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Preface

The theory of Laplace transforms or Laplace transformation, also referred to as
operational calculus, has in recent years become an essential part of the mathematical
background required of engineers, physicists, mathematicians and other scientists. This
is because, in addition to being of great theoretical interest in itself, Laplace transform
methods provide easy and effective means for the solution of many problems arising in
various fields of science and engineering.

The subject originated in attempts to justify rigorously certain ‘“operational rules”
used by Heaviside in the latter part of the 19th century for solving equations in electro-
magnetic theory. These attempts finally proved successful in the early part of the 20th
century through the efforts of Bromwich, Carson, van der Pol and other mathematicians
who employed complex variable theory.

This book is designed for use as a supplement to all current standard texts or as a
textbook for a formal course in Laplace transform theory and applications. It should also
be of considerable value to those taking courses in mathematics, physics, electrical engi-
neering, mechanics, heat flow or any of the numerous other fields in which Laplace
transform methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective learning. Numerous proofs of theorems and derivations of formulas
are included among the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material in each chapter.

Topics covered include the properties of Laplace transforms and inverse Laplace
transforms together with applications to ordinary and partial differential equations, integral
equations, difference equations and boundary-value problems. The theory using complex
variables is not treated until the last half of the book. This is done, first, so that the
student may comprehend and appreciate more fully the theory, and the power, of the
complex inversion formula and, second, to meet the needs of those who wish only an
introduction to the subject. Chapters on complex variable theory and Fourier series and
integrals, which are important in a discussion of the complex inversion formula, have
been included for the benefit of those unfamiliar with these topics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful
book of reference and to stimulate further interest in the topics.

I wish to take this opportunity to thank the staff of the Schaum Publishing Company
for their splendid cooperation.

M. R. SPIEGEL
Rensselaer Polytechnic Institute
January, 1965
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Chapter 1

- DEFINITION OF THE LAPLACE TRANSFORM
Let F(t) be a function of t specified for t>0. Then the Laplace transform of F(t),
denoted by £ {F(t)}, is defined by

RFW) = f) = f eFoa 1)

where we assume at present that the parameter s is real. Later it will be found useful
to consider s complex.

The Laplace transform of F(t) is said to exist if the integral (1) converges for some
value of s; otherwise it does not exist. For sufficient conditions under which the Laplace
transform does exist, see Page 2. '

NOTATION

If a function of ¢ is indicated in terms of a capital letter, such as F(t), G(t), Y(?), etc.,
the Laplace transform of the function is denoted by the corresponding lower case letter,
i.e. f(s), g(s), y(s), etc. In other cases, a tilde (~) can be used to denote the Laplace trans-
form. Thus, for example, the Laplace transform of u(t) is % (s).

LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS

F(t) L{F@®)} = fe)
1 1 28>0
2. t slz §>0
: 1
The adjacent table shows 8. o s:'l';l §>0
Laplace transforms of various n=0,12,... Note. Factorial n = nl =1+2--+p
elementary functions. For de- : Also, by definition 0! = 1.
tails of evaluation using defini- :
tion (1), see Problems .1 and 2. at . 1
For a more extensive table see 4 ¢ ' i—a ° >a
Appendix B, Pages 245 to 254.
5. sinat F—%? §>0
6. cos at ‘ —_szj— ;s §>0
: . a
7. sinh at -2 s>
82 — a2
8 .
8. cosh at = > |a
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SECTIONAL OR PIECEWISE CONTINUITY

A function is called sectionally continuous or piecewise continuous in an interval
a =t=p if the interval can be subdivided into a finite number of intervals in each of
which the function is continuous and has finite right and left hand limits.

F(t)

o

I
|
|
a

ke e e — e —

R e
——
u.______

Fig.1-1

An example of a function which is sectionally continuous is shown graphically in
Fig. 1-1 above. This function has discontinuities at ¢, ; and ¢;. Note that the right and
left hand limits at ¢,, for example, are represented by lin(} F(ta+e) = F(t2+0) = F(t2+)

and ling F(t—¢) = F(ta—0) = F(t3—) respectively, where ¢ is positive.
€~

FUNCTIONS OF EXPONENTIAL ORDER
If real constants M >0 and y exist such that for all t>N

le " F(t)| < M or |[F(t)| < Me*
we say that F(f) is a function of exponential order y as t— « or, briefly, is of exponential

order.

Example 1. F(t) = t2 is of exponential order 38 (for example), since 2| = t2 < ¥ for all ¢t > 0.

Example 2. F(t) = ¢'° is not of exponential order since | e~7t et’! = ¢~ can be made larger than
any given constant by increasing t.

Intuitively, functions of exponential order cannot ‘“grow’ in absolute value more rapidly
than Me*t as ¢ increases. In practice, however, this is no restriction since M and y can be
as large as desired.

Bounded functions, such as sin at or cos af, are of exponential order.

SUFFICIENT CONDITIONS FOR EXISTENCE OF LAPLACE TRANSFORMS

Theorem 1-1. 1f F(t) is sectionally continuous in every finite interval 0 ={ =N and
of exponential order y for ¢{> N, then its Laplace transform f(s) exists for all s > y.

For a proof of this see Problem 47. It must be emphasized that the stated conditions
are sufficient to guarantee the existence of the Laplace transform. If the conditions are
not satisfied, however, the Laplace transform may or may not exist [see Problem 32].
Thus the conditions are not necessary for the existence of the Laplace transform.

For other sufficient conditions, see Problem 145.
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SOME IMPORTANT PROPERTIES OF LAPLACE TRANSFORMS

In the following list of theorems we assume, unless otherwise stated, that all functions
satisfy the conditions of Theorem 1-1 so that their Laplace transforms exist.

i. Linearity property.

Theorem 1-2. If ¢, and c. are any constants while Fi(t) and F»({) are functions
with Laplace transforms f:(s) and f2(s) respectively, then

L{eiFi(t) + caFa(t)) = eaL{Fi(t)} + 2 L{F2(t)} = c1fi(s) + c2fa(s) (2)

The result is easily extended to more than two functions.

Example. L£{4t2 — 8 cos2t + ety = 4L{t?} — 8.L{cos2t} + 5L {e"t}
= 42 ~3(-2_ A1
= 4() 3 (o) o ()

8 3 5

$B $£2+4 " s+1
The symbol .£, which transforms F(t) into f(s), is often called the Laplace trans-

formation operator. Because of the property of .£ expressed in this theorem, we say
that £ is a linear operator or that it has the linearity property.

2. First translation or shifting property.
Theorem 1-3. 1If L{F(t)} = f(s) then

L{e"F(t)} = f(s—a) (3)

. _ s
Example. Since .£{cos2t} = WY we have
—t N o= s+1 - s+1
L{e7t cos 2t} G+12+4d ~ 24245

3. Second translation or shifting property.

Fit—a) t>a
Theorem 1-4. 1If L{F(t)} = f(s) and G(t) = 0 , then
t<a
L{G@E)} = e *f(s) (4)
Example. Since £{#3} = %4!- = %, the Laplace transform of the function
_ Jue—-2p t>2
Gn = 10 t<2
is 6e—25/g4,
4. Change of scale property.
Theorem 1-5. 1If L{F(t)} = f(s), then
1 8
L(Fa) = o1 (7) (%)
Example. Since .£{sint} = s—fi—_l’ we have
. _ 1 1 _ 3
Cind = 3emETT = 2 F9
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Laplace transform of derivatives.
Theorem 1-6. 1f L {F(t)} = f(s), then
L{F'(t)} = sf(s) — F(0) (6)

if F(t) is continuous for 0 =t = N and of exponential order for ¢ >N while F'(t) is
sectionally continuous for 0 =¢ = N,

Example. If F(t) = cos8t, then L{F(t)} = -82% and we have

? _— . - 8 _ -9
LAF'(t)} = L£{-38sin8t] = 8<52—_'*_*—> -1 = 219

The method is useful in finding Laplace transforms without integration [see
Problem 15].

Theorem 1-7. 1f in Theorem 1-6, F(t) fails to be continuous at £{=0 but
ltin(} F(t) = F(0+) exists [but is not equal to F(0), which may or may not exist], then
LA{F(t)} = sf(s) — F(0+) (7)

Theorem 1-8. 1If in Theorem 1-6, F(t) fails to be continuous at ¢t = a, then
L{F'(t)} = sf(s) — F(0) — e {F(a+) — F(a—)} (8)
where F(a+) — F(a—) is sometimes called the jump at the discontinuity t=a. For
more than one discontinuity, appropriate modifications can be made.
Theorem 1-9. 1f L {F(t)} = f(s), then
L{F"(t)} = 8f(s) — sF(0) — F(0) 9)

if F(t) and F’(f) are continucus for 0 =t =N and of exponential order for t>N
while F’(t) is sectionally continuous for 0 =t=N.

If. F(t) and F”(t) have discontinuities, appropriate modification of (9) can be made
as in Theorems 1-7 and 1-8.
Theorem 1-10. 1If L {F(t)} = f(s), then
LA{F™() = stf(s) — " 'F(0) — s" 2F'(0) — -+ - — sF"2(0) — F» (0) (10)

it F(t), F'(t), ..., F*~V(t) are continuous for 0 =¢{ =N and of exponential order
for t > N while F‘™(t) is sectionally continuous for 0 =<¢ =< N.

Laplace transform of integrals.

Theorem 1-11. If L {F(t)} = f(s), then

A I C) '
,(d; F(u)du} = 1t (11)

2
w21 we have

[( & _ 2
(11; sin 2u du = WEID

as can be verified directly.

Example. Since . {sin2t} =
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7. Multiplication by ¢~
Theorem 1-12. 1f L{F(t)} = f(s), then

LEFH) = (I fe) =
Example. Since . {e%*} = ;—}E , we have
- a1 -
L {tet} = ds<s-—2> T (s—2)2

d2

1 -
e = L) = ol

8. Division by t.
Theorem 1-13. 1If L {F(t)} = f(s), then

JFt)} f fu) du

provided lirr(} F(t)/t exists.
t—

. Y fos _ 1 sin ¢ -
Example. Since ( {sint} = POy and le — 1,
f sin ¢ f” du _
= —%_ = tan—1(1/s
L i J s ut+1 (1/s)

9. Periodic functions.

(=1 F(s)

we have

(12)

(13)

Theorem 1-14. Let F(t) have period T >0 so that F(t+T) = F(t) [see Fig. 1-2].

f e~ st F(t) dt
Then L{F({t) = 2o

1—¢e 5T

F(t)

. Period T | |

|
l i
i !
] |
- ]

W\\_/’\\,{ \\~,/~\_4

Fig.1-2

10. Behavior of f(s) as s —> .
Theorem 1-15. 1If L {F(t)} = f(s), then

lim f(s) = 0

11. Initial-value theorem.
Theorem 1-16. If the indicated limits exist, then

ltirr‘} F(t) = limsf(s)

N~

(14)

(15)

(16)



6 THE LAPLACE TRANSFORM [CHAP. 1

12. Final-value theorem.
Theorem 1-17. If the indicated limits exist, then
lim F(t) = lirr; s f(s) (17)

t=r

13. Generalization of initial-value theorem.
1f ll_r'rg F(t)/G(t) = 1, then we say that for values of ¢ near t=0 [small {], F(f) is
close to G(t) and we write F(t) ~ G(t) as t— 0.
Similarly if I_im f(s)/g9(s) = 1, then we say that for large values of s, f(s) is
close to g(s) and ;;:write J(s) ~ g(s) as s~ .
With this notation we have the following generalization of Theorem 1-16.
Theorem 1-18. 1f F(t) ~ G(t) as t—> 0, then f(s)~g(s) as s— « where f(s) =
L{F(t)} and g(s) = L {G(t)}.
14. Generalization of final-value theorem.
If tll'r?o F(t)/G(t) =1, we write F(t) ~ G(t) as t—-> «. Similarly if il_ryr; f(s)/g(s) =1,

we write f(s) ~ g(s) as s~ 0. Then we have the following generalization of Theorem
1-17.

Theorem 1-19. If F(t) ~G(t) as t—> =, then f(s) ~g(s) as s—= 0 where f(s) =
L {F(t)} and g(s) = L {G()}.

METHODS OF FINDING LAPLACE TRANSFORMS
Various means are available for determining Laplace transforms as indicated in the
following list.

1. Direct method. This involves direct use of definition (7).
2. Series method. If F(f) has a power series expansion given by
F(t) = @ + a;t + agt: + --- = i ant" ’ (18)
n—0

its Laplace transform can be obtained by taking the sum of the Laplace transforms
of each term in the series. Thus
Qo a 2'az S nla
LFM) = THu+ g+ = BER (19)

A condition under which the result is valid is that the series (19) be convergent
for s>y. See Problems 34, 36, 39 and 48.

3. Method of differential equations. This involves finding a differential equation satis-
fied by F(t) and then using the above theorems. See Problems 34 and 48.

4. Differentiation with respect to a parameter. See Problem 20.

5. Miscellaneous methods involving special devices such as indicated in the above theo-
rems, for example Theorem 1-13.

6. Use of Tables (see Appendix).
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EVALUATION OF INTEGRALS
If f(s) = L{F()}, then

f TR dt = f(s) (20)

Taking the limit as s > 0, we have

S “Fydt = £(0) (e1)

assuming the integral to be convergent.

The results (20) and (21) are often useful in evaluating various integrals. See Problems
45 and 46.

SOME SPECIAL FUNCTIONS

I.

II.

The Gamma function.
If n> 0, we define the gamma function by

T(n) = J;wu""e‘“ du (22)

The following are some important properties of the gamma function.
1. I'n+1) = =nrxr), =n>0

Thus since T(1) =1, we have 12) =1, 1(3) =2!=2, T(4) = 3! and in general
r(n+1) = n!, if n is a positive integer. For this reason the function is some-
times called the factorial function.

2. r§) = V=

Tp)T(1—-p) = si;pw, 0<p<l1

4. For large n,
Tn+1) ~ VV2znn"e ™™
[Here ~ means ‘“approximately equal to for large n”. More exactly, we write
F(n) ~ G(n) if lim F(n)/G(n) = 1.] This is called Stirling’s formula.

5. For n<0 we can define T(n) by

T(n) T{n+1)
n
Bessel functions.
We define a Bessel function of order n by
i 12 t
) = ———— 1 — - —_ ..
®) 2"I‘(n+1){ 2@nT2) T 2 d@n+)@n T 4) } (23)

Some important properties are

1. J-a(f) = (—1)"Ja(t) if n is a positive integer

2. Juer(t) = Z0Ta(t) = Jums (8)

3. gz{t"Jn(t)} = t*Ja-1(t). If n=0, we have Jo'(t) = —J (%).
4. e%t(u—l/u) — i Jn(t)un

This is called the generating function for the Bessel functions.
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- B, Ja(t) satisfies Bessel's differential equation.
| BY(t) + tY(t) + (E2—n) Y(E) = 0

It is convenient to define Ja(it) = i7" I.(t) where'I;(t) is called the modified
Bessel function of order n. . . ,

ITII. The Error function is 'deﬁned as

IV. The Complementary Error function is defined as

erfe(t) = 1 — erf(t) = 1 — %j: e vdu = %j;we"“’du (25)

V. The Sine and Cosine integrals are defined by

OSi = f Sizudu L A.'-(26‘)
Ci(t) = f ”‘302“ du (27)

VI. The Exponential integral is defined as

Ei() = f T (28)

(2

VII. The Unit Step function, also called Heaviside’'s unit function, is defined as

0t ;
| | ut-o) ‘= 4] .Se (29)
" See Fig. 1-3. @
Ut — a) F(t)
1T r
|
[
1
!
L ¢ t
Fig.1-3 Fig. 14
VIII. The Unit Impulse function or Dirac delta function.
Consider the function :
a : 1/e 0Stse
€ = 0
F (t) 10 t>¢ (3 )

where ¢ >0, whose graph appears in Fig. 1-4.
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IX.

It is geometrically evident that as ¢« 0 the height of the rectangular shaded
region increases indefinitely and the width decreases in such a way that the area

is always equal to 1, i.e. f F(tydt = 1.
0

This idea has led some engineers and physicists to think of a limiting funetion,
denoted by 3§(f), approached by F(f) as ¢=> 0. This limiting function they have
called the unit impulse function or Dirac delta function. Some of its properties are

1. f (t)dt = 1
0

2. f 3(Y) G(t) dt = G(0) for any continuous function G(?).
0

3. JV 3(t—a) G(t)dt = G(a) for any continuous function G(¥).
0

Although mathematically speaking such a function does not exist, manipulations
or operations using it can be made rigorous.

Null functions. If N(t) is a function of ¢ such that for all t >0

t
f Nuydu = 0 (81)
0
we call ‘N (¢) a null function.
(1 t-1/2
Example. The function F(¢) = -1 t=1 is a null function.
0 otherwise

In general, any function which is zero at all but a countable set of points [i.e. a set
of points which can be put into one-to-one correspondence with the natural numbers
1,2,3,...] is a null function.

LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS
In the following table we have listed Laplace transforms of various special functions.
For a more extensive list see Appendix B, Page 245.

Table of Laplace transforms of special functions

F(t) fle) = L{F®)}

T(n+1)
L. e gn+1

Note that if n = 0,1,2,... this
reduces to entry 8, Page 1.

1

2. Jolat
olat) . et ot
V2 + a2~
3. Jo(at) (Vs?+ a2 —g)n
an/s2+ g2
; i Ve e

5. cosVt ,\/E e—1/4s
Vvt s
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Table of Laplace transforms of special functions (cont.)

F(t) (&) = £{F(t)}
s2/4
6. erf (t) e . erfe (8/2)
1
7. erf (Vt)
8ys+1
8. Si (2) % tan—1 %
9. Ci(9) In@+1)
28
10. Ei(y) M;r_l)
11. Ut — a) e %
8
12, 3(t) 1
13. 5(t—a) e=8s
14, N(t) 0

Solved Problems

LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS
1 1

1. Prove that: (a) £{1} = %, §>0;, (b) L{t} = & §>0; (¢) L{e"} = Pyt s> a.
(a) L£{1} = >fme—s'(l)dt = lim fpe‘“dt
0 Pmen Jg
= lim e__:t: = lim 1-:“” = 2 ifs>0
« P
= - = 1 —st
(b) L) = J; e=st () dt ;Enmﬁ te—st dt
. -st —st\ \P 1 e~P Pe-sP
- pmo() -] - m ()
= 815 if >0

where we have used integration by parts.



CHAP. 1] THE LAPLACE TRANSFORM 11

(¢)

-4 l)
L {eat} = f e—st (eat) dt - lim e (s—aXt gt
0 Pe=aw
. ~(s—a)t | . — g—(s a)P 1 .
= lim &—— = llml_ = if 8>a
P —(8 —a)lo Pevoo s—a s—a

For methods not employing direct integration, see Problem 15,

a

. 8 .
2. Prove that (a) £{sinat} = a2 (b) L {cosat} = e if §>0.
W P
(a) L{sinat} = f e"stginatdt = }l,im e~ 5t gin at dt
0 -—p O 0

= 1lim e~st(— g sinat — a cos at) |P

T pow 82 + a2 0

= % a e P(ssinaP + acosaP)

= |+ a2 82 + a2

= o i8>0

0 P
(b) L{cosat} = f e~Stcogsat dt = gim e~ st cogat dt
0 e Jo

= lim e~st(—scosat + asinat) [P

- P 82 + a? 0

= 1 f s e 3P(scosaP — asinaP)

- Pl-ron:c 82+ a2 82 4+ a2

= 2 _+s_ p if s>0

We have used here the results
at (o & —
f etginptdt = ola s‘“a€‘+ BQB cos Bt) )
at :
f et cos Bt dt = et (o cosa[:t+-+;;23 sin Bt) @

Another method. Assuming that the result of Problem 1(¢) holds for complex numbers (which can
be proved), we have

1 s+ ia
iat - =
£ {efat} pysr Tt 1))
But eiat = cosat + isinat. Hence
L et} = f e~ st (cosat + 1 sin at) 4)
0
= f e~st cogsat dt + if e~Stginatdt = L{cosat} + i.0{sinat}
0 0

From (3) and (4) we have on equating real and imaginary parts,

a

£ {cos at} L+ a

L {sin at}

s
52+ a?’
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3. Prove that (a) £ {sinhat} = sz—a—

—a?’

(@) Colsinhaty = clfizerl o f st ﬂ:_e'_‘“> dt
) . )
= %L e steat df — % L e—Steg—at d¢

= golet — jolema

(b) £ {cosh at} = ?f_a_ﬂ if s> laj.

_ 1 1 1\1 _ a
- 2{s—a_s+af = g_g for s>ld

Another method. Using the linearity property of the Laplace transformation, we have at once

( pat — g~a
clsinhary = £ —"——'} = 1ot - Jotew
_ 1 1 1
= Ets—a_ﬁ—a} = g=g fors>ld
(b) As in part (a),
L {cosh at} = {ﬂ-f—ze_—“t} = %‘c {eot} + %‘c {e—at}
1 1 1
= E{s—a+s+a} = s2ja2 for s> |af
4. Find F(t)) if Ft—{50<t<3
. n 46{()}1 ()_ 0 t>3

By definition,

B 3 o
L{F)) = f emst Pty dt = f e—st(s)dt+f e—st (0) dt
0 0 3
- 0 o =8 |y - 8

THE LINEARITY PROPERTY
5. Prove the linearity property [Theorem 1-2, Page 3|.

Let £ {F,(t)} = fy(s) = fo e-stF (t)dt and L{F5(t)) = fole) = fo =t Fy(t)dt. Then if

¢; and ¢, are any constants,

.C{c; Fl(t) + 02F2(t)} j; e~ st {chl(t) + cze(t)} dt

Il

= c,f e~ st Fl (t) dt + czf” e~ st Fz(t) dt
0 0
= qL{F(t)} + caL{F3(t)}

= ¢1f1(8) t e fale)

The result is easily generalized [see Problem 61].
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6. Find . {4€* + 612 — 3sin4dt + 2 cos2t}.

By the linearity property {Problem 5] we have

L{4e% + 683 — 3sindt + 2cos2t} = 4.L{e5} + 6.L{t3} — 3.L{sin4t} + 2.({cos2t}
_ 1 3N\ 4 s
= 4<s—5> + 6(?> 3(32+16> + 2<s2+4>
4 36 12 2s

= s—s5t @ @#rie T

82+ 4
where 8 > &.

TRANSLATION AND CHANGE OF SCALE PROPERTIES

7. Prove the first translation or shifting property: If £{F(t)} = f(s), then £ {e*F(t)} =

f(s—a).
We have L{F()}) = L e~stFt)dt = f(s)
Then clet By = fo e=st {out F(8)} dt

Jw e~—atFtYdt = f(s—a)
0

8. Find (a) . {t?e%}, (b) £ {e % sin4t}, (c) L {e* coshbt}, (d) L {e~2(3 cos 6 — 5sin 6t)}.

21 2 2
2 = — == — 2 ‘ —_
(@) £ {t?} o el Then . {263t} E—38
®) £{sindt} = ————. Then .{e—2sindt} = 4 = 4
82+ 16 (8+2)2+ 16 82+ 48+ 20

(¢) £ {coshbt} = 8 . Then £ {e* cosh 5t} = s —4 = 8—4

82— 25 s—42—25 82—83—9°

Another method.
€5t + ¢ 5t 1
L{ett coshbt} = p<e¥ ( 5 ) = 3 {9 + ¢t}

= 1)1 11 _ 8—4
T 21s—9 " s+1[ = $#—8s—9

(d) £ {8 cos6t — b sin 6t} 8 £ {cos 6t} — 5.0 {sin 6f}

3 8 -5 6 _ 38—30
82+ 36 82+36/ 82436

3(s+2)—80 _ 38— 24
(8+2)2 + 36 82+ 48+ 40

Then L {e—2t (3 cos 6t — b sin 6t)}
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9. Prove the second translation or shifting property:

If L{F()} = f(s) and G(t) = {0

£{GH} = J; e—5t G(t) dt

where we have used the substitution ¢ = u + a.

cos (t — 2=/3)

10. Find ¢ {F(t)} if F(t) = {0

i

Method 1. L{F(t)}

Ft—a) t>a

t<a’
a -]
f e stG(t) dt + f e st G(t) dt
] a
a L]
f e st(0)dt + f e stF(t—a) dt
] a
f e~ stF(t—a) dt
a
f e~ 8(uta) F(u) du
0
e‘HSf e~ st F(u) du
0

€% f(s)

t> 2x/8
t<2x/8°

27/3 L
f e~st(0)dt + ¢~ st cos (t — 27/3) dt
0

27/3

o0
= f e—sw+2n/3) cosu du
0

-]
e—27'8/3f e~ svtecosudu =
0

se—2ms/3
s2+1

Method 2. Since .2 {cost} = —82—8+—1, it follows from Problem 9, with a = 27/3, that

LA{F(t)}

ge—2ms/3
s2+4+1

11. Prove the change of scale property: 1If £ {F(t)} = f(s), then .L{F(at)}

£ {F(at)}

f e st F(at) dt
0

j; e—s(u/a) F(u) d(u/a,)

= lf e~su/e F(y) du
aJy

- ()

using the transformation ¢ = u/a.

then . {G(t)} = e *f(s).

[CHAP. 1
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12. Given that ¢ {30t — tan-1(1/s), find g(,{smat}-

vt ] t
By Problem 11,
({Si’;t‘lt} = (l_l’c{sintat} = %tan“l{ll(s/a)} = %tan'l(a/s)

Then ’c{sir;at} = tan—1(a/s).

LAPLACE TRANSFORM OF DERIVATIVES
13. Prove Theorem 1-6: If £ {F(f)} = f(s), then L {F'(f)} = sf(s) — F(0).

Using integration by parts, we have

« P
LA{F'(t)}y = f e~stF(tydt = lim e stF'(¢) dt
0

P 0

P r
+ sf e~ st () dt}
0 0

P
= lim {e‘SPF’(P) - F(0) + sf e st F'(t) dt¥
0 J

Peorx

= lim {e—s‘ F(t)
Pet o

= sj; e~stF(t)dt — F(0)

= 8f(s) — F(0)
using the fact that F(f) is of exponential order y as ¢t~ «, so that }!im e~ SPF(P) = 0 for s>yv.

For cases where F'(t) is not continuous at ¢ =0, see Problem 68.

14. Prove Theorem 1-9, Page 4: If L {F(t)} = f(s) then £ {F”(t)} = s*f(s) — s F(0) — F”(0).

By Problem 13,
L{GW®)} = sL{G@®)} — G(O) = sg(s) — G(O0)

Let G(t) = F'(t). Then
L{F"(t)}

it

sL{F'(t}} — F'(0)

s[s L{F(t)} — F(0)] — F'(0)
s2L{F(t)} — sF(0) — F'(0)
s2f(s) — sF(0) — F'(0)

I

The generalization to higher order derivatives can be proved by using mathematical induction
[see Problem 65].

15. Use Theorem 1-6, Page 4, to derive each of the following Laplace transforms:

@ L) =2, 0L =3 ©Lie) =20

Theorem 1-6 states, under suitable conditions given on Page 4, that

L)Y = se{F®) — F) ' )
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(a) Let F(t) =1. Then F'(t) =0, F(0) =1, and (f) becomes

L0 =0 =s0{1} — 1 or L{1} = 1/s (2)

(b) Let F(t) =t. Then F'(t) =1, F(0) =0, and () becomes using part (a)

L{1} = 1/s = s£{t} — O or LAt} = 1/s2 )

By using mathematical induction we can similarly show that .¢{t*} = n!/s®*1 for any positive
integer n.
(¢) Let F(t) =e2t. Then F'(t) = ae, F(0) =1, and (I) becomes

L {aett} = s.£{e®} — 1, ie. aL{enty = spr{emt} — 1 or L{e%} = 1/(s—a)

_*
s> +a?

Let F(t) = sinat. Then F'(t) = acosat, F'(t) = —a?sinat, F(0) = ¢, F'(0) = a. Hence
from the result

16. Use Theorem 1-9 to show that L {sinat} =

LAF ()} = s2L{F(@)} — sF(0) — F'(0)
we have L{—atsinat} = sL{sinat} — s(0) — a
i.e. —a2 L {sinat} = s2L{sinat} — a
or L{sinat} = 5 : 22

LAPLACE TRANSFORM OF INTEGRALS
17. Prove Theorem 1-11: If £ {F(t)} = f(s), then £ {f Fu) du}L = f(s)/s.
0 s

t
Let G(t) = f F(u)ydn. Then G'(t) = F(t) and G(0) = 0. Taking the Laplace transform
0

of both sides, we have

L{G)) = sL{G®)} — GO) = sL{G@®)} = fs)

_ fta) C i)
Thus 6wy = 5 or ,QU; F(w) duJ =

t .
18. Find ,c{ fo S‘Z“du}.

We have by the Example following Theorem 1-18 on Page 5,

sint 1
S = -1
.,C{ n } tan 3

Thus by Problem 17,
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MULTIPLICATION BY POWERS OF ¢

19. Prove Theorem 1-12, Page 5:
If £ (F(t)) = f(s), then . ({t"F(t)} = (—1)

dst

f(8) = (—1)"f™(s) wheren =1,2,3,....

o0

‘We have fe& = I; e St F(t) dt

Then by Leibnitz’s rule for differentiating under the integral sign,

%: = fis) = disj;we SR dt = j;w:—se—“F(t)dt ’
= fow —te=st F(t) dt
= - j;we—st {tF()} dt
= —L{tF()}
Thus cuF@y = -L - )

which proves the theorem for n =1.

To establish the theorem in general, we use mathematical induction. Assume the theorem true
for n =k, i.e. assume

f ¢St {tk ()} dt (—1)k fUO(s) @)
Jo

Then
d

"—i; J‘ e~ st {tk F(t)} dt
0

i

(—1)k flk+1)(g)

or by Leibnitz’s rule,
__f e~st{tkt1P()}dt = (—1)k fkt+1)(g)
0

ie.
o

\f e=st {tcT1F(B)}rdt = (—1)kt1 flie+1)(g) €3]
2 0

It follows that if (2) is true, i.e. if the theorem holds for n =k, then (38) is true, i.e. the theorem holds
for n = k+1. But by (I) the theorem is true for » =1. Hence it is true for = 14+1 = 2 and
n=2+1 =3, ete, and thus for all positive integer values of =.

To be completely rigorous, it is necessary to prove that Leibnitz’s rule can be applied. For this,
see Problem 166.

20. Find (a) £ {tsinat}, (b) £ {t?cosat}.

(a) Since .£{sinat} = we have by Problem 19

a
82 + a2’

) . _ d /2 _ 2as
L{tsinat} = —d—s<‘sz+—az> T Etaee
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Another method.

8

ine 2 1 — -
Since L {cos at} = f e Stcosat dt = popra

Yo
we have by differentiating with respect to the parameter a [using Leibnitz’s rule],

4 ’ e stcosatdt — f e~st{—tsinat}dt = — L {tsinat}
da .J, 0

df s N _ _  2as

da \ s2 + a? - (2 + a?)2

2as
(82 + a?)?

from which

Li{tsinat} =

d
Note that the result is equivalent to —£ {cosat} = £ {—cos at}

(b) Since . {cosat} -=- ﬁ—ﬁ, we have by Problem 19
LA{t2cosat}y = %(ﬁg> = 2(2:;1—2:;8
We can also use the second method of part (a) by writing
LA{t2cosat} = . {— % (cos at)} = - —&%£ {cos at}

which gives the same result.

DIVISION BY ¢
21. Prove Theorem 1-13, Page 5: If L {F(t)} = f(s), then aCi } f f(u) du.

Let G(t) = @ Then F(t) = t G(t). Taking the Laplace transform of both sides and using
Problem 19, we have
d _ dg
CF@y = -6y or fla = —5E
Then integrating, we have .
o) = —f fwdn = f fodu &
ie.
j F(t)

1 J flu) du

Note that in () we have chosen the ‘“constant of integration” so that llm g(8) = O [see Theorem
1-15, Page 51,

22. (a) Prove that f E(t—t—) dt = f f(u) du  provided that the integrals converge.
¢ 0

(b) Show that f sint gp .z

(a¢) From Problem 21,
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Then taking the limit as s = 04, assuming the integrals converge, the required result is obtained.

(b) Let F(t) = sint so that f(s) = 1/(s24+1) in part (a). Then

“gint * du x
dt = f —— = tan—‘'u =
J; t o u2+1 0

[\-The |

PERIODIC FUNCTIONS
23. Prove Theorem 1-14, Page 5. If F(f) has period T > 0 then

fT e"* F(t) dt
L{F(t)} = ol_eq'r

We have
L {F(t)}

x

f e=st F(t) dt
0

=foT

In the second integral let ¢ = %+ T, in the third integral let ¢ == u+ 27, ete. Then

~2T 1T
e—stF(t) dt + J e~stF(t) dt -+ f et F(8) dt +
T <927

T T T
L{F(@)} = f e~st F(u) du + f e swID Fu+ T)du + f eI Pl + 2T) du + -+
0 0 0
T o T T
= f e S F(u) du + e_STJ e~ stFlu)du + ¢ ZSI'J e SuF(u)du + -
0 0 )]
T
= (1+ e 5T+ ¢ 2T + )f e~ 5% F(u) du
i 0
f e St F(u) du
—_
1—e-sT
where we have used the periodicity to write F(u+ T) = F(u), F(u+ 2T) = F(u), ..., and the fact that
1+'r+'r2+r3+---=1L, rl < 1
—r
24. (a) Graph the function
i t ;
F(t) = {smt 0<t<~
0 r<t< 2
extended periodically with period 2=.
(b) Find . {F(t)}.
(@) The graph appears in Fig. 1-5.
F@)
t
0 T 27 3r 47

Fig.1-5
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(b) By Problem 28, since T = 27, we have

1 227
CF®) = [—grmm | e F@dt
)
1 T
= 1__?2_11-31‘ e~ stgint dt
0
1 e st(—sgsgint — cost)
1— e~2ms s2+1 o

_ 1 1+e | 1
T T-—eoms | &+1 T W=e ™+

using the integral (1) of Problem 2, Page 11.

T

The graph of the function F(¢) is often called a half wave rectified sine curve

INITIAL AND FINAL VALUE THEOREMS
25. Prove the initial-value theorem: lim F(t) = lim s f(s).
By Problem 13, - T
crwy = f “enFydt = sfls) — FO)

But if F'(f) is sectionally continuous and of exponential order, we have

limf e tF'(Hydt = 0

§ - oC
$ 0

Then taking the limit as s> « in (), assuming F(t) continuous at ¢t =0, we find that

0 = lim sf(s) — F(0) or

26. Prove the final-value theorem: lim F(t) = lim sf(s).

tes 0 5= 0
By Problem 13,
cFwy = [ emFwdt = sfe) — FO)
[}
The limit of the left hand side as s » 0 is
®€ < P
tim [ e-stF(tydt = f F()dt = lim f F(t) dt
s=0 0 0 P=wJ,
= }}im {F(P)— FO) = zlim F(it) — F(0)

The limit of the right hand side as s > 0 is
lim 8 f(s) — F(0)
s=0

Thus tlim F@) — F(o) = lin:) sf(s) — F(0)

or, as required, :]im F@g) = lin}) 8 f(s)
- 00 S~

If F(¢) is not continuous, the result still holds but we must use Theorem 1-7, Page 4.

lim sf(s) = F(@0) = }in(x)F(t)

If F(¢) is not continuous at ¢ =0, the required result still holds but we must use Theorem 1-7, Page 4.

[CHAP. 1

(1)

(2)
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27. Illustrate Problems 25 and 26 for the function F(t) = 3e~2.

We have F(f) = 3e~2, f(s) = L{F(t)} = parar 2

By the initial-value theorem (Problem 2b),

. . 3s
lim 8e—2t = i
tff?) s—Er:os+2

or 3 =3, which illustrates the theorem.
By the final~value theorem (Problem 26),

. . 3s
8e—2t 1
fim 3¢ s+ 2

or 0 =0, which illustrates the theorem.

THE GAMMA FUNCTION
28. Prove: (a) "(n+1) = ni(n), n>0; (b)) T(n+1) =n!, n=1,2,3,....

i

(Y-
j ute 2du = lim ute % du
.

0

(a¢) T(n +1)
P=rcc o

P P

= (—e=v)mur—1 du}
0

= gx_r& <{(u")(--e‘") .

”
= lim {——P” e P 4 nf un—leg-u du}
P /g

= nf ur=le—t dy = nl(n) if n>0
o

o ’i

(b) ™(1) = f e~udy = lim f edduy = lim (1—e Py = 1,
0 =~ Jg Perx
Put = = 1,2,8,... in T(n+1) = nT(n). Then

T@) =1T71) =1, T8 = 2T(2) = 2«1 = 2!, T(4) = 31(8) = 32! = 3!

In general, I'(n+ 1) = n! if n is a positive integer.

29. Prove: f e—uidy = —\-/—;
0

P P
Let Ip = f e—12 dy = f e—v dy and let ]
0

0
gim I, = I, the required value of the integral. Then B
- o0 C

) P P
B = ( f ot dx) ( f e dy>
0 0 PV2

N

P P
j f e~ sty Ju dy
o Yo

21

= fj e~ (22 +y2) dx dy
.‘RP

where Rp is the square OACE of side P [see Fig. 1-6].

Fig.1-6
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IA

Since the integrand is positive, we have
ff e~ @ dy dy ()

ffe—w“y’) dzedy = I3
ﬂ.] 2

where ®; and R, are the regions in the first quadrant bounded by the circles having radii P and Py2
respectively.

Using polar coordinates (r, 8) we have from (1),

/2 P 9
f f erdrdse = I
6=0 r=0

_ 2
Z—u—ep’) = I

A

w2 PV2
f f e rdrde (2
0=0 r

=0
or

IA

T — 2P )

Then taking the limit as P~ = in (3), we find lim Ipn=12=x/4 and I = Vr/2.
- 0

30. Prove: T(}) = V=

g = f u—1/2¢~% du, Letting u =12, this integral becomes on using Problem 29
0

2jo‘we“v’dv = 2(@) = Vr

r(n+1)

31. Prove: L£{i*} = pexy if n>-1,5>0.

L{try = f e~stin dt. Letting st =u, assuming s > 0, this becomes
0

o0

-] n 1 Al
o [T a(s) - af e -

32. Prove: L {t"'%} = \/=/s, s> 0.
Let » = —1/2 in Problem 81. Then
r) V7

-1/2 = 2 _ yT T
L {t ro= sl/Z2 . gtz ~ s

Note that although F(t) = t~1/2 does not satisfy the sufficient conditions of Theorem 1-1, Page 2,
the Laplace transform does exist. The function does satisfy the conditions of the theorem in Prob. 145,

33. By assuming I[(n+1) = nr(n) holds for all n, find:
(@) T(=3), (b) T(=9), () I(=D), (@) T(0), (e) T(-1), (f) I(-2).
(@) Letting n=—}, T(}) = —3r(—}). Then I(—}) = —2r(}) = —2Vr.
(b) Letting n = —§, I(—}) = —3r(—§). Then r(-§) = —§r(-}) = @)@FVr = $V7 by part (a).
(¢) Letting » = —3, r(—§) = —30(—$). Then r(—$) = —2r(—§) = —@)(F@)Vr = —{ V7 by part (b).
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(d) Letting 2 =0, 1'1) = 0+ 1(0) and it follows that I'(0) must be infinite, since I'(1) = 1.
(e) Letting n = —1, 1(0) = —1r(—1) and it follows that I'(—1) must be infinite.

(f) Letting n = —2, 1(—1) = —21(—2) and it follows that 1'(—2) must be infinite.

In general if p is any positive integer or zero, I'(—p) is infinite and [see Problem 170],
2\/2 2 2
W(—py — _ — +1( = = — e —2 ‘/
rer=d 1y <1><3><5> <2p+1> "

BESSEL FUNCTIONS
34. (a) Find £ {Jo(t)} where Jo(t) is the Bessel function of order zero.
(b) Use the result of (a) to find £ {Jo(at)}.

(a) Method 1, using series. Letting n» =0 in equation (23), Page 7, we find

t2 tt té
o = 1 - 5+ g — warg T
1 1 2! 1 4! 1 6!
Then L@y = S~ 2a 7242 o5 T 224262 &7

_ 1 1/1 1.3 /1\ _ 1:3-5/1
. 5{1_§<§5> +2°4<s4> 2-4-6<s_6> * }

_ 1 1 —1/2 _ 1
- §{<1+8_2> } T VeEFi

using the binomial theorem [see Problem 172].

Method 2, using differential equations. The function Jy(f) satisfies the differential equation
tJo(®) + Jo(t) + tdo(t) = 0 ()
[see Property 5, Page 8, with n» =0]. Taking the Laplace transform of both sides of (Z) and

using Theorems 1-6 and 1-9, Page 4, and Theorem 1-12, Page b5, together with Jy(0) = 1, J3(0) = 0,
y = L {Jo(t)}, we have

@y 0y + ey -1 - =
from which % - 328-{ -
Thus : % - _ s:_isl
and by integration y = \/S:T

c8
Now lim sy(s) =
Sinde V241

we have ¢ =1 and so .£{Jy(t)} = 1/Vs2+1.

For another method, see Problem 165.

= ¢ and }m}’ Jo(t) = 1. Thus by the initial-value theorem [Page 5],

(b) By Problem 11,
L{dglat)} = 1__1__ = =1
’ ay/(s/a)2 + 1 82 + a2
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35. Find .¢ {/i(f)}, where J.(?) is Bessel’s function of order one.

From Property 3 for Bessel functions, Page 7, we have Jé(t) = —J;(t). Hence

LU} = —LJo®) = —[sL{Jo(®)} — 1]
- - 8 _ Ve#+1l-3
= Veri | Vel

[CHAP. 1

The methods of infinite series and differential equations can also be used [see Problem 178,

Page 41).

THE SINE, COSINE AND EXPONENTIAL INTEGRALS

t .
Cff St~ Ll
0 (/2 8 8

36. Prove:

L {8i(t)}

Method 1.

Taking the Laplace transform,

d 1
1 — 3 —_—— -_— = —e—
LUF'@®)) = £{sint} or s (8 1(8) — F(0)} ZF1
» d -— -—-_1
ie. HEfey = arq
Integrating, g8f(8) = —tan~lsg + ¢
By the initial value theorem, lim s/f(s) = }in(n) F(i) = F(0) = 0 so that ¢ = #/2.
S=> 00 -
et 1 - —1 et —11 = 1 _1l
8 f(s) ) tan—1s tan p or f(s) p tan p
Method 2. See Problem 18.
Method 3. Using infinite series, we have
t ot t 3 5 7
J‘smudu _ flu_l’_{_l"__l'_{_...)du
0 U o % 3! b! !
3 5 t7
= togmteer Tt
t .
sin u _ _ B v
Then 4{ o Tu } = “C{t 381 T 551 7oAl T
1 181 B 1T
- g2 3.3) &t 5+5! 48 T+T7! g8
_ 1 _ 1 11
= @ T3 TEs s T
_ l{Us) _ s | (Us _ (s,
= s{ 1 5 T 8§ 71
= ltan—ll
8 8

using the series tan—l!2 = 2 — #3/8 + o5/6 — 27/T+ -+, |2| < 1.

t . .
Let F(t) = f #du. Then F(0) =0 and F'(t) = i“;—‘ or tF'(f) = sint.
0
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Method 4. Letting u = tv,

of . S
J sinu du = f sin tv dv
0 u 0 v
tsinu ! gin tv
Then L m du = £ f > dv
Yo
« ! sin to
e[ ) g
<o 0 v

1y o
= r = f e stsintv dt ) dv
Jo Y 0

<

1 1
- Lisinto} 5 _ f dv
0 v 0 32+ v2
= = tan—1? - ltan‘ll
s 1o ] )

where we have assumed permissibility of change of order of integration.

. “cosu 241
37. Prove: £(Ci(t)} = -c{f ——du} = In(E+1)
. U 2s
We use the principle of Method 1 in Problem 36. Let F(t) = f co;u du so that F'(t) = — co: t
and tF'(t) = —cost. Taking the Laplace transform, we have t
d _ -8 d _ s
—"‘E{sf(s) - F(0)} = 21 or E{sf(s)} = #+1
Then by integration, sf(8) = LIn(s2+1) + ¢

By the final-value theorem, lirr}J sf(s) = tlim F(t) = 0 so that ¢=0. Thus
S -+ -t 0

fl8) = In(s2+1)

8f(s) = $In(s2+1) or 3s

We can also use Method 4 of Problem 36 [see Problem 153].

38. Prove: .C{Ei(f)} = .C{fw?;—udu} - In(s+1)

¢ 8

u

Let F(t) = j € " du. Then tF'(t) = —e~t. Taking the Laplace transform, we find
t u

e~ FO) =3 o Efesen = Lo

Integrating, sfis) = In(e+1) + ¢

Applying the final-value theorem as in Problem 37, we find ¢ =0 and so

In(s+1)
s

f(s)

For another method similar to that of Method 4, Problem 36, see Problem 153.
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THE ERROR FUNCTION

39. Prove: .C{erf\/t} {2 f‘/t_e‘“”du} 1
o . er = r—] = .
W= sys+1

Using infinite series, we have

Vit
2 2
‘C{Vﬂ'"; e du}

[

»~
——
e
e
/\ﬁ

ut  ub
1-u2+§!——3—!—+ >du

2 12 4572 )
= —_— 1/2 — — —— o — e
‘C{\/;<t 3 Tear Tt >}

T(7/2) 1(9/2) }

2 [re/2)  16/2)
5e2ls?Z  Tegle@z T

= Ve | &2 T 38572 +

1 1\~ V2 B 1
= §E<1+§> =

using the binomial theorem [see Problem 172].

For another method, see Problem 175(a).

IMPULSE FUNCTIONS. THE DIRAC DELTA FUNCTION.

—as

40. Prove that £ {U(t—a)} = ¢ where U(t—a) is Heaviside’s unit step function.

1 t>a

. Then
0 t<a

We have U(t—a) = {

L{Ut—a)} = f e~ (0)dt + f e~ st(1)dt
0 a

. £ . e —st|P
= lim e~stdt = lim
P=r o a P=x —8 |a
. e—as — g—sP e—as
= Ilm Z¥—8+«— =
Peoroo 8 8

Another method.
Since . {1} = 1/s, we have by Problem 9, £ {U(t—a)} = e~ %/s.

41. Find £ {F¢(t)} where F¢(t) is defined by (30), Page 8.

Ve 0=t=
We have F.(f) = {/‘ €. Then
0 t> e

LAF ()}

f e—st F(t) dt

(]

€ 0
= —st(1/e) dt + —st(0) dt
fo e—st (1/¢) f o= (0)

= 1J‘Ee*“alt = lze7¥

€ 0 €8
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42. (@) Show that lim .C {F.(t)} = 1 in Problem 41.
€0
(b) Is the result in (@) the same as ,C{lim F. (t)} ? Explain.
€—0

(a) This follows at once since

lim 1= 67 1= (1—se+s22/2!— )

e—=0 8¢ €0 8¢ €=0

It also follows by use of L’Hospital’s rule.

(b) Mathematically speaking, lins F.(t) does not exist, so that -C{ lim F’e(t)}
€~ €= 0

lim = 1im<1—;’—‘!+--->

27

is not defined.

Nevertheless it proves useful to consider &(f) = lim F.(¢) to be such that £{8(f)} = 1. We
e~ 0

call 8(f) the Dirac delta funetion or impulse function.

43. Show that . {8(t—a)} = e, where 3(¢) is the Dirac delta function.

This follows from Problem 9 and the fact that .2 {8(f)} = 1.

44. Indicate which of the following are null functions.

1 t=1 1 1=t=2
0 otherwise 0 otherwise’

@ Fi) = { . o Fo =1
¢
(a) F(t) is a null function, since f Fu)du = 0 for all ¢ > 0.
70
¢
(b) If t<1, we have f Fu)du = 0.
0

¢ t
If 1=¢=2, wehave f Fuydu = f Ndu = t—1.
Y 1

t 2
If t> 2, we have f Fuydu = f du = 1.
0 1

t
Since j‘ F(u)du # 0 for all ¢ > 0, F(t) is not a null function.
)

t
(¢) Since f 8(uydu =1 for all ¢ > 0, &(¢) is not a null function.
0 -

EVALUATION OF INTEGRALS
o « —-¢ -3t
45. Evaluate te=2costdt, (b £ "¢ gt
valua (@) J(: e~ 2 cog (b) j(; ;

(a¢) By Problem 19,

L {t cos t}

f testcost dt
Jo

- _4a = 2/ _8 \ _
- ds.c{cost} - d8<82+1> -

(c) F(t) = s8(%).
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Then letting s =2, we find f te 2 costdt = %
0
(b) If F(t) = e t—e~ 3, then f(s) = L{F(t)} = + si3' Thus by Problem 21,

e—t — -3t _
-C{ t } { u+3} du
* g fe t—e3t _ s+3
or J; e st (f) dt = In <m>

* g—t _ g—3t

; dt = 1In3.

Taking the limit as s = 0+, we find f
0

46. Show that (a) f “H(tydt = 1, (b) f “e-terfy/tdt = 2/2.
(1} 0

oc’e_s"J t)ydt =
J; o(?) T

(a) By Problem 34,

Then letting s - 0+ we find f “Jdt = 1.
0

.
(b) By Problem 39, J e~ st erf\/?dt - S
0

sVs+1

Then letting s — 1, we find j et erfVtdt = 2/2.
0

MISCELLANEOUS PROBLEMS

47. Prove Theorem 1-1, Page 2.
We have for any positive number N,

oc N o
f e"stF(t)ydt = f e"stF(t) dt + f e~ stF(t) dt
0 N

0

Since F'(t) is sectionally continuous in every finite interval 0 =t = N, the first integral on the
right exists. Also the second integral on the right exists, since F(t) is of exponential order y for
t> N. To see this we have only to observe that in such case

- ~st F'(t) dt N —stRF(t) | dt
fNe ‘ fN o=t F(t) |

J e=st|F(8)| dt
0

A

fiA

= fx e St Mevtdt =
0

Thus the Laplace transform exists for s> vy.
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48. Find £ {sin\/t}.
Method 1, using series.

sinVt= Vi-— (w/')s (\/5?!)5_(\4?!)74_

13/2 /2 2

Sl e TR T
Then the Laplace transform is
. _ I13/2) 1(5/2) r(7/2) 1(9/2)
£{sinVt} = 32 T 31gz T Blgz  qigee T

VT 1 (1/228)2  (1/228)3

= genylTlg;) YT e T

_ Vr_ _ V&

fod 3e 3 ea/3 e 1/22s — T 5378 e 1/4s
Method 2, using differential equations.

Let Y () = sin Vt. Then by differentiating twice we find
aYy” + 2y + Y = 0
Taking the Laplace transform, we have if y = ¢ {Y ()}
—4;—;{821/ — 8Y(0) — Y'(0)} + 2{sy—Y0)} +y = 0

or 482y + Bs— 1)y = 0

c
i = ——_e—1/4s
Solving, Y 372 ¢

For small values of t, we have sinVt ~ Vt and £L{/t} = V=/283/2, For large 8, y ~ c¢/83/2,

follows by comparison that ¢ = Vz/2. Thus

L£{sinVt} = _[7_6—1/“

2 83/2

49. Find ,c{°°‘s/£ t}.

Let F(t) = sinVt. Then F'(t) =

LW = 2 { } = ofte) — F(0)

from which £ cos V¢ = _l\/.;z_e—-l/'is
\/{ 8

The method of series can also be used [see Problem 175(b)].

50. Show that
£(nty =

s
where y = .5772156... is Euler’s constant.

We have r» = f ur—le—u dy
0

, F(0) =0. Hence by Problem 48,

\/_‘ e~ 1/4s

95172

r)—Ins _ _y+Ins

29

It
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Then differentiating with respect to », we find

Mry = f u~le tinu du
0

from which M1 = f e *Inudu
0

Letting u — 8t, 8 > 0, this becomes

My = sf e~st(lns + Int) dt
0
° _ M .
Hence L{nt} = e stintdt = 5 Ins e~ st dt
0 0
_ I _Ims _ _y+Ins
- s s P

Another method. We have for k > —1,

= _ Ttk+1)
J; e~sttkdt = s

Then differentiating with respect to k,

fTewpmear =" DOED = VE+Dins
0 gk+1

Letting k = 0 we have, as required,

(1) — Ins Y + Ins

f e=tlntdt = p{nt} = ——L_ "8 _

Jy 8 8

Supplementary Problems

LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

[CHAP. 1

51. Find the Laplace transforms of each of the following functions. In each case specify the values of s

for which the Laplace transform exists.

(a) 2ett Ans. (a) 2/(s—4), s>14
(b) 3e—2t b) 3/(s+2), s> —2
(¢) 5t—38 (c) (b—3s)/s2, §>0
(d) 2¢2 — et (d) (4+48—83)/8%(8+1), s8.>0
(e¢) 8 cosbt (e) 3s/(s2+ 25), s>0
(/) 10 sin 6¢ (f) 60/(s2+ 36), §>0
(g) 6sin2t — b cos 2t () (12 — bs)/(s2 + 4), §>0
(k) (t2+1)2 (h) (s*+ 482+ 24)/s3, 8>0
(i) (sint — cost)? (@) (82—28+4)/8(s2+4), 8>0

() 8 cosh 5t — 4 sinh 5¢ () (88— 20)/(s2 — 25), §>5
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52, Evaluate (a) . {(be?t—3)2}, (b) .£ {4 cos22t}.

25 30 9 2 28
Ans. (a) pnny il o s>4 (b) st eris 270

. 2 s2—32
53. Find . {cosh24t}. Ans. TE6D)
0 0<t<2 2t 0=t=5
54, i i F(it) = F@) =
Find £ {F(t)} if (a) F(?) {4 t>9° (b) F() {1 £> 5

Ans. (a) 4e—2¢/s (b) ;22-(1—e“53) - %e“5s

!
55. Prove that £{t"} = —47, m=1,23,....

56. Investigate the existence of the Laplace transform of each of the following functions.

(a) 1/(t+1), (b) €%, (c) cost? Ans. (a) exists, (b) does not exist, (¢) exists

LINEARITY, TRANSLATION AND CHANGE OF SCALE PROPERTIES

7. PFind .C{8t* — 213 + 4e—3t — 2 gin bt + 3 cos 2t).
72 12 4 10 38

Ams. G- @t ers P T4

58. Evaluate each of the following.
(@) £ {t3e~3t} Ans. (a) 6/(s+3)*
(b) £ {e~* cos2t) (®) (8 + 1)/(s® + 25 + B)
(¢) £ {23 sin 4¢) (c) 8/(s2 — 68 + 25)
(@) L£{(t+2)%% (d) (482 —4s8 +2)/(s —1)3
(6) £ {e2t (3 sin4t — 4 cosdt)} (e) (20 — 48)/(s2 — 4s + 20)
(f) £ {e~* cosh 2t} () (8+ 4)/(s2 + 85 +12)
(9) £{e~t(3 sinh2t — 5 cosh 2¢)} (9) (1—58)/(s2+ 25— 83)

59. Find (a) £{e"tsin2t}, (b) .£{(1+ te—t)3}.
2 1 3 6 6

Ans. @) T mTn D st ermEt Grer T Gran

. _ (t—1)2 > 1 _
60. F F(t) = ) . 2¢—5/g8
Find ¢ {F(t)} if (t) {0 0<t< Ans. 2¢—35/s

61. If F,(t), Fs(t), ..., F,(t) have Laplace transforms f,(8), fy(8), ..., f,(8) respectively and
€1, €3 ..., ¢, are any constants, prove that

L{e)Fi(t) + e3Fa(t) + -+ + e, Fu()} = e,f1(8) + e3fa(8) + -++ + e, fn(8)
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= _8—s+t1 2 — 25 + 4)/4 2(s — 2
62. If L {F(t)} B T %=1’ find ¢ {F(2¢)}. Ang. (82— 2s + 4)/4(s + 1)2(s — 2)
6. If C{F®) = S, find £{e-tF@Y)).  Ams. & °H0
8 841

64. If f(s) = £ {F(t)}, prove that for r> 0,
L{rFa)y = — f(‘* = “”)

s—Inr a

LAPLACE TRANSFORMS OF DERIVATIVES
65. (a) If £ {F(t)} = f(s), prove that
L{F"{t)} = s83f(s) — s2F(0) — sF'(0) — F"(0)
stating appropriate conditions on F(t).

(b) Generalize the result of (a) and prove by use of mathematical induction.

2t 0=t=<1
t t>1'

LA{F'(t)}y = sL{F(t)} — F(0) hold for this case? Explain.

66. Given F(t) = {

2 e”s e~ 2 e-s
Ans. @) -5~ O T3
2 0<t=1
67. (a) If FQ) = find F!'(t)}.
(@) ®) {0 o1 £ (F" ()}

(b) Does the result .£{F"(t)} = &£ {F(t)} —sF(0)— F'(0) hold in this case?
Ans. (a) 2(1 —e~9%)/s

68. Prove: (a) Theorem 1-7, Page 4; (b) Theorem 1-8, Page 4.

LAPLACE TRANSFORMS OF INTEGRALS
t
69. Verify directly that £ {f (u2—u+ e~ ¥) du} = % L{E2—t+et},
(]
: i f(s)
70. If f(8) = .£{F(t)}, show that .c{f dtlj; F(u) du} = 5
(]

t ot
I:The double integral is sometimes briefly written as f f F(¢) dtz.:|
0o Yo

71. Generalize the result of Problem 70.

ty -
72. Show that .C{f 1-e udu} = l]n<1+—1->.
o u 8 8

© t _ .
73. Show that f f eisinu g gt =
t=0 Y u=0 uw

[CHAP. 1

(@) Find L{F(t)}. (b) Find £ {F'(t)}. (¢} Does the result

Explain.



CHAP. 1] THE LAPLACE TRANSFORM

MULTIPLICATION BY POWERS OF ¢ .
_ 88—
74. Provethat (a) £ {tcosat} = @ETap
. 2as
(b) .c {t sin at} W

. . _ 8+ 123 — 252

75. Find .¢ {¢(8 sin 2t — 2 cos 2t)}. Ans. BRC-ET
. 632 —2
2 = > _ <

76. Show that . {t2sint} @
77. Evaluate (a) .¢ {t cosh3t}, (b) £ {t sinh2t}. Ans. (a) (s2+9)/(s2—9)2, (b) 4s/(s2—4)2

78. Find (a) £{t2cost}, (b) .¢{(t2— 8t+ 2) sin 8t}.

—_ 2 _
Ans. (a) (26— 6a)/(s+1)5, (b) 0% 188+ 12602 1625+ 432

(s2+9)3
. 651 — 3682+ 6
19. Flnd .c {t3 €08 t}- A'ns _(8“'—1)4_
80. Show that f te~3tgintdt = %
0

DIVISION BY ¢
8l. Show that . {_e_at = e_bt} = In <s + b> )

t

—_ 2
82. Show that .c{cjs_“tt_M} = %m(::i";z).

inh ¢
83. Find .c{sm . Ana lm 8+1)
t 2 s —1
84. Show that f L‘”:_e“"_‘ dt = In2
0
[Hint. Use Problem 81.]
85. Evaluate f Ltcow dt. Ans. In(3/2)
0

“ sin2t

dt =

86. Show that f .
A 2

PERIODIC FUNCTIONS
87. Find ¢ {F(t)} where F(f) is the periodic function shown graphically in Fig. 1-7 below.

1

Ams. - tanh =
8 2

33
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88.

89.

91.

92,

THE LAPLACE TRANSFORM [CHAP. 1

F(t) F(t)

]
|

«w

Fig.1-7 Fig.1-8

Find .¢ {F(t)} where F(t) is the periodic function shown graphically in Fig. 1-8 above.

1 e—Ss
Ans. P =
Let F(f) = 438 0<t<2 Gy ore F(t) has period 4. (a) Graph F(t). (b) Find £ {F(1)}.
6 2<t<4
Ans. (b) 83— 825 — Gge— 45

s2(1 — e—48)

If F(t) =12 0<t<2 and F(t+2) = F(¢), find . {F(t)}.

2 — 2e—28 — 4ge—25 — 4g2¢— 2
Ans.
e (1 — =29

t 0<t<1

and F(t+2) = F(t) for t > 0.
0 1<t<?2

Find ¢ {F(t)} where F(t) = {

1—e5(s+1)
Ans. T oD

(a) Show that the function F(¢) whose graph F(t)
is the triangular wave shown in Fig.1-9
has the Laplace transform é tanh %

(b) How can the result in (a) be obtained ] 2 4 6
from Problem 87? Explain, Fig.1-8

INITIAL AND FINAL-VALUE THEOREMS

93.

94.

95.

96.

97.

Verify the initial-value theorem for the functions (a) 3 — 2 cost, (b) (2¢+ 3)2, (¢) ¢ + sin 3t.

Verify the final-value theorem for the functions (a) 14 e~ t(sint + cost), (b) t3e 2t

Discuss the applicability of the final-value theorem for the function cost.

If F(#) ~ ct? as t—> 0 where p > —1, prove that f(8) ~ eT(p+ 1)/sP*1 as s— =,

If F(t) ~ ¢t as t—> =« where p> —1, prove that f(g) ~ eI'(p+ 1)/s?*+1 as s> «,
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THE GAMMA FUNCTION

98. Evaluate (a) I'(5), (b) l‘(?‘)('II‘)M)

Ans. (a) 24, (b) 1/60, {c) 8= /4, (d) 32/315

1(3/2) T(4)

, (€) T(5/2), (d) r(11/2)

99. Find (a) £{tV2+¢-12), (b)) £{t"13}, (o) £{(1+Vt)%.
Ans. () (28 + 1)V7/283/2, (b) I(2/8)/s2/3, (c) (s2 + 2V7 8%/2 + 68 + 37 s1/2 + 2)/s8
100. Find Ie_zt} b 7/2 g3t
* i T~ t .
ind (a) .61 Nr ® { }
Ans. (a) Va/(s +2), (b) 106Vx/16(s — 3)9/2

BESSEL FUNCTIONS
1
Va2 —2as + a2 + b2

101. Show that . {e~at Jo(bt)} =

_ 8
102. Show that £ {t Jo(at)} = FF oz

1

» () 182 £ 372
V& + 65 + 25 (+4)

104. Prove that () Jo(t) = —Jy(6), (b) So{tn J, (0} =t J,_, (8.

103. Find (a) £ {e~3 Jo(48)}, (b) . {t Jo(26)}. Ans. (a)

1

82 —q2

105. If I4(t) = Jy(it), show that £ {Iy(at)} = , a>0,
106. Find £ {tJy(t) e~t}. Ans. (s —1)/(s2— 23+ 2)3/2

107. Show that (a) f Jo(t)dt = 1, (b) f e~tJy(t)dt = g
0 0

108. Find the Laplace transform of :—;{e“ Jo(28)}. Ans. —sz—i—s+_8 -5~ 2
109. Show that £ {t J,(t)} = (sTll)‘?/-f'
110. Prove that ¢ {Jo(aV?)} = e—':“s
111, Evaluate j;w t e~ 3t Jo(4¢F) dt. Ans. 3/125
112, Prove that .¢{J, ()} = ‘8_‘/7_;%“’)3 and thus obtain . {J, (at)).
8

THE SINE, COSINE AND EXPONENTIAL INTEGRALS
113. Evaluate (a) £ {e? Si(t)}, (b) £ {t Si(?)}.

Ans. (a) tan-!1(8—2)/(s—2), (b) tar;;ls 1

T a2+ D)
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In(s2+1)  3s2+1
s s(s2+1)2°

114. Show that .¢ {t2 Ci(¢t)}

115. Find (e) L£{e~ 3t Ei(t)}, (b) L£{tEi(t)}.

In (s +4) In(s+1) 1

Ans. (a) s+38 82 s(s+ 1)

» (b)

116. Find (a) £ {e~tSi(2t)}, (b) . {te—2 Ei(3)}.
) tan~!(s+1)/2 1 1n<‘+5> 1

Ans. (o 7 » O Groe 3 )/ (@+r2(+5)

THE ERROR FUNCTION

117. Evaluate (a) £{eterfVt}, (b) .¢{terf(2Vt)}.
1 3s+8

Ans. (a) @__ﬁ, (b) W

118. Show that . {erfcVi} =

1

Vitl{Vs+i+1}
t

119. Find .0 {f erf Vu du} . Ans. 1/s2\/s+1

0

THE UNIT STEP FUNCTION, IMPULSE FUNCTIONS, AND THE DIRAC DELTA FUNCTION

-t
120. (a) Show that in terms of Heaviside’s unit step function, the function F(t) = € 0<t<3

t>3
can be written as e~ t{1 — U(t—38)}. (b) Use . {U(t—a)} = e—95/s to find £ {F(t)}.
Am, (b) 1—e 3(s+1)
s+1
121. Show that F(t) = Fi(t) 0<t<a can be written as
Fz(t) t>a
F(t) = Fit) + {Fo(t) — F (1) Ut —a)

122. If F(t) =F,(t) for 0 < t< a,, Fyo(t) for a; <t<ay ..., Fo_y(t) for a, s < t<a,_;, and F,(t)

for t > a,_,, show that

F() = Fy@t) + {Fo(t) — F()}Ut—ay) + -+ + {F,(t) — F,_;(YU(t—a,_,)

123, Express in terms of Heaviside’s unit step functions.
sint 0<t<n~rn
(b) F(t) = sin 2¢ r<t<2r
sin 3t t> 2r

2 0<t<2

F =
(@) F(t) {4t t>2

Ans. (a) 2+ (At— ) Ut —2), (b) sint + (sin2t — sin ) U(t — ) + (sin 3t — sin 2¢) U(t — 27)

-2
124, Show that .2 {2U(t—2)} = 833 —~ —2%51(1 +28+282), 8> 0.
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125,

126.

127,

128.

Evaluate (a) f cos 2t 8(t — #/8) dt, (b) f et U(t— 2) dt. Ans. (a) —1/2, (b) e~ 2

(@) If §’(t— a) denotes the formal derivative of the delta function, show that

wa'(t)B'(t—a) dt = -—Fl(a)
(I

(b) Evaluate f e 4t §'(t — 2) dt.
Amns. (b) 4e—8 7o

Let G(t) =1/e for 0 =t <e¢ 0 for e =t <2, —1/c for 2¢ =t <8¢, and 0 for ¢t = 3e.

(a) Find £{G(t)}. (b) Find lin(x),c{Gt(t)}. (¢ Is lixx}).c{Gt(t)} = .c{lin(x) Gt(t)}? (d) Discuss
geometrically the results of (a) and (b).

Generalize Problem 127 by defining a function G(t) in terms of ¢ and n so that lim G(t} = s»
where n = 2,8,4,.... €m0

EVALUATION OF INTEGRALS

129, Evaluate f t3 et sint dt. Ans. 0
(}

“e-tsint
130. Show that f 2 dt =
()}

131

132

133

134

L]

t

. Prove that (a) wan(t) dt = 1, (b) f tJ(t)dt = 1.
0 (1}

<0
. Prove that f ue Jo(au) du = Je—a%/4
o

«<

. Show that j; temtEi(t)dt = In2 — §.
. Show that f ue erfudu = \{TE

0

MISCELLANEOUS PROBLEMS

135. ) = sint 0<t<n P = 1-|-e—1rs'
If (%) {0 t> 0 show that £ {F(¢)} Rrre
_ 0<t<~ 8+ (8— 1)e—ms
136, If F(t) = 08¢ , find £ {F(f)}.  Ans SF(E—1De7m™
® {sint t>r L@} 2+ 1
6

137. Show that . {sindt}

2+ 1)(s2+9)
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138. Establish entries (a) 16, (b) 17, (¢) 20, (d) 28 in the Table of Page 246.

139. Find (a) . {sinh32t}, (b) . {t3 cos 4t}.

48 6s* — 57682 + 1536
Ans. (@) gy ¥ &+ 16)
140. If F(t) = 5 sin3 (t—/4) for t>r/4 and 0 for t < /4, find £ {F(t)}. Ans. e~m/4/(g2 +9)
1

ML If Cc{tF(t)} = find £ {et F(2t)}.

8(s2+1)’

142. Find (a) . {sinh 2t cos 2t}, (b) £ {cosh 2t cos 2¢}.
Ans. (a) 2(s2— 8)/(s*+ 64), (b) s3/(s*+ 64)

=
143. Let F@ = 4¢T™ Im=¢<2r+1 o _61,2.... Show that
n—t 2n+1=¢<2n+2
L{FP@)}y = :é S {(83ns+1)e 2ns — 2[2n+1)s+ 1} e~ @2ntDs 4 [(n+ 2)g + 1] e (2n+2)8}

n=0
. 120

144, h t St} = .

4. (@) Show that .£ {sin5t} E T £ 9)(e T 25)

(b) Using the results of part (a) and Problem 137, can you arrive at a corresponding result for
L {sin2n -1¢{} where n is any positive integer? Justify your conjectures.

145. Suppose that F(f) is unbounded as t— 0. Prove that . {F(t)} exists if the following conditions are
satisfied:

(@) F(t) is sectionally continuous in any interval N, =t = N where N; >0,
() }in(x) tnF(t) = 0 for some constant n such that 0 < n <1,

() F(t) is of exponential order y for ¢ > N.

146. Show that (a) £ {Jy(t) sint} = \/Ti_z_l__z sin {{ tan—1(2/s)}
(8) L£{Jo(t) cost} = \/8_\,4_1—/—2_4'_2 cos {} tan—!(2/s)}
147. Let F(3) = {60 t>1  prove that £ {F(} = ——([e=s £ {G(t+ D}
0 0<t<1 ds

148. If £{F"(t)} = tan—1(1/s), F(0) =2 and F'(0) = —1, find .L{F(t)}.

28— 1+ tan—11/s

Ans. o

1

149, Prove that . {ext F(88)} = f("' —«

B

=3 ) where o« and 8 are constants and .£ {F(t)} = f(s).

150, Show that the Laplace transform of e¢* does not exist, while the Laplace transform of e—¢* does exist.
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151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

sinft| _ 1 s2+
(a) Show that -C{ : } = 4ln( p >

(b) Evaluate f e_“'sTin“_t dt.
0

Ans. (b) 3 In5

(@) Find £ {1%"’(”} (b) Show that f M d¢ = I (‘/5; 1).
[

Work Problems 87 and 38 by using Method 4 of Problem 36.

Suppose that .2 {F(t)} exist8 for s = a where

a is real. Prove that it also exists for all F(t)

8> a.

Find the Laplace transform of the periodic

function F(t) shown graphically in Fig. 1-10. ! \ !

|
Ans, Lo €% —usem® e b0 I I :/ t
T TR — e ®) 0 a 2a 3a

Prove that

: o= (=D)r(dn—2)! Fig.1-10
lEmt) = mo D

Show that .¢{sinSt} = 6! i . 144].
ow that . {sin6 ¢} ST A)eT T 16) a2 1 36) and generalize [see Prob. 144]

s+ 2

Find £ {te—2¢J,(tV2)}. Ans. T ds F 62

Find £ {tU(t—1) + £25(t—1)}. Ans. e—5(82+ s+ 1)/82

Find L{costInt 8(t—=)}. Ans. —e~ ™ Inx

Let F(t) and G(t) be sectionally continuous in every finite interval and of exponential order as t— «.
Prove that £ {F(t) G(t)} exists.

The Laguerre polynomials L,(t) are defined by

et dn
Ln(t) = n—!m{t"e_t} n=2012...

(@) Find Lo(t), Ly(t), ..., Lg(t). (b)) Find £ {L.(t)}.

(@) Let a,b,a, 8 and A be constants. Prove that
L{at=2+ bt—B} = A{as— + bs—B}
if and only if «a+8 =1 and A = =7 cscar.

(b) A function F(t) is said to be its own Laplace transform if £ {F(t)} = F(s). Can the function
F(t) = at—2+ bt—8 be its own Laplace transform? Explain.
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164. If F(t) and G(t) have Laplace transforms, is it true that F(t) G({) also has a Laplace transform?
Justify your conclusion.

1
s2+1

T
165. Use the result Jy(t) = %f cos (t sing) de to show that .2 {Jy ()} =
()

166. Prove that Leibnitz’s rule can be applied in Problem 19, stating suitable restrictions on F(t).

* 1—cost T 82
—gt [ = COST = T _ & -
167. (@) Prove that J; e~® ( o )dt 2 sln (82 1> + 2 tan~1s.

1~ cost T
(b) Prove that j(; Tdt = 5

168. Let F(t) = 0 if t is irrational and 1 if ¢ is rational. (a) Prove that . {F(t)} exists and is equal to
zero. (b) Is the function a null function? Explain.

169. Show that f 2 Jy(t) dt = —1.
o

170. Prove that if p is any positive integer,

v = () ()

171. Verify the entries (a) 55, (b) 61, (¢) 64, (d) 65, (¢) 81 in the Table of Appendix B, Pages 248
and 250.

172. Using the binomial theorem show that for |»| < 1,

- 1 1:3 1+8-5
172 = - = 2 3
(1+2) = 1 ok + 2_4x 2‘4'6:&' +

and thus verify the summation of the infinite series in Problems 84 and 39.

173. Use infinite series to find the Laplace transforms of (a) sint, (b) cost, (¢) ez, (d) COS\/E

2/4
174. Prove that .L{erf(t)} = %erfc (s/2) and thus find ¢ {erf (at)}.

175. (@) Find .¢{erf Vt} by using the method of differential equations.
(b) Find £ {cosVt/\/t} using infinite series.

176. Show that (a) f Jo(2Vtu) cosu du = sint,
0

cos t.

(®) f * J,@Veu) sinu du
0
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171.

178.

179.

180.

181.

182.

183.

184.

185.

Show that f T L @VER) Jo du = Jy(8).
1}

Use (a) infinite series, (b) differential equations to find .£{J((f)}. See Problem 35.

If 8> 0 and n > 1, prove that

2| _ 1 1 1 2
({l—e r} = P(n)ls"+(s+1)"+(s+2)ﬂ+ J
Prove that if n > 1,
1 ot 1,1 1
) = wp) a1 = mrtwtwt

The function {(n) is called the Riemann zeta function.

If f(s) = £ {F(t)}, show that

[ tFw _  f(ns)
'Clj; ]‘(u+1)du ~ slns

If L,(t), n=0,1,2,..., are the Laguerre polynomials [see Problem 162], prove that

& Lin(t)

"=0- ”;'— pa=t eJo(Z\/Z)
Let J(a,t) = f e ¥ cosau du. (a) Show that g—i— = —;;J where J(0,t) = Vx/2Vt. (b) By

0
solving the differential equation in (a) show that
J@,t) = f e~ eogau du = ﬁe“’”‘“
0 AV
cos V't
Use Problem 183 to find £ {——\/—_—} [see Problem 49, Page 29].
t

*e= V2t ginh ¢ sin ¢t
t

dt

0’y

Prove that f
0



Chapter 2

DEFINITION OF INVERSE LAPLACE TRANSFORM

If the Laplace transform of a function F(t) is f(s), i.e. if £ {F(t)} = f(s), then F(t) is
called an inverse Laplace transform of f(s) and we write symbolically F(t) = £~ {f(s)}
where £~ is called the inverse Laplace transformation operator. ’

Example. Since .2 {e— 3t} = ;% we can write
1
-1 P— -8t
L {s+3} ¢

UNIQUENESS OF INVERSE LAPLACE TRANSFORMS.
LERCH’S THEOREM

‘Since the Laplace transform of a null function N(t) is zero [see Chapter 1, Page 9],
it is clear that if £ {F(t)} = f(s) then also L {F(t)+ N(t)} = f(s). From this it follows
that we can have two different functions with the same Laplace transform.

' 0 t=1
e—3t  otherwise

Example. The two different functions F,(f) = e=3¢ and Fy(t) = { have the

same Laplace transform, i.e. 1/(s + 3).

If we allow null functions, we see that the inverse Laplace transform is not unique.
It is unique, however, if we disallow null functions [which do not in general arise in cases
of physical interest]. This result is indicated in

Theorem 2-1. Lerch’s theorem. If we restrict ourselves to functions F(t) which are
sectionally continuous in every finite interval 0=¢{=N and of exponential order for
t> N, then the inverse Laplace transform of f(s), i.e. £~ {f(s)} = F(t), is unique. We shall
always assume such uniqueness unless otherwise stated.

#

SOME INVERSE LAPLACE TRANSFORMS

The following results follow at once from corresponding entries on Page 1.

42
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Table of Inverse Laplace Transforms

f(s) L71{f(s)} = F(t)
1. 1 1
s
1
2. oy t
1 t"
3. Py n =012, ot
4, 1 eat
s—a
5 1 sin at
) §2+ a2 a
6. 82—% ! cos at
7 1 sinh at
: s2 — g2 a
s
8. Py cosh at

SOME IMPORTANT PROPERTIES OF INVERSE LAPLACE TRANSFORMS

In the following list we have indicated various important properties of inverse Laplace
transforms. Note the analogy of Properties 1-8 with the corresponding properties on

Pages 3-5.

1. Linearity property.

Theorem 2-2. 1If c¢; and c: are any constants while fi(s) and f.(s) are the Laplace
transforms of F'i(t) and F:(t) respectively, then

L7Hef1(s) + e2fe(s)) = e LTH{fi(8)) + 2L T {f2(9)} (1
= caFi(t) + c2Fy(t)
The result is easily extended to more than two functions.

Example.

4 3s 5 1 8
-1 -~ - a1 _ -1J_ 8
< { 2 Frie s'2+4} 1L {s—2} 3L Ls2+1s}

= 462 — 3Jcosdt + gsin2t

Because of this property we can say that £ ! is a linear operator or that it has the
linearity property.
2. First translation or shifting property.
Theorem 2-3. If L '{f(s)} = F(t), then
L7Hf(s—a)} = e"F() (2)
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44

Example. Since 7! {T—ll-zf} = %sin 2t, we have

II_—_ = —~1 __—1.__ = 1 t qj
o {32~2s+5} < 1(3—])2+4} 5 ¢ sin2t

3. Second translation or shifting property.
Theorem 24. 1f .£~'{f(s)} = F(t), then

- Ft—a) t>a
1—1 e as 8 — 3
£ fem" £(s)) {0 e (3)
Example. Since ’(' -1 {sT—ll_lJ' = sint, we have
= {5—7’*‘/31 _ [sint—a/38) if t> /3
18241 lo if t<z/3
4. Change of scale property.
Theorem 2-5. If . '{f(s)} = F(t), then
1_./¢
-1 p— ol —
o) = 3F(z) *

. s I
14 ° L
Example. Since {32 16J cos 4t, we have

f 2s .1 _ ]; 4t _ 1
1(23)"+16} = ges5 = Ecos2t
as is verified directly.
5. Inverse Laplace transform of derivatives.
Theorem 2-6. If L~'{f(s)} = F({), then
LHE)) = L {dsn f( )} = (-1t F() ()
E le. Sine 1 [ L = sint and i( 1 S we hav
xample. Since ( 132"'1 = 81 Gs\2+1/) T =+ (] e
. _ I
L~ {—2—1—}, —tsint or L ‘{(8—2%1—)2} = -2-tsmt

6. Inverse Laplace transform of integrals.

Theorem 2-7. If L~'{f(s)} = F(t), then
- F
4. f(u)du} = 0 ®)

. - f 1 \( 1 1 1 -
b § = —_ t
Example. Since £ ls PEY f L~ s 54 1){ 1 — e7t, we have

"C—l{f:o(%_uil)du} = £“{ln<1+§>} - 1—te‘*

,_J\_
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7. Multiplication by s
Theorem 2-8. If L"'{f(s)} = F(t) and F(0) =0, then
L7 {sf(s)} = F'(® (7)
Thus multiplication by s has the effect of differentiating F(t).

If F(0)~ 0, then
L sf(s) — F(0)} = F'(¥) ®

or L sfE)y = F() + F(0)8(e) (9)

where 3(t) is the Dirac delta function or unit impulse function [see Page 9].
Exampl Sine r—1 —1—1 = sint and sin0 = 0, then
ple. e [ PO 1‘[ = 0, e
L1 {?—sﬁ} —= %(sin t) = cost

Generalizations to .£ '{s"f(s)}, » = 2,3, ..., are possible.

8. Division by s.

Theorem 2-9. If £ '{f(s)} = F(t), then
- tff } f F(w) du (20)
Thus division by s (or multiplication by 1/s) has the effect of integrating F(t) from
0 to t.

1
Example. Since ¢! {m} = %sin 2t, we have

—t 1 N G _ 1.
L PR = J, Esmzudu = 4(1 cos 2¢)

Generalizations to 7! {f(s)/s"}, n = 2,3, ..., are possible [see Problem 70].

9. The Convolution property.
Theorem 2-10. 1f L£~'{f(s)} = F(t) and £ '{g(s)} = G(f), then

L= {1(8) 9(s)) fFu)Gt—u)du = F*@ (11)

We call F*G the convolution or faltung of F and G, and the theorem is called the
convolution theorem or property.

From Problem 21, we see that F*G = G*F.

Example. Since £~ l{s } = et and 7! {s_lz} = e, we have

. 1 — "ot g2tt—w — o2t _ gt
1(_s—1)(_—2) = et ¢ du = ¢ e
“1)(s — A
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METHODS OF FINDING INVERSE LAPLACE TRANSFORMS

Various means are available for determining inverse Laplace transforms, as indicated
in the following list. Compare with Page 6.

1. Partial fractions method. Any rational function P(s)/Q(s) where P(s) and Q(s) are
polynomials, with the degree of P(s) less than that of Q(s), can be written as the sum of

. . ey _ . . A As+B
rational functions [called partial fractions| having the form @+ (e +bs¥oy
where r = 1,2,3,.... By finding the inverse Laplace transform of each of the

partial fractions, we can find £~'{P(s)/Q(s)}.

28— 5 _ 4 B c D
Example 1. ooy ~ %4 T @r1p T @412 T 2 +1

352 — 45 + 2 _ _As+B _CstD | E
Example 2. o g ARG =5 © @+ +AF T Ei %4 T 55

The constants A, B,C, etc., can be found by clearing of fractions and equating of
like powers of s on both sides of the resulting equation or by using special methods
[see Problems 24-28]. A method related to this uses the Heaviside expansion formula
[see below].

2. Series methods. If f(s) has a series expansion in inverse powers of s given by

a a: a;
fisy = 242, B

s ¢ s Pe (22)

then under suilable conditions we can invert term by term to obtain

o2 aat?
F(t)y = a0+ ait +28 L %8

st Tt (29)

See Problem 40. Series expansions other than those of the form (12) can sometimes
be used. See Problem 41.

3. Method of differential equations. See Problem 41.

4. Differentiation with respect to a parameter. See Problems 13 and 38.
5. Miscellaneous methods using the above theorems.

6. Use of Tables (see Appendix B).

7. The Complex Inversion formula. This formula, which supplies a powerful direct
method for finding inverse Laplace transforms, uses complex variable theory and is
considered in Chapter 6.

THE HEAVISIDE EXPANSION FORMULA

Let P(s) and Q(s) be polynomials where P(s) has degree less than that of Q(s). Suppose
that Q(s) has n distinct zeros o,, £=1,2,8,...,7. Then

PO & P
< 1{m} = 2 (24)

7
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This is often called Heaviside’'s expansion theorem or formula. See Problems 29-31.
The formula can be extended to other cases [see Problems 105 and 111].

THE BETA FUNCTION
If m>0, n>0, we define the beta function as

B(m,n) = J; w1 (1—-wu)*"tdu (15)

We can show the following properties [see Problems 32 and 33]:

_ I(m)T(n)
1. B(m,n) = m
2. j;" sin®~1g cos-19df = %B(m,n) = ‘;—i‘%

EVALUATION OF INTEGRALS

The Laplace transformation is often useful in evaluating definite integrals. See, for
example, Problems 35-37.

Solved Problems

INVERSE LAPLACE TRANSFORMS

1. Prove that (a) £ 1{8_1_a} = e, (b)aC"{S,.lﬂ}:t—:, n=01,23,..., where0!=1,
1 sinat s _ 1 sinh at
© °C—l{sz+a,2} =~ @ “C{m} = cosat, (e) L ‘{sz—az} = T

(f) £ {gz_si—az} = cosh at.

@ €6t} = L. Then 4"{31.,} -~

in 1 1 1 1 _ 1 _ n _

(b) ‘c {;—!} = m“c {t”} = 'ﬂ_! <sﬂn+l> = 3ﬂ+l° Then ‘c ! {sn+l} - ,n_! for n = 0) 192, 3’ ce e e
. .

(©) £{s11;at} — %.c{sinat} = 1, _a _ 1 . Then -C_l{ 1 } _ Sina )

8 _ 8 -
(d) £{cosat} = 21 Then £ l{m} = cos af.
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inh at 1 . 1 a 1 - 1 __ sichat
@ ({smaa} = E,C{smhat} T e #—a T g2—a Then £ 1{82—11”} - a
(f) £{coshat} = Eﬁ_jﬁ' Then £~ {sgja2} = cosh at.
1 tr
-1t _ v _
2. Prove that . {snﬂ} T+ 1) for n > —1.
n ) _ 1 . " _ 1 L+ 1 .
'C{l‘(n+l)} T rn+1) c{ty = I"n+1) sntl1 T gntl? n>-1

by Problem 31, Page 22.

1 _ in
st T re+1)?
and the result is equivalent to that of Problem 1(b).

Then 4'1{ n>—1. Note that if 2 =0,1,2,3,..., then I'(n+1) = n!

b4

3. Find each of the following inverse Laplace transforms.

_ 1 1 _ s
(@) £ ‘{m} () L 11;{} (e) L l{m} 1
\ L1
G e S G P N W AR Pt
v s —2] : 242 s£—3
(@) £t {82:—9} = sir;3t [Problem 1(c)]
(&) ,c-l{sf 2} = 4o [Problem 1(a)]
) <7* {814} = E:- = %3‘ [Problems 1(b) or 2]
(@ ! *{8212} = cos V21 [Problem 1(d)]
(o) rl{szﬁsm} = 6 cosh4t [Problem 1(f)]
" £ {82i3} = Si"*\‘/‘sﬁt [Problem 1(¢)]
_ 1 _ /2 _ t1/2 N 241/2 _ t
(@ <! m} TIER D v 2y - [Problem 2]

LINEARITY, TRANSLATION AND CHANGE OF SCALE PROPERTIES

4. Prove the linearity property for the inverse Laplace transformation [Theorem 2-2,
Page 43].

By Problem 5, Page 12, we have
L{e Fi(t) + coFo(t)} = o L{F (1)} + ex L{F2()} = oc(fi(s) + ¢3fs(s)
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Then L7He f1(8) + eafa(@) = ¢ Fi(t) + e Fy(t)
= L7H1(®))} + e L1 {f3(8)}

The result is easily generalized [see Problem 52].

Find (@) £_1{5s+4 _ 25—18 24—30\/5}

s? s$2+9 + st

_ 6 3+4s 8 —6s
1 —
(b) <L {23—3 9s*— 16 1632+9} :

_ SEs+t4  25—18  24—30vs
(a) £ 1 3 219 + —

5, 4 25 18 24 30
= -1 e — — —_— P R i
£ {s2 + g8 8249 tere T g4 87/2}

= Bt + 4(t2/2!) — 2cos3t + 18(} sin3t) + 24(t3/31) — 30{t52/T(7/2)}

= Bt + 262 — 2cos3t + 6sin3t + 43 — 16t5/2/\Vr
since I(7/2) = §+:4-40(}) = lgz\/;

. 6  3+4s 8—6s
® L\ 5—3 ~ 916 | 6779

el 8 1 1 N_4/ s N, 1 __1F>_§<_s_1
= L s—sz Ta\#¥F-16/8) " 9\s2—16/9) " 2\F¥0/16) ~ 8\ +9/16/]

= 3e3t/2 — 1 sinh4t/3 — $§ cosh4t/3 + §sin3t/4 — § cos3t/4

Prove the first translation or shifting property: If £ '{f(s)} = F(t), then

L7 {f(s—a)} = e*F(t)
By Problem 7, Page 13, we have £ {2 F(£)} = f(s—a). Then
L7H{f(s—a)} = e*F(t)

Another method. Since f(s) = f e~ st F'(t) dt, we have
0
feg—a) = fw e~ (s—OtRE(t) dt = Im e~st{et F(t)}dt = £ {etF(t)}
0 o
Then L7 H{f(e—a)} = exF(t)

Find each of the following:

- 6s—~4 _ 3s+7
@ L {m} (c) £ {m}
o f 4s+12 S
®) € 1{82+88+1_6} @ < 1{\/2s+3f
] e6s—4 o 6s—4 o fes—2)+8
(@) < 1{8‘2—48+26} = < (s—2)2+16jL = < 1{(‘~;$~2)2+16}

— L) _s—-2 ] - 4
= 6« 11(3—2)2+16j t 2L 1{(8—2)2'+ 16}

= 6e2cosdt + 2e2%gindt = 2% (3 cosdt + sin4t)
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8.

THE INVERSE LAPLACE TRANSFORM
_ 4s + 12 _ _, J4s+12 _ _,j4(s+4)— 4
®) < l{s2+83+16} = < 1{(s+4)2} = 4 1{ (s+4)'2—}
— [ 1 _ - 1
= 4L gl T4 ‘{m}
= de ¥ — 4gte 4 = e 4(1—1t)
o f ss+7 1 [ 3s+7 _ oy [3e—1) +10
() \e-z-3] = -4 ~ ‘C'{W}
- 3‘(—1 IL + 5‘(—-1 2
e-12—4 e~17—4
= 3etcosh2t + bHetsinh2t = (3 cosh2t + 5 sinh2¢t)
= 4et — et
For another method, see Problem 24.
1 1 1
d "1[ l = - p—-14_ _*
@ * V25 +3] \/§°C {(s+ 3/2)“2}
1 i—1/2 1
= ——e—3t/2 = ——_ $—1/2 g—8t/2
\/ge r(1/2) Ve tm % e
Prove the second translation or shifting property:
If £7'{f(s)} = F(t), then £~ '{e *f(s)} = G(I) where
Fit—a) t>a
Gt =
®) {0 t<a
Method 1. By Problem 9, Page 14, we have £ {G(t)} = e—2f(s). Then
L£71{e"asf(s)} = G()

Method 2. Since f(s) = f e~ st F(t) dt, we have
0

e~ f(s) = f e Be StF(t)dt = f e—st+ta) F(¢) dt
0 0

f e~ F(u— a) du [letting t+a = u]

a

a oc
- f e—st(0) dt + fe—stF(t—a)dz
o L2

a
= f e=st G(t) dt
[}

from which the required result follows.

[CHAP. 2

It should be noted that we can write G(t) in terms of the Heaviside unit step function as

F(t — a) U(t — a).
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9. Find each of the following:

- e—Ss -1 se—41rs/5 1 (s+1)e—f-'s - 4-—3s
(@) L {m}, (b L {m}: () L {m}» (@) L {e*___}

(s +4)%2
(@) Since .71 1 L= e2t p—1 1l - Lkl = 1 t3 e2t, we have by Problem 8
(s—2) gl 3! 6 ’ ’
= e—5s - _‘1; (t — )3 e2(t—5) t>5
s—2)* 0 t<b
=} (t—5)3 2= U(t — )
(b) Since -1 {8752—5} = cos bt
o1 se”4"5/5} — cos B(t — 4x/5) t > 4z/5
82425 0 t < 4x/5

cos bt t > 47/b
0 t < 4x/5

= cos bt U(t — 47/5)

(¢) We have
~14_8+1 = -1 —2t1
< ‘{m} - < l{(s+7})2+g}
= ot s+4+1
TEFCEE!
= o] _HE 1 e _ﬂ_}
£ {(s+-;-)2+-2} AV Grpree
= e %t cos \/2§t + %e'm m@
= e:/;t<\/§cos@ + sin@)
Thus

-1 (8+1)e—=
< {s2+s+1}

g—%{ﬁcos?(t—w) + sin\/Tg(t—w)} t>nw

0 t<r

e~ Bt—m

= T{ﬁcos?(t—ﬂ) + Sin\/Tg(t—ﬂ)} Ut — )

(d) Wehave .01 {W} - e_“‘c_l{'sslw}

13/2 443/2 g—4t

(5/2) — 37

e
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B et—3s _ _ f e—3s
1) 7% |~ ) €77
Thus £ {(s+4)5/2} e L l(8+4)5/2}
_ —4¢t—3)
det (t — 8)3/2 g—4(t—3 t>3
0 t<3
— —4(t—4)
4 (¢ — 3)3/2 g—4tt £>3
= 3Vr
0 t<3

4(t—3)3/2 o—4t—4)

Ut—3
e (t—3)

10. Prove the change of scale property. If L£~'{f(s)} = F(t), then
L fks)y = TF(R)

Method 1. By Problem 11, Page 14, we have on replacing a by 1/k, £ {F(t/k)} = kjf(ks). Then

Lo {fke)y = EF(/R)

Method 2. Since f(s) = f e~ st F(t) dt, we have
0

flks) = fox e~ kst F(t) dt = J‘;w e—su F(u/k) d(u/k) [letting = = kt]
® 1
= % J(; e~SuF(u/k)du = < {F(t/k)}

Then .01 {f(ks)} = %F(t/k).

_ [es cos 2/t _ fe—ws
1. If 1{31’2} = o , find £ 1{31’2 } where a > 0.
By Problem 10, replacing s by ks, we have
o Ie—”’“} _ leos2Vit/k _ 1 cos2Vi/k
| (es)72 k a(tit) VE  Vat
o=t e~ ks — cos2Vi/k
T e

or

szen letting k = 1/a,

o1 {e"’/“} _ cos 2Vat
81/2 - f—
. it

INVERSE LAPLACE TRANSFORMS OF DERIVATIVES AND INTEGRALS
12. Prove Theorem 2-6, Page 44: L' {f™(s)} = (-1)*"t"F(t), n=1,2,8,....

dn

Since L{t"F(@#)} = (D" 42

f(8) = (—1)nfn)3) [see Problem 19, Page 17], we have

LMY = (DR F()
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13. Find - {—3_} .

(8% + a?)?
d 1 | -2 8 1d/ 1
We have T8 {————sg_l_agf = EFa Thus [CET —§-¢E<—-——s2+a2> .
1 si ;
Then since £~ { Tt = ‘m;at , we have by Problem 12,
’

- L d 1
< ‘{m} ~3 4 { <s2+az>}

- l,/sinat) _  tsinat
2 a - 2a

Another method. Differentiating with respect to the parameter e, we find,

a 8 _ —2as
da \ s+ a2 T (@2 +a2)2
fd 8 - —2as
11da<s2+a2> N EF R
4] .- 8 _ - 8
da{4 ’<m5)} = T l{(s”-—az)z}

-1)__ 8 = _14 S S - t gin at
£ {(sz+a2)2} 2a da (cos af) 2a( t sin at) %a

Hence

1l

or

ie.

14. Find .,C"{ln <1 +s—12)}

Let f(s) = In <1+:—2> = L{FO). Then f) = yoog = 1-" s2+1}
Thus since £-1{/(s)} = —2(1 —cost) = —tF(f), F( = 2L—cost)

t

MULTIPLICATION AND DIVISION BY POWERS OF s

15. Prove Theorem 2-9: .,c“{f—(s—)} = f F(u) du.
8 0

i
Let G(t) = f F(u)du. Then G'(t) = F(t), G(0) = 0. Thus
o -
LG} = sL{GE)} — GO) = sc{Gt)} = f(s)

t
and so L{G@H)} = f(s) or ,C*l{-f—-(fl} = G{t) = f F(u) du
)

Compare Problem 17, Page 16.
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16. Prove that .- {f(s)} - j; t fo " P(w) du do.

t v t
Let G(%) =£ J; F(u) dudv. Then G'(t) '—'J; F(u)du and G''(t) = F(f). Since G(0) =G'(0) =

£{G"t)y = #L{G®} — sG(0) — G'(0) = #L{GH} = f(3)

t v
Thus L{G@E)} = ﬁ‘ﬂ or £ {f‘s)} = Gt) = f f F{u) du dv
0 0

t t
The result can be written .£—1 {f-(_gl} = j f F(t) de2.
8 0o

Sfml - (.. ( ,
In general, £ {s"} fo J; J; F(t)dt

17. Evaluate ™! {——-1—} .
s%(s2+1)

. 1 .
Since £7! {?ﬂ} = sint, we have by repeated application of Problem 15,

t
-1 1 == f i = —_—
L {s(s2+ ) \ sin u du 1 cos ¢

t

{82(82+ 1 } = 'fo (l—cosw)ydu = t — sint
t . o

{83(82 ¥ 1)} = f (u —sinu)du = 5 + eost — 1

Check: EZ:+ t—1 = l+ s 1 _ g2+1+s—s2s2+1) _ 1
P Lyg teos T s 2+1 8 B2+ 1) = 8@+ D

Do

-t sgint, find ,C"{ 1 }

. _ s
18. Given that L ‘{ } @+ 1)

(s2+1)?

Method 1. By Theorem 2-9 [Problem 15}, we have
-1 f 1 _ 41 s _ t )
£L 1(32 F1)2 = L e —(s2+ 02 = \ -;-u sin u du
¢
Fu)(—cosu) — ($)(—sinu)
0

= J(sint — tcost)
Method 2. By Theorem 2-8, we have
ol s U i fe+1-1] _ [ 1 o 1\
< {8 (82+1)2} L {(824_1)2[ L 2Z+1 <L >+ 12|

dilt‘{%t sint} = J(tcost + sini)

Then «C"{m} = “4*1{?2%} — 4(tcost + sint) = L(sint — teost)
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1 1

. -1 1
19. Find {s ln<1 + 32>}'
Using Problem 14, we find

‘ t »t
4—1{1 1n<1 + _15>} _ f 21 —cosw) 5 _ 2J 1 —cosu g
8 8 0 u 0 u

THE CONVOLUTION THEOREM
20. Prove the convolution theorem: If £-1{f(s)} = F(t) and £7'{g(s)} = G(f), then

. . |
Y@ = | FaGt-wdu = F*G
0
Method 1. The required resuit follows if we can prove that

.c{ fo t Fu) G(t —u) du} = f@)gls) )]

where f(g) = £ {F(t)}, g(8) = £{G(t)}. To show this we note that the left side of (1) is
f e~ st {f F(u) G(t — u) du} dt
t=0 u=0 )
w t )
= f f e st F(u) G(t — u) dudt = lim sy
t=0%*u=90 M=o
M t )
where sy = f f e St F(u) G(t — u) du dt @
t=0"% u=0

The region in the tu plane over which the integration (2) is performed is shown shaded in Fig. 2-1. _

u u

Fig. 2-1 - ' Fig. 2-2

Letting t—u = » or .t = u+w», the shaded region ﬂ(tu of the tu plane is transformed into the
shaded region ®,, of the wv plane shown in Fig. 2-2. Then by a theorem on transformation of multiple
integrals, we have -

8y = ff e~tFu) Gt —u) du dt = ff e~su+v) F(u) G(v) M' du dv @
» ] C a(u, v) -
Reu ) : CRuv
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where the Jacobian of the. transformation is

ou ou
3 o . 1 LI
J = o(u, t) - du  ov| = C =t
M, v) - g at 1
u v
Thus the right side of (3) is
M M—v . » .
ey = f f e—stu+v) F(u) G(v) du dv %)
v=0 u=0_ )
Let us define a new function
—s(u+v) . s =
Ku,v) = e st Plu)Glv) if utv =M )
0 if u+tv> M

This function is defined over the square of Fig. 2-3 but,:
as indicated in (5), is zero over the unshaded portion of
the square. In terms of this new function we can write

%) as
M M
sy = f f K(u,v) du dv
v=0 Y u=0 .
Then
lim 8 = f f K(u,v) du dv
M- o Yo

= f f e~ sutv) F(u) G(v) du dv
0o Yo

= {J: e~ st F(u) du} {J;w e~ G(v) dv}

= f(8) g(s)

which establishes the theorem.

. t .
We call f F(u) Gt—u)du = F*G the convolution integral or, briefly, convolution of F
and G. o

For a direct method of establishing the convolution theorem, see Problem 85.

21 Prove that F*G = G*F.

Letting t—u = v or u = t—wv, we have

F*G

t t -
f F(u) G(t — u) du f F{t - v) G(v) dv
) 0

“

t
j G)Ft—v)dv = G*F

This shows that the convolution of F and G obeys the commutative law of algebra. It also obeys
the associative law and distributive law [see Problems 80 and 81]. : -

.....
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22. Evaluate each of the following by use of the convolution theorem.
- s o) 1
a | . S b .
@ < {gam s © <)
. 8 8 1 . i
(a) We can write ETaE © £t Fta Then since £ 1{;2—_}_?] = cosat and
L1 132 _}1_ az} = sn:xat, we have by the convolution theorem,
t .
Y f .sina(t—w)
L {(82 - a2)2} \ cos au " du
1
= 3 j; (cos au)(sin at cos au — cos at sin au) du
(
1 . 1 ‘
= =gin atJ cos2audu — - cos atf sin au cos au du
a 0 a 0
t t
= lsinatf <———1 + cos2au> du — lcos atf sin 2au 4,
a 0 2 a [}] 2
= e £, sinZat) _ 1 o5 qt 1 —cos2at
a 2 4a a 4a
= Yanat t sinatcosat) _ 1 o5 qt [ Sinat
a 2 2a a 2a
_ tsinat
2a
Compare Problem 13, Page 53.
(b) We have .C"l{—:g} =t L1 {(s_-}-l-ﬁ} = te~t. Then by the convolution theorem,
. 1 t
-1 — —u —
L {82(s+1)2} j; (ue—4)(t — u) du
ot
= J (ut —u2) e~ du
0
t
= (ut—u)(—e2) — (t—2u)(e™¥) + (—2)(—e™¥
0
= te=t + 2t + ¢t — 2
1 2 1 2
. —t -t - - __* & LA
Check: L{tet+ 2¢e~t + t — 2} (s+1)2+ st 1 + pe p
82+ 28%(s+1) + (s +1)2 —2s(s+1)2  _ 1
82(s +1)2 82(s + 1)2

23. Show that

S

t fv Fu)dudv = ft (t —w) F(u) du.

By the convolution theorem, if f(s) = .¢ {F(t)}, we have
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,c{ (t—u) Fu) du]r = L L{FE)} = f—:f—)
0 J

Then by Problem 16,

t t v
_ - -1 f(8) _
fo t—wFwde = < 1{_82_} - fo fo Fu) du do

The result ean be written
1 At t
f f F(t) dz = f (t —u) F(u) du
o Jo 0

In general, we can prove that {see Problems 83 and 84j,

b { ot t
n = (t—wn1
fofo Jo Fode = | S p) au

PARTIAL FRACTIONS

. _ 3s+17
24, F SR LI

ind £ {32—23—3J

3s+7 3s+17 _ A B
Method 1. %3 - GoOGFD ~ 58 ' a4l @

Multiplying by (s —3)(s + 1), we obtain
33+ 7 = A(s+1) + B(s—8) = (A+B)s + A — 8B

Equating coefficients, A+B =3 and A—-3B =17; then A =4, B = —

3s+ 7 - 4 1
(s—3s+1) =~ s-—38 s+1
and L~ { s 47 = - L7 o
(s—3)(s+1)j 3] s41
= 48 — et

Method 2. Multiply both sides of (1) by s —3 and let s >3. Then

. 3s+7 . B(s—3)
im=77 = 4+ lm=r7

Similarly multiplying both sides of (1) by 8-+ 1 and letting s » —1, we have

lim 3s+7 — tim A(s+1)
s+—1 8§—3 s=—1 8§— 3

+ B or B=-1

Using these values we obtain the result in Method 1. See also Problem 7{c), Page 50.

. 1 252 —4
B Find e

We have

252 — 4 A B C

GFDG=2(=3 _ s+1 s-2 T 5-3 (0
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Let us use the procedure of Method 2, Problem 24.

Multiply both sides of () by s+ 1 and let s » —1; then

. 282 — 4 1
= 1 _e° - = _——
A B @—2)(s—3) 6

Multiply both sides of () by 8 —2 and let s » 2; then

. 282 — 4 4
B = —_— =
lim ST D=9 3

Multiply both sides of (Z) by s —3 and let s > 3; then

- 1 252 — 4 _ 1
¢ = Ime e T~ 2
Thus
o esr—4 S VB /- S /A
< 1(s+1)(s—2)(s—3)} < {s+1+s—2 s—3]
1 4 7
- ——e—t — -2t — g3t
= 6e‘ 3¢ + 5 €

The procedure of Method 1, Problem 24, can also be used. However, it will be noted that the
present method is less tedious. It can be used whenever the denominator has distinct linear factors.

2. Find 4—1{532"153_‘111,,
(s+1)(s—2)3)
582 — 158 — 11  __ A B C D
Fe=32 ~ st1 T -2 T =22 T 53 @

A procedure analogous to that of Problem 25 can be used to find A and B.

Multiply both sides of () by s+ 1 and let s > —1; then

A —_ lim bs2 — 1bs — 11 — __1

s (s —2)3

w

Multiply both sides of (Z) by (s —2)3 and let s ~ 2; then

. Bs? — 158 — 11
B = limb®—1s—-11 _ _
i s+ 1 7

The method fails to determine C and D. However, since we know A and B, we have from (7),

bs2 —16s—11 _ —1/3 -7 C D
G DE—2¢ ~ a+1 T Go2p T G-2¢ T s-2 @
To determine C and I we can substitute two values for s, say s=0 and s=1, from which we find
respectively,
11 1 7 C D 21 1
T = 3tgtz-3 7 = "gt7+C-D

ie. 3C—6D =10 and 3C—3D = 11, from which C =4, D =1/3. Thus

 fe2—18s—11) _ _ [-1/3 -7 4 1/3
CNeFe-mp) - T\FFI T et T2

1 7 1
= _re—t — .22 2¢ = o2t
3¢ 2te + 4te +3e
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Another method. On multiplying both sides of (2) by s and letting s~ », we find 0 = —41+D which
gives D= 4. Then C can be found as above by letting s = 0.

This method can be used when we have some repeated linear factors.

3s+1

27. Find .0~ {____ .
(s~1)(s2+1)]
3s +1 - A Bs+C
E—DEE+D 0 8- 1 2+ 1 (1
Multiply both sides by s —1 and let s~ 1; then A = li“i% = 2 and
¢ 1§

35+ 1 2 Bs+C

s-—DEE+1)  s—1 7 s+1 @)

To determine B and C, let s =0 and 2 (for example). then

_ 7 _ 2B+ C
-1 = -2+ C, E"2+_5_
from which C =1 and B = —2. Thus we have
L1 _8s+1 1 = - 2 + —_28+_1]f
(s—l)(32+1)J s—1 2 +1 |
1) (s ) [ ]
= o I - G I 1{— "
2L {s IJ 2L 1324-1J T < [ 8% 1}(

= 2e — 2cost + sint

Another method. Multiplying both sides of (2) by s and letting s > =, we find at once that B = -2,

28. Find £-'{ 1243 }
(s2+2s +2)(s2+2s +5))
Method 1.
_ . #+2+3 = _ _AstB _Cet+D (1)
(s2 + 28 + 2)(s2 + 2s + b) s2+25+2 82+2s+5

Multiplying by (s2 + 2s + 2)(s2 + 2s + 5),

82 4+ 25 4+ 3 (As+ B)(s2+ 25+ 5) + (Cs+ D)(s?+ 25 + 2)

(A+C3 + 2A+B+2C+D)s2 + (5A+2B+2C+2D)s + 5B + 2D

Then A+C =0, 24+B+2C+D =1, bA+2B+2C+2D = 2, 5B+2D = 3. Solving, A =0,
B=4 C=0 D=3%. Thus

(-1I s2+2s+3 = -1 _B3 4+ - 2/3 _\
](82+2s+2)(s2+2s+5) s2+2s12 " s2+2815

———

_ _ 1 ] 1 1
= 4L ‘{(341)“1} + 3L 11(sT1)2+4}
= }etsint + %‘%e“sinZt

= e~ '(sint + sin 2¢)
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—o ) S - B_D
Method 2. Let 8 =0 in (1): 0 = ot 3
Multiply (I) by sandlet s> 0 = A + C
_ .. 3 _ A+B C+D
Let s =1: 0 = 5_ 5
1 D—-C
Let s=—1: 3 = —A+B+—__4.—.-

Solving, 4 =0, B=4, C=0, D= 4 as in Method 1.

This illustrates the case of non-repeated quadratic factors.

Method 3. Since s2+28+2 = 0 for s = —1*1¢, we can write

§2 4+ 28 + 2 = (s+1—i)s+1+1)
Similarly 82 + 28 + 5 = (s+1—2])(s+1+29)
Then
824+ 28+ 3 - s24+ 28+ 3
(82 + 28 + 2)(s2 + 25 + 5) (8+1—9+1+id(s+1—2)s+1+20)
_ A B c D
= sFi-i T s+iTi Teri-a T sF¥iTa
Solving for A,B,C,D, we find A = 1/6i, B = -1/6i, C = 1/6i, D = —1/6i. Thus the required
inverse Laplace transform is
e—(1-Dt e—(1+i)t e—(1—-2D¢ e—(1#20t N e ut> . <e2it — e—2it>
T e T e T e - 3 < +ode” 2

je~tsint + Je~tsin2t
= le~t(sint + sin 21)

This shows that the case of non-repeated guadratic factors can be reduced to non-repeated linear
factors using complex numbers.

HEAVISIDE’S EXPANSION FORMULA
29. Prove Heaviside’s expansion formula (14), Page 46.

Since Q(8) is a polynomial with » distinct zeros ay,ay ...,a, Wwe can write according to the
method of partial fractions,

P _ A A A A
Q(s) - 8§~ ay §—ay + + S—ak + + 8—an (1)

Multiplying both sides by s — &, and letting s — &, we find using L’Hospital’s rule,

_ . P(s) _ -
A = Jm o@ @@ = lim P‘“’lms)}
; im (2%} m <L = Pl
= Jm P lm, (Q(s)> = P UL 0w T Qe

Thus (1) can be written

Po _ Pa) 1 . Pe 1 Pa) 1
W - Qayi—a T T @it T Y O ia,
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62 .
Then taking the inverse Laplace transform, we have as required
- [P(s)l — P(al) oyt P(ak) Qe .o _l:(a_")_ (%1 — % P(ak) Ot
£ IQ(S)J T Q) ot - Q'(ay) et + Q' () ¢ - k§l Q’(ak)e *
25> —4

30, Find - {(s =555/

We have P(s) = 2s2—4, Q(8) = (8+1)(s—2}8—38) == g3 — 482+ s+ 6,
Then the required inverse is by Problem 29,

Q'(s) = 83s2—8s+1,

a1=——1, a2:2, a3:3.
P P@) 2t P@) o - =2, 4 4 _— 1 ¢ 4o 7 at
o tee o™ T mett 3t e = et T gt e

Compare with Problem 25.

3s+1
(s—1)(s2+ 1)} ’

We have P(s) = 3s+1,
ag =1, ag=—1 since 82+ 1 = (s—1)(s+ 7).

31 Find - {

Q) = (s—1)(s2+1) = s¥—82+s—1, Q'(s) = 382—28+1, o;=1,
Then by the Heaviside expansion formula the required

inverse is
@. t ﬁ(l) it P('_il -it
en® T @B T e (2)
4 ; . —3i )

= 2 + (—1—J2-i)(cost + igint) + (—1+ Li)(cost — isini)
= 2¢* — cost + Lsint — cost + }sint
= 2 — 2cost + sint

Compare with Problem 27.
Note that some labor can be saved by observing that the last two terms in (Z) are complex

conjugates of each other.

THE BETA FUNCTION

1
32. Prove that B(m,n) = f gnt(l—gptde = LTI Ghere m>0,0>0.
0 T(m +n)
Consider .
Gty = m-1(t—zjn 14
(t) j; x (t —2x) 2
Then by the convolution theorem, we have
L{Gt)}y = £{tm~1} o{tn1}
= IMm) rm) _ rem)I(w)
gm gn gm+n
— e [Tem T M) T®) psne
Thus G(t) L { P J, o ) gm+n—1
t
- on— _ L(m)r('n) m 40~
or J; am-l(t—zgym—ldy = I‘(_m+n)t +n-1

Letting t = 1, we obtain the required result.
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w/2
o _ 1 I'(m) T(n)
2m—1 2n—1 = =R .
33. Prove that j; sin 6 cos*™ 19 do 5 (m, n) ST(m + n)
From Problem 32, we have
1
= m~1(1 — pym—1 — I(m)r(n)
B(m,n) J; x 1—2) dx Tn + m)
Letting « = sin24, this becomes
/2
= inom~1g cogtn1 - Imr(w
B(m, n) 2J; sin 0 cos 9 de Tm + )

from which the required result follows.

dag
Vtang’

(@) Let 2m—1 =4, 20 —1 = 6 in Problem 33. Then m =5/2, n =7/2, and we have

w/2
) _ TG/RT(T/2)  _ (3/2)1/2)Vx - (5/2)3/2)(1/2WF _ 37
J:) sint ¢ cosb ¢ de = —21‘(6)— - 2e5+4+8+2+1 512

n/2 T w/2
34. Evaluate (a) f sint 0 cos® 9 do, (D) f costd do, (c) f
0 0 0

(b) Since cos 4 is symmetric about ¢ = /2, we have

T T/2
f costods = 2f cost g de
0 0

Then letting 2m—1 =0 and 2n—1 = 4, i.e. m=1/2 and » =5/2 in Problem 33, we find

/2
2 j; costodo = 2[r(1/22)r I/
= 2[\/? . (3/2)(1/2)\/;] _ 3
2+2-1 8
T2 de /2
(c) J:) \/taTo = J; sin—1/2 9 cogt/2 ¢ de

Letting 2m —1 = —1/2 and 2rn—1 = 1/2, or m=1/4 and n =8/4 in Problem 33, we find

m2_ds  _ Tr/4Hr/4) _ 1«7 _ 2
o Vtang 21(1) 2 sin (/4) 2

using the result L(p)I'(l—p) = #/(sinpr), 0<p<1.

EVALUATION OF INTEGRALS
t
35. Evaluate f Jo(u) Jo(t —u) du.
’ t
Let G(t) = f Jo(u) Jo(t —u) du. Then by the convolution theorem,
0

1
eem = e et = (7==)(7z53) = wri

1
Hence G(t) = (“l{m} = sint

¢
and so Gty = f Jow) Jo(t —u)du = sint
0

63
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36. Show that f cosx2dx = 3/«/2.
[t

Let G(t) = f cos tx2 dx. Then taking the Laplace transform, we find
0

L{GH)} = f e—st dt f cos tx2 dx
0 0
= I dx f e 5t cos tw2 di
0 4]
- (" = (" _s=
Letting 22 = stané or z = VaVtane, this integral becomes on using Problem 84(c),

1 ™ _ _ 1 /aV2\ _ /2
2‘/31; (tano) 172 dg = T\/’E(T) = 4—\/?

Inverting, we find
" 2 -1/2 2.
0 = flewa = o) - () - Fer

Letting ¢t =1 we have, as required,

fm 2 d. = Y2 _ 1
ocosacac- ] = 3Vz

MISCELLANEOUS PROBLEMS
37. Show that f e—*dx = 3/
[

Consider G(t) = f e—t*dx. Then taking Laplace transforms,
0

oo dx 1 X |® T
t = - .__.ta -1 N
LGN o 8+a2 g " Vs 0 2vs

Thus by inverting,

® 1
~ —tz2 = Z = = —1/2
G(t) = j; e—tx® dx RV 2\/7t
and the required result follows on letting ¢ = 1.

Another method.
Letting 22 =wu or x =Vu, the required integral becomes

%fmu‘l/%‘“du = 3TQ)
0

But by Problem 32 with m == = }, we have

b N U de
{I‘(%)}ﬁ = L x 1/2(1—x) 172 dx g J; ﬁ

1
1
== f —dx___ = gin—1 (1 — 2%)
0

Vi-G—epP

Thus T(}) = V= and so the required integral has the value 4V7. See also Problem 29, Page 22.

I
3

]
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38, Find .0~ {_1_} .

(s*+ a2

o a’“::eh;:g [see Problem 34, Page 23], £ {Jy(at)} = ﬁ. Then differentiating with respect
L cistaty = a‘%{\,&z—%—?} o o[ ua] = oot

ie. £{tJo(at)} m'_:m

Thus £t {(_sz-i-;az)”/—z} = - % J:, (at) = ! Jla(at)

since Jo(u) = —J, ().

. - 1 1
39. § S S
Find £ J{(.~:2+2s+5)3/2 J

The required inverse can be written as

ﬂc—l __;_ = et ﬂc—l ; = ——te_tJ (2t)
[(s + 1)z + 4]372 (82 + 4)372 2 !
using Problem 38.

. e—lls
40. Find ¢! { s }
Using infinite series, we find

le-—lls _ 1{1_14. 1 _..1__|_...}
8 8 8 !

1 1 1 1
- E_s_2+2's~?—3's4+'
Inverting term by term,
1 2 t3
21/ = — - .
.C{se 8} 1 t + @ne BIp +
= 1-¢t+ -2 B4+ ..

1222 ~ 122232

_ @R @ @

22 22 42 2242 62
= Jy(2V?)
41. Find £~ {e~V%).
Vs Ve o Vs
Let ¥y =e¢—Ve; then Y= —828—1,2, V' = ~, t g@z: Thus

43y’ + 2y —y = O )



THE INVERSE LAPLACE TRANSFORM (CHAP. 2

66

d
Now y" = .£ {t2Y} so that sy” = L {E[th]} = L{2Y'+2tY}. Also, ' = £ {~tY}. Thus

(Z) can be written
4.0{2Y’'+2ty} — 2.2{tY} — £{Y} = 0 or 42y’ + 6t—1)Y = 0
which can be written

6t — 3 1
+(4t2 >dt = 0 or lnY+—2-lnt+-‘E = ¢

- — c —
i.e. Yy = 775 € 174t

Now tY = -tme vét,  Thus

d d e= Vs
= —_—— = — 2 (e—Vs =
£{tY} 2 < {Y} 7 (e=Vs) o3
—Vs
c c e 1
For large t, tY ~ Tz and . {tY} ~ 1/; For small s, 2—‘/; ~ GairE
theorem, ¢Vz =1/2 or ¢ =1/2V=. It follows that

Hence by the final value

L 1{e~Vs} = 2\/};9/2 e—1/4t
Another method. Using infinite series, we have formally
L£-1{e-Ve} = 4—1{1_81/2+§!__%:3;_2 53!_ % }
= ) — eV + oo {E-,} — ot {8;2} + e @)

Using the results of Problem 170, Page 40 [see also Problem 383, Page 22] we have for p equal to

zero or any positive integer,

t—p—38/2
°c—l {8?+1/2} = m
_ (_\1/);+1 G)(_S_) (g) e <_2?éﬁ> §—p—3/2 @

while £-1{s?} = 0. Then from () using (2) we have

e - G- (05 OO -

= 1 ) < 1 > oz s 1
27 1372 22¢ 21 3! 2/ £3/2

-Vs
42. Find .c—l{e }
8

From Problems 41 and 15 we have

«©

' {e_ e fl - Vi d - td
- = —_— e Viu —_ eV letti — 2
< 8 0 {2\/; Wz’ } “ V7 Jievi v (etting w = 1/4v%)

erfc < -2—1\/—?>

il

i
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43. Find ,c-l{e"“‘_} .
S

In Problem 42 use the change of scale property (4), Page 44, with k = x2.

ot e— Vz2s
x23

from which

THE INVERSE LAPLACE TRANSFORM

Then

lz erfe (——1—-)
x 2V t/x2?

_yJem=Vsl =2
L = erfc(z\/;)

8

Note that this is entry 87 in the Table on Page 250.

we have

288+ 1052+ 88+ 40 2384 10s2 + 83+ 40

3 2
M. Find - {23 + 10s +83+40}.
s¥(s2+9)
. 1 _1/71 1
Since gy = §<§ s2+9>’
253 +10s2+8s+40 _ 1
82(s2+ 9) 9
= 1
9
- 1
-9
—y ) 283+ 1032+ 8s + 40
and so < 1{ s2(s2 + 9) }

= 9

82 82+9 }

+

8 , 40\ _ ~10s — 50
<2s+1o+s+82> <2s+10+—82+—9—>}
8
8

40 10s 50 }

2+9 ' 8249

l(8 + 40t + 10 cos 3t + 53—0sin3t>

= 2—17(24 + 120t + 30 cos 3t + 50 sin 3¢)

We can also use the method of partial fractions.

1

45. Prove that Jo(t) = %f

-1

We have [see Problem 34, Page 23],

L {Jo(D)}

Now 1

vst+1

e (1 — w?) 2 dw,

1
ve2+1
1 1

vs+1 s— 1

t—1/2 g—at

we have by the convolution theorem,

1 =
Vs+a}
1
- -1
Jo(t) L { 82+]}

Using the fact that .1 {

\/-; ’

= °C—l { 1 . 1 }
Vs+i Vs—1i
ft u—1/2¢—iu  (f —y)—1/2 git—u)
0

Vr Vr

du

t
= _]; f ei(t"'zu) u—1/2(t—u)—l/2 du
T Jo

67
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Letting # = tv this becomes

1
f €t(1-20) 9= 1/2 (1 — )~ 1/2 dy
b

i

Jo®) =
or if 1—2v = w,

1
Jo(t) = %fl eitw (1 — w2)—1/2 gy

46. Prove that Jo(t) = %f cos (t cos 6) dé.
0
Let w = cosé in the result of Problem 45. Then

T
f eitcos 8 dg =
0

Equating real and imaginary parts or by showing directly that the last integral is zero, we have
as required

Jo(t) =

9=
g =

™ . ™
f cos (¢t cos 6) do + * f sin (¢ cos 9) d¢
0 T Jy

1 ™
Jot) = = f cos (t cos ¢) do
T Jg
Another method.
1 T 9 /2
Let G(t) = - f cos (t cos9) do = p f cos (t cos9) do. Then taking Laplace transforms,
o 0
_ 2 fﬂ'/2 s _ 2 fﬂ'/2 8 sec? g
ey = 7 o 8 + cos?e o = 7 o 8tan2¢+ &+ 1 de
2 1 g tang \|[7/2 1
= - tan_1< > = —
T a2+ 1 Vaz+1/}y Vst +1
Thus G(t) = £71 { 1 } = Jy(t), as required.
s2+1

Supplementary Problems

INVERSE LAPLACE TRANSFORMS
47. Determine each of the following:

vl weltal ool ool ool

1 _
® g @ o {ﬁz} ? 4—1{3_95} ® 4_1{5’1’—2} ? 4_1{88‘*7‘1}

Ans. (a) 3e—4¢ (e) 8cos2y/2t — 3V/2sin2V2¢ () —dettss
(b) 4esti2 (f) 2 cosh8t — § sinh 3t () (¢72/3 + 881/3)/T(})
(c) 8 cos4t (9) #/24
(d) 8 sin2t (h) 8t52/15V7
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_ L [/Va—1¥ o J2s+1]
8. Find (a) £ ‘{(——;~>} b) £ 1{—3(81-1) IN

Ans. (a) 1+t — 4t12\/7 by 1 + et

_ 35—8 5s + 10
-1/ 98—06 -1
49. Find (o) L {432 ¥ 25} » 0« {932 - 16} )

Ans. (a) 2 cosbt/2 — % sin5t/2 (8)  cosh4t/3 + § sinh4t/3

50. (a) Show that the functions F(t) = {; z#: and G(t) =t have the same Laplace transforms.
(b) Discuss the significance of the result in (a) as far as uniqueness of inverse Laplace transforms is
concerned.

3s—8 _ ds—24] 3s—2 7
i -1d22—s A8 o% —1y22_e 1
51. Find (o) £ {s2+4 #-15)> ® <L { 5572 3s+2}'
Ans. (a) 3 cos2t — 4 s5in2¢t — 4 cosh4t + 6 sinh 4t
(b) 6t12/\7 — 813/2/3\7 — %e—zua

~

52. (a) If Fy(t) = £~H{f1(a)}, Fo(t) = £~ {f2(8)}, F3(t) = £~ 1{f3(8)}, and ¢,, ¢, ¢3 are any constants,
prove that

L7{e f1(8) + eafals) + e3f3(8)} = ¢ Fi(t) + coFa(t) + egFy(t)

stating any restrictions. (b) Generalize the result of part (a) to n functions.

. 1882 —1)2  45—18 (s41)2—s!/?)
53. Find L 1 { 255 + 9 — g2 + '—85/2— .

Ans. L —t — 3¢ + 1t + 4tV2/\/7 + 8t3/2/3\/7 ~ 4 cosh 8t + 6 sinh 3t

- 3 - 8 - =
5. Find (a) £ l{m} &) < 1{(s+1)5/2}'

261/2(3 — 2t)

Ans. (a) %(41&3—#*), (b) =

) B 33— 14 _ 8s + 20
1d_ 220 W s—ess
55. Find (a) £ {82 —4s+ s]f » (B L {32 —12s+ 32} '

Ans. (a) €2t(3 cos 2t — 4 sin 2t), (b) 2¢%:(4 cosh2t + 7 sinh 2t) = 118 — 3eit

. —tj 3s+2 -1)_bB8—2
56. Find (a) L 1__‘482-%128-#9}’ (b) L {382+48+8 *

e—2t/3
15

Ans. (@) $e-3t/2 — §te—3tr2, (b) {25 cos 2V/5 t/3 — 24v/5 sin2V/5 ¢/3}

1 1
57. Find “1d—— L (b P
ind (a) £ {3,-——88_27} b L { ,—————82_4s+20}

Ans. (@) t=2/32153/2T(}), (b) e2tJy(4t)
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) e _, 8e 38 P
58. Flnd (a) ’c l{ 82 }’ (b) ’c 1 182_{_4}) (c) ﬂc l{ : 1}.

Ans. @ 1172 132 o ooyup—g). ) J4Sn2A—B) >3
0 t<2 0 t<3

or 4 sin 2(t— 3) U(t — 3).

=112z t>1 t—1 -2 Ut —1
(e) {0 foq °F @-DTVEUCE—DAVE

) _j ge—28 _ e~ 3s
5. Find (a) £1 lm}’ ® L s

{2e—2(t—2) —e— U= t>9

Ans. (a) or {2e—200—2) — o= (=22} Y(t —2)

t<2

®) {geu-a)sinz(t—s) t>8 JeCt=9 gin 2(¢ — 3) U(t — 3)

0 t<3

60. If f e stF(tydt = f(s) and J; e~ st G(t)dt = f(ps+q), where p and g are constants, find
0
a relationship between F(t) and G(?). Ans. G(t) = e—at/» F(t/p)/p

1 1
61, If 1 = erf Vt, find ,("1{ }, a>0. Ans. erf Vat/Va
{s\/s+1} sVs+a

Ans. anJ (at)

62. If {—l{(—M} — "(t)’

_ (/s + a2 — gy
Vsi+1 )

find £~ —
1 Vs2+a?

1 e~
63. Find ( el —— L8 (b 1 .
nd (@ < {\/as—n} ® < ‘{\/;ur—g}

Ans. (a) eterfVE,  (b) {;’0‘3t_6) z:: or  Jo(3t—6)Ult—2)

INVERSE LAPLACE TRANSFORMS OF DERIVATIVES AND INTEGRALS
64. Use Theorem 2-6, Page 44, to find

(@) £71{1/(s—a)3} given that £~ 1{1/(s—a)} = eo,

(b) £~1{s/(s2— a2)2} given that L£~!{1/(s2— a%)} = (sinh at)/a.

65. Use the fact that £~1{1/s} =1 to find .£ ! {1/s"} where n = 2,3,4,.... Thus find .~ {1/(s — )"},
ind e-1{—8F1 U Ans Lte-tsint
66. Find £ {(82+28+2)2} ns. ite~!sin

67. Find (a) 4—1{1,,(:_::_%)}’ ) tl{%‘“(:i?)}-

¢ U - —ai
Ans. (a) (e=t—e—29/t, (b) f i+2du
0

68. Find £~ ! {tan—1(2/s2)}. Ans. 2sint sinht/t
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1 82 + a2 ¢ cos au — cos bu
; 142
69. Find < {s ln<82+ b2>} . Ans. j; ——— du

MULTIPLICATION AND DIVISION BY POWERS OF s

_ f(i)\ _ t v w
70. Prove that £ 1{—83I fo J; J; F(u) du dv dw.

t t t
Can the integral be written as f j‘ ‘f F(t) dt? ? Explain.
o Yo Yo

B 1 — s+2 - 1
1. Evaluate (a) £ l{m}, ) < ‘{m} (o) £ l{s(s+1)3}‘

Ans. (@) 1—t+ 382 —e~t, (B) 8+ —4e3, (o) 1— e t(L+et+ 382

72. Find (a) .c—l{

1 1
, (b) -C_‘{—_ .
g/s+4 sVs? + a?
Ans. (a) 1 erf @eve), (b) ft Jolau) du
0

. — 1 - 8 . . .
X 1y 2 Lo 1) &8
73. Find (a) £ { T 2)} b) £ { TR 1)} and discuss the relationship between
these inverse transforms.
et 4 4 8 8 e 2t
—_ . 43 = —_— = fhedl —_ 2
Ans. (a) 73 <t4 gt? gt —gt+t 27> 543

tt 8 12 i 1 et
21 . —— — — —_ e — o
(b) e <36 t5 st E 243> * o3

4. If F(t) = £-'{f(s)}, show that
(@ L£-1{sf(s)} = —tF'(t) — F(t) (6) £-1{e2f"(s)) = LF"(t) + 4t F'(t) + 2F(t)
) £1{af"(s)} = L2F'(t) + 2tF(¢)

75. Show that L£~1{s2f(s) + F(0)} = —tF"(t) — 2F'(1).

THE CONVOLUTION THEOREM

. _ 1 - 1
6. U 1 fi L} . S -
7 se the convolution theorem to find (a) £ {(s v 1)} , (b)) 2L {(s TEEG= 2)} .

Ans. (a) 4(et—e7%), (b) L5(e% — e 2t —4te~2t)

77. Find .c—l{ Ans. J(sint — cost + e~¥)

1
(8+1)(s2+ 1)} )

78. Find (—1{( 2?:4)2} . Ans. Lt cos2t + 1 sin2t
8

. _ 1 - 8
79. Find (a) £ l{m} , (B £ 1{092_‘*'4—)3} .
Ans. (a) {8 —¢)sint ~ Btcost}, (b) Li(sin2¢ — 2¢ cos 2?)
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80. Prove that F*{G*H} = {F*G}*H, ie. the associative law for convolutions.

81. Prove that (¢) F*{G+H} = F*G+ F*H, () {F+G}*H = F*H + G*H.

82. Show that 1*1*1*_ .. *1 (nones) = " 1/(n—1)! where n = 1,2,8,....
t At ot 2
83. Show that f f f F(t)det = f EZ%? py) du.
0o vo Yo 0 2!
At t t t _ —1
84. Show that f f f F@) dtr = E_“)_"_.F(u) du.
0 Yo 0 o (r—1)!

85. Prove the convolution theorem directly by showing that

f@) g = {fw e~ su F(u) du} {J‘w e—5v G(v) dv}
0 o

= f f e~ s(u+v) F(y) G(v) du dv
0 Yo

o t
= —st F(u) G(t —u) du ; dt.
J; e {J; (u) G(t — ) u} t

86. Using the convolution theorem, verify that

t
f sinucos(t—u)du = It sint
0
7. Show that 1 [ 222t 4 (@=03t/2 Iy {4(a — b
87. ow that —f————-u=e°— a — b)t}.
7 Jo Vu(t—u) ot} %

PARTIAL FRACTIONS

82 83 —s

88. Use partial fractions to find  (a) 4-1{%}, ) (_1{28—1}.

Ans. (a) bedt —2¢~%, (b) 1 —Fet+ Let

. . s+1 _ 1182— 25+ 5
8. Find (a) £ 1{m} ® < 1{(3—2)(28—1)(8+1)}'

Ans. (a) }e~t/2 — Le2t/3, (b) be2t — $et/2 4 2¢—t

. [ 27128 -1)8+16s— 24
9. Find (a) £ {——(8+4)(82+9) » ) LT s T [

Ans. (a) 8¢—4 — 3 cos8t, (b) % sin 4¢ 4+ cos 2¢ — sin 2t

91, Find .01 {(s+3)(i“’_+12s+2)} . Ans. Je~t(4cost — 3sint) — 4e 3¢

. _ 82—28+43 _1 | 883 — 382 — 405 + 36
92. Find (a) £ l{m}a (®) ¢ l{ (82 — 4)2 }'

Ans. (a) }(2t—1)et + §e—t, (b) (Bt +3)e2 — 2te

[CHAP. 2
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93. Find .c-l{ 83 }

(8 + 2)(8 — 3)(s2+ 28 + 5)

Ans. &3t — fe2 — e~ tcos2t + ket sin 2t

94. Fi d -1 8 ) . . .
s {(32 —28+2)(s?2+ 25+ 2)} Ans. } sintginht

95. Find % 28821 Ans. Lsint + Jtcost —- te-t
(s+1)2(s2+1)2) ° )

96. Use partial fractions to work (a) Problem 44, (b) Problem 71, (¢) Problem 73, (d) Problem 76,
(e) Problem 77.

97. Can Problems 79(a) and 79(b) be worked by partial fractions? Explain.

HEAVISIDE'S EXPANSION FORMULA

. N 28 - 11 [ 198 + 3]
c1 . Y - -1
98. Using Heaviside’s expansion formula find (a) £ ‘{ eI 3)}, b) ¢ { G2+ 3)}.

Ans. (a) 3e—2t — ¢3t, (b) Be2t — et — e~
. _ 2s2—6s+ 5 s 5
1 1ot — g2t 4 B3t
99. Find < {33 T T 11s 6} . Ans, e et + Je

100. Fi —1)__8+t6 . . 2e-t P
00. Find < {(s+1)(s2+1) Ans. 2¢e~t + 8sint 2 cost

101. Use Heaviside's expansion formula to work (a) Problem 76(a), (b) Problem 77, (¢) Problem 88,
(d) Problem 89, (e) Problem 90.

102. Fi -1 s -1 L. ¢ ith P X
02. Find <« { GFo6EeT 25T 2) I ompare with Problem 91
i -1 =3 ith Probl
103. Find £ {(s TGS T o T 5)} . Compare with Problem 93.

. Fi -1 8 . ith Problem 94.
104, Find {(sz PSP P 2)} Compare wi roblem

105. Suppose that f(s) = P(s)/Q(8) where P(s) and Q(8) are polynomials as in Problem 29 but that
Q(s) = 0 has a repeated root a of multiplicity m while the remaining roots, b,, by, ..., b, do not repeat.

(a) Show that

- Py _ A 4 A B B B
fls) = Q) (s-.a)m+ (s—ayn 1 + + s—a+s—bl+s—b2+ +s—bn
dk
(b) Show that 4, = }3!}1 m‘:l‘l-)’! gerle—amf@}, k=12,...,m

A‘tm 1 Aztm-‘z
(¢) Show that L' {f(8)} = et PP— + - + o 4+ Am} + Bietit + -+ 4+ B, ebxt,
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106.

107.

108.

109.

110.

111,

112,

THE INVERSE LAPLACE TRANSFORM [CHAP. 2

2s2—9s+19 |
G—12(s+3))’

Ans. (a) (3t —2)et + 4e~3t, (b) tle~t—e2)

28+3 |

Use Problem 105 to find (a) (‘1{ (s_+l)2<s—+2)2f .

® <
L

. 1153 — 4782 + 568+4L -
1 . Ans. (282 —1t+ 5)e2t + 2t
Find <« { 2P (s 2) J ns. (2t )e Ge

Use Problem 1056 to work (a) Problem 26, (b) Problem 44, (¢) Problem 71, (d) Problem 73,
(e) Problem 76(b).

Can the method of Problem 105 be used to work Problems 79(a) and 79(b)? Explain.

3 g2 —
Find .,C"l{ 2¢" —8° — 1 using Problem 105. Compare with Problem 95,

(s +12(s2+1)2]
Develop a Heaviside expansion formula which will work for the case of repeated quadratic factors.

434+ 533 + 652+ 83 + 2
(s —1)(s2 + 28 + 2)2

Ans. et + e t{(83—2t)cost — 3 sint}

Find ,C‘"l{ } using the method developed in Problem 111.

THE BETA FUNCTION

1 4 2
113. Evaluate each of the following- (a) f 23/2(1 — x)2dx, (b) f 23(4 —x)~1/2dz, (e) f yV4a—y2dy
0 0 0

Ans. (a) 16/315, (b) 4096/35, (¢) 2r

1
114. Show that f Vi—a2dx = z/4.
0
n/2 w2 ™
115. Evaluate each of the following: (a) f cosb g dg, (b) f sinZ g costg dg, (¢) f sint ¢ cos? ¢ do.
0 0 0
Ans. (a) 57/32, (b) #/32, (e¢) 3z/128
116. Prove that
w2 ar2 { (a) : .g- f 6 (p; 1) —% if p is an even positive integer,
f sinfgds = f cosPg dg =
° ° 1 ® 2 ”11.;.5 (p; 1) g p is an odd positive integer.
. @ gp—1 _ T . 1 _
117, Given that J(; 1+xdx = Snpr show that ['(p) (1 —1p) = sin p where 0<p <1.
[Hint. Let x/(1+ ) = y.]
118. Use Problem 117 to show that T = =
o 1ty 2\/5
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w/2 9

119. Show that Vtane de = 12_
(1]

EVALUATION OF INTEGRALS

120. Show that f sina2dz = }Va/2
0
121. Evaluate f sir;x dz. Ans, #/2
0
o« T
122. Show that f x cos x3 dx _—.
) Jo 3V3 1(1/3)
. “sinx _ -
123. Prove that if 0 <p <1, (a) fo o de = 5T(p) sin (p2/2)
“ cos -
d = - _* .
®) J; zr T 2 I(p) cos (p=/2)

124. Use the results in Problem 123 to verify the results of Problems 120, 121 and 122.
125. (a) Show that f x2e~"dx converges.
0

(®) If t>0, is £{f x?e-tﬁdx} = f £{a2e—ta?) da ?
0

0
(¢) Can the method of Problem 37 be used to evaluate the integral in (a)? Explain.

1
126. Evaluate f Jo(u) Ji(t —u) du. Amns. Jy(t) — cost
¢

MISCELLANEOUS PROBLEMS

f 1
127. Find ('IJl 1 } Ans. -3-{e—t - et/2<cos \/Tgt - ﬁsin?t)l

$3+1 j

b
128. Prove that J (x—a)p(b—2x)edx = (b—a)te+t1B(p+1,q+1) where p>—1, ¢>—1 and b >a.

]

[Hint. Let z—a = (b — a)y.]

129. ®) f VB oE—Ddr.  Ans. (a) x, (b) HEQ/AY
1

4 dx
Evaluate (a) J; ~—'(:».;—2)(4-—x) s 3vr

130. Find ¢ -t {%} . Ans. {1 —cos(t— D} U(t—1) — {1 —cos (t—2)} U(t —2)

131, Show that -1 { e"x‘/;} R

N R

t
132. Prove that f Jow sin(t—wy du = §tJ,(8).
0
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133.

134.

135.

136.

137.

138.

139.

140.

141,

142,

143.

144,

145.

THE INVERSE LAPLACE TRANSFORM [CHAP. 2
1—e 275 | . .
(a) Show that the function f(s) —= s is zero for infinitely many complex values of s. What
are these values? (b) Find the inverse Laplace transform of f(s).
R . . 1 t> 27
Ans. (a = =i, *2i,*+31, ... b) F(t) = or F(t) = Ut—2
(@) s » F(Q) {0 0<t< 2y ) 7)

t

Find .1 {ln (s_+— ys2+1>} . Ang. 170D
28

2

Show that f w(®—ud)1/3 du = %{7_ L
0

Let F(t) = t2 at all values of t which are irrational, and F(t) = ¢ at all values of ¢ which are rational.
(a) Prove that £ {F(f)} = 2/s3, 8>0. (b) Discuss the significance of the result in (a) from the view-
point of the uniqueness of inverse Laplace transforms.

Show how series methods can be used to evaluate (a) £~ 1{1/(s2+ 1)}, (b) £~ *{In(1 + 1/s)},
(¢) L~ {tan"1(1/s)}.

1
Find £t {e—8s—2Vs}, Ang, ————— ¢~V(1—3) U(t — 3)
Velt— 3y
* u sin tu R
Show that J; T2 du = 3¢ t, t>0

[t-12 o<t<1

If Ft) =t~12, t>0 and G() = , show that
1o t>1
it * Gl _ T 0<t<1
w6 = r — 2tan=1V/i—1 t>1
+1-— —t/2 (/2
Show that £_1{Ml _ e hn
Vet1l+ Vs ¢
Find 'C_l{s\f}' Ans. t=V2/\z + et erfVt
)
/2
Show that  (a) f sin (¢ sin2¢) do = 7§ sin (£/2) Jo(¢/2)
(Y} .
/2
(b) I cos (t cos29) do = L cos(t/2) Jo(t/2).
70

Let £~ 1{f(s)} = F(t) have period T > 0. Prove that
L7H{f(sl—e—sT)} = F(t) if 0<t<T andzeroif t>T.

t2 5 8 11
() Show that 'Cdl{sa—li-l} = 37— _t_‘: + i' AL

(b) Discuss the relationship of the result in (a) to that of Problem 127.
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146.

147,

148,

149.

150,

151,

152.

Can Heaviside’s expansion formula be applied to the function f(s) = 1/(s cosh s)?

Prove that f Jox2) dx = 1/4Vw.
0

Show that j . " " t7
- 1 3 —_— —— — — LI
SR P s} =t mEtew gyt
= LU@emnVE) - Jo2emTAVE)}
Show that
-1 l 1 = 1 — £2 + ¢t — 2 4 e
L5 %0 T @2 T @m (e

Find £'1{1+1v§}. Ans. t"”2/\/; — et erfe (ﬁ)

Show that

8+e—s n=0 n!

£_l{ 1 } B Vil kOl

where [t] denotes the greatest integer less than or equal to .

1 2 t t2 t3
Show that <71 {;"°<ﬁ>} =l-apter @myEt T

Explain.

77



Chapter 3

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

The Laplace transform is useful in solving linear ordinary differential equations with
constant coefficients. For example, suppose we wish to solve the second order linear
differential equation

. |
%+a%+ﬂy = F(t) or Y’ +a¥ +8Y = F() (1)

where o and B are constants, subject to the initial or boundary conditions
Y(0) = 4, Y(0) = B @

where A and B are given constants. On taking the Laplace transform of both sides of (1)
and using (2), we obtain an algebraic equation for determination of .£{Y(f)} = y(s). The
required solution is then obtained by finding the inverse Laplace transform of y(s). The
method is easily extended to higher order differential equations. See Problems 1-8.

ORDINARY DIFFERENTIAL EQUATiONS WITH VARIABLE COEFFICIENTS

.The Laplace transform can also be used in solving some ordinary differential equations
in which the coefficients are variable. A particular differential equation where the method
proves useful is one in which the terms have the form '

tm Y(n)(t) . ’ (3)
the Laplace transform of which is ‘

(1) (Y (e)) )

See Theorem 1-10, Page 4, and Theorem 1-12, Page 5.

For details of solution see Problems 9-11.

SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

The Laplace transform can be used to solve two or more simultaneous ordinary dif-
ferential equations. The procedure is essentially the same as that described above. See
Problems 12 and 13.

78
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APPLICATIONS TO MECHANICS

Suppose a mass m, attached to a flexible
spring fixed at O, is free to move on a friction-
less plane PQ [see Fig. 3-1]. If X(#), or briefly g AMAAAAAAAR n
X, denotes the instantaneous displacement of Q
m at time t from the equilibrium or rest posi- ////////////4!// M,
tion, there will be a restoring force acting on (a)l
m equal to —kX, where k is a constant depend- {

\ . . i 1
ing on the spring, and called the spring con :-—X __I
!

Equilibrium
| position
|
!

NN

stant. This follows from Hooke’s law which,

on the basis of experiment, states that the re-

Z !
p che basts o ¢ stat e ZP—WWWWVWW\NV\MAN— m
storing force acting on a spring is proportiona | Q
to the stretch or extension of the spring from A
the equilibrium position. According to New- (b)
ton’s law which states that the net force acting
on m is equal to the mass times the accelera- Fig. 3-1
tion, the equation of motion is
2
m% = —kX or mX’'+kX =0 )

If in addition, there is a damping force proportional to the instantaneous speed of m,
the equation of motion is

@Xx
m-gie

where the proportionality constant g is called the damping constant.

~kX — ﬂ“fd—f or mX”+BX +kX = 0 (6)

A further modification takes place when some prescribed time-varying external force
F(t) also acts on m. In such case the equation of motion is
: X
m%—t-z = —kX — 'Btfi_)t( + F(@) or mX” + BX’ + kx = F(¥) (7)
By using Laplace transforms to solve equations (5), (6) or (7) subject to various ap-
propriate initial conditions of physical interest, the displacement X(f) can be found. See
Problems 14, 15, 27 and 28.

APPLICATIONS TO ELECTRICAL CIRCUITS

A simple electrical circuit [Fig. 3-2] con-
sists of the following circuit elements con- I ~ £,

nected in series with a switch or key K.
1. a generator or battery, supplying an elec-
tromotive force or e.m.f. E (volts), ‘ % ——
R C
2. a resistor having resistance R (ohms), =
3. an inductor having inductance L (henrys), L
Lo

4. a capacitor having capacitance C (farads).

These circuit elements are represented symboli- Fig. 3-2
cally as in Fig. 3-2.
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When the switch or key K is closed, so that the circuit is completed, a charge Q
(coulombs) will flow to the capacitor plates. The time rate of flow of charge, given by

%zl, is called the current and is measured in amperes when time t is measured in
seconds.

More complex electrical circuits, as shown for example in Fig. 3.3, can occur in
practice.

K
N {(E)— 7~ P
u
4 c,
R§ It =,
B D
I,
1
M > A F Q
Isz L .
2[0S
Fig. 3-3

An important preblem is to determine the charges on the capacitors and currents as
functions of time. To do this we define the potential drop or voltage drop across a circuit
element.

(a) Voltage drop across a resistor = RI = R%—(tg
2
(b) Voltage drop across an inductor = L% = L(Z——g
(¢) Voltage drop across a capacitor = g
(d) Voltage drop across a generator = —Voltage rise = —F

The differential equations can then be found by using the following laws due to Kirchhoff.

Kirchhoff’s Laws

1. The algebraic sum of the currents flowing toward any junction point [for example A
in Fig. 8-3] is equal to zero.

2. The algebraic sum of the potential drops, or voltage drops, around any closed loop
[such as ABDFGHA or ABDFQPNMA in Fig. 3-3] is equal to zero.

For the simple circuit of Fig. 3-2 application of these laws is particularly easy [the
first law is actually not necessary in this case]. We find that the equation for determina-

tion of @ is #0

> aQ | Q _
By applying the laws to the circuit of Fig. 3-8, two simultaneous equations are obtained
[see Problem 17].
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Note the analogy of equation (8) with equation (7). It is at once apparent that mass m
corresponds to inductdnce L, displacement X corresponds to charge Q, damping factor B
to resistance R, spring constant k to reciprocal of capacitance 1/C, and force ¥ to electro-
motive force E. Such analogies are often useful in practice.

APPLICATIONS TO BEAMS

Suppose that a beam whose ends are at
=0 and =1 is coincident with the z axis
[Fig. 8-4]. Suppose also that a vertical load, ullul”
given by W(x) per unit length, acts trans- N =
versely on the beam. Then the axis of the
beam has a transverse deflection Y(z) at
the point «# which satisfies the differential
equation Y

ay  W(x)
dz* T "ET

-%

<
-

0o<z<l (9 Fig. 34

This transverse deflection is sometimes called the deflection curve or elastic curve. The
quantity EI is called the flexural rigidity of the beam and we shall assume it to be constant.
[Actually, E is Young’s modulus of elasticity for the beam and I is the moment of inertia
of a cross section of the beam about the axis.] The quantities EIY”(x) and EIY’’(x)
are called respectively the bending moment and vertical shear at x. Note that the Y axis
is taken as positive downward so that deflections are positive downward.

The boundary conditions associated with the differential equation (9) depend on the
manner in which the beam is supported. The following are most common.

1. Clamped, Built-In or Fixed End: Y = Y’ = 0
2. Hinged or Simply-Supported End: Y = Y” = 0

3. Free End: Y’ =YY" =0

PARTIAL DIFFERENTIAL EQUATIONS

The Laplace transform is also useful in solving various partial differential equations
subject to boundary conditions. Such problems are often referred to as boundary-value
problems. We consider a few such simple problems in this chapter [see Problems 22-26
and 31]. A more complete discussion of boundary-value problems is given in Chapter 8
where advantage can be taken of the complex inversion formula of Chapter 6.
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Solved Problems

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
1. Solve Y”"+Y =1t¢, Y(0) =1, Y'(0) = —2.

Taking the Laplace transform of both sides of the differential equation and using the given
conditions, we have

1

LY} + 2{Y} = £t} sy — sY(0) — Y0 +y = 5

1
2y —8 4+ 2 +y = 2

1 s—2

Then vo= LN = mern toery

Il

1 1 s 2

= @ T @r1 T exri T #F1

1 8 3
= et Ea T @+

1 8 3
—_ -1 I__ 4 — - = +4- -— i
and Y L 182 2 F1i 32 1} t cost 3sint

Check: Y =t +cost—3sint, Y =1—sint —3cost, Y’ =—cost+ 83sint. Then Y'+Y =1{,

Y(0)=1, Y’(0) = —2 and the function obtained is the required solution.

For another method, using the convolution integral, see Problem 7 and let a =1, F(¢) = ¢.

2. Solve Y”—3Y'+2Y = 4e¥, Y(0) = —8, Y’(0) = 5.

We have L{Y"} — 3..{Y'} + 2.{Y} = 4.L{e}
{s2y — sY(0) — Y'(0)} — 3{sy —Y(0)}) + 2y = st
{s2y + 88 — 5} — 3{sy +38} + 2y = pr
(s2—8s+2)y + 8 — 14 = 4
8§ —2
y = 4 14 —3s
(82 —8s+ 2)(s —2) s2—38s+2
= 382420524
(s — 1)(s — 2)2
=1, 4 4
iy e Bl P
Thus Y = ! =1 PR - G- —Tet + 4de2t + 4te2t

1s=1 7 s—2 (s — 21|

which can be verified as the solution.
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3. Solve Y”+2Y'+5Y = e tsint, Y(0) =0, Y’(0) = 1.

We have L{Y"} + 2.L{Y'} + 5£{Y} = .{e tsint}
1 1
2y — - Y0 - = L - __]
{s%y — 2 Y(0) 0)} + 2{sy — Y(0)} + By PESTEES] popr e
1
—s8(0)—1} + 2 -0} + b =
{s2y —s(0) — 1} {sy — 0} y pOR yary
1
2 4 2 —_ = _
(6 +2s+8)y — 1 212 12
y = ! + L
82+28+5 (s2+ 28 + 2)(s2 + 23 + b)

. 82423+ 3
(s2 4 2s + 2)(s2 + 28 + b)

Then [see Problem 28, Page 60]

- p-1 s2+2s+3 | S S .
¥ = {(32+2s+2)(s2+2s+5)J ge '(sint + sin2t)

4. Solve Y —-3Y”+8Y'-Y =t2%, Y(0)=1, Y’(0)=0, Y"(0) = —2.

We have L{Y"} — 3.L{Y"} + 3.{Y'} — £{Y} = {te}
{83y — 82Y(0) —sY'(0) — Y"(0)} — 3{s?y —sY(0) — Y'(0)} + 3{sy—Y(0)} — y (STZI)E
Thus (*—3824+3s—1)y — s2 + 85 — 1 = ﬁ
_ $2—8s+1 2
¥ T Teor T Go1e
.. 8—28+1—3s 2
T Te-15 T G-1p
(s—1?—(s—1)—1 , 2
(s—1) (s—1)8
I SRS D U
- s—1 (s —1)2 (s — 1) (s—1)6
- _ _ Bt et
and Y = et tet > 66

Find the general solution of the differential equation in Problem 4.

In this case, the initial conditions are arbitrary. If we assume Y(0) = A, Y'(0) = B, Y"(0) = C,

we find as in Problem 4,

or

2

(% —As2—Bs—C) — 3(s2y—As—B) + 3(sy—A) — y = T—1)3

- As2+(B—3A)s+3A—3B+C+ 2
Y (s—1)3 (s—1)8
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7.

APPLICATIONS TO DIFFERENTIAL EQUATIONS (CHAP. 3

Since A, B and C are arbitrary, so also is the polynomial in the numerator of the first term on the
right. We can thus write

_ ! C2 C3 2
Y T G T o T a1t Go1e
and invert to find the required general solution
¢, t2 5ot
y = lz—et + cytet + cget + %g—
toet

= eq2 + cstet + cget + 60

where the ¢;’s are arbitrary constants.

It should be noted that finding the general solution is easier than finding the particular solution
since we avoid the necessity of determining the constants in the partial fraction expansion.

Solve Y +9Y = cos2t if Y(0)=1, Y(«/2) = —1.

Since Y’(0) is not known, let Y'(0) =¢. Then
LY} + 9£{Y} = .£{cos2t}

2y — . - _S.
s2y sY(0) Y'(0) + 9y poali
s
2 — g — = -
(s2+9)y 8 c 2474

_ ste s
and y 219 T @EToE+4)

I e  —
= £F9 + s2+90 + 5(s2 +4) 5(s2 + 9)

— é 8 ¢ 8
- 5<s2+9> + 82+9 + 5(s2+ 4)

Thus Y = icos3t + gsin3t + 1cos2t
5 3 5

To determine ¢, note that Y(#/2) = —1 so that —1 = —¢/3 — 1/5 or ¢ =12/5. Then

_ 4 4 1
Yy = 5cos3t + 5s1n3t -+ 5cos2t

Solve Y” +a?Y = F(t), Y(0) =1, Y’(0) = —-2.

We have LY} + a22{Y} = L{F@t)} = f@s)
sy — sY(0) — Y'(0) + a2 = f(s)
s2y — s + 2 + ay = f(s)
8—2 f(s)

and so =
Y 2+ a2 §2 + g2



CHAP. 3] APPLICATIONS TO DIFFERENTIAL EQUATIONS 85

Then using the convolution theorem,

— aeqfs-2 _ ] 1)
¥ < {82+a2} t <L 182 + a2
=  cosat — 2 sin at + F(t)*smat
a a
: t
= cosat — 2smat + —l—f F(u) sin a(t — u) du
a a J,

Note that in this case the actual Laplace transform of F(¢) does not enter into the final solution.

8. Find the general solution of Y —a’Y = F(t).

Let Y(0) =¢,, Y'(0) =¢,. Then taking the Laplace transform, we find

sy — 8¢y — ¢ — aty = fls)
or Y se;t+ ¢ J(s)
82 — g2 82 — g2
Co 1 (t
Thus Y = ¢;coshat + ;sinh at + a f F(u) sinh a(t — u) du
o

t
A coshat + B ginhat + -‘1; f F(u) sinh a(t — u) du
0

which is the required general solution.

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

9. Solve tY”+Y'+4tY =0, Y(0) = 3, Y'(0) = 0.

We have L{Y"y + £{Y'} + £{4tY} = 0

or —i{s2y —s8Y(0) - Y'(0)) + {sy — Y(0)} — 4@ = 0

ds ds
ie., (s2+4)%% + sy = 0

dy sds
Then 7 + 2+4 0
¢

and integrating Iny + 1In (82+4) = ¢ or y = ‘/8—2—_*_—4
Inverting, we find Y = eJdof2t)

To determine ¢ note that Y(0) = ¢Jy(0) = ¢ = 8. Thus

Y = 38Jy(20)
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10.

11.

APPLICATIONS TO DIFFERENTIAL EQUATIONS

Solve tY” +2Y’+tY =0, Y(0+) =1, Y(x) = 0.

Let Y'(0+) =ec.

or

ie.,

Then taking the Laplace transform of each term

~ Loty — sYOH) — YOP} + sy — YO} — —y
ds ds
—s2%' — 238y + 1+ 28y — 2 —y = 0
-1
—(2+1)y —1 = 0 "=
82+ 1)y or y o]
y = —tan—ls 4+ A4

Integrating,

Since ¥y >0 as 8-> «©, we must have 4 = #/2. Thus

- 7 _ -1 - —11
Yy 2 tan~1lsg tan o

Then by the Example following Theorem 1-18 on Page 5,

1 sin ¢t
— -1 -1 = — s
Y L {tan s} = ¢

This satisfies Y(r) = 0 and is the required solution.

Solve Y”—tY'+Y =1, Y(0) =1, Y'(0) = 2.

We have

ie.,

or

Then

or

Yy — cltyy + vy = e =
d 1
s2y — s8Y(0) — Y'(0) + E{sy—Y(O)} +y = 3

%y — s —2+s8y +y+y

il

sy’ + (82+2)yy = s + 2 + -

dy 2 _ 2 , 1
d—s'+<8+'s—>y - 1+-s-+

2
An integrating factor is ef (s+B)as _ e¥ss®t2ins — g3 g¥si  Then

or integrating,

d 1% g2 2,1 14 52
2 g2 pYes — 2 =) a2 %8
ds{s e ¥y = (1+s+s2>8 e
1 _ 2 1 15 52
y = qe '/észf<1+§+—82>sze “ ds
1

p e—%s"j‘(s2 + 254 1) %% ds

= slze‘ %s? [ge¥%s® | 2e%5% + ¢]

1 2 ¢
st et ope”

[CHAP. 3
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To determine ¢, note that by series expansion,

2 ¢ ‘
S Gl et st — )

<
i
Q| -

c4 2

= SR et e T D

o | -

Then since £~1{sk} =0, k = 0,1,2,..., we obtain on inverting,
Y = 14 (¢+2)¢
But Y’'(0) = 2, so that ¢ = 0 and we have the required solution

- Y = 1+ 2t

SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

%l)f( = 2X - 3Y

12. Solve subject to X(0) =8, Y(0) = 3.
dy
T Y-2X

Taking the Laplace transform, we have, if £{X} =x, £L{Y} =y,

sx — 8 = 2x — 3y or (1) (8—2)x + 8y =
sy —3 = y— 2=x or 2 2+ (s—1)y =
Solving (1) and (2) simultaneously,
8 3
3 s—1 8s — 17 83 — 17 5
8—2 3 §2—3s—4 (8 +1)s—4) s+1
2 s—1
8 —2 8
2 3 3s —22 35 —22 5
£—2 3 §2—33—4 s+ 1)(s—4) s+ 1
2 s8—1
Then = £-1{x} Be—t + Zeit
= LYy} Be~t — 2e4t

subject to X(0) = 85, X’(0)

13. Solve X"+Y +3X = 15e¢
Y’ -4X'+8Y = 15sin2t

Y’(0) = —55.

Taking the Laplace transform, we have

822 — 5(35) — (—48) + sy — 27 + 3z = 9151
8% — &(27) — (—b5) — 4{sx—35} + 3y = 23_0
82+ 4

87
3
s —4
2
s—4
—48, Y(0) =21,
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15
2 =3 —_ —
or (824 3)x + sy 85s 21 + a1
—dox + (2+3)y = 278 — 195 + S0
82+ 4
Solving (I) and (2) simultaneously,
15
858 21 + 8—_*‘_—1' 8
- _380 2
27s 195+s2+4 82+ 3
x =
8243 8
—~4g 82+38
~ 3bs5—48s2+300s 63 15(s2 + 3) 3 30s
(82 + 1)(e2 + 9) (s +1)(s2+1)(s2+9) (82 + 1)(82 + 4)(s2 + 9)
_ 80s _ 45 3 2s
= ®2+1 " #+e T sri T v
15
2 - 29
82+ 3 368 — 21 + s+ 1
30
438 27s — 195 + 214
y =
82+3 8
—4g 82+ 3
— 27¢%—b5bs2 — 38 — 585 + 608 + 30(s2 + 3)
(s2+1)(s2 4+ 9) (s + 1){s2 + 1)(s2 + 9) (82 + 1)(s2 + 4)(s2 + 9)
_ 80s _ 60 _ 3 . 2
T 8249 s2+1 s+1 82+ 4
Then X = L£1{x} = 80cost — 15s8in38t + 3e—t + 2 cos 2¢
Y = £-1{y} = 30cos3t — 60sint — 8e—t + sin2¢

APPLICATIONS TO MECHANICS

14. A particle P of mass 2 grams moves on the X axis and is attracted toward origin O
with a force numerically equal to 8X. If it is initially at rest at X = 10, find its
position at any subsequent time assuming (a) no other forces act, (b) a damping force

numerically equal to 8 times the instantaneous velocity acts.

(¢) Choose the positive direction to the right [see 1
Fig. 3-5]. When X >0, the net force is to the

|
left (i.e. is negative) and must be given by —8X. f
When X <0 the net force is to the right (i.e. is [¢] P
positive) and must be given by —8X. Hence in
either case the net force is —8X. Then by New- Fig.3-5

ton’s law,
(Mass) * (Acceleration) = Net force

d2xX
2 e

f120.4
or T +4X = 0
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The initial conditions are: (2) X(0) = 10, (8) X'(0) = 0.
Taking the Laplace transform of () and using conditions (2) and (3), we have, if = = . {X},

10s

200 — = = =229
82x — 108 + 4z 0 or 214

Then X = L£7'{x} = 10 cos2t

The graph of the motion is shown in Fig. 3-6 below. The amplitude [maximum displacement
from O] is 10. The period [time for a complete cycle] is =. The frequency [number of cycles per
second] is 1/#.

X
Period |

Y 1

ST
to[41
~|§

3
<k

Fig.3-6 Fig. 3-7

() When X >0 and dX/dt> 0, P is on the right of O and moving to the right. Then the damping
force is to the left (i.e. is negative) and must be given by —8dX/dt. Similarly when X <0
and dX/dt<0, P is on the left and moving to the left so the damping force is to the right
(i.e. is positive) and must also be given by —8 dX/dt. The damping force is also —8dX/dt for
the cases X >0, dX/dt<0 and X <0, dX/dt>0. Then

(Mass)(Acceleration) =  Net force
d2X dX
or 29g = ~8X - 8%
. X dX _
i.e., e + 4-Jt- +4X = 0 4)

with initial conditions (5) X(0) =10, (6) X’(0) = 0.

Taking the Laplace transform of (4) and using conditions (5) and (6), we have

s2x — 108 + 4(sx—10) + 40 — O
or e = _10s+40
s2+4s+4
- _y [10s + 40 ~1)10(s +2) 4+ 20
X = 1 = 1 = 128 1 &) 1 av
Then L1 {x} £ { (s + 2)2 } £ { (s + 2)2 }
1 1 l
= -1 )t -1
10£ {s+2} + 2L {(s+2)2J
= 10e=2t + 20te=2t = 10e=2t(1+ 2¢)

The graph of X vs. ¢t is shown in Fig. 3-7 above. Note that the motion is non-oscillatory.
The particle approaches O but never reaches it.
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15. A particle of mass m moves along the X axis and is attracted toward origin O with a
force numerically equal to kx, k> 0. A damping force given by pgdX/dt, >0, also
acts. Discuss the motion, treating all cases, assuming that X(0) =X, X’(0)=

The equation of motion is

d2X dX
mae = KX — B g
d2X dX
or Jp T2t PX = 0 63}

where o = 8/2m, o= k/m.
The Laplace transform of (1), using the initial conditions, yields
82x — Xo8 — Vo + 2a(sc—X,) + 022 = 0

SXO + (Vo + 2&X0)
82 + 2¢8 + w2

(s + a)Xo Vo + aXo
8+ a)2+ 02— a2 (s+ a)2 + 2 — a?

or 4

Case 1, «2—a2 > 0.

In this case,
(Vo + aXp)

X = Yz} = Xpe *cosVe2—o2t + e~ ginVu? — o2 ¢

w? — a2

The motion is called damped oscillatory [see Fig. 3-8 below]. The particle oscillates about O, the
magnitude of each oscillation becoming smaller with each swing. The period of the oscillations is

given by 2z/\/«2 — a2, and the frequency is Ve? —«2/27. The quantity /27 (corresponding to =10,
i.e. no damping) is called the natural frequency.

Casge 2, 2 —a2 = 0.

In this case,
X (1] Vo + (XX 0

X = ey = £-l{s+a+ (s+a)2}

Xo e—at (V0+aX0)t e—at

Here the particle does not oscillate indefinitely about O. Instead, it approaches O gradually but
never reaches it. The motion is called critically damped motion since any decrease in the damping
constant 8 would produce oscillations [see Fig. 3-9 below].

Case 3, w2 — o2 < 0.

In this case,

_ . _ - f (s +a)X, Vo + X,
X L1 {x} L e+ a2 = (@@=u?) T EreE—@-D
+ aXj
= XocoshVaT—ait + L on VTR
o Ny

The motion is called overdamped motion and is non-oscillatory. The graph is similar to that of
critically damped motion [see Fig. 3-10 belowl.
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X

\

Damped oscillatory motion
Fig. 3-8

APPLICATIONS TO ELECTRICAL CIRCUITS

16. An inductor of 2 henrys, a resistor of
16 ohms and a capacitor of .02 farads
are connected in series with an e.m.f. of
E volts. At t=0 the charge on the
capacitor and current in the cireuit are
zero. Find the charge and current at
any time £{>0 if (a) E = 800 (volts),
(b) E = 100 sin 8t (volts).

Critically damped motion

Overdamped motion

Fig. 3-9 Fig. 3-10

2h

— .02 fd

AMWWWW
16 ochms

Fig. 3-11

Let @ and I be the instantaneous charge and current respectively at time ¢. By Kirchhoff’s laws,

we have
daI

2— + 16I +

dt

or since I = d@/dt,
2
g #Q

with the initial eonditions

(¢) If E =300, then (2) becomes
dz2Q

dQ
aee T 165

Q(0) =0, I(0) = Q(0) = 0.

aQ

+ 50Q

=+ 8% 4+

di? di

Then taking the Laplace transform, we find

Q

.02

26Q =

= E (1)

It
S|

@

150

{80 — Q) — QO + 8lsg — QO + 25¢ = X0
or ¢ = 150 _ 6 _  6s+4s
s(82 -+ 83 + 25) s 82+ 8s+ 25
_ 6 _ 6(std4) +24
s (s+4)2+9
= 8 6s+4) 24
s (s+4)2+9 (s+4)2+9
Then Q@ = 6 — 6e4cos3t — 8e~¥ gin 3¢
I = a9 _ 50e—4t sin 3¢

dt
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() If E = 100 sin 3¢, then (2) becomes

a?Q dQ _ :
qp T 8 t 2@ = 50sin3t

Taking the Laplace transform, we find

150
2 = —22
(s2 -+ 8s + 25)q 259
150
d = -
an ? @+ 9)(s% + 8s T 25)
_ T 1 T s T 1 T s+d4
T 26 82+9 52 g2+ 9 26 (s+4)2+ 9 52 (s +4)2+9
25 75 25 5
= ; — 9 29 -4t & A9 -4t
Thus Q@ = %6 sin 3¢ 5g Sin 3t + 26 ¢ sin 8t + 52 ¢ cos 3t
= §(2 sin 3t — 8 cos 3t) + ﬁe"‘“(gcos-?t + 2 sin 3%)
52 52
_ dQ _ T ey 2
and 1 = 4 = B2 (2 cos 3t + 3 sin 3t) 52 ¢ (17 sin 3t + 6 cos 3t)

For large ¢, those terms of @ or I which involve ¢~ % are negligible and these are called the
transient terms or transient part of the solution. The other terms are called the steady-state

terms or steady-stale part of the solution.

17. Given the electric network of Fig. 3-12, 110 volts
determine the currents in the various P YHvTe 7
branches if the initial currents are zero. v D \ ]

Kirchhoff’s second law [see Page 80] states 10 ohms - Zhenrys
that the algebraic sum of the voltage or poten- N WWWW /000 ——AK
tial drops around a closed loop is zero. Let us 1
traverse loops KLMNK and JKNPJ in a clock- 20 ohms 4 henrya
w}se fashion as shown. In traversing these M L
loops we shall consider voltage drops as positive
when we travel against the current. A voltage Fig. 3-12
rise is considered as the negative of a voltage
drop.

Let I be the current in NPJK. This current divides at the junction point K into I, and I, so that

I = I, +1,. This is equivalent to Kirchhoff’s first law [see Page 80].
Applying Kirchhoff’s second law to loops KLMNK and JKNPJ, we then have respectively

dI, dl, )

—10I; ~ 2— + 4= + 20, = 0
dl, [

30 — 110 + 2=+ 10; = 0
4

or

T L = 0 ]
dI, [

o7+ 0L + 16, = 55

subject to the conditions I;(0) = I,(0) = 0.
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Taking the Laplace transform of the system and using the initial conditions, we find
—bi; — {81, — I;(0)} + 2{si, — I,(0)} + 10i{, = O
{8, — I,(0)} + 20¢, + 16i, = b5b/s
or (8+5); — (3+10)5, = 0
(s+20)i; + 15i, = b5b/s

From the first equation, ¢, = 2{,, so that the second equation yields

(28 + 5B)i, = 5;5 or i = 8(28%5—) = i“és_isﬁ
Then I, = 1 — e—s5t2
I, = 2, = 2 — 2¢~55t2
I = L +1, = 38— 8¢5t

APPLICATIONS TO BEAMS

18. A beam which is hinged at its ends =0
and =1 [see Fig. 3-13] carries a uni-

form load W, per unit length. Find the l l 1 1 1 1 l 1 1 l 1 1 1 l 1 j
deflection at any point. ? : —— ﬁ x
The differential equation and boundary con-
ditions are y
%2; = % 0<e<l (2)

Fig. 3-13
Y@©0)y=0, Y"(0)=0, Y() =0, Y'()=0 (2)
Taking Laplace transforms of both sides of (), we have, if y = y(s) = .£{Y(x)},

W,
#y — $Y0) — 2Y'(0) — sY"0) — Y0) = 57 @

Using the first two conditions in (2) and the unknown conditions Y’(0) = ¢;, Y'"(0) = ¢5, we find

2 Co W,
v = gtat Els
Then inverting,
_ cou® Wo gt cou® Wy xt
Y) = ez + 31 +ET4_T = cx + 5 +§ZE;I-
From the last two conditions in (2), we find
Y Y
“ = 2ET 2 = T 3ET
Thus the required deflection is
Y@) = sl (r-2d+ah) = ol (= )+ bt — o)
» = zmre ) = gagrrd-eN ®
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19.
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A cantilever beam [Fig. 3-14] is clamped
at the end =0 and is free at the end
z=1. It carries a load per unit length
given by ’

Wy = {Wo 0<2<l2

0 I2<z<l
Find the deflection.

The differential equation and boundary con-
ditions are

dty _ W)
det — EI

Y(0) =0, Y'(0) =0,

Y@ = o,

I<ax<l

Fig. 3-14

Y =0

In order to apply Laplace transforms, we extend the definition of W(x) as follows:

Wo

W) = {0

0<x<1/2
x> 1/2

This can be written in terms of Heaviside’s unit function as

W) = Wolllz) — Uz — 1/2)}

Taking Laplace transforms of (1), we have, if ¥y = y(s) = £ {Y(2)},

sty — 8Y(0) — s2Y'(0) — sY"(0) — Y'(0)

From the first two of conditions (2) and the unknown conditions

Wo
ET

1 — g—sl/2
s

Y7(0) = ¢, Y(0) = ey,

_a e, W 1~ e—si/2
v = @tatpsttoe
Inverting, we find
01$2 02x3 Wo x4 Wo (x — 1/2)4
Y@ = rt s tema- @ o4 eV
‘This. is equivalent to
;%2 1 W, 4
Y() = ,
c;x? 1 Wy " 0 1/2)4
> + 602"’3 + uRI> ~ ——24E1(x— /2) x> 12

We now use the conditions Y”’()) =0, Y"'() =0 to find

Cy =

A
1 = BRI’
Thus the required deflection is
W, 2 Wl W,
= T p2 3 4
¥(=) 1681° ~ 1281% t 24mI”®
Wol2 Wl Wo
6B ~ 1281° T 24BI°
or Y() =
W, I2 Wol W,
2 —_—
“ + 5iET

16E1™ ~ 12EI

x4 —

Wol
T 2EI

Wo B
YY) Ak

0
2151 "

— l/2)

U2V Uz — U/2)

0<x</2

12< <l

[CHAP. 3

)]
@

G}

(4
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20.

21.

A beam. has a concentrated load P, acting at the-point x=a. Show that we can
represent this loading by W(x) = Py 8(x —a) where § is the Dirac delta function or
impulse function. ‘

Consider 'a .uniform loading W, per unit
length over the portion of the beam between

a and a + ¢ [see Fig. 3-15]. Then the total load-
ing on this portion is

Wo[a+e—a,] = Wye

Fig. 3-15

Since this total loading is to equal Py, we must
have :

W) = Pyle a<z<a+te
0 otherwise

But we have already agreed to represent this in the limit as ¢ = 0 by
Wx) = Pyd(z—a)

Thus the required result is demonstrated.

A beam has its ends clamped at x =0 and
x =1 [see Fig. 3-16]. ‘A concentrated load
P, acts vertically downward at the point
x=1/3. Find the resulting deflection.

By Problem 20, the concentrated load at
z = l/3 can be represented by P, 8(x — 1/3) where
8 is the Dirac delta function or impulse func-
tion. Then the differential equation for the
deflection. and the associated boundary condi- Fig.3-16
tions are given by

iy P, .
= = E,%B(a: ~ U/3) LW
Y@ =0, Y@=0 YO=0 V(=0 @

Taking Laplace transforms, we have, if y = £ {Y(x)},

P,
sty — SY0) — s2Y'(0) — sY"(0) — Y'"(0) = E_"Ie—ls/s ®

Using the first two conditions in (2) and calling Y'"'(0) =¢,, Y"'(0) = ¢;, we find

¢ Cy Py o—1s/3
y = 3 + 4 Bl £ | )]
Inverting, we obtain )
. cyx2 co® Py (2 —1/3)3 :
Y@ = S+t R U — 1/3) | %)
or equivalently, . .
‘ dex? + tegxd . 0<z<l/3
Yz) = Py
‘-%claﬂ + degx® + m(z — 1/3)3 <<l
Ffom the last two conditions in (2), we find' ‘
4P, 1 - —20P,°

© = 7RI’ % = o7E1
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Then the required deflection is

2Py lv?  10Pyz® P
Y@ = Er ~ smr T eET@  YAUe— U3
2P, #2(31 — 5%)
BIET 0<z<l3
or Y =
2P, 22(31 — 5z) X
giET T gEr\®— U3» Us<z<l

PARTIAL DIFFERENTIAL EQUATIONS
22. Given the function U(z,t) defined for a=2=b, t>0. Find

oU| _ ® . 0U ol _ p—1
(a) °C{W} = j(: e tﬁ{dt, (d) {{%} = j‘: e taxdt

assuming suitable restrictions on U = U(z, t).

(a) Integrating by parts, we have

aU © 10 1 U
_ e -8t — —_ H — —
({at} j; e~¢ ot dt = 1im e~ st 3t dt

0

P P
+ sf e st Uz, t) dt}
0

0

I}i—x'nw {e‘“ Uz, t)

sf e st U(x,ty dt — Ul(z,0)
[}

= suz,8) — U(x,0) = su — U(x,0)
where % = u(x,8) = £ {U(x, t)}.

We have assumed that U(z, t) satisfies the restrictions of Theorem 1-1, Page 2, when regarded
as a function of t.

(b) We have, using Leibnitz’s rule for differentiating under the integral sign,

U = ® — 8 92 = d ® =8 = i’;"_
4{5} = J;e ot = Ej;e va = 2
23. Referring to Problem 22, show that
2
(@) «C{%} = stu(x,s) — sU(x,0) — U(z,0)
2U)  _ du
® <35} = @
oU

where Ui(z,0) = —

I and % = wu(z,8) = L {U(x,1)}.

t=0

Let V = aU/at. Then as in part (@) of Problem 22, we have

4{%—}’1} = 4{%‘}} = s.2{V} — V(&0
8[8£{U} - U(xio)] - Ut(xxo)
= 8 — sU(x,0) — Uy(z,0)

Note the similarity of the results of this problem and part (a) of Problem 22 with Theorems 1-6
and 1-9, Page 4. Extensions are easily made.
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24.

25.

Find the solution of

8U _ ﬂ — -8z
= 2at + U, U(x,0) = 6e

which is bounded for z >0, ¢t > 0.

Taking the Laplace transform of the given partial differential equation with respect to ¢ and
using Problem 22, we find

du _ _
a—; = ~2{su U(x,O)} + u

or du 28+ 1u = —12¢7 32 (1)
dx

from the given boundary condition. Note that the Laplace transformation has transformed the partial
differential equation into an ordinary differential equation (1).

—(2s+1) dz
To solve (1) multiply both sides by the integrating factor ef * = ¢~ (2s+1z Then (1)
can be written

a —(25+ D2y = 19 ¢—(2s+d)z

dz {ue Y= 12¢
Integration yields

ue_(28+1)1 = 6 e—(28+4)1 4+ ¢ or u = 6 6—31 + ce(28+1)1
s+2 s+2

Now since U(z, t) must be bounded as z—>«, we must have u(z,8) also bounded as z—« and it
follows that we must choose ¢=0. Then

= 3 -?- 2 e~
and so, on taking the inverse, we find
Uz,t) = 6e 2t—3
This is easily checked as the required solution.
aU U .
Solve T U(z,0) = 3 sin2xx, U(O,t) =0, UQR,{) = 0 where 0<z<1,

t>0.

Taking the Laplace transform of the partial differential equation using Problems 22 and 23, we find

su — U(x,0) = % or Tz T = — 3 sin 272 (43

where u = u(z,8) = L{U(x,t)}. The general solution of (1) is

u = cle‘/;“: + cze—‘/gl +

3 .
3T 4.2 Sin 22 @)

Taking the Laplace transform of those boundary conditions which involve ¢, we have

£{U0,t)} = u(0,8) = 0 and L{UL )} = u(l,8) = 0 ®
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26.
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Using the first condition [u(0,8) = 0] of (3) in (2), we have
¢g+e = 0 (4)
Using the second condition [u(1,s) = 0] of (3) in (2), we have
c;eVs + cpe=Vs = 0 - (%)

From (4) and (5) we find ¢;,=0, ¢c3=0 and so (2) becomes

_ 3 .
u = mstrm (6)

from which we obtain on inversion

Uxz,t) = 8e 4gin 2z (?)

This problem has an interesting physical interpretation. If we consider a solid bounded by the
infinite plane faces x =0 and x =1, the equation

aUu 2UuU

8t dx2

is the equation for heat conduction in this solid where U = Ul(z,t) is the temperature at any plane
face x at any time ¢ and k is a constant called the diffusivity, which depends on the material of the
solid. The boundary conditions U(0,f) = 0 and U(1,¢t) = 0 indicate that the temperatures at x =0
and z =1 are kept at temperature zero, while U(x,0) = 8 sin 27z represents the initial temperature
everywhere in 0 <z <1. The result (?) then is the temperature everywhere in the solid at time ¢ >0,
Further applications are considered in Chapter 8.

U _ U

Find the bounded solution of TR L

z>0,t>0 suchthat U(0,t)=1, U(x,0) = 0.

Taking the Laplace transform of the partial differential equation and the condition U(0,t) =1,
we find respectively

d2u d2y
su — U(x,0) = ) or a2 s = 0 (1)
1
and u(0,8) = s 2)
From (1), u = u(x,8) = c¢,eVs® + ¢oe~Vsz, Since U(x,t) must be bounded as « - «, wu(x,s) =

L {U(z,t)} must also be bounded as x—«». Then we must have ¢, =0, assuming Vs >0, so that
u(x,8) = cpe—Vez )

From (2) and (8) we find ¢; = 1/8, so that

o= Viz
u(x,8) =
s
Thus using Problem 48, Page 67, we find
x 2 @
Uz,t) = erfe <'—> = — e~ v du
2Vt V7 Yaaviy

Physically, this represents the temperature at any point of a semi-infinite solid « > 0 whose face
x =0 is kept at unit temperature and whose initial temperature is zero [see Problem 25].
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MISCELLANEOUS PROBLEMS

29

27. Suppose that in Problem 14, Page 88, an external force ¥(f) acts on the particle but
there is no damping force. (a) Find the position of the particle at any time if

F(t) = Focoswt. (b) Discuss the physical significance of your results.

(¢) If the external force ¥(t) is taken into account, the equation of motion becomes

d2X
255 = —8X + F(
or 2X” + 8X = F(¥)

As before, the initial conditions are

X(©0) = 10, X'(0) =0

If F(t) = Fycoswt, (2) becomes
2X"” 4+ 8X = Fjcosut

Taking Laplace transforms and using conditions (3), we find, if = = .£{X},

Fo 8
2{s2x — 8(10) — 0} + 8« yp
Then if «? # 4,
10s (Fo/2)s
82+ 4 (82 + 4)(s? + w?)

_ 1os Fy s s |
. T Yo —a) (P4 Pt

s2+4

L7 1{x} = 10cos2t + (cos 2t — cos wi)

d X _Fo
and so HE—1)
If »2 =4, then (5) becomes

10s (Fo/2)s
k4 | (24 4)2

and so using Problem 13, Page 58,

F
X = oz} = 10cos2t+-8—°tsin2t

¢))

@)

)

*)

(8)

6

™

®

@

(b) If v2=4 or w=2, i.e. if the frequency of the applied external foree is equal to the natural
frequency of the system, it is seen from (9) that the oscillations about the equilibrium position
increase indefinitely. This phenomenon is called resonance and the frequency corresponding to
w =2 is called the resonant frequemcy. If in such case the particle is attached to a spring, the

spring will break.

28. Work Problem 27 if (a) F(t) = FoU(t—a), (b) F(t) = Fo8(t).
(e) In this case the equation of motion is [equation (2) of Problem 27]
2X" + 8X = FyU(t—a)
where X(0) =10, X’(0) = 0. Then taking Laplace transforms, we find

FO e—as
8

2(s2x—10s) + 8z =




100

(b
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and = L0 ——Foe- -
T T ¥ T e
_ 108 | Feetm {1
T s2+4 8 —Is s2+4
Hence X = 10 cos 2t + §F0{1 — cos 2(t — a)} if t>a
10 cos 2¢ if t<a

Thus the displacement of the particle is the same as in Problem 27 until the time t = a, after
which it changes.

In this case the equation of motion is
2X" + 8X = F,5(b), X(0) =10, X'(0)=0

Then taking the Laplace transform, we find

2(s22—10s) + 8 = F,
10s Fy
o _8
T 2+1 T 3@t
Thus X = 10cos2t + 1F,sin2¢ )

Physically, applying the external force Fg3(t) is equivalent to applying a very large force
for a very short time and applying no force at all thereafter. The effect is to produce a displace-
ment of larger amplitude than that produced in Problem 14. This is seen by writing (Z) in the form

X = /100 + F2/16 cos (2t — ¢) @
10 . Fo/4
where cos ¢p = /-, sing = —————
V100 + F2/16 V100 + F3/16

or tang¢ = Fy/40, so that the amplitude is V100 + F2/16.

29. Let Y = Y (¢) be a solution of the equation

Y@ty + PBYY'(t) + Q)Y(t) = 0

Find the general solution of Y”(t) + P(t)Y’(t) + Q(t) Y(£) = R(?).

The differential equation whose general solution is sought is given by

Y' + PY + QY = R (1)

Since Y =Y, is a solution of this equation with the right hand side equal to zero, we have

Yy + PY; + QY, = 0 (@)
Multiplying equation (1) by Y,, equation (2) by Y, and subtracting, we find

Y,Y" - YY + P(Y,Y—YY; = RY, ®

which can be written

d '
Fate Y — YY) + P(Y,YY—YY) = RY, 4)
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An integrating factor of this equation is

efpa

Multiplying (4) by this factor, it can be written as

dt{ frecy v — vy )} = Ry, J™®
Then by integrating,
> ’ ad
Jy vy —vy) = f RY &d "%t + o
or Y, V' — YY; = e_fpdtf RYledetdt + cle_fpdt

where ¢, is a constant of integration.

Dividing both sides of (?) by Y%, it can be written as

d/Y —det -fPat
a(?;) = f RY, & P4 at + o,

Y

Integrating both sides of (8) and multiplying by Y,, we find, if ¢; is a constant integration,

efpdtdt} dt

Pdt

Y = CIYI j. e—f dt + 02Y1 + Yl f e—
v}

This is the required general solution. For another method, see Problem 103.

30. Find the general solution of (a) tY” +2Y’+tY = 0, (b) tY” +2Y’ + 1Y = csct.

(a) According to Problem 10, a particular solution of the given differential equation is

sint
t

Y, () =

Since the given differential equation can be written in the form (I) of Problem 29 with

P=2/t Q=1 R =0
we see from equation (9) of Problem 29 that the general solution is

- j 2t dt :
f sin ¢
e dt + eg—5—

sin ¢
Y = a7 sin? t/t2

. int
clsutltf escztdt + czsutl

cott) + ep—— F s

where we have written ¢, = —A, ¢; = B as the arbitrary constants.

(b) In this case we use equation (9) of Problem 29 with

=2/t, @ =1, R = (csct)/t
and we find

Yy = Acost:-Bsmt_cost_l_smtl:lsmt

gin ¢ — Acost+ Bsint

101
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31. Solve the partial differential equation

%Y Y ;
7 4ax2 +Y = 16z + 20sinx
subject to the conditions
Y(,t) =0, Y(rt)=16x, Y.(z,0) =0, Y(z,0) = 16z + 12 sin2x — 8sin3x
Taking Laplace transforms, we find
- _ 1% _ 16z |, 20sinx
82y sY(x,0 — Y, (x,0) 401”2 +y = p, + 5 (1)
or, on using the given conditions,
2 —4(s2 ;
Py _lerrry = HEFDz_SSNE g ginge + 2esinge ()
16
¥©0,8) = 0, ylr8) = — ®
A particular solution of (2) has the form
Yp = ax + bsinw + ¢sin2x + dsindzx 4)
Then substituting and equating coefficients of like terms, we find the particular solution
_ 16z 20 sinx 12s sin 2« 8g sin 3x
B T T we+s) T E+1T 2+ 87 @

The general solution of the equation (2) with right hand side replaced by zero [i.e. the complemen-
tary solution] is

Yo = € e~ ¥BVsi+lx 028%\/32+lx (6)
Thus the general solution of (2) is
¥ = ¥pt+ ¥ @

Using the conditions (3) in (?), we find
e1+c = 0, e e~ ®VSETIT 4 o gWVeit1T - g

from which ¢; = ¢ = 0. Thus

16x 20 sin 12ssin2x  8s sin 3w

Y = VY aern T EFIT 2+ 37

Then taking the inverse Laplace transform, we find the required solution

Y(x,t) = 16x + 4sinz(1—cosVbt) + 12sin2x cosV/17t — 8 sin 8z cos V3Tt

»

Supplementary Problems

ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

32.

33.

Solve each of the following by using Laplace transforms and check solutions.
Y'(t) + 4Y(t) = 9, Y(0)=0, Y'(0)=T1. Ans. Y(t) = 3t + 2sin2t

Y”(t) — 3Y'(t) + 2Y(t) = 4t + 12¢—t, Y(0) =6, Y'(0) = —1.
Ans. Y(t) = 8¢t — 22 + 2t + 8 + 2¢~¢
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34.

36.

37.

38.

39.

40.

41.

42.

43.

Y''(t) — 4Y'(t) + 6Y(t) = 1256¢2, Y(0) = Y'(0) = 0.
Ans. Y(t) = 262 + 40t + 22 + 2¢2t (2 gin ¢t — 11 cos £)

Y'(t) + Y(t) = 8cost, Y(0)=1, Y'(0) = —1.
Ans. Y(t) = cost — 4sint + 4t cost

Y'"(t) - Y(t) = ¢, Y(0)=0, Y(0)=0, Y(0)=0.

3
Ans. Y(t) = Jtet + {ge“m{9 cos—\;—gt + §2—\/§sin\—;_—t} — jet

YV(t) + 2Y"(t) + Y(¢) = sint, Y(0) = Y'(0) = Y"'(0) = Y'"{0) = O.
Ans. Y(t) = J{(8—1¢?) sint — 3¢ cos t}

Find the general solution of the differential equations of.
(a) Problem 2, Page 82; (b) Problem 3, Page 83; (¢) Problem 6, Page 84.
Ans. (a) Y = cjet + cyet + 4te?t

(B) Y = e t(e; sin2t + cgcos2f) + le~tsint

Solve Y"(f) + 9Y(t) = 18t if Y(0) =0, Y(x/2) =0.  Ams. Y(t) = 2t + « sin 3¢

Solve Yiv(t) — 16Y(t) = 30sint if Y(0)=0, Y'(0)=2, Y'(r) =0, Y"'(z) = —18.
Ans. Y = 2(sin2t — sint)

Solve Y” —4Y' +3Y = F(t) if Y(0)=1, Y'(0) = 0.
{

Anms. Y = jet — let + gf (e — &%) F(t — u) du
0

Solve the differential equation
Y'4+4Y = F@t), Y(0)=0, Y(0)=1

where F(@t) = 1 o<t<l1 .
0 t>1
Ans. Y(t) = 1 sin 2t + 1{cos (2t —2) — cos 2t} for t>1
and Y(f) = $sin2t + }(1 —cos2t) for £<1

103

() Y = ¢, sin3t + cpcos3t + } cos2t

Solve Problem 42 if: (a) F(t) = U(t —2), [Heaviside’s unit step function]; (b) F(¢t) = 8(t), [Dirac

delta function]; (¢) F(t) = §(t —2).

Ans. () Y(t) = §sin2t if t<2, Llsin2t + }{1 —cos(2t—4)} if ¢t>2
() Y(t) = sin2t, t>0
(€) Y(f) = }sin2t if ¢ <2, }{sin2¢+ sin(2t—4))2 if t>2

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

4.

46.

47.

Solve each of the following by using Laplace transforms and check solutions.

Y"4+tY' —Y =0, Y(0) =0, Y'(0)=1. Ans. Y =t
tY” + (1—20)Y' —2Y = 0, Y(0)=1, Y'(0) = 2. Ans. Y = e
tY" 4+ (¢.—1)Y'—Y = 0, Y(0) =5, Y(»)=0. Ans. Y =be—t

Find the bounded solution of the equation
e2Y” + tY' + (#-1)Y = 0
which is such that Y (1) = 2. Ans. 2J,(t)/J4(1)
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SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

Y'—2 = et
Ans. Y = 2+-%t2+%e"‘—-%sint+§cost, zZ = 1—-&e‘t+§sint-—-&cost

’ [ —
48. Solve {Y T2 =1t ibject to the conditions Y(0) =3, Y'(0) = —2, Z(0) = 0.

. — ol
9. Solve JY —Z —2Y+2Z = sint . yi0) = yi0) = 2(0) = 0.
Y422 +Y = 0
Ans. Y = le~t+ ket —Lecost— Zsint+ Jte=t, Z = le~t — le2 + ftet

X' +2Y" = et
50. Solv it X(0) = Y(0) = ¥'(0) = 0,
ove {X'+2X—Y=1 X0 =0 =10

Ans. X =1+ e t—e at—e b, ¥ = 1+e-t—be~ot —ae~bt where a = }(2—V2), b = }2+V2)

51. Solve Problem 49 with the conditions Y(0) =0, Y'(r) =1, Z(0) = 0.

52.

r _ _
Solve {‘Y+Z HEZ2 = (t—1)e7t  iien that Y(0) =1, Z(0) = —1.

Y —Z = et
Ans. Y =Jo(t), Z=—Jy(t) ~e~t

53. given that Y(0) = -1, Y'{0) = 2, Z(0) = 4, Z'(0) = 0.

tY”" —Z' = sint

Ang. Y = 3@ +§t—3— ke t, Z = 32+ §+ Jet+ Lte~t+ cost

Solve {-31’" + 8Z" = te~t—8ecost

54. Find the general solution of the system of equations in Problem 49.
Ans. Y = ¢+ ¢cp8int + ezcost + §£2 + fe—t

Z = 1— cysint — cycost — et

APPLICATIONS TO MECHANICS

55. Referring to Fig. 3-1, Page 79, suppose that mass m has a force F(t), £>0 acting on it but that no
damping forces are present.

(a) Show that if the mass starts from rest at a distance X = a from the equilibrium position (X = 0),
then the displacement X at any time £ > 0 can be determined from the equation of motion

‘ mX'"+ kX = F@¢), X(0)=a X(0)=0
where primes denote derivatives with respect to t.
() Find X at any time if F(¢) = F, (a constant) for ¢ > 0.
(¢) Find X at any time if F(f) = Foe— % where a > 0.

Ans. (b)) X +Fofy k.,
ns. a k COS —ﬁ

F 3V
0 — cos Vk/mt) + Msin\/k/mt

—_— (e~
ma?+k ’Ina2+k

(¢) X = @a+
56. Work Problem 56 if F(t) = F, sin f, treating the two cases: (a) w #* Vk/m, (b) v = Vk/m. Discuss
the physical significance of each case.

57. A particle moves along a line so that its displacement X from a fixed point O at any time t is given by

X"(t) + 4X(t) + 5X(¢) = 80 sinbt
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58.

59.

61.

62.

(@) If at t =0 the particle is at rest at X =0, find its displacement at any time t > 0.
(b) Find the amplitude, period and frequency of the motion after a long time.
(¢) Which term in the result of (a) is the transient term and which the steady-state term?

(d) Is the motion overdamped, critically damped or damped oscillatory?

Ans. (a) X(t) = 2e—2(cost+ T sint) — 2(sin 5¢ + cos 5t)

() Amplitude = 2V/2, period = 2¢/5, frequency = 5/2r

(¢) Transient term, 2¢—2 (cos t + 7 sin t); steady-state term, —2(sin 5t + cos 5¢)

(d) Damped oscillatory
Suppose that at ¢t =0, the mass m of Fig. 8-1, Page 79, is at rest at the equilibrium position X =0.
Suppose further that a force is suddeniy applied to it so as to give it an instantaneous velocity V,

in a direction toward the right and that the force is then removed. Show that the displacement of
the mass from the equilibrium position at any time ¢ > 0 is

(2) Vo \/—%— sin \l%t

if there is no damping force, and

Vo k B?
— e—Bt/2 = ’_ R -
(b) 2 ¢ t/2m  where Yy = " AmE

if there is a damping force of magnitude 8 X'(f) where 8 < 2Vkm.
Work Problem 56 if: (a) F(t) = F,U(t — T), [Heaviside’s unit step function]; (b) F(t) = Fy8(t—T)
[Dirac delta function]. Discuss the physical significance in each case.
Ans. (@) X = aFjcosVk/mt if t<T and
= aFgcosVk/mt + (Fo/k){1 — cosVk/m(t—T)} if t> T
aFycosVk/mt if t<T and
= aFycosVk/mt + (Fo/Vkm) sinVk/m(@t—T) if t> T

(®)

Mo
1§

Suppose that at t =0 the mass m of Fig. 3-1, Page 79, is at rest at the equilibrium position and that
a force F, §(t) is applied. Find the displacement at any time £>0 if (a) the system is undamped,
(b) the system is critically damped. Discuss the physical significance of each case.

Fy

m

Ans. (a)

F
sinVE/mt, (b) —'te8t/zm

A ball of mass m is thrown upward from the earth’s surface with velocity V,. Show that it will rise
to a maximum height equal to VZ/2g, where g is the acceleration due to gravity.

A mass m moves along the x axis under the influence of a force which is proportional to its instan-
taneous speed and in a direction opposite to the direction of motion. Assuming that at ¢=10 the
particle is located at X =a and moving to the right with speed V,, find the position where the mass
comes to rest.

A particle moves in the xy plane so that its position (X,Y) at any time is given by

X"+ kY = o Y’ + X = 0
If at time ¢ = 0 the particle is released from rest at (a, b), find its position at any time £ > 0.
ko + bk ko — bk
Ans. X = 00 cos Vit + %2 771) cosh kikyt
2k, 2k,
aky + bk, ak, — bk,
Y = (2—"71) cos Vkiko t (—2—":1—) cosh ki ko t
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APPLICATIONS TO ELECTRICAL CIRCUITS

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

A resistor of R ohms and a capacitor of C farads are con-

nected in series with a generator supplying E volts [see @
Fig. 3-17]. At ¢ = 0 the charge on the capacitor is zero.
Find the charge and current at any time ¢t > 0 if: (a¢) E = E,, =
a constant; (b) E = Eje—at, ¢ >0. R (o—
Ans. (@) Q = CEy(1 — e~ t/RC), ] = (E,/R)et/RC
b = " —at — g—t/RC s
(b) @ = {2 (emat — e~t/RC)
Fig. 3-17
CEo e—t/RC
= ) :
I 1*(1RC< RC ae > if «a # 1/RC
Work Problem 64 if E = E,sinwt and the initial charge on the capacitor is Q,.
wBo Ey (4 cos wt — (1/RC) sin wt
= — % | g-t/rRe — __Z _
Ans. Q {QO + R(w2+1/RZC2)} e R{ 2 T 1/RC? » I = dQ/dt

An inductor of L henrys and a capacitor of C farads are in series with a generator of E volts. At
t = 0 the charge on the capacitor and current in the circuit are zero. Find the charge on the capacitor
at any time ¢ >0 if: (a) E =E,, a constant; (b) E = Eqe—t, o > 0.

Ans. (@) @ CEy{1 — cos (t///LC)}

Eo —a QEoVC/L -
b Q@ = m{e ‘—cos(t/VLC)}+m51n(tIVLC)

Work Problem 66 if F = E,sinot, discussing the cases (a) w# 1/VLC and (b) v = 1/VLC and
explaining the physical significance.

Work Problem 66 if E(t) is (a) EyU(t — a) where U(t — a) is Heaviside’s unit step function, (b) E, §(t)
where §(t) is the Dirac delta function.

Ans. (@) Q=0 if t<a, and CEO{I-—cos<t—L%l>} if t>a

(b)) @ = E,WC/Lsin(t/VLC)

An inductor of 3 henrys is in series with a resistor of 30 ohms and an e.m.f. of 150 volts. Assuming

that at £ =0 the current is zero, find the current at any time ¢ > 0. Ans. I = B(1 —e—10t)
Work Problem 69 if the e.m.f. is given by 150 sin 20¢. Ans. I = sin 20t — 2 cos 20t + 2e—10¢
Find the charge on the capacitor and the current in @ K/

the circuit [Fig. 3-18] at any time ¢t after the key K is N/

closed at t =0. Assume that L,R,C and E are con-
stants and that the charge and current are zero at
t=0. Treat all cases. g L

() Work Problem 71 if E = E, sin ot. (b) Show that
1 R2 R
LC 2L WWW—
Fig. 3-18

An electric circuit consists of an inductor of L henrys in series with a capacitor of C farads. At t=0
an e.m.f. given by

resonance occurs if we choose o =
(¢) Discuss the case R=0.

B = JFot/To 0<t<T,
0 t>T,

is applied. Assuming that the current and charge on the capacitor are zero at t =0, find the charge
at any time ¢t > 0.
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74.

Ans. @

Il

CE
—TO—" {t — VLCsin(t/YVLC)} if 0<t<T, and

CE t—T t—T t
Q = T;{Tocos< o>+\/LCsin< o)—\/LCsin\/ZE} it t> T,

VILC VLC
In the electric circuit of Fig. 3-19,
_ (7)) 4
E = 500 sin 10t \_/ v
R, = 10 ohms I
R, = 10 ohms <
L = 1 henry %Rl 4 —— R,
C = .01 farad
If the charge on the capacitor and the currents L
I, and I, are zero at ¢t =0, find the charge on the —TOD
capacitor at any time ¢ > 0.
Ans. Q@ = sin10t — 2 cos 10¢ + e~ 19t (sin 10¢ + 2 cos 10t) Fig. 3-19

APPLICATIONS TO BEAMS

75.

76.

77.

8.

79.

80.

81.

82.

83.

A beam which is clamped at its ends £ =0 and x =1 carries a uniform load W, per unit length. Show
Wy 22(l — x)2
that the deflection at any point is Y(x) = —siET

Work Problem 75 if the end x =0 is clamped while the end # =1 is hinged.

A cantilever beam, clamped at £ =0 and free at x =1, carries a uniform load W, per unit length.
2

x
(22 — 4lx + 612).

174
Show that the deflection is Y(x) = 240T

A beam whose ends are hinged at =0 and z =1 has a load given by

W) = {° 0<z<i/3
Wo US<uz<l

Find the deflection.

A cantilever beam, clamped at x =0 and free at x =, carries a concentrated load Py, at x =1. Show

Py x2
that the deflection is given by Y(x) = %(31— ).

Work Problem 79 if the load is at = = 1/2.

A beam has its ends hinged at =0 and # =1I. If a concentrated load P, acts vertically downward at
2 =1/2, show that the deflection is

P()it
Y() = m(3l2— 4x2) 0<e <2

The deflection for /2 < z <l is obtained by symmetry or by replacing xz by I —=.
Work Problem 81 if the ends of the beam are clamped.

A beam has its ends hinged at x =0 and x =1. A concentrated load P, acts vertically downward at
the point # =1/3. Show that the deflection is given by
Py (512 — 9x2)

P
Y@) = ——gpr— t G—E?I(x — UY3)3 Uz — 1/3)



108 APPLICATIONS TO DIFFERENTIAL EQUATIONS [CHAP. 3

84. A beam has its ends hinged at # =0 and 2 =1. The beam carries a uniform load W, per unit length
and also has a concentrated load P, acting at 2 =1/2. (e¢) Find the deflection. (b) Discuss how the
solution in (a) can be obtained from the solutions to Problems 18 and 81. Explain.

85. A beam whose ends are clamped at x =0 and x == [ carries a load W(x) per unit length given by

W(z) = 0 0<x< /2
Woz U2<2<]

and also a concentrated load at x = I/8. Find the deflection.

PARTIAL DIFFERENTIAL EQUATIONS

U _ 52U
at — Toax2

Ans. Uz, t) = 10 e—327% gin dzx

86. Solve Uuo,t)y =0, UGB,¢t) =0, U(z,0) = 10 sin 47z.

87. Work Problem 86 if U(x,0) = 10 sin47s2z — 5 sin 6rz.

Ans. U(z,t) = 10e—32a% gindpx — b e~727% gin 672
92Y %y . .
88. Solve Fro ga—xf’ Y(0,¢) =0, Y(2,¢) =0, Y(x,0) = 20 sin2zx — 10 sin 5rz.
Ang. Y(x,t) = 20 sin2rz cos6xt — 10 sin brzx cos 15t

89. Give physical interpretations to (a) Problem 86, (b) Problem 87, (¢) Problem 88.

TaU 92U .
90. Solve Tl 3%7, UL 0,t) = 0, Ux/2,t) = 0 if:
(@) U(x,0) = 80cosbx, (b) U(x,0) = 20 cos3x — b cos9x
Ans. (a) 30e"tcosbx, (b) U(x,t) = 20e 27t cos3x — 5e~243 cog 9z

91. Present a physical interpretation of Problem 90.

2
8 U v, UO.H =0, Uwt =0, U0 = 6sinz— 4sin2e.

(b) Give a possible physical interpretation to the solution.

92, (a) Find the solution of

Ans. (a¢) U(x,t) = 6e Stginxe — 4 ¢ 8 gin2x
2y a2y
93. Solve T 16%5, Y.0,¢8)=0,Y3,t) =0, Y(x,0) = 0, Y (,0) = 12 cos vz + 16 cos 3zz — 8 cos brz.

Ams. Y(x,t) = 12 cos rx sin 4zt + 16 cos 37z sin 127t — 8 cos brx sin 207t

94. Find the bounded solution Y(x,f), 0 <2 <1, t>0 of the boundary-value problem

oY
P % = 1— et Y(,0) = =
Ans. Y(z,t) = 2+ 1— et
95. Solve the equation - -
%72— = %x_2 >0, t>0

subject to the conditions

Y(0,t) = 10sin2t, Y(x,0) = 0, Y (x,0) = 0, lim Y(x,t) = 0
T b0
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MISCELLANEOUS PROBLEMS

96. Show that the solution of the differential equation
Y'(t)y — k2Y(t) = F(t)

subject to Y(0) =a, Y'(0)=b is
t
Y(t) = acoshkt + (b/k)sinhkt + % f F(u) sinh k(t — u) du
°

Solve Yiv(t) + Y'"(t) = 2sint, Y(0)=Y'(0)=0, Y"(0) =1, Y'(0) = —2.

97.
Ans. Y = L2 — 2+ et + sint + cost
98. Find the general solution of the differential equation of Problem 45.
e—2t
Ans. Y@ = c,e”f —t—dt + ecpet
99. Find that solution of the equation
tY” — (t+2)Y +8Y = t—1
which has a Laplace transform and is such that Y(0) = 0.
100. What is the general solution of the differential equation in Problem 99?
101. (¢) Use Laplace transforms to show that the solution of
Y(0) =a, Y(0O)=28

2
%t% + k2Y = A coswt,
is Y(@) = A (coi;;t_—kgos kt) + acoskt + (B/k) sin kt.

(b) Give a physical interpretation of the results of part (a).

X+Y =Y+2Z
X+z i X(0)=2 Y(0)=-38 Z(0)=1.

102. Solve for X: Y+ 2 =
X +7Z X+Y

Ans. X = %e %2{3cos (V3 t/2) — 2V/8sin (V3 t/2)}

103. Work Problem 29 by letting Y = VY, where V is a new dependent variable.

104. Can the method of Laplace transforms be used to find the general solution of
Y'"+Y = sect

Explain.

105. (¢) Find a bounded solution of
t—1DY" + -4y’ — 4Y = 0

such that Y(0) =3. (b) What is the general solution of the equation in (a)?
e—4t
c,e“f mdt + eqetdt

Ans. (@) Y =3¢, (b) Y =
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106.

107.

108.

108.

110.
111.

112,

113.

114.

115.

116.

APPLICATIONS TO DIFFERENTIAL EQUATIONS [CHAP. 3

_ *® e—tzﬁ
(a) Show that I(t) j; S dx

satisfies the differential equation

a1 - 1 = -
S~ = 2\/‘, 1(0) = /2

(b) By solving the differential equation in (a), show that
Iy = ZeterfeVt

A particle moving on a straight line (the = axis) is acted upon by a force of repulsion which is pro-
portional to its instantancous distance from a fixed point O on the line. If the particle is placed at
a distance a from O and is given a velocity toward O of magnitude V,, find the distance of closest
approach to O.

If the ball of Problem 61 encounters air resistance proportional to its instantaneous velocity, show
that the maximum height reached is

m 2
ﬁ(kVo + mg — kg) — %q_

where k is a constant of proportionality.
In the circuit of Fig. 3-18, Page 106, suppose that the e.m.f. E is a function of ¢ while L,R and C

are constants. At the instant ¢ = 0 that the key K is closed, assume that the charge @ on the capacitor
and current 7/ are zero. Show that if R2 < 4L/C, then the current at any time ¢ > 0 is given by

) = ;4 J: E(t — u) e~Ru/2L <cos at ~— 21% sin au) du
where a = \/1/LC——R2/4U
Work Problem 109 if (a) R2=4L/C, (b) R2> 4L/C.
Present a mechanical analog to (a) Problem 64, (b) Problem 66, (¢) Problem 71.

Give an electrical analog to (a) Problem 55,
(b) Problem 57. F(8)

Give a mechanical analog to Problem 74 involv-
ing masses connected by springs.

A particle of mass m moves along the z axis
under the influence of a force ¥(t) as indicated 0 T/2 T
in Fig. 8-20. If the particle starts from rest

at ¢ = 0 determine its position and speed at any

time £ > 0. Fig. 3-20

A beam which is clamped at =0 and x =/ carries a concentrated load P, at a point x =a where
0<a<!. Show that the deflection is

Py a2(l— a)?
- - - <
[ FA {3al ~ (2a + D)z} 0<z<a
Yi) = R
Pyx(l— a)? Py(x—a)d

Work Problem 115 if the beam is clamped at £ =0 but free at z =1.

P0x2
6F1

Ba—2) 0<z<a

Ans. Y() =
Po a2 [
G—E,l—.—(3x —a) ae<x<
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117.

118.

119.

120.

A beam which is hinged at # =0 and x = carries concentrated loads P, at « =1/3 and x = 2!/3. Find
the deflection.

If a beam carrying a load W(x) per unit length rests on an elastic foundation, the differential equation
for the deflection is
EI i d =
Y + kY = W)
where k is called the elastic constant of the foundation. Suppose that such a beam, clamped at both
ends x =0 and x =/, carries a uniform load W, per unit length. Show that the bending moment at
=0 is given by

2a \sinhal + sinal

where a = \/4 k/AEI.

Two electric circuits, called the primary and 1, I
secondary circuits, are coupled inductively as . > 22
shown in Fig. 3-21.
Primary Secondary
(a) If M is the mutual inductance, show that
the currents I, and I, are given by M L
dl, R Md12 B §R2
Ligg + B+ Mg = R,
dI2 dIl L L
" i 1 2
L2dt+R2I2+Mdt 0 DT 7 T ——
(b) If the currents I; and I, in the circuits are Fig. 3-21
zero at time ¢t =0, show that at time ¢>0 .
they are given by
ho= pa(fEse) s BB (emt ety | E
L1L2 hd M2 a) — ag ay — ag oy a 1
I _ EM ext — ea,t)
2 - L1L2 - M 2 Qg —

where «; and a, are the roots of the equation

(LyLy — M?)a? + (LyRy+ LyRy)a + ByRy, = 0

Discuss Problem 119 if L,L, = M2,



Chapter 4

INTEGRAL EQUATIONS

An integral equation is an equation hé.ving the form
b i ’
Y(t) = F(@t) + f K(u,t) Y(u) du . @)

where F(t) and K(u,t) are known, a and b are either given constants or functions of ¢, and
the function Y(t) which appears under the integral sign is to be determined.

The function K(u, ) is often called the kernel of the integral equation. If a and b are
constants, the equation is (_)ften called a Fredholm integral equation. If a is a constant
while b =t, it is called a Volterra integral equation. '

It is possible to convert a hnear differential equatlon mto an integral equation. See
Prob]ems 1-8 and 25. : '

INTEGRAL EQUATIONS OF CONVOLUTION TYPE

A special integral equation of importahce in applications is
Y() = F@) + J; " K(t— ) Y) du | @)
This equation is of convolu’ti'bn type and can be written as
| | Yt) = F@) + KE*Y(@)

Taking the Laplace transform of both sides, assummg L {F(t)} = f(s) and . {K(t)} = k(s)
both exist, we find '

W) = A+ ke or ) = L9

The required solution may then be found by inversion. See Problems 5 and 6

112
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ABEL’S INTEGRAL EQUATION. THE TAUTOCHRONE PROBLEM.

An important integral equation of convolution type is Abel’s integral equation

" Y(u)
) EmuE ™

where G(t) is given and « is a constant such that 0 <a <1.

= G(t) (3)

An application of Abel’s integral equation is that of finding the shape of a frictionless
wire lying in a vertical plane such that a bead placed on the wire slides to the lowest point
in the same time T regardless of where the bead is placed initially. This problem is called
the tautochrone problem and the shape of the wire can be shown to be a cycloid. [See
Problems 7-9.|

INTEGRO-DIFFERENTIAL EQUATIONS

An integro-differential equation is an integral equation in which various derivatives
of the unknown function Y(¢) can also be present. For example,

Y'(t) = Y(t) + sint + ft cos (t —u) Y(u) du 4

is an integro-differential equation. The solution of such equations subject to given initial
conditions can often be obtained by Laplace transformation [see Problem 10].

DIFFERENCE EQUATIONS

An equation which relates the function Y(t) with one or more functions Y({ —«), where
« is constant, is called a difference equation.

Example. Y(t) — 4Y(t—1) + 3Y(t—2) = ¢ is a difference equation.

In various applications it is posgible to formulate a difference equation from which we
seek the unknown function Y(f) subject to specified conditions. Determination of this
function, which is called solving the difference equation, can often be accomplished by the
Laplace transformation. See Problem 11.

Difference equations involving relations of terms of the sequence ay, a1,4a:, ..., such as
for example @n:+2 — 5a,:1+ 6a,. = 0 where ao=0, a; =1, can also be solved by Laplace
transforms. See Problems 18, 19 and 24.

DIFFERENTIAL-DIFFERENCE EQUATIONS

A differential-difference equation is a difference equation in which various derivatives
of the function Y(¢) can be present. Thus, for example,

Y(t) = Y(—1) + 2t (5)

is a differential-difference equation. See Problem 12.
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It is also possible to have an integro-differential difference equation which is a differ-
ential-difference equation in which the unknown function Y(t) can also appear under an
integral sign.

Solved Problems
INTEGRAL EQUATIONS

1. Convert the differential equation
Y”(t) — 3Y'(t) + 2Y(¢) = 4sint, Y0)=1, Y’'(0)= -2
into an integral equation.

Method 1.
Let Y'(f) = V(t). Then using Problem 23, Page 57, and the conditions Y’/(0) = —2 and Y(0) = 1,

Y'(9) = ft V(u) du — 2, Y(t) = ft t—wV(w)du — 2t + 1
0 0
Thus the differential equation becomes
vt — 3ft V(uydu + 6 + 2ft (t—u)V(u)du — 4t + 2 = 4sint
0 0
from which we obtain

t
V) = 4sint + 4 — 8 + f 18 —2(t—w)} V(u) du
0

Method 2.
Integrating both sides of the given differential equation, we have

t ¢
f {Y"(u) — 8Y'(u) + 2Y(u)} du = f 4 sinu du
0 0
T
or Y'(t) — Y’'(0) — 8Y(t) + 3Y(0) + 2J‘ Yu)du = 4 — 4dcost
0
This becomes, using Y’(0) = —2 and Y(0) =1,
t
Y'(ty — 8Y(t) + 2f Yu)ydu = —1 — 4cost
0

Integrating again from 0 to t as before, we find

t t
Y(t) — Y(0) — 3fo Y(u)du + 2fo (t—uw)Y@du = —t — 4dgint

t
or Yi) + f {2(t—u) — 8} Y(u)ydu = 1 — t — 4sint
0
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2. Convert the differential equation
Y't) + A-)Y'(t) + etY(t) = ¢ — 5t, Y(0)=-3, Y'(0)=4

into an integral equation.

Method 1.
Letting Y''(t) = V(¢) and using Y'(0) =4, Y(0) = —3 we have as in Problem 1, Method 1,

t t
Y@ = f Viu) du + 4, Yt) = f (t—u)Vu)du + 4t — 8
0 0
Thus the differential equation becomes
¢ t
V) + (l—t)f Vuydu + 40—t + e“f Et—uw)V(w)du + 4te—t — 8¢t = 3 — Bt
0 0

which can be written .
Vi) = 8 — t — 4 + 8¢t — 4tet + f {t—1—et({t—uw} V() du
0

Method 2.
Integrating both sides of the differential equation as in Problem 1, Method 2, we find

t t t t
J; Y’ (u)du + j(; 1—w)Y'(u)du + J; e v Y(u)du = j; (4 — Bu) du

Then integrating by parts in the second integral, we find

t ' ¢ # B2
Y@ — Y(0) + <(1—uY(w +f Y(u)du} + f e~u Y(u)du = I~ 5
0 0
ie., 0
' ¢ # B2
Y(t) — Y0 + A—8Y(#) — Y0 + f Y(u)du + f et Ywydu = - 5
0 0
‘ ' # b2
or v + a-o¥® + [ Yaau + [ evvaa = 54
0 0
Another integration from 0 to ¢ yields
t t ¢ t5 5t3
Y(t) ~— Y(0) +f (1 —w) Y(u)du +f (t—w) Y(u) du + f t-wesvman = -5,
0 0 0
which can be written
‘ 5 bt3
Y(t)-*-f {1+t—2u+(Et—we ¥} Y(w)du = 5§ Tt 3

0

3. Express as an integral equation the differential equation
Y"(t) — 4Y"'(t) + 6Y""(t) — AY'(t) + Y(t) = 3 cos2t
subject to the conditions Y(0)=-—1, Y’(0)=4, Y”(0)=0, Y"'(0)=2.

Method 1.
Let Yiv(t) = V(t). Then as in Problems 1 and 2, we find

t
Yy = f “Vydu + 2, Y = fo (t—u) V(u) du + 2¢
0

t o b
Y = fo ¢ 2!“)2 Vdu + & + 4,  Y(@) = fo (t 3!“)3 Vi) du + t3—3 + 4t —1
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Substituting these into the given differential equation, it becomes

¢
V) = 25 — 16t + 412 — 4t + 3 cos2t + f {4 —6(t—u) + 2(t—u)2 — L(t —w)3} V() du
0

Method 2.
Integrating successively from 0 to t as in the second methods of Problems 1 and 2, we find the
integral equation

Y(t) — ft {4—6(t—w +20t—u)2 —Ft—upB} Y(u)du = _B + 8t — 85¢2 + 58 + icos2t
0 16 8 16

These integral equations, as well as those obtained in Problems 1 and 2, are Volterra integral
equations; the limits of integration are from 0 to . In general this type of integral equation arises
from linear differential equations where conditions are specified at one point. For an example of a
Fredholm integral equation which arises from linear differential equations in which conditions are
specified at two points, see Problem 25.

Convert the integral equation
1
Yt) = 3t —4 — 2sint + f {(t—u)>—3(t—wu) +2} Y(u)du
(1}
into a differential equation.

We make use of Leibnitz’s rule,

4 v
dt

b(t)
9K &b e
act) Kl £y du Jam ¢ du + K{b(), 3 — Kla(t),t} 5 )

Thus we have on differentiating both sides of the given integral equation,
t t
Y(() = 38 — 2cost + f 2(t—u) Y(u)du — 3f Y(u)du + 2Y(t) (¢9]
0 0
Another differentiation yields,
¢
Y€ = 2sint + 2f Y(u)du — 3Y(t) + 2Y'(%) (€))
0
and a final differentiation yields the required differential equation
Y'"(#t) = 2cost + 2Y(t) — 3Y'(t) + 2Y"(¢) 4)
or y" — 2Y” 4+ 8y’ — 2Y = 2cost

The initial conditions obtained by letting ¢t =0 in the given integral equation and also in equations
(2) and (3), are

Y({0) = —4, _Y'(O) = -7, Y"(0) = -2

Note that the initial conditions are contained in the integral equation.

It is possible to convert every linear differential equation into an integral equation. However,
not every integral equation can be converted into a differential equation, as, for example,

t
Y(t) = cost + f In(u+t) Y(u) du
0
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INTEGRAL EQUATIONS OF CONVOLUTION TYPE

t
5. Solve the integral equation Y({) = ¢ + f Y(u) sin (t —u) du.
0

The integral equation can be written
Y(&) = 2 4+ Y(t) *sint
Then taking the Laplace transform and using the convolution theorem, we find, if y = .£{Y},

2 Y

v T st e
. _ 2(s2+1) _ 2 2
solving, y = 3 = 3 + =
_ £ #y 1
and so Yy = 2(5) + 2<4') = 2 4+ 12t4

This can be checked by direct substitution in the integral equation.

t
6. Solve the integral equation f Y(u) Yt —u)du = 16 sin4t.

0
The equation can be written as
Y()*Y(t) = 16sin4t
Taking the Laplace transform, we find

64 *8

{y(s)}z = m or y(s) - m

Then Y) = £ {y@®)} = =8J,(4%

Thus Y(f) = 8Jg(4t) and Y(¥) = —8Jy(4f) are both solutions.

ABEL’S INTEGRAL EQUATION. THE TAUTOCHRONE PROBLEM.
7. Solve f Y(u) du = 1+t + t2

The equation can be written

YO *t-12 = 1+ ¢ +

Then taking the Laplace transform, we find

LYy o{t—v2y = c{1+t+2)
yr(r/2) _ 1, 1 2
or —81/2 - s + 82 + 83

1 1 1 2
and Y = 1) {;/—2 tert ;5,—2}
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8.

9.
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) _ 1 t-1/2 112 2t8/2
Inverting, Yy = I‘—(_l—/?){l‘(I/Z) + I'(3/2) + 1‘(5/2)}

= lg-vayopnigeny = 5 6t4se
= - a)—--gﬂ—( + 8¢2)

The integral equation is a special case of Abel's integral equation.

A bead is constrained to move on a fric- Y
tionless wire which lies in a vertical plane.
If the particle starts from rest at any point
of the wire and falls under the influence of
gravity, find the time of descent to the low-
est point of the wire.

Assume that the bead has mass m and starts 9 g
from rest at point P with coordinates (u,v) as / (@, )
shown in Fig. 4-1. Let point @, having coordinates x
(x,y), be some intermediate point in the motion
and suppose that the lowest point of the wire is
taken to be the origin O. Let ¢ be the arc length Fig. 41
0Q. From the conservation of energy, we have

Pg(u,v)

Potential energy at P + Kinetic energy at P =  Potential energy at @ + Kinetic energy at @
do

imgy + z}m(?ﬁy

imgv + 0

where do/dt is the instantaneous speed of the particle at Q. Then

2
<%‘tl> = 29—y

or using the fact that o decreases as time ¢ increases,
d
9% = —Vaslv—y) @

The total time T taken for the bead to go from P to O is given by

T 0 —_ v
T = f dt = J‘ =% _ f A 2)
o v V2g9(v—1y) o V2g(v—1y)
When the shape of the curve is given, the arc length can be expressed in terms of ¥ and we find
de = F(y)dy 3

Thus (2) becomes
r = L ("Fwdy
V2g Yo Vo—y

In general T is a function of v, i.e. of the starting position.

“4)

Find the shape which the wire of Problem 8 must have if the time taken to reach the
lowest point is a constant, i.e. is independent of the starting position.

In this case we have to find F(y) such that

= L (" Fw_y, ’
Vig Jo Vo3 ¥ @
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where T is a constant. This integral equation of convolution type is a special case of Abel’s integral
equation [see Page 113] and can be written

V2g T = Fy *y12 (@)

Taking Laplace transforms and noting that .¢ {F(y)} = f(s), £ {y~1/2} = P(})/sV2 = V7/s1/2, we have

V2T _ oY o e = V%
8 - s1/2 Vrsl/2
The inverse Laplace transform is given by
' Fly) = TvZg V29 -1y 1L = Tveg y—2  _ TV29 _,p
4 V= s T Tyr r@m P
Vdz2 2
Since do _ Vda?+dy?
dy dy
2 TV
we have 1 + <%> = _;?ﬂy—uz ()
TV?2 2
If we let \/_ = _Tr_y- or b = gi_TT (4)
2
(3) ean be written 1 + dx = b or dx = b—y
dy y dy v

gince the slope must be positive. From this we find on integrating,

¢ = f1/9;—ydy+c (5)

Letting y = b sin24, this can be written

2
x = bc?so-stinocosod0+c
b sin%¢

2bf cos29ds + ¢ = bf(1+cos20)d0 e = -’2’-(20+sinzo) +oe

Thus the parametric equations of the required curve are

b .
r = E(20+sin20)+c, y = bsin2e = %(l—cosZﬂ)
Since the curve must pass through the point £ =0, ¥y =0, we have ¢ =0. Then letting

a=g=—2 and ¢ = 20

the parametric equations are
2 = gq(p +sing), y = a(l —cosg)

These are the parametric equations of a cycloid [see Fig. 4-2 below]. For a given constant T, the
wire has the shape of the curve shown heavy in the figure. The cycloid is the path taken by a fixed
point on a circle as it rolls along a given line [see Problem 44]}.
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Yy
P
N / /\\ N //\\
/ ~\
~ ~ \, 7/
\\~ __,// \\§ \\\ ,/, ~
0
Fig. 4-2

INTEGRO-DIFFERENTIAL EQUATIONS
t

10. Solve Y'(f) + 5‘[ cos2(t—u) Y(u)du = 10 if Y(0)=2.
0

The equation can be written
Y'(t) + beos2t*Y(t) = 10

Then taking the Laplace transform, we find

Bsy _ 10
w - YO + 5y =5
_ 283410s2+8s+ 40
or v = s2(s2 4 9)
Hence by Problem 44, Page 67,
Y = -21',7(24 + 120t + 30 cos 3t + 50 sin 3t)

[CHAP. 4

Note that by integration from 0 to t using Y(0) = 2, the given integro-differential equation can be

converted into the integral equation

t
Y(t) + 5f (t—u)cos2(t—u) Y(u)du = 10¢ + 2
0

DIFFERENCE AND DIFFERENTIAL-DIFFERENCE EQUATIONS
11. Solve 3Y(#) —4Y(t—-1) + Y(t—2) = t if Y()=0 for £t <0.
Taking the Laplace transform of both sides yields

3.L{Y(t)} — 4£{Y(t—-1)} + £{Y(t-2} = «£{8§ = 3

Now L{Y(t—1)}

it

f e st Y(t—1) dt
0

= f e~su+1) Y(y) du [letting ¢ = u+ 1]
-1

o0 o
= e‘sf e s Y(u) du + e"f e~ Y(u) du

-1 0

= e %y

(1)
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and L{Y(t—2)} = f e~stY(t—2)dt
0
= f e—s(u+2) Y(y) du [letting ¢ = u+ 2]
-2
0 o
= e“2sf e s Y(u) du + e‘zsf e~ 5% Y(u) du
— 6_232/
since Y(u) =0 if » <0, so that

fo e~ Y(u)du =

-1 -2

0
0 and f e suYu)du = 0

1
Then (I) becomes Sy — de—Sy + e~ By = 2
nd = 1 — 1
& Y EB—de 5 T e %) 20— e 938 — ¢ 9
I U R
- 282 1—e"s 3 — e~ 8
- 1)1 1
T 22 |1—e"¢ 3(1—e-93)
1 —8 —2s —3s
= %2‘{(1+e—‘+e'2s+e‘3s+---) —§<1+%+—e32 + 5
_ 1 e—ns
- 382 + 2n21< ) s2
Hence Y = 3 T 2'21 1—g,)(t—m)

where [t] is the greatest integer less than or equal to &.

12. Solve Y/(¢) + Y(t—1) = £ if Y(¢)

Taking the Laplace transform of both sides yields

L{Y'(®} + {Y¢t—1} =

Now LY’y = s£{¥Y} - Y(0) =

and L{Y(t—-1)} =

f e st Y(t—1) dt
0

f e—s(ut+1) Y(u) du

=1

I

-1

= e 5y

=0 for t=0.

[letting ¢t = u+1]

0 @
e‘sf e~su Y(u)du + es f e 8% Y(u) du
0

121

)
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0
since Y(u) =0 for «u =0 so that f e s Y(u)du = 0.
-1

2 2
—-s = = = —_—
sy + e %y 3 or Y P TP
By use of series, we have
83(s + e—9) si(l + e—3/s)
2 e—*§ e—2s e—3s
- 's—‘*'<1_ s T e TS +>
_ 2 2¢~s 2e—2s 2e—3s
= 4" s s e t

Now

- e ns
“c ! {8"+4}

5 g-ns
2 n§0 gnt4
(t —_ n)n+3

(t—m)n+3 =
m+ 9! tEn

0 otherwise

Thus if [t] denotes the greatest integer less than or equal to ¢, we find that

U (t—n)nts

Then (1) can be written

[CHAP. 4

Yo = 230 a1 @
13. In Problem 12 find (a) Y(4), (b) Y(=).
(a) Since [4] =4, we have
Y4 = zéo % 2{3‘? + 2+ 84 —1—,} = 28.62 (approx.)
(b) Since [r] =8, we have
Ya) = 2 go @ (;fg;s 2 {31? + 4_!1)4 + ;!2)5 + (L;—f‘—)s} = 1212 (approx.)

14. If F(t)=r" for n =

L {F(t)}

t<n+1,n=0,1,23,...,

find . {F(t)}.

f e=st F(t) dt
0

L 2 3
f e sty0dt + f e~ stpeldt + f e sty2dt + .-
0 1 2
1 —e—s + r<e—s_e—2s> " r2<e—2s_e—3s> 4 ...
8 s 8

— -8
R 0 e+ g2t g o)
1—e-s 1 = 1—e—s
8 1—re-s 8(1 — re—s)
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. - 1—e°
15. F 1) _1 7% L,
5 Find {s(l — fre“*‘)}

By Problem 14, we have .1 1-et | - Ft) = m for n =t<n+1.
s(1 — re—s)

Another method.
We have

l—e8 _ l1—e™® 1
s(1—re=%) ) 1—re-s

1—e—s _ _
= 1+ re—s+ 12284 ...)
8

1 2 3
f e~sty0dt + f e~strldt + f e~sty2dt + ---
0 1 2

= fwe_“ F(t) dt
0

where F(t)=7* for n=t<n+1, n=0,1,2,3,....

16. Find £t {(sia__f%} .

If £-1{f(s)} = F(t), then by Theorem 2-4, Page 44,

Fit—1) t>1

LTHe s f(e)} = {0 t<1

Thus by Problem 15,

.c—l{(;(%;?f:)i} = Fit—1) =m for n=t—1<n+1, »=0,1,2,3,...

or, equivalently,

(‘I{H:;)s} =1 for n=t<n+l, n=1,23,...

17. Let Y(t) = a. for n =t <n+1 where » =0,1,2,.... Find (a) £{Y(t+1)} and
(b) L {Y(t+2)} in terms of L {Y(t)} = w(s).

(a) Letting t+1 = u, we have

L{YE+1)}) = J‘w e~stY(t+1)dt = esfw e~ Y(u) du
0 1

oc 1
= esf e—su Y(u) du — e‘f e su Y(u) du
0 0

ages(l — e%)

1
et y(s) — e’f e~stagydu = eSy(s) —
0

using the fact that Y(f) = ay for 0 = ¢t < 1.
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(b) Letting t+ 2 = u, we have

£{Y(E+2)) = fwe‘stY(H-z)dt
0

= ezsf e~ su Y(u) du
2

2

= g2 {fw e % Y(u) du — j;l e~ su Y(u) du — f e~ su Y(u) du}
1

0
1 2
= e¥y(s) — ezsf e~ Stagdu — ezsf e stq, du
0 1

age®(1 — e~%) a; e2%(e—S — e—28)

8 8

= eyls) —

es(1 — e~ s)(ages + a,)
8

= e2s y( 8) —

using the fact that Y(f) =a for 0=t <1 and Y({) =a; for 1 =¢t <2,

18. Let {a.}, n = 0,1,2, ..., denote the sequence of constants ao, @i, a2 ... and suppose
that we have the recursion formula defined by the difference equation

Qni2 — BAney + 6an = 0, @ =0, a1 =1
Find a formula for a., i.e. solve this difference equation for an.
Define the function
Y(t) = a,, n=2t<n+t+l where n = 0,1,2,...
Then the given recursion formula becomes

Y(t+2) — bY(t+1) + 6Y(t) = 0 (1)
Taking the Laplace transform of (I) using the results of Problem 17 with a, =0, a; =1, we find

€28 y(s) — Es(l—:zs—) — besy(s) + 6y(s) = 0O
es(l — e—9)

or (625 —bes +6) y(s) = p

Then (8) es(1 — e—9) _ es(1— e‘s){ 1 } .

8(e® — bet + 6) 8 (es— 8)(es — 2)

e(l—e-s) ) 1 1 _ 1—es __1 _ 1
8 es—3 es—2 - 8 1— 3e—s 1— 2e—s

Hence by Problem 15 we find on inverting,

a, = 37— 2%, n=2012,...

Check: 1If a, = 3* — 2%, then aq=0, a;,=1. Also,
@n+o — BOyeq + 6Ba, = (3n+2—2n+2) — [(3nt+l — 2n+1) 4. G(3n — 2n)
= 93" — 420 — 15+3% + 102" 4 68" — 28 = 0
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19. Solve the difference equation
Qni2 — BUn+1 +6an = 47, =0, a1 =1

The only difference between this problem and Problem 18 is the presence of the right hand term
47, We write the equation as

Y(t+2) — bY(t+1) + 6Y(t) = F(i) (1)
where Y(t)=a, F{t)=4* for n=t<n+1, n=0,1,2,....

Taking the Laplace transform of both sides of () using the results in Problems 14 and 17, we
find if y(s) = L{Y(?)},
1—e—s

eyle) = SA—e™) — Beyle) + ble) = g

Then

es(1 — e—9) 1—es

ye) = s(e® — 2)(es — 3) t St = 2) e — 9 — de )

= _es(l — e‘—'s) 1 —_ 1 + es—1

8 es—3 es—2 s(es — 2)(es — 3)(e® — 4)
_ 1—es ) 11 Le-1fy2 1 12
- P 1—8¢—5 1—2e s s e—2 e—3 ' e—4

L 1-es) 11 Ll-ef w2 1
- 8 1— 8% 1—2e3 s 1—2¢—5 1— 8e—s 1 — 4e—3

Hence on inverting, using the results of Problem 15, we find

Y) = a, = 3% — 20 + fe27 — 80 + Logn (®)
= %.471 — .;_.271 = .;_(41;_.211)

20. In Problem 19, find as.
Method 1. From the solution (2) in Problem 19, we have

as = }(45—25 = 496

Method 2. From the given difference equation in Problem 19, we have for n =10

a2—5a1+6a0 =1
or using ¢, =0, a;, =1
aa = 1+ bay — 6a; = 6

If n=1, ag—bay+ 6a; = 4 s0 that

az = 4 + bay — 6a; = 28

If n=2, a4— 5ag+ 6a, = 16 or

a; = 16 + Bag — 6a, = 16 + 5(28) — 6(6) = 120
Finally if n =8, a5— 5a,+ 6ag = 64 so that
a5 = 64 + bay — 6ag = 64 + 5(120) — 6(28) = 496



126 APPLICATIONS TO INTEGRAL AND DIFFERENCE EQUATIONS

MISCELLANEOUS PROBLEMS

21. Solve the integral equation
t
Y(t) = dsin2t + [ Y(u) ¥(t—u)du
0
The integral equation can be written in the form

Y(t) = 4sin2t + YO)*Y(¥)

Then taking the Laplace transform, using the convolution theorem, we find

1 1
= — 2 2 — —_—
y(s) Zrat Wwe¥ or {y@P—ye)+ g = 0
Solving, we obtain
= 1,14 4 _ 1 1
yo) = g = g4 £+4 272 Fyq
1/ve2+4+s
Thus y(® = _<_>
2\ Va&t4
Vet +4 —
and yl® = %(_s 4 8)
8244

From (2) we find the solution
VeE+d—
Y(§) = -1 {%(J&)} = 7,20

The result (1) can be written

Y8 = _l<—°82+4—8 — 2) = 1 - l<_—>
2\ Vat+4 2\ Ve+4
Hence a second solution is
Y(t) = 8@t) — J,(2t)
where 8(t) is the Dirac delta function.

The solution (8) is continuous and bounded for t = 0,

22. Find ¢ {F(t)} if F(t)=n, n=t<n+l,n=0123,.
We have

cF@y = [ ewFua
0

1 2 3
st (0)dt + —st (1) dt + ~st(2)dt + -
foe © fl" Wit + [ o

2

I

= €M 767 (1 4 965+ 3625 + 46~ + .- )
8

(1)<e-S—se—2s> + (2)<e—2s:e—as> + (3 <e—as;e—4s> + o

[CHAP. 4
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Now since for |z]| <1,

14+ 2+ a2+ a8 + o0 = L
1—2
we have by differentiation,
1
2 “ee - -
1 + 2 + 322 + T
Then if ¢ = ¢~%, we find
1
-8 -2 oo g —-_—
1 + 2% + 8e~% + T
— e s
Thus cFey = st
—s
23. Find -1y € \ for (@) r+1, (b) r=1.
o (@ (®)
(a) By the binomial formula,
e ?® = e - 26—25 4+ ...
—m = P (1+1‘e 5 o r2e—2s - )

e s 6—25 r2e—2s
= — 47 + 4o
8 8

= UE—1) + rUE—2) + r2UE—3) + -

—

t

- es - -
Thus -Cl{m} = Fo = 2

if t=1, and 0 if t<1.

o

Ifn=t<n+1l, (1) becomes if r 71,

rirm—1)

r o924 e 4 ogm
r—1

b) If r=1 we find that F({) =7, n = t < n+ 1. This agrees with Problem 22.

24. Solve the difference equation
ntz — T@nsy + 10a, = 16n, ay=6, a1=2

The given equation can be written
Y(t+2) — 7Y¢+1) + 10Y(®) = F@)
where Y(t) =a,, F)=16n for n=t<n+1, n=0,1,2,....
Using Problems 17 and 22, the Laplace transf.orm of (1) is

1= e )66 +2) _ guyg 4+ 2260 =€7) 4 1006 =
P 8

e2s y(s) —

127
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@
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_ e(l—e~9)(Bet+2) _42¢%(1 — e~?) 16¢—s
Then vée) s(e® — B)(&* — 2) W —b)e =2 T s —e e —b)e —2)

= gsfl= rs) 6es + 2
- P) (es —b)(e* — 2)
_ 1—e" % es
. ( 8 ) {(e' —b)(e* — 2)}

16 1
* T{(es —T)(e* — b)(e* — 2)}

= o 1—e—s> 32/3  14/8
8 e¢—b ef—2
_ 1—e¢*\ | 5/3 _ 2/3
42( 8 ){e3—5 e‘—2}

1 4 4/3 16/3
+ E{e'—l + et —b e3—2}

_ 1—e ¢ 32/8 _ _14/3
8 1~ be—s 1~ 2e~3
_ f(1—e"8 T0e—® _28e”¢
8 1— be~s 1—2e"8

1 4e~s (4/8)e~s _ (16/8)e—s
+ ;{l—e‘3+1—56“3 1—2e—s

Now by Problems 14 and 22, we find for n =1,

32 14 4 5 16 2

[CHAP. 4

Gy = FeBP - Fe2m — 7051 4+ 280201 4+ 4(n—1) + 3 7(6"—1) — T 7@ —1)

3 3 3 4
420 — 3+5" + 4n + b

25. Express the differential equation
Y"@t) + AY(t) = 0, Y0)=0 YQ)=0

where A is a constant, as an integral equation.

Method 1.
Letting Y"'(t) = V(¢), we find, if Y'(0) = ¢,

t t
Y(@#t) = d Y L= —_
®) J; Vu)du + ¢, (t) ~£ (t—u) V(u) du + ct
Since Y(1) = 0, we must have

1 ’ 1
J‘ QA—u)Vwydu + ¢ = 0 or c = f (u—1) V(u) du
0 0

@)
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Then from (1), we find

t .1
Yi) = t—u) V(u) du + tu—1t) V(u) d
®) J{; (t—u) V(u) du Jo (tu — ) V(u) du
¢ t 1
= (t—u) V(u) du + (tu—1t) V(u) du + (tu—12t) V(u) d
j{; u) V(u) du J; ) u) du J: ) u) du
t 1
= f (t—1)u V() du + f (u—1)t V(u) du
Jo .
1
This can be written Yy = f K(t,u) V(u) du
0

C—1Nu u<t

( 1 e [Note that K(t,u) = K(u,t), ie. K(t,u) is symmetric.]
U — o

where K(t,u) = {

Thus the required integral equation is
vy + )\fl KituwyViu)du = 0
0 1
or Ve = —)\J; K(t,u) V(u) du
Method 2.
Integrating both sides of the given differential equation from 0 to ¢, we find
Y'(¢) — Y'(0) + )\J(;t Yu)du = 0
Another integration from 0 to ¢ yields
Yty — Y0 — Y0t + )\Jo‘t t—uw)Y(u)du = 0 1)
Since Y(0) =0, () becomes
Y@) = Y(@0)t — )\ft (t—u) Y(u) du (2)
0
Letting ¢ =1 and using Y(1) = 0, we find from (2)
Y0 = )\J;l (1—u) Y(u) du
Thus (2) becomes

Y(8)

1 t
)\J; (t—tu) Y(u) du — )\f (t—u) Y(u) du

0

t t
= ) )\fo (t—tu) Y(u) du + )\J:l(t-tu) Y(u) du — )\jf; (t—u) Y(u) du

= )\ft u(l—¢t) Y(u) du + )\fl H1l—u) Y(u) du
0

t

1
= A K(t,u) Y(u) du
J
t—1Du u<t

where K(t,u) = .
(u—1)t u>t

The integral equations obtained here are examples of a Fredholm integral equation with a sym-
metric kernel.
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Supplementary Problems

INTEGRAL EQUATIONS

Convert each of the following differential equations into integral equations.
26. Y''(t) + 2Y'(t) — 8Y(t) = b5tz — 3¢, Y(@©) =-2, Y'(0) =38.

t
Ans. V(t) + f (2—8t+8u) Vw)du = b2 + 21t — 22, V(t) = Y"'(t)
0
t
or Y(t) +f (2—8t+8u) Y(u)du = —2 — t + 5t4/12 — ¢8
0
21. 2Y"'(t) — 8Y'(t) — 2Y(t) = 4det + 2cost, Y(0)=4, Y'(0) = —1.
t
Ans. 2V(t) + f (@u—2t—38) Viu)du = 4de~t+ 2cost+5—2t, V(t)=Y"(t)
0

t
or 2Y(t) + f Ru—2t—38)Y(u)du = 6 — 10t + 4e~t — 2 cost
0

28, Y"'(t) + 8Y(t) = 8sint + 2cost, Y(@©)=0, Y'(0)=—1, Y'"(0) = 2.

t
Ans. V() + 4f (t—u2V(w)du = Bgint+ 2cost — 422 + 4¢, V(t) = Y'"()
0

t
or Y(t)+4f (t—u2Yudu = 5t2/2+ t — 84 8cost — 2sint
0

29, Y'"(t)+ costY(t) = et Y(0)=-2, Y(0)=0.

¢
Ans. V(t) + f (t—u)cost Viu)du = e~ t + 2cost, V(t) =Y'"(¢)
0

t
or Y(t)+f (t—u)cosuY(uy)du = t—8 + et
0

3. Y'(t) —tY'(t) + 2Y(t) = 1+t Y(0)=4, Y(0)=2.

t
Ans. V(t) + f B—t—ut?) V) du = 1+ 8t— 42— 263, V(t)=Y"(t)
0

¢
or Y(t) — f t—2u+tu2—ud) Y(u)du = £2/2 + 13/6 + 2t + 4
0

3. YVt —2tY"(t) + 1—)Y(t) = 1+4t— 22+ ¢, Y(0) =1, Y(0)=0, Y"(0) =—2, Y'"(0) =0.

t
Ans. V() + f FE-wdQ—8) —2tt—w} Vwydu = 0, V(t)=Y"()
[}

or Y(t) — ft {2u(t — u) + 2(t —u)? + }(t — u)® (1 —u?)} Y(u) du
0

8@ 8 .
e _— 2 - — —— —— —_
= 1-8+3+5 18 T 1680

Convert each of the following integral equations into differential equations and asso-
ciated conditions.

t
32, Y(t) = bcost + f (t—u) Y(u) du
0

Ans. Y"(t)— Y(t) = —5sint, Y(0)=5, Y'(0)=0
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33.

34.

36.

t
Y(t) = t2—3t+4—3f (t— )2 Y(u) du
0

Ans. Y'"(t)+6Y(t) = 0, Y(0)=4, Y'(0) =—3, Y"(0)=2

t
Y@ + J; {(t—u2+4(t—u)—3}Y(u)du = et

Ans. Y"'(t) — SY"(t) + 4Y'(t) + 2Y() = —e~t, ¥(0)=1, Y'(0) =2, Y"(0) =38

¢
Y(t)—J(; (t—u)sectY(u)du = ¢

Ans. Y"(t) —2tant Y'(t) — (1 +sect) Y(f) = —t — 2tant, Y(0) =0, ¥Y'(0) =1

t
Y(t)+f (+4t—ut—u—2) Yw)du = 0
0

Ans. Y"'(t) + 8t—2)Y"(t) + (t+10)Y'(H) + Y(t) = 0, Y(0) =0, Y'(0)=0, Y'(0)=0

INTEGRAL EQUATIONS OF CONVOLUTION TYPE

37.

38.

39.

41.

t
Solve Y(t) = t + 2f cos {t —u) Y(u) du.
0

Ans. Y(t) = t+ 2+ 2(t—1)et

(a) Show that the integral equation
t
Yty = t + %—f (t—u)3 Y(u) du
0
has solution Y(t) = 4(sint + sinh¢).

(b) Is the solution in (¢) unique? Explain.

¢

Find the continuous solution of the integral equation f YwYt—uydu = 2Y(t) +t — 2.
0

Ans. Y(t) =1

t
Show that the only solution of the integral equation f Y(u)sin(t—u)du = Y(t) is the trivial
solution Y(t) = 0. 0

t
Discuss the solutions of the integral equation f Y(u) G(t—u)du = Y(t).
0

ABEL’S INTEGRAL EQUATION AND THE TAUTOCHRONE PROBLEM

t Y(u)
42, Solve the i al tion f ———du = VLt Ans. Y(t) =
olve the integral equa ) \/E:—u \/— ) =4

43.

Y(u)
(t — u)l/s

t 3V8
Show that the solution of the integral equation f du = t1+1¢t) is —‘—1\—1{_—_ t1/3 (3t + 2).
0
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44. A circular wheel of radius a [see Fig. 4-3] rolls Y
on a straight line, taken to be the x axis. Show
that a fixed point O’ on its rim, originally in
contact with the line at O describes the eycloid e ——— -

# = a(p —sing), y = a(l —cosg) N
o'
shown dashed in Fig. 4-3. / A\

45. Prove that the curve in the tautochrone prob-
lem, Page 118, is a cycloid and discuss the rela-
tionship to the curve of Problem 44. Fig. 4-3

46. Show that the time required for the bead of Problems 8 and 9 to slide from the top P of the wire to
the bottom O [lowest point on the cycloid] is »Va/g.

e
47. If 0<a<1, show that the solution of f (tY(";))a du = F(t), assuming F(0) =0, is
. =

. t
Y() = E‘Mf F'(u) (t—u)*—1 du
T 0

48. Discuss the solutions of the integral equation in Problem 47 if F(0) # 0. Illustrate your remarks by

considering
¢

Y (u)

INTEGRO-DIFFERENTIAL EQUATIONS
t

49, Solve f Y(wu)cos(t—u)du = Y'(t) if Y(0)=1.
0

Ans. Y() = 1+ 32

t
50. Solve f Y'(u) Y(t—u)du = 2488 if Y(0)=0.
0
Ans. Y(t) = 168327

51. (a) Show that the integral equation of Problem 49 can be expressed as the integral equation

vt
1+ J E—uwY@m) cos(t—u)du = Y()

0

(b) Solve the integral equation in (a).

t
52. Solve f Y'Y (t—uwydu = Y'(t) — Y() if Y(0)=Y'(0)=0.
0

Ans. Y(t) =0

DIFFERENCE AND DIFFERENTIAL-DIFFERENCE EQUATIONS
53. Solve Y() —3Y(t—1)+2Y(¢t—2) = 1 if Yt)=0, t<0.
Ans, Y(t) = 20t1+2 —[f] — 3
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54. Show that the solution of Y'(t) = 2Y(¢(—1)+ ¢ if Y() =0, t<0 is
]
_ 2”(t - n)n+2
Yit) = &
@ ngo (n+ 2)!

55. Solve Y”(t)—Y(t—1) = F(t) where Y(#) =0, Y () =0 for t=0, and

<
Foy = [0 t=0
2t t>0

Ans. Y = 2 3 (—mpnts

n=0 (2'n+ 3)!
56. Solve 3Y(f) — 5Y(t—~1) + 2Y(t—2) = F(t) if Y(@#) =0, t<0, and
Py = {o t<0
2 t>0
Ltl
Ams. Y() = 3 {1~ @ 00E—ap

57. Solve the difference equations
(@) 3a,43—5ay,4y+2a, = 0 if ap=1, a;=0.
®) a4+ 2a,:y —3a, = 0 if ap=0, a;=1.
Ans. (a) 32/3" —2, (b) 3{1— (-3

58. The Fibonacci numbers ag, a,,ay, ... are defined by the relation a,, = a4, + @,

a; =1. (a) Find the first ten Fibonacci numbers. (b) Find a formula for a,.

Ans. (a) 0,1,1,2,8,5,8,13,21,34 (b) a, = %{(1 +2\/§>n_ <1 _2\/§>n}

59. Solve the equation a@,,,—4a,,;+ 4a, = 0 where ay=1, a,=4. Ans. a, = 2%n+1)

60. Solve the equation a,,, —2a,,,+ 2a, = 0 where a;=0, a;=1.

Ans. a, = {1+ — QA —)w}/2i

6l. (a) Solve aypi3— 28p4p—ps1+2a, = 0 if =0, a;=1, a,=1. (b) Find ay.
Ans. (@) a, = 4{2" — (1)}, (b) a4y = 341

188

where ay=0,

62. (a) Show how a solution to a,;3 — 6a,,; + 8a, = 0 can be obtained by assuming a, =" where

r is an unknown constant. (b) Use this method to solve Problems 57-61.

MISCELLANEOUS PROBLEMS

63. Show that the non-linear differential equation
Y'#t) + {Y(t)}2 = tsint, Y(0) =1, Y'(0)= -1

can be written as the integral equation

Y@ + ft(t—u){Y(u)Pdu = 8 —t — 2co8t — tgint
0

t
64. Solve f Y() Y(t—~u)du = 2Y(t) + 33 — 2t
o

Ans. Y(t) =t or Y(&) = 28(t)—¢
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65. Express as an integral equation: Y"(t) — Y(t) = 8cost — gint, Y(z)=1, Y'(z) = —2.

t
Ans. V(@) = 2r+1—2t+ 8cost — gint + f (t—u) V(u)du, where V() = Y'(t)
w

t
66. Solve Y(f) = t+Jv Y(u) J1(t — u) du.
[}

Ans. Y(t) = %(t2+1)f Jo(u) du + JtJo(8) — 327, ()
0

x
67. Find G(x) such that f Gu) Gx—u)du = 8(sinz — x cosx).
0

Ans. G(x) = *4sinx

¢
68. Solve f Y(u) Y(t—u)ydu = ¢t + 2Y(2).
[}

i t
Ans. Y(@) = Ji@®) —-J Jo(w)du or Y(t) = 235(t) — J{(t) + f Jo(u) du
0 0

69. Solve the following difference equations using Laplace transform methods.
(@) ap4o —bayy, +6a, = 2n+1, ay=0, a;=1.
(b) apio+4a,;, —ba, = 24n—8, ay=38, a; = —5.
Ans. (@) a, = §°8"—5-2n +n + § b) a, = 2n2—4n + 2 + (—B)»

70. Solve (@) a,i5+ 2 4y+a, = n+2, @ =0, aj=0.
(b) a,,+2—6a,,+1+5a,, = 2", ay = 0, a1=0.
Ans. (o) a, = 3}Bun—-1)(=D" + in+1) (b) an = $+ 56"~ 4-28

71. Solve @a,:3— 28,49 — 0,11+ 20, = n2+27 a;=0, a; =1, ag=1.
Ans. a, = L+ §n — {nd + fn-2n — 2020 — L(-1)n

72. (a) Show how a particular solution to Problem 69(a) can be found by assuming @, = A + Bn where
A and B are unknown constants. (b) Using the result of part (a) and the method of Problem 62, show

how to obtain the solution of Problem 69(a). (¢) How can the method indicated in parts (a) and (b) be
revised to enable solution of Problems 69(b), 70(a), 70(b) and 71.

"
73. Find all continuous functions F(t) for which J uF(u)cos(t—u)du = te—t — gint.
Ans. F(t) = —2¢-t v

74. Show that the non-linear differential equation
Y"(@) +2Y'() = Y3(), Y0 =0, Y1) =0

can be written as the integral equations

1
YY) = ft @2t—2)Y(u)du + fl2t Y(u)du + f K(t, u) Y3(u) du
0 t 0

13 1 1
or Yy = f 2—2t)e2u—O Y(u)du — f 2te2(u—1) Y(u) du -+ J e~ 26 K(t, u) Y3(u) du
] t 0

wt—1) u<t

where K(t,u) = { .
tu—1) u>t
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75. Solve for Y(t): 8Y(¢) —12Y(t~1) + 4Y(t—2) = F(f) where Y(t)=0 for t<0 and

76. If Y, ()

7.

8.

79.

80.

t<o0
F) = {"_t
e t>0

Ans. Y() = %e"‘{l + “;10 (2—2”")8"}

.B{Y -1 (t) - Yn (t)} n = 1)2)3) )
Yo) = —BY,(t)
where Y, ,(0) =0 for » = 1,2,8,..., Y¢(0) =1 and g is a constant, find Y, (¢).

Ans. Y, (t) = B

Work Problem 76 if the first equation is replaced by
Ya®) = Ba{Yar(®) — Yo ()} =128, ...

where By, By, B3, - .. are constants.
Give a direct proof of the tautochrone property of the cycloid.

The brachistochrone problem is that of finding the shape of a frictionless wire in a vertical plane, as
shown in Fig. 4-1, Page 118, such that a bead placed at P will slide to O in the shortest time. The
solution of this problem is the cycloid as in Fig. 4-2, Page 120. Demonstrate this property for the
particular cases of (a) a straight line and (b) a parabola joining points O and P.

Find the shape of a frictionless wire in a vertical plane such that a bead placed on it will descend to
the lowest point in a time proportional to the vertical component of its distance from the lowest point.

Ans. & = a(l —cos39), y = 3a sin2e



Chapter 5

THE COMPLEX NUMBER SYSTEM

Since there is no real number z which satisfies the polynomial equation 22+1 = 0
or similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form a+ bi where a and b are
real numbers called the real and imaginary parts, and i=1/—1 is called the imaginary
unit. Two complex numbers a + bi and ¢ + di are equal if and only if a=c¢ and b=d. -We
can consider real numbers as a subset of the set of complex numbers with b=0. The
complex number 0 + 07 corresponds to the real number 0.

The absolute value or modulus of a + bi is defined as |a +bi| = \/a2+b% The complex
conjugate of a + bt is defined as a — bi. The complex conjugate of the complex number 2
is often indicated by z or z*.

. In performing operations with complex numbers we can operate as in the algebra of
real numbers, replacing i2 by —1 when it occurs. Inequalities for complex numbers are
not defined. )

From the point of view of an axiomatic foundation of complex numbers, it is desirable
to treat a complex number as an ordered pair (a,b) of real numbers a and b subject to
certain operational rules which turn out to be equivalent to those above. For example, we
define (a,b) + (¢,d) = (a+¢,b+d), (a,b)(¢,d) = (ac—bd, ad+be), m(a,b) = (ma,mb),
etc. We then find that (a,b) = a(1,0) + b(0,1) and we associate this with a + bi, where
1 is the symbol for (0, 1).

POLAR FORM OF COMPLEX NUMBERS

If real scales are chosen on two mutually perpendicular axes X’0OX and Y’OY (the x
and y axes) as in Fig. 5-1 below, we can locate any point in the plane determined by these
lines by the ordered pair of numbers (x,y) called rectangular coordinates of the point.
Examples of the location of such points are indicated by P,Q, R, S and T in Fig. 5-1.

Y - ¥
T* "P@, 4)
. +3
=53 | P(z,¥)
+2
1, . ; y
e 25,0 o
X 4 -3 -2 10 1 2 3 & X X 0 .x X
+-1
‘R(~2.5,—1.5) i_ ..
: 2 SE@,-2)
4 ;3 R . )
Y’ . . Y
Fig.5-1 ' Fig. 5-2
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Since a complex number « +iy can be considered as an ordered pair (x,y), we can
represent such numbers by points in an xy plane called the complex plane or Argand
diagram. Referring to Fig. 5-2 above we see that

x = rcosd, Yy = rsind (1)

where r = Vx> +y* = |xr +{y| and 6, called the amplitude or argument, is the angle which
line OP makes with the positive 2 axis OX. It follows that

2 = x + 1y = r(cosd + isinb) 2)

called the polar form of the complex number, where r and ¢ are called polar coordinates.
It is sometimes convenient to write ciséd instead of cosd + ¢ sing.

OPERATIONS IN POLAR FORM. DE MOIVRE’S THEOREM

If 20 = 2 +491 = ri(cos0y+i8ing;) and 22 = 22 + ty2 = 7r2(cosfs + 1 sinby),
we can show that

Zi22 = mire{cos(01+02) + is8in(0:1+ 62)} 3
z 71 . .
E;— = {cos (01— 62) + isin(6.—02)} (4)
2" = {r(cosd + ising)}* = r*(cosmnd + isinnd) (%)

where n is any real number. Equation (5) is often called De Moivre’s theorem.

In terms of Fuler’s formula
e® = cosfd + isind

we can write (3), (4) and (5) in the suggestive forms

zlz2 — (rleiol)(r2ei02) p—t rlr2ei(ox+o=) (6)
o 7‘16‘:0‘ = T ue-0p (7)

22 7‘26‘02 T2
P (,’.ew)n = qpngind (8)

ROOTS OF COMPLEX NUMBERS

If » is a positive integer, we have using De Moivre’s theorem,

gi/» = {r(cosf + isin@)}'"

= gl {cos <#€1> + 4 sin <0—+n2—k">} k=0123,... 9

or equivalently

ZUn = (ref)Vn = (pgl0tmyln  —  pln gilo+2kmi/n (10)

from which it follows that there are n different values for z!/*, z+#0. Extensions are
easily made to zm/»,
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FUNCTIONS

If to each of a set of complex numbers which a variable z may assume there corresponds
one or more values of a variable w, then w is called a function of the complex variable z,
written w = f(z).

A function is single-valued if for each value of z there corresponds only one value
of w; otherwise it is multiple-valued or many-valued. In general we can write w = f(2) =
u(x,y) + 1v(x,y), where » and v are real functions of x and .

Example. w =22 = (x+iy)2 = a2 —y2+ 2ixy = u+iv so that u(x,y) = 22— y?, v(x,y) = 2av.
These are called the real and imaginary parts of w = 22 respectively.

Unless otherwise specified we shall assume that f(2) is single-valued. A function which
is multiple-valued can be considered as a collection of single-valued functions.

LIMITS AND CONTINUITY

Definitions of limits and continuity for functions of a complex variable are analogous
to those for a real variable. Thus f(2) is said to have the limit | as z approaches z, if,
given any ¢>0, there exists a § >0 such that |f(z)~! < ¢ whenever 0 < [z2—2 < 8.

Similarly, f(z) is said to be continuous at zo if, given any ¢>0, there exists a §>0
such that |f(z) —f(20)] < ¢ whenever [¢—2z| < 8. Alternatively, f(2) is continuous at 2z
if lim f(z) = f(z0).

rer 2y

DERIVATIVES

If f(z) is single-valued in some region of the z plane the derivative of f(z), denoted by
f'(z), is defined as

lim f(2+42) — f(2) (11)

Az=0 Az

provided the limit exists independent of the manner in which Az-> 0. If the limit (12)
exists for z=zo, then f(?) is called differentiable at zo. If the limit exists for all z such that
|z —2zo| < 8 for some & >0, then f(z) is called analytic at z,. If the limit exists for all z in
a region R, then f(z) is called analytic in R. In order to be analytic, f(z) must be single-
valued and continuous. The converse, however, is not necessarily true.

We define elementary functions of a complex variable by a natural extension of the
corresponding functions of a real variable. Where series expansions for real functions
f(x) exist, we can use as definition the series with x replaced by z.

2 3 3 7
Example 1. We define et = 1+z+—;—!+—3z—!+ cee, sginz = z-—-g—!+§—;—!+ cen,
_ 22 2t 28 .
cosz = 1——2—f+F_6_"+ +++, From these we can show that e* = e*tiv =

e*(cosy + isiny), as well as numerous other relations.

Example 2. We define a® as e?In¢ even when a and b are complex numbers. Since e2k7 =1, it fol-
lows that ei® = ¢i6+2km) and we define Inz = In(re®) = Inr + ¥4 +2kz). Thus Inz
is a many-valued function. The various single-valued functions of which this many-
valued function is composed are called its branches.
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Rules for differentiating functions of a complex variable are much the same as for

those of real variables. Thus a%—(z") = ne" 1, diz(sin z) = cosz, etc.

CAUCHY-RIEMANN EQUATIONS

A necessary condition that w = f(2) = u(x,y) +iv(x,y) be analytic in a region K
is that » and v satisfy the Cauchy-Riemann equations

ou v ow
oy oy ox (12)

(see Problem 12). If the partial derivatives in (12) are continuous in R, the equations are
sufficient conditions that f(z) be analytic in R.

If the second derivatives of # and v with respect to # and ¥ exist and are continuous,
we find by differentiating (12) that

u | Pu v v

W_‘_ayz = 0, W_‘_W 0 (13)

Thus the real and imaginary parts satisfy Laplace’s equation in two dimensions. Func-
tions satisfying Laplace’s equation are called harinonic functions.

LINE INTEGRALS
Let C be a curve in the zy plane joining points (x:,¥:) and (x2,¥:). The integral

(xy,99)
me+Q@ or " pdx + Qdy
C

(x,y7)

where P and Q are functions of « and y, is called a line integral along curve C. This is a
generalization of the integral of elementary calculus to curves. As in elementary calculus
it can be defined as the limit of a sum.

Two important properties of line integrals are:

(£9.59) (g0
1. f Pdz + Qdy = — Pdz + Qdy

(x4, ¥4) (x5,95)

2. If (xs,ys) is any other point on C, then

(xg,yp) (2q,99)

(xg3, ¥3)
Pdz + Qdy =J~ Pm+Q@+j' Pdz + Qdy

(xy4,1) (r,yp) (x5, 3)

If C is a simple closed curve (one which does not cross itself anywhere) as in Fig. 5-3,
the line integral around C, traversed in the positive or counterclockwise direction, is de-
noted by

§PM+Q@
C

For evaluation of line integrals, see Problem 15.
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GREEN’S THEOREM IN THE PLANE y

- Let C be a simple closed curve bounding a re-
gion R [see Fig.5-3]. Suppose that P, @ and their
first partial derivatives with respect to x and ¥ are
continuous in R and on C. Then we have

§Pdm+Qdy = ff £—£>dxdy . z
which is often called Green’s theorem in the plane. ; Fig.5-3
INTEGRALS

If f(2) is defined, singleralued and continuous in a region R, we deﬁnq the integral of
f(z) along some path C in R from point 2 to point 2z, where z: = &1 +iy1, 2z = T2+ 1y, as

’ (£5,99) (25,95) (22,92)
frayae = [T @rindoridy = [ wde—vdy +if - vds+udy
c .

(zy,9y) (xy,91) (xy,9,)

With this definition the integral of a function of a complex variable can be made to depend
on line integrals. An alternative definition based on the limit of a sum, as for functions
of a real variable, can also be formulated and turns out to be equivalent to the one above.

The rules for complex integration are similar to those for real integrals. An im-
portant result is

j;f(z)dz‘ = j;!f(z)||dz| = Mfcds - ML o

where M is an upper bound of |f(z)| on C, i.e. |f(z)| =M, and L is the length of the path C.

CAUCHY’S THEOREM

Let C be a simple closed curve. If f(2) is analytic within the region bounded by C
as well as on C, then we have Cauchy’s theorem that

. § feydz = 0 (15)

See Problem 19. ¢
Zg .

Expressed in another way, (15) is equivalent to the statement that f f(?)dz has a

value independent of the path joining 21 and 2.. Such integrals can be evaluated as
F(22) — F(21) where F’(2) = f(2). : :

Example. Since f(z) = 2z is analytic everywhere, we have for any simple closed curve C

§2zdz = 0

c

. . ] 1+i
Also, f “ords = 2| = (1492— (202 = 2 +4
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CAUCHY’S INTEGRAL FORMULAS

If f(z) is analytic within and on a simple closed curve C and a is any point interior
to C, then
(16)

where C is traversed in the positive (counterclockwise) sense.

Also, the nth derivative of f(z) at z=a is given by

f® (@) = 2ﬂ§ = )n+1d 17

These are called Cauchy’s integral formulas. They are quite remarkable because they
show that if the function f(z) is known on the closed curve C then it is also known within C,
and the various derivatives at points within C can be calculated. Thus if a function of a
complex variable has a first derivative, it has all higher derivatives as well. This of course
is not necessarily true for functions of real variables.

TAYLOR’S SERIES

Let f(z) be analytic inside and on a circle having its center at z=a. Then for all
points z in the circle we have the Taylor series representation of f(z) given by

f@) = f@ + rae-a + L@e-ap + L@e _qp 4 ... (13)
See Problem 29.

SINGULAR POINTS

A gingular point of a function f(z) is a value of z at which f(z) fails to be analytic.
If f(2) is analytic everywhere in some region except at an interior point z=a, we call
z=a an isolated singularity of f(z).

Example. If f(z) = (z_—IW’ then z =38 is an isolated singularity of f(z).

POLES

If fz) = (z‘#—(z(.)l)"’ ¢(a) # 0, where ¢(z) is analytic everywhere in a region including
z=a, and if n is a positive integer, then f(z) has an isolated singularity at z=a which is
called a pole of order n. If n=1, the pole is often called a simple pole; if n=2 it is called
a double pole, etc.

Examplel. f(z) = —2___ _  has two singularities: a pole of order 2 or double pole at z=3,
(z—3)2(z+1)
and a pole of order 1 or simple pole at z = —1.
Example 2. f(z) = 32—1 _ 82 —1 has two simple poles at z = *2i.

2+4  (z+ 20— 20)

A function can have other types of singularities besides poles. For example, f(z) =z
sin z

has a branch point at z=0 (see Problem 45). The function f(z) = has a singularity

at z=0. However, due to the fact that lim sne
removable singularity. 20

is finite, we call such a singularity a
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LAURENT’S SERIES

If f(z) has a pole of order n at z=a but is analytic at every other point inside and
on a circle C with center at a, then (z—a)"f(z) is analytic at all points inside and on C
and has a Taylor series about 2 =a so that

flz) = (z“_‘;),, + (za_';)“,,‘_l + -+ z“*;; + a0 + aiz—a) + a(z—a) + - (19)

This is called a Laurent series for f(z). The part ao + ai(z—a) + ax(z—a)?> + --- is called
the analytic part, while the remainder consisting of inverse powers of z—a is called the

0

principal part. More generally, we refer to the series > (2z—a)c as a Laurent series

k=—e

where the terms with k <0 constitute the principal part. A function which is analytic in a
region bounded by two concentric circles having center at 2 =a can always be expanded
into such a Laurent series (see Problem 119).

It is possible to define various types of singularities of a function f(2) from its Laurent
series. For example, when the principal part of a Laurent series has a finite number of
terms and ¢ .+ 0 while a—» -1, @-» -2, ... are all zero, then 2=a is a pole of order n.
If the principal part has infinitely many non-zero terms, z=a is called an essential
singularity or sometimes a pole of infinite order.

1

Exa 1
mpie i 1/2 -
p‘ . The function e = 14 =+ T

4+ -+ has an essential singularity at z = 0.

RESIDUES

The coefficients in (19) can be obtained in the customary manner by writing the coeffi-
cients for the Taylor series corresponding to (2 —a)"f(z). In further developments, the
coefficient a-,, called the residue of f(z) at the pole z=a, is of considerable importance.
It can be found from the formula

4

where n is the order of the pole. For simple poles the calculation of the residue is of
particular simplicity since it reduces to

i e-r = lim(z—0)f@2) (21)

RESIDUE THEOREM

If f(2) is analytic in a region R except for a pole of order n at z=a and if C is any
simple closed curve in R containing z=a, then f(z) has the form (19). Integrating (19),
using the fact that

dz _Jo if n1 20
c@—a® T |2x ifn=1 (22)

(see Problem 21), it follows that
§C f@)de = 2mia— (29)

i.e. the integral of f(z) around a closed path enclosing a single pole of f(z) is 2#¢ times the
residue at the pole.
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More generally, we have the following important

Theorem. If f(z) is analytic within and on the boundary C of a region ® except at a
finite number of poles a,b,¢, ... within ®, having residues a-i,b-1,¢-1, ... respectively,
then

if(Z) dz = 27(@-1+b-y+c-1+ --°) (24)

i.e. the integral of f(2) is 2% times the sum of the residues of f(z) at the poles enclosed by C.
Cauchy’s theorem and integral formulas are special cases of this result which we call the
residue theorem.

EVALUATION OF DEFINITE INTEGRALS

The evaluation of various definite integrals can often be achieved by using the residue
theorem together with a suitable function f(z) and a suitable path or contour C, the choice
of which may require great ingenuity. The following types are most common in practice.

1. f F(z)dx, F(x) is an even function.

0
Consider f F(z)dz along a contour C consisting of the line along the 2 axis
c

from —R to +R and the semi-circle above the 2 axis having this line as diameter.
Then let R >«. See Problems 37, 38.

bad
2. f G(sin 4, cos §)d¢, G is a rational function of siné and cosé.
0
—_ 1 -1
ILet 2=¢€% Then sing = zz—:, cosf = z+2z

dz/iz. The given integral is equivalent to § F(z)dz where C is the unit circle
c

and dz=1e®df¢ or df =

with center at the origin. See Problems 39, 40.

3. f F(x) {gi’:zg} dz, F(z) is a rational function.

®

Here we consider § F(z) e™*dz where C is the same contour as that in Type 1.
See Problem 42. ¢

4. Miscellaneous integrals involving particular contours. See Problems 43, 46.
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Solved Problems
COMPLEX NUMBERS
1. Perform the indicated operations.
(@) 4—2))+ (—6+5i)) = 4—2—6+5i = 4—6+ (—2+5)i = -2+ 3
(b) (—7+8)—(2—4) = —T+3i—2+4 = —9+7

[y

(¢) (8—20(1+3) = 3(1+3i))—2i(1+3) = 3+9i—2—6i2 = $+9i—2i+6 = 9+ 7

(d) -5+ 51 _ :5+5i.4+31' — (=54+56)(4+38) _ —20-—15:¢+ 207+ 1572
4—3i 4—31 4+3i 16 — 942 - 16 +9
~ —85+5i _ 5(=T+3) _ =T 1,
25 25 5 "5
(e) 1+124+ 3+ 4445 = 1—1+0END)+ B2+ ()2 _ i—~1—i+1+4
1+7 1+1 - 1+1
_ 4 1=i _ i—i _ a1 _ 1,1,
T Iril— T 1-e T T2 2 "2t
(H 18—4illa+381] = V(82 + (—42V/(4)2+ (32 = (5)5) = 25
11 1-8i  1+3 =6i VOEF(—6)p = 2
@ 178 T T—92 ~ 1—9:2 10 O+ (=) = 3
2. If 2z and 22 are two complex numbers, prove that |ei22] = |21 |22
Let 2z, = 2+ iy,, 23 = 23+ 4ys. Then
lz12e] = @@ty eetiyy)| = |22 — yaye + dzye + 2oy |
= V@zs—y192? + @t oan)? = Vaa? + 292 + 2242 + 22y?
= VeE+ydei+tyd) = Vet 2Vael+yl = |etiy|leatias] = |all]

3. Solve 2*—2z2—4 = 0.

The possible rational roots are *1, 2 +4. By trial we find z=2 is a root. Then the given equa-
tion can be written (z —2)(224-2z+42) = 0. The solutions to the quadratic equation az2+bz+e = 0

~b *+ Vb2 —4 —2 * /4~ —2=xv—14
are 2z = —-—-———ac. For a=1, b=2, ¢=2 this gives 2z = 2 4-8 = =
2a 2 2
—2*2 _ ,
2 = —-1=*4

The set of solutions is 2, —1 44, —1 —4.

POLAR FORM OF COMPLEX NUMBERS
4. Express in polar form (a) 3 + 3i, (b) —1+ /34, (¢) —1, (d) —2 — 2\/3i. [See Fig. 5-4.]
(@) Amplitude 8 = 45° = r/4 radians. Modulus » = V32+ 82 = 3y2. Then
8 + 8i = rlcoss + ising) = B3VZ(cosw/4 + isina/d) = 3V2cisw/4 = 3J/2em/t

(b) Amplitude 8 = 120° = 27/3 radians. Modulus r = \/(—1)2+ (V8)2 = V4 = 2. Then

—1 4 VB8i = 2(cos2r/3 + isin2s/3) = 2cig2/3 = 2e2mi/3
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vy
v v y 240° -\
—2 | ®
sﬁ" 3 V3 y L ~
4:° z — lzoL x — —1/ lsoL z ~2v 4
() )] (e) (@)
Fig.5-4
(¢) Amplitude 9 = 180° = 7 radians. Modulus r = V(=12 + (0)2 = 1. Then
—1 = 1(cosw + isinz) = cisr = 7
(d) Amplitude 8 = 240° = 4#/3 radians. Modulus r =.\/ (—2)2 + (—2\/§ )2 = 4. Then
—2 — 2V8 = 4(cos4r/3 + isin4z/8) = 4dcisdr/3 = detmi/3
5. Evaluate (a) (—1+\/3—'i)‘°, () (-1 +19)v3,
(a¢) By Problem 4(b) and De Moivre’s theorem,
(~1+ V3910 = [2(cos2x/3 + isin2r/8)]10 = 21%cos 207/3 + 4 sin 20x/3)
= 1024[cos (27/3 + 67) + i8in(27/8 + 67)] = 1024(cos2z/3 + i sin 27/8)
= 1024(—% + 4V849) = 512 + 512V34¢
! b) -1 +i = V2(cos185° + isin135°) = \/E[cos(135° + k+860°) + 1sin(135° + k-« 360°)]
Then v
(-1 + 918 = (\/E)lla[cos <l35°+—k'36°_°>
3 P,
+ isin (M):\ P, 165° |
The results for k = 0,1,2 are ) — 5° z
V2 (cos 45° + i sin 45°), 285 Ve
VZ (cos 165° + i sin 165°), \
V2 (cos 285° + i sin 285°) P

The results for k = 8,4,5,6,7, ... give repetitions of these.
These complex roots are represented geometrically in the com- Fig.5-5

plex plane by points Py, Py, P3 on the circle of Fig

6. Determine the locus represented by

. B-5.

(@) 2—2] =8, (b) 2—2| = |z+4], (¢) |z—3]|+|z+3| = 10.

(@) Method1. |z—2|=|c+iy—2|=|x—2+iy = V®z—22+y2 =8 or (x—2)2+y2 =

with center at (2,0) and radius 3.

*

[
9, a circle

Method 2. |z— 2| is the distance between the complex numbers z = x+4y and 2+ 0i. If this
distance is always 3, the locus is a circle of radius 3 with center at 2 + 0¢ or (2,0).
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(b) Method 1. |x+iy—2 = |x+iy+4 or V(®—22+»® = V(e+4)?2+ p2 Squaring, we find
z = —1, a straight line.

Method 2. The locus is such that the distances from any point on .it to (2,0) and (—4, 0) are equal.
Thus the locus is the perpendicular bisector of the line joining (2,0) and (—4,0), or =z = —1.

{¢) Method 1. The locus is given by V(x—382+ %2 + V(x+82+ 2 = 10 or V(x—3)2+ 2 =
10 — V(x+3)2 + 2. Squaring and simplifying, 25 + 32 = 5V (x + 38)2 + 42. Squaring and

2 2
920—5+ 211_6 = 1, an ellipse with semi-major and semi-minor axes of

lengths 5 and 4 respectively.

simplifying again yields

Method 2. The locus is such that the sum of the distances from any point on it to (3,0) and
(—3,0) is 10. Thus the locus is an ellipse whose foci are at (—3,0) and (3,0) and whose major
axis has length 10.

Determine the region in the z plane represented by each of the following.

(a) |2] <1.

Interior of a circle of radius 1. See Fig. 5-6(a) below.

(0) 1< |z+2i = 2.

|z + 24| is the distance from z to —2i, so that |2+ 2i| = 1 is a circle of radius 1 with center
at —2i, i.e. (0,~2); and |z+ 27 = 2 is a circle of radius 2 with center at —2i.- Then 1< |2+ 2i| =2
represents the region exterior to |2+ 2i] = 1 but interior to or on |2+ 2i] = 2. See Fig. 5-6(b)
below.

(¢) =/3 = argz = /2.

Note that argz = 6, where z = re¢l. The required region is the infinite region bounded
by the lines 9 = /3 and ¢ = =/2, including these lines. See Fig. 5-6(¢) below.

(b) (o)
Fig.5-6

Express each function in the form w(z,¥) + tv(¢,y), where # and v are real:
(@) 28, (b) 1/(1—2), (c) €%, (d) In=.
(@ w = 28 = (z+iy)® = 23 + 322(iy) + Ba(iy)? + ()® = 3 + 3ix2y — Bay? — P

= o3 — 3ay? + i(3x2y — y3) ’ '

Then  w(x,y) = 8 — 3xy2, »(x,y) = 32y — y3.

b w = 1 _ 1 — 1 A—ztwy _ 1—xtiy
1-2 " 1T—(z+@y) 1—-2—%w 1—z+tiy (A—22+y2

— l—2 _ Y
Then u(x,y) = m; v(x,y) = M—a)2+ 92"
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(¢) €3 = edz+ti) — g3redly — 37(cogs8y + isin8y) and u = €% cos8y, v = €32 sin3y

(d) Inz = In(ret) = Inr+i¢ = InvVa2+y2 + itan~ty/x and
u = }In(22+9?), v = tan—1y/x
Note that Inz is a multiple-valued function (in this case it is nfinitely many-valued) since

6 can be increased by any multiple of 27. The principal value of the logarithm is defined as that
value for which 0 = ¢ < 2 and is called the principal branch of Inz.

9. Prove (@) sin(x+iy) = sinxcoshy + 2cosxsinhy
(b) cos(x+1y) = cosxcoshy — isinzsinhy.
We use the relations €i? = cosz + isinz, e # = cosz — isinz, from which
e i . .
sinz = euz—iez, cosz = W
Then
Hz+iy) — g—iz+iv) it—y _ o—iz+
sinz = sin(x+1iy) = ey € T - €I hd Y
21 27
1, _ .. ..
= E{e V(cosx + isinx) — e¥(cosx — ¢ sinx)}
= (sinx)(#) + i(cosx)(ey;ze——y> = sinzcoshy + icosx sinhy
Similarly,
. itz +in)
cosz = cos(x + iy) el(z+iy +2e (x+iy
= Me=v +e"=ty} = L{e"¥(cosx + isinx) + e¥(cosx — isin x)}
e¥ 4+ e~V . ey —e Y .. .
= (cosx)<T> — 1(sm:c)<——2—> = cosxcoshy — isinzsinhy

DERIVATIVES. CAUCHY-RIEMANN EQUATIONS

10. Prove that —0%2, where Z is the conjugate of z, does not exist anywhere.

By definition, diz_ flz) = Alimof(z+AZ—l_f(z) if this limit exists independent of the manner
i d

in which Az = Ax + i{Ay approaches zero. Then

ii _ limz+Az—2 _ limx+iy+Ax+iAy—x+iy
dz T Az=0 Az AT—0 Ax + iAy
Ay=»0
_ . x—dy+ Ax —iAy — (x—1y) _ . Ax — iAy
= lim Az + iy = lm A T iay
Ay=0 Ay=+0
. s e s . Ax
If Ay = 0, the required limitis lim — = 1
Az -0 A
If Az =0, the required limit is lim —-5¢ = —1.
Ay—~0 1AY

These two possible approaches show that the limit depends on the manner in which Az—0, so
that the derivative does not exist; i.e. Z is non-analytic anywhere.
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1. (@) If w = f(z) = %%z, find %1;—) (b) Determine where w is non-analytic.

(a) Method 1.
1+ (2+42) 1+¢2
. 1—(z+A2) 1—2z _ 1 2
Alzlgo T Az az0 (1—2z—A2)(1—2)

dw
dz
(1_-—2-z—)2 provided z # 1, independent of the manner in which Az - 0.

Method 2. The usual rules of differentiation apply provided z+# 1. Thus by the quotient rule for

differentiation,
d d
4 1+z> _ Q-agita ~A+agl=a g_gm -+l _ 2
dz\1—2 1—22 (1—2)2 (1—2)p

(b) The function is analytic everywhere except at z =1, where the derivative does not exist; i.e. the
function is non-analytic at z — 1.

12. Prove that a necessary condition for w = f(2) = u(x,y) +iv(x,y) to be analytic in

U 0V ou o

a region is that the Cauchy-Riemann equations be satisfied in

. dx — oy’ oy oz
the region. vy
Since f(z) = flx+1iy) = wulz,y) + iv(x,y), we have
flz+42) = flx+Ax+iHy+ay)] = wulz+Az,y+Ay) + ivix+ Az, y+ Ay)
Then
lim f@+82) ~f@) _ g, #Et+Az,y+AY) — ulx,y) + dv(z+ Az, y+Ay) — vz}
Az =0 Az AZ~0 Ax + iAy
Ay~0
If Ay = 0, the required limit is
. Uzt Az, y) — ul, y) v+ A% y) —v(x,y)| . du -9v
Algr_r’xo Ax te Ax = T '
If Ax = 0, the required limit is
. u(x, ¥+ Ay) — ulx, y) v(x, y + Ay) — v(z,y) - lau v
Al;r—?o iAy + Ay i dy + oy

If the derivative is to exist, these two special limits must be equal, i.e.,

o _ low
ox oz i dy dy oy dy
du _ ov v __ _du
so that we must have 3 = oy and oz = oy

Conversely, we can prove that if the first partial derivatives of « and v with respect to x and y
are continuous in a region, then the Cauchy-Riemann equations provide sufficient conditions for f(z)
to be analytic.

13. (a) If f(2) = u(x,y) + iv(x,y) is analytic in a region R, prove that the one parameter
families of curves u(x,y) = C: and wv(x,y) = C: are orthogonal families. (b) Illustrate
by using f(z) = 22

(¢) Consider any two particular members of these families u(x,y) = uy, v(x,y) = vy which intersect
at the point (xy, yo). .



CHAP. 5] COMPLEX VARIABLE THEORY ‘ 149

(b)

Since du = uydx + u,dy = 0, we have Z_m_ = =

. dy
Also since dv = vydx +v,dy = 0, 5= =

When evaluated at (xg, ¥y), these repre-
sent respectively the slopes of the two
curves at this point of intersection.

By the Cauchy-Riemann equations,
Uy = Vy, Uy = —V,;, we have the product of
the slopes at the point (xy,¥y) equal to

VAR W
Uy Vy
so that any two members of the respective

families are orthogonal, and thus the two
families are orthogonal.

If f(z) =22, then u = x2—y2, v=2xy. The
graphs of several members of x2—y2 = C,, .
2xy = C, are shown in Fig, 5-7. Fig.5-7

14. In aerodynamics and fluid mechanics, the functions ¢ and ¢ in f(2) = ¢ +1iy, where
f(?) is analytic, are called the velocity potential and stream function respectively. If
¢ =22+4x—y*+2y, (a) find ¢y and (b) find f(2).

(@)

(b)

- . 3 _ W dy _ _de
By the Cauchy-Riemann equations, % 3y’ aw 3y Then
9 _ % _ _
(1) 3y - 2% + 4 (2) T 2y — 2
Method 1. Integrating (1), ¢y = 2xy + 4y + F(x).
Integrating (2), ¢y = 2xy — 2x + G(y).
These are identical if F(x) = —2x+¢, G(y) = 4dy+c¢ where ¢ is any real constant. Thus

v = 2xy + 4y — 2x+c.

Method 2.

Integrating (1), ¢y = 2xy + 4y + F(x). Then substituting in (2), 2y +F'(x) = 2y—2 or
F'(x) = —2 and F(x) = —2x+4+¢. Hence y = 2xy+4y—2x+ec.

From (a),
2y = o+ @&y = a2 4+ d — y2 + 2y + i(2xy+4y—2x+¢)

= (22—y242ixy) + dx+1y) — 2i(x+iy) + ic

22 + 4z — 2iz + ¢
where ¢; is a pure imaginary constant.

This can also be accomplished by noting that 2z = x+iy, 2 = x— iy so that = = 5

y = zz—iz. The result is then obtained by substitution; the terms involving Zz drop out.
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LINE INTEGRALS

1,2) ‘
15. Evaluate f (2 —y)dz + (y*+2)dy along (a) a straight line from (0,1) to (1,2),
0,1)

(b) straight lines from (0,1) to (1,1) and then from (1,1) to (1,2), (¢) the parabola
z=1t y=1+1.

(a) An equation for the line joining (0,1) and (1,2) in the xy plane is y = 2+ 1. Then dy =dz and
the line integral equals

1 1
f {2—(e+1)}de + {(x+1)2+2}dx = f (2x2+2x)de = 5/8
0

=0
(b) Along the straight line from (0,1) to (1,1), y =1, dy = 0 and the line integral equals

1 1
, f (x2—1)dx + (1+2)}0) = f (2 —1)dx = —2/38
1] [

r=

Along the straight line from (1,1) to (1,2), # =1, dx =0 and the line integral equals

2 ’ 2
f Q-0 + (¥+Ddy = f (¥?+1)dy = 10/3
y=1 1
Then the required value = —2/3 + 10/3 = 8/8.

(¢) Since t=0 at (0,1) and £t =1 at (1,2), the line integral equals

1 1
f {—(2+1)}dt + {(B+1)2+ ¢t} 2tdt = f 254+ 43+ 22+2t—1)dt = 2
t=0 - 0
GREEN’S THEOREM IN THE PLANE v
: F
16. Prove Green’s theorem in the plane if C is a -

simple closed curve which has the property that
any straight line parallel to the coordinate axes
cuts C in at most two points.

Let the equations of the curves AEB and AFB (see
adjoining Fig. 5-8) be y = Y,;(x) and y = Y, (x) respec-’
tively. If R is the region bounded by C, we have

b Yy(x) .
. H P dx dy f [ f 2 oP dy] dx Fig.5-8
A Y v dy

[ ] IO

r=a =Yl(2‘)
b Yo(z) b
= f P(z,v) de = f [Pz, Yy) — P(x,Y))] da
r=a ¥=Y(x) a
b a
= —f P(z,Y,) de — f P(z,Yy) dz = —§ P dx
a . b c

Then (1) §Pdw = —ff‘;—’idxdy
c ® Y .

Similarly let the equations of curves EAF and EBF be x = X (y) and x = X,(») respectively.A
Then . :
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Xy () f
f ' ?92 dx] dy = f [Q(Xz, YY) — QX y)] dy

f
fen - [
& 9z v=e LS =3, e

| ff QXy ) dy + f "y = £ Qdy
Then (2) | ‘ﬂ Qdy = jq;f %dm dy
Adding (Z) and (2), ‘ﬂ Pdx + Qdy ff <—— — —) x dy.

Extensions to other simple closed curves are easily made.

17. Verify Green’s theorem in the plane for
§ (2xy —2?)dx + (x+y)dy

where C is the closed curve of the reglon
bounded by ¥ =2 and ¥*==z.

The plane curves y =2 and y2 =2 intersect at
(0,0) and (1,1). The positive direction in traversing
C is as shown in Fig. 5-9.

Along y = a2 the lide integral equals Fig.5-9
f 1 , (E0)@) — 2%y do + @+ @R de) = fol (28 + a2+ 209 de = U8
o=
Along y? =« the line integral equals
L:: 2000 — % d@?) + {2 +y3dy = J;o yt—25+2y%dy = —17/15

Then the required line integral = 7/6 — 17/15 = 1/30.

(- F)wa = ff{Gew - Fom-o)aa

R
ff(l—zx)dxdy = fl_oj;ﬁ (1—2x)dy¢}lx
R T= =x2

1 vz
f_o (y — 2zy)

=

1 B ;
de = ! (x1/2 —2x3/2 — 924 228) dx = 1/30
0

y=x2

Hence Green’s theorem is verified.

INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS

2+4i

18. Evaluate f 22dz

(a¢) along the parabola x=1, y=1* where 1={=2,
(b) along the straight line joining 1+ ¢ and 2 + 44,
(¢) along straight lines from 1 +4 to 2 +¢ and then to 2 + 4i.
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We have

2+4i
f 22 dz
1+

(2.4) 2,4
f @ + iy)2dx + idy) = f (x2 — y2 + 2ixy)(dx + 1dy)
.1 (1.1

(2.4 (2,4)
f @2—y)de — 2xydy + if 2zy dx + (22 —y?)dy
RT (L

Method 1.
(a) The points (1,1) and (2, 4) correspond to t =1 and t = 2 respectively. Then the above line integrals
become )
Y 2 86
f {2 — ) dt — 2(t)(E)2t de}  + zf 2@ dt + (2—-e@EHdty = —3 — 6i
t=1 =1

4—1

(b) The line joining (1,1) and (2,4) has the equation y—1 = 51

we find

(x—1) or y = 8r—2. Then

2
f {[x?2 — 8z — 2)2] dz — 2z(3x — 2)3 dx}
=1

x
2
v if
x=

{22(8z — 2) dax + [#2 — (8x —2)2]8dx} = -3 - 61
1

(¢) From 1+14to 2+ [or (1,1) to (2,1)], ¥y =1, dy =0 and we have

2

2
f @ —1)de + if 2 dy = % + 3i
- .

z= =1

From 2+1i to 2444 [or (2,1) to (2,4)], * =2, de =0 and we have

4 4
f —4ydy + if A—y)dy = —30 — 9i
=1 —

y y=1

Adding, <§+ 3i> + (=80 — 9i) = —%6 — 6.

Method 2.

The line integrals are independent of the path [see Problem 19], thus accounting for the
same values obtained in (a), (b) and (¢) above. In such case the integral can be evaluated directly,
as for real variables, as follows:

244i 312440 3 53
f 2dz = % © = (2+34i) - (143-1) = _%@ — 81
1+i 8 li4s

19. (@) Prove Cauchy’s theorem: If f(z) is analytic inside and on a simple closed curve C,

then _97 f(2)dz = o.
(o}

Py
(b) Under these conditions prove that f f(?)dz is independent of the path joining
Pz and P.. £y

(a) £f(z) dz = i(u+iv)(da¢+idy) = iudx — vdy -+ z§; vde + udy

By Green’s theorem,

v  du ' dou v
udx — vdy = ff ————>d dy, jw de + udy = ﬂ(—-———)d d
£a: Y q((ax ayxy Cvx e q{ax ay“’y

where R is the region bounded by C.
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Since f(z) is analytie, % = z—;, z—z = —% (Problem 12), and so the above integrals are

zero. Then f f(z)dz. = 0. We are assuming in this derivation that f’(z) [and thus the partial
(o4 .

derivatives] are continuous. This restriction can be removed.

(b) Consider any two, paths joining points Pl and P, (see Fig. 5-10). By Cauchy’s theorem,

fzydz = 0 . Ps
P AP,BP,
) Path1

Then f f2) dz + f f@ydz = 0

PLAP, P,BP,

‘ B
or f f@)dz = f f@)dz = f f(2) dz D <5
© PAP, P2BP, PLBP, !

i.e. the integral along P,AP, (path 1) = integral along
P,BP, (path 2), and so the integral is independent of the

path joining P; and P,. Fig.5-10

This explains the results of Problem 18, since flz) =22
is analytic.

20. If f(z) is analytic within and on the boundary of
a region bounded by two closed curves C: and C2
(see Fig. 5-11), prove that

§C fleyde = § f(z) dz

As in Fig. 5-11, construct line AB (called a cross-cut)
connecting any point on C, and a point on C;,. By
Cauchy’s theorem (Problem 19),

S

f@dz = 0 Fig. 5-11
" AQPABRSTBA ’

since f(z) is analytic within the region shaded and also on the boundéry. Then

f(z) dz + f(z) dz + f(z) dz + flzyde = 0 )
AéfPA f BRE”I“B f

But fzydz = -— f(z) d=. Hence (1) gives

J J
fRdz = — f(zydz = f(z) dz
AQPA BRSTRB BTSRB
ie. ~ flzydz = d
ie il 2) dz iﬁ f(z) ; z

Note that f(#) need not be analytic within curve C,.

{Zﬂ if n=1 where C is a simple closed

21. (@) Prove that f _dz ,
c (2—a) 0 if n=2,8,4,.

curve bounding a region having z = e as interior point.

(b) What is the value of the integral if n = 0,—1,—2, -3, ..
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(a) Let C, be a circle of radius ¢ having center at z = a
(see Fig. 5-12). Since (z—a)~" is analytic within
and on the boundary of the region bounded by C
and C;, we have by Problem 20,

dz - § dz
c z—a)y “Je, G—a)t
To evaluate this last integral, note that on C,,
lz—a|l = ¢ or z—a = e€i? and dz = iee®ds. The
- integral equals .
27 il 3 2 . : g(1—n)ig |2
f Lt ,.l_lf et-mindy = LTI = g 4
o eteind € 0 11 —n)ilp .

27
If »n =1, the integral equals 'if do = 2.
0

() For » = 0,-1,—2, ... the integrand is 1, (z—a), (z—a)2, ... and is analytic everywhere inside
Cy, including 2z = a. Hence by Cauchy’s theorem the integral is zero.

22, Evaluate f z;d_zg where C is (a) the circle |2{ =1, (b) the circle |z +1] =
(o}

(a) Since z =3 is not interior to |z| =1, the integral equals zero (Problem 19).

(b) Since z =3 is interior to |z+i| = 4, the integral equals 2»i{ (Problem 21).

23. If f(z) is analytic inside and on a simple closed curve C, and ¢ is any point within C,
prove that ' ) “
_ 1 £ f(»
fo) = 358 7—a%

Referring to Problem 20 and the figure of Problem 21, we have
§ i@ g, § 1@ 4
c?—a z—a

Letting z—a = ee'f, the last integral becomes 1 f(a + eei®) dg. But since f(z) is analytic,
it is continuous. Hence Y
27

27
11m zf fla + ee®)de = zf lin(l) fla+ ee)dse = i fla)de = 2zxif(a)
0 €~ 0

and the required result follows.

08 2 . . '
—1] = 8.
24, Evaluate (a) f dz () § p (z+1) dz where C is the circle |2—1| =3

(@) Since z =7 lies within C, % § CO8Z 4z = cosz = —1 by Problem 23 with f(z) = cosz,
mJoz—n .
a=7. Then § COSZ gz = —2ri.
c®r—mw
_€ g = (1 _ _1 )d — § L § e
@ £z(z+1)dz ie <z z+1)% Czdz Cz+1dz
= 2rie® — 2rie"! = 27i(1 —e"Y)

by Problem 28, since z =0 and z= —1 are both interior to C.
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2
25. Evaluate §z(z_3i)-=l;_2 dz where C is any simple closed curve enclosing z = 1.
c _
't (n) — n_! .f(z)
Method 1. By Cauchy’s integral formula, f™ (a) 27 IPETa dz.
. -

If n=2 and f(z) = 622—3z+ 2, then f’(1) =10. Hence

_ 522 — 821 2 §5z2—3z+2d = 104
10 = 2,7-1,§ T dz or TG z 0ri

Method 2. 522 —~ 32+ 2 = b5(z—1)2+ T7(z—1) + 4. Then

522—382+2 _ §5(z—1)2+7(z—1)+4
AR VI z—1p dz

= 5§ + 7§ - 1)2 + 4§(z—1)3 = b5(2ri) + 7(0) 4+ 4(0)
107

By Problem 21,

SERIES AND SINGULARITIES

26. For what values of z does each series converge?

o

n n
(@) "gl n;—zn The nth term = u, = n_2z27 Then
li Un+1 - znt+1 ,nan |2l
T | T A w2 | T 2

By the ratio test the series converges if 2| < 2 and diverges if [z| > 2. If |2] =2 the ratio
test fails.
zin

(-4
= Eln—z‘gg converges if |z] = 2, since
-

However, the series of absolute values 3 i
0 n=1

1
"gl o converges.

Thus the series converges (absolutely) for 2| =2, ie. at all points inside and on the circle

o] = 2.
S (=1)n—1zm-1 2B 25
(b) "glw = z—3—!+ﬁ—"'. We have
. Un+1 _ | (=hrgBetl - @2 —1) . IL
R Y I C - T Y P

Then the series, which represents sin z, converges for all values of z.

Up +1
u‘ll

(z—imt1 8n

lz2—4
gn+1 (z—n

= lim

Ne> o

) X (z ;"i)" . We have lim

n=1 ne—too

The series converges if |z —1 < 3, and diverges if |z—1i] > 8.

If |z—1 = 8, then z—1i = 3¢ and the series becomes E ein8, This series diverges since
the nth term does not approach zero as n—«, n=1

Thus the series converges within the circle |z —i] = 3 but not on the boundary.
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27, If i a.2" is absolutely convergent for |2| =R, show that it is uniformly convergent

n=0

for these values of z.

The definitions, theorems and proofs for series of complex numbers and functions are analogous
to those for real series.

X

In particular, a series X u,(2) is said to be absolutely convergent in a region R if > lu,(2))]

n=0 n=0
o0 oC
converges in . We can also show that if 3 lu,(2)| converges in R, then so also does 3 u,(2),
n=0 n=0

i.e. an absolutely convergent series is convergent.

o0
Also, a series X u,(z) convergent to a sum function S(z) in a region ® is said to be uniformly
n=0

convergent in R if for any ¢> 0, we can find N such that
18x(2) — S(z)| < e for all n > N
where N depends only on ¢ and not on the particular z in ®, and where

Sp(z) = wug(z) + uy(z) + -+ + wu,ylz)

An important test for uniform convergence is the following. If for all z in R we can find
constants M, such that

o0
lu ()] = M,, » =0,1,2,... and Eo M, converges
=

then 3 u,(2) converges uniformly in ®. This is called the Weierstrass M test.
n=0

For this particular problem, we have

leqz?| = |a,| R = M, n=2012...

Since by hypothesis > M, converges, it follows by the Weierstrass M test that > a,2" converges
n=0

n=0
uniformly for [z} = R.

28. Locate in the finite z plane all the singularities, if any, of each function and name them.

2
(@) (zj-—l)—“ z =—1 is a pole of order 3.

28—z +1
z—42(z—1)(z—1+2i)

poles of order 1 (simple poles).

()

z=4 is a pole of order 2 (double pole); z =7 and z = 1—-2{ are

sin mz . 2 - _T2*xVv4—8  —2*2 ..
(c) —z2+2z+2,m#0. Since 224+2z24+2 = 0 when 2z = 5 5 11, we

can write 22+ 224+ 2 = {Z—(—14+)}z—(—1—9} = (z+1—9)z+1+79).

The function has the two simple poles: z = —1+1% and z = —1-—1.
1—cosz . . . .1 —cosz o .
(d) — - 2=0 appears to be a singularity. However, since lm},T =0, it is a
t 4o d

removable singularity.
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Another method.

. 1 —cosz
Since — =

N -,

22 2 z _ 28
{1_<1—ﬂ+ﬂ—a+'“>} = -2—!-—2—!+"', we see that

2z = 0 is a removable singularity.

/-1 — -1 1 -
(o) e 1= G- t 2re=1x

This is a Laurent series where the principal part has an infinite number of non-zero terms.
Then z =1 is an essential singularity.

() e~

This function has no finite singularity. However, letting 2 = 1/u, we obtain el’* which has
an essential singularity at « =0. We conclude that z = « is an essential singularity of e=.

In general, to determine the nature of a possible singularity of f(z) at z=w«, we let z=1/u
and then examine the behavior of the new function at u =0.

29. If f(2) is analytic at all points inside and on a circle of radius R with center at a, and
if a 4+ h is any point inside C, prove Taylor’s theorem that

fla+h) = fla) + hf(@) + mf7(@) + (@) +

By Cauchy’s integral formula (Problem 23), we have

fla+h) = E% ] __zf_(z;'izh )
By division,
1 _ 1
z—a—h = (z—a)[l - h/(z— a)]

i

1 h h2 hn hr+1
G—a) {1 T I P T (z—a)"(z—-a—h)} @)

Substituting (2) in (Z) and using Cauchy’s integral formulas, we have

= 1 ff@de . k£ fl2)dz e A f(z) dz
flat k) 271 J, z—a + 271 Jo (z—a)2 + + 27ri§;(z—a)n+1 + By
' h2 ' hﬂ
= fl@ + hf@ + 57f'e) + 0 + SfW () + R,
= it f(z) dz
where B = 35 i(z-——a,)"“(z-a—-h)

f(z)

Now when 2z is on C, T—a—h = M and lz—a| = R, so that by (14), Page 140, we have,

since 27R jis the length of C,

]h|n+l M .
IRy = o RAIT 2zR

As n> », |[R,|~0. Then R, =0 and the required result follows.
If f(2) is analytic in an annular region r;, = |2—a| = 7, we can generalize the Taylor series

to a Laurent series (see Problem 119). In some cases, as shown in Problem 30, the Laurent series can
be obtained by use of known Taylor series.
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30. Find Laurent series about the indicated singularity for each of the following functions.
Name the singularity in each case and give the region of convergence of each series.

F
(a) ﬁ;zZI. Let z—1 =u. Then z = 1+wu and
ez _ el-tu B . ev _ e u2 @ u4
(2—1)2 = P = e 2 ﬁ{1+u+§T+—3!+Z!+ }
- € e e , elz—1) | ez—172
= G ti=itert et f
z=1 is a pole of order 2, or double pole.
The series converges for all values of z +# 1.
(d) zcosl; z=0.
z
1 _ 1 1 1 ) _ .1 11
Feosy T z<1 212 T ar T Ee T > L TR TP R P
z =0 is an essential singularity.
The series converges for all values of z # 0.
(e) zil—z—fr;z=1r. Let z—7 = u. Then z =u+r7 and
sinz _ sin(u+w) _ sinu _ 1 ud us
— = —_—_—_— = ———— = —— (U — ==+ = — -
z—w % % u 3! 5!
_ u? ut _ (z—7n)2 (z— =)
= 14 g—gpt o = o1+ S - R 4
2z = is a removable singularity.
The series converges for all values of z.
(@) m; z=-1. Let z+1 = u. Then
z u—1 u—1
— - - — 1— 2 . 43 4 __ s
GFDETD wu+ 1) w (dmutw—witu )
= -%+2—2u+2u2-—-2u3+
= - 42— 2+1) + 20412 —
> - z+1 (2
z = —1 is a pole of order 1, or simple pole.

The series converges for values of z such that 0 < |2+ 1] < 1.

1

(e) z(z—+2—)3; z = 0,—2.

Case 1, z = 0. Using the binomial theorem,

1 _ 1 _ 1 _ (=3)(—4) (2\% | (=3(—(=5b)/z\* . ...
2228 BAFRP 8z{1+( 3)<%>+ 21 (‘;> + SR )<%> * }

1 3 3 5
e — — —- = —_— 2 “ee
8z 16 T16% 3¢ T

z =0 is a pole of order 1, or simple pole.

The series converges for 0 < |z] < 2.
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Case 2, z = —2. Let 2+2 = «. Then

1 _ L 1 = L o fuNE (N u\t
2z+28 T w2’ T 2wl —w/2) 2u3{1+2+<2> +<2) +<2> ¥ }

ot 111 _ 1.
2z +27 ~ 4 +22  Bz+2) 16 32

+2) — .-

z=—2 is a pole of order 3.

The series converges for 0 < |z+ 2] < 2.

RESIDUES AND THE RESIDUE THEOREM

31. If f(2) is analytic everywhere inside and on a simple closed curve C except at z=a
which is a pole of order » so that

flz) = (za__:;),, + (za__'(;;ni_l + oo+ a0 + afz—a) + ax(z—a) +

where a-, 7 0, prove that

(a) § f()dz = 2zta-,

n—1
() a-1 = lim gy 22 (- 0 £l2).

(a) By integration, we have on using Problem 21
§f(Z)dz = &ﬁdz + -+ 9 L=t 4z + §{ao+a,(z—a)+a2(z—a)2+---}dz
c Je (z—a)? cz—a c

= 277'1:“_1
Since only the term involving ¢ | remains, we call a_; the residue of f(z) at the pole z=a.
(b) Multiplication by (z — a)* gives the Taylor series
Z—arfz) = a_, +a_,iq1(z—0a) + -+ + a_j(z—a)r"1 + ...
Taking the (n — 1)st derivative of both sides and letting 2 > «a, we find

(n=Dleo, = lim o (e ay i)

from which the required result follows.

32. Determine the residues of each function at the indicated poles.

(a) %; z = 2,i,—i. These are simple poles. Then.
2 4
. —9 3 . —9 P - 2
Residue at z =2 is Tim (= ){—-———(2_2)(z2+1)} 5
i =i im (z— 2 - 2 - 1-2
Residueat 2 =4 s Jim =9 {(z—2)(2—i)(z+i)} = Goo@ 0

s . . 2 _ 32 _ 142
Residue at z = —1 is zl-lml(z+z){(z—2)(z—i)(z+i)} = =9 T
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1 ' : . . 5 ‘
() m; z=0,-2.  z2=0 1.s a simple pole, z = —2 is a pole of qrder 3. - Then:
. P 1 _ 1
Residue at z =0 is ll_{n 2 2+ 2z+t28 — 8
, : . 1d 1
Residueat z=-2 is  lim 5 dzz{(z + 2) 2+ 2)3}
= um 121 _’hmzz__"z
- z-»n-l-22 dz? - z—0—22 - 8

Note that these residues can also be obtained from the coefficients of 1/z and 1/(z+2) in
the respective’ Laurent series {see Problem 30(e)].

(o) (z )2, z =38, a pole of order 2 or double pole. Then:

Residue is  lim £ { (2~ 82+ 25t " = lim —d-(;ezt) = lim (e** +.zte?t)

z=3 d ( 3)2 z=+3 dZ z=3
= 3t + 3te3t

(d) cotz; z = b7, a pole of order 1. Then:

Residue is ~ lim_ (z — bn) » = <1im z._""”)( lim cos z> = (llm >(—1)

sin z z=+57 SInz 2 BT 2= 57 COS 2
= (1= = 1 '
where we have used L Hospital’s rule, which can be shown applicable for functions of a complex

variable.

33, If f(z) is analytlc within and on a simple closed curve C except at a number of poles
a,b,c, ... interior to C, prove that

§ f(z)dz = 2xi{sum of residues of f(2) at poles a, b, ¢, etc.}
c -

Refer to Fig. 5-13.

By reasoning similar to that of Problem 20 (i.e. by
constructing cross cuts from C to C,, C, Cj, ete.),

we have
dz = dz + dz +
fcﬂz) 2 _ilf@) : if@ :
Fig.5-13
For pole a, v 8
f@ = (z—a_%"; + -+ % + ey + ayz—a) + ---

hence, as in Problem 31, f f(Rydz = 2ria_,.
. cl

: b_ b_
Similarly for pole b, f(z) = (z—_;—)ﬂ Fooee + ﬁ + by + by(z—b) + -

so that ' fYdz = 2zib_,;
Ca
Continuing in thls manner, we see that

§ f(z) dz = 21r‘t(a_1 + b__l + +-+): = 2gi(sum of residues)
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34, Evaluéte §; (é—_%éi—w where C is QiYén by (a) |2|=8/2, (b) J¢| =10.
gesidue at simple pole z=1 is  lim {(z —1) M} = 5
Residue at double pole z=-8 is _
a e? A _ . (z—1)ez—e _ —be3
L% {‘”3’ (z—1)<z+3)2} = m thor . T e

(¢) Since |z| = 3/2 encloses only the pole z =1,

. . - [ _ mie
the required integral = 2xi < 1 6> = A
(b) Since |2] =10 encloses both poles z=1 and z = —3,
. . _ e 5¢—38 _  wi(e — be—3)
the required integral = 2z¢ <16 16 > = —5

EVALUATION OF DEFINITE INTEGRALS

4
35. If [f(z)] = —Z‘{ for z= Re®, where £k>1 and M
are constants, prove that gim f(edze = 0
- ® r

where T is the semi-circular arc of radius R shown
in Fig. 5-14.
By the result (14), Page 140, we have

M M -
j; f(2) dz fF [f@lde|l = ppeaR = é’k_l Fig.5-14
since the length of arc L = zR. Then
llm f f(2) dz = 0  andso -Rlim f fedz = 0
- 0 P

36. Show that for z = Re®, [f(2)| = R"’ E>1 if f(z) = I

_ p _ 1 1 1 2
I z=Reb,  |f@I = I1+R4e4“’l = Rl —1 ~ B—1 = Rt

(say R > 2, for example) so that M =2, k=4.

if R is large enough

Note that we have made use of the inequality |z; + 25| = |24| — [25] with 2; = R4e%® and 2, =1,

dx

37. Evaluate J; pra

Consider f A +1, where C is the closed contour of Problem 35 con51st1ng of the lme from
—~R to R and the seml-clrcle T, traversed in the posmve (counterclockW1se) sense

Since zt+1 = 0 when z = e7i/4, 3mi/4, ¢5ni/4 " ¢Tni/4] these are simple poles of 1/(zt+1). Only
the poles e™/% and ¢37i/4 lie within C. Then using L’Hospital’s rule,
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. Residue at e7i/d = zii:;lm{(z — emi/4) - }'_ 1}
— ,l‘:?.m ﬁ - % o—3uwila
Residue at €371/4 = z_’lgr;m{(z — g37i/4) - _ll_ 1}
— ,_.ljsmnm Z:_s = % o —9misd
Thus §C z4d-|z— T = 2ri{fedmiM 4 Le-dmiM}) = .”.'.‘é/g ()

fR da i dz _ 1.-\/5
rE+1 P2+l T2 @

Taking the limit of both sides of (2) as R—>» and using the results of Problem 36, we have

R dx - f “ de _ 1;'\/5

pm ) L #+1 s
. ® de fx de . . V2
Since le ey gl 2 A el the required integral has the value =
38. Show that f a? dw ﬁ
w (@2+12(x2+22+2) 50°
2
The poles of @ETIP (:2 19,72 enclosed by the contour C of Problem 35 are z = i of order 2
and z = —1+1 of order 1.
. . 2 97— 12
Residue at z = lim % z = ==
eadest e=r 8 & {(z P TR ET T 2)} 100
. . . 2 3—44
Residue at z = —1+ 1 1— z = ===
esidtie at 2 vs z-l—nll+i(z+ )(z2+1)2(z+1-1)(z+1+1) 25
2 dz . 91—12 3—41 Tr
Th i = N—la s~ 4 - Ir
en  EF12 @22 12 2’”{ 00 T 25 } 50
R 2 2 7
or f x2dx + 22dz - I
_p @ T 12 @2+ 2z +2) 12+ 2212 50

Taking the limit as R >« and noting that the second integral approaches zero by Problem 35,
we obtain the required result.

2% d0
39. Evaluate f N . A—
s 5+ 3sind
0 o—i — =1
Let 2z=¢9% Then sing = ¢ 2: - 2 2: , dz = iei®dy = izde so that
2 de - § dz/iz § 2dz
o 5+ 3sineg . 322+ 10iz— 3

— 1
5+3<z z_ )

where C is the circle of unit radius with center at the origin, as shown in Fig. 5-15 below.
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2 . ’
Th les of ——= )
The poles of o—o——70——7 are the simple poles
' , = ~10i=v-100+36
. 5 -
—10¢ + 8¢
6
= -3, —i/3.
ler 15 s s Fig. 5-15
Only —i/3 lies inside C. -
Residue at —i/3 = lim (z+%)(2poar—s) = lim ——2 — = -L by L'Hospital’s
e, Gue st Ve = s 3/\32F10—3) ~ . Tpsbetioi 4 O 0P
' 2dz _ 1N = _ .
Then £ ET10a-3 27 ( 4i> = g the. required value.

27 .
40. Show that f _ 0880 4, — T
0

5 —4cosd 12°
.—1 2 — —
If 2z=¢i% cose = ﬁé_z_, cos 38 = 63w+2e %9 = z3+2z 3, dz = iz de.
27 N . .
cos 36 _ f (B+2%/2 d _ _1 #B+1
Then J.; 5—dcoss 4<z n z——l) W 2iJ, 2@z —DE—2)
2

where C is the contour of Problem 39.

Thé integrand has a pole of order 8 at 2 =0 and a simple pdle 2=} within C.

.
. s .1 &) o 241 _ 21
Residue at 2 =0 is l}ﬂ)z—! e {z B -1DE=—2) 2)} = 3
: PR A+1 _ 85
Residue at z =1 is 21_131/2 {(z 1) M——lm} = 24"
__l_f' B+1 = 1,021 65 o« -
Then %), mdz = 5 (2:—1’){ 3 24 = 13 _as required.

41. If |f(e)] = % for z = Re®, where k>0 and M are constants, prove that
Re=co

fim emf(z)dz = 0
I

where T 'is the semi-¢ircular arc of the contour in Problem 35 and m is a positive
constant.

If 2= Rei®, f emzf(z) dz = f ¢mRe f(Rei0) iRei® dp.
r . : : 0
J,

0

Then

IA

f eimReiﬂf(Rem) iRe® do eimReiof(ReiB) iRei% de

0

H

gimR cos@ — mR sin 6 f(Reif) iReif| do

f ¢—mRsiné |f(RetG)| R de
0 . .

et /2
= R—;.:!__T e—mRsind gp = Rzlf‘—ll f g—mRsing® g
) )



164 ~ COMPLEX VARIABLE THEORY . ‘ [CHAP. 5

Now sing = 2¢/r for 0= 6= #/2 {(see Problem 3, Chapter 7). Then the last integral is less
than or equal to '
2M ("2 M

R | e—2mRO/T Jg = .W(l““_mn)

As R -« this approaches zero, since m and %k are positive, and the required result is proved.

42, f cos mx e Tom .
Show that . ZF1 = " dx 2e , m>0

Consider § §:+z dz where C is the contour of Problem 35.
c

The integrand has simple poles at z = =i, but only z = 7 lies within C.

imz -m
Resi s §em 1 _ em
esidue at z =1 is lim {(z (2_1)(2.;.1)} 2§
T : gimz . - . 6_."' — -
hen . i Zri dz 27 % we~m
or J‘ ZT1 de + f Frid = e
f B cosma d J‘ ® sinma f eimz = —m
1.e. —r x2+1 r + 1 _ 2+1 x + 2+1 z - e
cos Mmx eme = -
and so 2_’; 2+ 1 dx +j:z2+1 =T

Taking the limit as B == and using Problem 41 to show that the integral around I" approaches
zero, we obtain the required result.

43. Show that f s1nx dx = g

The method of Problem 42 leads us to con-
sider the integral of ¢i?/z around the contour of
Problem 85. However, since z = 0 lies on this
path of integration and since we cannot inte-
grate through a singularity, we modify that
contour by indenting the path at z =0, as shown
in Fig. 5-16, which we call contour C’ or
ABDEFGHJA.

Since z = 0 is outside C’, we have

iz
f“—dz = 0
-

C

‘ -r i : R i
or f ﬂd:z: + f ﬁdz +f ﬂdm + f f-t—z-dz = 0
_r % z r z

HJA BDEFG

Fig.5-16

Replacing « by —=z in the first integral and combining with the third integral, we find,

f "w_“wdx+ f—dz+ f"—“’dz = 0
I

HJA . BDEFG

R _. iy : :
sf e = - (La- [ L4
T x . x. z z
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Let —>'0 and R\—> =, By Problem 41, the second integral on the right approaches zero. The
first integral on the right approaches

0 gireid R o .
— lim g tre®de = — lim f ieire dg = ¢
=0y ret ) . r=0Jy

since the limit can be taken under the integral sign.

Then we have & . ’

. A sin & . sinx

lim 2zf de = =t or f dex =
R~ o0 r & 0 x

IR

=0

MISCELLANEOUS PROBLEMS

44. Let w = 22 define a transformation from the z plane (zy plane) to the w plane (uv plane).
Consider a triangle in the z plane with vertices at A(2,1), B(4,1), C(4,3).. (a) Show
‘that the image or mapping of this triangle is a curvilinear.triangle in the uv plane.

(b) Find the angles of this curvilinear triangle and compare with those of the original
triangle.

(a) Since w =22, we have u = 22— y2, v = 2zy as the transformation equations. Then point A(2,1)
in the zy plane maps into point A’(3,4) of the uv plane (see figures below). Similarly, points B
and C map into points B’ and C’ respectively. The line segments AC, BC,AB of triangle ABC
map respectively into parabolic segments A’C’, B'C’, A’'B’ of curvilinear triangle A’B'C’ with
equations as shown in Figures 5-17(a) and (b).

v
Y
C 4,9
-+
1
]
5 2
2,1 y=1 4,1
x
©
@ ] )
Fig. 5:17
e . dv 2 1
(b) The slope of the tangent to the curve v2 = 4(1+u) at (3,4) is m; = Tl - =3
. . : Uis,e Vs
The slope of the tangent to the curve u2 =2v+1 at (3,4)is - my = g—z =u =3
(3,4)

Then the angle ¢ between the two curves at A’ is given by

mg — My 3—%
t = = = 1, d 6 =x/4
an ¢ T+ mymg SEETY an z/

Similarly we can show that the angle between A'C’ and B’C’ is #/4, while the angle between
A’'B’ and B’C’ is #/2. Therefore the angles of the curvilinear triangle are equal to the correspond-
ing ones of the given triangle. In general, if w = f(z) is a transformation where f(z) is analytic,
the angle between two curves in the z plane intersecting at z = 2z, has the same magnitude and sense
(orientation) as the angle between the images of the two curves, so long as f'(z;) # 0. This prop-
erty is called the conformal property of analytic functions and for this reason the transformation
w = f(z) is often called a conformal transformation or conformal mapping function.
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45. Let w = \/z define a transformation from the 2 plane to‘the w plane. A point moves
counterclockwise along the circle {¢|=1. Show that when it has returned to its start-
ing position for the first time its image point has not yet returned, but that when it
has returned for the second time its image point returns for the first time.

Let z= ¢ Then w = \/z =.¢%2, Let 6 =0 correspond to the starting position. Then z=1 and
w =1 [corresponding to A and P in Figures 5-18(a) and (b)].

y SR

(a) ()
Fig.5-18

When one complete revolution in the z plane has been made, § =27, 2 =1 but w = ¢0/2 = giv = —1
so the image point has not yet returned to its starting position.

However, after two complete revolutions in the 2z plane have been made, ¢ =47, 2 =1 and
w = ¢i0/2 = ¢2mi =1 g0 the image point has returned for the first time.

It follows from the above that w is not a single-valued function of 2 but is a double-valued function
of z; i.e. given z, there are two values of w. If we wish to consider it a single-valued function, we
must restrict . We can, for example, choose 0 = ¢ < 27, although other possibilities exist. This
represents one branch of the double-valued function w = V/z. In continuing beyond this interval we
are on the second branch, e.g. 27 = 9 < 4. The point z=0 about which the rotation is taking place
is called a branch point. Equivalently, we can insure that f(z) = vz will be single-valued by agreeing
not to cross the line O, called a branch line.

xi’“‘l
+x dz =

46. Show that f
o 1

T
m, 0<p< 1
. . —1
Consider § %;dz. Since 2z = 0 is a branch point,
c

choose C as the contour of Fig. 5-19 where AB and GH are
actually coincident with the a axis but are shown separated
for visual purposes. :

The integrand has the pole z = —1 blying within C.

Residue at 2 = —1 = ¢™ is
lim (z+1) il = (em)p~1 = e(p—i)m‘
2 —1 1+2
Th il dz = 2rie»—Dmi
en L 1+z2 = e

or, omitting the integrand,

f + f + f + f = 271 ¢(p— Dwi Fig.5-19
GH

AB BDEFG HJA



CHAP. 5] COMPLEX VARIABLE THEORY 167

We thus have

R

1+« 1+ Rd 1 + rei® -

- 2 _ 0 o .
CadRbl W f (Re“’l)ﬁ’*_l I;I:’izwdo i '(le";);w:_ dze + f (ré9)P—lirei®dy  _ o . otp—Dimi
0 R 9

r 2T

where we have to use z = xe2*t for the integral along GH, since the argument of z is increased by
27 in going around the circle BDEFG.

Taking the limit as > 0 and R—~« and noting that the second and fourth integrals approach
zero, we find

o — 0 -
ap—1 27i(p—1) pp—1 .
dx + f eV r T de = 27 elp—Dmi
o 1+=x w 1+«
1 — e2mito—1) fw el 2.3 ¢(p—imi
~ e2mi(p— —dz —_ 1 e(p—1)m
or ( )‘ R 1+ T
-] . s 3
gP=—1 ietp Dmi 2 T
so that Fe——dx = 2 - = Tt - = :
0 1+¢ 1 — e2nitp—1) epmi — g—pwi sin pr

Supplementary Problems

COMPLEX NUMBERS. POLAR FORM

47.

48.

49,

50.

5l.

52.

53.

Perform each of the indicated operations.

— 4112
(@) 2(6—3) — 3(—2+1%) + 5(i—3) (©) §rsz + 4_1;0_3; © §+§:\

1—i\Y (1 + )2 + 3i)(4 — 29)
() (3—2i3 (d) (ﬁ?) B a+zea—

Ans. (a) 1—4i, (b) —9—46i, () ¥ —2i, (d) -1, (& B, () ¥ -3

21T

13
21‘ _ |24

If 2; and 2z, are complex numbers, prove (a) , (b) |23 = |2|2 giving any restrictions.

Prove (a) |2+ 2y = |z + 2], (B) |21+ 2ot 250 = 2|+ |2o] +25], () |21 — 29| Z [24] — 2yl
Find all solutions of 224 —323—722—82+6 = 0. Ans. 8, &, —1*4

Let 2; and 2, be represented by points P, and P, in the Argand diagram. Construct lines OP, and OP,,
where O is the origin. Show that z; + 2, can be represented by the point P4, where OP; is the diagonal
of a parallelogram having sides OP, and OP,. This is called the parallelogram law of addition of
complex numbers. Because of this and other properties, complex numbers can be considered as vectors
in two dimensions.

Interpret geometrically the inequalities of Problem 49.

Express in polar form (a) 3V3 +3i, (b) —2—2i, (¢) 1 — V34, (d) 5, (¢) —bi.
Ans. (a) 6cisw/6, (b) 2V2ecisbr/4, (¢) 2cis5n/3, (d) 5cis0, (e) 5 cis3x/2

12 cis 16°
(3 cis 44°)(2 cis 62°) °

Evaluate (a) [2(cos25° + ¢ sin 25°)] [5(cos 110° + isin110°)], (b)
Ans. (@) —5V2 + 5V2i, (b) —~2i
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55. Determine all the indicated roots and represent them graphically:
(@) (4VZ+ 4V2D3, (B) ()M, (o) (VB — 13, () iV4
Ans. (a) 2cis15°, 2 cis135°, 2 cis255°
(b) cis 36°, cis 108°, cis180° = —1, cis 252°, cis 324°
() VZcis110°, V2 cis 230°, V2 cis 350°
(d) cis 22.5°, cis 112.5°, cis 202.5°, cis292.,5°

56. If z, = r,cis¢, and zy = rycis gy, prove (a) z;z, = 77y cis (8, + 63), (D) 21/z9 = (r,/ry) cis (8, — 67).
Interpret geometrically.

FUNCTIONS, LIMITS, CONTINUITY

57. Describe the locus represented by (a) z+2—3il =5, (b) [z +2] = 2[z—1], (¢) |z+5 — |[z—5} = 6.
Construct a figure in each case.

Ans. (a) Circle (x+2)2 + (y — 8)2 = 25, center (—2,3), radius 5.
(b) Circle (x—2)2 + y2 = 4, center (2,0), radius 2.
(¢) Branch of hyperbola x2/9 — y2/16 = 1, where z = 3.

58. Determine the region in the z plane represented by each of the following:
(@) |z—2+1i =4, (b) |z] =3, 0 = argz é-Z-, (c) |z—8l + |z+8| < 10.
Construct a figure in each case.
Ans. (a) Boundary and exterior of circle (x—2)2+ (y+1)2 = 186.
(b) Region in the first quadrant bounded by «2+ y2 = 9, the x axis and the line y = =.
(¢) Interior of ellipse x2/25 + »2/16 = 1.

59. Express each function in the form wu(x,y) + iv(z,y), where u and v are real.
(@) 28 + 2iz, (b) z/(8+2), (c¢) €, (d) In(1l+2).
Ans. (a) u = 23— 3xy2—2y, v = 322y —y3+ 2«

22+ 8x + y2 _ 3y

b = _—-_ == 9J__ - 9y
O u= S rts’ ' FreatETo

(6) u = e ¥ cos2xy, v = e ¥ sin2xy

- 1Y —
@d u=4m{(1+2)2+ 4%, v =tan 11+x+2k7r, E = 0,%x1,%2, ..,

60. Prove that (a) lim 22 = 2}, (b) f(z) =22 is continuous at z =z, directly from the definition.
2-020

6l. (@) If z=w is any root of z5 =1 different from 1, prove that all roots are 1, v, 2, 3, vt

(b) Show that 1+ o + 0?2 + 8 + ot = 0.
(c¢) Generalize the results in (a) and (b) to the equation z» = 1.

DERIVATIVES, CAUCHY-RIEMANN EQUATIONS

62. (a) If w = f(z) = z + %, find %directly from the definition.

(b) For what finite values of z is f(z) non-analytic?
Ans. (@) 1 —1/22, (b) z2=0

63. Given the function w = 2z%. (a) Find real functions # and v such that w = w4+ iv. (b) Show that the
Cauchy-Riemann equations hold at all points in the finite z plane. (c¢) Prove that u and » are harmonic
functions. (d) Determine dw/dz. Ans. (a) v = x4 —622y2 + ¢4, v = 4dady — 4xy3 (d) 423
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64.

67.

68.

69.

Prove that f(z) = z|z| is not analytic anywhere.

Prove that f(z) =

ziz is analytic in any region not including z = 2.

If the imaginary part of an analytic function is 2x(1 — y), determine (a) the real part, (b) the function.
Ans. (a) y2—2x2—2y +e¢, (b) 2iz— 22+ ¢, where ¢ is real

Construct an analytic function f(z) whose real part is e¢—*(x cosy + y siny) and for which f(0) = 1.
Ans. ze—*+1

Prove that there is no analytic function whose imaginary part is x2— 2y.

Find f(z) such that f'(z) = 42—3 and f(1+1%) = —3i. Ans. f(z2) = 222—32+3— 41

LINE INTEGRALS

70.

1.

72.

4,2)
Evaluate f (x+y)de + (y —x)dy along (a) the parabola 2 ==z, (b) a straight line, (c) straight
(L1

lines from (1,1) to (1,2) and then to (4,2), (d) the curve = = 2t2+t+1, y = 2+1.
Ans. (a) 34/3, (b) 11, (¢) 14, (d) 32/8

Evaluate § (2x—y+4)dx + (By+8x—6)dy around a triangle in the xy plane with vertices at
(0,0), (38,0), (8,2) traversed in a counterclockwise direction. Ans. 12

Evaluate the line integral in the preceding problem around a circle of radius 4 with center at (0, 0).
Ans. 64r

GREEN'S THEOREM IN THE PLANE. INDEPENDENCE OF THE PATH

73.

74.

75.

76.

1.

78.

Verify Green’s theorem in the plane for § (22— 2y3)dx + (y2—2xy) dy where C is a square with
c

vertices at (0, 0), (2,0), (2, 2), (0, 2). Ans. common value = 8

(2) Let C be any simple closed curve bounding a region having area A. Prove that if a,, ay, ag, by, by, bg
are constants,

§ (alx + oY + aa) dx + (blx + bzy + bs) d]] = (bl - az)A
c
(b) Under what conditions will the line integral around any path C be zero? Ans. (b) ag=1b,

Find the area bounded by the hypocycloid x2/3 + y2/3 = q2/3,
[Hint. Parametric equations are = = a cos®t, y = a sin3t, 0 = ¢ = 27 Ans. 3ra2/8

If x =rcosg, y = rsing, prove that 1 § xdy ~ydx = %f r2d¢ and interpret.

(a) Verify Green’s theorem in the plane for § (3 —22y)dx + =xy2dy, where C is the boundary of
c

the region enclosed by the circles 22+ y2 = 4 and 22+ 2 = 16. (b) Evaluate the line integrals of
Problems 71 and 72 by Green’s theorem. Ans, (a) common value = 1207

@,
(a) Prove that f 2y —y*+ 3)dx + (22— 4xy®) dy is independent of the path joining (1,0) and
1,0

(2,1). (b) Evaluate the integral in (a). Ans. (b) b
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INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS

3+i
79. Evaluate f (22 + 3) dz:
1-2i

(a) along the path = = 2¢t+1, y = 4t2—¢t—2 where 0 =t =1.
(b) along the straight line joining 1 — 2i and 3 + i

(¢) along straight lines from 1 — 2{ to 1 + 1 and then to 3 + 1.
Ans. 17 + 191 in all cases

80. Evaluate f (22— 2+ 2)dz, where C is the upper half of the circle '2|] =1 traversed in the positive
c

sense, Ans. —14/3

zdz
2z—5"

81. Evaluate § where C is the circle (a) |2| =2, (b) |z—38| = 2. Ans. (a) 0, (b) bxi/2
c

22 .. . . P . s e
82, Evaluate £ PEETEY) dz, where Cis: (a¢) a square with vertices at —1—1i, —1+4¢, —83+1, —83—1;

(b) the circle !z+ il = 3; (¢) the circle |zl = Vve. Ans. (a) —871/3 (b) —2xi (c) 27i/3

cos 72 e+ z

83. Evaluate (a) f ﬁdz, (b) £ Z=1¢
Ans. (a) —27i (b) nie/8

dz where C is any simple closed curve enclosing z = 1.

84. Prove Cauchy’s integral formulas.
[Hint. Use the definition of derivative and then apply mathematical induction.]

SERIES AND SINGULARITIES
85. For what values of z does each series converge?

@ 3 &L g 3 EER () 3 itz

Ans. (a) allz (b)) jz—i| <1 (¢) z=—-1=x1

o«

86. Prove that the series 3

L {a) absolutely convergent, (b) uniformly convergent for |z| = 1.
n=1 n(n+1)

0 “n
87. Prove that the series N (z—;_ni converges uniformly within any circle of radius R such that

lz+i < B < 2. n=0

88. Locate in the finite z plane all the singularities, if any, of each function and name them:

z2—2 z 22+1 1 sin (z — #/3) cos 2
@ Gt @ Gonerzr @ mia—z @Deos, © T N Gargee
Ans. (@) z = —{, pole of order 4 (d) z = 0, essential singularity
(b) z =1, simple pole; z = —2, double pole (¢) z = 7z/8, removable singularity
(¢) Simple poles z = —1=*=1 (f) =z = *2i, double poles

89, Find Laurent series about the indicated singularity for each of the following functions, naming the
singularity in each case. Indicate the region of convergence of each series.
COS Z 22

= 2 “1/ . = —_— e - =
(a) popn z=r (b) 22e~Vz; 2 =0 {c) PEEVIFEE z=1
1 z2—r (z— =) (z—7)° .
Ans. (a) by + T 4l 81 — +++, simple pole, all 2%~
ARUPRER S S 1. ial singularity, all z
b) 22 — z + 31 T 3Tz 2 5 -++, essential singularity, all z+# 0

1 7 9 Hz—1)
© -1 T Tep=1 " 64~ 256

+ +++, doublepole, 0 <|z—1| <4
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RESIDUES AND THE RESIDUE THEOREM

90. Determine the residues of each function at its poles.

22+ 3 z—38 ezt z
(a) z2__47 (b) z3+5z27 (c) (2_2)33 (d) (z2+1)2'
Ans. (a) z=2; 7/4, z=—2, 1/4 () z —2;
by 2z=0; 8/25, z= —5; —8/25 d z=1;
91. Pind the residue of e¢*' tan z at the simple pole z = 37/2.
22dz
92. Evaluate i m,
93. If C is a simple closed curve enclosing z = =i, show that
zezt
=~ _d 1t
@+ ¥ 2
94, If f(z) =

less than the degree of Q(z), prove that § f(2) dz 0,
c

EVALUATION OF DEFINITE INTEGRALS

Use contour integration to verify each of the following.

COMPLEX VARIABLE THEORY

where C is a simple closed curve enclosing all the poles.

171

162 ezt
0, z=-1% 0
Ans. —ednt/2

Ans. —8ri

sin ¢

P(2)/Q(z), where P(z) and Q(z) are polynomials such that the degree of P(z) is at least two

where C encloses all the poles of f(z).

® 2dx T ]
95. 22de - f .
J(; 2t +1 2\/—2— x2+1)2(x2+4) 9
® dx 2 f s z“r
96. _9r = T a>0 w ([ de =
f_,, z8 + af 35 & e \/-5
) 27
97. f _de _ z o2 f i o
e » o (2+ cose)? 9
in2
’ f =3 103. | sin?6 4, — 7
8. 231 + 1 3 g z
L3 dx 37 = f21r de .
99, f 8% = =T -7 g>0 104. ___d8  _
, @ra2 gz " o TFsinZoR  g/3
o cos ng dé 2ran
105-1; 1—2acosg +a2 1—a?’ n=20,123,...,0<ax<1
2 . )
1908 ‘f (¢ + b cos 8)3 = (@ —p2pre ¢ > |bj
_4 - )
107. f ESn20 gn = T2 110. f sinz 7{2¢ — 3)
0 22+ 4 4 0 ey g v % 1
" EE dw = 5 111, fw sin2 ¢ _z
J; v i ’ 0 x? da 2
< .
109. xsinzx 2e—~T f s s
0 f @1 1 e f STy = 5

eiz
cosh z

cos X
cosh x

Hint. Consider §
c

« _ w
3. J; T w2 cosh (#/2)° I:

at (—R,0), (R,0), (R,7), (—R, 7). '‘Then let R~ W.]

dz, where C is a rectangle with vertices
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MISCELLANEOUS PROBLEMS

114, If 2z = re®® and f(z) = u(r,9) + iv(r,0), where r and ¢ are polar coordinates, show that the Cauchy-
Riemann equations are

115. If w = f(z), where f(z) is analytic, defines a transformation from the z plane to the w plane where
z=2+iy and w = u+iv, prove that the Jacobian of the transformation is given by

au,v) _ 10,32
. ., 02F | 92F
116. Let F(x,y) be transformed to G(u,v) by the transformation w = f(z). Show that if 352—+ vl = 0,
: , 2G | 912G _
then at all points where f'(z) #0, vl + ol 0.
az+ b

117. Show that by the bilinear transformation w = where ad —be # 0, circles in the 2z plane

are transformed into circles of the w plane.

cz+d’

118, If f(z) is analytic inside and on the circle |z —al = R, prove Cauchy’s inequality, namely,

n!'M

If™ (@) = o

where |f(z)] = M on the circle. [Hint. Use Cauchy’s integral formulas.]
119. Let C; and C, be concentric circles having center a and radii , and 7, respectively, where r, <7,

If ¢ + h is any point in the annular region bounded by C; and C,, and f(z) is analytic in this region,
prove Laurent’s theorem that

fe+h) = 3 a,h"
where a = L § _f@)dz_
* 201 J. (z— a)n*!
C being any closed curve in the angular region surrounding C;.
. : _ 1 fl2)dz 1 f(2) dz 1 .
I:Hmt. Write fla+h) = 2t 3, T—Gth 5t 3. =@t h and expand ———— in

two different ways.:l

120. Find a Laurent series expansion for the function f(z) = ——2 ____ which converges for 1< lz] < 2
. (z+1)(z+2)
and diverges elsewhere.

. . 2 - -1 - —1 1
[Hmt- Write EFDE+2) iritare T 21+ 1/2) + 1+z/2‘]

23
_§+ e

|

|
+

|

|

|
+

|

|

i
+
b

|

|

=%

Ans.
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FOURIER SERI\ES
Let-F(x) satisfy the following conditions:
1. F(x) is defined in the interval ¢ <z <ec+al
2. F(zx) and F’(x) are sectionally continuous in ¢ < z < ¢+ 2L
3. F(x +2l) = F(x), ie. F(x) is perlodlc with period 21

Then at every pomt of contlnulty, we have
F) = i <am cos—z— + bn sin 22 l 1

where

c+21
an = »1 f F(x) cos-@lﬁ dx
' (@)

c+21
ba = % f F(@) sin ™7 da

At a point of discontinuity, the left 'side of (1) is replaced by {F(z+0) + F(x—0)}, ie.
the mean value at the discontinuity.

. The series (1) with coefficients (2) is called the Fourier series of F(z). For many
problems, ¢c=0 or —l. In case ! =+, F(z) has period 2~ and (Z) and (2) are simplified.

The above conditions are often called Dirichlet conditions and are sufficient (but not
necessary) conditions for convergence of Fourier series.

OoDD AND EVEN FUNCTIONS

A function F(z) is called odd 1f F(—z) = —F(x) Thus «® «°—38x%+ 2z, sinz, tan 3z
are odd functions. ‘ _ ‘ v .

A function F(x) is called even if F(—x) = F(x). Thus !, 22%—4x%+5, cosz, e*+e*
are even functions.

The functions portrayed graphically in Figures 6-1 and 6-2 below are odd and even
respectively, but that of Fig. 6-3 below is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present.
In the Fourier series corresponding to an even function, only cosine terms (and possibly
a constant which we shall consider a cosine term)‘ can be present.

173
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F@)| ¥ F)| 3 F(x)__-;g‘
By - S —
. ’ . A I 1,
Fig.6-1 Fig.6-2 Fig. 6-3

HALF RANGE FOURIER SINE AND COSINE SERIES

A half range Fourier sine or cosine series is a series in which only sine terms or only
cosine terms are present respectively. When a half range series corresponding to a given
function is desired, the function is generally defined in the interval (0,) [which is half of
the interval (—l,1), thus accounting for the name half range] and then the function is
specified as odd or even, so that it is clearly defined in the other half of the interval,
namely (—1,0). In such case, we have

1
a,=90, b, = %f F(x) sin-@rl—aE dx for half range sine series
0

&)
_ 2 nrx . .
bn=0, a, = 1 F(x) cos—— dx for half range cosine series
0
COMPLEX FORM OF FOURIER SERIES
In complex notation, the Fourier series () and coefficients (2) can be written as
F(x) - i Cn eimrzll (4)
where, taking ¢ = -1,
1
o = g | Fl)e=ndy %)
See Problem 74. -t
PARSEVAL’S IDENTITY FOR FOURIER SERIES
Parseval’s identity states that
1 1 a% oo
1 F@yd = 3+ 3@+ (6)
-1 n=t
where a. and b. are given by (2).
An important consequence is that
i
lim F(x) sin# de = 0
n—+we/
, )
lim F(x) cosnle de = 0

- -1

This is called Riemann’s_theorem.



CHAP. 6] FOURIER SERIES AND INTEGRALS 175

s

FINITE FOURIER TRANSFORMS
The finite Fourier sine transform of F(x), 0 <z <1, is defined as
[}
f,m) = f F(2) sinﬁ’l’—”dx (8)
0

where » is an integer. The function F(x) is then called the inverse finite Fourier sine
transform of f_(n) and is given by

F(z) = %gf (n) sin"T" )

The finite Fourier cosine transform of F(x), 0 < x <1, is defined as

fm) = fo ' Pa) cos 72 dz (10)

where n is an integer. The function F(x) is then called the inverse finite Fourier cosine
transform of f, (n) and is given by

F(z) = lf ) + = 2 f. (n) cos"””” (11)
See Problems 9-11.

Finite Fourier transforms can be useful in solving differential equations [see Prob. 32].

THE FOURIER INTEGRAL
Let F(x) satisfy the following conditions:

1. F(x) satisfies the Dirichlet conditions in every finite interval —l=z =1
2. f |F(x)| dx converges, i.e. F(x) is absolutely integrable in —» < z < o,

Then Fourier’s integral theorem states that

F@) = | (A cosiz + BQ) sinac}da (12)
0
where
A(N) = % f F(x) cos Ax dx
(13)
B = f F(x) sin Az dz
This can be written equivalently as
Fio) = o | {7 Focosa@—w) dudr (14)
A=- u=—c

The result (12) holds if x is a point of continuity of F(x). If x is a point of discontinuity,
we must replace F(z) by i{F(x+0) + F(x—0)} as in the case of Fourier series. As for
Fourier series, the above conditions are sufficient but not necessary.
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The similarity of (12) and (18) with corresponding results (1) and (2) for Fourier series
is apparent. The right side of (12) is sometimes called the Fourier integral expansion of
F(x), or briefly Fourier integral.

COMPLEX FORM OF FOURIER INTEGRALS

In complex notation, the Fourier integral (12) with coefficients (13) can be written as

Fla) = o e dn f_ F) e~ ™ du (15)

- 1 f ) f " Fu) erav gy da
27 J-wJ-«
See Problem 77.

FOURIER TRANSFORMS
From (15) it follows that if

fy = f” e~ F(u) du (16)

— 0

then Fa)y = o f " et f(y) dA (17)

which gives F(x) on replacing « by z.

The function f(A) is called the Fourier transform of F(x) and is sometimes written
f(A) = F {F(x)}. The function F(x) is the inverse Fourier transform of f(\) and is written
F(x) = F~1{f(A)}. We also call (17) an inversion formula corresponding to (16).

Note that the constants preceding the integral signs can be any constants whose product
is 1/2x. If they are each taken as 1/y/2r we obtain the so-called symmetric form.

FOURIER SINE AND COSINE TRANSFORMS

The (infinite) Fourier sine transform of F(x), 0 <z <, is defined as

fs) = fﬂ F(u) sin Au du (18)

0

The function F(x) is then called the inverse Fourier sine transform of f¢(\) and is given by

Fay = 2 J; "f, () sin Az d (19)

The (infinite) Fourier cosine transform of F(x), 0 <z < e, i defined as

f.) = j; " F(w) cos hu du (20)
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The function F(x) is then called the inverse Fourier cosine transform of f.(A) and is given by

Fz) = 2 f f.(A) cos Az dA (21)
7 Jo
See Problems 18-20.

Fourier transforms can be used in solving differential equations [see Problem 33].

THE CONVOLUTION THEOREM

The convolution of two functions F(x) and G(x), where —» <z <, is defined as
F*G = J‘ Fu)Gx—u)du = H(z) (22)
An important result, known as the convolution theorem for Fourier transforms, is the

following.
Theorem. If H(z) is the convolution of F(z) and G(x), then

f_: H(x)e~Pdx = {j:: F(z)e = dx} {J:: G(x) e== dx} (23)

or FF*Gy = F{F} 7{G} (24)

i.e. the Fourier transform of the convolution of F' and G is the product of the Fourier
transforms of F and G.

PARSEVAL'S IDENTITY FOR FOURIER INTEGRALS
If the Fourier transform of F(z) is f(A), then
o« 1 0
§ Fora = & ropa (25)

This is called Parseval’s identity for Fourier integrals. Generalizations of this are possible
(see Problem 80).

RELATIONSHIP OF FOURIER AND LAPLACE TRANSFORMS

Consider the function

-zt t 0
F@) = {: () Zo (26)

Then from (16), Page 176, with A replaced by y, we see that the Fourier transform of F({) is

FF@)) = f ewwia@tdt = [ etadt 27)
(V] (V]
where we have written s = z +4y. The right side of (27) is the Laplace transform of &(f)
and the result indicates a relationship of Fourier and Laplace transforms. It also indicates
a need for considering s as a complex variable z + ¢y.
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To indicate the relationship even further, note that if F(f) and G(t) are zero for ¢ <0,
the convolution of F and G given by (22) can be written
t
F*6¢ = | F(u)G(t-u) du (28)
0
and (24) corresponds to
L{F*GY = L{F} L{G} (29)

in agreement with (17) on Page 45.

In view of the fact that there is an inversion formula (17) corresponding to (16) for
Fourier transforms, one would feel that there ought to be a corresponding inversion
formula for Laplace transforms. Such an inversion formula is obtained in Chapter 7.

Solved Problems
FOURIER SERIES

Pk t kxx .
1. Prove f sm%xdx = f cos—;—dx =0 ifk=12383,....
=1 ]
N
in K72 = b g Kl _L o (— -
J__, sm-l—dx = Ter €08 = . o cos kr + o cos(—kz) = 0
krx _ l k‘n’ﬂ)l —- L . _ l s -
f’cos—]—dx % Sin g L kh_smku- Esm( kx) = 0
i ) L 0 m+=n
mnx Nl . MmxX ., Nnk
2. Prove (a) f cos—;—coledx = f sm—{—sm—’lr—dx =
_ -1 Il m=n
i
. Nk
(b) f sm7—nzr—xcos% de = 0
-1

where m and 7 can assume any of the values 1,2,3, ... .

(@) From trigonometry: cosA cosB = }{cos(A —B) + cos(A +B)}, sinAsinB = }{cos(A—B) —
cos (A + B)}.

Then, if m ¥ n, by Problem 1,

ol 1 _
’ cos m;l,-x cos 'nTﬂ dx % f {cos (mlﬂ + cos M—} de = 0
L T l l

Similarly if m % =,

Y mrx |, nax
sin —— sin -, - dx
. l l

lfl {cosw - cosw} de = 0
2 . 1 l
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If m =n, we have

!
mnrx
COS —— COS
1 l
4
o Moy .
%in —— 8in

FOURIER SERIES

AND INTEGRALS

Il
Sy

LA PR lfl 14 cos2n’rx dx
I -o2J T I

l v
Loy = 1 f 1 — cos 22 gy
; z)_, 1

I
oy

Note that if m = n = 0 these integrals are equal to 2! and 0 respectively.

(b) We have sinA cosB =

mr¥ nrX

]
f-l sm———l—— cos—l—- de =

If m=n,

mnrx Norx

l

t
f sin —— cos — dx
1 l

3{sin (4 — B) + sin (A + B)}.

2f { o ) n)n—x + gin (mt e +l")"x} de = 0

)
= lf sin2n”xdx = 0 .
zJ)_ S0y

Then by Problem 1, if m#n,

179

The results of parts (a) and (b) remain valid even when the limits of integration —I,! are
replaced by ¢, ¢+ 2] respectively.

3. If the series A

show that for » = 1,2,8, .

(@) an = %f_ll F(x) cos"%ﬁdm, (d) ba = lj‘ F(z) sin? —dx, (e) .A =

() Multiplying
F(x)

by cos#

l
f F(z) cos m;—x dr =
-1

= a'ml

Thus

(&) Multiplying (1) by sin m;—x

i
f F(x) sin % de =
-1

Thus

+ i (am cos”
n=1

1 !
7 f F(x) cos Mz,
-1

and integrating from —I to [, using Problem 2, we have

l

= A+ 3 (a,,cos— + b, smm—x)
n=1

l l

and integrating from —! to I, using Problem 2, we have
l mr
A f cos ;r dx
-1
o [ m
+ 3 a,,f cos "L cos s—— dz + b f cos —— gin 2=
n=1 -1 l l

Nk TX

if m¥*0

if m=123,.

”ﬁd + b, f sm

lf F(x) sin de if m =1,28,...

il_(l
5

272 4 basin 'nlx> <converges uniformly to f(x) in (-1, 1),

(1)

2

nrx
] dx}

®)

'nn—x

7 dx}
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(¢) Integration of () from —I to l, using Problem 1, gives
] t
f F@)dz = 24l o A = f F() ds
-1 -~

t
Putting m = 0 in the result of part (a), we find a, = % f F(x)dr and so A = %
-t
The above results also hold when the integration limits —[,! are replaced by ¢, ¢ + 2L.

Note that in all parts above, interchange of summation and integration is valid because the
series is assumed to converge uniformly to F(x) in (—[,!). Even when this assumption is not
warranted, the coefficients a,, and b,, as obtained above are called Fourier coefficients corresponding
to F(x), and the corresponding series with these values of a, and b, is called the Fourier series
corresponding to F(x). An important problem in this case is to investigate conditions under which
this series actually converges to F(x). Sufficient conditions for this convergence are the Dirichlet
conditions established below [see Problems 12-17].

4. (a) Find the Fourier coefficients corresponding to the function

0 5<z<0 .
Fx)y = Period = 10
3 0<z<5b

(b) Write the corresponding Fourier series.
(¢) How should F(xz) be defined at  =—5, x =0 and x =5 in order that the Fourier
series will converge to Fi(z) for ~6 =2 =5?
The graph of F(x) is shown in Fig. 6-4 below.
F(x)

= Period —»

_————— _T ———-
t
5

x
T I L - J
-15 -10 -5 10 15
Fig.6-4
(@) Period =2/ =10 and I =5. Choose the interval ¢ to ¢+2! as —b5 to 5, so that ¢=—5. Then
cet+2 5
e, = 1 f F(x) cos —l— de = % f F(x) cos % dx

{f (0) cos nﬂxd‘” +f (3)cos—dx} = 5f "”

= 0 if n#0

5 5
If n=0, a, = a = gf cosoﬂ—xdx = gf dez = 3.
0

c+al
F(x) sin 27%

]

J‘ F(z) sm —_ dx

| -

l

5
(0) smn—"idx + f 3) s;nﬂdx = 3 f sin Nz dx
5 5 J, B
Nar
()

5 801 —cosug)
o nr

oo o
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(b) The corresponding Fourier series is

4 S (@, cos 2= + b, sin P72
2 n=t l {

n=1 nr 5

6/ . =x 1 . 3z 1 . bzx
+;<sm-?+§smT+§sm—5—+~-->

+ i 3(1 — cos nx) sin "T%

[-TR-C R TR

(¢) Since F(x) satisfies the Dirichlet conditions, we can say that the series converges to F(x) at all

points of continuity and to Fz+0) -; Flz—0) at points of discontinuity. At x = —5, 0 and 5,

which are points of discontinuity, the series converges to (3 +0)/2 = 3/2 as seen from the graph.
If we redefine F(z) as follows,

32 + =x=-b5
0 —5<2<0

Flz) = 3/2 =0 Period = 10
3 0<z<5
3/2 zx=25

- then the series will converge to F(x) for —5 = = = 5.

5. Expand F(x) =2% 0 <z <2z in a Fourier series if (b,) the period is 2«, (b) the period
is not specified.

(@) The graph of F(x) with period 2 is shown in Fig. 6-5 below.

F(x)
/ / A / /
/ / // / //
/ / /
/ / / 42 / 7/
/ / Ve 7/ //
- < - 7 - // = ” = o
] [ T f7) T T 1
—6r —4x —2x 2r 4z 67
Fig. 6-5
Period =2l =27 and ! = 7. Choosing ¢ =0, we have

1 c+2l 1

a, = f F(x) cos —l— dx = f 22 cos nx dx
—_ ol 27
- l sin nx ~ (22) cosm: + 2 sin nx — _4_’ n0
T n3 0 n2
2
If n=0, =1 f =
TV

1 ve+2f nax 1 27
b, = F J F(z) sin ——dx = = f 2 sin nx dx

l e l T J,

27 —
_ { (2?) ( cos na;) — (22) ( sin na;) + @ (cosm:)} _ 4z
’". 0 n

Then F(z) = 22 = % E ( =5 cos n —i—smnx>
This is valid for 0 < 2z <27, At 2 =0 and x = 27 the series converges to 222,

(b) If the period is not specified, the Fourier series cannot be determined uniquely in general.
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ODD AND EVEN FUNCTIONS. HALF RANGE FOURIER SINE AND
COSINE SERIES

i
6. If F(z) is even, show that (a) an = 5 | F(2) cos™ 2 dz, (b) b= 0.
0

i 0 l
(a) e, = 1 f F(x) cos UL PR 1 f F(x) cosm dx + 1 J' F(x) cos LAy
1J_, l tJ_, l lJ, A
Letting z = —u,

1 (° o~ 1 (" —
7 f F(z) cos % dr = 1 f F(—u) cos< ]
-1 0

o
’”‘) du = -}—J F(u) cos 5% du
0

since by definition of an even function f(—u) = f(u). Then

1
a, = 1 f F(w) cosmdu + = 1 f F(x) cos—dac = —?I F(x) cosnlﬂdx
0
1 ! nre 1 0 'nn—ac 1 ! nre
(b) b, = T F(z) sin - de = 7 f F(z) sin —— da + f F(z) sin - dz 1)
=1 -1 0
If we make the transformation z = —u in the first integral on the right of (1), we obtain
1 (° nre 1 : nru 1 !
7 f F@)sin“~de = 37 f F(—u) sin ( --’l’—) de = —3 f F(—u) sin 2 du  (2)
-1 0 0 l
1 (* n 1 (" nrx
= =7 f F(u) sin —’;—udu = —TJ F(x) sin——;——dx
o 0

where we have used the fact that for an even function F(—u) = F(u) and in the last step that
the dummy variable of integration u can be replaced by any other symbol, in particular #. Thus
from (1), using (2), we have

l l
b, = —lf F(x)sin—n—rﬁdap+1f F(x)sinmdm = 0
IJ, l rJ, l

7. Expand F(x)=2z, 0<x <2, in ahalf range (a) sine series, (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in
Fig. 6-6 below. This is sometimes called the odd extension of F(x). Then 2/=4, I =2.

F(x)
e / /7
4 /
Ve . 4 /
ya o / z
T T T 7/ T AN 1
-8 / —4 -2 / 2 / 4 [ /
/ / /7 /
/7 / / /
Fig. 6-6

Thus ¢, =0 and

2

1
b, 3 J; F(2) sin ﬂ’l’—’” dz =

2
. MTX
f z sin —— dx
0 2

{(x) (— cos L?) - @ ( 53 5in ”;x)} 2

(18 ]

= ——COoSr
° nr
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Then F@) = 3 _—Fcos n sin 227
= 4fgnt® - lgplre 1 832
= 5 <s1n ) 3 sin— + 3 sin— )

(b) Extend the definition of F(x) to that of the even function of period 4 shown in Fig. 6-7 below.
This is the even extension of F(x). Then 21=4, [ =2,

F(x)
7\ /\ \ N\
, 7 '\ 7 N\ \ 7 N
\N v/ \ \N 7
N \V.4 z

| J I I7) 1 1 T

-8 —4 -2 2 4 [}
Fig. 6-7

Thus b, =0,

F(x) cos % dx

O

il
| DN
o~

]
)

2
f xcosmdx
o 2

{(x) <l sin n12r_x) 1) <n242 cos 'n;ac >}

= n242(cosnv—1) if n#0

2

0

- Then Fx) = 2 (cos nr — 1) cos %x

!
-

8 % 1 3z 1 S5z
- —7—2<cos—2—+3—2-cosT+§cos—2—-+ )

It should be noted that the given function F(x) =z, 0 < x < 2, is represented equally well by
the two different series in (a) and (b).

PARSEVAL’S IDENTITY FOR FOURIER SERIES

8. Assuming that the Fourier series corresponding to F(x) converges uniformly to f(z)
in (—1,1), prove Parseval’s identity

t 2
1 wore = FrT@ew

where the integral is assumed to exist.

0
If F(x) = %+ 21 <a,, cosm{i+ b, sin!";—x) , then multiplying by F(x) and integrating term
n=

by term from —I to I (which is justified since the series is uniformly convergent) we obtain
1 @ i © nre
f {F(z)}2dz = > f F(x)dx + 21 anf F(x) cos ———dx + b f F(x) s:nl—dx}
-1 -1 n=

a? ®
= Sl+ 13 (a@+b @
n=1
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where we have used the results

3 4
f F(x) cos 222 ””” = la, f F(z) sin"%”dx = b, f F@)dz = lag )
-1 -1

obtained from the Fourier coefficients.

The required result follows on dividing both sides of () by !

. Parseval’s identity is valid under
less restrictive conditions than that imposed here.

FINITE FOURIER TRANSFORMS

9. Establish (a) equation (9) and (b) equation (11) on Page 175.

(a) If F(z) is an odd function in (-, I), then

F@ = 3 b,sin™f" @)
2
where b, = lf F(x) sm———dm @
Thus if we write
l
f F(z) sinn—?—xdx = fy(n)
0

then b, = %fs (n) and (I) can be written, as required,
Fx) = g (n) smyl—x €))
We can also write F(x) = F.{f, (n)}.

(b) If F(x) is an even function in (—,l), then

F) = % + 21 a, cos 27 “4)

where

~| DD

1

f F(x) cos-—— dx 5)
0

Thus if we write

fl F(x) cosiz—x de = f.(n)
0

then ap, = %fc (0) and (4) can be written, as required,

F(z) = fe © + 2 2 fe(n) cos— (®)

We can also write F(x) = F_'{f.(n)}.
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10. Find the (a) finite Fourier sine transform and (b) finite Fourier cosine transform
of the function F(z) =22, 0 <z < 4.

(a) Since ! =4, we have

! 4
fs(n) = f F(x) sin#dx = f 2 sinn‘iﬂ dx
0 0
_ —cos nrw/4\ — sin nrw/4\ | |* 32
= {(2&7) <_ P ) 2 <7211'2/T)} \ - E;cos nr
[4 4
() If n>0, fe(m) = fo F(x) Cosml'ﬁdx = Jo 2% cosﬁz—xdx
_ sin nra/d\ —cos nra/4\{[* _ cos nr — 1
= {(2@ (—M o ) (@) (——%2 L )} o= ® <___n2”2 )
4
If n=0, fom) = f.0) = j 2wds = 16
0

11. Find F(x) if: (a) F {F(z)} = 16(-1)*'/n’°, n = 1,2,8,..., where 0<z<8;
(b) F.(F(x)} = sin(n«/2)/2n, n = 1,2,3,... and «/4 if n=0, where 0 <z <2x.

(@) From equation (3) of Problem 9(a) with I =8, we have

nd

- 2 i 16(—1)»—1 sin™® = 4 ﬁ (—1)»—1 nrx
8 n3 8 ne

n=1

(b) From equation (6) of Problem 9(b) with I = 27, we have

—_ —1 ) sin (nz/2)
o = 7o fenen)
= 1.z , 2 § sin(nr/2) 1, 1 3 sin(ne/2)
T 4 2 § 21: T4 2r g 'n”
CONVERGENCE OF FOURIER SERIES
12. Prove that (a) 1 + cost + cos2t + .-+ + cosMt = M
2 2 sin 3t
(b) lj‘ sin (M +4)t . _ 1 1 s1n(M+ 1)t _ 1
J, 2sin}t 2’ © 2sinit 2°
(@) We have cosntsindt = ZF{sin (n+ §)t — sin(n—§)t}.
Then summing from = =1 to M,
sin }t{cost + cos 2t + +-+ + cos Mt} = (sint—sin}kt) + (sindt — sin$¢)
+ - + {sin (M + })t — sin (M — 1)t}

=  Isin (M + D)t — sin 12}
On dividing by sin 4# and adding 4, the required result follows.

(b) Integrate the result in (a) from —7to0 and O tor respectively. This gives the required results,
since the integrals of all the cosine terms are zero.
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T

13. Prove that lim f F(x) sinnx de = lim F(x)cosnxdx = 0 if F(x) is sec-

N+ -7

tionally continuous. \

a,
This follows at once from Problem 8 with [ =7, since if the series ? + 2 (a2 + b2) is con-
vergent, lim @, = lim b, = 0. n=1

n=—tx =0

The result is sometimes called Riemann’s theorem.

14. Prove that n}im f Fx)sin(M+%)xde = 0 if F(x) is sectionally continuous.

We have
j‘w F(x) sin(M + H)x de = fﬂ {F(x) sin }x} cos Mx dx + fﬂ {F(x) cos x} sin Mx dx

Then the requireld result follows at once by using the result of Problem 13, with F(x) replaced by
F(x) sin fx and F(x) cos J« respectively which are sectionally continuous if F(x) is.

The result can'also be proved when the integration limits are a and b instead of —= and .

15. Assuming that [ ==, i.e. that the Fourier series corresponding to F(x) has period 21 =2,
show that

M
Sy(@) = -"2"# + zl(ancosna: + ba.sinnx) = f F(t+z )sm(M-;;})td

Using the formulas for the Fourier coefficients with I = 7, we have

™ ™
a,cosnx + b,sinne = (% f F(u) cos nu du> cosnx + (% f F(u) sinnu du> sin nx
-1 -
1 ™
= - f F(u) (cos nu cosnx + sin nu sin nx) du

= 1—1— fﬂ F(u) cos n(u — x) du

17 _ ifﬂ
Also, 5 = . F(u) du

2 ¥ .
Then Sp(x) —~ + 21 (a, cosnx + b, sin nz)
ne

1 T 1 M T
= f Fu)du + = 3 f F(u) cos n{u — x) du
277 — T n=1 -

= ;I;J:: F(u){% + r§1 cos n(u-—ac)} du

_ %f" Flu) sin (M + $)(u — x) du

2 sin }(u —x)
using Problem 12. Letting #—x = ¢, we have
T—X
Sylx) = % f R+ )’51n (e zf)t dt

Since the integrand has period 27, we can replace the interval —7r — x, 7 — 2 by any other interval
of length 2z, in particular —#,7. Thus we obtain the required result.
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16. Prove that

Sule) - (FEr02Fe=0) - 11 (Fet2) = B0 sin a1 + e at

1 C"/F(t+x) — F(x +0)\ &
v wfo < A >s1n(M+§)tdt

From Problem 12,

_ sin (M+-%)t 1 - sin (M + )t
Sylx) = f Pt o S 4 + ”fo Flo+ o) =y di 1)

Multiplying the integrals of 'Problem 12(b) by F(x — 0) and F(x + 0) respectively,

Flz+0)+ Flz—0) _ 1 sm (M+';‘)t lan sin(M + 1)t ¢
t = f Fa—O - + 7 ) Feto—ori=a @
Subtracting (2) from (I) yields the required result.
17. If F(x) and F’(x) are sectionally continuous in (—=, =), prove that
. Flz+0)+F(x-0
lim S,(o) = FETATFE=0) .
The funetion F(t+;)s;1 gix +0) is sectionally continuous in 0 < £ = » because F(x) is section-
ally continuous,
Also,
. FiE+z)—Fz+0) _ . F(t+x)—F(x+0)_ t - . F({t+ z) — F(z + 0)
tl-l»tgl-;- 2 sin 1t - tl-l»r&- t 2sin it ,l_‘.’gi t

exists, since by hypothesis F’(x) is sectionally continuous so that the right hand derivative of F(z) at
each z exists.

F(t+z) — F(x+0)
2 sin 4¢

[ 4

Thus

is sectionally continuous in 0 =t =~

F(t+ z) — F(x 1+ 0) rSt=
2 sin % ¢ is sectionally continuous in —7 =t £ 0.

Similarly,

Then from Problems 14 and 16, we have

Jim Sy(e) — {F(:t+0) -; F(x—o)} =0 o lim Sy = F(z +0) ; F(z—0)
THE FOURIER INTEGRAL AND FOURIER TRANSFORMS
. . 1 |z|<a
18. (¢) Find the Fourier transform of F(z) = .
0 |z|>a
(b) Graph F'(x) and its Fourier transform for a = 1.
{(a¢) The Fourier transform of F(z) is
o = L: Fu) et dy = f_ aa (Ve—dudy = e:;\" “_a
_ gira — e—im) _ 2sin AQ A0
- (o) - e

For A =0, we obtain f(A) = 2a.
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(b) The graphs of F(x) and f(A\) for @ =1 are shown in Figures 6-8 and 6-9 respectively.

F(x) FN)
8 — 3 -
2—
1
+—
0 i 2 «
— T T T T T
-8 -2 -1 1 2 3 r 27 3
Fig.6-8 Fig.6-9
19. (a) Use the result of Problem 18 to evaluate f MJ\E&W dA.
® sinu -
(b) Deduce the value of f Z du.
0
(¢) From Fourier’s integral theorem, if
fay = f F(u) e dy then F(x) = El; f F(2) eire da
Then from Problem 18,
1 (* ,sinxa 1 lo] < a
o f 2——)‘—— e da = 1/2 |zl =a 69
o 0 jx| > a
The left side of (1) is equal to
lfw sinacoshw 5 1f°° sin Aa sin Az 4, @
T J_. A TJ o A

The integrand in the second integral of (2) is odd and so the integral is zero. Then from
(Z) and (2), we have

© . T
f sinAa cosAz o _ /2 |zl=a )
— A
0 lx! > a

() If x=0 and a =1 in the result of (a), we have

- . o .
f Ay = 7 or f MAay = I
ce A Y 2

since the integrand is even.

20. If F(x) is an even function show that:
o« 1 *
(@ f0) = 2 fo Fu)coshudu, (b) F(z) = ;_fo F(0) cos Az dA.

We have

o) = f“ F(u)e~iru = f_ F(u) cos\u du — ifj F(u) sin Au du )
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-

(a) If F(u) is even, F(u) coshu is even and F(u)sinAu is odd. Then the second integral on the
right of (7) is zero and the result can be written

Dy = 2 J;w F(u) cos A\u du

(b) From (a), f(—A) = f(A) so that f(\) is an even function. Then by using a proof exactly analogous
to that in (a), the required result follows.

A similar result holds for odd functions and can be obtained by replacing the cosine by
the sine.

PARSEVAL’S IDENTITY FOR FOURIER INTEGRALS
21. Verify Parseval’s identity for Fourier integrals for the Fourier transforms of Prob. 18.

We must show that
J_were = L dora

1 j2|<a sin Aa

where F(x) = and f(A) = 2———.
() {0 |2} > a ® A
This is equivalent to
fa ()2de = 1 " 4sin?ra dr
-a T 2 J_‘_ w A2
-] : 2 20 . 2

or ‘f_x ___sn;\z)\a, dxn = 2]; su;\z)\a, d\ = ra
. ® gin2 \a de = T
i.e., ) SEvER = 3

By letting Aa = u and using Problem 111, Page 171, it is seen that this is correct. The method
oG . 2
can also be used to find f S =
0

o) du directly.

PROOF OF THE FOURIER INTEGRAL THEOREM

22. Present a heuristic demonstration of Fourier’s integral theorem by use of a limiting
form of Fourier series.

a @0
Let F(z) = ?o + 21 (a,,, cos-m;—x + b, sin#) )
-

1 1
where a, = %— f F(u) cosn—lﬂE de and b, = % f F(u) sin-’%du.
—1 -1

Then by substitution (see Problem 15),

1 ) o1
Flx) = '217 f_ lF(u) du + %ngl _lF(u) cOS%(u—x) du @

If we assume that f |F(u)] du converges, the first term on the right of (2) approaches zero

as l—»», while the remaining part appears to approach

lim % i f_: F(u) cos%(u —2x) du (€)]

l=>o n=1
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This last step is not rigorous and makes the demonstration heuristic.

Calling A\ = #/l, (3) can be written

Flr) = hm 2 AN F(n AN) 4)
A=0pn=1
, 1°
where we have written faA) = py f F(u) cos NMu — ) du %)

But the limit (4) is equal to

Fx) = j;f(x)dx = %fxdxf F(u) cos Mu — «) du
0 - 0

which is Fourier’s integral formula.

This demonstration serves only to provide a possible result. To be rigorous, we start with the

integral
1 f dx f F(u) cos Mu — z) dx
T Jy —w

and examine the convergence. This method is considered in Problems 23-26.

[ 0 .
23. Prove that: (a) lim sn:))vv dv =%, (b) lim j‘_l su:))vv dv = %

A=boy ¢/ 0 § A=+
! sin av Msiny “ sin
(¢) Let ww=y. Then lim f —;—-—dv = lim f —=dy = j‘ —ldy = % by Prob-
lem 43, Page 164. *~= 0 Amw Jp Y o ¥
0 sin Av Al siny s
(b) Let A\v =—y. Then lim —dv = lim —dy = 3
Ao J 1 v A= Jg Yy 2

24. Riemann’s theorem states that if G(x) is sectionally continuous in (a,bd), then

b
lim G@)sinxzde = 0

A =b oo a

with a similar result for the cosine (see Problem 81). Use this to prove that

(@ lim Pz + )E""1 Yav = FF@+0)
0
(®) lim F( + )sm May = 2 F(z—0)

where F(x) and F’(x) are assumed sectionally continuous in (0,1) and (-1, 0) respectively.

(a) Using Problem 23(a), it is seen that a proof of the given result amounts to proving that

lim § ' P+ v) — F(a +0)} S22 “’ w = 0
- Fx+v) — F(x+0)
v
continuous in (0,[) since 1i1g1+ F(v) exists and f(x) is sectionally continuous.
v

This follows at once from Riemann’s theorem, because G(v) is sectionally

{b) A proof of this is analogous to that in part (a) if we make use of Problem 23(b).
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25. If F(x) satisfies the additional condition that f |F(x)| dx converges, prove that

(@ lim | Fle+v)382q = ZF(z+0), (b) lim f Fle+0) 5% 0y = 2F@—0).
e 4] o
We have ,
j; F(z+v)-s—":)£dv = fo F(x+v)§“‘7"9dv +_I: F(x+v)§%"—1idv @)
0 . 14 . ] N
J; Fa+0) 28 = fo Flz+0) 222 gy + j; F(z+0) 222 gy @)
Subtracting,
f (F(z +v) — Flz+ m}@ dv @)
[}

l L4 0 . 0 .
= f {F($+”)—f(x+0)}§lll;>‘—”—dv + f F($+’U)§%M—)dv _ f F(x+0)s"2))wd
o . l ==

Denoting the integrals in (3) by I,1,1, and I3 respectively, we have I = I; + I,+ I3 so that

I = (L] + L] + I “)
Now | = LLRICH % f |F(x +v)| dv
* I
Also L] = |Fz+0) I f wSi—“vM dv l
1A .

Since f |F(z)] dxz and f ﬂ!:)ﬂ dv both converge, we can choose ! so large that |Iy]| = /3,
0 0

|I3] = /8. Also, we can choose A so large that |I;| = ¢/3. Then from (4) we have |I] <e for A and {
sufficiently large, so that the required result follows.

This result follows by reasoning exactly analogous to that in part (a).

26. Prove Fourier’s integral formula where F(z) satisfies the conditions stated on Page 175.

We must prove that lim f f F(u’) cos Az —u)dud\ = Fz+0) + F(z—0)

L= 7 2

Since ,f F(u) cos Az — u) du| = f [F(u)| du which converges, it follows by the Weier-
strass test for integrals that f F(u) cos AM(x — u) du converges absolutely and uniformly for all A.

Thus we can reverse the order of integration to obtain

1 1 o i
f d)\f F(u cos A(z — u) du, ;J;z_wp(u) duj;:O cos Mz — u) du
1 f sm l(u x)
= du
L — X

— lf Flz+ )smlv
7’ V=—®

) .
_ lf F(w+'v)smlvd1; " 1f Flz+ )smlv
T - v s o

where we have let 4 = z+v.

Fx—0
Letting I— =, we see by Problem 24 that the given integral converges to F(x+0)'; (@ )

as required.
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MISCELLANEOUS PROBLEMS '

27. Expand F(r) = sinz, 0 <z <=, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence
we extend the definition of F(x) so that it becomes even (dashed part of Fig. 6-10 below). With this
extension, F'(x) is then defined in an interval of length 2». Taking the period as 27, we have 2! = 2=
so that | = 7.

F(x)

x
Fig. 6-10
By Problem 6, b, =0 and
i T
a, = %f F(x)cosﬂ{ﬁdx = Ef sin x cos nz dx
0 T Vg
_ 107, . 1 cos(n+1)x , cos(n—1z||*
= ”J;{sm(x-%m:)-l-sm(x nx)yde = ;—{ i + =1 \
.1 1—cos(n+1)1r+cos(n—1)1r-—1 _ 1 Jl+cosny 1+ cosnr
D n+1 n—1 T o n+1 n—1
_ —2(1 + cos nx) .
= mE=1 if n#1.
w 2.2
For n=1, a = ZJ' gsinwcosz dx = szl 0.
T 0 w 2 0
w
For n =0, @ = ?-f sinzdx = 3(—cos:ll:)lr = 4
L2 0 |3 o T
_ 2 _ 2« (1+ cosnx)
Then Fx) = - - n§2 T cosnx
_ 2 _4/cos2x , cosdxr , cos6x
= oz 1r<22——1 te_rte-gt >
® cos Az T
20 A — T,z >
28. Show that _f A2+1dA 5€™% z=0.

Let F(x) = e~* in the Fourier integral theorem

-] -]
F(x) = %f cos A% dkf F(uy cos Au du
(} 0
2 0 -]
Then —f coskxdkf e~vcoshuduy = e %
L 0
. ® _ 1
Sinece J; e~vecos\udu = YRR we have

2 ("® coshx “ cos A% 7
fd —_— - —z - 7 -
TJ; )‘2+1d>\ e or f )\2+1d)\ 2e-"
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1-2 0=)=1

29. Solve the integral equation f F(x) cosix dx = .
0 0 A>1

1-\x 0=AZE1

0 A>T Then by Fourier’s

Let f F(x) coshe dx = f(\) and choose f(A) = {
0
integral theorem,

* 1
Fl@) = %f fO\) cosaz d\ = %f (1—2) cosrz dn = 2(1 — cos )
0 0

T2

30. Find (a) the finite Fourier sine transform and (b) the finite Fourier cosine transform
of aU/ox where U is a function of x and ¢t for 0 <z <1, £ > 0.

(a) By definition the finite Fourier sine transform of dU/dx is, on integrating by parts,

l l
U . mrzx _ . nmarx|lt 1‘1[ nre
, % sin — de = Ulfz,t)sin 7 |, 1), Uz, t) cos——l— dz
* U n
or Fs 3%} = ,,-_T‘” F.{U}

(b) The finite Fourier cosine transform is

» 1 i
J ﬂcosm dx = Ufz,t) cos 2L - 27 f Ulz, t) sin 272 gy
0 9% l U lJ, l
U nr
or Fe Ty = _TTs{U} — {U(@,t) — U(l,t) cosnz}

31, Work Problem 30(a) and (b) for the function 42U/ax2.
Replacing U by dU/dx in the results of Problem 30, we find

2
(@ r{%—x’é} = —%’-n{%—'}

= %T“{U} + nl_ﬂ{U(O’t) — UL, t) cosnr}

()] Tc{%ig} = —n—lFTs {g—g} — {U0,t) — Ul t) cos nr}

= _%Ey:c {U}y — {U0,8) — Ul ¢) cosnz}

where U, denotes the partial derivative with respect to x.

32. Use finite Fourier transforms to solve

FY U
= e U0 =0, U4t) =0, U0 =20

where 0<x <4, t>0.

Take the finite Fourier sine transform (with 1=4) of both sides of the partial differential equa-
tion to obtain
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4 4
aU . nrx _ f 32U . nrx
J; ¢ sin == de = A 52 Sin—7= dx
Writing u = #,{U} and using Problem 31(a) with the conditions U(0,¢) = 0, U(4,t) = 0, we find
du n2g?
@® - Tt )

where u = u(n, t).

Taking the finite Fourier sine transform of the condition U(x,0) = 2%, we have as in Prob. 10(a)

un,0) = F.{2x} = 32(1 —n :osmr) @

Solving the differential equation (I), we find if ¢ is an arbitrary constant

u = u(n,t) = ce—n?r2t/16 @)

Since ¢ = u(n,0), we have from (2) and (3)

82(1 — cosnw) ,_pepaenig
n

U =

Thus from Problem 9(a), the inverse Fourier sine transform is

2 i 82(1 — cos nx)

e —nin2t/16
4 n=1 nw

U(x,t) =

Eﬁ i <1 — cos n”_) e~ ntult/16

T n=1 n

Physically, U(x, t) represents the temperature at any point x at any time ¢ in a solid bounded by
the planes # =0 and ¥ =4. The conditions U(0,f) = 0 and U(4,t) = 0 express the fact that the
ends are kept at temperature zero, while U(x,0) = 2x expresses the initial temperature as a function
of . Equivalently, the solid can be replaced by a bar on the x axis with endpoints at x =0 and x =4
whose surface is insulated.

2
33. Solve aa—? = %g, x>0, t >0, subject to the conditions

1 0<2<l1

, U(z, t) is bounded
0 z=1

Uo,t) =0, U0 = {

Taking the Fourier sine transform of both sides of the given partial differential equation, we find

® U . _ Jf” 2U .
J‘; 3¢ Sin Az de = - sin Az do 1)
Then if v = u(\t) = f U(x, t) sin Ax dx
(]
this becomes du _ J3U sinAx — AU cos Az — A2 f U sin Az dx
dt dx b o
= AU@O,t) — 2u (@)

on integrating the right hand side of (7) by parts and assuming that U and aU/dx approach zero
as x>,
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From the condition for U(x, 0), we have on taking the Fourier sine transform

u(A,0) = f Ulz, 0) sin Az dz
0
1
_ : — 1-—cosx
= j; sin Az dx — (€]

Solving (2) subject to the condition () and U(0,t) = 0, we find

1 —cosA e""zt

u(n, t) = 2

Then taking the inverse Fourier sine transform, we find the required solution
Uz, t) = 2 f 1= co8A -t ginaw d
T Jy A

Physically, this can represent the temperature in a solid # > 0 [see Problem 32].

Supplementary Problems

FOURIER SERIES, ODD AND EVEN FUNCTIONS, FOURIER SINE AND COSINE SERIES

34.

35.

36.

31.

Graph each of the following functions and find their corresponding Fourier series using properties of
even and odd functions wherever applicable.

() F(z) = { 2 g : b : i Period 4 (¢) F(x) =42, 0 <2 <10, Period 10
- x
—y —4=g= =
®) Fz) = 4% 45220 poiod 8 @ Fw) = 42 0F2<3 poiod 6
xz 0=z = 0 —3<2<0
0 K
_ 8 § (1—cosng) mmx 3 g J6(cosnr —1) nmzx _ 6cosmr . Naw
®) 2 - 7.2=1 T cs——  (d) 5 + ’El =T sy — — —sin—g

In each part of Problem 34, tell where the discontinuities of F(x) are located and to what value the
series converges at these discontinuities.

Ans. (a) = = 0,2, +4,...; 0 (¢) = = 0,=*10, =20, ...; 20

(b) no discontinuities (d) = £8,+9,*15,...; 3

2—2 0<x<4
r—6 4<x<8

18 oo, 1 8w 1 bmw .
Ans. ﬂ_2{cos7+3zcos 1 tgreos— + }

Expand F(x) = { in a Fourier series of period 8.

(a) Expand F(x) = cosz, 0 <z <7, in a Fourier sine series.
(b) How should F(x) be defined at # =0 and x = 7 so that the series will converge to F(z) for 0 =z =77

Ans. (@ 23 2EMBE ) Fio) =) =0
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38. (a) Expand in a Fourier series F(x) = cos, 0 < 2 < 7 if the period is z; and (b) compare with the
result of Problem 37, explaining the similarities and differences if any.

Ans. Answer is the same as in Problem 37.

39. Expand F(x) = x 0<=z< 4 in a series of (a) sines, (b) cosines.
8~z 4<x<8
Anss 32 2 1 sm——-smm (b) 16 s 2 cosnw/2 — cosnzr — 1 cos ™%
2 8 72 p=1 n? 8

40. Prove that for 0 = x = 7,
i (cost cosdx | cosbx )

(a) x(1r - a:) = —é- —15‘-' + 52 + 32

13 33 + 53

(b)) =2r—2=)

It
loo
/\

8(sinz  sin3z , sinbzy )
T
41. Use Problem 40 to show that

@3L-2 @ 3ET o2

=1 n?

&, (=11 48

=1 (Cn—1)8 ~ 32°

16 °

[y
[y

42, Show that II§+— ————3+§13-+

PARSEVAL’S IDENTITY FOR FOURIER SERIES

. S 3 1 74 < 1 78
. B ’ - =T s = T
43 y using Problem 40 and Parseval’s identity, show that (a) ﬂgl por 90" (b) ngl 6 945
M. Showthat — - +-1 4 1 4 ... = =8 po Use Problem 27
. 12.32 T 32.52 ' B2.72 16 ° ) :
5. Showthat (@) S ol = Z2, () 2 =
- ey 2n—1% — 96° (2‘n )6 960 °
1 1 1 oo = 42°—39
46. Show that 12.922. 32 + 224324 42 + 32.42.52 + - 16 :

FINITE FOURIER TRANSFORMS

47. Find the (a) finite Fourier sine transform and (b) finite Fourier cosine transform of F(x) =1 where
0<e<l. Ans. (a) (1 — cos nw)/nr b)) 0if n=1,238,...; lifn=0

48. Find the (a) finite Fourier sine transform and (b) finite Fourier cosine transform of F(x) = x2 where

o<z<l,
Ans. (a) 2—la(cos'mr-»l) - B—cosmr if n=1,2,38 ; Eif n=20 (b) 2B (cos nr — 1)
) nd73 nr 2899 eers g o) -
9. U FF@) = 128" ghere 0<z <7, find Fa).  Ans. 2 <1__M> sin na
nx 7 a1 n2
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50. If ,{F(x)) = S(sinnr/2 —cosnr) for n = 1,2,3,... and 2/r for n=0 where 0 <z <4,
2n+ )7 .
1 8 9 [sinnn/2 — cosnr nr
find F(x). Ans. 5 + " n§1 ( o T 1 )cos 7

. cos (2nx/3) -1 —1 .
5. If fin) = Bntip’ find (@) F7'{fm)} and (b) F,;'{f)} if 0<z<1.

Ans. (a) 2 i Msinnwx )1+ 2 i Mcosnw

1 (2n+1)2 n=1 (2n+1)2

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

1/2¢ |o| = e

0 2| > e )

(b) Determine the limit of this transform as ¢ —> 0+ and discuss the result.

Ans. (o) SBAe 3y 1
A€

52. (a) Find the Fourier transform of F(x) = {

1—a2 |zj<1

53. (a) Find the Fourier transform of F(x) = { 0 o] >1°

(b) Evaluate f <§M3—sin_x> cos 2 da.
o x 2

Ans. () 4<>\cos7\—sin>\>’ ®) f_g

A3
-1 0=s2<1 . . . .
84. If F(x) = 0 =1 find the (a) Fourier sine transform, (b) Fourier cosine transform of F(x).
x =
In each case obtain the graph of F'(x) and its transform. Ans. (@) 1 —; 08 A » (b) SI: A

55. (a) Find the Fourier sine transform of ¢~ %, = 0.

(b) Show that f 1‘:_2“_1'__"1‘_"5 de = —g— e~™, m>0 by using the result in (a).
0

(¢) Explain from the viewpoint of Fourier’s integral theorem why the result in (b) does not hold for
m=0.

Ans. (@) M1 +22)

56. Solve for Y(x) the integral equation

- 1 0st<1
f Y(z) sinztde = 2 1=t<2
o 0 tz2
and verify the solution by direct substitution. Ans. Y(x) = (24 2cosx — 4 cos 2x)/nrx

PARSEVAL’S IDENTITY FOR FOURIER INTEGRALS

57. Evaluate (a)J; (720—l|—x—1)§’ (b f (x‘;—:d‘;)—z by use of Parseval’s identity.
o

[Hint. Use the Fourier sine and cosine transforms of ¢~%, z > 0.] Ans. (a) z/4, (b) /4

E] 2 o .
58. Use Problem 54 to show that (a) f 1-cos2\'ge =2 (1) f SiNt® g0 = %,
0 x 2 0 x2 2

— gin 2)2
sin x) de = %
26

59. Show that f (x cosx .
0
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MISCELLANEOUS PROBLEMS

60.

61.

62.

63.

64.

65.

66.

67.

If —r<z<7 and « % 0,*1,=*2, ..., prove that

%7 sinax  _ sin z 2 sin 2x 3sin3x _

—-— = Y +
2 sin ar 12— o2 22 — a2 32— 42

If —7 <z <7, prove that

(@) T sinhaz _ sinx _ 2sin2¢ + 3 sin 32
2 sinhar ~ a2+ 12 aZ+ 22 a?+ 32
®) mcoshax 1 _ acosz + & cos2x
2 sinhar 2« a2+ 12 a2+ 22

(a) Prove that if « # 0, *1,%2, ..., then

™ 1 2a 2a 2a

. = 2 - -2 + — -
sin ar a a2 —12 a2 — 22 a?—

3 + .-

(b) Prove that if 0 <a <1, then

“ pu—1 _ P ya—1l — p—o _ 1 2a 2a 2a
J; llxdx - _I; 1+ de = a a2—12+a2—22 a2—32+
(¢) Use (a) and (b) to prove that Ma) {1 —a) = 7
Sin an

[Hint. For (a) expand F(x) = cosox, ~7 = & = 7 in a Fourier series. For (b) write the given
integral as the sum of integrals from 0 to 1 and 1 to », and let z = 1/y in the last integral.

Then use the fact that —4— = 1~z +a?— g+ -]
+x

If 0 <z <7 prove that 1':'{1__;:’_5E} = Ja(z —2).

Find (a) F,{93U/92%} and (b) F.{a3U/ox3}.

Show that

@ FAY®@) = BT ¥E) — O + O YO + YO + (-1t v

i

) Fo AT} Pl g AY@) + TEAY0) + (- Y0} — {Y0) + (—DrH Y.
! I

(@) Use finite Fourier transforms to solve

awu  _ 32U
a_t_ 26x2 0<w<4,t>0
Uo,t) =0, U@4,t) =0, U(x,0) = 3singz — 2 sinbrx
(b) Give a possible physical interpretation of the problem and solution.

Ans. (@) U(x,t) = 8e 2 gingx — 2¢—57 gin 57z

U _ 82U

T 0<x<6, t>0, subject to the conditiong

Solve

uQ,H =0, UGH =0 U=o = 4+ 2523
0 3<2<6
and interpret physically.

o« I3
Ans. U@ t) = 3 2)l=cosa/3)l —norayzg i M7
n=1 l N 6
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68.

69.

70.

71

72.

73.

74.
75.

76.

7.

8.

(a) In solving the problem
oUu 82U
36 S a2 0<x<6, £t>0

UL0,8) =0, Uy6,8) =0 U0 = 2z

which transform [sine or cosine] would you expect to be more useful? Explain.
(b) Find the solution to the problem in (a).

24§ [cosnr — 1\ . nen2iss6 gog "TE
Ans. (b) 6 + —~ ngl <—T—>e meTt/36 cos ~

A flexible string of length = is tightly stretched between points x =0 and x =7 on the x axis, its ends
fixed at these points. When set into small transverse vibration the displacement Y(x, t) from the x axis

2 2
of any point x at time ¢ is given by 2Y _ a2-a—yl where a2=T/p, T =tension, p = mass per unit

) 2
length. ot 9%
(@) Using finite Fourier transforms, find a solution of this equatiori (sometimes called the wave equa-
tion) with a2 =4 which satisfies the conditions Y(0,t) = 0, Y(=,t) = 0, Y(x,0) = 0.1 sinz -+
0.01 sin4x, Y,(x,0) =0 for 0<ax<gz t>0.

(b) Interpret physically the boundary conditions in (a) and the solution.
Ans. (@) Y(x,t) = 0.1 sinx cos 2t + 0.01 sin 4x cos 8¢

92y _ _92Y . et _ _
e 9-832— subject to the conditions Y(0,t) = 0, Y(2,t) = 0,

Y(x,0) = 0.052(2~=z), Y,(x,0) =0, where 0 <x<2,¢t>0. (b) Interpret physically.

(@) Solve the boundary-value problem

16 Q9 1 . (2n— 1)z 3(2n — 1)xt
Ans. (o) Y(z,t) = pry n2=1 @n — 1) Sin 5 cos 3
aU _ 02U _ _
Solve the boundary-value problem T L vo,t) =1, U@mt) = 8, Ux,0) = 2, where

O<z<w t>0.

Ans. Uz,t) = 1 + 2% ) 4 COSNT o—n2t gin o

7 n=1 nr
Give a physical interpretation to Problem 71.

Solve Problem 70 with the boundary conditions for Y(x,0) and Y,(x, 0) interchanged, i.e. Y(x,0) = 0,
Y, (x,0) = 0.052(2 — ), and give a physical interpretation.
in 3(2n — 1)rt

_ 82 I 1 . (2n— Drx
Ans. Y(x,t) gl En 1) sin 3 si 5

Prove the results (4) and (5) on Page 174,

1 |z|<1

Verify the convolution theorem for the functions F(x) = G(x) = {0 o] > 1 .
x

Write Parseval’s identity in complex form using the results (4) and (5) on Page 174.

Prove the result (15) on Page 176.

Prove the results (19) and (21) on Pages 176 and 177 respectively.
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79. Prove the results (28) or (24) on Page 177.

[Hint. If ) = Jm e~ Fuydu and g() = f e~ G(v)dv, then

Mg = fw _fw e~ Mutv) P(u) G(v) du dv

Now make the transformation u+v = x]

80. If f(») and g(\) are the Fourier transforms of F'(x) and G(x) respectively, prove that

oz

F(x) Gx)de = %J‘” ) 9() de

-0

where the bar signifies the complex conjugate.
81. Prove Riemann’s theorem (see Problem 24).

82. (a) Show how to use Fourier transforms to solve

U 22U
% = e 770
if U@0,t) =0, Ux,0) = e~% and U(x,t) is bounded.

(b) Give a physical interpretation.

—2a%
Ans. Ul t) = 2 f Ae S :_511“"” dx

2
83. (a) Solve %Y = 92U

9t Fyea U©,t) =0, Ux,0) = e=% x>0, Ux,t)is bounded where x>0, t>0.

(b) Give a physical interpretation.

Ans. Ul = 2 f “’“i; “SIAE g

z 0=z=1
0 z>1"

U _ #U

84, Solve Bt a2 U,0,t) =0, Ux,0) = { U(x, t) is bounded where >0, t> 0,

Ans. Uz, t) = %f (sn;)\ 4 &5 12_ 1) et cosAx d

85. (a) Show that the solution to Problem 83 can be written

U, 9 2 fz/m/? 2 g 1 fu+x)/2\/2 e g
x, = — e~V gy — —— e~ v dv
Vz Jy Vr (1—z)/2Vt
2
(b) Prove directly that the function in (a) satisfies %lt! = Z—Q and the conditions of Problem 33.



Chapter 7

THE COMPLEX INVERSION FORMULA
If f(s) = L{F(t)}, then L' {f(s)} is given by

F) = ziﬂ.f“westf(s)ds £>0 (1)

Y i

and F(t)=0 for t<0. This result is called the complex tnversion integral or fo'rmula It |
is also known as Bromwich’s integral formula. The result provides a direct means for
obtaining the inverse Laplace transform of a given function f(s).

The integration in (1) is to be performed along a line s=1y in the complex plane where
s = ¢ +1iy. The real number y is chosen so that s = y lies to the right of all the singu-
larities (poles, branch points or essential singularities) but is otherwise arbitrary.

THE BROMWICH CONTOUR y
In practice, the integral in (1) is evaluated !\B

by considering the contour integral vy +iT

51 § e 1) ds @

x
Y

where C is the contour of Fig. 7-1. This con-
tour, sometimes called the Bromwich contour,

is composed of line AB and the arc BJKLA of
a circle of radius R with center at the origin O.

If we represent arc BJKLA by T, it follows

from (1) that since T = VR2—42 : Fig. 7-1
1 Y +iT
Fit) = limg— 5 f et f(s) ds 3
Rew 21t Vo _ip )

USE OF RESIDUE THEOREM IN FINDING INVERSE LAPLACE TRANSFORMS

Suppose that the only singularities of f(s) are poles all of which lie to the left of the
line s =y for some real constant y. Suppose further that the integral around T in (3)
approaches zero as R~>«. Then by the residue theorem we can write (3) as

201
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F(t) = sum of residues of e f(s) at poles of f(s) (4)

= Y residues of e*f(s) at poles of f(3)

A SUFFICIENT CONDITION FOR THE INTEGRAL AROUND r
TO APPROACH ZERO

The validity of the result (4) hinges on the assumption that the integral around T in (3)
approaches zero as R—»>«. A sufficient condition under which this assumption is correct
is supplied in the following

Theorem 7-1. If we can find constants M >0, k>0 such that on " (where 8= Re®),

& < %)

then the integral around 1" of e f(s) approaches zero as R-«, ie,

lim . etf(s)ds = 0 (6)

Rm

The condition (5) always holds if f(s) = P(s)/Q(s) where P(s) and Q(s) are polynomials
and the degree of P(s) is less than the degree of Q(s). See Problem 15.

The result is valid even if f(s) has other singularities besides poles.

MODIFICATION OF BROMWICH CONTOUR ¥
IN CASE OF BRANCH POINTS D

If f(s) has branch points, extensions of the \By.;”v
above results can be made provided that the R
Bromwich contour is suitably modified. For €
example, if f(s) has only one branch point at E A Of\" ®
s =0, then we can use the contour of Fig. 7-2. L K

In this figure, BDE and LNA represent arcs of
a circle of radius R with center at origin O, . y =T
while HJK is the arc of a circle of radius « with -/4

center at O. For details of evaluating inverse
Laplace transforms in such cases see Prob. 9. Fig. 7-2

CASE OF INFINITELY MANY SINGULARITIES

If we wish to find the inverse Laplace transform of functions which have infinitely
many isolated singularities, the above methods can be applied. In such case the curved
portion of the Bromwich contour is chosen to be of such radius R. so as to enclose only a
finite number of the singularities and so as not to pass through any singularity. The
required inverse Laplace transform is then found by taking an appropriate limit as m <.
See Problems 13 and 14.
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Solved Problems
THE COMPLEX INVERSION FORMULA

1. Establish the validity of the complex inversion formula.
We have, by definition, f(s) = f e~ su F(u) du. Then
0

y+iT 1 y+i
lim - etfs)ds = lim 3.
Y—iT Tme &M Jy—iT

T pe
f est—su F(u) du ds
[

Letting s = y+ 14y, ds = idy, this becomes

T < -

lim 1 e”tf givt dyf e~ivu[e—ve F(u)] du = 1 grt | 2me™V F(t) >0
Torw 27 o o 27 0 £<0

_ [F® t>o0

0 t<0

by Fourier’s integral theorem [see Chapter 6]. Thus we find
1 Y tico
= = t
F@) 5 J;_iw est f(s) ds t>0

as required.
In the above proof, we assume that e~ "2F(u) 1is absolutely integrable in (0, =), i.e.

o
f e vt {F(u)] du converges, so that Fourier’s integral theorem can be applied. To insure this

0 B
-~  condition it is sufficient that F'(f) be of exponential order y where the real number y is chosen so that
the line s =y in the complex plane lies to the right of all the singularities of f(s). Except for this
condition, y is otherwise arbitrary.

2. Let 1" denote the curved portion BJPKQLA 7
of the Bromwich contour [Fig.7-3] with P B
equation s = Re¥, § = 0 = 2r—4,, ie. T is —r
the arc of a circle of radius R with center E T
at O. Suppose that on I' we have K b | z
1 =]
|f (S)| < R 1
where k>0 and M are constants. Show Q _/‘
that L
lim j etf(syds = 0
R~ »e/T
Fig.7-3

If 14, Ty I3 and I'y represent ares BJ, JPK,
KQL and LA respectively, we have

J; est f(s) ds = Ll est f(s)ds + J;', est f(s)ds + J;s est f(s)ds + j; est f(s) ds

Then if we can show that each of the integrals on the right approach zero as R—~= we will have
proved the required result. To do this we consider these four integrals.

Case 1. Integral over I'; or BJ.

Along T'; we have, since s = Re¥, g, = ¢ = #/2,

w/2 N
I, = f et fsyds = f eRet £(Reio) ;Rei® dp

r, 6o
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w2
Then I = f |eCR cos 31| iR sin®t: |f(Rei®)| |iRet®| do

O
w2

= f e(R cos 0)t |f(Re10)| R ds
0o
M fﬁ'/2 M f&bo

= — e(Rcos Ot g = — (R sin d)¢ d¢

Rr—1 b, Re-1 )

where we have used the given condition If(s)] = M/Rk on I'y and the transformation ¢ = »/2—¢
where ¢y = #/2 — 6y = sin—! (y/R).
Since sing < sing, = cos8y = y/R, this last integral is less than or equal to
M ) M ert Po M et 1Y
Be1 ) evds = T T peisinTl'y

But as R-», this last quantity approaches zero [as can be seen by noting, for example, that
sin~1(y/R) =~ y/R for large R|. Thus &im I, = 0.

Case 2. Integral over T, or JPK.

Along ', we have, since s = Rel®, 7/2 = ¢ = 7,

» K
I, = J est f(s) ds = f R f(Rei%) iRet® dp
“F, m/2

Then, as in Case 1, we have

M
R<—1,

M
Rk 1

/2
f e—(Rsind)t d¢
0

T
|IZ| < J e(Reos®t dp =

w2
upon letting ¢ = #/2 + ¢.
Now sing Z 2¢/7 for 0 = ¢ = 7/2 |see Problem 3], so that the last integral is less than or equal to

/2
R_iw__f e—2ROH/T dg = E’;_'Rﬂk (1 — e—Re)
which approaches zero as E = », Thus lim I, = 0.

Re+ o
Case 3. Integral over Ty or KQL.

This case can be treated in a manner similar to Case 2 [see Problem 58(a)].

Case 4. Integral over T, or LA.

This case can be treated in a manner similar to Case 1 [see Problem 58(b)].

Show that sin¢ = 2¢/x for 0 = ¢ = /2. y
P(z/2,1)

Method 1. Geometrical proof. N |

From Fig. 7-4, in which curve OP@ represents &5, % }
an arc of the sine curve y = sing and y = 2¢/r q,l?\ }
represents line OP, it is geometrically evident that i Q @
sing = 2¢/7 for 0 = ¢ = #/2. 7 /2 T
Method 2. Analytical proof. Fig. 7-4

Consider F(g) = 5‘%9. We have

dF  _ gy = $eosg—sing @

-(—i; ¢2



CHAP. 7] THE COMPLEX INVERSION FORMULA 205

If G(¢) = ¢cos¢ — sing, then

dG ’ .
% = G@ = —gsing (@)

Thus for 0 = ¢ < 7/2, G'(¢) = 0 and G(g) is a decreasing function. Since G(0) = 0, it follows that
G(¢) = 0. Then from (I) we see that F'(¢) = 0, or F(g) is a decreasing funclion. Defining
F@O) = iin}) F(¢) = 1, we see that F(¢) decreases from 1 to 2/7 as ¢ goes from 0 to #/2. Thus

1>__sin¢>g
= 5 = 7

from which the required result follows.

USE OF RESIDUE THEOREM IN FINDING INVERSE LAPLACE TRANSFORMS

4. Suppose that the only singularities of f(s) are poles which all lie to the left of the line
s =y for some real constant y. Suppose further that f(s) satisfies the condition given
in Problem 2. Prove that the inverse Laplace transform of f(s) is given by

F(t) = sum of residues of e*f(s) at all the poles of f(s)
y +iT .
We have -2-% £ oSt f(g) ds = 2}5 J;_w ot f(s) ds + 2—; JF et f(s) ds

where C is the Bromwich contour of Problem 2 and I' is the ecircular arc BJPKQLA of Fig. 7-3.
By the residue theorem,

:‘ZLm' § est f(s) ds = sum of residues of est f(s) at all poles of f(s) inside C
c
= 3 residues inside C
1 y+IT 1
= t = $ insi _
Thus 5 j;_” est f(s) ds > residues inside C 5 Jl‘ est f(s) ds

Taking the limit as R — «, we find by Problem 2,

F(t) = sum of residues of estf(s) at all the poles of f(s)

1
5. (a) Show that f(s) = o satisfies the condition in Problem 2.

S{
(b) Find the residue of ——

at the pole s =2.

s—2

(¢) Evaluate ,C"{ siZ} by using the complex inversion formula.

(@) For s = Re®, we have

1| _
s§—2 -

;I = 1 = 1
Rei®—2] = |Reitj—2 ~ R-—2
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for large enough R (e.g. B > 4). Thus the condition in Problem 2 is satisfied when k=1, M =2.
Note that in establishing the above we have used the result {z; —z,| Z 24| — |25 [see Problem 49(¢),
Page 167].

(b) The residue at the simple pole s =2 is

. est _ 2t
ll_’ng(s—-2)<s__2 = ¢

(¢) By Problem 4 and the results of parts (a) and (b), we see that

£ {siZ} = sum of residues of estf(s) = 2t

Note that the Bromwich contour in this case is chosen so that y is any real number greater
than 2 and the contour encloses the pole s = 2,

1
6. Evaluate ‘1 GFDE-2¢

Since the function whose Laplace inverse is sought satisfies condition (5) of the theorem on
Page 202 [this can be established directly as in Problem 5 or by using Problem 15, Page 212|, we have

} by using the method of residues.

o1 1 - 1_ viie estds
(s+1)(s —2)2 2ri J, ., (s+1)(s—2)2
1 estds

2ri }, 5+ D(s— 28

est
(s +1)(s—2)2

S residues of at poles s=—1 and s =2

Now, residue at simple pole s = —1 is
Jim (s +1) {m} = % et
and residue at double pole s =2 is
R e e el
= zﬂ(s_'*'é)_f:_s;);_e“ = %teﬂ - %eﬂ
Then ,C—l{m} = 3 residues = %e‘t + %te% - %e‘lt

- 8
7. Evaluate L l{m} .

As in Problem 6, the required inverse is the sum of the residues of

sest
(s+1)38(s—1)2

at the poles s = —1 and s =1 which are of orders three and two respectively.
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Now, residue at s = —1 is
im L P 3 sest = i L B[ _set = 1 tq—ee
20 ds2[(8+1) m] = JMmsae|gom T B 4T

and residue at s =1 is

o LAl e sest = lim 2| _se R Y
3lm ; [(s 1) ———] = Pmds[(s——ﬁ] 16°¢ @2t—1)

-1 8 (s+1)38(s—1)2 -1
- 8 1 = 3 = Lot1_op A op—
Then £ 1{mj = X residues = g0 (1 —28) + jget(2t—1)
1 ]
. Evaluate £t 1l
8. Evaluate < 1E+ 18
1 _ 1 - 1
We have @+IE © [GFIE—0F = GFRE—2
The required inverse is the sum of the residues of
est
(s 4+ 17)2 (s —1)2
at the poles s =¢ and s = —i which are of order two each.
Now, residue at s =1 is .
. d . est _ 1, 1.
—_ _ - v = — = fgit — = qeit
m e [(s RirPer (s——i)2] 3" T g
and residue at s = —i is
. d “o est - 1. 1.
sl-l>nlid8 ,:(s+ 1) m] = 1 te + 1le

which can also be obtained from the residue at s =1 by replacing 7 by —i. Then

S, residues = —%t(e“ + e~it) — ii(e"’ — e~ it)
_ 1 | R
= -2-tcost + 2smt = 2(ﬁsmt t cos t)

Compare with Problem 18, Page 54.

INVERSE LAPLACE TRANSFORMS OF "
FUNCTIONS WITH BRANCH POINTS D
—aVs)
9. Find 7! {e . JL by use of the com- \BY_HT
. . R
plex inversion formula. €
B . . E H J z
y the complex inversion formula, the re-
L e/

quired inverse Laplace transform is given by
+i
1 YT pst—aVs

FO = )y —— % O | B ad

Since 8 = 0 is a branch point of the integrand,
we consider

Fig. 7-5
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Lgea = & L
271 s 2ri 8 271 8
¢ AB BDE
st—aVs st—aVs
+ o f LAl N S (. ds
2mi s 271 s
EH HJK

st—aVs st—aVs
L f g s + — & ds
2rt T

L
where C is the contour of Fig. 7-5 consisting of the line AB (s =), the arcs BDE and LNA of a circle
of radius R and center at origin O, and the arec HJK of a circle of radius ¢ with center at O.

Since the only singularity s =0 of the integrand is not inside C, the integral on the left is zero
by Cauchy’s theorem. Also, the integrand satisfies the condition of Problem 2 [see Problem 61] so that
on taking the limit as B —«» the integrals along BDE and LNA approach zero. It follows that

_ . 1 est—aVs _ 1 y'H°°est—a\/;
FO = fmea) o ® T aa). e
€—0 AB
st—aVs st—aVs st—aVs
— —liml.{fe ds+fe ds+fe ds} @)
R—w 271 s 8 8
€—0 EH HIK K1,

Along EH, s = xe™, V8 = Vxe"/2 = {y/x and as s goes from —R to —¢, x goes from R to e.

Hence we have
est—aVs —€ gst—aVs € g—zt—aiVz
ds = ds = - dx
s _ 8 R x

EH R

Similarly, along KL, 8 = xe~7, /s = Yxe~ ™2 = —{\/x and as s goes from —¢ to —R, x goes

from ¢ to B. Then
est-—a\/; -R est—a\/; R e—xt+ai\/§
f ds = f ds = D— F
8 8 x

KL € €

Along HJK, s = ec!® and we have

est—aVs —vrezeiot_a\/;‘eio/z_ .
f ds = f S — VY ]
. r eeid
HIK
— if~7rezei9t — aVeelr2 de
™
Thus (2) becomes
€ —xt—aiVx R, st+aiVz T i — i
F() = - lim -5 f R dr + f R T e + zf et "‘F“"”zdo}
R—»;) 27 R x € x T
€=
R _ . —nt -
= — lim L f e xt(eaﬂ/;_. e aﬂ/;) dr + 'Lf "eeemt_,,‘/:ew/-z de
Rex 2#7: € x T
€e=0
1 R =2t sin aV7 TT celdy — aVeelon
— —lim—. 2'I:f [4 dx + ,Lf eze t —aVee d0
Ree P LU g "

Since the limit can be taken underneath the integral sign, we have

lim [ ece¥t —aveeitzg, f_w1 d = 2
e—0 T .
o0 _ t .
and so we find F) = 1-: f “#ﬂdx @)

0

This can be written (see Problem 10) as

F(t) = 1 — erf (@/2Vt) = erfe (a/2Vt) 4)
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® o xt gf
10. Prove that %J; e—slxna,ﬁdw = erf(a/2y/t) and thus establish the final result
(4) of Problem 9.

Letting « = u2, the required integral becomes

2 (“e—**sinau
I = = e _ sSinau du

Then differentiating with respect to ¢ and using Problem 183, Page 41,

a_I_ = 2 fwe—uzt cosau du = g <_\/_;. 3—02/41,‘) = L e—a?/4t
da T J, s 2‘/2 wt

Hence, using the fact that I =0 when a =0,
e 1 2 as2vt
I = f ——epMitdp = — f e-uwtdu = erf (a/2Vt)
0o Vrt Vr o

and the required result is established.

1L Find £~ '{e2V*}.

If £{F(f)} = f(s), then we have L{F'(1)} = sf(s)—F(0) = sf(s) if F(0) = 0. Thus if
L71{f(s)} = F(t) and F(0) =0, then L~1{sf(s)} = F'(t).

By Problems 9 and 10, we have

12V
F(t) = erfe(@2/f) = 1 - if" ‘o du
V=
¢—aVs
so that F(0) =0 and fs) = L{F@®)} = 5
Then it follows that
d 2 a2Vt
~1§{g—aVs = F@) = —=—<1 — —f e—u? du}

@ 4-3/2 g—a2/4t

2vVr

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH INFINITELY
MANY SINGULARITIES

12. Find all the singularities of f(s) = cosh zv/s

s cosh \/s

Because of the presence of V3, it would appear that s =0 is a branch point. That this is not so,
however, can be seen by noting that
cosh x\/s 1 4+ (xVs)2/2! + (xVs)y4! + ---

18 = T eshve sl (VE)2! + (Va4 + -0}

1 + x2s/21 + z4s2/4! + ---
s{1 + s/2! + s2/4! + ---}

where 0 < 2 <1.

from which it is evident that there is no branch point at s = 0. However, there is a simple pole at s =0.

The function f(s) also has infinitely many poles given by the roots of the equation

Vs 4 - Vs
coshys = &'%e_s = 0
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These occur where e2Vs = —1 = gmi+2kmi E=0,=x1,%2 ...
from which Vs = (k+ Pri or 8 = —(k+ })%2
These are simple poles [see Problem 56].

Thus f(s) has simple poles at

8=0 and 8=38, where s, =—(n—}?%32 n=123,...

. _, Jcosh x\/E}
13. Find < {73 cosh \/5 where 0 <z <1.

The required inverse can be found by using
the Bromwich contour of Fig. 7-6. The line AB is -\

chosen so as to lie to the right of all the poles E R,
which, as seen in Problem 12, are given by

s =0 and s=s,,=—('n—-§)2w2,n=1,2,3,... F x

‘We choose the Bromwich contour so that the
curved portion BDEFGHA is an arc of a circle I'y,
with center at the origin and radius G

R, = miz? _/A

where m is a positive integer. This choice insures
that the contour does not pass through any of .
the poles. Fig.7-6

We now find the residues of

est cosh xy/8
s cosh Vs

at the poles, We have:

Residue at s =0 is lim (s — 0) es‘c—"sm‘ﬁ} = 1
5=0 s cosh Vs
Residue at 8 = —(n—})?%s2, n = 1,2,3,... is

lim (s—s,) eteoshaVs| . J 27 % [ . et coshaVs
8+ 8y, " s cosh /& s~s5, |coshVs| s—s, 8

_ . 1 . est cosh xV's
= {(sinh\/?)(uz\/s)} sll’?,,{ P }

4(—1)
7(2n —1)

e~ (n=¥%)*r't cos (n — §)72

If C,, is the contour of Fig. 7-6, then

t m
EL' § e” cosh s ds = 1+ 4 (=" e~ (n—1)’1*t cos (n— §)rz
T Jeo s coshys T a=1 20— 1
Taking the limit as m -« and noting that the integral around T, approaches zero [see Problem 54],
we find
-1 coshzys = 1+ 43 e e~ (n—%’1’t cog (n — L)rx
< {s cosh Vs T ngl 2n—1 cos (n =)

49 D" _onntya
1+7n§12n_1e co!

2n — rx
s 2
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14. Find {‘1{%} where 0 <z <a.

The function f(s) = % has poles at 8 =0 and at values of 8 for which coshsa = 0, ie,,
s = 8 = (k+Prila k= 0,*1,=x2 ...

Because of the presence of 82, it would appear that s =0 is a pole of order two. However, by observing
that near s =0,
sinhsx sz + (sx)3/8! + (s®)3/51 + .-

s2 cosh sa s2{1 + (sa)2/2! + (sa)¥/4! + ---}

z + 8223/31 + sx5/5!
s{1 + 8%2a2/2! + stat/4! + ---}

we see that s =0 is a pole of order one, i.e. a simple pole. The poles s, are also simple poles [see
Problem 56].

Proceeding as in Problem 13, we obtain the residues of est f(s) at these poles.

Residue at s =0 is

lim (s—0)J&sinheal _ Jp sinhswl [p, et _ .
s=0 82 cosh sa S0 s sob cosh sa

using L’Hospital’s rule.

Residue at s = 8, is

lim (s —s,) {esf sinh sx}

S8y 82 cosh sa

. 8—s . st gi
lim k lim ¢ sinh sz
S+ S cosh sa S—=+ Sy §2
. . st sin
lim i 1 lim €8 hsx
s—s a sinh sa S8y 82

1 elk+wimit/a 4 gin (k + Prx/a
at sin (k+ L)z — (k+ {)%2/a?

_a(=1)k ekt wImit/a gin (k + f)rw/a
73k + 4)?

By an appropriate limiting procedure similar to that used in Problem 13, we find on taking the
sum of the residues the required result,

—y) sinhsz = 5 - 2 ﬁ (—1)k gtk +¥mit/a gin (k + §)ra/a
< s2 cosh sa - 72 k2, (k+3)2
_ 20 S (—=1)? cos (n — J)rt/a sin (n — L)rx/a
= vt E2 (=37
_ 8o g (=) . (CZrn—ljmx 2n — D)=t
= =z + -2 ﬂgl @17 sin % cos 5a
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MISCELLANEOUS PROBLEMS

15. Let f(s) = P(s)/Q(s) where P(s) and Q(s) are polynomials such that the degree of P(s)
is less than the degree of Q(s). Prove that f(s) satisfies the condition in Problem 2.

Let P(s) = agm™ + a1 + -+ + a,
Q) = bgs® + bysn~1 + ... 4+ b,

where a;# 0, by # 0 and 0 = m <n. Then if s = Rei, we have

&) = P(s) ags™ + a;sm1 + -0 + a,
= Q(s) bes® + bysn—1 + -+ + b,
agRmemi® + qRm—~1g(m-Di0 4 ... 4 g

boRneniO + ban—le(n—l)io + - + oa,

_ o Jee] 1 |1 + (a)/agR)e™ ¥ + (ag/apR2)e~20 + <o + (ap/agRm)e—nif
T B | BT T (by/boR)e~® + (bg/boR?)e—2 + <+ + (b,/bgRn)e— "0
Let A denote the maximum of |ai/qy|, |as/ay|, - - ., |@n/ay.
Let B denote the maximum of |b;/bgl, |ba/bg!, .. ., |ba/bgl.
Then
ay as . U . A A A
1 o —2_ g—2ip —mig £ 2 2
‘1+aoRe‘+a0R2e'+ taEReT S Lttt + B
A 1 1
= 1+ bl 1+ B + 2 + >
= 1+ FA:T < 2
for R>A+1.
Also 1+ ie—i" + e—2i0 + + - e nid
' boR boR2 boR
bl 2 n
= — |—e —Z_g—2i0 —nio
= 1 lbe'+boR2e2'+ +boe”
B B B
= 1 - (§+ gt o+ Rn)
B 1 1

=z 1 — R—(l + j723 + 72 + >

= 1 - L > 1

- R—1 — 2

for B > 2B+ 1.

Thus for R larger than either A +1 or 2B 4+ 1, we have

R S
Rn—m 1/2 =

Qg
bo

where M is any constant greater than 2|ag/byl and ¥ = n—m = 1. This proves the required result.

A

f@) = jif

16. Find .£-! {M} where 0 < z < a.

s cosh ay/s
(¢) Method 1. From Problem 13, we have

£-1 cosh xV/s = 1 + 4
s cosh Vs T

CD® o 1)202/4 ane (20— V)7
12n—le n 1’ cosT

-1
1M
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Replacing s by ks, we find by the change of scale property, Page 44,

_y J _coshxVks _ l{ 4 § e~ (2n—1tr2t/ak ggg (EN— V7%
ks cosh Vks k T n=1 2"’—_1 2

Then multiplying both sides by k, replacing %k by a? and x by x/a, we find the required result
cosh Vs

YEED by S
s cosh ay/s

Method 2. We can also use the inversion formula directly as in Problem 13.

S e—(2n—10210t/40% poq (21— D)7
21 2n — 1 a” cos %

ﬂlh

17. Find £~ {s_f%%} where 0 < z < b.

213

Let f(s) = —2M2% Then 5=0 is a pole of order 3, while s = 8, = (2k+ 1)ri/2b, k = 0,

~ 83 coshsd”

*1,*2, ... [which are roots of cosh sb = 0], are simple poles. Proceeding as in Problem 13, we have-

Residue of estf(s) at s = s is

lim (s —s;) {e‘t cosh sx}

sm+8y 8% cosh sb

: S — 8 . est cosh sx
lim — =\ Jim £ ©0518%
s—s, cosh b S8 g8

1 . €2kt Iwit/2b eosh (2k + 1)7ix/2b
b sinh (2k + 1)74/2 {(2k + 1)=%/2b}3

i

(—1)k 8b2 g(2k +1)mit/2b cos 2k + 17x
(2k + 1)=3 2b

To find the residue at s = 0, we write

et cosh sx 1 522 + s202/21 + gixd/4! + -

= =< = =1 t - .

83 cosh sb 83< tost 2! + >{ 1 + s2b2/21 + stbt/4! + -
1 s2t2 82x2 stxt 8262 = bstbht
= §<1+8t+31‘+ - ><1+-2.“+ 2 T '><1—T 7
1 s2t2 §2x2 82h2
= 83{1+st+—2 + 5 -t }

Thus the residue [which is the coefficient of 1/s in this series] is -.%(t2 + x2 — b2).
The residue at 8 = 0 can also be obtained by evaluating
1 d3 est cosh sx
1 —0)3
31_13})2' d3{( 0) s3 cosh sb
The required inverse Laplace transform is the sum of the above residues and is

(—1)k e(2k + mit/2b 2k + 1)zx
cos

2 o0
He+a2—b2) + & 3

= @k+1P 2b
. 1602 o (=) (2n — D)zt @n— l)rx
= MHepta—by) — =X
{t x 5% 73 p=1(2n—1)3 cos 2b cos 2b

which is entry 123 in the Table on Page 252.
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18. A periodic voltage E(t) in the form of a “square wave” as shown in Fig. 7-7 is applied
to the electric circuit of Fig. 7-8. Assuming that the current is zero at time ¢t =0, find

it at any later time.

E(t)
E 1
AVWIA—-
EO ‘-—-1 r—-—‘ Il...-
1
| | l .
] ] 1l | t E)
710, :Za, ;30, }40,
| i | l
—E,t —_— —
Fig. 7-7 Fig.7-8
The differential equation for the current I(t) in the circuit is
L dI — —
P + RI = E(t) where I(0)=0 (1)
Taking Laplace transforms, using entry 135 in the Table on Page 253, we find
LslI + RI = — - = 70 as
5 tanh 2 or I(s) o(Ls + &) tanh )
where T(s) = £ {I(#)}. Thus
E, 1
Ity = =g 1i—2___ b
2 7R {s(s T RiL) BB 2} @)
The function f(s) = s(s—_‘_lR/L—)i:anh%éi has a simple pole at s = —R/L and simple poles at
8 = g, = (2k + V)ri/a, £ =0,%1,... where cosh(as/2) = 0 [compare Problem 17]. The value s =0

is not a pole since lina M =2
§=

is finite. Thus 8 = 0 is a removable singularity.

Proceeding as in Problems 18 and 17, we obtain the residues of estf(s) at the poles. We find:

Residue at s = —R/L is

i L S - L. _rn
lmll2 (s+R/L){ B +R/L) tanh } 7 ¢ tanh —

8 = —

2L

Residue at s = g, = (2k + Drifa is
. st
Jim (o= a0 {m tanh }
8— 8 . est ginh (as/2)
{sll.";k cosh (as/2)} {Jl."s‘k s(s + E/L) }
- 1 [ e%xt sinh (as,/2)
(a/2) sinh (as,/2) { 8(sy + R/L)

2¢(2k + Dwit/a
2k + V)ri {(2k + 1)7i/a + R/L}




CHAP. 7] THE COMPLEX INVERSION FORMULA 215

Then the sum of the residues is
L _poL oR » 9¢€2k + Dit/a
= tanh 2t 4
E® 2L . g_w (2k + 1)=i {(2k + D)zi/a + RIL}

L _pL 23 4eL § aRsin(@2n—1)at/a — (2n—1)zL cos (2n — 1)=t/a
g tamhgp + = ,E @n— 1){a?R2 + (2n— 1)%2L?}

Thus from (2) we have the required result

E aR 4an aR sin (2n— 1)at/a — (2n— 1)L cos (2n—1
I - Z0  nyL aR sin (2n — 1)=t/a (2n —1)xL cos (2n — N)zt/a
@ = geWitanhg + 2 @n— ){@R? + (2n — 1)%°L2)

This can also be written in the form

E, aR 4aE g sin {(2n — 1)=t/a — ¢,}
It = — e—Rt/L h=-—= n
() R ¢ tan 2L + - "gl (2n — 1){a?R2 + (2n — 1)2,2L2}1/2

where ¢, = tan—1{(2n—1)rxL/aR}.

Supplementary Problems

THE COMPLEX INVERSION FORMULA AND USE OF RESIDUE THEOREM

19.

21,

22,

Use the complex inversion formula to evaluate

- 8 = 1 - 1
@ < 1{27-_} © < l{m} @« {m}

Ans. (a) cosat, (b) (sinat)/a, (c) $(sint —cost + e

Find the inverse Laplace transform of each of the following using the complex inversion formula:
() 1/(s+1)2, (b) 1/s3(s2+ 1).
Ans. (a) te™t, (b) F2 +cost—1

(a) Show that f(s) = s“’——;m_ satisfies the conditions of the inversion formula. (b) Find .0~ {f(s)}.
Ans. (b) €2t — et

- 82 e opaps
Evaluate £ l{m} justifying all steps. Y
Ans. % sin2t + 1t cos2t

R

(a) Evaluate .1 {m} justifying all steps and - x
(b) check your answer.
(a) Evaluate 5 f (s2sfll)2 ds around the contour C
shown in the adJommg figure where R =3 and y > 1.
(b) Give an interpretation of your answer as far as Fig.7-9

Laplace transform theory is concerned.
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25. Use the inversion formula to evaluate .£—1 {m} where @ and b are any positive constants.

26. Use the inversion formula to work: (a) Problem 13, Page 53; (b) Problem 25, Page 58; (¢) Problem 28,
Page 60; (d) Problem 110, Page 74.

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH BRANCH POINTS
27. Pind £-'{e—Vs} using the complex inversion formula.

28. Find ™! 1 by the inversion formula.
Vs

sVs+1

29. Show that .C"{ 1 } = erfVt by using the inversion formula.

30. Find 1! {s\-/‘gl} by using the complex inversion formula.

31. (a) Use the complex inversion formula to evaluate .£—1{s—1/3} and (b) check your result by another

method.
32. Evaluate £~ 1{In(1 + 1/s)} by using the inversion formula. Ans. (1 — e )/t
33. Evaluate £~ 1{In(1 + 1/82)} by the inversion formula. Ans. 2(1 — cos t)/t

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH INFINITELY MANY SINGULARITIES

34, Find 1! {—1-} using the complex inversion formula.

s(es+1)
_ 1 4 t 1 3xt 1 5rt
1 = -2 7t _ 2 2 omt L.
35. Prove that £ {s coshs} 1 - {cos D) 3 cos 5~ + 5 cos 2 }
36. Find ¢! 1 . Ans. 3?2 + 2 ﬁ (—-——— (1 — cos nrt)
82 sinh s : 72 n=1 W2
37. By using the complex inversion formula, prove that
_ 1 _ tr—a?) _ 22§ (1) . mat
1) 4 — ttt—ad) _ e nrt
< {sd sinh as} 6a 3 ,.§1 w3 SmTy
_ 1 sin w(t + a) 1 cos (2n — 1)xt/2a
1 = SlhwiTa .
38. Show that £ {(32 T )1+ e—2as)} 20 a 721 o2 — (2n —1)2r%/4a?

MISCELLANEOUS PROBLEMS

39. Evaluate (a) £~ 1{1/(s—1)4}, (b) £~ 1{e 2/(s—1)*}, by using the complex inversion formula.

2 _
40. Find .ot {ﬁ} by contour integration. Ans. tcost

-1 8 1 (3. 3 :
41. Evaluate < {(s2+1)4}° Ans. 8 {3¢2 cost + (3 — 8¢t) sint}
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42.

43.

4.

45.

46.

47.

49.

50.

51.

52.

53.

54.

Find 7! {s(s—3+):(slm} by the complex inversion formula and check your result by another

method.

(a) Prove that .the function f(s) = satisfies the conditions of Theorem 7-1, Page 202.

s2 cosh s

- 1 _ 8 5 (1 2n—1
(b) Prove that £ 1{—} = t+ 3 El @2n—1y sm( 5 >7t.

s2 cosh s

Discuss the relationship between the results of Problem 43(b) and Problem 35.

Evaluate 0! {;—_ln} by the inversion formula, justifying all steps.

Ans. Y(sint cosh t — cos ¢ sinh ¢)

(@) Prove that if « >0,
~2Vs
L1 {:_:{_:} =  e~2V0/2 cos (0 — xVw/2) — 1 f ueTH snavu g,
[

T E

(b) Prove that for large values of £ the integral in p#rt (a) can be neglected.

Prove that for 0 <z < 1, % = é E: i)'i ;20_5*_(%;‘”—_1;7)':2//24
Find -1 {&cshii}
)
Prove that for 0 <z <1, % = 9 ,;:',1 (—1):——}-1(52?1112;1);21/):90/2
Show that
R (R C T

Show that for 0 < 2 < a,

sinh Vs (a — ) a—x 2 Q& eg—n¥wl/a? ., mpx
-1 —_— = —_— = 2 —_ sIn——
sinhvsa a

a T n=1 n

Use the inversion formula to work: (a) Problem 3(g), Page 48; (b) Problem 9(a), Page 51; (¢) Prob-
lem 14, Page 53.

Using the inversion formula, solve Y’(t) — atY(t) = sinat + e~ subject to the conditions
Y(0) =2, Y'(0)=0, Y'0) =-1, Y"(0) = 0.

Prove that the integral around T in Problem 13 goes to zero as B — «,

By use of the complex inversion formula, prove: (a) Theorem 2-3, Page 43; (b) Theorem 2-5, Page 44;
(¢) Theorem 2-10, Page 45.
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56. Prove that the poles found in (a) Problem 12 and (b) Problem 14 are simple poles. [Hint. Use the
fact that if s = q is a double root of g(s) = 0, then s =a must be a simple root of g'(s) = 0.]

1 yhio  gst
i), i Vel

Ans. t—V2e~t\7 if t>0; 0if t<0

57. Evaluate

ds where y>0. (b) How can you check your answer?

58. Complete the proofs of (a) Case 3 and (b) Case 4 of Problem 2.

59. A periodic voltage E(t) in the form of a half-wave rectified sine curve as indicated in Fig. 7-10 is
applied to the electric circuit of Fig. 7-11. Assuming that the charge on the capacitor and current are
zero at ¢ = 0, show that the charge on the capacitor at any later time ¢ is given by

Q) = 7B, + 7By [ sinwt — sinw(t+ T) . Sinat — sina(t+T)
LT24242 2LT | w(a? — w2)(1 — cos wT) a(w? — o)1 — cos aT)
2rE, cos 2rnt/T

LTZ ;21 (2 — 4r2n2/T (2 — 4212/ T2)

where o2 = I/LC, o2 = 72/T2 and o # a.

E(t)

ANVANYI S

T/2 T 3T/2

-

Fig. 7-10 Fig. 7-11

60. Work Problem 59 in case « = » and discuss the physical significance of your results.

61. Verify Theorem 7-1, Page 202, for the function ¢—¢Vs/s, a >0 [see Problem 9].

62. Find -1 {gz(l—l—as")} where ¢ > 0, by use of the inversion formula and check by another method.
—e

°° 3
63. Prove that Lo1{e— s} = 7—?; f V2 e—1v3 — v/2 sin\/_;?_ dv.
0

64. Generalize the result of Problem 63.

65. A spring of stiffness & and of negligible mass is suspended vertically from a fixed point and carries
a mass m at its lowest point. The mass m is set into vibration by pulling it down a distance x, and
releasing it. At each time that the mass is at its lowest position, starting at ¢ =0, a unit impulse is
applied. Find the position of the mass at any time ¢ >0 and discuss physically.



Chapter 8

BOUNbARY-VALUE PROBLEMS INVOLVING PARTIAL
DIFFERENTIAL EQUATIONS

Various . problems in science and engineeririg, when formulated mathematically, lead
to partial differential equations involving one or more unknown functions together with
certain prescribed conditions on the functions which arise from the physical situation.

The conditions are called boundary conditions. The problem of finding: solutions to
the equations which satisfy the boundary conditions is called a boundary-value problem.

SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS

o _ U

1. One dimensional heat conduction equation 5 = ko
, z

Here U(x,t) is the temperature in a solid at position x at time ¢. The constant k,
‘called the diffusivity, is equal to K/cp where the thermal conductivity K, the specific
heat ¢ and the density (mass per unit volume) p are assumed constant. The amount of
heat per unit area per unit time conducted across a plane is given by — K U (z,t). .

PY _ oY

2. One dimensional wave equation = @22
ot? dx?

This is applicable to the small transverse
vibrations of a taut, flexible string initially
. located on the x axis and set into motion
[see Fig. 8-1]. The variable Y(x, ) is the dis-
placement of any point x# of the string at
time ¢. The constant a%=T/p, where T is
the (constant) tension in the string and p is

the (constant) mass per unit length of the Fig. 8-1
string.
. ~
3. Longitudinal vibrations of a beam Y 2 7Y

oz dx?

This- equation describes the motion of a
beam (Fig. 8-2) which can vibrate longitudi-
nally (i.e. in the x direction). The variable
Y(x,t) is the longitudinal displacement from
the equilibrium position of the cross section
at x. The constant ¢? = gE/p where g is the Fig. 8-2

219
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acceleration due to gravity, E is the modulus of elasticity (stress divided by strain) and
depends on the properties of the beam, p is the density (mass per unit volume) of the
. beam. : :
Note that this equatlon is the same as. that for a vibrating strmg

4. Transverse vibrations of a beam

This equation describes the motion of a beam (initially located on the z axis, see
Fig. 8-3) which is vibrating transversely (i.e. perpendicular to the x direction). - In this
case Y(z,t) is the transverse displacement or deflection at any time ¢ of any point =z.
The constant b2 = EIg/p where E is the modu-
lus of elasticity, I is the moment of inertia of
any cross section about the z axis, g is the
acceleration due to gravity and p is the mass
per unit length. In case an external trans-
verse force F(x,t) is applied, the right hand
side of the equation is replaced by b% F(z, t)/EI. Fig.8-3

5. Heat conduction in a cylinder .  _ k <azU + 1 6U>

ot ar? r or

Here U(r,t) is the temperature at any time ¢ at a distance » from the axis of a
. cylindrical solid. It is assumed that heat flow can take place only in the radial directipn.

6. Transmission lipes % = —RI-L oI
ol ' oF
w = GE - Cop |
These are simultaneous equations for the ol ’,,
current I and voltage E in a transmission I
line [Fig. 8-4] at any position # and at any B~ >

time £. The constants R, L, G and C are re- Generator
spectively the resistance, inductance, conduct-
ance and capaeitance per unit length. The
end =0 is called the sending end. Any
other value of x can be considered as the
receiving end. : Fig. 8-4

le—— [y ——»

TWO AND THREE DIMENSIONAL PROBLEMS

Many of the above partial differential equations can be generalized to apply to problems
in two and three dimensions. For example, if Z(z,y,t) is the transverse displacement of
any point (z,y) of a membrane in the zy plane at any time £, then the v1bratlons of this
membrane, assumed small, are governed by the equatlon

Pz <32Z 32Z>

SE Ry (1)

dx? y?
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= @y @

Po Po | %P 62<I>>
at2 - (ax2 + Ed *

-Similarly,
where V2¢ is called the Laplacwn of &(z, ¥, 2,t), is the equation for the transverse vibra-
tions of a pulsating membrane in three dimensions.

The general equation for heat conduction in a three dlmens1ona1 solid is, assuming
constant thermal conductivity, specific heat and density,

U /U [ #U . FU\ |

e "(WW*‘J) = VU )
The equation for steady-state temperatur_e [where U is independent of time so- that
aU/ot = 0] is - v sy o : v _
- eu U U o = ' | |

o T v VU, =0 . @
which is called Laplace’s equation. This is also the equation for the electric (or gravita-
tional) potential due to a charge (or mass) distribution at points where there is no charge

(or mass).

SOLUTION OF BOUNDARY-VALUE PROBLEMS
BY LAPLACE TRANSFORMS

By use of the Laplace transformation (with respect to ¢t or z) in a one-dimensional
boundary-value problem, the partial differential equation (or equations) can be transformed
into an ordinary differential equation. The required solution can then be -obtained by:
golving this equation and inverting by use of the inversion formula or any other methods
already considered.

For two-dimensional problems, it is sometimes useful to apply the Laplace transform
twice [for example, with respect to ¢ and then with respect to z] and arrive at ordinary
~ differential equation. In such case the required solution is obtained by a double inversion.
The process is sometimes referred to as ifterated Laplace transformation. A similar tech-
nique can be applied to three (or higher) dimensional problems. Boundary-value problems
can sometimes also be solved by using both Fourier and Laplace transforms [see Prob. 14].

Solved Problems

HEAT CONDUCTION

1. A semi-infinite solid # > 0 [see Fig. 8-5] is
initially at temperature zero. At time t=0,
a constant temperature U, > 0 is applied
and maintained at the face z=0. Find
_ the temperature at any point of the solid
at any later time £ > 0.

The boundary-value problem for the deter-
- mination of the temperature U(x, t) at any pomt x
and any time ¢ is Fig.8-5
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aU _ 92U
a_t = 372 x> 0, t>0

U(z,0) = 0, U@©,t) = U,, U, )] < M
where the last condition expresses the requirement that the temperature is bounded for all x and ¢.

Taking Laplace transforms, we find

d2u d?
su — U(z,0) = kdx—2 or ﬁ - %u = 0 1)
Uy
where u(0,8) = L£{U@0,t)} = e 2)
and # = u(x,s) is required to be bounded.
Solving (1), we find
u(z,8) = ¢ eVs/kz 4+ ¢,e—Veikz

Then we choose ¢; = 0 so that u is bounded as «# — =, and we have

u(z,8) = epe Vs/kr €3]
From (2) we have ¢, = Uy/s, so that
U
u(z,s) = s—oe‘ Vs/kz

Hence by Problem 9, Page 207, and Problem 10, Page 209, we find

z/2Vke
Ux,t) = U,erfe(z/2Vkt) = U.,{1 - % fo VK e du}

T

2. Work Problem 1 if at ¢ =0 the temperature applied is given by G(t), t > 0.
The boundary-value problem in this case is the same as in the preceding problem except that the

boundary condition U(0,¢) = U, is replaced by U(0,¢) = G(f). Then if the Laplace transform of
G(t) is g(s), we find from (3) of Problem 1 that ¢, = g(s) and so

u(xz,8) = g(s)e~Vs/k=

Now by Problem 11, Page 209,

x

L£~1{e—Vslkz}
2Vrk

t—3/2 g—x2/4kt

Hence by the convolution theorem,

Uz, t)

u—3/2 g—z*/%ku G(t — u) du

J;z\/;lZ

2 JM e—v? G<t__:t2_>dv
2
V7 o v v

x

on letting v = «2/4ku.
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3. A bar of length [ [see Fig. 8-6] is at constant temperature Us. At {=0 the end x =1 is
suddenly given the constant temperature U, and the end # =0 is insulated. Assuming
that the surface of the bar is insulated, ﬁnd the temperature at any point z of the bar
at any time £> 0.

Fig.8-6

. The boundary-value problem is

U _ P

% = ko 0<2<l, t>0

Uz,0) = Uy, Uy0,t) =0, Ut =

Taking Laplace transforms, we find )

su — U(x,0) = kg—:; . or %__Skﬁ = —-%9— (7)
u,(0,8) = 0, w(l;8) = % @
The general solution of (Z) is -
A u = ¢ coshVskz + czsinh\/s/—kmA+‘%

From the first condition of (2) we find ¢; =0 and so

u = ¢ coshVs/kz + Do
From the second condition of (2) we find
o cosh Volki + % - % . @ = s ctj;h_\/tsj/_okl
Thus u(x,8) = ﬂ + (U, — Uy cosh Vs/k x
' s s cosh Vs/k |

The inverse of the first term is U,. By the complex inversion formula, the inverse of the second term
is, apart from the constant factor U;~— U,, given by

1 7+i°°est cosh Vs/k x

2ri y—ico 8 cosh Vs/k1

As in Problem 13, Page 210, this is easily shown to be equal to the sum of all the residues of the
integrand at the poles which are all simple poles and occur at

8 =0, Vslkl = (m—§fmi =n = 0, %1, *2,,

ds

or

—1)2.2
s =0, s = —£2"—4l12)27"—k n=123,...
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Now:
St
Residue at 8 =0 is lim (s) (M)
) s—+0 s cosh Vs/k 1
Residueat s = — .@"__1%2)2& = s, is
iy (4 ) (SR
£ %n "\ & coshVs/k!

{ lim 88, 1 { tim est cosh Vs/k x}
3= coshVarkl) == s

_ { lim ) 1 } { lim est cosh Vs/k x}
s=sn (sinh Va/k D(1/2yks )] (5~ 8

AED" o con— 1kt gog (20— D73
@n—1r © o

using I’Hospital’s rule. Thus we obtain
) U, Uy &

Uty = U, + p> "”"1 e~ (2= Vrtkt/al? gog (20— L)ra

T n=12n — 21

THE VIBRATING STRING

[CHAP. 8

4. An infinitely long string having one end at x =0 is initially at rest on the x axis. The
end =0 undergoes a periodic transverse displacement given by A, sinet, t > 0. Find

the displacement of any point on the string at any time.

Ao sin ot

Y@ -

YN -

\/ SN~——

Fig.8-7

If Y(x,t) is the transverse displacement of the string at any point x at any time ¢, then the

boundary-value problem is
i QN ) 4

8 = P5e >0, t>0

Y(x,0) = 0, Yi(x,0) = 0, Y(0,t) = Ay sin ot |Y(z,t)] < M

where the last condition specifies that the displacement is bounded.
Taking Laplace transforms, we find, if y(z,8) = £{Y(z,?)},

@ 2
) 82y — sY(z,0) — Y,(2,0) = a2gx—z‘§ or @%—-%y = 0

Ago .
y(0,8) = Pt y(x, 8) is bounded

)
(2)

6}

“4)
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5.

The general solution of the differential equation is
y(x, S) = ¢y est/a 4 Cy e—sxl/a

From the condition on boundedness, we must have ¢; = 0. Then

Ylw,s) = eyevsala
From the first condition in (4), ¢, = Ayw/(s2 + «2). Then
Aou) —sz/a
vms) = Frae

on sinw(t — x/a) t> z/a

and so Y(,t =
(=, 9 ‘[0 t< zla

This means physically that a point = of the string stays at rest until the time ¢ = z/a.

225

Thereafter

it undergoes motion identical with that of the end x = 0 but lags behind it in time by the amount z/a.

The constant a is the speed with which the wave travels.

A tightly stretched flexible string has its ends fixed at =0 and z=1

At time t=0

the string is given a shape defined by F(r) = ux(l —z), where yx is a constant, and then

. released. Find the displacement of any point = of the string at any time > 0.

The boundary-value problem is

%Y 82Y
— 2
S P 0<ae<], t>0

Y0,6) =0, Yt =0, Y0 = u(l—=), Y,(x0 = 0

Taking Laplace transforms, we find, if y(x,8) = £{Y(x, b},

d2y

s?2y — sY(x,0) — Y,(x,0) = azd_x5
d2y 52 _ sx(l—x
or o~y = —elo
where y(0,5) = 0, y(ls) =0

The general solution-of (1) is

, - 2
¥y = ¢ cosh'%‘Z + ¢s sinh% + —”x(ls z) —2%3&
Then from conditions (2) we find
_ 2a% . — 2a% (1 —coshslfa\ _ _ 2a%
¢ = T3 e = g <W = pe tanh sl/2a
_ 20 cosh s(2z — 1)/2a pr(l—a) _ 202
so that (8) becomes y = ® — coshslPa + 5 P
By using residues [see Problem 17, Page 213] we find
25— 1\2 1\?
= q2yd 2 gty (L
Y(x,t) au{t +( 22 > <2a>
821N S (-1 @2n—Dr@x—1) (2n—Drat
73 <2a> S @n—1)p 2l cos
+ px(l—2x) — a2ut?
or Yz, t) = 8ul2 1 2n — Drx cos (2n — Drat

7 2 @n—135" 1 1

1)

@

@)

“)
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VIBRATIONS OF BEAMS

6. A beam of length ! which has its end
x =0 fixed, as shown in Fig. 8-8, is ini-
tially at rest. A constant force Fo per
unit area is applied longitudinally at the
free end. Find the longitudinal displace-

ment of any point xz of the beam at any - Fig.8-8
time ¢ > 0. :
If Y(x, t) is the longitudinal displacement of any point « of the beam at time ¢, the boundary-value
problem is .
a2y a2y - :
S8 = (:2-c_m;—2 : 0<z<l, t>0

Y@,0) = 0, Y, (&0 =0, Y08 =0, Y,(t)=Fy/E

where E is Young’s modulus.

Taking Laplace transforms, we have, if y(z,s) = £ {Y(x,‘t)},
d2y d2y 82

2y(x,8) — s Y(%,0) — Y (x,0) = cgdaﬂ or @Y = 0
) ¥(0,8) = 0, y,(,8) = Fo/Es )
Solving the differential equation, we find
y(x,8) = c¢qcosh(sx/e) + ¢, sinh(sx/c)
From the first condition in (Z), ¢; =0 and so
y(x,8) = ¢y sinh (sx/c)
Y (x,8) = ¢5(8/c) cosh (sx/c)
From the second condition in (), we have
_ - cF,
Co (8/0) cosh (81/0) = Fo/ES or Cy = m
Then y(x,8) = C_F'o . M (2)
’ E  s2 cosh (sl/c)
Hence by Problem 14, Page 211,
Fo[ 8 & (-1 . @n—1uz (2n — L)met ’ '
Y(@,8) = |l + = 121 @n—12 sin"——; cos 5] :| €))]

7. In the beam of the preceding problem, determine the motion of the free end =1 as a
function of time ¢.

For « =1 we obtain from (2) of Problem 6,

cFy ginh (sl/c)

yle,8) = B 52 cosh (sl/c)

But from Problem 92, Page 34 or entry 134, Pagé‘ 253, this is the Laplace transform of the triangular
wave of Fig. 8-9 below which describes the motion of end # =1 as a function of %
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Y(,t)

2F /E

4l/c 8l/c 12l/¢

Fig. 8-9

8. A semi-infinite beam which is initially at rest on the z axis is at time {=0 given a
transverse displacement % at its end £ =0. Determine the transverse displacement
Y(z, t) at any position £ >0 and at any time ¢>0.

The boundary-value problem is

R QY L) ¢

S =0 €>0, t>0 6}
Y(xy 0) = 07 Yt (%‘, 0) = 07 Y(Or t) = h; Y:::: (01 t) = 01 IY(xr t)‘ < M (2)
Taking Laplace transforms, we find
diy dty | 82
s2y(x,8) — sY(x,0) — Y,(x,0) + b2d_x7 = 0 or Tt + nY = 0
(0,8) = h/s, Y..(0,8) = 0, Y(x, 8) is bounded 3)

The general solution of the differential equation is
y(x,8) = eVs/2T (¢, cosVe/2bx + ¢y s5inV/8/2bx) + e~ Vs/2x(cg cos Ve/2bx + ¢4 sin Vs/2b x)
From the boundedness condition we require ¢; = ¢; = 0 so that

y(x,8) = e~ Vs/26% (¢c; cosV8/2bx + ¢, sin Vs/2b %)

From the first and second boundary condition in (3), we find ¢; =0 and ¢; = h/s so that

R= e 271
€~0

y(x,8) = Sie— Vs/2b = cog1/8/2b a
The inverse Laplace transform is, by the complex Y
inversion formula, D
o B
Y(z,t) = L_J‘YH hest—Vs/26z o5 1/8/2b x ds -\1+iT
277'1 s 8
Y1 R
€
To evaluate this we use the contour of Fig. 8-10 since E H J x
s =0 is a branch point. Proceeding as in Problem 9, L 0oL/
Page 207, we find, omitting the integrand for the sake
of brevity, that
y—il
) 4
Y(z,t) = — lim —{f + f‘*’ f} (4) N

EH HJIK KL
Fig. 8-10
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Along EH, s = ue™, Vs =1i1/u and we find

f - fe he~ut—iVu/2bx cosh Vu/2bx 4.
R

u

EH

Along KL, s =ue~7, Vs =—iyu and we find

f — fR he—ut +iVu/2bx cosh Vu/2bx 4,
€

u

KL
Along HJK, s = ei® and we find

1] »—7 ') _ + " | _
= J et~ Verllizvz o0 \fo0/OD 2 de

HIK "

Then (4) becomes

T un

Y(,t) = h{l — lf e~ ¥t gin Vu/2b x cosh V1/2b x duJL
0

Letting u/2b = v2, this can be written

Y(x,0) = hjl _ Efwe_m’”z‘ sin vx cosh v dv}
’ Ty

I v

The result can also be written in terms of Fresnel integrals as |see Problem 66 and entries 10 and 11,

Page 255] VB
Y(x,8) = h {1 — 4 ’ 2 f (cos w2 4+ sin w?) d'w}
7y

TRANSMISSION LINES

9. A semi-infinite transmission line of negligible inductance and conductance per unit
length has a voltage applied to it at the sending end, x =0, given by

Bo.y = {0

Find the voltage E(x, t) and current I(x, ) at any point x > 0 at any time ¢ > 0.

If we take L = 0 and G = 0, the transmission line equations are given by

E ol _  _ _E
w - BL 5 = —C3 @

The boundary conditions are

E, 0<t<T

» |E@t)] < M
0 t>T

E(x,0) = 0, I(x,0 = 0, E0,t = {

Taking Laplace transforms using the notations .£{E(x,t)} = E(x, 8), L{I(x,t)} = T(x, 8), we have

dE ~ dl _ ~
dx = —RI, d—o:- = - C{SE - E(x, 0)}
. dE ~ dI ~
ie., Iz = —RI, dr = —CsE 2)

Eliminating 7 by differentiating the first of equations (2) with respect to z, we find

&2E
dx?

d2E

a2 RCsE = 0 (9)

= —Rﬂ = RCsE" or
dx
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The general solution of (3) is
E(az,s) = ¢;eVRCsz 4 ¢y)g~ VRCsz
and from the boundedness condition we must have ¢; = 0. Then

B8 = ¢y e~ VRCsz 4

Let us write E(0,t) = G(t) and £{E(0,%)} = E(O, 8) = g(s). Then from (4{) we find ¢; = g(s),
and so ~
E(z,8) = g(s)e VRCsz ®)

Hence as in Problem 2 we find by the convolution theorem,
t
E@t = f ZVEC 32 g~Re2¥an G(t — u) du
o 2vVr

Now since
E, 0<t—u<Tort—-T=u<t

Gt—u) =
- {o t—u > T u<t=T

it follows that if ¢t > T,

Il

i
E(z, t) f zVEC w—3/2 g—RC2V4u E( dy
t

-7 2Vr
2, zVRC/2VE=T

= — e~V dv (letting RCx2/4u = v2)
V7 Y vRG/2VE

9 [ zVRCVI=T 2 (" =VRC/2Vt
= Ej{— f e~ dy — = e v dv
\/; 0 \/;T— 0

E {erf( zVEC > f(” RC)}
= 0 — erf| ——

Wt—T 2yt
while if 0 <¢< T,

E®t) = ft L_VRC u—3/2 g—RCz%/4u Eqgdu = E_E_Q f e~ dv
o 2Vw V7 Y =VRC/2VE

= E, {1 — erf (xVRC/2Vt)}
= E,erfe(xVREC/2\/T)

we obtain by differentiation

g_"\/g ) /%t—s/z e—RCzx2/4t 0<t<T
T

Egx g[t_.s/g e—RCzt/at — (¢ — T)—3/2 e—RCI’/A!(t—T)] t>T
2va \ E

MISCELLANEOUS PROBLEMS
10. (a) Solve the boundary-value problem

oU _ , U
o = ke

U@,0) = Us, U0,8) = —aU(0,8), |U( t)] < M

z>0,1t>0

(b) Give a heat flow interpretation of the problem.
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The problem arises in considering a semi-infinite
conducting solid whose initial temperature is U, in
which radiation into a medium x < 0 at temperature
zero can take place. This radiation is assumed to be
such that the flux at the face =0 is proportional
to the difference in temperatures of the face x =0
and the medium z <0, i.e,

U, (0,8) = —e[U@0,8)—0] = —alU(@,¢t)

To obtain the solution, we take Laplace trans-
forms and find
' d2u

su — U, = km or

uz(O’ 8) = —au(0,s),

The general solution of the differential equation is

Radiation

d2u

da?

APPLICATIONS TO BOUNDARY-VALUE PROBLEMS

Fig. 8-11
su _ _Uo
E [A

u(2, 8) is bounded

. U
wx,8) = ¢ eVilkz 4+ g, e Vsikz | —8—0
From the boundedness condition, ¢; = 0. Then
' U
u(w,8) = ecye—Vsikz 4 —;g
. * aUy
From the first condition of (2), we find ¢ = — ———  so0 that
s(Vs—a)
aU, U,
u(w,8) = e~ Vslks 4 —
v s(Vs—a) 8
Then using the complex inversion formula,
Uz, t) Uy + alUy £~ { m”}
v, = 0 alp
s(vVs—a)
Uy "7+ st— Vilk
= Uy + 52 f Ll CLEPR
T mie 8(VE—a)

As in Problem 8 we have, omitting the integrand,

rHie st—Vsik
T — —am L+ 4 f
T y—im 8(Ve—a) B30 s mx K&
Along EH, 3= ue™, /s =iVu and we find
f f e~ ut—ivs/kz —ut—ivVs/kz
= du
BH R u(z\/ﬁ - a)
Along KL, s =ue ™, /s = —i\yu and we find
v J‘R e—ut +1\/§Ez
KL € u(—z\/_ - a)
Along HJK, s =¢e'® and we find
T geetlt — Vee/k z .
f = —_—— i de
- Veeld2 — o

HIK
Using these results in (8), we see that

1 7™ st— Vsikz
) oa = -l
w y—iw 8(\/3—(1) a

R [ra

e—ut

Vu cos xVu — o sin x\/_

IS

u

;

w + o?

@)
@

®)
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U —
Hence Ulx,t) = ﬁ_"f e~ut 1 yu cos xVu a sin V7w
- 0 u u + a?
= 22Uy fwe—"zt veosmy — esinav| g
T 0 v v2 4+ a2
if u =12

11. A taut, flexible string has its endpoints on the « axis at #=0 and x=1. At time {=0,
the string is given a shape defined by F(x), 0 <2 <1, and released. Find the dis-
placement of any point « of the string at any time ¢{>0.

The boundary-value problem is

g - 2 0<2<1 t>0 )

Y@©,t) = 0, Y(1,t) = 0, Y(x,0) = F(x), Y, (2,0) = 0 2

It is convenient to consider, instead of equation (I), the equation

L) ¢

atr T yx?
and after the final solution is obtained to replace t by at {see Problem 49].

Taking Laplace transforms, we find

2 2
82y — sY(z,0) — Y;(x,0) = % or ST:Z— 2y = —sF(x) 3
¥(0,8) = 0, y(,8) =0 4)

The general solution of (3) is [see Problem 8, Page 85]

x

y(x,8) = ¢;coshsxr + c¢ysinhsx — f F(u) sinh s(x — u) du

0
From the first condition in (4) we find ¢; = 0, so that
x

Y(x,8) = c¢ysinhsx — f F(u) sinh 8(x — u) du (5)

0

From the second condition in (4) we find

1
0 = ¢ysinhs — f F(u) sinh 8(1 — %) du
0
sinh s(1 — u)
oF f Fo) —nns " sinhs du

Thus (5) becomes

y(=, 8)

1 . . z
f F(u) sinhs(l —u) sinhsw 5, _ f F(u) sinh s(x — u) du
0 sinh s 0

The first integral can be written as the sum of two integrals, one from 0 to x, the other from x to 1.
Then

z . . 1
y(x,8) = f Flw {smh 8(1 —u) sinhsx sinh s(z — u)} du  + f F(u) sinh 8(1 — u) sinh sx du
0 x

sinh s sinh

fo(u) sinh s(1 — x) sinh su du 4 fl Flw) sinh s(1 — ) sinh sz du
0 sinh s e sinh e
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We fnust now find the inverse Laplace transform. By the complex inversion formula, the inverse

of the first term is .
1 f’““’est J" F(u) Sinhs(1 — o) sinhsu g |
2mt y—iw ° sinh s J

Since this is equal to the sum of the residues at the simple poles s = nri, we find the required inverse

o x . . @ x
S envit f Fu Sinnrd =) sinnzu g, § f F(u) sin nyu du b sin nrw cos nrt
n=+cw ) 0 — COS N n=1 0 '

Similarly, the inverse of the second term is
w 1
21 { f F(u) sin nzu du} sin nz® cos nrt
n__‘
x

Adding these we find )

. u L .

Y(x,t) = 3 {f F(u) sin nru du} sin nza cos nrt
n=1 0 .

If now we replace ¢ by at, we have

w 1 ’
Y, t) = {f F(u) sin nru du} sin nr2 cos nrat
n=1 0 )
12. An infinitely 1ong circular cylinder of unit .

radius has a constant initial temperature T.

At t=0 a temperature of 0°C is applied to
the surface and is maintained. Find the tem-
perature at any point of the cylinder at any
later time ¢.

If (r, ¢, 2) are cylindrical coordinates of any point
of the cylinder and the cylinder has its axis coinci-
dent with the z axis [see Fig. 8-12], it is clear that the
temperature is independent of ¢ and z and can thus
be denoted by U(r,t). The boundary-value problem is

z
U _ 92U | 19U
2 = k<_—ar2+rar> 0<r<i1 (1)
Uut,t) =0, U0 =T |Unrt)<M (@ . Fig.8-12
It is convenient to consider instead of (7) the equation
W _ 2U 13U
. a o r or
and then to replace ¢ by ki. :
Taking Laplace transforms, we find
_ d%u 1du d2u 1du _
su — Ur,0) = dr? r dr or dr? rdr % T -T

u(l,8) = 0, u(r,s) is bounded
" The general solution of this equation is given in terms of Bessel functions as
u(r,8) = ¢ Jo(tVsr) + ¢ Y (Vsr) + %

Since Y,(iVsr) is unbounded as r - 0, we must choose ¢; = 0.
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Then u(r, 8)

1 Jo(iVar) + —

From u«(1,8) = 0, we find

) T _ . __ T
¢; Jo(tVs) + s = 0 or g = AT
T TJo(iVar)
Th u(r,8) = — — ——/———
" ) TP NS
By the inversion formula, 5
wtin gst J, (/8 1)
Uty = T — 2% e oW in
y i« 8J0(iVs)
Now Jg (iVs) has simple zeros where iV8 = ApyAgy -« Agy - - - Thus the integrand has simple poles
at 8= —\2, n=1,2,8,... and also at s=0. Furthermore it can be shown that the integrand
satisfies the conditions of Problem 2, Page 203, so that the method of residues can be used.
We have:
Residue of integrand at s =0 is
. estJo(iver)
lim g———

50 8Jo(iV3)

Residue of integrand at 8 = —AZ is

est Jo(iV3 r) _ { i s+x'-:.}{ lim eSfJo(i\/'s-r)}
s s—»—)ti

. 2
lim (s +A2) _,"_“A,zl Jo(iV3)

s—»—}\f‘ SJo('L.'\/E)

8

_ i 1 e_)‘?ltJoO\nT)
B {sJTngé(iﬁ)i/Z\/s_}{ -\ }

2e—Aat Jo (A7)
)\‘nJl ()‘n)
where we have used L'Hospital’s rule in evaluating the limit and also the fact that J,(u) = —J;(w).

Then
@ —)\:t
Utr, ) T — T{1 -3 LM}

I

n=1 >\n11(>‘n)

& e tdo(Ar)
= or § & Md0tl)
"gl Ay (M)

Replacing ¢ by kt, we obtain the required solution

3 eMtdo ()
U(r,t) = 2T -_—
(r ) "gl An Jl (>‘n)

13. A semi-infinite insulated bar which coincides with the x axis, £ >0, is initially at
temperature zero. At t=0, a quantity of heat is instantaneously generated at the
point x =a where ¢ > 0. Find the temperature at any point of the bar at any time ¢ > 0.

The equation for heat conduction in the bar is

U 32U

797 = W w>0,t>0 (1)
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The fact that a quantity of heat is instantaneously generated at the point # =a can be represented
»y the boundary condjtion ’ -

Uet) = Q8@t) ' @)

where Q is a constant and §(¢) is the Dirac delta function. Also, since the initial temperature is zero
" and since the temperature must be bounded, we have )

Uz, 0) = 0, U, t)] < M ®

Taking Laplace transforms of (1) and (2), using the first of conditions (3), we find

d2y du  su
su — U(x,0) = kW or i ol 0 4)
wa,8) = Q - ' ' %)
From (4), we have u(x,8) = ¢ eVelkz ¢y e~ Vs/kz

and from the boundedness condition, we require ¢; = 0 so that

u(z, 8) = cge” s/kx (6)
Then from (5) w(@,8) = cyge~Vs/ka = Q or c; = QeVska
so that wz,8) = Qe-G—aVsik ta)

Inverting, using P_roblem 11, Page 209, we find the required temperature

U(x; t) = . th e—(x—a)2/4kt . (8)
Vm

The point source = = @ is sometimes called a heat source of strength Q.

14. A semi-infinite plate having width = [see Fig. 8-13] has its faces insulated. The semi-
infinite edges are maintained at 0°C, while the finite: edge is maintained at 100°C.
Assuming that the initial temperature is 0°C, find the temperature at any point at
any time.

Assuming that the diffusivity is one, the boundary- y
value problem for the determination of the tempera-
ture U(x,y, t) is

aU _ 82U | U

% T @ T @)

U@©,y9,t) = 0 2 0° C " 0°C

U y,t) = 0 (%)

U(x’yio) = 0 (4) it X
} (7, 0)

U(x,0,t) = 100 (%)

| U, y,8)| < M (©)

where 0<ae<7, y>0, t>0, ’ i Fig. 8-13
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Taking the Laplace transform of equation (Z) and using condition (4), we find, if u = u(x,y,8) =

LA{U(x,y, 1)},
e P, ou
dx2 e @

Multiplying (7) by sinnx and integrating from 0 to z [ie. taking the sine transform; see Page 175],

we find
m

sm'nxdac +f smmcdac = f su sin nx dx
fo 32 Y3 o

- fd -
or,if n = J u sin nx dwx,
0

—n2% + nulr,y,8) cosnr + nu(0,y,8) + :yz = s8u 8)

Since from the Laplace transforms of conditions (2) and (3) we have

u(o; Y, 8) = 07 u("; Y, 8) =0

d%u

(8) becomes W m2+8)% = 0
This has the solution % o= Ae!VWts L BeTUVWits

From the boundedness of % as y = *, we require 4 = 0 so that

% = BeyVrits 9
From condition (5)
m
08 = f 0 nneds = ﬂ(ﬂ{ﬁﬂ)
0 8 8 n
Hence letting ¥ = 0 in (9), we find
B = M(l — cosmr)
8 n
or a — _1_02(1 — cos’n1r> e—yVn2+s
8 n
By the Fourier sine inversion formula [see Page 175], we have
o0
u = 2 S l(l()_(__—l — cosm'> e YV o gin (10)
T n=1 8 n

We must now obtain the inverse Laplace transform of this. We know that

L1 {e—y\/E} = Y e V4t

2Vt

so that £-1{evVstady Y__ w1t g—nt
2Vtd
~yVs+n2 t
Hence £-1 "__} f Y v gt gy,
8 0 2Varv8
= 27 oerrmeam g,
v v/2Vi

on letting ¥2/4v = p2.
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Then inverting term by term in (10) and using this result, we find

<«

Uz, y,t) = 4_9(,)/(; p (-—1 — cos "”) sin nx e~ (PP R/AP) g,
T n=1 n
72Vt

Supplementary Problems

HEAT CONDUCTION

15.

16.

117.

18.

19.

20.

A semi-infinite solid x > 0 has its initial temperature equal to zero. A constant heat flux A is applied
at the face x =0 so that —K U_(0,t) = A, Show that the temperature at the face after time ¢ is

A kt

K Y

Find the temperature at any point x> 0 of the solid in Problem 15.
Ans. ; (Vkt/z e =/%t — 1z erfe (x/2VEt )}

A solid 0 =<z =! is insulated at both ends x=0 and x =1, If the initial temperature is equal to
ax(l — x) where a is a constant, find the temperature at any point x and at any time ¢.

al? al2 e~4krﬂ71'2t/l2

< 2nr
T
Ans. = T Ty 2 €os
6 72 p=t n2 1

(a) Use Laplace transforms to solve the boundary-value problem

W g
at

U(10,t) = 20, U.(0,8) = 0, U(x,0) =

0<e<10, t>0

(b) Give a heat flow interpretation to this problem.

6400 = (—1)7‘ — (2 1)47% (2n — l)ﬂ-x
— - 2 n=1)°7*1/1600
Ans. (a) Ux,t) = 220 222 + —5 121 @n=1)y © T cos ————

b

cos

120 i ()" —cn—12tue00 (20— Lz
d =12n—1 20

2
(a) Solve 26—;{: = %;g— x>0, t>0

U,0,t) = 0, U(x,0) = e~ 7%, U(x, t) is bounded

(b) Give a heat flow interpretation to this problem.
2et Ve
Ans. Ulx,t) = e—% — \/—;

—p2 — 127492
v x2/4v dv

(a) A semi-infinite solid « > 0 has the face x =0 kept at temperature U, coswt, ¢ > 0. If the initial
temperature is everywhere zero, show that the temperature at any point > 0 at any time t >0 is

ue—ut sin xV u/k du

U(x,t) = Uge= Yoi2kz ¢os (wf — Veol2kz) — — f e
u o

(b) Show that for large ¢, the integral in the result of part (a) is negligible.
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21. A semi-infinite solid x = 0 is initially at temperature zero. At ¢ =0 the face x =0 is suddenly raised
to a constant temperature T, and kept at this temperature for a time ¢, after which the temperature
is immediately reduced to zero. Show that after an additional time ¢, has elapsed, the temperature is

a maximum at a distance given by x = 2VktyIn2 where k is the diffusivity, assumed constant.

22. At t =0, a semi-infinite solid x > 0 which is at temperature zero has a sinusoidal heat flux applied to
the face x =0 so that —KU,(0,t) = A + Bsinwt, t>0. Show that the temperature of the face

at any later time is given by

Vi Vi
2—\/—Eé 72 + 23\/’?"’ {(f €os wv? dv) sin ot — <f sin ov?2 dv) cos wt}
0 0

= K

23. Find the temperature of the solid in Problem 22 at any point = > 0,

THE VIBRATING STRING
24, (a) Solve the boundary-value problem

a2y Y
a2z ox2

Y,0,t) =0, Y(mt)=~h Y0 =0, Y,(z0 =0

0<e<7», t>0

(b) Give a physical interpretation of the problem in (a).

8h < (—=1)n
Ans. Y(x,t) = 7 ngx 2(7’1 —)1

sin (n — })« sin (2n — 1)t

25. Solve the boundary-value problem
Ytt = Y, t+g 0<e<7m t>0

Y(0,8) =0, Y(t)=0, Y(x,0 =px(r—=x), Y, (20 =0
and interpret physically.

42z — g) L5z sin (2n — 1)z cos (2n — 1t

Ans.  Y(z,t) = fgu(z—2) + it (Bn—

26. A tightly stretched flexible string has its ends fixed at x =0 and x =1 At t=0 its midpoint is dis-
placed a distance k and released. Find the resulting displacement at any time t >0,

8h g (—1)»~1 . (2n—ljzx cos \2n — Drat

Ans. Y(x,t) 72 2 G =) sin I i
2 2
27. (a) Solve % = a2% x>0, t>0

Y,.(0,f) = A sint, Yx,0) = 0, Y, (x¢,0) = 0

(b) Give a physical interpretation to this problem.

Ans. (a) Y(z,t) = %{cmw(t —xflay — 1} if t>x/a and 0 if t = x/a

VIBRATIONS OF BEAMS

28. A beam of length ! has the end # =0 fixed and x =1 free. Its end x =1 is suddenly displaced longi-
tudinally a distance « and then released. Show that the resulting displacement at any point x at
time ¢ is given by

Y(x,t) = LT 2a p =t sin 27X cos——’mct
{ 7 oa=1 N 1 {
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29. A beam has its ends hinged at # =0 and x =I1. At ¢=0 the beam is struck so as to give it a trans-
verse velocity V, sinzx/l. Find the transverse displacement of any point of the beam at any later time.

30. Work Problem 29 if the transverse velocity is Vi a(l —x).

31. A beam of length [ has its ends hinged. Show that its natural frequencies of transverse oscillations

are given by 2 Bl
T
fn = 5—12\/1)-— n = 1,2,8,...

32. A semi-infinite elastic beam is moving endwise with a velocity —vy when one end is suddenly brought
to rest, the other end remaining free. (a) Explain with reference to this problem the significance of
each of the following and (b) solve the resulting boundary-value problem.

Yylx,t) = a2Y . (2,1) 2>0,1>0
Y0 =0, Y, (20 = —v, Y0,8) =0, lim Y,(x,8 = 0
I =+
Ans. (b) Y(x,t) = —vgxfa if ¢t >2x/a and —vyt if t < 2/a

TRANSMISSION LINES

33. A semi-infinite transmission line of negligible inductance and conductance per unit length has its
voltage and current equal to zero. At t =0, a constant voltage E, is applied at the sending end x = 0.
(a) Show that the voltage at any point x > 0 at any time ¢ > 0 is given by

E(x,t) = E,erfc(xVRC/2Vt)
and (b) that the corresponding current is

Iz, t) = _El’f_ c $—3/2 g RCz2/4t

2v7 VE

34. In Problem 33 show that the current at any specific time is a maximum at a position V2¢t/RC from
the receiving end.

35. A semi-infinite transmission line has negligible resistance and conductance per unit length and its
initial voltage and current are zero. At t=0 a voltage Ey(f) is applied at the sending end 2 =0.
(a) Show that the voltage at any position x> 0 is
Eyt— «yLC) t>xVLC
E(x,t) =
0

t<xyLC

and (b) that the corresponding current is

ot { VC/ILEyt — 2/LC)  t>x/LC
z,t =
0

t< xyLC

36. Suppose that the transmission line of Problem 35 is such that R/L = G/C. Show that the voltage is

given by
- e=VRC Bt — z7/LC) t> 2yLC
z,t) =
0 t < 2/LC

and compare results with that of Problem 35. What is the current in this case?

37. (a) A transmission line of negligible resistance and conductance has its sending end at x =0 and its
receiving end at x ==1. A constant voltage F is applied at the sending end while an open circuit
is maintained at the receiving end so that the current there is zero. Assuming the initial voltage
and current are zero, show that the voltage and current at any position x at any time £ >0 are
given by
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Ey cosh VL/C (1 —x)
E(x,t) =
cosh VL/C1
Iz, 1) EyWL/C sinh VL/C (Il — x)
x, =

cosh VL/C

(b) Discuss the significance of the fact that the voltage and current in (a) are independent of time.

38. (a) Work Problem 37 if the line has negligible resistance and capacitance but not negligible inductance

and conductance, showing that in this case

E(x,t) = E0{1—52 L cos

T n=1 2n—1

2n — Drx
21

(2n — 1)zt
0s
21V LC
(b) What is the current in this case? Discuss the convergence of the series obtained and explain the
significance.

MISCELLANEOUS PROBLEMS

39. (a) Solve the boundary-value problem
U 32U
5t a?+2x 0<z2z<1, t>0
U,t) = 0, U@ia,t) = o, Ux,0 = z— 22

(b) Give a physical interpretation to the

problem in part (a).

X _ — n27lt =% —n2
Ans. U(x,t) = z(1—2x) — i,; S <18—3> sinnrx or U(x,t) = is S e e sin nrx
T n=1 n 7" n=1 n3
46." Work Problem 39 if the condition U(0,t) = 0 is replaced by U, (0,t) = 0.
_ 5 _ .. 1, 83 o~ (2n—DPrlt/4 (2n — Dz
Ans. Ulx,t) = 3 222 + 37 = ngl o % 3
_ 64 § e~ (2n—L)¥nt/a (2n — 1)rax
rta=1 (2n—1)* 2

41. A solid, 0<x <1, is initially at temperature zero. The face x =0 1is given a temperature
U(0,t) = G(t), t > 0, while the end x =1 is kept at 0°C. Show that the temperature at any point x
at any time ¢ is

2r < r ¢ 22 nre
Ux,t) = B > nf e T B Ot — y) du} sin ——
n=1 1 0 l
42. Work Problem 41 if the end = = [ is insulated.
. . . . . U eU . . :
43. Show that in solving a boundary-value problem involving the equation w2 = kW it is equivalent
2
to solve the problem by replacing the equation by aa—lt] = %lej and then replacing t by kt.
44. A solid, 0 < x < I, has its end temperatures maintained at zero while the initial temperature is F(x).
Show that the temperature at any point x at any time ¢ is
© ]
Ux,t) = % > e"""z"g‘”zsinmf F(u) sinyilrzdu
n—1 0
45. Find a bounded solution of
b P
—_— —_— fomed -y
x6w+6y xze 0<xz<1, y>0

which satisfies &(x,0) =z, 0 <x <1. Ans. o(x,y) = xe ¥ (1 +y)
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46.

~ Ans. Y(e,t) = — S = sin = sin
n

47.

48.

49.

50.

51,

52.

53.

54.

55.

APPLICATIONS TO BOUNDARY-VALUE PROBLEMS : [CHAP. 8

A string stretched between x =0 and « =1 is plucked at its center a distance D and released. Fmd
the resulting displacement of any point « from the equilibrium position at any time t. :

8D .1 . nr . mrx cos nrat
[

=1 n2 2 _l—

Show that a transmission line probiem in which inductance and conductance per unit length are
negligible is equivalent to a problem in heat conduction.

~Solve the boundary-value problvem‘

—+ac +Y = g >0 t>0
where Y(0,t) = 0, Y(x,0) = 0. Ans. Y(x,t) = (1l — e=2)
. . . . 92 2y ., . L
Show that in solving a boundary-value problem involving the equation e = P gaE it is equivalent
92y 52 Y .

to solve the problem by replacmg the equation by Ry ‘and then replace t by at.

Show ‘that a transmission line problem in which ré_-‘
sistance and conductance are negligible, is equivalent
to a problem in the vibration of a string.

A string is stretched between * = 0 and # =1. The
end # = 0 is given a transverse displacement accord-
ing to Y(0,t) = F(t) where F(t) is a prescribed func-
tion of time, while the end # = ! remains fixed. Find
the transverse displacement. )

0°C

A semi-infinite plate having width = [see Fig. 8-14] Tnsulated =0
has its faces insulated. The semi-infinite edges are

maintained at 0°C, while the finite edge is insulated.

If the initial temperature is 100°C, find the tempera- ) Fig.8-14

ture at any point at any time.

A solid, 0 < =z < I, is initially at constant temperature U; while the ends *x =0 and x =! are main-
tained at temperature zero. Show that the temperature at any position x at any time ¢ is given by

Uz,t) = U,ert <;\—a/c——7€_t> + U, 21.( l)n{erf <7;l\/ﬁ> -~ eﬁ <7;l\}l-k_a:>}

A beam has its ends hinged at * =0 and x=1I1. At time ¢ =0, a concentrated transvérse load of
magnitude w is suddenly applied at the midpoint. Show:that the resulting transverse displacement of
any point z of the beam at any time £>0 is

. wx ; 2wl |sinxx/l | sin8rz/l | sinSrz/] '
Y@t = ppr@f—-9+) - 4EI{ 1t T 3 T 5 +}

if 0 <« < /2, while the corresponding result for U2 < <l is obtamed by symmetry.

Show that the boundary-value problem
U _ U _ .o
Fralialiir U 0<x<l t>0

U,t) = Uy, uq, t) = U2, Uz, 0) =0
has the solution

—n272t/i2
Ulz,t) =

U, sinh ol — ) + U, sinh ax 27 o MO (Ugcosnr — Uy) . nrx

sinh al . n=1 o + n2p2/2 1
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'56.

57.

58.

59.

60.

61.

62.

Fig. 8-15 if the plane faces are insulated and the sides are main-

Show that Problem 55 can be interpreted as a heat ﬂow problem in which a bar of length I can
radiate heat into its surroundings.

A transverse force given by F(x) = x(r —=x) acts at each point = of a beam which is hinged at its
ends x =0 and x =#. If the initial transverse dlsplacement and veloclty are zero, find the transverse
displacement at a later time t. : . .

A semi-infinite transmlssmn line of negligible inductance and conductance per unit length has a voltage
applied to its sending end x =0 given by E(0,t) = Ejcoswt, t> 0. Assuming the initial voltage
and current to be zero, (a) show that after a long time the voltage at any point « > 0 is given by

E(x,t) = E,e VoRC/2% cog(wt — VwRC/21x)

and (b) show that the correspondmg current is glven by

Iw,t) = \/wC/R e~ VORTTE cos (ot = VaRCIEw — =/4)

A semi-infinite string is initially at rest on the x axis, and its end x =0 is fixed. At ¢ =0 each point =
of the string is given an initial velocity deﬁned by F(x), x>0. Find the resulting displacement of
each point x at time £> 0.

A concentrated transverse force F = Fysinot, t >0, is applied at the midpoint of a beam hinged
at its ends x =0 and x =I. Show that the resulting transverse displacement is

bFgsinwt [p { sinxVe/b sinh zV w/b
Y,t) = —— =3- -

4EI cos Vo/2Vb  cosh Ww/2VD
_ 2bF,l g sin nr/2 gin 7% o, bnirlt
2Bl 21 n2(o? — b2nir?/2) l 2

if 0 < < /2, with a result obtained by symmetry for /2 <z <! Discuss the physical significance
of having o = bn272/2 for some n = 1,2,8,. ’ : '

Find the steady-state temperature in the square indicated in Y

tained at the constant temperatures shown.

_ 4T ~ sin (2n — 1)zz sinh (2n — 1)z(1 —¥)
Ans.  Utx,) - ,El (2n —1) sinh (2n — 1)z

Work Problem 62 if all four sides are kept at constant tempera-
tures Ty, Ty, Ty, Ty

T°C

Suppose that in Problem 62 the initial temperature is 0°C. What
would be the temperature at every point of the square at any Fig.8-15
tlme"

A beam of length [ has its end « = fixed. At ¢=0 the end z =0 is given a longitudinal displacement D
and released. Show that the resulting longitudinal displacement of any point « at any time £>0 is

given by . v »
Y(z,8) = D{’u(t—x/a) - u< 21;“) + ’u<t——2£¥> - }

where U is Heaviside’s unit step function. Discuss this solution graphically.
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65. Two semi-infinite conducting solids, « < 0 and = > 0 [see
Fig. 8-16], have constant thermal conductivities and diffu-
sivities given by K,, k, and K,, k, respectively. The initial
temperatures of these solids are constant and equal to U,
and U, respectively. Show that the temperature at any
point of the solid = > 0 at any time ¢ is

- T U Ul
where o = KVky/Ks\Vk,. '

2
[Hint. The heat conduction equations are % = I%TIZJ,
<0 and %—Itj = ke— %;2], >0 and we must have
11m U(x,t) = lim U(x,t) and lim K, U,(z,t) =
20— =0+ z=0— Fig. 8-16

Jlim KU, (x, t).:l

66. Verify the result at the end of Problem 8, Page 228.

67. An infinite circular cylinder of unit radius has its initial temperature zero. A constant flux A is
applied to the convex surface. Show that the temperature at points distant r from the axis at any
time ¢ is given by

t JO (Anr)

_— 14_ _ 2 Rk —k)\?l
Urt) = 3{1-8kt—2r% + 2 EA

where )\, are the positive roots of Jy(A) = 0.

68. A cylinder of unit radius and height has its cireular ends maintained at temperature zero while its
convex surface is maintained at constant temperature U,. Assuming that the cylinder has its axis
coincident with the z axis, show that the steady-state temperature at any - dlstance r from the axis
and z from one end is

40U, i sin (2n — 1)rz To{(@n— )77}

Ulrz) = — 2 2a—1 Iy{@n—1)7}

69. (a) Solve the boundary-value problem
2
—= + 2= = 0 0<z<l t>0
Y(©0,8) =0, Y(,t) =0, Y0 =0, Y0 =0, Y,(t)=0 EIY, (0t =P,sinat
(b) Interpret the problem in (a) physically. _
Y@ = bPy sin et (sinh (1 —x) Vo/b  sin(l—=) Vo/b
’ 2EI, sinh [ /w/b sinl Vo/b

20Ppb § sinnra/l sin bnr2¢/12
1rEI n=1 ’)’l,((;,.)2 - bZ)’L4ﬂ'4/l4)

Ans. (a)

70. A semi-infinite transmission line of negligible inductance has its initial voltage and current equal to
zero. At £ =0 a constant voltage E, is applied at the sending end x =0. Show that the voltage at
any point « >0 at any time t> 0 is

s = o ([ o)
— zVGR orf <1 / %E + 34 ’ I—i—c—)} — EycoshzyGR

What is the corresponding current?



Appendix A

TABLE OF GENERAL PROPERTIES OF LAPLACE TRANSFORMS

fs) = j;w e "t F(t) dt
f(s) F(t)

1. afi(s) + bfals) aFy(t) + bFy(t)

2. f(s/a) o F(at)

3. fs—a) et F(2)

4. o= f(6) Ut—a) = {f =0 >0
5. 8 f(s) — F(0) F'(1)

6. s2f(s) — s F(0) — F'(0) F(t)

7. |s"f(s) — s"~1F(0) — s"~2F'(0) — +++ — F(r=1D(Q) Fm(t)

8. f'(s) —t F(t)

9. f(s) t2 F(t)
10. f»)(s) (1"t F(2)
. ﬂésl J; " Pl du

12. i j: fo " Pl dun = ot (t(;f)l';lp(u) du
13. 1) g(s) J " P Gt —u) du
0
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f(s) F(t)
14, Lw f(u) du Et(:_t)-
1 j"'
15. _ e~ F(u) du Fit) = F(t+T)
1—esTJ,
f(Vs) 1 (7~
16. e \/ﬁ j(; e F(u) du
17. % f(1/s) f To(2Vut ) Fu) du
0
18 1 w2 [ y—nio Vut
) —v7 f(1/s) ¢ w—n2 J 2Vt ) Fu) du
0
t
19. ﬂ%lf‘) fo Jo@Valt — ) F(u) du
L ” —8/2 g—5%/4u d F(2
20. 2\/?fou €54 f(u) du (#2)
f(lns) t* F(u)
21. slns j(; Mu+1)
P(s) s Plaw) .,
22. Q(s) k§1 Q' (ag) o
P(s) = polynomial of degree less than =,
Qls) = (s—ay)(s—ag) - (s—ay)
where aj, a9, ..., a, are all distinct.




Appendix B

TABLE OF SPECIAL LAPLACE TRANSFORMS
f(s) F(t)
1. 1 1
s
1
2. = t
1 -1 adile | =
3. = n=123... D" 1
1 tn—1
4. =2 »>0 ()
5. 1 - gat
7 —
1 — in—1 gat " —
6. rer R L Pl 1
1 n—1 gat
>
7. Gmar 70 o)
1 sin at
8. 82 + a? a
9. o j_ s cos at
1 et sin at
10. (s — b)2 + a2 e
11. e —sb)—2 z_ po> ebt cos at
1 sinh at
12. g —
13. sT—s—_aﬁ cosh at
et sinh at
14. (8 —b)2 — a? a
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f(s) F(@)
15 —s—b ebt cosh at
) (s—b)2 — a2
1 ebt —_ eat
e — #b z -
6. G—ae-—b =
8 - bebt — geat
17. —oe-n 7P T
18 1 sin at — at cos at
) (s2 + a2)2 2a8
8 t sin at
19. (82 + a2)2 2a
20 g2 sinat + af cos at
‘ (s2 + a2)2 2a
21 gl t — lot sin at
. (—sz_—l~—a,2)—2 cos a %a sina
22. m t cos at
1 at cosh at — sinhat
23. (s — a?)2 243
s t sinh at
24. (s2 — a2?)2 2a
25 s2 sinh at + at cosh at
: (s2 —a?)2 2a
g8 .
26. @ —aip coshat + et sinh at
s2 + a?
27. m t cosh at
28 1 (3 — a2t2) sinat — 8at cos at
. (8 + a?)? 8ad
] t sinat — at? cosat
29. (82 + a2)3 8a®
30 g2 (1 + a2t?) sin at — at cosat
' (& + a?)? 8a7
31 83 3t sinat + at? cosat
’ (s2 + a?)? 8a
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f(s) F(t)
32 gt (83 — a2t2) sinat + bat cosat
) (82 + a?)3 8a
33 85 (8 — a%t2) cos at — Tat sin at
‘ (82 + a?)® 8
382 — g2 t2 sin at
34. (82 + a?)8 2a
8% — 3a2s
35. T o étﬁ cos at
4 _ fg2s2 4
36. % 388 cos at
83 — a2s 3 sin at
37. (s2 + a2)4 24a
38 1 (3 + a2#2) sinh at — 3at cosh at
. (82— a?)® 8ab
8 at2 cosh at — ¢ sinh at
39. (82— a2)3 8as
40 82 at cosh at + (a2t2—1) sinh at
. (s2— a?)? 8a®
4 83 3t sinh at + at2 coshat
) (82— a2)3 8a
42 st (8 + a2£2) sinh at + 5at cosh at
' (s2 —~ a2)8 8a
43 85 (8 + a2t2) cosh at + 7at sinh at
* (82 — a2)3 8
382 + a2 t2 sinh at
44. (s2 —a2)8 2a
83 + 3a2s
45. =P 32 cosh at
st + 6a2s2 4 ot
46. T @—a)f 3% cosh at
83 + a2s t3 sinh at
47. (s2 — a2)4 24a
1 eat/2 f \/— \/§ at _
48. g 3a |V35in g~ st + et
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fls) F()
8 eat/2 \/—
49. v - { \/—_ - e—Sat/2}
2
50. ssfl‘-—a” % (e‘ﬂt + 2ent/2 cog _\_/__52_:1_t_>
1 —at/2 /a9
51. F—aob 6322 {e3ﬂl/2 — cos }__2 —- V3 m\/§at}
—-at/2
52. ;?;—f—a‘s {\/— ‘/_ cos \/iat + e3at/2}
2
53. 53—‘-’__———“3 % (e‘" + 2¢~at/2 cos @)
54 1 _ —1—(sin at cosh at — cos at sinh at)
: 8t + 4at 4a3 @
8 sin at sinh at
55. gt + 4at 2a2
56. '48—%4 L (sin at cosh at + cos at sinh at)
8t + 4a 2a
g
57. praraype cos at cosh at
1
58. pra ;?(sinh at — sinat)
8
59. pr g, Ei—ll—z-(cosh at — cos at)
60. -8 L(sinh at + sin at)
st — at 2a
61. % }(cosh at + cos at)
st—a
62 1 e~ bt — g—at
Vet+a + Vs+b 2(b— a)Vrt®
&3 1 erf \/a—t
* sVsta Va
64 1 eot erf \/E
Va(s—a) Va
65. —1 et | L potterse Vt)
Ve—a+b Vat
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1(8) F(t)
1
66. m Jo (at)
1
67. \/_s2—Ta,2 Iy (at)
Vei+a2 —
68 Welta? — 8" o 4 ar 7. (at)
) Ve +a? "
— 2 —g2)n
s §2—a
69. S_%,z\/’f—;é_) > -1 ar I, (at)
eb(s— Vs2+a2)
70. -ﬁ;— Jolayt(t + 2b)) .
. e bVsPtal JoaVB—b2) t>b
Veta 0 t<b
1 tJ,(at
72. (82 + a2)372 1_;2
8
73. (—W tJy(at)
2
74. m Jolat) — atd(at)
1 tI,(at)
75. (s2 — a?)372 —la—‘
s
76. (3% — a7)3/2 tlo(at)
2
77. m Io(at) + at Il (at)
1 = e * = =t< 1, n=
78. e =1 = 30 —e9 Fit)=n, n=t<zn+1, n=0,12,...
See also entry 141, Page 254.
1 _ e~ s _ I .
79. s(e®* —r) ~ s(l—re”9) F@ = kgl 4
where [t] = greatest integer = ¢
s —1 l1—e" ¢ —
= F(t) = ™, =t< 1, n=0,1,2,...
80. s(es — 1) s(1 —re”s) &= " ntl m
See also entry 143, Page 254.
81 e—als cos 2\/&
' Vs Vat
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f(8) F(t)
82 e—als sin 2\/&
. 3372 v
e—als t n/2
83. =TT n>—1 2) Jn(®/al)
84 e—aVs e—a?/4t
) Vs Vit
a
85. —aVs e-a2/4t
¢ PAVE 4 2
— e—aVs
86. 1— e7aVs erf (a/2Vt)
8
—aVs
87. g - erfe (a/2V/7)
88. i ebWi+a) erfe (bt + 2
Vs(Vs+b) 2/t
AL ;fx —u?/da2t
89- —;;Tl— n>—1 \/.n.—fa2n.+1 . ur e~ u Jzn(2ﬁ) du
s+a e—bt — g—at
90. In <s T b> —
91. Dl B Ci (at)
s
92, In [(s + a)/a] Ei (at)
s
93. ~y+1Ins) Int
8
Euler’s constant = .5772156. ..
$+a? 2 (cos at — cos bt)
4. In < popn b2> -
9s. =2 + (y + Ins)2 In2¢
6s 8
Euler’s constant = .5772156. ..
96. Ins —(nt+7v)
s
v = Euler’s constant = .5772156...
97. In?s (Int+v)?2 — 1n?

<
Il

Euler’s constant = .5772156. .
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f(s) F(1)
98. Pntl —tatlnsg 5,4 tnint
P
99. tan~1 (a/s) i"‘t_“t
100. @_’Lt(ﬂ Si (at)
—2Vai
101. %erfc (Vals) e\/_t
T
102. 5" /1% orfe (2/2a) 20 e—a2t?
V7
2/4u42
103. e_s_kifc(;/&z) erf (at)
104 eus erfe Vas 1
Vs Vrz(t+ a)
105. e Ei (as) 1
t+a
1 T s s . 1
106. " l:cos as {2 Si (as)} sinas Ci (as)] oz
. T o . t
107. sin as {2 Si (as)} + cosas Ci(as) Tt o
108. cos as {% — Si (as)} — sin as Ci (as) |
tan—! (¢/a)
s
109. sin as{l — Si(as)} + cosas Ci(as)
2 1, (B+a
8 2 (l2
2 3
110. | [% — si (as):l + Ci2(as) 1 <t‘+ a?
t a2
m. 0 N(t)
112. 1 8(t)
113. ¢—as s{(t—a)
114, ¢ ‘s“s Ut~ a)
See also entry 139, Page 254.
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f(s) F)
115. % %:'_ + %ngl ( 1:)" sin —Z‘E cos nrt
116. :::‘;s% ;,él 2(‘;1_)"1 sin (2n -2—al UL (2n ;al)r,-t
nz. ::i%:; 2+%1§|(;’:-)1cos”7;?xsinn—:;£
119. stisr;% %lt+2—.a_§(ﬁsinﬂsin”&—# o
120. gzs—i::ls—m x + ?‘2’4_ "gl (2(7:1)’1')2 sin (27 -2~al)n-_x cos (_271_2“‘117—_{
121. i einh 52 2+ N s (1 eos ™)
122. % § (2(n pr 2 ;al)rrx <in 27 ;al);rt
124, sinhzvs 25§ (Ciyon o- mersvat gin 22
sinh aV/s as =1
125. ‘%—; -5 "21 (—1)n—1 (2 — 1) e—(2n—D2m2/4a2 cog QL;%E
126. \/_;%3 % ngl (—1)r—1le (2n—Dmt/a? gip (2_7&;(1_1)77&
127. \/;ossihT:\i\E/E % + - él (—1)n e~ n2m2iia2 coq nEx
128. ss_:r% % + % nél (_:)n e mmitial gin f’_gﬁ
129. % 1 + é réx % e (2n-1V7wit/da® oo (2n ;al)rx
130. sTSi-sni}thx_a,\/\E/E %t. 2“‘ g (1 — ¢ neritiaty gin ME
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f(s) F(t)
Jy iz = o—Mt/a? ]
132. JoliEVs) 1-23° oAnz/a)
s Jy(iaVs) n=1 And1(Ap)
where Ay, Ay, ... are the positive roots of Jo(A) =0
JolizVs % ¢~ Mt/e? J o (A,z/a)
133. _‘i'\/—_) 1@2—a?) + t + 202 3 —30"_
szJO(za\fﬁ_) n=1 )‘qu()‘n)
where Ay, Ag, ... are the positive roots of Jo(A) =0
. Triangular wave function
) s F(t)
134. e tanh <?> !
0 2a 4a 6a t
Square wave function
F(t)
135. 1 tanh <E> 1 f | H i i
s 2 : ! L ' L
la | 2a 13a 14a 15a t
1% [ S S
Rectified sine wave function
F(t)
o as
= 1
136. P coth < 2 >
° a 2a 3a t
Half rectified sine wave function
F(t)
@
137. (a2s? + 72)(1 — e 99) ! /\ /
a 2a 3a 4a ¢
Saw tooth wave function
F(t)
._1_ _ e--as
138. as? 8(1 — e—a3) ! ///
! 1
' l 1 t
iy
a 2a 3a 4a
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TABLE OF SPECIAL LAPLACE TRANSFORMS

[Appendix B

f(s) F(t)
Heaviside’s unit function U(t — a)
F(t)
e—as 1 .
139. P :
|
See also entry 114, Page 251, 0 ] :
a
Pulse function
F(t)
140. e —e7®) ! 1
8 | |
; i
0 a ate ¢
Step function
F(t) :
3~ —
141 S —_—
* s(l — e—as) 2 I
l_ﬁ
See also entry 78, Page 249.
0 T T il T t
a 2q 3a 4da
Fty=n2, n=t<ntl n=012...
F(t) i
——d
142. e tter : |
s(l — e—s)2 9 :
1 —_—
{
¢
Tt 1 3
Fty=m an=t<nt+l, n=0,12...
F(t) '
143 . el i !
: s(1 — re—3) ,
1] —)
See also entry 80, Page 249.
0 T T 7 ¢
1 2 3
F( = sin{zt/a) 0=t=¢
0 t>a
- F(t)
za(l + e—as)
144, v g o \
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TABLE OF SPECIAL FUNCTIONS

1. Gamma function v
rn) = f ur—le=¥ du, n>0
0

2. Beta function

1
B(m,n) = f wm—1(1—un=ldy = % m,n>0
0

3. Bessel function

I (x) = ‘”—"1_”—2_*_ xt .
" 2nr(n+1)1 22n+2)  2.4(2n+2)(2n+4)

4. Modified Bessel function

L(x) = indy(im) = —2 142 4 at R
" N n T onr(n+1) 22n+2) ' 2+4(2n+2)2n+4)

5. Error function

{1
erf(t) = %f e ¥ du
T Y

6. Complementary error function
2 °0
erfe(t) = 1 — erf(f) = ——f e dy
V7 J,

7. Exponential integral -
Ei(t) = f ¢ du
t

8. Sine integral

9. Cosine integral

10. Fresnel sine integral

¢
Sy = f sin 42 du
°
11. Fresnel cosine integral .
c@t)y = f cos u? du
0
12. Laguerre polynomials
Lyt & A gt =0,1,2
n() n'm(e )’ n=u4a4...
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INDEX

Abel’s integral equation, 113, 117-120
Absolute convergence, 155, 156
definition of, 156
Absolute value, 136
Acceleration, 79
Aerodynamics, 149
Amplitude, 89
of a complex number, 137
Analytic function, 138
necessary and sufficient conditions for, 148
Analytic part, of a Laurent series, 142
Argand diagram, 137
Argument, 137

Battery, 79
Beamns, applications to, 81, 93-96
cantilever, 94
deflection curve or elastic curve of, 81
on elastic foundation, 111
vibrations of, 219, 220, 226-228
Bending moment, 81
Bessel functions, 7, 8, 23, 24, 28, 232, 233, 255
generating function for, 7
integral representation of, 67, 68
Laplace transforms of, 9, 23, 24
modified, 8, 255
Bessel’s differential equation, 8
Beta function, 47, 62, 63, 255
relation of, to convolution theorem, 62
Bilinear transformation, 172
Boundary conditions, 81, 219
Boundary-value problems, 81, 219
one dimensional, 219, 220
solved by Fourier transforms, 193-195, 221,
234-236
solved by Laplace transforms, 81, 96-98,
102, 221
two and three dimensional, 220, 221
Brachistochrone problem, 135
Branches, of & many-valued function, 138, 166
Branch line, 166
Branch points, 141, 166
complex inversion formula and, 202, 207, 208
Bromwich contour, 201, 210
modification of, 202, 227
Built-in end, beam with, 81

Cantilever beam, 94

Capacitance, 79
of transmission line, 220

Capacitor, 79

Cauchy-Riemann equations, 139, 147-149
proof of, 148

Cauchy’s inequality, 172

Cauchy’s integral formulas, 141, 151-155
proof of, 154

Cauchy’s theorem, 140, 151-156
proof of, 152, 153

257

Change of scale property, 3, 13-15, 44, 48, 562
for inverse Laplace transforms, 44, 48, 52
for Laplace transforms, 44, 48, 52

Charge, 80, 221

Circuit, electric [see Electrical circuits]
elements, 79
primary, 111
secondary, 111

Clamped end, beam with, 81, 94, 95

Complementary error function, 8

Complex conjugate, 136

Complex inversion formula, 46, 201, 203-205
branch points and, 202, 207, 208
conditions for validity of, 202, 203-205, 212
for functions with infinitely many singularities,

202, 209-211, 212, 213
proof of, 203
residues and, 205-207

Complex numbers, 136, 144
amplitude of, 137
argument of, 137
axiomatic foundations for, 136
equality of, 136
imaginary part of, 136
polar form of, 137, 144, 145
real part of, 136
roots of, 137, 145

Complex number system, 136

Complex plane, 137

Complex variable, functions of a, 138

Concentrated load, 95
representation of by Dirac delta function, 95

Conductance, of transmission line, 220

Conduction of heat [see Heat conduction]

Conductivity, thermal, 219, 221

Conjugate, complex, 136

Continuity, of functions of a complex variable, 138
sectional or piecewise continuity 2, 4, 28, 42,

178, 186, 187, 190

Contour, 143
Bromwich [see Bromwich contour]

Convergence, absolute, 155, 156
of Fourier serics, 185-187
uniform [see Uniform convergence]

Convolutions, 45 [see also Convolution theorem]
associative, commutative and distributive laws

for, 4, 56
integral equations and, 112, 117
Convolution theorem, 45, 55-68 [see also
Convolutions]
beta function and, 62
for Fourier transforms, 177
proof of, 55, 56

Coordinates, cylindrical, 232
polar, 137
rectangular, 136

Cosine integral, 8, 24, 25, 255
Laplace transform of, 10, 25
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Cosine series [see Half range Fourier series]
Coulombs, 80
Critically damped motion, 90, 91
Cross-cut, 1563
Current, 80
Cycles per second, 89
Cycloid, 113, 119, 120, 132

tautochrone problem and, 113, 117-120
Cylinder, heat conduction in, 220, 232, 233
Cylindrical coordinates, 232

Damped oscillatory motion, 90, 91
Damping constant, 79
Damping force, 79, 88-90
Definite integrals, evaluation of, 143, 161-165
Deflection curve, 81
Deflection of beams [see Beams, applications to]
Delta function [see Dirac delta function]
De Moivre’s theorem, 137
Density, 220, 221
Derivatives, inverse Laplace transform of,
44, 52, 53
Fourier transform of, 193
Laplace transform of, 4, 15, 16, 96
of functions of a complex variable, 138, 139,
147-149
Difference equations, 113, 120-125, 127, 128
differential-, 113, 114, 120-125
Differentiable function, 138
Differential-difference equations, 113, 114, 120-125
Differential equations, applications to, 78-102,
219-236
for finding inverse Laplace transforms, 46,
65, 66 .
for finding Laplace transforms, 6, 23, 29
general solutions of, 83-85, 100, 101
integro-, 113, 120
ordinary [see Ordinary differential equations]
partial [see Partial differential equations]
relation of, to integral equations, 114-116,
128, 129
solution of, by Fourier transforms, 193-195,
221, 234-236
solution of, by Laplace transforms, 78, 81-87,
96-98, 102
Differentiation, rules for, 139
with respect to a parameter, 6, 18, 46, 53, 65
Diffusivity, 98, 219
Dirac delta function, 8, 9, 26, 27, 45
Laplace transform of, 10, 27
use of, in applications to beams, 95
Dirichlet conditions, 173
Displacenment, longitudinal, 219, 220, 226, 227:
of a spring, 79
of a string, 199, 219, 220, 224, 225, 231, 232
transverse, 81, 220
Division, by ¢, 5, 18, 19
by powers of s, 45, 563-55

Elastic constant, 111
Elastic curve, 81
Elastic foundation, beam on, 111

Electrical circuits, applications to, 79, 80, 91-93,
214, 2156
complex, 80, 92, 93 '
simple, 79, 91, 92
Electric potential, 221
Electromotive force, 79
Elementary functions, Laplace transforms of, 1,
10-12
of a complex variable, 138
em.f., 79
Equilibrium position, 79, 219
Error function, 8, 26, 28, 208, 209, 255
complementary, 8, 208, 209, 255
Laplace transform of, 10, 26
Essential singularity, 142, 157
Euler’s constant, 29, 250
Euler’s formula, 137
Even extension, 183
Even functions, 173, 174, 182-184
Existence of Laplace transforms, sufficient
conditions for, 2
Expansion formula of Heaviside [see Heaviside’s
expansion formula|
Exponential integral, 8, 24, 25, 25656
Laplace transform of, 10, 25
Exponential order, functions of, 2, 4, 28, 42
External force, motion of a spring under, 79,
99, 100

Factorial function [see Gamma function]
Faltung [see Convolutions|
Farads, 79
Fibonacel numbers, 133
Final-value theorem, 6, 20, 21
generalization of, 6
proof of, 20
Fixed end, beam with, 81
Flexural rigidity, 81
Fluid mechanics, 149
Force, damping, 79
electromotive, 79
external, 79, 99, 100
restoring, 79
Fourier integrals, 175, 176, 187-193
complex form of, 176
Parseval’s identity for, 177, 189
Fourier integral theorem, 175, 176, 189
[see also Fourier integrals]
proofs of, 189-191
Fourier series, 173-175, 178-184, 185-187, 192
coefficients in, 178, 179, 180
complex form of, 174
convergence of, 185-187
Dirichlet conditions for, 173
half range, 174, 182, 183
Parseval’s identity for, 174, 183, 184
Fourier transforms, 176, 187-195
convolution theorem for, 177
cosine, 176, 177
finite, 175, 184, 185
inverse, 175-177
of derivatives, 193
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Fourier transforms (cont.)
partial differential equations solved by,
193-195, 221, 234-236
relation of, to Laplace transforms, 177,
178, 203
sine, 176, 177
symmetric form of, 176
Fredholm’s integral equation, 112, 116, 129
differential equation expressed as, 128, 129
Free end, beam with, 81, 94, 226
Frequency, 89
natural, 90, 99
of damped oscillatory motion, 90
resonant, 99
Fresnel integrals, 228, 256
Functions, analytic [see Analytic function]
many-valued, 138, 166
of a complex variable, 138
of exponential order, 2, 4, 28, 42
single-valued, 138
table of special, 9, 255

Gamma function, 7, 21-23, 265
Stirling’s formula for, 7
General solution, of a differential equation,
83-85, 100, 101
Generating function for Bessel functions, 7
Generator, 79
Gravitational potential, 221
Greatest integer less than £, 121, 122
Green’s theorem in the plane, 140, 150, 151
proof of, 150, 151

Half range Fourier series, 174, 182, 183
Half wave rectified sine curve, 20, 218, 253
Harmonic funections, 189
Heat conduction, 98, 194, 220-224, 230, 232-236
general equation for, 221
in a cylinder, 220, 232, 233
in an insulated bar, 223, 224, 233, 234
in a semi-infinite plate, 234-236
in a semi-infinite solid, 221, 222
Heat flow problems, 98 [see also Heat conduction]
involving radiation, 230
Heat source, 234
Heaviside’s expansion formula, 46, 47, 61, 62
extensions of, 73, 74
proof of, 61, 62
Heaviside’s unit function, 8, 26, 50, 254
Laplace transform of, 10, 26
Henrys, 79
Hinged end, beam with, 81, 93
Hooke’s law, 79
Hospital’s rule [see L’Hospital’s rule]
Hypocyeloid, 169

Image, 165
Imaginary part, 136
Imaginary unit, 136
Impulse functions, 8, 9, 26, 27, 95
[see also Dirac delta function]
Independence of the path, 140, 152, 153

Inductance, 79
mutual, 111
of transmission line, 220
Inductor, 79
Initial-value theorem, 5, 20, 21
generalization of, 6
proof of, 20
Insulated bar, heat conduction in, 223, 224,
233, 234
Integral equations, 112, 118, 114-120, 126
Abel, 113, 117-120
Fredholm, 112, 116, 129
kernels of, 112, 129
of convolution type, 112, 117
relation of, to differential equations, 114-116,
128, 129
solved by Fourier transforms, 193
Volterra, 112
Integral formulas, Cauchy, 141, 151-155
Integrals, evaluation of, 7, 27, 28, 47, 63, 64
Fourier [see Fourier integrals]
Fresnel, 228
inverse Laplace transform of, 4, 16
Laplace transform of, 44, 52, 53
line, 139, 140, 150
of functions of a complex variable, 140, 151-155
Integro-differential difference equations, 114
Integro-differential equations, 113, 120
Inverse Fourier transforms, 175-177
Inverse Laplace transforms, 42-77
complex inversion formula for [see Complex
inversion formula]
definition of, 42
methods of finding, 46
of derivatives, 44, 52, 53
of functions with infinitely many singularities,
209-211, 212, 213
of integrals, 4, 16
operator, 42
properties of, 48-45
uniqueness of, 42
Inversion formula, complex [see Complex
inversion formula)
for Fourier transforms, 175-177
for Laplace transforms, 46, 178 [see also
Complex inversion formula)
Isolated singularity, 141
Iterated Laplace transformation, 221

Jacobian, 56, 172
Jump, at a discontinuity, 4

Kernel, of an integral equation, 112
symmetrie, 129

Key, in an electrical circuit, 79

Kirchhoff’s laws, 80, 91, 92

Laguerre polynomials, 389, 255
Laplace’s equation, 139, 221
Laplace transform operator, 3
Laplace transforms, 1-41
behavior of, as s—~>«, §
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Laplace transforms (cont.)
definition of, 1
existence of, 1, 28
inverse [see Inverse Laplace transforms]
iterated, 221
methods of finding, 6
notation for, 1
of derivatives, 4, 15, 16, 96
of elementary functions, 1, 10-12
of integrals, 44, 52, 53
of special functions, 9, 10
properties of, 3-6
relation of, to Fourier transforms, 177, 178, 203
solution of differential equations by, 78,
81-87, 96-98, 102 '
Laurent’s series, 142, 158, 159, 172
classification of singularities by, 158, 159
Laurent’s theorem, 172 [see also Laurent’s series]
Leibnitz’s rule, 17
Lerch’s theorem, 42
L’Hospital’s rule, 161, 162
Limits, of functions of a complex variable, 138
right and left hand, 2
Linearity property, 3, 12, 13, 43, 48, 49
for inverse Laplace transforms, 43, 48, 49
for Laplace transforms, 43, 48, 49
Linear operator, inverse Laplace transformation
as, 43
Laplace transformation as, 3
Line integrals, 139, 140, 150
Longitudinal vibrations, of a beam, 219, 220,
226, 227

Many-valued functions, 138
Mapping, 165
Mathematical induction, 15-17
Mechanics, applications to, 79, 88-91
Membrane, vibrations of, 220, 221
Modified Bessel functions, 8
Modulus of elasticity, 220
Moment, bending, 81
Motion, non-oscillatory, 89
Multiple-valued functions, 138
Multiplication, by s», 45, 53-55

by t», 5, 17, 18
Mutual induction, 111

Natural frequency, 90, 99
Newton’s law, 79, 88
Null functions, 9, 27, 42
Laplace transforms of, 10
relation of, to inverse Laplace transforms, 42

Odd extension, 182

Odd functions, 173, 174, 182-184

Ohms, 79

Operator, inverse Laplace transform, 42
Laplace transform, 8

Ordered pair, 136, 137

Order of a pole, 141

Ordinary differential equations, applications to,

78-96, 99-102

general solution of, 83, 84

Ordinary differential equations (cont.)
simultaneous, 78, 87, 88
solution of, using convolutions, 85
with constant coefficients, 78, 82-85
with variable coefficients, 78, 85-87
Orthogonal families, 148, 149
Oscillatory motion, 90, 91, 99
damped, 90, 91
Overdamped motion, 90, 91

Parallelogram law, 167
Parseval’s identity, for Fourier integrals, 177,
189
for Fourier series, 174, 183, 184
Partial derivatives, Fourier transform of, 193
Laplace transform of, 96
Partial differential equations, 81, 96-98, 219-236
important list of, 219-221
solved by Fourier transforms, 193-195, 221,
234-236
solved by Laplace transforms, 81, 96-98, 102,
221
Partial fractions, 46, 58-61
Heaviside’s method for [see Heaviside’s
expansion formula]
with distinct linear factors, 59
with non-repeated quadratic factors, 61
with repeated linear factors, 60
Period, 89
of damped oscillatory motion, 90
Periodic functions, Laplace transform of, 5,
19, 20
Piecewise continuity, 2, 4, 28, 42, 173, 186,
187, 190
Plates, heat conduction in, 234-236
Polar coordinates, 137
Polar form, of complex numbers, 137, 144, 145
operations in, 137
Poles, 141
of infinite order, 142
Potential drop, 80
Potential, electric or gravitational, 221
velocity, 149
Primary circuit, 111
Principal branch, 147
Principal part, of a Laurent series, 142
Principal value, 147
Pulse function, 254

Quadratic equation, 144

Radiation, 230
Ratio test, 155
Real part, 136
Receiving’end, of transmission line, 220
Rectangular coordinates, 136
Rectified sine wave, 253
Recursion formula, 124
Removable singularity, 141, 156-158
Residues, 142, 159-161
and the complex inversion formula, 205-207
Residue theorem, 142, 143, 159-161
proof of, 160, 161



Residue theorem (cont.)
use of, in finding inverse Laplace transforms,
201, 202, 205-207
Resistance, 79
of transmission line, 220
Resistor, 79
Resonance, 99
Resonant frequency, 99
Restoring force, 79
Rest position [see Equilibrium position]
Riemann’s theorem, 174, 186, 190
Riemann zeta function, 41
Roots of complex numbers, 137, 145
geometric representation of, 145

Saw tooth wave function, 253
Secondary circuit, 111
Sectional continuity, 2, 4, 28, 42, 173, 186,
187, 190
Semi-infinite, beam, 227, 228
plate, 234-236
string, 224, 225
transmission lines, 220, 228, 229
Sending end, of transmission line, 220
Series, convergence of, 155
Fourier [see Fourier series]
Laurent’s [see Laurent’s series]
of functions of a complex variable, 155-159
Taylor’s, 141, 157
Series electrical circuit, 79, 91, 92
Series expansions, 138 [see also Series]
Series methods, for finding inverse Laplace
transforms, 46, 65, 66
for finding Laplace transforms, 6, 23, 24, 29
Shear, vertical, 81
Simple closed curve, 139
Simple pole, 141
Simply-supported end, beam with, 81
Simultaneous differential equations, 78, 87, 88,
220, 228, 229
Sine integral, 8, 24, 25, 2b5
Laplace transform of, 10, 24, 25
Sine series [see Half range Fourier series]
Single-valued function, 138
Singularities, 155-159 [see also Singular points]
and the complex inversion formula, 202,
205-213
essential, 142, 157
isolated, 141
Singular points, 141 [see also Singularities]
Source of heat, 234
Specific heat, 219, 221
Spring constant, 79
Spring, vibrations of, 79
Square wave, 214, 253
Steady-state temperature, 221
Steady-state terms, 92
Stirling’s formula, 7
Strain, 220
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Stream function, 149

Stress, 220

String, vibrations of, 199, 219, 220, 224, 225,
231, 232

Sufficient conditions for existence of Laplace
transforms, 1

proof of, 28

Switch, in an electrical circuit, 79

Symmetric form of Fourier transforms, 176

Symmetric kernel, 129

Tables, of inverse Laplace transforms, 43, 245-254
of Laplace transforms, 1, 9, 10, 243-254
of special functions, 9, 255

Tautochrone problem, 113, 117-120

Taylor’s series, 141

Taylor’s theorem, 157

Temperature, 98, 219 [see also Heat conduction]
steady-state, 221

Tension, in a string, 219

Thermal conductivity, 219, 221

Transient terms, 92

Transmission lines, 220, 228, 229

Transverse deflection of a beam, 81

Trandverse vibrations, of a beam, 220
of a string, 219, 224, 225

Triangular wave, 226, 227, 253

Uniform convergence, 156
Fourier series and, 179, 183
Weierstrass M test for, 156
Uniform load, 93
Uniqueness of inverse Laplace transforms, 42
Unit impulse function, 8, 9, 26, 27, 95
[see also Dirac delta function]
Unit step function, 8 [see also Heaviside’s
unit function]

Vectors, 167
Velocity potential, 149
Vertical shear, 81
Vibrations, of a beam, 219, 220, 226-228
of a membrane, 220, 221
of a spring, 79
of a string, 199, 219, 220, 224, 225, 231, 232
Voltage drop, 80
Volterra’s integral equation, 112
Volts, 79

Wave equation, 219
Weierstrass M test, 156

x axis, 136

y axis, 186
Young’s modulus of elasticity, 81, 220

Zeta function, Riemann, 41
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