ARTIFICIAL
INTELLIGENCE

Third Edition

ral
T

Elaine Rich
Kevin Knight
Shivashankar B Nair

qlF
—=l| Tata McGraw-Hill

Copyright © 2009 by Tata McGraw-Hill Publishing Company Limited.

First reprint
DLLYYDDXRCYAR

Mo part of this publication may be reproduced or distributed in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without
the prior written permission of the publishers. The program listings (if any) may be entered, stored and
execuled in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,
Tata McGraw-Hill Publishing Company Limited.

ISBN-13: 978-0-07-008770-5
ISBN-10: 0-07-008770-9

Managing Director: Ajay Shukla

Cieneral Manager: Publishing—5EM & Tech Ed: Vibha Mahajan
Sponsoring Editor: Shalini Jha

Jr. Sponsoring Editor: Malanjan Chakravarty

Sr. Copy Edilor: Dipika Dey

Sr. Production Manager:; P L Pandita

General Manager: Marketing—Higher Education & School: Aichael J Cruz
Product Manager: SEM & Tech Ed: Biju Ganesan

Controller—Production: Rajender P Ghanzela
Asst. General Manager—Production: 8 L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources
believed to be reliable. However, neither Tata McGraw-Hill nor its authors guarantee the accuracy
or completeness of any information published herein, and neither Tata McGraw-Hill nor its
authors shall be responsible for any errors, omissions, or damages arising out of use of this
information. This work is published with the understanding that Tata McGraw-Hill and its authors
are supplying information but are not attempting to render engineering or other professional
services. If such services are required, the assistance of an appropriate professional should be
sought.

Published by Tata McGraw-Hill Publishing Company Limited,
7 West Patel Nagar, New Delhi 110 008, Typeset at Bukprint India, B-180A, Guru Nanak Pura,
Laxmi Magar, Dethi-110 092 and printed at Gopsons Papers Lid., Noida 201 301

Cover: Gopsons Papers Lid.

the MoGraw-Hill companies

Contents

Preface to the Third Edition
Preface to the Second Edition

PART I: PROBLEMS AND SEARCH
What is Artificial Intelligence?

11 The Al Problems 4

1.2 The Underlying Assumption 6

1.3 What is an Al Technigque? 7

1.4 The Level] of the Model [8

1S Criteria for § 20

1.6 Some Generial Beferences 27

1.7 One Final Word and Bevond 22
E'IEH:IIEEI ’?:[

Problems, Problem Spaces, and Search

2.1 Defining the Problem as a State Space Search 25
2.2 Production Svstems 30
24 Production System Charactenistics 43
2.5 lssues in the Design of Search Programs 45
Sumimary 48
Exercises 48

Heuristic Search Technigues

S0

1.1 Generate-and-Test 50
12 Hill Climbing 52

3.6 Means-ends Analysis 72
Summary 74
Exemcises 75

PART 1I: KNOWLEDGE REPRESENTATION

Knowledge Representation Issues

79

4.1 Representations and Mappings 7
4.2 Approaches 1o Knowledge Representation A2

viii

Contents

4.3 Issues in Knowledge Representation 86
44 The Frame Problem 96
Swummary 97

5. Using Predicate Logic 98
5.1 Representing Simple Facts in Logic 99
5.2 Representing Instance and 154 Relationships 103
5.3 Computable Functions and Predicates f05
34 Resolution [0S
55 N | Deducti 124
Summary 125
Exercises 120
6. Representing Knowledge Using Rules 129
6.1 Procedural Versus Declarative Knowledge 129
6.2 Logic Programming /3]
6.3 Forward Versus Backward Reasoning 734
64 Maiching 138
6.5 Control Knowledee 142
Summary 145
Exercises 145
7. Symbolic Reasoning Under Uncertainty 147
7.1 Introduction to Nonmonotonic Reasoning 47
7.2 Logics for Nonmonotonic Reasoning 150
7.3 Implementation [ssues 157
14 Augmenting a Problem-solver (38
7.5 Implementation: Depth-first Search 160
7.6 Implementation: Breadth-first Search 166
Surmmary 169
8. Statistical Reasoning 172
8.1 Probability and Bayes” Theorem /72
8.2 Cenainty Factors and Rule-based Systems /74
8.3 Bayesian Networks [79
8.4 Dempster-Shafer Theory 18]
8.5 Fuzzy Logic 84
Summary 185
9. Weak Slot-and-Filler Structures 188
0.1 Semantic Nets J88

g2 Fromes 193
Exercises 2035

Contents
P ik P P AP]l bnbelal Ul i’ el o Pl Ml e’ el

10. Strong Slot-and-Filler Structures

ix

10.] Conceptual Dependency 207
" 102 Scnpts 212
03 CYC 216
Exercises 22{)

11. Knowledge Representation Summary

222

11.1 Syntactic-semantic Spectrum of Representation 222

11.2 Logic and Slot-and-filler Structures 224

11.3 Other Representational Techniques 225

11.4 Summary of the Role of Knowledge 227
Exercises 227

PART 1li: ADVANCED TOPICS

231

12, Game Playing

121 Oversi 231

122 The Mini Search P ; 233

12.3 Adding Alpha-beta Cutoffs 236

124 Additional Refi 240

12.5 Iterative Deepening 242

12.6 References on Specific Games 244
Exercises 240

13. Planning

247

131 Overview 247
13.2 An Example Domain: The Blocks World 250
13.3 Components of a Planning System 250
13.4 Goal Stack Planning 255
13.5 Nonlinear Planming Using Constraint Posting 262
13.6 Hierarchical Planning 268
13.7 Reactive Systems 269
13.8 Other Planning Techniques 269
Exercises 270

14. Understanding

272

14.1 What is Understanding? 272

14.2 What Makes Understanding Hard? 273

14.3 Understanding as Constraint Sausfaction 278
Summary 283
Exercises 284

15. Natural Language Processing
151 Introduction 286
15.2 Syntactic Processing 297

285

153

Contents

Semantic Analysis 300

15.4
15.5
15.6

Discourse and Pragmatic Processing 313
Statistical Natural Language Processing 321
Spell Checking 325

Summary 329

Exercises 331

16. Parallel and Distributed Al

16.1
16.2
16.3

Psychological Modeling 333
Parallelisim in Reasoning Systems 334
Distributed Reasoning Systems 336
Summary 346

Exercises 346

17. Learning

17.1
17.2
17.3
17.4
17.5
17.6

What is Learming? 347

Rote Learning J4&

Learning by Taking Advice 349
Learning in Problem-solving 35/
Learning from Examples: Induction 355
Explanation-based Leaming 364

17.7
17.8
17.9
17.10

Discovery 367
Analogy 371
Formal Learning Theory 372

Neural Net Leamning and Genetic Leaming 373

Summary 374
Exercises 375

18. Connectionist Models

18.1
18.2
18.3
18.4
18.5
15.6

Introduction: Hopfield Networks 377
Learning in Newral Networks 379
Applications of Neural Networks 3%
Recurrent Networks 394

Dhistributed Representations S04
Connectionist Al and Symbolic Al 403
Exercises 405

19. Common Sense

19.1
19.2
19.3
19.4

Qualitative Physics 04
Common Sense Ontologies 4/
Memory Organization 417
Case-based Reasoming 479
Exercises 421

347

376

Preface to the Third Edition XV

Had my late mother been with me for a little longer, this book would have been published way back in
20006, A retired professor in English, she had promised to edit and review this edition. Hers, as also ny
father’s spirits, have vet finally coaxed me into finishing this book, 1 thank my sisters for having encouraged
and suppornted me during bouts of uncertainty.

My wife, Priva, and son, Jayprakash, have and continue to be my driving forces and thus figure in some
logical form in this book. While the former has always found time to crack what [have written from the point
of view of a third party, the latter has been the source of my Al-based ideas! Thanking them would thus never
be enough. I also thank my in-laws for all the assistance they provided in the making of this book.

SHIVASHANKAR B Nar

A note of acknowledgement is due o the following reviewers who have contributed 10 the shaping of the
book by providing their valuable suggestions.

R C Joshi Department of Electronics and Computer Engineering,
Indian Institute of Technology Roorkee,
Roorkee

Kamlesh Duita Department of Computer Science,
National Institute of Technology,
Hamirpur

R P Arora Department of Computer Science and Engineering,
Dehradoon Institute of Technology,
Dehradoon

J P Singh Department of Information Technology.
Academy of Technology,
Hooghly

D R Desai Department of Computer Science and Engineering,
Modemn Engineering College,
Pune

Kishore Bhoyar Department of Computer Technology/TT,
Yeshwantrao Chavan College of Engineening,
Nagpur

LLMRJ Lobo Department of Computer Science and Engineering,
Walchand Institute of Technology,
Sangli

S Fatima Department of Computer Science and Engineering,
College of Engineering, Osmania University,
Hvderabad

5 ¥V Gangashetty Language Technology Research Center,
Indian Institute of Information Technology,
Hyderabad

Kamalini Martin Department of Electrical Sciences
Karunya Institute of Technology and Sciences,
Coimbatore

PREFACE TO THE SECOND EDITION

In the years since the first edition of this book appeared, Artificial Intelligence (Al) has grown from a small-
scale laboratory science into a technological and industrial success. We now possess an arsenal of technigues
for creating computer programs that control manufacturing processes, diagnose computer faults and human
diseases, design computers, do insurance underwriting, play grandmaster-level chess, and so on. Basic research
in Al has expanded enormously during this period. For the student, extracting theoretical and practical
knowledge from such a large body of scientific knowledge 15 a dounting task. The goal of the first edition of
this book was to provide a readable introduction o the problems and techniques of Al In this edition. we have
tried to achieve the same goal for the expanded field that Al has become, In particular, we have tried o
present both the4heoretical foundations of Al and an indication of the ways that current techniques can be
used in application programs.

As a result of this effort, the book has grown. It 1s probably no longer possible to cover everylhing in a
single semester. Because of this, we have structured the book so that an instructor can choose from a variety
of paths through the chapters. The book is divided into three parts:

Part 1. Problems and Search.
Part II. Knowledge Representation.
Part lII. Advanced Topics.

Part I introduces Al by examining the nature of the difficult problems that Al seeks to solve, It then
develops the theory and practice of heuristic search, providing detailed algorithms for standard search methods,
including best-first search, hill climbing, simulated annealing, means-ends analysis, and constraint satisfaction.

The last thirty years of Al have demonstraled that intelhgence requires more than the alnlity to reason. It
also requires a great deal of knowledge about the world. So Part 11 explores a vanety of methods for encoding
knowledge in computer systems. These methods include predicate logic, production rules, semantic networks,
frames, and scripts. There are also chapters on both symbolic and numeric technigues for reasoning under
uncertainty. In addition, we present some very specific frameworks in which particular commitments to a set
of representational primitives are made.

Parts | and 11 should be covered in any basic course in Al They provide the foundation for the advanced
topics and applications that are presented in Part 111. While the chapters in Parts | and [1 should be covered in
order since they build on each other, the chapters in Part ITI are, for the most part, independent and can be
covered in almost any combination, depending on the goals ol a particular course. The topics that are covered
include: game playing, planning, understanding, natural language processing (which depends on the
understanding chapter), parallel and distributed Al {which depends on planning and natural language), learning,
connectionist models, common sense, expert systems, and perception and action.

To vse this book effectively, students should have some background in both computer science and
mathematics. As computer science hackground, they should have experience programming and they should
feel comfortable with the material in an undergraduate data structures course. They should be familiar with
the use of recursion as a program control structure. And they should be able to do simple analyses of the ime
complexity of algorithms. As mathematical background, students should have the equivalent of an
undergraduate coarse in logic, including predicate logic with quantifiers and the basic notion of a decision
procedure.

xviii Freface to the Second Edition

This book contains, spread throughout it, many references to the Al research literature. These references
are important for two reasons. First, they make it possible for the student to pursue individual topics in greater
depth than is possible within the space restrictions of this book. This is the common reason for including
references in a survey text. The second reason that these references have been included is more specific to the
content of this book. Al i1s a relatuvely new discipline. In many arcas of the field there 15 stll pot complete
agreement on how things should be done. The references to the source literature guarantee that students have
access not just o one approach, but to as many as possible of those whose eventual success sull needs to be
determined by further research, both theoretical and empirical.

Since the ulumate goal of Al is the construction of programs that solve hard problems, no study of Al is
complete without some experience writing programs. Most Al programs are written in LISP, PROLOG, or
some specialized Al shell. Recently though, as Al has spread out into the mainstream computing world, Al
programs are being writtén in a wide variety of programming languages. The algorithms presented in this
book are described in sulficient detail to enable students 1o exploit them in their programs, but they are not
expressed in code. This book should probably be supplemented with a good book on whatever language is
being vsed for programming in the course.

This book would not have happened without the help of many people. The content of the manuscript has
been greatly improved by the comments of Srinivas Akella, Jim Blevins, Clay Bridges, R. Mantin Chavez,
Alan Cline, Adam Farquar, Anwar Ghuloum, Yolanda Gil, R. V. Guba, Lucy Hadden, Ajay Jain, Craig Knoblock,
John Laird, Clifford Mercer, Michael Newton, Charles Petrie, Robert Rich, Steve Shafer, Reid Simmons,
Herbert Simon, Munindar Singh, Milind Tambe, David Tourctzky, Manuela Veloso, David Wroblewski, and
Marco Zagha.

Special thanks 1o Yolanda Gil and Alan Cline for help above and beyond. Yolanda kept the project going
under desperate circumstances, and Alan spent innumerable hours designing the cover and bringing it into the
world. We hank them for these things and much, much more.

Linda Mitchell helped us put together many draft editions along the way. Some of those drafts were used
in actual courses, where students found innumerable bugs for us. We would like to thank them as well as their
instructors, Tom Mitchell and Jean Scholtz. Thanks also to Don Speray for his help in producing the cover.

David Shapiro and Joe’Murphy deserve credit for superb editing, and for keeping us on schedule.

We would also like to thank Nicole Vecchi for her wisdom and patience in the world of high resolution
printing. Thanks to David Long and Lily Mummenrt for pointing us to the right fonts.

Thanks 1o the following reviewers for their comments: Yigal Arens, University of Southern California;
Jaime Carbonell, Carnegie Mellon University: Charles Dyer, University of Wisconsin, Madison; George
Ernst, Case Western Reserve University: Pat Langley, Umiversity of California, Irvine; Brian Schunck,
University of Michigan; and James Slagle, University of Minnesota.

Camegie Mellon University and MOC provided us the environment in which we could write and produce
this book. We would like to thank our colleagues, particularly Jim Barnett and Masaru Tomita, for putting up
with us while we were writing this book instead of doing the other things we were supposed 1o be doing.

Elaine Rich
Kevin Knight

PART I
PROBLEMS AND SEARCH

A
. "r -
w4
"
e
BRI, T L
;
.
.
- L}
L]
.
l
.
LF]
=L
'
. -
o
- s
LY

.o 4 g
P RN
» '

Copyrighted malerial

CHAPTER

1

WHAT IS ARTIFICIAL INTELLIGENCE?

There are three Kinds of intelligence: one Kind understands things for itself, the other appreciates what
others can understand, the thind understands neither for itself nor through others. This first Kind is
excellent, the second good, and the third Kind usefess.

—Niccolo Machiavelli
(1469-1527), Italian diplomat, political philosopher,
rnusician, poet and playwright

What exactly is antificial intelligence? Although most attempts to define complex and widely used terms
precisely are exercises in futility, it is useful to draw at least an approximate bounaary around the concept 1o
provide a perspective on the discussion that follows. To do this, we propose the following by no means
universally accepted definition. Ariificial intelligence (Al is the siudy of how to make computers do things
which, at the moment, people do better. This definition is, of course, somewhat ephemeral because of its
reference to the current state of computer science. And it fails to include some areas of potentially very large
impact, namely problems that cannot now be solved well by either computers or people. But it provides a
good outline of what constitutes artificial intelligence, and it avoids the philosophical issues that dominate
atlempts to define the meaning of either artificial or intelligence. Interestingly, though, it suggests a similarity
with philosophy at the same time it is avoiding it. Philosophy has always been the study of those branches of
knowledge that were so poorly understiood that they had not yet become separate disciplines in their own
right. As fields such as mathematics or physics became more advanced, they broke off from philosophy.
Perhaps il Al succeeds it can reduce itself to the empty set. As on date this has not happened. There are signs
which seem to suggest that the newer off-shoots of Al together with their real world applications are gradually
overshadowing it. As Al migrates to the real world we do not seem to be satisfied with just a computer playing
a chess game. Instead we wish a robot would sit opposite to us as an opponent, visualize the real board and
make the right moves in this physical world, Such notions seem to push the definitions of Al 1o a greater
extent. As we read on, there will be always that lurking feeling that the defimtions propounded so far are not
adequate. Only what we finally achieve in the future will help us propound an apt debimition for Al! The
feeling of intelligence is a mirage, if you achieve it, it ceases to make you feel so. As somebody has aptly put
it — Al is Artificial Intelligence ull it is achieved; after which the acronym reduces to Afready Implemented.

4 Artificial Intelligence

One must also appreciate the fact that comprehending the concept of Al also aids us in understanding how
natural intelligence works, Though a complete comprehension of its working may remain a mirage, the very
attempt will definitelv assist in unfolding mysteries one by one.

1.1 THE Al PROBLEMS

What then are some of the problems contained within AI? Much of the early work in the field focused on
formal tasks, such as game playing and theorem proving. Samuel wrote a checkers-playing program that not
only played games with opponents but also used its experience at those games to improve its later performance.
Chess also received a good deal of attention. The Logic Theorist was an early attiempt to prove mathematical
theorems. [t was able to prove several theorems from the first chapter of Whitehead and Russell's Principia
Mathematica, Gelemter's theorem prover explored another area of mathematics: geometry, Game playing
and theorem proving share the property that people who do them well are considered to be displaying
intelligence. Despite this, it appeared initially that computers could perform well at those tasks simply by
being fast at exploring a large number of solution paths and then selecting the best one. 1t was thought that this
process required very little knowledge and could therefore be programmed easily. As we will see later, this
assumption turned out to be false since no computer is fast enough to overcome the combinatorial explosion
generated by most problems.

Another early foray into Al focused on the sort of problem solving that we do every day when we decide
how to get o work in the morning, often called commonsense reasoning. It includes reasoning about physical
objects and their relationships to each other (e.g., an object can be in only one place at a ume), as well as
reasoning about actions and their consequences (e.g., if you let go of something, it will fall 1o the floor and
maybe break). To investigate this sort of reasoning, Newell, Shaw, and Simon built the General Problem
Solver (GPS), which they applied to several commonsense tasks as well as to the problem of performing
symbolic manipulations of logical expressions. Again, no attempt was made 1o create a program with a large
amount of knowledge about a particular problem domain. Only simple tasks were selected.

As Al research progressed and technigues for handling larger amounts of world knowledge were developed,
some progress was made on the tasks just described and new tasks could reasonably be attempied. These
include perception (vision and speech), natural language understanding, and problem solving in specialized
domains such as medical diagnosis and chemical analysis,

Perception of the world around us is crucial o our survival. Animals with much less intelligence than
people are capable of more sophisticated visual perception than are current machines. Perceptual tasks are
difficult because they involve analog (rather than digital) signals; the signals are typically very noisy and
usually a large number of things (some of which may be partially obscuring others) must be perceived at once.
The problems of perception are discussed in greater detail in Chapter 21.

The ability to use language to communicate a wide variety of ideas is perhaps the most important thing that
separates humans from the other animals. The problem of understanding spoken language is a perceptual
problem and 1s hard to solve for the reasons just discussed. But suppose we simplify the problem by restricting
it to written language. This problem, usually referred to as natural language understanding, 15 still extremely
difficult. In order to understand sentences about a topic, it is necessary to know not only a lot about the
language itself (its vocabulary and grammar) but also a good deal about the topic so that unstated assumptions
can be recognized. We discuss this problem again later in this chapter and then in more detail in Chapter 15.

In addition to these mundane tasks, many people can also perform one or maybe more specialized tasks in
which carefully acquired expertise is necessary. Examples of such tasks include engineering design, scientific
discovery, medical diagnosis, and financial planning. Programs that can solve problems in these domains also fall
under the acgis of artificial intelligence. Figure 1.1 lists some of the tasks that are the targets of work in Al

What is Artificial Intelligence? 5

A person who knows how to perform tasks from several of the categories shown in the figure learns the
necessary skills in a standard order. First, perceptual, linguistic, and commonsense skills are leamed. Later
{and of course for some people, never) expert skills such as engineering, medicine, or finance are acquired. [t
might seem to make sense then that the earlier skills are easier and thus more amenable o computerized
duplication than are the later. more specialized ones. For this reason, much of the initial Al work was
concentrated in those early areas. But it turns out that this naive assumption is not right. Although expert skills
require knowledge that many of us do not have, they often require much less knowledge than do the more
mundane skills and that knowledge is usvally easier to represent and deal with inside programs.

Mundane Tasks
e Perception
- Vision
- Speech
« Natural language
- Understanding
- Generation
= Translation
o Commonsense reasoning
Robot control

Formal Tasks
* (ames
- Chess
- Backgammaon
- Checkers -Go
* Mathematics
- Geometry
- Logic
- Integral calculus
- Proving properties of programs

Expert Tasks

¢ Engineering

- Design

= Fault finding

- Manufacturing planning
o Scientific analysis
= Medical diagnosis
¢ Financial analysis

Fig. 1.1 Some of the Task Domains of Artificial Intelligence

As a result, the problem areas where Al is now tlourishing most as a pracucal discipline (as opposed 1o a
purely research one) are primarily the domains that require only specialized expertise without the assistance
of commonsense knowledge. There are now thousands of programs called experr svsrems in day-to-day
operation throughout all areas of industry and government. Each ol these systems attempis to solve part, or
perhaps all, of a practical, significant problem that previously required scarce human expertise. In Chapter 20
we examine several of these systems and explore techniques for constructing them.

[Artificial Intelligence

Sl il = Ui

Before embarking on a study of specific Al problems and solution techniques, it is important at least to
discuss, if not to answer, the following four questions:

1. What are our underlying assumptions about intelligence?

2. What kinds of techniques will be useful for solving Al problems?

3. At what level of detail, if at all, are we trving to model human intelligence?

4. How will we know when we have succeeded in building an intelligent program?

The next four sections of this chapter address these questions. Following that 1s a survey of some Al books
that may be of interest and a summary of the chapter.

1.2 THE UNDERLYING ASSUMPTION

At the heart of research in artificial intelligence lies what Newell and Simon [1976] call the physical symbol
system hypothesis. They define a physical symbol svstem as follows:

A physical symbol system consists ol a set of entities, called symbols, which are physical pattemns that can occur as
components of another type ol entity called an expression (or svmbol structure). Thus, a symbaol structure 1s composed
ol & number of instances {or lokens) of symbols related in some physical way (such as one token being neat o
another). At any instant of time the system will contain a collection of these symbol structures. Besides these
struciures, the system also contains 2 collection of processes that operale on expressions (o produce other expressions;
processes of creation, modification, reproduction and destruction. A physical symbol sysiem 15 a machine that
produces through time an evolving collection of symbol structures. Such a system exisis in a world of objects wider
than just these symbolic expressions themselves,

They then state the hypothesis as

The Physical Symbol System Hyporhesis. A physical symbol system has ihe necessary and sufficient means for
seneral intelligent action,

This hypothesis is only a hypothesis. There appears to be no way w prove or disprove it on logical grounds.
50 it must be subjected to empirical validation. We may find that it is false. We may find that the bulk of the
evidence says that it is true. But the only way to determine its truth is by experimentation.

Compuiers provide the perfect medivm for this experimentation since they can be programmed to simulaie
any physical symbol system we like, This ability of computers to serve as arbitrary symbol manipulators was
noticed very early in the history of computing. Lady Lovelace made the following observation about Babbage's
proposed Analytical Engine in 1842,

The operating mechamsm can even be thrown into action independently of any object 1o operate upon (although of
course no result could then be developed). Again, it might act upon other things besides numbers, were objects
foumd whose mutual fundamental relations could be expressed by those of the abstract science of operatnons, and
which should be also susceptible of adaptations 1o the action of the operating notation and mechanism of the
engine. Supposing, for mstance, that the fundamental relations of piiched sounds in the science of harmony and of
musical compositon were susceptible of such expression and adaptations, the engine might compose elaborate and
scientilic pieces of music of any degree of complexity or extent. |Lovelsce, 1961

As it has become increasingly easy to build computing machines, so it has become increasingly possible (o
conduct empirical investigations of the physical symbol svstem hypothesis. In each such investigation, a
particular task that might be regarded as requiring intelligence is selected. A program to perform the task is
proposed and then tested. Although we have not been completely successful at creating programs that perform

What is Artificial Intefligence? 7

all the selected tasks, most scienusts believe that many of the problems that have been encountered wall
ultimately prove to be surmountable by more sophisticated programs than we have yet produced.

Evidence in support of the physical symbol system hypothesis has come not only from areas such as game
playing, where one might most expect to find it, but also from areas such as visual perception, where it is more
tempting to suspect the influence of subsymbolic processes. However, subsymbolic models (for example,
neural networks) are beginning to challenge symbolic ones at such low-level tasks. Such models are discussed
in Chapter 18. Whether certain subsymbolic models conflict with the physical symbol system hypothesis is a
topic still under debate (e.g., Smolensky [1988]). And it 1s important to note that even the success of subsymbolic
systems is not necessarily evidence against the hypothesis. It is often possible to accomplish a task in more
than one way.

One interesting attempt to reduce a particularly human activity, the understanding of jokes, 1o a process of
symbol manipulation is provided in the book Mathematics and Humor [Paulos, 1980]. It is, of course, possible
that the hypothesis will turn out to be only partially true. Perhaps physical symbol systems will prove able to
model some aspects of human intelligence and not others, Only time and effort will ell.

The importance of the physical symbaol system hypothesis is twofold. Itis a significant theory of the nature
of human intelligence and so is of great interest to psychologists. It also forms the basis of the belief that it is
possible to build programs that can perform intelligent tasks now performed by people. Our major concern
here 15 with the latter of these implications, although as we will soon see, the two i1ssues are not unrelated,

1.3 WHAT IS AN Al TECHNIQUE?

Antificial intelligence problems span a very broad spectrum. They appear to have very little in common
except that they are hard. Are there any technigues that are appropriate for the solution of a variety of these
problems? The answer to this question is yes, there are, What, then, if anything, can we say about those
lechniques besides the fact that they manipulate symbols? How could we tell if those techniques might be
useful in solving other problems, perhaps ones not traditionally regarded as Al tasks? The rest of this book is
an attempt to answer those questions in detail. But before we begin examining closely the individual techniques,
it is enlightening to take a broad look at them to see what properties they ought to possess.

One of the few hard and fast results to come out of the first three decades of Al research is that inrefligence
requires knowledge. To compensate for its one overpowering asset, indispensability, knowledge possesses
some less desirable properties, including:

It is voluminous.

It is hard o characterize accurately.

It is constantly changing.

It differs from data by being organized in a way that corresponds to the ways it will be used.

So where does this leave us in our attempt to define Al techniques? We are forced to conclude that an Al
technigue is a method that exploits knowledge that should be represented in such a way that:

¢ The knowledge captures generalizations. In other words, it is not necessary 10 represent separately
cach individual situation. Instead, situations that share important properties are grouped wgether. 1f
knowledge does not have this property, inordinate amounts of memory and updating will be required.
So we usvally call something without this property “data™ rather than knowledge.

» [t can be understood by people who must provide it. Although for many programs, the bulk of the data
can be acquired automatically (for example, by taking readings from a variety of instrumenis), in many
Al domains, most of the knowledge a program has must ultimately be provided by people in terms they
understand,

8 Artificial Intelligence

|t can easily be modified to correct errors and to reflect changes in the world and in our world view.

¢ [t can be used in a great many sitwations even if it is not totally accurate or complete.

e It can be used to help overcome its own sheer bulk by helping to narrow the range of possibilities that
must usually be considered.

Although Al techniques must be designed in keeping with these constraints imposed by Al problems, there
is some degree of independence between problems and problem-solving technigues. 1t is possible to solve Al
problems without using Al techniques (although, as we suggested above, those solutions are not likely to be
very good), And it is possible 1o apply Al techniques to the solution of non-Al problems. This is likely to be
a good thing o do for problems that possess many of the same characteristics as do Al problems. In order 1o
try to characterize Al technigues in as problem-independent a way as possible, let’s look at two very different
problems and a series of approaches for solving each of them.

1.3.1 Tic-Tac-Toe

In this section, we present a series of three programs to play ne-tac-toe. The programs in this senies increase in:

* Their complexity
* Their use of generalizations
o ‘The clarity of their knowledge
» The extensibility of their approach. Thus, they move toward being representations of what we call Al
techniques,
[Program 1]
Data Structures
Board A nine-element vecior representing the board, where the elements of the vector correspond
to the board positions as follows:
1 2 3
4 5 6
7 8 4

An element contains the value (0 if the corresponding square is blank, 1 if it is filled with
an X, or 2 if it 15 filled with an O.

Movelable A large vector of 19,683 elements (3”), each element of which is a nine-clement vector.
The contents of this vector are chosen specifically to allow the algorithm 1o work.

The Algorithm
To make a move, do the following:

I. View the vector Board as a temary (base three) number, Convert it to a decimal number.

2. Use the number computed in step | as an index into Movetable and access the vector stored there.

3. The vector selected in step 2 represents the way the board will look after the move that should be made.
So set Board equal 1o that vector,

Comments

This program is very etficient in terms of time. And, in theory, it could play an optimal game of tic-tac-toe.
But it has several disadvantages:

What is Artificial Intelligence? 9

o [t takes a lot of space to store the table that specifies the comrect move to make from each board

position.

¢ Someone will have to do a lot of work specifying all the entries in the movetable.
« It is very unlikely that all the required movetable entries can be determined and entered without any

CITOrS.

+ [f we want to extend the game, say to three dimensions, we would have to stant from scraich, and in fact
this technigue would no longer work at all, since 3%7 board positions would have 10 be stored, thus
overwhelming present computer memories.

The technigue embodied in this program does not appear to meet any of our requirements for a good Al
technique. Let's see if we can do better.

Data Structures
Board

Turn

The Algorithm

[Prugram:]

A ninc-element vector representing the board, as described for Program 1. But instead of
using the numbers 0,1, or 2 in each element, we store 2 (indicating blank), 3 (indicating X),
or 5 (indicating O).

An integer indicating which move of the game is about to be played; | indicates the first
move, 9 the last.

The maim algonthm uses three subprocedures:

Make 2

Posswin(p)

Goln)

Returns 3 if the center square of the board 1s blank, that is, if Board|3] = 2. Otherwise,
this function retums any blank noncorner square (2, 4, 6, or 8).

Retwrns 0 if player p cannot win on his next move: otherwise, it returns the number of the
square that constitutes a winning move. This function will enable the program both to
win and to block the opponent’s win. Posswin operates by checking, one at a time, each
of the rows, columns, and diagonals. Because of the way values are numbered. it can test
an entire row {column or diagonal) to see if 11 15 a possible win by multiplying the values
of its squares together. If the product is 18 (3 x 3 % 2), then X can win. If the product is 50
{5 x5 x 2), then O can win. If we find a winmng row, we determine which element is
blank, and return the number of that square.

Makes a move in square n. This procedure sets Board[a] to 3 if Turn is odd, or 5 if Turn
is even. It also increments Turn by one.

The algorithm has a built-in strategy for each move it may have to make. It makes the odd-numbered
moves if it is playing X, the even-numbered moves if it is playing O. The strategy for each wm is as follows:

Tum=1
Turn=2
Turn=3
Tum=4
Tum=5

Go(1) (upper left cormner).

If Board[5] is blank, Goi5), else Go(1).

If Board;¥] 1s blank, Go(9), else Go(3).

If Posswin(X) is not 0, then Go(Posswin(X)) [1.e., block opponent’s win], else Go(Make2).
If Posswin(X) is not 0 then Go(Posswin(X)) [i.e., win] else if Posswin(0) is not 0, then
Go(Posswin{0)) [1.e., block win], else if Board[7] 15 blank, then Goi7), else Go(3).
[Here the program is trying to make a fork. |

10 Artificial Intelligence

Turn=6 If Posswin{O) is not 0 then Go (Posswin(()), else if Posswin{X) is not 0, then
GolPosswin(X)), else GoiMake2).

Tumn=7 If PosswiniX) is not O then Go(Posswini X)), else if Posswin(Q) is not 0, then
Go{Posswin(()), else go anywhere that is blank.

Tum=8 If Posswin(0) is not 0 then Go(Posswin(0)), else if Posswin(X) is not (), then
Go(Posswin({X», else go anywhere that is blank,

Tum=9 Same as Turn=7.

Comments

This program is not quite as efficient in terms of time as the first one since it has to check several conditions
before making each move. But it is a lot more etficient in terms of space, It is also a lot easier to understand the
program’s strategy or to change the strategy if desired. But the total strategy has still been figured out in
advance by the programmer. Any bugs in the programmer’s tic-tac-toe playing skill will show up in the
program’s play. And we still cannot generalize any of the program’s knowledge to a different domain, such as
three-dimensional tic-tac-toe.

[Frugram z"]

This program is identical to Program 2 except for one change in the representation of the board. We again
represent the board as a nine-element vector, but this time we assign board positions o vector elements as
follows:

b 3 4
l 5 49
6 T 2

MNotice that this numbering of the board produces a magic square: all the rows, columns, and diagonals sum
up to 15, This means that we can simplify the process of checking for a possible win. In addition to marking
the board as moves are made, we keep a list, for each player, of the squares in which he or she has played. To
check for a possible win for one player, we consider each pair of squares owned by that player and compute
the difference between 15 and the sum of the two squares. 1f this difference is not positive or if it is greater
than 9, then the onginal two squares were not collinear and s0 can be ignored. Otherwise, if the square
representing the difference is blank, a move there will produce a win. Since no player can have more than four
squares at a time, there will be many fewer squares examined vsing this scheme than there were using the
more straightforward approach of Program 2. This shows how the choice of representation can have a major
impact on the efficiency of a problem-solving program.

Comments

This comparison raises an interesting question about the relationship between the way people solve problems
and the way computers do. Why do people find the row-scan approach easier while the number-counting
approach is more efficient for a computer? We do not know enough about how people work to answer that
question completely, One part of the answer is that people are parallel processors and can look at several parts
of the board at once, whereas the conventional computer must look at the squares one at a time. Sometimes an
investigation of how people solve problems sheds great light on how computers should do so. At other times,
the differences in the hardware of the two seem so great that different strategies seem best. As we learn more
about problem solving both by people and by machines, we may know better whether the same representations
and algorithms are best for both people and machines. We will discuss this question further in Section 1.4,

What is Artificial Intelligence? 11

[Program 3

Data Structures

BoardPosition A structure containing a nine-element vector representing the board, a list of board positions
that could result from the next move, and a number representing an estimate of how
likely the board position is to lead to an ultimate win for the player to move.

The Algorithm

To decide on the next move, look ahead at the board positions that result from each possible move. Decide
which position is best (as described below), make the move that leads to that position, and assign the rating of
that best move to the current position.

To decide which of a set of board positions is best, do the following for each of them:

1. Seeif itis a win. If so, call it the best by giving it the highest possible rating.

2. Otherwise, consider all the moves the opponent could make next, See which of them s worst for us (by
recursively calling this procedure). Assume the opponent will make that move., Whatever rating that
move has, assign it to the node we are considering.

3. The best node is then the one with the highest rating.

This algonthm will look ahead at vanous sequences of moves in order to find a sequence thai leads 1o a
win. It attempts to maximize the likelihood of winning, while assuming that the opponent will try to minimize
that likelihood. This algorithm is called the minimax procedure, and it is discussed in detail in Chapter 12,

Comments

This program will require much more time than either of the others since it must search a tree representing all
possible move sequences before making each move. But it is superior to the other programs in one very big
way: It could be extended to handle games more complicated than tic-tac-toe, for which the exhaustive
enumeration approach of the other programs would completely fall apart. It can also be augmented by a
variety of specific kinds of knowledge about games and how to play them. For example, instecad of considering
all possible next moves, it might consider only a subset of them that are determined, by some simple algorithm,
to be reasonable. And, instead of following each senes of moves until one player wins, it could search for a
limited time and evaluate the merit of each resulting board position using some static function.

Program 3 is an example of the use of an Al technigue. For very small problems, it is less efficient than a
variety of more direct methods. However, it can be used in situations where those methods would fail.

1.3.2 Question Answering

In this section we look at a series of programs that read in English text and then answer questions, also stated
in English, about that text. This task differs from the last one in that it is more difTicult now to state formally
and precisely what our problem is and what constitutes correct solutions to it. For example, suppose that the
input text were just the single sentence

Russia massed troops on the Crech border.

Then either of the following question-answering dialogues might occur (and in fact did occur with the
POLITICS program [Carbonell, 19801):

12 Artificial Intelligence

[Dialogue 1]

Why did Russia do this?

+ Because Russia thought that it could take political control of Czechoslovakia by sending troops,
: What should the United States do?

: The United States should intervene militanly,

0 O

[Dialngue 3]

Q: Why did Russia do this”

A: Becavse Russia wanted to increase its political influence over Czechoslovakia.
Q: What should the United States do?

A: The United States should denounce the Russian action in the United Nations.

In the POLITICS program, answers were constructed by considering both the input text and a separate
maodel of the beliefs and actions of various palitical entities, including Russia. When the model is changed, as
it was between these two dialogues, the system’s answers also change. In this example, the first dialogue was
produced when POLITICS was given a model that was intended to correspond to the beliefs of a typical
American conservative (circa 1977). The second dialogue occurred when POLITICS was given a model that
was intended to correspond to the beliefs of a typical American liberal {of the same vintage).

The general point here 15 that defiming what 1t means to produce a correct answer to a question may be very
hard. Usually, question-answering programs define what it means to be an answer by the procedure that is
used 1o compute the answer. Then their authors appeal to other people to agree that the answers found by the
program “make sense” and so to confirm the model of question answering defined in the program. This is not
completely satisfactory, but no better way of defining the problem has yet been found. For lack of a better
method, we will do the same here and illustrate three definitions of question answering, cach with a
corresponding program that implements the definition.

In order to be able to compare the three programs, we illustrate all of them using the following text:

Mary weni shopping for a new coat. She found a red one she really liked. When she got it home, she discovered that
it went perfectly with her favorite dress.

We will also attempt to answer each of the following questions with each program:
Ql: What did Mary go shopping for?
Q2: What did Mary find that she liked?
Q3: Did Mary buy anything?

(Program)

This program attempts to answer questions using the literal input text. It simply matches text fragments in the
questions against the input text

Data Structures

QuestionPatterns A set of templates that match common question forms and produce pattems to be used to
match against inputs. Templates and patterns (which we call fext patterns} are paired so
that if a template matches successfully against an input question then its associated text

What is Artificial Intelligence? 13

patterns are used to try to find appropriate answers in the text. For example, if the template
“Who did x v" matches an input question, then the text pattern “x v " is matched against
the input text and the value of z is given as the answer to the question.

Text The input text stored simply as a long character string.
Question The current question also stored as a character string.
The Algorithm

To answer a question, do the following:

I. Compare each element of QuestionPatterns against the Question and vse all those that match successfully
to generate a set of text patterns.

2. Pass each of these patterns through a substitution process that generates altemative forms of verbs so
that, for example, “go” in a question might match “went™ in the text. This step generates a new, expanded
sl of text pattemns.

3. Apply each of these text patterns to Text, and collect all the resulling answers.

4. Reply with the set of answers just collected.

Examples

Ql: The template “What did x v"" matches this question and generates the text pattern “Mary go shopping
for 2. After the pattern-substitution step, this pattern is expanded to a set of pattemns including
“Mary goes shopping for z,” and "Mary went shopping for z.” The latter pattern matches the input
text: the program, using a convention that variables match the longest possible string up to a sentence
delimiter (such as a period), assigns z the value, “a new coat,” which is given as the answer.

Q2: Unless the template set is very larpe, allowing for the insertion of the object of *find™ between it and
the modifying phrase “that she liked,” the insertion of the word “really™ in the text, and the substitution
of “she” for “Mary,” this question is hot answerable. If all of these variations are eccounted for and
the question can be answered, then the response is “a red one.”

Q3: Since no answer to this question is contained in the text, no answer will be found,

Comments

This approach i1s clearly inadequate to answer the Kinds of questions people could answer after reading a
simple text. Even its ability to answer the most direct gquestions is delicately dependent on the exact form in
which questions are stated and on the variations that were anticipated in the design of the templates and the
pattern substitutions that the system uses. In fact, the sheer inadequacy of this program to perform the task
may make you wonder how such an approach could even be proposed. This program i1s substantially farther
away from being useful than was the initial program we looked at for tic-tac-toe. Is this just a strawman
designed to make some other technique look good in comparison? In a way, yes, but it i1s worth mentioning
that the approach that this program uses, namely matching patlerns, performing simple text substitutions, and
then forming answers using-straightforward combinations of canned text and sentence fragments located by
the matcher, is the same approach that is used in one of the most famous “Al™ programs ever written—
ELIZA, which we discuss in Section 6.4.3. But, as you read the rest of this sequence of programs, it should
become clear that what we mean by the term “artificial intelligence™ does not include programs such as this
except by a substantial siretching of definitions.

[Program z]

This program first converts the input text into a structured intermal form that attempts to capture the meaning
of the sentences. It also converts questions into that form. It finds answers by matching structured forms
against each other.

14

Data Structures
EnglishKnow

InputText
Structured Text

Artificial Intelligence

A description of the words, grammar, and appropriate semantic interpretations of a large
enough subset of English to account for the input texts that the system will see. This
knowledge of English is used both to map input sentences into an internal, meaning-
oriented form and to map from such internal forms back into English. The former process
is used when English wexr is being read; the latter is used to generate English answers
from the meaning-oricnted form that constitutes the program’s knowledge base.

The input text in character form.

A structured representation of the content of the input texit. This structure atiempis to
capture the essential knowledge contained in the text, independently of the exact way
that the knowledge was stated in English. Some things that were not explicit in the English
text, such as the referents of pronouns, have been made explicit in this form. Representing
knowledge such as this is an important issue in the design of almost all Al programs.
Existing programs exploit a variety of frameworks for doing this. There are three important
famibies of such knowledge representation systems: production rules (of the form “if x
then ¥"), slot-and-filler structures, and statements in mathematical logic. We discuss all
of these methods later in substantial detail, and we look at key questions that need to be
answered in order to choose a method for a particular program’. For now though, we just
pick one arbitrarily. The one we’ve chosen is a slot-and-filler structure. For example, the
sentence “She found a red one she really liked,” might be represented as shown in
Fig. 1.2. Actually, this is a simplified description of the contents of the sentence. Notice
that it is not very explicit about temporal relationships (for example, events are just marked
as past tense) nor have we made any real attempt to represent the meaning of the qualifier
“really.” Tt should, however, illustrate-the basic form that representations such as this
take. One of the key ideas in this sort of representation is that entities in the representation
denive their meaning from their connections to other entities, In the figure, only the entities
defined by the sentence are shown. But other entites, corresponding to concepts that the
program knew about before it read this sentence, also exist in the representation and can
be re- ferred o within these new structures, In this example, for instance, we refer to the
entities Mary, Coar (the general concept of a coat of which Thing ! is a specific instance),
Liking (the gencral concept of liking), and Finding (the general concept of finding).

Even 2
instance : Finding
fense: Past
agens : Mary
olject: Thingi
Thingl
instance: Couar
calor: Red
Evem?2
instance: Liking
fense Past
maodifier: Much
object: Thingl

Fig. 1.2 A Structured Representation of o Sentence

What is Artificial Intelligence? 15

InputQuestion The input question in character form.
StructQuestion A structured representation of the content of the user’s question. The structure is the
same as the one used to represent the content of the input text.

The Algorithm

Convert the InputText into structured form using the knowledge contained in EnglishKnow. This may require
considening several different potential structures, for a variety of reasons, including the fact that English
words can be ambiguous, English grammatical structures can be ambiguous, and pronouns may have several
possible antecedents. Then, to answer a question, do the following:

1. Convert the question to structured form. again using the knowledge contained in EnglishKnow. Use
some special marker in the structure to indicate the part of the structure that should be returned as the
answer. This marker will often correspond to the occurrence of a question word (like “who™ or “what™}
in the sentence. The exact way in which this marking gets done depends on the form chosen for
representing Structured Text. If a slot-and-filler struciure, such as ours, is used, a special marker can be
placed in one or more slots. If a logical system is used, however, markers will appear as variables in the
logical formulas that represent the question,

2. Match this structured form against StructuredText.

3. Return as the answer those parts of the text that match the requested segment of the guestion,

Examples

QI: This question is answered straightforwardly with, “a new coat”.
Q2: This one also is answered successfully with, “a red coat”,
Q3: This one, though, cannot be answered, since there is no direct response to it in the text.

Comments

This approach is substantially more meaning (knowledge)-based than that of the first program and so is more
effective. It can answer most questions to which replies are contained in the text, and it is much less brittle
than the first program with respect to the exact forms of the text and the questions. As we expect, based on our
experience with the pattern recognition and tic-tac-toe programs, the price we pay for this increased flexibility
is time spent searching the various knowledge bases (i.e., EnglishKnow, StructuredText).

One word of warmng is appropriate here. The problem of producing a knowledge base tor English that is
powertul enough to handle a wide range of English inputs is very ditficult. It is discussed at greater length in
Chapter 15. In addition, it is now recognized that knowledge of English alone is not adequate in general (o
enable a program to build the kind of structured representation shown here. Additional knowledge about the
world with which the text deals is often required to support lexical and syntactic disambiguation and the
correct assignment of antecedents to pronouns, among other things. For example, in the text

Mary walked up to the salesperson. She asked where the tov department was.

it is not possible to determine what the word “she” refers to without knowledge about the roles of custorners
and sales people in stores. To see this, contrast the correct antecedent of “she” in that text with the correct
antecedent for the first occurrence of “she” in the following example:

Mary walked up to the sales person, She asked her if she needed any help.

In the simple case illustrated in our coat-buying example, it is possible to derive correct answers 1o our first
two guestions without any additional knowledge about stores or coats, and the fact that some such additional
information may be necessary (o support question answering has already been illustrated by the failure of this

16 Artificial Intelligence

program to find an answer to question 3, Thus we see that although extracting a structured representation of
the meaning of the input text is an improvement over the meaning-free approach of Program 1, it is by no
means sufficient in general. So we need to look at an even more sophisticated (i.e., knowledge-rich) approach,
which is what we do next.

[ngrama]

This program converts the input text into a structured form that contains the meanings of the sentences in the
text, and then it combines that form with other structured forms that describe prior knowledge about the
objects and situations involved in the text. It answers questions using this angmented knowledge structure,

Data Structures

WorldModel A structured representation of background world knowledge. This structure contains
knowledge about objects, actions and situations that are described in the input text. This
structure is used to construct IntegratedText from the input text. For example, Figure 1.3
shows an example of a structure that represents the system’s knowledge about shopping.
This kind of stored knowledge about stereotypical events is called a script and is discussed
in more detail in Section 10.2. The notation used here differs from the one normally used
in the literature for the sake of simplicity. The prime notation describes an object of the
same type as the unprimed symbol that may or may not refer to the identical object. In the
case of our text, for example, M is a coat and M’ is a red coat. Branches in the figure
describe alternative paths through the script.

1. C entars L

2. C begins looking around
|

3. C looks fgr a specific M 4, C looks for any interesting M
5.cam[s for halp ‘
1
B.
j' |
7. C finds M’ 8. C fails to find M
_ | |
|
i : ! i
8. C leaves L 10. Cbuys M* 11. C leaves L 12. goto step 2
13. C leaves L
14. C takes M’

Fig. 1.3 A Shopping Script

EnglishKnow Same as in Program 2.
InputText The input text in character form.

18 Artificial Intelligence

WS A T Sy—) e S

Why couldn’t Mary's brother reach her?
with the reply
Because she wasn't home.

But to do so requires knowing that one cannot be at two places at once and then using that fact to conclude
that Mary could not have been home because she was shopping insiead. Thus, although we avoided the
inference problem temporanly by building IntegratedText, which had some obvious inferences built into it,
wie cannot avoid it forever. Itis simply not practical to anticipate all legitimate inferences. In later chapters, we
look at ways of providing a general inference mechanism that could be used to support a program such as the
last one in this series.

This limitation does not contradict the main point of this example though. In fact, it is additional evidence
for that point, namely, an effective question-answering procedure must be one based soundly on knowledge
and the computational use of that knowledge. The purpose of Al techniques is to support this effective vuse of
knowledge.
 With the advent of the Internet and the vast amount of knowledge in the ever increasing websites and
associated pages, came the Web based Quespon Answering Systems, Try for instance the START natural
language question answering system (hup:/stant.csail. miteduf). You will find that both the questions — What
is the capital of India? and Is Delhi the capital of India? yield the same answers, viz. New Delhi is the capiral
of India. On the contrary the question — Are there wolves in Kerea? vields [don't know if there are wolves in
Korea. which looks quite natural.

1.3.3 Conclusion

We have just examined two series of programs to solve two very different problems. In each series, the final

program exemplifies what we mean by an Al techmque. These two programs are slower to execute than the
carlier ones in their respective series, but they illustrate three important Al technigues:

» Search—Provides a way of solving problems for which no more direct approach is available as well as
a framework into which any direct technigues that are available can be embedded..

* Use of Knowledge—Provides a way of solving complex problems by exploiting the structures of the
objects that are involved.

* Abstraction—Provides a way of separating important features and variations from the many unimportant
ones that would otherwise overwhelm any process.

For the solution of hard problems, programs that exploit these techniques have several advantages over
those that do not. They are much less fragile: they will not be thrown off completely by a small perturbation
in their input. People can easily understand what the program’s knowledge 1s. And these techniques can work
for large problems where more direct methods break down.

We have still not given a precise definition of an Al technique. It is probably not possible to do so. But we
have given some examples of what one is and what one is not. Throughout the rest of this book, we talk in
great detail about what one is The definition should then become a bit clearer, or less necessary.

1.4 THE LEVEL OF THE MODEL

Before we set out to do something, it is a good idea o decide exactly what we are trying to do. So we must ask
ourselves, “What is our goal in trying to produce programs that do the intelligent things that people do?” Are
we trying to produce programs that do the tasks the same way people do? Or, are we attempting to produce

What is Artificial Intelligence? 19

programs that simply do the tasks in whatever way appears casiest? There have been Al projects motivated by
each of these goals.

Efforts 1o build programs that perform tasks the way people do can be divided into two classes. Programs
in the first class attempt 1o solve problems that do not really it our definition of an Al task. They are problems
that a computer could casily solve, although that easy solution would exploit mechanisms that do not seem to
be available to people. A classical example of this class of program is the Elementary Perceiver and Memorizer
(EPAM) [Feigenbaum, 1963], which memonzed associated pairs of nonsense syllables. Memorizing pairs of
nonsense syllables is easy for a computer. Simply input them. To retrieve a response syllable given its associated
stimulus one, the computer just scans for the stimulus syllable and responds with the one stored next to it. But
this task is hard for people. EPAM simulated one way people might perform the task. It built a discrimination
net through which it could find images of the syllables it had seen. It also stored, with each stimulus image, a
cue that it could later pass through the discrimination net to try to find the correct response image. But it
stored as a cue only as much information about the response syllable as was necessary to avoid ambiguity at
the time the association was stored. This might be just the first letter, for example: But, of course, as the
discrimination net grew and more syllables were added, an old cue might no longer be sufficient to identify a
response syllable uniquely. Thus EPAM, like people, sometimes “forgot” previously learned responses. Many
people regard programs in this first class to be uninteresting, and to some exieni they are probably right.
These programs can, however, be useful tols for psychologists who want 1o test theories of human performance.

The second class of programs that attempt to model human performance are those that do things that fall
more clearly within our definition of Al tasks; they do things that are not trivial for the computer. There are
several reasons one might wani to model human performance at these sorts of tasks:

1. To test psychological theories of human performance. One example of a program that was written for
this reason is PARRY [Colby, 1975], which exploited a model of human paranoid behavior to simulate
the conversational behavior of a paranoid person. The model was good enough that when several
psvchologists were given the opportunity 1o converse with the program via a terminal, they diagnosed
its behavior as paranoid.

2. To enable computers to understand human reasoning. For example, for a computer to be able to read a
newspaper story and then answer a question, such as “Why did the terrorists kill the hostages?” its
program must be able to simulate the reasoning processes of people.

3. To enable people 1o understand computer reasoning. In many circumstances, people are reluctant 1o
rely on the output of a computer unless they can understand how the machine arrived at its result. If the
computer's reasoning process is similar to that of people, then producing an acceplable explanation is
much easier.

4. To exploit what knowledge we can glean from people. Since people are the best-known performers of
most of the tasks with which we are dealing, it makes a lot of sense 10 look w them for clues as 1o how

o procecd.

This last motivation is probably the most pervasive of the four. It motivated several very early systems that
attempied to produce intelligent behavior by imitating people at the level of individual neurons. For examples
of this, see the carly theoretical work of McCulloch and Pitts [1943], the work on perceptrons, originally
developed by Frank Rosenblatt but best described in Perceprrons [Minsky and Papert, 1969] and Design for
a Brain [Ashby, 1952], It proved impossible, however, o produce even minimally intelligent behavior with
such simple devices. One reason was that there were severe theoretical limitations 1o the particular neural, net
architecture that was being used. More recently. several new neural net architectures have been proposed.
These structures are not subject to the same theoreuical limitations as were perceptrons. These new architectures
are loosely called connecrioniss, and they have been used as a basis for several learning and problem-solving
programs. We have more to say about them in Chapter 18. Also, we must consider that while human brains are

20 Artificial Intelligence

highly parallel devices, most current computing systems are essentially serial engines. A highly successful
parallel technique may be computationally intractable on a serial computer. But recently, partly because of the
existence of the new family of parallel cognitive models, as well as because of the general promise of partllel
computing, there is now substantial interest in the design of massively parallel machines to support Al programs.

Human cognitive theories have also influenced Al 1o look for higher-level (1.e., far above the neuron level)
theones that do not require massive parallelism for their implementation. An early example of this approach
can be seen in GPS, which are discussed in more detail in Section 3.6, This same approach can also be seen in
much current work in natural language understanding. The failure of straightforward syntactic parsing
mechanisms to make much of a dent in the problem of interpreting English sentences has led many people
who are interested in natural language understanding by machine to look seriously for inspiration at what
little we know about how people interpret language. And when people who are trying to build programs to
analyze pictures discover that a filter function they have developed is very similar to what we think people
use, they take heart that perhaps they are on the nght track.

As you can see, this last motivation pervades a great many areas of Al-research. In fact. it, in conjunction.with
the other motivations we mentioned, tends to make the distinction between the goal of simulating human
performance and the goal of building an intelligent program any way we can seem much less different than
they at first appeared. In either case, what we really need is a good model of the processes involved in
intelligent reasoning. The field of cogniive science, in which psychologists, linguists, and compulter scientists
all work together, has as its goal the discovery of such a model. For a good survey of the variety of approaches
contained within the field, see Norman [1981], Anderson [1985], and Gardner [1985].

1.5 CRITERIA FOR SUCCESS

One of the most important questions to answer in any scientific or engineering research project is “How will
we know if we have succeeded?” Artificial intelligence is no exception. How will we know if we have
constructed a machine that is intelligent? That question 1s at least as hard as the unanswerable guestion “What
i1s intelligence”” But can we do anything to measure our progress?

In 1950, Alan Turing proposed the following method for determining whether a machine can think. His
method has since become known as the Turing Tesr. To conduct this test, we need two people and the machine
to be evaluated, One person plays the role of the interrogator, who is in a separate room from the computer
and the other person. The interrogator can ask questions of either the person or the computer by typing
questions and receiving typed responses. However, the interrogator knows them only as A and B and aims to
determine which is the person and which is the machine. The goal of the machine is 10 fool the interrogator
into believing that it is the person. If the machine succeeds at this, then we will conclude that the machine can
think. The machine is allowed to do whatever it can to fool the interrogator. So, for example, if asked the
question “How much is 12,324 times 73,9817 it could wait several minutes and then respond with the wrong
answer [Turing, 1963].

The more serious issue, though, is the amount of knowledge that a machine would need to pass the Tuning
test, Turing gives the following example of the sort of dialogue a machine would have to be capable of:

Interrogator: In the first line of your sonnet which reads “Shall I compare thee to a summer’s day,”
would not “a spring day” do as well or better?

A: It wouldn’t scan.
[nterrogator: How about “a winter's day.” That would scan all right.
A: Yes, but nobody wants to be compared to a winter's day.

Interrogator: Would you say Mr. Pickwick reminded you of Christmas?
A: In a way.

What is Artificial Intelligence? 21

Interrogator: Yet Christmas is a winter's day, and | do not think Mr. Pickwick would mind the
COMpanson.
A | don’t think vou're serious. By a winter’s dav one means a typical winter's day, rather

than a special one like Christmas.

[t will be a long time before a computer passes the Turing test. Some people believe none ever will. But
suppose we are willing to settle for less than a complete imitation of a person. Can we measure the achievement
of Al in more restricted domains?

Often the answer to this question is yes. Sometimes it is possible to get a fairly precise measure of the
achievement of a program. For example, a program can acquire a chess rating in the same way as a human
player. The rating is based on the ratings of players whom the program can beat. Already programs have
acquired chess ratings higher than the vast majority of human players. For other problem domains, a less
precise measure of a program's achievement 1s possible. For example, DENDRAL 1s a program that analvzes
organic compounds o determine their structure. 1t is hard 1o gel a precise measure of DENDRAL's Tevel of
achievement compared to human chemists, but it has produced analyses that have been published as original
rescarch results. Thus it is certainly performing competently.

In other technical domains, it 15 possible to compare the time it takes for a program to complete a task to the
tme required by a person (o do the same thing. For example, there are several programs in use by compuler
companies to configure particular systems to customers’™ needs (of which the pioneer was a program called
R1). These programs typically require minutes to perform tasks that previously required hours of a skilled
engineer’s ime. Such programs are vsually evaluated by looking at the bottom line— whether they save (or
make) money.

For many everyday tasks, though, it may be even harder to measure a program’s performance. Suppose,
for example, we ask a program to paraphrase a newspaper story. For problems such as this, the best test is
usually just whether the program responded in a way that a person could have.

If our goal in writing a program 15 to sumulate human performance at a task, then the measure of success is
the extent to which the program’s behavior corresponds to that performance, as mensured by various kinds of
experiments and protocol analyses. In this we do not simply want a program that does as well as possible. We
want one that fails when people do. Various techniques developed by psychologists for comparing individuals
and for testing models can be used to do this analysis.

We are forced to conclude that the question of whether a machine has intelligence or can think 15 100
nebulous to answer precisely. But it is often possible to construct a computer program that meets some
performance standard for a particular task. That does not mean that the program does the task in the bes
possible way. It means only that we understand at least one way of doing at least part of a task. When we set
out to design an Al program, we should attempt to specity as well as possible the criteria for success for that
particular program functioning in its restricted domain. For the moment, that is the best we can do.

1.6 SOME GENERAL REFERENCES

There are a great many sources of information about artificial intelligence. First, some survey books: The
broadest are the multi-volume Handbook of Artificial Intelligence [Barr er al.. 1981] and Encyclopedia of
Artificial Intelligence [Shapiro and Eckroth, 1987), both of which contain articles on each of the major topics
in the field. Four other books that provide good overviews of the field are Artificial Intelligence [Winston,
1984], Imtroduction 1o Artificial Intelligence [Chamiak and McDermott, 1985], Logical Foundarions of Artificial
Intelligence [Genesereth and Nilsson, 1987], and The Elements of Antificial Intelligence [Tanimoto, 1987]. Of
more restricted scope is Principles of Artificial Intelligence [Nilsson, 1980], which contains a formal treatment
of some general-purpose Al techniques.

22 Artificial Intelligence

The history of research in artificial intelligence is a fascinating story, related by Pamela MeCordiick [1979]
in her book Machines Who Think. Because almost all of what we call Al has been developed over the last 30
years, McCorduck was able o conduct her research for the book by actually interviewing almost all of the
people whose work was influential in forming the field.

Most of the work conducted in Al has been originally reported in journal articles, conference proceedings,
or technical repons. But some of the most interesting of these papers have later appeared in special collections
published as books. Computers and Thought [Feigenbaum and Feldman, 1963] is a very early collection of
this sort. Later ones include Simon and Siklossy [1972], Schank and Colby [1973], Bobrow and Collins
[1975]. Waterman and Hayes-Roth [1978], Findler [1979], Webber and Nilsson [1981], Halpern [1986],
Shrobe | 1988), and several others that are mentioned in later chapters in connection with specific topics.For
newer Al paradigms the book Fundamentals of the New Artificial Intelligence [Toshinori Munakata, 1998] is
a good one.

The major jouwrnal of Al research is called simply Arrificiol Intelligence. In addition, Cognirive Science is
devoted to papers dealing with the overlapping areas of psychology, linguistics, and artificial intelligence., Af
Magazine is a more ephemeral, less technical magazine that is published by the American Association for
Artificial Intelligence (AAAIL). IEEE Expent, IEEE Transactions on Systems, Man and Cybermnetics, IEEE
Transactions on Newral Netweorks and several other journals publish papers on a broad spectrum of Al
application domains.

Since 1969, there has been a major Al conference. the International Joint Conference on Artificial Intelligence
(LICAL}, held every two years. The proceedings of these conferences give a good picture of the work that was
taking place at the time. The other important Al conference, held three omt of every four years starting in
1980, is sponsored by the AAAL and its proceedings, too, are published.

In addition to these general references, there exists a whole array of papers and books describing individual
Al projects. Rather than trying to list them all here, they are referred to as appropriate throughout the rest of
this book.

1.7 ONE FINAL WORD AND BEYOND

What conclusions can we draw from this hurmed introduction to the major questions of Al7 The problems are
varied, interesting, and hard. Tf we solve them, we will have useful programs and perhaps a better understanding
of human thought. We should do the best we can to set criteria so that we can tell if we have solved the
problems, and then we must try to do so.

How actually to go about solving these problems is the topic for the rest of this book. We need methods to
help us solve Al's serious dilemma:

1. An Al system must contain a lot of knowledge if it is to handle anything but trivial toy problems.

2. But as the amount of knowledge grows, it becomes harder to access the appropriate things when
needed, so more knowledge must be added w help. But now there is even more knowledge to manage,
so more must be added, and so forth.

Our goal in Al is to construct working programs that solve the problems we are interested in. Throughout
maost of this book we focus on the désign of representation mechanisms and algorithms that can be used by
programs to solve the problems. We do not spend much time discussing the programming process required to
turn these designs into working programs. In theory, it does not matiér how this process is carried out, in what
language it is done, or on what machine the product is run. In practice, of course, it is ofien much easier to
produce a program using one system rather than another. Specifically, Al programs are easiest to build using
languages that have been designed 1o support symbolic rather than primarily numeric computation.

What is Artificial Intelligence? 23

T

For a vanety of reasons, LISF has historically been the mosi commonly used language for Al programming.
We say little explicitly about LISP in this book, although we occasionally rely on it as a notation. There used
to be several competing dialects of LISP, but Common Lisp is now accepted as a standard. If you are unfamiliar
with LISP, consult any of the following sources: LISP [Winston and Hom, 1989], Common Lisp [Hennessey,
1989]. Common LISPcraft |Wilensky, 1986), and Common Lisp: A Gentle Introduction to Symbolic
Computarion | Touretzky, 198%a). For a complete descniption of Common Lisp. see Common Lisp: The Reference
[Steele, 19901].

Another language that is often used for Al programming is PROLOG, which is described in Chapter 25
And increasingly, as Al makes its way into the conventional programming world, Al systems are being
written in gencral purpose programming languages such as C. One reason for this is that Al programs are
ceasing to be standalone systems; instead, they are becoming components of larger systems, which may
include conventional programs and databases of various forms. Real code does not form a big part of this
book precisely because it is possible o implement the echnigues we discuss in any of several languages and
it is important not to confuse the ideas with their specific implementations. But you should keep in mind as
you read the rest of this book that both the knowledge structures and the problem-solving strategies we
discuss must ultimately be coded and integrated into a working program. This process will definitely throw
more light into real world problems faced in the implementation of Al techniques. It is for this reason we have
introduced Prolog to ensure that you do not end up just reading and believing.

Al is still a voung discipline possibly in the sense that little has been achieved as compared to what was
expected. However one must admit a lot more has been learnt about it. We have learnt many things, some of
which are presented in this book. But it is still hard 1o know exactly the perspective from which those things
should be viewed. We cannot resist quoting an observation made by Lady Lovelace more than 100 years ago:

In considering any new subject, there is frequently a tendency, first, o overrate what we find to be already
interesting or remarkable; and, secondly, by a sort of natural reaction, to undervalue the true state of the case,
when we do discover that our notions have surpassed those that were really tenable. [Lovelace, 1961)

She was talking.about Babbage's Analytical Engine. But she could have been describing artificial
intelligence.

While defining AT in terms of symbol processing it would only be right for us to inspect the problem of
Symbol Grounding [Stevan Hamad, 1990, The Symbol Grounding Problem, Physica, D42, 335-346] and not
forget about it while grasping any of the concepts discussed in this book. Harnad defines the symbol grounding
problem citing the example of the Chinese Room [Searle, 1980]. The basic assumption of symbolic Al is that
if a symbol system is able 10 exhibit behaviors which are indistinguishable from those made by a human
being. then it has a mind. Imagine such a system subjected to the Turing test in Chinese. IF the system can
respond to all Chinese symbol string inputs in just the manner as a native Chinese speaker, then it means
(seems) that the system is able to comprehend the meaning of the Chinese symbols just the way we all
comprehend our native languages. Searle argues that this cannol be and poses the question — I he (who
knows none of Chinese) is given the same strings and does exactly what the computer did (maybe execuie the
program manually '), would he be understanding Chinese”? The rhetoric only leads to one unambiguous inference
— The computer does not understand a thing. It is thus imporant to note that the symbols by themselves do
not have any mtrinsic meaning (like the symbols in a book). They denve therr meamngs only when we read
and the brain comprehends it. It goes to say that if the meaning of the symbaols used in a symbol system are
extrinsic, unlike the meanings in our heads, then the model itself has no meaning. As the symbols themselves
have no meaning and depend on other symbols whose meanings are also extninsic, we seem to be reasoning
aground meaningless entities which itself is a meaningless affair! This is the symbol grounding problem.

In the context of the meaninglessness of the use of symbols, Hamad provides a classic example of learning
Chinese. Assume you do not know Chinese and had to leamn it using a Chinese to Chinese dictionary. You

24 Artificial Intelligence

would compare character by character of a given word and find the corresponding word in the dictionary only
to find many more {meanings) written in the same language alongside, for which you would repeat the same
task. The process would put you on an endless merry-go-round. It would be only by translating it to a language
that you understand that your brain can finally perceive what it means. The Chinese symbols in the present
case are not grounded 1o its meaning. The moral of the example is simple — You cannor ground the meaning
of a symbol with other meaningless symbols. Hamad also cites that cryptologists are able to comprehend
ancient languages and symbols because their efforts are grounded in their real world domain knowledge as
also on some previous language that forms its basis.

Robots form the ultimate test-bed for Al While Al researchers have brought forth a reasonably large
repository of techniques and programs that are based on the symbol system, implementing them on robots
have posed several problems, Though this may be beyond the scope of this book we must exercise caution
while implementing symbaolic AL For instance on board a robot a symbaol *red” has to be acwually grounded 1o
some values reported by the camera or a colour sensor.

Finally one should not forget that research in Al is multidisciplinary. People have been using Al techniques
to reap benefits in a gamut of apphications. There are sull a lot more unirodden paths 1o be discovered. In the
quest to find better techniques, the reader s advised 1o give imagination a free run so that the marginal and the
peripheral are accommodated without losing the grounding of each symbol.

EXERCISES

1. Pick a specific topic within the scope of Al and use the sources described in this chapter to do a
preliminary hiterature secarch to determine what the current state of understanding of that topic is. If you
cannot think of a more novel topic, try one of the following: expert systems for some specific domain
(e.g., cancer therapy, computer design, financial planning), recognizing motion in images, using natural
(i.e., humanlike} methods for proving mathematical theorems, resolving pronominal references in natural
language texts, representing sequences of evenis i ime, or desigming a memory organization scheme
for knowledge in a computer system based on our knowledge of human memory organization,

2. Explore the spectrum from static to Al-based techniques for a problem other than the two discussed in
this chapter. Think of your own problem or use one of the following:
* Translating an English sentence into Japancse
& Teaching a child to subtract integers
o [hscovenng patterns in emnprrical data taken from scientific experiments, and suggestung further

experiments to find more patterns _

3. Imagine that vou had been to an aguarium and seen a shark and an octopus. Describe these to a child
who has never seen one. What resources and mechanisms does the child use to comprehend the nature
of these marine animals?

CHAPTER

2

PROBLEMS, PROBLEM SPACES, AND SEARCH

It 5 mot that ['m so smart, 1t 5 just that 1 stay with problems longer.

—Albert Einstein
(1879 -1955), German-born theoretical physicist

In the last chapter, we gave a brief description of the Kinds of problems with which Al is typically concerned,
as well as a couple of examples of the techniques it offers 10 solve those problems. To build a system to solve
a particular problem, we need to do four things:

1. Define the problem precisely. This definition must include precise specifications of what the initial
situation (s) will be as well as what final sitvations constitute acceptable solutions to the problem.

2. Analyze the problem. A few very important features can have an immense impact on the appropriateness
of various possible techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to solve the problem.

4. Choose the best problem-solving technique(s) and apply 1t (them) to the particular problem.

In this chapter and the next, we discuss the first two and the last of these issues. Then, in the chapters in
Part II, we focus on the 1ssue of knowledge representation.

2.1 DEFINING THE PROBLEM AS A STATE SPACE SEARCH

Suppose we start with the problem statement “Play chess”. Although there are a lot of people to whom we
could say that and reasonably expect that they will do as we intended, as our request now stands it is a very
incomplete statement of the problem we want solved. To build a program that could “Play chess,” we would
first have to specify the starting position of the chess board, the rules that define the legal moves, and the
board positions that represent a win for one side or the other. In addition, we must make explicit the previously
implicit goal of not only playing a legal game of chess but also winning the game, if possible.

For the problem “Play chess,” it is fairly easy to provide a formal and complete problem description. The
starting position can be described as an B x 8 array where each position contains a symbol standing for the
appropriate piece in the official chess opening position. We can define as our goal any board position in which
the opponent does not have a legal move and his or her king is under attack. The legal moves provide the way
of getting from the initial state to a goal state, They can be descnbed easily as a set of rules consisting of two
parts: a left side that serves as a pattern to be maiched against the current board position and a right side that

26 Artificial Intelligence

describes the change to be made to the board position to reflect the move. There are several ways in which
these rules can be written. For example, we could write a rule such as that shown in Fig. 2.1.

s EAlAve Aal I1AAW 9 AAlX

A IR IEIRE IR AEAE R /4 2|22 2|22

6

5 =

4 n

3

ZIA|AR|R|A[AIAIR RIARIA RiIAA

1199 (R]a0 Jiald¥®od|ald

a bcde 9 h a b cde 9 h
White White

Fig. 2.1 0One Legal Chess Move

However, if we write rules like the one above, we have to write a very large number of them since there has
to be a separate rule for each of the roughly 10'*” possible board positions. Using so0 many rules poses two
serious practical difficulties:

» No person could ever supply a complete set of such rules. It would take too long and could certainly
not be done without mistakes.

* No program could easily handle all those rules. Although a hashing scheme could be used 1o find the
relevant rules for each move fairly quickly, just storing that many rules poses serious difficulties.

In order to minimize such problems, we should look for a way to write the rules describing the legal moves
in as general a way as possible. To do this, it is useful to introduce some convenient notation for describing
patterns and substitutions. For example, the rule described in Fig. 2.1, as well as many like it, could be written
as shown in Fig. 2.2." In general, the more succinctly we can describe the rules we need, the less work we will
have to do to provide them and the more efficient the program that uses them can be.

White pawn at
Square(file e, rank 2)

AND move pawn from
Square(file e, rank 3) -~ Square(file e, rank 2)
is empty to Square(file e, rank 4)
AND
Square(file e, rank 4)
is empty

Fig. 2.2 Another Way to Describe Chess Moves

We have just defined the problem of playing chess as a problem of moving around in a slate space, where
each state corresponds to a legal position of the board. We can then play chess by starting at an initial state,
using a set of rules to move from one state to another, and attempting to end up in one of a set of final states.
This state space representation seems natural for chess because the set of states, which corresponds to the set
of board positions, is artificial and well-organized. This same kind of representation is also useful for naturally
occurring, less well-structured problems, although it may be necessary 1o use more complex structures than a

"'To be completely accurate, this rule should include a check for pinned pieces, which have been ignored here.

Problems, Problem Spaces, and Search 29

The extreme of this approach i1s shown in the first tic-tac-toe program of Chapter 1. Each entry in the move
vector corresponds to a rule that describes an operation. The left side of each rule describes a board configuration
and is represented implicitly by the index position. The right side of each rule describes the operation to be
performed and is represented by a nine-element vector that corresponds to the resulting board configuration.
Each of these rules is maximally specific; it applies only to a single board configuration, and, as a result, no
search is required when such rules are used. However, the drawback to this extreme approach is that the
problem solver can take no action at all in a novel sitwanon. In fact, essentially no problem solving ever really
occurs. For a tic-tac-toe playing program, this is not a serious problem, since it is possible to enumerate all the
situations (i.e.. board configurations) that may occur. But for most problems, this is not the case. In order 10
solve new problems, more general rules must be available.

A second issue is exemplified by rules 3 and 4 in Fig. 2.3. Should they or should they not be included in the
hst of available operators? Empiying an unmeasured amount of water onto the ground is certainly allowed by
the problem statement. But a superficial preliminary analysis of the problem makes it clear that doing so will
never get us any closer to a solution. Again, we see the radeoff between writing a set of rules that describe
just the problem itsclf, as opposed o a set of rules that describe both the problem and some knowledge about
its solution.

Rules 11 and 12 illustrate a third 15sue. To see the problem-solving knowledge that these rules represent,
look at the last two steps of the solution shown in Fig. 2.4, Once the state (4, 2) is reached, it is obvious what
0 do next. The desired 2 gallons have been produced, but they are in the wrong jug. So the thing to do 15 10
move them {rule 11). But before that can be done, the water that is already in the 4-gallon jug must be emptied
out (rule 12). The idea behind these special-purpose rules is to capiure the special-case knowledge that can be
used at this stage in solving the problem. These rules do not actually add power to the system since the
operations they describe are already provided by rule Y (in the case of rule 11) and by rule 3 (in the case of rule
12). In fact, depending on the control strategy that is used for selecting rules to use during problem solving,
the use of these rules may degrade performance. But the use of these rules may also improve performance if
preference i1s given to special-case rules (as we discuss i Section 6.4.3).

We have now discussed two quite different problems, chess and the water jug problem. From these
discussions, it should be clear that the first step toward the design of a program to solve a problem must be the
creation of a formal and manipulable description of the problem itself. Uluimately, we would like to be able to
write programs that can themselves produce such formal descriptions from informal ones. This process is
called operationalization. It is not at all well-understood how to construct such programs, but see Section
17.3 for a description of one program that solves a piece of this problem. Until it becomes possible to automate
this process, it must be done by hand, however. For simple problems, such as chess or the water jug, this is not
very difficult. The problems are anificial and highly structured. For other problems, particularly naturally-
occurring ones, this step is much more difficult. Consider, for example, the task of specifying precisely what
it means to understand an English sentence. Although such a specification must somchow be provided before
we can design a program to solve the problem, producing such a specification 1s itself a very hard problem.
Although our ultimate goal is to be able to solve difficult, unstructured problems, such as natural language
understanding, it is useful 1o explore simpler problems, such as the water jug problem, in order to gain insight
into the details of methods that can form the basis for solutions to the harder problems.

Summarizing what we have just said, in order to provide a formal description of a problem, we must do the
following:

1. Define a state space that contains all the possible configurations of the relevant objects (and perhaps

some impossible ones). Tt is, of course, possible to define this space without explicitly enumerating all
of the states it contains.

30 Artificial Intelligence

2. Specify one or more states within that space that describe possible situations from which the problem-
solving process may siart, These states are called the inirial stares.

3. Specify one or more states that would be acceptable as solutions to the problem. These states are called
goetl stefes.

4. Specify a set of rules that describe the actions (operators) available. Doing this will require giving
thought to the following issues:
* What unstated assumptions are present in the informal problem description?
* How general should the rules be?

* How much of the work required to solve the problem should be precomputed and represented in the
rules?

The problem can then be solved by using the rules, in combination with an appropriate control strategy, to
move through the problem space until a path from an initial state 1o a goal state is found. Thus the process of
search is fundamental to the problem-solving process. The fact that search provides the basis for the process
of problem-solving does not, however, mean that other, more direct approaches cannot also be exploited.
Whenever possible, they can be included as steps in the search by encoding them into the rules. For example,
in the water jug problem, we use the standard arithmetic operations as single steps in the rules, We do not use
search to find a number with the property that it is equal to v — (4 — x). OF course, for complex problems,
more sophisticated computations will be needed. Search 15 a general mechanism that can be used when no
more direct method 15 known. At the same time, it provides the framework into which more direct methods for
solving subparis of a problem can be embedded.

2.2 PRODUCTION S5YSTEMS

Since search forms the core of many intelligent processes, it 15 useful o structure Al programs in a way that
facilitates describing and performing the search process. Production systems provide such structures, A
definition of a production system is given below. Do not be confused by other uses of the word production,
such as to descnibe what 15 done n factones. A production svsrem consists of:

A set of rules, each consisting of a lefi side {a pattern) that determines the applicability of the rule and
a right side that describes the operation to be performed if the rule is applied.?

* Une or more knowledge/databases that contain whatever information is appropri- ate for the particular
task. Some parts of the database may be permanent, while other parts of it may pertain only to the solution
of the current problem. The information in these databases may be structured in any appropriate way,

* A conirol strategy that specifies the order in which the rules will be compared to the database and a
way of resolving the conflicts that arise when several rules match at once.,

» A rule applier.

So far, our defimition of a production sysiem has been very general. It encompasses a greal many syslems,

including our descriptions of both a chess player and a water jug problem solver. It also encompasses a family
of general production system interpreters, including:

« Basic production system languages, such as OPS5 [Brownsion ef al., 1985] and ACT* [Anderson, 1983].

+ More complex, often hybrid systems called expert system shells, which provide complete (relatively
speaking) environments for the construction of knowledge- based expert svstems.

» Generul problem-solving architectures like SOAR [Laird et al., 1987, a system based on a specific set
of cognitively motivaied hypotheses about the nature of problem-solving.

P This convention for the use of left and right sides is natural for forward rules. As we will see later, many backward rule
systems reverse the sides.

Problems, Problem Spaces, and Search 31

All of these systems provide the overall architecture of a production system and allow the programmer to write
rules that define particular problems to be solved. We discuss production system issues further in Chapter 6.

We have now seen that in order to solve a problem, we must first reduce it to ohe for which a precise
statement can be given. This can be done by defining the problem’s state-space (including the start and goal
states) and a set of operators for moving in that space. The problem can then be solved by searching for a path
through the space from an initial state to a goal state. The process of solving the problem can usefully be
modeled as a production system. In the rest of this section, we look at the problem of choosing the appropriate
control structure for the production system so that the search can be as efficient as possible.

2.2.1 Control Strategies

So far, we have completely ignored the question of how to decide which rule to apply next during the process
of searching for a solution to a problem. This question arises since often more than one rule (and sometimes
fewer than one rule) will have its left side match the current state. Even without a great deal of thought, it is
clear that how such decisions are madé will have a crucial impact on how quickly, and even whether, a
problem is finally solved.

o The first requirement of a good control strategy is that it causes motion. Consider again the water jug
problem of the last section, Suppose we implemented the simple control strategy of starting each time
at the top of the list of rules and choosing the first applicable one. If we did that, we would never solve
the problem. We would continue indefinitely filling the 4-gallon jug with water Control strategies that
do not cause motion will never lead to a solution.

o The second requirement of a good control strategy is that it be systematic. Here is another simple
control strategy for the water jug problem: On each cycle, choose at random from among the applicable
rules. This strategy is better than the first. Tt causes motion. Tt will lead to a solution eventually. But we
are likely to arrive at the same state several times during the process and to use many more steps than
are necessary. Because the control strategy is not systematic, we may explore a particular useless
sequence of operators several times before we finally find a solution. The requirement that a control
strategy be systematic corresponds to the need for global motion (over the course of several steps) as
well as for local motion {over the course of a single step). One systematic control strategy for the water
jug problem is the following. Construct a tree with the initial state as its root, Generate all the offspring
of the root by applying each of the applicable rules to the initial state. Fig. 2.5 shows how the tree looks
at this point. Now for each leaf node, generate all its successors by applying all the rules that are
appropriate. The tree at this point is shown in Fig. 2.6.* Continue this process until some rule produces
a goal state, This process, called breadth-first search, can be described precisely as follows.

(0.0

(0,00 /\
/\ (4,0 {0,3)

Fig. 25 One Level of a Breadth- Fig. 2.6 Twa Levels of a Breadth-
First Search Tree First Search Tree

“Rule 3, 4, 11, and 12 have been ignoted in constructing the search tree,

36 Artificial Intelligence

Chess the material advantage of our side
over the opponent

Traveling Salesman the sum of the distances so far

Tic-Tac-Toe 1 for each row in which we could win

and in which we already have one
piece plus 2 for each such row in
which we have two pieces

Fig. Z.B Some Simple Heuristic Functions

The purpose of a heuristic function is to guide the search process in the most profitable direction by
suggesting which path to follow first when more than one is available, The more accurately the heuristic
function estimates the true merits ol each node in the search tree (or graph), the more direct the solution
process. In the extreme, the heuristic function would be so good that essentially no search would be required.
The system would move directly to a solution. But for many problems, the cost of computing the value of
such a function would outweigh the effort saved in the search process, After all, it would be possible 1o
compute a perfect heuristic function by doing a complete search from the node in question and determining
whether it leads to a good solution. In general, there is a trade-ofT between the cost of evaluating a heuristic
function and the savings in search time that the function provides.

In the previous section, the solutions to Al problems were described as centening on a search process.
From the discussion in this section, it should be clear that it can more precisely be described as a process of
hearistic search. Some heuristics will be used to define the control structure that guides the application of
rules in the search process, Others, as we shall ~~¢, will be encoded in the rules themselves. In both cases, they
will represent either general or specific world knowledge that makes the solution of hard problems feasible.
‘This leads to another way that ong could define artificial intelligence: the study of techniques for solving
exponentially hard problems in polynomial time by exploiting knowledge about the problem domain.

2.3 PROBLEM CHARACTERISTICS

Heuristic search is a very general method applicable to a large class of problems. It encompasses a variety of
specific technigues, cach of which is particularly effective for a small class of problems. In order to choose the
most appropriate method (or combination of methods) for a particular problem, it is necessary to analyze the
problem along several key dimensions:
» Is the problem decomposable into a set of (nearly) independent smaller or easier subproblems?
* (Can solution steps be ignored or at least undone if they prove unwise?
o [s the problem’s universe predictable?
* [s a good solution to the problem obvious without comparison to all other possible solutions?
» [s the desired solution a state of the world or a path to a state?
 Is a large amount of knowledge absolutely required to solve the problem, or is knowledge important
only to constriun the search?
+ Can a computer that is simply given the problem return the solution, or will the solution of the problem
require interaction between the computer and a person?

In the rest of this section, we examine each of these questions in greater detail. Notice that some of these
questions involve not just the statement of the problem itself but also characteristics of the solution that is
desired and the circumstances under which the solution must 1ake place.

Problems, Problem Spaces, and Search 37

2.3.1 Is the Problem Decomposable?
Suppose we want to solve the problem of computing the expression

J[r’+3.x+5in1*-::u51.r}dr I"z*:*-"“‘i"?fmz”'f
We can solve this problem by breaking it down into [, 4 Iy dy in®x cosx d
three smaller problems, each of which we can then solve I | * j I s cosTrax
by using a small collection of specific rules, Figure 2.9 3 3_[.': dx J’n - 0052 x) cosx dx
shows the problem tree that will be generated by the 3 e
precess of problem decomposition as it can be exploited 3—;'1 Imzx d _FWE‘ x dx

by a simple recursive integration program that works as
follows: At each step, it checks to see whether the prob-

il
lem it is working on is immediately solvable. If so, then ,F 5 (1 +cos 2x) dx

the answer is returned directly. If the problem is not I i

easily solvable, the integrator checks to see whether it _'"2.[1 dx _JI cos 2x dx
can decompose the problem into smaller problems, If it] |

can, it creates those problems and calls itself recursively 27 —gSnax
on them. Using this technique of problem decompasi- Fig. 2.9 A Decomposable Problem
tion, we can often solve very large problems easily.

Now consider the problem illustrated in Fig. 2.10. This problem is g, . Goal: [A
drawn from the domain often referred to in Al literature as the blocks T B|
world. Assume that the following operators are available:

1. CLEAR (x) [block x has nothing on it] — ON (x, Table) [pick ON({C.A) ON(B,C)and ON(AB)
up & and put it on the table] Fig. 2.10 A Simple Blocks World

2. CLEAR (x) and CLEAR (v} = ON (x, y) [put x on y] Problem

Applying the technique of problem decomposition to this simple blocks world example would lead 1w a
solution tree such as that shown in Fig. 2.11. In the figure, goals are underlined. States that have been achieved
are not underlined. The idea of this solution is o reduce the problem of getting B on C and A on B to two
separate problems. The first of these new problems, getting B on C, is simple, given the start state. Simply put
B on C The second ﬁ“hgﬂﬂl is ol qUilE 0 umplt‘: Since the |' GH[B‘E] and OM {A‘E}
only operators we have allow us to pick up single blocks at a
time, we have to clear oftf A by removing C before we can ONIB.C) ONIAE]
pick up A and put it on B. This can easily be done. However, B on

if we now try to combine the two subsolutions into one
solution, we will fail. Regardless of which one we do first, we @ H Ah“ ot Ao B
will not be able to do the second as we had planned. In this - o

problem, the two subproblems are not independent. They
interact and those interactions must be considered in order o Fig. 2.11 A Proposed Solution for the Bfﬂrks
arrive at a solution for the entire problem. Problem

These two examples, symbolic integration and the blocks world, illustrate the difference between
decomposable and nondecomposable problems, In Chapter 3, we present a specific algorithm for problem
decomposition, and in Chapter 13, we look at what happens when decomposition is impossible.

2.3.2 Can Solution Steps Be Ignored or Undone?

Suppose we are trying to prove a mathematical theorem. We proceed by first proving a lemma that we think
will be useful. Eventually, we realize that the lemma is no help at all. Are we in trouble?

38 Artificiol Intelligence

No. Everything we need to know to prove the theorem is still true and in memory, if it ever was. Any rules
that could have been applied at the outset can still be applied. We can just proceed as we should have in the
first place. All we have lost is the effort that was spent exploring the blind alley.

Now consider a different problem.

The 8-Puzzle: The 8-puzzle is a square tray in which are placed, eight square tiles. The remaining ninth square is
uncovercd. Each tile has a number on it. A tile that is adjacent to the blank space can be slid into that space, A game
consists of a starting position and a specified goal position. The goal is to transform the starting position into the
goal position by sliding the tiles around.

A sample game using the 8-puzzle is shown in Fig. 2.12. In attempting to solve Start Goal
the B-puzzle, we might make a stupid move. For example, in the game shown |28 3 11213
above, we might start by sliding tile 5 into the empty space. Having done that, we [3]g] 2 8 4
cannot change our mind and immediately slide tile 6 into the empty space since |5 5 71615

the empty space will essentially have moved. But we can backtrack and undo the
first move, sliding tile 5 back 1o where it was, Then we can move tile 6. Mistakes
can still be recovered from but not quite as easily as in the theorem-proving
problem. An additional step must be performed to undo each incorrect step, whereas no action was required
to “endo™ a useless lemma. In addition, the control mechanism for an 8-puzzle solver must keep track of the
order in which operations are performed so that the operations can be undone one at a time 1f necessary. The
control structure for a theorem prover does not need to record all that information.

Now consider again the problem of playing chess. Suppose a chess-playing program makes a stupid move
and realizes it a couple of moves later. It cannot simply play as though it had never made the stupid move. Nor
can it simply back up and start the game over from that point. All it can do is to try to make the best of the
current situation and go on from there.

These three problems—theorem proving, the B-puzzle, and chess—illustrate the differences between three
important classes of problems:

Fig. 2.1Z An Example of
the 8-Puzzle

+ [gnorable (e.g., theorem proving), in which solution steps can be ignored
» Recoverable (e.g., 8-puzzle), in which solution steps can be undone
* [rrecoverable (e.z., chess), in which solution steps cannot be undone

These three definitions make reference Lo the steps of the solution to a problem and thus may appear to
characterize particular production systems for solving a problem rather than the problem itself. Perhaps a
different formulation of the same problem would lead to the problem being characterized differently. Strictly
speaking, this i1s true. But for a great many problems, there is only one (or a small number of essentially
equivalent) tormulations that naturaily describe the problem. This was true for each of the problems used as
examples above. When this is the case, it makes sense to view the recoverability of a problem as equivalent 1o
the recoverability of a natural formulation of it

The recoverability of a problem plays an important role in determining the complexity of the control
structure necessary for the problem’s solution. lgnorable problems can be solved using a simple control
structure that never backtracks, Such a control structure is easy to implement. Recoverable problems can be
solved by a slightly more complicated control strategy that does sometimes make mistakes. Backiracking will
be necessary to recover from such mistakes, so the control structure must be implemented using a push-down
stack, in which decisions are recorded in case they need to be undone later. Irrecoverable problems, on the
other hand, will need to be solved by a system that expends a great deal of effort making each decision since
the decision must be final. Some irrecoverable problems can be solved by recoverable style methods used in
a planning process, in which an entire sequence of steps is analyzed in advance 1o discover where it will lead
before the first step is actvally taken. We discuss next the kinds of problems in which this 1s possible,

Problems, Prablem Spaces, and Search 39

2.3.3 s the Universe Predictable?

Again suppose that we are playing with the 8-puzzle. Every time we make a move, we know exactly what will
happen. This means that it 1s possible to plan an entire sequence of moves and be confident that we know what
the resulting state will be. We can use planning to avoid having to undo actual moves, although it will still be
necessary to backtrack past those moves one at a time during the planning process, Thus a control structure
that allows backtracking will be necessary.

However, in games other than the 8-puzzle, this planning process may not be possible. Suppose we want 1o
play bridge. One of the decisions we will have to make is which card 1o play on the first tnek. What we would
like to do is (o plan the entire hand before making that first play. But now it is not possible to do such planning
with certainty since We cannot know exactly where all the cards are or what the other players will do on their
turns. The best we can do is to investigate several plans and use probabilities of the various outcomes (o
choose a plan that has the highest estimated probability of leading to a good score on the hand.

These two games illustrate the difference between certain-outcome (e.g., 8-puzzle) and uncertain-outcome
(e.g., bridge) problems. One way of describing planning is that it is problem-solving without feedback from
the environment. For solving certain-outcome problems, this open-loop approach will work fine since the
result of an action can be predicted perfectly. Thus, planning can be used to generate a sequence of operators
that is guaranteed to lead to a solution. For uncentain-outcome problems, however, planning can at best generate
a sequence of operators that has a good probability of leading to a solution. To solve such problems, we need
to allow for a process of plan revision to take place as the plan is carried out and the necessary feedback is
provided. In addition to providing no guarantee of an actual solution, planning for uncertain-outcome problems
has the drawback that it is often very expensive since the number of solution paths that need to be explored
increases exponentially with the; number of points at which the outcome cannot be predicted.

The last two problem characteristics we have discussed, ignorable versus recoverable versus irmecoverable
and certain-outcome versus uncertain-outcome. interact in an interesting way. As has already been mentioned,
one way 1o solve imecoverable problems is to plan an entire solution before embarking on an implementation
of the plan. But this planning process can only be done effectively for cenain-outcome problems. Thus one of
the hardest types of problems to solve is the irrecoverable, uncertain-outcome. A few examples of such
problems are:

* Playing bridge. But we can do fairly well since we have available accurate estimates of the probabilities
of each of the possible outcomes,

+ Controlling a robot arm. The outcome is uncertain for a variety of reasons. Someone might move
something into the path of the arm. The gears of the arm might stick. A slight error could cause the arm
to knock over a whole stack of things.

» Helping a lawyer decide how to defend his client against a murder charge. Here we probably cannot
even list all the possible outcomes, much less assess their probabilities,

2.3.4 1sa Good Solution Absolute or Relative?

Consider the problem of answering questions based on a database of simple facts, such as the following:

1. Marcus was a man,

Marcus was a Pompeian.

Marcus was born in 40 A.D.

All men are mortal.

All Pompeians died when the volcano erupted in 79 A.D,
No monal lives longer than 150 years.

It 1s now 1991 A.D.

el o

40 Artificial Intelligence

Suppose we ask the question “Is Marcus alive?” By representing cach of these facts in a formal language, such
as predicate logic, and then using formal inference methods we can fairly easily derive an answer to the
question.” In fact, either of two reasoning paths will lead to the answer, as shown in Fig. 2.13. Since all we are
interested in is the answer to the question, it does not matter which path we follow. If we do fellow one path
successfully to the answer, there is no reason to go back and see if some other path might also lead to a solution.

Justification

1. Marcus was a man. axiom 1
4. All men are mortal. axiom 4
8. Marcus 1s mortal. 1,4

3. Marcus was born in 40 A.D. axiom 3
7. Itis now 1991 A.D. axiom 7
9. Marcus® age is 1951 years, 3.7

6. No mortal lives longer than 150 years. axiom 6
10. Marcus 1s dead. 86,9

OR

7. Itis now 1991 A.D. axiom 7
5. All Pompeians died in 79 A.D. axiom 5

1. All Pompeians are dead now. 7.5
2. Marcus was a Pompeian. axiom 2
12, Marcus is dead. 11,2

Fig. 2.13 Two Ways of Deciding That Marcus Is Dead

But now consider again the traveling salesman problem. Our poal is to find the shortest route that visits each
city exactly once. Suppose the cities to be visited and the distances between them are as shown in Fig. 2.14,

Boston |New York| Miami Dallas S.F

. Boston 250 1450 1700 3000

MNew York 250 1200 1500 2900

Miami 1450 1200 1600 3300

Dallas 17010 1500 1600 1700
5.F 3000 2000 3300 1700

Fig. 2.14 An Instance of the Traveling Sulesman Problem

One place the salesman could start is Boston. In that case, one path that might be followed is the one shown
in Fig. 2.15, which is 8850 miles long. But is this the solution to the problem? The answer is that we cannot
be sure unless we also try all other paths to make sure that none of them is shorter. In this case, as can be seen
from Fig. 2.16, the first path is definitely not the solution to the salesman’s problem.

These two examples illustrate the difference between any-path problems and best- path problems. Best-
path problems are, in general, computationally harder than any-path problems. Any-path problems can often
be solved in a reasonable amount of time by using heuristics that suggest good paths to explore. (See the
discussion of best-first search in Chapter 3 for one way of doing this.) If the heuristics are not perfect, the
search for a solution may not be as direct as possible, but that does not matter. For true best-path problems,
however, no heuristic that could possibly miss the best solution can be used. S0 a much more exhaustive

search will be performed.

" T Of course, representing these statements so that a mechanical procedure could exploit them to answer the question also
requires the explicit mention of other facts, such as "dead implies not alive.” We do this in Chapter 5.

Problems, Problem Spaces, and Search 41

{3000} . (250)

| San Francisco |

| San Francisco |
(3000)
Total: (8850) Total: (BBS0) Total: (7750)
Fig. 2.15 One Path among the Cities Fig. 2.16 Two Paths Among the Cities

2.3.5 Is the Solution a State or a Path?
Consider the problem of finding a consistent interpretation for the sentence

The bank president ate a dish of pasta salad with the fork.

There are several components of this sentence, each of which, in isolation, may have more than one
interpretation. But the components must form a coherent whole, and so they constrain each other's
interpretations. Some of the sources of ambiguity in this sentence are the following:

The word “bank” may refer either to a financial institution or to a side of a river. But only one of these may
have a president.

* The word “dish"” is the object of the verb “eat.” [t is possible that a dish was caten. But it is more likely
that the pasta salad in the dish was eaten.

+ Pasta salad is a salad containing pasta. But there are other ways meanings can be formed from pairs of
nouns. For example, dog food does not normally contain dogs.

* The phrase “with the fork™ could modify several parts of the sentence. In this case, it modifies the verb
“eat.” But, if the phrase had been “with vegetables,” then the modification structure would be different.
And if the phrase had been “with her friends,” the structure would be different stll.

Because of the interaction among the interpretations of the constituents of this sentence, some search may
be required to find a complete interpretation for the sentence. But to solve the problem of finding’ the
mterpretation we need to produce only the mterpretation itself. No record of the processing by which the
interpretation was found is necessary.

Contrast this with the water jug problem. Here it is not sufficient to report that we have solved the proh]rem
and that the final state is (2, 0). For this kind of problem, what we really must report is not the final state but
the path that we found to that state. Thus a statement of a solution to this problem must be a mqumce of
operations (sometimes called apian) that produces the final state.

These two examples, natural language understanding and the water jug problem, illustrate the difference
between problems whose solution is a state of the world and problems whose solution is a path to a state. At
one level, this difference can be ignored and all problems can be formulated as ones in which only a state is
required to be reported. If we do this for problems such as the water jug, then we must redescribé our states so
that each stale represents a partial path to a solution rather than just a single state of the world. So this question

Prablems, Probiem Spaces, and Search 43
m

= Solitary, in which the computer is given a problem description and produces an answer with no
intermediate communication and with no demand for an explanation of the reasoning process

+ Conversational, in which there is intermediate communication between a person and the computer, either
to provide additional assistance to the computer or to provide additional information to the user, or both

Of course, this distinction is not a strict one describing particular problem domains. As we just showed,
mathematical theorem proving could be regarded as either. But for a particular application, one or the other of
these types of systems will usually be desired and that decision will be imponant in the choice of a problem-
solving method.

2.3.8 Problem Classification

When actual problems are examined from the point of view ol all of these questions, it becomes apparent that
there are several broad classes into which the problems fall. These classes can each be associated with a
generic control strategy that is appropriate for solving the problem. For example, consider the generic problem
of classification. The task here is to examine an input and then decide which of a set of known classes the
input is an instance of. Most diagnostic 1asks, including medical diagnosis as well as diagnosis of faults in
mechanical devices, are examples of classification. Another example of a generic strategy is propose and
refine. Many design and planning problems can be attacked with this strategy. '

Depending on the granularity at which we attempt to classify problems and control strategies, we may
come up with different lists of generic tasks and procedures. See Chandrasckaran [1986] and McDermott
[1988] for two approaches to constructing such lists. The imporniant thing to remember here, though, since we
are about to embark on a discussion of a variety of problem-solving methods, is that there is no one single way
of solving all problems. But neither must each new problem be considered totally ab initio. Instead, if we
analyze our problems carefully and sort our problem-solving methods by the kinds of problems for which
they are suitable, we will be able to bring to each new problem much of what we have leamned from solving
other, similar problems.

2.4 PRODUCTION SYSTEM CHARACTERISTICS

We have just examined a set of characteristics that distinguish various classes of problems. We have also
argued that production systems are a good way to describe the operations that can be performed in a search for
a solution to a problem. Two guestions we might reasonably ask at this point are:

I. Can production systems, like problems, be described by a set of characteristics that shed some light on
how they can easily be implemented?

2. If so, what relationships are there between problem tvpes and the types of pro- duction systems best
suited to solving the problems?

The answer to the first question is yes. Consider the following definitions of classes of production systems.
A monotonic production system is a production system in which the application of a rule never prevents the
later application of another rule that could also have been applied at the time the first rule was selected. A
nonmonotonic production system is one in which this is not true, A partially commurtasive production system
is a production system with the property that if the application of a particular sequence of rules transforms
state x into state v, then any permutation of those rules that is allowable (i.e., each rule’s preconditions are
satisfied when it is applied) also transforms state x into state v, A commutative production system is a production
system that is both monotonic and partially commutative.®

® This comesponds to the definition of a commutative production system given in Nilsson [1980].

44 Artificial Intelligence

The significance of these categories of production systems lies in the relationship between the categones
and appropriate implementation strategics. But before discussing that relationship, it may be helpful to make
the meanings of the definitions clearer by showing how they relate to specific problems.

Thus we arrive at the second question above, which asked whether there is an interesting relationship
between classes of production systems and classes of problems. For any solvable problem, there exist an
infinite number of production systems that describe ways to find solutions. Some will be more natural or
efficient than others. Any problem that can be solved by any production system can be solved by a commutative
one {our most restricted class), but the commutative one may be so unwieldy as 1o be practically vseless. It
may use individual states to represent entire sequences of applications of rules of a simpler, noncommutative
system. So in a formal sense. there is no relationship between kinds of problems and kinds of production
systems since all problems can be solved by all kinds of systems. But in a practical sense, there definitely is
such a relationship between kinds of problems and the Kinds of systems that lend themselves naturally to
describing those problems. To see this, let us look at a few examples. Fig. 2.17 shows the four categories of
production systems produced by the two dichotomies, monotonic versus nonmonotonic and partially
commutative versus '

Monotonic Nonmonotonic

Partially Theorem proving | Robot navigation
commutative

Not partially | Chemical synthesis | Bridge
commutative

Fig. 217 The Four Categories of Production Systems

nonpartially commutative, along with some problems that can naturally be solved by each type of system.
‘The upper left comer represents commutative systems.

Partially commutative, monotonic production systems are useful for solving ignorable problems. This is
not surprising since the definitions of the two are essentially the same. But recall that ignorable problems are
those for which a natural formulation leads 1o solution steps that can be ignored. Such a natural formulation
will then be a partially commutative, monotonic system. Problems that involve creating new things rather
than changing old ones are generally ignorable. Theorem proving, as we have described it, is one example of
such a creative process. Making deductions from some known facts is a similar creative process. Both of
those processes can easily be implemented with a partially commutative, monotonic system.

Partially commutative, monotonic production systems are important from an implementation standpoint
because they can be implemented without the ability to backtrack to previous states when it is discovered that
an incorrect path has been followed. Although it is often useful to implement such systems with backiracking
in order to guarantee a systematic scarch, the actual database representing the problem state need not be
restored. This often results in a considerable increase in efficiency, particularly because, since the database
will never have 1o be restored, 1t i1s not necessary to keep track of where in the search process every change
was made.

We have now discussed partially commutative production systems that are also monotonic. They are good
for problems where things do not change; new things get created. Nonmonotonic, partially commutative
systems, on the other hand, are useful for problems in which changes occur but can be reversed and in which
order of operations is not critical. This is usually the case in physical manipulation problems, such as robot
navigation on a flat plane. Suppose that a robot has the following operators: go north (N), go east (E), go south
(S}, and go west (W). To reach its goal, it does not matter whether the robot executes N-N-E or N-E-N.

Problems, Prablem Spaces, and Search 45

Depending on how the operators are chosen, the 8-Puzzle and the blocks world problem can also be considered
partially commutative.

Both types of partially commutative production systems are significant from an implementation point of
view because they tend 1o lead to many duplications of individual states during the search process, This is
discussed further in Section 2.5.

Production systems that are not partially commutative are useful for many problems in which irreversible
changes occur. For example, consider the problem of determining a process to produce a desired chemical
compound. The operators available include such things as “Add chemical x to the pot” or “Change the
temperature to f degrees,” These operators may cause irreversible changes to the potion being brewed. The
order in which they are performed can be very important in determining the final output. It is possible that if
x is added to ¥, a stable compound will be formed. so later addition of z will have no effect; if 7 is added to v,
however, a different stable compound may be formed, so later addition of x will have no effect. Nonpartially
commutative production systems are less likely to produce the same node many times in the search process,
When dealing with ones that describe irreversible processes, it is particularly important to make correct
decisions the first time, although if the universe is predictable, planning can be used to make that less important.

2.5 [ISSUES IN THE DESIGN OF SEARCH PROGRAMS

Every search process can be viewed as a traversal of a tree structure in which each node represents a problem
state and each arc represents a relationship between the states represented by the nodes it connects. For
example, Fig. 2.18 shows part of a search tree for a water jug problem. The arcs have not been labeled in the
Fig., but they correspond to particular water-pouring operations. The search process must find a path or paths
through the tree that connect an initial state with one or more final states. The tree that must be searched could,
in principle, be constructed in its entirety from the rules that define allowable moves in the problem space,
But, in practice, most of it never is. It is too large and most
of it need never be explored. Instead of first building the
tree explicitly and then searching it, most search programs
represent the tree implicitly in the rules and generate 4.0)
explicitly only those parts that they decide to explore,
Throughout our discussion of search methods, it is
important to keep in mind this distinction between implicit [(4.3)] [©0.0)] [(1.3}] | (4,3} QO] [(3.0)]
search trees and the explicit partial search trees that are Fig.2.18 A Search Tree for the Water Jug Problem
actually constructed by the search program.

In the next chapter, we present a family of general-purpose search techniques. But before doing s0 we need
te mention some important issues that arise in all of them:

« The direction in which to conduct the search (forwarnd versus backward reasoning). We can search forward
through the state space from the start state to a goal state, or we can search backward from the goal.

= How to select applicable rules imarching). Production systems typically spend most of their time looking
for rules to apply, so it is critical to have efficient procedures for matching rules against states,

+ How to represent each node of the search process (the knowledge representation problem and the
frame problem). For problems like chess, a node can be fully represented by a simple array. In more
complex problem solving, however, it is inefficient and/or impossible to represent all of the facts in the
world and 10 determine all of the side effects an action may have.

We discuss the knowledge representation and frame problems further in Chapter 4. We investigate matching
and forward versus backward reasoning when we return to production systems in Chapter 6.

46 Artificial Intelligence

One other issue we should consider at this point is that of search trees versus search graphs. As mentioned
above, we can think of production rules as generating nodes in a search tree. Each node can be expanded in
tum, generating a set of successors. This process continees until a node representing a solution is found.
Implementing such a procedure requires little bookkeeping. However, this process often results in' the same
node being generated as part of several paths and so being processed more than once. This happens because
the search space may really be an arbitrary directed graph rather than a tree.

For example, in the tree shown in Fig. 2,18, the node {4,3), representing 4-gallons of water in one jug and
3 gallons in the other, can be generated either by first filling the 4-gallon jug and then the 3-gallon one or by
filling them in the opposite order. Since the order does not matter, continuing to process both these nodes
would be redundant. This example also illustrates another problem that often arises when the search process
operates as a tree walk, On the third level, the node (0, 0) appears. (In fact, it appears twice.) But this is the

same as the top node of the tree, which has already been expanded. 0,0 =
Those two paths have not gotten Us anywhere. So we would like ‘—|—|

to eliminate them and continue only along the other branches. _

The waste of effort that arises when the same node is generated 4’@% (0.3)
more than once can be avoided at the price ol additional ; | |
bookkeeping. Instead of traversing a scnn:h_lrcr:, we traverse a - e 4.3) lﬁ'j
directed graph. This graph differs from a tree in that several paths :
may come together at a node. The graph corresponding to the Fig- 2.19 A Search Graph for the Water
tree of Fig. 2.18 is shown in Fig. 2.19. Jug Problem

Any tree search procedure that keeps track of all the nodes that have been generated so far can be convented
to a graph search procedure by modifying the action performed each time a node is generated. Notice that of
the two systematic search procedures we have discussed so far, this requirement that nodes be kept track of is
met by breadth-first search but not by depth-first search. But, of course, depth-first search could be modified,
at the expense of additional storage, 1o retain in memory nodes that have been expanded and then backed-up
over. Since all nodes are saved in the search graph, we must use the following algorithm instead of simply
adding a new node to the graph.

Algorithm: Check Duplicate Nodes

l. Examine the set of nodes that have been created so far to see if the new node already exists.
If it does not-simply add it 1o the graph just as for a tree.
. 1f it does already exist, then do the following:

(a) Set the node that is being expanded to point to the already existing-node corresponding o its
successor rather than to the new one. The new one can simply be thrown away.

(b) If you are keeping track of the best (shortest or otherwise least-cost) path (o each node, then check
to see if the new path is better or worse than the old one. If worse, do nothing. If better, record the
new path as the correct path to use to get to the node and propagate the carresponding change in
cost down through successor nodes as necessary.

L Ik

One problem that may arise here is that cycles may be introduced into the search graph. A evele is a path
through the graph in which a given node appears more than once. For example, the graph of Fig. 2.19 contains
two cycles of length two, One includes the nodes (0, 0) and (4, 0); the other includes the nodes (0, 0) and (0,
3). Whenever there is a cycle, there can be paths of arbitrary length. Thus it may become more difficult to
show that a graph traversal algorithm is guaranteed to terminate.

Treating the search process as a graph search rather than as a tree search reduces the amount of effort that
15 spent exploring essentially the same path several times. But it requires additional effort each time a node is

Problems, Problem Spaces, and Search 47

generated to see if it has been gencrated before. Whether this effort is justified depends on the particular
problem. If it is very likely that the same node will be generated in several different ways, then it is more
worthwhile to use a graph procedure than if such duplication will happen only rarely.

Graph search procedures are especially useful for dealing with partially commutative production systems
in which a given set of operations will produce the same result regardless of the order in which the operations
are applied. A systematic search procedure will try many of the permutations of these operators and so will
generate the same node many times. This is exactly what happened in the water jug example shown above.

2.6 ADDITIONAL PROBLEMS

Several specific problems have been discussed throughout this chapter. Other problems have not yet been
mentioned, but are common throughout the Al literature. Some have become such classics that no Al book
could be complete without them, so we present them in this section. A useful exercise, at this point, would be
to evaluate each of them in light of the seven problem characteristics we have just discussed.

A hrief justification is perhaps required before this parade of toy problems is presented. Artificial intelligence
is not merely a science of toy problems and microworlds (such as the blocks world). Many of the technigues
that have been developed for these problems have become the core of systems that solve very nontoy problems,
So think about these problems not as defining the scope of Al but rather as providing a core from which much
more has developed.

The Missionaries and Cannibals Problem

Three missionaries and three cannibals find themselves on one side of a river. They have agreed thar they
would all like 1o get to the other side. But the missionaries are not sure what else the cannibals have agreed to.
So the missionaries want to manage the trip across the river in such a way that the number of missionaries on
cither side of the river is never less than the number of cannibals who are on the same side. The only boat
available holds only two people at a time. How can evervone get across the river without the missionaries
risking being eaten?!

The Tower of Hanoi

Somewhere near Hanoi there is a monastery whose monks devote their lives to a very important task. In their
courtyard are three tall posts. On these posts is a set of sixty-four disks, each with a hole in the center and each
of a different radius. When the monastery was established, all of the disks were on one of the posts, each disk
resting on the one just larger than it. The monks® task is 1o move all of the disks to one of the other pegs. Only
one disk may be moved at a time, and all the other disks must be on one of the pegs. In addition, at no time
during the process may a disk be placed on top of a smaller disk. The third peg can, of course, be used as a
temporary resting place for the disks. What is the quickest way for the monks to accomplish their mission?

Even the best solution to this problem will take the monks a very long time. This is fortunate, since legend
has it that the world will end when they have finished,

The Monkey and Bananas Problem

A hungry monkey finds himself in a room in which a bunch of bananas is hanging from the ceiling. The
monkey, unfortunately, cannot reach the bananas. However, in the room there are also a chair and a stick. The
ceiling is just the right height so that a monkey standing on a chair could knock the bananas down with the
stick. The monkey knows how to move around, carry other things around, reach for the bananas, and wave a
stick in the air. What is the best sequence of actions for the monkey to take to acquire lunch?

48 Artificial Intelligence

SEND DONALD CROSS
+MORE +GERALD +ROADS
MONEY ROBERT DANGER

Fig. 2.20 Some Cryptarithmetic Problems

Cryptarithmetic
Consider an arithmetic problem represented in letters, as shown iff the examples in Fig. 2.20. Assign a decimal
digit to each of the letters in such a way that the answer to the problem is correct. If the same letter oceurs
maore than once. it must be assigned the same digit each time. No two different letters may be assigned the
same digit.

People’s strategies for solving cryptarithmetic problems have been, studied intensively by Newell and
Simon [1972].

SUMMARY

In this chapter, we have discussed the first two steps that must be taken toward the design of a program to
solve a particular problem:
1. Define the problem precisely. Specity the problem space, the operators for moving within the space,
and the starung and goal state(s).
2. Analyze the problem to determine where it falls with respect to seven important issues,
The last two steps for developing a program to solve that problem are, of course:

3. Tdentify and represent the knowledge required by the task.

4. Choose one or more techniques for problem solving, and apply those technigues to the problem.

Several general-purpose, problem-solving technigues are presented in the next chapter, and several of
them have already been alluded to in the discussion of the problem charactenistics in this chapter. The
relationships between problem charactenstics and specific technmiques should become even clearer as we go
on. Then, in Part [I, we discuss the issue of how domain knowledge is to be represented.

EXERCISES

LT . . LT]

1. In this chapter, the following problems were mentioned:

» Chess . e Water jug

+ B-puzzle * Traveling salesman
s Missionaries and cannibals s Tower of Hanoi

» Monkey and bananas o Cryptarithmetic

« Bndge

Analyze each of them with respect to the seven problem characteristics discussed in Section 2.3,

2. Before we can solve a problem using state space search, we must define an appropriate state space. For
each of the problems mentioned above for which it was not done in the text, find a good state space
representation,

3. Describe how the branch-and-bound technique could be used to find the shortest solution to a water
jug problem.

Problems, Problem Spaces, and Search 49

. For each of the following types of problems, try to describe a good heuristic function:

(a) Blocks world

(b) Theorem proving

(c) Missionanes and cannibals

. Give an example of a problem for which breadth-first search would work better than depth-first search.
Give an example of a problem for which depth-first search would work better than breadth-first search.
. Wrte an algorithm to perform breadth-first search of a problem graph. Make sure your algonthm
works properly when a single node is generated at more than one level in the graph.

. Try to construct an algorithm for solving blocks world problems, such as the one in Fig. 2.10. Do not

cheat by looking ahead to Chapter 13.

CHAPTER

3

HEURISTIC SEARCH TECHNIQUES

Fadure is the opportunity te beqin again more intelligently.

—Moshe Arens
(1925-), Israeli politician

In the last chapter, we saw that many of the problems that fall within the purview of artificial intelligence are
too complex to be solved by direct techniques; rather they must be attacked by appropriate search methods
armed with whatever direct techniques are available 1o guide the search. In this chapter, a framework for
describing search methods is provided and several general-purpose scarch techniques are discussed. These
methods are all vaneties of heuristic search. They can be described independently of any particular task or
problem domain. But when applied to particular problems, their efficacy is highly dependent on the way they
exploit domain-specific knpwledge since in and of themselves they are unable to overcome the combinatorial
explosion to which search processes are so vulnerable. For this reason, these techmiques are often called weak
methods. Although a realization of the limited effectiveness of these weak methods o solve hard problems by
themselves has been an important result that emerged from the last three decades of Al research, these techniques
continue to provide the framework into which domain-specific knowledge can be placed, either by hand or as
a result of automatic learning. Thus they continue to form the core of most Al systems. We have already
discussed two very basic search sirategies:

» Depth-first search ¢ Breadth-first search
[n the rest of this chapter, we present some others:
o Generate-and-test * Hill climbing « Best-first search
* Problem reduction e Constraint satisfaction * Means-ends analysis

3.1 GENERATE-AND-TEST
The generate-and-test strategy is the simplest of all the approaches we discuss. [t consists of the following steps:

Algorithm: Generate-and-Test

1. Generate a possible solution. For some problems, this means generating a particular point in the problem
space. For others, it means generating a path from a start state.

Heuristic Search Technigues 51

2. Test to see if this is actually a solution by comparing the chosen point or the endpoint of the chosen
path 1o the set of acceptable goal states.
3. If a solution has been found, quit. Otherwise, return to step 1.

If the generation of possible solutions is done systematically, then this procedure will find a solution
eventually, if one exists. Unfortunately, if the problem space i= very large, “eventally™ may be a very long timz.

The generate-and-test algorithm is a depth-first search procedure since complete solutions must be generated
before they can be tested. In its most systematic form, it is simply an exhaustive search of the problem space.
Generate-and-test can, of course, also operate by generating solutions randomly, but then there is no guarantee
that a solution will ever be found. In this form, it is also known as the British Museum algorithm, a reference
to a method for finding an object in the British Museum by wandering randomly.! Between these two extremes
lies a practical middle ground in which the search process proceeds systematically, but some paths are not
considered because they seem unlikely 1o lead to a solution. This evaluation is performed by a heuristic
function, as deseribed 1n Section 2.2.2.

The most straightforward way to implement systematic generate-and-rest is as a depth-first search tree
with backtracking. If some intermediate states are likely to appear ofien in the tree, however, it may be better
to modify that procedure, as described above, to traverse a graph rather than a tree.

For simple problems, exhaustive generate-and-test is ofien a reasonable technique. For example, consider
the puzzle that consists of four six-sided cubes, with each side of each cube painted one of four colors. A
solution to the puzzle consists of an arrangement of the cubes in a row such that on all four sides of the row
one block face of each color is showing. This problem can be solved by a person (who i1s a much slower
processor for this sort of thing than even a very cheap computer) in several minutes by systematically and
exhaustively trying all possibilities. It can be solved even more quickly using a heunstic generate-and-test
procedure. A quick glance at the four blocks reveals that there are more, say, red faces than there are of other
colors. Thus when placing a block with several red faces, it would be a good idea to use as few of them as
possible as outside faces. As many of them as possible should be placed to abut the next block. Using this
heuristic, many configurations need never be explored and a solution can be found guite quickly.

Unfortunately, for problems much harder than this, even heunistic generate-and-test, all by itself, is not a
very effective technique. But when combined with other technigues to restrict the space in which to search
even further, the technique can be very elfective.

For example, one early example of a successful Al program is DENDRAL [Lindsay er al., 1980], which
infers the structure of organic compounds using mass spectrogram and nuclear magnetic resonance (NMR)
data. It uses a strategy cailed plan-generatestest m which a planning process that uses constramt-satisfaction
techniques (see Section 3.5) creates lists of recommended and contraindicated substructures. The generate-
and-test procedure then uses those lists so that it can explore only a fairly limited set of structures, Constrained
in this way, the generate-and-test procedure has proved highly effective.

This combination of planning, using one problem-solving method (in this case, constraint satisfaction)
with the use of the plan by another problem-solving method, generate-and-test, is an excellent example of the
way techniques can be combined to overcome the limitations that each possesses individually. A major weakness
of planning is that it often produces somewhat inaccurate solutions since there is no feedback from the world.
But by using it only to produce pieces of solutions that will then be exploited in the generate-and-1est process,
the lack of detailed accuracy becomes unimportant. And, at the same time, the combinatorial problems that
anise in simple generate-and-test are avoided by judicious reference 1o the plans.

1 Or, as another story goes, il a sufficient number of monkeys were placed in front of a set of typewriters and left alone
long enough, then they would evenmeally produce all of the works of Shakespeare.

52 Artificial Intelligence

3.2 HILL CLIMBING

Hill climbing 1s a variant of generate-and-test in which feedback from the test procedure 1s used to help the
generator decide which direction to move in the search space. In a pure generate-and-test procedure, the test
function responds with only a yes or no. But if the test function is augmented with a heuristic function® that
provides an estimate of how close a given state is to a goal state, the generate procedure can exploit it as
shown in the procedure below. This is particularly nice because often the computation of the heuristic function
can be done at almost no cost at the same time that the test for a solution 1s being performed. Hill climbing is
often used when a good heuristic function is available for evaluating states but when no other useful knowledge
15 available. For example, suppose you are in an unfamiliar city without a map and you want (o get downtown.
You simply aim for the tall buildings. The heuristic function is just distance between the current location and
the location of the tall buildings and the desirable states are those in which this distance 15 minimized.

Recall from Section 2.3.4 that one way to characterize problems is according to their answer to the question,
“Is a good solution absolute or relative?” Absolute solutions exist whenever it is possible to recognize a goal
state just by examining it. Getting downtown is an example of such a problem. For these problems, hill
climbing can terminate whenever a goal state 1s reached. Only relanve solutions exist, however, for maximization
{or minimization) problems, such as the traveling salesman problem. In these problems, there is no a priori
goal state. For problems of this sort, it makes sense to terminate hill climibing when there is no reasonable
alternative state to move to.

3.2.1 Simple Hill Climbing
The simplest way to implement hill climbing is as follows.

Algorithm: Simple Hill Climbing

1. Ewvaluate the initial state. If it is also a goal state, then return it and quit, Otherwise, continue with the
initial state as the current state.

2. Loop until a solution is found or until there are no new operators left to be applied in the current state:
(a) Select an operator that has not yet been applied to the current state and apply it to produce a new state.
(b) Ewvaluate the new siate.

(i) If it is a goal state, then return it and quit.
(1i) If it is not a goal state but it is better than the current state, then make it the current state.
(iii) If it is not better than the current state, then continue in the loop.

The key difference between this algorithm and the one we gave for generate-and-test is the use of an
evaluation function as a way to inject task-specific knowledge into the control process. It is the use of such
knowledge that makes this and the other methods discussed in the rest of this chapter heuristic search methods,
and it is that same knowledge that gives these methods their power 10 solve some otherwise intractable problems.

Notice that in this algorithm, we have asked the relatively vague question, “1s one state better than another?
For the algorithm to work, a precise definition of betrer must be provided. In some cases, it nmmk\g. higher
value of the heuristic function. In others, it means a lower value. Tt does not matter which, as long as a
particular hill-climbing program is consistent in its interpretation. “

To see how hill climbing works, let’s return to the puzzle of the four colored blocks. To solve the problem,
we first need to define a heuristic function that describes how close a particular configuration is to being a
solution. One such function is simply the sum of the number of different colors on each of the four sides. A
solution to the puzzle will have a value of 16. Next we need to define a set of rules that describe ways of
transforming one configuration into another. Actually, one rule will suffice. It says simply pick a block and

2 What we are calling the heuristic function is sometimes also called the objective function, particularly in the literature of
mathematical optimization.

MHeuristic Search Techniques 53

rotate it 90 degrees in any direction. Having provided these definitions, the next step is to generate a starting
configuration. This can either be done at random or with the aid of the heuristic function described in the last
section. Now hill climbing can begin. We generate a new state by selecting a block and rotating it. If the
resulting state 1s better, then we keep it. If not, we return to the previous state and try a different perturbation.

3.2.2 Steepest-Ascent Hill Climbing

A useful variation on simple hill climbing considers all the moves from the current state and selects the best
one as the next state. This method is called sreepest-ascent hill elimbing or gradient search. Notice that this
contrasts with the basic method in which the first state that is better than the current state is selected. The
algorithm works as follows.

Algorithm: Steepest-Ascent Hill Climbing

1. Evaluate the mnitial state. If it is also a goal state, then retumn it and quit. Otherwise, continue with the
initial state as the current state,
2. Loop until a solution is found or until a complete itevation produces no change o current state:
(a) Let SUCC be a state such that any possible successor of the current state will be better than SUCC.
{b) For each operator that applies to the current state do:
(1) Apply the operator and generate a new siate.
(ii) Evaluate the new state. If it is a goal state, then return it and quit. If not, compare it to SUCC.
If it is better, then set SU/CC to this state. If it 1s not better, leave SUCC alone.
{c} If the SU/CC is better than current state, then set current state to SUCC

To apply stecpest-ascent hill climbing to the colored blocks problem, we must consider all perturbations of
the initial state and choose the best. For this problem, this is difficult since there are so many possible moves.
There is a trade-off between the time required to select a move (usually longer for steepest-ascent hill climbing)
and the number of moves required to get o a solution (usually longer for basic hill climbing) that must be
considered when deciding which method will work better for a particular problem,

Both basic and steepest-ascent hill climbing may fail to find a solution. Either algorithm may terminate not
by finding a goal state but by geting to a state from which no better states can be generated. This will happen
if the program has reached either a local maximum, a plateau, or a ridge.

A local maximaen 15 a state that is better than all 1ts neighbors but 15 not better than some other states farther away.
At a local maximum, all moves appear to make things worse. Local maxima are panticularly frustrating because
they often occur almost within sight of a solution. In this case, they are called foorhills.

A plateau is a flat area of the search space in which a whole set of neighboring states have the same value. On a
plateau, it is not possible to determine the best direction in which to move by making local comparisons.

A ridee is a special kind of local maximum. [t is an area of the search space that is higher than surrounding areas and
that itself has a slope (which one would like to climb). But the onientation of the high region, compared to the set of
available moves and the directions in which they move, makes it impossible to waverse a ridge by single moves.

There are some ways of dealing with these problems, although these methods are by no means puaranteed:

+ Backirack to some earlier node and try going in a different direction. This is particularly reasonable if at
that node there was another direction that looked as promising or almost as promising as the one that was
chosen earlier. To implement this strategy, maintain a list of paths almost taken and go back to one of them
if the path that was taken leads to a dead end. This is a fairly good way of dealing with local maxima.

¢ Make abig jump in some direction to try to get to a new section of the search space. This is a particularly

" good way of dealing with plateaus. If the only rules available describe single small steps, apply them
several times in the same direction.

+« Apply two or more rules before doing the test. This corresponds to moving in several directions at
once. This is a particularly good strategy for dealing with ridges. '

54 Artificial Intelligence

Even with these first-aid measures, hill climbing is not always very effective. It is particularly unsuited to
problems where the value of the heuristic function drops off suddenly as you move away from a solution. This
is often the case whenever any sort of threshold effect is present. Hill climbing is a local method, by which we
mean that it decides what to do next by looking only at the “immediate™ consequences of its choice rather than
by exhaustively exploring all the consequences. It shares with other local methods,
such as the nearest neighbor heuristic described in Section 2.2.2, the advantage
of being less combinatonally explosive than comparable global methods. But it
also shares with other local methods a lack of a guarantee that it will be effective.
Although it is true that the hill-climbing procedure itself looks only one move
ahead and not any farther, that examination may in fact exploit an arbitrary amount
of global information if that information is encoded in the heunstic function.
Consider the blocks world problem shown in Fig. 3.1. Assume the same operators
(i.e., pick up one block and put it on the table; pick up one block and put it on
another one) that were used in Section 2.3.1. Suppose we use the following Fig. 3.1 A Hill-Climbing
heuristic function: Problem

w[o[o|m[n]a[z]>]
[mlojo|m[n|ax]

intitial state goal state

Local: Add one point for every block that is resting on the thing it is supposed 1o be resting on. Subtract one point
for every block that is sitting on the wrong thing.

Using this function, the goal state has a score of 8. The initial state has a score of 4 (since it gets one point
added for blocks C, D, E, F, G. and H and one point subtracted for blocks A and B). There is only one move
from the initial state, nzmely to move block A to the table. That produces a state with a score of 6 (since now
A's position causes a point to be added rather than subtracted). The hill-climbing procedure will accept that
move, From the new state, there are three possible moves, leading
to the three states shown in Fig. 3.2. These states have the scores:
(a) 4, (b) 4, and (c) 4. Hill climbing will halt because all these
states have lower scores than the current state. The process has
reached a local maximum that is not the global maximum. The
problem is that by purely local examination of support structures,
the current state appears to be better than any of its successors EI Al A
because more blocks rest on the correct objects. To solve this
problem, it is necessary to disassemble a good local structure (the (b) ©
stack B through H) because it is in the wrong global context, Fig. 3.2 Three Possible Moves

We could blame hill climbing itself for this failure o look far enough ahead to find a solution. But we could
also blame the heunistic function and try to modify it. Suppose we try the following heuristic function in place
of the first one:

@jojo|m[n|e|x[>]

lo[olom[n]e]

|z |ojom|n]a|

o
-
T

Global: For each block that has the correct support structure (i.e., the complete structure undemneath it is exactly as
it should be), add one point for every block in the suppont structure. For each block that has an incorrect support
structure, subtract one point for every block in the existing suppont structure.

Using this function, the goal state has the score 28 (1 for B, 2 for C, ete.). The initial state has the score —
28. Moving A to the table vields a state with a score of —21 since A no longer has seven wrong blocks under
it. The three states that can be produced next now have the following scores: (a) =28, () =16, and (c) =15.
This time, steepesi-ascent hill climbing will choose move (), which is the correct one. This new heunistic
function captures the two key aspects of this problem: incorrect structures are bad and should be taken apart;

Heuristic Search Technigques 55
PRl - B el MLl O NPT el Bl L PO N NP

and correct structures are good and should be built up. As a result, the same hill climbing procedure that failed
with the earlier heuristic function now works perfectly. .

Unfortunately, it is not always possible to construct such a perfect heuristic function. For example, consider
again the problem of driving downtown. The perfect heuristic function would need to have knowledge about
one-way and dead-end streets, which, in the case of a strange city, is not always available. And even if perfect
knowledge is, in principle, available, it may not be computationally tractable to use. As an extreme example,
imagine a heuristic function that computes a value for a state by invoking its own problem-solving procedure
to look ahead from the state it is given to find a solution. It then knows the exact cost of finding that solution
and can return that cost as its value. A heuristic function that does this converts the local hill-climbing procedure
into a global method by embedding a global method within it. But now the computational advantages of a
local method have been lost. Thus it is stll true that hill climbing can be very inefficient in a large, rough
problem space. But it is often useful when combined with other methods that get it started in the nght general
neighborhood.

3.2.3 Simulated Annealing

Simulated annealing is a variation of hill climbing in which, at the beginning of the process, some downhill
moves may be made, The idea is to do enough exploration of the whole space early on so that the final
solution is relatively insensitive to the starting state. This should lower the chances of getting caught at a local
maximum, a plateau, or a ridge.

In order to be compatible with standard usage in discussions of simulated annealing, we make two notational
changes for the duration of this section. We use the term objective function in place of the term hewristic function.

And we attempt to minimize rather than maximize the value of the objective function. Thus we actually
describe a process of valley descending rather than hill climbing.

Simulated annealing |[Kirkpatrick er al, 1983] as a computational process is patterned after the physical
process of annealing, in which physical substances such as metals are melied (i.c., raised to high energy
levels) and then gradually cooled until some solid state is reached. The goal of this process is to produce a
minimal-energy final state. Thus this process is one of valley descending in which the objective function is
the energy level, Physical substances usually move from higher energy configurations to lower ones, so the
valley descending occurs naturally. But there is some probability that a transition to a higher energy state will
occur. This probability is given by the function
p = e MAT
where A £ is the positive change in the energy level T'is the temperature, and & 1s Boltzmann's constant. Thus,
in the physical valley descending that occurs during annealing, the probability of & large uphill move is lower
than the probability of a small one. Also, the probability that an uphill move will be made decreases as the
temperature decreases. Thus such moves are more likely during the beginming of the process when the
temperature is high, and they become less likely at the end as the temperature becomes lower. One way to
characterize this process is that downhill moves are allowed anytime. Large upward moves may occur early
on, but as the process progresses, only relatively small upward moves are allowed until finally the process
converges to a local minimum configuration,

The rate at which the system is cooled 1s called the annealing schedule. Physical annealing processes are
very sensitive to the annealing schedule. If cooling occurs too rapidly, stable regions of high energy will form.
In other words, a local but not global minimum is reached. If, however, a slower schedule is used, a uniform
crystalline structure, which corresponds to a global minimum, is more likely to develop. But, if the schedule
is too slow, time is wasted. At high temperatures, where essentially random motion is allowed, nothing useful
happens. At low temperatures a lot of time may be wasted after the final structure has already been formed.
The optimal annealing schedule for each particular annealing problem must usually be discovered empirically.

Heuristic Search Technigues 57

Jarge (such as the number of permutations that can be made to a proposed traveling salesman route). For such
problems, it may not make sense to try all possible moves. Instead, it may be useful to exploit some criterion
mvolving the number of moves that have been tried since an improvement was found.

Experiments that have been done with simulated annealing on a variety of problems suggest that the best
way to select an annealing schedule is by trying several and observing the effect on both the quality of the
solution that 15 found and the rate at which the process converges. To begin to get a feel for how to come up
with a schedule, the first thing to notice is that as T approaches zero, the probability of accepting a move to a
worse stale goes to zero and simulated annealing becomes identical to simple hill climbing. The second thing
to notice is that what really matters in computing the probability of accepling a move is the ratio A E/T. Thus
it is important that values of T be scaled so that this ratio is meaningful. For example, T could be initialized 10
a value such that, for an average AE, p° would be (.5,

Chapter 18 returns to simulated annealing in the context of neural networks.

3.3 BEST-FIRST SEARCH

Until now, we have really only discussed two systematic control strategies, breadth-first search and depth-
first search (of several varieties). In this section, we discuss a new method, best-first search, which is a way of
combining the advantages of both depth-first and breadth-first search inmo a single method,

3.3.1 OR Graphs

Depth-first search is good because it allows a solution to be found without all competing branches having to
be expanded. Breadth-first search is good because it does not get trapped on dead-end paths. One way of
combining the two is 1o follow a single path at a ime, but switch paths whenever some competing path looks
more promising than the current one does.

At each step of the best-first search process, we select the most promising of the nodes we have generated
so far. This 1s done by applving an appropriate heunistic function to each of them. We then expand the chosen
node by using the rules to generate its successors. If one of them is a solution, we can quit. If not, all those new
nodes are added to the set of nodes generated so far. Again the most promising node is selected and the
process continues. Usually what happens is that a bit of depth-first scarching occurs as the most promising
branch is explored. But eventually, if a solution is not found, that branch will start to look less promising than
one of the top-level branches that had been ignored. At that point, the now more promising, previously
ignored branch will be explored. But the old branch is not forgotten.. Its last node remains in the set of
generated but unexpanded nodes. The search can return to it whenever all the others get bad enough that it is
again the most promising path.

Figure 3.3 shows the beginning of a best-first search procedure. [nitially, there is only one node, so it will
be expanded. Doing so generates three new nodes. The heuristic function, which, in this example, is an
estimate of the cost of getting to a solution from a given node, is applied 1o each of these new nodes, Since
node D is the most promising, it is expanded next, producing two successor nodes, E and F. But then the
heuristic function is applied to them. Now another path, that going through node B, looks more promising, so
it is pursued, generating nodes G and H. But again when these new nodes are evaluated they look less promising
than another path, so attention is retumed to the path through D o E. E is then expanded, yielding nodes T and
1. At the next step, J will be expanded, since it is the most promising. This process can continue until a
solution 1s found.

Notice that this procedure is very similar to the procedure for steepest-ascent hill climbing, with two
exceptions. In hill climbing, one move is selected and all the others are rejected, never to be reconsidered.
This produces the straightline behavior that is characteristic of hill climbing. In best-first search, one move is
selected, but the others are kept around so that they can be revisited later if the selected path becomes less

58 Artificial Intelligence

Step 1 Step 2

(4] A

B](3) [C](5) [Dj(1)

Fig. 3.3 A Best-First Search

promising.® Further, the best available state is selected in best-first search, even if that state has a value that is
lower than the value of the state that was just explored. This contrasts with hill climbing, which will stop if
there are no successor states with better values than the current state. .

Although the example shown above illustrates a best-first search of a tree, it 1s sometimes important to
search a graph instead so that duplicate paths will not be pursued. An algorithm to do this will operate by
searching a directed graph in which each node represents a point in the problem space. Each node will contain,
in addition to a description of the problem state it represents, an indication of how promising it is, a parent link
that points back to the best node from which it came, and a list of the nodes that were generated from it. The
parent link will make it possible to recover the path to the goal once the goal is found. The list of successors
will make it possible, if a better path is found to an already existing node, to propagate the improvement down
o its successors. We will call a graph of this sort an @R graph, since each of its branches represents an
allernative problem-solving path.

To implement such a graph-search procedure, we will need 1o use two lists of nodes:

* (JPEN — nodes that have been generated and have had the heunstic function applied 10 them but which
have not yet been examined (i.e., had their successors generated), OPEN is actually a priority queue in
which the elements with the highest prionty are those with the most promising value of the heunsiic
function. Standard techniques for manipulating priority queues can be used to manipulate the list.

« CLOSED — nodes that have already been examined. We need to keep these nodes in memory if we
want to search a graph rather than a tree, since whenever a new node is generated, we need to check
whether it has been generated before.

We will also need a heuristic function that estimates the merits of each node we generate. This will enable the
algorithm to search more promising paths first. Call this function f'(to indicate that it is an approximation to a

*In a variation of best-first search, called beam search, only the i most promising states are kept for future consideration.
This procedure is more efficient with respect to memory but intreduces the possibility of missing a solution altogether by
pruning the search tree too early.

Heuristic Search Techniques 59

function/that gives the true evaluation of the node). For many applications, it is convenient to define this function
as the sum of two components that we call g and &, The function g is a measure of the cost of getting from the
initial state to the current node. Note that g is not an estimate of anything; it is known to be the exact sum of the
costs of applying each of the rules that were applied along the best path to the node. The function /' is an estimate
of the additional cost of getting from the current node to a goal state. This is the place where knowledge about the
problem domain is exploited. The combined function f”, then, represents an estimate of the cost of getting from
the initial state to a goal state along the path that generated the current node. If more than one path generated the
node, then the algorithm will record the best one. Note that because ¢ and A" must be added, it is important that &’
be a measure of the cost of getting from the node to a solution (i.e., good nodes get low values; bad nodes get high
values) rather than a measure of the poodness of a node (i.e., good nodes get high values). But that is easy to
arrange with judicious placement of minus signs. It is also important that g be nonnegative. [this is not true, then
paths that traverse cycles in the graph will appear to get better as they get longer.

The actual operation of the algorithm is very simple. It proceeds in steps, expanding one node at each step,
until it generates a node that corresponds to a goal state. At each step, it picks the most promising of the nodes
that have so far been generated but not expanded. It generates the successors of the chosen node, applies the
heuristic function to them, and adds them to the list of open nodes, after checking to see if any of them have
been generated before. By doing this check, we can guarantee that each node only appears once in the graph,
although many nodes may point to it as a successor. Then the next step begins.

This process can be summarized as follows,

Algorithm: Best-First Search
I. Start with OFEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OPEN do:
{a) Pick them best node on OPEN.
(b) Generate 1ts SUCCessOrs.
(c)} For each successor do:

{i) If it has not been generated before, evaluate it, add it to OPEN, and record its parent.

(ii) If it has been penerated before, change the parent if this new path is better than the previous
one, In that case, update the cost of getting 10 this node and to any successors that this node
may already, have.

The basic idea of this algorithm 1s simple. Unfortunately, it is rarely the case that graph traversal algorithms
are simple to write correctly. And it is even rarer that it is simple to guarantee the correctness of such algorithms.
In the section that follows, we describe this algorithm in more detail as an example of the design and analysis
of a graph-search program.

3.3.2 The A* Algorithm

The best-first search algorithm that was just presented is a simplification of an algorithm called A*, which
was first presented by Hart er al, [1968; 1972). This algorithm uses the same ', g, and &’ functions, as well as
the lists OPEN and CLOSED, that we have already described.

Algorithm: A*
1, Start with @PEN containing only the initial node. Set that node’s g value to 0, its k' value 1o whatever
it is, and its f* value to A" + 0, or &". Set CLOSED to the empty list.
2. Until a goal node is found. repeat the following procedure: If there are no nodes on OPEN, repornt
failure. Otherwise, pick the node on OPEN with the lowest f* value. Call it BESTNODE. Remove it

from OPEN. Place it on CLOSED., See if BESTNODE is a goal node. If so, exit and report a solution
(either BESTNODE if all we want is the node or the path that has been created between the initial state

Artificial Intelligence

and BESTNODE if we are interested in the path). Otherwise, generate the successors of BESTNODE
but do not set BESTNVODE to point to them yet. (First we need to see if any of them have already been
generated.) For each such SUCCESSOR, do the following:

{a)
(b)
(c)

(d)

{e)

Set SUCCESSOR 1o poimt back to BESTNODE. These backwards links will make it possible to
recover the path once a solution is found.

Compute g(SUCCESSOR) = g(RESTNODE) + the cost of getting from BESTNODE to
SUCCESSOR.

See if SUCCESSOR is the same as any node on OPEN (i.e., it has already been generated but not
processed). If so, call that node OLD. Since this node already exists in the graph, we can throw
SUCCESSOR away and add OLD 1o the list of BESTNODE's successors, Now we must decide
whether OLD ' parent link should be reset to point to BESTNODE. It should be if the path we have
just found to SUCCESSOR is cheaper than the current best path to OLD (since SUCCESSOR and
OLD are really the same node). So see whether it is cheaper to get to OLD via its current parent or
to SUCCESSOR via BESTNODE by comparing their g values, If OLD is cheaper (or just as cheap),
then we need do nothing. If SUCCESSOR is cheaper, then reset OLDs parent link to point to
BESTNODE, record the new cheaper path in g(@LD), and update f'(OLD).

If SUCCESSOR was not on OPEN, see if it is on CLOSED. If so, call the node on CLOSED OLD
and add QLD 1o the list of BESTNODE 5, successors. Check to see if the new path or the old path
is better just as in step 2(c), and set the parent link-and g and f* values appropriately. If we have
just found a better path o OLD, we must propagate the improvement to OLD's successors. This is
a bit tricky. OLD points to its successors, Each successor in tum points 1o 118 successors, and so
forth, until each branch werminates with a node that either is still on QOPEN or has no successors. So
to propagate the new cost downward, do a depth-first traversal of the tree starting at OLD, changing
each node’s g value (and thus also its /7 value), rerminating each branch when you reach either a
node with no successors or a node to which an equivalent or better path has already been found.?
This condition is casy to check for. Each node's parent link points back to its best known parent,
As we propagate down to a node, see if its parent points to the node we are coming from. If so,
continue the propagation. If not, then its g value already reflects the better path of which it 1s part.
So the propagation may stop here. But it is possible that with the new value of g being propagated
downward, the path we are following may become better than the path through the current parent.
So compare the two. If the path through the current parent is still better, stop the propagation. If the
path we are propagating through is now better, reset the parent and continue propagation.

If SUCCESSOR was not already on either OPEN or CLOSED, then put it on QPEN, and add it to
the list of BESTNODE s successors. Compute f/(.SUCCESSOR) = g(SUCCESSOR) +
K (SUCCESSOR).

Several interesting observations can be made about this algorithm. The first concerns the role of the g
function. It lets us choose which node to expand next on the basis not only of how good the node itself looks (as
measured by A4°), but also on the basis of how good the path to the node was. By incorporating g into £, we will
not always choose as our next node to expand the node that appears to be closest to the goal. This is useful if we
care about the path we find. If, on the other hand, we only care about getting 1o a solution somehow, we can define
g always to be 0, thus always choosing the node that seems closest 1o a goal. If we want to find a path involving
the fewest number of steps, then we set the cost of going from a node to its successor as a constant, usually 1. If,
on the other hand, we want to find the cheapest path and some operators cost more than others, then we set the

* This second check guarantees that the algorithm will terminate even if there are cycles in the graph. If there is a cycle,
then the second time that a given node is visited, the path will be no better than the first time and so propagation will stop.

Heuristic Search Technigues 61

cost of going from one node 1o another 1o reflect those cosis. Thus the A* algorithm can be vsed whether we are
interested in finding a minimal-cost overall path or simply any path as quickly as possible.

The second observation involves It', the estimator of A, the distance of a node to the goal. If &’ is a perfect
estimator of fr, then A* will converge immediately to the goal with no search. The better hi is, the closer we
will get to that direct approach. If, on the other hand, the value of /" is always 0, the search will be controlled
by g. If the value of g is also 0, the search strategy will be random. 1 the value of g is always 1, the search will
be breadth first. All nodes on one level will have lower g values, and thus lower /* values than will all nodes
on the next level. What if, on the other hand, ” is neither perfect nor 07 Can we say anything interesting about
the behavior of the search? The answer is ves if we can guarantee that & never overestimates h. In that case,
the A* algorithm is guaranteed to find an optimal {as determined by g) path to a goal, if one exists. This can
easily be seen from a few examples.®

Consider the situation shown in Fig. 3.4. Assume that the cost of all
arcs 15 1. Imtially, all podes except A are on OPEN (although the Fig.
shows the situation two steps later, after B and E have been expanded).
For each node, £ is indicated as the sum of & and g. In this example,
node B has the lowest 7, 4, so it is expanded first, Suppose it has only
one successor E, which also appears to be three moves away from a goal.
Now f'(E) is 5, the same asf"(C). Suppose we resolve this in favor of the
path we are currently following. Then we will expand E next. Suppose it
oo has a single successor F, also judged to be three moves from a goal. Fig. 3.4 h"Underestimates h
We are clearly using up moves and making no progress, But f{F) = 6,
which is greater than f(C). So we will expand C next. Thus we see that by underestimating /'(B) we have
wasted some effort. But eventually we discover that B was farther away than we thought and we go back and
try another path.

Now consider the sitwation shown in Fig, 3.5, Again we expand B
on the first step. On the second step we again expand E. At the next
step we expand F, and finally we generate G, for a solution path of
length 4. But suppose there is a direct path from D 1o a solution, giving
a path of length 2. We will never find it. By overestimating i'(D) we
make D look so bad that we may find some other, worse solution without
ever expanding D. In general, if & might overestimate h, we cannot be
guaranteed of finding the cheapest path solution unless we expand the
entire graph until all paths are longer than the best solution. An (0+4)
interesting question is, “Of what practical significance is the theorem
that if i! never overestimates /i then A* is admissible?” The answer is, Fig. 3.5 h"Overestimates h
“almost none,” because, for most real problems, the only way to guarantee that hi never overestimates h is 10
set it to zero. But then we are back 1o breadth-first search, which is admissible but not efficient. But there is a
corollary to this theorem that is very useful. We can state it loosely as follows:

F{(1+3)

Graceful Decay of Admissibility: If & rarely overestimates i by more than &, then the A* algorithm will rarely
find a soluion whose cost is more than & greater than the cost of the optimal solution,

The formalization and proof of this corallary will be left as an exercise.
The third observation we can make about the A* algorithm has 10 do with the relationship between trees
and graphs. The algorithm was stated in its most general form as it applies to graphs. It can, of course, be

% A search algorithm that is goaranteed to find an optimal path to a goal, if one exists, is called admissible [Nilsson, 1980].

Heuristic Search Technigues 63

(. = - riEE D R b Ll e RN T LRl

One important question that anses in agenda-driven systems 15 how to find the most promising task on
each cycle. One way to do this is simple. Maintain the agenda sorted by rating. When a new task is created,
insert it into the agenda in its proper place. When a task has its justifications changed. recompute its rating and
move it 1o the correct place in the list. But this method causes a great deal of time to be spent keeping the
agenda in perfect order. Much of this time is wasted since we do not need perfect order. We only need 1o know
the proper first element. The following modified strategy may occasionally cause a task other than the best to
be executed, but it is significantly cheaper than the perfect method. When a task is proposed, or a new
Justification is added to an existing task, compute the new rating and compare it against the top few (e.g., five
or ten) elements on the agenda. If it is better, insert the node into its proper position at the top of the list,
Otherwise, leave it where it is or simply insent it at the end of the agenda. At the beginning of cach cycle,
choose the first task on the agenda. In addition, once in a while. go through the agenda and reorder it properly.

An agenda-driven control structure is also useful if some tasks (or nodes) provide negative evidence about
the merits of other tasks (or nodes). This can be represented by justifications with negative weightings, If
these negative weightings are used, it may be important 1o check not only for the possibility of moving a task
to the head of the agenda but also of moving a top task to the bottom if new, negative justifications appear, But
this is easy to do.

As you can see, the agenda mechanism provides a good way of focusing the attention of a complex system
in the areas suggested by the greatest number of positive indicators, But the overhead for each task executed
may be fairly high. This raises the question of the proper grain size for the division of the entire problem-
solving process into individual tasks. Suppose each task is very small. Then we will never do even a very
small thing unless it really is the best thing to do. But we will spend a large percentage of our total effort on
figuring out what to do next. If, on the other hand, the size of an individual task is very large, then some effort
may be spent finishing one sk when there are more promising ones that could be done. But a smaller
percentage of the total time will be spent on the overhead of figuring out what to do. The exact choice of task
size for a particular system depends on the extent to which doing one small thing really means that a set of
other small things is likely to be very good to do too. It often requires some experimentation to get right.

There are some problem domains for which an agenda mechanism is inappropriate. The agenda mechanism
assumes that if there is good reason to do something now, then there will also be the same good reason to do
something later unless something better comes along in the interim. But this is not always the case, particularly
for systems that are interacting with people, The following dialogue would not be acceplable to most people:

Person: 1 don't want to read any more about China. Give me something else.
Computer: OK. What else are you interested in?

Person: How about Ttaly? [think I'd find haly fascinating.

Computer: What things about ltzly are yvou interested in reading about?

Person: I think 1"d like to start with its history.

Computer: Why don’t vou wani to read any more about China?

It would have been fine to have tried to find out why the person was no longer interested in China nght
after he or she mentioned it. The computer chose instead to trv to find a new area of positive interest, also a
very reasomable thing o do. But in conversations, the fact that something is reasonable now does not mean
that it will continue to be so after the conversation has proceeded for a while. So it is not a good idea simply
o pul possible statements on an agenda, wait until a later lull, and then pop out with them. More precisely,
agendas are a good way to implement monotonic production systems (in the sense of Section 2.4) and a poor
way 1o implement nonmonolonic ones.

Despite these difficulties, agenda-dnven control structures are very useful. They provide an excellent way
of integrating information from a variety of sources into one program since each source simply adds tasks and

64 Artificial Intelligence

e] WLl LN N il

justifications to the agenda. As Al programs become more complex and their knowledge bases grow, this
becomes a particularly significant advantage.

3.4 PROBLEM REDUCTION

So far, we have considered search strategies for OR graphs through which we want to find a single, path to a
goal. Such structures represent the fact that we will know how to get from a node to a goal state if we can
discover how to get from that node to a goal state along any one of the branches leaving it.

3.4,1 AND-OR Graphs

Another kind of structure, the AND-OR graph (or tree), is useful for representing the solution of problems
that can be solved by decomposing them into a set of smaller problems, all of which must then be solved. This
decompasition, or reduction, generates arcs that we call AND arcs. One AND arc may point to any number of
successor nodes, all of which must be solved in order for the arce to point 10 a solution. Just as in an OR graph,
several arcs may emerge from a single node, indicating a variety of ways in which the briginal problem might
be solved. This is why the structure is called not simply an AND graph but rather an AND-OR graph. An
example of an AND-OR graph (which also happens to be an AND-OR tree) is given in Fig. 3.6. AND arcs are
indicated with a line connecting all the components.

Lsual:mquimwm

/\

Goal: Steal TV set Goal: Eam soma money Goal: Buy TV set

Fig. 3.6 A Simpfe AND-OR Graph

In order to find solutions in an AND-OR graph. we need an algorithm similar to best-first search but with
the ability to handle the AND arcs appropriately. This algorithm should find a path from the starting node of
the graph to a set of nodes representing solution states. Notice that it may be necessary to get to more than one
solution state since each arm of an AND arc must lead to its own solution node.,

To see why our best-first search algorithm is not adequate for searching AND-OR graphs, consider
Fig. 3.7(a). The top node, A, has been expanded, producing two arcs, one leading to B and one leading to C and
D. The numbers at each node represent the value of f7 at that node. We assume, for simplicity, that every operation
has a uniform cosi, so0 each arc with a single successor has a cost of | and each AND arc with multiple successors
has a cost of 1 for each of its components. [f we look just at the nodes and choose for expansion the one with the
lowest f* value, we must select C. But using the information now available, it would be better to explore the path
going through B since to use C we must also use D, for a total cost of 9(C 4 D+ 2) compared to the cost of 6 that
we get by going through B. The problem is that the choice of which node to expand next must depend not only on

(5) {3) (4)

(5) (10) (3) (4) (15 (10
(i) {b)
Fig. 3.7 AND-OR Graphs

Heuristic Search Techniques 65

the f* value of that node but also on whether that node is part of the current best path from the initial node. The
tree shown in Fig. 3.7(b) makes this even clearer. The most promising single node is G with an /7 value of 3. Tt is
even part of the most promising arc G-H, with a total cost of 9, But that arc is not part of the current best path since
to use it we must also use the arc 1-J, with a cost of 27, The path from A, through B, to E and F is better, with a total
cost of 18, 50 we should not expand G next; rather we should examine either E or F.

In order to describe an algorithm for searching an AND-OR graph, we need to exploit a value that we call
FUTILITY. If the estimated cost of a solution becomes greater than the value of FUTILITY, then we abandon
the search. FUTILITY should be chosen to correspond to a threshold such that any solution with a cosflibove
it is too expensive to be practical, even if it could ever be found. Now we can state the algorithm.

Algorithm: Problem Reduction

1. Initialize the graph to the starting node.
2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY:

(a) Traverse the graph, starting at the initial node and following the current best path, and accumulate
the set of nodes that are on that path and have not vet been expanded or labeled as solved.

(b} Pick one of these unexpanded nodes and expand it. If there are no successors, assign FUTILITY as
the value of this node. Otherwise, add its successors to the graph and for cach of them compute f~
{use only /" and ignore g, for reasons we discuss below). If of any node is 0, mark that node as
SOLVED,

(c) Change the f* estimate of the newly expanded node to reflect the new information provided by its
successors. Propagate this change backward through the graph, If any node contains a successor
arc whose descendants are all solved, label the node itself as SOLVED, At each node that is visited
while going up the graph, decide which of its successor arcs is the most promising and mark it as
part of the current best path. This may cause the current best path 1o change. This propagation of
revised cost estimates back up the tree was not necessary in the best-first search algorithm because
only unexpanded nodes were examined. But now expanded nodes must be reexamined so that the
best current path can be selected. Thus it is important that their f* values be the best estimates
available.

This process is illustrated in Fig. 3.8, Atstep 1, A is the only node, so it is at the end of the current best path.
It is expanded, vielding nodes B, C, and D. The arc to D is labeled as the most promising one emerging from
A, since it costs 6 compared to B and C, which costs Y. (Marked arcs are indicated 1n the Fig.s by ammows.) In
step 2, node D) is chosen for expansion. This process produces one new arc, the AND arc to E and F, with a
combined cost estimate of 10. So we update the f* value of D to 10. Going back one more level, we see that
this makes the AND arc B-C better than the arc to D, so it is labeled as the cumrent best path. At step 3, we
traverse that arc from A and discover the unexpanded nodes B and C. T we are going to find a solution along
this path, we will have to expand both B and C eventually, so let's choose to explore B first. This generates
two new arcs, the ones to G and to H. Propagating their f values backward, we update f* of B to 6 (since that
is the best we think we can do, which we can achieve by going through G). This requires updating the cost of
the AND arc B-Cto 12 (6 + 4 + 2). After doing that, the arc to D is again the better path from A, so we record
that as the current best path and either node E or node F will be chosen for expansion at step 4. This process
continues until either a solution is found or all paths have led to dead ends, indicating that there is no solution.

In addiion to the difference discussed above, there is a second important way 1in which an algorithm for
searching an AND-OR graph must differ from one for searching an OR graph. This difference, ton, arises
from the fact that individual paths from node to node cannot be considered independently of the paths through
other nodes connected to the original ones by AND arcs. In the best-first search algorithm, the desired path

66 Artificial Intelligence

Before step 1 Before slep 2

[A](5)

Euic-nra step 3

{#4) (4) (5) {7) (4) (4)
Fig. 3.B The Operation of Problem Reduction

from one node 1o another was always the one with the lowest cost. But this is not always the case when
searching an AND-OR graph.

Consider the example shown in Fig. 3.9(a). The nodes were generated in alphabetical order. Now suppose
that node J is expanded at the next step and that one of its successors is node E, producing the graph shown in
Fig. 3.9(b}). This new path to E is longer than the previous path to E going through C. But since the path
through C will only lead to a solution if there is also a solution to D, which we know there is not, the path
through I is bener.

Fig.3.9 A Longer Path May Be Better

There is one important limitation of the algorithm we have just described. It fails to take into account any
interaction between subgoals. A simple example of this failure is shown in Fig. 3.10. Assuming that both
node C and node E ultimately lead to a solution, our algorithm will report a complete
solution that includes both of them. The AND-OR graph states that for A to be solved,
both C and D must be solved. But then the algorithm considers the solution of D as a
completely separate process from the solution of C. Looking just at the alternatives
from D, E is the best path. But it tums out that C is necessary anyway, so it would be
better also to use it to satisfy D. But since our algorithm does not consider such (5 (2
interactions, it will find a nonoptimal path. In Chapter 13, problem-solving methods Fig. 3.10 Interacting
that can consider interactions among subgoals are presented. Subgoals

Heuristic Search Technigues 67

3.4.2 The AO* Algorithm

The problem reduction algorithm we just described is a simplification of an algorithm described in Martelli
and Montanari [1973], Martelli and Montanari [1978], and Nilsson [1980]. Nilsson calls it the AO* algorithm,
the name we assume.

Rather than the two lists, OPEN and CLOSED, that were used in the A* algorithm, the AO* algorithm will
use a single structure GRAPH, representing the part of the search graph that has been explicitly generated so
far. Each node in the graph will point both down to its immediate successors and up to its immediate
predecessors. Each node in the graph will also have associated with it an A" value, an estimate of the cost of a
path from itself to a set of solution nodes. We. will not store g (the cost of getting from the start node to the
current node) as we did in the A* algorithm. It is not possible to compute a single such value since there may
be many paths to the same state. And such a value is not necessary because of the top-down traversing of the
best-known path, which guarantees that only nodes that are on the best path will ever be considered for
expansion. So &" will serve as the estimate of goodness of a node.

Algorithm: AO*
1. Let GRAPH consist only of the node representing the initial state. (Call this node INIT.) Compute

I*(INIT)

2. Unul INIT is labeled SOLVED or unul INITs " value becomes greater than FUTILITY, repeat the
following procedure:

{a) Trace the labeled arcs from INIT and select for expansion one of the as yet unexpanded nodes that
pceurs on this path, Call the selected node NODE,

(b) Generate the successors of NODE, If there are none, then assign FUTILITY as the &" valve of
NODE. This is equivalent to saying that NODE is not solvable. If there are successors, then for
cach one (called SUCCESSOR) that 15 not also an ancestor of NODE do the following:

(i) Add SUCCESSOR to GRAPH.
(ii) If SUCCESSOR is a terminal node, label it SOLVED and assign it an i value of 0.
(iii) If SUCCESSOR is not a terminal node, compute its f" value.

ic) Propagate the newly discovered information up the graph by doing the following: Let 5 be a set of
nodes that have been labeled SOLVED or whose h" values have been changed and so need to have
vilues propagated back to their parents. Initialize 5 to NODE. Until § is empty, repeat the, following
procedure:

(i) If possible, select from 8 a node none of whose descendanis in GRAPH occurs in §. If there is
no such node, select any node from 8. Call this node CURRENT, and remove it from 5.

(ii) Compute the cost of each of the arcs emerging from CURRENT. The cost of each arc is equal
to the sum of the & values of each of the nodes at the end of the arc plus whatever the cost of
the arc itself is. Assign as CURRENT'S new &’ value the minimum of the costs just computed
[or the arcs emerging from it

{1i1) Mark the best path out of CURRENT by marking the arc that had the minimum cost as computed
in the previous step.

(1v) Mark CURRENT SOLVED if all of the nodes connected to it through the new labeled arc have
been labeled SOLVED.

(v) If CURRENT has been labeled SOLVED or if the cost of CURRENT was just changed, then its
new status must be propagated back up the graph. So add all of the ancestors of CURRENT 1o 5.

It is worth noticing a couple of points about the operation of this algorithm. In step 2{c)v, the ancestors of
anode whose cost was altered are added 1o the set of nodes whose costs must also be revised. As stated, the
algorithm will insert all the node’s ancestors’ into the set, which may result in the propagation of the cost

68 Artificial Intelligence

change back up through a laree number of paths that are already known not to be
very good. For example, in Fig. 3,11, it is clear that the path throngh C will
always be better than the path through B, so work expended on the path through
B is wasted. But if the cost of E is revised and that change is not propagated up
through B as well as through C, B may appear to be better. For example, if, as a
result of expanding node E, we update its cost to (), then the cost of C will be
updated to 11, If this is all that is done, then when A 15 examined, the path through
B will have a cost of only 11 compared (o 12 for the path through C, and it will be Fig. 3.11 An Unnecessary
labeled erroncously as the most promising path. In this example, the mistake Backward
might be detected at the next step, during which D will be expanded. If its cost Propagation
changes and is propagated back to B, B’s cost will be recomputed and the new

cost of E will be used. Then the new cost of B will propagate back 1o A, At that point, the path through C will
again be better. All that happened was that some time was wasted in expanding D. But if the node whose cost
has changed is farther down in the search graph,
the error may never be detected. An example of
this is shown in Fig. 3.12{a). If the cost of G is
revised as shown in Fig. 3.12(b) and if it 15 not
immediately propagated back to E, then the
change will never be recorded and a nonoptimal
solution through B may be discovered.

A second point concerns the termination of
the backward cost propagation of step 2(c).
Because GRAPH may contain cycles, there is no
guarantee that this process will terminate simply
because it reaches the “top™ of the graph. It wrns
out that the process can be guaranteed 1o terminate
for a different reason, though. One of the exercises Fig.3.12 A Necessary Backward Propagation
at the end of this chapier explores why.

ia) b)

3.5 CONSTRAINT SATISFACTION

Many problems in Al can be viewed as problems of constraint satisfaction in which the goal is to discover
some problem state that satisfies a given set of constraints. Examples of this sort of problem include
cryplarithmetic puzzles (as described in Section 2.6) and many real-world percepiual labeling problems.
Design tasks can also be viewed as constraint-satisfaction problems in which a design must be created within
fixed limits on time, cost and materials.

By viewing a problem as one of constraint satisfaction, it is often possible to reduce substantially the
amount of search that 1s required as compared with a method that attempts to form partial solutions directly by
choosing specific values for components of the evenival solution. For example, a straightforward search
procedure 1o solve a cryptarithmetic problem might operate in a state space of partial solutions in which
letters are assigned particular numbers as their valuer, A depth-first control scheme could then follow a path
of assignments until either a solution or an inconsistency is discovered. In contrast, a constraint satisfaction
approach to solving this problem avoids making guesses on particular assignments of numbers to letters until
it has to. Instead, the initial set of constraints, which says that each number may correspond to only one letter
and that the sums of the digits must be as they are given in the problem, is first augmented to include restrictions
that can be inferred from the rules of arithmetic. Then, although guessing may still be required, the number of
allowable guesses is reduced and so the degree of search is curtailed.

Heuristic Search Technigues 69

Constraint satisfaction is a search procedure that operates in a space of constraint sets, The initial state
contains the constraints that are originally given in the problem description. A Goal State is any state that has
been constrained “enough,” where “enough™ must be defined for each problem. For example, for
cryplarithmetic, enough means that each letter has been assigned a unigue numeric value.

Constraint satisfaction is a two-step process. First, constraints are discovered and propagated as far as
possible throughout the system. Then, if there is still not a solution, search begins. A guess about something
15 made and added as a new constraint. Propagation can then occur with this new constraint, and so forth.

The first step, propagation, arises from the fact that there are usually dependencies among the constraints.
These dependencies oceur because many constraints involve more than one object and many objects participate
in more than one constraint. So, for example, assume we start with one constraint, N = E + 1. Then, if we
added the constraint N = 3, we could propagate that to get a stronger constraint on E. namely that E = 2.
Constraint propagation also arises from the presence of inference rules that allow additional constraints 1o be
inferred from the ones that are given. Constraint propagation terminates for one of two reasons. First, a
contradiction may be detected. If this happens, then there is no solution consistent with all the known constraints.
If the contradiction involves only those constraints that were given as part of the problem specification (as
opposed o ones that were guessed during problem solving), then no solution exists. The second possible
reason for termination is that the propagation has run out of steam and there are no turther changes that can be
made on the basis of current knowledge. 1f this happens and a solution has not vet been adequately specified,
then search is necessary 1o get the process moving again,

At this point, the second step begins. Some hypothesis about a way to strengthen the constraints must be
made. In the case of the cryptarithmetic problem, for example, this usually means guessing a particular value
for some letter. Once this has been done, constrant propagation can begin agan from this new state. IF a
solution is found, it can be reported. If still more guesses are required, they can be made. If a contradiction is
detected. then backiracking can be used to try a different guess and proceed with it. We can staie this procedure
more precisely as follows:

Algorithm: Constraint Satisfaction
1. Propagate available constraints. To do this, first set (JPEN o the set of all objects that must have values
assigned to them in a complete solution. Then do until an inconsistency is detected or until OPEN is
emply:
(a) Select an object OF from OPEN. Strengthen as much as possible the set of constraints that apply
to (.
(b} If this set is different from the set that was assigned the last time OF was examined or if this 1s the
first time OF has been examined, then add to OPEN all objects that share any constraints with OB,
(c) Remove OFR from OPEN.
If the unmion of the constraints discovered above defines a solution, then quit and report the solution.
It the union of the constraints discovered above defines a contradiction, then return failure.
It neither of the above occurs, then it 1s necessary to make a guess at something in order to proceed. To
do this, loop until a solution is found or all possible solutions have been eliminated:
{a) Select an object whose value is not vet determined and select a way of strengthening the constraints
on that object.
(b) Recursively invoke constraint satisfaction with the current set of constraints augmented by the
strengthening constraint just selected.
This algorithm has been stated as generally as possible. To apply it in a particular problem domain requires
the use of two kinds of rules: rules that define the way constraints may validly be propagated and rules that
suggest guesses when guesses are necessary. It is worth noting, though, that in some problem domains guessing

= e P

70 Artificial Intelligence

DT, T T T R e

W T T I O T sl

may not be required. For example, the Walz algorithm for propagating line labels in a picture, which is
described in Chapter 14, is a version\of this constraint satisfaction algorithm with the guessing step eliminated.
In general. the more powerful the rules for propagating constraints, the less need there is for guessing.

To see how this algorithm works, consider the cryptarithmetic problem shown in Fig. 3.13. The goal stale
is a problem state in which all letters have been assigned a digit in such a way that all the initial constraints are
satisfied.

Problem:
SEND
+ MORE

MONEY
Iminal State:
No two letters have the same value,
The sums of the digits must be as shown in
the problem.

Fig. 3.13 A Cryptarithmetic Problem

The solution process proceeds in cycles. At each eyele, two significant things are done (corresponding to
steps 1 and 4 of this algorithm):

1. Constraints are propagated by using rules that correspond to the properties of arithmetic.
2. A value is guessed for some letter whose value 1s not yet determined.

In the first step, 1t does not usually matter a great deal what order the propagauon 15 done in, since all
available propagations will be performed before the step ends. In the second step, though, the order in which
guesses are tried may have a substantial impact on the degree of search that is necessary. A few useful heuristics
can help to select the best guess to try first, For example, if there 15 a letter that has only two possible values
and another with six possible values, there 1s a better chance of guessing night on the first than on the second.
Another useful heuristic is that if there is a letter that paricipates in many constraints then it 1s a good idea to
prefer it o a letter that participates in a few. A guess on such a highly constrained letter will vsually lead
quickly either 10 a contradiction (if it 1s wrong) or 1o the generation of many additional constraints (if it is
right). A guess on a less constrained letter, on the other hand, provides less information. The result.of the first
few cycles of processing this example is shown in Fig. 3.14. Since constraints never disappear at lower levels,
only the ones being added are shown for each level. [t will not be much harder for the problem solver to access
the constrainis as a set of lists than as one long list, and this approach is efficient both in terms of storage space
and the ease of backiracking. Another reasonable approach for this problem would be o store all the constrainis
in one central database and also w record at each node the changes that must be undone during backiracking.
CL C2, C3, and C4 indicate the carry bits out of the columns, numbering from the right.

[ninially, mles for propagating constraints generate the following additional constraints:

o M =1, since two single-digit numbers plus a carry cannot total more than 19.

* S=8o0r9since 5+ M+ C3>9(to generate the carry) and M= 1,5+ 1 +C3 59,505+ C3 > 8 and
C3is at most [,

o O =1, since 5 + M(I) + C3 (<= 1) must be at least 10} to generate a carry and it can be at most 11. But
M s already 1, so0 O must be (),

o N=EorE+ 1, depending on the value of C2. But N cannot have the same value as E. SoN=E + 1 and
C2is L.

Heuristic Search Technigues

Operator Precondirions Results
PUSH(ohj, loc) at(robot, obj)* at{obj, loc)*
large(obj* at{robot, loc)
clear(obj)®
armemply
CARRY/(obj, loc) at{robot, obj)* at{obj, loc)*
small{obj) at{robot, loc)
WALKI(loc) none at{robot, loc)
PICKUF{obj) at(robot, obj) holding(obj)
PUTDOWN({obj) holding(obj) —holding(obj)
PLACE(objl, obj2) at(robot, obj2)* onf{objl, obj2)
holding{objl)
Fig. 3.15 The Robot’s Operators
Push | Carry | Walk | Pickup [Putdowd Place
Move object * d
Move robot *
Clear object *
Get object on object *
Get arm empty ¥ *

Be holding object

A
! |

Fig. 3.16 A Difference Table

B
I I

E D

! Push | Pick up IPut downl Pick up|

Start

| | | |
Plllxﬂﬁ'ﬁlpl.lﬂnl Flaca

Method

Goal

Fig. 3.18 More Progress of the Means-Ends Method

73

SAW-APART). So this path leads to a dead-end. Following the other branch, we attempt to apply PUSH.
Figure 3.17 shows the problem solver's progress at this point. It has found a way of doing something useful.
But it is not yet in a position to do that thing. And the thing does not get
it quite to the goal state. So now the differences between A and B and
between C and D must be reduced. 1
PUSH has four preconditions, two of which produce differences
between the start and the goal states: the robot must be at the desk, and
the desk must be clear. Since the desk is already large, and the robot's
arm is empty, those two preconditions can be ignored. The robot can be
brought to the comect location by using WALK. And the surface of the desk can be cleared by two uses of
PICKUP. But after one PICKUP, an attempt 1o do the second results in another difference—1the arm must be
empty. PUTDOWN can be used io reduce that difference.
Once PUSH is performed, the problem state is close to the goal state, but not quite. The objects must be
placed back on the desk. PLACE will put them there. But it cannot be applied immediately. Another difference
must be eliminated, since the robot must be holding the objects. The progress of the problem solver at this
point is shown in Fig. 3.18.

B D
e B
Start Goal
Fig. 3.17 The Progress of the
Means-Ends Analysis

74 Artificial Intelligence

The final difference between C and E can be reduced by using WALK to get the robot back 1o the objects,
followed by PICKUP and CARRY,

The process we have just ilustrated (which we call MEA for short) can be summanzed as follows:

Algorithm: Means-Ends Analysis {CURRENT, GOAL)

1. Compare CURRENT o GOAL. If there are no differences between them then retumn.
2. Otherwise, select the most important difference and reduce it by doing the following until success or
failure is signaled:

(a) Select an as yet untried operator ¢ that is applicable 1o the current difference. If there are no such
operators, then signal falure,

(b} Attempt to apply O 1w CURRENT. Generate descriptions of two states: O-START, a state in which
O's preconditions are satisfied and Q-RESULT, the state that would result if O were applied in O-
START.

{cy If
(FIRST-PART « MEA{CURRENT, O-5TART})
and
(LAST-PART «— MEMO-RESULT, GOAL})
are successful, then signal success and return the result of concatenating
FIRST-PART, O, and LAST-FART.

Many of the details of this process have been omitted in this discussion, In particular, the order in which
differences are considered can be critical. It 1s important that significant differences be reduced before less

critical ones. If this is not done, a great deal of effort may be wasted on situations that take care of themselves
once the main parts of the problem are solved.

The simple process we have described is usually not adequate for solving complex problems. The number
of permutations of differences may get too large. Working on one difference may interfere with the plan for
reducing another. And in complex worlds, the required difference tables would be immense. In Chapter 13 we
look at some ways in which the basic means-ends analysis approach can be extended to tackle some of these
problems.

SUMMARY

In Chapter 2, we listed four steps that must be taken to design a program to solve an Al problem. The first two
sleps were:
1. Define the problem precisely. Specify the problem space, the operators for moving within the space,
and the starting and goal state(s).
2. Analyze the problem 1o determine where 1t falls with respect 10 seven important issues.

The other two steps were 1o isolate and represent the task knowledge required, and to choose problem
solving techniques and apply them to the problem. In this chapter, we began our discussion of the last step of
this process by presenting some general-purpose, problem-solving methods. There are several important ways
in which these algorithms differ, including:

» What the states in the search space(s) represent. Sometimes the states represent complete potential

solutions (as in hill climbing). Sometimes they represent solutions that are partially specified (as in
constraint satisfaction).

Heuristic Search Technigues 75

How, at each stage of the search process, a state is selected for expansion,

How operators to be applied o that node are selected.

Whether an optimal solution can be guaranteed.

Whether a given state may end up being considered more than once.

How many state descriptions must be maintained throughout the Search process.
Under what circumstances should a particular search path be abandoned.

In the chapters that follow, we talk about ways that knowledge about task domains can be encoded in
problem-solving programs and we discuss techniques for combining problem-solving technigques with
knowledge to solve several important classes of problems.

EXERCISES

1.
2.

When would best-first search be worse than simple breadth-first search?

Suppose we have a problem that we intend (o solve using a heuristic best-first search procedure. We
need to decide whether to implement it as a tree search or as a graph search. Suppose that we know that,
on the average, cach distinet node will be generated N times during the search process. We also know
that if we use a graph, it will take. on the average, the same amount of ime to check a node to see if it
has already been generated as it takes to process M nodes if no checking is done. How can we decide
whether to use a tree or a graph? In addition to the parameters A and M, what other assumptions must

be made? Start Goal
. Consider trying to solve the B-purzle using hill climbing., Can you find a2 [1]2]3 112]3

heuristic function that makes this work? Make sure it works on the following [B|5|6 4|5|6

example; 4]7 7|8

Describe the behavior of a revised version of the steepest ascent hill climbing algorithm in which step
2(c) is replaced by “set current state to best successor.”

and the value of g 1s b):
The second and third steps then result in the following sequence of situations:

JE{M f\zm
(4+2) (2+2) (4+2})

{a) What node will be expanded at the next step?

(b) Can we guarantee that the best solution will be found?
Why must the A* algorithm work properly on praphs containing cyeles? Cycles could be prevented if
when a new path 1s generated to an existing node, that path were
simply thrown away if it is no better than the existing recorded one.
If g is nonnegative, a cyvclic path can never be better than the same
path with the cycle omitted. For example, consider the first graph
shown below, in which the nodes were generated in alphabetical
order. The fact that node D is a successor of node F could simply niot
be recorded since the path through node F is longer than the one
through node B. This same reasoning would also prevent us from

. Suppose that the first step of the operation of the best-first search algorithm
results in the following situation (g + b means that the value of & at anode is a [&l
(4+1) (3+1)

76

10.

11.

12

13.

14.

15.

Artificial Intelfigence

recording node E as a successor of node F, if such was the case. But what would happen in the situation
shown in the second graph below if the path from node G to node F were not recorded and, at the next
step, it were discovered that node G is a successor of node C7

Formalize the Graceful Decay of Admissibility Corollary and prove that it is true of the A* algorithm.
In step 2(a) of the AO* algorithm, a random state at the end of the current best path is chosen for
expansion. But there are heuristics that can be used to influence this choice. For example, it may make
sense to choose the state whose current cost estimate is the lowest. The argument for this is that for
such nodes, only a few steps are required before either a solution is found or a revised cost estimate is
produced. With nodes whose current cost estimate is large, on the other hand, many steps may be
required before any new information is obtained. How would the algorithm have to be changed to
implement this state-selection heuristic?

8
. The backward cost propagation step 2(c) of @
the AO* algorithm must be guaranteed to (50 {11} {15)
terminate even on graphs containing cycles.
How can we guarantee that 1t does? To help (10}

answer this question, consider what happens
for the following two graphs, assuming in each case that node F is expanded
next and that its only successor is A:

Also consider what happens in the following graph if the cost of node C 1s
changed to 3:

The AO* algonithm, in step 2(ch, requires that a node with no descendants in § be K
selected from 5, if possible. How should the manipulation of 5 be implemented so that [B]

such a node can be chosen efficiently? Make sure that your technigue works comectly

on the following graph, if the cost of node E is changed:

Consider again the AOQ® algorithm. Under what circumstances will it happen that there are nodes in 5
but there are no nodes in 5 that have no descendants also in 57
Trace the constraint satisfaction procedure solving the following cryptarithmetic problem:

CROSS
+ ROADS

DANGER

The constraint satisfaction procedure we have described performs depth-first search whenever some
kind of search is necessary. But depth-first is not the only way to conduct such a search (although it is
perhaps the simplest).

(a) Rewrite the constraint satisfaction procedure to use breadth-first search.

{b) Rewrile the constraint satisfaction procedure to use best-first search,

Show how means-ends analysis could be used to solve the problem of getting from one place to another.
Assume that the available operators are walk, drive, take the bus, take a cab, and fly.

Imagine a robot trying to move from one place in a city to another. It has complete knowledge of the
connecting roads in the city. As it moves the road condition keep changing. If the robot is to reach its
destination within a prescribed time, suggest an algorithm for the same. (Hint: Split the road map into
a set of connected nodes and imagine that the costs of moving from one node to the other change based
on some lime-dependent conditions).

PART II

KNOWLEDGE REPRESENTATION

CHAPTER

4

KNOWLEDGE REPRESENTATION ISSUES

I general we are least awire of what our minds do best.

—Marvin Minsky
(1927-}, American cognitive scientist

In Chapter 1, we discussed the role that knowledge plays in Al systems. In succeeding chapters up until now,
though, we have paid little attention to knowledge and its importance as we instead focused on basic frameworks
for building search-based problem-solving programs. These methods are suificiently general that we have
been able to discuss them without reference to how the knowledge they need 15 to be represented. For example,
in discussing the best-first search algorithm, we hid all the references to domain-specific knowledge in the
veneration of successors and the computation of the fi” function. Although these methods are useful and form
the skeleton of many of the methods we are about 1o discuss. their problem-solving power is limited precisely
because of their generality. As we look in more detail at ways of representing knowledge, it becomes clear
that particular knowledge representation models allow for more specific, more powerful problem-solving
mechanisms that operate on them. In this part of the book, we retum to the topic of knowledge and examine
specific techniques that can be used for representing and manipulating knowledee within programs.

4.1 REPRESENTATIONS AND MAPPINGS

In order to solve the complex problems encountered in antificial intelligence, one needs both a large amount
of knowledge and some mechanisms for manipulating that knowledge to create solutions o new problems. A
variety of ways of representing knowledge (facts) have been exploited in Al programs. But before we can talk
about them individually, we must consider the following point that pertains to all discussions of representation,
namely that we are dealing with two different kinds of entities:

» Facts: truths in some relevant world. These are the things we want to represent,
¢ Representations of facts in some chosen formalism. These are the things we will actually be able to
manipulate.

One way to think of structuring these entities is as two levels:
o The knowledge Tevel, at which facts (includine each agent’s behaviors and current goals) are described.

80 Artificied Intelligence

=T Ll T W0 R AR L e e TR

o The symbeol level, at which representations of objects at the knowledge level are defined in terms of
symbals that can be manipulated by programs.

Reasaning
See Newell [1982] for a detailed exposition of this view programs

in the context of agents and their goals and behaviors, In the ———2_pilntemal]

i) ; o . Facts| . Represantations
rest of our discussion here, we will follow a model more like .
the one shown in Fig. 4.1, Rather than thinking of one level English English
on top of another, we will Tocus on facts, on representations, understanding generation
and on the lwo-way mappings that muost exist between them. Englis;'n
We will call these links representarion mappings. The forward Representation

representation mapping maps from facts to representations,
The backward representation mapping goes the other way,
from representations 1o facts.

One representaiion of facts is so common that it deserves special mention: natural language {particularly
English) sentences. Regardless of the representation tor facts that we use in a program, we may also need to
be concerned with an English representation of those facts in order to facilitate getting information into and
out of the system. In this case, we must also have mapping functions from English sentences 1o the representation
we are actually going to use and from it back to sentences. Figure 4.1 shows how these three Kinds of objects
relate 1o cach other. '

Let's look at a simple example using mathematcal logic as the representational formalism. Consider the
English sentence:

Fig. 4.1 Mappings between Facts and
Representations

Spot is a dog.

The fact represented by that English senence can also be represented in logic as:
dog(Spot)

Suppose that we also have a logical representation of the fact that all dogs have tails:

T s dogfx) = haseailfx)

Then, using the deductive mechanisms ol logic, we may generate the new representation object:

hastaill Spon)

Using an appropnate backward mapping function, we could then generate the English sentence:
Spot has a tail.

Or we could make use of this representation of a new fact to cause us (o take some appropriate action or to
derive representations of additional facts.

Itis important to keep in mind that usually the available mapping functions are not one-to-one. In fact, they
are often not even functions but rather many-to-many relations. (In other words, each object in the domain
may map to several elements in the range, and several elements in the domain may map to the same element
of the range.) This is particularly true of the mappings involving English representations of facts. For example,
the two sentences " All dogs have tails™ and “Every dog has a tail” could both represent the same fact, namely,

Knowledge Representation Issues 81

that every dog has at least one tail. On the other hand. the former could represent either the fact that every dog
has at least one tail or the fact that each dog has several tails. The latter may represent either the fact that every
dog has at least one tail or the fact that there is a tail that every dog has. As we will see shortly, when we try
to convert English sentences into some other representation, such as logical propositions, we must first decide
what facts the sentences represent and then convert those facts into the new representation,

The starred links of Fig. 4.1 are key components of the design of any knowledge-based program. To see
why, we need to understand the role that the internal representation of a fact plays in a program. What an Al
program does is to manipulate the internal representations of the facts it is given, This manipulation should
result in new structures that can also be interpreted as internal representations of lacts. More precisely, these
structures should be the internal representations of facts that correspond to the answer to the problem described
by the starting set of facts,

Sometimes, a good representation makes the operation of a reasoning program not only correct but trivial.
A well-known example of this occurs in the context of the mutilated checker board problem, which can be
stated as follows: '

The Mutilated Checker board Problem. Consider a normal checker board from which two squares, in opposite
corners, have been removed. The task is to cover all the remaining squares exactly with dominoes, each of which
covers two squares. No overlapping, either of dominoes on top of each other or of dominoes over the boundary of
the mutilated board are allowed. Can this task be done?

One way to solve this problem is to try to enumerate, exhaustively, all possible tilings to see if one works.
But suppose one wants to be more clever. Figure 4.2 shows three ways in which the mutilated checker board
could be represented (to a person). The first representation does not directly suggest the answer to the problem.
The second may; the third does, when combined with the single additional fact that each domino must cover
exactly one white square and one black square. Even for human problem solvers a representation shift may
make an enormous difference in problem-solving effectiveness. Recall that we saw a slightly less dramatic
version of this phenomenon with respect to a problem-solving program in Section 1.3.1, where we considered
two different ways of representing a tic-tac-toe board, one of which was as a magic square.

Mumber of
black squares = 30

Number of
whitle squares = 32

{a) {c)
Fig. 4.2 Three Representations of a Mutifated Checker board

Figure 4.3 shows an expanded view of the starred part of Fig. 4.1 The dotted line across the top represents
the abstract reasoning process that a program is intended to model. The solid line across the bottom represents
the concrete reasoning process that a particular program performs. This program successfully models the
abstract process to the extent that, when the backward representation mapping is applied to the program’s
output, the appropriate final facts are actually gencrated. If either the program’s operation or one of the
representation mappings is not faithful to the problem that is being modeled, then the final facts will probably
not be the desired ones. The key role that is played by the nature of the representation mapping is apparent
from this figure. If no good mapping can be defined for a problem, then no matter how good the program to
solve the problem is, it will not be able to produce answers that correspond 10 real answers to the problem.

82

Artificial Intelligence

It is interesting to note that Fig. 4.3 looks very much Initial _ desired real reasoning | Final
like the sort of figure that might appear in a general facts facts
programming book as a description of the relationship i
between 31:1 abstract ‘.M“ type (such as a set) .'.jn:i a d ard
concrete implementation of that type (e.g., as alinked % | o0 von representation | ¥
list of elements). There are some differences, though, mapping mapping
between this figure and the formulation usually used Y
in programming texts (such as Aho er af. [1983]). For

. e Internal Internal
example, mn data tvpe design it 15 expected that the representation -a—-—-—a- representation
mapping that we are calling the backward of initial facts nfp;r:ﬂh;nm of initial facts

representation mapping is a function (i.e., every
representation corresponds to only one fact) and that it
is omto (i.e., there is at least one representation for every fact). Unfortunately, in many Al domains, it may not
be possible to come up with such a representation mapping, and we may have o live with one that gives less
ideal results. But the main idea of what we are doing is the same as what programmers always do, namely to
find concrete implementations of abstract concepts.

Fig. 4.3 Representation of Facts

4.2 APPROACHES TO KNOWLEDGE REPRESENTATION

A good system for the representation of knowledge in a particular domain should possess the following four
properties:

Represemtational Adequacy — the ability to represent all of the kinds of knowledge that are needed in that
domain.

» [nferential Adequacy — the ability to manipulate the representational structures in such a way as o
derive new structures corresponding 1o new knowledge inferred from old.

o Inferential Efficiency — the ability to incorporate into the knowledge structure additional information
that can be used to focus the attention of the inference mecha- nisms in the most promising directions.

* Acquisitional Efficiency — the ability to acquire new information easily. The simplest case involves
direct insertion, by a person, of new knowledge into the database. Ideally, the program self would be
able 1o control knowledge acquisition,

Unfortunately, no single system that optimizes all of the capabilities for all kinds of knowledge has yet
been found. As a result, multiple technigues for knowledge representation exist. Many programs rely on more
than one technique. In the chapters that follow, the most important of these echnigues are described in detail,
But in this section, we provide a simple, example-based introduction to the important ideas.

Simple Relational Knowledge

The simplest way (o represent declarative facts 15 as a set of relations of the same sort used in database
systems, Figure 4.4 shows an example of such a relational system.

Player Heighi Weight Bats-Throws
Hank Aaron 6-0 180 Right-Right
Willie Mays 5-10 170 Right-Right

Babe Ruth 6-2 215 Left-Left
Ted Williams fr-3 205 Left-Right
player_info(*hank aaron’, *6-0°, 180,right-right).

Fig. 44 Simple Relational Knowledge and a sample fact in Prolag

Knowledge Representation lssues 83

The reason that this representation is simple is that standing alone it provides very weak inferential
capabilities But knowledge represented in this form may serve as the input to more powerful inference engines.
For example, given just the facts of Fig. 4.4, it is not possible even to answer the simple question, “Who is the
heaviest player?” But if a procedure for finding the heaviest player is provided, then these facts will enable
the procedure 1o compute an answer. If, instead, we are provided with a set of rules for deciding which hitter
to put up against a given pitcher (based on right- and left-handedness, say), then this same relation can
provide at least some of the information required by those rules. '

Providing support for relational knowledge is what database systems are designed o do. Thus we do not
need to discuss this kind of knowledge representation structure further here. The practical issues that arise in
linking a database system that provides this kind of support to a knowledge representation system that provides
some of the other capabilities that we are about to discuss have already been solved in several commercial
products.

Inheritable Knowledge

The relational knowledge of Fig. 4.4 corresponds to a set of atrributes and associated values that wogether
describe the objects ol the knowledge base. Knowledge about objects, their attributes, and their values need
not be as simple as that shown in our example. In particular, it is possible to augment the basic representation
with inference mechamisms that operate on the structure of the representation. For this to be effective, the
structure must be designed to correspond to the inference mechanisms that are desired. One of the most useful
forms of inference is property inheritance, in which elements of specific classes inherit attributes and values
from more general classes in which they are included.

In order to support property inheritance, objects must be organized nto classes and classes must be arranged
in & generabization erarchy. Figure 4.5 shows some additional baseball knowledge mserted mto a structure
that is so arranged. Lines represent attributes. Boxed nodes represent objects and values of attributes of
objects. These values can also be viewed as objects with atributes and valves, and so on. The arrows on the
lines point from an object to its value along the corresponding aitribute ling, The structure shown in the figure
15 a slot-and-filler structure. It may also be called a semantic network or a collection of frames. In the latter
case, each individual frame represents the collection of atribotes and values associated with a particular
node. Figure 4.6 shows the node for baseball player displayed as a frame.

Adult- +——-[5-10]

Male height
o]
equal to__ Pals |Baseball- baltting-average
IS8 isa
batting-average —
: [Piicher | [Fielder oo 2Veres® o g2]
instance instance

Chicago | _leam _ |Three-Finger-| |[Pee-Wee-| team _ |Brooklyn-
Cubs Brown Reese Dodgers

Figure 4.5 [Inheritable Knowledge

84 Artificial Intelligence

e P Pk, TP S= A T oAl PR

Basehall-Plaver

f5ar: Aduelr-Male

Baals: (EQUAL handed)
height: B-1
barting-average: 252

Fig. 4.6 Viewing a Node as a Frame

Do not be put off by the confusion in terminology here. There is so much flexibility in the way that this
(and the other structures described in this section) can be used 1o solve particular representation problems that
it is difficult to reserve precise words for particular representations. Usually the vse of the term frame svsrem
implies somewhat more structure on the attributes and the inference mechanisms that are available to apply to
them than does the term semantic network,

In Chapter 9 we discuss structures such as these in substantial detail. But to get an idea of how these
structures support inference using the knowledge they contain, we discuss them briefly here. All of the objects
and most of the attributes shown in this example have been chosen to correspond 1o the baseball domain, and
they have no general significance. The two exceptions to this are the attribute isa, which is being used to show
class inclusion, and the attnbute instance, which is being used o show class membership. These two specific
(and generally useful) attributes provide the basis for property inhentance as an nference technigue. Using
this technique, the knowledge base can support retrieval both of facts that have been explicitly stored and of
facts that can be derived from those that are explicitly stored.

An idealized form of the propeny inheritance algorithm can be stated as follows:

Algorithm: Property Inheritance

To retrieve a value V for attribute A of an instance object O
Find € in the knowledge base,
I there 15 a value there for the attribute A, report that value.
Otherwise, see if there 1s a value for the attribute instance, If not, then fail.
Otherwise, move to the node corresponding to that value and look for a value for the attnibute A, If one
15 found, report it
5. Otherwise, do until there is no value for the isa attribute or until an answer is found:
ia) Get the value of the isa attribute and move to that node.
(b)Y Seef there 15 a value for the attribute A. 1t there 15, report at.

o b b

This procedure is simplistic, It does not say what we should do if there is more than one value of the
instance or isa attribute. But it does describe the basic mechanism of inhentance. We can apply this procedure
to our example knowledge base to denve answers 1o the following quenes:

o ream(Pee-Wee-Reese) = Brooklvn-Dodgers. This attribute had a value stored explicitly in the knowledge
base.

o batting-average(Three-Finger Browvn) = 106, Since there is no value for batting average stored explicitly
for Three Finger Brown, we follow the instance attribute to Pitcher and extract the value stored there.
Now we observe one of the critical charactenistics of property inhentance, namely that it may produce
default values that are not guaranieed to be correct but that represent “best guesses™ in the face of a lack
of more precise information. In fact, in 1906, Brown's balting average was (204,

o ficight{ Pee-Wee-Reese) = 6-1. This represents another default inference. Notice here that because we
get to it first, the more specific fact about the height of baseball players overrides a more general fact
about the height of adult males.

90 Artificial Intelligence

P
Johné—>5 PROPEL ~— fist

Poss-by ﬂ
Poss-by John
John————>fist <= Physcontact
et
Marhr John h"-ﬂf'ﬂ'
I
John £—>MOVE
Pm-bftn
John =—=> Fist
D
“Jahn punched Mary.”
{u} Mary
= o
Marnyi—> PROPEL —a— fisl
Poss-b
Poss-by :ﬂ
Mary=———>ist £=>Physconlact ry
Johan Mary John
I
Mary <—>MOVE
Fnas-hyfu
Mary —— Fist
D
“Mary punched John.”
(b} John

Fig. 4.10 Redundant Representations

There are several arguments against the use of low-level primitives, One is that simple high-level facts
miay require a lot of storage when broken down into primitives. Muoch of that storage is really wasted since the
low-level rendition of a particular high- level concept will appear many times, once for each time the high-
level concept 15 referenced. For example, suppose that actions are being represented as combinations of a
small set of primitive actions, Then the fact that John punched Mary might be represented as shown in
Fig. 4.10¢a). The representation says that there was physical contact between John's fist and Mary. The contact
was caused by John propelling his fist toward Mary, and in order to do that John first went 10 where Mary
was.” But suppose we also know that Mary punched John, Then we must also store the structure shown in
Fig. 4.10(b). If, however, punching were represented simply as punching, then most of the detail of both
structures could be omitied from the structures themselves, It could instead be stored just once in a common
representation of the concept of punching.

A second but related problem is that if knowledge is initially presented to the system in a relatively high-
level form, such as English, then substantial work must be done to reduce the knowledge into primitive form.

2 The represeniation shown in this example is called conceprual dependency and is discussed in detml in Section 10,1,

Knowledge Representation Issues 91
e T T P P - e U -~ .- SN |

Yet, for many purposes, this detailed primitive representation may be unnecessary. Both in understanding
language and in interpreting the world that we see, many things appear that later tumm ouwt to be irrelevant. For
the sake of efficiency, it may be desirable to store these things at a very high level and then to analyze in detail
only those inputs that appear to be important.

A third problem with the use of low-level primitives is that in many domains, it is not at all clear what the
pnmitives should be. And even in domains in which there may be an obvious set of primitives, there may not be
enough information present in each use of the high-level constructs to enable them to be converted into their
primitive components. When this is true, there is no way to avoid representing facts at a variety of granularities,

The classical example of this sort of sitwation is provided by kinship terminology [Lindsay, 1963]. There
exists at least one obvious set of primitives: mother, father, son, daughter, and possibly brother and sister. But
now suppose we are told that Mary is Sue’s cousin. An attempt to describe the cousin relationship in terms of
the primitives could produce any of the following interpretations:

o Mary = daughter{brotherimother(Sue)))
Mary = daughter{sister{mother{Suc)))
Mary = daughteri brother{father Sue)))
Mary = daughter{sister(father(Sue)))

If we do not already know that Mary is female, then of course there are four more possibilities as well.
Since in general we may have no way of choosing among these representations, we have no choice but to
represent the fact using the nonprimitive relation consin.

The other way to solve this problem is to change our primitives. We could use the set: parenr, child,
sthling, male, and femalfe. Then the fact that Mary 15 Sue’s cousin could be represented as

Mary = childi sibling{ parent{ Sue)))

But now the primitives incorporaie some generalizations that may or may not be appropriate. The main
point to be leamed from this example is that even in very simple domains, the correct set of primitives is not
obvious,

In less well-structured domains, even more problems arise. For example, given just the fact

Iohn hroke the window.
a program would not be able 10 decide if John's actions consisted of the primitive sequence:

1. Pick up a hard object.
2. Hurl the object through the window.

or the sequence:

1. Pick up a hard object.
2. Haold onto the object while causing it to crash into the window,

or the single action:
1. Canse hand {or foot) to move fast and crash into the window.
or the single action:

1. Shut the window so hard that the glass breaks.

92 Artificial Intelligence

As these examples have shown, the problem of choosing the correct granularity of epresentation for a
pirticular body of knowledge is not easy. Clearly, the lower the level we choose, the less inference required o
reason with it in some cases, but the more conference required o create the representation from English and the
more room it takes to store, since many inferences will be represented many times. The answer for any particular
task domain must come to a large extent from the domain itself—to what use is the knowledge to be put?

One way of looking at the question of whether there exists a good set of low-level primitives is that it is a
question of the existence of a unique representation. Does there exist a single, canonical way in which large
bodies of knowledge can be represented independently of how they were onginally stated? Another, closely
related, unigueness question asks whether individual objects can be represented uniguely and independently of
how they are described. This issue is raised in the following quotation from Quine [1961] and discussed in
Woods 11975]:

The phrase Evenig Star names a certain large physical object of spherical form, which is huriling through space
some scores of millions of miles from here, The phrase Merning Star names the samie thing, as was probably Mirst
established by some observant Babyloman. Bur the two phrases cannot be regarded as having the same meaning;,
otherwise that Babylonian could have dispensed with his observations and contented himself with reflecting on the
meaning of his words, The meanings, then, being different from one another, must be other than the named object,
which is one and the same in both cases.

In order for a program to be able 1o reason as did the Babylonian, it must be able to handle several distinct
representations that tum out to stand for the same object.

We discuss the question of the correct granulanty of representation, as well as 1ssues involving redundant
storage of information, throughout the next several chapters, particularly in the section on conceptual
dependency, since that theory explicitly proposes that a small set of low-level primitives should be used for
representing actions.

4.3.4 Representing Sets of Objects

It is important to be able to represent sets of objects for several reasons, One is that there are some properties
that are true of sets that are not true of the individual members of a set. As examples, consider the assertions
that are being made in the sentences “There are more sheep than people in Australia™ and “English speakers
can be found all over the world.” The only way to represent the facts described in these sentences is to attach
assertions fo the sets representing people, sheep, and English speakers, since, for example, no single English
speaker can be found all over the world. The other reason that it is important to be able to represent sets of
objects is that if a property is true of all {or even most) elements of a set, then it is more efficient to associate
it once with the set rather than (o associate it explicitly with every clement of the set. We have already looked
at ways of doing that, both in logical representations through the use of the universal quantifier and in slot-
and-filler structures, where we used nodes to represent sets and inheritance to propagate set-level assertions
down to individuals. As we consider ways to represent sets, we will want to consider both of these uses of set-
level representations. We will also need to remember that the two uses must be kept distinct. Thus if we assert
something like largef Elephant), it must be clear whether we are assenting some property of the set itself (i.e..
that the set of elephants is large) or some property that holds for individual elements of the set (i.e., that
anything that is an elephant is large).

There are three obvious ways in which sets may be represented. The simplest is just by a name. This is
essentially what we did in Section 4.2 when we used the node named Baseball-Player in our semantic net and
when we used predicates such as Baill and Barrer in our logical representation. This simple representation
does make it possible to associate predicates with sets. But it does nol, by itself, provide any information
aboul the set it represents. It does not, for example, tell how to determine whether a particular object is a
member of the set or not.

Using Predicate Logic 115

A e b Al el T T T g S TR S T e e e Tl b

(We could, of course, have decided instead to substitute x for y. since they are both just dummy variable
names. The algorithm will simply pick one of these two substitutions.) But now. if we simply continue and
match v and z, we produce (ne substitution /v, But we cannot substitute bothy and z for x, so we have not
produced a consistent substitution.

What we need to do after finding the tirst substitutiony/x is to make that substitution throughout the literals,

giving

P, ¥
Py, 2}

Now we can attempt o unify arguments » and 2, which succeeds with the substitwtion z/y. The entire
unification process has now suceeeded with a substitution that is the composition of the two substitutions we
found. We write the composition as

(v)

following standard notation for function composition. In general, the substitution (a,/ay, ayay, .00/,
byfby....). means o apply all the substitutions of the right- most list, then take the result and apply all the ones
of the next list, and so forth, until all substitutions have been applied.

The ohject of the unification procedure is to discover at least one substitution that causes two literals to
match. Usually, if there is one such substitution there are many. * For example, the literals

hateix, v)
hatelMarcus, ¥)

could be unified with any of the following substitutions:

(Marcus/v.z/v)

[Marcusix,vz)

{Marcusi, Caesardv, Caesarndz)

{ Marcus/x, Polonius, Poloniux/z)

The first two of these are equivalent except for lexical variation. But the second two, although they produce
a match, also produce a substitution that is more restrictive than absolutely necessary for the match. Because
the final substtution produced by the unification process will be used by the resolution procedure, it 15 usetul
to generate the most general unifier possible. The algorithm shown below will do that.

Having explained the operation of the unification algorithm, we can now state it concisely. We describe a
procedure Unify(L1, L2), which retumns as its value a list representing the composition of the substitutions that
were performied during the match. The empty list, NIL, indicates that & match was fpund without any
substitutions. The list consisting of the single value FAIL indicates that the unification procedure failed.

Algorithm: Unify(Ll, L2)
1. If L1 or L2 are both varizbles or constants, then:
fay If L] and L2 are identical, then return NIL.
ib) Elseif L1 15 a vanable, then if L1 occurs in L2 then return [FAIL), else retum (L2/L1).
fc} Else if L2 is a variable then if L2 occurs in L1 then return [FAILL}, else return (L1/L2),
(d) Else return [FAIL].

116 Artificial Intelligence

2. If the initial predicate symbols in L1 and L2 are not identical, then return [FAIL).
If L1 and L2 have a different number of arguments, then return {FAILJ.
4, Set SUBST to NIL. (At the end of this procedure, SUBST will contain all the substitutions used to unify
L1 and L2.)
5. For i+ 110 number of arguments in L1:
(a) Call Unify with the fth argument of LI and the ith argument of L2, putting result in S.
(b) If S contains FAIL then return {FAIL].
{c) If §is not equal o NIL then:
(i) Apply § 10 the remainder of both L] and L2.
(1i) SUBST : = APPEND(S, SUBST).
6. Return SUBST.

The only part of this algorithm that we have not yet discussed is the check in steps 1(b) and l(c) to make
sure that an expression involving a given variable is not vnified with that variable. Suppose we were attempting
to unify the expressions

et

Sixx)
flglxhglx))

[f we accepted g(x) as a substitution for x, then we would have to substitute it for x in the remainder of the
expressions. But this leads to infinite recursion since it will never be possible to eliminate x.

Unification has deep mathematical roots and is a useful operation in many Al programs, for example,
theorem provers and natural language parsers. As a result, efficient data structures and algorithms for unification
have been developed. For an introduction to these techniques and applications, see Knight [1989].

5.4.5 Resolution in Predicate Logic

We now have an easy way of determining that two literals are contradictory—they are if one of them can be
unified with the negation of the other. S0, for example, mar(x) and =man(Spot) are contradictory, since
man(x) and mar(Spot) can be unified. This corresponds to the intuition that says that man(x) cannot be true
for all x if there is known to be some x, say Spot, for which man(x) is false. Thus in order to use resolution for
expressions in the predicate logic, we use the unification algonthm to locate pairs of literals that cancel out.

We also need to use the unifier produced by the unification algorithm to generate the resolvent clause. For
example, suppose we want to resolve two clauses:

1. maniMarcus)
2. =manix,) v mortal(x,)

The literal man{Marcus) can be unified with the literal man/x\) with the substitution Marcus/x;, telling us
that for x, = Marcus, ~man{Marcus) is false. But we cannot simply cancel out the two man literals as we did
in propositional logic and generate the resolvent mortal(x;). Clause 2 says that for a given x,, either ~man(x,)
or mortal(x,). 5o for it 1o be true, we can now conclude only that morral{(Marcus) must be rue. It is not
necessary that mertal(x,) be true for all x,, since for some values of x,, ~man(x,) might be true, making
mortal(x,) irrelevant to the truth of the complete clause. So the resolvent generated by clauses 1 and 2 must be
mortal(Marcus), which we get by applying the result of the unification process to.the resolvent. The resolution
process can then proceed from there 1o discover whether mertaliMarcus) leads to a contradiction with other
available clauses.

This example illustrates the importance of standardizing variables apart during the process of converting
expressions to clause form. Given that that standardization has bee'n done, it is easy to determine how the

k

Using Predicate Logic 117

Y

unifier must be used 1o perform substiiutions to create the resolvent. If two instances of the same variable
occur, then they must be given identical substitutions. .

We can now state the resolution algorithm for predicate logic as follows, assuming a set of given statements
F and a statement to be proved P:

Algorithm: Resolution
1. Convert all the statements of F to clause form.,
2. Negate P and convert the result to clause form. Add it 1o the set of clavses obufHied in 1.
3. Repeat until either a contradiction is found, no progress can be made, or a prede- termined amount of
effort has been expended.

(a) Select two clauses. Call these the parent clauses.

(b) Resolve them together. The resolvent will be the disjunction of all the literals of both parent clauses
with appropriate substitutions performed and with the following exception: If there is one pair of
literals T1 and =72 such that one of the parent clauses contains 72 and the other contains T1 and
if 7'1 and 72 are unifiable, then neither 71 nor T2 should appear in the resolvent. We call T1 and 72
Complementary literals. Use the substitution produced by the umification to create the resolvent. If
there 15 more than one pair of complementary literals, only one pair should be omitted from the
resolvent.

{c) If the resolvent is the empty clause, then a contradiction has been found. If it 1s not, then add it to
the set of clauses available to the procedure.

If the choice of clauses to resolve together at each step is made in certain systematic ways, then the resolution
procedure will find a contradiction if one exists. However, it may take a very long time. There exist strategies
for making the choice that can speed up the process considerably:

* Only resolve pairs of clauses that contain complementary literals, since only such resolutions produce
new clauses that are harder 1o satisf'y than their parents. To facilitate this, index clauses by the predicates
they contain, combined with an indication of whether the predicate is negated. Then, given a particular
clause, possible resolvents that contain a complementary occurrence of one of its predi- cates can be
located directly.

e Eliminate certain clauses as soon as they are generated so that they cannot partic- ipate in later resolutions.
Two kinds of clauses should be eliminated: tautologies (which can never be unsatishied) and clauses that
are subsumed by other clauses (i.e., they are casier ;o satisty. For example, P @ is subsumed by £)

s Whenever possible, resolve either with one of the clauses that is part of the statement we are tryving to
refute or with a clause generated by a resolution with such a clause. This is called the set-of-support
strategy and corresponds to the intuition that the contradiction we are looking for must involve the
stalement we are trying o prove. Any other contradiction would say that the previously believed
statements were inconsistent.

* Whenever possible, resolve with clauses that have a single literal. Such resolutions generate new clauses
with fewer literals than the larger of their parent clauses and thus are probably closer to the goal of a
resolvent with zero terms. This method is called the unir-preference strategy.

Let’s now retumn to our discussion of Marcus and show how resolution can be used to prove new things
about him. Let's first consider the set of statements introduced in Section 5.1. To use them in resolution
proofs, we must convert them to clause form as described in Section 5.4.1. Figure 5.9{a) shows the results of
that conversion. Figure 5.9(b) shows a resolution proof of the statement

hate{Marcus, Caesar)

Representing Knowledge Using Rules 139

White pawn at
Square{fila e, rank 2)
AND mave pawn from
Square(file e, rank 3 ~ Square(fila e, rank 2)
is empty o Square(file e, rank 4)
AND

Squarelfile e, rank 4)
is emply
Fig. 6.5 Another Way to Describe Chess Moves

All of this does not mean that indexing cannot be helpful even when the preconditions of rules are stated as
fairly high-level predicates. In PROLOG and many theorem-proving systems, for example, rules are indexed by
the predicates they contain, so all the rules that could be applicable to proving a particular fact can be accessed
fairly quickly. In the chess example, rules can be indexed by pieces and their positions. Despite some limitations
of this approach, indexing in some form is very important in the efficient operation of rule-based systems.

6.4.2 Matching with Variables

The problem of selecting applicable rules 15 made more ditficult when preconditions are not stated as exact
descriptions of particular situations but rather describe properties (of varying complexity) that the situations
must have. It often turns out that discovering whether there is a match between a particular situation and the
preconditions of a given rule must itself involve a significant search process.

If we want to match a single condition against a single element in a state description, then the unification
procedure of Section 5.4.4 will suffice. However. in many rule-based systems, we need to compuie the whole set
of rules that match the current state description. Backward-chaining systems usvally use depth-first backtracking
to select individual rules, but forward-chaining systems generally employ sophisticated conflict reselution
strategies to choose among the applicable rules.” While it is possible to apply .unification repeatedly over the
cross product of preconditions and state description elements, it is more efficient to consider the many-many
match problem, in which many rules are matched against many elements in the state description simultaneously.

One efficient many-many match algorithm s RETE, which gains efficiency from three major sources:

¢ The temporal nature of data. Rules usually do not alter the state description radically. Instead, a rule
will typically add one or two elements, or perhaps delete one or two, but most of the state description
remains the same. {Recall our discussion of this as pant of our treatment of the frame problem in
Section 4.4.) If a rule did not march in the previous cycle, it will most likely fail to apply in the current
cycle. RETE maintains a network of rule condions, and 1t uses changes in the state description to
determine which new rules might apply (and which rules might no longer apply). Full matching 1s only
pursued for candidates that could be affected by incoming or outgoing data.

» Structural similarity in rules. Different rules may share a large number of pre-conditions. For example,
consider rules for identifying wild animals. One rule concludes jaguarix) if mammalix), feline(x},
carnivorous{x), and has-spots{x). Another rule concludes rigerfx) and is identical to the first rule except
that it replaces has-spors with frias-stripes. If we match the two rules independently, we will repeat a lot
of work unnecessarily, RETE stores the rules so that they share structures in memory; sets of conditions
that appear in several rules are matched (at most) once per cycle,

* Persistence of variable binding consistency. While all the individual preconditions of a rule might be
met, there may be variable binding conflicts that prevent the rule from finng. For example, suppose we
know the facts sonfMary, Joe) and son(Bill, Bob). The individual preconditions of the rule

¥ Confict resolution is discussed in the next section.

140 Artificial Intelligence

LTl AT Ll i A T S PO L T

semn(x, ¥) O\ sonly, 2) = grandparennx, o)

can be matched, but not in a manner that satisfies the constraint imposed by the variable y. Fortunately,
it is not necessary to compute binding consistency from scratch every time a new condition is satisfied.
RETE remembers its previous calculations and is able i merge new binding information efficiently.

For more details about the RETE match algorithm. see Forgy [1982]. Other matching algorithms (e.g.,
Miranker [1987] and Oflazer [1987]) take different standson how much time to spend on saving state information
between cycles. They can be more or less efficient than RETE, depending on the types of rules written for the
domain and on the degree of hardware parailelism available.

6.4.3 Complex and Approximate Matching

A more complex matching process is required when the preconditions of a rule specify required properties
that are not stated explicitly in the description of the current state. In this case, a separate set of rules must be
used to describe how some properties can be inferred from others.

An even more complex matching process is required if rules should be applied if their preconditions
approximately match the current situation. This 15 often the case in situations involving physical descriptions
of the world. For example, a speech- understanding program must contain rules that map from a description
of a physical waveform to phones (instances of English phonemes, such as p or o). There is so much variability
in the physical signal, as a result of background noisc. differences in the way individuals speak, and so forth,
that one can hope to find only an approximate maich between the rule that describes an ideal sound and the
input that describes an unideal world. Approximate matching is particularly difficult to deal with because as
we increase the tolerance allowed in the match, we also increase the number of rules that will match, thus
increasing the size of the main search process. But approximate matching is nevertheless supenor to exact
matching in situations such as speech understanding. where exact matching may often result in no rules being
matched and the search process coming to a grinding halt. Although symbolic techniques for approximate
matching exist, there is another, very different approach that can be used 10 solve this problem. We discuss it
in detail in Chapter 18 where we describe connectionist systems (also called neural nets).

For some problems, almost all the action is in the matching of the rules to the problem state. Once that is
done, so few rules apply that the remaining search is tnvial. This was the case, for example, in ELIZA
[Weizenbaum, 1966), an early Al program that simulated the behavior of a Rogerian therapist. A fragment of
a dialogue between ELIZA and a user is shown in Figure 6.6, ELIZA's knowledge about both English and
psychology was coded in a set of simple rules. Figure 6.7 shows some ELIZA-like rules.

Person: Men are all alike,

ELIZA: In what way?

Parson: Theyre always bugging us about somathing or other.
ELIZA: Can you think of a specihic exampla?

Parson: Well, my boyfriend mada me coma hara.

ELIZA: Your boyiriend made you come here.

Person: He says I'm depressad much of the time.

ELIZA: | am sorry to hear you are depressed.

Person: It's true. | am unhappy.

ELIZA: Do you think coming here wiil help you not to be unhappy?
Person: | need some help, thal much seems cerain.

ELIZA: What would it mean to you if you got soma help?
Person: Parhaps | could learn to get aleng with my mother.
ELIZA: Teli me more about your family.

Fig. 6.6 A Hit of a Dialogue with ELIZA

Representing Knowledge Using Rules 141

(x me ¥) =+ (X you Y)

(I remembear X) - (Why do remember X just now?)
{My {tamily-membsar} is Y) =+ (Who aelsa in your family is Y7)
(X [family-member] Y} — (Tedl me mare about your famiby)

Fig. 6.7 Some ELIZA-like rules

ELIZA operated by matching the left sides of the rules against the user’s last sentence and vsing the
appropriate right side 1o generate a response. For example, if the user typed My brother is mean w me,”
ELIZA might respond, “Who else in vour family is mean to you?” or “Tell me more about your family.” The
rules were indexed by keywords so only a few had actually to be matched against a particular sentence. Some
of the rules had no left side, so the rule could apply anywhere, These rules were used if no other rules matched
and they generated replies such as “Tell me more about that™, Notice that the rules themselves cause a form of
approximate matching to occur. The patterns ask about specific words in the user’s sentence. They do not
need to match entire sentences. Thus a great variety of seniences can be matched by a single rule, and the
erammatical complexity of English is pretty much ignored. This accounts both for ELIZA's major strength, its
ability to say something fairly reasonable almost all of the time, and its major weakness, the superficiality of
its understanding and its ability 10 be led completely astray. Approximate matching can easily lead 1o both
these results.

As if the matching process were not already complicated enough, recall the frame problem mentioned n
Chapter 4. One way of dealing with the frame problem is to avoid storing entire state descriptions at each
node but instead to store only the changes from the previous node. If this is done, the matching process will
have to be modified 1o scan backward from a node through its predecessors, looking for the required objects.

6.4.4 Conflict Resolution

The result of the matching process is a list of rules whose antecedents have matched the current state description
along with whatever variable bindings were generated by the matching process. It is the job of the search
method to decide on the order in which rules will be applied. But sometimes it is useful to incorporate some
of that decision making into the matching process. This phase of the matching process is then called conflict
resolution.

There are three basic approaches to the problem of conflict resolution in a production system:

* Assign a preference based on the rule that matched.
* Assign a preflerence based on the objects that matched.
* Assign a preference based on the action that the matched rule would perform.

Preferences Based on Rules

There are two common ways of assigning a preference based on the rules themselves, The first, and simplest,
is to consider the rules 1o have been specified 1in a particular order, such as the physical order in which they are
presented to the system. Then priority is given to the rules in the order in which they appear. This is the
scheme used in PROLOG,

The other commoen rule-directed preference scheme is to give priority 1o special case rules over rules that
are more general. We ran across this in Chapter 2, in the case of the water jug problem of Fig. 2.3, Recall that
rules 11 and 12 were special cases of rules 9 and 5. respectively. The purpose of such specific rules is to allow
for the kind of knowledge that expert problem solvers use when they solve problems directly, without search.
[f we consider all rules that match, then the addition of such special-purpose rules will increase the size of the
search rather than decrease it. In order to prevent that, we build the matcher so that it rejects rules that are
more general than other rules that also match. How can the matcher decide that one rule 1s more general than
another? There are a few easy ways:

148 Artificial Intelligence

Our beliefs (1) through (4) are inconsistent, so we must choose one for rejection. Which has the weakest
evidence? The basis for (1) in the hotel register is good, since it is a fine old hotel. The basis for (2) is weaker,
since Babbitt's brother-in-law might be lying. The basis for (3) is perhaps twofold: that there is no sign of
burglary and that only Abbott, Babbitt, and Cabot seem to have stood to gain from the murder apart from
burglary. This exclusion of burglary seems conclusive, but the other consideration does not; there could be
some fourth beneliciary. For (4), finally, the basis is conclusive: the evidence from television. Thus (2) and (3)
are the weak points. To resolve the inconsistency of (1) through (4) we should reject (2) or (3), thus either
incriminating Babbitt or widening our net for some new suspect.

See also how the revision progresses downward. If we reject (2), we also revise our previous underlying
belief, however tentative, that the brother-in-law was telling the truth and Babbiit was in Breoklyn. If instead
we reject (3), we also revise our previous underlying belief that none but Abbott, Babbitt, and Cabot stood 10
gain from the murder apart from burglary.

Finally, a certain arbitrariness should be noted in the organization of this analysis. The inconsistent beliefs
{1} through (4) were singled out, and then vanous further beliefs were accorded a subordinate status as
underlying evidence: a belief about a hotel register, a belief about the prestige of the hotel, a belief about the
television, a perhaps unwarranted belief about the veracity of the brother-in-law, and so on. We could instead
have listed this full dozen of beliefs on an equal footing, appreciated that they were in contradiction, and
proceeded to restore consistency by weeding them out in various ways. But the organization lightened our
task. It focused our attention on four prominent beliefs among which to drop one, and then it ranged the other
beliefs under these four as mere aids to choosing which of the four to drop.

The strategy illustrated would seem in general to be a good one: divide and conguer, When a set of beliefs
has accumulated to the point of contradiction, find the smallest selection of them you can that still involves
contradiction; for instance, (1) through (4). For we can be sure that we are geing to have to drop some of the
beliefs in that subset, whatever else we do. In reviewing and comparing the evidence for the beliefs in the
subset, then, we will find ourselves led down in a rather systematic way to other beliefs of the set. Eventually
we find ourselves dropping some of them too.

In probing the evidence, where do we stop? In probing the evidence for (1) through (4) we dredged up
various underlying beliefs, but we could have probed further, seeking evidence in tum for them. In practice,
the probing stops when we are satishied how best (o restore consistency: which ones to discard among the
beliefs we have canvassed.

This story illustrates some of the problems posed by uncertain, fuzzy, and often changing knowledge. A
variety of logical frameworks and computational methods have been proposed for handling such problems. In
this chapter and the next, we discuss two approaches:

+ Nonmonotonic reasoning, in which the axioms andfor the rules of inference are extended to make it
possible to reason with incomplete information. These systems preserve, however, the property that, at
any given moment, a statement is either believed to be true, believed to be false, or not believed to be
either.

» Statistical reasoming, in which the representation is extended to allow some kind of numeric measure
of certainty (rather than simply TRUE or FALSE) to be associated with each statement.

Other approaches to these issues have also been proposed and used in systems. For example, it 1s sometimes
the case that there is not a single knowledge base that captures the beliefs of all the agents involved in solving
a problem. This would happen in our murder scenario if we were to attempt to model the reasoning of Abbott,
Babbitt, and Cabot, as well as that of the police investigator. To be able to do this reasoning, we would require
a technique for maintaining several parallel belief spaces, each of which would correspond o the beliefs of
one agent. Such techmiques are complicated by the fact that the belief spaces of the varous agents, although

Symbolic Reasoning Under Uncertainty 149

not identical, are sufficiently similar that it 1s unacceptably inetficient 1o represent them as completely separate
knowledge bases. In Section 15.4.2 we retum briefly to this issue. Meanwhile, in the rest of this chapter, we
describe technigues for nonmonotonic reasoning,

Conventioinal reasoning systems, such lirst-order predicate logic, are designed 1o work with information
that has three important properties:

* It is complete with respect to the domain of interest. In other words, all the facts that are necessary o
solve a problem are present in the system or can be derived from those that are by the conventional
rules of first-order logic.

* [t is consistent,

* The only way it can change is that new facts can be added as they become available. If these new facts
are consistent with all the other facts that have already been asserted, then nothing will ever be retracted
from the set of facts that are known to be true. This property is called moncioniciry.

Unfortunately, if any of these properties is not satisfied, conventional logic-based reasoning systems become
madequate. Nonmonotonic reasoning systems, on the other hand, are designed to be able to solve problems in
which all of these properties may be missing.

In order 10 do this, we must address several key 1ssues, including the following:

I. How can the knowledge base be extended to allow inferences te be made on the basis of lack of
knowledge as well as on the presence of ir? For example, we would like to be able to say things like, “If
you have no reason to suspect that a particular person committed a crime, then assume he didn’t,” or “1f
you have no reason 1o believe that someone is not getting along with her relatives, then assume that the
relatives will try 1o protect her.” Specifically, we need 1o make clear the distinction between:
= [t 15 known that -/

» [t 15 not known whether B

First-order predicate logic allows reasoning to be based on the first of these. We need an extended
system that allows reasoning to be based on the second as well. In our new system, we call any inference
that depends on the lack of some piece of knowledge a nonmonotonic inference.

Allowing such reasoning has a significant impact on a knowledge base. Nonmonotonic reasoning
systems derive their name from the fact that becavse of inferences that depend on lack of knowledge,
knowledge bases may not grow monotonically as new assertions are made. Adding a new assertion
may invalidate an inference that depended on the absence of that assertion, First-order predicate logic
systems, on the other hand, are monotonic in this respect. As new axioms are assened, new wif’s may
become provable, but no old proofs ever become invahd.

In other words, if some set of axioms T entanls the truth of some statement w, then T combined wath
another set of axioms N also entails w. Because nonmonotonic reasoning does not share this property.,
i is also called defeasible: a nonmonotonic inference may he defeated (rendered invalid) by the addition
of new information that violates assumptions that were made during the original reasoning process. It
turns out, as we show below, that making this one change has a dramatic impact on the structure of the
logical system itself. In particular, most of our ideas of what it means to find a proof will have to be
reevaluated.

2. How can the knowledge base be updated properly when a new fact is added 1o the svstem (or when an .
old one is removed)? In particular, in nonmonotonic systems, since the addition of a fact can cause

| Recall that in Section 2.4, we also made a monotonic/nonmonotonic distinetion. There the issve was classes of production
systems, Although we are applyving the distinction o different entities here, 1t is essentially the same disunction in both
cases, since it distinguishes between systems that never shrink as a result of an acton (monotonic ones) amd omes that can
(ONMONOIORIC DNes).

150 Artifictal Intelligence

P e P = g Sl L = - R

previously discovered proofs to be become invalid, how can those proofs, and all the conclusions that
depend on them be found” The usual solution to this problem is to keep track of proofs, which are often
called justifications. This makes it possible to find all the justifications that depended on the absence of
the new fact, and those proofs can be marked as invalid. Interestingly, such a recording mechanism
also makes it possible o support conventional, monotonic reasoning in the case where axioms must
occasionally be retracted 1o veflect changes in the world that is being modeled. For example. it may be
the case that Abbott 15 1n town this week and so is available to testify, but if we wait until next week, he
may be out of town. As a resuolt, when we discuss techniques for maintaining valid sets of justifications,
we talk both about nonmonotonic reasoning and about monotonic reasoning in a changing world.

3. How can knowfedge be used 1o help resolve confTices when there are several in consistent nonmeonotonic
inferences that could be drawn? 1t rns out that when inferences can be based on the lack of knowledge
as well as on its presence, contradictions are much more likely to occur than they were in conventional
logical systems in which the only possible contradictions were those that depended on facts that were
explicitly asserted to be true. In particular, in nonmonotonic systems, there are ofien portions of the
knowledge base that are locally consistent but mutually (globally) inconsistent. As we show below,
many techniques for reasoning nonmonotonically are able to define the alternatives that could be
believed, but most of them provide no way to choose among the options when not all of them can be
believed at once.

To do this, we require additional methods tor resolving such conflicts in ways that are most appropriate for
the particular problem that 1s being solved. For example, as soon as we conclude that Abbott, Babbitt. and
Cabot all claim that they didn’t commit a enime, yet we conclude that one of them must have since there's no
one else who is believed o have had a motive, we have a contradiction, which we want to resolve in some
particular way based on other knowledge that we have. In this case, for example, we choose to resolve the
conflict by finding the person with the weakest alibi and believing that he committed the crime (which involves
believing other things, such as that the chosen suspect lied).

The rest of this chapter is divided into five parts. In the first, we present several logical formalisms that
provide mechanisms for performing nonmonotonic reasoning. In the last four, we discuss approaches to the
implementation of such reasoning in problem-solving programs. For more detailed descriptions of many of
these systems, see the papers in Ginsberg [1987].

7.2 LOGICS FOR NONMONOTONIC REASONING

Because monotonicity is fundamental to the definition of first-order predicate logic, we are forced to find some
alternative to support nonmonotonic reasoning. In this section, we look at several formal approaches to doing
this. We examine several because no single formalism with all the desired properties has yet emerged (although
there are some attempts, e.g., Shoham [1987] and Konolige [1987], to present a unifving framework for these
several theories). In particular, we would like 1o lind a formalism that does all of the following things:

* Defines the set of possible worlds that could exist given the facts that we do have. More precisely, we
will define an interprefation of a set of wit's 1o be a domain (a set of objects) 0, 1ogether with a
function that assigns: to each predicate, a relation (of corresponding arity); to each n-ary function, an
operator that maps from 27 into £ and 1o each constant, an element of 2. A model of a sel of wiT's is
an interpretation that satisfies them, Now we can be more precise about this requirement, We require a
mechanism for defining the set of models of any set of wii™s we are given,

» Provides a way to say that we prefer to believe in some models rather than t:-t}]::r:a.

Symbelic Reasoning Under Uncertainty 165

have a contradiction if we do not have at least one murder suspect. Thus a contradiction might have the

justification shown in Fig. 7.10, where the node Other Suspects means that there are suspects other than

Abbott, Babbiu, and Cabot. This is one way of explicitly representing an instance of the closed world

assumption. Later, if we discover a long-lost relative, this will provide a valid justification for Other Suspects.

But for now, it has none and must be labeled OUT. Fortunately, even though Abbott and Babbitt are not

suspects, Suspect Cabot is labeled IN, invalidating the justification for the contradiction. While the contradiction

is labeled OUT, there is no contradiction to resolve.
Now we learn that Cabot was seen on

television attending the ski tournament. Adding

this to the dependency network first illustrates

the fact that nodes can have more than one + =

Justification as shown in Fig. 7.11. Not only does

Cabot say he was at the ski slopes, but he was Beneficiary Cabot [IN] Alibi Cabot [IN] j’ﬁ

seen there on television, and we have no reason

to believe that this was an elaborate forgery. This l ‘

new valid justification of Alibi Caber causes it Telis Truth Cabot [IN]
to he labeled IN (which also causes Tells Truth b

Cabor to come IN). This change in state
propagates to Suspect Cabor, which goes OUT,
Now we have a problem.

The justification for the contradiction is now)
valid Iil.:rld the contradiction is IN. The job of the Fig-7.11 A Second Justification
TMS at this point is 1o determine how the contradiction can be made OUT again. In a TMS network, a node
can be made OUT by causing all of its justifications to become invalid. Monotonic justifications cannot be
made invalid without retracting explicit assertions that have been made to the neiwork. Nonmonotonic
Jjustifications can, however, be invalidated by asserting some fact whose absence is required by the justification.
We call assertions with nonmonotonic justufications assumptions. An assumption can be retracted by making
IN some element of its justification’s OUT-list (or recursively in some element of the OUT-list of the justification
of some element in its IN-list). Unfortunately, there may be many such assumptions in a large dependency
network. Fortunately, the network gives us a way to identify those that are relevant 1o the contradiction at
hand. Dependency-directed backtracking algorithms, of the sort we described in Section 7.5.1, can use the
dependency links to determine an AND/OR tree of assumptions that might be retracted and ways to retract
them by justifying other beliefs.

In Fig. 7.10, we see that the contradiction itself 1s an assumption whenever its justification 1s valid. We
might retract it by believing there were other suspects or by finding a way to believe again that either Abbott,
Babbitt, or Cabot was a suspect. Each of the last three could be believed if we disbelieved their alibis, which
in tum are assumptions. 3o if we believed that the hotel register was a forgery, that Babbitt's brother-in-law
lied, or that the television pictures were faked, we would have a suspect again and the contradiction would go
back OUT. So there are four things we might believe to resolve the contradiction. That is as far as DDB will
take us. It reports there is an OR tree with four nodes. What should we do?

A TMS has no answer for this question. Early TMSs picked an answer at random. More recent architectures
take the more reasonable position that this choice was a problem for the same problem-solving agent that
created the dependencies in the first place. But suppose we do pick one. Suppose. in particular, that we choose
to believe that Babbitt's brother-in-law hed, What should be the justification for that belief? If we believe it
just because not believing it leads to a contradiction, then we should install a justfication that should be valid
only as long as it needs to be. If later we find another way that the contradiction can be labeled OUT, we will
ot want to continue in our abductive belief.

Suspect Cabot [OUT]

l:aba: Sean[IN] TV Forgery [OUT]

166 Artificial Intelligence

L Rt .- LR =F L

For instance. suppose that we beleve that the brother-in-law hed, but later we discover that a long-lost
relative, jilted by the family, was in town the dav of the murder. We wounld no longer have 1o believe the
brother-in=law lied just to avord a contradiction. A TMS may also have algorithms to create such justifications,
which we call abductive since they are created using abductive reasoning. Tf they have the property that they
are nol unnecessanly valid, they are said 10 be complere. Lies Boll
Figure 7.12 shows a complete abductive jusuticaton for
the belief that Babbitt’s brother-in-law lied. If we come 1o s Other Suspecis

believe that Abbon or Cabot is 3 su spect, or we find a long- b .

lost rclufiv:; or we .stnnchuw Come 1o l?ulim-u that !]uhhiu‘ﬁ Says So B-LL Suspect Abbott Suspect Cabat
brother-in-law didn’t really say Babbitt was at his house,
then th's jusnfication for lying will become invalid.

At this point, we have descnibed the Key reasoning operations that are performed by a ITMS:

Fig. 712 A Complete Alductive fustification

* consistent labeling
o contradiction resolution
We have also described i set of important reasoning operations that a JTMS does not perform, including:
e applying rules w derive conclusions
* creating justifications for the results of applymg rules {although justifications are created as part of
contradiction resolution)
& choosing among aliermative ways of resolving a conmradiction
s dewcting contradictions
All of these operations 1nust be performed by the problem-sclving program that is using the JTMS, In the
next section, we describe a slightly different kind of TMS, in which, although the first three of these operations
must still be performed by the problem-solving system, the Tast can be performed by the TMS.

7.5.3 Logic-Based Truth Maintenance Systems

A fogic-based truth maimtenance svstem (LTMS) [McAllester, 1980] is very similar 1o a JTMS. It differs in
one important way. In a JTMS, the nodes in the network are treated as atoms by the TMS, which assumes no
relationships among them except the ones that are explicitly stated in the justifications. In particular, a JTMS
has no problem simultancously labeling both P and = £ IN. For example, we could have represented explicitly
both Lies #-1-L and Not Lies B-1-L and labeled both of them IN. No contradiction will be detected automatically,
In an LTMS, on the other hand, a contradiction would be asserted automatically in such a case. If we had
constructed the ABC example in an LTMS system, we would not have created an explicit contradiction
comresponding to the assertion that there was no suspect. Instead we would (replace the contradiction node by
one that asserted something like No Suspect. Then we would assert Suspect. When No Suspecr caime IN, it
would cause a contradiction to be asserted automatically,

7.6 IMPLEMENTATION: BREADTH-FIRST SEARCH

The assumprion-based truriy maintenance svstem (ATMS) [de Kleer, 1986] is an alternative way of implementing
nonmanotonic reasoning. In both JTMS and LTMS systems, a single line of reasoning is pursued at a time,
and dependency-directed backiracking occurs whenever it is necessary to change the svstem's assumptions.
In an ATMS, allernative paths are maintained in parallel. Backtracking is avoided at the expense of maintaining
multiple contexts, each of which corresponds 1o a set of consistent as-sumptions. As reasoning proceeds in an
ATMS-based system. the universe of consistent contexts 15 pruned as contradictions are discovered. The
remaining consistent contexts arg used (o label assertions, thus indicating the contexts in which each assertion
has a valid justfication. Assertions that do not have a valid justification in any consistent context can be

Symbelic Reasoning Under Uncertainty 167

s ol L A oL e LER (o T R T o B e e R L b Rl e

pruned from consideration by the problem solver. As the set of consistent contexts gets smaller, so o does
the set of assertions that can consistently be believed by the problemn solver, Essentially, an ATMS system
works breadth-first, considering all possible contexts at once, while both JTMS and LTMS systems operate
depth-first.

The ATMS, like the JTMS, is designed to be used in conjunction with a separate problem solver. The
problem solver’s job is fo:

o Create nodes that correspond to assertions (both those that are given as axioms and those that are
denved by the problem solver).

o Associate with each such node one or more justifications, each of which describes a reasoning chain
that led 1o the node.

o Inform the ATMS of inconsistent contexts.

Notice that this s identcal to the role of the problem solver thar uses a JTMS, except that no explcit
choices among paths 1o follow need be made as reasoning proceeds. Some decision may be necessary at fhe
end, though, if more than one possible solution still has a consisient context.

The role of the ATMS system is then to: ,

¢ Propagate inconsistencies, thus ruling out contexts that include subcontexts (sets of assertions) that are
known o be inconsistent,

= Label each problem solver node with the contexts in which it has a valid justification. This is done by
combining contexts that correspond to the components of a justification. In particular, given a justification
of the form

Al AAYA . AN An -

assign as a context for the node corresponding to C the intersection of the contexts conesponding to
the nodes Al through An.

Contexts get eliminated as a result of the problem-solver asserting inconsistencies and the ATMS propagating
them. Nodes get created by the problem-solver o represent possible components of a problem solunion, They
may then get pruned from consideration if all their context labels get pruned. Thus a choice among possible
solution components gradually evolves in a process very much like the constraint satisfaction procedure that
we examined in Section 3.5.

One prohlem with this approach is that given a set of 1 assumptions, the number of possible contexts that
may have to be considered is 2", Fortunately, in many problem-solving scenarios, most of them can be pruned
without ever looking at them. Further, the ATMS exploits an efficient labeling system that makes it possible
to encode a set of contexts as a single context [A1, A2, A3, A4
that delimits the set. To see how both of these ﬁ/’i‘\\
e kel AT A K

tions as forming a lattice, as shown for a simple /W
example with four assumptions in Fig, 7.13. e — =

Lines going upward indicate a subset relation- [A1. 42) [AT, A3] A1, A4 A2, A3] [A2,A4) A3, A4
The first thing this lattice does for us is (o A1) [AZ] [A3] (A4]

illustrate a simple mechanism by which) /{/

contradictions (inconsistent contexts) can be \\ -

propagated so that large parts of the space of 2 {1

contexts can be eliminated. Suppose that the Fig. 7.13 A Context Lattice

168 Artificial Intelligence

conlext labeled {A2, A3} is asseried o be Inconsistent. Then all contexts that include it {i.e., those that are
above 1) must also be inconsistent.

Now consider how a node can be labeled with all the contexts in which it has a valid justification. Suppose its
justification depends on assumption Al. Then the context labeled {Al) and all the contexts that include it are
acceptable, But this can be indicated just by saving {Al]. It is not necessary to enumerate its supersets. In general,
each node will be labeled with the greatest lower bounds of the contexis in which it should be believed.

Clearly, it is important that this lattice not be built explicitly but only used as an implicit structure as the
ATMS proceeds.

As an example of how an ATMS-based problem-solver works, let's return to the ABC Murder story.
Again, our goal is to find a primary suspect. We need (at least) the following assumptions:

* Al. Hotel register was forged.

A2, Hotel register was not forged.

A3. Babbitt's brother-in-law lied.

A4, Babbiit's brother-in-law did not lie,

A5, Cabot lied.

A6, Cabot did not lie.

AT. Abbott, Babbitt, and Cabot are the only possible suspects.
* AB. Abbott, Babbitt, and Cabot are not the only suspects.

The problem-solver could then generate the nodes and associated justifications shown in the first two
columns of Fig. 7.14. In the figure, the justification for a node that corresponds to a decision to make assumption
N is shown as | N]. Justifications for nodes that correspond to the result of applying reasoning rules are shown
as the rule involved. Then the ATMS can assign labels to the nodes as shown in the second two columns. The
first shows the label that would be generated for each justification taken by itsell. The second shows the label
(possibly containing multiple contexts) that is actually assigned to the node given all its current justifications.
These columns are wdentical in simple cases, but they may differ in more complex situations as we see for
nodes 12, 13, and 14 of our example.

Nodes Justifications Node Labels
[1] Register was not forged {A2) {Ac) {A2].
{2 Abbott at hotel [11 —[2] {42} {A2}
[3 B-I-L didn't lie {4} {Ad}, {Ad}
[4) Babbitt at B-I-L (3] — 4] {Ad} {Ad}
[5] Cabot didn't lie (6] {48} {48}
[6] Cabot at ski show [5] = [€) {AB} {AB}
[71 A, B, C only suspacts {AT} {AT7} {AT}
(8] Prima Suspect Abbott [71A[13] A [14] = [8] {AT7, Ad, AB) [AT, A4, AB}
9] Prime Suspect Babbitt 1A 2] A 4] —=[9] (A7, A2, AB) {AT. A2, AB)
(g Prime Suspact Cabot 71 112) A [13) = [10]) (AT, A2, A4) (AT, A2, Ad}
[11] A, B,C nct only suspects {A8) {Ag8} (A8}
[12] Mot prime suspect Abbott 2] =[12] (A2} {AZ], {A8)
(1] = [12] {48
9] =12 A7, A2, AB)
[10] = [12] (A7, A2, A4
[13] Mot prime suspect Babbitt (4] =+ [13) (A4} {A4], {48}
[11] = [13] {48}
18] = [13) LA7, A4, AB)
[10] = [13] (A7, A4, A7)
[14] Mot prime suspect Cabot (6] — [14] {AB} {AB], {A8}
(11} —[14] {48}
8] — [14] (A7, Ad, AB}
(9] = [14] (A7, A2, AG}

Fig. 7.14 Nodes and Their Justifications and Labels

174 Artificiai Intelligence

B OT-0 LTL r AL SET Rl e Akl "T5EA

Unfortunately, in an arbitrarily complex waorld, the size of the set of joint probabilitics that we require in
arder to compute this function grows as 27 if there are n different propositions being considered. This makes
using Baves' theorem intractable for several reasons:

* The knowledge acquisition problem is insurmountable; oo many probabilities have to be provided. In
addition, there 15 substantual empir.cal evidence (e.g., Tversky and Kahneman [1974] and Kahneman
et al, [1982]) that people are very poor probability estimators.

o The space that would be reguired 1o store all the probabilities is oo large.

* The time required o compute the probabilities is too large.

Despite these problems, though, Bavesian statistics provide an attractive basis for an uncertain reasoning
system. As a resull, several mechanisms for exploiting its power while ot the same time making it tractable
have been developed. In the rest of this chapier, we explore three of these:

o Altaching cerainty factors to rules
o Bayesian networks
= Dempster-Shafer theory

We also mention one very different numerical approach 10 uncertainty, fuzzy logic.

There has been an active, strident debate for many yvears on the question of whether pure Bayesian statistics
are adequate as a basis Tor the development of reasoning programs. (See, for example, Cheeseman [1985] for
arguments that it 15 and Buchanan and Shorthiffe [1984] for arouments that 1t 15 not.) On the one hand, non-
Bayesian approaches have been shown to work well for some kinds of applications (as we see below), On the
other hand. there are clear limitations to all known technigues. In essence, the jury is still out. So we sidestep
the 1ssue as much as possible and simply describe a set of methods and their characteristics.

8.2 CERTAINTY FACTORS AND RULE-BASED SYSTEMS

In this section we descobe one practical way of compromising on a pure Bayesian system. The approach we
discuss was pioneered in the MYCIN system [ShortlitTe, 1976; Buchanan and Shortliffe, 1984; Shortliffe and
Buchanan, 19751, which attempls to recommend appropnate therapies for patients with bacterial infections, It
interacts with the physician o acquire the chnical data it needs, MYCIN is an example of an expert system,
sinca it periorms a task normally done by a human expert. Here we concentrate on the use of probabilistic
reasoming; Chapter 20 provides a broader view of expert sysiems.

MYCIN represents most of its dingnostic knowledge as a set of rules. Each rule has associated with it a
cerfainiy facror, which is a measure of the extent 1o which the evidence that is described by the antecedent of
the rule supports the conclusion that 15 given in the rule’s consequent. A typical MYCIN rule looks like:

If: (1) the stain of the organism is gram-positive, and
{(2) the morphology of the organism is coccus, and
(3} tha growth conformatlion of the organism is clumps,
then there i3 suggestive evidence (0.7) that
the identity of the organism is staphylococcus.

This is the form in which the rules are stated to the user. They are actually represented internally in an easy-
to-manipulate LISP list structure. The rule we just saw would be represented imternally as

PREMISE: {SAND [ZAME CHNTXT GRAM GRAMPOSZ)
[ZAME CHTXT MORPFH COCCUS)
(BAME CHTHET CONFORM CLUMPE})
ACTION: (CONCLUDE CNTAT IDENT STAFPHYLOCOCCUS TALLY 0.7)

Statistical Reasoning 175

MYCIN uses these rules to reason backward to the clinical data available from its goal of finding significant
disease-causing organisms. Once it finds the identities of such organisms, it then atlempts 10 select a therapy
by which the disease (5) may be treated. In order 10 understand how MYCIN exploits uncertain information,
we need answers to two guestions: “What do centainty factors mean?” and “How do=s MYCIN comibine the
estimates of certainty in each of its rules to produce a final estimate of the certuinty of its conclusions?” A
further question that we need to answer, given our observations about the intractability of pure Bayesian
reasoning, is, “What compromises does the MYCIN technique make and what risks are associated with those
compromisesT” In the rest of this section we answer all these guestions,

Let’s start first with a simple answer to the first question (to which we return with a more detailed answer
later). A certainty factor (CF [k, €]) is defined in terms of two components:

« MBh, ¢]—a measure (between 0 and 1) of belief in hypothesis b given the evidence e. MB measures
the extent to which the evidence supports the hypothesis. It is zero if the evidence fails to support the
hypothesis.

o MD[he]—a measure (between (Jand 1) of disbelief in hypothesis i given the evidence e. MO measures
the extent to which the evidence suppons tie negation of the hypothesis, It is zevo if the evidence
supports the hypothesis.

From these two measures, we can define the ceainty factor as
CFliL] = MB[R,] - ML, ¢]

Since any particular piece of evidence either supports or denies a hypothesis (but not both), and since each
MYCIN rule corresponas 1o one piece of evidence {althaqugh it may be a compound picce of evidence), a
single number suffices for each rule to define both the MB and MD and thus the CF.

The CF's of MYCIN's rules are provided by the experts who write the

rules. They reflect the experts’ assessments of the strength of the evidence in - (7) &
support of the hypothesis. As MYCIN reasons, however, these CF's need to (&) A (B)
be combined to reflect the operation of multiple pieces of evidence and multiple ®)

rules applied to a problem. Figure 8.1 illustrates three combination scenarios (C)
that we need to consider. In Fig. 8.1(a), several rules all provide evidence that (a) (b) (©)

relates to a single hypothesis. In Fig. 8.1(b), we need to consider our belief in
a collection of several propositions taken together. In Fig. 8.1(c¢), the output
of one rule provides the input to another.

What formulas should be used to perform these combinations? Before we answer that question, we need
first to describe some properties that we would like the combining functions to satisfy:

Fig. 81 Combining
Uncertain Rules

® Since the order in which evidence is collected is arbitrary, the combining functions should be
commutative and associative. _
* Until certainty is reached, additional confirming evidence should increase ME (and similarly for

disconfirming evidence and MD).
o I uncertain inferences are chained together, then the result should be less certain than either of the

inferences alone,

Having accepted the desirability of these properties, let's first consider the scenario in Fig. 8.1(a), in which
several pieces of evidence are combined to determine the CF of one hypothesis. The measures of belief and
disbeliel of a hypothesis given two observations 5, and s, are computed from:

176 Artificial Intelligence

T N . o

. 0 il MD[h, 5, Al 52 =1
MBhs, /o5y =)
MBLh, ;] + MB[h, 55] - (1 = MB[h, 5] piherwise

] if MBI, 5, o5 = 1
MDLh, 5,/ s5] = i MBLR 5, /.5, =
MDIh, 5] + MD[h, 53] - (1 - MD[R, 5,]) otherwise

One way to state these formulas in English is that the measure of belief in A is 0 if & is disbelieved with
certainty. Otherwise, the measure of beliel in i given two observations is the measure of belief given only one
observation plus some increment for the second observation. This increment 1s computed by first taking the
difference between | (certainty) and the belief given only the first observation. This difference 1s the most that
can be added by the second observation. The difference is then scaled by the belief in /i given only the second
observation. A corresponding explanation can be given, then, for the formula for computing disbelief. From
MRB and MD, CF can be computed. Notice that if several sources of corroborating evidence are pooled, the
absolute value of CF will increase. If conflicting evidence is introduced. the absolute value of CF will decrease.,

A simple example shows how these functions operate. Suppose we make an initial observation that confirms
our belief in i with MB = (1.3, Then MD[h,s,] = 0 and CF[R, 5,] = 0.3, Now we make a second observation,
which also confirms b, with MEB[h.5,] = 0.2. Now:

MBhs) o] =034+ 0207
=44

MD{hs, ™ 5,] =010

CFlh.s, P %3] =044

You can see from this example how slight confirmatory evidence can accumulate to produce increasingly
larger certainty factors.

Mext let's consider the scenario of Fig. 8.1(b), in which we need to compute the cenainty factor of a
combination of hypotheses. In particular, this is necessary when we need to know the cerlainty factor of a rule
antecedent that contains several clauses (as, for example, in the staphylococcus rule given above). The
combination certainty factor can be computed from its ME and M. The formulas MYCIN uses for the MB of
the conjunction and the disjunction of two hypotheses are:

MBIhy 7 ha, e] = mintMBLh,, el MB[h,. €])
MBI b] = maxiMBLhel MBlhoe])

MD can be computed analogously.

Finally, we need to consider the scenario in Fig. 8.1(c), in which rules are chained together with the result
that the uncertain outcome of one rule must provide the input o another. Our solution 1o this problem will also
handle the case in which we must assign a measure of uncertainty to initial inputs, This could easily happen in
situations where the evidence is the outcome of an experiment or a laboratory test whose results are not
completely accurate. In such a case, the certainty factor of the hypothesis must take into account both the
strength with which the evidence suggests the hypothesis and the level of confidence in the evidence. MYCIN
provides a chaining rule that is defined as follows. Let MB’[h, 5] be the measure of belief in & given that we are
absolutely sure of the validity of s. Let ¢ be the evidence that led us to believe in s (for example, the actual
readings of the laboratory instruments or the results of applying other rules). Then:

Weak Slot-and-Filler Structures 193

9.1.5 The Evolution into Frames

The idea of a semantic net started out simply as a way to represent labeled connections among entities. But, as
we have just seen, as we expand the range of problem-solving tasks that the representation must support, the
representation itself necessarily begins 1o become more complex. In particular, it becomes useful to assign
more structure to nodes as well as to links. Although there is no clear distinction between a semantic net and
a frame system, the more structure the system has, the more likely it is to be termed a frame system. In the next .
section we continue our discussion of structured slot-and-filler representations by describing some of the
most important capabilities that frame systems offer.

9.2 FRAMES

A frame is a collection of attributes (usually called slots) and associated values (and possibly constraints on
values) that describe some entity in the world. Sometimes a frame describes an entity in some absolule sense;
sometimes it represents the entity from a particular point of view (as it did in the vision system proposal
[Minsky, 1975] in which the term frame was first introduced). A single frame taken alone is rarely useful.
Instead, we build frame systems out of collections of frames that are connected to each other by viriue of the
fact that the value ol an attribute of one frame may be another frame. In the rest of this section, we expand on
this simple definition and explore ways that frame systems can be used o encode knowledge and support
reasoning

9.2.1 Frames as Sets and Instances

The Set theory provides a good basis for understanding frame systems. Although not all frame systems are
defined this way, we do so here. In this view, each frame represents either a class (a set) or an instance (an
clement of a class). To see how this works. consider the frame system shown in Fig. 9.5, which is a slightly
maodified form of the network we showed 1n Fig. 9.5, In this example, the frames Person, Adult-Male, ML-
Baseball-Player (corresponding to major league baseball plavers), Pircher, and ML-Baseball-Team (for major
league baseball team) are all classes. The frames Pee-Wee-Reese and Brooklyn-Dodgers are instances.

The isa relation that we have been using without a precise defintion is in fact the subser relation. The set
of adult males 15 a subset of the set of pecople. The sct of major league baseball players i1s a subset of the set of
adult males, and so forth. Qur instance relation corresponds to the relation element-of. Pee Wee Recse is an
element of the set of fielders. Thus he is also an element of all of the supersets of fielders, including major
league baseball players and people. The transitivity of isa that we have taken for granted in our description of
property inheritance follows directly from the transitivity of the subset relation.

Both the isa and instance relations have inverse attributes, which we call subclasses and all-instances. We
do not bother to write them explicitly in our examples unless we need to refer to them. We assume that the
frame system maintains them automatically, either explicitly or by computing them if necessary,

Because a class represents a set, there are two Kinds of attributes that can be associated with it, There are
attributes about the set itself, and there are atiributes that are 1o be inherited by each element of the sel. We
indicate the difference between these two by prefixing the latter with an asterisk (#*). For example, consider
the class ML-Baseball- Plaver, We have shown only two properties of it as a set: It is a subset of the set of adult
males. And it has cardinality 624 (i.e., there are 624 major league baseball players). We have listed five
properties that all major league baseball players have (height, bats, batting-average, team, and uniform-
color), and we have specified default values for the first three of them. By providing both kinds of slots, we
allow a class both to define a set of objects and to descnibe a prototypical object of the set,

Sometimes, the distinction between a set and an individual instance may not seem clear. For example, the
team Brooklvn-Dodgers, which we have described as an instance of the class of major league baseball 1eams,

194 Artificial Intelligence

could be thought of as a set of players. In fact, notice that the value of the slot plavers is a set. Suppose,
instead, that we want to represent the Dodgers as a class instead of an instance. Then its instances would be
the individual players. It cannot stay where it is in the isa hierarchy; it cannot be a subclass of ML-Baseball-
Team, because if it were, then its elements, namely the players, would also, by the transitivity of subclass, be
elements of ML-Baseball-Team, which is not what we want to say, We have to put it somewhere else in the isa
hierarchy. For example, we could make it a subclass of major league baseball players. Then its elements, the
players, are also elements of ML-Baseball-Player, Adult-Male, and Person. That is acceptable. But if we do
that, we lose the ability to inherit properties of the Dodgers from general information about baseball teams.
We can still inherit attributes for the elements of the team, but we cannol inherit properties of the team as a
whole, i.e., of the set of players. For example, we might like to know what the default size of the team is,

Farson
isa: Mammal
cardinghty &, 000,000,000
* handed : Right
Aduli-Male
isa: Person
cardingiity : 2,000,000,000
* haugiht : 510
ML-Baseball-Flayer
=8 : Aduli-Male
carainality 624
* haight 6-1
* bats : equal to handed
' batting-average . 252
* feam
* unifarm-colar &
Fiaigar
isa: ML-Basabal-Flayer
cardinality : are '

*batiing-average : .262
Fee-Wea-Roase

instance Figldar
height 510
bals : Right
batting-average : 308
feam : Brookiyn-Dodgers
uniform-color . Blue
ML-Baseball-Team
isa: Team
cardinaliy : 26
* leam-size : 24
Y manager
EBrookiyn-Dodg
instance : ML-Baseball-Team
leam-size . 24
manager : Leo-Durocher
players : | Pee-Wee-FReese...)

Fig. 9.5 A Simplified Frame System

that it has a manager, and so on. The easiest way to allow for this is to go back to the idea of the Dodgers as
an instance of ML-Baseball-Team, with the set of players given as a slot value.

But what we have encountered here is an example of a more general problem. A class is a set, and we want
to be able to talk about properties that its elements possess. We want to use inheritance to infer those properties

Weak Slot-and-Filler Structures 195

from general knowledge about the set. But a class is also an entity in itself. It may possess properties that
belong not to the individual instances but rather to the class as a whole. In the case of Brooklyn-Dodgers, such
properties included team size and the existence of a manager. We may even want to inherit some of these
properties from a more general kind of set. For example, the Dodgers can inherit a default team size from the
set of all major league baseball leams. To support this, we need to view a class as two things simultaneously:
a subset (isa) of a larger class that also contains its elements and an instance (instance) of a class of sets, from
which it inherits its set-level properties.

To make this distinction clear, it is useful to distinguish between regular classes, whose elements are
individual entities, and metaclasses, which are special classes whose elements are themselves classes. A class
is now an clement of (instance) some class (or classes) as well as a subclass (isa) of one or more classes. A
class inherits properties from the class of which it is an instance, just as any instance does. In addition, a class
passes inheritable properties down from its superclasses to its instances.

Let us consider an example. Figure 9.6 shows how we could represent teams as classes using this distinction,
Figure 9.7 shows a graphic view of the same classes. The most basic metaclass is the class Class. It represents
the set of all classes. All classes are instances of it, either directly or through one of its subclasses. In the
example, Team is a subelass (subset) of Class and ML-Baseball-Team is a subclass of Team. The class Clasy
introduces the attribute cardinality, which is to be inherited by all instances of Class (including itself). This
makes sense since all the instances of Class are sets and all sets have a cardinality.

Class
instance : Class
fegd - Class
* cardinality :
Team
instance : Class
[1: [Class
cardinality : [the number of teams thal exist)
*team-size {each team has a size)
ML-Bassball-Team
isg: Mammal
instance Class
isa: Team
cardi nality : 26 {the number of baseball teams that exist}
* leam-size : 24 [default 24 players on a team}
* manager :
Brooklyn-Dodgers
instance : ML-Baseball-Team
isa: ML-Baseball-Flayar
leam-siza ; 24
manager : Leo-Duracher
* uniform-color Blue
Pes-Wee-Reesa
instance : Brooklyn-Dodgers
instance : Fielder

unifarm-color Biue
batting-average : .309
Fig. 9.6 Representing the Class of All Teams as o Metaclass

Knowledge Representation Summary 225

Consider a resolution theorem prover running with assertions in the ABox. A standard operation in resolution
is determining when pairs of literals such as f(x) and —f(x) are inconsistent. Standard resolution requires that
the literals be textually unifiable (except for the negation sign). KRYPTON extends the idea of textual
inconsistency to rerminological inconsistency in order to make the theorem prover more efficient. The TBox
can tell that the two assertions rriangle(x) and recrangle(x) are inconsistent and can thus be resolved against
each other. The TBox can also determine the inconsistency of rriangle(x) and —polvgon(x); moreover, the two
assentions —rectangle(x) and polvgon(x) can be resolved against each other as long as we add 10 the resolvent
the fact that x must have an angle which is not 90 degrees. If TBox computations are very efficient, then ABox
proofs will be generated much faster than they would be in a pure logic framework.

11.3 OTHER REPRESENTATIONAL TECHNIQUES

In the last several chapters, we have described various technigues that can be used to represent knowledge.
But our survey is by no means complete. There arc other ways of representing knowledge; some of them are
quite similar to the ones we have discussed and some are quite different. In this section we briefly discuss
three additional methods: constraints, simulation models, and subsymbolic systems. Keep in mind throughout
this discussion that it is not always the case that these various representational systems are mutually inconsistent.
They often overlap, either in the way they use component representational mechanisms, the reasoning algorithms
they support, or the problem-solving tasks for which they are appropriate.

11.3.1 Representing Knowledge as Constraints

Much of what we know about the world can be represented as sets of constraints. We talked in Section 3.5
about a very simple problem, cryptarithmetic, that can be described this way. But constraint-based
representations are also useful in more complex problems. For example, we can describe an electronic circuit
as a set of constraints that the states of various components of the circuit impose on the states of other components
by virtue of being connected together. If the state of one of these components changes, we can propagate the
effect of the change throughout the circuit by using the constraints. As a second example, consider the problem
of interpreting visual scenes. We can write down a set of constraints that characterize the set of interpretations
that can make sense in our physical world. For example, a single edge must be interpreted consistently, at both
of its ends, as either a convex or a concave boundary. Finally, as we saw in Section 8.3, there are several kinds
of relationships that can be represented as sets of constraints on the likelihoods that we can assign to collections
of interdependent events.

In some sense, everything we write in any representational system is a constraint on the world models or
problem solutions that we want our program to accept. For example, a wif [e.g.. Vx @ man(x) = mortal(x)]
constrains the set of consistent models to those that do not include any man who is not mortal. But there is a
very specific sense in which it is useful to talk about a specific class of techniques as constraint-based. Recall
that in Section 3.5 we presented an algorithm for constraint satisfaction that was based on the notion of
propagating constraints throughout a system until a final state was reached. This algorithm is particularly
effective precisely when knowledge is represented in a way that makes it efficient to propagate constraints.
This will be true whenever it is easy to locate the objects that a given object influences. This oceurs when the
objects in the system are represented as a network whose links correspond to constraints among the objects.
We considered one example of this when we talked about Bayesian networks in Section 8.3, We consider
other examples later in this book. For example, we return to the problem of simulating physical processes,
such as electronic circuits, in Section 19.1. We present in Section 14.3 a constraint-propagation solution
(known as the Waltz algorithm) to a simple vision problem. And in Section 15.5 we outline a view of natural
language onderstanding as a consiraint satisfaction task. '

226 Artificial Intelligence

11.3.2 Models and Model-Based Reasoning

For many kinds of problem-solving tasks, it is necessary to model the behavior of some object or system. To
diagnose faults in physical devices, such as electronic circuits or electric motors, it is necessary to model the
behavior of both the correctly functioning device and some number of ill-functioning varants of it. To evaluate
potential designs of such devices requires the same capability. Of course, as soon as we begin to think about
modeling such complex entities, it becomes clear that the best we will be able to do is create an approximale
model. There are various techniques that we can use to do that.

When we think about constructing a model of some entity in the world, the issue of what we mean by a
model soon arises. To what extent should the structure of the model mirror the structure of the object being
modeled? Some representational techniques tend 1o support models whose structure is very different from the
structure of the objects being modeled. For example, in predicate logic we write wil's such as Wx ; raven(x)
— black(x). In the real world, though, this single fact has no single realization; it is distributed across all
known ravens. At the other extreme are representations, such as causal networks, in which the physical
structure of the world is closely modeled in the structure of the representation.

There are arpuments in favor of both ends of this spectrum (and many points in the middle). For example,
if the knowledge structure closely matches the problem structure, then the frame problem may be easier to
solve. Suppose, for example, that we have a robot-planning program and we want to know if we move a table
into another room, what other objects also change location. A model that closely matches the structure of the
world (as shown in Fig. 11.1 (a)) will make answering this question easy, while alternative representations
(such as the one shown in Fig. 11.1 (b)) will not. For more on this issue, see Johnson-Laird [1983]. There are,
however, arguments for representations whose structures do not closely model the world. For example, such

representations typically do a better job of capturing generalizations and thus of making predictions about
some Kinds of novel situations.

{Livingroom1
confans ;
{ Tate 1 :
made-of : Wood
has-on : {Vaser .
made-of : Glass)
(Lamp1: ...})
{ Table2:
has-om: (VasaZ: ...)))

(a}

i Tabla1, Livingroom)
made-of | Table1, Wood)
o Vase1, Tablel)
madg-of (Vasal, Glass)

om Vase2, Tabled)
om Lamp1, Tablat)

{b}
Fig. 11.1 Capturing Structure in Models

11.3.3 Subsymbolic Systems

So far, all of the representations that we have discussed are symbolic, in the sense we defined in Section 1.2,
There are alterative representations, many of them based on a neural model patterned after the human brain,
These systems are often called neural nets or connectionist systems. We discuss such systems in Chapter 18,

Knowledge Representation Summary 227

11.4 SUMMARY OF THE ROLE OF KNOWLEDGE

In the last several chapters we have focused on the kinds of knowledge that may be useful to programs and on
ways of representing and vsing that knowledge within programs. To sum up, for now, our treatment of
knowledge within Al programs, let us return 1o a brief discussion of the two roles that knowledge can play in
those programs.

+ It may define the search space and the criteria for determining a solution to a problem.. We call this
knowledge essenrial knowledge.

* lt may improve the efficiency of a reasoning procedure by informing that procedure of the best places
to look for a solution. We call that knowledge heuristic knowledge.

In formal tasks, such as theorem proving and game plaving, there 15 only a small amount of essential
knowledge and the need for a large amount of heuristic knowledge may be challenged by several brute force
programs that perform guite successfully (e.g., the chess programs HITECH [Berliner and Ebeling, 1989] and
DEEP THOUGHT [Anamtharaman et al., 1990]). The real knowledge challenge arises when we tackle naturally
occurring problems. such as medical diagnosis, natural language processing. or engineering design. In those
domains, substantial bodies of both essential and heuristic knowledge are absolutely necessary.

EXERCISES

1= =5 B N N B BT]

l. Anrtificial intelligence svstems employ a vanety of formalisms for representing knowledge and reasoning
with it. For each of the following sets of sentences, indicate the formalism that best facilitates the
representation of the knowledgze given in the statements in order 1o answer the question that is posed,
Explain your choice briefly. Show how the statements would be encoded in the formalism you have
selected, Then, show how the queston could be answered.

John hikes fruir,
Kumquats arc frait.
People eat what they like.
Does John eat kumuats?

Assume that candy contains sugar unless you know
specifically that it is dietetic,

M&M's are candy.

Diabetics should nol eal sugar.

Bill 1s a diaberic.

Should Bill eal M&M'S?

Most people hike candy.

Most people who give parties like to serve food that.
their guests like.

Tom is giving a party,

What might Tom like to serve!

When you go to a movie theatre, you nsually buy a ticket,
hand the ticket to the ticket taker, and then go and
find a seat.

Sometimes vou buy popcorn before going to your seat

When the movie is over. you leave the theaire,

John went to the movies.

Did John buy a ticket?

242 Artificial Intelligence

depends critically on the correctness of that node’s value, then the node is expanded one extra ply. This
technigue allows the search program to concentrate on tactical, forcing combinations. It employs a purely
synlactic criterion, choosing interesting lines of play without recourse to any additional domain knowledge.
The DEEP THOUGHT chess computer [Anantharaman er al., 1990] has vsed singular extensions to great
advantage, finding midgame mating combinations as long as thirty-seven moves, an impossible feat for fixed-
depth minimax.

12.4.3 Using Book Moves

For complicated games taken as wholes, it is, of course, not feasible to select a move by simply looking up the
current game configuration in a catalogue and extracting the correct move. The catalogue would be immense
and no one knows how to construct it. But for some segments of some games, this approach is reasonable. In
chess, for example, both opening sequences and endgame sequences are highly stylized. In these situations,
the performance of a program can often be considerably enhanced 1f 1t 15 provided with a list of moves (called
book moves) that should be made. The use of book moves in the opening sequences and endgames, combined
with the use of the minimax search procedure for the midgame, provides a good example of the way that
knowledge and search can be combined in a single program to produce more effective results than could
either technigue on its own.

12.4.4 Alternatives to Minimax

Even with the refinements above, minimax still has some problematic aspects. For instance, it relies heavily
on the assumption that the opponent will always choose the optimal move, This assumption 15 acceptable in
winning situations where a move that 1s guaranteed to be good for us can be found. But, as suggested in
Berliner [1977], in a losing situation it might be better to take the risk that the opponent will make a mistake.
Suppose we must choose between two moves, both of which, if the opponent plays perfectly, lead to situations
that are very bad for us, but one is slightly less bad than the other. But further suppose that the less promising
move could lead to a very good situation for us if the opponent makes a single mistake. Although the minimax
procedure would choose the guaranteed bad move, we ought instead to choose the other one, which is probably
slightly worse but possibly a lot better. A similar situation arises when one move appears to be only slightly
more advantageous than another, assuming that the opponent plays perfectly, It might be better to choose the
less advantageous move if it could lead to a significantly superior situation il the opponent makes a mistake.
To make these decisions well, we must have access (o a mode] of the individual opponent’s playing style so
that the likelihood of various mistakes can be estimated. But this is very hard o provide,

As a mechanism for propagating estimates of position strengths up the game tree, minimax stands on
shaky theoretical prounds. Nau. [1980] and Pear] | 1983 have demonstrated that for certain classes of game
trees, e.g., uniform trees with random terminal values, the deeper the search, the poorer the result obtained by
minimaxing. This “pathological” behavior of amplifying/error-prone heuristic estimates has not been observed
in actual game-playing programs, however. It seems thal game trees containing won positions and nonrandom
distributions of heuristic estimaies provide environments that are conducive to minimaxing,.

12.5 [ITERATIVE DEEPENING

A number of ideas for searching two-player game trees have led to new algorithms for single-agent heuristic
search, of the type described in Chapter 3. One such idea is iterative deepening, originally used in a program
called CHESS 4.5 [Slate and Adkin, 1977). Rather than searching to a fixed depth in the game tree, CHESS
4.5 first searched only a single ply, applving its static evaluation function to the result of each of its possible
moves. [t then initiated a new minimax search, this time o a depth of two ply. This was followed by a three-

Game Playing 243

ply search, then a four-ply search, etc. The name “iterative deepening” derives from the fact that on each
iteration, the tree is searched one level deeper. Figure 12,10 depicts this process.

/\

teration 1. Iteration 2.

/\ /\
V4N RN 4VZ N NN

. /7 \

Iteration 4,

Fig. 12.10 [terative Deepening

On the face of it, this process seems wasteful. Why should we be interested in any iteration except the final
one? There are several reasons, First, game-playing programs are subject to time constraints. For example, a
chess program may be required to complete all its moves within two hours. Since it is impossible to know in
advance how long a fixed-depth tree search will take (because of variations in pruning efficiency and the need
for selective search), a program may find iself running out of time. With iterative deepening, the current
search can be aborted at any time and the best move found by the previous iteration can be played. Perhaps
more importantly, previous iterations can provide invaluable move-ordering constraints. If one move was
judged to be superior to its siblings in a previous iteration, it can be searched first in the next iteration. With
effective ordering, the alpha-beta procedure can prune many more branches, and total search time can be
decreased drastically. This allows more time for deeper iterations.

Years after CHESS 4.5's success with iterative decpening, it was noticed [Korf, 1985a] that the technique
could also be applied effectively to single-agent search to solve problems like the 8-puzzle. In Section 2.2.1,
we compared two types of uninformed search, depth-first search and breadth-first search. Depth-first search
was efficient in terms of space but required some cutoff depth in order o force backtracking when a solution
was not found. Breadth-first search was guaranteed to find the shortest solution path but required inordinate
amounts of space because all leaf nodes had to be kept in memory. An algorithm called depth-first iterative
deepening (DFID) combines the best aspects of depth-first and breadth-first search.

244 Artificial Intelligence

Algorithm: Depth-First Iterative Deepening

1. Set SEARCH-DEPTH = 1.
2. Conduct a depth-first search to a depth of SEARCH-DEPTH, If a solution path is found, then return it.
3. Otherwise, increment SEARCH-DEFPTH by | and go to step 2.

Clearly, DFID will find the shortest solution path to the goal state. Moreover, the maximum amount of
memory used by DFID is proportional to the number of nodes in that solution path. The only disturbing fact
15 that all iterations but the final one are essentially wasted. However, this 1s not a senous problem. The reason
15 that mosi of the activity during any given iteration occurs at the leaf-node level. Assuming a complete tree,
we see that there are as many leal nodes at level n as therg are total nodes in levels 1 through n. Thus, the work
expended during the sth iteration is roughly equal to the work expended during all previous iterations. This
means that DFID is only slower than depth-first search by a constant factor. The problem with depth-first
search 1s that there 1s no way to know in advance how deep the solution lies in the search space. DFID avoids
the problem of choosing cutoffs without sacrificing efficiency, and, in fact, DFID is the optimal algonithm (in
terms of space and time) for uninformed search,

But what about informed, heuristic search? lterative deepening can also be used to improve the performance
of the A* search algonthm [Kort, 1985a). Since the major practical difficulty with A*® is the large amount of
memory it requires to maintan the search node lists, iterative deepening can be of considerable service.

Algorithm: Iterative-Deepening-A*
1. Set THRESHOLD = the heuristic evaluation of the start state.
2. Conduct a depth-first search, pruning any branch when its total cost function (g + /') exceeds
THRESHOLD.* If a solution path is found during the search, retum it.
3, Otherwise, increment THRESHOLD by the minimum amount it was exceeded during the previous
step, and then go o Swep 2,

Like A¥, [terative-Deepening-A* (IDA*) is guaranteed to find an optimal solution, provided that &' is an
admissible heunstic. Because of its depth-first search technique, IDA* is very efficient with respect to space.
IDA* was the first heuristic search algorithm 1o find optimal solution paths for the 15-puzzle (a 4x4 version
of the 8-puzzle) within reasonable time and space constraints.

12.6 REFERENCES ON SPECIFIC GAMES

In this chapter we have discussec search-based techniques for game playing. We discussed the basic minimax
algorithm and then introduced a series of refinements to it. But even with these refinements, it is stll difficult
to build good programs to play difficult games. Every game, hike every Al task, requires a careful combination
of search and knowledge.

Chess

Research on computer chess actually predates the field we call artificial intelligence. Shannon [1950] was the
first to propose a method for automating the game, and two early chess programs were written by Greenblar
et al. [1967] and Newell and Simon [1972).

Chess provides a well-defined laboratory for studying the trade-off between knowledge and search. The
more knowledge a program has, the less searching it needs to do. On the other hand, the deeper the search, the
less knowledge is required. Human chess plavers use a great deal of knowledge and very little search—they

4 Recal g stands for the cost so far in reaching the current node, and A" stands for the heuristic estimate of the distance from
the node to the goal.

Planning 255

lead nowhere. For example, if, in trying to satisfy goal A, the program eventually reduces its problem 1o the
satisfaction of goal A as well as goals B and C, it has made little progress. It has produced a problem even
harder than its original one, and the path leading to this problem should be abandoned.

Repairing an Almost Correct Solution

The kinds of technigues we are discussing are often useful in solving nearly decomposable problems. One
good way of solving such problems is to assume that they are completely decomposable, proceed to solve the
subproblems separately, and then check that when the subsolutions are combined, they do in fact yield a
solution to the original problem. Of course, if they do, then nothing more need be done. If they do not,
however, there are a variety of things that we can do. The simplest is just to throw out the solution, look for
another one, and hope that it is better. Although this is simple, it may lead to a great deal of wasted effort.

A slightly better approach is to look at the situwation that results when the sequence of operations
corresponding to the proposed solution is executed and to compare that situation to the desired goal. In most
cases, the difference between the two will be smaller than the difference between the initial state and the goal
{assuming that the solution we found did some useful things). Now the problem-solving system can be called
again and asked to find a way of eliminating this new difference. The first solution can then be combined with
this second one to form a solution to the original problem.

An even better way to patch up an almost correct solution is to appeal to specific knowledge about what
went wrong and then to apply a direct patch. For example, suppose that the reason that the proposed solution
is inadequate is that one of its operators cannot be applied because at the point it should have been invoked,
its preconditions were not satisfied. This might occur if the operator had two preconditions and the sequence
of operations that makes the second one true undid the first one. But perhaps, if an attempt were made to
satisfy the preconditions in the opposite order, this problem would not arise.

A stll better way to patch up incomplete solutions 15 not really to patch them up at all but rather to leave
them incompletely specified until the last possible moment. Then when as much information as possible is
available, complete the specification in such a way that no conflicts arise. This approach can be thought of as
a least-commirment strategy. It can be applied in a variety of ways. One is to defer deciding on the order in
which operations will be performed. So, in our previous example, instead of arbitrarily choosing one order in
which to satisfy a set of preconditions, we could leave the order unspecified until the very end. Then we
would look at the effects of each of the subsolutions to determine the dependencies that exist among them. Al
that point, an ordering can be chosen.

134 GOAL STACK PLANNING

One of the earliest techniques to be developed for solving compound goals that may interact was the use of a
goal stack. This was the approach used by STRIPS. In this

method, the problem solver makes use of a single stack that 8 o i
contains both goals and operators that have been proposed Al 1C1 ID AlID

to satisfy those goals, The problem solver also relies on a start: ON(B, A}/ goal: ON(C, A) A
database that d;‘::-jq‘,.ﬁhcﬁ the current situation and a set of gﬁﬁg:ﬁi gﬁ!ﬂ:ﬂﬂiﬁ’ A
operators described as PRECONDITION. ADD, and ONTABLE(D) / ONTABLE(D)
DELETE lists. To see how this method works, let us carry ARMEMPTY

it through for the simple example shown in Fig. 13.4. Fig. 13.4 A Very Simple Blocks Warld Problem

When we begin solving this problem, the goal stack is simply

ONIC, A) A ON(B, D) A ONTABLE(A) M ONTABLE(D)

256 Artificial Intelligence

But we want to separate this problem into four subproblems. one for each component of the original goal.
Two of the subproblems, ONTABLE(A) and ONTABLE(D), are already true in the imual state. 50 we will
work on only the remaining two. Depending on the order in which we want to tackle the subproblems, there
are two goal stacks that could be created as our first step, where each line represents one goal on the stack and
OTAD is an abbreviation for ONTABLE(A) A ONTABLE(D):

ONIC, A) ON(B. I}

ON(B. D) ONIC, A)

ONIC, A) A ON(B, D) A OTAD ONIC, A) A ON(B.D) / OTAD
[1] [2]

At each succeeding step of the problem-solving process, the top goal on the stack will be pursued. When
a sequence of operators that satisfies it is found, that sequence is applied to the state description, yielding a
new description. Next, the goal that is then at the top of the stack is explored and an attempt is made to satisfy
it, starting from the situation that was produced as a result of satisfying the first goal. This process continues
until the goal stack is empty. Then, as one last check, the original goal is compared to the final state derived
from the application of the chosen operators. If any components of the goal are not sansfied in that state
(which they might not be if they were achieved at one point and then undone later), then those unsolved parts
of the goal are reinserted onto the stack and the process resumed.,

To continue with the example we started above, let us assume that we choose first to explore alternative 1.
Alernative 2 will also lead to a solution. In fact, it finds one so trivially that it is not very interesting. Exploring
alternative 1, we first check to see whether ON(C, A) 1s true in the current state. Since it is not, we check for
operators that could cause it to be true, Of the four operators we are considering, there is only one, STACK, and
it would have to be called with C and A. So we place STACK(C, A) on the stack in place of ON{C, A), yielding

STACKIC, A)
ON(B,)
ON(C, A) A ON(B, D) A OTAD

STACKI(C, A) replaced ON(C, A) because after performing the STACK we are guaranteed that ON{(C, A)
will hold. But in order to apply STACK(C, A), its preconditions must hold, so we must establish them as
subgoals. Again we must separate a compound goal

CLEAR(A) / HOLDINGIC)

into its components and choose an order in which to work on them. At this point, it is useful to exploit some
heunistic knowledge. HOLDING(x) is very easy to achieve. At most, it is necessary 1o put down something
else and then to pick up the desired object. But HOLDING is also very easy to undo. In order to do almost
anything else, the robot will need to use the arm. So if we achieve HOLDING first and then try to do something
else, we will most likely end up with HOLDING no longer true, So we. exploit the heuristic that if HOLDING
is one of several goals to be achieved at once, it should be tackled last. This produces the new goal stack

CLEAR(A)

HOLDING(C)

CLEAR(A) /A HOLDINGI{C)
STACKI(C, A)

ON(B, D)

ON(C, A) ON(BR, D) /. OTAD

Planning 257

This kind of heuristic information could be contained in the precondition list itself by stating the predicates
in the order in which they should be achieved.

Next we check 1o see if CLEAR(A) is true. It is not. The only operator that could make it true is UNSTACK
(B, A). 5o we will attempt to apply it. This produces the goal stack

ON(B, A)
CLEAR(B)

ARMEMPTY

ON(B, A) A CLEAR(B) A\ ARMEMPTY
UNSTACK(B, A)

HOLDING(C)

CLEAR(A) A HOLDING(C)
STACK(C, A)

ON(B, D)

ON(C, A) /A ON(B, D) A OTAD

This ime, when we compare the top element of the goal stack, ON(B, A), to the world model, we see that
it is satisfied. So we pop it off and consider the next goal, CLEAR(B). It, too, is already true in the world
maodel, although it was not stated explicitly as one of the initial predicates. But from the initial predicates and
the blocks world axiom that says that any block with no blocks on it is clear, a theorem prover could derive
CLEARI(B). So that goal, too, can be popped from the stack. The third precondition for UNSTACK(B, A)
remains, It is ARMEMPTY, and it is also true in the current world model, so it can be popped off the stack.
The next element on the stack is the combined goal representing all of the preconditions for UNSTACK(B,
A). We check to make sure it is satisfied in the world model. It will be unless we undid one of its components
in attempting to satisfy another. In this case, there is no problem and the combined goal can be popped from
the stack.

MNow the top element of the stack is the operator UNSTACK(B, A). We are now guaranteed that its
preconditions are satisfied, so it can be applied 10 produce a new world model from which the rest of the
problem-solving process can continue. This is done using the ADD and DELETE lists specified for UNSTACK.
Meanwhile we record that UNSTACK(B. A) is the first operator of the proposed solution sequence. At this
point, the database corresponding to the world model is

ONTABLE(A) A ONTABLE(C) A ONTABLE(D) &
HOLDING(B) / CLEAR({A)

The goal stack now is

HOLDING(C)

CLEAR(A) /\ HOLDING(C)
STACK(C, A)

ON(B, D)

ON(C, A) A ON(B, D) A\ OTAD

We now attempt to satisfy the goal HOLDING(C). There are two operators that might make HOLDING(C)
true: PICKUP(C) and UNSTACK(C, x), where x could be any block from which C could be unstacked.

258 Artificial Intelligence

Without looking ahead, we cannot tell which of these operators is appropriate, so we create two branches of
the search tree, comresponding to the following goal stacks:

ONTABLE(C) ON(C, x)

CLEAR(C) CLEAR(C)

ARMEMPTY ARMEMPTY

ONTABLE(C) / CLEAR(C) / ON(C, x) A CLEAR(C) /\
ARMEMPTY ARMEMPTY

PICKUP(C) UNSTACKI(C, 1)

CLEAR(A) / HOLDING(C) CLEAR(A) /A HOLDINGI(C)

STACKIC, A) STACK(C, A)

ON(B, D) ON(B, D)

ONIC, A) 7 ON(B, D) ~ OTAD ON(C. A) AONB, D) A OTAD
[1] 12]

Notice that for alternative 2, the goal stack now contains a vanable x, which appears in three places.
Although any block could be substituted for x, it 1s important that the same one be maiched to each of the x's.
Thus it is important that each time a variable is introduced into the goal stack, it be given a name distinct from
any other variables already in the stack. And whenever a candidate object is chosen to match a variable, the
binding must be recorded so that other occurrences of the same variable will be bound to the same object.

How should our program choose now between altemative land alternative 27 We can tell that picking up C
{alternative 1) is better than unstacking it because it is not currently on anything. So to unstack it, we would
first have to stack it. Although this could be done, it would be a waste of effort. But how could a program
know that? Suppose we decided to pursue alternative 2 first. To satisfy ON(C, x), we would have to STACK
C onto some block x. The goal stack would then be

CLEAR(x)

HOLDING(C)

CLEAR(x) /. HOLDING(C)
STACK(C, x)

CLEARIC)

ARMEMPTY

ON(C, x) CLEAR(C) / ARMEMPTY
UNSTACKI(C, x)

CLEAR(A) /A HOLDING(C)
STACK(C, A)

ON(B, D}

ON(C, A} /. ON(B, D} /A OTAD

But now notice that one of the preconditions of STACK is HOLDING(C). This is what we were trying to
achieve by applying UNSTACK, which required us to apply STACK so that the precondition ON(C, x) would
be satisfied. So we are back to our original goal. In fact, we now have additional goals as well, since other
predicates have also been added to the stack. At this point, this path can be terminated as unproductive. If,
however, block C had been on another block in the current state, ON{C, x) would have been satisfied immediately
with no need to do a STACK and this path would have led to a good solution,

270

Artificial Intelligence

i T

Triangle Tables [Fikes et al.. 1972; Nilsson, 1980}—Provide a way of recording the goals that each
operator is expected to satisfy as well as the goals that must be true for it to execute comectly. If
something unexpected happens during the execution of a plan, the table provides the information
required to patch the plan.

Metaplanning [Stefik, 198 1a]—A technique for reasoning not just about the problem being solved but
also about the planning process itself.

Macro-operators [Fikes and Nilsson, 1971]—Allow a planner 1o build new operators that represent
commonly used sequences of operators, See Chapter 17 for more details.

Case-Based Planning [Hammond, 1986]—Re-uses old plans to make new ones. We return to case-
based planning in Chapter [9.

EXERCISES
1. Consider the following blocks world problem:
A c c w}
Bl ID B||A
start: ON(C, B) ~ goal: ON(C, B) ~

ON(D, A) A ON(D, A} A
ONTABLE(B) ~ ONTABLE(B) M
ONTABLE(A) A ONTABLE(A)
ARMEMPTY

fad

(a) Show how STRIPS would solve this problem.

ib) Show how TWEAK would solve this problem.

{c) Did these processes produce optimal plans? If not, could they be modified to do so?

Consider the problem of devising a plan for cleaning the kichen.

(a) Write a set of STRIPS-style operators that might be used. When vou descnbe the operators, tnke
nto account such considerations as:

Cleaning the stove or the refrigerator will get the floor dirty.

To clean the oven, it is necessary 1o apply oven cleaner and then o remove the cleaner.

Before the floor can be washed, it must be swept.

Before the floor can be swept, the garbage must be taken out.

Cleaning the refrigerator generates garbage and messes up the counters.

Washing the counters or the floor gets the sink dirty.

(b) Write a description of a likely initial state of a kitchen in need of cleaning. Also write a description
of a desirable (but perhaps rarely obtained) goal state.

(¢} Show how the technique of planning using a goal stack could be used 1o solve this problem.
(Hint—you may want 1o modify the definition of an ADD condition so that when a condition is
added 1o the database, its negation is automatically deleted if present.)

* B & & ¥ &

. In Section 13.4, we showed an example of a situation in which a search path could be terminated

because it led back to one of 1is earlier goals, Describe a mechanism by which a program could detect
this situation.

Consider the problem of swapping the contents of two registers, A and B. Suppose that there is available
the single operator ASSIGN(x, v, v, ov), which assigas the value v, which is stored in location v, to
location x, which previously contained the value ov:

Planning 271

SR e B e ' o L b e ekl - LN T R TP PTG T T e R

ASSIGNCx v iy, ov)
P: CONTAINS(fv, v) A CONTAINS(x, ov)
D: CONTAINS(x, ov)
A CONTAINS(x, v)
Assume that there is at least one additional register, C, available.
{(a) What would STRIPS do with this problem?
(b} What would TWEAK do with this problem’?
(¢) How might you design a program to solve this problem?

CHAPTER

14

UNDERSTANDING

Al truths are easy to understand once they are discovered; the point is to discover them.

—Galileo Galileo
(1564-1642), Italian physicist, mathematician, astronomer and philosopher

14.1 WHAT I5 UNDERSTANDING?

To understand something is to transform it from one representation into another, where this second representation
has been chosen to correspond to a set of available actions that could be performed and where the mapping
has been designed so that for each event, an appropriate action will be performed. There is very little absolute
in the notion of understanding. If you say to an airling database system “1 need to go 1o New York as soon as
possible,” the system will have "understood” if it finds the first available plane 1o New York. If you say the
same thing to your best friend, who knows that your family lives in New York, she will have “understood™ if
she realizes that there may be a problem in your family and you may need some emotional support. As we talk
about understanding, it is important to keep in mind that the success or failure of an “understanding”™ program
can rarely be measured in an absolute sense but must instead be measured with respect to a particular task to
be performed. This is true both of language-understanding programs and also of understanders in other domains,
such as vision,

For people, understanding applies 1o inputs from all the senses. Computer understanding has so far been
applied primarily to images, speech, and typed language. In this chapler we discuss issues that cut across all
of these modalities. In Chapter 15, we explare the problem of typed natural language in more detail, and in
Chapter 21, we look at speech and vision problems. Although we have defined understanding above as the
process of mapping into npprdp'rimc actions, we arc not precluding a view of understanding in which inputs
are simply interpreted and stdred for later. In such a system, the appropriate action is to store the proper
representation. This view of understanding describes what occurs in most image understanding
programs and some language understanding programs. Taking direct action describes what happens in systems
in which language, either typed or spoken, is used in the interface between user and computer.

296 Artificial Intelligence

@@
Fig. 15.8 An ATN Network for a Fragment of English

(S/ {PUSH NPT
{(SETR SUB. *)
(SETR TYPE (QUOQTE DCL))
{TO Q1))
(CAT AUX T
(SETR AUX ")
{SETR TYPE (QUOTE Q))
(TO Q2))
(Ql (CATVT
{(SETR AUX NILj
(SETRV "}
(TO Q4))
(CAT AUX T
(SETR AUX ")
(TO Q3)))
Q2 (PUSH MNP/ T
{SETR SUBJ *)
(TO Qaj))
Q3 (CATVT
(SETR V "}
(TO Q4)))
Q4 {(POP [(BUILDD (S + + + (VP +))
TYPE SUBJ AUX V} T)
{(PUSHNP/'T
(SETR VP (BUILDO (VP [V +} ") VI)
(TO Q5)))
Q5 (POP (BUILDD (S + + = 4)
TYPE SUBJ AUX VP) T)
{PUSH PP/ T
(SETR VP (APPEND (GETR VP) {LIST *}}} .
(TO Q5)))

Fig. 15.9 An ATN Grammar in List Form

13.

14.

15.
16.

7.

18,

Natural Language Processing 297

C_R Y DRy o L

This test succeeds, so append “long™ to the list contained in the ADIS register. {This list was previously
empty.) Stay 1n state Q6.

. Do a category test to see if “file™ 1s an adjective. This test fails.
. Do a category test to see if “file” is a noun. This test succeeds, so sel the NOUN register to “file” and

20 1o state Q7.

. Push to PP.
1.
11.

Do a category test to see if “has™ is a preposition. This test fails, so pop and signal failure.

There is nothing else that can be done from state 37, so pop and return the structure

(NP (FILE (LONG) DEFINITE))

The return causes the machine to be in state Q1, with the SUBJ register set to the structure just returned
and the TYPE register set to DCL.,

. Do a category test to see if “has™ is a verh, This test succeeds, so set the AUX register to NTL and set the

V register to “has.” Go 1o state (4.

Push to state NP. Since the next word, “prninted,” 15 not a determiner or a proper noun, NP will pop and
retum failure,

The only other thing w do in state Q4 is to halt, But more input remains, so a complete parse has not
been found. Backtracking is now required.

The last choice point was at state 1, so return there. The registers AUX and ¥V must be unset.

Do a category test to see if "has” is an auxiliary, This test succeeds, so set the AUX register to “has™
and go to state Q3.

Do a category test to see if “printed” is a verb. This test succeeds, so set the V register to “printed.” Go
1o state O4,

Now, since the input is exhausted, Q4 is an acceptable final state. Pop and return the structure

(§ DCL (NP (FILE (LONG) DEFINITE}) HAS (VP PRINTED))

This structure is the output of the parse.

This example grammar illustrates several interesting points about the use of ATNs, A single subnetwork
need only occur once even though it is used in more than one place. A network can be called recursively. Any
number of internal regisiers may be used to contain the result of the parse. The result of a network can be built,
using the function BUILDQ), out of values contained in the various system registers. A single state may be
both a final state, in which a complete sentence has been found, and an intermediate state, in which only a pan
of a sentence has been recognized. And. finally, the contents of a register can be modified at any time.

In addition, there are a variety of ways in which ATNs can be used which are not shown in this example:

o The contents of registers can be swapped. For example, if the network were expanded to recognize

passive sentences, then at the point that the passive was detected, the current contents of the SUBJ
register would be transferred to an OBJ register and the object of the preposition “by” would be placed
in the SUBJ register. Thus the final interpreiation of the following two sentences would be the same.
— Bill printed the file.

~ The file was printed by Bill.

Arbitrary tests can be placed on the arcs. In each of the arcs in this example, the test is specified simply
as T (always true). But this need not be the case. Suppose that when the first NP 1s found, its number 1s
determined and recorded in a register called NUMBER. Then the arcs labeled V could have an additional
test placed on them that checked that the number of the particular verb that was found is equal to the
vilue stored in NUMBER. More sophisticated tests, involving semantic markers or other semantic
features, can also be performed.

298 Artificial Intelligence

CE T L L NS MR DR R R SR

15.2.3 Unification Grammars

ATN grammars have substantial procedural components, The grammar describes the order in which constituents
must be built, Variables are explicitly given values, and they must already have been assigned a value betore
they can be referenced. This procedurality limits the effectiveness of ATN grammars in some cases, for
example: in speech processing where some later parts of the sentence may have been recognized clearly while
carlier parts are still unknown (for example, suppose we bad heard, “The long * * * fle pnnied.”), or in
systems that want to vse the same grammar to support both understanding and generation (e.g.. Appelt [1987],
Shieber [1988], and Bamett er al. [1990]). Although there is no clear distinction berween declarative and
procedural representations (as we saw in Section 6.1), there is a spectrum and it often twms out that more
declarative representations are more flexible than more procedural ones are. S0 in this section we describe a
declarative approach o representing grammars.
When a parser applies grammar rules to 2 sentence, it performs two major Kinds of operations:
* Matching (of sentence constituents to grammar rules)
s Building structure (corresponding to the result of combining constituents)

Now think back to the unification operation that we described in Section 5.4.4 as part of our theorem-
proving discussion. Matching and structure building are operations that unification performs naturally. So an
obvious candidate for representing grammars 15 some structure on which we can define a unification operator.
Directed acyelie graphs (DAGs) can do exactly that.

Each DAG represents a set of atribute-value pairs. For example, the graphs comresponding to the words
“the” and “file™ are:

[CAT: DET [CAT: N
LEX: the) LEX: file
NUMBER: SING]

Both words have a lexical category (CAT) and a lexical entryv. In addition, the word “file™ has a value
(SING]) for the NUMBER atnbute. The result of combining these two words to form a simple NP can also be
described as a graph:

INP: [DET: the
HEAD: file
NUMBER: SING]]

The rule that forms this new constituent can also be represented as a graph, but to do so we need to
introduce a new notation. Until now, all our graphs have actually been trees. To describe graphs that are not
trees, we need a way to label a picce of a graph and then point to that piece elsewhere in the graph. So let {n)
for any value of n be a label, which is to be interpreted as a label for the next constituent following it n the
graph. Sometimes, the constituent is empty (i.e., there is not vet any structure that is known to fill that piece of
the graph). In that case, the label functions very much like a variable and will be treated like one by the
unification operation. It is this degenerate kind of a label that we need in order 1 describe the NP rule:

NP - DET M

We can write this rule as the following graph:

Natural Language Processing 299
[CONSTITUENT!: [CAT: DET
LEX: {1]]
CONSTITUENT2: |CAT: N
LEX: (2]
NUMBER: {3}]
BUILD: [NP:[DET: {1}
 HEAD: {2}
NUMBER: {3)]]]

This rule should be read as follows: Two constituents, described in the subgraphs labeled CONSTITUENT
and CONSTITUENT2, are 1o be combined, The first must be of CAT DET. We do not care what its lexical
entry is, but whatever it is will be bound o the label {1]. The second constituent must be of CAT N, s lexical
cntry will be bound to the label [2), and its number will be bound to the label {3}. The result of combining
these two constituents 18 described in the subgraph labeled BUILD, This result will be a graph corresponding
to an NP with three attributes: DET, HEAD, and NUMBER. The values for all these attributes are to be taken
from the appropriate pieces of the graphs that are being combined by the rule.

Now we need o define a unification operator that can be applied to the graphs we have just described. Tt
will be very similar to logical unification. Two graphs unify if, recursively, all their subgraphs unify. The
result of a successful unificanon is a graph that is composed of the union of the subgraphs of the two inputs,
with all bindings made as indicated, This process bottoms out when a subgraph is not an attribute-value pair
but is just a value for an atiribute. At that point, we must define what it means for two values 1o unify. Identical
valves unify. Anything unifies with a variable (a label with no attached structure) and produces a binding for
the label. The simplest thing to do is then to say that any other situation results in failure. But it may be useful
to be more flexible. So some systems allow a value 1o match with a more general one (e.g., PROPER-NOUN
matches NOUN). Others allow values that are disjunctions [e.g., (MASCULINE +/ FEMININE)], in which
case unification succeeds whenever the intersection of the two values is not empty.

There is one other important difference between logical unification and graph unification. The inputs o
logical unification are treated as logical formulas. Order matters, since, for example, f(g(a), h(b)) is a different
formula than f(hib). gla)). The inputs to graph unification, on the other hand, must be treated as sets, since the
order in which attribute-value pairs are stated does not matter. For example, if a rule describes a constituent as

|CAT: DET
LEX: (1]}

we want 10 be able 1o match a constituent such as

[LEX: the
CAT: DET]

Algorithm: Graph-Unify
1. If either G| or G, is an attribute that 1s not itself an attribute-value pair then:
{a} If the atrributes conflict (as defined above), then fail.
{b) If either is a variable, then bind it to the value of the other and returmn that value,
(c) Otherwise, return the most general value that is consistent with both the original values. Specifically,
il disjunction is allowed, then return the inter section of the values.

300 Artificial Intelligence

T e e S e O e e T T A ey e O L TR

2. Otherwise, do:
{a) Set variable NEW 1o empty.
{b) For each attribute A that is present (at the top level) in either &l or G2 do
(i) If A is not present at the top level in the other input, then add A and s value 1o NEW,
(1) If 1t 15, then call Graph-Unify with the two values for A. If that fails, then fal. Otherwise, lake
the new value of A to be the result of that unification and add A with s value 10 NEW
{c) If there are any labels attached 1o &1 or (2, then bind them to NEW and return NEW,

A simple parser can use this algorithm to apply a grammar rule by unifying CONSTITUENT 1 with a
proposed first constituent. If that succeeds, then CONSTITUENT2 is unified with a proposed second constituent,
If that also succeeds, then a new constituent corresponding to the value of BUILD is produced. If there are
variables in the value of BUILD that were bound during the matching of the constituents, then those bindings
will be used to build the new consutuent.

There are many possible variations on the notation we have described here. There are also a variety of
ways of using it to represent dictionary entries and grammar rules, See Shieber [1986] and Knight [1989] for
discussions of some of them.

Although we have presented unification here as a technique for doing syntactic analysis, it has also been
used as a basis for semantic interpretation. In fact, there are arguments for using it as a uniform representation
tor all phases of natural language understanding. There are also arguments against doing so. primarily involving
system modulanty, the noncompositonality of language in some respects (see Section 15.3.4), and the need
o invoke substantial domain reasoning. We will not say any more about this here, but 1o see how this idea
could work, see Allen [1989].

15.3 SEMANTIC ANALYSIS

Producing a syntactic parse of a sentence is only the first step toward understanding it. We must still produce
a representation of the meaning of the sentence. Because understanding 18 a mapping process, we must first
define the language ino which we are trying to map. There is no single, definitive language in which all
sentence meanings can be described. All of the knowledge representation systems that were described in Pant
Il are candidates, and having selected one or more of them, we still need to define the vocabulary (i.e., the
predicates, frames, or whatever) that will be used on top of the structure, In the rest of this chapter, we call the
final meaning representation language, including both the representational framework and the specific meaning
vocabulary, the rarger language. The choice of a target language for any particular natural language
understanding program must depend on what is to be done with the meanings once they are constructed.
There are two broad families of target languages that are used in NL systems, depending on the role that the
natural language system is playing in a larger system (if any).

When natural language is being considered as a phenomenon on its own, as, for example, when one builds
a program whose goal 15 to read text and then answer questions about it, a target language can be designed
specifically to suppon language processing. In this case, one typically looks for primitives that correspond to
distinctions that are usually made in language. Of course, selecting the right set of primitives is not easy. We
discussed this issue briefly in Section 4.3.3, and in Chapier 10 we looked at two proposals for a set of primitives,
conceptual dependency and CYC.

When natural language is being used as an interface language to another program (such as a database
query syslem or an expert system), then the target language must be a legal input to that other program. Thus
the design of the target language is driven by the backend program. This was the case in the simple example
we discussed in Section 15.1.1. But even in this case, it is useful, as we showed in that example, to use an
intermediate knowledge-based representation to guide the overall process. 5o, in the rest of this section, we
assume that the target language we are building i1s a knowledge-based one.

Natural Language Processing 301

Although the main purpose of semantic processing is the creation of a target language representation of a
sentence’s meaning, there is another important role that it plays. [t imposes constraints on the representations
that can be constructed, and, because of the structural connections that must exist between the syntactic
structure and the semantic one, it also provides a way of selecting among competing syntactic analyses.
Semantic processing can impose constraints because it has access 10 knowledge about what makes sense in
the world. We already mentioned one example of this, the sentence, *Is the glass jar peanut butter?” There are
other examples in the rest of this section.

Lexical Processing

The first step in any semantic processing system is to look up the individual words in a dictionary (or lexicon)
and extract their meanings. Unfortunately, many words have several meanings, and it may not be possible to
choose the correct one just by looking at the word itself. For example, the word “diamond™ might have the
following set of meanings:

* A geometrical shape with four equal sides
* A baseball ficld
* An extremely hard and valuable gemstone

To select the correct meaning for the word “diamond™ in the sentence,
Joan saw Susan’s diamond shimmenng from across the room.

it is necessary to know that neither geometrical shapes nor baseball fields shimmer, whereas gemstones do.

Unfortunately, if we view English understanding as mapping from English words into objects in a specific
knowledge base, lexical ambiguity is often greater than it seems in evervday English. For, example, consider
the word “mean.” This word is ambiguous in at least three ways: it can be a verb meaning “to signify”; it can
be an adjective meaning “unpleasant™ or “cheap™; and it can be a noun meaning “statistical average.” But now
imagine that we have a knowledge base that describes a statistics program and its operation. There might be
al least two distinet objects in that knowledge base, both of which correspond to the “statistical average”
meaning of “mean.” One object is the statistical concept of a mean;, the other is the particular function that
computes the mean in this program. To understand the word “mean” we need to map it into some concept in
our knowledge base. But to do that, we must decide which of these concepts is meant. Because of cases like
this, lexical ambiguity is a serious problem, even when the domain of discourse is severely constrained.

The process of determining the correct meaning of an individual word is called werd sense disambiguation
or lexical disambiguation. 1t is done by associating, with each word in the lexicon, information about the
contexts in which each of the word's senses may appear. Each of the words in a sentence can serve as part of
the context in which the meanings of the other words must be determined.

Sometimes only very straightforward information about each word sense is necessary. For example, the
baseball field interpretation of “diamond™ could be marked as a LOCATION. Then the correct meaning of
“diamond” in the sentence “I'll meet you at the diamond™ could easily be determined if the fact that ar
requires a TIME or a LOCATION as its object were recorded as part of the lexical entry for ar. Such simple
properties of word senses are called semanric markers. Other useful semantic markers are

« PHYSICAL-OBJECT
* ANIMATE-OBJECT
* ABSTRACT-OBIECT

Using these markers, the correct meaning of “diamond”™ in the sentence “1 dropped my diambond” can be
computed, As part of its lexical entry, the verb “drop” will specify that its object must be a PHYSICAL-

364 Artificial Intelligence

17.5.3 Decision Trees

A third approach to concept learning is the induction

of decision trees, as exemplified by the 1133 program ""ili"”?

of Quinlan [1986]. ID3 uses a tree representation) | | i |

for concepts, such as the one shown in Fig. 17.13, USA Gemany Britain ftaly Japan

To classify a particular input, we start at the 1op of =) =) =) =) [

the tree and answer questions until we reach a leaf. !]'"[:ﬂ?

where the classification is stored. Fig. 17.13 I ' '
represents the familiar concept “Japanese economy Sf;m EET,?W LL::{TF
car.” ID3 1s a program that builds decision trees
automatically, given positive and negative instances
of a concept.?

1D3 uses an iterative method to build up decision trees, preferring simple trees over complex ones, on the
theory that simple trees are more accurate classifiers of future inputs, It begins by choosing a random subset
of the training examples. This subset is called the window. The algorithm builds a decision tree that correctly
classifies all examples in the window. The tree is then tested on the training examples outside the window. 1f
all the examples are classified correctly, the algorithm halts. Otherwise, it adds a number of training examples
to the window and the process repeats. Empinical evidence indicaies that the mterative strategy 1s more efficient
than considering the whole training set at once,

So how does [D3 actually construct decision trees? Building a node means choosing some attribute to test.
At a given point in the tree, some attributes will yield more information than others. For example, testing the
attribute color 15 useless if the color of a car does not help us to classify it correctly. Ideally, an attribute will
separale training instances into subsets whose members share a common label (e.g., positive or negative). In
that case, branching is terminated, and the leal nodes are labeled.

There are many vanations on this basic algorithm. For example, when we add a test that has more than two
branches, it is possible that one branch has no corresponding traaning instances. In that case, we can either leave
the node unlabeled, or we can attempt 1o guess a label based on statistical properties of the set of instances being
tested at that point in the tree. Noisy input is another issue. One way of handling noisy input is to avoid building
new branches if the information gained is very slight. In other words, we do not want to overcomplicate the tree
to account for isolated noisy instances. Another source of uncertainty is that attribute valees may be unknown.
For example a patient’s medical record may be incomplete. One solution is to guess the correct branch to take;
another solution is to build special “unknown™ branches at each node during leaming.

When the concept space is very large, decision tree learning algorithms run more quickly than ther version
space cousins. Also, disjunction is more straightforward. For example, we can easily modify Fig. 17.13 to
represent the disjunctive concept “American car or Japanese economy car,” simply by changing one of the
negative (—) leaf labels to positive (+). One drawback to the 1D3 approach is that large, complex decision
trees can be difficult for humans 1w understand, and so a decision tree system may have a hard time explaining
the reasons for its classifications.

Fig. 17.13 A Decislon Tree

17.6 EXPLANATION-BASED LEARNING

The previous section illustrated how we can induce concept descriptions from positive and negative examples.
Leamning complex concepts using these procedures typically requires a substantial number of training instances.

* Actually, the decision tree representation is more general: Leaves can denote any of a number of classes, not just positive
and negative.

ARTIFICIAL
INTELLIGENCE

Third Edition

This hallmark text presents both theoretical foundations of Artificial Intelligence
and ways in which current tar.hnlquu ﬂn?ha used in application programs. The
new edition has been Enﬂl:lial:l \!ﬂﬂl"# l: dﬂ]:tm's describing upcoming areas
that have found varhl:y ul’ uses under ﬂlﬁ domain nf Artificial Intelligence.

Salient features

& Four new :Inphn on Fuzzy Logic Systems, Genetic Algorithms,
Artificial Imml.mur Sp:tams, and PROLOG

“\ Important Heurlstil: Techniques, including Hill Climbing, BFS, and
Generate and Test covered explicitly

“' Cases on Networl Security, Robot Control, and Navigation

“1 Excellent pedagogy includes
“ 161 Review questions
< 279 lllustrations

http://www.mhhe.com/rich/ai3

W, talamn:gra whill.com

Tata McGraw-Hill 9780070 .4

