
(s - 2)`l + 16 f 1(s - 2)2 + 16}

j s-2 4
6 ,e-1 1 (s - 2)2 + 16J + }(s - 2)2 + 16}

b
6 3+4s 8-6s() 2s-3 - 9s2-16 + 16s2+9

5s+4 2s-18 24-301
+9 83 J

49

= 6 eSt cos 4t + 2 e2t sin 4t = 2 e2t (3 cos 4t + sin 4t)
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(b)
4s+12

s2+8s+15
4s+121 = +_1 14(s+4)-41
(s+4)2 j 5l (s+4)2 J

= 4.C-1

4 e-4t

(e) C-1

1s+4 j -

4 e-4t (1 - t)

._1 f 3s + r = 3(s-1) + 101(af (8-1)2 - 4
3s+7 1

182-2s-3j

_ 1 s-1 2

3 5 et sinh 2t = et (3 cosh 2t + 5 sinh 2t)

4 eat - e-t

For another method, see Problem 24.

(d)
_ j 1 1 11 _ 1

2 -+3 f Vr2 f(a + 312)112

1 1
e-3t/2 t-1/2 = t-1/2 6-3t/2

r(1/2)

8. Prove the second translation or shifting property:

If {f(s)) = F(t), then 4-1 {e-as f(s)} = G(t) where

G(t) _
fo

F(t - a) t > a
t<a

Method 1. By Problem 9, Page 14, we have C {G(t)} = e-as f(s). Then

.C -1 {e-as f(8)} = G(t)

Method 2. Since f (s) = f e-st F(t) dt, we have
0

0-as f(s) = of e-as e-st F(t) dt = f e-s(t+a) F(t) dt
0 0

= f e _ su F(u - a) du [letting t + a = u]
a

0
f a e-st (0) at + )

e-st F(t - a) dt
a

=
f,

e-st G(t) at
0

from which the required result follows.

It should be noted that we can write G(t) in terms of the Heaviside unit step function as
F(t - a) u(t - a).
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9. Find each of the following:
e-5s 1 7 se-4_s/5 f (s + 1)e-rsl -' e4-3s

(a) -1 ks24f' (b) -- { s2 +25 1 s2 + s + 1 1 (d)
+

4)5/2}.

t3 e2t
(a) Since } = e2t:-1

(-s 2)4
{;} - -- 3 . 6

If s+8+1
s

12 +-8

+1
1

e-5s
(8 - 2)4}

we have by Problem 8,

(j (t - 5)3 e2(t-5)
0

t>4,/5
t < 47r/5

g (t - 5)3 e2(t-5)'U(t - 5)

8

} = cos 5t,(b) Since-1 {82 -+2 5

_ se-4,rs/s
s + 25

cos 5(t - 41r/5)
LO

{cos 5t
0

cos 5t u(t - 47x/5)

(c) We' have

e-/t cos t
2

+

e-%t 3tv3 cos 2

Thus

t3 e2,

i-1 {(s + 1)e-'lr8]
s2+s+1

t>5
t<5

t>4,/5
t < 47r/5

+ 1 -e_ 1 IFS/2
(s+1)2+I

1 te-mot sin 2
3

tl
+ sin

V2

e-/(t-7<) xF3{v-cost_ 7) + sin 2 (t - 7r)
3

0

1
{ cos 2 (t - 7r) + sin 23 (t - 7r) } `u(t - 7r)

NF3

(d) We have .C-1 1

{(s + 4)5/2
e-4t.C-1{ 1 l

85/2

3/2 J1 413/2 ,-4t

t>7r

t<7r

51

= e-4t
F(5/2) = 31T
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Thus
e4-3s

° {(8 + 4)5/2
1 J e-3s

e4
e t (s + 4)5/2

464 (t - 3)3/2 e-4(t-3)

3V
t>3

0 t<3
4 (t - 3)3/2 e-4(t-4)

3V-ir

t>3

0 t<3

4 (t - 3)3/2 a-4(t-4)3' 'u(t - 3)

10. Prove the change of scale property: If C-' (f(s)) = F(t), then

i-1 {f(ks)) = F(t/k)

Method 1. By Problem 11, Page 14, we have on replacing a by 1/k, C {F(t/k)} = k f(ks). Then

.e 1{f(ks)} = kF(tlk)

Method 2. Since f(s) = f e-st F(t) dt, we have
0

f(ks) = f e-kst F(t) dt = f e-suF(u/k) d(u/k) [letting u = kt]
0 0

k
5e_suiuiic
'

F) du = k .C {F(t/k)}

Then .C-1 { f(ks)} = k F(t/k).

11. If
1/251 =cos find e 1/2$

I
where a > 0.

s t s

i

-1/ks
l(ks)1/2

or

Then letting k = 1/a,
7

Tf t

INVERSE LAPLACE TRANSFORMS OF DERIVATIVES AND INTEGRALS
12. Prove Theorem 2-6, Page 44: ' { f (n)(s)) _ (-1)n to F(t), n = 1, 2, 3, ... .

n
Since P {tnF(t)) = (-1)n

dsn
f(s) = (-1)n f(n)(s) [see Problem 19, Page 17], we have

e-1/kst
81/2 I

1 c o s 2 -t/-k- cos 2 Vi/-k

k 7r(tlk) &t

kcos 2'/7
V;L

1 Je cos 2 at81//2

2°e l

,e-1 { f(n)(g)} = (-1)n to F(t)
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s13. Find (g2 + a2)2

d f 1 ) -2s
Thus

s _ 1 d 1We have ds l ;2--+ a- (s2 + a2)2 ' (s2 + a2)2 2 ds (s2 + a2)

Then since

-f d s I -2as
l lda (82+a2)} == '-1 1 (82+a2)2

1 1 _

x-
t

s
(s2 + a2)2 2

C
ds 82 + a2

1 -1{d( 1 )}
1 sin at t sin att(

a 2a

Another method. Differentiating with respect to the parameter a, we find,

d

(
s ) -2as

da 82 + a2 (s2 + a2)2

Hence

or

s
{(32 + a2)2

14. Find .C-1 {1n (1 + s )J .

Let f (s) = In l 1 + 2)

in at

a

d
-1(

s

2a d (cos at)

-2a.C-1

= .C {F(t)}. Then f'(s) =

s

(82 + a2)2

1 t sin at
- 2a (- t sin at) = 2a

-2
8(82 + 1)

Thus since = -2(1 - cos t) = -tF(t), F(t) - 2(1-
t
cost)

MULTIPLICATION AND DIVISION BY POWERS OF s

15. Prove Theorem 2-9: 1
s ff

0

Let G(t) =
c

F(u) du. Then G'(t) = F(t), G(O) = 0. Thusfo

.C {G'(t)} = se (G(t)) - G(0) = s.C {G(t)} = f(s)

and so .C {G(t)} = f ($)
s or

I

G(t) = r F(u) duC-1 j f 8s) =
l o

Compare Problem 17, Page 16.
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16. Prove that -1 f )} = f f F(u) du dv.
t U t

Let G(t) =f f F(u) du dv. Then G'(t) =f F(u) du and G"(t) = F(t). Since G(O) = G'(0) = 0,
0 0 0

.C {G"(t)} = 82.( {G(t)} - s G(0) - G'(0) =

f0t

Thus . {G(t)} = f (s) or
f (8)}

= G(t) = f'f"F(u)dudv
0

Jf R2)} = J
t

1
t F(t) W.

in I
t t

In general, = f f f F(t) dtn
8n 0 0

f

17. Evaluate 1 s3(sz+1)}

Since (-1
s2 1-+1 } _ sin t, we have by repeated application of Problem 15,

1
}.C-1

1s(s2+1)J

1. 82(82+1)}

1

{83(32 + 1)

2
Check: .1 cost - 1

sin u du

t

82 .e {G(t)} = f (s)

t - sin tf0 (1 - cos u) du

= f
0

t =
(u -sin u) du

1 s 1 82+1
- s3 + s2 -+1 s -

18. Given that-1 }(82 + 1)2} = 2 t sin t,

t2 - 1
2

+ Cost

+ 84 - 82(82 + 1) --83(82+1)
1

83(82 + 1)

f 1find C-1
(82 + 1)2

= 1 - cos t

Method 1. By Theorem 2-9 [Problem 151, we have

j 1a(-1 1(32-+J) 2 =
_ 1 s

1 _
`e 8 . (82+1)2 Jo

t

ju sin u du

(-u)(- cos u) - (4-)(- sin u) I

t

0

J(sin t - t cost)

Method 2. By Theorem 2-8, we have

.C-1 g. s
(82+ 1)2

82+1__11

-1 (82 + 1)2 1
=

dt (it sin t)

1 _ 1

4 f}82+1}-1 (82+1)2 J

_ J(t cost + sin t)

1 - 4tcost + sint =.C-1 s2 + 1 ( ) (sin t - t cos t)Then C-1 f (82 + 1)2} =
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19. Find C-

Using Problem 14, we find

2(1 uosu) du = 2 ( 1 -u su du
0

THE CONVOLUTION THEOREM

20. Prove the convolution theorem: If -' {f(s)} = F(t) and C-1 (g(s)) = G(t), then
t

-C-' { f (s) g(s)) = f F(u) G(t - u) du = F * G
0

55

Method 1. The required result follows if we can prove that

' {f t F(u) G(t - u) du} = f (s) g(s) (1)
0

where f(s) _ C {F(t)}, g(s) _ i {G(t)}. To show this we note that the left side of (1) is

f g-stc=o

where

f t

F(u) G(t - u) du} dt

e-st F(u) G(t -- u) du dt = lim sMM-.f'0

f0
t=u=

8M

= fM f t
e -st F(u) G(t - u) du dt (2)

t-0 u=0

The region in the to plane over which the integration (2) is performed is shown shaded in Fig. 2-1.

U u

`Rt

t

Fig. 2-1 Fig. 2-2

Letting t u = v or . t = u + v, the shaded region `Rtu of the to plane is transformed into the
shaded region `Ruv of the uv plane shown in Fig. 2-2. Then by a theorem on transformation of multiple
integrals, we have

sM f f est F(u) G(t - u) du dt = f f e-s(u+v) F(u) G(v) I a(u, t) I du dv (8)
a(, v)

`Rtu Ruv
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where the J'acobian of the transformation is

J = a(u, t)
at

au

au

av

Thus the right side of (3) is

a(u, v) at
au

at
av

1

1

m M-v
_ C! e-s(u+v) F(u) G(v) du dv

v u=0

Let us define a new function

This function is defined over the square of Fig. 2-3 but,
as indicated in (5), is zero over the unshaded portion of
the square. In terms of this new function we can write
(4) as

K(u, v) = e s(u+v) F(u) G(v)

10

if u+v:M
if u+v > M

v

m M
am =. f f K(u, v) du dv

v=0 u=0

Then
00

Mim am = f f K(u, v), du dv
0 0

f f e-s(u+v) F(u) G(v) du dv
0 0

0 l 0

{J' e-su F(u) du {S'° e-sv G(v) dv}

which establishes the theorem.

Fig. 2-3

(k)

(5)

u

t
We call f F(u) G(t - u) du = F * G the convolution integral or, briefly, convolution of F

and G. o

For a direct method of establishing the convolution theorem, see Problem 85.

21. Prove that F * G = G * F.

Letting t - u = v or u = t - v, we have

F*G t F(u) G(t - u) du
0

G(v) F(t - v) dv G * Ff 0̀

f t
F(t - v) G(v) dv

This shows that the convolution of F and G obeys the commutative law of algebra. It also obeys
the associative law and distributive law [see Problems 80 and 81].



CHAP. 2] THE INVERSE LAPLACE TRANSFORM

22. Evaluate each of the following by use of the convolution theorem.

(a) -'{(2+a2)2} , (b) -1152(6+1)2}

II We ca wrn itea 8

(s2 + a2)2

1 _ sin at
1

°e l 82 + a''
_

a '

s
.C-1 (82 a2)2

8 1

82 + a2 st + a2'
Then since

we have by the convolution theorem,

ff,
t sin a (t - u)

cos au a du

57

.e 1) s 1 = cos at andls2 f ay f

1

a (cos au)(sin at cos au - cos at sin au) duf
a sin atJ cos2 au du - a cos at f sin au cos au du

0 0

a sin at f t (1 + c2s 2au) du - a cos at f. sing au du

1 t sin 2at - 1 (1 - cos 2at1a sin at
2 4a ) a

cos at l
4a J

a sin at C 2 +
sin at at 1 - 1 cos at (si

a
2aat )

J \ I

t sin at
2a

Compare Problem 13, Page 53.

(b) We have

1

{82(S + 1)2

t e-t. Then by the convolution theorem,

f t

(ue-u)(t -u) du
0

J (ut-u2)e-udu
0

(ut - u2)(-e-u) - (t - 2u)(e-u) + (-2)(-e-u) It

0

to-t + 2e-t + t - 2

Check: .e {te-t + 2e-t + t - 2} 1 2 1 2

(S+ 1)2 + s + 1 + 82
-

s

s2 + 282(6 + 1) + (s + 1)2 - 2s(s + 1)2
82(8+1)2

23. Show that f t f 'F(u)
du dv = f t (t - u) F(u) du.

0 0 0

1 __

-e-' 32 I = t' t-1
1

(S + 1)2

1
82(8+1)2

By the convolution theorem, if f(8) _ C {F(t)}, we have
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.C (t - u) F(at) du
0

Then by Problem 16,

f (t - u) F(u) du

The result can be written
I t

F(t) dt2
0 0

.c (t) C {F(t)}

f (s)
82

ft

0

s:E

(t - u) F(u) du

In general, we can prove that Isee Problems 83 and 841,

f (s)
s2

F(u) du dv

f 1 f ... J.' F(t) dtn = f (t-7011-_

F(u) du
0 0 0 (n - 1)!

PARTIAL FRACTIONS

24. Find (- 12 3s + 7 1
ls -2s-31

Method 1. 3s+7 = 3s+7 = A B
82-2s-3 (s-3)(s+1) s-3 + s-f 1

Multiplying by (s - 3)(s + 1), we obtain

3s + 7 = A(s + 1) + B(s - 3) = (A + B)s + A - 3B

Equating coefficients, A + B = 3 and A - 3B = 7; then A = 4, B = -1,

3s+7 _ 4 1

(s-3)(s+1) s-3 8+1

and
3s+7 1 =

(s-3)(s+1)1 4,C1 ( 1 1 - _ij s- 3 J °
s -I 1

= 4e3t - e-t

Method L Multiply both sides of (1) by s - 3 and let s - 3. Then

lim
3s+7 = A + lim B(s - 3)

or A = 4s-.3 3 + 1 s_3 s + 1

Similarly multiplying both sides of (1) by s + 1 and letting s -j -1, we have

lim
3s+7 = lim

A(s + 1) + B or B = -1s-.-1 s-3 s...-1 s-3

Using these values we obtain the result in Method 1. See also Problem 7(c), Page 50.

25. Find C-1
2s2 - 4

{(s + 1)(s - 2)(s - 3),

(1)

We have
282- 4 _ A B C ( )

(s + 1)(s - 2)(s - 3) s+ 1 + s-2 + s-3 1
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Let us use the procedure of Method 2, Problem 24.

Multiply both sides of (1) by s + 1 and let s - -1; then

A = 111
282 - 4

s-.-1 (s-2)(s-3)

Multiply both sides of (1) by s - 2 and let a -, 2; then

B = lim 282 - 4
s-.2 (s + 1)(s - 3)

Multiply both sides of (1) by s - 3 and let a - 3; then

= 232- 4C - q_.3(s+1)(s-2)
Thus

i l 2s2 -4
`e I(s+1)(s-2)(s-3)j

1

6

4

3

7

2

_ 1/6

+
-4/3

+
7/2

s+1 s-2
l

s-3f

-
s
e-t -

3
e2t +

2
e3t

59

The procedure of Method 1, Problem 24, can also be used. However, it will be noted that the
present method is less tedious. It can be used whenever the denominator has distinct linear factors.

26. Find -1 5s2 -15s -111 .

(s + 1)(s - 2)3)

5s2-15s-11 _ A + B + C + D
(s+1)(s-2)3 8+1 (s-2); (s-2)2 s-2

A procedure analogous to that of Problem 25 can be used to find A and B.

Multiply both sides of (1) by s + 1 and let s --> -1; then

A = lim 5s2 - 15s - 11 = -1
s-.-1 (s-2)3 3

Multiply both sides of (1) by (8 - 2)3 and let s - 2; then

B = lim 582 - 158 - 11 = -7
,;-2 s + 1

(1)

The method fails to determine C and D. However, since we know A and B, we have from (1),

582 - 15s - 11 -1/3 + -7 + C + D
(s+1)(s-2)3 s+1 (s-2)3 (s-2)2 s-2 (2)

To determine C and D we can substitute two values for s, say s = 0 and s =1, from which we find
respectively,

11 _ 1 + 7 + C - D 21 = 1 + 7 C D8 - 3 8 4 2' 2

i.e. 3C - 6D = 10 and 3C - 3D = 11, from which C = 4, D = 1/3. Thus

i582 - 158 - 11l = _1 J -1/3 + -7 + 4 + 1/3 1
t (s+1)(s-2)3 j .: is+i (s-)- (2)2 s-2

- 3 e-t - 7 t2 e2t + 4t e2t + 8 e2t
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Another method. On multiplying both sides of (2) by s and letting s -> 00, we find 0 = -$ + D which
gives D = j. Then C can be found as above by letting s = 0.

This method can be used when we have some repeated linear factors.

27. Find - 38+1 1
{(s_1)(s2+1)j

3s+1
(s-1)(32+1) 3- 1 82+1

Multiply both sides by s -1 and let s - 1; then A = lim 3z + 1
}_ l s + 1

3st1 _ 2 Bs -'- C
(s - 1)(82 + 1) a- 1 4 82 + 1

To determine B and C, let a = 0 and 2 (for example), then

-1 = -2+C, = 2+285 C

from which C = 1 and B = -2. Thus we have

_3s+1 1 = - 1 f 2
+

-2s+1(8-1)(s2+1)J 'r
s- 821

= 2

2,e-1
4

1 1J

_ 2t
1Y2 I 1 +

= let - 2 cos t -} sin t

(1)

(2)

Another method. Multiplying both sides of (2) by s and letting s - -, we find at once that B = -2.

28. Find .C-1 s 2 + 2s + 3

{(s2 + 2s + 2)(s2 +2s+5)1

Method 1.
__ s2+2s+3 _A_s+B + Cs+D
(s2+2s+2)(s2+2s+5) s2+2s+2 s2+2s+5

Multiplying by (s2 + 28 + 2)(s2 + 2s + 5),

S2+28+3 = (As + B)(82 + 2s + 5) + (Cs+D)(s2+2s+2)

(A + C)s3 + (2A + B + 2C + D)s2 + (5A + 2B + 2C + 2D)s + 5B + 2D

(1)

Then A+C = 0, 2A+B+2C+D = 1, 5A +2B+2C+2D = 2, 5B+2D = 3. Solving, A=O,
B = , C = 0, D = *. Thus

f s2+2s+3
-11(32+2s+2)(82+2s+5)

_ 1/3 2/3 _
e {s2+2s 1 2 + s21- 2s 1 5

3 -11 ) 2+1(3-1 1 + ,e-1 1 (S T 1)2 + 4}

*e-t sin t + * je-t sin 2t

-e-t(sint+sin2t)

A Bs+C

and
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Method 2. Let s = 0 in (1): 3 _ B D
10 - 2 + 'S

Multiply (1) by s and let s - °: 0 = A + C

Let s = 1: 3 _ A+B C+D
20 5 + 8

Let s=-1: 2 = -A + B + D4C

Solving, A = 0, B = *, C = 0, D = 4 as in Method 1.

This illustrates the case of non-repeated quadratic factors.

Method S. Since 82 + 2s + 2 = 0 for s = -1 :t i, we can write

Similarly

Then
s2+2s+3 82+2s+3

(82+2s+2)(82+2s+5) (s+1-i)(s+1+i)(s+1-2i)(s+1+2i)
A B C D

8+1-i + s+i+i + s+1-2i + a+1+2i
Solving for A, B, C, D, we find A
inverse Laplace transform is

= 1/6i, B = -1/6i, C = 1/6i, D = -1/6i. Thus the required

e-(1-0t e-(l+i)t e-0-20t
6i 6i + 6i

e-(1+2i)t e_teit - e- it) +
e_t

e2it - e-tit
6i 2i 2i

= *e-t sin t + *e-t sin 2t

= ke-t (sin t + sin 2t)

This shows that the case of non-repeated quadratic factors can be reduced to non-repeated linear
factors using complex numbers.

HEAVISIDE'S EXPANSION FORMULA

29. Prove Heaviside's expansion formula (14), Page 46.

Since Q(s) is a polynomial with n distinct zeros
method of partial fractions,

P(s) -

82 + 2s + 2 = (s+1-i)(s+1+i)

82 + 2s + 5 = (s+1-2i)(s+1+2i)

a1, a2, ..., an, we can write according to the

A, A2 Ak A
Q(8) 8-al 8-a2 8-ak 8-an

Multiplying both sides by s ak and letting s - ak, we find using L'Hospital's rule,

Ak = lim
S-+ak Q(s) s a

8-ak
(8 - ak) =

l-.
P(s)

Q 1 Q(s)k

lim P(s) lira
S-.ak S-.Cik

a - ak

Q(s) ) flak.) lim 1

-. ak
Q,(a)

S

P(ak)
Q'(ah )

(1)

Thus (1) can be written

P(s) _ P(at) 1 flak) 1 P(an) 1

Q(s) 47(al) 8 - at
+ ... + Q

(ak) S
-

ak Q'(an) 8 - an
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Then taking the inverse Laplace transform, we have as required

1 fP(s)l P(a1) P(ak) P(an)
a

tlQ(a) J Q'(al)
east + ... + Q

(ak)
eakt + + e

30. Find (-1 W-4
{(s+1)(s-2)(s-3)

We have P(s) = 282 - 4, Q(s) _ (s + 1)(s - 2)(s - 3) = ss - 482 + s + 6,
at = -1, a2 = 2, a3 = 3. Then the required inverse is by Problem 29,

P(-1) a-t + P(2) e2t + P(3) est
Q'(2) Q'(3)

Compare with Problem 25.

31. Find -1 38+1
(s - 1)(s2 + 1)

P(i) itQ10)e +

We have P(s) = 3s + 1, Q(a) _ (s - 1)(s2 + 1 ) = S . 3-8 2+8-1 , Q'(s) = 30 - 2s + 1, a1 = 1,
a2=i, a3 = -i
inverse is

P(- i) -it
Q'( i)

e (1)

it4 t ':3:i+-1 it -3i+1
2e + -2-2ie + -2+2i e_

2et + (-1 - 4i)(cos t + i sin t) + (-1 + 4-i)(cos t - i sin t)

let -cost + 4 sin t - cost + 4 sin t

2et - 2 cost + sin t

Compare with Problem 27.
Note that some labor can be saved by observing that the last two terms in (1) are complex

conjugates of each other.

THE BETA FUNCTION

32. Prove that B(m, n) = f xm-1(1- x)n-1 dx = T(m) r(n)
o r(m + n)

Consider

Then by the convolution

G(t) =

12
a-t + 3 e2t + 4 eat

ft
0

xm-1(t-x)n 1 dx

theorem, we have

.t (G(t)} _ (tm-1) C {tn-1}

!r(rn) . 1'(n) r(m) r(n)
.11n 8n

Thus

or

since 82 + 1 = (s - i)(s + a). Then by the Heaviside expansion formula the required

P(1) t
Q'(1)

e

G(t)

t

sm+n

n P(ak)
eakt

k=1 Q'(ak)

Q'(s) 382 - 8s + 1,

_6e-t - 3e2t + 2e3t

where m > 0, n > 0.

r(m) r(n) I - l'*) r(n)
sm+m ( 1'(m+n)

J xm- 1 (t - x)n-1 dx
n

r(m) r(n) tm+n- 1
r(m T n)

Letting t = 1, we obtain the required result.
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Tr/2

in2m-10 cos2i-' 0 d033. Prove that fo s

From Problem 32, we have

B(m, n)

Letting x = sin2 e, this becomes

B(m, n) =

B(m, n) _ r(m) r(n)
2 r(m + n) '

1

J xm-1 (1 - x)"'-1 dx
a

/2rTr

2J sin2m-1 B

0

from which the required result follows.

F(m) r(n)
r(m T n)

cos2n-1 o do r(m) r(n)
r(m+n)

7r/2 IT 9/2 d0
34. Evaluate (a) f sin4 0 cos° 0 d0, (b)

0
cos4 0 d0, (c) f tan 0

(a) Let 2m -1 = 4, 2n -1 = 6 in Problem 33. Then m = 5/2, n = 7/2, and we have

"/2
sin4 a cosh a de = r(5/2) r(7/2) _ (3/2)(1/2)V (5/2f)(3/2)(1/2)'

21'(6) 2.5.4.3.2.1

(b) Since cos a is symmetric about e = 7r/2, we have
/2f ,

fo

Tr

cos4 o do = 2 cos4 o de
0

Then letting 2m - 1 = 0 and 2n -1 = 4, i.e. m =1/2 and n = 5/2 in Problem 33, we find

2J cos4odo = 2
0

rr(1/2) r(5/2)1
2 r(3)

2 r r (3/2)(1/2)V7-l = 37r

L 2.2.1 J 8

(C)

Tr/2 do r/2
sin-1/2 B cost/2 o do

tano 0of
Letting 2m -1 = -1/2 and 2n -1 = 1/2, or m = 1/4 and n = 3/4 in Problem 33, we find

f7T/2 do - r(1/4) r(3/4) - 1 7r Try c

o tan a 21'(1) 2 sin (7,/4) 2

using the result r(p) r(1 - p) = 7r/(sin pir), 0 < p < 1.

EVALUATION OF INTEGRALS

t35. Evaluate f Jo (u) A (t - u) du.
0

fLet G(t) = J0 (u) J0 (t-u) du. Then by the convolution theorem,

.i {G(t)} = C {J0(t)} .C (Jo(t))

Hence

(y8+1)(y821+1)

G(t) = °e-1 {s2 + 1 = sin t

63

and so G(t) = f J0 (u) J0 (t - u) du = sin tt
0
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36. Show that f cos x2 dx = /2.
0

Let G(t) =
f W

cos tx2 dx. Then taking the Laplace transform, we find
0

.C {G(t)} = f0 e-st dt
f000

cos tx2 dx

f dx f e-st cos tx2 dt
0 0

o,
Letting x2 = s tan o or x =

1 7/2

2T J0

Inverting, we find

G(t) = r.
10

cos tx2 dx

.L {cos tx2} dx =
f
I 8 dx
0 82 + x4

tan s, this integral becomes on using Problem 34(c),

(tan e)-1/2 do
_ 1 2 _ 7\

2 ) 4V1

n4
,e-1 \ 1 \ _

(t-1/2\ =
t-

1/2

4 V It 4

Letting t = 1 we have, as required,

fo

00

cos x2 dx

MISCELLANEOUS PROBLEMS

e-xsdx =37. Show that
fo

a

I
2, r.i {G(t)} Jo s +x2

. /8 tan-1
Ifs- 0

rr

4 2 2

Consider G(t) =
f.

e-tx2dx. Then taking Laplace transforms,
0

Thus by inverting,

G(t) = r
00

00

e-tx$ dx =
2

t 1/2' = 2 t-1/2

and the required result follows on letting t = 1.

Another method.

1 ('
2 J0

Letting x2 = u or x = V-u-, the required integral becomes

u-1/2 a-u du = .r(j)

But by Problem 32 with m = n =!!! we have

{r()}2 = 1 ' x-1/2(1 - x)"'1/2 dx =
0

e f 1 dx

j_(.-x)2

1 dx

fx(1- x)

1

sin-1(1-241 = a
0

Thus r(4-) =' and so the required integral has the value 4,r. See also Problem 29, Page 22.
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38. Find {(s2 +a2)3/2

We have [see Problem 34, Page 231, i {J0(at)) Then differentiating with respect
to a, we find s2 -+a 2

_d C (JO(at))
d ( 1

dal g2+a2

x {t Jo (at)}

Thus

since JJ(u) = -J1(u).
{(s2

+1

x2)3/2 =

or .C {Jo(at))] (82+:2)3/2

-a
(82 + a2)312

-
a

Jo (at) = t J1(at)
a

39. Find (-1 1 1

(32 + 2s + 5)312 f
The required inverse can be written as

-1
1

{[(8 + 1)2 + 4]3/2{

using Problem 38.

40. Find
e 1/s

= e-t 4
{(82+4)3/2{

cte-
2 Ji (2t)

1/s _ l
se 8 1 s + 2!s2 31 s3

+

1 1 1 1- 3 s2 + 2! s - 3! s4 +

Inverting term by term,
2 3

(2!)2 (3!)

1 - t + 2

1222
t3

12 22 32

- 1 - (2t"2)2 + (2t1/2)4 - (211/2)8 +
22 2242 22 42 62

J0(21/)

41. Find .e-1 {e- `r}.

Using infinite series, we find

Let y = e- then ?!' _ - 2s1/2
, p" =

e
4s + 4s3/2 Thus

4sy"+2p'-y = 0

2

(1)

r
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Now y" _ .i {t2Y} so that By" _ .i dt [t2Y]
=

C {t2Y' + 2tY}. Also, y' = {-tY}. Thus
(1) can be written

4.4 {t2Y' + 2tY} - 2.C {tY} - t {Y} = 0 or 4t2Y' + (6t -1)Y = 0
which can be written

Y + (64t21)dt = 0 or 1nY + 2lnt + It = Cl

Y = C
e-1/4t

t8/2

Now tY = t1
22

e-1/4t. Thus

-( {tY} -d8(e-V)

For large t, tY ^- ti/2 and i {tY} ~ si
.

For small s,

theorem, cV7-r- = 1/2 or c = 1/2V. It follows that
2' 2s1/2

1 e-1/4t
2V t3/2

Another method. Using infinite series, we have formally

.e -1 {e - r.- }

t- 3/2

2V;T

.e-1 {1} - .i {81/2} + 4:-1 g J33/22!1 - .(-1 1 3i1 + ... (1)

Using the results of Problem 170, Page 40 [see also Problem 33, Page 22] we have for p equal to
zero or any positive integer,

.C+-1 {8p+112} =
t-p-3/2

r(-p -
(-J)P

+1

(i)(3) (5) ... (2p2 1) t-p-3/2

/while .,'-1 {sp} = 0. Then from (1) using (2) we have

4-1 {e- I'-$} =

42. Find 8

e- C
2Vi

Hence by the final value

83/2 82 85/21-sl/2! 3!
.+.4i_ C! +...1

2 2
+ .. .)() 3!

5

+ ()()(5! 7
1 Jl - (1) + (1/22t)2 - (1/22t)3 + ...1 = 1 e-1/4t

2 a t3/2 22t 2! 3! J 2/t3/2

From Problems 41 and 15 we have

e `f 1

O {2- du = 2

V,,

1/Co2%t

e-" dv (letting u = 114v2)

1erfc 2f)
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43. Find ,e-1le-=tel.l s J
In Problem 42 use the change of scale property (4), Page 44, with k = x2. Then

g-AGis- =
2

erfc
x28 } x

2
1t/x2)

e-xtr I
from which

$
)Iy =

Note that this is entry 87 in the Table on Page 250.

44. Find 2s3 + 1082 + 8s + 40
{ 82(82+9) }

Since 82(82 + 9) - 9 (s s2 + 9) ' we have

283 + 1082 + 8s + 40
92(S2+9)

and so

erfc «T

1 1283 + 1082 + 8s + 40 - 283 + 1082 + 88 + 401
9 82

(28+lo+2+9

82+9 J

\
9

(28+10+s
s2

0) - 850)1

1 8 40 108 50
8 + 82 + 82+9 + 82+9}

283+8082+988+40 =
9 8

+ 40t + 10 cos3t + 30 sin3t)}82(82+9)

7
(24 + 120t + 30 cos 3t + 50 sin 3t)

We can also use the method of partial fractions.

45. Prove that Jo(t) = 1 5 eitw (1 - w2)-1/2 dw.
a

1

We have [see Problem 34, Page 23],

A {j (t)} = 1

° 82 +

Now 1 _ 1 1

s2+1

1 t-1/2 a-at
Using the fact that we have by the convolution theorem,

s+a
-1 r1 = -1 }Jo(t) =

1

f782 +1J S+i
1

8-i
"t u-1/2 a-iu (t - u)-1/2 gi(t-u)

d
o

t
= 1 1 gi(t-2u) u-1/2(t - u)-1/2 du

7t 0
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Letting u = tv this becomes
1

J0(t) = 1
a

eitcl-2v) y-1/2 (1 - v)-1/2 dv
o

or if 1-2v=w,

+ cos e0 8

46. Prove that Jo (t) = 1 Jcos (t cos 0) do.
V. o

Let w = cos 0 in the result of Problem 45. Then

eitcos0 doJ0 t = 1
fo

A()
IT

s sec 6.i {G(t)} = do = do
22 t 2 2

Equating real and imaginary parts or by showing directly that the last integral is zero, we have
as required

Jo(t) = ces (t cos e) do
0

Another method.

Let G(t) = 1 J cos (t cos o) do = 2
fr/2

cos (t cos o) do. Then taking Laplace transforms,
7 0 V. 0

7r/2 2 7/22 t

2 1
tan-'

s tan e
a 82 + s2 +

Thus
JG(t) _ t-1 l s2 + 1 = Jo(t), as required.

Ir o s tan e+s +1

it/2

0

1

82+1

Supplementary Problems
INVERSE LAPLACE TRANSFORMS

47. Determine each of the following:

Ans. (a) 3e-4t
(b) 4 e5t/2

(c) 8 cos 4t

(d) 3 sin 2t

r 8
(c) -1 5 s2+16

B

1
Si eitw (1- w2) -1/z dw

IT
I

_ 1 f Ir

cos (t cos e) do + if sin (t cos o) do
0 0

(e)
3s -121

-1 82+8 r

2s-b
82-9

(e) 3 cos 2vt - 3V2 sin 2/t
(f) 2 cosh 3t - z sink 3t

(g) t4/24

(h) 8t5/2/151'

(i) -4e4t/3

(j) (t-2/3 + 3t1/s)/r(-k)

W

(i)

12

4 3s

_13+11
° 84/3 J
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48. Find (a) 5

1 + e-ttAns. (a) 1 + t - 4t1/2/ f
j

49. Find (a) C -t
4s3s-8 5810

2+25 ' (b)
982+-16

Ans. (a) 4 cos 5t/2 - sin 5t/2 (b) A cosh 4t/3 + I sinh 4t/3

69

50. (a) Show that the functions F(t) = I t t 3 and G(t) = t have the same Laplace transforms.5 t=3
(b) Discuss the significance of the result in (a) as far as uniqueness of inverse Laplace transforms is

concerned.

3s-8 4s_ -241 3s-2 _ 7
51. Find (a) a2+4 32-16J' (b) t-1 85/2 3s+2}'

Ans. (a) 3 cos 2t - 4 sin 2t - 4 cosh 4t + 6 sinh 4t
(b) 6t1/2/V-,- - 8t3/2/3 / - 3 e-2t/3

i
52. (a) If Fl(t) =C(fl (s)}, '2 (t) _ -t (f2 (s)}, F3 (t) _ -t (f3 (s)), and C1,C2i03 are any constants,

prove that
- t (C1 f 1(8) + 02/2(8) + C313 (8)) = C1 Fl(t) + C2 F2 (t) + c3 F3 (t)

stating any restrictions. (b) Generalize the result of part (a) to n functions.

53. Find -1 {3(82-1) 2 + 4s - 18 + (s + 1)(2 - s1/2)
285 9-82 p5/2 }

Ans. - t - 3 t2 + 16t4 + 4t1/2// + 8t312/3 / - 4 cosh 3t + 6 sinh 3t

54. Find (a) . -1 {(s +
8 8

}1)5}' (b) (8+1)5/2

Ana. (a) 24t (4t3 - t4) , (b)
2t1! 33 - 2t)

55. Find a 23s-14 ( 8s+20() i8-4s+81, (b) C-t j82-123+32}

Ans. (a) e2t(3 cos 2t - 4 sin 2t), (b) 2eOt(4 cosh 2t + 7 sinh 2t)

56. Find (a) (-'I 3s+2
1482+123+9 (b)

{ 253 - 2 } .38+4s+8

- 3e4t

Ans. (a) 16-3t/2 - , t a-3t/2, (b)
e - 2t/3

15
(25 cos 2V t/3 - 24V sin 2vr5 t/3)

57. Find

Ans.

(a) Y-tj
383-27 s2-4s+201

(a) t-2/3 e27t/3/2 r(-), (b) e2tJo(4t)
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58. Find s}, (b)-' }82+34 r. (e)-1
1

Q 8

J l J s+l
Ans. (a) t-2 t > 2

to t<2 or (t- 2) u(t - 2). (b)
4 sin 2(t - 3) t > 3

0 t<3
(e) {(t_ 1)-1/2/' t > 1

0 t<1 or (t-1)-112u(t-1)/y7r.

[CHAP. 2

or 4 sin 2(t - 3)11(t - 3).

J Se-2s 1 _1 e-3s
59. Find (a)

1 S
2+

3s + 2 J ' (b) `e tP - 2s + 5}
2e-2(t-2) - e-(t-2) t > 2 2(t-2) - (t-2)Ans. (a)

0 t < 2
or {2e- e- } U(t - 2)

{e) sin 2(t - 3) t > 3
(b)

0 t < 3
or 1e(t-3) sin 2(t - 3) 'u(t - 3)

60. If f e-8t F(t) dt = f(s) and f e-st G(t) dt = f(ps + q), where p and q are constants, find
0 0

a relationship between F(t) and G(t). Ans. G(t) = e-Qt/PF(t/p)/p

61. If ..(-1 1 = erf , find C-1 }s s+a}, a > 0. Ans. erf at/ Va
s1v's--Tif

62. If
(V82 + 1 - 8)n

= Jn(t), find
82+1 }

J( S2+a2-8)nX-ll
s2+a2 }

63. Find (a) ..C- I
1 ., (b) C t

e-2s

NFS (s-1) s2+9
t

}
2Ana. (a) et erf Xft-, (b) {Jo(3t - 6)

t < 2
or J0(3t - 6) u(t - 2)

INVERSE LAPLACE TRANSFORMS OF DERIVATIVES AND INTEGRALS

64. Use Theorem 2-6, Page 44, to find

(a) C-1 {1/(s - a)3} given that P-1 {1/(s - a)) = eat,

(b) .C-1 {s/(s2 - a2)2) given that .C-1 (1/(82 - a2)) _ (sinh at)/a.

Ans. an Jn(at)

65. Use the fact that .C-1 (1/s) - 1 to find C 1 (1/s') where n = 2,3,4..... Thus find C-1 {1/(s-a)"}.

66. Find .C-' s+1
(32+2s+2)2}

Ans. 4te-t sin t

67. Find (a) C-11In(8+1)1'
(b) `C-11sIn(s+1)1.
t

Ans. (a) (e-t - e-2t)/t, (b) f
e-u - e-2u

du
0 at

68. Find .C-1 {tan-1 (2/s2)}. Ans. 2 sin t sinh t/t
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82 + all
69. Find e-1 s1 In ( 82 + b2)}. Ans fcos au cos bu du

o

MULTIPLICATION AND DIVISION BY POWERS OF s
t w

70. Prove that .C-1 {f( ) ( =
ffu

f F(u) du dv dw.
J 0

Can the integral be written as
ft Sot Sot

F(t) dt3 ? Explain.

71. Evaluate (a) C`1 {83(8+1) (b) °e-1 {32(s +3) (c) _ 1 {s(s + 1)3

Ans.

72. Find

(a) 1 - t + V2 - e-t, (b) it + a - ee-3t, (c) 1 - e-t (1 + t + jt2)

1 1
(a) 1{s s+4}' (b) 1 {8ys+a2}

tAns. (a) I erf (2fi), (b) f Jo(au) du
0

71

73. Find (a) {(s -1)5 (s + 2)} , (b) C-1 {(s - 2)5 (s + 1)}
and discuss the relationship between

these inverse transforms. J

et 4 4t2 8 8) - e-2t
Ans. (a) 72

(t4
- 9 t3 + - 9

It
2711 243

4 3 t2 t - I ) t
(b) e2t

(g-6 54 54 + 81 243 + 243

74. If F(t) = . -1 {f(s)}, show that

(a) C-I {8 f'(s)} = -t F'(t) - F(t) (c) .(-1 {82 f"(8)} = t2 F"(t) + 4t F'(t) + 2 F(t)

(b) i-1 {s f"(s)} = t2 F(t) + 2t F(t)

75. Show that C-1 {s2 f'(s) + F(0)} = -t F"(t) - 2 F'(t).

THE CONVOLUTION THEOREM

76. Use the convolution theorem to find (a) C 1 1 , (b) ,e-1 1
{(s } 3)($-1)} {(s+2)2(8-2)

Ans. (a) J(et - e-3t)' (b) 3 g(e2t - e-2t - 4te-2t)

77. Find

78. Find

,e-1 1{ (8.+1)(82+1)

82

(82 + 4)2}

Ans. 4.(sin t - cost +

Ans. it cos 2t + I sin 2t

e-t)

79. Find (a) -1 {(82+1)3 1' (b) ` 1 {(82 -:4)3}

Ana. (a) *{(3 - tt2) sin t - 3t cos t}, (b) G 44t(sin 2t - 2t cos 2t)
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80. Prove that F't {G * H) _ {F * G} * H, i.e. the associative law for convolutions.

81. Prove that (a) F*{G+H} = F*G + F*H, (b) {FtG}*H = F*H + G*H.

82. Show that 1 * 1 * 1 * ... * 1 (n ones) = to-1/(n - 1)? where n = 1, 2, 3, ... .

t t t

83. Show that
fo fo fo

F(t) dt3 =

t t t

84. Show that f f f F(t) dt'
0 0 0

(a) 5e3t - 2e-2t, (b) 1 - je-t + jet

85. Prove the convolution theorem directly by showing that

f(s) g(s) = {i'eu F(u) dull { fesu G(v) dv}

f x f a e-s(u+u) F(u) G(v) du dv
0 0

f.
e-st

{jL
0

F(u) G(t - u) dujo dt.
0

86. Using the convolution theorem, verify that

f,

(a) 1e-t/2 -.e-2t/8, (b) 5e2t - jet/2 + 2e-t

87. Show that
1-

t e(a-b)uf du = e(a-b)t/2 I0(J.(a - b)t).
o u(t-u)

PARTIAL FRACTIONS

88. Use partial fractions to find (a) 3s
s

1661 (b) {g3-8}
Ans.

89. Find (a) ,C-1 s + 1
(b)

_ 1 1182 - 2s + 5
{682+7s+2} {(s-2)(28-1)(s+1)

Ans.

90. Find

91. Find

92. Find

Ana.

(a) 27-12s
{(s + 4)(82 + 9)

8-1
`e-1

(a
+ 3)(82 + 2a + 2)

of (t - u)2 F(u) du.
0 2!

= 't (t - u)n-1 F(u) du.
o (n - 1)1

t

sin u cos (t - u) du = It sin t

(b) s3+16s-24 11
84 + 2082 + 64

Ans. *e-t (4 cos t - 3 sin t) - to-31

1 82-2s+3 1 383-382-408+36
(a) I (8 - 1)2 (8 + 1)} ' (b) - (82-4)2

(a) .(2t - 1)et +'e-t, (b) (5t + 3)e-2t - 2te2t

[CHAP. 2
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93. Find (-1 E2-3
(s + 2)(s - 3)(a2 + 2s + 5)

Ans. Soest - e-2t - e- t cos 2t + Ae-t sin 2t

94. Find 4 -1 a Ans.
-

sin t sinh t{(8223+2X32+28+2)}

95. Find Ans. I sin t + it cos t -- to - t

73

96. Use partial fractions to work (a) Problem 44, (b) Problem 71, (c) Problem 73, (d) Problem 76,
(e) Problem 77.

97. Can Problems 79(a) and 79(b) be worked by partial fractions? Explain.

HEAVISIDE'S EXPANSION FORMULA

98. Using Heaviside's expansion formula find (a)
2s-11

C 1 (s + 2)(s - 3)11 (b)
19s+37

a-1 t (a - 2)(s + 1)(s + 34.
Ans. (a) 3e-2t - eat, (b) 5e21 - 3e-t - 2e-3t

99. Find

100. Find C-1 8+5
(8 + 1)(s2 + 1) }

Ana. jet - e2t +
2

eat

Ans. 2e-t + 3 sin t - 2 cost

101. Use Heaviside's expansion formula to work (a) Problem 76(a), (b) Problem 77, (c) Problem 88,
(d) Problem 89, (e) Problem 90.

-1 s - 1 1102. Find .C

2s3-s2-1
{(s + 1)2 (s2 + 1)2

-c_1 282-6s+5
s3-682+11s-6

(s+3)(s2+2s+2)f Compare with Problem 91.

32- 3103. Find (-1
(s + 2)(s - 3)(82 + 2s + 5)

104. Find
.c-1 f

8

(s2 - 2s + 2)(s2 + 2s + 2)

Compare with Problem 93.

Compare with Problem 94.

105. Suppose that f(s) = P(s)/Q(s) where P(s) and Q(s) are polynomials as in Problem 29 but that
Q(s) = 0 has a repeated root a of multiplicity m while the remaining roots, b1, b2, ..., b do not repeat.

(a) Show that
.P(a) A1 Az Am B1
z

B Bn
f(s) = Q(s) (a -- a)n, + (s - a)'n i + ... +

s

_
- a + a - bt + s - b2 + s - b

4(s - a)m f(s)}, k = 1, 2, ..., M.
kd(b) Show that Ak = lim _k 1 i

Ws--k

Al tnt 1 A2 tin - 2
(c) Show that .e;-1 (f(a)) = eat f ni - -(--- 1)! + (in 2)1

_ + + A"' + B1eb,t + ... + Bebrt.
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106. Use Problem 105 to find (a) -1 282-98+19 (b) C-11 2s+3 1

{(8-1)2(6+3)J l(6+1)2(8+2)2J

Ans. (a) (3t - 2)et + 4e-3t, (b) t(e-t - e-2t)

107. Find .(- 11s3-4782+56s+41
(s - 2)3 (s + 2) J

Ans. (2t2 - t + 5)e2i + 6e-2t

108. Use Problem 105 to work (a) Problem 26, (b) Problem 44, (c) Problem 71, (d) Problem 73,
(e) Problem 76(b).

109. Can the method of Problem 105 be used to work Problems 79(a) and 79(b)? Explain.

110. Find 283-82-1 1

(8 +1)2(62+1)2J
using Problem 105. Compare with Problem 95.

111. Develop a Heaviside expansion formula which will work for the case of repeated quadratic factors.

112. Find 4s4 + 583 + 6s2 + 8s + 2 using the method developed in Problem 111.
(s - 1)(82 + 2s + 2)2

Ans. et + e-t {(3 - 2t) cost - 3 sin t}

THE BETA FUNCTION

113. Evaluate each of the following- (a) f 1

x312 (1 - x)2 dx, (b) f 4 x3(4 - x)-1/2 dx, (c) f y'/- y2 dy
0 0 0

Ans. (a) 16/315, (b) 4096/35, (c) 2a

1

114. Show that f 1- x2 dx = x14.
0

115. Evaluate each of the following:
a/2 r/2 n

(a) f toss o de, (b) f sin2 e cos4 a do, (c)
f 7r

e cos4 e do.
0 0 0

Ans. (a) 5x/32, (b) x/32, (c) 3x/128

116. Prove that

rr/2 n /2f sins' 9 do = f toss' o do =
o o

(a)
1.3.5... (p-1) rr

2.4.6 p 2

2-4-6 ... (p-1)
1.3.5 ... p

if p is an even positive integer,

if p is an odd positive integer.

°° xs'- t x
7117. Given that 1 + X dx sin p r , show that NP) 1'(1 - p) =sin px where 0 < p < I.

00

[Hint. Let x/(1 + x) = y.1

118. Use Problem 117 to show that ` y2 dy =
J0 1+y4 2.
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7r/211

119. Show that
fr/2

a de =

EVALUATION OF INTEGRALS

120. Show that

121. Evaluate dx. Ans. 7r/2

122. Show that
1

a
x cos x3 dx --.

0

7

3' r(1/3)
.

123. Prove that if 0<p<1, (a)
sin xdx

0

IT

2 1'(p) sin (pa/2)

f(b)
cos x

(b)
0

XP dx = 2 1'(p) cos (p7r/2)

124. Use the results in Problem 123 to verify the results of Problems 120, 121 and 122.

125. (a) Show that f x2 e-T2 dx converges.
0

(b) If t > 0, is . {f ' x2 e-tx2 dx} = f.
J {x2 e-U2) dx ?

0

(c) Can the method of Problem 37 be used to evaluate the integral in (a)? Explain.

126. Evaluate f J0(u) J, (t - u) du. Ans. J0(t) - cos t
0

MISCELLANEOUS PROBLEMS

3 1l127. Find C-t
X

is
1

+ 1}
Ans. e_t - et/2 (cos 2 t - sin

2
t) r

75

r,

128. Prove that (x - a)9 (b - x)4 dx = (b - a)P+0+i B(p + 1, q + 1) where p>-1, q>_, and b > a.

[Hint. Let x - a = (b - a)y.]

129. Evaluate (a) f 4 --- dx , (b)
J

J
(5 - x)(x - 1) dx. Ans. (a) 7r, (b) 2{I'(1/4)}2

2 (x - 2)(4 - x) t 3NF7r-

130. Find e-S(1 - e-S) Ans. {1 - cos (t - 1)} 7.1(t - 1) - {1 - cos (t - 2)} U(t - 2)
s(a2 + 1) }

l e-xvs e-x2/4t
131. Show that C-1

l Tt
.

Tvf2-

2

f.
sin x2 dx = -7-M.

0

ft
J0(u) sin (t - u) du = jt Jt (t).132. Prove that

0
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1-133. (a) Show that the function f (s)
e 2,rs

=
s

is zero for infinitely many complex values of 8. What

are these values? (b) Find the inverse Laplace transform of f (s).

Ans. (a) s = ±i, ±2i, ±3i, ... (b) F(t) 1 t > 27r or F(t) = u(t - 27r)0 O<t<2,r

134. Find -1}ln(s+ -VF,2
2s lJ

Ans. 1- Jo(t)
t

135. Show that J u(8 - U3)1/3 du =
27

136. Let F(t) = t2 at all values of t which are irrational, and F(t) = t at all values of t which are rational.
(a) Prove that {F(t)} = 2/33, s > 0. (b) Discuss the significance of the result in (a) from the view-
point of the uniqueness of inverse Laplace transforms.

137. Show how series methods can be used to evaluate (a) C-1 {1/($2 + 1)), (b) C-1 {ln (1 + 1/s)},
(c) 4-1 {tan-1(1/s)}.

138. Find .C-1 {e-4s-21 S }.

u sin tu139. Show that j ' 1 + u2
du

n

1Ans. -
r(t - 3)3

e-1/rt-3) 'U(t-3)

= 2 e-t, t > 0.

140. If F(t) = tt > 0 and G(t) = J t-1/2 0 < t < 1
10 t> 1

F(t) * G(t) =

show that

(a 0<t<1
a - 2tan-1 t> 11

,r+ l - ,r_St e-t/2 11(t/2)
141. Show that = ts+1+V J

142. Find LtC-1
8-1 jr

. Ans. t-1/2/vc + et erf f

a/2

143. Show that (a) I sin (t sin2 B) do = 2 sin (t/2) Jo(t/2)o
T/2

(b) cos (t cos2 e) do = cos (t/2) Jo(t/2).
o

144. Let .C-1 {f(s)} = F(t) have period T > 0. Prove that

.,C-1 { f(s)(1 - e-sT)} = F(t) if 0 < t < T and zero if t > T.

145. (a) Show that C-1 j T1} _
t2 t5 t8 tl'

2! 5! 8!
_

11! * , '

(b) Discuss the relationship of the result in (a) to that of Problem 127.
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146. Can Heaviside's expansion formula be applied to the function f (s) = 1/(s cosh 8)? Explain.

147. Prove that f J0(x2) dx = 1/4V .
0

148. Show that

149. Show that

159. Find 4-1

151. Show that

x-1 lS sins} t3 t5 t7t (3i)2
+

(5i)2
(7!)2 +

= 2{Jo(2eai14Vi) - J0(2e-,n/4Vt-)}

= 1 - t2 t4 t6(2i)2 + (4!)2 - (6t)2 + ...

Ans. t- 1/2/J - et erfc (,vFt )

`e-1{s+e-8}
[tt] (-1)n (t - n)'
71

n =O n1

where [t] denotes the greatest integer less than or equal to t.

77

152. Show that J0 r 2 )} = 1 - ti
3 + t2 3 -

t1 3 +



Chapter 3
Applications To

Differential Equations

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

The Laplace transform is useful in solving linear ordinary differential equations with
constant coefficients. For example, suppose we wish to solve the second order linear
differential equation

d2tY
+ a dY + RY = F(t) or Y" + aY' + QY = F(t) (1)

where a and ,8 are constants, subject to the initial or boundary conditions

Y(O) = A, Y'(0) = B .(2)

where A and B are given constants. On taking the Laplace transform of both sides of (1)
and using (2), we obtain an algebraic equation for determination of C (Y(t)) = y(s). The
required solution is then obtained by finding the inverse Laplace transform of y(s). The
method is easily extended to higher order differential equations. See Problems 1-8.

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

The Laplace transform can also be used in solving some ordinary differential equations
in which the coefficients are variable. A particular differential equation where the method
proves useful is one in which the terms have the form

tm y(n)(t)
(3)

the Laplace transform of which is
dmm ycn)_1 t 4

( ) ( )}
dsm

°C { )(

See Theorem 1-10, Page 4, and Theorem 1-12, Page 5.

For details of solution see Problems 9-11.

SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

The Laplace transform can be used to solve two or more simultaneous ordinary dif-
ferential equations. The procedure is essentially the same as that described above. See
Problems 12 and 13.

78
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APPLICATIONS TO MECHANICS

Suppose a mass m, attached to a flexible
spring fixed at 0, is free to move on a friction-
less plane PQ [see Fig. 3-1]. If X(t), or briefly
X, denotes the instantaneous displacement of
m at time t from the equilibrium or rest posi-
tion, there will be a restoring force acting on
m equal to -kX, where k is a constant depend-
ing on the spring, and called the spring con-
stant. This follows from Hooke's law which,
on the basis of experiment, states that the re-
storing force acting on a spring is proportional
to the stretch or extension of the spring from
the equilibrium position. According to New-
ton's law which states that the net force acting
on m is equal to the mass times the accelera-
tion, the equation of motion is

2X
m tt = -kX or mX" + kX = 0

79

(5)

If in addition, there is a damping force proportional to the instantaneous speed of m,
the equation of motion is

m -dtX = -kX - /3 dX or mX" + /IX' + kX = 0 (6)

where the proportionality constant /3 is called the damping constant.

A further modification takes place when some prescribed time-varying external force
f(t) also acts on m. In such case the equation of motion is

z

M dX = -kX - 8 dt + f(t) or mX" + /3X' + kx = f(t) (7)

By using Laplace transforms to solve equations (5), (6) or (7)- subject to various ap-
propriate initial conditions of physical interest, the displacement X(t) can be found. See
Problems 14, 15, 27 and 28.

APPLICATIONS TO ELECTRICAL CIRCUITS

A simple electrical circuit [Fig. 3-2] con-
sists of the following circuit elements con-
nected in series with a switch or key K:

1. a generator or battery, supplying an elec-
tromotive force or e.m.f. E (volts),

2. a resistor having resistance R (ohms),

3. an inductor having inductance L (henrys),

4. a capacitor having capacitance C (farads).

These circuit elements are represented symboli-
cally as in Fig. 3-2.

Equilibrium
position

(b)

Fig. 3-1

Fig. 3-2
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When the switch or key K is closed, so that the circuit is completed, a charge Q
(coulombs) will flow to the capacitor plates. The time rate of flow of charge, given by

dt, = I, is called the current and is measured in amperes when time t is measured in
seconds.

More complex electrical circuits, as shown for example in Fig. 3.3, can occur in
practice.

Fig. 3-3

An important problem is to determine the charges on the capacitors and currents as
functions of time. To do this we define the potential drop or voltage drop across a circuit
element.

(a) Voltage drop across a resistor

(b) Voltage drop across an inductor

(c) Voltage drop across a capacitor

(d) Voltage drop across a generator

2

- Ldt - Ldt2
Q
C

-Voltage rise = -E

The differential equations can then be found by using the following laws due to Kirchhoff.

Kirchhoff's Laws

1. The algebraic sum of the currents flowing toward any junction point [for example A
in Fig. 3-31 is equal to zero.

2. The algebraic sum of the potential drops, or voltage drops, around any closed loop
[such as ABDFGHA or ABDFQPNMA in Fig. 3-3] is equal to zero.

For the simple circuit of Fig. 3-2 application of these laws is particularly easy [the
first law is actually not necessary in this case]. We find that the equation for determina-
tion of Q is

z

L 2 +RdQ+Q = Edt2

By applying the laws to the circuit of Fig. 3-3, two simultaneous equations are obtained
[see Problem 17].
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Note the analogy of equation (8) with equation (7). It is at once apparent that mass m
corresponds to inductance L, displacement X corresponds to charge Q, damping factor p
to resistance R, spring constant k to reciprocal of capacitance 1/C, and force T to electro-
motive force E. Such analogies are often useful in practice.

APPLICATIONS TO BEAMS

Suppose that a beam whose ends are at
x = 0 and x = l is coincident with the x axis
[Fig. 3-4]. Suppose also that a vertical load, U

given by W(x) per unit length, acts trans- -
versely on the beam. Then the axis of the
beam has a transverse deflection Y(x) at
the point x which satisfies the differential
equation y

_d 4Y W(x)
dx' - EI 0<x<l (9)

Fig. 34

-x

=1

This transverse deflection is sometimes called the deflection curve or elastic curve. The
quantity EI is called the flexural rigidity of the beam and we shall assume it to be constant.
[Actually, E is Young's modulus of elasticity for the beam and I is the moment of inertia
of a cross section of the beam about the axis.] The quantities EI Y"(x) and EI Y"'(x)
are called respectively the bending moment and vertical shear at x. Note that the Y axis
is taken as positive downward'so that deflections are positive downward.

The boundary conditions associated with the differential equation (9) depend on the
manner in which the beam is supported. The following are most common.

1. Clamped, Built-In or Fixed End: Y = Y' = 0

2. Hinged or Simply-Supported End: Y = Y" = 0

3. Free End: Y" = Y"' = 0

PARTIAL DIFFERENTIAL EQUATIONS

The Laplace transform is also useful in solving various partial differential equations
subject to boundary conditions. Such problems are often referred to as boundary-value
problems. We consider a few such simple problems in this chapter [see Problems 22-26
and 31]. A more complete discussion of boundary-value problems is given in Chapter 8
where advantage can be taken of the complex inversion formula of Chapter 6.
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Solved Problems

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

1. Solve Y" + Y = t, Y(O) = 1, Y'(0) = -2.
Taking the Laplace transform of both sides of the differential equation and using the given

conditions, we have

.C {Y"} + .1 {Y} {t}, s22y - s Y(0) - Y'(0) + y = sS2

sty - s + 2 + y - 182

Then 1 s-2
s2(s2 + 1) + 82+ 1

1 1 s _ 2

s - s2 -+1 + 32 -+1 s2 + 1

1 8 3

81 + s2+1 s2+1

and y = C-1
I 1 s + 32--h 1 ..2 1 1 = t + cos t - 3 sin t

Check: Y = t + cos t - 3 sin t, Y' = 1 - sin t - 3 cos t, Y" = - cost + 3 sin t. Then Y" + Y = t,
Y(0) = 1, Y'(0) = -2 and the function obtained is the required solution.

For another method, using the convolution integral, see Problem 7 and let a = 1, F(t) = t.

2. Solve Y" - 3Y' + 2Y = 4e2t, Y(O) = -3, Y'(0) = 5.

We have .C {Y"} - 3 t {Y'} + 2.C {Y} = 4 .. {e2t}

{sty - 8 Y(0) - Y'(0)} - 3{sy - Y(0)} + 2y =

{sty + 3s - 5) - 3(sy + 3) + 2y =

(82 - 3s + 2)y + 3s - 14 =

4

s-2

4

s-2

4
s-2

= 4 + 14-3s
11 (s2-3s+2)(s-2) s2-3s+2

-382 + 20s - 24
(s -1)(s - 2)2

-7 + 4 + 4
8-1 s-2 (s-2)2

Thus Y 4 4
Y 1s1 + s2 + (s-2)2J = -let + 4e2t + 4te2t

which can be verified as the solution.
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3. Solve Y" + 2Y' + 5Y = e-t sin t, Y(O) = 0, Y'(0) = 1.

We have {Y"} + 2.C {Y'} + 5 {Y} = C {e t sin t}

{82y - s Y(0) - Y'(0)} + 2{sy - Y(0)} + 5y

{sty - s(0) - 1} + 2(sy - 0) + 5y =

(s2 + 2s + 5)y - 1 =

1

(s+1)2+1

1

s2+2s+2

1

32+2s+2

Y 82+2s+5 + (82+2s+2)(s2+2s+5)

s2+2s+3
(82 + 2s + 2)(s2 + 2s + 5)

Then [see Problem 28, Page 60]

1

s2+2s+2

s2+2s+3 1Y = e t (sin t + sin 2t)
(82 + 2s + 2)(82 + 2s + 5)J 3

4. Solve Y"' - 3Y" + 3Y' - Y = tee&, Y(O) = 1, Y'(0) = 0, Y"(0) = -2.

We have ,C {Y"'} - 3.4 {Y"} + 3 t {Y'} - C {Y} = i {t2 et}

{say - s2 Y(0) - s Y'(0) - Y"(0)) - 3{sty - s Y(0) - Y'(0)} + 3{sy - Y(0)} - y

Thus (s3 - 382 + 3s - 1)y - 32 + 3s - 1

s2-3s+1 2Y =
(8-1)3 + (8 - 1)6

82-2s+ 1-s + 2
(8-1)3 (S - 1)6

(s-1)2-(s-1)-1 2
(8-1)3

+
(8- 1)6

2
(8-1)3

1 1 1 + 2
W ::-l

_
(-1)-2

_
(s-1) 3 (s - 1)6

and
t2et

t5etY - et - tet -
2 r 60

83

5. Find the general solution of the differential equation in Problem 4.
In this case, the initial conditions are arbitrary. If we assume Y(0) = A, Y'(0) = B, Y"(0) = C,

we find as in Problem 4,

(s3y - As2 - Bs - C) - 3(s2y - As - B) + 3(sy - A) - y = 2(8-1)3

As2+(B-3A)s+3A-3B+C 2or y - (8-1)3 + (3-1)6
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Since A, B and C are arbitrary, so also is the polynomial in the numerator of the first term on the
right. We can thus write

Cl + c2 + c3 + 2
Y - (8- 1)3 (s-1)2 s-1 (s-1)6

and invert to find the required general solution
2

y -
lt

et + e2tet + c3et + 60t

c4t2 + cstet + c6et +
tset

5e60

where the ck's are arbitrary constants.
It should be noted that finding the general solution is easier than finding the particular solution

since we avoid the necessity of determining the constants in the partial fraction expansion.

6. Solve Y" + 9Y = cos 2t if Y(O) = 1, Y(7 /2) _ -1.

Since Y'(0) is not known, let Y'(0) = c. Then

and

Thus

7. Solve

..C {Y"} + 9-C {Y} _ C {cos 2t}

sty - s Y(0) - Y'(0) + 9y =

(82+9)y - 8 - c s

s2+4

s

72+-4

s+e 8
Y - s2+9 + (82+9)(82+4)

_ ss
+

C S

S2 + 9 s2 -+9 + 5(82 + 4) 5(82+9)

= 4/ s ' + c + 8

5 s2+9 s2+9 5(s2+4)

Y = 5 cos 3t + 3 sin 3t + cos 2t

To determine c, note that Y(7r/2) _ -1 so that -1 = -c/3 - 1/5 or

Y = 5 cos 3t + 4 sin 3t -f 5 cos 2t

Y" + a2Y = F(t), Y(O) = 1, Y'(0) = -2.

We have e {Y"} + a24 {Y} _ C {F(t)} = f(s)

82y

and so

- s Y(O) - Y'(0) + a2y = f(s)

sty - s + 2 + a2y = f (s)

U -
s-2 f(s)
82+a2 + 82+a2

c = 12/5. Then
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Then using the convolution theorem,

Y _ s-21 + {8?2}(8)

at + F(t) * 'in atcos at - 2 sin

a

a

cos at - 2 sign at +
a sin a(t - u) du

0

85

Note that in this case the actual Laplace transform of F(t) does not enter into the final solution.

8. Find the general solution of Y" - a2Y = F(t).

Let Y(O) = c1, Y'(0) = c2. Then taking the Laplace transform,

sty - scl - c2 - a2y =

or

Thus y

y = sci + c2 f(s)
s2-a2 + s2-a2

f(s)

we find

t
cl cosh at +

a
sinh at +

1

f F(u) sinh a(t - u) du
0

A cosh at + B sink at + a f F(u) sink a(t - u) du
0

which is the required general solution.

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

9. Solve tY" + Y' + 4tY = 0, Y(O) = 3, Y'(0) = 0.

We have C {tY"} + C {Y'} + . {4tY} = 0

or - ds {sty - s Y(0) - Y'(0)} + {sy - Y(0)} - 4
da

= 0

(S2+4) dy + sy = 0

Then
dy + s ds = 0
y s2+4

and integrating in y + I- In (s2 + 4) = cl or

Inverting, we find Y = cJo(2t)

To determine c note that Y(0) = cJo(0) = c = 3. Thus

Y = 3 Jo(2t)

C

y = s2 + 4
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10. Solve tY" + 2Y'+ tY = 0, Y(0+) = 1, Y(7r) = 0.

Let Y'(0+) = c. Then taking the Laplace transform of each term

- ds {s2y - s Y(0+) - Y'(0+)} + 2{sy - Y(0+)} - ds y = 0

or -s2y'-2sy+1+2sy-2-y' = 0

i.e., -(s2 + 1)y' - 1 = 0 or

82 e½32.

Integrating, y = - tan-1 8 + A

Since y - 0 as s - -, we must have A = r/2. Thus

2 - tan-18 = tan-'
Y

Then by the Example following Theorem 1-13 on Page 5,

Y = .e-1 I tan-I 11 =sJ

This satisfies Y(7r) = 0 and is the required solution.

y, _ -1
$2+1

sin t

t

11. Solve Y" - tY' + Y = 1, Y(0) = 1, Y'(0) = 2.

We have , {Y"} - .e {tY'} + . {Y} = .C {1} = 1
S

or

Then

or

An integrating factor is

82y - 8 Y(0) - Y'(0) +
ds

(By - Y(0)) + y =
s

s2y-s-2+sy'+y+y = 1

By' + (s2+2)y = s + 2 + a

ds + s+$l
y = 1 + a +

of (a+$)ds=
e'F2S2+2Jns=

or integrating, y

Then

d (1+s+- )82 61/2 ,z
82

j2 e -1h sY f(1+s+81)92e.A,2ds= 1

f= ' ssJ (82+2s+1)e' s2 ds

1
', s' [8e' s4 + 2e 1 s2 + c[

[CHAP. 3

1 + s2 +
4

e-ys2
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To determine c, note that by series expansion,

y = 8 + 82 + 32 (1 - 182 + 184 - ... )

s + 0

82
2 - e(- - *82 + ... )

Then since {sk} = 0, k = 0, 1, 2, ..., we obtain on inverting,

Y = 1 + (c + 2) t

But Y'(0) = 2, so that c = 0 and we have the required solution

Y = 1 + 2t

SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS
dX = 2X - 3Y

12. Solve dY subject to X(O) = 8, Y(O) = 3.
dt = Y - 2X

Taking the Laplace transform, we have, if e {X} = x, C {Y} = y,

sx - 8 = 2x - 3y or (1) (s - 2)x + 3y = 8

sy - 3 = y - 2x or (2) 2x + (s - 1)y = 3

Solving (1) and (2) simultaneously,

8 3

3 8-1

U = s-2 3
2 8-1

8s-17
S2-38-4 -

3s - 22
s2-3s-4

8s-17
(s + 1)(s - 4)

_ 5 3
s+1 + s-4

38 - 22 _
(8+1)(8-4)

Then X = C-1 {x} = 5e-t + 3e4t

Y = .e-1 {y} = 5e-t - 2e4t

5 _ 2
s-I-1 s-4

87

13. Solve J X" + Y' + 3X = 15e-t subject to X(O) = 35, X'(0) = -48, Y(O) = 27,1Y"-4X'+3Y = 15sin2t
Y'(0) = -55.

Taking the Laplace transform, we have

82x - s(35) - (-48) + sy - 27 + 3x =
s

1F

82y - s(27) - (-55) - 4{sx - 35} + 3y = 30

82 t 4
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or
15(82 + 3)x + 8y = 35s - 21 + 8+1

30-48x + (82 + 3)y = 278 - 195 +

Solving (1) and (2) simultaneously,

35s-21+8+15
1

s

278-195+82+4 82+3

82+3 s

-48 82+3

82+4

3583 - 4882 + 300s - 63 15(82+3) _ 308
(82 + 1)(82 + 9) + (8 + 1)(82 + 1)(82 + 9) (82 + 1)(s2 + 4)(82 :F-9)

308 _ 45 3 2s

82+1 82+9 + S+1 + s2+4

82+3 35s - 21 +
15

8+1

30-4s 27s-195+ 82+4
1! =

s2+3 8

-4s S2+3

270 - 5582 - 3s - 585 + 608 + 30(82+3)

(82 + 1) (82 + 9) (8+1)(82+1)(82+9) (82 + 1)(82 + 4)(s2 + 9)

308 _ 60 _ 3 2

82+9 82+1 R+1 + 82+4

Then X = .e'1 {x} = 30 cos t - 15 sin 3t + 3e-t + 2 cos 2t

37' {y} = 30 cos 3t - 60 sin t - 3e-t + sin 2t

(1)

(2)

APPLICATIONS TO MECHANICS

14. A particle P of mass 2 grams moves on the X axis and is attracted toward origin 0
with a force numerically equal to 8X. If it is initially at rest at X = 10, find its
position at any subsequent time assuming (a) no other forces act, (b) a damping force
numerically equal to 8 times the instantaneous velocity acts.
(a) Choose the positive direction to the right [see xFig. 3-5]. When X > 0, the net force is to the

left (i.e. is negative) and must be given by -8X. X
When X < 0 the net force is to the right (i.e. is 0 P
positive) and must be given by -8X. Hence in
either case the net force is -8X. Then by New- Fig. 3-5
ton's law,

(Mass) (Acceleration) = Net force

2
d2X = -8X

APPLICATIONS TO DIFFERENTIAL EQUATIONS [CHAP. 3

or (1)
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The initial conditions are: (2) X(0) = 10, (3) X'(0) = 0.

Taking the Laplace transform of (1) and using conditions (2) and (3), we have, if x = . (X),

10s
s2x - 10s + 4x = 0 or x =

Then X = .C-1 {x} = 10 cos2t

52+4

The graph of the motion is shown in Fig. 3-6 below. The amplitude [maximum displacement
from O] is 10. The period [time for a complete cycle] is wr. The frequency [number of cycles per
second] is Mr.

d2X
2 dt2

Fig. 3-6 Fig. 3-7

(b) When X > 0 and dX/dt > 0, P is on the right of 0 and moving to the right. Then the damping
force is to the left (i.e. is negative) and must be given by -8 dX/dt. Similarly when X < 0
and dX/dt < 0, P is on the left and moving to the left so the damping force is to the right
(i.e. is positive) and must also be given by -8 dX/dt. The damping force is also -8 dX/dt for
the cases X > 0, dX/dt < 0 and X < 0, dX/dt > 0. Then

(Mass) (Acceleration)

or

X

10

t

Net force

-8X - 8 dX

2

dX+4dX+4X = 0

with initial conditions (5) X(0) = 10, (6) X'(0) = 0.

Taking the Laplace transform of (4) and using conditions (5) and (6), we

s2x - 10s + 4(sx - 10) + 4x - 0

or x =

Then X -C-1 (x)

10s+40
s2+4s+4

have

10e+40 10(s+2)+20
°e 1 (s + 2)2 } `e (s+2)2 }

10.C-1{s1 +
20`C-'{1

ll (s+2)2

= 10e-2t + 20te-2t = 10e-2t (1 + 2t)

(4)

The graph of X vs. t is shown in Fig. 3-7 above. Note that the motion is non-oscillatory.
The particle approaches 0 but never reaches it.
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15. A particle of mass m moves along the X axis and is attracted toward origin 0 with a
force numerically equal to kx, k > 0. A damping force given by /3 dX/dt, /3 > 0, also
acts. Discuss the motion, treating all cases, assuming that X(0) = Xo, X'(0) = Vo.

The equation of motion is
d2X dX

m dt2 = -kX - dt

2
or d

X + 2a dt + W2X = 0

where a = ft/2m, W2 = k/m.

The Laplace transform of (1), using the initial conditions, yields

82x - XOS - Vo + 2a(sx - X0) + W2x = 0

or x =

Case 1, W2 - a2 > 0.

In this case,

X

sXo + (Vo + 2aXo)
82 + 2a8 -- W2

(s + a)X0 Vo+aXo
(s + a)2 + W2 - a2 (8 + a)2 + W2 - a2

(Vo + aXo)
Xo a-at COs w2 - a2 t + e-at sin w2 - a2 t

w2 - a2

(1)

The motion is called damped oscillatory [see Fig. 3-8 below). The particle oscillates about 0, the
magnitude of each oscillation becoming smaller with each swing. The period of the oscillations is
given by 2rr/ w -- a2, and the frequency is Vw2 - a2/2,r. The quantity W/2,r (corresponding to a = 0,
i.e. no damping) is called the natural frequency.

Case 2, W2 - a2 = 0.

In this case,

x = .C-1 {x} _ _1 Xo Vo + aXo
8+a + (s+a)2

Xoe-at + (Vo+aXo)te-at

Here the particle does not oscillate indefinitely about 0. Instead, it approaches 0 gradually but
never reaches it. The motion is called critically damped motion since any decrease in the damping
constant a would produce oscillations [see Fig. 3-9 below].

Case 3, w2 - a2 < 0.

In this case,

X = -C-1 {x}
_ 1 J (s + a)Xo Vo + aXo

(8 + a)2 - (a2 - w2) + ?8_+_8 + a)2 - (a2 - w

V0 + aXo
Xo cosh a2 - w2 t + - w2 sinh a2 - W2 t

a2

The motion is called overdamped motion and is non-oscillatory. The graph is similar to that of
critically damped motion [see Fig. 3-10 belowl.
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X

Damped oscillatory motion Critically damped motion
Fig. 3-8

APPLICATIONS TO ELECTRICAL CIRCUITS

Fig. 3-9

16. An inductor of 2 henrys, a resistor of
16 ohms and a capacitor of .02 farads
are connected in series with an e.m.f. of 2h
E volts. At t = 0 the charge on the
capacitor and current in the circuit are
zero. Find the charge and current at
any time t > 0 if (a) E = 300 (volts),
(b) E = 100 sin 3t (volts).

16 ohms

Fig. 3-11

.02 fd

Let Q and I be the instantaneous charge and current respectively at time t. By Kirchhoff's laws,
we have

2 dt + 161 + 02 = E
or since I = dQ/dt,

2 2dt2Q + 16 d? + 50Q = E
with the initial conditions Q(0) = 0, 1(0) = Q'(0) = 0.

(a) If E = 300, then (2) becomes
d2dt + 8 Q + 25Q = 150

Then taking the Laplace transform, we find

or

APPLICATIONS TO DIFFERENTIAL EQUATIONS

{s2q - s Q(0) - Q'(0)} + 8{sq - Q(0)} + 25q

q

x

91

t

Overdamped motion
Fig. 3-10

150

s

150 6 _ 6s+48
s(s2+8s+25) 8 s2+8s+25

6 - 6(s+4)+24
8 (s+4)2 + 9

6 _ 6(s+4) 24_
8 (s+4)2+9 (a+4)2+9

(1)

(2)

Then Q = 6 - 6e-4t cos 3t - 8e -4t sin 3t

= 50e-41 sin 3tI = dt
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(b) If E = 100 sin 3t, then (2) becomes

dtQ + 8d2 + 25Q = 50 sin 3t

Taking the Laplace transform, we find

(s2 + 8s + 25)q =

and q
150

(82 + 9)(s2 + 8s + 25)

150
s2+9

75 1 75 s 75 1 75 s+4
26 82 + 9

_
52 ;-2-+ 9 + 26T,-+4)2 + 9 + 52 (s+4)2+ 9

Thus = 25 sin 3t - 75 sin 3t + 25 e-4t sin 3t + 75
Q 6-4t52 26

52
a-4t cos 3t

25
2

(2 sin 3t - 3 cos 3t) + 52 a-4t (3' cos 3t + 2 sin 3t)
5

and I = dQ = 75 (2 cos 3t + 3 sin 3t) - 25 6-4t (17 sin 3t + 6 cos 3t)dt 52 52

[CHAP. 3

For large t, those terms of Q or I which involve a-4t are negligible and these are called the
transient terms or transient part of the solution. The other terms are called the steady-state
terms or steady-state part of the solution.

17. Given the electric network of Fig. 3-12,
determine the currents in the various
branches if the initial currents are zero.

Kirchhoff's second law [see Page 80] states
that the algebraic sum of the voltage or poten-
tial drops around a closed loop is zero. Let us
traverse loops KLMNK and JKNPJ in a clock-
wise fashion as shown. In traversing these
loops we shall consider voltage drops as positive
when we travel against the current. A voltage
rise is considered as the negative of a voltage
drop.

Fig. 3-12

Let I be the current in NPJK. This current divides at the junction point K into Ii and I2 so that
I = 11 + 12. This is equivalent to Kirchhoff's first law [see Page 80].

Applying Kirchhoff's second law to loops KLMNK and JKNPJ, we then have respectively

-1011
d11

+ 4
d12

+ 2012 =2
dt

dt 0

301 - 110 + 2 dtl + 1011 = }0

or

d11 d12
-511 -

dt
+ 2 Tt- 1012 = 0

d11 }
dt

+ 201, + 1512 = 55

subject to the conditions I1(0) = 12(0) = 0.
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Taking the Laplace transform of the system and using the initial conditions, we find

-5i1 - {si, - 11(0)} + 2{sit - 12(0)} + 10i2 = 0

{8i1 - Il (0)} + 20i1 + 15i2 = 55/s

or (s + 5)il - (2s + 10)i2 = 0

(s + 20)i1 + 15i2 = 55/s

From the first equation, it = 2i2, so that the second equation yields

(2s + 55)i2 =
55

or
8

Then

APPLICATIONS TO BEAMS

i2
55 _ 1_ 2

s(2s + 55) s 2s+55

I2 = 1 - e-55t/2

Il = 212 = 2 - 2e-55t/2

I = Il + I2 = 3 - 3e-55t/2

18. A beam which is hinged at its ends x = 0
and x = 1 [see Fig. 3-13] carries a uni-
form load Wo per unit length. Find the
deflection at any point.

The differential equation and boundary con-
ditions are

d4Y
dx4

WO
- EI 0<x<l (1)

Y(0) = 0, Y"(0) = 0, Y(l) = 0, Y"(l) = 0 (2)

Fig. 3-13

Taking Laplace transforms of both sides of (1), we have, if y = y(s) = 4 {Y(x)},

soy - 83 Y(0) - 82 Y'(0) - s Y"(0) - Y",(0) =
Wo

EIs

Using the first two conditions in (2) and the unknown conditions Y'(0) = c1r Y"'(0) = C2, we find

Cl C2 Wo
?! = s2 + a4 + EIss

Then inverting,
C2X3 Wo x4 02x3 Wo X4

Y(x) = c1x + 3 ! + EI 4 ! Clx + 6 + 24EI

From the last two conditions in (2), we find

_ Wois _ Wol
Cl 24EI ' C2 = - 2EI

Thus the required deflection is

Y(x) = 24EI (lax - 21x3 + x4) = 24EI x (Z - x)(l2 + lx - x2)

(3)
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19. A cantilever beam [Fig. 3-14] is clamped
at the end x 0 and is free at the end
x = 1. It carries a load per unit length
given by

W(x) = (Wo O<x<l/2
0 l/2 < x < l

Find the deflection.
. The differential equation and boundary con-

ditions are
d4Y _ W (X)
dx4 - EI O<x<l (1)

Y(O) = 0, Y'(O) = 0, Y"(l) = 0, Y,.,(1) = 0 (2)

In order to apply Laplace transforms, we extend the definition of W(x) as follows:

W(x)' = Wo O < x < l/2

fo x > l/2

This can be written- in terms of Heaviside's unit function as

W(x) = Wo {'u(x) - 'u(x - l/2)}

Taking Laplace transforms of (1), we have, if y = y(s) _ . {Y(x)},

84y - 83 Y(O) - 82 Y'(0) - 8 Y"(0) - Yir.(0) = WO 1 - e-s112
EI s

From the first two of conditions (2) and the unknown conditions Y"(0) = ell Y"'(0) = c2, we find

y = cl
+

c2
+

Wp
{1 - -s112)

83 84 EIss

Inverting, we find

Y(x) _
clx2

2!

+ 02x3 + Wo X4 - Wo (x - 1/2)4 'u(x - 1/2)
31 EI 4! EI 4!

This is equivalent to

Y(x)

1 Wo
+ 6 02x3 + 24EI x4

Fig. 3-14

0<x<1/2

2

2x + 4 02x3 + 24EI x4 24EI (x - 1/2)4 x > 1/2

We now use the conditions Y"(l) = 0, Y"'(l) 0 to find

_ Wo 12 _ Wo l
cl 8EI ' c2 2EI

Thus the required deflection is

=
Wo 12 Wo 1 Wo Wo

- 1/2)Y(x)
16E1

x2 - i-2-E-1 x3 + 24EI x4 24EI (x - 1/2)4
V.

0 <. x < 1/2

16EI x2 12EI + 24EI x4 24EI (x - 112)4 1/2 < x < l

Wo12 Wol Wo

16EI x2 12EI x3 + 24EI x4

Wol2 Wol Wo Wo

[CHAP. 3

x

(d)
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20. A beam. has a concentrated load Po acting at the - point x = a. Show that we can
represent this loading by W(x) Po S(x -a) where S is the Dirac delta function or
impulse function.

Consider a uniform loading Wo per unit
length over the portion of the beam between - - --1
a and a+ 6 [see Fig. 3-15]. Then the total load-
ing on this portion is a a + E

Wo[a.+E-a] = Woe

Since this total loading is to equal Po, we must
have

W(x) = Pole a < x < a + e
to otherwise

But we have already agreed to represent this in the limit as E --> 0 by

W(x) = P0S(x-a)

Thus the required result is demonstrated.

21. A beam has its ends clamped at x = 0 and
x = l [see Fig. 3-16]. A concentrated load
Po acts vertically downward at the point
x = 1/3. Find the resulting deflection.

By Problem 20, the concentrated load at
x = 1/3 can be represented by Po S(x - 1/3) where
8 is the Dirac delta function or impulse func-
tion. Then the differential equation for the
deflection. and the associated boundary condi-
tions are given,by

d4y-
EI S(x - 1/3) (1)

Y(O) = 0, Y'(0) = 0, Y(l) = 0, Y'(l) = 0 (2)

Taking Laplace transforms, we have, if y = .4 {Y(x)},

soy - 83 Y(0) - 82 Y'(0) - s Y"(0) - Y,.,(0)

Fig. 3-15

Fig. 3-16

P0
EI c-uis

Using the first two conditions in (2) and calling Y"(0) = el, Y"'(0) = c2, we find

y =

Inverting, we obtain

or equivalently,

Y(x) =

Y(x) =

From the last two conditions

C1 c2 PO a-1 13

S3 + g4 + EI 34

clx2 + C2X3 + Po (x -1/3)3 'U(x - 1/3)
3! EI 3!

Ic1x2 + .02x3 0 < x < 1/3

l.Clx2 +
*C2x3

in (2), we find

P
+ (x - l/3)3 1/3 < x < 1E

(3)

(4)

(5)

4P01 -20P0'
al 27EI ' c2 27EI
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Then the required deflection is
2P0 1x2 10Po x3 Po

Y(x) 27EI

or

2P0 x2(31- 5x)
81EI

2P0 x2(31

81EI

0 < x < 1/3

- 5x) P0
+ 6EI (x - 1/3)3 1/3 < x < Z

Y(x) =

PARTIAL DIFFERENTIAL EQUATIONS

22. Given the function U(x, t) defined for a < x b, t > 0. Find

(a) e f aUl = (b) I {aU}
1 at at ax

assuming suitable restrictions on U = U(x, t).

(a) Integrating by parts, we have

500 ast O' dt

f w
e-st au dt = lim f P e-st aU dta 7t

P"°° 0
0

lim { e-8t U(x, t)
P.wco l

P P
+ af0 e-8t U(x, t) dt}

0

af "
e-8t U(x, t) dt - U(x, 0)

0

= s u(x, s) - U(x, 0) = s u - U(x, 0)

where u = u(x, s) _ J {U(x, t)}.

We have assumed that U(x, t) satisfies the restrictions of Theorem 1-1, Page 2, when regarded
as a function of t.

(b) We have, using Leibnitz's rule for differentiating under the integral sign,

f CO

e-8t au dt =
0

du-d f e-$t U dt = dx
0

23. Referring to Problem 22, show that
2

(a) l; at2 I = s2 u(x, s) - 8 U(x, 0) - Ut (x, 0)

n
2

(b) °` t axe } dx2

where Ut (x, 0) = au
at

t=0

and u = u(x, s) = C (U(x, t) ).

Let V = aU/at. Then as in part (a) of Problem 22, we have

41at2ate

81E1 + 6EI (x - 1/3)3'u(x - 1/3)

s.I {V} - V(x, 0)

8 [8.1 { U} - U(x, 0)] - Ut (x, 0)

82U - s U(x, 0) - Ut (x, 0)

Note the similarity of the results of this problem and part (a) of Problem 22 with Theorems 1-6
and 1-9, Page 4. Extensions are easily made.
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24. Find the solution of

au = 2 au
+ U, U(x,O) = 6e-

which is bounded for x > 0, t > 0.

97

Taking the Laplace transform of the given partial differential equation with respect to t and
using Problem 22, we find

du
dx

= 2{su - U(x, 0)} + u

or
du - (2s + 1)u = -12e-3x

dx (1)

from the given boundary condition. Note that the Laplace transformation has transformed the partial
differential equation into an ordinary differential equation (1).

To solve (1) multiply both sides by the integrating factor
ef - (2s + 1) dx = e-(ss+l)a Then (1)

can be written

d
dx

{u e-(2s+1)x} = -12 e-(2s+4)x

Integration yields

u e-(2s+1)x = 6

s+2
e-(2s+4)x + e or u = 6

s+2 e-3x + c e(2s+1)x

Now since U(x, t) must be bounded as x - , we must have u(x, s) also bounded as x - eQ and it
follows that we must choose c = 0. Then

6 -
=U

_
s+2e sx

and so, on taking the inverse, we find

U(x, t) = 6e-2t-3x

This is easily checked as the required solution.

2

25. Solve
aU

= ax , U(x, 0) = 3 sin 27rx, U(0, t) = 0, U(1, t) = 0 where 0 < x < 1,
t > 0.

Taking the Laplace transform of the partial differential equation using Problems 22 and 23, we find

2 d2Usu - U(x, 0) = dx or dx2 - BU = - 3 sin 27x

where u = u(x, s) = C { U(x, t)}. The general solution of (1) is

u = cl ex + c2 e-'rx +
s +4 sin 2,rx

Taking the Laplace transform of those boundary conditions which involve t, we have

(1)

(2)

.C {U(0, t)} = u(0, s) = 0 and .C {U(1, t)} = u(1, s) = 0 (3)
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Using the first condition [u(0, s) = 01 of (3) in (2), we have

c1 + c2 = 0

Using the second condition [u(1, s) = 0] of (3) in (2), we have

C1 6'1"' + c2e-`r = 0

From (4) and (5) we find c1 = 0, c2 = 0 and so (2) becomes

u = 3
s

sin 2rx
+ 4r2

from which we obtain on inversion

U(x, t) = 3 e-4r2t sin 2rx

(4)

(5)

(6)

(7)

This problem has an interesting physical interpretation. If we consider a solid bounded by the
infinite plane faces x = 0 and x = 1, the equation

BU a2U
at

_
- k

axe

is the equation for heat conduction in this solid where U = U(x, t) is the temperature at any plane
face x at any time t and k is a constant called the diffusivity, which depends on the material of the
solid. The boundary conditions U(0, t) = 0 and U (1, t) = 0 indicate that the temperatures at x = 0
and x = 1 are kept at temperature zero, while U(x, 0) = 3 sin 2rx represents the initial temperature
everywhere in 0 < x < 1. The result (7) then is the temperature everywhere in the solid at time t > 0.
Further applications are considered in Chapter 8.

26. Find the bounded solution of - _axae eU

'
x > 0, t > 0 such that U(0, t) = 1, U(x, 0) = 0.

at

Taking the Laplace transform of the partial differential equation and the condition U(0, t) = 1,
we find respectively

2 2

su - U(x, 0) = dx2 or dx2 - su = 0 (1)

and u(0, s) = s (2)

From (1), u = u(x, s) = cie'x + c2e_ fix. Since U(x, t) must be bounded as x -+ °, u(x, s) =
,.C {U(x, t)} must also be bounded as x- co. Then we must have cl = 0, assuming V-s > 0, so that

u(x, s) = c2 e- 3I-x

From (2) and (3) we find c2 = 1/s, so that
e- V_Ix

u(x,s) _

Thus using Problem 43, Page 67, we find

s

x
U(x, t) = erfc -) =

2

2V t x/c2%rt>
e-v2 dv

(3)

Physically, this represents the temperature at any point of a semi-infinite solid x > 0 whose face
x = 0 is kept at unit temperature and whose initial temperature is zero [see Problem 25].
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MISCELLANEOUS PROBLEMS

27. Suppose that in Problem 14, Page 88, an external force J'(t) acts on the particle but
there is no damping force. (a) Find the position of the particle at any time if
T, (t) = Fo cos wt. (b) Discuss the physical significance of your results.

(a) If the external force J '(t) is taken into account, the equation of motion becomes

2 dtX = -8X + 7(t)

or 2X" + 8X = T(t)

As before, the initial conditions are

X(0) = 10, X'(0) = 0

If 7(t) = Fo cos wt, (2) becomes

2X" + 8X = Fo cos wt

Taking Laplace transforms and using conditions (3), we find, if x = . {X},

2{sex - s(10) - 0) + 8x

Then if 2 # 4,

F0 s

82+w2

lOs (Fo/2)s
x

_
82 + 4 + (32 + 4)(82 + w2)

JOs F0 -[ s s l
or x = s2+4 + 2(w2-4) ls2+4 - s2+w2 f

and so X .C-1 {x} = 10 cos 2t + 2(wF0 4) (cos2t - coswt)

If 02=4, then (5) becomes

_ 1O8 (Fo/2)s
x 82 F4 + (82+4)2

and so using Problem 13, Page 53,

X = fo-P-1 {x} = 10 cos 2t + t sin 2t

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(b) If w2 = 4 or w = 2, i.e. if the frequency of the applied external force is equal to the natural
frequency of the system, it is seen from (9) that the oscillations about the equilibrium position
increase indefinitely. This phenomenon is called resonance and the frequency corresponding to
w = 2 is called the resonant frequency. If in such case the particle is attached to a spring, the
spring will break.

28. Work Problem 27 if (a) f (t) = Fo `u(t - a), (b) f (t) = Fo 8(t).

(a) In this case the equation of motion is [equation (2) of Problem 27]

2X" + SX = Fo'u(t - a)

where X(0) = 10, X'(0) = 0. Then taking Laplace transforms, we find

1'0e-as

2(s2x - JOs) + 8x =
s
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and

Hence X =

l Os

+
Foe - as

82 + 4 2s(s2 + 4)

_ 10s Foe-as J 1 _ S

s2+4 + 8 2+4

10 cos 2t + .F0 (1 - cos 2(t - a)) if t > a
lO cos 2t if t < a

Thus the displacement of the particle is the same as in Problem 27 until the time t = a, after
which it changes.

(b) In this case the equation of motion is

2X" + 8X = F O S (t), X(0) = 10, X'(0) = 0

Then taking the Laplace transform, we find

2(82x - lOs) + 8x = F0

or x = 10s FO

S2+4 + 2(82+4)

Thus X = 10 cos 2t + IF0 sin 2t (1)

Physically, applying the external force F0 S(t) is equivalent to applying a very large force
for a very short time and applying no force at all thereafter. The effect is to produce a displace-
ment of larger amplitude than that produced in Problem 14. This is seen by writing (1) in the form

where cos 0 = 10

100 +F 02 /16

sin 0 =

or tan 0 = FO/40, so that the amplitude is 100 + F02/16.

FO/4

100 +F 0/16

29. Let Y = Yl (t) be a solution of the equation

Y"(t) + P(t) Y'(t) + Q(t) Y(t) = 0

Find the general solution of Y"(t) + P(t) Y'(t) + Q(t) Y(t) = R(t).

The differential equation whose general solution is sought is given by

Y" + PY' + QY = R

Since Y = Y1 is a solution of this equation with the right hand side equal to zero, we have

Yi + PYi + QY1 = 0

Multiplying equation (1) by Y1, equation (2) by Y, and subtracting, we find

Yl Y" - YY'j' + P(Y1 Y' - YYi) = RYl

X = 100+F26/16 cos(2t-¢) (2)

(1)

(2)

(3)

which can be written
d (Y Y'-YY + P(YY'-YY = RYdt 1 1) i ) i (4)
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An integrating factor of this equation is
of P dt

Multiplying (4) by this factor, it can be written as

d jefPdt(YtY'-YYi) = RYlefPdt
'at

ef P dt(Yi Y' - YYi) = f RY1 of P dt
dt -I- ci

or Y1 Y' - YY' = e_ f Pdt f RY1 ef P + cl a- fPdt

where cl is a constant of integration.

Dividing both sides of (7) by Y', it can be written as

d Pdt f Pdt-
2dt

(Y)
= e 2

RYl of Pdt dt + 1 e
Y1 Y1

Integrating both sides of (8) and multiplying by Y1, we find, if 02 is a constant integration,

Pdt - Pdt
Y = c1Y1 (a y2 dt + c2Y1 + Y1 f Yi f RYl of Pdtdt I dt

This is the required general solution. For another method, see Problem 103.

30. Find the general solution of (a) tY" + 2Y' + tY = 0, (b) tY" + 2Y' + tY = m t.
(a) According to Problem 10, a particular solution of the given differential equation is

Y1(t) =
sin t

t

Since the given differential equation can be written in the form (1) of Problem 29 with

P=2/t, Q=1, R=0
we see from equation (9) of Problem 29 that the general solution is

Y = e l
t f f'21t'dt

dt + c2 sin te
1 t J sing t/t2 2 t

Cl
in t (' csc2 t dt + c2 sit t

sin t sin t Acost +Bsintcl t (- cot t) + c2 t = t

where we have written c1 = -A, c2 = B as the arbitrary constants.

(b) In this case we use equation (9) of Problem 29 with

P = 2/t, Q = 1, R = (csc t)/t
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(5)

(6)

(7)

(8)

(9)

and we find

Y = Acost+Bsint - cost + sin tIn sin t
t t



102 APPLICATIONS TO DIFFERENTIAL EQUATIONS

31. Solve the partial differential equation
2 a2

at2 - 4 ax2 + Y 16x + 20 sin x

[CHAP. 3

subject to the conditions

Y(0, t) = 0, Y(7r, t) = 167r, Yt (x, 0) = 0, Y(x, 0) = 16x + 12 sin 2x - 8 sin 3x

Taking Laplace transforms, we find

s2y - 8 Y(x, 0) - Yt (x, 0) - 4 dx2 + y = 18x + 20 sin x
s

or, on using the given conditions,

d2y - 1 -4(82 + 1)x 5 sin x
dx2 4

(s2 + 1)y = 8 -
8

- 3s sin 2x + 2a sin 3x

Y(0' s) = 0, y(7F, 8) =
167,

s

A particular solution of (2) has the form

yp = ax + b sin x + c sin 2x + d sin 3x

Then substituting and equating coefficients of like terms, we find the particular solution

(1)

(2)

(3)

(4)

= 16x
+

20 sin x 12s sin 2x _ 8s sin 3x
(5)yp

s S(82+5) + 82+17 S2+37

The general solution of the equation (2) with right hand side replaced by zero [i.e. the complemen-
tary solution is

yc

Thus the general solution of (2) is

Using the conditions (3) in (7), we find

Cl + C2 = 0,

from which cl = c2 = 0. Thus

ce-% :+ce"282+i:2+1
1 2

Y = Yp+yc

c, a- 12+11r + c2 elfz s r = 0

16x
+

20 sin x 12s sin 2x 8s sin 3x
y - s S(82+5) + S2+17 82 + 37

Then taking the inverse Laplace transform, we find the required solution

Y(x, t) = 16x + 4 sin x (1 - cos V t) + 12 sin 2x cos 17 t - 8 sin 3x cos 37 t

Supplementary Problems

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Solve each of the following by using Laplace transforms and check solutions.

32. Y"(t) + 4Y(t) = 9t, Y(0) = 0, Y'(0) = 7. Ans. Y(t) = 3t + 2 sin 2t

(6)

(7)

33. Y"(t) - 3Y'(t) + 2Y(t) = 4t + 12e-t, Y(0) = 6, Y'(0) -- -1.
Ans. Y(t) = 3et - 2e2t + 2t + 3 + 2e-t
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34. Y"(t) - 4Y'(t) + 5Y(t) = 125t2, Y(0) = Y'(0) = 0.
Ans. Y(t) = 25t2 + 40t + 22 + 2e2t (2 sin t - 11 cos t)

35. Y"(t) + Y(t) = 8 cos t, Y(0) = 1, Y'(0) = -1.
Ans. Y(t) = cos t - 4 sin t + 4t cos t

36. Y'"(t) - Y(t) = et, Y(0) = 0, Y'(0) = 0, Y"(0) = 0.
NF3Ans. Y(t) _ jtet + i1 e`%t {9 cos

2
t + b2 sin 2 t - let

37. Y3°(t) + 2Y"(t) + Y(t) = sin t, Y(0) = Y'(0) = Y"(0) = Y"'(0) = 0.
Ans. Y(t) = 4{(3 - t2) sin t - 3t cos t}
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38. Find the general solution of the differential equations of.
(a) Problem 2, Page 82; (b) Problem 3, Page 83; (c) Problem 6, Page 84.
Ans. (a) Y = cl et + c2 e2t + 4te2t (c) Y = ci sin 3t + c2 cos 3t + * cos 2t

(b) Y = e-t (ci sin 2t + c2 cos 2t) + se-t sin t

39. Solve Y"(t) + 9Y(t) = 18t if Y(0) = 0, Y(ir/2) = 0. Ans. Y(t) = 2t + 7 sin 3t

40. Solve Yi°(t) - 16Y(t) = 30 sin t if Y(0) = 0, Y'(0) = 2, Y"(ir) = 0, Y"(r) _ -18.
Ana. Y = 2(sin 2t - sin t)

41. Solve Y" - 4Y' + 3Y = F(t) if Y(0) = 1, Y'(0) = 0.
t

Ans. Y = let - lest + if (eau - eu) F(t - u) du
0

42. Solve the differential equation
Y" + 4Y = F(t), Y(O) = 0, Y'(0) = 1

where F(t) _ fo1 0 < t< 1
t>1

Ana. Y(t) = 2 sin 2t + 4(cos (2t - 2) - cos 2t) for t > 1
and Y(t) sin 2t + 4(1 - cos 2t) for t < 1

43. Solve Problem 42 if: (a) F(t) = V(t - 2), [Heaviside's unit step function]; (b) F(t) = 8(t), [Dirac
delta function]; (c) F(t) = 8(t - 2).
Ana. (a) Y(t) = 4 sin 2t if t < 2,

a
sin 2t + q,{1 - cos (2t - 4)} if t > 2

(b) Y(t) = sin 2t, t > 0
(c) Y(t) = 4 sin 2t if t < 2, J(sin 2t + sin (2t - 4))2 if t > 2

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

Solve each of the following by, using Laplace transforms and check solutions.

44. Y" + tY' - Y = 0, Y(0) = 0, Y'(0) = 1. Ana. Y = t

45. tY" + (1- 2t)Y' - 2Y = 0, Y(0) = 1, Y'(0) = 2. Ana. Y = e2t

46. tY" + (t - 1)Y' - Y = 0, Y(0) = 5, Y(co) = 0. Ans. Y = 5e-t

47. Find the bounded solution of the equation
t2Y" + tY' + (t2 -1)Y = 0

which is such that Y(1) = 2. Ans. 2Jt (t)/Jl (1)
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SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

48. Solve
f Z e-t subject to the conditions Y(0) = 3, Y'(0) _ -2, Z(0) = 0.

Ans. Y = 2 + Jt2 + +e-t - J sin t + - cos t, Z = 1 - -e-t + J sin t - J cos t

1Y'-Z'-2Y+2Z = sint
49. Solve if Y(O) = Y'(0) = Z(O) = 0.Y"+2Z'+Y = 0

Ans. Y = 9e-t+ e2t-*cost-*sint+-kte-t, Z =

50. Solve X'+ 2Y = e-t if X(O) = Y(O) = Y'(0) = 0.X'+2X-Y = 1

ee-t - $e2t + . .te-t

Ans. X = 1 + e-t - e-at - e-bt, Y = 1 + e-t - be-at - ae-bt where

51. Solve Problem 49 with the conditions Y(0) = 0, Y'(zr) = 1, Z(0) = 0.

52. Solve
rtY + Z + tZ' = (t -1)e-t
Y' - Z = e-t

Ans. Y = J°(t), Z = -J1(t) - e-t

[CHAP. 3

a = V2 -'), b = 4(2+V)

given that Y(O) = 1, Z(O) = -1.

53. Solve $Y"+3Z" = te-t-3cost
tY" - Z' = sin t given that Y(0) _ -1, Y'(0) = 2, Z(O) = 4, Z"(0) = 0.

Ans. Y = Jt2+ft-*-*e-t, Z = Jt2+*+ Je-t+.te-t+cost

54. Find the general solution of the system of equations in Problem 49.
Ans. Y = Cl + 02 sin t + c3 cos t + jt2 + Je-t

Z = 1 - e2 sin t - c3 cos t - le-t

APPLICATIONS TO MECHANICS

55. Referring to Fig. 3-1, Page 79, suppose that mass m has a force T(t), t > 0 acting on it but that no
damping forces are present.
(a) Show that if the mass starts from rest at a distance X = a from the equilibrium position (X = 0),

then the displacement X at any time t > 0 can be determined from the equation of motion

mX" + kX = 7(t), X(O) = a, X'(0) = 0

where primes denote derivatives with respect to t.

(b) Find X at any time if 7(t) = F0 (a constant) for t > 0.
(c) Find X at any time if 7(t) = F o e -at where a > 0.

Ans. (b) X = a + k° I 1 - cos m t)

(c) X = a +
m

F0 (e-at - cos k/m t) + aF° m/k
sin k/m tat+k mat+k

56. Work Problem 55 if 7(t) = F° sin wt, treating the two cases: (a) w # k/m, (b) k/m. Discuss
the physical significance of each case.

57. A particle moves along a line so that its displacement X from a fixed point 0 at any time t is given by

X"(t) + 4 X(t) + 5 X(t) = 80 sin 5t
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(a) If at t = 0 the particle is at rest at X = 0, find its displacement at any time t > 0.
(b) Find the amplitude, period and frequency of the motion after a long time.
(c) Which term in the result of (a) is the transient term and which the steady-state term?
(d) Is the motion overdamped, critically damped or damped oscillatory?

Ans. (a) X(t) = 2e2t (cos t + 7 sin t) - 2(sin 5t + cos 5t)

(b) Amplitude = 2V-2, period = 21r/5, frequency = 5/27r

(c) Transient term, 2e-2t (cos t + 7 sin t); steady-state term, -2(sin 5t + cos 5t)

(d) Damped oscillatory

105

58. Suppose that at t = 0, the mass m of Fig. 3-1, Page 79, is at rest at the equilibrium position X = 0.
Suppose further that a force is suddenly applied to it so as to give it an instantaneous velocity Vo
in a direction toward the right and that the force is then removed. Show that the displacement of
the mass from the equilibrium position at any time t > 0 is

(a) Vo k sin m t

(b)

if there is no damping force, and
V0

a-fit/2m
a

if there is a damping force of magnitude a X'(t) where p < 2 km.

where
k

g2-Y m 4m2

59. Work Problem 55 if: (a) T(t) = F014(t - T), [Heaviside's unit step function]; (b) T(t) = F0 8(t - T)
[Dirac delta function]. Discuss the physical significance in each case.

Ans. (a) X = aFo cos klm t if t < T and

X = aFo cos k/m t + (Fo/k)(1 - cos k/m (t - T)) if t > T

(b) X = aFo cos klm t if t < T and

X = aFo cos k/m t + (Fo/ km) sin k/m (t - T) if t > T

60. Suppose that at t = 0 the mass m of Fig. 3-1, Page 79, is at rest at the equilibrium position and that
a force Fo 8(t) is applied. Find the displacement at any time t > 0 if (a) the system is undamped,
(b) the system is critically damped. Discuss the physical significance of each case.

Ans. (a)
Fo

sin k/m t, (b) mot a-$ti2m
km

61. A ball of mass m is thrown upward from the earth's surface with velocity V0. Show that it will rise
to a maximum height equal to Vo/2g, where g is the acceleration due to gravity.

62. A mass m moves along the x axis under the influence of a force which is proportional to its instan-
taneous speed and in a direction opposite to the direction of motion. Assuming that at t = Q the
particle is located at X = a and moving to the right with speed V0, find the position where the mass
comes to rest.

63. A particle moves in the xy plane so that its position (X, Y) at any time is given by

X"+kiY = 0, Y"+k2X = 0
If at time t = 0 the particle is released from rest at (a, b), find its position at any time t > 0.

/ ak \bk

bkak \
A X = t2

1t + /k k cosh tkkns. cos
kn

2k2
i 2 2

\+ bkak - bkak
Y

i2(
i2

k t - (k h k k t= 2ki
J

cos 2i 2ki
/ cos i 2
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APPLICATIONS TO ELECTRICAL CIRCUITS

64. A resistor of R ohms and a capacitor of C farads are con-
nected in series with a generator supplying E volts [see
Fig. 3-17]. At t = 0 the charge on the capacitor is zero.
Find the charge and current at any time t > 0 if: (a) E = ED,
a constant; (b) E = ED a-at, a> 0.

Ans. (a) Q = CEo(1 - e-t/RC), I = (E0/R)e-uRC

(b) Q = 1 - aRC

CEO e-t'RC
1- aRC ( RC

CEO (e-at - e-t/RC),

- e-at) if a 0 11RC

[CHAP. 3

Fig. 3-17

65. Work Problem 64 if E = ED sin wt and the initial charge on the capacitor is Qo.
wEO tIRC - ED w cos wt - (1/RC) sin wt

} I = dQ/dtAns. Q Qo + R(w2 + 1/R2C2)
e

w2 + 1/R2C2

66. An inductor of L henrys and a capacitor of C farads are in series with a generator of E volts. At
t = 0 the charge on the capacitor and current in the circuit are zero. Find the charge on the capacitor
at any time t > 0 if: (a) E = ED, a constant; (b) E = Eoe-at, a > 0.

Ans. (a) Q = CEO{1 - cos (t/ LC )}

(b) Q = L(a2 E1/LC) {e-at - cos (t/ LC)) + aa2 + sin (t/ LC )

67. Work Problem 66 if E = ED sin wt, discussing the cases (a) w # 1/ LC and (b) 1/ LC and
explaining the physical significance.

68. Work Problem 66 if E(t) is (a) ED u(t - a) where u(t - a) is Heaviside's unit step function, (b) ED S(t)
where S(t) is the Dirac delta function.

Ans. (a) Q = 0 if t < a, and CEO {1 - cos (a)
f if t >a

(b) Q = Eo C7L sin (t/ LC )

69. An inductor of 3 henrys is in series with a resistor of 30 ohms and an e.m.f. of 150 volts. Assuming
that at t = 0 the current is zero, find the current at any time t > 0. Ans. I = 5(1 - a-lot)

70. Work Problem 69 if the e.m.f. is given by 150 sin 20t. Ans. I = sin 20t - 2 cos 20t + 2e-lot

71. Find the charge on the capacitor and the current in
the circuit [Fig. 3-18] at any time t after the key K is
closed at t = 0. Assume that L, R, C and E are con-
stants and that the charge and current are zero at
t = 0. Treat all cases.

72. (a) Work Problem 71 if E = ED sin wt. (b) Show that

resonance occurs if we choose w =
2

TC _ R
2L2(c) Discuss the case R = 0.

Fig. 3-18

73. An electric circuit consists of an inductor of L henrys in series with a capacitor of C farads. At t = 0
an e.m.f. given by

E(t) = Eot/TO 0 < t < To
0 t>To

is applied. Assuming that the current and charge on the capacitor are zero

at any time t > 0.
at t = 0, find the charge
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Ans. Q
CEO

{t - LC sin /, f LC ii if 0 < t < T and°
TO

CE t-T
Q 7, ° Tcos (t_To)

+ -VFLC- sin ( L - LC sin WC1 if t > To

74. In the electric circuit of Fig. 3-19,

E = 500 sin 10t
R1 = 10 ohms

R2 = 10 ohms
L = 1 henry
C = .01 farad

If the charge on the capacitor and the currents
11 and 12 are zero at t = 0, find the charge on the
capacitor at any time t > 0.
Ans. Q = sin 10t - 2 cos 10t + e-10t (sin 10t + 2 cos 10t)

APPLICATIONS TO BEAMS

Fig. 3-19

75. A beam which is clamped at its ends x = 0 and x = l carries a uniform load WO per unit length. Show
WO x2(1 - x)2

that the deflection at any point is Y(x) _ 24E1

76. Work Problem 75 if the end x = 0 is clamped while the end x = l is hinged.

77. A cantilever beam, clamped at x = 0 and free at x =1, carries a uniform load WO per unit length.
x2

Show that the deflection is Y(x) =
WO

24E1
(x2 - 4lx + 612).

78. A beam whose ends are hinged at x = 0 and x = l has a load given by

W(x) _

Find the deflection.

(0 0<x<1/3
Wo l/3<x<l

79. A cantilever beam, clamped at x = 0 and free at x =1, carries a concentrated load P0 at x =1. Show

that the deflection is given by Y(x) = 6E1 (31- x).

80. Work Problem 79 if the load is at x = 1/2.

81. A beam has its ends hinged at x = 0 and x =1. If a concentrated load PO acts vertically downward at
x =1/2, show that the deflection is

Y(x) = 8E1(312 - 4x2) 0 < x < 1/2

The deflection for 1/2 < x < l is obtained by symmetry or by replacing x by l - X.

82. Work Problem 81 if the ends of the beam are clamped.

83. A beam has its ends hinged at x = 0 and x =1. A concentrated load P0 acts vertically downward at
the point x = 1/3. Show that the deflection is given by

PO X2

Y(x) PO

X(81EI512 -

+ 6 E1 (x - l/3)3 u(x - 1/3)
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84. A beam has its ends hinged at x = 0 and x =1. The beam carries a uniform load Wo per unit length
and also has a concentrated load P0 acting at x = 1/2. (a) Find the deflection. (b) Discuss how the
solution in (a) can he obtained from the solutions to Problems 18 and 81. Explain.

85. A beam whose ends are clamped at x = 0 and x =1 carries a load W(x) per unit length given by

W (X) = TO O<x<1/2
jlWo x 1/2 < x < l

and also a concentrated load at x = 1/3. Find the deflection.

PARTIAL DIFFERENTIAL EQUATIONS
2

86. Solve at = 2 axe , U(0, t) = 0, U(5, t) = 0, U(x, 0) = 10 sin 4rx.

Ans. U(x, t) = 10 e-.327,-2t sin 47rx

87. Work Problem 86 if U(x, 0) = 10 sin 47rx - 5 sin 61rx.

Ans. U(x, t) = 10 6-3272t sin 4rx - 5 e-72r2t sin 67x

88. Solve t2 = 9 ax , Y(0, t) = 0, Y(2, t) = 0, Y(x, 0) = 20 sin 27rx - 10 sin 5rx.

Ans. Y(x, t) = 20 sin 27rx cos 6rt - 10 sin 57rx cos 15rt

89. Give physical interpretations to (a) Problem 86, (b) Problem 87, (c) Problem 88.

2U90. Solve t = 3 axe , Uy(0, t) = 0, U(r/2, t) = 0 if:

(a) U(x, 0) = 30 cos 5x, (b) U(x, 0) = 20 cos 3x - 5 cos 9x

Ans. (a) 30 a-75t cos 5x, (b) U(x, t) = 20 a-27t cos 3x - 5 e-24St cos 9x

91. Present a physical interpretation of Problem 90.

aUa2U
92. (a) Find the solution of at = az - 4U, U(0, t) = 0, U(r, t) = 0, U(x, 0) = 6 sin x - 4 sin 2x.

(b) Give a possible physical interpretation to the solution.

Ans. (a) U(x, t) = 6 e'St sin x - 4 e-8t sin 2x

93. Solve ate = 16 axe , Y, (0, t) = 0, Y(3, t) = 0, Y(x, 0) = 0, Yt (x, 0) = 12 cos rx + 16 cos 3rx - 8 cos 5rx.

Ans. Y(x, t) = 12 cos rx sin 4r t + 16 cos 3rx sin 12rt - 8 cos 5rx sin 20rt

94. Find the bounded solution Y(x, t), 0 < x < 1, t > 0 of the boundary-value problem

aY ay
ax at

Ans. Y(x, t) = x +I - e-t

95. Solve the equation

subject to the conditions

a2Y a2Y
8t2 axe

Y(x, 0) = x

x>0, t > 0

Y(0, t) = 10 sin 2t, Y(x, 0) = 0, Yt (x, 0) = 0, lim Y(x, t) = 0
x-+=
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MISCELLANEOUS PROBLEMS

96. Show that the solution of the differential equation

Y"(t) - k2 Y(t)
subject to Y(O) = a, Y'(0) = b is

= F(t)

r

Y(t) = a cosh kt + (b/k) sinh kt + k f F(u) sinh k(t - u) du
0

97. Solve Y'"(t) + Y"'(t) = 2 sin t, Y(O) = Y'(0) = 0, Y"(0) = 1, Y"'(0) = -2.

Ana. Y = Jt2-2+e-t+sint+cost

98. Find the general solution of the differential equation of Problem 45.
e-2t

Ans. Y(t) = 01 e2t t dt + 02 2t

99. Find that solution of the equation

tY" - (t + 2)Y' + 3Y = t - 1
which has a Laplace transform and is such that Y(0) = 0.

100. What is the general solution of the differential equation in Problem 99?

101. (a) Use Laplace transforms to show that the solution of

d2y
Wt-2 + k2Y = A cos wt, Y(0) = a, Y'(0)

is Y(t) _ A (cos wt - cos kt) + a cos kt + (Q/k) sin kt.
w2-k2

(b) Give a physical interpretation of the results of part (a).

102. Solve for X:
X'+Y' = Y+Z
Y' + Z' = X + Z if X(O)=2, Y(0)=-3, Z(0) = 1.
X'+Z' = X+Y

Ans. X = le-t/2 {3 cos (V t/2) - 2V3- sin (%FS t/2))

103. Work Problem 29 by letting Y = VYI, where V is a new dependent variable.

104. Can the method of Laplace transforms be used to find the general solution of

Explain.

105. (a) Find a bounded solution of

Y" + Y sec t

(t-1)Y" + (5-4t)Y' - 4Y = 0
such that Y(0) = S. (b) What is the general solution of the equation in (a)?

Ana. (a) Y = 3e4t, (b) Y = cl e4t
e-4t
t -1 dt + C2 14t

109
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106. (a) Show that 1(t) - f e-txR dx
0 1+x2

satisfies the differential equation

dl _ I = _1 _r
dt 2 t ' I(0) = 742

(b) By solving the differential equation in (a), show that

I(t) =
2

et erfc f

107. A particle moving on a straight line (the x axis) is acted upon by a force of repulsion which is pro-
portional to its instantaneous distance from a fixed point 0 on the line. If the particle is placed at
a distance a from 0 and is given a velocity toward 0 of magnitude V0, find the distance of closest
approach to 0.

108. If the ball of Problem 61 encounters air resistance proportional to its instantaneous velocity, show
that the maximum height reached is

k (k V0 + mg - kg) -

where k is a constant of proportionality.

m2g
k2

109. In the circuit of Fig. 3-18, Page 106, suppose that the e.m.f. E is a function of t while L, R and C
are constants. At the instant t = 0 that the key K is closed, assume that the charge Q on the capacitor
and current I are zero. Show that if R2 < 4L/C, then the current at any time t > 0 is given by

I(t) f E(t - u) e-Ru/2L (cos au - 2Ra sin au) du
o

where e = 1/LC - R2/4L2.

110. Work Problem 109 if (a) R2 = 4L/C, (b) R2 > 4L/C.

111. Present a mechanical analog to (a) Problem 64, (b) Problem 66, (c) Problem 71.

112. Give an electrical analog to (a) Problem 55,
(b) Problem 57.

113. Give a mechanical analog to Problem 74 involv-
ing masses connected by springs.

114. A particle of mass m moves along the x axis
under the influence of a force y. (t) as indicated
in Fig. 3-20. If the particle starts from rest
at t = 0 determine its position and speed at any
time t > 0.

7(t)

Fig. 3-20

115. A beam which is clamped at x = 0 and x = I carries a concentrated load
0<a<1.

Y(x) =

(Po x2(1- a)2
Ii 6EI13

{3al - (2a+llx1

Pcx2(1-a)2 Po(x-a)3
6EI13

{3a1 - (2a + l)x} +
6EI

116. Work Problem 115 if the beam is clamped at x = 0 but free at x = 1.

Ans. Y(x) =

Show that the deflection is

P(, x2

6FI (3a - x) 0 < x < a
J

P0 a2

6E1 (3x - a) a < x < l

where
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117. A beam which is hinged at x = 0 and x =1 carries concentrated loads P0 at x = 1/3 and x = 21/3. Find
the deflection.

118. If a beam carrying a load W(x) per unit length rests on an elastic foundation, the differential equation
for the deflection is

4

EI dx4 + kY = W(x)

where k is called the elastic constant of the foundation. Suppose that such a beam, clamped at both
ends x = 0 and x = 1, carries a uniform load Wo per unit length. Show that the bending moment at
x = 0 is given by

where a =
a k/4EI.

o sink al - sin al)
'2a- \sinh al + sin al }

119. Two electric circuits, called the primary and
secondary circuits, are coupled inductively as
shown in Fig. 3-21.

(a) If M is the mutual inductance, show that
the currents I1 and 12 are given by

dIt d12

L1 dt +
R1I1 + M at = E

dI2 d11

L2 dt 0

(b) If the currents Il and I2 in the circuits are
zero at time t = 0, show that at time t > 0
they are given by

Il =

where al and

12

a2

EL2 east - east
al -a2L1L2 - M2

EM / gait - east
L1L2-M21\ a2-al

r

Fig. 3-21

ER2 / east east` E
+ al-a2(al - a21 +

1?,

are the roots of the equation

(LIL2 - M2)a2 + (L1R2 + L2R1)a + R1R2 = 0

120. Discuss Problem 119 if L1L2 = M2.



Chapter 4

INTEGRAL EQUATIONS

An integral equation is an equation having the form
b

Y(t) = F(t) + f K(u, t) Y(u) du
a

where F(t) and K(u, t) are known, a and b are either given constants or functions of t, and
the function Y(t) which appears under the integral sign is to be determined.

The function K(u, t) is often called the kernel of the integral equation. If a and b are
constants, the equation is often called a Fredholm integral equation. If a is a constant
while b = t, it is called a Volterra integral equation.

It is possible to convert a linear differential equation into an integral equation. See
Problems 1-3 and 25.

INTEGRAL EQUATIONS OF CONVOLUTION TYPE

A special integral equation of importance in applications is

Y(t) = F(t) + f, K(t - u) Y(u) du (2)
0

This equation is of convolution type and can be written as

Y(t) = F(t) + K(t) * Y(t)

Taking the Laplace transform of both sides, assuming C {F(t)) = f(s) and C {K(t)) k(s)
both exist, we find

y(s) = f (s) + k(s) y(s) or _y(s) = AS)
1 - k(s)

The required solution may then be found by inversion. See Problems 5 and 6.'

112
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ABEL'S INTEGRAL EQUATION. THE TAUTOCHRONE PROBLEM.

An important integral equation of convolution type is Abel's integral equation

f ` Y(u) du = G(t) (3)(t W
where G(t) is given and a is a constant such that 0 < a < 1.

An application of Abel's integral equation is that of finding the shape of a frictionless
wire lying in a vertical plane such that a bead placed on the wire slides to the lowest point
in the same time T regardless of where the bead is placed initially. This problem is called
the tautochrone problem and the shape of the wire can be shown to be a cycloid. [See
Problems 7-9.1

INTEGRO-DIFFERENTIAL EQUATIONS

An integro-differential equation is an integral equation in which various derivatives
of the unknown function Y(t) can also be present. For example,

Y"(t) = Y(t) + sin t + f cos (t - u) Y(u) du (4)t
0

is an integro-differential equation. The solution of such equations subject to given initial
conditions can often be obtained by Laplace transformation [see Problem 101.

DIFFERENCE EQUATIONS

An equation which relates the function Y(t) with one or more functions Y(t - a), where
a is constant, is called a difference equation.

Example. Y(t) - 4 Y(t - 1) + 3 Y(t - 2) = t is a difference equation.

In various applications it is possible to formulate a difference equation from which we
seek the unknown function Y(t) subject to specified conditions. Determination of this
function, which is called solving the difference equation, can often be accomplished by the
Laplace transformation. See Problem 11.

Difference equations involving relations of terms of the sequence ao, a,, a2, ..., such as
for example a a 2 - 5a,,, , + ban = 0 where ao = 0, a, = 1, can also be solved by Laplace
transforms. See Problems 18, 19 and 24.

DIFFERENTIAL-DIFFERENCE EQUATIONS

A differential-difference equation is a difference equation in which various derivatives
of the function Y(t) can be present. Thus, for example,

Y'(t) = Y,(t - 1) + 2t (5)

is a differential-difference equation. See Problem 12.
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It is also possible to have an integro-differential difference equation which is a differ-
ential-difference equation in which the unknown function Y(t) can also appear under an
integral sign.

Solved Problems
INTEGRAL EQUATIONS

1. Convert the differential equation

Y"(t) - 3Y'(t) + 2Y(t) = 4 sin t, Y(O) = 1, Y'(0) = -2
into an integral equation.

Method 1.

Let Y"(t) = V(t). Then using Problem 23, Page 57, and the conditions Y'(0) = -2 and Y(O) = 1,

tY'(t) = f V(u) du - 2, Y(t) = f (t - u) V(u) du - 2t + 1
0 0

Thus the differential equation becomes
t

V(t) - 3 f V(u) du + 6 + 2ft
(t - u) V(u) du - 4t + 2

0 0

from which we obtain

V(t) = 4 sin t + 4t - 8 + f {3 - 2(t - u)} V(u) dut
0

Method 2.

Integrating both sides of the given differential equation, we have

0ft
{Y"(u) - 3Y'(u) + 2Y(u)} du = f

0

4 sin u du

4 sin t

t
or Y'(t) - Y'(0) - 3Y(t) + 3Y(O) + 2f Y(u) du = 4 - 4 cos t

0

This becomes, using Y'(0) = -2 and Y(O) = 1,
r

Y'(t) - 3Y(t) + 2f Y(u) du = -1 - 4 cos t
0

Integrating again from 0 to t as before, we find
t t

Y(t) - Y(0) - 3 f Y(u) du + 2 f (t - u) Y(u) du = -t - 4 sin t
0 0

or Y(t) + f {2(t - u) - 3) Y(u) du = 1 -- t - 4 sin tt
0
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2. Convert the differential equation

Y"(t) + (1 - t) Y'(t) + e-t Y(t) = t$ - 5t, Y(O) = -3, Y'(0) = 4

into an integral equation.

Method 1.

Letting Y"(t) = V(t) and using Y'(0) = 4, Y(O) = -3 we have as in Problem 1, Method 1,
t

Y'(t) = f V(u) du + 4, Y(t) = f t (t - u) V(u) du + 4t - 3
0 0

Thus the differential equation becomes

t

t
V(t) + (1- t) f V(u) du + 4(1-t) + e-tf (t - u) V(u) du + 4t a-t - 3e-t = t3 - 5t

0 0

which can be written
t

V(t) = 0 - t - 4 + 3e-t - 4t a-t + f {t - 1 - e-t (t - u)} V(u) du
0

Method 2.

Integrating both sides of the differential equation as in Problem 1, Method 2, we find

ft

Y"(u) du + f
o

(1- u) Y'(u) du + fo
t

e-u Y(u) du =
fo

t

(u3 - 5u) du
0 a

Then integrating by parts in the second integral, we find

Y'(t) - Y'(0) + {(1 - U) Y(u)
t

+ ft Y(u) du} + f t e-u Y(u) du
a o 0

Y'(t) - Y'(0) + (1- t) Y(t) - Y(O) + f Y(u) du + f e-u Y(u) dut t
0 0

t
t

or Y1(t) + (1- t) Y(t) + f Y(u) du + f e-u Y(u) du =
0 0

Another integration from 0 to t yields

t4 5t2
4

_
2

t4 5t2
4 2

t4 5t2
1

4 2
+

t
t

Y(t) - Y(O) + f (1- u) Y(u) du + f (t - u) Y(u) du + f
t

(t - u) a-u Y(u) du
0 0 0

which can be written
t

Y(t) + f {1 + t - 2u + (t - u) a-u} Y(u) du =
0

t5 5t3
20

+ t

t5 _ 50 + t - 3
20 6

3. Express as an integral equation the differential equation

Y'"(t) - 4Y"1(t) + 6Y"(t) - 4Y'(t) + Y(t) = 3 cos 2t

subject to the conditions Y(O) = -1, Y'(0) = 4, Y"(0) = 0, Y"'(0) = 2.

Method 1.

Let YL"(t) = V(t). Then as in Problems 1 and 2, we find
t

Y111(t) = f V(u) du + 2,

2

Y'(t) = f (t 2
u) V(u) du + t2 + 4,

0

Y11(t) = f (t - u) V(u) du + 2tt
0

3

Y(t) = f (t 3 + 4t - 1
0
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Substituting these into the given differential equation, it becomes

V(t) = 25 - 16t + 4t2 - *t3 + 3 cos 2t + f {4 - 6(t - u) + 2(t - u)2 - I (t - u)3) V(u) du
0

Method 2.

Integrating successively from 0 to t as in the second methods of Problems 1 and 2, we find the
integral equation

t 4 - 6(t - u) + 2(t - u)2 - -k(t - u)3} Y(u) duY(t) -
fo

{
19
16

+ 8t - 88tz + 5t3 + 16 cos2t

These integral equations, as well as those obtained in Problems 1 and 2, are Volterra integral
equations; the limits of integration are from 0 to t. In general this type of integral equation arises
from linear differential equations where conditions are specified at one point. For an example of a
Fredholm integral equation which arises from linear differential equations in which conditions are
specified at two points, see Problem 25.

4. Convert the integral equation

Y(t) = 3t - 4 - 2 sin t + f {(t - u)2 - 3(t - u) + 2} Y(u) dut
0

into a differential equation.

We make use of Leibnitz's rule,

d
Wt f

nct)K(u,
t) du = f .nct)

aK du + K(b(t), t) dt - K{a(t), t) dt
a(t) a(t)

Thus we have on differentiating both sides of the given integral equation,

(1)

t

Y'(t) = 3 - 2 cost + f t 2(t - u) Y(u) du - 3 f Y(u) du + 2Y(t) (2)
0 0

Another differentiation yields,

t
Y"(t) = 2 sin t + 2f Y(u) du - 3Y(t) + 2Y'(t) (3)

0

and a final differentiation yields the required differential equation

or

Y"'(t) = 2 cos t + 2 Y(t) - 3 Y'(t) + 2 Y"(t) (k)

Y" - 2Y" + 3Y' - 2Y = 2 cos t

The initial conditions obtained by letting t = 0 in the given integral equation and also in equations
(2) and (3), are

Y(O) = -4, Y'(0) = -7, Y"(0) = -2

Note that the initial conditions are contained in the integral equation.

It is possible to convert every linear differential equation into an integral equation. However,
not every integral equation can be converted into a differential equation, as, for example,

t

Y(t) = cos t + f In (u + t) Y(u) du
0



CHAP. 41 APPLICATIONS TO INTEGRAL AND DIFFERENCE EQUATIONS

INTEGRAL EQUATIONS OF CONVOLUTION TYPE
e

5. Solve the integral equation Y(t) = t2 + f Y(u) sin (t - u) du.
0

The integral equation can be written

Y(t) = t2 + Y(t) * sin t

Then taking the Laplace transform and using the convolution theorem, we find, if

_ 2 y
y ss + s2+1

solving,

and so

2(s2 + 1) - 2 2y = 85 s3 + 85

Y = 2(221+2041 _ t2+1214

This can be checked by direct substitution in the integral equation.

t

6. Solve the integral equation f Y(u) Y(t - u) du = 16 sin 4t.
0

The equation can be written as

Y(t) * Y(t) = 16 sin 4t

Taking the Laplace transform, we find

{y(8)}2 82+16= 64 (81=or
±8

Then Y(t) = C-1{y(s)} _ --* 8J0(4t)

Thus Y(t) = 8 J0 (4t) and Y(t) = -8 J0 (4t) are both solutions.

ABEL'S INTEGRAL EQUATION. THE TAUTOCHRONE PROBLEM.

7. Solve f 1

Y-(u) du = 1 + t + t2.
o Vt-w

The equation can be written

Y(t) * t-112 = 1 + t + t2

Then taking the Laplace transform, we find

.C {Y} .( {t-1/2} _ .e {1 + t + t2}

or
y r(112)

81/2

1
+

1 2
8 82 + 83

y = .C (Y),

117

1 1 1 2and y = r(1/2) t81/2
{++

85/2
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1 1 t-1/2 t1/2 2t3/2
Inverting, Y = r(1/2) 1r(1/2) + r(3/2) + l'(5/2)

(t-1/2 + 2t1'2 + 3
t312) = t-1/2

3n
(3 + 6t + 8t2)

The integral equation is a special case of Abel's integral equation.

8. A bead is constrained to move on a fric-
tionless wire which lies in a vertical plane.
If the particle starts from rest at any point
of the wire and falls under the influence of
gravity, find the time of descent to the low-
est point of the wire.

Assume that the bead has mass m and starts
from rest at point P with coordinates (u, v) as
shown in Fig. 4-1. Let point Q, having coordinates
(x, y), be some intermediate point in the motion
and suppose that the lowest point of the wire is
taken to be the origin O. Let or be the arc length
OQ. From the conservation of energy, we have

y

Fig. 4-1

Potential energy at P + Kinetic energy at P = Potential energy at Q + Kinetic energy at Q

da\2jmgy + }m
C IF J

where do/dt is the instantaneous speed of the particle at Q.

2Cdt\
2g(v - y)

or using the fact that a decreases as time t increases,

do = - 2g(v - y)dt

The total time T taken for the bead to go from P to 0 is given by

(1)

0 -da _ v do_ T
= (2)ffT J dt

2g(v - y) O 2g(v - Y)0

do = F(y) dy (3)

Thus (2) becomes
1 v F(y) dyT =

vr2-g- ko

In general T is a function of v, i.e. of the starting position.

(4)

9. Find the shape which the wire of Problem 8 must have if the time taken to reach the
lowest point is a constant, i.e. is independent of the starting position.

In this case we have to find F(y) such that

T = 1 fv F(y) dy
2g 0 Vj

Then

(1)
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where T is a constant. This integral equation of convolution type is a special case of Abel's integral
equation [see Page 113] and can be written

2g T = F(y) * y-112

Taking Laplace transforms and noting that r {F'(y)} = f(s), t {y-1/2} = r(2)/st/2 = \/s1/2, we

2 Tg = As) s

The inverse Laplace transform is given by

Since

we have

If we let

or f(s) =
T
131/2

T -1 JjTI-21
1 = T_ ,2g y-1/2 = T V 2g -1/2F(y) = V r(1/2) V y

(3) can be written

do = dx2 + dy2 = dx )2
dy dy Vj+

{dy /

dx 2 T 2g -1/21+ (-) = T Y

NFb =
TNF2 g

T_)
y

1 + (dx\2 =Y

j
b

or b = 2g T2T2

or
dx b-y
dy y

since the slope must be positive. From this we find on integrating,

x = f. bydy+ cI
Letting y = b sin2 e, this can be written

x b cost B
,r b sin2 e

= 2b f cost a de + c b f (1 + cos 2e) de + c =
2

(2e + sin 2e) + c

Thus the parametric equations of the required curve are

. 2b sin 9 cos 9 de + c

x (1 - cos 2e)= 2 (20 + sin 2e) + c, y = b sin2 e = 2

Since the curve must pass through the point x = 0, y = 0, we have c = 0. Then letting

b 2a =
2

= g2 and 0 = 2e

the parametric equations are

(2)

have

(3)

(4)

(5)

x = a (0 + sin 0), y = a (1 - cos o)

These are the parametric equations of a cycloid [see Fig. 4-2 below]. For a given constant T, the
wire has the shape of the curve shown heavy in the figure. The cycloid is the path taken by a fixed
point on a circle as it rolls along a given line [see Problem 44].
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x

Fig. 4-2

INTEGRO-DIFFERENTIAL EQUATIONS

10. Solve t os 2(t - u) Y(u) du = 10 if Y(0) = 2.Y'(t) + 5 fo c

The equation can be written

Y'(t) + 5 cos 2t * Y(t) 10

Then taking the Laplace transform, we find

or

Hence by Problem 44, Page 67,

_ 58y 10Y(0) + 82+4 8

283+1082+8s+40
82(82+9)

Y =
27

(24 + 120t + 30 cos 3t + 50 sin 3t)

Note that by integration from 0 to t using Y(0) = 2, the given integro-differential equation can be
converted into the integral equation

t

Y(t) + 5f (t - u) cos 2(t - u) Y(u) du = 10t + 2
0

DIFFERENCE AND DIFFERENTIAL-DIFFERENCE EQUATIONS

11. Solve 3Y(t) - 4Y(t - 1) + Y(t - 2) = t if Y(t) = 0 for t < 0.

Taking the Laplace transform of both sides yields

3 t {Y(t)} - 4.C {Y(t -1)} + C {Y(t - 2)}

Now .i {Y(t -1)} =
f W

e-at Y(t - 1) dt
0

1
82

f e-scu+l> Y(u) du [letting t = u+ 1]

e-s fl e-au Y(u) du + e-s f e-su Y(u) du
o

(1)

= e-sy
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and . {Y(t - 2)} = J a e-st Y(t - 2) dt
0

E2 e-s(u+2) Y(u) du [letting t = u + 21

e-2s f e-su Y(u) duJ 2

e-2s y

since Y(u) = 0 if u < 0, so that

f0

I

e-su Y(u) du = 0

Then (1) becomes 3y - 4e-s y + e-2s 1
Y

=
32

and ?!
1

82(3 - 4e-s + e-2s) -

282 11 - e-s 3 - e-s

+ e-2s f e-su Y(u) du
0

and e-su Y(u) du = 0

1

82(1 - e-8)(3 - e-s)

1 1 _ 1

282 1 - e-s 3(1 - e-s/3)}

1

212
(1+e-s+ e-2s+e-3s+

332 2

11\1-3>a2s

Hence Y

e-s

3

t 1
[t) 1

3
+ 2

1I( 1-3n (t - n).Z)
where [t] is the greatest integer less than or equal to t.

e-2s
+ 32 +

12. Solve Y'(t) + Y(t - 1) = t2 if Y(t) = 0 for t < 0.

Taking the Laplace transform of both sides yields

.C {Y'(t)} + . {Y(t -1)} = 2/s3

Now ., {Y'(t)} = 8.4 {Y} - Y(O) = sy - 0 = sy

and .i {Y(t -1)} = J e-st Y(t - 1) dt

e-3s

33

e-s(u+i) Y(u) du [letting t = u + 1]
J-I

o
e-s f e-su Y(u) du + e-s f e-su Y(u) du

J-I Jo

+ j}

121

(1)

= e-sy



122

since

0

Y(u) = 0 for u < 0 so that f e-su Y(u) du = 0. Then (1) can be written
1

sy + e-s y - or y =83 83(3 +
2

e-s)

APPLICATIONS TO INTEGRAL AND DIFFERENCE EQUATIONS [CHAP. 4

By use of series, we have

Y =
2 __ 2

s3(s + e-s) s4(1 + e s/a)

2 e-s
+

a-2s a-3s
84

1 -
s s2

-
33

+ ...1

2
$4

2e-3 2e-2s 2e-3s

ss
+

86
-

77
+

W e-ns
2 nY gn+4

Now 1 e-ns =
fj--+4

(t - n)n+3
(n + 3)!

t?n

0 otherwise

Thus if [t] denotes the greatest integer less than or equal to t, we find that

1 (t-n)n+3Y(t) = 2
n=o (n+3)!

13. In Problem 12 find (a) Y(4), (b) Y(7r).

(a) Since [4]=4, we have
4 (4-n)n+3 43 4 5 6

Y(4)
=

2 1 - 2 + 3 + 2 + = 28.62 (approx.)
n=a (n+3)! 3! 4! 5! 6!

(b) Since [7r] = 3, we have

3 (3.-n)n+3

n=O

(2)

2 f
31

+ (Tr 411)4 + (w 5'2)5 + ('r 3)s = 12.12 (approx.)

14. If F(t) = r n for n < t < n + 1, n = 0,1, 2, 3, ..., find C {F(t)}.

. {F(t)} = f e-st F(t) dt
0

f L 2 3

e-st r0 dt + f e-st rl dt + f e-st r2 dt +
0 1 2

1 Se-s + r(e-s a-2s`
+ r2(e-2s e-3s\

+

1 - e-s
/J \ J

(1+re-s+r2e-2s+ )
s

1- e-s 1 1- e-s
8 1 - re-s - 8(1 - re-s)



CHAP. 4] APPLICATIONS TO INTEGRAL AND DIFFERENCE EQUATIONS

15. Find a(-' 1 -
e-s

s(1- re-$)

By Problem 14, we have ,e 1 F(t) = rn
(1

for n t < n+1.

Another method.

We have

1- e-s 1

s(1 - re-$) s 1 - re-s

= 1 - e-s (1 + re-s + r2e-28 + ...)
s

f 1 2 3

e-srrodt + f e-strldt + f e-str2dt + ---
0 1 2

f e-st F(t) dt
0

where F(t) = rn for n _ t < n + 1, n = 0,1, 2, 3, ... .

16. Find-1 1s(1-
re-8) }

If C-1 {f(s)} = F(t), then by Theorem 2-4, Page 44,

_1{e_sf(s)) = IF(t-1)
5l0

Thus by Problem 15,

1 1(

s(1 - re-s) F(t

or, equivalently,

1

{(1

- e-s)e's 1,e- = rn-
a(1 - re-s)

t>1
t<1

for of t-1 <n+l, n=0,1,2,3,...

for n: t<n+1, n=1,2,3,...

123

17. Let Y(t) = an for n < t < n + 1 where n = 0, 1, 2, .... Find (a) C {Y(t + 1)) and
(b) .1 {Y(t + 2)} in terms of C {Y(t)} _ y(s).

(a) Letting t + 1 = u, we have

.c {Y(t + 1)} f.
e-st Y(t + 1) dt = esf e-su Y(u) du

0 1

es f e-su Y(u) du - es f e-su Y(u) du
0 0

1

es y(s) - es f e-- a.0 du
0

e8 ?!(s) -
ao es(1 - e-s)

s

using the fact that Y(t) = ao for 0 < t < 1.
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(b) Letting t + 2 = u, we have

. (Y(t + 2)) = f e-st Y(t + 2) dt
0

e2s f e-sn Y(u) du
2

1

e2s { ` a-- Y(u) du - f e-su Y(u) du - J e-su Y(u) du l
0 0 1 f

e28 y(s)

e2s y(s) -

= e2s y(s) -

1 2
e2s f e-su ao du - e2s f e-sn al du

0 1

ao e2s(1 - e-"8) a1 e2s(e-s - e-2s)

8 S

es(1 - e-s)(aoes + a1)
8

using the fact that Y(t) = ao for 0 < t < 1 and Y(t) = a1 for 1 < t < 2.

18. Let (an), n = 0, 1, 2, ..., denote the sequence of constants ao, al, a2, ... and suppose
that we have the recursion formula defined by the difference equation

an+2 - 5an+1 + 6an = 0, a0=0, a,=1
Find a formula for an, i.e. solve this difference equation for an.

Define the function

Y(t) = an, n < t < n+1 where n = 0,1, 2, .. .

Then the given recursion formula becomes

Y(t + 2) - 5Y(t + 1) + 6Y(t) _ 0 (1)

Taking the Laplace transform of (1) using the results of Problem 17 with ao = 0, a1=1, we find

e2s y(8) - es(1 - e-s) -
8

or

Then y(s)

5e8 y(s) + 6y(8) = 0

(e2s - 5es + 6) y(s) _ e4(1 - e-8)
8

es(1 - e-8) es(1 - e-s) 1

6)(es - 3)(es - 2)8(e2s - 5es +8 }

es(1-e-8) f 1 - 1 = 1-e-s _1 _ 1

$ les - 3 es - 2} s 1 - 3e-s 1 - 2e-8

Hence by Problem 15 we find on inverting,

an = 31, - 21,, n = 0,1,2,...

Check: If an = 3n - 21,, then ao = 0, a1=1. Also,

an+2 - ban+1 + ban = (3n+2 - 2n+2) - 5(3n+1 - 2n+1) + 6(3n - 2")

= 9.3n-4.21, -15.3n+10.21,+ 6.31, -6.21, = 0
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19. Solve the difference equation

The only difference between this problem and Problem 18 is the presence of the right hand term
4n. We write the equation as

Y(t + 2) - 5Y(t + 1) + 6Y(t) = F(t)

where Y(t) = an, F(t) = 4n for n < t < n + 1, n = 0, 1, 2, ... .

(1)

Taking the Laplace transform of both sides of (1) using the results in Problems 14 and 17, we
find if y(s) = C {Y(t)},

e2s y(s) - s (1 - e-s) - 5e3 y(s) + 6y(s)

Then

es(1 - e-s) 1 - e-s
s(es - 2)(es - 3) + s(es - 2)(es - 3)(1 - 4e-s)

es(1 - e-s) 1 1 +
s fes-3 - e-8-2'

1- e-s ( 1 - 1 1
s 1 - 3e-s 1 - 2e-4

es-1

1 - e-s
8(1 - 4e-s)

s(es - 2)(es - 3)(e3 - 4)

+ es -1
f

1/2 - 1 + 1/2
8 es-2 es-3 es-4

e-s 1 _ 1 + 1 - e-s 1/2 1 + 1/2
8 {1 - 3e-3 1-- 2e-s s {1 - 2e-s 1 - 3e-s 1 - 4e-sf

Hence on inverting, using the results of Problem 15, we find

Y(t) = an =

I 4n - 4. 2n = 4.(43 - 2n)

20. In Problem 19, find as.

Method 1. From the solution (2) in Problem 19, we have

a5 = &(45 - 25) 496

Method 2. From the given difference equation in Problem 19, we have for n = 0

a2 - 5a1 + 6ao = 1
or using ao = 0, a1 = 1

a2 = 1 + 5a1 - 6ao = 6

If n = 1, a3 - 5a2 + 6a1 = 4 so that

a3 = 4 + 5a2 - 6a1 = 28

If n = 2, a4 - 5% + 6a2 = 16 or

a4 = 16 + 5a3 - 6a2 = 16 + 5(28) - 6(6) = 120

(()

Finally if n = 3, a5 - 5a4 + 6a3 = 64 so that

a5 = 64 + 5a4 - 6a3 = 64 + 5(120) - 6(28) = 496
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MISCELLANEOUS PROBLEMS

21. Solve the integral equation

Y(t) _ sin 2t + f Y(u) Y(t - u) du
0

The integral equation can be written in the form

Y(t) = 4 sin 2t + Y(t) * Y(t)

Then taking the Laplace transform, using the convolution theorem, we find

y(8) = s2 + 4 +
(y(8))2

Solving, we obtain

Thus

y(s)
- 1 + 1

2 211

and

From (2) we find the solution

Y(t) _

The result (1) can be written

y(8)

y(s)

or {y(8))2 - y(8) + 82+4

1 1 s4- = +
82+4

= 0

2 2 V8-2+
4

(,,"81 2+ 4 - s
-c-' 2 2

Jr =
IF S-2

y(8) = -2( s2+4-s . 2 = 1 - 1 s2+4-8
\\ 82+4 2

f
82+4 J

Hence a second solution is

Y(t) = 8(t) - Jl (2t)

where 8(t) is the Dirac delta function.

The solution (3) is continuous and bounded for t > 0.

22. Find C (F(t)) if F(t) = n, n < t < n+1, n = 0,1,2,3,....
We have

f e-a' F(t) dt
0

1

f e-st (0) dt +
3

e-st (1) dt + f e-St (2) dt +
1 2

e-2a) +
(2)

(e-28

$

e-38) + (3) (e-38 8 e-48)
l\

8

f2

(1)

(2)

(3)

(4)

+
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Now since for jxi < 1,

we have by differentiation,

Then if x = e-8, we find

Thus

1 +x+x2+x3+ = 1
1-x

1+2x+3x2+ = 1-
(1 _ x)2

1 + 2e-8 + 3e-2s + ... = 1

(1 - e-s)2

e s

-Ctrkt)) = 8(1 - e-8)

23. Find C-1 -
e-8

for (a) r , 1, (b) r = 1.
s(1 - re-8)

(a) By the binomial formula,

e-s
s(1 - re-8)

... )e8s (1 + re-8 + r2e-2s +

e_S + re-2s + r2e-2s
8 8 8

= 'u(t -1) + rV(t - 2) + r2 u(t - 3) +

[t]
Thus {8(1 a re-8) } = F(t) = k1 rk

if t? 1, and 0 if t < 1.

If n t < n + 1, (1) becomes if r ' 1,

r + r2 + ... + rn = r(rn - 1)

T--1

(b) If r = 1 we find that F(t) = n, n < t < n + 1. This agrees with Problem 22.

24. Solve the difference equation

an+2 - Tan+1 + 10an = 16n, ao = 6, a l = 2

The given equation can be written

Y(t + 2) - 7Y(t + 1) + 10Y(t) = F(t)

w h e r e Y(t) = a., F(t) = 16n for n s t < n + 1, n = 0,1, 2, ... .

Using Problems 17 and 22, the Laplace transform of (1) is

(1)

(2)

e2a y(8) _ es(1 - e-8)(6e8 + 2) - 7e8 y(8) + 42e8(1$ a-s) + l0y(8) = s 1 6e

es

( 8)
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Then y(8) = es(1 - e-8)(6es + 2) 42e8(1 - e-8) + 16e-8

8(e8 - 5)(e$ - 2) s(e8 - 5)(e8 - 2) s(1 - e-8)(es - 5)(e8 - 2)

1-e-8l r 6es+2
e8 (

8 / { (es - 5)(es - 2)

1 - e-8) es42 8 J (e$ - 5)(e8 - 2)}

+
16 1

s {(e8 -1)(es - 5)(e8 - 2)

e8
(1 - e-81 f 32/3 - 14/3 }

8 / es-5 es-2

- 42 (1 - e-8 \ J 5/3 - 2/3 if
8 es-5 e8-2

+ 1 Jes4 + 4/3 - 16/3
S -1 es-5 es-2

C1 - e-) 1 32/3 - 14/3 1
8 j1-- 5e-8 1 - 2e-s

C1 - e-s) 70e-8 28e-8
s I 1 - 5e- 1 - 2e-81

+ 1 f 4e-s + (4/3)e-8 (16/3)e-s
s l-e-s 1-5e"8 1-2e-

Now by Problems 14 and 22, we find for n ? 1,

an = 32.5" - 14. 2" - 70 511-1 + 28 . 2n-1 + 4(n - 1) + 4.5(5n_,) - 16.2 (2n - 1)

e 4.2"-3.5n+4n+5

25. Express the differential equation

Y"(t) + x Y(t) = 0, Y(O) = 0, Y(1) = 0

where x is a constant, as an integral equation.

Method 1.

Letting Y"(t) = V(t), we find, if Y'(0) = c,

Y'(t) = f t V(u) du + c, Y(t) = f r (t - u) V(u) du + ct
0 0

Since Y(1) = 0, we must have

(1)

f t
(1- u) V(u) du + c = 0 or c = f (u -1) V(u) du

0 0
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Then from (1), we find

Y(t) _ .) t

t
(t - u) V(u) du + f (tu - t) V(u) du

0

t
(t - u) V(u) du + f (tu - t) V(u) du +

0

(t -1) u V(u) du + f (u -1) t V(u) du
.

0

(tu - t) V(u) du

t

This can be written Y(t) = f K(t, u) V(u) du
0

where K(t, u) = J ((tu --1)
1) t

u u>u
t
t . [Note that K(t, u) = K(u, t), i.e. K(t, u) is symmetric.]

Thus the required

It

integral equation is

V(t) + af K(t, u) V(u) dut
0

or

Method 2.

= 0

V(t) _ -Xf K(t, u) V(u) duI
0

Integrating both sides of the given differential equation from 0 to t, we find

Y'(t) - Y'(0) + Af Y(u) dut
0

Another integration from 0 to t yields

0

t

Y(t) - Y(0) - Y'(0) t + Af (t - u) Y(u) du = 0
0

Since Y(O) = 0, (1) becomes

Y(t) = Y'(0) t - Af (t - u) Y(u) dut
0

Letting t = 1 and using Y(1) = 0, we find from (2)

Y'(0) =

Thus (2) becomes

Y(t) = Af (t - tu) Y(u) duI

where K(t, u)

Aft (1- u) Y(u) du
0

Aft (t - u) Y(u) du
0

Aft (t - tu) Y(u) du + A f
t
(t - tu) Y(u) du - Aft (t - u) Y(u) du

0 t 0

0

0

-Xf K(t, u) Y(u) du
0

Af u(1 - t) Y(u) du + Af t(1- u) Y(u) dut t

(t-1)u u<t
(u-1)t u> t

(1)

(2)

The integral equations obtained here are examples of a Fredholm integral equation with a sym-
metric kernel.
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Supplementary Problems
INTEGRAL EQUATIONS

Convert each of the following differential equations into integral equations.

26. Y"(t) + 2Y'(t) - 8Y(t) = 5t2 - 3t, Y(0) = -2, Y'(0) = 3.

Ans. V(t) + f (2 - 8t + 8u) V(u) du = 5t2 + 21t - 22, V(t) = Y"(t)t
0

t
or Y(t) + f (2 - 8t + 8u) Y(u) du = -2 - t + 5t4/12 - t3

0

27. 2Y"(t) - 3Y'(t) - 2Y(t) = 4e-t + 2 cos t, Y(O) = 4, Y'(0) = -1.
t

Ans. 2V(t) + f (2u - 2t - 3) V(u) du = 4e-t + 2 cost + 5 - 2t, V(t) = Y11(t)
0

t

or 2Y(t) + f (2u - 2t - 3) Y(u) du = 6 - 10t + 4e-t - 2 cos t
0

28. Y"'(t) + 8Y(t) = 3 sin t + 2 cos t, Y(O) = 0, Y'(0) _ -1, Y"(0) = 2.

Ans. V(t) + 4 f (t - u)2 V(u) du = 3 sin t + 2 cos t - 4t2 + 4t, V(t) = Y"'(t)
0

t

or Y(t) + 4 f (t - u)2 Y(u) du = 5t2/2 + t - 3 + 3 cos t - 2 sin t
0

29. Y"(t) + cost Y(t) = e-t, Y(O) = -2, Y'(0) = 0.
t

Ans. V(t) + f (t - u) cost V(u) du = e-t + 2 cos t, V(t) = Y"(t)
0

or Y(t) + f (t - u) cos u Y(u) du = t - 3 + e-tt
0

30. Y"(t) - t Y'(t) + t2 Y(t) = 1 + t, Y(O) = 4, Y'(0) = 2.

Ans. V(t) + f (t3 - t - ut2) V(u) du = 1 + 3t - 4t2 - 2t3, V(t) = Y"(t)t
0

t
or Y(t) - f (t - 2u + tut - u3) Y(u) du = t2/2 + t3/6 + 2t + 4

0

31. Y°(t) - 2t Y"(t) + (1 - t2) Y(t) = 1 + 4t - 2t2 + t4, Y(O) = 1, Y'(0) = 0, Y"(0) = -2, Y"'(0) = 0.

Ans. V(t) + f {J(t - u)3 (1 - t2) - 2t(t - u)} V(u) du = 0, V(t) = YI (t)t

0

tor Y(t) - f {2u(t - u) + 2(t - u)2 + *(t - u)3 (1 - u2)) Y(u) du
0

3 t6 8= 1-t2+
3

+2 180+1680

Convert each of the following integral equations into differential equations and asso-
ciated conditions.

t
32. Y(t) = 5 cost + f (t - u) Y(u) du

0

Ans. Y"(t) - Y(t) = -5 sin t, Y(O) = 5, Y'(0) = 0
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t
33. Y(t) = t2 - 3t + 4 - 3f (t - u)2 Y(u) du

0

Ans. Y"'(t) + 6 Y(t) = 0, Y(O) = 4, Y'(0) _ -3, Y"(0) = 2

t

34. Y(t) +f {(t - u)2 + 4(t - u) - 3) Y(u) du = e-t
0

Ans. Y"'(t) - 3 Y"(t) + 4 Y'(t) + 2 Y(t) = -e-t, Y(0)= 1, Y'(0) = 2, Y"(0) = 3

35. Y(t) - f (t - u) sec t Y(u) du = tt
0

Ans. Y"(t) - 2 tan t Y'(t) - (1 + sec t) Y(t) = -t - 2 tan t, Y(0) = 0, Y'(0) = 1

1

36. Y(t) + f (t2 + 4t - ut - u - 2) Y(u) du = 0
0

Ans. Y"'(t) + (3t - 2) Y"(t) + (t + 10) Y'(t) + Y(t) = 0, Y(0) = 0, Y'(0) = 0, Y"(0) = 0

INTEGRAL EQUATIONS OF CONVOLUTION TYPE

t

37. Solve Y(t) = t + 2f cos (t - u) Y(u) du.
0

Ans. Y(t) = t + 2 + 2(t - 1)et

38. (a) Show that the integral equation

Y(t) = t + f (t - u)3 Y(u) du
0

has solution Y(t) = J (sin t + sinh t).

(b) Is the solution in (a) unique? Explain.

f t
39. Find the continuous solution of the integral equation

Ans. Y(t) = 1

Y(u) Y(t - u) du = 2 Y(t) + t - 2.
0

131

t
40. Show that the only solution of the integral equation f Y(u) sin (t - u) du = Y(t) is the trivial

solution Y(t) = 0. o

t
41. Discuss the solutions of the integral equation f Y(u) G(t - u) du = Y(t).

0

ABEL'S INTEGRAL EQUATION AND THE TAUTOCHRONE PROBLEM

42. Solve the integral equation t Y(u)f du = %Ft. Ana. Y(t) _
0 -t--u

t
43. Show that the solution of the integral equation f

(t
Y (u)1/3 du = t(1 + t) is 4T3 t1/3 (3t + 2).
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44. A circular wheel of radius a [see Fig. 4-3] rolls
on a straight line, taken to be the x axis. Show
that a fixed point 0' on its rim, originally in
contact with the line at 0 describes the cycloid

x = a(¢ - sin o), y = a(l - cos o)
shown dashed in Fig. 4-3.

45. Prove that the curve in the tautochrone prob-
lem, Page 118, is a cycloid and discuss the rela-
tionship to the curve of Problem 44. Fig. 4-3

[CHAP. 4

46. Show that the time required for the bead of Problems 8 and 9 to slide from the top P of the wire to
the bottom 0 [lowest point on the cycloid] is v a/q.

r

47. If 0 < a < 1, show that the solution of f Y(u) du = F(t), assuming F(0) = 0, is
o (t u)a

r

Y(t) = sin air f F'(u) (t - u)a-1 du
0

48. Discuss the solutions of the integral equation in Problem 47 if F(0) , 0. Illustrate your remarks by
considering

f t
Y(u)

0 (t - u)1/2
du = 1 + t

INTEGRO-DIFFERENTIAL EQUATIONS
1

49. Solve f Y(u) cos (t - u) du
0

Ana. Y(t) = 1 + j t2

Y'(t) if Y(0) = 1.

50. Solve f Y'(u) Y(t - u) du = 24t3 if Y(0) = 0.
0

Ana. Y(t) = -!- 16t3/2/'

51. (a) Show that the integral equation of Problem 49 can be expressed as the integral equation

1 + J (t - u) Y(u) cos (t - u) du = Y(t)
0

(b) Solve the integral equation in (a).

52. Solve f Y"(u) Y'(t - u) du = Y'(t) - Y(t) if Y(0) = Y'(0) = 0.
0

Ans. Y(t) = 0

DIFFERENCE AND DIFFERENTIAL-DIFFERENCE EQUATIONS

53. Solve Y(t) - 3Y(t - 1) + 2Y(t - 2) = 1 if Y(t) = 0, t < 0.

Ans. Y(t) = 2It] +2 - [t] - 3
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54. Show that the solution of Y(t) = 2Y(t - 1) + t if Y(t) = 0, t < 0 is

Y(t) 2(t-n)'2
n=o (n+2)!

55. Solve Y"(t) - Y(t -1) = F(t) where Y(t) = 0, Y'(t) = 0 for t:-50, and

F(t) = J0 t 0

2t t > 0
]t] (t - n)2n+a

Ans. Y(t) = 2 =o (2n + 3) !

56. Solve 3Y(t) - 5Y(t - 1) + 2Y(t - 2) = F(t) if Y(t) = 0, t < 0, and

F(t) = 0 t<0
t2 t>0

]t]
Ans. Y(t) = 1 {1 - (.)n+l}(t - n)2

n=0

57. Solve the difference equations

(a) 3an+2 - 5an+1 + 2a = 0 if ao = 1, a1 = 0.

(b) an+2 + 2an+1 - 3an = 0 if ao = 0, a1 = 1.

Ans. (a) 3(2/3)" - 2, (b) 1{1 - (-3)n}

58. The Fibonacci numb ore a0,a1, a2, ... are defined by the relation a,,+2 = an+l + an where
a1=1. (a) Find the first ten Fibonacci numbers. (b) Find a formula for a".

Ans. (a) 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 (b) a_ 2`/(l_V4}J

59. Solve the equation an+2 - 4an+ 1 + 4a" = 0 where ao = 1, a1= 4. Ans. an = 2n(n + 1)

60. Solve the equation a,,+2 - 2an+1 + 2an = 0 where ao = 0, a1=1.

Ans. a" = {(1 + i)" - (1- s)")/2i

61. (a) Solve an+a - 2an+2 - an+ 1 + 2an = 0 if ao = 0, a1=1, a2 =1. (b) Find alo.

Ana. (a) an = *{2" - (-1)"}, (b) alo = 341
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ao = 0,

62. (a) Show how a solution to an+2 - ban+1 + 8an = 0 can be obtained by assuming an = r" where
r is an unknown constant. (b) Use this method to solve Problems 57-61.

MISCELLANEOUS PROBLEMS

63. Show that the non-linear differential equation

Y11(t) + {Y(t)}2 = t sin t, Y(0) = 1, Y'(0) _ -1

can be written as the integral equation

Y(t) + f (t - u) {Y(u)}2 du = 8 - t - 2 cos t - t sin t
0

t
64. Solve f Y(u) Y(t - u) du = 2Y(t) + its - 2t.

a

Ana. Y(t) = t or Y(t) = 28(t) - t
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65. Express as an integral equation: Y"(t) - Y(t) = 3 cos t - sin t, Y(r) = 1, Y'(a) _ -2.
t

Ans. V(t) = 27+ 1 - 2t + 3 cos t - sin t + f (t - u) V(u) du, where V(t) = Y"(t)

t
66. Solve Y(t) = t + f Y(u) J1 (t - u) du.

0

Ans. Y(t) _ 4-(t2 + 1) f J0 (u) du + it J0 (t) - 1t2 J, (t)t
0

67. Find G(x) such that f G(u) G(x - u) du = 8(sin x - x cos x).
0

Ans. G(x) = ± 4 sin x

68. Solve f t
Y(u) Y(t - u) du = t + 2Y(t).

t tJ0(u) du or Y(t) = 2 8(t) - J1 (t) + f J0(u) duAns. Y(t) = J1(t) - J0,
0 0

69. Solve the following difference equations using Laplace transform methods.
(a) an+2 - 5an+1 + ban = 2n + 1, a0 = 0, a1 = 1.

(b) an+2+4an+1-5an = 24n - 8, a0=3, a1=-5.

Ans. (a) an = 2.3n - 5.2n + n + (b) an = 2n2 - 4n + 2 + (-5)n

70. Solve (a) an+2+2an+i+an = n+2, a0=0, a1=0.
(b) an+2 - 6an+1 + 5an = 2n, ao = 0, a1 = 0.

Ans. (a) an = 1(3n -1)(-1)n + 1(n + 1) (b) an = I + 5n - 2n

71. Solve an+3 - 2an+2 - an+1 + 2an = n2 + 211, a0 = 0, a1 = 1, a2 = 1.

Ans. an = l + in - *n3 + in 2n - s 2n - (-1)n

72. (a) Show how a particular solution to Problem 69(a) can be found by assuming a, = A + Bn where
A and B are unknown constants. (b) Using the result of part (a) and the method of Problem 62, show
how to obtain the solution of Problem 69(a). (c) How can the method indicated in parts (a) and (b) be
revised to enable solution of Problems 69(b), 70(a), 70(b) and 71.

't

73. Find all continuous functions F(t) for which J u F(u) cos (t - u) du = to-t - sin t.
Ans. F(t) = -2e-t

74. Show that the non-linear differential equation

Y"(t) + 2Y'(t) = Y3(t), Y(0) = 0, Y(1) = 0

can be written as the integral equations

Y(t) = 1(2t - 2) Y(u) du + f 2t Y(u) du + f K(t, u) Y3(u) du

or Y(t) = f (2 - 2t)e2(u-t) Y(u) du - f 1 2te2cu-t) Y(u) du + J' 1t e-2t K(t, u) Y3(u) du
o t 0

where K(t, u) = u(t -1) u < t
t(u-1) u>t'
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75. Solve for Y(t): 8Y(t) - 12Y(t - 1) + 4Y(t - 2) = F(t) where Y(t) = 0 for t < 0 and

F(t) = t<0
t>0

[t]
Ans. Y(t) _ *e-t 1 + Y, (2 - 2--)en

n=0

76. If Y;, (t) = a{Yn-1(t) - Y" (t)} n = 1,2,3,...

Yo(t) = -,0 Y0(t)

where Yn (0) = 0 for n = 1, 2, 3, ... , Yo (0) = 1 and 8 is a constant, find Yn (t).

Ana. Y" (t) _
('Ot)" a-st

n!

77. Work Problem 76 if the first equation is replaced by

Y"(t) = Qn{Yn-1 (t) - Yn (t)} n = 1,2,3,...

where Q1 62, Q3, ... are constants.

78. Give a direct proof of the tautochrone property of the cycloid.

79. The brachistochrone problem is that of finding the shape of a frictionless wire in a vertical plane, as
shown in Fig. 4-1, Page 118, such that a bead placed at P will slide to 0 in the shortest time. The
solution of this problem is the cycloid as in Fig. 4-2, Page 120. Demonstrate this property for the
particular cases of (a) a straight line and (b) a parabola joining points 0 and P.

80. Find the shape of a frictionless wire in a vertical plane such that a bead placed on it will descend to
the lowest point in a time proportional to the vertical component of its distance from the lowest point.
Ans. x = a(1- cos3 B), y = ! a sine e



Chapter 5

ex Variable Theory

THE COMPLEX NUMBER SYSTEM

Since there is no real number x which satisfies the polynomial equation X2+1 = 0
or similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a+ bi where a and b are
real numbers called the real and imaginary parts, and i = is called the imaginary
unit. Two complex numbers a + bi and c + di are equal if and only if a = c and b = d. We
can consider real numbers as a subset of the set of complex numbers with b = 0. The
complex number 0 + Oi corresponds to the real number 0.

The absolute value or modulus of a + bi is defined as Ja + bil = a2 + b2. The complex
conjugate of a+ bi is defined as a- bi. The complex conjugate of the complex number z
is often indicated by z or z*.

In performing operations with complex numbers we can operate as in the algebra of
real numbers, replacing i2 by -1 when it occurs. Inequalities for complex numbers are
not defined.

From the point of view of an axiomatic foundation of complex numbers, it is desirable
to treat a complex number as an ordered pair (a, b) of real numbers a and b subject to
certain operational rules which turn out to be equivalent to those above. For example, we
define (a, b) + (c, d) _ (a + c, b + d), (a, b)(c, d) = (ac - bd, ad + bc), m(a, b) = (ma, mb),
etc. We then find that (a, b) = a(1, 0) + b(0,1) and we associate this with a + bi, where
i is the symbol for (0, 1).

POLAR FORM OF COMPLEX NUMBERS

If real scales are chosen on two mutually perpendicular axes X'OX and Y'OY (the x
and y axes) as in Fig. 5-1 below, we can locate any point in the plane determined by these
lines by the ordered pair of numbers (x, y) called rectangular coordinates of the point.
Examples of the location of such points are indicated by P, Q, R, S and T in Fig. 5-1.

Y14

Q(-3,
3)

i
3

+2

+1

X' -4 -3 -2 -1 O i

P(3,4)

T(2.5, 0)

i 3 4 X

R(-2.5, -1.5) -2I S(2,-2)
Y,t -3

Fig. 5-1 Fig. 5-2
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= r1(cos 0, + i sin O1) and z2 = X2 + iy2 = r2 (cos 02 + i sin 02),

Since a complex number x + iy can be considered as an ordered pair (x, y), we can
represent such numbers by points in an xy plane called the complex plane or Argand
diagram. Referring to Fig. 5-2 above we see that

x = r cos 0, y = r sin 0 (1)

where r = VFx2 -+y2 = Ix + iyj and 0, called the amplitude or argument, is the angle which
line OP makes with the positive x axis OX. It follows that

z = x + iy = r(cos 0 + i sin 0) (2)

called the polar form of the complex number, where r and 0 are called polar coordinates.
It is sometimes convenient to write cis 0 instead of cos 0 + i sin 0.

OPERATIONS IN POLAR FORM. DE MOIVRE'S THEOREM

If zl = xl + iyl
we can show that

z1z2

z,

Z2

r,r2 {cos (01 + 02) + i sin (01 + 02)}

r2 {cos (01- 02) + i sin (01- 02)}

zn = {r(cos 0 + i sin 0)}n = rn(cos no + i sin n0)

where n is any real number. Equation (5) is often called De Moivre's theorem.

In terms of Euler's formula
eio = cos 0 + i sin 0

we can write (3), (4) and (5) in the suggestive forms

zl r,001 - r1 e'(01-02)
Z2 r2eie2 r2

zn = (rei°)n = rn ein°

ROOTS OF COMPLEX NUMBERS

If n is a positive integer, we have using De Moivre's theorem,

{r(cos 0 + i sin 0)}'/n

or equivalently

z1z2 = (riei°1)(r2ei°a) = rlr2ei(e1+02)
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(3)

(4)

(5)

(6)

(7)

(8)

r'/ft {cos (0 +'2k7r) + i sin (0+n2k7r)I k = 0, 1, 2, 3, ... (9)

xi/n = (reie)1/n = (e"+2ka)}1/n = r'/n ei(e+2kr)/n (10)

from which it follows that there are n different values for z'/n, z760. Extensions are
easily made to xm/n.
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FUNCTIONS

If to each of a set of complex numbers which a variable z may assume there corresponds
one or more values of a variable w, then 2v is called a function of the complex variable z,
written w = f (z).

A function is single-valued if for each value of z there corresponds only one value
_of w; otherwise it is multiple-valued or many-valued. In general we can write w = f (z)

u(x, y) + i v(x, y), where u and v are real functions of x and y.

Example. W = z2 = (x + iy)2 = x2 - y2 + 2ixy = u + iv so that u(x, y) = x2 - y2, v(x, y) = 2xy.
These are called the real and imaginary parts of w = z2 respectively.

Unless otherwise specified we shall assume that f (z) is single-valued. A function which
is multiple-valued can be considered as a collection of single-valued functions.

LIMITS AND CONTINUITY

Definitions of limits and continuity for functions of a complex variable are analogous
to those for a real variable. Thus f (z) is said to have the limit l as z approaches zo if,
given any e > 0, there exists a 8 > 0 such that !f (z) - 11 < e whenever 0 < 1z - zol < 8.

Similarly, f (z) is said to be continuous at zn if, given any e > 0, there exists a 8 > 0
such that If(z) - f (zo) I < e whenever Iz - zof < 8. Alternatively, f (z) is continuous at zo
if lira f (z) = f(zo).

z-+zo

DERIVATIVES

If f (z) is single-valued in some region of the z plane the derivative of f (z), denoted by
f'(z), is defined as

lim A z + oz) - A z)
Gz-.0 AZ

provided the limit exists independent of the manner in which Oz- 0. If the limit (11)
exists for z = zo, then f (z) is called differentiable at zo. If the limit exists for all z such that
Iz - zpl < 8 for some 8 > 0, then f (z) is called analytic at zo. If the limit exists for all z in
a region q, then f (z) is called analytic in R. In order to be analytic, f (z) must be single-
valued and continuous. The converse, however, is not necessarily true.

We define elementary functions of a complex variable by a natural extension of the
corresponding functions of a real variable. Where series expansions for real functions
f (x) exist, we can use as definition the series with x replaced by z.

Example 1. We define ea = 1 + z + 2
!

+ 3! + , sin z
z3 z5 z7

8 ! T! T!-
+ ...

cos z
2

= 1 - Lz + 4 - 6s + From these we can show that

ex (cos y + i sin y), as well as numerous other relations.

ez = ex+ia =

Example 2. We define ab as ebIna even when a and b are complex numbers. Since e2kai = 1, it fol-
lows that eie = ei(e+2k,r) and we define In z = In (rein) = In r + i(e + 2kar). Thus In z
is a many-valued function. The various single-valued functions of which this many-
valued function is composed are called its branches.
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Rules for differentiating functions of a complex variable are much the same as for

those of real variables. Thus -(z')(z") = nz° 1, dz (sin z) = cos z, etc.

CAUCHY-RIEMANN EQUATIONS

A necessary condition that w = f (z) = u(x, y) + i v(x, y) be analytic in a region C
is that u and v satisfy the Cauchy-Riemann equations

au _ av au _ _av
ax

_
ay ' ay ax

(12)

(see Problem 12). If the partial derivatives in (12) are continuous in G, the equations are
sufficient conditions that f (z) be analytic in iR.

If the second derivatives of u and v with respect to x and y exist and are continuous,
we find by differentiating (12) that

2 2 2

(13)
ax2 + aye

0,
ax2 + ay2

= 0

Thus the real and imaginary parts satisfy Laplace's equation in two dimensions. Func-
tions satisfying Laplace's equation are called harmonic functions.

LINE INTEGRALS

Let C be a curve in the xy plane joining points (xi, y,) and (X2, y2). The integral

J Pdx +Qdy or
C

where P and Q are functions of x and y, is called a line integral along curve C. This is a
generalization of the integral of elementary calculus to curves. As in elementary calculus
it can be defined as the limit of a sum.

Two important properties of line integrals are:

1.

2.

f (x21 y2) Pdx+Qdy = -f Pdx+Qdy
(x2,y2)

If (x3, y3) is any other point on C, then

(X21 V2)
(xa, ya) (x21 y2)

J Pdx+Qdy = f Pdx+Qdy + f Pdx+Qdy
(x1,yt) US, Y3)

If C is a simple closed curve (one which does not cross itself anywhere) as in Fig. 5-3,
the line integral around C, traversed in the positive or counterclockwise direction, is de-
noted by

5Pdx + Qdy

f
(xz, Y2)

Pdx+Qdy

For evaluation of line integrals, see Problem 15.
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GREEN'S THEOREM IN THE PLANE

Let C be a simple closed curve bounding a re-
gion `R [see Fig. 5-3]. Suppose that P, Q and their
first partial derivatives with respect to x and y are
continuous in c& and on C. Then we have

P dx + Q dy = Jj' (NQ ay) dx dy
fC-

1k

which is often called Green's theorem in the plane.

INTEGRALS

Fig. 5-3

If f (z) is defined, single-valued and continuous in a region R, we define the integral of
f (z) along some path C in `R from point z1 to point z2, where zi = x, + iyl, z2 = x2 + 42, as

(x2,52) (x2.52) (x2.52)

f f (z) dz = f (u + iv)(dx + i dy) = f u dx - v dy + if v dx + u dy
C (x1,51) (x1.51) (x1.51)

With this definition the integral of a function of a complex variable can be made to depend
on line integrals. An alternative definition based on the limit of a sum, as for functions
of a real variable, can also be formulated and turns out to be equivalent to the one above.

The rules for complex integration are similar to those for real integrals. An im-
portant result is

fc f (z) dz f If(z)I Idzl -` Mf ds = ML (14)
C C

where M is an upper bound of I f (z) I on C, i.e. If (z) I < M, and L is the length of the path C.

CAUCHY'S THEOREM

Let C be a simple closed curve. If f (z) is analytic within the region bounded by C
as well as on C, then we have Cauchy's theorem that

See Problem 19.
§f(z)dz = 0 (15)

Z2

Expressed in another way, (15) is equivalent to the statement that f f (z) dz has a
z1

value independent of the path joining zi and z2. Such integrals can be evaluated as
F(z2) - F(zi) where F'(z) = f (z).

Example. Since f (z) = 2z is analytic everywhere, we have for any simple closed curve C

2z dz = 0
C

1+i 1+i
Also, 2 2z dz = z2 = (1 + i)2 - (2i)2 = 2i + 4

2i 2i
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CAUCHY'S INTEGRAL FORMULAS

If f (z) is analytic within and on a simple closed curve C and a is any point interior
to C. then

a 1 f f (z) dzf() = 2,ri z-a
where C is traversed in the positive (counterclockwise) sense.

Also, the nth derivative of f (z) at z = a is given by`

f(n) (a) = tai c (z
f(a)n+1 dz

(16)

(17)

These are called Cauchy's integral formulas. They are quite remarkable because they
show that if the function f (z) is known on the closed curve C then it is also known within C,
and the various derivatives at points within C can be calculated. Thus if a function of a
complex variable has a first derivative, it has all higher derivatives as well. This of course
is not necessarily true for functions of real variables.

TAYLOR'S SERIES

Let f (z) be analytic inside and on a circle having its center at z = a. Then for all
points z in the circle we have the Taylor series representation of f (z) given by

f(z) = f(a) + f'(a)(z - a) + f 2(a) (z - a)2 + f'3(a) (z - a)3 + . (18)

See Problem 29.

SINGULAR POINTS

A singular point of a function f(z) is a value of z at which f(z) fails to be analytic.
If f (z) is analytic everywhere in some region except at an interior point z = a, we call
z =a an isolated singularity of f (z).

Example. If f (z) = 1
(z 3)2' then z = 3 is an isolated singularity of f(z).

POLES

If f(z) = (z4,(za)n, p(a) 0, where 4,(z) is analytic everywhere in a region including

z = a, and if n is a positive integer, then f (z) has an isolated singularity at z = a which is
called a pole of order n. If n = 1, the pole is often called a simple pole; if n = 2 it is called
a double pole, etc.

Example 1. f(z) = z
(z - 3)2 (z + 1)

has two singularities: a pole of order 2 or double pole at z = 3,

and a pole of order 1 or simple pole at z = -1.

Example 2. f(z) = 3z -1 3z -1 has two simple poles atz2+4 (z+2i)(z-2i)

A function can have other types of singularities besides poles.

has a branch point at z = 0 (see Problem 45). The function

at z = 0. However, due to the fact that lim sin z

removable singularity. Z-0 z

z=±2i.

For example, f (z) = Vi

f (z) = sin
m z has a singularity

is finite, we call such a singularity a
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LAURENT'S SERIES

If f(z) has a pole of order n at z =a but is analytic at every other point inside and
on a circle C with center at a, then (z -a)" f (z) is analytic at all points inside and on C
and has a Taylor series about z = a so that

f(z) =
a-" + a-n+I + + a-1 + ao + ai(z-a) + a2(z-a)2 + . (19)

(z - a)" (z - a)"-' z - a

This is called a Laurent series for f(z). The part ao + ai(z - a) + a2(z - a)2 + is called
the analytic part, while the remainder consisting of inverse powers of z - a is called the

principal part. More generally, we refer to the series I ak (z - a)k as a Laurent series
k=-

where the terms with k < 0 constitute the principal part. A function which is analytic in a
region bounded by two concentric circles having center at z = a can always be expanded
into such a Laurent series (see Problem 119).

It is possible to define various types of singularities of a function f (z) from its Laurent
series. For example, when the principal part of a Laurent series has a finite number of
terms and a , 0 while a-" - ,, a- - 2, , .. are all zero, then z = a is a pole of order n.
If the principal part has infinitely many non-zero terms, z =a is called an essential
singularity or sometimes a pole of infinite order.

Example. The function ellz + I + 21x2 + has an essential singularity at z = 0.

RESIDUES

The coefficients in (19) can be obtained in the customary manner by writing the coeffi-
cients for the Taylor series corresponding to (z -a)" f(z). In further developments, the
coefficient a-1, called the residue of f (z) at the pole z = a, is of considerable importance.
It can be found from the formula

a-1 = lim 1
d "-1 {(z-a)"f(z)) (20)Z-+a (n -1) . dz

where n is the order of the pole. For simple poles the calculation of the residue is of
particular simplicity since it reduces to

a-, = lim (z - a) f (z)
z- a

RESIDUE THEOREM

(21)

If f (z) is analytic in a region `R except for a pole of order n at z =a and if C is any
simple closed curve in `R containing z = a, then f (z) has the form (19). Integrating (19),
using the fact that

dz
c (z - a)"

0 if n 1

2iri if n=1 (22)

(see Problem 21), it follows that

§f(z)dz = 27ria-1 (21)

i.e. the integral of f (z) around a closed path enclosing a single pole of f (z) is 2,ri times the
residue at the pole.
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More generally, we have the following important

Theorem. If f (z) is analytic within and on the boundary C of a region `R except at a
finite number of poles a, b, c, ... within 9Z, having residues a-,, b-,, c-,, ... respectively,
then

f(z) dz = 27ri(a-, + b-, + c-, + -) (24)

i.e. the integral of f(z) is 27ti times the sum of the residues of f(z) at the poles enclosed by C.
Cauchy's theorem and integral formulas are special cases of this result which we call the
residue theorem.

EVALUATION OF DEFINITE INTEGRALS

The evaluation of various definite integrals can often be achieved by using the residue
theorem together with a suitable function f (z) and a suitable path or contour C, the choice
of which may require great ingenuity. The following types are most common in practice.

1. f F(x) dx, F(x) is an even function.
0

(z) dz along a contour C consisting of the line along the x axisConsider fc F

from -R to +R and the semi-circle above the x axis having this line as diameter.
Then let R - oo. See Problems 37, 38.

2. f 2n

G(sin 0, cos 0) do, G is a rational function of sin 0 and cos 0.
0

,
Let z = 0. Then sin 0 = z

2i , cos 0 = z
2z

and dz = iete do or do =

dz/iz. The given integral is equivalent to f F(z) dz where C is the unit circle
c

with center at the origin. See Problems 39, 40.

3. f F(x) f cos mxI dx, F(x) is a rational function.lsin mx

Here we consider f F(z) eimz dz where C is the same contour as that in Type 1.
See Problem 42. C

4. Miscellaneous integrals involving particular contours. See Problems 43, 46.
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Solved Problems

[CHAP. 5

COMPLEX NUMBERS

1. Perform the indicated operations.
(a) (4-2i)+(-6+5i) = 4-2i-6+5i = 4-6+(-2+5)i = -2+3i
(b) (-7+3i)-(2-4i) = -7+3i-2+4i = -9+7i
(c) (3 - 2i)(1 + 3i) = 3(1 + 3i) - 2i(1 + 3i) = 3+9i-2i-6i2 = 3+9i-2i+6 = 9+7i

(d) -5+5i = -5+5i 4+3i = (-5+51)(4+3i) _ -20-15i+20i+15i2
4-3i 4-3i *4+3i 16-9i2 16+9

-35 + 5i __ 5(-7 + i) = -7 1 .
25 25

-
5

+
5

(e)

i + i2 + i3 + i4 + i5
1+i

i - 1 + (i2)(i) + (i2)2 + (12)2i_ i -1- i + 1 + i
1+i - 1+i

i-i2 i+1 1 1.
1+i'1-i 1-i2 2 2 +21

(f) 13 - 4il 14 + 3iI = (3)2-+(-4)2 (4)2 + (3)2 = (5)(5) = 25

(g)
1 1 1_( 1-3i 1+3i

1+3i 1-3i 1-9i2 1-9i2
3
5101 I

(0)2 + (_ )2

2. If z1 and z2 are two complex numbers, prove that IZ1Z21 = Jz11 1x21.

Let zl = x1 + 41, z2 = x2 + iy2. Then

Iz1z2I I (x1 + iyl)(x2 + iy2) I = I xlxs - YIY2 + i(x1y2 + x2y1) I

(x1 x2 y1?/2)2 (xly2 + x2y1)2 = xi x2 + yl t'2 + xi t'2 + x2 y?

(xi + yi)(x2 +t'2} = xi + yi x2 +y2 = Ixl + it'll Ix2 + 421

3. Solve z3 - 2z - 4 = 0.

= Iz11 Iz21

The possible rational roots are ±1, -}2, --*4. By trial we find z = 2 is a root. Then the given equa-
tion can be written (z - 2)(z2 + 2z + 2) = 0. The solutions to the quadratic equation axe + bz + c = 0

-b ± b2 - 4ac -2 ± 4 - 8 -2are z = 2a . For a =1. b = 2, c = 2 this gives z = 2 = 2 =
-2±2i

2
= -1 - i.

The set of solutions is 2, -1 + i, -1 - i.

POLAR FORM OF COMPLEX NUMBERS

4. Express in polar form (a)3+3i, (b) -1 + ,i, (c) -1, (d)-2-2V3-i. [See Fig. 5-4.]

(a) Amplitude B = 450 = 7/4 radians. Modulus r = V-32+ 32 = 3/. Then

3 + 3i = r(cos 9 + i sin s) = 3' (cos 7/4 + i sin 7/4) = 3/ cis 7/4 = 3ieri/4

(b) Amplitude a = 1201 = 27/3 radians. Modulus r = (-1)2 + (V)2 = = 2. Then

-1 + fii = 2(cos 27/3 + i sin 27/3) = 2 cis 27/3 = 2e2ai/3
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y
240°

-2

120°

L x -+

Fig. 5-4

1800

(c)

(c) Amplitude e = 180° = it radians. Modulus r = (-1)2 + (0)2 = 1. Then

-1 = 1(cos it + i sin 7) = cis 7r

x

= eni

N

(d)

(d) Amplitude e = 240° = 4rr/3 radians. Modulus r (-2)2 + (-2V )2 = 4. Then

-2 - 2V3- = 4(cos 47/3 + i sin 4T/3) = 4 cis 4,r/3 = 4e4ari/3

5. Evaluate (a) (-1 + V'3-i)10, (b) (-1 + i)1/3.

(a) By Problem 4(b) and De Moivre's theorem,

=(-1 + Fur [2(cos 2w-/3 + i sin 27r/3)] 10

I
-1

= 210(cos 20x/3 + i sin 20ir/3)

1024[cos (2vr/3 + 67) + i sin (2ir/3 + 67)] _

1024(-4 + -Nr3_z) = -512 + 512'i
1024(cos 2Tr/3 + i sin 2ir/3)

. (b) -1 + i = (cos 135° + i sin 135°) = NF2 [cos (135° + k 360°) + i sin (135° + k 360°)]

Then

(-1 + i)1/3 = (/)1/3 [cos (135° +
3

k 360°)
L \ l

+ isin(135° +
3

k

f (cos45° + isin45°),

,2_(,,s165- + i sin 165°),
s
/(cos 285° + i sin 285°)

The results for k = 3,4,5, 6, 7, ... give repetitions of these.
These complex roots are represented geometrically in the com-
plex plane by points P1, P2, P3 on the circle of Fig. 5-5.

6. Determine the locus represented by

(a) Iz-21 = 3, (b) Iz-21 = Iz+41, (c) Iz-31 + Iz+31 = 10.

Fig. 5-5
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.x

(a) Method 1. Iz - 21 = Ix + iy - 21 = Ix - 2 + iyj _ (x - 2)2 + y2 = 3 or (x - 2)2 + y2 = 9, a circle

with center at (2, 0) and radius 3.

Method 2. ]z - 21 is the distance between the complex numbers z = x + iy and 2 + Oi. If this
distance is always 3, the locus is a circle of radius 3 with center at 2 + Oi or (2, 0).
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(b) Method 1. Ix + iy - 21 = Ix + iy + 41 or (x - 2)2 + y2 = (x + 4)2 +
x = -1, a straight line.

(c)

[CHAP. 5

Squaring, we find

Method 2. The locus is such that the distances from any point on it to (2, 0) and (-4, 0) are equal.
Thus the locus is the perpendicular bisector of the line joining (2, 0) and (-4, 0), or x = -1.

Method 1. The locus is given by (x - 3)2 + y2 + %F(x + 3)2 + y2 = 10 or (x - 3)2 + y2 =
10 - (x + 3)2 + y2. Squaring and simplifying, 25 + 3x = 5%1(x + 3)2 + y2. Squaring and

2
simplifying again yields

x2

25 +
y16

= 1, an ellipse with semi-major and semi-minor axes of
lengths 5 and 4 respectively.

Method E. The locus is such that the sum of the distances from any point on it to (3, 0) and
(-3, 0) is 10. Thus the locus is an ellipse whose foci are at (-3, 0) and (3, 0) and whose major
axis has length 10.

7. Determine the region in the z plane represented by each of the following.

(a) IzI < 1.

Interior of a circle of radius 1. See Fig. 5-6(a) below.

(b) 1 < Iz + 2i1 < 2.
Iz + 2i1 is the distance from z to -2i, so that 1z + 2i1 = 1 is a circle of radius 1 with center

at -2i, i.e. (0, -2); and Iz + 2il = 2 is a circle of radius 2 with center at -2i." Then 1 < Iz + 2i1 : 2
represents the region exterior to Iz + 2il = 1 but interior to or on Iz + 2il = 2. See Fig. 5-6(b)
below.

(c) 7r/3 < arg z < 7r/2.
Note that arg z = e, where z = re{e. The required region is the infinite region bounded

by the lines o = it/3 and o = 7r/2, including these lines. See Fig. 5-6(c) below.

(a) (b)

Fig. 5-6

x

(c)

8. Express each function in the form u(x, y) + i v(x, y), where u and v are real:

(a) z3, (b) 1/(1- z), (c) e3z, (d) In z.

(a) w = z3 = (x + iy)3 = x3 + 3x2(iy) + 3x(iy)2 + (iy)3 = x3 + 3ix2y - 3xy2 - iy3

x3 - 3xy2 + i(3x2y - y3)

Then u(x, y) = x3 - 3xy2, v(x, y) = 3x2y - y3.

(b) w =
1 _ 1 __ 1 1-x+iy - 1-x+iy

1-z 1-(x+iy) 1-x-iy 1-x+iy (1-x)2+y2

Then u(x, Y) = (1
1

x)2
+
x

y2 , V* Y) _ (1- x)2
y

+
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(d) In z = In (reio) = In r + ie = In x2 + y2 + i tan 1 y/x and

u = IIn(x2+'y2), v = tan-1 y/x

Note that In z is a multiple-valued function (in this case it is infinitely many-valued) since
e can be increased by any multiple of 2r,. The principal value of the logarithm is defined as that
value for which 0 0 < 21r and is called the principal branch of In z.

9. Prove (a) sin (x + iy) = sin x cosh y + i cos x sinh y

(b) cos (x + iy) = cos x cosh y - i sin x sinh y.

We use the relations

e3z = e3(x+iy) = e3x e3iy = e3x (cos 3y + i sin 3y) and u = e3x cos 3y, v = e3x sin 3y

2i {e-y (cos x + i sin x) - ey (cos x - i sin x)}

eiz =

e''z - e-iz = eiz +e-izsin z -
2i

cos z
2

Then

sin z
ei(x+iv) - e-i(x+iu) _ eix-y - e-ix+y

sin (x + iv) = 2i 2i

ey + e-y\ 1ey - e_y
(sin x) 2 ) + i(cos x)1 2 ) = sin x cosh y + i cos x sinh y

Similarly,

cos z cos (x + iy) =

cos z + i sin z, e-iz = cos z - i sin z, from which

ei(x+iY) + e-i(x+iy)
2

= --{eix-y + e-ix + y} = J{e-y (cos x + i sin x) + ell (cos x - i sin x)}

(cosx)Cey 2e-y J - i(sinx)(ey 2e-yJ = cos x cosh y - i sin x sinh y

DERIVATIVES. CAUCHY-RIEMANN EQUATIONS

10. Prove that dz z, where z is the conjugate of z, does not exist anywhere.

By definition, dz f(z) = Alzmo
1(z + AAzz - f(z) if this limit exists independent of the manner

in which Az = Ax + i Ay approaches zero. Then

d z = lim z+Az - x = lim
x+iy+Ax+iAy - x+iy

T Z_ AZ nx-.o AX + iAy
Ay-+o

lim
AX-0

X - iy + Ax - iAy - (x - iy)
Ax + i Ay lim Ax - iAy

Ax-. o AX + i Ay
Ay-+0 ay-+0

If Ay = 0, the required limit is lim Ox = 1.
AX-0 AX

If Ax = 0, the required limit is lim
-z

Ay = -1.Ay-0 iAy

These two possible approaches show that the limit depends on the manner in which Az - 0, so
that the derivative does not exist; i.e. 2 is non-analytic anywhere.
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11. (a) If w = f (z) = 1 +
z , find dw . (b) Determine where w is non-analytic.

z
(a) Method 1.

1+(z+Az) _ 1+z
dw lim 1 - (z + zz) 1-Z
dz lz-+0 Oz

2
&mo (1- z - 9z)(1- z)

2
)2

provided z # 1, independent of the manner in which Az - 0.(1 - x

Method 2. The usual rules of differentiation apply provided z 1. Thus by the quotient rule for
differentiation,

d 1 + z) z) d (1 + z) - (1 + z)
dz (1

z) (1 - z)(1) - (1 + z)(-1) _ 2
dz C1-z (1-z)2 (1-z)2 (1-z)2

(b) The function is analytic everywhere except at z = 1, where the derivative does not exist; i.e. the
function is non-analytic at z - 1.

12. Prove that a necessary condition for w = f (z) = u(x, y) + i v(x, y) to be analytic in
a region is that the Cauchy-Riemann equations au = av , au = - av be satisfied in
the region. ax ay ay ax

Since f (z) = f (x + iy) = u(x, y) + i v(x, y), we have

f (z + Az) = f [x + Ax + i(y + Jy)l = u(x + Ax, y + Ay) + i v(x + Ax, y + Dy)

Then

lim f (z + Az) - f (z) = Jim u(x + Ox, y + Ay) - u(x, y) + i{v(x + Ox, y + Ay) - v(x, y)}
ez-.o Oz ox-.o Ox + iDy

Ay = 0, the required limit is
1

lim u(x + 0x,1!) - u(x, y) + v(x + Ox, y) - v(x, y) t
Ox-.o Ax Ax I

au av

ax + sax

If Ox = 0, the required limit is

lim u(x, y + Ay) - u(x, y) + f v(x, y + Ay) - y(x, y) = 1 au + av
AY-0 iDy Ay

l

I ay ay

If the derivative is to exist, these two special limits must be equal, i.e.,

au + i av = 1 au + av = _ i au + av
ax ax 2 ay ay ay ay

so that we must have au _ av av
ax ay

and
ax

au
ay

Conversely, we can prove that if the first partial derivatives of u and v with respect to x and y
are continuous in a region, then the Cauchy-Riemann equations provide sufficient conditions for f (z)
to be analytic.

13. (a) If f (z) = u(x, y) + i v(x, y) is analytic in a region %, prove that the one parameter
families of curves u(x, y) = C, and v(x, y) = C2 are orthogonal families. (b) Illustrate
by using f (Z) = z2.

(a) Consider any two particular members of these families u(x, y) = uo, v(x, y) = vo which intersect
at the point (x0, yo)
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Since du = ux dx + uy dy = 0, we have dy ux
.dx uy

Also since dv = vx dx + vy dy = 0, d = -
vx

dx vy

When evaluated at (xo, yo), these repre-
sent respectively the slopes of the two

curves at this point of intersection.

By the Cauchy-Riemann equations,
ux = v.y, uy = -vx, we have the product of
the slopes at the point (xo, yo) equal to

(-Uuyx)
vy) = -1

so that any two members of the respective
families are orthogonal, and thus the two
families are orthogonal.

(b) If f (z) = z2, then u = x2 - y2, v = 2xy. The
graphs of several members of x2 - y2 = C1,
2xy = C2 are shown in Fig. 5-7. Fig. 5-7
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-- x

14. In aerodynamics and fluid mechanics, the functions ¢ and y in f (z) _ 4. + iyp, where
f(z) is analytic, are called the velocity potential and stream function respectively. If
0 = x2 + 4x - y2 + 2y, (a) find 0 and (b) find f (z).

(a,) By the Cauchy-Riemann equations, Lo = aO
,

a,k a Thenax ay ax ay

(1) a4 = 2x + 4 (2) ax = 2y - 2

Method 1. Integrating (1), ¢ = 2xy + 4y + F(x).

Integrating (2), ¢ = 2xy - 2x + G(y).

These are identical if F(x) = -2x + c, G(y) = 4y + c where c is any real constant. Thus
,y = 2xy i- 4y - 2x + c.

Method 2.

Integrating (1), ¢ = 2xy + 4y + F(x). Then substituting in (2), 2y + F'(x) = 2y - 2 or
F'(x) _ -2 and F(x) _ -2x + c. Hence ¢ = 2xy + 4y - 2x + c.

(b) From (a),
f (Z) = 0 + jV, = x2 + 4x - y2 + 2y + i(2xy + 4y - 2x + c)

(x2 - y2 + 2ixy) + 4(x + iy) - 2i(x + iy) + is

= z2 + 4z - 2iz + cl

where c, is a pure imaginary constant.

This can also be accomplished by noting that z = x + iy, 2 = x - iy so that x
= Z-2y The result is then obtained by substitution; the terms involving 2 drop out.2i
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LINE INTEGRALS

COMPLEX VARIABLE THEORY [CHAP. 5

(1,2)

2 y) dx + (y2 + x) dy along (a) a straight line from (0, 1) to (1, 2),15. Evaluate fi) (x(0,(b)
straight lines from (0, 1) to (1, 1) and then from (1, 1) to (1, 2), (c) the parabola

x=t, y=t2+1.
(a) An equation for the line joining (0,1) and (1, 2) in the xy plane is y = x + 1. Then dy = dx and

the line integral equals
1

{x2 - (x + 1)) dx + {(x + 1)2 + x} dx = f (2x2 + 2x) dx = 5/3

(b) Along.the straight line from (0, 1) to (1, 1), y = 1, dy = 0 and the line integral equals

f 1 1

_ (x2 -1) dx + (1 + x)(0) = f (x2 -1) dx = -2/3
x-0 0

(c)

Along the straight line from (1, 1) to (1, 2), x = 1, dx = 0 and the line integral equals

f 2

(1 - y)(0) + (y2 + 1) dy = f 2

(y2 + 1) dy = 10/3
2=1 1

Then the required value = -2/3 + 10/3 = 8/3.

Since t = 0 at (0, 1) and t = 1 at (1, 2), the line integral equals

f
1

t=O
{t2 - (t2 + 1)} dt + {(t2 + 1)2 + t} 2t dt = f 1 (2t5 + 40 + 2t2 + 2t -1) dt =

0

GREEN'S THEOREM IN THE PLANE

16. Prove Green's theorem in the plane if C is a f
simple closed curve which has the property that
any straight line parallel to the coordinate axes
cuts C in at most two points.

Let the equations of the curves AEB and AFB (see
adjoining Fig. 5-8) be y = Y1 (x) and y = Y2 (x) respec-
tively. If `R is the region bounded by C, we have

f f a dx dy
R.

f
ba

f ba

r fYE(x)

1L Y=Y1(x)

P(x, y)

ay dyI dx Fig. 5-8

Y'(x) f b

dx = [P(x, Y2) - P(x, Yl)J dx
y=Y1(x) a

f0
P

a

Then

a
x, Y1) dx - f P(x,Y2) dx - -f P dx

b C

(1) fc P dx = -f f a dx dy

x

Similarly let the equations of curves EAF and EBF be x = X1(y) and x = X2(y) respectively.
Then
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Then

aQ dx dy
f x2(y) aJ x dxl dy

a-e =X1(y) ax J

f
[Q(X2, Y) - Q(X1, y)] dy

f
Q(X1, y) dy + f Q(X2, y) dy = J Q°dy

e c

dx dy(2) f Q dy = f f
axc

Adding (1) and (2), P dx + Q dy = NQ aP dx dy.fC J ax - ay

Extensions to other simple closed curves are easily made.

17. Verify Green's theorem in the plane for

(2xy - x2) dx + (x + y2) dy
c

where C is the closed curve of the region
bounded by y = x2 and y2 = X.

The plane curves y = x2 and y2 = x intersect at
(0, 0) and (1, 1). The positive direction in traversing
C is as shown in Fig. 5-9.

Along y = x2, the lirle integral equals

- {(2x)(x2) - x2} dx + {x + (x2)2} d(x2) _
X=0f

Along y2 = x the line integral equals
0

=1
{2(y2)(y) - (y2)2} d(y2) + {y2 + y2} dy

Then the required line integral = 7/6 - 17/15 1/30.

5 (!)dxdy =

Fig. 5-9

1

(2x3 + x2 + 2x5) dxJa 7/6

fo
(4y4 - 2y5 + 2y2) dy -17/15

1

f tax (x + y2) - ay (2xy - x2)} dx dy

f f (1- 2x) dx dy
R

f 1

X=0
(y - 2xy)

Hence Green's theorem is verified.

1 VX-

(1-2x)dydx
x0 y=x2

1

dx =
y=x2

I. (x112 - 2xS12 - x2 + 2x3) dx

INTEGRALS, CAUCHY'S THEOREM, CAUCHY'S INTEGRAL FORMULAS
2+4i

18. Evaluate z2 dz
1+i

(a) along the parabola x = t, y = t2 where 1 < t < 2,

(b) along the straight line joining 1 + i and 2 + 4i,

(c) along straight lines from 1 + i to 2 + i and then to 2 + 4i.

1/30
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We have
f2+4i

z2 dz
1+1

COMPLEX VARIABLE THEORY [CHAP. 5

(

f (2.4)

1 1), full)

(2,4)

2ixy)(dx + i dy)(x + iy)2 (dx + i dy) = (x2 - y2 +

(2,4) (2,4)f (x2 - y2) dx - 2xy dy + if 2xy dx + (x2 - y2) dy
(1,1) (1,1)

Method 1.

(a) The points (1, 1) and (2, 4) correspond to t = 1 and t = 2 respectively. Then the above line integrals
become

f 2 {(t2 - t4) dt - 2(t)(t2)2t dt} + i f 2 {2(t)(t2) dt + (t2 - t4)(2t) dt} 36 - 6i
t-1 t-1

(b) The line joining (1, 1) and (2, 4) has the equation y - 1 = 2 -1(x - 1) or y =3x-2. Then
we find

2

{[x2 - (3x - 2)2] dx - 2x(3x - 2)3 dx}
x=i

2

+ i f {2x(3x - 2) dx + [x2 - (3x - 2)2]3 dx}
x=1

(c) From 1 + i to 2 + i [or (1,1) to (2,1)], y = 1, dy = 0 and we have
2f (x2 - 1) dx + if 2x dx = 3 + 3i

x=1 x=1

From 2+i to 2+4i [or (2,1) to (2, 4)], x=2, dx = 0

f 4 ¢

-4y dy + if (4 - y2) dy
y-
-

1 y=1

Adding, (3 + 3i) + (-30 - 9i) _ - 3 - 6i.

and we have

-30 - 9i

- 86 6i
3

Method 2.

The line integrals are independent of the path [see Problem 19], thus accounting for the
same values obtained in (a), (b) and (c) above. In such case the integral can be evaluated directly,
as for real variables, as follows:

J z2dz
1+i

z3 I2+41 _ (2 + 4iis _ (1 + i)3
3 1+i 3 3F-

19. (a) Prove Cauchy's theorem: If f (z) is analytic inside and on a simple closed curve C,

then $ f (z) dz = 0.
C

i'2

(b) Under these conditions prove that J f (z) dz is independent of the path joining
PI and P2. 1'

(a) fe
(z) dz = f (u + iv) (do + i dy) = f u dx - v dy + i f v dx + u dy

(: C C C

By Green's theorem,

f u dx - v dy = f f 49V au dx dy, v dx + u dy = f f au av 1 dx dy
C (-ax - ay C (ax - ay/

where R. is the region bounded by C.
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Since f(z) is analytic, au = av av = - au (Problem 12), and so the above integrals areax ay ax ay

zero. Then f f (z) dz = 0. We are assuming in this derivation that f'(z) [and thus the partial
c

derivatives] are continuous. This restriction can be removed.

(b) Consider any two. paths joining points P1 and P2 (see Fig. 5-10). By Cauchy's theorem,

f f(z) dz = 0

P, AP2BP,

Then f f (z) dz + f f (z) dz = 0

PIAP2 P2BP1

or r f(z) dz = - f f(z) dz = f f(z) dz
P2BP1 P,JBP2P1AP2

i.e. the integral along P1AP2 (path 1) = integral along
P1BP2 (path 2), and so the integral is independent of the
path joining P1 and P2.

This explains the results of Problem 18, since f (z) = z2
is analytic.

20. If f (z) is analytic within and on the boundary of
a region bounded by two closed curves Cl and C2
(see Fig. 5-11), prove that '

f f (z) dz f f (z) dz
C C2

As in Fig. 5-11, construct line AB (called a cross-cut)
connecting any point on C2 and a point on C1. By
Cauchy's theorem (Problem 19),

J f (z) dz =

Fig. 5-10

Fig. 5-11

.AQPABRSTBA

since f (z) is analytic within the region shaded and also on the boundary. Then

f f (z) dz + f f (z) dz + f f (z) dz + f f (z) dz = 0 (1)

AQPA AB BRSTB BA

But f f (z) dz = - f f(s) dz. Hence (1) gives
AB BA

f f(z) dz f f(z) dz f f(z) dz

AQPA BRSTB BTSRB

f f(z) dz = f f(z) dz
C, CZ

Note that f (z) need not be analytic within curve C2.

21. (a) Prove that dz = 27ri if n = 1 where C is a simple closed
c(z - a)n 0 if n=2,3,4,...

curve bounding a region having z = a as interior point.

(b) What is the value of the integral if n = 0, -1, -2, -3, ... ?
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(a) Let C1 be a circle of radius e having center at z = a
(see Fig. 5-12). Since (z - a) -n is analytic within
and on the boundary of the region bounded by C
and C1, we have by Problem 20,

dz __ dz

c (z--a)" c, (z -a)"

To evaluate this last integral, note that on C1,
I z - al = e or z - a = eei0 and dz = ieeie do. The
integral equals

fo
2" jEeie do = i f do _

eneine en-1 0

27r

If n = 1, the integral equals i fdo = 27ri.

i e(1-n)0 I27ren-1

(1 - n)i o

Fig. 5-12

= 0 if n-A 1

(b) For n = 0, -1, -2, ..., the integrand is 1, (z - a), (z - a)2, ... and is analytic everywhere inside
C1, including z = a. Hence by Cauchy's theorem the integral is zero.

22. Evaluate §
z

dz3 where C is (a) the circle Iz! = 1, (b) the circle Iz + ii = 4.

(a) Since z = 3 is not interior to Izi =1, the integral equals zero (Problem 19).

(b) Since z = 3 is interior to I z + iI = 4, the integral equals 27ri (Problem 21).

23. If f (z) is analytic inside and on a simple closed curve C, and a is any point within C,
prove that

f(a)

Referring to Problem 20 and the figure of

5E z) dzz-a

1 f(z)
27ri c z -adz

Problem 21, we have

f(z) dx
C1 z-a

2v

f (a + eeie) do. But since f (z) is analytic,Letting z - a = eet0, the last integral becomes i fo
it is continuous. Hence

27r

lim iJ f(a + eeie) doE0 0-+

and the required result follows.

27r 27r

if lim.f (a + ee{e) do = i fo f (a) do = 27ri f (a)
0 E- 0

24. Evaluate (a) § zos

z
dz, (b) 5 z(z + 1) dz where C is the circle Iz -11 = 3.

(a) Since z = 7 lies within C,
2,ri

zos 0 dz

a = W. Then 5 cos z dz = -27ri.
x-7r

by Problem 23, since

ex dz
c z(z + 1)

cos 7r = -1 by Problem 23 with f (z) = cos z,

x

c
ex

z z + 1
dx = fC zdz - ,c

z + 1
dz

27riee - 27rie-1 = 27ri(1 - e-1)

z = 0 and z = -1 are both interior to C.
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25. Evaluate fc 5z2 - 3z + 2 dz where C is any simple closed curve enclosing z = 1.
(z - 1)3

Method 1. By Cauchy's integral formula, f(n) (a) = 2>ri
(z

f a)n+i dz.

If n = 2 and f (Z) = 5x2 - 3z + 2, then f"(1) = 10. Hence

10 = 2! 5z2-3z+2 dz or 5z2-3z+2 dz = 101ri
21ri c (z - 1)3 c (z - 1)3

Method 2. 5z2 - 3z + 2 = 5(z - 1)2 + 7(z -1) + 4. Then

c
5z2-3z+2dz =(z -1)';

un+1

5 dz + 7 dz + 4 dz
fz -1 c (z -1)2 c (z -1)3

By Problem 21.

Un

SERIES AND SINGULARITIES

26. For what values of z does each series converge?

(a) n1 n2 2n' The nth term = un = n2
2n

. Then

lim
n- w

(b)

zn+1
lim (n+1)2 2n + I znn22n
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5(21rz) + 7(0) + 4(0)

IzI

2

By the ratio test the series converges if Jzj < 2 and diverges if jzI > 2. If jzF = 2 the ratio
test fails.

However, the series

n2 converges.
n=1

of absolute values I I n2 2n
I

= n2 2n converges if
n- n=1

Thus the series converges (absolutely) for zj : 2,

Izj = 2.

(-1)n-1 z2n-1

n=1 (2n-1)!

lim
n*m

un+1

un

f
5(z - 1)2 + 7(z - 1) + 4

dz
C (z - 1)3

= 101ri

z3 zs

31+31 We have

= lim
n* 00

jzj = 2, since

i.e. at all points inside and on the circle

(-1)nz2n+1 (2n-1)!
(2n + 1) ! (-l)"- I z211 -1

_ -z2
lym

I 2n(2n + 1) I

0

Then the series, which represents sin z, converges for all values of z.

(c) 1 (z
2)n We have lim

n=1 3n n-.ao

un+1

un
lim I (Z-0"41 3n

n*oc 3n+1 --7).

The series converges if Iz - il < 3, and diverges if Iz - il > 3.

If Iz - il = 3, then z - i = 3e{0 and the series becomes ein9. This series diverges since
the nth term does not approach zero as n - -. n=1

Thus the series converges within the circle Iz - ii = 3 but not on the boundary.
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27. If
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for these values of z.

The definitions, theorems and proofs for
to those for real series.

series of complex

In particular, a series un(z) is said to be absolutely
n=0

converges in 9Z. We can also show that if Y, ;un(z)I
n=o

i.e. an absolutely convergent series is convergent.

convergent in a

[CHAP. 5

are analogous

region `R if Y, lun(z)
n=0

converges in R, then so also does I un(z),

Also, a series I un(z) convergent to a sum function S(z) in
n=0

convergent in 9R if for any e > 0, we can find N such that

I Sn(z) - S(z) I < E

a region

for all n > N

`R is said

where N depends only on E and not on the particular z in 9Z, and where

Sn(z) = uo(z) + u1(z) + ... + un(z)

An important test for uniform convergence is the following. If for all z
constants Mn such that

Iun(z)I c M,, n = 0, 1, 2 . and
00

Y, Mn
n=0

converges

then Y. u,(z) converges uniformly in R. This is called the Weierstrass M test.
n=0

For this particular problem, we have

lanzn1 < Ian Rn = Mn n = 0,1, 2, ...

Since by hypothesis
00

I Mn
n=0

uniformly for Izj : R.

n=0

to be uniformly

in we can find

M

converges, it follows by the Weierstrass M test that Y, anzn converges
n=0

28. Locate in the finite z plane all the singularities, if any, of each function and name them.

2

(a) (z + 1)3 '
z = -1 is a pole of order 3.

(b) 2z3-z+1
(z - 4)(z - i)(z - 1 + 2i)

z = 4 is a pole of order 2 (double pole); z = i and z = 1- 2i are

poles of order 1 (simple poles).

(c)
sin mz m 0. Since z2 + 2z + 2 =0 when z = -2 - -8 - 2 {- 2z = -1 -t i we

zy&z2+2z+2' 2 2 '

can write z2 + 2z + 2 = {z - (-1 + i)}{z - (-1- i)} _ (z + 1- i)(z + 1 + i).

The function has the two simple poles: z = -1 + i and z = -1 - i.

numbers and functions

is absolutely convergent for jzi = R., show that it is uniformly convergent

1 - cos z 1 - cos z
(d) -Z. z = 0 appears to be a singularity. However, since li o

z
= 0, it is a

z
removable singularity.
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Another method.

Since 1 - cos z
Z

1 1 1-x +x4-x6 +. x3

Z 2! 4! 6! 2! 4!

z = 0 is a removable singularity.

(e) e- /(Z-1)2 1 11 - (x -1)2 + 2! (z -1)4 -

157

+ , we see that

This is a Laurent series where the principal part has an infinite number of non-zero terms.
Then z = 1 is an essential singularity.

(f) ez.

This function has no finite singularity. However, letting z =1/u, we obtain el/u which has
an essential singularity at u = 0. We conclude that z = - is an essential singularity of ez.

In general, to determine the nature of a possible singularity of f (z) at z = o, we let z =1 /u
and then examine the behavior of the new function at u = 0.

29. If f(z) is analytic at all points inside and on a circle of radius R with center at a, and
if a + h is any point inside C, prove Taylor's theorem that

f (a + h) = f (a) + h f(a) + 2 f"(a) + i f,,,(a) + .. .

By Cauchy's integral formula (Problem 23), we have

f(a + h) = 1

27ri c

By division,

1 1

z-a-h (z - a) [1 - h/(z - a)]

f (z) dz
z-a-h

1 j 1 + h + hl + ... + 0 + hn+t I
(z-a) l (z - a) (z-a)2 (z - a)n (x-a)n(z-a-h)

Substituting (2) in (1) and using Cauchy's integral formulas, we have

f(a + h) = 1 &) dz + h C f(z) dz + ... + hn f (Z) dz + Rnf z - a 2Ta c (z - a)2 2iri c (z - a)n+1

2

f(a) + hf'(a) + 2! f» (a) + ... + n! flu) (a) + R.

where Rn =
hn+1 f(z) dz
2ri r (x - a)n+i (x - a - h)

(1)

(2)

Now when z is on C, I
f (Z) I < M and I z - al = R, so that by (14), Page 140, we have,z-a-h -

since 21rR is the length of C,

IRn] I2 I Ru
M 2,,R

As n - -, IRuj -> 0. Then Rn - 0 and the required result follows.

If f (z) is analytic in an annular region r1 < 1z - al - r2, we can generalize the Taylor series
to a Laurent series (see Problem 119). In some cases, as shown in Problem 30, the Laurent series can
be obtained by use of known Taylor series.
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30. Find Laurent series about the indicated singularity for each of the following functions.
Name the singularity in each case and give the region of convergence of each series.

(a)
ex(z -1)2 ; Z=1. Let z-1 =u. Then z = 1 + u and

ex _ el ; u
(z - 1)2 u2

u 2 3 4e u2 = u2 l ++2i +3 +4! +
e e e e(z -1) e(z -1)2

(z-1)2 + z-1 + + 3! + 4! +

z = 1 is a pole of order 2, or double pole.

The series converges for all values of z 1.

}

(b) z cos 1 ; Z=0.

z cosl
z

C- 1 1- 1 1 1
x 1 z - 2-I-

z + 4!z3 - s! zs + ...

z = 0 is an essential singularity.

The series converges for all values of z 0.

sin z
(c) ; z = 7r. Let z - 7r = u. Then z = u + 7r andz-7r

sin z sin (u + 7r) sin u
z-7r u u

u2 U4

3! - 5!

z = 7r is a removable singularity.

The series converges for all values of z.

41u u
3
u + u5

5

-1 + (z - r)2 - (z - 7r)4
3! 5!

(d) z z = -1. Let z + 1 =u. Then
(z + 1)(z + 2)

z U-1
(z+1)(z+2) u(u+1) - uu 1 (1-u+u2-us+u4- )

- 1 + 2 - 2u + 2u2 - 2u3 +u

z + 1
+ 2 - 2(z + 1) + 2(z + 1)2

z = -1 is a pole of order 1, or simple pole.

The series converges for values of z such that 0 < I z + 11 < 1.

1
(e)

z(z + 2)3; z = 0, -2.

Case 1, z = 0. Using the binomial theorem,

1

-
1 -

z(z + 2)3 8z(1 + z/2)3
1 1+(-3) +(-3)(-4) +(-3)(-4)(-5) z 3

8z
(z)

2!
(z)2

3! 2\)
1 3 + 3 5x+...

8z 16 16x - 32

z = 0 is a pole of order 1, or simple pole.

The series converges for 0 < jzj < 2.
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Case 2, z = -2. Let z + 2 = it. Then

1 __ 1 _
z(z + 2)3 (u - 2)u3 -2u3(1 - u/2) 2u3

1 + 2 +
(2)

_ _ _ _ 1 _
u3 4u2 8u 16 32

u

2(z -+2) 3 4(z + 2)2 8(z + 2) 16 32
(z + 2) -

z = -2 is a pole of order 3.

The series converges for 0 < lz + 21 < 2.

RESIDUES AND THE RESIDUE THEOREM

+

31. If f (z) is analytic everywhere inside and on a simple closed curve C except at z = a
which is a pole of order n so that

f(z) - (za-an)"

+ (za- a±nl 1
+ .. . + ao + a1(z - a) + a2(z - a)2 +

where a-n 0, prove that J

(a) f (z) dz = 27ri a- 1
t

1

1
dn

(b) a-1 = lim {(z-a)nf(z))
z-a (n -1)

(a) By integration, we have on using Problem 21

fr f(z) dz

27ri a-1

f a-n dz + + a-' dz + {a o + a1(z - a) + a2(z - a)2 + } dzc (z-a)" z-a c

Since only the term involving a 1 remains, we call a-, the residue of f (z) at the pole z = a.

(b) Multiplication by (z - a)4 gives the Taylor series

(z - a)n f(z) = a-,, + a-n + 1 (z - a) + ... + a-1(z - a)n-1 +

Taking the (n - 1)st derivative of both sides and letting z -, a, we find
o-1(n-1)1a- =

zi.a

dzn-1
{(z-a)nf(z)}

from which the required result follows.

32. Determine the residues of each function at the indicated poles.

;
z = 2, i, -i. These are simple poles. Then.

(a) 2( 2)( + 1)z -x
Residue at z = 2 is lim (z - 2)

x2

z-#2 (z-2)(z2+1)}
4

Residue at z = i is lira (z - i) x2 i2 1 - 2i
10z-+i (z-2)(x-i)(x+i) (i-2)(2i)

Residue at z = -i is z2lim (z + i) (z-2)(z-i)(z+i)}z

j2 1+2i
(-i - 2)(-2i) 10
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(b) 1 3 ; z = 0, -2. . z = 0 is a simple pole, z = -2 is a pole of order 3. Then:
z(x _+2)

Residue at z = 0 is lint z 1 = 1

z..,o x(z -+2)3 8

2
Residue at z = -2 is z lim 2 2 dz2 }(z + 2)3 x(z + 2)3}

[CHAP. 5

1(2) _ 1_ 1 d2 1
llzl-, 2 2 dz2 (x) zim 2 2 z3 8

Note that these residues can also be obtained from the coefficients of 1/z and 1/(z + 2) in
the respective, Laurent series [see Problem 30(e)].

zezt
(c) (z - 3)2 ; z=3, a. pole of order 2 or double pole. Then:

( zt

Residue is lim d j (x - 3)2 } = lim d (Zed) = lim (ezt +.ztezt)
z-.3 dz l (z

ze-
3)2 z-.3 dz

eat + 3te3t

(d) cot z;, z = 5ir, a pole of order 1. Then:

Residue is lim (z - 5v) . cos z
sin x

variable.

(-1)(-1) = 1

33. If f (z) is analytic within and on a simple closed curve C except at a number of poles
a, b, c.... interior to C, prove that

f (z) dz = 2,ti {sum of residues of f (z) at poles a, b, c, etc. }

CRefer to Fig. 5-13.

By reasoning similar to that of Problem 20 (i.e. by
constructing cross cuts from C to C1, C2, C3, etc.),
we have

f f(z) dz = f(z) dz + f(z) dz +
C c, cs

For pole a,

A z) (z - a)m

hence, as in Problem 31, f(s) dz = 2tri a-1.

a_1

C dim 1 ) (-1)cost

Fig. 5-13

(z - a) ++ a+ a 10_ a)

b-n b-1Similarly for pole b, f (z) b). + + (z _ b) + bo + bl(z - b) +

so that f f (z) dz = 27i b-1
ce

Continuing in this manner, we see that

f(;) dz 27ri(a-1 + b-1 + ) = . 27i (sum of residues)
c

(zlim 5 xsin
zr)(.-5

cos x

where we have used L'Hospital's rule, which can be shown applicable for functions of a complex
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34. Evaluate ax dz where C is given by (a) jzj = 3/2,
fe (z - 1)(z + 3)2

lim (z -1)ez - ez
Z-. -3 (z - 1)2

eResidue at simple pole z = 1 is lim -1) =
{(z (z -1)(z 3)2 16

Residue at double pole z = -3 is

lim d (z + 3)2
ez

z..+-3 dz (z - 1)(z + 3)2

(a) Since 1z1 = 3/2 encloses only the pole z = 1;

the required integral 2,ri 1
16)

(b) Since 1ri = 10 encloses both poles z = 1 and z = -3,

the required integral = 2ai e - 5e-3
(16 16

EVALUATION OF DEFINITE INTEGRALS

35. If A01
R

for z = Re°, where k > 1 and M
are constants, prove that lim f f (z) dz = 0

r
where r is the semi-circular arc of radius R shown
in Fig. 5-14.

By the result (14), Page 140, we have

fr f (z) dz C f 1f(z)1 1dz1
M

7R
r

since the length of are L = 7R. Then

lim
R-ao

fr f (z) dz

,rM
Rk-1

(b) Izj = 10.

-6e-3
16

sae

8

ui(e - 5e-3)
8

Fig. 5-14

= 0 and so lim f f (z) dz = 0
R-+o r

161

136. Show that for z = Re'°, if (z)I <
M

, k > 1 if f (z) =
+ z4

If z = Reae, 1 f(z)I = I

1 ( 1 1 < 2 if R is large enough1 + R4e4ie 1R4e4iel - 1 R4 -1 R4
(say R > 2, for example) so that M = 2, k = 4.

Note that we have made use of the inequality 1z1 + x21 ? 1x11 - Iz21 with z1 = R4 e4ie and z2=1.

37. Evaluate dxfx +1'

Consider fe + 1 ' where C is the closed contour of Problem 35 consisting of the line from

-R to R and the semi-circle r, traversed in the positive (counterclockwise) sense.

Since z4 + 1 = 0 when z = e7ri14, e3m/4, e5''4, ' e7'' '4, these are simple poles of 1/(z4 + 1). Only
the poles e,H/4 and e3,rii4 lie within C. Then using L'Hospital's rule,
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Residue at e7ri/4

= 2,,i(-e-3rri/4 + ee-97ri/4)

lint 1 = 1 e-saf/4
z-erri/4 4z3 4

Residue at e37i/4 = lim (z -
x -, e3vi/4

e3rri/4) 1
z4-+1

lim 1 = 1 e-9rri/4
z_+e376/4 4z3

Thus

R

-fR
dx ( dz _ x

x4+1 + J. z4+1 2

(1)

(2)

7rv"2-

2

Taking the limit of both sides of (2) as R and using the results of Problem 36, we have

lim I dx = f dx
R of R x4+1 J ,c x4+1 2

.
x4

+ 1, the required integral has the value 7rSince f x4 + 1
20

38. Show that S x2 dx - 77r

0, , (x2 + 1)2 (x2 + 2x + 2) 50

The poles of x2

(z2 + 1)2(x2 + 2z -+2)

and z = -1 + i of order 1.

enclosed by the contour C of Problem 35 are z = i of order 2

Residue at z = i is lim

d
{(z_i)2 z2

I
- 9i -12

z-. i z (z + i)2 (z - i)2 (x2 + 2z + 2) 100

Residue at z = -1 + i is lim (Z+1-2) z2 = 3 - 4i
z- 1+i (x2+1)2(z+1-i)(z+1+i) 25

Then

or

dx
z4+1

j _ 77rz2dx = 9i - 12 3 - 4i
Jc (z2+1)2(x2+2z+2) 2ri

100
+

20 50

f R x2 dx + z2 dz _ 77r

J _ R (x2 + 1)2 (x2 + 2x + 2) (z2 + 1)2 (x2 + 2z + 2) 50

Taking the limit as R-- and noting that the second integral approaches zero by Problem 35,
we obtain the require3 result.

39. Evaluate f
21

de
5 + 3 sin O

Let z = eie. Then sin $ =

0

f2v
do

5+3sine

eie - e-i0

Jim .f(z - 1 l
z ,errs/4 x4+ 1 j

x-x-1
2i 2i

dx = ieie de = iz de so that

cdzl ix

C 5+3 z-z-
( 2i

2 dz
3x2+10iz-3

where C is the circle of unit radius with center at the origin, as shown in Fig. 5-15 below.



CHAP. 5] COMPLEX VARIABLE THEORY 163

The poles of 2 are the simple poles
3z2 + 10iz - 3

z -

Only -i/3 lies inside.C.

-10i± -100+36
6.

-10i :'-- 3i
6

-3i, -i/3.
Fig. 5-15

Residue at -i/3 = lim ( z + ZJI 2 ) = lim 2 = 1 by L'Hospital's
rule. x iii \ 3 \ 3z2 + 10iz - 3 / z .. -iii 6z + 10i 4i

Then
fc 3z2 +

2 dz
10iz - 3 4i

= 21ri (-) =
2
_

' the required value.

40. Show that f
2a

cos 39 dO = 7r
0 5-4cos0 12

x + z-1 = e3ie + e-3io z3 + z-3 dx = iz do.If z = eie, cos 0 = 2 , cos 3® = 2 =
2

,

Then f('2" cos 3B _
0 5-4cos®

where C is the contour of Problem 39.

(z3 + z-3)/2 dz

c 5 _ 4(z+z-1) ix
1

f
z6 + 1

2i c z3(2z -1)(z -T)

The integrand has a pole of order 3 at z = 0 and a simple pole z = I within C.

Residue at z = 0 is lim 1 d2 J 3 - z6 + 1
z-+o 2! dz21 z3(2z -1)(z -

21

8

Residue at z = is lim (z - ) 3
x6 + 1 65

1/2 x {2z - l)jz - 2)} 24

Then
z6 + dz = - 1 (2,,ri) 21 _ 65 i as required.2i JC z3(2z - 1)(z -T) 2i { 8 24 = 12

dz

41. If jf(z) j < R for z = Re10, where k > 0 and M are constants, prove that

lim eimz f(z) dz = 0
R-.sfr

where r 'is the semi-circular are of the contour in Problem 35 and m is a positive
constant.

If z = Reie, f eimz f(z) dx =
r o

Then
f7r

eimReEef (Rei®) iRei® do
0

eimReie f(Re'8) iReie do.

n
eimReie f(Reie) iReie do

f 7T
I eimR cos 0 - mR sine f(Re{e) iReiel de

o

e-mRstne jf(ReW)I R doJ0

f7

IV f 7 i2
Rk-1 e-mRsine do = 2M-1

fng-mRsine
dB

0

Rk
0
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Now sin e ? 2B/ r for 0 < o < 4r/2 (see Problem 3, Chapter 7). Then the last integral is less
than or equal to

for/2
R MI e-2mRe/a de = mRk (1 `

e-mR)

As R-- this approaches zero, since m and k are positive, and the required result is proved.

42. Show that f cos mx dx = - e-m, m > 0.
o

x2+1 2

Consider
JC

etmz
dz where C is the contour of Problem 35 .

Z2 + 1

The integrand has simple poles at z = ±i, but only z = i lies within C.

Residue at z = i is lim {(z - j) eimx a -m

z-.i (z-i)(z+i) 2i

Then f z2 + dx = 2iri (e2 ) = ire mimz

R
m

1 dz = ae-m
x2i_

+dx + r z2+fR

and so 2
f R

Co2 dx + J , z2tmj zl dz
= ire-mX2+1

Taking the limit as R-- and using Problem 41 to show that the integral around r approaches
zero, we obtain the required result.

43. Show that f sin
x

x dx =

2
o

The method of Problem 42 leads us to con-
sider the integral of eiz/z around the contour of
Problem 35. However, since z = 0 lies on this
path of integration and since we cannot inte-
grate through a singularity, we modify that
contour by indenting the path at z = 0, as shown
in Fig. 5-16, which we call contour C' or
ABDEFGHJA.

Since z = 0f is outside C', we have

J
eiz
- dz = 0

'

z

or

or

C

r ei3f
R

-dx +x f
HJA

e dz +fR e dx
z r x

Fig. 5-16

eiz
+ f dx = 0

BDEFG

Replacing x by -x in the first integral and combining with the third integral, we find,

f R e x
e -ix dx + f zz dz + f zz dz = 0

r
HJA BDEFG

2i
fR

sixx dx = . f ex dz - f z dz
r J

HJA BDEFG
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Let r -> 0 and R - o. By Problem 41, the second integral on the right approaches zero. The
first integral on the right approaches

0 eirei9 0

- lim ireie do = - lim J ieire do = ri
r-.0 r reie r-.0 r ..

since the limit can be taken under the integral sign.

Then we have

r-+0

lim 2i j
R sinxx dx = ri or

R-+.o r f
sin x dx = In

x 2

MISCELLANEOUS PROBLEMS

44. Let w = z2 define a transformation from the z plane (xy plane) to the w plane (uv plane).
Consider a triangle in the z plane with vertices at A(2, 1), B(4, 1), C(4, 3).. (a) Show
that the image or mapping of this triangle is a curvilinear. triangle in the uv plane.
(b) Find the angles of this curvilinear triangle and compare with those of the original
triangle.

(a) Since w = z2, we have u = x2 - y2, v = 2xy as the transformation equations. Then point A(2,1)
in the xy plane maps into point A'(3, 4) of the uv plane (see figures below). Similarly, points B
and C map into points B' and C' respectively. The line segments AC, BC, AB of triangle ABC
map respectively into parabolic segments A'C', B'C', A'B' of curvilinear triangle A'B'C' with
equations as shown in Figures 5-17(a) and (b).

V1 C' (7,24)
y

C (4,3)

x

(a)

Fig. 547

(b)

U

(b) The slope of the tangent to the curve v2 = 4(1 + u) at (3,4) is ml
dv = = 1

du 1

2

(3,4) v (3,4) 2

The slope of the tangent to the curve u2 = 2v + 1 at (3,4) is m2 = dv 1 = u = 3.du (,4)

Then the angle o between the two curves at A' is given by

M2 - M1tan e = 1 - 3 = 1, and 0 = r/4
1 + m1m2 )(-)

Similarly we can show that the angle between A'C' and B'C' is r/4, while the angle between
A'B' and B'C' is r/2. Therefore the angles of the curvilinear triangle are equal to the correspond-
ing ones of the given triangle. In general, if w = f (z) is a transformation where f (z) is analytic,
the angle between two curves in the z plane intersecting at z = zo has the same magnitude and sense
(orientation) as the angle between the images of the two curves, so long as f'(zo) # 0. This prop-
erty is called the conformal property of analytic functions and for this reason the transformation
w = f(z) is often called a conformal transformation or conformal mapping function.
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45. Let w = ' define a transformation from the z plane to -the w plane. A point moves
counterclockwise along the circle (zj = 1. Show that when it has returned to its start-
ing position for the first time its image point has not yet returned, but that when it
has returned for the second time its image point returns for the first time.

Let z = eie. Then to = = eie/2. Let e = 0 correspond to the starting position. Then z = 1 and
w = 1 [corresponding to A and P in Figures 5-18(a) and (b)].

(a) (b)

Fig.5-18

When one complete revolution in the z plane has been made, e = 2wr, z = 1 but to = eie/2 = ei7r = -1
so the image point has not yet returned to its starting position.

However, after two complete revolutions in the z plane have been made, a = 4ir, z = 1 and
w = eie/2 = elm = 1 so the image point has returned for the first time.

It follows from the above that to is not a single-valued function of z but is a double-valued function
of z; i.e. given z, there are two values of w. If we wish to consider it a single-valued function, we
must restrict e. We can, for example, choose 0 : B < 27, although other. possibilities exist. This
represents one branch of the double-valued function w = V-z-. In continuing beyond this interval we
are on the second branch, e.g. 27r < e < 47r. The point z = 0 about which the rotation is taking place
is called a branch point. Equivalently, we can insure that f(z) = VT will be single-valued by agreeing
not to cross the line Ox, called a branch line.

46. Show that J 1

Xp-

+ x dx sin p r' 0 < p < 1.

Consider fc 1 + z dz. Since z = 0 is a branch point,

choose C as the contour of Fig. 5-19 where AB and GH are
actually coincident with the x axis but are shown separated
for visual purposes.

The integrand has the pole z = -1 lying within C.

Residue at z = -1 = e" is

lim (z + 1)
zP-1 = (elri)P-1 = e(P-1)ri

z-+-1 1 +'z

Then 5
zp-1
l + z dz = 2ai e(P-1)ai

or, omitting the integrand,

f + f + f + f 2rri e(P- :17ri Fig. 5-19
AB BDEFG GH HJA
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We thus have
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R XP-1 2rr
(Refe)p- t iReto de r (xe27rt)p-t 0 (reio)P-1 irete dodx + + dx + = 2arie(P-1)aiJ, 1 + X o 1 + Reio R 1 + xe'lni 2T 1 + rein

where we have to use z = xe2-i for the integral along GH, since the argument of z is increased by
2wr in going around the circle BDEFG.

Taking the limit as r --> 0 and R -- co and noting that the second and fourth integrals approach
zero, we find

xP-1 0 e2ai(P-1) XP-1
1+xdx + f 1+x dx

or

so that
1fo

°° XP-1
(1 - e2ai(P-1))

. o l+x

= 277 e(P-1)Ri

dx = 27ri e(P-t)7ri

°°

XI-1
27ri e(P I)iri 27ri a

ax1+x eprri - e-prri

Supplementary Problems

COMPLEX NUMBERS. POLAR FORM

47. Perform each of the indicated operations.

10(a) 2(5 - 3i) - 3(-2 + 1) + 5(i - 3) (c)
3

5

4i + 4 + 3i

(b) (3 - 21)3

Ans. (a) 1 - 4i, (b) -9 - 46i,

(d)
(11)10

sin pa

(e)
2-4i 2
5+7d

(f)
(1 + i)(2 + 3i)(4 - 21)

(1+21)2(1-1)

(c) - *i, (d) -1, (e)

48. If z1 and z2 are complex numbers, prove (a)
zt

(b) Iz2I =
Iz21

IZ21
Iz1I2 giving any restrictions.

49. Prove (a) Iz1 + 221 1Z11 +1Z21, (b) Iz1 + z2 + Z3 ` Iz1i +Iz2I + Izsl, (c) Iz1 " z2I Iz1I - Iz2I

50. Find all solutions of 2z4 - 3z3 - 7z2 - 8z + 6 = 0. Ans. 3, 1, -1 ± i

51. Let z1 and z2 be represented by points P1 and P2 in the Argand diagram. Construct lines OP1 and OP2,
where 0 is the origin. Show that zt + z2 can be represented by the point P3, where OP3 is the diagonal
of a parallelogram having sides OP1 and OP2. This is called the parallelogram law of addition of
complex numbers. Because of this and other properties, complex numbers can be considered as vectors
in two dimensions.

52. Interpret geometrically the inequalities of Problem 49.

53. Express in polar form (a) 3' + 3i, (b) -2 - 2i, (c) 1 - / i, (d) 5, (e) -5i.
Ans. (a) 6 cis a/6, (b) 2V cis 5ir/4, (c) 2 cis 5a/3, (d) 5 cis 0, (e) 5 cis 3a/2

Izti

54.
(a) [2(cos 25° + i sin 25°)] 5(cos 110° + i sin 110')], (b) 12 °cis 16° °Evaluate (3 cis 440)(2 cis 62 )

Ans. (a) -5V + 5'/i, (b) -2i
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55. Determine all the indicated roots and represent them graphically:

(a) (4' + 4V2_j)1/3, (b) (-1)h/5, (c) (v - i)1/3, (d)

Ans. (a) 2 cis 15°, 2 cis 135°, 2 cis 255°

i1/4.

(b) cis 36°, cis 108°, cis 1801 _ -1, cis 252°, cis 324°

(c) cis 110°, cis 230°, 72- cis 350°

(d) cis 22.5°, cis 112.5°, cis 202.5°, cis 292.5°

56. If zl = r1 cis 61 and 22 = r2 cis 92, prove (a) x122 = r1r2 cis (91 + 92), (b) 21/z2 = (r1/r2) cis (el - B2).
Interpret geometrically.

FUNCTIONS, LIMITS, CONTINUITY

57. Describe the locus represented by (a) Iz + 2 - 3i1 = 5, (b) Iz + 2; = 21z -11, (c) Iz + 5. - Iz - 51 = 6.
Construct a figure in each case.
Ans. (a) Circle (x + 2)2 + (y 3)2 = 25, center (-2, 3), radius 5.

(b) Circle (x - 2)2 + y2 = 4, center (2,0), radius 2.
(c) Branch of hyperbola x2/9 - y2/16 = 1, where x ? 3.

58. Determine the region in the z plane represented by each of the following:
(a) 1z-2+il ? 4, (b) jzl < 3, 0 < argz < 4, (c) Iz-3; + 1z+31 < 10.
Construct a figure in each case.
Ans. (a) Boundary and exterior of circle (x - 2)2 + (y + 1)2 = 16.

(b) Region in the first quadrant bounded by x2 + y2 = 9, the x axis and the line y = x.
(c) Interior of ellipse x2/25 + y2/16 = 1.

59. Express each function in the form u(x, y) + iv(x, y), where u and v are real.
(a) z3 + 2iz, (b) z/(3 + z), (c) e', (d) In (1 + z).

Ana. (a) It = x3 - 3xy2 - 2y, v = 3x2y - y3 + 2x

(b) u - x2+3x+y2 v = 3y
x2+6x+ y2+9 x2+6x+ y2+9

(c) u = ex2-y2 cos 2xy, v = ex2-y2 sin 2xy

. .(d) u = 1 In {(1 + x)2 + y2}, v = tan-1
1 + x +2k7, k = 0,-t1,--t2,

60. Prove that (a) Jim z2 = z02, (b) f(z) = z2 is continuous at z = zo directly from the definition.
z-.xp

61. (a) If z = w is any root of zs = 1 different from 1, prove that all roots are 1, w, w2, w3, 4.

(b) Show that 1 + w + w2 + w3 + w4 = 0.
(c) Generalize the results in (a) and (b) to the equation zn = 1.

DERIVATIVES, CAUCHY-RIEMANN EQUATIONS

62. (a) If w = f (z) = z + z , find dz directly from the definition.

(b) For what finite values of z is f (z) non-analytic?
Ans. (a) 1 - 1/z2, (b) z = 0

63. Given the function w = z4. (a) Find real functions u and v such that w = u + iv. (b) Show that the
Cauchy-Riemann equations hold at all points in the finite z plane. (c) Prove that u and v are harmonic
functions. (d) Determine dw/dz. Ans. (a) u = x4 - 6x2y2 + y4, v = 4x3y - 4xy3 (d) 4z3
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64. Prove that f(z) = z JxJ is not analytic anywhere.

65. Prove that f(z) = z 1 2 is analytic in any region not including z = 2.
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66. If the imaginary part of an analytic function is 2x(1- y), determine (a) the real part, (b) the function.
Ans. (a) y2 - x2 - 2y + c, (b) 2iz - z2 + c, where c is real

67. Construct an analytic function f(z) whose real part is a-2(x cos y + y sin y) and for which f(0) = 1.
Ans. ze-z + 1

68. Prove that there is no analytic function whose imaginary part is x2 - 2y.

69. Find f (z) such that f(z) = 4z - 3 and f (l + i) = -3i. Ans. f (z) = 2x2 - 3z + 3 - 4i

LINE INTEGRALS
(4,2)

70. Evaluate f (x + y) dx + (y - x) dy along (a) the parabola y2 = x, (b) a straight line, (c) straight
(1,1)

lines from (1,1) to (1, 2) and then to (4, 2), (d) the curve x = 2t2 + t + 1, y = t2 + 1.
Ans. (a) 34/3, (b) 11, (c) 14, (d) 32/3

71. Evaluate f (2x - y + 4) dx + (5y + 3x - 6) dy around a triangle in the xy plane with vertices at

(0, 0), (3, 0), (3,2) traversed in a counterclockwise direction. Ans. 12

72. Evaluate the line integral in the preceding problem around a circle of radius 4 with center at (0, 0).
Ans. 64ir

GREEN'S THEOREM IN THE PLANE. INDEPENDENCE OF THE PATH

73. Verify Green's theorem in the plane for f (x2 - xy3) dx + (y2 - 2xy) dy where C is a square with
c

vertices at (0, 0), (2, 0), (2, 2), (0, 2). Ans. common value = 8

74. (a) Let C be any simple closed curve bounding a region having area A. Prove that if a1, a2, as, b1, b2, b3
are constants,

(alx + a2y + a3) dx + (blx + b2y + b3) dy = (b1- a2)A

(b) Under what conditions will the line integral around any path C be zero? Ans. (b) a2 = b1

75. Find the area bounded by the hypocycloid x213 + y2'3 = a213.
[Hint. Parametric equations are x = a cos3 t, y = a sins t, 0 < t < 27r.] Ans. 3aa2/8

76. If x = r cos o, y = r sin o, prove that I. f x dy - y dx = If r2 de and interpret.

77. (a) Verify Green's theorem in the plane for f (xs - x2y) dx + xy2 dy, where C is the boundary of
c

the region enclosed by the circles x2 + y2 = 4 and x2 + y2 = 16. (b) Evaluate the line integrals of

Problems 71 and 72 by Green's theorem. Ans. (a) common value = 1207r

(2.1)

78. (a) Prove that f (2xy - y4 + 3) dx + (x2 - 4xy3) dy is independent of the path joining (1, 0) and
(1,0)

(2, 1). (b) Evaluate the integral in (a). Ans. (b) 5
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INTEGRALS, CAUCHY'S THEOREM, CAUCHY'S INTEGRAL FORMULAS
3+i

79. Evaluate f (2z + 3) dz:
1-2i

(a) along the path x = 2t + 1, y = 4t2 - t - 2 where 0 5 t < 1.
(b) along the straight line joining 1 - 2i and 3 + i.
(c) along straight lines from 1 - 2i to 1 + i and then to 3 + i.
Ans. 17 + 19i in all cases

80. Evaluate f (z2 - z + 2) dz, where C is the upper half of the circle 'zJ = 1 traversed in the positive
c

sense. Ans. -14/3

81. Evaluate
2z

dz5
, where C is the circle (a) 1z1 = 2, (b) Iz - 31 = 2. Ans. (a) 0, (b) Sari/2

82. Evaluate z2
(x + 2)(z - 1) dz, where C is: (a) a square with vertices at -1 - i, -1 + i, -3 + i, -3 - i;

(b) the circle !z + it = 3; (c) the circle Izl = NF2. Ans. (a) -87ri/3 (b) -27ri (c) 27ri/3

z
83. Evaluate (a) f zos w1 dz, (b) , c (z 1)4 dz where C is any simple closed curve enclosing z = 1.

Ans. (a) -27ri (b) aie/3

84. Prove Cauchy's integral formulas.
[Hint. Use the definition of derivative and then apply mathematical induction.]

SERIES AND SINGULARITIES
85. For what values of z does each series converge?

(a) } (z + 2)n (b) I n(z - i)n (c) I (-1)nn! (Z2 + 2z + 2)2nn=1 n! n=i n+1 11-1

Ans. (a) all x (b) iz - il < 1 (c) z = -1 ± i

Ge

86 Prove that the series ' - zn

n=1 n(n + 1)

87. Prove that the series
Iz+il <R<2.

W (z+i)n
n=0 2 n

is (a) absolutely convergent, (b) uniformly convergent for x1 < 1.

converges uniformly within any circle of radius R such that

88. Locate in the finite z plane all the singularities, if any, of each function and name them:
z-2 z z2+1

(a) (2z + 1)4 (b) (z-1)(z+2)21 (c) Z24-2z-2

Ans. (a) z = -1, pole of order 4
(b) z = 1, simple pole; z = -2, double pole
(c) Simple poles z = -1 --'- i

1
, (e)

sin

3z -

/3)
, (fl

(z2 + 4)2
(d) cos

z
(d) z = 0, essential singularity

(e) z = 7r/3, removable singularity
(f) z = ±2i, double poles

89. Find Laurent series about the indicated singularity for each of the following functions, naming the
singularity in each case. Indicate the region of convergence of each series.

cos z
(a) ; x = 7rz-7r (b) z2 a-1/z; z = 0 (c) z2 ; z

(z - 1)2 (z + 3)

Ans. (a) - 1 + z - r, - (z - -")3 + (x
z -Ir 2 ! 4 ! 6 !

simple pole, all z 7r

(b) z2 - z + 21 - 31
zx

+ 4 lz2 - b ; + , essential singularity, all z:?'- 0

(c)
1 7 9 - 9(z -1)

+ double pole, 0 < Iz - II < 44(z - 1)2 + 16(z - 1) + 64 256 '
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RESIDUES AND THE RESIDUE THEOREM

90. Determine the residues of each function at its poles.
2x 13 z-3

(a) x2-4' (b) z3+5z2.

(e)

ezt

(z - 2)3'

z

(d) (z2 +
1)2.

Ans. (a) z = 2; 7/4, z = -2, 1/4 (c) z - 2;
(b) z = 0; 8/25, z = -5; -8/25 (d) z = i;

, t2 e2t

0, 0

91. Find the residue of et tan z at the simple pole z = 37./2. Ans. -e37rt'2
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92. Evaluate z2 dz
c (z + 1)(z f- 3) ' where C is a simple closed curve enclosing all the poles. Ans. -87i

93. If C is a simple closed curve enclosing z = zti, show that
zext

c (x2.-}-.1)2
dz 1 t sin t

94. If f (z) = P(z)/Q(z), where P(z) and Q(z) are polynomials such that the degree of P(z) is at least two

less than the degree of Q(z), prove that f f(z) dz = 0, where C encloses all the poles of f(z).
C

EVALUATION OF DEFINITE INTEGRALS

Use contour integration to verify each of the following.
'JOf

95. x2 dx = 7

o
x4+1 2'

96. J dx = 27
xe+ae 30 a>0

97.
r dx __ 7

.lo (x2 + 4)2 32

'Vx dx = 3
98. f X3+1

0

99. f x +a4)2
a-7, a> 0_ r8V2-0

100. f dx -100.
Q (x2 + 1)2 (x2 + 4) 9

2r
101.f do _ 2r

0 2 - cos e

102.
2r, do - 4orV

0 (2 +cos 9)2 9

103. f sin2 a do = 7
0 5-4cose 8

2xr
do __ 3a104. f

(1 + sin2 8)2 2_r

2n

0

cos no do 27an105, f n=0123 0<a<11-2acose+a2 1-a2' ,

106.
f27r

do (2a2 + b2)7r a > b
o (a + b cos 6)3 (a2 - b2}5i2

107. x sin 2x dx = ae4
J0 x2 + 4 4

108. f cos 27x dx =
0 x4+4

72 e-7x sin 7rX x =f109. a
0 (x2 + 1)2 4

f sn2 x
o

x2

sing x
o

X3f 8

eiz113. f
cosh x dx 2 cosh (,r/2) . [Hint. Consider cosh z

dz, where C is a rectangle with vertices
0

at (-R, 0), (R, 0), (R, a), (-R, 7). 'Then let R

110. f x
sin x

o x(x2 + 1)2
dx - ir(2e - 3)

4e

111. dx = 2

112, dx = 3a
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MISCELLANEOUS PROBLEMS

COMPLEX VARIABLE THEORY [CHAP. 5

114. If z = ret0 and f(z) = u(r, e) + i v(r, e), where r and o are polar coordinates, show that the Cauchy-
Riemann equations are

au 1 av av 1 au

ar - r ae' ar - r ae

115. If w = f(z), where f(z) is analytic, defines a transformation from the z plane to the w plane where
z = x + iy and w = u + iv, prove that the Jacobian of the transformation is given by

a(u, v)
I f1(z)12

a(x, y)

116. Let F(x, y) be transformed to G(u, v) by the transformation to = f(z). Show that if axe + 0,
2G 2G

then at all points where f'(z) 0,
au2a +

av2
as = 0.

117. Show that by the bilinear transformation w = az + b
cz + d ' where ad - be 0, circles in the z plane

are transformed into circles of the to plane.

118. If f(z) is analytic inside and on the circle Iz - a' = R, prove Cauchy's inequality, namely,

If(n) (a)l
n! M
Rn

where If(z)I M on the circle. [Hint. Use Cauchy's integral formulas.]

119. Let C, and C2 be concentric circles having center a and radii r, and r2 respectively, where r, < r2.
If a+ h is any point in the annular region bounded by Cl and C2, and f (z) is analytic in this region,
prove Laurent's theorem that

f(a + h) _ anhn

1 f (z) dzwhere an -
2n7 c (z - a)n+ l

C being any closed curve in the angular region surrounding C1.

Write ) = f(z) dz - 1 f(z) dz
p

1[Hint. f (a + h and ex and in
27ri cY z - (a + h) 2r, i , z - (a+ h) z - a - h

two different ways.]

120. Find a Laurent series expansion for the function f(z) = (z + 1)(z + 2) which converges for 1 < jzj < 2
and diverges elsewhere.

[Hint. Write z + 1)(z + 2) + z + 2 z(1 +1/z) + 1 + z/2

Ans. ... -zs+z4-z3+z2-z+1-2+ 42 _
83 + ...
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Fourier Series And Integra

FOURIER SERIES

Let-F(x) satisfy the following conditions:

1. F(x) is.defined in the interval c < x < c + 21.

2. F(x) and F'(x) are sectionally continuous in c < x < c + 21.

3. F(x + 21) = F(x), i.e. F(x) is periodic with period 2d.

Then at every point of continuity, we have

x) (1)b i nn xF ( n. s n ian cos i +(x) = 2 + 1
n=1

where

=
fc+2L

F( nTfx
) cos dxan x

(2)
1 c+21 n-x

b = i dF
f

n (x) s xn
ll

c

At a point of discontinuity, the left side of (1) is replaced by I (F(x + 0) + F(x - 0) ), i.e.
the mean value at the discontinuity.

The series (1) with coefficients (2) is called the Fourier series of F(x). For many
problems, c = 0 or -1. In case l = I, F(x) has period 27r and (1) and (2) are simplified.

The above conditions are often called Dirichlet conditions and are sufficient (but not
necessary) conditions for convergence of Fourier series.

ODD AND EVEN. FUNCTIONS

A function F(x) is called odd if F(-x) _ -F(x). Thus x3, xs - 3x$ + 2x, sin x, tan 3x
are odd functions.

A function F(x) is called even if F(-x) = F(x). Thus x4, 2x6 - 4x2 + 5, cos x, ex + e-z
are even functions.

The functions portrayed graphically in Figures 6-1 and 6-2 below are odd and even
respectively, but that of Fig. 6-3 below is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present.
In the Fourier series corresponding to an even function, only cosine terms (and possibly
a constant which we shall consider a cosine term) can be present.
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F(x) F(x)

X

Fig. 6-1 Fig. 6-2

HALF RANGE FOURIER SINE AND COSINE SERIES

F(x)
Ih-a'

Fig. 6-3

[CHAP. 6

A half range Fourier sine or cosine series is a series in which only sine terms or only
cosine terms are present respectively. When a half range series corresponding to a given
function is desired, the function is generally defined in the interval (0, 1) [which is half of
the interval (-1, 1), thus accounting for the name half range] and then the function is
specified as odd or even, so that it is clearly defined in the other half of the interval,
namely (-1, 0). In such case, we have

an = 0, bn = 2
l
f F(x) sin nix dx for half range sine series

0

bn = 0, an
2 `= l J F(x) cos

nix
l

dx for half range cosine series
0

COMPLEX FORM OF FOURIER SERIES

In complex notation, the Fourier series (1) and coefficients (2) can be written as
W

(3)

F(x) cn einar/6 (k)

where, taking c = -1,

See Problem 74.

n=-ao

cn = F(x) e-inrx/i dx1 f `

2l _I

PARSEVAL'S IDENTITY FOR FOURIER SERIES

Parseval's identity states that
2

L J t

{F(x) )2 dx = 2 + (an + bn)

where an and bn are given by (2).

An important consequence is that

y Wn
I

limJ l F(x) cos nix dx

lim J 1 F(x) sin nix dx 0

0

(5)

(6)

(7)

This is called Riemann's theorem.
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FINITE FOURIER TRANSFORMS

The finite Fourier sine transform of F(x), 0 < x < 1, is defined as

f8 (n) = f F(x) sin nix dx

f i F(x) cos nix dx

where n is an integer. The function F(x) is then called the inverse finite Fourier sine
transform of f8 (n) and is given by

F(x) = l I f,, (n) sin nix

The finite Fourier cosine transform of F(x), 0 < x < 1, is defined as

f, (n) =

where n
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(8)

(9)

(10)

is an integer. The function F(x) is then called the inverse finite Fourier cosine
transform of f, (n) and is given by

See Problems 9-11.
F(x) = f (0) +

1

2
(n) cos nix

1 i=1 Z

Finite Fourier transforms can be useful in solving differential equations [see Prob. 32].

THE FOURIER INTEGRAL

Let F(x) satisfy the following conditions:

1. F(x) satisfies the Dirichlet conditions in every finite interval -l x:-5 1.

2. f IF(x)l dx converges, i.e. F(x) is absolutely integrable in -00 < x < 00.

Then Fourier's integral theorem states that

where

This can

F(x) = f {A(A) cos Ax + B(x) sin Ax} dx
0

A(A) _ f F(x) cos xx dx

B(A) _ - f F(x) sin ax dx

be written equivalently as

F(x) = 1 f w f F(u) cos X(x - u) du dx

(12)

(13)

The result (12) holds if x is a point of continuity of F(x). If x is a point of discontinuity,
we must replace F(x) by {F(x + 0) + F(x - 0)} as in the case of Fourier series. As for
Fourier series, the above conditions are sufficient but not necessary.
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The similarity of (12) and (13) with corresponding results (1) and (2) for Fourier series
is apparent. The right side of (12) is sometimes called the Fourier integral expansion of
F(x), or briefly Fourier integral.

COMPLEX FORM OF FOURIER INTEGRALS

In complex notation, the Fourier integral (12) with coefficients (13) can be

F(x) y'f e')'= dA f F(u) e- iAn du

F(u) ei,\(z-u) du dl
1 f f

written as

(15)

See Problem 77.

FOURIER TRANSFORMS

From (15) it follows that if

f(t) e-;" F(u) duE (16)

then F(u)

which gives F(x) on replacing u by x.

' fa e'" f(A) dA (17)

The function f (,L) is called the Fourier transform of F(x) and is sometimes written
f(A) _ 1' {F(x)). The function F(x) is the inverse Fourier transform of f(X) and is written
F(x) _ '-' { f (a) }. We also call (17) an inversion formula corresponding to (16).

Note that the constants preceding the integral signs can be any constants whose product
is 1/27r. If they are each taken as 11we obtain the so-called symmetric form.

FOURIER SINE AND COSINE TRANSFORMS

The (infinite) Fourier sine transform of F(x), 0 < x < o, is defined as

fs (A) = f F(u) sin xu du (18)
o

The function F(x) is then called the inverse Fourier sine transform of fs (A) and is given by

F(x) = 2 f fs (l) sin Ax dA (19)
Ir.

fc (A) = f F(u) cos ku du (20)
0
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The function F(x) is then called the inverse Fourier cosine transform of f(A) and is given by

F(x) = 2 J f, (x) cos xx dx (21)
7r 0

See Problems 18-20.

Fourier transforms can be used in solving differential equations [see Problem 33].

THE CONVOLUTION THEOREM

The convolution of two functions F(x) and G(x), where -oo < x < 00, is defined as

F * G = f F(u) G(x - u) du = H(x) (22)

An important result, known as the convolution theorem for Fourier transforms, is the
following.

Theorem. If H(x) is the convolution of F(x) and G(x), then

or

H(x) edx = { F(x) dx}
{
f G(x) a-a: dx} (23)

{F*G} = J1 (F} 7'{G) (24)

i.e. the Fourier transform of the convolution of F and G is the product of the Fourier
transforms of F and G.

PARSEVAL'S IDENTITY FOR FOURIER INTEGRALS

If the Fourier transform of F(x) is f (x), then

f IF(x)12 dx = 2 J_ If(x)j2 dx (25)

This is called Parseval's identity for Fourier integrals. Generalizations of this are possible
(see Problem 80).

RELATIONSHIP OF FOURIER AND LAPLACE TRANSFORMS

Consider the function
1e-:t(b(t) t>0

F(t) =
to t < 0

(26)

Then from (16), Page 176, with x replaced by y, we see that the Fourier transform of F(t) is

J' {F(t)} = f W

e-(s+ty)t cb(t) dt =
fW

e-st 4(t) dt (27)
0 0

where we have written s = x + iy. The right side of (27) is the Laplace transform of cb(t)
and the result indicates a relationship of Fourier and Laplace transforms. It also indicates
a need for considering s as a complex variable x + iy.
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To indicate the relationship even further, note that if F(t) and G(t) are zero for t < 0,
the convolution of F and G given by (22) can be written

and (2.4) corresponds to

(u) G(t - u) du (28)F * G = f.0 Ft

.C {F * G} = C {F} e {G} (29)

in agreement with (11) on Page 45.

In view of the fact that there is an inversion formula (17) corresponding to (16) for
Fourier transforms, one would feel that there ought to be a corresponding inversion
formula for Laplace transforms. Such an inversion formula is obtained in Chapter 7.

Solved Problems
FOURIER SERIES

1. Prove f sin kixx dx =

!! krx

J l sin
1

dx =

SI cos dx =k I

f cos
kixx dx = 0 if k = 1, 2, 3, .. .

1 krrx- r cos
lk; ll

l krrxlti
kr sin

I -t

2. Prove (a) f 1 cos
mix

cos
nix- dx

cos krr +
kr

cos (-kir) = 0

k sin km- - kr sin (-krr) = 0

f1 sin
mrrx

sin
nrrx dx = 0 m n

I l l fl ?n=n

(b) f sin mix cos nix dx = 0

where m and n can assume any of the values 1, 2, 3, ... .
(a) From trigonometry: cos A cos B = -{cos (A - B) + cos (A + B)}, sin A sin B = }{cos (A - B) -

cos (A + B)}.

Then, if m n, by Problem 1,
1

1 m;rx nrx 1
1

t
(m - n)rrx (m + n axl

,j. cos cos
1

dx = f cos
l

+ cos l) f dx

Similarly if m # n,

0

mrrx nrx 1 cos (m - n)rx (m + n)rx ( dx = 0J 1 sini sin dx = 2
fl

Z - cos
1

1
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we have

m7rx nrx
cos L- cos

l

dx
ft-t

If in= n,

M7TX naxsin L sin l dx

(b) We

The results of parts (a) and (b)
replaced by c, c+21 respectively.

by cos m_ixx and integrating from -l to 1, using Problem 2, we have

F
sin mix cos "nix dx

i

If m = n,

sin mlrx os n7rx dxc
If t

f sin (m in)7rx + sin (m ln)lrxI dx = 0

2
sin-jxdx - 0fi t

179

remain valid even when the limits of integration -1,1 are

3. If the series A +
n

Can cos nix + bn sin n lx) converges uniformly to f (x) in (-l,1),

show that for n = 1, 2, 3, ... ,

(a) an = Z f )'(x) cos nl x dx, (b) bn = l f F(x) sin- x dx, (c) A = 2

(a) Multiplying
F(x) = A + Can cos nix + bn sin nix

n=1

fit F(x) cos mi x dx = A f
i

t
cos mix dx

= 1 f(i
2

i

-rcos2Lx)dx

cos 2 i a f dx

Note that if m = n = 0 these integrals are equal to 21 and 0 respectively.

have sin A cos B = J{sin (A - B) + sin (A + B)). Then by Problem 1, if m o n,

(1)

(2)

a0
t

mirx n,rx i m7rx nrrx+ i fan f cos
l

cos n-, x + bnf cos
1

sin dx:S, }
-t -i

Thus am

a,nl if m * 0

f
- t

t F(x) cos mixx
dx

t

if m = 1, 2, 3, .. .

(b) Multiplying (1) by sin ml x and integrating from -l to 1, using Problem 2, we have

ft i mrxF(x) sin ml7rx dx = A f sin
l

dxi
i

(3)

i sin'ni x cos'tix dx + bn f ii
sin 'nix sin ni- x dx }+ I {anf1n1 J

= bmll

Thus bm =
Z
f F(x) sin mixx dx if m = 1,2,3,...
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(c) Integration of (1) from -l to 1, using Problem 1, gives

f ` F(x) dx = 2Al or A = 2l f L F(x) dx

Putting m = 0 in the result of part (a), we find ao = t f F(x) dx and so A = 2

The above results also hold when the integration limits -1, l are replaced by c, c + 21.
Note that in all parts above, interchange of summation and integration is valid because the

series is assumed to converge uniformly to F(x) in (-1, 1). Even when this assumption is not
warranted, the coefficients ail and bas obtained above are called Fourier coefficients corresponding
to F(x), and the corresponding series with these values of a,,,, and b,n is called the Fourier series
corresponding to F(x). An important problem in this case is to investigate conditions under which
this series actually converges to F(x). Sufficient conditions for this convergence are the Dirichlet
conditions established below [see Problems 12-17].

4. (a) Find the Fourier coefficients corresponding to the function

F(x) =
0 -5<x<0

1 3 0<x<5 Period = 10

(b) Write the corresponding Fourier series.

(c) How should F(x) be defined at x = -5, x = 0 and x = 5 in order that the Fourier
series will converge to F(x) for -5 < x ' 5?

The graph of F(x) is shown in Fig. 6-4 below.

F(x) I '

+- Period -

r
-15 -10 -5

Fig. 6-4

3

1

5 10 1s

x d

(a) Period = 21 = 10 and 1 = 5. Choose the interval c to c + 21 as -5 to 5, so that c = -5. Then
c+21 5

an =
Z
f F(x) cos nix dx = 1 f F(x) cos n5x

dx
5

5
{f°(oCOS__dX)

nx + f(3)cos!j--dx}
5

0

5 5

If n = 0, an = ao = 3 f cos 05x dx
5
f dx = 3.

0 0

5

5
f cos n5x dx

0

F+21
nr, x 1

5 nrrxF(x) sin
l

dx = 5 f F(x) sin
5

dx
c -5

0 5I f (0) sin n5x dx + f (3) sin n5x dx
5 0

3 _ 5 nrx s _ 3(1 - cos n,r)
9 nor

cos
5 ) l0 nr

5

= 5 f sin n5x dx
0
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(b) The corresponding Fourier series is
aa0 + a cos n rx + b,, sin nrrx

2 n=1 l l
3 +
2

3(1 - cos nir) n7xsin
5n=1 flit

3 + 6 (
sin

>rx 1 sin
3,rx + 1

in
ELL- +=

2 a \ 5 + 3 5 5
5

(C)
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Since F(x) satisfies the Dirichlet conditions, we can say that the series converges to F(x) at all

points of continuity and to F(x + 0) + F(x - 0)
2 at points of discontinuity. At x = -5, 0 and 5,

which are points of discontinuity, the series converges to (3 + 0)/2 = 3/2 as seen from the graph.
If we redefine F(x) as follows,

3/2 x = -5
0 -5<x<0

F(x) = 3/2 x = 0 Period = 10
3 0<x<5
3/2 x = 5

then the series will converge to F(x) for -5 Z it ' 5.

5. Expand F(x) = x2, 0 < x < 27r in a Fourier series if (a) the period is 2a, (b) the period
is not specified.

(a) The graph of F(x) with period 27r is shown in Fig. 6-5 below.

F(x) I

1
-6T

I I

-4s -2ir

Fig. 6-5

Period = 21 = 2a and I = a. Choosing c = 0, we have

an

fc+2t
nnrx

1 f2ir
F(x) cos

l
dx

=
= a x2 cos nx dx

0

-1

f(X2) (sinZnx) - (2x) cos nx) + 2 sin nx
// \ 2 // \\\ 3

fx2dxIf n = 0, a0 = 1
0

8rr2

3

c+2t nax 1
2a

bn = f ' F(x) sin ac
dx = 0 x2 sin nx dx

0

-T 1

47 6r

2n

0

1 (x2)
/ -COQ xl - (2x) (- 3i n2nx ) + (2) (c0n3 5)}

Then F(x) = x2 rr2 + , 4
Ir cos its - sin its 1 .

3 n=1 n2 n

2,r

0

4
n

-47r
n

n 0

This is valid for 0 < x < 2a. At x = 0 and it = 2zr the series converges to 27r2.

(b) If the period is not specified, the Fourier series cannot be determined uniquely in general.
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ODD AND EVEN FUNCTIONS. HALF RANGE FOURIER SINE AND
COSINE SERIES

6. If F(x) is even, show that (a) an = 2 5F(x) cos nix dx, (b) b= 0.

( l -i = 1 nirx(a) an = ,J F(x) cos
l

dx f F(x) cos
1

dx + J F(x) cos l dx
-L 0

Letting x = -u,
fo

t F(x) cos nix dx
L

i f F(-u) cos C ice) du =
o

since by definition of an even function f (-u) = f (u). Then
L

la f F(u) cos niu du + i
fo

F(x) cos nix dx
0

(b) bn F(x) in nix dxf
t

= (1)

If we make the transformation x = -u in the first integral on the right of (1), we obtain

1 -F(x) sin nx dxTfl Z f t F(-u) sin du = - Z f l F(-u) sin n'ru du (2)
0

_ 1
L

l r F(u) sin ni du =

- f0
1 F(x) sin n'rx dx +
l t

I

t f ' F(u) cos
n"

du
0

2 f F(x) cos nix dx
0

l

1 f F(x) sin nix dx
Z

-l o

L nax- 1

i f F(x) sin dx
0

where we have used the fact that for an even function F(-u) = F(u) and in the last step that
the dummy variable of integration u can be replaced by any other symbol, in particular x. Thus
from (1), using (2), we have

l L

bn = - L f F(x) sin nx dx + Z f F(x) sin nix dx = 0
0 o

7. Expand F(x) = x, 0 < x < 2, in a half range (a) sine series, (b) cosine series.
(a) Extend the definition of the given function to that of the odd function of period 4 shown in

Fig. 6-6 below. This is sometimes called the odd extension of F(x). Then 21 = 4, 1 = 2.

F(x)l

x

Thus a,, = 0 and

2 6

Fig. 6-6

2
2 tf F(x) sin nx dx 2f xsinnixdxbn =

0 0

2 nrx
.(x)

na
cos

2
-

/ 4 nrxl-4
((1) n2,r2 sin 2

)11

= nor
cos nrr

0



CHAP. 6] FOURIER SERIES AND INTEGRALS 183

Then F(x) = -4 n7x1 nA
cos nir sin 2

4

(
zrx 1 tax 1 37rx

sin
2
-

2
sin

2
+

3
sin

2
-

(b) Extend the definition of F(x) to that of the even function of period 4 shown in Fig. 6-7 below.
This is the even extension of F(x). Then 21 = 4, l = 2.

F(x)

\ / \
I

-5 -4
I

2 4 6

Fig. 6-7

Thus bn = 0,

an = 2 f F(x) cos - i x dx = 2 f x cos n2x dx
0 0

4
n42(cosna-1) if n#0

2

If n = 0, a0 = f x dx = 2.
0

Then
4 nrx

(cos nor - 1) cos2F(x) + I1 U2,2

T

_ 2 n-x 4 n rx
{(x) ( 2 sin 2 - (1) n2,r2 cos 2

nz" )
2

110

= 1 - 8 ( cos 2 +
32

cos
32x

+ 52 cos
52x + 1

1
-2

n
x

It should be noted that the given function F(x) = x, 0 < x < 2, is represented equally well by
the two different series in (a) and (b).

PARSEVAL'S IDENTITY FOR FOURIER SERIES

8. Assuming that the Fourier series corresponding to F(x) converges uniformly to 1(x)
in prove Parseval's identity

r a
{F(x)}2dx = 2 + (an + bn)

where the integral is assumed to exist.

If F(x) = 2 + Y, Can cos n i x + b sin' 1 , then multiplying by F(x) and integrating term
n=1 /

by term from -l to l (which is justified since the series is uniformly convergent) we obtain
a

fit {F(x))2 dx = 2 f tt
F(x) dx + an f tt F(x) cos nix dx + bnfit F(x) sin nix dx

.2 W

+ l I1 (an + b,2 (1)
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where we have used the results

fi
F(x) cos nix dx = la,,,

obtained from the Fourier coefficients.

F(x) sin nx dx = lb,n,
f`

-i

[CHAP. 6

F(x) dx = laof
-̀i

(2)

The required result follows on dividing both sides of (1) by 1. Parseval's identity is valid under
less restrictive conditions than that imposed here.

FINITE FOURIER-TRANSFORMS

9. Establish (a) equation (9) and (b) equation (11) on Page 175.

(a) If F(x) is an odd function in (-1, 1), then

F(x) = I b,, sin nix1

6b =
Z
f F(x) sin nix dx

0

i

f F(x) sin nixx
dx = f 8 (n)

0

then b = l fa (n) and (1) can be written, as required,

F(x) = Z L f (n) sin -"4rxs
n=1

We can also write F(x) = 7s '(f. (n)}.

(b) If F(x) is an even function in (-1, 1), then

where

Thus if we write

F(x) = 2 +Ii an cos nixx

1

an = 2 f F(x) cos nix dx
0

I
f F(x) cos nxx

dx
0

= f (n)

then
2

aro = l
fc (0) and (4) can be written, as required,

F(x) = Z fc (a) + Z f, (n)
n=1

00

cos nix

(1)

(2)

(8)

(4)

(6)

(6)

We can also write F(x) _ 1 { f (n)}.
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10. Find the (a) finite Fourier sine transform and (b) finite Fourier cosine transform
of the function F(x) = 2x, 0 < x < 4.

(a) Since l = 4, we have

f 8 (n) = J F(x) sin n 4 dx =
0

_ cos nirx/4f(2x) nrr/4 )

(b) If n > 0, f, (n)

If n=0, fc('n) - f,(0) =
i4

0

4 cosnw-1
0

= 32 ( n2rr2 )

2x dx = 16

11. Find F(x) if: (a) /'$ {F(x)) = 16(-1)n-1/n3, n = 1,2,3,..., where 0 < x < 8;
(b) T, {F(x)} = sin (n7r/2)/2n, n = 1, 2, 3, ... and 7r/4 if n = 0, where 0 < x < 27r.

(a) From equation (3) of Problem 9(a) with t = 8, we have

8 1 f 16(-1)n-1lF(x) = 1 _n111

4

J 2x sin n4x dx
0

- (2)

J F(x) cos n4x dx
0

`4

`'
2x cos n4x dx

- 32 cos na
nrr

sin nrrx/4 _ cos nrx/4
(2x) ( n7r/4 ) (2) ( n2rr2/16 )

2 16(-1)n-1 sin nrrx-
n=1 n3 8

(-1)n-1 nrrx
4 11 n3

sin
8

(b) From equation (6) of Problem 9(b) with l = 2rr, we have

F(x) = c 1 f sin (nrr/2)
1 2n

1 F + 2 ' sin (n7r/2)
rr 4 2rr n=1 2n

1 + 1 sin (n7r/2)
4 2rr n=1 n

CONVERGENCE OF FOURIER SERIES

12. Prove that (a) 2 + cost + cos 2t + + cos Mt =

(b) 1 (7r sin (M +')t dt - 1

rr 0 2 sin it 2 '

sin (M + J) t
2 sin it

f 0 sin (M+-.',)t dt = 1

rr n 2 sin It 2

(a) We have cos nt sin it = -{sin (n + 4,)t - sin (n - -) t},

Then summing from n = 1 to M,

sin 4t{cost + cos 2t + + cos Mt} (sin it - sin t) + (sin 5t - sin 10

+ + {sin (M + 2t - sin (M- 1}

z{ sin (M+1)t - sin? t}

On dividing by sin it and adding ., the required result follows.

(b) Integrate the result in (a) from -rr to 0 and 0 to rr respectively. This gives the required results,
since the integrals of all the cosine terms are zero.

sin nirx/4
(- n272/16 )110 -
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13. Prove that liin f F(x) sin nx dx = lim f F(x) cos nx dx = 0 if F(x) is sec-
7r

tionally continuous.
a2 w

This follows at once from Problem 8 with 1=7 r, since if the series ° + Y (an+ b2) is con-
vergent, lim an = lim bn = 0. n-1

n-.m n- W

The result is sometimes called Riemann's theorem.

7r

F(x) sin (M + J)x dx = 0 if F(x) is sectionally continuous.14. Prove that lim
fVM.r co

We have

f F(x) sin (M + J)x dx = f 7r

{F(x) sin Jx) cos Mx dx + f {F(x) cos j x) sin Mx dx

Then the required result follows at once by using the result of Problem 13, with F(x) replaced by
F(x) sin j.x and F(x) cos -x respectively which are sectionally continuous if F(x) is.

The result can- also be proved when the integration limits are a and b instead of -7r and IT.

15. Assuming that 1 = 7r, i.e. that the Fourier series corresponding to F(x) has period 21 = 27r,
show that

SM(x) _ ° + (an cos nx + bn sin nx)

T
a

f F(u) (cos nu cos nx + sin nu sin nx) du

1 (7rJ F(u) cos n(u - x) du
-7r

n=1
f n

F(t + x) sin (M + -)t dt
n 2 sin it

Using the formulas for the Fourier coefficients with 1 = 7r, we have

an cos nx + bn sin nx = (!f F(u) cos nu du) cos nx + ( f F(u) sin nu du) sin nx
V 7r

Also,
a° 1 f n

F(u) du
2 27r _,1T

L M
Then SM(x) = ° + 1 (an cos nx + bn sin nx)

2 n=1

f F(u) du + 1 f F(u) cos n(u - x) du
27r

7r
7r n=1

7r

f F(u) { 2 + cos n(u - x) } du
rr l n-1 )))

1 fir

F,(u)
sin (M + -)(u - x)

du
7rJ_IT 2sinj(u-x)

using Problem 12. Letting u - x = t, we have

SM(x) = 1
f-x

F(t + x)
sin (M + t)t

dt
IT C. 2sinit

Since the integrand has period 2I, we can replace the interval -7r - x, IT - x by any other interval
of length 27r, in particular -r 7r. Thus we obtain the required result.
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16. Prove that

SM(x) - F(x + 0) + F(x - 0)
2

= 1 10

°

(F(t + x) - F(x - 0) sin (M + J )t dt
2 sin it J

187

+ 1 x) - F(x + 0)1 sin (M +)t dt
w,J 2sint J

From Problem 12,

1 ('0 sin (M + )t dt + 1 ('' sin(M+. )t
dt (1)Sly(x) =

IT
J F(t + x) 2 sin it 7 J° F(t +x) 2 sin it

Multiplying the integrals of 'Problem 12(b) by F(x - 0) and F(x + 0) respectively,

F(x + 0) + F(x - 0) __ 1 ° sin (M + I)t 1 sin (M + 1)t
F(x - 0) dt + - F(x + 0) dt (2)

2 IT J_, 2sin-t a 0 2sin-t

Subtracting (2) from (1) yields the required result.

17. If F(x) and F'(x) are sectionally continuous in (-jr, 7r), prove that

(x) = F(x + 0) + F(x - 0)Jim SM
M.+m

The function
ally continuous.

F(t + x) - F(x + 0)
2 sint

Also,

lim F(t + x) - F(x + 0)
t..o+ 2 sin it

exists, since by hypothesis F'(x)
each x exists.

2

is sectionally continuous in 0 < t:-5 a because F(x) is section-

lim F(t + x) - F(x + 0) t = lira F(t + x) - F(x + 0)
t-.o+ t 2 sin It -.°+ t

is sectionally continuous so that the right hand derivative of F(x) at

Thus F(t + x) - F(x + 0) is sectionally continuous in 0 s t ! jr.2 sin it

Similarly, F(t + x) - F(x + 0) is sectionally continuous in -7r : t:-5 0.2 sin -t

Then from Problems 14 and 16, we have

lim M
M-+c 2

(x) - fF(x + 0) + F(x - 0)
T
1 =S

e

0 or lim SM(x) = F(x + 0) + F(x - 0)
M o 2

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

18. (a) Find the Fourier transform of F(x) =
J1 jxF < a

0 jxj>a
(b) Graph F(x) and its Fourier transform for a = 1.
(a) The Fourier transform of F(x) is

f F(u) a-fXu du (1) e`Vu duf(x) =
aa

- exa _
2

sin Xa(eiAa

ae-all
-iX I-a

For X = 0, we obtain f (X) = 2a.
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3.

(b) The graphs of F(x) and f(X) for a = 1 are shown in Figures 6-8 and 6-9 respectively.

F(X)

FOURIER SERIES AND INTEGRALS

2-1

1

-3 -2 -1

0
i
}

1 2 3

x

Fig. 6-8 Fig. 6-9

19. (a) Use the result of Problem 18 to evaluate

(b) Deduce the value of
W sin u

du.
0 U

(a) From Fourier's integral theorem, if

(' sin Aa cos Ax dk.
a_x

1(X) = f F(u) a-all du then F(x) = 2 J f(x) eiAx dX

Then from Problem 18,

[CHAP. 6

(1)

(2)

The integrand in the second integral of (2) is odd and so the integral is zero. Then from
(1) and (2), we have

1 jxj < a
11/2 jxj = a
0 1xI > a

f 00
2

da

The left side of (1) is equal to

f sin xa'cos Xx da + f sin Xa`sin Xx dx
V ?rx 00

f7w

sin Xa cos ax da
x

(b) If x = 0 and a = 1 in the result of (a), we have

sin " dX
x

since the integrand is even.

20. If F(x) is an even function show that:

(a) f (A) = 2 f F(u) cos xu du, (b) F(x)
0

We have

rzr jxj < a
a/2 lxI = a

t0 Ix1 > a

"sin XdX _
2

1 f f (k) cos .lx d k.
0

f(r) = f F(u) e--iXu = J F(u) cos xu du - i 5 F(u) sin Xu du

or

(3)

(1)
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(a) If F(u) is even, F(u) cos Nu is even and F(u) sin hu is odd. Then the second integral on the
right of (1) is zero and the result can be written

f(x) = 2 f F(u) cos Xu du
0

(b) From (a), f(-x) = f(x) so that f(X) is an even function. Then by using a proof exactly analogous
to that in (a), the required result follows.

A similar result holds for odd functions and can be obtained by replacing the cosine by
the sine.

PARSEVAL'S IDENTITY FOR FOURIER INTEGRALS

21. Verify Parseval's identity for Fourier integrals for the Fourier transforms of Prob. 18.

We must show that
00

(F(x))2 dx = 1 f (f(x))2 da2r .

where F(x) 1 jxj < a and f(n) = 2
0 jxj > a

This is equivalent to

or

1)2 dxfaa (
1 `° 4 sin2 xa dx2rrf

00
x2

sin?2aa
dX = 2

f si n2Xa
dX = ra

0

f
a0 sin! as -

X2 - zra
2

By letting Na = u and using Problem 111, Page 171, it is seen that this is correct. The method

can also be used to find fa slue u du directly.
0

PROOF OF THE FOURIER INTEGRAL THEOREM

22. Present a heuristic demonstration of Fourier's integral theorem by use of a limiting
form of Fourier series.

Let F(x) = 2 + Can cos nix + bn sin nix

where an = Z f F(u) cos nv-u du and bn = Z f l F(u)
l l

sin n'Zru du.

Then by substitution (see Problem 15),

l oo `l
F(x) = 1 f F(u) du + 1 j J F(u) cos na N - x) du

21 Z n=1 _l Z

(1)

(2)

If we assume that f IF(u)l du converges, the first term on the right of (2) approaches zero

as Z - 0, while the remaining part appears to approach
00

l im
1
1 F(u) cos i (u - x) du

I-W ft= f-.
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This last step is not rigorous and makes the demonstration heuristic.

Calling 0X = ir/l, (3) can be written

where we have written

But the limit (4) is equal to

F(x)

which is Fourier's

F(x) = lira AX F(n DA)
&J.-.o n=1

f(X) _
-1 J F(u) cos ?,(u - x) du
ir -1

J.
W

f(X) dx =
1

f ad1, f F(u) cos N(u - x) du
0

integral formula.

(4)

(5)

This demonstration serves only to provide a possible result. To be rigorous, we start with the
integral

1 f °` dx J
fF(u)

cos X(u - x) dx
o W

and examine the convergence. This method is considered in Problems 23-26.

r sin Xv o sin Av a23. Prove that: (a) lim J dv = , (b) lim f dv =X o v 2 a v 2'

(a) Let Xv = y. Then lira Cl sin 7,v dv = lira
X1 sin dy sin y dy =

2

by Prob-
lem 43, Page 164. X °°

V X -M J

(b) Let 1`v = -y. Then lira f o sin Xv dv = lira fo
sin y dy

2x* m T v h .- m y/

24. Riemann's theorem states that if G(x) is sectionally continuous in (a, b), then

lim G(x) sin Ax dx = 0A-,,J,

with a similar result for the cosine (see Problem 81). Use this to prove that

(a) lim J 1 F(x + v) si
vAy dv =

2
F(x + 0)

(b) limm J F(x + v)
81 yAy

dv = F(x - 0)

where F(x) and F'(x) are assumed sectionally continuous in (0, 1) and (-1, 0) respectively.

(a) Using Problem 23(a), it is seen that a proof of the given result amounts to proving that
lira

{F(x + v) - F(x + 0)) sin Xv dv = 0
A- W o V

This follows at once from Riemann's theorem, because G(v) = F(x + v)
v

F(x + 0)
is sectionally

continuous in (0, 1) since lira F(v) exists and f(x) is sectionally continuous.v0+
(b) A proof of this is analogous to that in part (a) if we make use of Problem 23(b).
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CK .0 0

X

25. If F(x) satisfies the additional condition that f IF(x) I dx converges, prove that
00

sin av
(a) lim f F(x + v)

v
dv F(x + 0), (b) lim f °

M F(x + v)
sinvdv dv =

2
F(x - 0).

We have

fo
F(x + v) si

dv

S'Cc+o) dv

J F(x + v) sin'Av dv -I- x F(x -I- v) s' dv
0 f,

(' F(x + 0) sin,Xv dv + f F(x -I- 0) si vav
dv

Subtracting,

f {F(x + v) - F(x + 0)) si vXv dv
0

I _ '° a0dv + f F(x + v) sin _v
v dv - f F(x + 0)

svin Av
dvf {F(x + v) - f (x + 0)) sin

V
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(1)

(2)

(3)

Denoting the integrals in (3) by I, II, I2 and 13 respectively, we have I = II + I2 + 13 so that

III < 1111 + 1121 + 1131 (4)

Now 1121 f I F(x + v) si vLv I dv fIF(x+v)Idv

Also JI31
s I F(x + 0) I

if,
sin rv dv

v

Since f 00

IF(x)I dx and f sin Xv dv both converge, we can choose l so large that 1121 - e/3,
0 0

1131 < E/3. Also, we can choose a so large that III < e/3. Then from (4) we have III < e for X and l
sufficiently large, so that the required result follows.

This result follows by reasoning exactly analogous to that in part (a).

26. Prove Fourier's integral formula where F(x) satisfies the conditions stated on Page 175.

We must prove that lim 1 fI f 00

F(u) cos X (x - u) du dX - F(x + 0) + F(x - 0)
I I-.ao ?l x=0 u=-x 2

strass test for integrals that f F(u) cos X(x - u) du converges absolutely and uniformly for all X.

Thus we can reverse the order of integration to obtain

fa
dX f F(u) cos X(x - u) du _ f F(u) duf cos a(x - u) du

u- ao
F(u) sin l(u - x) du

a-x

- 1 F(x + v) sin lv
dv

7 V

1 ° sin lv dv + 1 f x sinlv
dv- f F(x + v)

V
T F(x + v)

V
o

where we have let u = x + v.

Since I f F(u) cos X(x - u) du f IF(u)l du which converges, it follows by the Weier-

Letting Z - we see by Problem 24 that the given integral converges to F(x + 0) + F(x - 0)
2

as required.
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MISCELLANEOUS PROBLEMS
27. Expand F(x) = sin x, 0 < x < rr, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence
we extend the definition of F(x) so that it becomes even (dashed part of Fig. 6-10 below). With this
extension, F(x) is then defined in an interval of length tar. Taking the period as 2r, we have 21 = tar
so that l = rr.

F(x)

-1%

x

__ 2 _ 4 cos 2x cos 4x cos 6x
r A 22-1 + 42-1 + 62-1

+ ...1

IT 27

f sin x cos x dx
A

U

Fig. 6-10

By Problem 6, bn = 0 and
a

an =
Z

f F(x) cos nix dx = J sin x coo nx dx
0 0

1 f '{sin (x + nx) + sin (x - nx)} dx

1 1 - cos (n + 1)rr + cos (n - 1)7r - 1
rr n+1 n-1
-2(1 + cos nrr) if n # 1.rr(n2 -1)

For n = 1, al =

For n = 0, a0 =

_ 1 cos(n + 1)x + cos(n - 1)x la

rr n+1 n-1 }lo

1 1 + cos nir _ 1 + cos fir
rr{ ++1 n-1

2 sine x
V

'ir

2 0
= 0.

f sin x dx = 2 (- cos x) 10r 4
07

Then F(x) = 2 2
2 (1

+2
cosi n7)

cos nx

28. Show that JO°+ 1 dx = 2 e-x, x ? 0.

Let F(x) = e_x in the Fourier integral theorem

F(x) =
2

fcosxxdxf°°F(urcosxudu
0 0

Then

Since
I. W

e-u coo au du =
0

f cos ax daf e-u cos Xu du
0 0

1

i --

we haveX2 + 1 '

2 f7 a2 + 1
dh = e- or

0 J yo
daX2 + l - 2 e-s
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29. Solve the integral equation f0

F(x) cos Ax dx =

Let f F(x) cos ax dx = f(X) and choose
0

integral theorem,

2F(x) _ f f (X) cos ax dx _
0

1-x 0 1

10 .t > 1

f(X) =
1- X 0 ! A : 1
0 x>1

if 1

(1 - cos Xx dx
A o

193

Then by Fourier's

_ 2(1 - cos x)
,rx2

30. Find (a) the finite Fourier sine transform and (b) the finite Fourier cosine transform
of aU/ax where U is a function of x and t for 0 < x < 1, t > 0.
(a) By definition the finite Fourier sine transform of aU/ax is, on integrating by parts,

,f i ax
sin nix dx

0

or

t
t

U(x, t) sin nix I - 1 f U(x, t) cos nix dx
0 0

jp8{aU} = {U}

(b) The finite Fourier cosine transform is

Jot aU n,rx
ax COs-, dx

or

U(x, t) cos nix I
l0 - L f t

U(x, t) sin nix dx
0

- Z {U(0, t) - U0, t) cos n,r}

31. Work Problem 30(a) and (b) for the function a2U/axe.

Replacing U by all/ax in the results of Problem 30, we find

(a)
n,r J au
l B ax

2 2nlz 7 {U} + l {U(0, t) - U(l, t) cos nr)

- Z 7 { ax I - {U.(0, t) - Ux(l, t) cos n,r}

n2,r2

l2
{U} - {U.(0, t) - Ux(l, t) cos n7)7

where Ux denotes the partial derivative with respect to x.

32. Use finite Fourier transforms to solve

au a2U
at =axe

where 0<x<4, t>0.
U(0, t) = 0, U(4, t) = 0, U(x, 0) = 2x

Take the finite Fourier sine transform (with l = 4) of both sides of the partial differential equa-
tion to obtain
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f4 aU nirx
sin

4
dxJ at

0

f4 a2U nrx dxaxe sin?'"
0

[CHAP. 6

Writing u = y8 {U} and using Problem 31(a) with the conditions U(0, t) = 0, U(4, t) = 0, we find

du n2Tr2

at 16 u
where u = u(n, t).

(1)

Taking the finite Fourier sine transform of the condition U(x, 0) = 2x, we have as in Prob. 10(a)

u(n, 0) _ F. {2x} = 32(1 - cos mr)
nzr

Solving the differential equation (1), we find if c is an arbitrary constant

u = u(n, t) - c e-n21r2t/16

Since c = u(n, 0), we have from (2) and (3)

U = 32(1 - cos n r) 5-n2ir2t/16
ni

Thus from Problem 9(a), the inverse Fourier sine transform is

U(x, t) 2 32(1 - cos nor) e _n27r2t/16
4 n=1 nar

16 /1 - cosnr\ e_n2zr2t/16
7T n=1 n /

(2)

(3)

Physically, U(x, t) represents the temperature at any point x at any time t in a solid bounded by
the planes x = 0 and x = 4. The conditions U(0, t) = 0 and U(4, t) = 0 express the fact that the
ends are kept at temperature zero, while U(x, 0) = 2x expresses the initial temperature as a function
of x. Equivalently, the solid can be replaced by a bar on the x axis with endpoints at x = 0 and x = 4
whose surface is insulated.

02U
33. Solve at ax , x > 0, t > 0, subject to the conditions

1 O<x<1
U(O, t) = 0, U(x, 0) _

0 1
, U(x, t) is bounded

Taking the Fourier sine transform of both sides of the given partial differential equation, we find

2

0
8 sin Xx dx =

fw

ax2 sin 'x dx

Then if

this becomes

u = u(X, t) = f U(x, t) sin Xx dx
0

sin Xx dxdu - {l
fau
ax

sin Xx - XU cos ax I - X2 J ow
o 0

= a U(0, t) - X2u

(1)

(2)

on integrating the right hand side of (1) by parts and assuming that U and all/ax approach zero
as x- °°.
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From the condition for U(x, 0), we have on taking the Fourier sine transform

u(X, 0) = J U(x, 0) sin Xx dx
0

Si0

sin lax dx 1 - cos X
X2

Solving (2) subject to the condition (3) and U(0, t) = 0, we find

UN t) _ 1 - cos X -xY t
X2

(3)

Then taking the inverse Fourier sine transform, we find the required solution

U(x,t) = 1 1 -Cose-alt sin ax dx
0

Physically, this can represent the temperature in a solid x > 0 [see Problem 32].

Supplementary Problems

FOURIER SERIES, ODD AND EVEN FUNCTIONS, FOURIER SINE AND COSINE SERIES

34. Graph each of the following functions and find
even and odd functions wherever applicable.

(a) F(x) 1 8 0<x<2 Period 4-8 2<x<4

(b) F(x) x -4 x = 0 Period 8
x 0:x=4

Ans. (a) 16 (1 - cos n7) in nirx
IT n=1 n 2

(b) 2 - 8 (1 - cos nir)
cos

nirx
I2 n=1 ?t2 4

their corresponding Fourier series using properties of

(c) F(x) = 4x, 0 < x < 10, Period 10

(d) F(x) = J 2x 0 x < 3
0 -3<x<0

(c) 20 - TO
1

n sin n5x

Period 6

6(cos n7r - 1) nax 6 cos nTr n rx(d)
2 + I1 n21r2 cos 3 - n7 3n=

35. In each part of Problem 34, tell where the discontinuities of F(x) are located and to what value the
series converges at these discontinuities.
Ans. (a) x = 0, }2, ±4, ... ; 0 (c) x = 0, ±10, -20, ... ; 20

(b) no discontinuities (d) x = ±3, ±9, ±15, ... ; 3

36. Expand F(x) = {2 -x 0 <x < 4
x-6 4<x<8 in a Fourier series of period 8.

Ans. j cos 4 + I
32

cos 34x + I52 cos 64x +72

37. (a) Expand F(x) =cos x, 0 < is < r,, in a Fourier sine series.
(b) How should F(x) be defined at is = 0 and is = it so that the series will converge to F(x) for 0 :-5 is s r?

Ans. (a) 8 I1 4n2 2'1 (b) F(O) = F(ir) = 0
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38. (a) Expand in a Fourier series F(x) = cos x, 0 < x < r if the period is r; and (b) compare with the
result of Problem 37, explaining the similarities and differences if any.
Ans. Answer is the same as in Problem 37.

0 < x.< 4
39. Expand F(x) x

8-x 4<x<8
Ans. (a) ,2 1 n2 sin2 sin n8x

40. Prove that for

(a) x(r - x)

in a series of (a) sines, (b) cosines.

(b) 16 (2cosn-/2 -cosnr - 1) cosnrx2

8r n-1 n

x -< r,
r2 cos 2x cos 4x cos 6x
6

-12- + 22 + 32 +

(b) x(r - x) = 8 (sin x + sin 3x + sin 5x + \

r 13 33 53 1

41. Use Problem 40 to show that

a)
1 r2 r2 (-1)n-1 r3

( n=1 n2 6 (b) =1 n2 12' (c) 1 (2n-1)3 32'

42. Show that 13 + 33 53 73 + 93
1

+ 113

PARSEVAL'S IDENTITY FOR FOURIER SERIES

3r2v
16

43. By using Problem 40 and Parseval's identity, show that (a) 4
n=1 n

r4 76
90 (b) n=1 n 945

44. Show that 1
+

1 + 1 + = r2 - 8 [Hint. Use Problem 27.]12.32 32.52 52.72 16

r.4
(b)

r6
45. Show that (a) I 1 -n=1 (2n- 1)4 96 n=1 (2n - 1)6 960

46. Show that 1 + 1 + 1 + , , , = 4 .2 - 39
12.22.32 22.32.42 32.42.52

FINITE FOURIER TRANSFORMS

16

47. Find the (a) finite Fourier sine transform and (b) finite Fourier cosine transform of F(x) = 1 where
0 < x < 1. Ans. (a) 1(1 - cos nr)/nr (b) 0 if n = 1,2A...; 1 if n = 0

48. Find the (a) finite Fourier sine transform and (b) finite Fourier cosine transform of F(x) = x2 where
0<x<1.

3 3
Ans. (a) 213 (cos nr - 1) -

13A
cos nr if n = 1, 2, 3, ... ; if n = 0 (b) n

2 13
(cos n7r - 1)

1 - cos nr 2 cos nr.49. If 71, {F(x)) - where 0 < x < r, find F(x). Ans. 3 sin nxn2- rn-12 n2
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50. If {F(x)} - 6(sin n7r/2 - cos nr) for n = 1,2,3,... and 2/r for n = 0 where 0 < x < 4,
(2n -I- 1)r

1 3 sin nr/2 - cos nr 1 nrfind F(x). Ans. 2r +
w
1 ` 2n + 1 / cos 4

51. If f(n) = cos (2nr/3)
) find (a) Ys {f(n)} and (b) J 1 {f(n)} if 0 < x < 1.

(2n + 1)2

Ans. (a) 2 cos (2n7r/3) sin nrx (b) 1 + 2 g, cos (2n7r/3) cos nrx
=1 (2n+1)2 n=1 (2n+1)2

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

52. (a) Find the Fourier transform of F(x) 1/2e jxj : e
0 IxI>e

.

(b) Determine the limit of this transform as e - 0+ and discuss the result.

Ans. (a) (b) 1

53 (a) Fi ri n f F(x) _d th F ftn ou ra s orm o. e er > 1{

(b) Evaluate
0

(x cos
xx3

sin x) cos 2 dx.
o l

An.. (a) 4 ( X cos
X3

sin X (b)
16

1-x2 1XI <1
0 IxI

54. If F(x) = O
0 -

x <
1 find the (a) Fourier sine transform, (b) Fourier cosine transform of F(x).

(b) sinIn each case obtain the graph of F(x) and its transform. An.. (a) 1 cos X

55. (a) Find the Fourier sine transform of a-x, x at 0.

(b) Show that
f X sin dx = 2 e-m, m > 0 by using the result in (a).

0

(c) Explain from the viewpoint of Fourier's integral theorem why the result in (b) does not hold for
in = 0.

Ana. (a) X/(1 + A2)

56. Solve for Y(x) the integral equation

f0 Y(x) sin xt dx
1 Ost<1
2 1:t<2
0 t-2

and verify the solution by direct substitution. Ana. Y(x) = (2 + 2 cos x - 4 cos 2x)/rx

PARSEVAL'S IDENTITY FOR FOURIER INTEGRALS

57. Evaluate (a) f (x2 + 1)2' (b) f (x + 1)2 by use of Parseval's identity.

[Hint. Use the Fourier sine and transforms of x > 0.] Ans. (a) r14, (b) r/4

58. Use Problem 54 to show that (a)

59. Show that (x cos x - sin x)2
X6xf

0

f W (1 - cos x 12 dx = A , (b) f sin4 x dx
o x

l 2 0 x2 2.

dx =
15'
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MISCELLANEOUS PROBLEMS

60. If -7r < x < T and a # 0, ±1, i-2, ..., prove that
T sin ax sin x 2 sin 2x 3 sin 3x
2 sin aT 12 - a2 22 - a2 + 32 - a2

61. If -7r < x < r,, prove that

(a)

(b)

T sinh ax _ sin x 2 sin 2x 3 sin 3x
2 sink aT a2 J 12 a2 + 22 + a2 + 32 -

cosh ax _ 1 a cos x a cos 2x _
+2 sinhar 2a a2+12 a2+22

62. (a) Prove that if a - 0, L1, i-2, ..., then

r 2a 2a _ 2a
sin (Z7,- n a2 - 12 + a2 - 22 a2 - 32

+

(b) Prove that if 0 < a < 1, then
f xa-t - 1 xa-1 - x-a

dx
= 1 - 2a 2a - 2a

0
1 f x dx

1 + x a a2 - 12 + a2 - 22 a2 - 32 +

(c) Use (a) and (b) to prove that 1'(a) 1'(1 - a) = sin ar,
[Hint. For (a) expand F(x) = cos ax, -T < x in a Fourier series. For (b) write the given
integral as the sum of integrals from 0 to 1 and 1 to o, and let x = 1/y in the last integral.

Then use the fact that 1 + x - 1 - x + x2 - xs + .]

63. If 0 < x < r. prove that I's 1 1 3 s nr, = 12 x(a - x).

64. Find (a) y,, {03U/ax3} and (b) 9',. {aW/ax3}.

65. Show that

(a) T. (yciv)(x)} _

(b) {Y(iv)(x)}

nln
4

fs {Y(x)} -
3 4n13 {Y(0) + (-1)n+1 Y(l)) + -1 {Y"(0) + (-J).+1 y11(0)

-j 44 {Y(x)} + - L {Y'(0) + (-1)n+1 y'(l)) - {Y,,,(0) + (_1)n+i y,l,(l)}.
12

66. (a) Use finite Fourier transforms to solve

-
a2U

x0<<4, t>0
at

x2
U(0, t) = 0, U(4, t) = 0, U(x, 0) = 3 sin 7rx - 2 sin 57rx

(b) Give a possible physical interpretation of the problem and solution.
Ans. (a) U(x, t) = 3e-2r't sin 7rx - 2e-507rt sin 57,-x

au a2U
67. Solve

at = axe ,
0 < x < 6, t > 0, subject to the conditions

U(0, t) = 0, U(6, t) = 0, U(x, 0) 1 0 < x < 3
0 3<x<6

and interpret physically.

Ans. U(x, t) _ 2 )1 1 -cost(na/3) e_n2T2tiss sin 6x
n-1
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68. (a) In solving the problem
au
at

02U

ax2
0<x<6, t>0

Ux(0, t) = 0, Ux(6, t) = 0, U(x, 0) = 2x

which transform [sine or cosine] would you expect to be more useful? Explain.

(b) Find the solution to the problem in (a).

Ans. (b) 6 + 22 1 C cos n2 - 1) fl2 cos
7 x
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69. A flexible string of length 7, is tightly stretched between points x = 0 and x = r on the x axis, its ends
fixed at these points. When set into small transverse vibration the displacement Y(x, t) from the x axis

of any point x at time t is given by 2 = a2 ax2 where a2 = Tip, T = tension, p = mass per unit
length.

at2

(a) Using finite Fourier transforms, find a solution of this equation (sometimes called the wave equa-
tion) with a2 = 4 which satisfies the conditions Y(0, t) = 0, Y(7r, t) = 0, Y(x, 0) = 0.1 sin x +
0.01 sin 4x, Y t (x, 0) = 0 for 0 < x < r, , t > 0.

(b) Interpret physically the boundary conditions in (a) and the solution.
Ans. (a) Y(x, t) = 0.1 sin x cos 2t + 0.01 sin 4x cos 8t

02Y 02Y
70. (a) Solve the boundary-value problem

a te = 9 6x2 subject to the conditions Y(0, t) = 0, Y(2, t) = 0,

Y(x, 0) = 0.05x(2 - x), Yt (x, 0) = 0, where 0 < x < 2, t > 0. (b) Interpret physically.

Ans. (a) Y(x, t) = 1.6 1 sin (2n -1)7rx cos 3(2n -1)7rt
7r3 n=1 (2n -1)2 2 2

71. Solve the boundary-value problem
0<x<7r, t>0.

aU = a2U U(0, t) = 1,at ax2 '

Ans. U(x, t) = 1 + 2x + 4 cos n7r
fl n=1 n7r

e-,,2t sin nx

72. Give a physical interpretation to Problem 71.

U(7r, t) = 3, U(x, 0) = 2, where

73. Solve Problem 70 with the boundary conditions for Y(x, 0) and Yt (x, 0) interchanged, i.e. Y(x, 0) = 0,
Yt (x, 0) = 0.05x(2 - x), and give a physical interpretation.

Ans. Y(x, t) = 3.2
w 1 sin (2n - 1)7-x sin 3(2n -1),rt

37f4 n=1 (2n - 1)4 2 2

74. Prove the results (4) and (5) on Page 174.

75. Verify the convolution theorem for the functions F(x) = G(x) = i lxI < 1
0 1xI > 1

.

76. Write Parseval's identity in complex form using the results (4) and (5) on Page 174.

77. Prove the result (15) on Page 176.

78. Prove the results (19) and (21) on Pages 176 and 177 respectively.
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79. Prove the results (23) or (24) on Page 177.

[Hint. If f(a) = f e-iku F(u) du and g(X) = f
x

e-av G(v) dv, then

f(X) g(x) = f f e-i,\(u+v) F(u) G(v) du dv

Now make the transformation u + v = x.1

80. If f(X) and g(X) are the Fourier transforms of F(x) and G(x) respectively, prove that

f F(x) G(x) dx = A f f(a) g(A) d«
W -W

where the bar signifies the complex conjugate.

81. Prove Riemann's theorem (see Problem 24).

82. (a) Show how to use Fourier transforms to solve

a2U

at - 2 axe , x > 0

if U(0, t) = 0, U(x, 0) = e-x, and Mx, t) is bounded.

(b) Give a physical interpretation.

Ana. U(x, t) = 2 ae-2a2 t in ax dx7f0 a2+1

[CHAP. 6

2
83. (a) Solve et = 2 X2-, U(0, t) = 0, U(x, 0) = e-x, x > 0, U(x, t) is bounded where x > 0, t > 0.

(b) Give a physical interpretation.

Ans. U(x,t) _ f
°°Te-222+

1
Ax dx

84. Solve aU = ax , U.0, t) = 0, U(x, 0) = < 0
0

0x:1
x>1'

Ans. U(x, t) =
72-

0
(sin - + cos X2 1) a-),2t cos xx dx

o
l\\ J

85. (a) Show that the solution to Problem 33 can be written

U(x, t) is bounded where x > 0, t > 0.

/2V 1 (1+x)/2f2 x fU(x, t) = f e-v2 dv - `r e-v2 dv
vG

f
0 V.- (1-x)/2V

aU = a2U and the conditions of Problem 33.(b) Prove directly that the function in (a) satisfies
at 8x



Chapter 7

THE COMPLEX INVERSION FORMULA

If f (s) = C {F(t) }, then { f (s) } is given by

1 y+ia

F(t) = 5 et f(s) ds, t > 0 (1)

and F(t) = 0 for t < 0. This result is called the complex inversion integral or formula. It
is also known as Bromwich's integral formula. The result provides a direct means for
obtaining the inverse Laplace transform of a given function f (s).

The integration in (1) is to be performed along a line s =,/ in the complex plane where
s = x + iii. The real number y is chosen so that s = y lies to the right of all the singu-
larities (poles, branch points or essential singularities) but is otherwise arbitrary.

THE BROMWICH CONTOUR

In practice, the integral in (1) is evaluated
by considering the contour integral

27r 5c
est f(s) ds

where C is the contour of Fig. 7-1. This con-
tour, sometimes called the Bromwich contour,
is composed of line AB and the are BJKLA of
a circle of radius R with center at the origin O.

If we represent are BJKLA by r, it follows
from (1) that since T = R2 - y2,

(2)

Fig. 7-1

1
ytiT

F(t) =
R

urn 27ri J est f (s) ds
,y-%T

lim f 1 $ est f (s) ds -
R-+ 2A iS est f (s) ds}

(3)

USE OF RESIDUE THEOREM IN FINDING INVERSE LAPLACE TRANSFORMS

Suppose that the only singularities of f (s) are poles all of which lie to the left of the
line s for some real constant y. Suppose further that the integral around r in (3)
approaches zero as R -oo. Then by the residue theorem we can write (3) as

201
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F(t) = sum of residues of est f (s) at poles of f (s) (4)

I residues of est f (s) at poles of f (s)

A SUFFICIENT CONDITION FOR THE INTEGRAL AROUND i'
TO APPROACH ZERO

The validity of the result (4) hinges on the assumption that the integral around r in (3)
approaches zero as R--o. A sufficient condition under which this assumption is correct
is supplied in the following

Theorem 7-1. If we can find constants M> 0, k> 0 such that on r (where s = Reie),

If(S)I
M

< Rk

then the integral around 1' of est f (s) approaches zero as R - oo, i.e.,

lim J est f (s) ds = 0n-.. r

(5)

(6)

The condition (5) always holds if f (s) = P(s)/Q(s) where P(s) and Q(s) are polynomials
and the degree of P(s) is less than the degree of Q(s). See Problem 15.

The result is valid even if f (s) has other singularities besides poles.

MODIFICATION OF BROMWICH CONTOUR
IN CASE OF BRANCH POINTS

If f (s) has branch points, extensions of the
above results can be made provided that the
Bromwich contour is suitably modified. For
example, if f (s) has only one branch point at
s = 0, then we can use the contour of Fig. 7-2.
In this figure, BDE and LNA represent arcs of
a circle of radius R with center at origin 0,
while HJK is the are of a circle of radius e with
center at O. For details of evaluating inverse
Laplace transforms in such cases see Prob. 9. Fig. 7-2

CASE OF INFINITELY MANY SINGULARITIES

If we wish to find the inverse Laplace transform of functions which have infinitely
many isolated singularities, the above methods can be applied. In such case the curved
portion of the Bromwich contour is chosen to be of such radius R. so as to enclose only a
finite number of the singularities and so as not to pass through any singularity. The
required inverse Laplace transform is then found by taking an appropriate limit as m-00.
See Problems 13 and 14.
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Solved Problems
THE COMPLEX INVERSION FORMULA
1. Establish the validity of the complex inversion formula.

We have, by definition, f(s) = f e-su F(u) du. Then
0

y+iT
lim

1

-- fl-iT est f (s) ds =T-ix 2n'i

Letting s = y + iy, ds = i dy, this becomes

lim
T w

est-su F(u) du ds
1

fY-iT

J
tai 0

Tim 2n e?t f T eiyt dyf e-iYu [e-Yu F(u)] du = 2u eYt
f 27re-Yt F(t) t> 0

-T o 0 t<0
F(t) t > 0
0 t<0

by Fourier's integral theorem [see Chapter 6]. Thus we find

as required.

Y } ioo

F(t) = f est f(s) ds t > 0
Y-ix

203

In the above proof, we assume that e-YuF(u) is absolutely integrable in (0,-), i.e.f a
e-Yu jF(u)j du converges, so that Fourier's integral theorem can be applied. To insure this

0
condition it is sufficient that F(t) be of exponential order y where the real number y is chosen so that
the line s = y in the complex plane lies to the right of all the singularities of f (s). Except for this
condition, y is otherwise arbitrary.

2. Let 1, denote the curved portion BJPKQLA
of the Bromwich contour [Fig. 7-3] with
equation s = Reie, 00 < 0 < 27r - 0o, i.e. r is
the are of a circle of radius R with center
at 0. Suppose that on r we have

AS) I < R
where k > 0 and M are constants. Show
that

lim est f (s) ds = 0
x-.w fr

If r1, r2, 1`3 and r4 represent arcs BJ, JPK,
KQL and LA respectively, we havef est f(s) ds _ f est f(s) ds + f est f(s) ds

r r, I$
+ f

rs

Fig. 7-3

est f (s) ds + f est f(s) ds

1"

Then if we can show that each of the integrals on the right approach zero as R -- we will have
proved the required result. To do this we consider these four integrals.

Case 1. Integral over r1 or BJ.

Along r1 we have, since s = Reie, o0:-5 e < a/2,
7r/2

Il = f est f (s) ds = ( exee°t f (Ret9) iReie do
r, J 00
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Then 1111

e(Rc000)t If(Rei0)j R do

[CHAP. 7

r/2
< RM 1 e(RcosO)t do = RMt f e(Rsin0)t do

00 0

where we have used the given condition If(S) 1 15 MIRk on 1'1 and the transformation o = r/2 - 0
where 'o = v/2 - so = sin -1 (y/R).

Since sin 0 < sin 00 < cos Bo = y/R, this last integral is less than or equal to

M 60 Me'/toho-1-
Rk 1

f eyt do =
0

fr

But as R--, this last quantity approaches zero [as can be seen by noting, for example, that
sin-' (y/R) , y/R for large R]. Thus lim Il = 0.

R.o «

Case 2. Integral over r2 or JPK.

Along 1'2 we have, since s = Re10, tr/2 < e 7r,

I2

Then, as in Case 1, we have

1121 :5

upon letting e = a/2 + 0.

f estf(s)ds
r2

M
Rk t

rr/2

e(RcosO)t do
'o

Now sin 0 > 20/r for 0 0 < r/2 [see Problem 3], so that the last integral is less than or equal to

M
Rk-1

77/2

e-2R(5t/1r d.p.6

which approaches zero as R -> co. Thus lim I2 = 0.
R -w

7rM

2tRk
(1-e t)

Case 3. Integral over r3 or KQL.

This case can be treated in a manner similar to Case 2 [see Problem 58(a)].

Case 4. Integral over r4 or LA.

This case can be treated in a manner similar to Case 1 [see Problem 58(b)].

3. Show that sin 0 > 20/-.T for 0 < -p < it/2.

Method 1. Geometrical proof.

From Fig. 7-4, in which curve OPQ represents
an are of the sine curve y = sin 0 and y = 2017r
represents line OP, it is geometrically evident that
sin 0 ? 20/r for 0 < 0 7,/2.

Method 2. Analytical proof.

Consider F'(0) = sin 0. We have

THE COMPLEX INVERSION FORMULA

Ie(Rcoso)tl Iei(RsinO)ti If(Reie)I IiRe{0I do

sin 0dF' -
F" (o) - q, cos

02

a/2

M evtRk
1 sin-1

eReiOtf(ReiO) iRei0 do

r/2

c RM 1
1

e-(R sinm)t do

Fig. 7-4

(1)
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If G(o) = 0 cos 0 - sin 0, then

dG = G'(o) = - o sin 0 (2)

Thus for 0 * 0 < ir/2, G'(0) ! 0 and G(o) is a decreasing function. Since G(0) = 0, it follows that
G(0) < 0. Then from (1) we see that F'(0) < 0, or F(o) is a decreasing function. Defining
F(0) = Olii o F(j) = 1, we see that F(s) decreases from 1 to 2/-r as 0 goes from 0 to 7/2. Thus

1 sin 0 2
it

from which the required result follows.

USE OF RESIDUE THEOREM IN FINDING INVERSE LAPLACE TRANSFORMS

4. Suppose that the only singularities of f (s) are poles which all lie to the left of the line
s = y for some real constant y. Suppose further that f (s) satisfies the condition given
in Problem 2. Prove that the inverse Laplace transform of f (s) is given by

F(t) = sum of residues of es' f (s) at all the poles of f (s)

We have e- .c est f(s) ds
C

2
est f (s) ds + Jf(s) ds1 nTy-iT r

where C is the Bromwich contour of Problem 2 and I' is the circular arc BJPKQLA of Fig. 7-3.
By the residue theorem,

1 f est f(s) ds = sum of residues of est f (s) at all poles of f (s) inside C
21ri C

_ I residues inside C

y+iT
Thus 1 J est f (s) ds

21rE y-iT
est f (s) dsresidues inside C -

2 fl,

Taking the limit as R - °, we find by Problem 2,

F(t) = sum of residues of est f (s) at all the poles of f (s)

5. (a) Show that f (s) = s 2 satisfies the condition in Problem 2.

(b) Find the residue of
sesi2

at the pole s = 2.

(c) Evaluate C-' {s 121 by using the complex inversion formula.

(a) For s = Re's, we have

1 1 = ( 1 ( 1 = 1 2

s-2 Reis-2 JR01 -2 R-2 R
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for large enough R (e.g. R > 4). Thus the condition in Problem 2 is satisfied when k = 1, M = 2.
Note that in establishing the above we have used the result Iz1- z21 iz11 - Iz21 [see Problem 49(c),
Page 1671.

(b) The residue at the simple pole s = 2 is

$m (s-2)
/
(

eat

s-2 e2t

(c) By Problem 4 and the results of parts (a) and (b), we see that

C-1
{$12}

sum of residues of eat f(s) = e2t

Note that the Bromwich contour in this case is chosen so that y is any real number greater
than 2 and the contour encloses the pole s = 2.

6. Evaluate f 1 by using the method of residues.
l(s + 1)(s - 2)2

Since the function whose Laplace inverse is sought satisfies condition (5) of the theorem on
Page 202 [this can be established directly as in Problem 5 or by using Problem 15, Page 2121, we have

1

+1)(s-2)2}
l ry iao est ds

27ri
Y

(s + 1)(s - 2)2

1 f est ds
27ri j (s + l)(s - 2)2

residues of
eat

(s I-1est - 2)2 at poles s = -1 and

Now, residue at simple pole s = -1 is

lim (s+1)s--1

and residue at double pole s = 2 is

1lim - d- [(s - 2)2 est
s..21! ds (s+1)(s-2)2 ]

est = 1 e-t
(s + 1)(s - 2)2 9

st
lim d e
s-.2ds s+1

(s + 1)test - estlira
s-'2 (8+ 1)2

Then

7. Evaluate

- 2)2-1 f (s + 1)(s
1

{(s+1)3(s_1)2}
S

s=2

3 te2t - 9 e2t

residues = 9 e-t + 3 te2t - 9 e2t

As in Problem 6, the required inverse is the sum of the residues of

seat

(S+1)3(8-1)2

at the poles s = -1 and s = 1 which are of orders three and two respectively.
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and

Now, residue at a = -1 is

1 d2lim
1 2 ! 22

(8+1)3
(s + 1)3

sest
(s -1)2] lim 2 d2 dsL2 [(S---1)2]

R...-1 J

residue at s = 1 is

lim 1 d (s -1)2 Best
s-+11! ds (s + 1)3 ( 2a -1)

Then C-1 f(s + 1)3 {s - 1)21 = residues
16

a-t (1- 2t2) + 16 et (2t -1)

8. Evaluate 1 f 1 l
ls2+1)2r

We have 1 _ 1
(S2+1)2 [(8 + i)(8 - i)]2 -

The required inverse is the sum of the residues of
est

(s + i)2 (s - j)2

at the poles s = i and s = -i which are of order two each.

Now, residue at s = i is

lim d- [(s - i)2
est

s - i d8 (S + i)2 (S - i)2

and residue at s = -i is

1

(S +,1)2 (S - i)2

teit - 4 ieit

lim d [8+i2 est = -1te-it + 1ie-it
S-.-ids (s+i)2(s-i)2 4 4

which can also be obtained from the residue at s = i by replacing i by -i. Then

I residues - t(eit + e-it) - 4 i(eit - e-it)

- 2 t cos t + 2 sin t = 2 (sin t - t cos t)

Compare with Problem 18, Page 54.

INVERSE LAPLACE TRANSFORMS OF
FUNCTIONS WITH BRANCH POINTS

9. Find e
°`r

by use of the com-

plex inversion formula.
By the complex inversion formula, the re-

quired inverse Laplace transform is given by

F t = 1
v+iooest

avs
ds() 2wi f'-j. s

(1)

Since s = 0 is a branch point of the integrand,

16
a-t (1- 20)

Rim dds
(sSest

1)2] - 16 et (2t -1)

207

we consider Fig. 7-5



208 THE COMPLEX INVERSION FORMULA [CHAP. 7

1 est-ate ds
27i JC s

est-ate est-ate1

27i ,f $ ds + 27ri f s
ds

AB BDE

1 est-ate 1 eat-aVs

+ 2tri ,r 8
ds +

2iri ,f 8
ds

EH HJK

est-ate 1 est-ate
+ 27i f ds + 27i ,f s

ds
KL LNA

where C is the contour of Fig. 7-5 consisting of the line AB (s ='Y), the arcs BDE and LNA of a circle
of radius R and center at origin 0, and the are HJK of a circle of radius a with center at O.

Since the only singularity s = 0 of the integrand is not inside C, the integral on the left is zero
by Cauchy's theorem. Also, the integrand satisfies the condition of Problem 2 [see Problem 611 so that
on taking the limit as R -+ co the integrals along BDE and LNA approach zero. It follows that

KL

(2)

Along EH, s = Vi = i,/x eii/2 = iV-x- and as s goes from -R to -e, x goes from R to e.
Hence we have

f
est-ar f+ixest-ate

F(t) 1o, s ds dsR 2;ri 1 -i°° s27i Y
E-+0 AB

1 est-ars est-ate est-a%
- lim f ds + f ds + f ds

R-.ao 2ri s 8 8

I estate
J ds

s
EH

E est-ate fE e-xtaim
J

ds -
J

dx
R $ R x

Similarly, along KL, 8 = xe-7i, Vi = V-X e--12 = -iVi and as s goes from -e to -R, x goes
from a to R. Then

I estate =
J ds

s
KL

Along HJK, s = eei0 and we have

/estate
1 s ds

HJK

x
E

S9t_-
aIe10/2

eei0
ieei0 do

i F
ReEeiOt

- acei0/2 do

Thus (2) becomes

1 ff e-xt-ai- R e-xt+ai
F(t) lim J dx + f dx +

R-.°° tai R x
E

x
E-+0

dx

i ee06t - aCeie/2 de
rr }

1 e-xt(eaif - ea) iOt - are e10/llim
{jlt dx + i e de

R-» 27i E x a
E-.0

R

Rlm tai
{2i5

e-xt sin a dx +

Since the limit can be taken underneath the integral sign, we have

lim
a

eeeiof - a/ei0/2 do
E -+ 0

IT

and so we find
0

1

i
TeEefet

- areie/'2 de
IT

J i de
IT

F(t) = 1 - 1 ('°°e-xt sin a dx
IT J x

This can be written (see Problem 10) as

F(t) = 1 - erf (a/2V1) _

f -R est-ate
ds

= R e - xt+ai%rx-

8E-

erfc (a/2NFt )

-2a

(3)

(4)
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xt
10. Prove that f e sixn a x dx = erf (a/21jt-) and thus establish the final result

(4) of Problem 9.

Letting x = u2, the required integral becomes
! "e-u2tJ,' Zsin au du

0

Then differentiating with respect to a and using Problem 183, Page 41,

aI _ 2 . e-u2t cos au du = 2 (-NE--e-.2/4t) = 1 e-aa/4t
as IT

o 2VIt Trt

Hence, using the fact that I = 0 when a = 0,

faj = - e-P2/4t dp0

and the required result is established.

11. Find C-1 {e-ar}.

2 a/2Vi
e-u2 du

o

erf (a/2V)

If .C{F(t)} = f(s), then we have .e{F'(t)} = s f(s) -F(0) = s f(s) if
{f(s)} = F(t) and F(0) = 0, then C-1 {s f(s)} = F'(t).
By Problems 9 and 10, we have

F(t)

so that F(0) = 0 and

Then it follows that

a/2
erfc 1 - e- u2 duM

a t-3/2 6-a2/4t
2V

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH INFINITELY
MANY SINGULARITIES

12. Find all the singularities of f(s) --
cosh x/
s cosh

where 0 < x < 1.

Because of the presence of -Vrs-, it would appear that s = 0 is a branch point. That this is not so,
however, can be seen by noting that

f (s)
= cosh xVs- = 1 + (x f )2/2 ! + (xV )4/4 ! +

scosh Vs- s{1 + (x)2/2! + (x)4/4! + }

1 + x2s/2 ! + x4s2/4 ! +
s(1 + s/2! + s2/4! + }

from which it is evident that there is no branch point at s = 0. However, there is a simple pole at s = 0.

The function f (s) also has infinitely many poles given by the roots of the equation

e%rs + ecosh f = = 0
2

a s
s

F(0) = 0. Thus if

a/2>aIr

o

-i {e-ate } = F'(t) = Wt
f, - L f

e-u2 du
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These occur where e2V-S = -1 = Crri+2krri k = 0, -*1, ±2, ...

from which = (k + J)rri or s = -(k + -J-)2V-2

These are simple poles [see Problem 561.

Thus f (s) has simple poles at

s = 0 and s = sn where sn = -(n - J)2rr2, n = 1, 2, 3, ..

13. Find 1 cosh x./
e {s cosh v-} where 0 < x < 1.

The required inverse can be found by using
the Bromwich contour of Fig. 7-6. The line AB is
chosen so as to lie to the right of all the poles
which, as seen in Problem 12, are given by

s = 0 and s = sn = -(n - -)2rr2, n = 1, 2, 3, .. .

We choose the Bromwich contour so that the
curved portion BDEFGHA is an arc of a circle r.
with center at the origin and radius

R,n = r2w2

where m is a positive integer. This choice insures
that the contour does not pass through any of
the poles.

We now find the residues of

est cosh xv-8

s cosh

at the poles. We have:

Residue at s = 0 is

Residue at

lim
S. S.

lim (s - 0) { est cosh xv-8l =
s-.o s cosh V f

s = -(n - J)2a2, n = 1, 2, 3, ... is

(s - sn) est cosh xv-3
{ s cosh /

1

Fig. 7-6

lim
s - sn

lim est cosh x 8
S-.ss

cosh V --1f
8

lim 1 lim cosh xs-s.

(sink )(1/2)} a

4(-1)n e-(n-/)$rrit
cos7r(2n - 1) (n -)ax

If C. is the contour of Fig. 7-6, then

1

C
est cosh xV-s 4 rn (-1)n s16-(n-

2rri
ds = 1 + rrst cos (n - )rrx

cm s cosh n=1 2n -

Taking the limit as m - and noting that the integral around P. approaches zero [see Problem 54],
we find

1 e(n% )sr,2t
{8coshJ

cos (n - )rrx
n=11V S

= 1 + 4
( 1) g (2n-1)zn2t/4 COs

n _ )rrx
rr n.1 2n -1 2
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14. Find 1

z
inh sx l where 0 < x <a.

S2 cosh sa f
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The function f(s) = sinh sx has poles at s = 0 and at values of s for which cosh sa = 0, i.e.,82 cosh sa

s = sk = (k + +)ori/a k = 0, -!-1, --t2, ...

Because of the presence of 82, it would appear that s = 0 is a pole of order two. However, by observing
that near s = 0,

sinh sx
82 cosh sa

sx + (sx)3/3! + (sx)5/5! +
82{1 + (sa)2/2! + (sa)4/4! + }

x + 82x3/3 ! + s4x5/5 !
s{1 + s2a2/2! + s4a4/4! + }

we see that s = 0 is a pole of order one, i.e. a simple pole. The poles
Problem 56].

ak are also simple poles [see

Proceeding as in Problem 13, we obtain the residues of est f (s) at these poles.

Residue at s = 0 is

Js-O sinh sxJ

fs o
!!in (s - 0

)s -.o
s{est sinh

cosh sa
sx

coshtsa}

using L'Hospital's rule.

Residue at s = 8k is

lim
s-+sk

(s - 80 1et sinh sxl
82 cosh sa f

f { lim
l8-+4k

lim
$y3r

s - sk 1 f
Em est sinh ax

cosh sa It 1 s sk s2

1
I

.fira
est sinh sx

a sinh sa s-.sk s2

1 eck++ )att/a i sin (k + )rx/a
ai sin (k -+J), - (k + .)2r2/a2

a(-1)k sin (k + )rx/a
r2(k + J)2

x

By an appropriate limiting procedure similar to that used in Problem 13, we find on taking the
sum of the residues the required result,

sinh sx = x
a (_1)k e(k+/),rtt/a sin (k + -&)rx/a

82 cosh sa } r2 k = -,o (k + 1)2

2a (-1)n cos (n - - )rt/a sin (n - , )rx/a= x +
2r n=1 (n - J)2

8a (-1)n (2n - 1)7rx (2n - 1)rtx + 1 (2n -1)2 sin 2a cos 2a7rz ,



212 THE COMPLEX INVERSION FORMULA [CHAP. 7

MISCELLANEOUS PROBLEMS

15. Let f (s) = P(s)/Q(s) where P(s) and Q(s) are polynomials such that the degree of P(s)
is less than the degree of Q(s). Prove that f (s) satisfies the condition in Problem 2.

Let P(s) = aosm + alsm -- I + ... + am

Q(s) = bpsn + blsn-I + ... + bn

where ao # 0, bo # 0 and 0 < m < n. Then if s = Reis, we have

P(s)
Q(s) bosn + b1sn-I + ... + bn

aosm + alsm-1 + ... + am

I

aoRmemie + a1Rm-1 e(m- 1)iO + ... + am
boRnenio + b1Rn-1 e(n-1)io + ... + an

ao

TO

1

Rn-m

I

1 + (al/a0R)e-1e + (a2/a,R2)e-2ie + ... + (am/aoRm)e-nio

1 + (bl/b0R)e-ie + (b2/b0R2)e-tie + ... + (bn/b0Rn)e-nie

Let A denote the maximum of Ial/aol, Ia2/aol, lam/aol

Let B denote the maximum of Ibl/bol, Ib2/bo;, Ibn/bo!.

Then
al a2

1 + R e-ie +o e-2:o + ... +amaoRm a-mie
a0

for R>A+1.

Also,

s 1 + R + R2 + ... + R
+ RI1+R+R2+

1 + RA 1 < 2

+ b-k a-ie + bOR2 a-tie + ... b_ un a-nis

> 1- Ibi s-ie + b 2 a-tie + ... + bb,.
a-nie I

R+R2+...+R

1F

(1 + R2+R2+...1

1
B > 1

R-1 = 2
for R > 2B + 1.

Thus for R larger than either A + 1 or 2B + 1, we have

If(6)I <
boI-Rnlm-1/2

= R
where M is any constant greater than 2lao/bo! and k = n - m ? 1. This proves the required result.

cosh
x < a.

`e { s cosh aVij
(a) Method 1. From Problem 13, we have

cosh x a
is cosh V

+ 4 j (-1)n e-(2n-1)2n2ti4cos(2n-1)irx

zrn=l2n-1 2
1
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Replacing s by ks, we find by the change of scale property, Page 44,

_1 (cosh x ks 1 = 1 1 + 4 n 1)1 e-(2n-1)Y7rzu4kcos (2n-1)7rxl
ks cosh ks n=1 2 f

Then multiplying both sides by k, replacing k by a2 and x by x/a, we find the required result

cosh xV - 1 + 4 (-1)n e-(2n-1)2 t/4a2COS (2n-1)7rx
{s cosh ate} 7r n=1 2n-1 2a

Method 2. We can also use the inversion formula directly as in Problem 13.

17. Find-1 a
osh sx

t where 0 < x < b.s cosh sb
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Let f(s) =
cosh sx

s3 cosh sb ' Then s = 0 is a pole of order 3, while 8 = sk = (2k + 1)7ri/2b, k = 0,

-t1,4-2, ... [which are roots of cosh sb = 0], are simple poles. Proceeding as in Problem 13, we have-
Residue of est f (s) at S = 8k is

lim (8 - SO e cosh ax
S- Sk 83 cosh 8b

To find the residue at

est cosh sx
s3 cosh sb

lim
8 - sk

{ lim est cosh sx t
cosh sb S-+Sk s3 f

1 e(2k+1)7rit/2b cosh (2k + 1)7rix/2b
b sinh (2k + 1)7ri/2 {(2k + 1)7ri/2b}3

(-1)k 8b2 e(2k + 1)7rir/2b (2k + 1)7rx
(2k + 1)7r3

cos
2b

s = 0, we write

1 82t2 ..1 J 1 + 82x2/2 ! + 84X4/4! + .. .
y 1 +

St + 2i + 111 + 82b2/2! + S40/4! +

3 8212 1 a2x2 84

)(1
82b2 b84b4

8
st !

+
// 1 +

2 + 4 + - 2 + 24

g3111+st+
2 82b2s8 2 + 2t + ...1

2 J(

Thus the residue [which is the coefficient of 1/s in this series]

The residue at s = 0 can also be obtained by evaluating

is J(t2 + x2 - b2).

lim 1 d3
(s - 0)3 est cosh sx

s-.o 2! is-3 83 cosh sb

The required inverse Laplace transform is the sum of the above residues and is

j(t2 + x2 - b2) + 8b2 (-1)k e(2k + 1)7rit/2b
COS

(2k + 1)7rx

k =-oo (2k + 1)3 2b

-(t2 + x2 - b2) - 16b2 00 (-1)n
cos

(2n - 1)7rt
cos

(2n - 1)7rx
7r3 n=1 (2n -1)3 2b 2b

which is entry 123 in the Table on Page 252.
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18. A periodic voltage E(t) in the form of a "square wave" as shown in Fig. 7-7 is applied
to the electric circuit of Fig. 7-8. Assuming that the current is zero at time t = 0, find
it at any later time.

E(t)

Eo

-Eo

Fig. 7-7

t

The differential equation for the current 1(t) in the circuit is

L dl + RI = E(t) where 1(0) = 0

Taking Laplace transforms, using entry 135 in the Table on Page 253, we find

LsI + RI = 0tanh as or
8

E0 as
s(Ls + R) tank

2
I (s) =

_ E0
I(t) C-1 {s(s + R/L)

tankL 2

(1)

(2)

The function f($) = s(s + R/L)
tank 2 has a simple pole at s = -R/L and simple poles at

8 = sk = (2k + 1)7ri/a, k = 0, ±1, ... where cosh (as/2) = 0 [compare Problem 17]. The value s = 0

is not a pole since Em tanh (as/2) = a
o s = 2 is finite. Thus s = 0 is a removable singularity.

Proceeding as in Problems 13 and 17, we obtain the residues of est f (s) at the poles. We find:

Residue at s = -R/L is

st

lixiL (s + R/L) {s(s
+ RIL) tanh 2

Residue at s = sk = (2k + 1)7i/a is

sym (s - sk)s(s sR/L) tanh
asjk

R

e-1t/L tank
2L

8 - Sk im est sinh (as/2)1lim
s-.sk cosh (as/2) s-+Sk s(s + R/L)

1 eskt sink (ask/2)
(a/2) sinh (aSk/2) sk(8k + R/L) J}

Fig. 7-8

2e(2k+1)7rit/a
(2k + 1)iri {(2k + 1)aila + B/L}
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Then the sum of the residues is

R

e-Brit tank
2L

+ 2e(2k+1)7rit/a

k m (2k + 1)7ri {(2k + 1)7ri/a + RIL}

R

e-Bt1L tank 2L + 4aL
1

aR sin (2n - 1)7rtla - (2n - 1)7rL cos (2n - 1)7rt/a
(2n -1){a2R2 + (2n - 1)27r2L2}

Thus from (2) we have the required result

E0
L aR 4aEo

I(t) = R e'Btitanh
2L

+- 71-

x

I1
aR sin (2n - 1)7rt/a - (2n - 1)7rL cos (2n -1)at/a

(2n -1){a2R2 + (2n - 1)27r2L2}

This can also be written in the form

1(t) _ EE0R0

a-Bu/L tanh °2RL + 4aEo

where tan-1 {(2n -1)7rL/aR}.

sin {(2n - 1)7rt/a - 0n}
7tI= 1 (2n -1){a2R2 + (2n -1)27r2L2}112

Supplementary Problems

THE COMPLEX INVERSION FORMULA AND USE OF RESIDUE THEOREM

19. Use the complex inversion formula to evaluate

(a) e-11 82+a2} (b) C-1 {a2a2} (c) (8+1)(82+1)J

Ans. (a) cos at, (b) (sin at)/a, (c) 4-(sin t - cos t + e-t)

20. Find the inverse Laplace transform of each of the following using the complex inversion formula:
(a) 1/(8 + 1)2, (b) 1/83(82 + 1).

Ans. (a) to-t, (b) Jt2 + cos t - 1

21. (a) Show that f(s) 182 - 38 + 2 satisfies the conditions of the inversion formula. (b) Find .C-1 {f(a)}.

Ans. (b) e2t - et

22. Evaluate 82
(82 + 4)2 justifying all steps.

Ans. J sin 2t + it cos 2t

23. (a) Evaluate C-1 i (a2 + 1)3}
justifying all steps and

(b) check your answer.

st
24. (a) Evaluate

1 ii
o (a2Q 1)2 do around the contour C

shown in the adjoining figure where R ? 3 and y > 1.
(b) Give an interpretation of your answer as far as
Laplace transform theory is concerned.

Fig. 7-9
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25. Use the inversion formula to evaluate C-1 1(s + a)(s - b)2 where a and b are any positive constants.

26. Use the inversion formula to work: (a) Problem 13, Page 53; (b) Problem 25, Page 58; (c) Problem 28,
Page 60; (d) Problem 110, Page 74.

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH BRANCH POINTS

27. Find using the complex inversion formula.

28. Find C-1 by the inversion formula.

29. Show that 1_1
s s+1

erf V-t by using the inversion formula.

30. Find C-1 j s } by using the complex inversion formula.

31. (a) Use the complex inversion formula to evaluate .C-1 (s-1/3) and (b) check your result by another
method.

32. Evaluate C-1 {ln (14 1/s)} by using the inversion formula. Ans. (1 - e-')It

33. Evaluate .C-1 {ln (1 + 1/82)) by the inversion formula. Ans. 2(1 - cos t)/t

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH INFINITELY MANY SINGULARITIES

34. Find 1.C-1

l8(es+1)
using the complex inversion formula.

35. Prove that
is

1
cosh s

1- 4 cos 2- 1

cos 2 t+ 5 cos
52

tt

f
G0 - n

36. Find .C-1
s2 sinh s .

Ans. jt2 + z 1 n2 (1 - cos nvrt)

37. By using the complex inversion formula, prove that

1 1 t(t2 - a2) - 2a2 (-1)n n,rt
`C {s3 sinh as 6a ,r31 ns stn a

38. Show that 1

-1 {(s2 + w2)(1 + e-2as)

MISCELLANEOUS PROBLEMS

sinw(t+a) + I j cos(2n-1),rt/2a
2w a =t w2 - (2n - 1)2,r2/4a2

39. Evaluate (a) C-1 {1/(s - 1)4}, (b) .C-1 {e-2s/(s -1)4}, by using the complex inversion

40. Find
82-1

(s2 + 1)2
by contour integration. Ans. t cos t

formula.

41. Evaluate C-1 {(s2 + 1)4} . Ans.
48

{3t2 cos t + (t3 - 3t) sin t}
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42. Find 3s) ($+1)} by the complex inversion formula and check your result by anotherS(8 -12
method.

coshs satisfies the conditions of Theorem 7-1, Page 202.43. (a) Prove that.the function f(s) s
_ 2 1

a0 n
(b) Prove that -1 j s2 coshs

t + 8 1 2( 1)1) sin 12n2 1 I at.

44. Discuss the relationship between the results of Problem 43(b) and Problem 35.

45. Evaluate .C-1 {---4} by the inversion formula, justifying all steps.

Ans. (sin t cosh t - cos t sinh t)

46. (a) Prove that if x > 0,
1 xV 1 ( ue-ut sin x

C s2 + w2 = e- cos (wt - Xv-
82 - J I t2 w2

n

(b) Prove that for large values of t the integral in port (a) can be neglected.

47. Prove that for 0 < x < 1,

48. Find -1 f csch2 sl s J

49. Prove that for 0 < x < 1,

50. Show that

sinh sx 4 (-1)n cos (2n - 1)r, x/2
W2 cosh s IT n-1 2n - 1 82 + (2n - 1)x2/4

sinh xV 2 (-1)n-1 sin (2n -1)rx/2
VT cosh n=} s + (2n - 1)2x2/4-VT

4_1Jln(1+1/s2)} = 1-cos(t+a)
l1+e-gas t+a

51. Show that for 0 < x < a,

sinh Vs- (a - x)°C_1{
sinh/ia

+ 1 i In 1
a n=1

a-x
a

du

4a2 1 (2n - 1)rt
(2n - 1)2,x21 cos

2a

2 e n27,21/a2 nrx- - sin -
2r n=1 n a

52. Use the inversion formula to work: (a) Problem 3(g), Page 48; (b) Problem 9(a), Page 51; (c) Prob-
lem 14, Page 53.

53. Using the inversion formula, solve Y(")(t) - a4Y(t) = sin at + e-at subject to the conditions
Y(0) = 2, Y'(0) = 0, Y"(0) = -1, Y"'(0) = 0.

54. Prove that the integral around r in Problem 13 goes to zero as R -> -.

55. By use of the complex inversion formula, prove: (a) Theorem 2-8, Page 43; (b) Theorem 2-5, Page 44;
(c) Theorem 2-10, Page 45.
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56. Prove that the poles found in (a) Problem 12 and (b) Problem 14 are simple poles. [Hint. Use the
fact that if s = a is a double root of g(s) = 0, then a = a must be a simple root of g'(s) = 0.1

1 y+iW est
57. Evaluate 2;i ds where y > 0. (b) How can you check your answer?

Ans. t-1/2 e-t/T if t > 0; 0 if t < 0

58. Complete the proofs of (a) Case 3 and (b) Case 4 of Problem 2.

59. A periodic voltage E(t) in the form of a half-wave rectified sine curve as indicated in Fig. 7-10 is
applied to the electric circuit of Fig. 7-11. Assuming that the charge on the capacitor and current are
zero at t = 0, show that the charge on the capacitor at any later time t is given by

Q(t)
7rEo 7rE0

Q() sin wt - sin w(t } T) sin at - sin a(t + T)- LT2a2w2 + 2LT {w(a2 - o2)(1 - cos wT) + a(w2 - a2) (1 - cos aT)}

27rEo - cos 27rnt/T
LT2 n=1 (w2 - 47r2n2/T2)(a2 - 47r2n2/T2)

where w2 = 1/LC, a2 = 7r2/T2 and' w a.

E(t)

Fig. 7-10 Fig. 7-11

60. Work Problem 59 in case a = w and discuss the physical significance of your results.

61. Verify Theorem 7-1, Page 202, for the function e-'/s, a > 0 [see Problem 91.

62. Find C-1 1 4 where a > 0, by use of the inversion formula and check by another method.
s2(1 - e-as)

63. Prove that .C-1(e-4113} =
3

f v2 e-tv3-vi2sin vv dv.
0

64. Generalize the result of Problem 63.

65. A spring of stiffness k and of negligible mass is suspended vertically from a fixed point and carries
a mass m at its lowest point. The mass m is set into vibration by pulling it down a distance x0 and
releasing it. At each time that the mass is at its lowest position, starting at t = 0, a unit impulse is
applied. Find the position of the mass at any time t > 0 and discuss physically.



Chapter 8
Applications To

Boundary-Value Problems

BOUNDARY-VALUE PROBLEMS INVOLVING PARTIAL
DIFFERENTIAL EQUATIONS

Various problems in science and engineering, when formulated mathematically, lead
to partial differential equations involving one or more unknown functions together with
certain prescribed conditions on the functions which arise from the physical situation.

The conditions are called boundary conditions. The problem of finding solutions to
the equations which satisfy the boundary conditions is called a boundary-value problem.

SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS

1. One dimensional heat conduction equation 8U _ a2U
at - k axe

Here U(x, t) is the temperature in a solid at position x at time t. The constant k,
called the diffusivity, is equal to K/cp where the thermal conductivity K, the specific
heat c and the density (mass per unit volume) p are assumed constant. The amount of
heat per unit area per unit time conducted across a plane is given by - K Ux (x, t).

2. One dimensional wave equation

This is applicable to the small transverse
vibrations of a taut, flexible string initially
located on the x axis and set into motion
[see Fig. 8-1]. The variable Y(x, t) is the dis-
placement of any point x of the string at
time t. The constant a2 = T/p, where T is
the (constant) tension in the string and p is
the (constant) mass per unit length of the
string.

a2Y _ 2 a2Y
ate _ a axe

3. Longitudinal vibrations of a beam

Y

Fig. 8-1

a2Y 2 a2Y
at2

c
ax2

This equation describes the motion of a
beam (Fig. 8-2) which can vibrate longitudi-
nally (i.e. in the x direction). The variable
Y(x, t) is the longitudinal displacement from
the equilibrium position of the cross section
at x. The constant c2 = gE/p where g is the

x

Fig. 8-2

219
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acceleration due to gravity, E is the modulus of elasticity (stress divided by strain) and
depends on the properties of the beam, p is the density (mass per unit volume) of the
beam.

Note that this equation is the same as that for a vibrating string.

. Transverse vibrations of a beam a2Y + b2 a4Y _
at2 8x4 -

This equation describes the motion of a beam (initially located on the x axis, see
Fig. 8-3) which is vibrating transversely (i.e. perpendicular to the x direction). In this
case Y(x, t) is the transverse displacement or deflection at any time t of any point x.
The constant b2 = Elgl p where E is the modu-

Ylus of elasticity, I is the moment of inertia of
any cross section about the x axis, g is the
acceleration due to gravity and p is the mass
per unit length. In case an external trans-
verse force F(x, t) is applied, the right hand
side of the equation is replaced by b2 F(x, t)fEl.

5. Heat conduction in a cylinder au _ (a2U 1 aUl
at - k r2 + r ar

Fig. 8-3

Here U(r, t) is the temperature at any time t at a distance r from the axis of a
cylindrical solid. It is assumed that heat flow can take place only in the radial direction.

6. Transmission lines a = -RI - Lat

ax = - GE -Cat

These are simultaneous equations for the U
current I and voltage E in a transmission
line [Fig. 8-4] at any position x and at any Battery

time t. The constants R, L, G and C are re- Generator.
spectively the resistance, inductance, conduct-
ance and capacitance per unit length. The
end x 0 is called the sending end. Any
other value of x can be considered as the
receiving end. Fig. 8-4

I
x

TWO AND THREE DIMENSIONAL PROBLEMS
Many of the above partial differential equations can be generalized to apply to problems

in two and three dimensions. For example, if Z(x, y, t) is the transverse displacement of
any point (x, y) of a membrane in the xy plane at any time t, then the vibrations of this
membrane, assumed small, are governed by the equation

a2Z a2Z a2Z
at2 = a2 (ax2 + ay2 (1"
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Similarly,
a2 b

= a2 (-- a+ 2 + a2p?cI-
2at2

where V24, is called the Laplacian of P(x, y, z, t), is the equation for the transverse vibra-
tions of a pulsating membrane in three dimensions.

The general equation for heat conduction in a three dimensional solid is, assuming
constant thermal conductivity, specific heat and density,

au (a2U 82U a2U
at - k axe + aye + az2

The equation for steady-state temperature [where U
au/at:= o] is

0 (4)

which is called Laplace's equation. This is also the equation for the electric (or gravita-
tional) potential due to a charge (or mass) distribution at points where there is no charge
(or mass).

SOLUTION OF BOUNDARY-VALUE PROBLEMS
BY LAPLACE TRANSFORMS

By use of the Laplace transformation (with respect to t or x) in a one-dimensional
boundary-value problem, the partial differential equation (or equations) can be transformed
into an ordinary differential equation. The required solution can then be obtained by
solving this equation and inverting by use of the inversion formula or any other methods
already considered.

For two-dimensional problems, it is sometimes useful to apply the Laplace transform
twice [for example, with respect to t and then with respect to x] and arrive at ordinary
differential equation. In such case the required solution is obtained by a double inversion.
The process is sometimes referred to as iterated Laplace transformation. A similar tech-
nique can be applied to three (or higher) dimensional problems. Boundary-value problems
can sometimes also be solved by using both Fourier and Laplace transforms [see Prob. 14].

Solved Problems
HEAT CONDUCTION

1. A semi-infinite solid x > 0 [see Fig. 8-5] is
initially at temperature zero. At time t 0,
a constant temperature Uo > 0 is applied
and maintained at the face x = 0. Find
the temperature. at any point of the solid
at any later time t > 0.

The boundary-value problem for the deter-
mination of the temperature U(x, t) at any point x
and any time t is

kV2U (3)

is independent of time so, that

p

initially 0

Fig. 8-5
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at = k a2X2

x > 0, t > 0

U(x, 0) = 0, U(0, t) = UO, I U(x, t) 1 < M

where the last condition expresses the requirement that the temperature is bounded for all x and t.

Taking Laplace transforms, we find

au - U(x, 0) = kd 2"2 or
d2x2 - k u = 0

where U(018) = ,J {U(0, t)} =
Uo

s

and u = u(x,s) is required to be bounded.

Solving (1), we find

u(x,8) = 8o a-fix

Then we choose cl = 0 so that u is bounded as x -a °, and we have

c2e-fix

From (2) we have c2 = U0/s, so that

Hence by Problem 9, Page 207, and Problem 10, Page 209, we find

2 fx/2% 1
U(x, t) = Uo erfc (x/2/) = Uo 1 - J e-2 dul

o J

2. Work Problem 1 if at t = 0 the temperature applied is given by G(t), t > 0.

(1)

(2)

(3)

The boundary-value problem in this case is the same as in the preceding problem except that the
boundary condition U(0, t) = U0 is replaced by U(0, t) = G(t). Then if the Laplace transform of
G(t) is g(s), we find from (3) of Problem 1 that c2 = g(s) and so

u(x, 8) = g(8) e- Irs-1kx

Hence by the convolution theorem,

U(x, t)

APPLICATIONS TO BOUNDARY-VALUE PROBLEMS [CHAP. 8

Now by Problem 11, Page 209,

1 {e- x) = x t-3/2 e-r2/4kt
2 ;k

clex + c2e-fix

t
u-3/2 a-x2/4ku G(t - u) du

° 2
e-11' G t - 442 dv7r x/2

on letting v = x2/4ku.
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3. A bar of length 1 [see Fig. 8-6] is at constant temperature Uo. At t = 0 the end x = l is
suddenly given the constant temperature Ul and the end x = 0 is insulated. Assuming
that the surface of the bar is insulated, find the temperature at any point x of the bar
at any time t > 0.

initially Ile

X=0

Fig. 8-6

The boundary-value problem is

aU =
ka2x2 0<x<l, t>0

U(x, 0) = U°, Ux(0, t) = 0,

Taking Laplace transforms, we find

su - U(x, 0) = k d2 or

uz(0, 8) = 0, U(1;8)

The general solution of (1) is

U,

x=

X

U(l, t) = U,

d2u su U0

dx2 k k (1)

U,
=

S (2)

u = c, cosh Vs-/k x + c2 sinh s/k x . +
U°-
8

From the first condition of (2) we find c2 = 0 and so

u = cl cosh 817k x + U0
s

From the second condition of (2) we find

c, cosh s/k i + U0 = U,
s s

Thus

or Cl =
U, - U°

s cosh s/k l

U (Z' s) = -Uo
+ (Uz - U.)

osh s/k x
8 s cosh s/k t

The inverse of the first term is U0. By the complex inversion formula, the inverse of the second term
is, apart from the constant factor U, - U0, given by

1 f''+t-est cosh s/k x
dstae 'y-ice s cosh s/kl

As in Problem 13, Page 210, this is easily shown to be equal to the
integrand at the poles which are all.simple poles and occur at

sum of all the residues of the

8 = 0, s/k l = (n - J),ri n = 0, ±1, ±2, ...

or

(2n -1)27.2k n = 1, 2, 3, ...s-0, s 412
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Now:
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Residue at s = 0 is lim (8)
est cosh s lk x

/) = 1
C\

8-.0 s cosh s/k l

Residue at s = - (2n -1)2vr2k
412

= 8n is

lira (s - sn)
(

est
s _. sn \

cosh x
s cosh s/k

\
1 I

lim
s - sn

lim est cosh slk x
8-ic cosh s/k if {s-+s s

lim 1 lim est cosh s/k x
{ss* (sinh s/k l)(l/2 ksj s-+8 8

4(-1)n e-(2n-1)f7r2kt/412 cos
(2n-1)7x

(2n - 1)7r 21

using L'Hospital's rule. Thus we obtain

4(U1- UO) - (_1)n
U(x, t) = Ut + e-(2n-1)2nskt/412 cos (2n -1)7rx

7r -1 2n -1 21

THE VIBRATING STRING
4. An infinitely long string having one end at x = 0 is initially at rest on the x axis. The

end x = 0 undergoes a periodic transverse displacement given by Ao sin Wt, t > 0. Find
the displacement of any point on the string at any time.

Y

4

Fig. 8-7

If Y(x, t) is the transverse displacement of the string at any point x at any time t, then the
boundary-value problem is

a2y a2Y t>>0= 2 ,x 0aat2 ax2

Y(x, 0) = 0, Yt (x, 0) = 0, Y(0, t) = A0 sin wt, I Y(x, t)I < M

(1)

(2)

where the last condition specifies that the displacement is bounded.

Taking Laplace transforms, we find, if

sty - s Y(x, 0) - Yt (x, 0)

y(x, s) = . {Y(x, t)},

= a2 dy or
2

d2y - 2 y = 0
2 (3)dx dx2

A0 sin wt

A 0c,
y(0, t) = 82 + W2 1 y(x, s) is bounded (k)
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The general solution of the differential equation is

y(x, s) = cl etc/a + c2 a - va/a

From the condition on boundedness, we must have cl = 0. Then

y(x, s) = c2 a -szia

From the first condition in (4), =Aow/(s2 + w2). Then
Aow

y(x' s) = e-sxia
S-'+W2

and so Y(x, t) =

225

fAo sin w(t - xla) t > x/a
10 t<x/a

This means physically that a point x of the string stays at rest until the time t = x/a. Thereafter
it undergoes motion identical with that of the end x = 0 but lags behind it in time by the amount x/a.
The constant a is the speed with which the wave travels.

5. A tightly stretched flexible string has its ends fixed at x = 0 and x = 1. At time t = 0
the string is given a shape defined by F(x) = tx(l - x), where p. is a constant, and then
released. Find the displacement of any point x of the string at any time t > 0.

The boundary-value problem is

t2 = a2 ax 0<x<l, t>0
Y(0, t) = 0, Y(l, t) = 0, Y(x, 0) = µx(l - x), Yt (x, 0) = 0

Taking Laplace transforms, we find, if y(x, s) _ C {Y(x, t)},

or

where

d2ysty - s Y(x, 0) - Yt (x, 0) = a2 dx2

d?y s2 µsx(l - x)
dx2 - a2 a2

Y(0' s) = 0, y(l, s) = 0

The general solution -of (1) is

y =
sx sx µx(l - x) 2a2µcl cosh - + c2 sinh - +
a a s s3

Then from conditions (2) we find

2a2µ
cl - $3-,

so that (3) becomes y = 2a2µ

s'l cosh sl/2a s 83

By using residues [see Problem 17, Page 213] we find

l l
Y(x, t) =

a2µ { t2 +
2x

2a
-

)
2

- (2a
)21

C2 = 2a3µ (1 - cosh sl/a 1 = - 2a{µ tanh sl/2a
s ` sinh sl/a I s1

2a2µ cosh s(2x - 0/2a + µx(l - x) -

32_a2µ l 2 I (-1)n
cos

(2n - 1),r(2x - l)
v3 (2a =l (2n-1) 21

+ µx(l - x) - a2µt2

(2n - 1),ratI
I

(1)

(2)

(3)

(4)

8µl2 1 (2n - 1)7rx (2n - 1)7rator Y(x, t) - ,r3 nl (2n - 1)3
sin cos
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VIBRATIONS OF BEAMS

6. A beam of length 1 which has its end
x = 0 fixed, as shown in Fig. 8-8, is ini-
tially at rest. A constant force Fo per
unit area is applied longitudinally at the
free end. Find the longitudinal displace-
ment of any point x of the beam at any
time t > 0.

Fig. 8-8

FO

If Y(x, t) is the longitudinal displacement of any point x of the beam at time t, the boundary-value
problem is

a2y 2

ate c2ax2 0<x<1, t>0

Y(x, 0) = 0, Yt (x, 0) = 0, Y(0, t) = 0, Yx (1, t) = FOIE

where E is Young's modulus.

Taking Laplace transforms, we have, if y(x, s) _ . {Y(x, t)},

s2y(x, s) - s Y(x, 0) - Yt (x, 0) = c2 d 2 or
d2y a2

dx2 c2 y = 0

y(0, a) = 0, yx(1, s) =. Fc/Es (1)

Solving the differential equation, we find

y(x, s) = cl cosh (sx/c) + c2 sinh (sx/c)

From the first condition in (1), cl = 0 and so

y(x, s) = e2 sinh (sx/c)

Yx(x, a) _

From the second condition in (1), we have

c2 (s/c) cosh (sl/c) = F0/Es

Then

Hence by Problem 14, Page 211,

Y(x, t) =

c2 (s/c) cosh (sx/c) .

or C2

CFO sinh (sx/c)
Xx, a) - E 82 cosh (sl/c)

CFO

E82 cosh (sl/c)

+ Si (-1)" sin (2n -1),rx cos (2n - 1)Trct1
,r2 n- (2n -1)2 21 21

(2)

(8)

7. In the beam of the preceding problem, determine the motion. of the free end x = 1 as a
function of time t.

For x = l we obtain from (2) of Problem 6,

y(x, s) = CFO sinh (sl/c)
E s2 cosh (sl/c)

But from Problem 92, Page 34 or entry 134, Page 253, this is the Laplace transform of the triangular
wave of Fig. 8-9 below which describes the motion of end x = l as a function of t.
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Y(l, t)

Fig. 8-9

8. A semi-infinite beam which is initially at rest on the x axis is at time t = 0 given a
transverse displacement h at its end x = 0. Determine the transverse displacement
Y(x, t) at any position x > 0 and at any time t > 0.

The boundary-value problem is

a2y
ate

+ b2 axY = 0 x > 0, t> 0 (1)

Y(x, 0) = 0, Yt (x, 0) = 0, Y(0, t) = h, Yxx (0, t) = 0, IY(x, t) < M (2)

Taking Laplace transforms, we find

s2y(x, s) - s Y(x, 0) Yt (x, 0) + b2 d4y = 0 or
dx4

+ bL y = 0

y(0, s) = his, yxx(0, s) = 0, y(x, s) is bounded (3)

The general solution of the differential equation is

y(x, s) = e x (c1 cos s/2b x + c2 sin Fs/2b x) + e- x (c3 cos s12b x + c4 sin -s 2b x)

From the boundedness condition we require cl = c2 = 0 so that

y(x, s) = e 4/2b x (c3 cos Vs/2b x + c4 sin s/2b x)

From the first and second boundary condition in (3), we find 04 = 0 and

y(x, s) = 8 e- x cos si2b x

The inverse Laplace transform is, by the complex
inversion formula,

Y x t = 1 f Y+'.hest->, 2bx cos s/2b x d.,( )

v ,W s

To evaluate this we use the contour of Fig. 8-10 since
s = 0 is a branch point. Proceeding as in Problem 9,
Page 207, we find, omitting the integrand for the sake
of brevity, that

Y(x, t) lim f + f + f (k)R_. 27ri
e-,0 EH HJK KL

c3 = h/s so that

Fig. 8-10
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Along EH,
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s = ueTi, l(s = ivu

f
EH

and we find

f E he -ut - i r cosh u12b x dun u

Along KL, s = ue-Ti, V = -iVi and we find

f
XL

Along HJK, s = eeie and we find

J,
HJK

Then (4) becomes

Letting

f
R he- u' + izcosh u/2bx

E it
du

= h ecei°t - ceio/2bxcos
eeie/2b x do

Y(x, t) = h {1 e-ui sin u/2b x cosh a/2b x du
7

0
n J

u/2b = v2, this can be written

Y x t) = h f 1 - 2 f W e- 2,,,,2, sin vx cosh vx dv(. l r,
1)

v

The result can also be written in terms of F'resnel integrals as [see Problem 66 and entries 10 and 11,
Page 255]

s/
Y(x, t) = h 1 - (cos w2 + sin w2) dw

V

TRANSMISSION LINES

9. A semi-infinite transmission line of negligible inductance and conductance per unit
length has a voltage applied to it at the sending end, x = 0, given by

E(0, t) = Eo 0 < t < T

fo t>T
Find the voltage E(x, t) and current I(x, t) at any point x > 0 at any time t > 0.

If we take b = 0 and G = 0, the transmission line equations are given by

DE _ -RI,
ax

The boundary conditions are

aI

ax

aE
C at

Eo 0 < t < T
10 t>T'E(x, 0) = 0, I(x, 0) = 0, E(0, t) = IE(x, t)l < M

(1)

Taking Laplace transforms using the notations e {E(x, t)} = E(x, s), P {I(x, t)} = I (x, s), we have

dx = -R I, 2 = - C{sE - E(x, 0)}

i.e.,
dx = -RI, dx4L = -CsE

Eliminating I by differentiating the first of equations (2) with respect to x, we find

d2E R dx = RCsE or dE - RCsE = 0

(2)

(3)
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cie R SC x + e2eRx
and from the boundedness condition we must have Cl = 0. Then

E (x, a) =

Let us write
and so

Hence as in Problem

Now since

G(t-u) - E0 0<t-u<T or t-T=u<t
0 t-u > T u< t-T

it follows that if t > T,

E(x, t) x\IRC= f u-3/2 e-RCx9/4ti E0 du
s-T T 2-vrT

2E0 f x RC/2 VT
e-"$ dv (letting RCx2/4u = v2)r -xl RC/2V t

2 x1rRC/21rt-T Q 2 xVRC/2 R

E0 f e-" dv _ f e-v dv}.l 1/ao o

(x RC /x RC 1
\2 t-T -erf` 2V1 1j

The general solution of (3) is

E (x, s)

e2 e- RC x

E(0, t) = G(t) and t {E(0, t)) = E(0, s) = g(s). Then from (4) we find

E (x, s) = g(s) e- r'RCs x

2 we find by the convolution theorem,
t

E(x, t) = x RC u-3/2 e-RCx2/4u G(t - u) du
0 2V-W

while if 0 < t < T,

Since

E(x, t) _ I x RC u-3/2 e-RCx2/4u E0 du = 2E f e-"E dv
0 2V--,r- \ xi/2%rt

= E0 (1 - erf (x RC/2'))

= E0 erfc (xVRC/2XFt)

I = -1 aE
R ax' we obtain by differentiation

EOx
P-3/2 e-RCx2/4t

C2R - (t - T)-3/2 e-RCx2/4(t-T)l

MISCELLANEOUS PROBLEMS

10. (a) Solve the boundary-value problem
z

at - kax x>0, t>O
U(x, 0) = U0, U.(0, t) = -«U(0, t), IU(x, t)l < M

BOX r' t-3/2 e-RCx2/4t
2-ir R 0<t<T

t>T

C2 =

(4)

(5)

(b) Give a heat flow interpretation of the problem.
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The problem arises in considering a semi-infinite
conducting solid whose initial temperature is U0 in
which radiation into a medium x < 0 at temperature
zero can take place. This radiation is assumed . to be
such that the flux at the face x = 0 is proportional
to the difference in temperatures of the face x = 0
and the medium x < 0, i.e.,

U. (0, t) = -a[U(0, t) - 0] = -a U(0, t)

To obtain the solution, we take Laplace' trans-
forms and find

su - U0 = k d?-?t or

ei et kz

ux(0, s) = -a u(0, s), u(x, s) is bounded

The general solution of the differential equation is

u(x, S) =

From the boundedness condition, cl = 0. Then

U(x, t)

C2 e- x + U0

s

From the first condition of (2), we find'- c2 =
aUo

so that
s(Vi- a)

aU° e_i kx+U°
s(J - a) s

U°

S

Then using the complex inversion formula,

As

Uo + aUo -i J e-fix l

a)

U0 +
aUo (1'+ib est - Vs1k x
2 J ,/7a2 ( s )

d2u su

dx2 k -

+ c2e-fix +

Y-i. «

Fig. 841

[CHAP. 8

Uo

k (1)

(2)

ds

in Problem 8 we have, omitting the integrand,

1 Y+ix est- x
dstai Jr-ix

Along EH, s = ue, Vs- = i/ and we find

f
EH

-ut-ieu(iV
- a)

du

Along KL, s = ue-, V _ -iv and we find

i
Along HJK, s = eeiB and we find

f
HJK

Using these results in (3), we see that

1 f kx
d3

_
tai J -8( a)

R a-ut+ix
du

e u(-i - Ct)

J
a eeeiot - eeio/k x

a
i do

V,-e1012 - «

}r

- 1 a=tit ycos x - a sin x+ f'° Jdua 7
0

u u-}- a2

_
l

f
tai + +

e-.0 EH FIJK

E
X

(3)
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Hence U(x, t)

if u=v2.

y(x, s) = c2 sinh ax - J F(u) sinh s(x - u) du
0

11. A taut, flexible string has its endpoints on the x axis at x = 0 and x =1.
the string is given a shape defined by F(x), 0 < x < 1, and released.
placement of any point x of the string at any time t > 0.

The boundary-value problem is

a2Y = a2 O<x<1, t>O
atz ax2

Y(0, t) = 0, Y(1, t) = 0, Y(x, 0) = F(x), Yt (x, 0) = 0

It is convenient to consider, instead of equation (1), the equation

a2Y a2Y
ate = ax2

and after the final solution is obtained to replace t by at [see Problem 49].

Taking Laplace transforms, we find

sty - s Y(x, 0) - Yt (x, 0) = dx2
or dx2 - 8231

231

At time t = 0,
Find the dis-

= - s F(x)

Y(0' s) = 0, y(1, s) = 0

The general solution of (8) is [see Problem 8, Page 85]

y(x, s) = c1 cosh ax + c2 sinh sx - f F(u) sinh s(x - u) du
0

From the first condition in (4) we find c1 = 0, so that

From the second condition in (4) we find

0 = c2 sinh s - F(u) sinh s(1- u) du.
o

or

Thus (5) becomes

v(x,s) _

aUo ('°°e=ut r cos x -a sin du
A J0 u L u + a2

2a U0 e-v2t v cos xv a sin xv
.r o v V2 2+«

C2 =
( 1 F(u) sinh s(1- u) du
0 sinh s

( 1 F(u) sinh s(1 - u) sinh sx du - 3 F(u) sinh s(x - u) du
0 sinh s 0

(1)

(2)

(8)

(4)

(5)

The first integral can be written as the sum of two integrals, one from 0 to x, the other from x to 1.
Then

31(x, s) = f F(u) sinh
s( - s

sinh ex _ sinh s(x - u) du +
fz1

F(u) sinh s( l
s
sinh sx du

fX
F(u) sinh s(1- x) sinh su du + f 1 F(u) sinh s(1- u) sinh ax du

0 sinh s x sinh 8

j
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We must now find the inverse Laplace transform. By the complex inversion formula, the inverse
of the first term is

1

J J
'y+i-est sinh s(1- x) sinh su

2i sink sY-ioo o

Since this is equal to the sum of the residues at the simple poles s = n7ri, we find the required inverse

0 x
en77tit F(u) sin n7r(1 - x) sin n7ru du

n=+W Jo -cosn7r

Similarly, the inverse of the second term is

J
x

F(u) sin niru du } sin n7rx cos flirt
n=1 o JJJ

i f f F(u) sin niru du} sin n7rx cos n7rt
n=1 x

Adding these we find

Y(x, t) _ f 1 F(u) sin n7ru du sin n7rx cos n7rt
n=1 0

If now we replace t by at, we have

Y(x, t) _ ffF(u) sin niru duu sin n7rx cos n7rat
n 0

12. An infinitely long circular cylinder of unit
radius has a constant initial temperature T.
At t = 0 a temperature of 0°C is applied to
the surface and is maintained. Find the tem-
perature at any point of the cylinder at any
later time t.

If (r, 0, z) are cylindrical coordinates of any point
of the cylinder and the cylinder has its axis coinci-
dent with the z axis [see Fig. 8-12], it is clear that the
temperature is independent of ¢ and z and can thus
be denoted by U(r, t). The boundary-value problem is

/ 2

at = kl a 2 +r aU 0<r<i (1)

U(1, t) = 0, U(r, 0) = T, I U(r, t) < M (2)

It is convenient to consider instead of (1) the equation

aU a2U 1 au
at art + r ar

Fig. 8-12

and then to replace t by kt.

Taking Laplace transforms, we find
2 I du 2 I du

su - U(r,0) = dr + r dr °r dr2 + r dr -
su =

u(1, 8) = 0, u(r, s) is bounded

The general solution of this equation is given in terms of Bessel functions as

-T

u(r, s) = cl Jo (i V s r) + c2 Yo (ice r) +

Since Yo (iNFs r) is unbounded as r -j 0, we must choose 02 = 0.
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Then u(r, s) =

From u(1, 8) = 0, we find

c1 Jo(iV ) + e = 0

Thus

By the inversion formula,

233

ci
Jo

(iV_s_r)
+ T

s

or e1 =
T

s Jo (i/ )

= T - T

u(r'
s)

8 s Jo (ilr )

((v+i=
d-sUr t = T - T

,(') 2 i,1
y im s Jo(iNrs-)

Now J0 (iV-s) has simple zeros where iv-8 = X1, X2, ....`n. Thus the integrand has simple poles
at 8 = -rn, n = 1, 2, 3, ... and also at s = 0. Furthermore it can be shown that the integrand
satisfies the conditions of Problem 2, Page 203, so that the method of residues can be used.

We have.

Residue of integrand at s = 0 is
est J0 (ixrs-r)lim s = 1

s-.o 8Jo(iT)

Residue of integrand at 8 = -X is

lim (s + an)
est Jo (ilir) s + an 1 ( est Jo (ilrr)

llim Jr j` lim
SJ0(i/) -,\2(2v8 ) $-+-?12 S

1
lm

-fin

_ 2e XsAtJo(Xnr)

Xn J1(X.)

where we have used L'Hospital's rule in evaluating the limit and also the fact that Jo (u) = -Ji (u).
Then

J 4D

2e-'\"tJo(Xnr)

U(r, t) = T - T 1 - nl Xn Ji (xn)

2T etJo(anr)
n=1 X. Jl (Xn)

Replacing t by kt, we obtain the required solution

U(r, t)
=

2T
n =1 X.

ft
J J, (An)

13. A semi-infinite insulated bar which coincides with the x axis, x > 0, is initially at
temperature zero. At t = 0, a quantity of heat is instantaneously generated at the
point x = a where a > 0. Find the temperature at any point of the bar at any time t > 0.

The equation for heat conduction in the bar is
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The fact that a quantity of heat is instantaneously generated at the point x = a can be represented

'ay the boundary condition
U(a, t) = Q S(t)

where Q is a constant and S(t) is the Dirac delta function. Also
and since the temperature must be bounded, we have

u(x, 8) = Q e-(x-a) s/k

Taking Laplace transforms of (1) and (2), using the first of conditions (3), we find

su - U(x, 0) = k dx2 or dxd2u-suor = 0
2

u(a, s) = Q

From (4), we have u(x, s) = c2 e tk x + C2 e- kx
and from the boundedness condition, we require cl = 0 so that

u(x, s) C26kx

Then from (5) u(a, s) = e2 e- /ka = Q or c2 = Q eka

so that

Inverting, using Problem 11, Page 209, we find the required temperature

Q 2

2 ,rkt

The point source x = a is sometimes called a heat source of strength Q.

(4)

(5)

(6)

(7)

(8)

14. A semi-infinite plate having width 7r [see Fig. 8-13] has its faces insulated. The semi-
infinite edges are maintained at 0°C, while the finite- edge is maintained at 100°C.
Assuming that the initial temperature is 0°C, find the temperature at any point at
any time.

Assuming that the diffusivity is one, the boundary-
problem for the determination of the tempera-value

ture U(x, y, t) is

au a2U a2U
at axe + ay2 (1)

U(0, y, t) = 0 (2)

U(ir, y, t) 0 (8)

U(x, y, 0) = 0 (4)

(2)

since the initial temperature is zero

U(x, 0) = 0, 1 U(x, t)j < M (8)

U(x. t) = (x-a) /4kt

U(x, 0, t) 100 (5)

U(x, y, t) I < M (6)

00 C 0° C

(0,0)
100° C (710)

x

where 0 < x < ,r, Y> 0, t> 0. Fig. 8-13
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Taking the Laplace transform of equation (1) and using condition (4), we find, if u = u(x, y, s) =
-( (U(x, y, t)},

fo

Multiplying (7) by sin nx and integrating from 0 to IT [i.e. taking the sine transform; see Page 175 ],
we find

or, if

a2u
sin nx dx49X2

. .

c = J u sin nx dx,

a2u a2u

ax2
+

aye = 8U (7)

+
fff

sin nx dx = su sin nx dx
IT

2

-n2 it + n u(a, y, s) cos n r + n u(0, y, s) + dy2 = s u

Since from the Laplace transforms of conditions (2) and (8) we have

u(0, y, s) = 0, u(ir, y, s) = 0

(8) becomes
dy2 - (n2 + s) u = 0aye

This has the solution A es n2+8 + Be` n

From the boundedness of u as y -> o, we require A = 0 so that

-n2"u = Be'
From condition (5)

u (n, 0, s)

Hence letting y = 0 in (9), we find

or

17100 sin nx dx
0 8

B =

o

100 / 1 - cos nir 1

100(1 -cosn7r
s n

U
- 1002 - a-b n

8 n J

By the Fourier sine inversion formula [see Page 175], we have

2 100(1 - cosn .) a-b n$+8sinnx
Ir n=1 s n

We must now obtain the inverse Laplace transform of this. We know that

<:-1 {e-y'} = y e-u2/4t
2 Trt3

so that

Hence

on letting y2/4v = p2.

T

1 {e-y st-Q} = y e-UY/Ate-net
2 v; -t-3

e ylls+n
" )ll 8

t
y e-y$/an a-nQV dv

2 -v3o

2 e-(P4+nIy2/4PY) dp

/2%rt

(8)

(9)

(10)
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Then inverting term by term in (10) and using this result, we find

U(x, y, t.) = 400 Z (1 - cos n7) sin nxj' e (1)2T n2y2/4p2) dp
17 n- l n l

v/zIrt

Supplementary Problems
HEAT CONDUCTION

[CHAP. 8

15. A semi-infinite solid x > 0 has its initial temperature equal to zero. A constant heat flux A is applied
at the face x = 0 so that -K Ux (0, t) = A. Show that the temperature at the face after time t is

A
F

16. Find the temperature at any point x > 0 of the solid in Problem 15.

Ans. K { kt/; a x2/4kt - 2x erfc (x/2 kt )}

17. A solid 0 x = 1 is insulated at both ends x = 0 and x = 1. If the initial temperature is equal to
ax(1- x) where a is a constant, find the temperature at any point x and at any time t.

Ans. a12 - a12 , e4kn27r2t/12 cos 2n,rx
6 7r n=1 n2

18. (a) Use Laplace transforms to solve the boundary-value problem
a

aU = .25ax + 1 0<x<10, t>0

U(10, t) = 20, Ux (0, t) = 0, U(x, 0) = 50

(b) Give a heat flow interpretation to this problem.

6400 (-1)n e_(2i _ 1t17rttilooo cos (2n - 1)7rxAns. (a) U (x, t) - 220 - 2x2
r3 7 1 (2n -1)1 20

120 (-1)n -(Ln-1)27r2t/1600 (2n-1)77x
n=1 2n- 1 e cos

20

19. (a) Solve 2U2 at = 8x x > 0, t > 0

Ux (0, t) = 0, U(x, 0)

(b) Give a heat flow interpretation to this problem.
r

Ans. U(x, t) = et -x - 2e f e °2 - x2/4"2 dv
Irto

e-x, U(x, t) is bounded

20. (a) A semi-infinite solid x > 0 has the face x = 0 kept at temperature U0 cos wt, t > 0. If the initial
temperature is everywhere zero, show that the temperature at any point x > 0 at any time t > 0 is

U(x, t) = U° e- x cos (wt - ./2k x) - U0 fueutsinxvcThdua-a
u2 + w2

(b) Show that for large t, the integral in the result of part (a) is negligible.
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21. A semi-infinite solid x ? 0 is initially at temperature zero. At t = 0 the face x = 0 is suddenly raised
to a constant temperature To and kept at this temperature for a time to, after which the temperature
is immediately reduced to zero. Show that after an additional time to has elapsed, the temperature is
a maximum at a distance given by x = 2 kto In 2 where k is the diffusivity, assumed constant.

22. At t = 0, a semi-infinite solid x > 0 which is at temperature zero has a sinusoidal heat flux applied to
the face x = 0 so that -K Ux (0, t) = A + B sin wt, t > 0. Show that the temperature of the face
at any later time is given by fj2V_kA 2Bvrk-w vrt,

t i2 + cos wv2 dv sin wt 1
%ri

sin wv2 dvl cos wtK K - o /

23. Find the temperature of the solid in Problem 22 at any point x > 0.

THE VIBRATING STRING

24. (a) Solve the boundary-value problem

02Y
= 4azY 0<x<v t>0ate ox2 '

Kr (0, t) = 0, Y(v, t) = h, Y(x, 0) = 0, Yt (x, 0) = 0

(b) Give a physical interpretation of the problem in (a).
a0 n

Ans. Y(x, t) = 87h
t 2n

-1)1
sin (n - J )x sin (2n - 1)t

25. Solve the boundary-value problem

Ytt = YXX + g 0 < x < v, t>0

Y(0, t) = 0, Y(-r, t) = 0, Y(x, 0) = µ x(r - x), Yt (x, 0) = 0

and interpret physically.

Ans. Y(x, t) = 4(2/.,x7 '°jgx(r - x) + µr
g) 11 (2n 1 1)3 sin (2n -1)x cos (2n -1)t

26. A tightly stretched flexible string has its ends fixed at x = 0 and x = 1. At t = 0 its midpoint is dis-
placed a distance h and released. Find the resulting displacement at any time t > 0.

Ans. Y(x, t) = 8h
sin (2n -1)-x cos (2n - 1)-at

r2 n=1 (2n --1) 2 1 1

27. (a) Solve a2Y
ate

YY (0, t) = A sin wt, Y(x, 0) = 0, Yt (x, 0) = 0

a2y
a2

ax2
x>0, t>0

(b) Give a physical interpretation to this problem.

Ans. (a) Y(x, t) = Aa {cos w(t - x/a) - 1) if t > xla and 0 if t : xla
w

VIBRATIONS OF BEAMS

28. A beam of length 1 has the end x = 0 fixed and x =1 free. Its end x = 1 is suddenly displaced longi-
tudinally a distance a and then released. Show that the resulting displacement at any point x at
time t is given by

Y(x t) - ax + 2a (-1)n sin nrx cos nrct
l r n=1 n 1 1
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29. A beam has its ends hinged at x = 0 and x =1. At t = 0 the beam is struck so as to give it a trans-
verse velocity Vo sin -x/l. Find the transverse displacement of any point of the beam at any later time.

30. Work Problem 29 if the transverse velocity is Vo x(i - x).

31. A beam of length l has its ends hinged. Show that its natural frequencies of transverse oscillations
are given by

n2, Elq
2l - n = 1, 2, 3, . .1n =

32. A semi-infinite elastic beam is moving endwise with a velocity -vo when one end is suddenly brought
to rest, the other end remaining free. (a) Explain with reference to this problem the significance of
each of the following and (b) solve the resulting boundary-value problem.

Y,t (x, t) = a2 Yxx (x, t) X > 0, t > 0

Y(x, 0) = 0, Yt (x, 0) -vo, Y(0, t) = 0, lim Yx (x, t) = 0

Ans. (b) Y(x, t) _ -vox/a if t > x/a and -vot if t < x/a

TRANSMISSION LINES

33. A semi-infinite transmission line of negligible inductance and conductance per unit length has its
voltage and current equal to zero. At t = 0, a constant voltage E0 is applied at the sending end x = 0.
(a) Show that the voltage at any point x > 0 at any time t > 0 is given by

E(x, t) = E0 erfc (x RC/2jFt)

and (b) that the corresponding current is

I(x, t) =
Eox

c
t-3/2 e RCx2'

2 R

34. In Problem 33 show that the current at any specific time is a maximum at a position 2t/RC from
the receiving end.

35. A semi-infinite transmission line has negligible resistance and conductance per unit length and its
initial voltage and current are zero. At t = 0 a voltage E0(t) is applied at the sending end x = 0.
(a) Show that the voltage at any position x > 0 is

E(x, t) =

and (b) that the corresponding current is

0 t<x LC

C/L Eo(t - x LC) t > x LC
I(x, t) _

0 t<x LC

36. Suppose that the transmission line of Problem 35 is such that R/L = G/C. Show that the voltage is
given by

E(x, t) =

Eo(t - x LC) t > x LC

e--xVRG Eo(t - x LC) t > x LC

10 t<x LC
and compare results with that of Problem 35. What is the current in this case?

37. (a) A transmission line of negligible resistance and conductance has its sending end at x = 0 and its
receiving end at x =1. A constant voltage E0 is applied at the sending end while an open circuit
is maintained at the receiving end so that the current there is zero. Assuming the initial voltage
and current are zero, show that the voltage and current at any position x at any time t> 0 are
given by
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E(x, t)

239

(b) Discuss the significance of the fact that the voltage and current in (a) are independent of time.

38. (a) Work Problem 37 if the line has negligible resistance and capacitance but not negligible inductance
and conductance, showing that in this case

- 4 (2n -1)ax (2n - 1)irt
E(x, t) = Eo 1 y1 2n 1

cos 21 cos
21 LC

(b) What is the current in this case? Discuss the convergence of the series obtained and explain the

significance.

Eo cosh L/C (1- x)
cosh L/C I

Eo L/C sinh L/C (l - x)

cosh L/C

MISCELLANEOUS PROBLEMS

39. (a) Solve the boundary-value problem

au a2 U

axe
+ 2x 0<x<1, t>O

at =
U(0, t) = 0, U(1, t) = 0, U(x, 0) = x

(b) Give a physical interpretation to the problem in part (a).

Ans. U(x, t) = x(1- x) - X1(1 - n3
sin nrx or U(x, t) _

._3 n

40. ' Work Problem 39 if the condition U(0, t) = 0 is replaced by U., (0, t) = 0.

5 1 8 e- (2n- 1)27r2t/4 (2n- l)rxAns. U(x, t) 2x2 + x3 - cos
3 -,2n=t (2n-1)2 2

64 e-(en-1)27f2t/4
cos

(2n - 1)rx
r4 n=1 (2n-1)4 2

4
a -n2r2ts 1 e sin nrx

7 n=1 n3

41. A solid, 0 < x < 1, is initially at temperature zero. The face x = 0 is given a temperature
U(0, t) = G(t), t > 0, while the end x = 1 is kept at 0°C. Show that the temperature at any point x
at any time t is

t l
U(x, t) - 7 1

J`

l
n f du? sinnix
Jo l

42. Work Problem 41 if the end x = 1 is insulated.

2
43. Show that in solving a boundary-value problem involving the equation au = k a it is equivalent

at ax
2

to solve the problem by replacing the equation by dU =

az
and then replacing t by kt._Tt

44. A solid, 0 < x < 1, has its end temperatures maintained at zero while the initial temperature is F(x).
Show that the temperature at any point x at any time t is

U(x, t) =
2 e-kn2rr2t/12 sin nrx
t n_1 l

45. Find a bounded solution of

f!

0

F(u) sin n'ru
/ du

= xe-0 0<x<1, y>0xax +
ay

which satisfies $(x,0) = x, 0<x < 1. Ans. 4(x, y) = xe-' (1 + y)
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46. A string stretched between x = 0 and x = 1 is plucked at its center a distance D and released. Find
the resulting displacement of any point x from the equilibrium position at any time t.

8D 1 n7r n7rx nwratAns. Y(x, t) =
2 n2

sin 2 sin ,, cos
1

47. Show that a transmission line problem in which inductance and conductance. per unit length, are
negligible is equivalent to a problem in heat conduction.

48. Solve the boundary-value problem

at + x ax + Y = x X>0' t'>0
where Y(0, t) = 0, Y(x, 0) = 0. Ans. Y(x, t) = -x(1 - e-2t)

2 2

49. Show that in solving a boundary-value problem involving the equation a2 = a2 a
, it is equivalent

at
02Y a2V

ax

to solve the problem by replacing the equation by ate
axe

and then replace t by at.

50. Show that a transmission line problem in which re
sistance and conductance are negligible, is equivalent
to a problem in the vibration of a string.

51. A string is stretched between x = 0 and x = 1. The
end x = 0 is given a transverse displacement accord-
ing to Y(0, t) = F(t) where F(t) is a prescribed func-
tion of time, while the end x = l remains fixed. Find
the transverse displacement.

00 C 0° C

x

52. A semi-infinite plate having width it [see Fig. 8-14]
has its faces insulated. The semi-infinite edges are
maintained at 0°C, while the finite edge is insulated.
If the initial temperature is 100°C, find the tempera-
ture at any point at any time.

Fig. 8-14

53. A solid, 0 < x < 1, is initially at constant temperature U0 while the ends x = 0 and x = l are main-
tained at temperature zero. Show that the temperature at any position x at any time t is given by

/n{erf \ (1) l
U X, t = U erf / x + U .(-1) erf( ) o l

o (\ 2 kt 1 Jj

54. A beam has its ends hinged at x = 0 and x =1. At time t = 0, a concentrated transverse load of
magnitude w is suddenly applied at the midpoint. Show that the resulting transverse displacement of
any point x of the beam. at any time t > 0 is

2w13 sin,rx/l sin 37rx/1 sin 57rx/1
;4E1 f

14 + 34 + 54 + ... lY(x, t) 12EI
(112 - x2)

if 0 < x < 1/2, while the corresponding result for 1/2 < x < 1 is obtained by symmetry.

55. Show that the boundary-value problem
au _ a2U -2Uat axe

has the solution

O<x<l, t>0

U(0, t) = U1, U(l, t) = U2, U(x, 0) = 0

_ Ul sinh a(l - x) + U2 sinh ax 27r aat °° n e-n2jrEtii$ (U2 cos nor - U1) nrrxU(x, t)
sinh at

+
l2

a 1
a2 + n2rr2/12

sin
1
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56. Show that Problem 55 can be interpreted as a heat flow problem in which a bar of length l can
radiate heat into its surroundings.

57. A transverse force given by F(x) = x(,r - x) acts at each point x of a beam which is hinged at its
ends x = 0 and x = r. If the initial transverse displacement and velocity are zero, find the transverse
displacement at a later time t.

58. A semi-infinite transmission line of negligible inductance and conductance per unit length has a voltage
applied to its sending end x = 0 given by E(0, t) = Eo cos wt, t > 0. Assuming the initial voltage
and current to be zero, (a) show that after a long time the voltage at any point x > 0 is given by

E(x, t) =

bF0 sin wt f ( sin x w/b -
4EI w cos

and (b) show that the corresponding current is given by

I(x, t) = Eo w IR e- cos (wt - .RC/2 x - r/4)

59. A semi-infinite string is initially at rest on the x axis, and its end x = 0 is fixed. At t = 0 each point x
of the string is given an initial velocity defined by F(x), x > 0. Find the resulting displacement of
each point x at time t > 0.

60. A concentrated transverse force F = F0 sin wt, t > 0, is applied at the midpoint of a beam hinged
at its ends x = 0 and x =1. Show that the resulting transverse displacement is

Y(x, t) =

2bFo l sin nr/2
22 2 4

sin nrx sin bn27r2t
24- b7r-El n=1 n (w n /1 ) 12r

if 0 < x < 1/2, with a result obtained by symmetry for 1/2 < x < 1. Discuss the physical significance
of having w = bn2r2/l2 for some n = 1, 2, 3, . .

61. Find the steady-state temperature in the square indicated in
Fig. 8-15 if the plane faces are insulated and the sides are main-
tained at the constant temperatures shown.

Ans. U(x, y) = 4T sin (2n - 1)rx sinh (2n -1)r(1- y)
r n=1 (2n -1) sinh (2n -1)r

(0,1)

00 C

62. Work Problem 62 if all four sides are kept at constant tempera-
tures T1i T2, T3, T4.

63. Suppose that in Problem 62 the initial temperature is 0°C. What
would be the temperature at every point of the square at any
time?

(0,0)

00 C

00 C

To C (1,0)

Fig. 8-15

x

64. A beam of length 1 has its end x = l fixed. At t = 0 the end x = 0 is given a longitudinal displacement D
and released. Show that the resulting longitudinal displacement of any point x at any time t > 0 is
given by

Y(x, t) =: D{11(t-xla) - Ul t-21a xJ + U(t-21a x) ...

Eo e- w z cos (wt - .RC/2 x)

sinh x w/b
cosh l'J /2/i

where V is Heaviside's unit step function. Discuss this solution graphically.
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65. Two semi-infinite conducting solids, x < 0 and x > 0 [see
Fig. 8-16], have constant thermal conductivities and diffu-
sivities given by K1, k1 and K2, k2 respectively. The initial
temperatures of these solids are constant and equal to U1
and U2 respectively. Show that the temperature at any
point of the solid x > 0 at any time t is

/
2k2t

\ l
U(x,t) = U1 + U1+a1jI + aerf( )}

l \/ JJ
where a = K1/K2.
[Hint. The heat conduction equations
L

2
x < 0 and au

= k2 ax , x > 0

lim U(x, t) = lim U(x, t) and
x-+0- x-+0+

lim K2 Ux (x, t).]xo+

au a2Uare at = k1 ax2 '

and we must have

lim K1 Ux(x, t) _
X-+0-

66. Verify the result at the end of Problem 8, Page 228.

Fig. 8-16

[CHAP. 8

67. An infinite circular cylinder of unit radius has its initial temperature zero. A constant flux A is
applied to the convex surface. Show that the temperature at points distant r from the axis at any
time t is given by

U(r, t) _

where rn are the positive roots of

z oe kXnt
J0

k {1- 8kt - 2r2} +
k

I 1

JO (x) = 0.
XnJ0 (xn)

68. A cylinder of unit radius and height has its circular ends maintained at temperature zero while its
convex surface is maintained at constant temperature U0. Assuming that the cylinder has its axis
coincident with the z axis, show that the steady-state temperature at any distance r from the axis
and z from one end is

U(r, z) = 4U° Q sin (2n -1)wrz Io {(2n -1)7rr}
7 n=1 2n-1 I0 {(2n -1),r}

69. (a) Solve the boundary-value problem

ate + V.a4 = 0 0<x<l, t>0
Y(0, t) = 0, Y(l, t) = 0, Y(x, 0) = 0, Yt (x, 0) = 0, Yxx (l, t) = 0, EI Yxx (0, t) = P0 sin wt

(b) Interpret the problem in (a) physically.

Ans. (a) Y(x, t)
bP0 sin wt rsinh (l - x) w/b

2EIw sink 1 w/b

sin (l - x) w/bl

sin l w/b f
2wPo b `° sin nrrx/1 sin bn2zr2t/l2
7rEl = i n(w2 - b2n4r4/l4)

70. A semi infinite transmission line of negligible inductance has its initial. voltage and current equal to
zero. At t = 0 a constant voltage E0 is applied at the sending end x = 0. Show that the voltage at
any point x > 0 at any time t > 0 is

E(x, t) = 4Eo{e-xV erf ( Ct - jx FR-C\
N

What is the corresponding current?



Appendix A

TABLE OF GENERAL PROPERTIES OF LAPLACE TRANSFORMS
w

f(s) = f e-stF(t) dt
0

f (s) F(t)

1. o f, (s) + b f 2 (s) a F,(t) + b F2 (t)

2. f (sfa) a F(at)

3. As - a) eat F(t)

4. a-a8 f(s) 'u(t - a) = foF(t - a) t > a
t < a

5. s f(s) - F(O) F'(t)

6. S2 f(8) - s F(0) - F'(0) F"(t)

7. sn f(s) - sn-1F(0) - sn-2F'(0) F(n1) (0) F(n)(t)

8. f'(s) -t F(t)

9. f"(s) t2 F(t)

10. f(n)(s) (-1)ntn F(t)

11, f($)
s

t
f F(u) du

0

12. fs3) f t
... t F(u) dun = f t ((n u)n - 1 F(u) du

0 0 0

13. L f(8) ga(s) of F(u) G(t - u) du
0
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AS) F(t)

14. f(u) du F(t)
J t

15. 1 - e_sT f esu F(u) du
0

F(t) = F(t + T)

16. f e-u2/4t F(u) du
s t 0

17. f(1/s) f J0(2 ut) F(u) du
0

18. + f(1/s) to/2 f. u-n/2 Jn(2 ut) F(u) duS
0

19.
f(s + 1/s) fi

J0 (2 u(t - u)) F(u) duS2 + 1
0

20. f -3/2 a-s2/4u f(u) du F(t2)2

0

21. f (In s) f to F(u) du
s In s 1'(u + 1)

22
P(s)

nn. P(ak) eaktk.
Q(s) 1 Q'(ak)

P(s) = polynomial of degree less than n,

Q(S) = (s - al)(S - a2) ... (s - an)
where a1, a2, ..., an are all distinct.
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TABLE OF SPECIAL LAPLACE TRANSFORMS

f (s) F(t)

1. 1 1
s

2. 1 t
82

3, 1 n = 1, 2, 3, ... tn 1

0 ! = 1
8n (n - 1)!

4 1 n > 0
rn 1

.

s
r(n)

5. 1 eat

s-a

6.
(s

1
a)n

n = 1, 2, 3,-
t
(n
o-
-

1

1)!
eat

0! = 1

7 1 n > 0
to-1 eat

. (s - a)n F(n)

8. 1 sin at

82+a2 a

9. 8 cos at
S2+a2

10. 1 ebt sin at
(s - b)2 + a2 a

11. s - b ebt cos at
(s - b)2 + a2

12. 1 sinh at
s2 - a2 a

13. 8 cosh at
82 - a2

1 ebt sinh at
14. (s - b)2 - a2 a
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AS) F(t)

15. s b ebt cosh at(s b)2 a2

16. 1 a b
ebt - eat

(s - a)(s - b) b - a

17. 8 alb bebt - aeat
(s-a)(s-b) b-a

1 S. 1 sin at - at cos at
(s2 + a2)2 2a3

19. s t sin at
(s2 + a2)2 2a

20.
82 sin at + at cos at

(s2 + a2)2 2a

21.
83

(32 + a2)2 cos at - at sin at

22. 82 - a2 t cos at(s2 + a2)2

23. 1 at cosh at - sinh at
(s2 - a2)2 2a3

24. s t sinh at
(s2 - a2)2 2a

25.
82 sinh at + at cosh at

(s2 - a2)2 2a

26. 33 cosh at + at sinh at(32 a2)2

27.
2

g2 +a t cosh at
2 2(

28. 1 (3 - a2t2) sin at - 3at cos at
(82 + a2)3 8a5

29. s t sin at - ate cos at
(82 + a2)3 8a3

30. 82 (1 + a2t2) sin at - at cos at
(82 + a2)3 8a3

31. 83 3t sin at + at2 cos at
(32 + a2)3 8a
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f (s) F(t)

32. 84 (3 - a2t2) sin at + Sat cos at
(82 + a2)3 8a

33. 85 (8 - a2t2) cos at - Tat sin at
(82 + a2)3 8

34. 382 - a2 t2 sin at
(82 + a2)3 2a

35. 2 t2 cos at(82 + a2)3

36.
s4 - 6a2s2 + a4 t3 cos at

(s2 + a2)4

37.
s3 - a2s t3 sin at

(82 + a2)4 24a

38. 1 (3 + a2t2) sinh at - 3at cosh at
(82 - a2)3 8a5

39. s ate cosh at - t sinh at
(82 - a2)3 8a3

40. s2 at cosh at + (a2t2 - 1) sinh at
(82 - a2)3 8a3

41.
83 3t sinh at + ate cosh at

(82 - a2)3 8a

42. s4 (3 + a2t2) sinh at + 5at cosh at
(s2 - a2)3 8a

43,
85 (8 + a2t2) cosh at + Tat sinh at

(82 - a2)3 8

44. 382 + a2 t2 sinh at
(82 - a2)3 2a

45. s3 + 3a2s
2 3

2
t2 cosh at

)- a(8

46. 84 + 6a2s2 + a4 t3 cosh at
(82 - a2)4

47. s3 + a2s t3 sinh at
(82 - a2)4 24a

1 eat/2 V-3 at \at48.
83 + a3 + e3at/23a2 l sin 2 - cos 2'
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A q) F(t)

49. 8

3 s

eat/2 j V3-at \at 2- 6-sat/cos + sin
s + a 223a l

50.
83

+z

a3 3 (e-at + 2eat/2 cos tat)

51.
83

1 a3 e 3a22 1e3at/2 - cos 1 tat - V3 sin at3

52. s3
8

a3 Sat/2 Ja
3a/2v/-3 sin

tat - cos tat + e 1

53. 82 3 (eat + 2e-at/2 cos tata3
s3

54. 84 +1 4a4 a3 (sin at cosh at - cos at sinh at)

55. 8 sin at sinh at
84 + 4a4 2a2

56. 82

84 + 4a4
1

2a
(sin at cosh at + cos at sinh at)

57. 84 834x4
cos at cosh at

58. 4 1 4
1

3
(sinh at - sin at)S a x

59.
4

s
4 1

2
(cosh at - cos at)a8 2a

60.
82

84 a4
2a1 (sinh at + sin at)

61. 34 83 a4 J(cosh at + cos at)

62.
1 e-bt - e-at

s+a + s+b 2(b-a)

1 erf at
63.

s Vs- Va-

1
eat erf at64.

Vi (s - a) NFa

65.
1

s - a + b eat j 1 - b e bQt erfc
J
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f(s) F(t)

1
66. V822+ a2

Jo (at)

1
67.

82

V( a2
lo (at)

( s2 + a2 - s)n
68. n > -1

82 + a2
an Jn (at)

(s - s2-a2)n
69. n >

s2-a2
I n

e b(,s - 9Y +a2

70. Jo (a t(t + 26) )s2 + a2

e-b s ++aY Jo(aV't2_bz) t>b
71.

s2 +-a 2

{
0 t < b

72. 1 t J1(at)
(s2 + a2)3/2 a

73. (82 +
a8

2)3/2 t Jp (at)

74. (82 + a2)3/2 Jo (at) - at J1 (at)

75. 1
t11(at)

(82 - a2)3/2 a

76. (82 - a2)3/2 t to (at)

77. (s2
82a2)372

1o(at) + at I, (at)

78. 1 -_
a-s

F(t) = n, n < t < n + 1, n = 0, 1, 2, .. .
8(es - 1) s(1 - e-s)

See also entry 141, Page 254.

79. 1
e-s in

F(t) k=s(ex - r) s(1 - re-s) k=1
where [t] = greatest integer < t

80. es-1 = 1-e-s F(t)=rn, n5t<n+1, n=0,1,2,...
s(es - r) s(1 - re-4)

See also entry 143, Page 254.

e-a/s cos 2 at
81.

,;t
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f (s) F(t)

82. a-a/S sin 2 at
83/2

83.
a/s

se n+i n > -1
(1t ,,/2 J(2J))

84.
a-ads a-a2/4t

Nrs- art

85. a-a/ a e-a2/4t
2 ;t3

86. 1 - e-ate
erf (a/2V'-t)

s

C-ate87. erfc (a/2V

88. aate
eb(bt+a) erfc Cblr +

)(r+ b) \ 2V

89.
e-a/
sn+1 n > -1

1 x

2n.+1
un e-uz/4aat du

a o

90. In (s+a) a-bt - e-at
s + b t

91. In [(82 + a2)/a2] Ci (at)2s

92. In [(s + a)/a]
Ei (at)

8

43. _ (y + In s) In t
s

y = Euler's constant = .5772156...

94. In
s2

+ a2 2 (cos at - cos bt)
s2+b2) t

95. r,2 (y + In s)z+ lnz t6s
s

y = Euler's constant = .5772156...

96. Ins -(Int+y)
S

y = Euler's constant = .5772156.. .

97. lnz s (in t + y)2 - W,2
s

y = Euler's constant = .5772156.. .
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As) F(t)

98. r'(n+l) 1(n+ l) Ins n > -1 to In t
sn

99. tan (a/s) sin at
t

100. tan (a/s) Si (at)
s

101. erfc ( a/s)
2e

-11;t

102. es2/1a2 erfc (s/2a) 2a a-a2t2

103.
es2/4a2

erfc (s/2a) erf (at)
s

eas er c as 1
104.

f
--V 8a n(t+a)

105. eas Ei (as) 1
t a

106.
a - Si (as)} - sin as Ci (as)][cosas{

2
t2 + a2

107. sin as 2 - Si (as)} + cos as Ci (as) t
t2 a2

108. cos as { 2 - Si (as)} - sin as Ci (as)
tan-1 (t/a)

s

109. sin as 2 - Si (as)} + cos as Ci (as)

l

(t2+ a2
1

s

)
In

2 \ a2 /

110. - - Si (as
2

)] + Ci2 (as)[E In (LL±)2
t

a2

111. 0 w(t)

112. 1 S(t)

113. 0-as S(t - a)

114.
e---as u(t - a)

s

See also entry 139, Page 254.
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f(s) F(t)

115. sinh sx x 2 (-1)n nrx nrt
sin - cos -aas sinh sa a7r n = l it

sinh sx (2n - 1)r, t(2n - 1)rx4 (-1)n116. s cosh sa
sinsinn=1 2n - 1 2a 2a

117. cosh sx t + 2 (-1)n
cos nTx sin

nrt
ssinhsa a rn-1 n a a

118 cosh sx 1 + 4 (-1)n
cos (2n - 1)r, x cos (2n 1)7rt

. s cosh sa r n=1 2n - 1 2a 2a

119 sinh sx xt + 2a . (-1)" sin tt=x sin nrt. S2 sinh sa 2a r- n =1 n a a

120. sinh sx
2

8a (-1)" (2n -- 1)rx (2n 1)r, t--cos - 2x + - 1)2 sin22s cosh sa anr. 2al (n

121
cosh sx t2 + 2a (-I)n

cos n"x 1 - cos n-t 1
. 82 sinh sa

2

r2a 2 n _) n2 a \\ a J

cosh sx , (-1}n

cos
(2n - 1)rx sin

(2n - 1)rtt + 8
122. s2 cosh sa 2r 1 (2n - 1)2 2a 2a

123
cosh sx 16a2 `; (-1)n (2n-1)rx (2n- 1)rt

cos1(t'' + x2 - a2) - cos --3 L.
s3 cosh sa

2a_ 1 (2n - 1)3 2a

124
sinh xVs- 2- nrxz y (-1)n n e n2r2(/a2 sin.
sinhaVi a n=1 a

125
cosh xV-s (1) n-1 (2n-1) a (2n-1)2nZt/4a2 cos (2n- I)-,r,,c

.
cosh aV a n= 1 2a

126
sinh xVs- 2 (-1)n-1 a (2n-1)2r2t/4a2 sin (2n- 1)rx

.
V-s cosh aV-s a,,=, 2a

127.
cosh xV-s

--
"rx1 + 2 (-1)n e- n2r2t/a2 cos

ssinh aVVs a a n -1 a

128.
sinh xV-s x + 2 (-1)n e n2 rRt/at sin nrx

s sinhaVi a n=) a

129
cosh xV

1
4 1)n (2n -1)2r2t/4a2 (2n- 1)rx

e cos+' s cosh a 2a1 2n - 1T

130
sinh xV-s xt 2a2

W
(-1)7& ( n7, xa 1 - e sin --+ --. s2 sinha aa r' ii=1 n a

131.
cosh xVs- 16a2 ?n- I 2r21/4ul (2n 1x(x2 - a2) + t -

3
a cos -32 cosh as

2a7 2n 1)n=1
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f(s) F(t)

J0(ix(W-8) 1 - 2132. 8JO(ia') n1=1 X.J,(W
where X1, X2, ... are the positive roots of J0(X) = 0

J0(j f ) a-fit/a'Jo(anx/a)
133.

S2 J0(iaV,§-)
1(x2-a2) + t + 2a24 n=1 X3 J1(xe)

where X1, X2, ... are the positive roots of Jo(X) = 0

Triangular wave function

F(t)

134. 82 tank (2)

o
2a 4a 6a

Square wave function

F(t)

135. s tank C
as ---1 -,

s 2a 13a 14a 15a
I Ii

-1 I i i

Rectified sine wave function

F(t)

136.
/

a2s27ra+ T2 coth ( 2

\ p t
a 2a 3a

Half rectified sine wave function

F(t)

137. (a2s2 + 7r2)(1 - e-as)

a 2a 3a 4a

Saw tooth wave function

F(t)

138.
e--as

as2 - s(1 - e-as)
I , I

t

a 2a 3a 4a
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A8) F(t)

Heaviside's unit function u(t - a)

F(t)

139. a-as
1

s

See also entry 114, Page 251.
0

t
a

Pulse function

F(t)

140.
a-as (1 - e-ES) 1

I I

8 I I

I

0 a a+r t

Step function

F(t)
3

141. 1

s(1 - e -as)
2

1

See also entry 78, Page 249.
0 t

a 2a 3a 4a

F(t) = n2, n < t < n + 1, n

F(t)
4

142. a-s + a-2s 3

s(1 - e-s)2 2 I

1 I

0 t
1 2 3

F(t)=7"', n t<n+1, n=0,1,2,...
F(t)

143.
1 _ e-s

s(1 - re-s)

See also entry 80, Page 249.
1

0 t
1 2 3

F(t) = sin (7rt/a) 0 < t a
0 t > a

144. 7ra(1 + 6-as) F(t)

a2a2 + 7r2 1

0 t
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TABLE OF SPECIAL FUNCTIONS

1. Gamma function

r(n) = J w

0

un-7 e-u du, n > 0

2. Beta function

B(m, n) 1_ f um-1(1-u)n-1du = r(m) r(n) m, n > 0
r(m + n)

3. Bessel function

JrJ. )
xn x2

x4W 2 + 2) +1 2 2 2 2 4n r(n2 + 1) { ( n n + )( n + )2 4(

4. Modified Bessel function

I, (x) = i-n J,, (ix)
2m r(n+ 1)

2

{1 + 2(2n + 2) + 2.4(2n + 2)(2n + 4) +

5. Error function
erf (t) = 2 f t

e us du
o

6. Complementary error function

erfc (t) = 1 - erf (t) _ f e-n2 du
t

7. Exponential integral

Ei (t) du
t ?t

8. Sine integral

Si (t)
f t

= sin tt du
o

u

9. Cosine integral

Ci (t) = cos u du
t

u

10. Fresnel sine integral
c

S(t) = f sin u2 du
0

11. Fresnel cosine integral
t

C(t) = f cos u2 du
0

12. Laguerre polynomials

Ln(t) = n dtn (tne-t), n = 0, 1, 2, .. .

255





INDEX
Abel's integral equation, 113, 117-120
Absolute convergence, 155, 156

definition of, 156
Absolute value, 136
Acceleration, 79
Aerodynamics, 149
Amplitude, 89

of a complex number, 137
Analytic function, 138

necessary and sufficient conditions for, 148
Analytic part, of a Laurent series, 142
Argand diagram, 137
Argument, 137

Battery, 79

Beams, applications to, 81, 93-96
cantilever, 94
deflection curve or elastic curve of, 81
on elastic foundation, 111
vibrations of, 219, 220, 226-228

Bending moment, 81
Bessel functions, 7, 8, 23, 24, 28, 232, 233, 255

generating function for, 7
integral representation of, 67, 68
Laplace transforms of, 9, 23, 24
modified, 8, 255

Bessel's differential equation, 8
Beta function, 47, 62, 63, 255

relation of, to convolution theorem, 62
Bilinear transformation, 172
Boundary conditions, 81, 219
Boundary-value problems, 81, 219

one dimensional, 219, 220
solved by Fourier transforms, 193-195, 221,

234-236
solved by Laplace transforms, 81, 96-98,

102, 221
two and three dimensional, 220, 221

Brachistochrone problem, 135
Branches, of a many-valued function, 138, 166
Branch line, 166
Branch points, 141, 166

complex inversion formula and, 202, 207, 208
Bromwich contour, 201, 210

modification of, 202, 227
Built-in end, beam with, 81

Cantilever beam, 94
Capacitance, 79

of transmission line, 220
Capacitor, 79
Cauchy-Riemann equations, 139, 147-149

proof of, 148
Cauchy's inequality, 172
Cauchy's integral formulas, 141, 151-155

proof of, 154
Cauchy's theorem, 140, 151-155

proof of, 152, 153

Change of scale property, 3, 13-15, 44, 48, 52
for inverse Laplace transforms, 44, 48, 52
for Laplace transforms, 44, 48, 52

Charge, 80, 221
Circuit, electric [see Electrical circuits]

elements, 79
primary, 111
secondary, 111

Clamped end, beam with, 81, 94, 95
Complementary error function, 8
Complex conjugate, 136
Complex inversion formula, 46, 201, 203-205

branch points and, 202, 207, 208
conditions for validity of, 202, 203-205, 212
for functions with infinitely many singularities,

202, 209-211, 212, 213
proof of, 203
residues and, 205-207

Complex numbers, 136, 144
amplitude of, 137
argument of, 137
axiomatic foundations for, 136
equality of, 136
imaginary part of, 136
polar form of, 137, 144, 145
real part of, 136
roots of, 137, 145

Complex number system, 136
Complex plane, 137
Complex variable, functions of a, 138
Concentrated load, 95

representation of by Dirac delta function, 95
Conductance, of transmission line, 220
Conduction of heat [see Heat conduction]
Conductivity, thermal, 219, 221
Conjugate, complex, 136
Continuity, of functions of a complex variable, 138

sectional or piecewise continuity 2, 4, 28, 42,
173, 186, 187, 190

Contour, 143
Bromwich [see Bromwich contour]

Convergence, absolute, 155, 156
of Fourier series, 185-187
uniform [see Uniform convergence]

Convolutions, 45 [see also Convolution theorem]
associative, commutative and distributive laws

for, 4, 56
integral equations and, 112, 117

Convolution theorem, 45, 55-58 [see also
Convolutions]

beta function and, 62
for Fourier transforms, 177
proof of, 55, 56

Coordinates, cylindrical, 232
polar, 137
rectangular, 136

Cosine integral, 8, 24, 25, 255
Laplace transform of, 10, 25

257
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Cosine series [see Half range Fourier series]
Coulombs, 80
Critically damped motion, 90, 91
Cross-cut, 153
Current, 80
Cycles per second, 89
Cycloid, 113, 119, 120, 132

tautochrone problem and, 113, 117-120
Cylinder, heat conduction in, 220, 232, 233
Cylindrical coordinates, 232

INDEX

Damped oscillatory motion, 90, 91
Damping constant, 79
Damping force, 79, 88-90
Definite integrals, evaluation of, 143, 161-165
Deflection curve, 81
Deflection of beams [see Beams, applications to]
Delta function [see Dirac delta function]
De Moivre's theorem, 137
Density, 220, 221
Derivatives, inverse Laplace transform of,

44, 52, 53
Fourier transform of, 193
Laplace transform of, 4, 15, 16, 96
of functions, of a complex variable, 138, 139,

147-149
Difference equations, 113, 120-125, 127, 128

differential-, 113, 114, 120-125
Differentiable function, 138
Differential-difference equations, 113, 114, 120-125
Differential equations, applications to, 78-102,

219-236
for finding inverse Laplace transforms, 46,

65, 66
for finding Laplace transforms, 6, 23, 29
general solutions of, 83-85, 100, 101
integro-, 113, 120
ordinary [see Ordinary differential equations]
partial [see Partial differential equations]
relation of, to integral equations, 114-116,

128, 129
solution of, by Fourier transforms, 193-195,

221, 234-236
solution of, by Laplace transforms, 78, 81-87,

96-98, 102
Differentiation, rules for, 139

with respect to a parameter, 6, 18, 46, 53, 65
Diffusivity, 98, 219
Dirac delta function, 8, 9, 26, 27, 45

Laplace transform of, 10, 27
use of, in applications to beams, 95

Dirichlet conditions, 173
Displacement, longitudinal, 219, 220, 226, 227

of a spring, 79
of a string, 199, 219, 220, 224, 225, 231, 232
transverse, 81, 220

Division, by t, 5, 18, 19
by powers of s, 45, 53-55

Elastic constant, 111
Elastic curve, 81
Elastic foundation, beam on, 111

Electrical circuits, applications to, 79, 80, 91-93,
214, 215

complex, 80, 92, 93
simple, 79, 91, 92

Electric potential, 221
Electromotive force, 79
Elementary functions, Laplace transforms of, 1,

10-12
of a complex variable, 138

e.m.f., 79
Equilibrium position, 79, 219
Error function, 8, 26, 28, 208, 209, 255

complementary, 8, 208, 209, 255
Laplace transform of, 10, 26

Essential singularity, 142, 157
Euler's constant, 29, 250
Euler's formula, 137
Even extension, 183
Even functions, 173, 174, 182-184
Existence of Laplace transforms, sufficient

conditions for, 2
Expansion formula of Heaviside [see Heaviside's

expansion formula
Exponential integral, 8, 24, 25, 255

Laplace transform of, 10, 25
Exponential order, functions of, 2, 4, 28, 42
External force, motion of a spring under, 79,

99, 100

Factorial function [see Gamma function]
Faltung [see Convolutions]
Farads, 79
Fibonacci numbers, 133
Final-value theorem, 6, 20, 21

generalization of, 6
proof of, 20

Fixed end, beam with, 81
Flexural rigidity, 81
Fluid mechanics, 149
Force, damping, 79

electromotive, 79
external, 79, 99, 100
restoring, 79

Fourier integrals, 175, 176, 187-193
complex form of, 176
Parseval's identity for, 177, 189

Fourier integral theorem, 175, 176, 189
[see also Fourier integrals]

proofs of, 189-191
Fourier series, 173-175, 178-184, 185-187, 192

coefficients in, 173, 179, 180
complex form of, 174
convergence of, 185-187
Dirichlet conditions for, 173
half range, 174, 182, 183
Parseval's identity for, 174, 183, 184

Fourier transforms, 176, 187-195
convolution theorem for, 177
cosine, 176, 177
finite, 175, 184, 185
inverse, 175-177
of derivatives, 193
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Fourier transforms (cont.)
partial differential equations solved by,

193-195, 221, 234-236
relation of, to Laplace transforms, 177,

178, 203
sine, 176, 177
symmetric form of, 176

Fredholm's integral equation, 112, 116, 129
differential equation expressed as, 128, 129

Free end, beam with, 81, 94, 226
Frequency, 89

natural, 90, 99
of damped oscillatory motion, 90
resonant, 99

Fresnel integrals, 228, 255
Functions, analytic [see Analytic function]

many-valued, 138, 166
of a complex variable, 138
of exponential order, 2, 4, 28, 42
single-valued, 138
table of special, 9, 255

Gamma function, 7, 21-23, 255
Stirling's formula for, 7

General solution, of a differential equation,
83-85, 100, 101

Generating function for Bessel functions, 7
Generator, 79
Gravitational potential, 221
Greatest integer less than t, 121, 122
Green's theorem in the plane, 140, 150, 151

proof of, 150, 151

Half range Fourier series, 174, 182, 183
Half wave rectified sine curve, 20, 218, 253
Harmonic functions, 139
Heat conduction, 98, 194, 220-224, 230, 232-236

general equation for, 221
in a cylinder, 220, 232, 233
in an insulated bar, 223, 224, 233, 234
in a semi-infinite plate, 234-236
in a semi-infinite solid, 221, 222

Heat flow problems, 98 [see also Heat conduction]
involving radiation, 230

Heat source, 234
Heaviside's expansion formula, 46, 47, 61, 62

extensions of, 73, 74
proof of, 61, 62

Heaviside's unit function, 8, 26, 50, 254
Laplace transform of, 10, 26

Henrys, 79
Hinged end, beam with, 81, 93
Hooke's law, 79
Hospital's rule [see L'Hospital's rule]
Hypocycloid, 169

Inductance, 79

mutual, 111
of transmission line, 220

Inductor, 79
Initial-value theorem, 5, 20, 21

generalization of, 6
proof of, 20

Insulated bar, heat conduction in, 223, 224,

233, 234
Integral equations, 112, 113, 114-120, 126

Abel, 113, 117-120
Fredholm, 112, 116, 129
kernels of, 112, 129
of convolution type, 112, 117
relation of, to differential equations, 114-116,

128, 129
solved by Fourier transforms, 193
Volterra, 112

Integral formulas, Cauchy, 141, 151-155
Integrals, evaluation of, 7, 27, 28, 47, 63, 64

Fourier [see Fourier integrals]
Fresnel, 228
inverse Laplace transform of, 4, 16

Laplace transform of, 44, 52, 53

line, 139, 140, 150
of functions of a complex variable, 140, 151-155

Integro-differential difference equations, 114
Integro-differential equations, 113, 120
Inverse Fourier transforms, 175-177
Inverse Laplace transforms, 42-77

complex inversion formula for [see Complex
inversion formula]

definition of, 42
methods of finding, 46
of derivatives, 44, 52, 53
of functions with infinitely many singularities,

209-211, 212, 213
of integrals, 4, 16
operator, 42

properties of, 43-45

uniqueness of, 42

Inversion formula, complex [see Complex
inversion formula]

for Fourier transforms, 175-177
for Laplace transforms, 46, 178 [see also

Complex inversion formula]
Isolated singularity, 141
Iterated Laplace transformation, 221

Jacobian, 56, 172

Jump, at a discontinuity, 4

Kernel, of an integral equation, 112
symmetric, 129

Key, in an electrical circuit, 79
Kirchhoff's laws, 80, 91, 92

Image, 165
Imaginary part, 136
Imaginary unit, 136
Impulse functions, 8, 9, 26, 27, 95

[see also Dirac delta function]
Independence of the path, 140, 152, 153

Laguerre polynomials, 39, 255
Laplace's equation, 139, 221
Laplace transform operator, 3
Laplace transforms, 1-41

behavior of, as s -> cc, 5
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Laplace transforms (cont.)
definition of, 1
existence of, 1, 28
inverse [see Inverse Laplace transforms]
iterated, 221
methods of finding, 6
notation for, 1
of derivatives, 4, 15, 16, 96
of elementary functions, 1, 10-12
of integrals, 44, 52, 53
of special functions, 9, 10
properties of, 3-6
relation of, to Fourier transforms, 177, 178, 203
solution of differential equations by, 78,

81-87, 96-98, 102 '
Laurent's series, 142, 158, 159, 172

classification of singularities by, 158, 159
Laurent's theorem, 172 [see also Laurent's series]
Leibnitz's rule, 17
Lerch's theorem, 42
L'Hospital's rule, 161, 162
Limits, of functions of a complex variable, 138

right and left hand, 2
Linearity property, 3, 12, 13, 43, 48, 49

for inverse Laplace transforms, 43, 48, 49
for Laplace transforms, 43, 48, 49

Linear operator, inverse Laplace transformation
as, 43

Laplace transformation as, 3
Line integrals, 139, 140, 150

Longitudinal vibrations, of a beam, 219, 220,
226, 227

Many-valued functions, 138
Mapping, 165
Mathematical induction, 15-17
Mechanics, applications to, 79, 88-91
Membrane, vibrations of, 220, 221
Modified Bessel functions, 8
Modulus of elasticity, 220
Moment, bending, 81
Motion, non-oscillatory, 89
Multiple-valued functions, 138
Multiplication, by sfl, 45, 53-55

by t", 5, 17, 18
Mutual induction, 111

Natural frequency, 90, 99
Newton's law, 79, 88
Null functions, 9, 27, 42

Laplace transforms of, 10
relation of, to inverse Laplace transforms, 42

Odd extension, 182
Odd functions, 173, 174, 182-184
Ohms, 79
Operator, inverse Laplace transform, 42

Laplace transform, 3
Ordered pair, 136, 137
Order of a pole, 141
Ordinary differential equations, applications to,

78-96, 99-102
general solution of, 83, 84

Ordinary differential equations (cont.)
simultaneous, 78, 87, 88
solution of, using convolutions, 85
with constant coefficients, 78, 82-85
with variable coefficients, 78, 85-87

Orthogonal families, 148, 149
Oscillatory motion, 90, 91, 99

damped, 90, 91
Overdamped motion, 90, 91

Parallelogram law, 167
Parseval's identity, for Fourier integrals, 177,

189
for Fourier series, 174, 183, 184

Partial derivatives, Fourier transform of, 193
Laplace transform of, 96

Partial differential equations, 81, 96-98, 219-236
important list of, 219-221
solved by Fourier transforms, 193-195, 221,

234-236
solved by Laplace transforms, 81, 96-98, 102,

221
Partial fractions, 46, 58-61

Heaviside's method for [see Heaviside's
expansion formula]

with distinct linear factors, 59
with non-repeated quadratic factors, 61
with repeated linear factors, 60

Period, 89
of damped oscillatory motion, 90

Periodic functions, Laplace transform of, 5,
19, 20

Piecewise continuity, 2, 4, 28, 42, 173, 186,
187, 190

Plates, heat conduction in, 234-236

Polar coordinates, 137

Polar form, of complex numbers, 137, 144, 145
operations in, 137

Poles, 141
of infinite order, 142

Potential drop, 80
Potential, electric or gravitational, 221

velocity, 149
Primary circuit, 111
Principal branch, 147

Principal part, of a Laurent series, 142
Principal value, 147
Pulse function, 254

Quadratic equation, 144

Radiation, 230
Ratio test, 155
Real part, 136
Receiving" end, of transmission line, 220
Rectangular coordinates, 136
Rectified sine wave, 253
Recursion formula, 124
Removable singularity, 141, 156-158
Residues, 142, 159-161

and the complex inversion formula, 205-207
Residue theorem, 142, 143, 159-161

proof of, 160, 161
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Residue theorem (cont.)
use of, in finding inverse Laplace transforms,

201, 202, 205-207
Resistance, 79

of transmission line, 220
Resistor, 79
Resonance, 99
Resonant frequency, 99
Restoring force, 79
Rest position [see Equilibrium position]
Riemann's theorem, 174, 186, 190
Riemann zeta function, 41
Roots of complex numbers, 137, 145

geometric representation of, 145

Saw tooth wave function, 253
Secondary circuit, 111
Sectional continuity, 2, 4, 28, 42, 173, 186,

187, 190
Semi-infinite, beam, 227, 228

plate, 234-236
string, 224, 225
transmission lines, 220, 228, 229

Sending end, of transmission line, 220
Series, convergence of, 155

Fourier [see Fourier series]
Laurent's [see Laurent's series]
of functions of a complex variable, 155-159
Taylor's, 141, 157

Series electrical circuit, 79, 91, 92
Series expansions, 138 [see also Series]
Series methods, for finding inverse Laplace

transforms, 46, 65, 66
for finding Laplace transforms, 6, 23, 24, 29

Shear, vertical, 81
Simple closed curve, 139
Simple pole, 141
Simply-supported end, beam with, 81
Simultaneous differential equations, 78, 87, 88,

220, 228, 229
Sine integral, 8, 24, 25, 255

Laplace transform of, 10, 24, 25
Sine series [see Half range Fourier series]
Single-valued function, 138
Singularities, 155-159 [see also Singular points]

and the complex inversion formula, 202,
205-213

essential, 142, 157
isolated, 141

Singular points, 141 [see also Singularities]
Source of heat, 234
Specific heat, 219, 221
Spring constant, 79
Spring, vibrations of, 79
Square wave, 214, 253
Steady-state temperature, 221
Steady-state terms, 92
Stirling's formula, 7
Strain, 220

261

Stream function, 149
Stress, 220
String, vibrations of, 199, 219, 220, 224, 225,

231, 232
Sufficient conditions for existence of Laplace

transforms, 1
proof of, 28

Switch, in an electrical circuit, 79
Symmetric form of Fourier transforms, 176
Symmetric kernel, 129

Tables, of inverse Laplace transforms, 43, 245-254
of Laplace transforms, 1, 9, 10, 243-254
of special functions, 9, 255

Tautochrone problem, 113, 117-120
Taylor's series, 141
Taylor's theorem, 157
Temperature, 98, 219 [see also Heat conduction]

steady-state, 221
Tension, in a string, 219
Thermal conductivity, 219, 221
Transient terms, 92
Transmission lines, 220, 228, 229
Transverse deflection of a beam, 81
Transverse vibrations, of a beam, 220

of a string, 219, 224, 225
Triangular wave, 226, 227, 253

Uniform convergence, 156
Fourier series and, 179, 183
Weierstrass M test for, 156

Uniform load, 93
Uniqueness of inverse Laplace transforms, 42

Unit impulse function, 8, 9, 26, 27, 95
[see also Dirac delta function]

Unit step function, 8 [see also Heaviside's
unit function]

Vectors, 167
Velocity potential, 149
Vertical shear, 81
Vibrations, of a beam, 219, 220, 226-228

of a membrane, 220, 221
of a spring, 79
of a string, 199, 219, 220, 224, 225, 231, 232

Voltage drop, 80
Volterra's integral equation, 112
Volts, 79

Wave equation, 219
Weierstrass M test, 156

x axis, 136

y axis, 136
Young's modulus of elasticity, 81, 220

Zeta function, Riemann, 41
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