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Preface 
Solutions to problems in the field of digital image processing generally require 
extensive experimental work involving software simulation and testing with large sets 
of sample images. Although algorithm development typically is based on theoretical 
underpinnings, the actual implementation of these algorithms almost always requires 
parameter estimation and, frequently, algorithm revision and comparison of candidate 
solutions. Thus, selection of a flexible, comprehensive, and well-documented software 
development environment is a key factor that has important implications in the cost, 
development time, and portability of image processing solutions. 

In spite of its importance, surprisingly little has been written on this aspect of the 
field in the form of textbook material dealing with both theoretical principles and soft- 
ware implementation of digital image processing concepts. This book was written for 
just this purpose. Its main objective is to provide a foundation for implementing image 
processing algorithms using modem software tools. A complementary objective was to 
prepare a book that is self-contained and easily readable by individuals with a basic 
background in digital image processing, mathematical analysis, and computer pro- 
gramming, all at a level typical of that found in a junior/senior curriculum in a techni- 
cal discipline. Rudimentary knowledge of MATLAB also is desirable. 

To achieve these objectives, we felt that two key ingredients were needed. The 
first was to select image processing material that is representative of material cov- 
ered in a formal course of instruction in this field. The second was to select soft- 
ware tools that are well supported and documented, and which have a wide range 
of applications in the "real" world. 

To meet the first objective, most of the theoretical concepts in the following chapters 
were selected from Digital Image Processing by Gonzalez and Woods, which has been 
the choice introductory textbook used by educators all over the world for over two 
decades.'Ihe software tools selected are from the MATLAB Image Processing Toolbox 
(R), which similarly occupies a position of eminence in both education and industrial 
app1ications.A basic strategy followed in the preparation of the book was to provide a 
seamless integration of well-established theoretical concepts and their implementation 
using state-of-the-art software tools. 

The book is organized along the same lines as Digital Image Processing. In this way, 
the reader has easy access to a more detailed treatment of all the image processing 
concepts discussed here, as well as an up-to-date set of references for further reading. 
Following this approach made it possible to present theoretical material in a succinct 
manner and thus we were able to maintain a focus on the software implementation as- 
pects of image processing problem solutions. Because it works in the MATLAB com- 
puting environment, the Image Processing Toolbox offers some significant advantages, 
not only in the breadth of its computational tools, but also because it is supported 
under most operating systems in use t0day.A unique feature of this book is its empha- 
sis on showing how to develop new code to enhance existing MATLAB and IPT func- 
tionality. This is an important feature in an area such as image processing, which, as 
noted earlier, is characterized by the need for extensive algorithm decreloprnent and 
experimental work. 

After an introduction to the fundamentals of MATLAB functions and program- 
ming, the book proceeds to address the mainstream areas of image processing. The 
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major areas covered include intensity transformations, linear and nonlinear spatial fil- 
tering, filtering in the frequency domain, image restoration and registration, color 
image processing, wavelets image data compression, morphological image processing, 
image segmentation, region and boundary representation and description, and object 
recognition. This material is complemented by numerous illustrations of how to solve 
image processing problems using MATLAB and IPT functions. In cases where a func- 
tion did not exist, a new function was written and documented as part of the instruc- 
tional focus of the book. Over 60 new functions are included in the following chapters. 
These functions increase the scope of IPT by approximately 35 percent and also serve 
the important purpose of further illustrating how to implement new image processing 
software solutions. 

The material is presented in textbook format, not as a software manual. Although 
the book is self-contained, we have established a companion Web site (see Section 1.5) 
designed to provide support in a number of areas. For students following a formal 
course of studv or individuals embarked on a program of self study, the site contains 
tutorials and reviews on background material, as well as projects and image databases, 
including all images in the book. For instructors, the site contains classroom presenta- 
tion materials that include Powerpoint slides of all the images and graphics used in the 
book. Individuals already familiar with image processing and I I T  fundamentals will 
find the site a useful place for up-to-date references, new implementation techniques, 
and a host of other support material not easily found elsewhere. All purchasers of the 
book are eligible to download executable files of all the new functions developed in 
the text. 

As is true of most writing efforts of this nature, progress continues after work on the 
manuscript stops. For this reason, we devoted significant effort to the selection of ma- 
terial that we believe is Fundamental, and whose value is likely to remain applicable in 
a rapidly evolving body of knowledge. We trust that readers of the book will benefit 
from this effort and thus find the material timely and useful in their work. 
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Preview 
Digital image processing is an area characterized by the need for extensive ex- 
perimental work to establish the viability of proposed solutions to  a given 
problem. In this chapter we outline how a theoretical base and state-of-the-art 
software can be integrated into a prototyping environment whose objective is 
to provide a set of well-supported tools for the solution of a broad class of 
problems in digital image processing. 

Background 
An important characteristic underlying the design of image processing sys- 
tems is the significant level of testing and experimentation that normally is re- 
quired before arriving at  an acceptable solution. This characteristic implies 
that the ability to formulate approaches and quickly prototype candidate solu- 
tions generally plays a major role in reducing the cost and time required to 
arrive at  a viable system implementation. 

Little has been written ii the way of instructional material to  bridge the gap 
between theory and application in a well-supported software environment. The 
main objective of this book is to integrate under one cover a broad base of the- 
oretical concepts with the knowledge required to  implement those concepts 
using state-of-the-art image processing software tools. The theoretical underpin- 
nings of the material in the following chapters are mainly from the leading text- 
book in the field: Digital linage Processing, by Gonzalez and Woods, published 
by Prentice Hall. The software code and supporting tools are based on the lead- 
ing software package in the field: The MATLAB Image Processing ~ o o l b o x . ~  

'In the following discussion and in subsequent chapters we sometimes refer to Digital lmage Proce.wng 
by Gonzalez and Woods as .'the Gonzalez-Woods book." and to the Image Processing Toolbox as "IPT" 
0' simply as the "toolbox." 
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from The Mathworks, Inc. (see Section 1.3). The material in the present book 
shares the same design, notation, and style of presentation as the Gonzalez- 
Woods book, thus simplifying cross-referencing between the two. 

The book is self-contained. To master its contents, the reader should have 
introductory preparation in digital image processing, either by having taken a 
formal course of study on the subject a t  the senior or first-year graduate level, 
or by acquiring the necessary background in a program of self-study. It is as- 
sumed also that the reader has some familiarity with MATLAB, as well as 
rudimentary knowledge of the basics of computer programming, such as that 
acquired in a sophomore- or junior-level course on programming in a techni- 
cally oriented language. Because MATLAB is an array-oriented language. 
basic knowledge of matrix analysis also is helpful. 

The book is based o n  principles. It is organized and presented in a textbook 
format, not as a manual. Thus, basic ideas of both theory and software are ex- 
plained prior to  the development of any new programming concepts. The ma- 
terial is illustrated and clarified further by numerous examples ranging from 
medicine and industrial inspection to remote sensing and astronomy. This ap- 
proach allows orderly progression from simple concepts to sophisticated im- 
plementation of image processing algorithms. However, readers already 
familiar with MATLAB, IPT, and image processing fundamentals can proceed 
directly to specific applications of interest, in which case the functions in the 
book can be used as an extension of the family of IPT functions. All new func- 
tions developed in the book are  fully documented, and the code for each is 
included either in a chapter o r  in Appendix C. 

Over 60 new functions are developed in the chapters that follow. These 
functions complement and extend by 35% the set of about 175 functions in 
IPT. In addition to addressing specific applications, the new functions are clear 
examples of how to combine existing MATLAB and IPT functions with new 
code to develop prototypic solutions to a broad spectrum of problems in digi- 
tal image processing.The toolbox functions, as well as the functions developed 
in the book, run under most operating systems. Consult the book Web site (see 
Section 1.5) for a complete list. 

,wA What Is Digital Image Processing? 
An image may be defined as a two-dimensional function, f ( x ,  y ) ,  where x and 
y are spatial coordinates, and the amplitude of f at any pair of coordinates 
(x. y )  is called the irzrensity or  gray level of the image at that point. When .r, y, 
and the amplitude values of f are all finite, discrete quantities, we call the 
image a digital image. The field of digital image processing refers to processing 
digital images by means of a digital computer. Note that a digital image is com- 
posed of a finite number of elements, each of which has a particular location 
and value. These elements are referred to  as picture elements, image elements, 
pels, and pi,uels. Pixel is the term most widely used to denote the elements of a 
digital image. We consider these definitions formally in Chapter 2. 

1.2 x What Is Digital Image Processing? 3 

Vision is the most advanced of our senses, so it is not surprising that images 
play the single most important role in human perception. However, unlike hu- 
mans. who are limited to the visual band of the electromagnetic (EM) spec- 
trum, imaging machines cover almost the entire E M  spectrum, ranging from 
gamma to radio waves.They car) operate also on images generated by sources 
that humans are not accustomed to associating with images. These include ul- 
trasound, electron microscopy, ,and computer-generated images. Thus, digital 
image processing encompasses a wide and varied field of applications. 

There is n o  general agreement among authors regarding where image pro- 
cessing stops and other related areas, such as image analysis and computer vi- 
sion, start. Sometimes a distinctron is made by defining image processing as a 
discipline in which both the input and output of a process are images. We be- 
lieve this to be a limiting and somewhat artificial boundary. For example, 
under this definition, even the trivial task of computing the average intensity 
of an image would not be consildered an image processing operation. On the 
other hand, there are fields such as computer vision whose ultimate goal is to  
use computers to emulate human vision, including learning and being able to 
make inferences and take actions based on visual inputs. This area itself is a 
branch of artificial intelligence (AI), whose objective is to  emulate human in- 
telligence. The field of A1 is in its earliest stages of infancy in terms of devel- 
opment, with progress having been much slower than originally anticipated. 
The area of image analysis (also called image understanding) is in between 
image processing and computer vision. 

There are no clear-cut boundaries in the continuum from image processing 
at one end to computer vision at the other. However, one useful paradigm is to 
consider three types of computerized processes in this continuum: low-, mid-, 
and high-level processes. Low-level processes involve primitive operations 
such as image preprocessing to reduce noise, contrast enhancement, and image 
sharpening.A low-level process is characterized by the fact that both its inputs 
and outputs are images. Mid-level processes on  images involve tasks such as 
segmentation (partitioning an irnage into regions or  objects), description of 
those objects to reduce them to a form suitable for computer processing, and 
classification (recognition) of individual objects. A mid-level process is charac- 
terized by the fact that its inputs generally are images, but its outputs are  at- 
tributes extracted from those im,ages (e.g., edges, contours, and the identity of 
individual objects). Finally, higher-level processing involves "making sense" of 
an ensemble of recognized objects, as in image analysis, and, a t  the far end 
of the continuum, performing the: cognitive functions normally associated with 
human vision. 

Based on the preceding comments, we see that a logical place of overlap be- 
tween image processing and image analysis is the area of recognition of 
individual regions or objects in an image.Thus, what we call in this book digital 
image processing encompasses processes whose inputs and outputs are images 
and, in aridition, encompasses prclcesses that extract attributes from images. up 
to and including the recognition of individual objects. A s  a simple illustration 
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,to clarify these concepts, consider the area of automated analysis of text. The 
processes of acquiring an image of the area containing the text, preprocessing 
that image, extracting (segmenting) the individual characters, describing the 
characters in a form suitable for computer processing, and recognizing those 
individual characters, are in the scope of what we call digital image processing 
in this book. Making sense of the content of the page may be viewed as 
being in the domain of image analysis and even computer vision, depending on 
the level of complexity implied by the statement: "making sense." Digital 
im.age processing, as we have defined it, is used succe:ssfully in a broad range of 
areas of exceptional social and economic value. 

Background on MATLAB and the Tmage 
Processing TooIbox 

MATLAB is a high-performance language for technical computing. It inte- 
grates computation, visualization, and programming in an easy-to-use environ- 
ment where problems and solutions are expressed in familiar mathematical 
notation. Typical uses include the following: 

4) Math and computation 
41 Algorithm development 
41 Data acquisition 
41 Modeling, simulation, and prototyping 
41 Data analysis, exploration, and visualization 
41 Scientific and engineering graphics 
41 Application development, including graphical user interface building 

:MATLAB is an interactive system whose basic data element is an array that 
does not require dimensioning. This allows formulating solutions to many 
technical computing problems, especially those involving matrix representa- 
.tions, in a fraction of the time it would take to write a program in a scalar non- 
int~eractive language such as C or Fortran. 

The name MATLAB stands for matrix laboratoiry. MATLAB was written 
originally to provide easy access to matrix software developed by the LIN- 
PACK (Linear System Package) and EISPACK (Ei,gen System Package) pro- 
jects. Today, MATLAB engines incorporate the LAPACK (Linear Algebra 
Package) and BLAS (Basic Linear Algebra Subpro:grams) libraries, constitut- 
ing the state of the art in software for matrix computation. 

In university environments, MATLAB is the standard computational tool for 
int:roductory and advanced courses in mathematics, e.ngineering, and science. In 
industry, MATLAB is the computational tool of choice for research, develop- 
ment, and analysis. MATLAB is complemented b y  a family of application- 
specific solutions called toolboxes. The Image Proces!jing Toolbox is a collection 
of MATLAB functions (called M-functions or M-file,s) that extend the capabili- 
ty of the MATLAB environment for the solution of digital image processing 
problems. Other toolboxes that sometimes are used to complement IPT are the 
Signal Processing, Neural Network, Fuzzy Logic, and Wavelet Toolboxes. 
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The MATLAB Student Version includes a full-featured version of 
MATLAB. The Student Version can be purchased at significant discounts at 
university bookstores and at the Mathworks' Web site (www.mathworks.com). 
Student versions of add-on products, including the Image Processing Toolbox, 
also are available. 

Areas of Image Processing Covered in the Book 
Every chapter in this book contains the pertinent MATLAB and IPT material 
needed to implement the image processing methods discussed. When a MAT- 
LAB or IPT function does not exist to implement a specific method, a new 
function is developed and documented. As noted earlier, a complete listing of 
every new function is included in the book. The remaining eleven chapters 
cover material in the following areas. 

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB 
notation, indexing, and programming concepts. This material serves as founda- 
tion for the rest of the book. 

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter cov- 
ers in detail how to use MATLAB and IPT to implement intensity transfor- 
mation functions. Linear and nonlinear spatial filters are covered and 
illustrated in detail. 

Chapter 4: Processing in the Frequency Domain. The material in this chapter 
shows how to use IPT functions for computing the forward and inverse fast 
Fourier transforms (FFTs), how to visualize the Fourier spectrum, and how to 
implement filtering in the frequency domain. Shown also is a method for gen- 
erating frequency domain filters from specified spatial filters. 

Chapter 5: Image Restoration. Traditional linear restoration methods, such as 
the Wiener filter, are covered in this chapter. Iterative, nonlinear methods, 
such as the Richardson-Lucy method and maximum-likelihood estimation for 
blind deconvolution, are discussed and illustrated. Geometric corrections and 
image registration also are covered. 

Chapter 6: Color Image Processing. This chapter deals with pseudocolor and 
full-color image processing. Color models applicable to digital image process- 
ing are discussed, and IPT functionality in color processing is extended via im- 
plementation of additional color models. The chapter also covers applications 
of color to edge detection and region segmentation. 

Chapter 7:Wavelets. In its current form, IPT does not have any wavelet trans- 
forms. A set of wavelet-related functions compatible with the Wavelet Toolbox 
is developed in this chapter that will allow the reader to implement all the 
wavelet-transform concepts discussed in the Gonzalez-Woods book. 

Chapter 8: Image Compression. The toolbox does not have any data compres- 
sion functions. In this chapter, we develop a set of functions that can be used 
for this purpose. 
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Chapter 9: Morphological Image Processing. The broad spectrum of func- 
tions available in IPT for morphological image processing are explained and 
illustrated in this chapter using both binary and gray-scale images. 

Chapter 10: Image Segmentation. The set of IPT functions available for 
image segmentation are explained and illustrated in this chapter. New func- 
tions for Hough transform processing and region growing also are developed. 

Chapter 11: Representation and Description. Several new functions for ob- 
ject representation and description, including chain-code and polygonal repre- 
sentations, are developed in this chapter. New functions are included also for 
object description, including Fourier descriptors, texture, and moment invari- 
ants. These functions complement an extensive set of region property func- 
tions available in IPT. 

Chapter 12: Object Recognition. One of the important features of this chap- 
ter is the efficient implementation of functions for computing the Euclidean 
and Mahalanobis distances. These functions play a central role in pattern 
matching. The chapter also contains a comprehensive discussion on how to 
manipulate strings of symbols in MATLAB. String manipulation and matching 
are important in structural pattern recognition. 

In addition to the preceding material, the book contains three appendices. 

Appendix A: Contains a summary of all IPT and new image-processing func- 
tions developed in the book. Relevant MATLAB function also are included. 
This is a useful reference that provides a global overview of all functions in the 
toolbox and the book. 

Appendix B: Contains a discussion on how to implement graphical user inter- 
faces (GUIs) in MATLAB. GUIs are a useful complement to the material in 
the book because they simplify and make more intuitive the control of inter- 
active functions. 

Appendix C: New function listings are included in the body of a chapter when 
a new concept is explained. Otherwise the listing is included in Appendix C. 
This is true also for listings of functions that are lengthy. Deferring the listing 
of some functions to this appendix was done primarily to avoid breaking the 
flow of explanations in text material. 

'm The Book Web Site 
An important feature of this book is the support contained in the book Web 
site. The site address is 

This site provides support to the book in the following areas: 

Downloadable M-files, including all M-files in the book 
Tutorials 
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Projects 
Teaching materials 
Links to databases, including, all images in the book 
~ o o k  updates 
Background publications 

m e  site is integrated with the Web site of the Gonzalez-Woods book: 

which offers additional support on instructional and research topics. 

Notation 

Equations in the book are typeset using familiar italic and Greek symbols, 
as in f (x, y) = A sin(ux + v y )  and 4(u,  v )  = tan- ' [~(u,  v)/R(u, v)]. All 
MATLAB function names and symbols are typeset in monospace font, as in 
fft2(f),logical(A),androipoly(f, c ,  r ) .  

The first occurrence of a MATLAB or IPT function is highlighted by use of 
the following icon on the page margin: 

Similarly, the first occurrence of a new function developed in the book is high- 
lighted by use of the following icon on the page margin: 

function name 
1- 

is used as a visual cue to denote the end of a function 
listing. 

When referring to keyboard k:eys, we use bold letters, such as Return and 
Tab. We also use bold letters when referring to items on a computer screen or 
menu. such as File and Edit. 

The MATLAB Working Environment 
In this section we give a brief overview of some important operational aspects 
of using MATLAB. 

1-7. i The MATLAB Desktop 
The MATLAB desktop is the main MATLAB application window. As Fig. 1.1 
shows, the desktop contains five subwindows: the Command Window, the 
Workspace Browser, the Current. Directory Window, the Command History 
Window, and one or more Figure Windows, which are shown only when the 
user displays a graphic. 
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IGLIRE 1.1 The MATLAB desktop and its principal components. 

The Command Window is where the user types MATLAB commands and 
expressions at the prompt (>>) and where the outputs of those commands are 
displayed. MATLAB defines the workspace as the set of variables that the 
user creates in a work session. The Workspace Browser shows these variables 
and some information about them. Double-clicking on a variable in the Work- 
space Browser launches the Array Editor, which can be used to obtain infor- 
mation and in some instances edit certain properties of the variable. 

The Current Directory tab above the Workspace tab shows the contents of 
the current directory, whose path is shown in the Current Directory Window. 
For example, in the Windows operating system the path might be as follows: 
C:\MATLAB\Work, indicating that directory "Work" is a subdirectory of 
the main directory "MATLAB," which is installed in drive C. Clicking on the 
arrow in the Current Directory Window shows a list of recently used paths. 
Clicking on the button to the right of the window alllows the user to change the 
current directory. 
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MATLAB uses a search path to find M-files and other MATLAB-related 
files, which are organized in directories in the computer file system. Any file 
run in MATLAB must reside in the current directory or in a directory that 
is on the search path. By default, the files supplied with MATLAB and 
Mathworks toolboxes are included in the search path. The easiest way to 
see which directories are on the search path, or to add or modify a search 
path, is to select Set Path from the File menu on the desktop, and then use 
the Set Path dialog box. It is good practice to add any commonly used di- 
rectories to the search path to avoid repeatedly having the change the cur- 
rent directory. 

The Command History Window contains a record of the commands a user 
has entered in the Command Window, including both current and previous 
MATLAB sessions. Previously entered MATLAB commands can be selected 
and re-executed from the Command History Window by right-clicking on a 
command or sequence of commands. This action launches a menu from which 
to select various options in addition to executing the commands. This is a use- 
ful feature when experimenting with various commands in a work session. 

'1.7.2 Using the MATLAB Editor to Create M-Files 
The MATLAB editor is both a text editor specialized for creating M-files and 
a graphical MATLAB debugger. The editor can appear in a window by itself, 
or it can be a subwindow in the desktop. M-files are denoted by the extension 
. m, as in pixeldup . m. The MATLAB editor window has numerous pull-down 
menus for tasks such as saving, viewing, and debugging files. Because it per- 
forms some simple checks and also uses color to differentiate between various 
elements of code, this text editor is recommended as the tool of choice for 
writing and editing M-functions.To open the editor, type edit at the prompt in 
the Command Window. Similarly, typing edit filename at the prompt opens 
the M-file filename. m in an editor window, ready for editing. As noted earli- 
er, the file must be in the current directory, or in a directory in the search path. 

1.7.3 Getting Help 
The principal way to get help onlinet is to use the MATLAB Help Browser, 
opened as a separate window either by clicking on the question mark symbol 
(?) on the desktop toolbar, or by typing helpbrowser at the prompt in the 
Command Window. The Help Browser is a Web browser integrated into the 
MATLAB desktop that displays Hypertext Markup Language (HTML) docu- 
ments. The Help Browser consists of two panes, the help navigator pane, used 
to find information, and the display pane, used to view the information. 
Self-explanatory tabs on the navigator pane are used to perform a search. 
For example, help on a specific function is obtained by selecting the Search 
tab, selecting Function Name as the Search Type, and then typing in the func- 
tion name in the Search for field. It is good practice to open the Help Browser 

+Use of the term online in this book refers to information, such as help files, available in a local computer 
system, not on the Internet. 
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at the beginning of a MATLAB session to have help readily available during 
code development or other MATLAB task. 

Another way to obtain help for a specific function is by typing doc followed 
by the function name at the command prompt. For example, typing doc format 
displays documentation for the function called format in the display pane of 
the Help Browser. This command opens the browser if it is not already open. 

M-functions have two types of information that can be displayed by the 
user. The first is called the HI line, which contains the function name and a 
one-line description. The second is a block of explanation called the Help text 
block (these are discussed in detail in Section 2.10.1). Typing help at the 
prompt followed by a function name displays both the H I  line and the Help 
text for that function in the Command Window. Occasionally, this information 
can be more up to date than the information in the Help browser because it is 
extracted directly from the documentation of the M-function in question. Typ- 
ing lookfor followed by a keyword displays all the H I  lines that contain that 
keyword. This function is useful when looking for a particular topic without 
knowing the names of applicable functions. For example, typing lookf o r  edge 
at the prompt displays all the H1 lines containing that keyword. Because the 
H1 line contains the function name, it then becomes possible to look at specif- 
ic functions using the other help methods. Typing lookfor edge - a l l  at the 
prompt displays the HI  line of all functions that contain the word edge in ei- 
ther the H1 line or the Help text block.Words that contain the characters edge 
also are detected. For example, the H1 line of a function containing the word 
polyedge in the H1 line or Help text would also be displayed. 

It is common MATLAB terminology to use the term help page when refer- 
ring to the information about an M-function displayed by any of the preceding 
approaches, excluding lookf or. It is highly recommended that the reader be- 
come familiar with all these methods for obtaining information because in the 
following chapters we often give only representative syntax forms for MAT- 
LAB and IPT functions. This is necessary either because of space limitations 
or to avoid deviating from a particular discussion more than is absolutely nec- 
essary. In these cases we simply introduce the syntax required to execute the 
function in the form required at that point. By being comfortable with online 
search methods, the reader can then explore a function of interest in more de- 
tail with little effort. 

Finally, the MathWorkslWeb site mentioned in Section 1.3 contains a large 
database of help material, contributed functions, and other resources that 
should be utilized when the online documentation contains insufficient infor- 
mation about a desired topic. 

r .7,! Saving and Retrieving a Work Session 
There are several ways to save and load an entire work session (the contents 
of the Workspace Browser) or selected workspace variables in MATLAB.The 
simplest is as follows. 

To save the entire workspace, simply right-click on any blank space in the 
Workspace Browser window and select Save Workspace As from the menu 
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that appears.Tnis opens a directory window that allows naming the file and se- 
lecting any folder in the system in which to save it. Then simply click Save. To 
save a selected variable from the Workspace, select the variable with a left 
click and then right-click on the highlighted area. Then select Save Selection 
AS from the menu that appears.This again opens a window from which a fold- 
er can be selected to save the variable. To select multiple variables, use shift- 
click or control-click in the familiar manner, and then use the procedure just 
described for a single variable. All files are saved in double-precision, binary 
format with the extension . mat.These saved files commonly are referred to as 
MAT'les. For example, a session named, say, mywork~2003~02~10, would ap- 
pear as the MAT-file mywork~2003~02~10.mat when saved. Similarly, a saved 
image called f inal-image (which is a single variable in the workspace) will 
appear when saved as final-image.mat. 

To load saved workspaces andior variables, left-click on the folder icon on 
the toolbar of the Workspace Br'owser window. This causes a window to open 
from which a folder containing the MAT-files of interest can be selected. 
Double-clicking on a selected MAT-file or selecting Open causes the contents 
of the file to be restored in the Workspace Browser window. 

It is possible to achieve the same results described in the preceding para- 
graphs by typing save and load at the prompt, with the appropriate file names 
and path information. This approach is not as convenient, but it is used when 
formats other than those available in the menu method are required. As an 
exercise, the reader is encouraged to use the Help Browser to learn more 
about these two functions. 

How References Are Organized in the Book 

All references in the book are listed in the Bibliography by author and date, as 
in Soille [2003]. Most of the background references for the theoretical content 
of the book are from Gonzalez and Woods [2002]. In cases where this is not 
true, the appropriate new references are identified at the point in the discus- 
sion where they are needed. References that are applicable to all chapters, 
such as MATLAB manuals and other general MATLAB references, are so 
identified in the Bibliography. 

Summary 
In addition to a brief introduction to notation and basic MATLAB tools, the material 
in this chapter emphasizes the importance of a comprehensive prototyping environ- 
ment in the solution of digital image processing problems. In the following chapter we 
begin to lay the foundation needed to understand IPT functions and introduce a set of 
fundamental programming concepts that are used throughout the book. The material 
in Chapters 3 through 12 spans a wide cross section of topics that are in the mainstream 
of digital image processing applications. However, although the topics covered are var- 
ied, the discussion in those chapters follows the same basic theme of demonstrating 
how combining MATLAB and IPT functions with new code can be used to solve a 
broad spectrum of image-processing problems. 



Preview 
As mentioned in the previous chapter, the power that MATLAB brings to dig- 
ital image processing is an extensive set of functions for processing multidi- 
mensional arrays of which images (two-dimensiollal numerical arrays) are a 
special case. The Image Processing Toolbox (IPT) is a collection of functions 
that extend the capability of the MATLAB numeric computing environment. 
These functions, and the expressiveness of the MATLAB language, make 
many image-processing operations easy to write in a compact, clear manner, 
thus providing an ideal software prototyping environment for the solution of 
image processing problems. In this chapter we introduce the basics of MAT- 
LAB notation, discuss a number of fundamental IPT properties and functions, 
and introduce programming concepts that further enhance the power of IPT. 
Thus, the material in this chapter is the foundation for most of the material in 
the remainder of the book. 

Digital Image Representation 
An image may be defined as a two-dimensional function, f (x, y), where x and 
y are spatial (plane) coordinates, and the amplitude off  at any pair of coordi- 
nates (x, y) is called the intensity of the image at that point.The termgray level 
is used often to refer to the intensity of monochron~e images. Color images are 
formed by a combination of individual 2-D images. For example, in the RGB 
color system, a color image consists of three (red, green, and blue) individual 
component images. For this reason, many of the techniques developed for 
monochrome images can be extended to color images by processing the three 
component images individually. Color image processing is treated in detail in 
Chapter 6. 
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An image may be continuous with respect to the x- and y-coordinates, and 
also in amplitude. Converting such an image to digital form requires that the 
coordinates, as well as the amplitude, be digitized. Digitizing the coordinate 
values is called sampling; digitizing the amplitude values is called quantization. 
Thus, when x, y, and the amplitude values off  are all finite, discrete quantities, 
we call the image a digital image. 

2-3.1 Coordinate Conventions 
The result of sampling and quantization is a matrix of real numbers. We use 
two principal ways in this book to represent digital images. Assume that an 
image f (x ,  y) is sampled so that the resulting image has M rows and N 
columns. We say that the image is of size M x N. The values of the coordi- 
nates (x, y) are discrete quantities. For notational clarity and convenience, we 
use integer values for these discrete coordinates. In many image processing 
books, the image origin is defined to be at (x, y) = (0,O). The next coordinate 
values along the first row of the image are (x, y) = (0 , l ) .  It is important to 
keep in mind that the notation (O,1) is used to signify the second sample along 
the first row. It does not mean that these are the actual values of physical co- 
ordinates when the image was sampled. Figure 2.l(a) shows this coordinate 
convention. Note that x ranges from-0 to M - 1, and y from 0 to N - 1, in in- 
teger increments. 

The coordinate convention used in the toolbox to denote arrays is different 
from the preceding paragraph in two minor ways. First, instead of using (x, y), 
the toolbox uses the notation (r, c) to indicate rows and columns. Note, how- 
ever, that the order of coordinates is the same as the order discussed in the 
previous paragraph, in the sense that the first element of a coordinate tuple, 
(a, b) ,  refers to a row and the second to a column.The other difference is that 
the origin of the coordinate system is at (r, c) = (1 , l ) ;  thus, r ranges from 1 to 
M, and c from 1 to N, in integer increments. This coordinate convention is 
shown in Fig. Z.l(b). 

M - 1 ,  

a b  
FIGURE 2.1 
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IPT documentation refers to the coordinates in Fig. 2.l(b) as pixel coordi- 
nates. Less frequently, the toolbox also employs another coordinate conven- 
tion called spatial coordinates, which uses x to refer to columns and y to refers 
to rows. This is the opposite of our use of variables x and y. With very few ex- 
ceptions, we do not use IPT's spatial coordinate convention in this book, but 
the reader will definitely encounter the terminology in IPT documentation. 

2 . 1 2  Images as Matrices 
The coordinate system in Fig. 2.l(a) and the preceding discussion lead to the 
following representation for a digitized image function: 

f ( 0 , l )  ... f ( 0 , N - 1 )  1 

'ATLAB and IPT 
cumentation use 
th the terms matrix 

arrd array, mostly in- 
rchangeably. How- 
,er, keep in mind 
zt a matrir is two 
nensional, whereas 

urt array can have 
iy finite dimension. 

The right side of this equation is a digital image by definition. Each element of 
this array is called an image element, picture element, pixel, or pel. The terms 
image and pixel are used throughout the rest of our discussions to denote a 
digital image and its elements. 

A digital image can be represented naturally as a MATLAB matrix: 

where f ( 1 , 1 ) = f (0,O) (note the use of a monospace font to denote MAT- 
LAB quantities). Clearly the two representations are identical, except for the 
shift in origin. The notation f ( p, q )  denotes the element located in row p and 
column q. For example, f ( 6 ,  2 ) is the element in the sixth row and second col- 
umn of the matrix f .  Qpically we use the letters M and N, respectively, to de- 
note the number of rows and columns in a matrix. A 1 x N matrix is called a 
row vector, whereas an M x 1 matrix is called a column vector. A 1 x 1 matrix is 
a scalar. 

Matrices in MATLAB are stored in variables with names such as A, a, RGB, 
real-array, and so on. Variables must begin with a letter and contain only 
letters, numerals, and underscores. As noted in the previous paragraph, all 
MATLAB quantities in this book are written using monospace characters. We 
use conventional Roman, italic notation, such as f ( x ,  y), for mathematical 
expressions. 

Reading Images 
Images are read into the MATLAB environment using function imread, 
whose syntax is 
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Format Recognized 
Name Description Extensions 

TIFF Tagged Image File Format . t l f ,  .tiff 

JPEG Joint Photographic Experts Group . j pg, . I  peg 
GIF Graphics Interchange  orm mat^ . g l f  
BMP Windows Bitmap . bmp 
PNG Portable Network Graphics .Prig 

XWD X Window Dump . xwd 

' G I F  IS supported by lmread, but not by lmwr i t e .  

TABLE 2.1 
Some of the 
imagelgraphics 
formats supported 
by imread  and 
i m w r i t e ,  starting 
with MATLAB 6.5. 
Earlier versions 
support a subset of 
these formats. See 
online help for a 
complete list of 
supported formats. 

Here, f ilename is a string containing the complete name of the image file (in- 
cluding any applicable extension). For example, the command line 

reads the JPEG (Table 2.1) image chestxray into image array f .  Note the use 
\ of single quotes ( ' ) to delimit the string filename. The semicolon at the end fi;,+efi~colon ( ; ) 

of a command line is used by MATLAB for suppressing output. If a semicolon , ' ' 
is not included, MATLAB displays the results of the operation(s) specified in 

"/ ;P ,\ that 1ine.The prompt symbol (>>I designates the beginning of a command line, -, # ~ R r o r n p t  i>>) 
as it appears in the MATLAB Command Window (see Fig. 1.1). 0 ' 

When, as in the preceding command line, no path information is included in 
filename, imread reads the file from the current directory (see Section 1.7.1) 

In Wmdows, drrecto- and, if that fails, it tries to find the file in the MATLAB search path (see r,,salso arecalled 
Section 1.7.1).The simplest way to read an Image from a specified directory is folders 
to include a full or relative path to that directory in f llename. For example, 

reads the image from a folder called myimages on the D: drive, whereas 

reads the image from the myimages subdirectory of the current working di- 
rectory. The Current Directory Window on the MATLAB desktop toolbar 
displays MATLAB's current working directory and provides a simple, man- 
ual way to change it. Table 2.1 lists some of the most popular imagelgraphics 
formats supported by imread and imwrite (imwrite is discussed in 
Section 2.4). 

, i /i 
Function s i z e  gives the row and column dimensions of an image: * -  sGe . "  

>> s i z e ( f )  

ans = 
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1s 117 s ize ,  ~ n n j ~ y  
MATLA B rrrlrl IPT 
Iinctiorls carr rerunl 
nore than one out- 
utr urgunzenr. Multi- 
de output 
irylrrnenrs nzrrst be 
-rrclosed within 
quore bmckets, [ ] 

I I 

whas 
* /  \ 

1" ' 
J rmshow 

This function is particularly useful in programming when used in the following 
form to determine automatically the size of an image: 

>> [ M ,  N ]  = s i z e ( f ) ;  

This syntax returns the number of rows (M) and columns (N) in the image. 
The whos function displays additional information about an array. For in- 

stance, the statement 

>> whos f 

gives 

Name Size  Bytes c l a s s  
f 1024x1 024 1048576 uint8  ar ray  
Grand t o t a l  i s  1048576 elements using 1048576 bytes 

The uint8  entry shown refers to one of several MATLAB data classes dis- 
cussed in Section 2.5. A semicolon at the end of a whos line has no effect, so 
normally one is not used. 

Displaying Images 

Images are displayed on the MATLAB desktop using function imshow, which 
has the basic syntax: 

where f is an image array, and G is the number of intensity levels used to dis- 
play it. If G is omitted, it defaults to 256 levels. Using the syntax 

imshow(f, [low high])  

displays as black all values less than or equal to low, and as white all values 
greater than or equal to high.The values in between are displayed as interme- 
diate intensity values using the default number of levels. Finally, the syntax 

sets variable low to the minimum value of array f and high to its maximum 
value. This form of imshow is useful for displaying images that have a low dy- 
namic range or that have positive and negative values. 

Function p ixva l  is used frequently to display the intensity values of indi- 
vidual pixels interactively. This function displays a cursor overlaid on an 
image. As the cursor is moved over the image with the mouse, the coordi- 
nates of the cursor position and the corresponding intensity values are 
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shown on a display that appears below the figure window. When working 
with color images, the coordinates as well as the red, green, and blue compo- 
nents are displayed. If the left button on the mouse is clicked and then held 
pressed, pixval displays the Euclidean distance between the initial and cur- 
rent cursor locations. 

The syntax form of interest here is 

pixval 

which shows the cursor on the last image displayed. Clicking the X button on 
the cursor window turns it off. 

il (a) The following statements read from disk an image called rose-51 2.  t i f ,  EXAMPLE 2.1: 
extract basic information about the image, and display it using imshow: Image reading 

and displaying. 
>> f = imread( ' rose -512 . t i f1 ) ;  
>> whos f 

Name Size  Bytes Class 
f 512x512 262 144 uint8  a r ray  
Grand t o t a l  i s  262144 elements using 262144 bytes 

A semicolon at the end of an imshow line has no effect, so normally one is 
not used. Figure 2.2 shows what the output looks like on the screen.The figure 
number appears on the top, left of the window. Note the various pull-down 
menus and utility buttons. They are used for processes such as scaling, saving, 
and exporting the contents of the display window. In particular, the Edit menu 
has functions for editing and formatting results before they are printed or 
saved to disk. 

FIGURE 2.2 
Screen capture 
showing how an 
image appears on 
the MATEAB 
desktop. 
However, in most 
of the examples 
throughout this 
book, only the 
images 
themselves are 
shown. Note the 
figure number on 
the top, left part 
of the window. 
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If another image. g, is displayed using imshow, MATLAB replaces the 
image in the screen with the new image. To keep the first image and output a 
second image, we use function f i g u r e  as follows: 

>> f i g u r e ,  imshow(g) 

Using the statement 

>> imshow(f), f i g u r e ,  imshow(g) 

displays both images. Note that more than one command can be written on a 
line, as long as different commands are properly delimited by commas or semi- 
colons. As mentioned earlier, a semicolon is used whenever it is desired to sup- 
press screen outputs from a command line. 

(b) Suppose that we have just read an image h and find that using imshow ( h ) 
produces the image in Fig. 2.3(a). It is clear that this image has a low dynamic 
range, which can be remedied for display purposes by using the statement 

Figure 2.3(b) shows the result. The improvement is apparent. R 

Writing Images 
Images are written to disk using function imwrite, which has the following 
basic syntax: 

imwr i t e ( f ,  ' f i l ename ' )  

With this syntax, the string contained in filename must include a recognized 
file format extension (see Table 2.1). Alternatively, the desired format can be 
specified explicitly with a third input argument. For example, the following 
command writes f to a TIFF file named patient lo-run1 : 

>> imwr i t e ( f ,  ' p a t i e n t l o - r u n l ' ,  ' t i f ' )  

or, alternatively, 
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~f filename contains no path information, then imwrite saves the file in the 
current working directory. 

The imwrite function can have other parameters, depending on the file for- 
mat selected. Most of the work in the following chapters deals either with 
JPEG or TIFF images, so we focus attention here on these two formats. 

A more general imwrite syntax applicable only to JPEG images is 

imwr i t e ( f ,  ' f i l e n a m e . j p g l ,  ' q u a l i t y ' ,  q )  

where q is an integer between 0 and 100 (the lower the number the higher the 
degradation due to JPEG compression). 

Figure 2.4(a) shows an image, f ,  typical of sequences of images resulting EXAMPLE 2.2: 
from a given chemical process. It is desired to transmit these images on a rou- Writing an image 
tine basis to a central site for visual andlor automated inspection. In order to and using 

function i m f  i n f  o. reduce storage and transmission time, it is important that the images be com- 
pressed as much as possible while not degrading their visual appearance 
beyond a reasonable level. In this case "reasonable" means no perceptible 
false contouring. Figures 2.4(b) through (f) show the results obtained by writ- 
ing image f to disk (in JPEG format), with q = 50,25,15,5, and 0, respective- 
ly. For example, for q = 25 the applicable syntax is 

>> imwri te( f ,  'bubbles25. jpg1,  ' q u a l i t y ' ,  25) 

The image for q = 15 [Fig. 2.4(d)] has false contouring that is barely visible, 
but this effect becomes quite pronounced for q = 5 and q = 0. Thus, an 
acceptable solution with some margin for error is to compress the images with 
q = 25. In order to get an idea of the compression achieved and to obtain other 
image file details, we can use function imf inf  o, which has the syntax 

imfinfo filename ' l m f l n f o  

where filename is the complete file name of the image stored in disk. For 
example, 

>> imfinfo bubbles25.jpg 

outputs the following information (note that some fields contain no informa- 
tion in this case): 

Filename : 
FileModDate: 

F i l e s i z e  : 
Format : 

Formatversion : 
Width: 

Height : 
BitDepth : 

ColorType: 
Formatsignature: 

Comment : 

'bubbles25.jpg1 
'04-Jan-2003 12:31:26' 
13849 
' j p g '  
I I 

71 4 
682 
8 
' g raysca le '  
3 0 

{ 1 
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FIGURE 2.4 
(a) Orlginal ~rnage 
(b) through 
(f) Results of uslng 
J pg quality values 
q = 50.25. 15.5. 
and 0, respectively 
False contour~ng 
beglns to be barely 
noticeable for 
q = 15 [image (d)] 
but 1s quite vlslble 
for q = 5 and 
q = 0 

See Exan~ple 2.11 
for afr~~zctiorz that 
creares NIL the images 
in Fig. 2.4 using a 
sinrple f o r  loop. 

where F i l e S i z e  is in bytes.The number of bytes in the original image is com- 
puted simply by multiplying Width  by Heigh t  by B i t D e p t h  and dividing the 
result by &The result is 486948. Dividing this by F i l e S i z e  gives the compres- 
sion ratio: (486948113849) = 35.16. This compression ratio was achieved 
while maintaining image quality consistent with the requirements of the appli- 

cation. In addition to the obvious advantages in storage space, this reduction 
allows the transmission of approximately 35 times the amount of uncom- 
pressed data per unit time. 

The information fields displayed by i m f  i n f o  can be captured into a so- 
called structure variable that can be used for subsequent computations. Using 
the preceding image as an example, and assigning the name K  to the structure 
variable, we use the syntax 

to store into variable K  all the information generated by command i m f  i n f  o. 
The information generated by i m f  i n f  o  is appended to the structure variable 
by means of fields, separated from K  by a dot. For example, the image height 
and width are now stored in structure fields K. H e i g h t  and K  .Width. 

As an illustration, consider the following use of structure variable K  to com- 
pute the compression ratio for bubbles25.  j pg: 

>> K = imfinfo('bubbles25.jpg'); 
>r image-bytes = K.Width*K.Height*K.BitDepth/a; 
>> compressed-bytes = K . F i l e S i z e ;  
>> compress ion-rat io  = image-bytes/compressed_bytes 

compress ion-rat io  = 

35.1612 

Note that i m f i n f o  was used in two different ways. The first was to type 
i m f  i n f  o  bubbles25. j p g  at the prompt, which resulted in the information 
being displayed on the screen. The second was to type K  = i m f i n f o (  ' bub-  
b les25.  j pg ' ) , which resulted in the information generated by irnf i n f  o  
being stored in K.These two different ways of calling i m f  i n f  o  are an example 
of command-function duality, an important concept that is explained in more 
detail in the MATLAB online documentation. 

A more general i m w r i t e  syntax applicable only to t i f  images has the form 

i m w r i t e ( g ,  ' f i l e n a m e . t i f l ,  ' compress ion ' ,  ' p a r a m e t e r ' ,  . . .  
' r e s o l u t i o n ' ,  [ c o l r e s  r o w r e s ] )  

where ' parameter ' can have one of the following principal values: ' none ' 
indicates no compression; ' p a c k b i t  s  ' indicates packbits compression (the 
default for nonbinary images); and ' c c i t t  ' indicates ccitt compression (the 

Srrrrctrlres rrre drs- 
c~lssed ill Sections 
2.10.6 and 11.1.1. 

To learn ,nore abo~rt 
command ,frlnction 
drlality, cons~ilr rhe 
help page on this 
topic. See Section 
1.7.3 regarding help 
pages. 

I f n  starernent does 
nor f i r  on one line, 
use an ellipsis (three 
periods), f o l l ow~d  by 
Return or Enter. to 

default for binary images). The 1 X 2 array [ c o l r e s  rowres]  contains two in- ~nd~ca t ,  rhat rhe 

tegers that give the column resolution and row resolution in dots-per-unit (the *turmlefll conrrnLres 
on the rwrt l~rte 

default values are [72 721). For example, if the image dimensions are in inches, There are no sprlLes 
Colres is the number of dots (pixels) per inch (dpi) in the vertical direction, between tizeprrrocls 

and similarly for rowres in the horizontal direction. Specifying the resolution 
by a single scalar, res, is equivalent to writing [ res  res]. 
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'XAMPLE 2.3: 1 Figure 2.5(a) is an 8-bit X-ray image of a circuit board generated during 
'sing lmwrite quality inspection. It is in jpg format, at 200 dpi. The image is of size 
irameters. 450 x 450 pixels, so its dimensions are 2.25 X 2.25 inches. We want to store 

this image in t i f  format, with no compression, under the name s f .  In addition, 
we want to reduce the size of the image to 1.5 X 1.5 inches while keeping the 
pixel count at 450 x 450. The following statement yields the desired result: 

The values of the vector [ c o l r e s  rowres] were determined by multiplying 
200 dpi by the ratio 2.25/1.5, which gives 300 dpi. Rather than do the compu- 
tation manually, we could write 

round >> res = round(200*2.25/1.5); 
>> imwrite(f, ' s f . t i f l ,  'compression', 'none' , ' r e s o l u t i o n 1 ,  res)  

where function round rounds its argument to the nearest integer. It is impor- 
tant to note that the number of pixels was not changed by these commands. 
Only the scale of the image changed. The original 450 X 450 image at 200 dpi 
is of size 2.25 X 2.25 inches. The new 300-dpi image is identical, except that its 

;URE 2.5 
Effects of 

~anging the dpi 
solution while 
eping the 

..,mber of pixels 
"Tnstant. 

) A 450 X 450 
age at 200 dpi 
ze = 2.25 x 

2.25 inches). 
) The same 
3 X 450 image, 
t at 300 dpi 

,,.ze = 1.5 X 
' 5 inches). 

) r i g i d  image 
urtesy of Lixi. 
:.) 

2.5 rUs Data Classes 

450 x 450 pixels are distributed over a 1.5 x 1.5-inch area. Processes such as 
this are useful for controlling the size of an image in a printed document with- 
out sacrificing resolution. 

Often, it is necessary to export images to disk the way they appear on the 
MATLAB desktop. This is especially true with plots, as shown in the next 
chapter. The contents of a figure window can be exported to disk in two ways. 
The first is to use the File pull-down menu in the figure window (see Fig. 2.2) 
and then choose Export. With this option, the user can select a location, file 
name, and format. More control over export parameters is obtained by using 
the p r in t  command: 

p r in t  -fno -dfi leformat -rresno filename p r i n t  

where no refers to the figure number in the figure window of interest, 
f i le format  refers to one of the file formats in Table 2.1, resno is the resolu- 
tion in dpi, and filename is the name we wish to assign the file. For example, 
to export the contents of the figure window in Fig. 2.2 as a t i f  file at 300 dpi, 
and under the name hi-res-rose, we would type 

>> pr in t  -fl -d t i f f  -r300 hi-res-rose 

This command sends the file hi-res-rose. t i f  to the current directory. 
If we simply type p r i n t  at the prompt, MATLAB prints (to the default 

printer) the contents of the last figure window displayed. It is possible also to 
specify other options with p r i n t ,  such as a specific printing device. 

Data Classes 
Although we work with integer coordinates, the values of pixels themselves are 
not restricted to be integers in MATLAB. Table 2.2 lists the various data classest 
supported by MATLAB and IPT for representing pixel values. The first eight 
entries in the table are referred to as numeric data classes.The ninth entry is the 
char class and, as shown, the last entry is referred to as the logical data class. 

All numeric computations in MATLAB are done using double quantities, 
so this is also a frequent data class encountered in image processing applica- 
tions. Class u in t8  also is encountered frequently, especially when reading 
data from storage devices, as 8-bit images are the most common representa- 
tions found in practice. These two data classes, class l o g i c a l ,  and, to a lesser 
degree, class u i n t  16, constitute the primary data classes on which we focus in 
this book. Many IPT functions, however, support all the data classes listed in 
Table 2.2. Data class double requires 8 bytes to represent a number, u in t8  
and i n t a  require 1 byte each, u i n t l 6  and i n t l 6  require 2 bytes, and uint32, 

'MATLAB documentation often uses the terms drrrri clors and llrrra f ipr interchangeably. In this book. 
we reserve use of the term type lor images. as discussed in Section 2.6. 
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TABLE 2.2 
Data classes. The 
first eight entries 
are referred to as 
nllrneric classes; 
the ninth entry is 
the charncter 
class, and the last 
entry is of class 
logical. 

Name Description 

double Double-precision, floating-polnt numbeis in the approximate 
range -10"'~ to (8 bytes per element) 

u i n t 8  Unsigned 8-bit Integers in the range [O, 2551 (1 byte per element) 
ulnt l6  Unsigned 16-blt Integers In the range [O, 655351 (2 bytes per 

element) 
ulnt32 Unsigned 32-bit integers in the range [O ,  42949672951 (4 bytes 

per element) 
1nt8 Signed 8-blt integers In the range [-128,1271 (1 byte per element). 
i n t i 6  Signed 16-bit integers in the range [-32768,327671 (2 bytes per 

element). 
int32 Signed 32-bit integers in the range [-2147483648,21474836471 

(4 bytes per element). 
s ingle  Single-precision floating-point numbers with values in the 

approximate range -lo3' to (4 bytes per element). 
char Characters (2 bytes per element). 
log ica l  Values are 0 or 1 (1 byte per element). 

i n t 3 2 ,  and s i n g l e ,  require 4 bytes each.The c h a r  data class holds characters 
in Unicode representation. A character string is merely a 1 x n array of char- 
acters. A l o g i c a l  array contains only the values 0 and 1, with each element 
being stored in memory using one byte per element. Logical arrays are treat- 
ed by using function l o g i c a l  (see Section 2.6.2) or by using relational opera- 
tors (Section 2.10.2). 

Image Types 
The toolbox supports four types of images: 

Intensity images 
Binary images 
Indexed images 
R G B  images 

Most monochrome image processing operations are carried out using binary 
or intensity images, so our initial focus is on  these two image types. Indexed 
and R G B  color images are discussed in Chapter 6. 

"& .'; Intensity Images 
An intensity image is a data matrix whose values have been scaled to  represent 
intensities. When the elements of an intensity image are of class u i n t 8 ,  or 
class u i n t  16, they have integer values in the range [O, 2551 and [O, 65.5351, re- 
spectively. If the image is of class double, the values are floating-point num- 
bers. Values of scaled, class double intensity images are in the range [O, 11 by 
convention. 

2.4.2 Binary Images 
Binary images have a very specific meaning in MATLAB. A binary image is 
a logical array of 0s and Is. Thus, an array of 0s and I s  whose values are of 
data class, say, u i n t 8 .  is not considered a binary image in MATLAB. A 
numeric array is converted to  binary using function l o g i c a l .  Thus, if A is a 

array consisting of 0s and Is, we create a logical array B using the 
statement 

If A contains elements other than 0s and Is, use of the l o g i c a l  function con- 
verts all nonzero quantities to  logical Is  and all entries with value 0 to  logical 
0s. Using relational and logical operators (see Section 2.10.2) also creates logi- 
cal arrays. 

To test if an array is logical we use the i s l o g i c a l  function: 

If C is a logical array, this function returns a 1. Otherwise it returns a 0. Logical See Table2,9for a 
arrays can be converted to  numeric arrays using the data class conversion list ofotherfunc- 

functions discussed in Section 2.7.1. tions baser1 on the 
is* syntax. 

2.6.3 A Note on Terminology 
Considerable care was taken in the previous two sections to  clarify the use of 
the terms data class and image type. In general, we refer to  an image as being a 
"data-class image-type image," where da ta -c lass  is one of the entries 
from Table 2.2, and image-type is one of the image types defined at  the begin- 
ning of this section.Thus, an image is characterized by both a class and a type. 
For instance, a statement discussing an " u n i t 8  intensity image" is simply re- 
ferring to an intensity image whose pixels are of data class u n i t 8 .  Some func- 
tions in the toolbox support all data classes, while others are very specific as to  
what constitutes a valid class. For example, the pixels in a binary image can 
only be of data class l o g i c a l ,  as mentioned earlier. 

Converting between Data Classes and Image Types 
Converting between data classes and image types is a frequent operation in 
IPT applications. When converting between data classes, it is important to 
keep in mind the value ranges for each data class detailed in Table 2.2. 

2.7.1 Converting between Data Classes 
Converting between data classes is straightforward. The general syntax is 

where d a t a  class-name is one of the names in the first column of Table 2.2. 
For example, suppose that A is an array of class u in t8 .  A double-precision 
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array, B. is generated by the command B = double (A).  This conversion is used 
routinely throughout the book because MATLAB expects operands in nu- 
merical computations to  be double-precision. floating-point numbers. If C is an 
array of class double in which all values are in the range [O, 2551 (but possibly 
containing fractional values), it can be converted to an u i n t 8  array with the 
command D = u i n t 8 ( C ) .  

If an array of class double has any values outside the range [0,255] and it is 
converted to class u i n t 8  in the manner just described, MATLAB converts to 
0 all values that are  less than 0, and converts to  255 all values that are greater 
than 255. Numbers in between are  converted to integers by discarding their 
fractional parts.Thus, proper scaling of a double array so  that its elements are 
in the range [O, 2551 is necessary before converting it to u in t8 .  A s  indicated in 
Section 2.6.2, converting any of the numeric data classes to l o g i c a l  results in 
an array with logical I s  in locations where the input array had nonzero values, 
and logical 0s in places where the input array contained 0s. 

9.7,2 Converting between Image Classes and Types 
t-fiorction change- The toolbox provides specific functions (Table 2.3) that perform the scaling 
lass, discllssedin necessary to convert between image classes and types. Function im2uint8 de- 

Section 3.2.3, can be 
,sedfo,.c,lnngblgml tects the data class of the input and performs all the necessary scaling for the 
rpLrrrnzcrgeto (rspec- toolbox to recognize the data as valid image data. For example, consider the 
ied c[oss. following 2 X 2 image f of class double,  which could be the result of an inter- 

mediate computation: 

Performing the conversion 

yields the result 

4BLE 2.3 
unctions in IPT 

lor converting 

Name Converts Input to: Valid Input Image Data Classes 

i m 2 u i n t 8  uint8 logical,uint8,uintl6,anddouble 
etween image 
'asses and types. 
-e Table 6.3 for 

from which we see that function im2uint8 sets to  0 all values in the input that 
are less than 0, sets to 255 all values in the input that are greater than 1, and 
multiplies all other values by 255. Rounding the results of the multiplication to 
the nearest integer completes the conversion. Note that the rounding behavior 
of im2uint8 is different from the data-class conversion function u i n t 8  dis- 
cussed in the previous section, which simply discards fractional parts. 

Converting an arbitrary array of class double to an array of class double 
scabd to the range [O, 11 can b e  accomplished by using function matzgray 
whose basic syntax is 

i m 2 u i n t l 6  u i n t l 6  logical,uint8,uintl6,anddouble 

"lat2gray double (in range [0, I]) double 
L;rnversions that  
pplyspecifically 

where image g has values in the range 0 (black) to  1 (white).The specified pa- 
rameters Amin and Amax are such that values less than Amin in A become 0 in g, 
and values greater than Amax in A correspond to 1 in g. Writing 

im2double double logical,uint8,uintl6,anddouble 

im2bw log ica l  uint8,uintl6,anddouble 

sets the values of Amin and Amax to the actual minimum and maximum values in 
A.The input is assumed to be of class double.The output also is of class double. 

Function im2double converts an input to class double.  If the input is of 
class u in t8 ,  u i n t l 6 ,  or l o g i c a l ,  function im2double converts it to class 
double with values in the range [0, 11. If the input is already of class double,  
im2double returns an array that is equal to  the input. For example, if an array 
of class double results from computations that yield values outside the range 
[O, 11, inputting this array into im2double will have n o  effect. A s  mentioned in 
the preceding paragraph, a double array having arbitrary values can be con- 
verted to a double array with values in the range [0, 11 by using function 
mawgray. 

AS an illustration, consider the class u i n t 8  imaget 

1 color images. 

Performing the conversion 

yields the result 

from which we infer that the conversion when the input is of class u i n t 8  is 
done simply by dividing each value of the input array by 255. If the input is of 
class u i n t l 6  the division is by 65535. 

'Section 2.8.2 explains the use of square brackets and senlicolons to specify a matrix. 
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Finally, we consider conversion between binary and intensity image types. 
Function im2bw, which has the syntax 

produces a binary image, g, from an intensity image, f ,  by thresholding. The 
output binary image g has values of 0 for all pixels in the input image with 
intensity values less than threshold T, and 1 for all other pixels. The value 
specified for T has to be in the range [0, 11, regardless of the class of the 
input.The output binary image is automatically declared as a l o g i c a l  array 
by im2bw. If we write g = im2bw(f), IPT uses a default value of 0.5 for T. If 
the input is an u in t8  image, im2bw divides all its pixels by 255 and then ap- 
plies either the default or a specified threshold. If the input is of class 
u i n t l 6 ,  the division is by 65535. If the input is a double image, im2bw ap- 
plies either the default or a specified threshold directly. If the input is a 
l o g i c a l  array, the output is identical to the input. A logical (binary) array 
can be converted to a numerical array by using any of the four functions in 
the first column of Table 2.3. 

EXAMPLE 2.4: a (a) We wish to convert the following double image 
Converting 
between image 
classes and types. >' = [ ; 4 1  

to binary such that values 1 and 2 become 0 and the other two values become 
1. First we convert it to the range [0, 11: 

Then we convert it to binary using a threshold, say, of value 0.6: 
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AS mentioned in Section 2.5, we can generate a binary array directly using re- 
lational operators (Section 2.10.2).Thus we get the same result by writing 

We could store in a variable (say, gbv) the fact that gb is a logical array by 
using the i s l o g i c a l  function, as follows: 

>> gbv = i s l o g i c a l ( g b )  

gbv = 

1 

(b) Suppose now that we want to convert gb to a numerical array of 0s and 
Is of class double.This is done directly: 

>> gbd = im2double(gb) 

gbd = 

0 0 
1 1  

If gb had been a numeric array of class uint8,  applying im2double to it 
would have resulted in an array with values 

because im2double would have divided all the elements by 255. This did not 
happen in the preceding conversion because im2double detected that the 
input was a l o g i c a l  array, whose only possible values are 0 and 1. If the input 
in fact had been an uint8  numeric array and we wanted to convert it to class 
double while keeping the 0 and 1 values, we would have converted the array 
by writing 

>> gbd = double(gb) 

gbd = 
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Finally, we point out that MATLAB supports nested statements, so we could have 
started with image f and arrived at the same result by using the one-line statement 

>> gbd = im2double(im2bw(mat2gray(f), 0.6)); 

or by using partial groupings of these functions. Of course, the entire process 
could have been done in this case with a simpler command: 

>> gbd = double(f > 2); 

again demonstrating the compactness of the MATLAB language. B 

Array Indexing 
MATLAB supports a number of powerful indexing schemes that simplify 
array manipulation and improve the efficiency of programs. In this section we 
discuss and illustrate basic indexing in one and two dimensions (i.e., vectors 
and matrices). More sophisticated techniques are introduced as needed in sub- 
sequent discussions. 

2.8,?1 Vector Indexing 
As discussed in Section 2.1.2, an array of dimension 1 X N is called a row vec- 
tor. The elements of such a vector are accessed using one-dimensional index- 
ing. Thus, v (1 ) is the first element of vector v, v ( 2 )  its second element, and so 
forth. The elements of vectors in MATLAB are enclosed by square brackets 
and are separated by spaces or by commas. For example, 

> > v = [ 1 3 5 7 9 ]  
v = 

1 3 5 7 9  
>> v(2) 
ans = 

smg a single qiiote 
'rhout the period 

~ornputes [he conju- 
7te transpose. When 
e data are real, both 
rnsposes can be 
ed inrerchangenbly. 

.we Table 2.4. 

5 

A row vector is converted to a column vector using the transpose operator ( . ' ): 
>> w = v.' 

W = 

1 

3 

5 

7 

9 

2.8 a Array Indexing 

TO access blocks of elements, we use MATLAB's colon notation. For exam- 
ple, to access the first three elements of v we write 

&F 

;& '5-i .,,-<,;c.:co!an .s,<? ,. ., 
. .;, k. 

1 3 5  

Similarly, we can access the second through the fourth elements 

3 5 7  

or all the elements from, say, the third through the last element: 

5 7 9  

where end signifies the last element in the vector. If v is a vector, writing 

produces a column vector, whereas writing 

produces a row vector. 
Indexing is not restricted to contiguous elements. For example, 

>> V(l:2:end) 

1 5 9  

The notation 1 : 2: end says to start at I, count up by 2 and stop when the count 
reaches the last element. The steps can be negative: 

>> v(end:-2:l) 

9 5 1  
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Here, the index count started at the last element, decreased by 2, and stopped 
when it reached the first element. 

Function l inspace ,  with syntax 

. l i n s p a c e  

generates a row vector x of n elements linearly spaced between and including 
a and b. We use this function in several places in later chapters. 

A vector can even be used as an index into another vector. For example, we 
can pick the first, fourth, and fifth elements of v  using the command 

>> v ( [ l  4 51)  

ans = 

1 7 9  

As shown in the following section, the ability to use a vector as an index into 
another vector also plays a key role in matrix indexing. 

2,8.2 Matrix Indexing 
Matrices can be represented conveniently in MATLAB as a sequence of row 
vectors enclosed by square brackets and separated by semicolons. For exam- 
ple, typing 

displays the 3 X 3 matrix 

Note that the use of semicolons here is different from their use mentioned ear- 
lier to suppress output or to write multiple commands in a single line. 

We select elements in a matrix just as we did for vectors, but now we need 
two indices: one to establish a row location and the other for the correspond- 
ing column. For example, to extract the element in the second row, third col- 
umn. we write 

>> A ( 2 ,  3 )  

ans = 

6 
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The colon operator is used in matrix indexing to select a two-dimensional 
block of elements out of a matrix. For example, 

Here, use of the colon by itself is analogous to writing A( 1 : 3 , 3 ) ,  which simply 
picks the third column of the matrix. Similarly, we extract the second row as 
follows: 

The following statement extracts the top two rows: 

To create a matrix B equal to A but with its last column set to Os, we write 

Operations using end are carried out in a manner similar to the examples 
given in the previous section for vector indexing. The following examples illus- 
trate this. 

>> A(end, end) 

ans  = 

9 
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>> A(end,  end - 2 )  

ans = 

7 

ans = 

6 4 
9 7 

Using vectors to index into a matrix provides a powerful approach for ele- 
ment selection. For example, 

The notation A ( [ a b ]  , [ c d  ]  ) picks out the elements in A with coordinates 
(row a, column c), (row a, column d), (row b, column c), and (row b, column 
d).Thus, when we let E = A(  [ 1 31 , [ 2  31 ) we are selecting the following ele- 
ments in A: the element in row 1 column 2, the element in row 1 column 3, the 
element in row 3 column 2, and the element in row 3 column 3. 

More complex schemes can be implemented using matrix addressing. A 
particularly useful addressing approach using matrices for indexing is of the 
form A (D) , where D is a logical array. For example, if 

then 

>> A(D)  

ans = 

1 
6 

Finally, we point out that use of a single colon as an index into a matrix se- 
lects all the elements of the array (on a column-by-column basis) and arranges 
them in the form of a column vector. For example, with reference to matrix T2, 
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This use of the colon is helpful when, for example, we want to find the sum of 
all the elements of a matrix: 

In general, s u m  ( v )  adds the values of all the elements of input vector v. If 
a matrix is input into sum [as in s u m  (A)], the output is a row vector containing 
the sums of each individual column of the input array (this behavior is typical 
of many MATLAB functions encountered in later chapters). By using a sin- 
gle colon in the manner just illustrated, we are in reality implementing the 
command 

because use of a single colon converts the matrix into a vector. 
Using the colon notation is actually a form of linear indexing into a matrix 

or higher-dimensional array. In fact, MATLAB stores each array as a column 
of values regardless of the actual dimensions.This column consists of the array 
columns, appended end to end. For example, matrix A is stored in MATLAB as 

Accessing A with a single subscript indexes directly into this column. For exam- 
ple, A(3  ) accesses the third value in the column, the number 7; A  ( 8 ) accesses 
the eighth value, 6, and so on. When we use the column notation, we are simply 
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addressing all the elements, A ( 1 : end). This type of indexing is a basic staple in 
vectorizing loops for program optimization, as discussed in Section 2.10.4. 

EXAMPLE 2.5: % The image in Fig. 2.6(a) is a 1024 X 1024 intensity image, f, of class u i n t 8 .  
Some simple The image in Fig. 2.6(b) was flipped vertically using the statement 
image operations 
using array >> f p  = f ( e n d : - l : l ,  : ) ;  
indexing. 

The image shown in Fig. 2.6(c) is a section out of image (a), obtained using 
the command 

FIGURE 2.6 
Results obtained 
using array 
indexing. 
(a) Original 
image. (b) Image 
flipped vertically. 
(c) Cropped 
image. 
(d) Subsampled 
image. (e) A 
horizontal scan 
line throueh the 
middle of t he  
Image in (a). 

Similarly, Fig. 2.6(d) shows a subsampled image obtained using the 
statement 

Finally, Fig. 2.6(e) shows a horizontal scan line through the middle of 
Fig. 2.6(a), obtained using the command 

The p l o t  function is discussed in detail in Section 3.3.1. nrai 

2.8.3 Selecting Array Dimensions 
Operations of the form 

o p e r a t i o n ( A ,  d im) 

where o p e r a t i o n  denotes an applicable MATLAB operation, A is an array, 
and dim is a scalar, are used frequently in this book. For example, suppose that 
A is an array of size M X N. The command 

gives the size of A along its first dimension, which is defined by MATLAB as 
the vertical dimension. That is, this command gives the number of rows in A. 
Similarly, the second dimension of an array is in the horizontal direction, so 
the statement s i z e  (A,2) gives the number of columns in A. A singleton di- 
mension is any dimension, dim, for which s i z e  (A, d im) = 1. Using these con- 
cepts, we could have written the last command in Example 2.5 as 

MATLAB does not restrict the number of dimensions of an array, so being 
able to extract the components of an array in any dimension is an important 
feature. For the most part, we deal with 2-D arrays, but there are several in- 
stances (as when working with color or multispectral images) when it is neces- 
sary to be able to "stack" images along a third or higher dimension. We deal 
with this in Chapters 6,11, and 12. Function ndims, with syntax 

gives the number of dimensions of array A. Function ndims never returns a 
value less than 2 because even scalars are considered two dimensional, in the 
sense that they are arrays of size 1 X 1. 

Some Important Standard Arrays 
Often, it is useful to be able to generate simple image arrays to try out ideas 
and to test the syntax of functions during development. In this section we in- 
troduce seven array-generating functions that are used in later chapters. If 
only one argument is included in any of the following functions, the result is a 
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zeros ( M ,  N )  generates an M x N matrix of 0s of class double. 
ones ( M ,  N )  generates an M x N matrix of 1s of class double. 
t r u e  ( M ,  N )  generates an M x N l o g i c a l  matrix of 1s. 
f alse(M, N )  generates an M x N l o g i c a l  matrix of 0s. 
magic ( M )  generates an M x M "magic square." This is a square array in 
which the sum along any row, column, or main diagonal, is the same. Magic 
squares are useful arrays for testing purposes because they are easy to 
generate and their numbers are integers. 
rand (M, N )  generates an M x N matrix whose entries are uniformly distrib- 
uted random numbers in the interval [O, 11. 
randn (M, N )  generates an M x N matrix whose numbers are normally dis- 
tributed (i.e., Gaussian) random numbers with mean 0 and variance 1. 

For example, 

ans = 

8 1 6  
3 5 7  
4 9 2  

Introduction to M-Function Programming 
One of the most powerful features of the Image Processing Toolbox is its 
transparent access to the MATLAB programming environment. As will be- 
come evident shortly, MATLAB function programming is flexible and partic- 
ularly easy to learn. 

?!+I 0.1 M-Files 
So-called M-files in MATLAB can be scripts that simply execute a series of 
MATLAB statements, or they can be functions that can accept arguments and 
can produce one or more outputs. The focus of this section in on M-file func- 
tions.These functions extend the capabilities of both MATLAB and IPT to ad- 
dress specific, user-defined applications. 

M-files are created using a text editor and are stored with a name of the 
form f ilename. m, such as average. m and f i l t e r  . m. The components of a 
function M-file are 

The function definition line 
The H I  line 
Help text 
The function body 
Comments 

The function definition line has the form 

function [ou tpu t s ]  = name(inputs) 

For example, a function to compute the sum and product (two different out- 
~ u t s )  of two images would have the form 

function [ s ,  p] = sumprod(f, g )  

where f ,  and g are the input images, s is the sum image, and p is the product 
image.The name sumprod is arbitrarily defined, but the word funct ion always 
appears on the left, in the form shown. Note that the output arguments are en- 
closed by square brackets and the inputs are enclosed by parentheses. If the 
function has a single output argument, it is acceptable to list the argument with- 
out brackets. If the function has no output, only the word function is used, 
without brackets or equal sign. Function names must begin with a letter, and 
the remaining characters can be any combination of letters, numbers, and un- 
derscores. No spaces are allowed. MATLAB distinguishes function names up 
to 63 characters long. Additional characters are ignored. 

Functions can be called at the command prompt; for example, 

>> [ s ,  p] = sumprod(f, g ) ;  

or they can be used as elements of other functions, in which case they become 
subfunctions. As noted in the previous paragraph, if the output has a single ar- 
gument, it is acceptable to write it without the brackets, as in 

The H1 line is the first text line. It is a single comment line that follows the 
function definition line. There can be no blank lines or leading spaces between 
the H1 line and the function definition line. An example of an H1 line is 

% SUMPROD Computes the  sum and product of two images 

As indicated in Section 1.7.3, the H1 line is the first text that appears when a 
user types 

'> help function-name 
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at the MATLAB prompt. Also, as mentioned in that section, typing lookfor 
keyword displays all the HI lines containing the string keyword.This line pro- 
vides important summary information about the M-file, so it should be as de- 
scriptive as possible. 

Help text is a text block that follows the H I  line, without any blank lines in 
between the two. Help text is used to provide comments and online help for 
the function. When a user types help f unction-name at the prompt, MAT- 
LAB displays all comment lines that appear between the function definition 
line and the first noncomment (executable or blank) line. The help system ig- 
nores any comment lines that appear after the Help text block. 

The function body contains all the MATLAB code that performs computa- 
tions and assigns values to output arguments. Several examples of MATLAB 
code are given later in this chapter. 

All lines preceded by the symbol "%" that are not the HI line or Help text are 
considered function comment lines and are not considered part of the Help text 
block. It is permissible to append comments to the end of a line of code. 

M-files can be created and edited using any text editor and saved with the 
extension . m in a specified directory, typically in the MATLAB search path. 
Another way to create or edit an M-file is to use the e d i t  function at the 
prompt. For example, 

c4.d 
-);6>edit >> e d i t  sumprod 
, /  

opens for editing the file sumprod. m if the file exists in a directory that is in the 
MATLAB path or in the current directory. If the file cannot be found, MAT- 
LAB gives the user the option to create it. As noted in Section 1.7.2, the 
MATLAB editor window has numerous pull-down menus for tasks such as 
saving, viewing, and debugging files. Because it performs some simple checks 
and uses color to differentiate between various elements of code, this text edi- 
tor is recommended as the tool of choice for writing and editing M-functions. 

2.1 0.2 Operators 

MATLAB operators are grouped into three main categories: 

Arithmetic operators that perform numeric computations 
Relational operators that compare operands quantitatively 
Logical operators that perform the functions AND, OR, and NOT 

These are discussed in the remainder of this section. 

Arithmetic Operators 

MATLAB has two different types of arithmetic operations. Matrix arithmetic 
operations are defined by the rules of linear algebra. Array arithmetic opera- 
tions are carried out element by element and can be used with multidimen- 

dvt  sional arrays. The period (dot) character (.) distinguishes array operations 
' notahon from matrix operations. For example, A*B indicates matrix multiplication in the 

traditional sense, whereas A .  *B indicates array multiplication, in the sense that 
the result is an array, the same size as A and 6, in which each element 1s the 

of corresponding elements of A and B. In other words, if C = A .  *B, 
then C ( I ,  J ) = A ( I ,  J ) "6 ( I ,  J ) . Because matrix and array operations are the 
same for addition and subtraction, the character pairs . + and .- are not used. 

When writing an expression such as B = A, MATLAB makes a "note" that B 
is equal to A, but does not actually copy the data into B unless the contents of 
A change later in the program. This is an important point because using dif- 
ferent variables to "store" the same information sometimes can enhance code 
clarity and readability. Thus, the fact that MATLAB does not duplicate infor- 
mation unless it is absolutely necessary is worth remembering when writing 
MATLAB code. Table 2.4 lists the MATLAB arithmetic operators, where A 

MATLAB Comments 
Operator Name Function and Examples 

+ Array and matrix plus(A, B )  
addition 

- Array and matrix minus (A, 8)  
subtraction 

. * Array multiplication times (A, 13) 

* Matrix multiplication mtimes (A, B )  

. I  Array right division rdivide(A, 8)  

. \ Array left division ldivide (A, B )  

/ Matrix right division mrdivide (A, B )  

\ Matrix left division 

. Array power 

A Matrix power 

. ' Vector and matrix 
transpose 
Vector and matrix 
complex conjugate 
transpose 

+ Unary plus 
- Unary minus 

Colon 

A*B, standard matrix 
multiplication, or a*A, 
multiplication of a scalar 
times all elements of A. 
C=A./B, C(1, J )  
=A(I ,  J)/B(I, J ) .  
C=A.\B, C(1, J)  
=B(I ,  J ) / A ( I ,  J ) .  

A/B is roughly the same as 
A * i n v  ( B ) ,  depending 
on computational accuracy. 

mldivide(A, B )  A\B is roughly the same as 
i n v  ( A )  *B, depending 
on computational accuracy. 

power(A,B) If C=A.^B, then 
C(1, J )  = 
A ( 1 ,  J )*B( I ,  J ) .  

mpower (A, B )  See onIine help for a 
discussion of this operator. 

transpose ( A )  A .  ' . Standard vector and 
matrix transpose. 

ctranspose(A) A'. Standard vector and 
matrix conjugate transpose. 
WhenAisrealA.' =A'. 

uplus ( A )  +A is the same as 0 + A. 
uminus ( A )  -A is the same as 0 - A  

or -1 *A. 
Discussed in Section 2.8. 

TABLE 2.4 
Array and matrix 
arithmetic 
operators. 
computations 
involving these 
operators can be 
implemented using 
the operators 
themselves, as in 
A + B, or using the 
MATLAB 
functions shown, as 
in plus (A, B).The 
examples shown 
for arrays use 
matrices to 
simplify the 
notation, but they 
are easily 
extendable to 
higher dimensions. 
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lABLE 2.5 
I'he image 
irithmetic 
'unctions 
;upported by IPT. 

Function Description 

lmadd Adds two images; or adds a constant to an image. 
I imsub t rac t  Subtracts two images; or subtracts a constant from an image. 

i m m u l t i p l y  Multiplies two images, where the multiplication is 
carried out between pairs of corresponding image elements; 
or multiplies a constant times an image. 

imd i v i de  Divides two images, where the division is carried out 
between pairs of corresponding image elements; or divides 
an image by a constant. 

I imabsd i f f  Computes the absolute difference between two images. 
I imcomplement Complements an image. See Section 3.2.1. 

imlincomb Computes a linear combination of two or more images. See 
Section 5.3.1 for an example. 

and B are matrices or arrays and a and b are scalars. All operands can be real 
or complex. The dot shown in the array operators is not necessary if the 
operands are scalars. Keep in mind that images are 2-D arrays, which are 
equivalent to matrices, so all the operators in the table are applicable to 
images. 

The toolbox supports the image arithmetic functions listed in Table 2.5. Al- 
though these functions could be implemented using MATLAB arithmetic op- 
erators directly, the advantage of using the IPT functions is that they support 
the integer data classes whereas the equivalent MATLAB math operators re- 
quire inputs of class doub le .  

Example 2.6, to follow, uses functions max and min. The former function has 
the syntax forms 

C = max(A) 
C = max(A, 6) 
C = max(A, [ 1, d im)  
[C ,  I] = max( .  . . )  

In the first form, if A is a vector, max (A)  returns its largest element; if A is a ma- 
trix, then max (A )  treats the columns of A as vectors and returns a row vector 
containing the maximum element from each column. In the second form, 
max (A,  B) returns an array the same size as A and B with the largest elements 
taken from A or 6. In the third form, max (A, [ ] , d im)  returns the largest ele- 
ments along the dimension of A specified by scalar dim. For example, max (A, 
[ 1 , 1 ) produces the maximum values along the first dimension (the rows) of 
A. Finally, [C, I I = max ( . . . ) also finds the indices of the maximum values of 
A, and returns them in output vector I. If there are several identical maximum 
values, the index of the first one found is returned.The dots indicate the syntax 

~ s e d  on the right of any of the previous three forms. Function m i n  has the 
same syntax forms just described. 

Suppose that we want to write an M-function, call it f g p r o d ,  that multiplies EXAMPLE 2.6: 
two input images and outputs the product of the images, the maximum and min- Illustration of 

imum values of the product, and a normalized product image whose values are operators arithmetic and 
in the range [0, 11. Using the text editor we write the desired function as follows: functions max and 

min. 
f unc t i on  [p,  pmax, pmin, p n l  = improd ( f ,  g )  
%IMPROD Computes t h e  product  o f  two images. 
% [ P ,  PMAX, PMIN, PN] = IMPROD(F, G)t ou tpu ts  t h e  element-by- 
% element product  o f  two i n p u t  images, F and G I  t h e  product  
% maximum and minimum values, and a normal ized p roduc t  a r r a y  w i t h  
% values i n  t h e  range [0, I ] .  The i n p u t  images must be o f  t h e  same 
% s i ze .  They can be of c l a s s  u i n t 8 ,  u n i t 1 6 ,  o r  double.  The ou tpu ts  
% a re  o f  c l a s s  double. 

f d  = doub le( f ) ;  
gd = doub le(g) ;  
p = fd . *gd;  
pmax = max(p( : ) ) ;  
pmin = m i n ( p ( : ) ) ;  
pn = mat2gray(p);  

Note that the input images were converted to d o u b l e  using the function 
doub le  instead of i m 2 d o u b l e  because, if the inputs were of type u i n t 8 ,  
im2doub le  would convert them to the range [0, 11. Presumably, we want p to 
contain the product of the original values.To obtain a normalized array, pn, in 
the range [O,l] we used function mat2gray .  Note also the use of single-colon 
indexing, as discussed in Section 2.8. 

Suppose that f = [ I  2; 3 41 and g = [I 2;  2 1 1 .  Typing the preceding 
function at the prompt results in the following output: 

>> [ p ,  pmax, pmin,  p n ]  = i m p r o d ( f ,  g )  

P = 

1 4  

pmax = 

6 

pmin = 

'In MATLAB documentation, it is customary to use uppercase characters in the H1 line and in Help text 
when referring to function names and arguments. This is done to avoid confusion between program 
names/variables and normal explanatory text. 
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EXAMPLE 2.8: a Consider the AND operation on the following numeric arrays: 
Logical operators. 

> > A  = [ I  2 0; 0 4 51; 
>> B = [ I  -2 3;  0 1 11; 
> > A & B  

ans = 

1 1 0  
0 1 1  

We see that the AND operator produces a logical array that is of the same size 
as the input arrays and has a 1 at locations where both operands are nonzero 
and 0s elsewhere. Note that all operations are done on pairs of corresponding 
elements of the arrays, as before. 

The OR operator works in a similar manner. An OR expression is t r u e  if ei- 
ther operand is a logical 1 or nonzero numerical quantity, or if they both are 
logical 1s or nonzero numbers; otherwise it is f a l s e .  The NOT operator works 
with a single input. Logically, if the operand is t rue ,  the NOT operator converts 
it to f a l s e .  When using NOT with numeric data, any nonzero operand becomes 
0, and any zero operand becomes 1. S 

MATLAB also supports the logical functions summarized in Table 2.8. The 
a l l  and any functions are particularly useful in programming. 

EXAMPLE 2.9: Consider the simple arrays A = [ 1 2 3; 4 5 61 and B = [ 0  -1 1 ; 0 0 21. 
Logical functions. Substituting these arrays into the functions in Table 2.8 yield the following results: 

ans = 

TABLE 2.8 
Logical functions. 

Function Comments 

xo r  (exclusive OR) The xor  function returns a 1 only if both operands are 
logically different; otherwise xo r  returns a 0. 

a l l  The a l l  function returns a 1 if all the elements in a 
vector are nonzero; otherwise a l l  returns a 0.This 
function operates columnwise on matrices. 

any The any function returns a 1 if any of the elements in a 
vector is nonzero; otherwise any returns a 0.This 
function operates columnwise on matrices. 
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ans = 

1 1 1  

ans = 

1 1 1  

>> a l l ( B )  

ans = 

0 0 1  

>> any(B) 

ans = 

0 1 1  

Note how functions a l l  and any operate on columns of A and B. For instance, 
the first two elements of the vector produced by a l l  ( 6 )  are 0 because each 
of the first two columns of B contains at least one 0; the last element is 1 be- 
cause all elements in the last column of B are nonzero. a 

In addition to the functions listed in Table 2.8, MATLAB provides a 
number of other functions that test for the existence of specific conditions 
or values and return logical results. Some of these functions are listed in 
Table 2.9. A few of them deal with terms and concepts discussed earlier in 
this chapter (for example, see function i s l o g i c a l  in Section 2.6.2); others 
are used in subsequent discussions. Keep in mind that the functions listed in 
Table 2.9 return a logical 1 when the condition being tested is true; other- 
wise they return a logical 0. When the argument is an array, some of the 
functions in Table 2.9 yield an array the same size as the argument contain- 
ing logical 1s in the locations that satisfy the test performed by the function, 
and logical 0s elsewhere. For example, if A = [ I  2; 3 1/01, the function 
i s f  i n i t e  ( A )  returns the matrix [ 1 1 ; 1 01, where the 0 (false) entry indi- 
cates that the last element of A is not finite. 

Some Important Variables and Constants 

The entries in Table 2.10 are used extensively in MATLAB programming. For 
example, eps typically is added to denominators in expressions to prevent 
overflow in the event that a denominator becomes zero. 
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hat return a i s c e l l ( C )  True if C is a cell array. 
.agical 1 or a i s c e l l s t r ( s )  True if s is a cell array of strings. 

'ABLE 2.9 Function Description 

~r condition in isequal(A, 6 )  True if A and B have identical elements and dimensions. 
'heir arguments i s f  i e ld  (S , ' name ' ) True if ' name ' is a field of structure S. 

~ome functions I 
' 2gicalO 
lepending on 
ihether the value 

i s c h a r ( s )  True if s is a character string. 

isempty ( A )  True if A is the empty array, [ 1. 

-0mplete list 

re t rue  or 
alse. See online 
.elp for a 

ABLE 2.1 0 
Some important 
!ariables and 
onstants. 

iSf i n i t e ( A )  True in the locations of array A that are finite. 

i s in f  ( A )  True in the locations of array A that are infinite. 

i s l e t t e r ( A )  True in the locations of A that are letters of the alphabet. 

i s log ica l  ( A )  True if A is a logical array. 

ismember(A,B) True in locations where elements of A are also in 6. 

isnan ( A )  True in the locations of A that are NaNs (see Table 2.10 for 
a definition of NaN). 

isnumeric(A) True if A is a numeric array. 

isprime(A) True in locations of A that are prime numbers. 

i s r e a l  ( A )  True if the elements of A have no imaginary parts. 

isspace(A) True at locations where the elements of A are whitespace 
characters. 

issparse(A) True if A is a sparse matrix. 

i s s t r u c t  (S)  True if S is a structure. 

Function Value Returned 

ans Most recent answer (variable). If no output variable is assigned to 
an expression, MATLAB automatically stores the result in ans. 

~ P S  Floating-point relative accuracy.This is the distance between 1.0 and 
the next largest number representable using double-precision 
floating point. 

i (or j )  Imaginary unit, as in 1 + 2i. 

NaN or nan Stands for Not-a-Number (e.g., 010). 

realmax The largest floating-point number that your computer can represent. 

realmin The smallest floating-point number that your computer can 
represent. 

computer Your computer type. 
version MATLAB version string. 
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Number Representation 
MATLAB uses conventional decimal notation, with a n  optional decimal point 
and leading plus o r  minus sign, for numbers. Scientific notation uses the letter 
e to specify a power-of-ten scale factor. Imaginary numbers use either i o r  j as 
a suffix. Some examples of valid number representations are 

All numbers are stored internally using the long format specified by the Insti- 
tute of Electrical and Electronics Engineers (IEEE) floating-point standard. 
Floating-point numbers have a finite precision of roughly 16 significant deci- 
mal digits and a finite range of approximately t o  

2.1 0.3 Flow Control 
The ability t o  control the flow of operations based on  a set of predefined con- 
ditions is at the heart of all programming languages. In fact, conditional 
branching was one of two key developments that led to  the formulation of 
general-purpose computers in the 1940s (the other development was the use 
of memory to hold stored programs and data). MATLAB provides the eight 
flow control statements summarized in Table 2.11. Keep in mind the observa- 
tion made in the previous section that MATLAB treats a logical 1 or  nonzero 
number as t r u e ,  and a logical o r  numeric 0 as f a l s e .  

Statement TABLE 2.1 1 
Flow control 

i f ,  together with e l se  and e l s e l f ,  executes a group of statenlents. 
statements based on a specified logical condition. 
Executes a group of statements a fixed (specified) number of 
times. 

while Executes a group of statements an indefinite number of times, 
based on a specified logical condition. 

break Terminates execution of a f o r  or while loop. 
Continue Passes control to the next iteration of a f o r  or while loop, 

skipping any remaining statements in the body of the loop. 
switch switch, together with case and otherwise, executes different 

groups of statements, depending on a specified value or 
string. 

return Causes execution to return to the invoking function. 
t ry .  . .catch Changes flow control if an error is detected during execution. - 
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if, else, and elseif 

Conditional statement i f  has the syntax 

i f  express ion  
s ta tements  

end 

The e x p r e s s i o n  is evaluated and, if the evaluation yields t r u e ,  MATLAB ex- 
ecutes one or more commands, denoted here as statements, between the i f  
and end lines. If e x p r e s s i o n  is f a l s e ,  MATLAB skips all the statements be- 
tween the i f  and end lines and resumes execution at the line following the end 
line. When nesting i f  s, each i f  must be paired with a matching end. 

The e l s e  and e l s e i f  statements further conditionalize the i f  statement. 
The general syntax is 

i f  e x p r e s s i o n l  
s ta tements1  

e l s e i f  express ion2  
s ta tements2  

e l s e  
s ta tements3  

end 

If e x p r e s s i o n l  is t r u e ,  s ta tements1  are executed and control is transferred 
to the end statement. If e x p r e s s i o n l  evaluates to f a l s e ,  then express ion2  
is evaluated. If this expression evaluates to t r u e ,  then s ta tements2  are exe- 
cuted and control is transferred to the end statement. Otherwise (e lse)  
s ta tements3  are executed. Note that the e l s e  statement has no condition. 
The e l s e  and e l s e i f  statements can appear by themselves after an i f  state- 
ment; they do not need to appear in pairs, as shown in the preceding general 
syntax. It is acceptable to have multiple e l s e i f  statements. 

EXAMPLE 2.10: Suppose that we want to write a function that computes the average inten- 
Conditional sity of an image. As discussed earlier, a two-dimensional array f can be con- 
branching and verted to a column vector, v, by letting v = f ( : ) .  Therefore, we want our 
introduction of 
functions error, function to be able to work with both vector and image inputs. The program 
l e n g t h ,  and should produce an error if the input is not a one- or two-dimensional array. 
numel. 

f u n c t i o n  av = average(A)  
"AVERAGE Computes t h e  average v a l u e  o f  an a r r a y .  
% AV = AVERAGE(A) computes t h e  average v a l u e  o f  i n p u t  
% a r r a y ,  A, wh ich  must be a I -D  o r  2-D a r r a y .  

% Check t h e  v a l i d i t y  o f  t h e  i n p u t .  (Keep i n  mind t h a t  
% a I -D a r r a y  i s  a s p e c i a l  case o f  a 2-D a r r a y . )  
i f  ndims(A) > 2 

e r r o r ( ' T h e  d imensions o f  t h e  i n p u t  cannot  exceed 2 . ' )  
end 

% Compute t h e  average 
av = s u m ( A ( : ) ) / l e n g t h ( A ( : ) ) ;  
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Note that the input is converted to a 1-D array by using A( : ) .  In general, 
l e n g t h  (A) returns the size of the longest dimension of an array, A. In this ex- 
ample, because A ( : ) is a vector, l e n g t h  (A)  gives the number of elements of A. 
This eliminates the need to test whether the input is a vector or a 2-D array. 
Another way to obtain the number of elements in an array directly is to use 
function numel, whose syntax is 

Thus, if A is an image, numel (A)  gives its number of pixels. Using this function, 
the last executable line of the previous program becomes 

Finally, note that the e r r o r  function terminates execution of the program and 
outputs the message contained within the parentheses (the quotes shown are 
required). 

s indicated in Table 2.11, a f o r  loop executes a group of statements a speci- 
led number of times. The syntax is 

fo r  i n d e x  = s ta r t : i nc rement :end  
statements 

end 

It is possible to nest two or more f o r  loops, as follows: 

fo r  i n d e x 1  = s ta r t1 : inc rement l :end  
s tatements 1 
f o r  i n d e x 2  = s tar t2 : incrementZ:end 

s ta tements2  
end 
a d d i t i o n a l  l o o p 1  s ta tements  

end 

For example, the following loop executes 11 times: 

count = 0; 
fo r  k = 0 :0 .1 :1  

count = coun t  + 1 ;  
end 
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If the loop increment is omitted, it is taken to be 1. Loop increments also can 
be negative, as in k = 0 : -1 :-lo. Note that no semicolon is necessary at the end 
of a f o r  line. MATLAB automatically suppresses printing the values of a loop 
index. As discussed in detail in Section 2.10.4, considerable gains in program 
execution speed can be achieved by replacing f o r  loops with so-called 
vectorized code whenever possible. 

EXAMPLE 2.11: #d Example 2.2 compared several images using different JPEG quality val- 
Using a f o r  loop ues. Here, we show how to write those files to disk using a f o r  loop. Suppose 
to write that we have an image, f ,  and we want to write it to a series of JPEG files with 
images to file. quality factors ranging from 0 to 100 in increments of 5. Further, suppose that 

we want to write the JPEG files with filenames of the form s e r i e s - x x x .  j pg, 
where xxx is the quality factor. We can accomplish this using the following 
f o r  loop: 

f o r  q = 0:5:100 
f i l e n a m e  = sprintf('series-%3d.jpg1, q ) ;  
i m w r i t e ( f ,  f i l e n a m e ,  ' q u a l i t y ' ,  q); 

end 

Function s p r i n t f ,  whose syntax in this case is 

see thehelppagefor writes formatted data as a string, s. In this syntax form, c h a r a c t e r s l  and 
s p r i n t f  for other c h a r a c t  e r s 2  are character strings, and %nd denotes a decimal number (speci- 
'yntax forms applic- fied by q) with n digits. In this example, c h a r a c t e r s l  is ser ies- ,  the value of 
able to this function. 

n is 3, c h a r a c t  e rs2  is . j pg, and q has the values specified in the loop. ;"tr 

w h i l e  

A w h i l e  loop executes a group of statements for as long as the expression 
controlling the loop is t rue.The syntax is 

w h i l e  e x p r e s s i o n  
s ta tements  

end 

As in the case off  o r ,  w h i l e  loops can be nested: 

w h i l e  express ion1  
s ta tements  1 
w h i l e  express ion2  

s ta tements2  
end 
a d d i t i o n a l  l o o p 1  s ta tements  

end 

For example, the following nested w h i l e  loops terminate when both a and 
b have been reduced to 0: 

a = 10; 
b = 5; 
w h i l e  a 

a = a - 1 ;  
w h i l e  b 

b = b - 1 ;  
end 

end 

Note that to control the loops we used MATLAB's convention of treating a 
numerical value in a logical context as t r u e  when it is nonzero and as f a l s e  
when it is 0. In other words, w h i l e  a and w h i l e  b evaluate to t r u e  as long as a 
and b are nonzero. 

As in the case of f o r  loops, considerable gains in program execution speed 
can be achieved by replacing w h i l e  loops with vectorized code (Section 
2.10.4) whenever possible. 

$ break 
As its name implies, break terminates the execution of a f o r  or w h i l e  loop. 
When a break statement is encountered, execution continues with the next 

' statement outside the loop. In nested loops, break exits only from the inner- 
most loop that contains it. 

continue 
The c o n t i n u e  statement passes control to the next iteration of the f o r  or 
w h i l e  loop in which it appears, skipping any remaining statements in the body 
of the loop. In nested loops, c o n t i n u e  passes control to the next iteration of 
the loop enclosing it. 

switch 

This is the statement of choice for controlling the flow of an M-function based 
on different types of inputs.The syntax is 

sw i tch  sw i t ch -express ion  
case case-express ion 

Statement  ( s )  
case {case-express ion1 , case-express ion2 ,  . . . } 

s ta tement  ( s )  
o t h e r w i s e  

s ta tement  ( s )  
end 
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The switch construct executes groups of statements based on the value of a 
variable or expression. The keywords case and otherwise delineate the 
groups. Only the first matching case is executed.' There must always be an 
end to match the switch statement. The curly braces are used when multiple 
expressions are included in the same case statement. As a simple example, 
suppose that we have an M-function that accepts an image f and converts it to 
a specified class, call it newclass. Only three image classes are acceptable for 
the conversion: uint8,  u i n t  16, and double.The following code fragment per- 
forms the desired conversion and outputs an error if the class of the input 
image is not one of the acceptable classes: 

switch newclass 
case ' u i n t 8 '  

g = im2u in t8 ( f ) ;  
case ' u i n t l 6 '  

g = i m 2 u i n t l 6 ( f ) ;  
case 'double '  

g = im2double(f ) ;  
otherwise 

error('Unknown or  improper image c l a s s . ' )  
end 

The switch construct is used extensively throughout the book. 

EXAMPLE 2.12: In this example we write an M-function (based on f o r  loops) to extract a 
Extracting a rectangular subimage from an image. Although, as shown in the next section, 
subimage a we could do the extraction using a single MATLAB statement, we use the pre- 
given image. 

sent example later to compare the speed between loops and vectorized code. 
The inputs to the function are an image, the size (number of rows and 
columns) of the subimage we want to extract, and the coordinates of the top, 
left corner of the subimage. Keep in mind that the image origin in MATLAB 
is at (1, I ) ,  as discussed in Section 2.1.1. 

function s = subim(f,  m, n, rx ,  cy) 
%SUBIM Extracts  a subimage, s ,  from a given image, f .  
% The subimage i s  of s i z e  m-by-n, and the  coordinates 
% of i t s  top ,  l e f t  corner a r e  ( r x ,  c y ) .  

s = zeros(m, n ) ;  
rowhigh = rx + m - 1 ;  
colhigh = cy + n - 1 ;  
xcount = 0; 
f o r  r = rx:rowhigh 

xcount = xcount + 1 ;  
ycount = 0;  

'Unlike the C language switch construct. MATLAB's sw i t ch  does not "fall through."That is, s w i t c h  
executes only the f~rs t  match~ng case: subsequent matching cases do not execute.Therefore, break state- 
ments are not used. 
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f o r  c = cy:colhigh 
ycount = ycount + 1 ;  
~ ( x c o u n t ,  ycount) = f ( r ,  c ) ;  

end 
end 

In the following section we give a significantly more efficient implementation 
of this code. As an exercise, the reader should implement the preceding pro- 
gram using while instead of f or  loops. B 

2.1 0.4 Code Optimization 
As discussed in some detail in Section 1.3, MATLAB is a programming lan- 
guage specifically designed for array operations. Taking advantage of this fact 
whenever possible can result in significant increases in computational speed. 
In this section we discuss two important approaches for MATLAB code opti- 
mization: vectorizing loops and preallocating arrays. 

Vectorizing Loops 
Vectorizing simply means converting f o r  and while loops to equivalent vec- 
tor or matrix operations. As will become evident shortly, vectorization can re- 
sult not only in significant gains in computational speed, but it also helps 
improve code readability. Although multidimensional vectorization can be dif- 
ficult to formulate at times, the forms of vectorization used in image process- 
ing generally are straightforward. 

We begin with a simple example. Suppose that we want to generate a 1-D 
function of the form 

f (x) = A s i n ( x / 2 ~ )  

for x = 0,1 ,2 , .  . . , M - 1. A f o r  loop to implement this computation is 

for x = 1 : M  % Array indices  i n  MATLAB cannot be 0 .  
f ( x )  = A*sin((x  - 1 ) / ( 2 * p i ) ) ;  

end 

However, this code can be made considerably more efficient by vectorizing it; 
that is, by taking advantage of MATLAB indexing, as follows: 

As this simple example illustrates, 1-D indexing generally is a simple 
process. When the functions to be evaluated have two variables, optimized 
indexing is slightly more subtle. MATLAB provides a direct way to implement 
2-D function evaluations via function meshgrid, which has the syntax 

[ C ,  R ]  = meshgrid(c, r )  
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This function transforms the domain specified by row vectors c  and r into ar- 
rays C  and R that can be used for the evaluation of functions of two variables 
and 3-D surface plots (note that columns are listed first in both the input and 
output of meshgrid).  

The rows of output array C  are copies of the vector c, and the columns of 
the output array R  are copies of the vector r. For example, suppose that we 
want to form a 2-D function whose elements are the sum of the squares of the 
values of coordinate variables x and y  for x = 0, 1  , 2  and y  = 0, 1. The vec- 
tor r is formed from the row components of the coordinates: r = [ 0  1  21. Sim- 
ilarly, c  is formed from the column component of the coordinates: c  = [O 1  ]  
(keep in mind that both r and c  are row vectors here). Substituting these two 
vectors into meshgr id  results in the following arrays: 

>> [C, R]= meshgr id (c ,  r )  

C  = 

The function in which we are interested is implemented as 

which gives the following result: 

Note that the dimensions of h  are l e n g t h  ( r )  x  l e n g t h  ( c ) .  Also note, for ex- 
ample, that h  ( 1  , 1  ) = R ( 1 ,1  ) ^ 2  + C  ( 1 ,1 )  ̂ 2. Thus, MATLAB automatically 
took care of indexing h. This is a potential source for confusion when 0s are in- 
volved in the coordinates because of the repeated warnings in this book and in 
manuals that MATLAB arrays cannot have 0 indices. As this simple illustra- 
tion shows, when forming h, MATLAB used the contents of R and C  for com- 
putations. The indices of h, R, and C, started at 1. The power of this indexing 
scheme is demonstrated in the following example. 

- 
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a In this example we write an M-function to compare the implementation of 
the following two-dimensional image function using f o r  loops and vectorization: 

f (x, y) = A sin(uox + voy) 

for x = 0,1,2, .  . . , M - 1 and y = 0,1 ,2 , .  . . , N - 1. We also introduce the 
timing functions t i c  and t o c .  

The function inputs are A, uo, vo, M and N.The desired outputs are the im- 
ages generated by both methods (they should be identical), and the ratio of 
the time it takes to implement the function with f o r  loops to the time it takes 
to implement it using vectorization. The solution is as follows: 

f u n c t i o n  [ r t ,  f ,  g ]  = twods in (A ,  uO, vO, M, N) 
%TWOCISIN Compares f o r  l o o p s  vs. v e c t o r i z a t i o n .  
% The comparison i s  based on imp lement ing  t h e  f u n c t i o n  
% f ( x ,  y )  = A s i n ( u 0 x  + vOy) f o r  x  = 0, 1, 2, . . . ,  M  - 1  and 
% y = 0, 1, 2, . . . ,  N  - 1 .  The i n p u t s  t o  t h e  f u n c t i o n  a r e  
% M and N and t h e  c o n s t a n t s  i n  t h e  f u n c t i o n .  

% F i r s t  implement u s i n g  f o r  l o o p s .  

t i c  % S t a r t  t i m i n g .  

f o r  r = 1:M 
uOx = uO*( r  - 1 ) ;  
f o r  c  = l : N  

voy = vO*(c - 1 ) ;  
f ( r ,  c )  = A*s in(uOx + vOy); 

end 
end 

t l  = t o c ;  % End t i m i n g .  

% Now implement u s i n g  v e c t o r i z a t i o n .  C a l l  t h e  image g .  

t i c  % S t a r t  t i m i n g .  

r = O : M -  1; 
C = 0:N - 1; 
[C, R] = meshgr id (c ,  r ) ;  
9 = A*sin(uO*R + vO*C); 

t 2  = t o c ;  % End t i m i n g .  

% Compute t h e  r a t i o  o f  t h e  two t i m e s .  

r t  = t l l ( t 2  + eps) ;  % Use eps i n  case t 2  is c l o s e  t o  0. 

Running this function at the MATLAB prompt, 

>> [ r t ,  f ,  g ]  = t w o d s i n ( 1 ,  1 / ( 4 * p i ) ,  1 / ( 4 * P i ) ,  512, 512) ;  

EXAMPLE 2.13: 
An illustration of 
the computational 
advantages of 
vectorization, and 
intruduction of 
the timing 
functions t i c  and 
toc .  
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FIGURE 2.7 
Sinuso~dal image 
generated In 
Example 2.13. 

yielded the following value of rt: 

We convert the image generated (f and g are identical) to viewable form using 
function mat2g ray: 

and display it using imshow, 

Figure 2.7 shows the result. &# 

The vectorized code in Example 2.13 runs on the order of 30 times faster 
than the implementation based on for loops. This is a significant computation- 
al advantage that becomes increasingly meaningful as relative execution times 
become longer. For example, if M and N are large and the vectorized program 
takes 2 minutes to run, it would take over 1 hour to accomplish the same task 
using for loops. Numbers like these make it worthwhile to vectorize as much of 
a program as possible, especially if routine use of the program in envisioned. 

The preceding discussion on vectorization is focused on computations in- 
volving the coordinates of an image. Often, we are interested in extracting and 
processing regions of an image. Vectorization of programs for extracting such 
regions is particularly simple if the region to be extracted is rectangular and 
encompasses all pixels within the rectangle, which generally is the case in this 
type of operation.Tne basic vectorized code to extract a region, s, of size m x n 
and with its top left corner at coordinates (rx, cy) is as follows: 

rowhigh = rx + rn - 1; 
colhigh = cy + n - 1 ;  

where f is the image from which the region is to be extracted.The for loops to 
the same thing were already worked out in Example 2.12. Imple- 

rnenting both methods and timing them as in Example 2.13 would show that 
the vectorized code runs on the order of 1000 times faster in this case than the 
code based on for loops. 

preallocating Arrays 
Another simple way to improve code execution time is to preallocate the size 
of the arrays used in a program. When working with numeric or logical arrays, 
preallocation simply consists of creating arrays of 0s with the proper dimen- 
sion. For example, if we are working with two images, f and g, of size 
1024 X 1024 pixels, preallocation consists of the statements 

Preallocation also helps reduce memory fragmentation when working with 
large arrays. Memory can become fragmented due to dynamic memory alloca- 
tion and deallocation.The net result is that there may be sufficient physical mem- 
ory available during computation, but not enough contiguous memory to hold a 
large variable. Preallocation helps prevent this by allowing MATLAB to reserve 
sufficient memory for large data constructs at the beginning of a computation. 

2.1 0.5 Interactive I10 
Often, it is desired to write interactive M-functions that display information See Appendfx B for 

and instructions to users and accept inputs from the keyboard. In this section 
~ ~ ~ ~ ~ f l ~ ~ , ~ ~ ~ ~ ~ ~ t -  

we establish a foundation for writing such functions. ~nterfaces (GUIJ). 
Function disp is used to display information on the screen. Its syntax is 

If argument is an array, disp displays its contents. If argument is a text string, 
then d i s p  displays the characters in the string. For example, 

> ' A =  [ I  2;  3 4 1 ;  
>> disp (A) 

>> sc = 'Digital Image Processing.'; 
>> disp(sc) 

Digital Image Processing. 

>> disp('This is another way to display text.') 

This is another way to display text. 
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i n p u t  
+i \I 

Note that only the contents of argument are displayed, without words like 
ans =, which we are accustomed to seeing on the screen when the value of a 
variable is displayed by omitting a semicolon at the end of a command line. 

Function input is used for inputting data into an M-function. The basic 
syntax is 

This function outputs the words contained in message and waits for an input 
from the user, followed by a return, and stores the input in t.The input can be 
a single number, a character string (enclosed by single quotes), a vector (en- 
closed by square brackets and elements separated by spaces or commas), a 
matrix (enclosed by square brackets and rows separated by semicolons), or 
any other valid MATLAB data structure. The syntax 

outputs the contents of message and accepts a character string whose ele- 
ments can be separated by commas or spaces. This syntax is flexible because it 
allows multiple individual inputs. If the entries are intended to be numbers, the 
elements of the string (which are treated as characters) can be converted to 
numbers of class double by using the function str2num, which has the syntax 

See Secrion 12.4 for For example, 
a detailed disc~rssion 
of string operations. >> t = i n p u t ( ' E n t e r  your da ta :  ' ,  ' s ' )  

Enter your data :  1 ,  2 ,  4 

ans = 

char 

>> s i z e ( t )  

ans = 
1 5  

ans = 
double 

Thus, we see that t is a 1 X 5 character array (the three numbers and the two 
spaces) and n is a 1 X 3 vector of numbers of class double. 

If the entries are a mixture of characters and numbers, then we use one of 
MATLAB'S string processing functions. Of particular interest in the present 
discussion is function s t r r ead ,  which has the syntax 

,+ 
' :d4 -, 

[ a ,  b, c ,  . . . ]  = s t r r e a d ( c s t r ,  ' f o r m a t ' ,  'param' ,  ' v a l u e '  ) a,3;;ytrread 
,(, 1 

This function reads data from the character string c s t r ,  using a specified se ,~hehe[ppagefor  
format and param/value combinations. In this chapter the formats of interest s t r r e a d  fora ltst o f  

are %f and %q, to denote floating-point numbers and character strings, respec- ~ ~ ~ ~ ~ ' ' ~ ' ~ ~ ~ ~ ~ ~ ~  
tively. For param we use de l imi t e r  to denote that the entities identified in th,sfin,t,on, 
format will be delimited by a character specified in value (typically a comma 
or space). For example, suppose that we have the string 

>> t = '12.6,  x2y, z ' ;  

To read the elements of this input into three variables a, b, and C, we write 

>> [ a ,  b, c ]  = s t r r e a d ( t ,  '%f%q%ql ,  ' d e l i m i t e r ' ,  I , ' )  

a = 
12.6000 

b = 
'x2y' 

C = 
' 2 '  

Output a is of class double; the quotes around outputs x2y and z indicate that 
b and c are c e l l  arrays, which are discussed in the next section. We convert 
them to character arrays simply by letting 
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Function s t  rcmp 
( s l  , s2)  compares 
two strings, s 1 and 
s2, and returns a 
logical t r u e  (1  ) if 
the strings are eqrral; 
otherwise it returns a 
logical f a l s e  (0).  

n 

f' 
$ya upper 

and similarly for c. The number (and order) of elements in the format string 
must match the number and type of expected output variables on the left. In 
this case we expect three inputs: one floating-point number followed by two 
character strings. 

Function strcmp is used to compare strings. For example, suppose that we 
have an M-function g = imnorm(f , param) that accepts an image, f ,  and a pa- 
rameter param than can have one of two forms: ' norml ' , and ' norm255 ' . In 
the first instance, f is to be scaled to the range [0, I]; in the second, it is to be 
scaled to the range [O,255].The output should be of class double in both cases. 
The following code fragment accomplishes the required normalization: 

f = d o u b l e ( f ) ;  
f = f - m i n ( f ( : ) ) ;  
f = f . / m a x ( f ( : ) ) ;  
i f  strcmp(param, ' no rml ' )  

g = f ;  
e l s e i f  strcmp(param, 'norm255') 

g = 255*f; 
e l s e  

error('Unknown value of param. ')  
end 

An error would occur if the value specified in param is not 'norml ' or 
' norm255 ' .Also, an error would be issued if other than all lowercase charac- 
ters are used for either normalization factor. We can modify the function to ac- 
cept either lower or uppercase characters by converting any input to 
lowercase using function lower, as follows: 

param = lower(param) 

Similarly, if the code uses uppercase letters, we can convert any input character 
string to uppercase using function upper: 

param = upper(param) 

2.1 0.6 A Brief Introduction to Cell Arrays and Structures 
When dealing with mixed variables (e.g., characters and numbers), we can 

Cell arrays and make use of cell arrays. A cell array in MATLAB is a multidimensional array 
srrLtctLLres are dis- whose elements are copies of other arrays. For example, the cell array 
cussed in detail in 
Section 11.1.1. 

c = { ' g a u s s ' ,  [ I  0 ;  0 11, 3) 

contains three elements: a character string, a 2 X 2 matrix, and a scalar (note 
the use of curly braces to enclose the arrays). To select the contents of a cell 
array we enclose an integer address in curly braces. In this case, we obtain the 
following results: 

>> c{ l )  

ans = 
gauss 

>> c{2) 
ans = 

1 0  
0 1 

>> c{3) 
ans = 

3 

An important property of cell arrays is that they contain copies of the argu- 
ments, not pointers to the arguments. For example, if we were working with 
cell array 

c = {A, B) 

in which A and B are matrices, and these matrices changed sometime later in a 
program, the contents of c would not change. 

Structures are similar to cell arrays, in the sense that they allow grouping of a 
collection of dissimilar data into a single variable. However, unlike cell arrays 
where cells are addressed by numbers, the elements of structures are addressed 
by names calledfields. Depending on the application, using fields adds clarity and 
readability to an M-function. For instance, letting S denote the structure variable 
and using the (arbitrary) field names char-string, matrix, and sca la r ,  the 
data in the preceding example could be organized as a structure by letting 

S.char-string = ' g auss '  ; 
S.matrix = [ I  0 ;  0 I ] ;  
S .sca lar  = 3;  

Note the use of a dot to append the various fields to the structure variable. 
Then, for example, typing S. matrix at the prompt, would produce 

>> S-matr ix  

ans = 

1 0  
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which agrees with the corresponding output for cell arrays. The clarity of using 
S. mat r ix  as opposed to c(2) is evident in this case. This type of readability 
can be important if a function has numerous outputs that must be interpreted 
by a user. 

Summary 
The material in this chapter is the foundation for the discussions that follow. At this 
point, the reader should be able to retrieve an image from disk, process it via simple 
manipulations, display the result, and save it to disk. It is important to note that the key 
lesson from this chapter is how to combine MATLAB and IIT functions with pro- 
gramming constructs to generate solutions that expand the capabilities of those func- 
tions. In fact, this is the model of how material is presented in the following chapters. By 
combining standard functions with new code, we show prototypic solutions to a broad 
spectrum of problems of interest in digital image processing. 

term spatial domain refers to the image plane itself, and methods in this cat- 
are based on direct manipulation of pixels in an image. In this chapter we 

ghout the book, however, these techniques are general in scope and 
umerous other branches of digital image processing. 

Background 
As noted in the preceding paragraph, spatial domain techniques operate di- 
rectly on the pixels of an image. The spatial domain processes discussed in this 
chapter are denoted by the expression 

tions 

where f (x, y )  is the input image, g(x, y )  is the output (~rocessed) image, and 
T is an operator on f ,  defined over a specified neighborhood about point 
(x, y). In addition, Tcan operate on a set of images, such as performing the ad- 
dition of K images for noise reduction. 

The principal approach for defining spatial neighborhoods about a point 
( x ,  y )  is to use a square or rectangular region centered at (x, y), as Fig. 3.1 shows. 
The center of the region is moved from pixel to pixel starting, say, at the top, left 
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FIGURE 3.1 A O r ~ g i n  
ne~ghborhood of 
slze 3 X 3 about d 

po~nt (x. y )  In an 
Image. 

--ller, and, as it moves, it encompasses different neighborhoods. Operator T 1s 
appliec, ^.tch locat~on (x, y) to yield the output, g, at that location. Only the 
pixels in the n~,, ' -?hood are used in computing the value of g at ( x ,  Y ) .  

The remainder o i  t h ~ s  ,, -?ter deals with various implementations of the 
preceding equation. Although LIII, ;-+ion is simple conceptually, its compu- 
tational implementation in MATLAB requllcb i i ; ~ :  careful attention be paid 
to data classes and value ranges. 

Intensity Transformation Functions 

The simplest form of the transformation T is when the neighborhood in 
Fig. 3.1 is of size 1 X 1 (a single pixel). In this case, the value of g at  (x, y)  de- 
pends only on the intensity o f f  a t  that point, and T becomes an intensity or 
gray-level transformation function. These two terms are used interchangeably, 
when dealing with monochrome (i.e., gray-scale) images. When dealing with 
color images, the term intensity is used to denote a color image component in 
certain color spaces, as described in Chapter 6. 

Because they depend only on intensity values, and not explicitly on ( x ,  y) ,  
intensity transformation functions frequently are written in simplified form as 

where r denotes the intensity o f f  and s the intensity of g, both at any corre- 
sponding point (x, y)  in the images. 

3.2. ! Function imad j u s t  

Function imad j ust is the basic IPT tool for intensity transformations of gray- 
scale images. It has the syntax 

lmad] u s t  g = imad]ust(f, [low-in high-in], [low-out high-out], gamma) 

As illustrated in Fig. 3.2. this function maps the intensity values in image f 
to new values in g, such that values between low-in and high-in map to 
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a b c  
FIGURE 3.2 The 
various mappings 
available in 
functlon 
lmad]  ust. 

low-in high-in low-in high-in 

slues between low-out and high-out. Values below low-in and above 
igh-in are clipped; that is, values below low-in map to low-out, and those 
bove high-in map to high-out. The input image can be of class uint8, 

t16, or double, and the output image has the same class as the input. All 
ts to function imad j ust, other than f, are specified as values between 0 
1, regardless of the class of f. If f is of class uint8, imad j ust multiplies 

values supplied by 255 to determine the actual values to  use; if f is of class 
t 1  6, the values are multiplied by 65535. Using the empty matrix ( [  1) for 

[low-in high-in] or for [low-out high-out] results in the default values 
0 1 1. If high-out is less than low-out, the output intensity is reversed. 

Parameter gamma specifies the shape of the curve that maps the intensity 
alues in f to  create g. If gamma is less than 1, the mapping is weighted toward 
igher (brighter) output values, as Fig. 3.2(a) shows. If gamma is greater than 1, 
e mapping is weighted toward lower (darker) output values. If it is omitted 
om the function argument, gamma defaults to 1 (linear mapping). 

a Figure 3.3(a) is a digital mammogram image, f ,  showing a small lesion, and EXAMPLE 3.1: 
Fig. 3.3(b) is the negative image, obtained using the command Using function 

imad j ust. 

This process, which is the digital equivalent of obtaining a photographic nega- 
tive, is particularly useful for enhancing white o r  gray detail embedded in a 
large, predominantly dark region. Note, for example, how much easier it is to 
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob- 
tained also with IPT function ~mcomplement: 

1 Figure 3.3(c) is the result of using the command 

>> 9 2  = ~madjust(f, [0.5 0.751, [ 0  I]); 

which expands the gray scale region between 0.5 and 0.75 to the full [O, 11 
range. This type of processing is useful for highlighting an intensity band of 
interest. Finally, using the command 
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FIGURE 3.3 (a) 
Orlglnal dlgltal 
mammogram 
(b) Negatlve 
Image. (c) Result 
of expanding the 
~ntensity range 
[0 5.0.751 
(d) Result of 
enhancing the 
Image w ~ t h  
gamma = 2. 
(Original image 
zourtesy of G. E. 
Medical Systems.) 

produces a result similar to (but with more gray tones than) Fig. 3.3(c) by compress- 
ing the low end and expanding the high end of the gray scale [see Fig. 3.3(d)]. @ 

og is [he nat~iral  
.~garirhm. l og2  ant1 
l og1  0 (ire tlzr hose 2 
I I ~ Z ~  bl~se 10 logn- 

itlltlls, respectively 

3.2.2 Logarithmic and Contrast-Stretching Transformations 
Logarithmic and contrast-stretching transformations are basic tools for dy- 
namic range manipulation. Logarithm transformations are implemented using 
the expression 

where c is a constant.The shape of this transformation is similar to the gamma 
curve shown in Fig. 3.2(a) with the low values set at 0 and the high values set to 
1 on both scales. Note, however, that the shape of the gamma curve is variable, 
whereas the shape of the log function is fixed. 
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ne of the principal uses of the log transformation is to compress dynamic 
. For example, it is not unusual to have a Fourier spectrum (Chapter 4) 

values in the range [O, lo6] or higher. When displayed on a monitor that is 
linearly to 8 bits, the high values dominate the display, resulting in lost 
detail for the lower intensity values in the spectrum. By computing the 

g, a dynamic range on the order of, for example, lo6, is reduced to approxi- 
tely 14, which is much more manageable. 

en performing a logarithmic transformation, it is often desirable to 
resulting compressed values back to the full range of the display. For 
easiest way to do this in MATLAB is with the statement 

e of mat2gray brings the values to the range [0, 11 and im2uint8 brings 
m to the range [O, 2551. Later, in Section 3.2.3, we discuss a scaling function 
t automatically detects the class of the input and applies the appropriate 

The function shown in Fig. 3.4(a) is called a contrast-stretching transforma- 
n function because it compresses the input levels lower than rn into a nar- 

range of dark levels in the output image; similarly, it compresses the 
es above rn into a narrow band of light levels in the output.The result is an 

age of higher contrast. In fact, in the limiting case shown in Fig. 3.4(b), the 
binary image. This limiting function is called a thresholding func- 

which, as we discuss in Chapter 10, is a simple tool used for image seg- 
ation. Using the notation introduced at the beginning of this section, the 
ion in Fig. 3.4(a) has the form 

1 

where r represents the intensities of the input image, s the corresponding in- 
tensity values in the output image, and E controls the slope of the function. 
This equation is implemented in MATLAB for an entire image as 

<A 

,4f 
g = 1 . / ( 1  + (m./(double(f) + eps)).^E) -: epc  

* ' 

Dark +-+ Light 

FIGURE 3.4 
(a) Contrast- 
stretching 
transformation. 
(b) Thresholding 
transformation. 

Dark - Light 
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Note the use of eps (see Table 2.10) to prevent overflow i f f  has any 0 values 
Since the limiting value of T ( r )  is 1. output values are scaled to the range [O,1] 
when working with this type of transformation. The shape in Fig. 3.4(a) was 
obtained with E = 20. 

EXAMPILE 3.2: @ Figure 3.5(a) is a Fourier spectrum with values in the range 0 to 1.5 X lo6* 
Using a log displayed on a linearly scaled, 8-bit system. Figure 3.5(b) shdws the result obi 
transforn'ation tained using the commands 
reduce dynamic 
range. 

>> g  = i m 2 u i n t 8 ( m a t 2 g r a y ( l o g ( l  + d o u b l e ( f ) ) ) ) ;  
>> imshow(g) 

The visual improvement of g  over the original image is quite evident. I 

5.?.3 Some Utility M-Functions for Intensity Transformations 
In this section we develop two M-functions that incorporate various aspects 
of the intensity transformations introduced in the previous two sections. We 
show the details of the code for one of them to illustrate error checking, to 
introduce ways in which MATLAB functions can be formulated so  that 
they can handle a variable number of inputs andlor outputs, and to show 
typical code formats used throughout the book. From this point on, detailed 
code of new M-functions is included in our discussions only when the pur- 
pose is to  explain specific programming constructs, to illustrate the  use of a 
new MATLAB or  IPT function, o r  to  review concepts introduced earlier. 
Otherwise, only the syntax of the function is explained, and its code is in- 
cluded in Appendix C. Also, in order  to  focus on the basic structure of the 
functions developed in the remainder of the book, this is the last section in 
which we show extensive use of error checking. The procedures that follow 
are typical of how error  handling is programmed in MATLAB. 

a b  
FIGURE 
Four~er 
(b) Rer 
obta~nc 
perforn 
transfo 

3.5 (a) A 
spectrum 

tult 
d by 
nlng a log 
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3.2 is Intensity Transformation Functions 

dling a Variable Number of Inputs and/or Outputs 

eck the number of arguments input into an M-function we use function 

n  = n a r g i n  

ch returns the actual number of arguments input into the M-function. Sim- 
ly, function nargou t  is used in connection with the outputs of an M- 

n  = nargou t  u t  

example, suppose that we execute the following M-function at the prompt: 

T = t e s t h v ( 4 ,  5 ) ;  

of n a r g i n  within the body of this function would return a 2, while use of 
nargout would return a 1. 

Function nargchk can be  used in the body of an M-function to check if the 
correct number of arguments were passed.The syntax is 

msg = nargchk( low,  h i g h ,  number) - nargchk 

function returns the message Not enough i n p u t  parameters if number is less 
low or Too many i n p u t  parameters if number is greater than high. If 
e r  is between low and h i g h  (inclusive), nargchk returns an empty matrix.A 

quent use of function nargchk is to stop execution via the e r r o r  function if the 
orrect number of arguments is input.The number of actual input arguments is 

determined by the n a r g i n  function. For example, consider the following code 

Typing 

>> t e s t h v 2 ( 6 ) ;  

which only has one input argument would produce the error 

Not enough i n p u t  arguments. 
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Often, it is useful to be able to write functions in which the number of input 
and/or output arguments is variable. For this, we use the variables varargin 

A 'larargln and varargout. In the declaration, varargln and varargout must be lower- 
,varargOut case. For example, 

function [m, n ]  = t e s thv3(va ra rg in )  

accepts a variable number of inputs into function testhv3, and 

funct ion [varargout]  = testhv4(m, n, p )  

returns a variable number of outputs from function testhv4. If function 
t e s t  hv3 had, say, one fixed input argument, x, followed by a variable number 
of input arguments, then 

function [ m ,  n ]  = t e s thv3(x ,  varargin)  

would cause varargin to start with the second input argument supplied by 
the user when the function is called. Similar comments apply to varargout. It 
is acceptable to have a function in which both the number of input and output 
arguments is variable. 

When varargin is used as the input argument of a function, MATLAB sets it 
to a cell array (see Section 2.10.5) that accepts a variable number of inputs by the 
user. Because varargin is a cell array, an important aspect of this arrangement is 
that the call to the function can contain a mixed set of inputs. For example, as- 
suming that the code of our hypothetical function t e s t  h v 3  is equipped to handle 
it, it would be perfectly acceptable to have a mixed set of inputs, such as 

2> [ m ,  n] = t e s t h v 3 ( f ,  [ 0  0.5 1 . 5 1 ,  A ,  ' l a b e l ' ) ;  

where f is an image, the next argument is a row vector of length 3, A is a ma- 
trix, and ' l a b e l  ' is a character string. This is indeed a powerful feature that 
can be used to simplify the structure of functions requiring a variety of differ- 
ent inputs. Similar comments apply to varargout. 

Another M-Function for Intensity Transformations 
In this section we develop a function that computes the following transforma- 

changeclass is an tion functions: negative, log, gamma and contrast stretching. These transforma- 
,~nducumenied IPT 
lrility function, Its tions were selected because we will need them later, and also to illustrate the 
:.ode is included in mechanics involved in writing an M-function for intensity transformations. In 
Appendix C. writing this function we use function changeclass, which has the syntax 

+ changeclass 

3.2 % Intensity Transformation Functions 

This function converts image f to the class specified in parameter newclass 
md outputs it as g. Valid values for newclass are ' u i n t 8 ' ,  ' u i n t l 6 ' ,  
a n d ' d ~ ~ b l e  ' . 

Note m the following M-function, which we call l n t  rans, how function op- 
tions are formatted in the Help section of the code. how a variable number of 
inputs is handled, how error checking is interleaved in the code, and how the 
class of the output image is matched to the class of the input. Keep in mind 
when studying the following code that varargin is a cell array, so its elements 
are selected by using curly braces. 

function g = ~ntrans(f, varargln) lritrans 
%INTRANS Performs lntenslty (gray-level) transformatlons. a -  - - 

% G = INTRANS(F, 'neg') computes the negatlve of Input Image F.  

% 
% G = INTRANS(F, ' l o g ' ,  C, CLASS) computes C*log(l + F )  and 
% multlplles the result by (posltlve) constant C. If the last t w o  
% parameters are omltted, C defaults to 1 .  Because the l o g  1s used 
% frequently to dlsplay Fourler spectra, parameter CLASS offers the 
% optlon to speclfy the class of the output as 'ulnt8' or 
% 'ulntl6'. If parameter CLASS 1s omltted, the output 1s of the 
% same class as the lnput. 
% 
% G = INTRANS(F, 'gamma', GAM) performs a gamma transformatlon on 
% the Input Image uslng parameter GAM ( a  requlred ~nput) .  
% 
% G = INTRANS(F, 'stretch', M ,  E )  computes a contrast-stretching 
% transformatlon uslng the expression 1. / ( I  + ( M .  I ( F  + 
% eps)) . ^ E ) .  Parameter M must be l n  the range [0 ,  I ] .  The default 
% value for M IS mean2(lm2double(F)), and the default value for E 
% is 4. 
% 

% For the ' n e g '  , 'gamma', and 'stretch' transformatlons, double 
% lnput lmages whose maxlmum value 1s greater than 1 are scaled 
% flrst uslng MAT2GRAY. Other lmages are converted to double f lrst  
% uslng IM2DOUBLE. For the ' l o g '  transformatlon, double lmages are 
% transformed wlthout berng scaled; other Images are converted to 
% doub le  flrst uslng IM2DOUBLE. 
% 
% The output 1s of the same class as the ~nput, except ~ . f  a 
% different class 1s speclfled for the ' l o g '  optlon. 

% Verlfy the correct number of lnputs. 
error(nargchk(2, 4 ,  nargln)) 

% Store the class of the i n p u t  for use later 
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% If the i n p u t  i s  of class double, and i t  i s  outside the range 
% [O, I ] ,  and the specified transformation i s  not ' l o g ' ,  convert the 
" a n p u t  to the range (0, 11. 
i f  strcmp(class(f), 'double') & max(f(:)) > 1 & . . . 

-strcmp(varargin{l), ' l o g ' )  
f = mat2gray ( f )  ; 

else % Convert to double, regardless of c lass(f)  . 
f = im2double ( f )  ; 

end 

% Determine the type of transformation specified. 
method = varargin{l) ; 

% Perform the intensity transformation specified. 
switch method 
case ' neg ' 

g = imcomplement ( f  ) ; 

case ' l o g  ' 
i f  length (varargin) == 1 

c = 1; 
elseif length(varargin) == 2 

c = varargin{2}; 
elseif length(varargin) == 3 

c = varargin{2); 
classin = vararginI3); 

else 
error('1ncorrect number of inputs for the log option. ')  

end 
g = c*(log(l + double(f))) ;  

case 'gamma' 
i f  length(varargin) < 2 

error('Not enough inputs for the gamma option. ')  
end 
gam = vararginI2); 
g = imadjust(f, [ 1 ,  [ 1, gam); 

case ' s t retch '  
i f  length(varargin) == 1 

% Use defaults. 
m = meanZ(f); 
E = 4 . 0 ;  

elseif length (varargin) == 3 
m = varargini2); 
E = varargin{3); 

else error('1ncorrect number of inputs for the stretch option. ' )  
end 
g = l . / ( l  + (m./(f + eps) ) .^E) ;  

otherwise 
error( ' U n k n o w n  enhancement method. ' ) 

end 

3.2 ,3 Intensity Transform;! 

AS an illustration of function i n t  rans,  consider the image in Fig. 3.6(a), which 
an ideal candidate for contrast stretching to enhance the skeletal structure.The 

result in Fig. 3.6(b) was obtained with the following call to i n t r a n s :  

>> g = i n t r a n s ( f ,  ' s t r e t c h ' ,  meanZ( im2double ( f ) ) ,  0 . 9 ) ;  
22 f i g u r e ,  imshow(g) 

how function mean2 was used to compute the mean value of f directly 
the function call. The resulting value was used for m. Image f was con- 
to double using im2double in order to scale its values to  the range 

11 so that the mean would also be in this range, as required for input m. The 
ue of E was determined interactively. 1 

M-Function for Intensity Scaling 
en working with images, results whose pixels span a wide negative to  posi- 
range of values are common. While this presents no problems during in- 

mediate computations, it does become an issue when we want to  use an 
it or 16-bit format for saving or viewing an image, in which case it often is 

sirable to scale the image to the full, maximum range, [O, 2551 or [O, 655351. 
following M-function, which we call g s c a l e ,  accomplishes this. In addi- 

, the function can map the output levels to  a specified range. The code for 
function does not include any new concepts so we d o  not include it here. 

4 See Appendix C for the listing. 
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EXAMPLE 3.3: 
Illustration of 
function intrans. 

m  = m e a n 2 ( A )  
C O I ~ I I I M A  111e 111ec117 
(average) vallte of 
tile c l e ~ ~ ~ e / l t s  of 
t,?trlrix A. 

a b  
FIGURE 3.6 (a) 
Bone scdn lmage 
(b) Image 
enhanced uslng d 

contrast-stretching 
transformat~on 
(Or~glnal Image 
courtesy of G. E 
Medlcal System5 ) 

% Convert to the class of the input image. 
g = changeclass(classin, g )  ; 
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The syntax of function gscale  is 

gscale g = g s c a l e ( f ,  method, low, high) 
*%a*-" - -- 

where f is the image to be scaled. Valid values for method are ' f ~ 1 1 8  ' (the de- 
fault), which scales the output to the full range [O, 2-55], and ' f u l l l 6  ' , which 
scales the output to the full range [O, 655351. If included, parameters low and 
hlgh are ignored in these two conversions. A third valid value of method is 
' mlnmax ' , in which case parameters low and high, both in the range [O,l],must 
be provided. If ' minmax ' is selected, the levels are mapped to the range [low, 
hlgh 1. Although these values are specified in the range [O,l], the program per- 
forms the proper scaling, depending on the class of the input, and then converts 
the output to the same class as the input. For example, if f is of class uint8 and 
we specify 'mlnmax' with the range [O, 0.51, the output also will be of class 
uint8, with values in the range [O, 1281. If f is of class double and its range of 
values is outside the range [0, 11, the program converts it to this range before 
proceeding. Function gscale is used in numerous places throughout the book. 

Histogram Processing and Function Plotting 
Intensity transformation functions based on information extracted from image 
intensity histograms play a basic role in image processing, in areas such as en- 
hancement, compression, segmentation, and description. The focus of this sec- 

See Section 4.5.3 for tion is on obtaining, plotting, and using histograms for image enhancement. 
discLrssion of2-D Other applications of histograms are discussed in later chapters. 

dotting techniques. 

33,l Generating and Plotting Image Histograms 
The histogram of a digital image with L total possible intensity levels in the 
range [0, GI is defined as the discrete function 

where rk is the kth intensity level in the interval [0, G] and nk is the number of 
pixels in the image whose intensity level is rk. The value of G is 255 for images of 
class uint8,65535 for images of class uint16, and 1.0 for images of class double. 
Keep in mind that indices in MATLAB cannot be 0, so rl corresponds to intensi- 
ty level 0, r2 corresponds to intensity level 1, and so on, with r~ corresponding to 
level G. Note also that G = L - 1 for images of class uint8 and u i n t  16. 

Often, it is useful to work with normalized histograms, obtained simply by 
dividing all elements of h(rk) by the total number of pixels in the image, which 
we denote by n: 
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or k = 1,2 , .  . . , L. From basic probability, we recognize p(rk) as an estimate 
of the probability of occurrence of intensity level rk. 

The core function in the toolbox for dealing with image histograms is 
imhist, which has the following basic syntax: 

*J'\  
h = i m h i s t  ( f  , b )  f,, a m h s t  

e f is the input image, h is its histogram, h(rk), and b is the number of bins 
in forming the histogram (if b is not included in the argument, b = 256 is 
by default). A bin is simply a subdivision of the intensity scale. For exam- 

e, if we are working with u in t8  images and we let b = 2, then the intensity 
ale is subdivided into two ranges: 0 to 127 and 128 to 255. The resulting his- 
gram will have two values: h(1)  equal to the number of pixels in the image 
th values in the interval [O, 1271, and h(2) equal to the number of pixels with 
lues in the interval [128,255]. We obtain the normalized histogram simply by 

p = i m h i s t ( f ,  b ) /numel ( f )  

Recall from Section 2.10.3 that function numel(f) gives the number of ele- 
ments in array f (i.e., the number of pixels in the image). 

Consider the image, f ,  from Fig. 3.3(a). The simplest way to plot its his- EXAMPLE 3.4: 
gram is to use i m h i s t  with no output specified: Computing and 

plotting image 
histograms. 

re 3.7(a) shows the result.This is the histogram display default in the tool- 
. However, there are many other ways to plot a histogram, and we take this 

portunity to explain some of the plotting options in MATLAB that are rep- 
sentative of those used in image processing applications. 
Histograms often are plotted using bar graphs. For this purpose we can use 

bar(horz ,  v,  w i d t h )  

where v is a row vector containing the points to be plotted, horz is a vector 
of the same dimension as v that contains the increments of the horizontal 
scale, and w i d t h  is a number between 0 and 1. If horz is omitted, the hori- 
zontal axis is divided in units from 0 to length  ( v ) .  When width is 1, the 
bars touch; when it is 0, the bars are simply vertical lines, as in Fig. 3.7(a). 
The default value is 0.8. When plotting a bar graph, it is customary to reduce 
the resolution of the horizontal axis by dividing it into bands. The following 
Statements produce a bar graph, with the horizontal axis divided into 
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FIGURE 3.7 5 12000 
Vanous ways to 
plot an Image 4 10000 

histogram. 3 8000 
(a) l m h l s t ,  

2 6000 
(b) bar ,  
(c) stem, 1 4000 
(dl P l o t  2000 

0 

0 50 100 150 200 250 '0 50 100 150 200 250 

ytick 

>> h = i m h i s t ( f ) ;  
>> hl = h ( 1 : 1 0 : 2 5 6 ) ;  
>> horz = 1:10:256;  
>> b a r ( h o r z ,  h l )  
>> a x i s ( [ O  255 0 150001) 
>> s e t ( g c a ,  ' x t i c k ' ,  0:50:255) 
>> s e t ( g c a ,  ' y t i c k ' ,  0:2000:15000) 

Figure 3.7(b) shows the result.The peak located at the high end of the intensi- 
ty scale in Fig. 3.7(a) is missing in the bar graph as a result of the larger hori- 
zontal increments used in the plot. 

The fifth statement in the preceding code was used to expand the lower 
range of the vertical axis for visual analysis, and to set the orizontal axis to the 
same range as in Fig. 3.7(a).The a x i s  function has the syntax 

a x i s ( [ h o r z m i n  horzmax vertmin ver tmax] )  

which sets the minimum and maximum values in the horizontal and vertical 
axes. In the last two statements, gca means "get current axis," (i.e., the axes of 
the figure last displayed) and x t i c k  and y t i c k  set the horizontal and vertical 
axes ticks in the intervals shown. 

Axis labels can be added to the horizontal and vertical axes of a graph using 
the functions 

3.3 k?d Histogram Processing and Fun 

x l a b e l ( ' t e x t  s t r i n g ' ,  ' f o n t s i z e ' ,  s i z e )  
y l a b e l ( ' t e x t  s t r i n g ' ,  ' f o n t s i z e ' ,  s i z e )  

re s i z e  is the font size in points. Text can be added to the body of the fig- 
by using function t e x t ,  as follows: 

t e x t ( x l o c ,  y l o c ,  ' t e x t  s t r i n g ' ,  ' f o n t s i z e ' ,  s i z e )  

re x loc  and y l o c  define the location where text starts. Use of these three 
ctions is illustrated in Example 3.5. It  is important t o  note that functions 
set axis values and labels are used after the function has been plotted. 
title can be added to a plot using function t i t l e ,  whose basic syntax is 

t i t l e ( ' t i t l e s t r i n g l )  

re t i t l e s t r i n g  is the string of characters that will appear on  the title, 
ed above the plot. 
tern graph is similar to a bar graph. The syntax is 

s t e m ( h o r z ,  v ,  ' c o l o r - l i n e s t y l e - m a r k e r ' ,  ' f i l l ' )  

here v is row vector containing the points to be  plotted, and horz  is as de- 
ribed for bar .The argument, 

c o l o r ~ l i n e s t y l e ~ m a r k e r  

a triplet of values from Table 3.1. For example, stem ( v ,  ' r- -s ' ) produces 
m plot where the lines and markers are  red, the lines are dashed, and the 

rs are squares. I f f  ill is used, and the marker is a circle, square, or dia- 
the marker is filled with the color specified in c o l o r .  The default color 

ack, the line default is s o l i d ,  and the default marker is a c i r c l e .  The 
m graph in Fig. 3.7(c) was obtained using the statements 

h = i m h i s t  ( f ) ;  
hl = h ( 1 : 1 0 : 2 5 6 ) ;  

Symbol Color Symbol Line Style Symbol Marker 

k Black - Solid + Plus sign 
w White - - Dashed o Circle 
I- Red Dotted * Asterisk 
9 Green - Dash-dot Point 
b Blue none No line x Cross 
c Cyan s Square 
Y Yellow d Diamond 
m Magenta none No marker 
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&,i 'xlabel ." y l a b e l  

See the stem help 
page for additional 
options available for 
this function. 

TABLE 3.1 
Attributes for 
functions stem and 
plot.The none 
attribute is 
applicable only to 
function p l o t ,  and 
must be specified 
individually. See the 
syntax for function 
p l o t  below. 
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>> horz = 1:10:256; ping hold on at the prompt retains the current plot and certain axes 
>> stem(horz, hl, 'fill') rties so that subsequent graphing commands add to the existing graph. on 

>> axis([O 255 0 150001) e Example 10.6 for an illustration. 
>> set(gca, 'xtick', [0:50:255]) 
>> set(gca, 'ytick', [0:2000:15000]) .2 Histogram Equalization 

Finally, we consider function plot, which plots a set of points by linkin e for a moment that intensity levels are continuous quantities normal- 

them with straight lines. The syntax is o the range [0, 11, and let p,(r) denote the probability density function 

f i A ~ ~  

) of the intensity levels in a given image, where the subscript is used for 
,26, ,. ,\ 

>A;,'.. ~:,:$" p l d t  plot(horz, v, 'color-linestyle-marker') rentiating between the PDFs of the input and output images. Suppose 
. >  , . .  ., we perform the following transformation on the input levels to obtain 

see tl,e ,,lot help where the arguments are as defined previously for stem plots. The values 0 put (processed) intensity levels, s, 
page for additional color, linestyle, and marker are given in Table 3.1.As in stem, the attribut 
options available for 
this firnction. 

in plot can be specified as a triplet. When using none for linestyle or s = T ( r )  = p,(w) dw 
marker, the attributes must be specified individually.For example, the comrn .Ir 

w is a dummy variable of integration. It can be shown (Gonzalez and 
>> plot(horz, v, 'color', 'g', 'linestyle', 'none', 'marker', 's') [2002]) that the probability density function of the output levels is 

plots green squares without connecting lines between them. The defaults fo 
plot are solid black lines with no markers. { 1 f o r O S s s 1  

The plot in Fig. 3.7(d) was obtained using the following statements: ps ( s )  = 0 otherwise 

>> h = imhist(f); ther words, the preceding transformation generates an image whose in- 

>> plot(h) % Use the default values. ity levels are equally likely, and, in addition, cover the entire range [ O , l ] .  
>> axis([O 255 0 150001) net result of this intensity-level equalization process is an image with in- 
>> set(gca, 'xtick', [0:50:255]) ased dynamic range, which will tend to have higher contrast. Note that 
>> set(gca, 'ytick', [0:2000:15000]) ransformation function is really nothing more than the cumulative dis- 

tion function (CDF). 
Function plot is used frequently to display transformation functions (see hen dealing with discrete quantities we work with histograms and call 
Example 3.5). preceding technique histogram equalization,  although, in general, the 

togram of the processed image will not be uniform, due to the discrete na- 
In the preceding discussion axis limits and tick marks were set manually. It re of the variables. With reference to the discussion in Section 3.3.1, let 

is possible to set the limits and ticks automatically by using functions ylim and (r,), j = 1 ,2 , .  . . , L, denote the histogram associated with the intensity lev- 
xlim, which, for our purposes here, have the syntax forms s of a given image, and recall that the values in a normalized histogram are 

pproximations to the probability of occurrence of each intensity level in the 
ylim('autol) mage. For discrete quantities we work with summations, and the equaliza- 
xlim('autol) tion transformation becomes 

Among other possible variations of the syntax for these two functions (see on- Sk = T ( r k )  

line help for details), there is a manual option, given by k 

= C, pr(rj) 

ylim([yrnin ymax]) j= I 

xlim([xmin xmaxl) k ni 
= 2; 

] = I  

which allows manual specification of the limits. If the limits are specified for 
only one axis, the limits on the other axis are set to ' auto ' by default. We US k = 1.2,. . . . L. where sk is the intensity value in the output (processed) 
these functions in the following section. image corresponding to value rk in the input image. 
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h l s t e q  

EXAMPLE 3.5: 
Histogram 
equalization. 

I f A  i.s o ~ ~ r a o r .  
B = cumsum ( A )  
8il.r~ the J l l l l l  of ~ L T  

el~niol1.s. I f A  is rr  
higher-rlo~zr~r.r.ro~?~rl 
arro!: 
B=cumsum(A, d i m )  
, y r v o ~  lire ~ 1 1 1 1 7  U / O I I ~  

the din~errsion sl~eci- 
fird I,v dim. 
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Histogram equalization is implemented in the toolbox by function histeq: 
which has the syntax 

g = histeq(f, nlev) 

where f is the input image and nlev is the number of intensity levels specified 
for the output image. If nlev is equal to L (the total number of possible levels 
in the input image), then histeq implements the transformation function, 
T ( r k ) ,  directly. If nlev is less than L, then histeq attempts to  distribute the 
levels so that they will approximate a flat histogram. Unlike imhist, the de- 
fault value in histeq is nlev = 64. For the most part, we use the maximum 
possible number of levels (generally 256) for nlev because this produces a 
true implementation of the histogram-equalization method just described. 

d Figure 3.S(a) is an electron microscope image of pollen, magnified approx- 
imately 700 times. In terms of needed enhancement, the most important fea- 
tures of this image are that it is dark and has a low dynamic range. This can be 
seen in the histogram in Fig. 3.8(b),in which the dark nature of the image is ex- 
pected because the histogram is biased toward the dark end of the gray scale. 
The low dynamic range is evident from the fact that the "width" of the his- 
togram is narrow with respect to  the entire gray scale. Letting f denote the 
input image, the following sequence of steps produced Figs. 3.8(a) through (d): 

>> imshow(f) 
>> figure, imhist(f) 
>> y l i m ( ' a u t o l )  
>> g = histeq(f, 256); 
>> figure, imshow(g) 
>> figure, imhist(g) 
>> y l i m ( ' a u t o l )  

The images were saved to disk in tiff format at 300 dpi using imwrite, and the 
plots were similarly exported to disk using the print function discussed in 
Section 2.4. 

The image in Fig. 3.8(c) is the histogram-equalized result. The improve- 
ments in average intensity and contrast are quite evident.These features also 
are evident in the histogram of this image, shown in Fig. 3.8(d).Tne increase in 
contrast is due to the considerable spread of the histogram over the entire in- 
tensity scale.The increase in overall intensity is due to the fact that the average 
intensity level in the histogram of the equalized image is higher (lighter) than 
the original. Although the histogram-equalization method just discussed does 
not produce a flat histogram, it has the desired characteristic of being able to 
increase the dynamic range of the intensity levels in an image. 

As noted earlier, the transformation function T ( r L )  is simply the cumulative 
sum of normalized histogram values. We can use function cumsum to obtain the 
transformation function. as follows: 

>> hnorm = imhist(f)./numel(f); 
>> cdf = cumsum(hnorm); 

3.3 &!i Histogram Processing and Func 

A plot of cdf ,  shown in Fig. 3.9, was obtained using the following commands: 

>> X = linspace(0, 1 , 256) ; % Intervals for [O, 1 ] horiz scale. Note 
% the use of linspace from Sec. 2.8.1. 

>> plot (x, cdf ) % Plot cdf vs. x. 
>> axis([O 1 0 I]) % Scale, settings, and labels: 
>> set(gca, 'xtick', 0:.2:1) 
>> set(gca, 'ytick', 0: .2:1) 
>> xlabel('1nput intensity values', 'fontsize', 9) 
>> ylabel( 'Output intensity values' , 'fontsize' , 9) 
>> % Specify text in the body of the graph: 
>> text (0.18, 0.5, 'Transformation function', 'fontsize' , 9) 

We can tell visually from this transformation function that a narrow range of 
input intensity levels is transformed into the full intensity scale in the output 
image. P 
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a b  
c. d.. 
FIGURE 3.8 
Illustrat~on of 
histogram 
equal~zation. 
(a) Input image, 
and (b) its 
histogram. 
(c) Histogram- 
equalized image, 
and (d) its 
histogram. The 
improvement between (a) and 

(c) is quxte v~sible. 
(Original image 
courtesy of Dr. 
Roger Heady, 
Research School 
of Biological 
Sc~ences, 
Australlan 
National 
Un~verslty, 
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FIGURE 3.9 
Transformation 
function used to 
map the intensity 
values from the 
input image in 
Fig. 3.8(a) to the 
values of the 2 0.6 
output image in ... a 
Fig. 3.8(c). c 

C .- 

Input intensity values 

33.3 Histogram Matching (Specification) 
Histogram equalization produces a transformation function that is adaptive, in 
the sense that it is based on the histogram of a given image. However, once the 
transformation function for an image has been computed, it does not change un- 
less the histogram of the image changes. As noted in the previous section, his- 
togram equalization achieves enhancement by spreading the levels of the input 
image over a wider range of the intensity scale. We show in this section that this 
does not always lead to a successful result. In particular, it is useful in some appli- 
cations to be able to specify the shape of the histogram that we wish the 
processed image to have. The method used to generate a processed image that 
has a specified histogram is called histogram matching or histogram specification. 

The method is simple in principle. Consider for a moment continuous levels 
that are normalized to the interval [0, I], and let r and z denote the intensity 
levels of the input and output images. The input levels have probability densi- 
ty function pr(r)  and the output levels have the specified probability density 
function p,(z). We know from the discussion in the previous section that he 
transformation 

results in intensity levels, s, that have a uniform probability density function, 
p,(s). Suppose now that we define a variable z with the property 

H ( z )  = d z p z ( w )  dw = s 
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ep in mind that we are after an image with intensity levels z ,  which have the 
ecified density p,(z). From the preceding two equations, it follows that 

z = H-' (s )  = H - ' [ T ( ~ ) ]  

can find T ( r )  from the input image (this is the histogram-equalization 
formation discussed in the previous section), so it follows that we can use 
receding equation to find the transformed levels z whose PDF is the spec- 
p,(z) ,  as long as we can find H-'. When working with discrete variables, 

rantee that the inverse of H exists if p,(z) is a valid histogram (i.e., 
t area and all its values are nonnegative), and none of its components 

no bin of p,(z) is empty1.A~ in histogram equalization, the discrete 
ation of the preceding method only yields an approximation to the 

The toolbox implements histogram matching using the following syntax in 
steq: 

g = h i s t e q ( f ,  hspec) 

e f is the input image, hspec is the specified histogram (a row vector of 
fied values), and g is the output image, whose histogram approximates 

e specified histogram, hspec. This vector should contain integer counts cor- 
sponding to equally spaced bins.A property of h is teq  is that the histogram 
g generally better matches hspec when length ( hspec) is much smaller 

an the number of intensity levels in f .  

Figure 3.10(a) shows an image, f ,  of the Mars moon, Phobos, and EXAMPLE3.6: 
g. 3.10(b) shows its histogram, obtained using imhist  ( f ) .The image is dom- Histogram 
ted by large, dark areas, resulting in a histogram characterized by a large 
centration of pixels in the dark end of the gray scale. At first glance, one 
ht conclude that histogram equalization would be a good approach to en- 
ce this image, so that details in the dark areas become more visible. How- 

ever, the result in Fig. 3.10(c), obtained using the command 

shows that histogram equalization in fact did not produce a particularly good 
result in this case. The reason for this can be seen by studying the histogram of 
the equalized image, shown in Fig. 3.10(d). Here, we see that that the intensity 
levels have been shifted to the upper one-half of the gray scale, thus giving the 
image a washed-out appearance.The cause of the shift is the large concentra- 
tion of dark components at or near 0 in the original histogram. In turn, the cu- 
mulative transformation function obtained from this histogram is steep, thus 
mapping the large concentration of pixels in the low end of the gray scale to 
the high end of the scale. 
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a b  
c d 

FIGURE 3.1 0 
(a) Image of the 
Mars moon 
Phobos. 
(b) Hlstogram. 
(c) Histogram- 
equalized Image. 
(d) Hlstogram 
of (c). 
(Original image 
courtesy of 
NASA). 

twomodegauss 
2zcanV---- --- 
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One possibility for remedying this situation is to use histogram matching, 
with the desired histogram having a lesser concentration of components in the 
low end of the gray scale, and maintaining the general shape of the histogram 
of the original image. We note from Fig. 3.10(b) that the histogram is basically 
bimodal, with one large mode at the origin, and another, smaller, mode at the 
high end of the gray scale. These types of histograms can be modeled, for ex- 
ample, by using multimodal Gaussian functions. The following M-function 
computes a bimodal Gaussian function normalized to unit area, so it can be 
used as a specified histogram. 

function p = twomodegauss(m1, s igl ,  m2, sig2, Al, A2, k )  
%TWOMODEGAUSS Generates a bimodal Gaussian function. 
% P = TWOMODEGAUSS(M1, SIG1, M2, SIG2, Al, A2, K )  generates a bimodal, 
% Gaussian-like function i n  the interval [0, I ] .  P i s  a 256-element 
% vector normalized so that SUM(P) equals 1 .  The mean and standard 
% deviation of the modes are (MI, SIG1) and (M2, SIG2), respectively. 
% A1 and A2 are the amplitude values of the two modes. Since the 

3.3 B Histogram Processing and Fui 

output i s  normalized, only the relative values of A1 and A2 are 
important. K i s  an offset value that raises the "floor" of the 
function. A good set of values to  t ry i s  MI = 0.15, SIGI = 0.05, 
M2 = 0.75, SIG2 = 0.05, A1 = 1 ,  A2 = 0.07, and K - 0.002. 

= A1 * ( 1  / ( ( 2  * p i )  * 0.5) * s i g l ) ;  
= 2 * (sigl a 2) ;  
= A2 * (1 1 ( ( 2  * pi)  A 0.5) * sig2); 
= 2 (sig2 2) ;  
= linspace(0, 1, 256) ; 

= k t cl exp(-((2 - mi) . ^  2) . I  kl)  + . . .  

following interactive function accepts inputs from a keyboard and plots 
ulting Gaussian function. Refer to Section 2.10.5 for a n  explanation of 

unctions i n p u t  and str2num. Note how the limits of the plots are set. 

ction p = manualhist 
NUALHIST Generates a bimodal histogram interactively. 

P = MANUALHIST generates a bimodal histogram using 
7WOMODEGAUSS(ml, s i g l ,  m2, sig2, Al, A2, k ) .  ml and m2 are the means 
of the two modes and must be i n  the range [0, 1 1 .  sigl and sig2 are 
the standard deviations of the two modes. A1 and A2 are 
amplitude values, and k i s  an offset value that raises the 
"floor" of histogram. The number of elements i n  the histogram 
vector P i s  256 and sum(P) i s  normalized to 1. MANUALHIST 
repeatedly prompts for  the parameters and plots the resulting 

% histogram u n t i l  the user types an ' x i  to  qui t ,  and then i t  returns the 
last  histogram computed. 

A good set of starting values i s :  (0.15, 0.05, 0.75, 0.05, 1 ,  
0.07, 0.002). 

i t i a l i ze .  
a ts  = true; 
now = ' x ' ;  

Compute a default histogram i n  case the user quits before 
estimating at least one histogram. 
= twomodegauss(O.l5, 0.05, 0.75, 0.05, 1 ,  0.07, 0.002) ; 

% Cycle u n t i l  an x 1s input. 
while repeats 

s = input('Enter mi, s ig l ,  m2, s1g2, Al, A2, k OR x to  q u i t : ' ,  ' s ' ) ;  
i f  s == qultnow 

break 
end 

% Convert the i n p u t  string to  a vector of numerical values and 
% verlfy the number of inputs. 
V = str2num(s); 
If numel(v) -= 7 

:tion Plotting 

manualhist 
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a b  
C 

FIGURE 3.1 1 
(a) Specified 
histogram. 
(b) Result of 
enhancement by 
h~stogram 
matching. 
( c )  Histogram 
of (b). 

disp('1ncorrect number of inputs. ' ) l l (b)  shows the result. The improvement over the histogram- 
continue 

end 
p = twomodegauss(v(l), v ( 2 ) ,  v(3),  v ( 4 ) ,  v(5),  v(6),  v(7)) ;  
% Start a new figure and scale the axes. Specifying only x l i m  
% leaves y l i m  on auto. 
figure, plot ( p )  
x l i m (  [O 2551 ) 

end as extreme as the shift in the histogram shown in Fig. 3.10(d), which corre- 
n d ~  to the poorly enhanced image of Fig. 3.10(c). El 

ts of (1) defining a center point, (x, y); (2) performing an operation 
ves only the pixels in a predefined neighborhood about that center 

intensity scale. The output of the program, p, consists of 256 equally space 
points from this function and is the desired specified histogram. An image wit 
the specified histogram was generated using the command ss of moving the center point creates new neighborhoods, one for each 

in the input image. The two principal terms used to identify this opera- 
>> g = h i s t e q  ( f ,  p )  ; 

4.1 Linear Spatial Filtering 

processing in the frequency domain, a topic discussed in detail in 
. In the present chapter, we are interested in filtering operations that 

0 50 100 150 200 250 

e linear operations of interest in this chapter consist of multiplying each 
in the neighborhood by a corresponding coefficient and summing the re- 
to obtain the response at each point (x, y). If the neighborhood is of size 
n ,  m n  coefficients are required.The coefficients are arranged as a matrix, 

mel ,  template, or window, with the first three 
r reasons that will become obvious shortly, 
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FIGURE 3.12 The ure 3.13(a) shows a one-dimensional function, f ,  and a mask, w. The ori- 
mechanics of linear f is assumed to be its leftmost point. To perform the correlation of the 
spatial filtering. unctions, we move w so that its rightmost point coincides with the origin The magnified 
drawing shows a , as shown in Fig. 3.13(b). Note that there are points between the two func- 
3 x 3 mask and s that do not overlap. The most common way to handle this problem is to 
the corresponding f with as many 0s as are necessary to guarantee that there will always be 
image ursion of w past f .  This situation is shown 
neighborhood 
directly under it. 
The neighborhood elation. The first value of correlation 
is shown displaced o functions in the position shown in 
out from under the case. Next, we move w one location 
mask for ease of .13(d)]. The sum of products again is 

ncounter the first nonzero value of the 
7 4 - 1 .  -1) ~ ( - 1 , o j   lo(-^, I )  proceed in this manner until w moves 

is shown in Fig. 3.13(f)] we would get 
s is the correlation of w and f .  Note 

W(O. - 1) ~ ( 0 . 0 )  ~ ( 0 . 1 )  ved f past w instead, the result 
Id have been different, so the order matters. 

( I ,  I )  W(I,O) ~ ( 1 .  I )  Correlation Convolution FIGURE 3.1 3 
Illustration of 

/ Origin f w rotated 180" one-dimensional 
coordinate arrangement 0  0  0  1 0  0  0  0  0  2  3  2  1 (i) correlation and 

0 0 0 1 0 0 0 0  Ci) 
0 2 3 2 1  

f(x+l .y- I )  f (x+l .y)  f(X+l..V+l) 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  (k)  
0 2 3 2 1  

0 0 0 0 0 1 0 0 0 0 0 0 0 0  (I) 
0 2 3 2 1  

t Position after one shift 

) O O O O O O O 1 O O O O O O O O  O O O O O O O 1 O O O O O O O O ( m )  
are nonnegative integers.Al1 this says is that our principal focus is on mask 1 2 3 2 0  0 2 3 2 1  
odd sizes, with the smallest meaningful size being 3 x 3 (we exclude from t. Position after four shifts 
discussion the trivial case of a 1 X 1 mask). Although it certainly is not a 
quirement, working with odd-size masks is more intuitive because they ha 0 0 0 0 0 1 0 0 0 0 0 0 0 0  (n) 

unique center point. 0 2 3 2 1  

There are two closely related concepts that must be understood cl 
when performing linear spatial filtering. One is correlation; the other ' f u l l  ' correlation result ' f u l l  ' convolution result 
convolution. Correlation is the process of passing the mask w by the 0 0 0 1 2 3 2 0 0 0 0 0  (0) 
array f in the manner described in Fig. 3.12. Mechanically, convolution 
same process, except that w is rotated by 180" prior to passing it by f .  ' same ' correlation result ' same ' convolution result 

two concepts are best explained by some simple examples. 0 0 2 3 2 1 0 0  0 1 2 3 2 0 0 0  (PI 
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The label ' f u l l  ' in the correlation shown in Fig. 3.13(g) is a flag (to be di Padded f 
cussed later) used by the toolbox to indicate correlation using a pad o 11 o o  o 11 0  11 o 
and computed in the manner just described.The toolbox provides another I) 0  11  o (I 0 (I o 11 

0 !I il 0  !j 11 0 0 0 
tion, denoted by ' same ' [Fig. 3.13(h)] that produces a correlation that is 0  (I !I i~ (I (I (I o (I 
same size as f .  This computation also uses zero padding, but the starting p 0 11 o o  1 !I o o o 
tion is with the center point of the mask (the point labeled 3 in w) aligned i j  0  1 0  il 1 2 3  0 0 il C! ii 0 ti O 0  
the origin of f .  The last computation is with the center point of the (1 i 0  1 i 4 5 6  0 li O O  0  0  0 !I 0  

aligned with the last point in f .  11 o o t i  7 8 9 11 o (J [I 11 (I (I o 
To perform convolution we rotate w by 180" and place its rightmost point (b) 

the origin o f f ,  as shown in Fig. 3.13(j). We then repeat the sliding/computin 
process employed in correlation, as illustrated in Figs. 3.13(k) through (n ' correlation result ' same ' correlation result 

' f u l l  ' and ' same ' convolution results are shown in Figs. 3.13(0) and ( 
O  0 I1 i) 0  0  0  I! 0 0  0 0  0  !I 0 

14 5 61 11 0  0 i! 0  i! 11 0 (1 il 0  [j IJ 0  i 1  0  9 8 7 0  
spectively. i7-8-9; 0 ij 0  0  0  0 0  11 I) 0  0  0  I) 0 [I 0 6 5 4 0  

Function f in Fig. 3.13 is a discrete unit impulse function that is 1 at on 0 I) 0 0 0  0  0  0  0 o o !I 9 8 7 (I (i i) 0 3 2 1 0  

location and 0 everywhere else. It is evident from the result in Figs. 3.13 i) 0 0  0 1 0  0  i) 11 0 0  11 6 5 4 11 (I II 0  0  0 0  0  
O I J O O ! l l l O O O  0 I l 0 3 2 1 0 0 0  

(p) that convolution basically just "copied" w at the location of the impul O O I ) O ~ I O I I O ~  ~ ) ( ] I ~ O I I ~ ~ ( J I I  

This simple copying property (called sifting) is a fundamental concept in 1 O I I ! ) I I O I I ~ ) ~ I O  ( I O O O O I ' I O ~ I O  

ear system theory, and it is the reason why one of the functions is alw J 0 0 1 1 0  l ~ O ~ l 0 O i l ~ O i ~  

tated by 180" in convolution. Note that, unlike correlation, reversing th (4 (el 

order of the functions yields the same convolution result. If the functio ' full ' convolution result ' same ' convolution result 
being shifted is symmetric, it is evident that convolution and correlatio 7 0  O I I O I I O I ~ ~ I I ~  11 !I o r i  o 
yield the same result. 16 5 41 1) 11 o o 0 11 I> 0 II o o  0  o  0  0 1 2  3  11 

The preceding concepts extend easily to images, as illustrated in Fi L 3 - ~ - 1 ~ ~ 1 0 1 1 i I i 1 0  ~ ~ I I ~ ) I J ( ] o ~ ) o o  o 4 5 6 0 
li (1 0  O 0 O 0  0  O 0  0 11 1 2 3 0 0 0 

The origin is at the top, left corner of image f ( x ,  y) (see Fig. 2.1). To perfo 
0 7 8 9 11 

0 I 0 1 1 I 0 0 0 0 II 0 4 5 6 0  0 (1 0 0 0  0 0  
correlation, we place the bottom, rightmost point of w(x, y) so that it coin 0  0 I) 0 (I i) 0 i) 11 0 i) o  7 8 9 il (I i) 

cides with the origin o f f  (x, y), as illustrated in Fig. 3.14(c). Note the use 0 11 o 11 (I i j  i> (I ( 1  (I o o [I { J  CJ 9 (I !i 
11 0  0  (J 0  i l  0  0  0 11 0 (1 il 0  O 0 (! () padding for the reasons mentioned in the discussion of Fig. 3.13. 0 ( 1  0  11 i) (I I) (I (I i) ii t i  o i t  0  o (J (I 

correlation, we move w(x, y) in all possible locations so that at least o (9) 
pixels overlaps a pixel in the original image f (x, y). This ' f u l l  ' correlatio 

(h) 

shown in Fig. 3.14(d). To obtain the ' same ' correlation shown in Fig. 3.14 re f is the input image, w is the filter mask, g is the filtered result, and the 
we require that all excursions of w(x, y) be such that its center pixel over1 ummarized in Table 3.2.The f iltering-mode specifies 
the original f ( x ,  y). correlation ( ' cor r  ' ) or convolution ( I  conv I). The 

For convolution, we simply rotate w(x, y) by 180" and proceed in t 1 with the border-padding issue, with the size of the 
manner as in correlation [Figs. 3.14(f) through (h)].As in the one- by the size of the filter. These options are explained 
example discussed earlier, convolution yields the same result r e size-options are either ' same or ' f u l l  I, as 
which of the two functions undergoes translation. In correlation the ord 
does matter, a fact that is made clear in the toolbox by assuming that the filter e most common syntax for imf i l t e r  is 
mask is always the function that undergoes translation. Note also the impor- 
tant fact in Figs. 3.14(e) and (h) that the results of spatial correlation and con- g = i m f i l t e r ( f ,  w, ' r e p l i c a t e ' )  
volution are rotated by 180" with respect to each other. This, of course, is 
expected because convolution is nothing more than correlation with a rotated s syntax is used when implementing IPT standard linear spatial filters. 
filter mask. se filters, which are discussed in Section 3.5.1, are prerotated by 180°, so we 

The toolbox implements linear spatial filtering using function imf i l t e r ,  imf i l t e r  . From the discussion of Fig. 3.14, 
which has the following syntax: tion with a rotated filter is the same as per- 

ginal filter. If the filter is symmetric about its 
l t e r  g = imf i l t e r ( f  , w, f iltering-mode, boundary-options, size-options) ce the same result. 

FIGLYRE 3.1 4 
Illustrat~on of 
two-dimens~onal 
correlation and 
convolution. The 
0s are shown In 
gray to simplify 
viewing. 
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TABLE 3.2 
Options for 
function 
imfi l ter .  

rot90(w, k )  ro- 
tates w by k'90 de- 
grees, where k is an 
integer. 

EXAMPLE 3.7: 
Using function 
imf i l t e r .  

Options Description 

Filtering Mode 
' co r r  ' Filtering is done using correlation (see Figs. 3.13 and 3.14).Thls is 

the default. 
' conv' Filtering is done using convolution (see Figs. 3.13 and 3.14). 

Boundary Options 
P The boundaries of the input image are extended by padding with a 

value, P (written without quotes).This is the default, with value 0. 

' rep l ica te '  The size of the image is extended by replicating the values in its 
outer border. 

' symmetric ' The size of the image is extended by mirror-reflecting it across its 
border. 

' c i rcu la r  ' The size of the image is extended by treating the image as one 
period a 2-D periodic function. 

Size Options 
' f u l l '  The output is of the same size as the extended (padded) image 

(see Figs. 3.13 and 3.14). 
' same' The output is of the same size as the input.This is achieved by 

limiting the excursions of the center of the filter mask to ~ o i n t s  

ich is proportional to  a n  averaging filter. We did not divide the coefficients 
to illustrate at the end of this example the scaling effects of using 

When working with filters that are neither pre-rotated nor symmetric, and e r  with an image of class u i n t 8 .  

we wish to  perform convolution, we have two options. One is to  use the syntax onvolving filter w with an image produces a blurred result. Because the fil- 
s symmetric, we can use the correlation default in imf i l t e r .  Figure 3.15(b) 

g = i m f i l t e r ( f ,  w, ' c o n v ' ,  ' r e p l i c a t e ' )  ows the result of performing the following filtering operation: 

The other approach is to  preprocess w by using the function ro t90(wJ  2 )  to 
rotate it 180°, and then use imf i l t e r ( f ,  w ,  ' r e p l i c a t e '  ).  Of course these 
two steps can be combined into one statement. The preceding syntax produces 
an image g that is of the same size as the input (i.e., the default in computation 
is the ' same ' mode discussed earlier). 

Each element of the filtered image is computed using double-precision, 
floating-point arithmetic. However, imf i l t e r  converts the output image to 
the same class of the input. Therefore, if f is an integer array, then output ele- 
ments that exceed the range of the integer type are truncated, and fractional 
values are rounded. If more precision is desired in the result, then f should be 
converted to class double by using im2double or double before using 
imf i l t e r .  

Figure 3.15(a) is a class double  image, f ,  of size 512 X 512 pixels. Consider 
the simple 31 X 31 filter 

here we used the default boundary option, which pads the border of the image 
's (black). A s  expected the edges between black and white in the filtered 
are blurred, but so are the edges between the light parts of the image and 

oundary. The reason, of course, is that the padded border is black. We can 
1 with this difficulty by using the ' r e p l i c a t e  ' option 

>> g r  = i m f i l t e r ( f ,  w ,  ' r e p l i c a t e ' ) ;  
>> f i g u r e ,  imshow(gr, [ I )  

s Fig. 3.15(c) shows, the borders of the filtered image now appear as ex- 
cted. In this case, equivalent results a re  obtained with the ' symmetr ic  ' 
tion 
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a b c  
d e  f 
FIGURE 3.1 5 
(a) Original image. 
(b) Result of using 
imf i l t e r  with 
default zero padding. 
(c) Result with the 
' repl icate '  
option. (d) Result 
with the 
'symmetric' 
option. (e) Result 
with the ' circular ' 
option. (f) Result of 
converting the 
original image to 
class uint8 and then 
fdtering with the 
' repl icate '  
option. A filter of 
size31 X 31 with 
all 1s was used 
throughout. 

>> gs = i m f i l t e r ( f ,  w, ' s y m m e t r i c ' ) ;  
>> f i g u r e ,  imshow(gs, [ 1 )  
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Figure 3.15(d) shows the result. However, using the ' c i r c u l a r  ' option t image processing applications speed is an overriding factor, so 
is preferred over nlf  i l t  for implementing generalized nonlinear 

7> gc = i m f i l t e r ( f ,  w ,  ' c i r c u l a r ' ) ;  tering. 
>> f i g u r e ,  imshow(gc, [ I )  ven an input image, f ,  of size M X N ,  and a neighborhood of size m x n, 

on colf  ilt generates a matrix, call it A, of maximum size mn x M N , ~  in 
produced the result in Fig. 3.15(e), which shows the same problem as with zer ch each column corresponds to the pixels encompassed by the neighbor- 
padding. This is as expected because use of periodicity makes the black part d centered at a location in the image. For example, the first column corre- 
of the image adjacent to the light areas. ds to the pixels encompassed by the neighborhood when its center is 

Finally, we illustrate how the fact that imf i l t e r  produces a result that is o ed at the top, leftmost point in f .  All required padding is handled trans- 
the same class as the input can lead to difficulties if not handled properly: rently by colf  ilt (using zero padding). 

The syntax of function col f  ilt is 
>> f 8  = im2uint8(f ) ;  ,z>:,':,. 
>> gar = i m f i l t e r ( f 8 ,  w,  ' r e p l i c a t e ' ) ;  g = c o l f i l t ( f ,  [m n l ,  ' s l i d i n g ' ,  @fun, parameters) *. .h :*\ . , .. , 

c?.,.?ff;;&%'f ilt 
>> f i g u r e ,  imshow(g8r, [ I )  '..*,.., _ p f  ,, ,..., .';, 

,as before, m and n are the dimensions of the filter region, ' s l i d i n g  ' in- 
Figure 3.15(f) shows the result of these operations. Here, when the output was s that the process is one of sliding the m X n region from pixel to pixel 
converted to the class of the input (u in t8 )  by i m f i l t e r ,  clipping caused e input image f ,  @fun references a function, which we denote arbitrarily 
some data loss. The reason is that the coefficients of the mask did not sum to un, and parameters indicates parameters (separated by commas) that d24:p,,, the range [O,l], resulting in filtered values outside the [O, 2551 range. Thu be required by function f u n .  The symbol @ is called a function handle, a .-.$$jfGach~n handle) 
avoid this difficulty, we have the option of normalizing the coefficients so t AB data type that contains information used in referencing a function. v.g:,''' . 
their sum is in the range [O,1] (in the present case we would divide the coe be demonstrated shortly, this is a particularly powerful concept. 
cients by (31)~, so the sum would be I), or inputting the data in double for- ecause of the way in which matrix A is organized, function fun must oper- 
mat. Note, however, that even if the second option were used, the data usually on each of the columns of A individually and return a row vector, v, con- 
would have to be normalized to a valid image format at some point (e.g., for ing the results for all the columns. The kth element of v is the result of the 
storage) anyway. Either approach is valid; the key point is that data ranges ation performed by fun on the kth column of A. Since there can be up to 
have to be kept in mind to avoid unexpected results. columns in A, the maximum dimension of v is 1 x MN. 

3.4.2 Nonlinear Spatial Filtering 
Nonlinear spatial filtering is based on neighborhood operations also, and 
mechanics of defining m X n neighborhoods by sliding the 
through an image are the same as discussed in the previous sect 
whereas linear spatial filtering is based on computing the sum 
(which is a linear operation), nonlinear spatial filtering is based, fp = padarray(f ,  [ r  c l ,  method, d i r e c t i o n )  -...:s>:;pih:frray +ihy 

implies, on nonlinear operations involving the pixels of a neighb 
..:I 

\ i 
, , ' 

example, letting the response at each center point be equal to th e f is the input image, f p is the padded image, [ r c ]  gives the number of 
pixel value in its neighborhood is a nonlinear filtering operati and columns by which to pad f ,  and method and d i r e c t i o n  are as ex- 
basic difference is that the concept of a mask is not as prevalent ined in Table 3.3. For example, if f = [ 1 2 ; 3 41, the command 
processing. The idea of filtering carries over, but the "filter" should be visu 
ized as a nonlinear function that operates on the pixels of a neighborhood, a f p  = padarray(f ,  [ 3  21, ' r e p l i c a t e ' ,  ' p o s t ' )  
whose response constitutes the response of the operation at the center pixel 
the neighborhood. 

The toolbox provides two functions for performing general no 
ing: nlf i l t e r  and colf  ilt. The former performs operations directly in 2 
while colf  ilt organizes the data in the form of columns. Although colf  i 
requires more memory, it generally executes significantly faster th 
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TABLE 3.3 
Options for 
function g = c o l f i l t ( f ,  [m n ] ,  ' s l i d i n g ' ,  Qgmean); 
padarray. ' symmetric ' The size of the image is extended by mirror-reflecting it across its 

re are several important points at play here. First, note that, although 
' replicate ' The size of the image is extended by replicating the values in its 

outer border. A is part of the argument in function gmean, it is not included in the 

' circular ' The size of the image is extended by treating the image as one 
period of a 2-D periodic function. 

ically by colf  i l t ,  the number of columns in A is variable (but, as noted ear- 
the number of rows, that is, the column length, is always mn). Therefore, the Pad before the first element of each dimension. 

e of A must be computed each time the function in the argument is called by 
Pad after the last element of each dimension. 

l f  i l t .The  filtering process in this case consists of computing the product of 
Pad before the first element and after the last element of each 
dimension. This is the default. 

produces the result 
the result for all individual columns. Function colf  ilt then takes those 

f p  = and rearranges them to produce the output image. g. k l  

1 2 2 2  
3 4 4 4  
3 4 4 4 MATLAB and IPT functions such as i m f i l t e r  and o r d f i l t 2  (see 
3 4 4 4  n 3.5.2). Function s p f i l t  in Section 5.3, for example, implements the 
3 4 4 4  

g and exp functions. When this is possible, performance usually is much 
If d i r ec t ion  is not included in the argument, the default is ' both ' . If method aster, and memory usage is a fraction of the memory required by colf  ilt. 
is not included, the default padding is with 0's. If neither parameter is inc nction colf  i l t ,  however, remains the best choice for nonlinear filtering 
in the argument, the default padding is 0 and the default direction is ' b erations that do not have such alternate implementations. 
At the end of computation, the image is cropped back to its original size. 

EXAMPLE 3.8: 
Using function 
colf ilt to 
implement a 
nonlinear spatial 
filter. 

prod ( A )  returns rhe 
produc~ of the ele- 
menls of A prod 
( A ,  d i m )  returns the 
producr of the 
elentenrs o,f A along 
dinzension dim. 

As an illustration of function colf  i l t ,  we implement a nonlinear filter 
whose response at any point is the geometric mean of the intensity values of 
the pixels in the neighborhood centered at that point.The geometric mean in a 
neighborhood of size m X n is the product of the intensity values in the neigh- 
borhood raised to the power llmn. First we implement the nonlinear filter 
function, call it gmean: 

function v = gmean(A) 
mn = size(A, 1 ) ;  % The length of the columns of A i s  always mn. 
V = prod(A, l ) . ^ ( l / m ~ ) ;  

To reduce border effects, we pad the input image using, say, the ' r e p l i c a t e  ' 
option in function padarray: 

>> f = padar ray ( f ,  [m n ] ,  ' r e p l i c a t e ' ) ;  

Image Processing Toolbox Standard Spatial Filters 
In this section we discuss linear and nonlinear spatial filters supported by IPT. 
Additional nonlinear filters are implemented in Section 5.3. 

3.5.1 Linear Spatial Filters 
The toolbox supports a number of predefined 2-D linear spatial filters, ob- 
tained by using function f specia l ,  which generates a filter mask, w, using the 
syntax 

w = f s p e c i a l ( ' t y p e l ,  parameters) 

where ' t y p e '  specifies the filter type, and parameters further define the 
specified filter. The spatial filters supported by f s p e c i a l  are summarized in 
Table 3.4, including applicable parameters for each filter. 
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TABLE 3.4 
Spatial filters 
supported by 
function 
f s ~ e c i a l .  

EXAMPLE 3.9: 
Using function 
imf i l t e r .  

Intensity Transformations and Spatial Filtering 3.5 e Image Processing Toolbox Standard Spatial Filters 101 

I average ' f s p e c i a l (  ' average'  , [ r c ]  ) . A  rectangular averaging filter of [ f ( x f  1 , ~ )  + f ( x -  1 , ~ )  + f ( x , Y  + 1 )  + f ( - r , y  - I ) ]  - 4 f ( x , y )  
size r x c. The default is 3 x 3. A single number instead of 
[ r C ]  specifies a square filter. xpression can be implemented at all points ( x ,  y )  in an image by con- 
f s p e c i a l  ( ' disk  ' , r )  . A circular averaging filter (within a g the image with the following spatial mask: 
square of size 2 r  + 1) with radius r.The default radius is 5. 

' gauss i an '  f s p e c i a l (  ' gauss i an '  , [ r  c ]  , s i g ) . A  Gaussian lowpass filter 0 1 0  
of size r x c and standard deviation s i g  (positive).The defaults 1 -4 1 
are 3 x 3 and 0.5. A single number instead of [ r c ]  specifies a 0  1 0  

' l ap lac i an  ' f s p e c i a l (  ' l ap lac i an  ' , alpha) .  A 3 X 3 Laplacian filter whose lternate definition of the digital second derivatives takes into account di- 
shape is specified by alpha, a number in the range [O,l].The a1 elements, and can be implemented using the mask 
default value for alpha is 0.5. 
f s p e c i a l (  ' l o g ' ,  [ r  c ]  , sig).Laplacian of a Gaussian (LOG) 
filter of size r x c and standard deviation s i g  (positive).The 

1 1 1  

defaults are 5 X 5 and 0.5. A single number instead of [ r c ]  1  -8 1  

specifies a square filter. 1 1  1  
'motion'  f s p e c i a l (  'mot ion ' ,  l e n ,  t h e t a ) .  Outputs a filter that,when 

convolved with an image, approximates linear motion (of a derivatives sometimes are defined with the signs opposite to those shown 
camera with respect to the image) of len pixels.The direction of ulting in masks that are the negatives of the preceding two masks. 
motion is t he t a ,  measured in degrees, counterclockwise from the ncement using the Laplacian is based on the equation 
horizontal. The defaults are 9 and 0, which represents a motion of 
9 pixels in the horizontal direction. 

' p r ewi t t  ' f s p e c i a l (  ' prewit t  ' ).Outputs a 3 x 3 Prewitt mask, wv, that g(x9 Y )  = f ( x ,  Y )  + c [ V 2 f ( x 3  Y ) ]  

approximates a vertical gradient. A mask for the horizontal 
gradient is obtained by transposing the result: wh = wv ' . re f  ( x ,  y) is the input image, g ( x ,  y )  is the enhanced image, and c is 1  if the 

f s p e c i a l  ( ' sobel  ' ) . Outputs a 3 X 3 Sobel mask, sv, that r coefficient of the mask is positive, or -1 if it is negative (Gonzalez and 
approximates a vertical gradient. A mask for the horizontal s [2002]). Because the Laplacian is a derivative operator, it sharpens the 
gradient is obtained by transposing the result: sh = sv ' . but drives constant areas to zero. Adding the original image back re- 

'unsharp '  f s p e c i a l (  'unsharp '  , alpha) .  Outputs a 3 X 3 unsharp filter. s the gray-level tonality. 
unction f s p e c i a l  ( ' l ap lac ian  ' , alpha) implements a more general 

a  1 - a  a 
a We illustrate the use of f spec ia l  and irnf i l t e r  by enhancing an ima --- 

1 + a  1 + a  1 + a  
with a Laplacian filter. The Laplacian of an image f  ( x ,  y ) ,  denoted V2f ( x ,  y 
is defined as --- 1 - a  -4 1 - a  

Commonly used digital approximations of the second derivatives are 

a2f  
-7 = f ( x  + 1 , ~ )  + f ( x  - 1, Y )  - 2 f ( x , y )  
ax 

and 

allows fine tuning of enhancement results. However, the predominant 
the Laplacian is based on the two masks just discussed. 
now proceed to enhance the image in Fig. 3.16(a) using the Laplacian. 

is image is a mildly blurred image of the North Pole of the moon. En- 
ent in this case consists of sharpening the image, while preserving as 

of its gray tonality as possible. First, we generate  and display the  
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a b  
c d 

FIGURE 3.16 
(a) Image of the 
North Pole of the 
moon. 
(b) Laplaclan 
flltered Image, 
uslng u l n t 8  
formats 
(c) Laplaclan 
f~ltered Image 
obtalned uslng 
d o u b l e  formats. 
(d) Enhanced 
result, obtained 
by subtracting (c) 
from (a). 
(Or~glnal image 
courtesy of 
NASA.) 

to implement this filter manually, and also to  compare the results ob- 
by using the two Laplacian formulations. The sequence of commands is 

>> w  = fspecial('laplacian', 0) 
W = 

0.0000 1 .OOOO 0.0000 = imread('moon.tifl); 
1 . 0000 -4.0000 1 . 0000 4 = fspecial('laplacian', 0); % Same as w in Example 3.9. 
0.0000 1 .oooo 0.0000 

8 = [ I  1 1 ;  1 -8 1 ;  1 1 11;  
= im2double(f); 

Note that the filter is of class double, and that its shape with alpha = 0 is 94 = f - irnfilter(f, w4, 'replicate'); 
Laplacian filter discussed previously. We could just as easily have specified t g8 = f - irnfilter(f, w8, 'replicate'); 

shape manually as figure, imshow(g4) 
figure, imshow(g8) 

> > w =  [O 1 0 ;  1-4 1 ;  0 101; 

EXAMPLE 3.10: 
Manually 
specifying filters 
and comparing 
enhancement 
techniques. 
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FIGURE 3.1 7 (a) 
Image of the North 
Pole of the moon. 
(b) Image 
enhanced uslng the 
Laplaclan 
filter ' l ap l ac l an  ' , 
which has a -4 m 
the center (c) 
Image enhanced 
uslng a Laplaclan 
filter w~th a -8 m 
the center. 

re median ( I  :m*n) simply computes the median of the ordered sequence 

Figure 3.17(a) shows the original moon image again for easy compariso . . . , mn. Function median has the general syntax 

Fig. 3.17(b) is g4, which is the same as Fig. 3.16(d), and Fig. 3.17(c) shows g 
As expected, this result is significantly sharper than Fig. 3.17(b). v = median(A, dim) 

ere v is vector whose elements are the median of A along dimension dim. 
3.5.2 Nonlinear Spatial Filters r example, if dim = I ,  each element of v is the median of the elements along 
A commonly-used tool for generating nonlinear spatial filters in IPT is f corresponding column of A. 
tion ordf ilt2, which generates order-statistic filters (also called rank filt 
These are nonlinear spatial filters whose response is based on ordering (ran 
ing) the pixels contained in an image neighborhood and then replacing th ecall that the median. 5, of a set of values is such that half the values in the set are less than or equal 

value of the center pixel in the neighborhood with the value determined by th and half are greater than or equal to 5. 
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medf 1lt2 

EXAMPLE 3.11: 
Median filtering 
with function 
medf ilt2. 

Intensity Transformations and Spatial Filtering 

Because of its practical importance, the toolbox provides a specialized 
plementation of the 2-D median filter: 

g = m e d f i l t 2 ( f ,  [m n ] ,  padopt)  k 

where the tuple [m n ]  defines a neighborhood of size m x n over which 
median is computed, and padopt specifies one of three possible bo 
padding options: ' z e r o s  ' (the default), ' symmetric ' in which f is exten 
symmetrically by mirror-reflecting it across its border, and ' indexed  ' 
which f is padded with 1s if it is of class double and with 0s otherwise.The 
fault formbf this function is 3 

g = m e d f l l t 2 ( f )  i 
which uses a 3 X 3 neighborhood to compute the median, and pads the borde 
of the input with 0s. 

Median filtering is a useful tool for reducing salt-and-pepper noise in 
image. Although we discuss noise reduction in much more detail in Chapter 
it will be instructive at  this point to  illustrate briefly the implementation 
median filtering. 

The image in Fig. 3.18(a) is an X-ray image, f ,  of an industrial circuit boa 
taken during automated inspection of the board. Figure 3.18(b) is the Sam 
image corrupted by salt-and-pepper noise in which both the black and whit 
points have a probability of occurrence of 0.2.This image was generated usin 
function imnoise, which is discussed in detail in Section 5.2.1: 

>> f n  = i m n o i s e ( f ,  ' s a l t  & p e p p e r ' ,  0 . 2 ) ;  

Figure 3.18(c) is the result of median filtering this noisy image, using the 
statement: 

Considering the level of noise in Fig. 3.18(b), median filtering using the de- 
fault settings did a good job of noise reduction. Note, however, the black 
specks around the border. These were caused by the black points surrounding 
the image (recall that the default pads the border with 0s). This type of effect 
can often be reduced by using the ' symmetric ' option: 

>> gms = m e d f i l t 2 ( f n ,  ' s y m m e t r i c ' ) ;  

ddition to dealing with image enhancement, the material in this chapter is the foun- 
n for numerous topics in subsequent chapters. For example, we will encounter spa- 
rocessing again in Chapter 5 in connection with image restoration, where we also 
a closer look at noise reduction and noise-generating functions in MATLAB. 

e of the spatial masks that were mentioned briefly here are used extensively in 
apter 10 for edge detection in segmentation applications. The concept of convolu- 
n and correlation is explained again in Chapter 4 from the perspective of the fre- 

quency domain. Conceptually, mask processing and the implementation of spatial 
ters will surface in various discussions throughout the book. In  the process, we will 

xtend the discussion beeun here and introduce additional aspects of how spatial filters 
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a b  
c d 

FIGURE 3.1 8 
Med~an filter~ng, 
(a) X-ray image 
(b) Image 
corrupted by salt- 
and-pepper nolse. 
(c) Result ot 
median filter~ng 
w~th medf 1lt2 
uslng the default 
settlngs 
(d) Result of 
med~an filter~ng 
uslng the 
' s y m m e t r ~ c  ' 
Image extension 
optlon Note the 
~mprovement ln 
border behavlor 
between (d) and 
(c) (Or~g~nal 
Image courtesy 
of LIXI, Inc ) 

The result, shown in Fig. 3.lS(d), is close to  the result in Fig. 3.18(c), except that 
the black border effect is not as pronounced. B 
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h u and v as (frequency) variables. 
died in the previous chapter, which 

e coordinate system spanned by f ( x ,  y ) ,  with x and y as (spatial) variables. 

equency rectangle is of the same size as the input image. 
e inverse, discrete Fourier transform is given by 

1 M - I  N - I  

f ( x ,  y )  = - 2 F(u ,  v)ei24u.rlM+u?/N) 
M N  ,1=o ,=o 

= 0,1 ,2  ,..., M - 1 and y = 0 ,1 ,2  ,... , N - 1. Thus, given F(u ,  v ) ,  we 
n f ( x ,  y )  back by means of the inverse DFT.The values of F(u,  v )  in this 
sometimes are referred to as the Fourier coefficients of the expansion. 

MN term is placed in front of the 

that the term is in front of the inverse, as shown in the preceding 
. Because array indices in MATLAB start at 1, rather than 0, F ( 1 , i ) 

Preview e mathematical quantities F(0,O) 

For the most part, this chapter parallels the filtering topics discussed in Chap 
but with all filtering camed out in the frequency domain via the Fourier t value of the transform at the origin of the frequency domain [i.e., 

form. In addition to being a cornerstone of linear filtering, the Fourier trans called the dc component of the Fourier transform.This terminology 
electrical engineering, where "dc" signifies direct current (current of 

equency). It is not difficult to show that F(0,O) is equal to M N  times the 

a1 is complex.The principal method 
its spectrum [i.e., the magnitude of 

n image. Letting R(u,  v )  and I ( u ,  v )  represent the real 
and high-frequency emphasis filtering. We also show briefly how spatial and fre- of F (u, v ) ,  the Fourier spectrum is defined as 
quency domain processing can be used in combination to yield results that are su- IF(u, v)l = [R*(u, v )  + 12(u ,  v)I1/* 
perior to using either type of processing alone. The concepts and techniques 
developed in the following sections are quite general, as is amply illustrated by e phase angle of the transform is defined as 
other applications of this material in Chapters 5,8, and 11. 

The 2-D Discrete Fourier Transform 
preceding two functions can be used to represent F(LL, V )  in the familiar 

Let f ( x , y ) , f o r x  = 0,1 ,2  ,..., M - 1 and y = 0 , 1 , 2  ,..., N  - 1, denote an 
M x N image. The 2-D, discrete Fourier transform (DFT) of f ,  denoted by 
F(u ,  v ) ,  is given by the equation F(u,  v )  = IF(u, v)le-i+(". 

M - I  N - I  e power spectrum is defined as the square of the magnitude: 
F ( ~ ,  v )  = 2 f ( x ,  y)e-~2"(['~IM+"~lN) 

X=O Y=O P(u ,  v )  = IF(u, v)12 

for u = 0,1 ,2 , .  . . , M  - 1 and v = 0,1 ,2 , .  . . , N  - 1. We could expand the = R'(u, V )  + 1'(14, 21) 

exponential into sines and cosines with the variables u and v determining their sualization it typically is immaterial whether we view 
frequencies ( x  and y are summed out). The frequency domain is simply the 
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a 
b 

FIGURE 4.1 
(a) Fourier 
spectrum showlng 
back-to-back half 
per~ods ln the 
interval 
[0, M - 11. 
(b) Centered 
spectrum in the 
same Interval, 
obtalned by 
mult~ply~ng f (x) 
by (-11,' prlor to 
computing the 
Four~er 
transform. 

Frequency Domain Processing 4.1 ## The 2-D Discrete Fourier Tra~ 

If f ( x ,  y )  is real, its Fourier transform is conjugate symmetric about t alues from M/2 to M - 1 are repetitions of the values in the half period to 
origin; that is, 

F(u,  v )  = F*(-11, - v )  

which implies that the Fourier spectrum also is symmetric about the origin: 

IF(u, v)l = IF(-u, -v)l 

It  can be  shown by direct substitution into the equation for F(u ,  v )  that 

F(u ,  v )  = F ( u  + M ,  v )  = F(u,  v + N )  = F ( u  + M ,  v  + N )  

In other words, the DFT is infinitely periodic in both the u  and v  directio 
with the periodicity determined by M and N. Periodicity is also a property 
the inverse DFT 

f ( x , y )  = f ( x  + M , y )  = f ( x , y  + N )  = f ( x  + M,Y + N )  

. . 
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4.2 ;BI Computing and Visualizing the 2-D DFT 

a b  
c d 

FIGURE 4.3 
(a) A simple Image. 
(b) Four~er 
spectrum. 
(c) Centered 
spectrum. 
(d) Spectrum 
visually enhanced 
by a log 
transformation. 

which computes the magnitude (square root of the sum of the squares o f t  
real and imaginary parts) of each element of the array. re F  is the transform computed using f f t 2  and FC is the centered trans- 

Visual analysis of the spectrum by displaying it as an image is an import .Function f f t s h i f  t operates by swapping quadrants of F. For example, if 
aspect of working in the frequency domain. As an illustration, consider [ 1  2; 3 4 l , f f t s h i f t ( a )  = [ 4  3; 2  l].Whenappliedtoatransform 
simple image, f, in Fig. 4.3(a). We compute its Fourier transform and disp it has been computed, the net result of using f f t s h i f  t is the same as if 
the spectrum using the following sequence of steps: put image had been multiplied by (-l)"+y prior to computing the trans- 

. Note, however, that the two processes are not interchangeable. That is, 
>> F = f f t 2 ( f ) ;  ng 3[.] denote the Fourier transform of the argument, we have that 
>> S = a b s ( F ) ;  - l ) " + y f ( ~ ,  y ) ]  is equal to f f t s h i f t  ( f f t 2 ( f )  ), but this quantity is not 
>> imshow(S, [ ] ) a l t o f f t 2 ( f f t s h i f t ( f ) ) .  

n the present example, typing 
Figure 4.3(b) shows the result. The four bright spots in the corners of 
image are due to the periodicity property mentioned in the previous sec Fc = f f t s h i f t ( F ) ;  

IPT function f f t s h i f  t can be used to move the origin of the transfor imshow(abs( fc ) ,  [ I )  
the center of the frequency rectangle. The syntax is 

ded the image in Fig. 4.3(c). The result of centering is evident in this 
Fc = f f t s h i f t ( F )  
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Although the shift was accomplished as expected, the dynamic range o f t  utput of i f f t 2  often has very small imaginary components resulting 
values in this spectrum is so large ( 0  to 204000) compared t o  the 8 bits of t round-off errors that are characteristic of floating point computations. 
display that the bright values in the center dominate the result. A s  discussed it is good practice to extract the real part of the result after computing 
Section 3.2.2, this difficulty is handled via a log transformation. Thus, t se to  obtain an image consisting only of real values. The two opera- 

commands 

>> S2 = l o g ( 1  + a b s ( F c ) ) ;  = r e a l ( i f f t 2 ( F ) ) ;  
>> imshow(S2, [ I )  

the forward case, this function has the alternate format i f f  t 2  (F, P , a),  real  ( a r g ,  
resulted in Fig. 4.3(d).The increase in visual detail is evident in this image. h pads F with zeros so  that its size is P X Q before computing the inverse. imag ( a r g )  e.rrmcr 

Function i f f  t s h i f  t reverses the centering. Its syntax is option is not used in the book. the real ant1 i111agi- 
17or.y ports o,f arg, 

F = i f f t s h i f t ( F c )  respectively. 

Filtering in the Frequency Domain 
This function can be used also to  convert a function that is initially centere in the frequency domain is quite simple conceptually. In this section 
a rectangle to  a function whose center is at the top, left corner of the rectan 

a brief overview of the concepts involved in frequency domain filter- 
We make use of this property in Section 4.4. 

While on the subject of centering, keep in mind that the center of the 
and its implementation in MATLAB. 

quency rectangle is a t  ( M / 2 ,  N / 2 )  if the variables u and v  run from 0  to  M 
and N  - 1, respectively. For example, the center of an 8 x 8 frequency s 1 Fundamental Concepts 
is at point (4 .4) ,  which is the 5th point along each axis,counting up  from foundation for linear filtering in both the spatial and frequency domains is 
If, as in MATLAB, the variables run from 1  to  M and 1  to N, respective1 convolution theorem, which may be written ast 
the center of the square is a t  [ ( M / 2 )  + 1, ( N / 2 )  + 11. In the case 
8 x 8 example, the center would be at  point (5 ,  5 ) ,  counting up  from f ( x ,  Y )  * h ( h ,  Y )  e H ( u ,  v)F(ld, v )  
Obviously, the two centers are the same point, but this can b e  a source of c 
fusion when deciding how to specify the location of D F T  centers in MATL 
computations. f ( x ,  y )h (h ,  Y )  e H ( u ,  v )  * G(u ,  v )  

If M  and N  are odd, the center for MATLAB computations is obtain 

= ( A )  
rounding M/2 and N/2  down to the closest integer. The rest of the analy e, the symbol "*" indicates convolution of the two functions, and the ex- 

I I as in the previous paragraph. For example, the center of a 7 X 7 region is ssions on the sides of the double arrow constitute a Fourier transform pair. 

u f A to rile neare.s[ (3 .3)  if we count up from (0,O) and at  ( 4 , 4 )  if we count up from ( 1 , l ) .  In example, the first expression indicates that convolution of two spatial 
r~zre,yer less rllan or 
etlllci, i r r  vcllllc, 

ther case, the center is the fourth point from the origin. If only one of the tions can be obtained by computing the inverse Fourier transform of the 

f - ~ t ~ ~ c r i o i ~  c e i l  mensions is odd, the center along that dimension is similarly obtained t of the Fourier transforms of the two functions. Conversely, the for- 

rO1trlds m nerrresf rounding down in the manner just explained. Using MATLAB's functi ourier transform of the convolution of two spatial functions gives the 
rl~reger greater rhrm 
orEql la l lo  lllevoll,e f l o o r ,  and keeping in mind that the origin is a t  (1, I ) ,  the center of the f t of the transforms of the two functions. Similar comments apply to the 

ofeach elemerlr c f A .  quency rectangle for MATLAB computations is at 
terms of filtering, we are interested in the first of the two previous ex- 

[ f l o o r ( M / 2 )  + 1 ,  f l o o r ( N l 2 )  + I ]  ions. Filtering in the spatial domain consists of convolving an image 
y )  with a filter mask, h(x .  y ) .  Linear spatial convolution is precisely as ex- 

The center given by this expression is valid both for odd and even values of ed in Section 3.4.1. According to the convolution theorem, we can obtain 

and N. result in the frequency domain by multiplying F(u,  v )  by H(u ,  v ) ,  

Finally, we point out that the inverse Fourier transform is computed usin er transform of the spatial filter. It is customary to refer to H(u.  v) as 

function i f f  t2 .  which has the basic syntax er transfer function. 
asically, the idea in frequency domain filtering is to select a filter transfer 

2 f = i f f t 2 ( F )  tion that modifies F(u ,  v)  in a specified manner. For example, the filter in 

where F is the Fourier transform and f is the resulting image. If the input us kital images, these cxprcssions are strictly valid only when f(s. y) and 11i.r. .v) have been proper- 

to compute F is real, the inverse in theory should be real. In practice, howeve dded with zeros. as discussed later in this section. 
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a b  e following function, called paddedsize. computes the minimum event 
FIGURE 4.4 s of P and Q required to satisfy the preceding equations. It also has an 
Transfer functions n to pad the inputs to form square images of size equal to the nearest in- 
of (a) a centered 
lowpass filter, and 
(b) the format 
used for DFT 
filtering. Note 
that these are 
frequency domain ce of the input parameters. 

function paddedsize, the vectors AB, CD, and PQ have elements [ A  B ] ,  
1, and [ P Q] , respectively, where these quantities are as defined above. 

paddedsize 
:=. . .. - .- - 

is image blurring (smoothing). Figure 4.4(b) shows the same filter after it 
processed with f f t s h i f  t. This is the filter format used most frequently in 

= PADDEDSIZE(AB, 'PWR2 ' )  computes the vector PQ such that 
( 1 )  = P Q ( 2 )  = 2*nextpow2(2*m), where m i s  M A X ( A B ) .  

Based on the convolution theorem, we know that to obtain the corr PQ = PADDEDSIZE(AB, C D ) ,  where AB and CD are two-element size 
ing filtered image in the spatial domain we simply compute the inverse ectors, computes the two-element size vector PQ. The elements 
transform of the product H ( u ,  v ) F ( u  f PQ are the smallest even integers greater than or equal to 
the process just described is identical 
lution in the spatial domain, as long as the filter mask, h ( x ,  y ) ,  is the inver 
Fourier transform of H ( u ,  v). In practice, spatial convolution general1 Q = PADDEDSIZE(AB, CD, 'PWR2' )  computes the vector PQ such that 
plified by using small masks that attempt to capture the salient fea Q ( 1 )  = PQ(2)  = 2^nextpow2(2*m), where m i s  MAX([AB C D ] ) .  

their frequency domain counterparts. 

wraparound error, can be avoided by padding the functions with zeros, in t = max(A13); % Maximum dimension. 

following manner. 
Assume that functions f ( x ,  y )  and h ( x ,  y )  are of size A X B and C X 

respectively. We form two extended (padded) functions, both of size P x Q 
appending zeros to f and g. It can be shown that wraparound error is avoid 
by choosing 

2^nextpow2(2*m) ; 
P 2 A + C - 1  

and or( 'Wrong number of inputs. ' ) 
Q ? B + D - l  .-..a 

Most of the work in this chapter deals with functions of the same size, M X 

in which case we use the follow 
Q 2 2N - 1. ustornary to work with arrays of even dimensions to speed-up FFT computations. 

p = n e x t p o w Z ( n )  
rerrrrns the smallest 
integer power of 2 
that is grenter thnn or 
eqrinl to the crbsohite 
vnlrre o f  n. 
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EXAMPLE 4.1: 
Effects of filtering 
with and without 
padding. 

'requency Domain Processing 

With PQ thus computed using function paddedsize. we use the followini 
syntax for f f t2 to compute the FFT using zero padding: 

F = fft2(f, PQ(I), PQ(2)) 

This syntax simply appends enough zeros to f such that the resulting iinagei 
of size PQ( 1 ) x PQ(2). and then computes the FFT as previously described 
Note that when using padding the filter function in the frequency domain rnus 
be of size PQ(1) x PQ(2) also. I 

Gii The image, f, in Fig. 4.5(a) is used in this example to illustrate the differ 
ence between filtering with and without l ad dine. In the following discussio' 
we use function lpfilter to generate a Gaussian lowpass filters [similar t( 

" - - 
F I ~  3 I(b)]  with n spcc~tlcd value of clgma (slg) T h ~ s  funct~on IS dlccussed 
CIcta11 In Szct~on 4 5 2, but the syntax 15 stra~ghtforward. so we use it here a 
defer further explanation of lpf llter to that sectlon 

The following commands perform filtering without padding: 

>> [M, N] = size(f); 
>> F = fft2(f); 
>> sig = 10; 
>> H = lpfilter('gaussian', M ,  N, sig); 

Figure 4.5(b) shows image g.  A s  expected, the image is blurred, but nott 
that the vertical edges are not. The reason can be explained with the aid 0 
Fig. 4.6(a), which shows graphically the implied periodicity in DFT computa 
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a b c - - 
ge itself and also the' bottom part of the periodic component right above it. 

FIGURE 4.5 (a) A s~mple Image of slze 256 x 256 (b) Image lowpass-f~ltered in the frequency domaln 
+ U4 when a light and a dark region reside under the filter, the result will be 

out padd~ng (c) Image lowpass-flltered In the trequency doma~n w~th paddlng. Compare the l~ght port1 
the vertical edgeb In (b) and (c). mid-gray, blurred output. Thls is precisely what the top of the image In 

a 
b 

FIGURE 4.6 
(a) Impl~ed, 
~ n t ~ n ~ t e  per~od~c 
sequence ot the 
Image In 
F I ~  4 5(a) The 
dashed reglon 
represents the 
data processed by 
f f t 2  (b)The 
same per~od~c 
sequence after 
padd~ng w~th 0s 
The th~n wh~te 
llnes In both 
~n~ages  are show11 
for convemence 
In vlewlng, they 
dre not part 
of the data. 
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Fig. 4.5(b) shows. On the other hand, when the filter is on the light sides oft  1 from Section 3.4.1 that this call to function i m f i l t e r  pads the border 
dashed image, it will encounter an identical region on the periodic compon image with 0s by default. I 

Since the average of a constant region is the same constant, there is no b 
ring in this part of the result. Other parts of the image in Fig. 4.5(b) are Basic Steps in DFT Filtering 
plained in a similar manner. 

Consider now filtering with padding: 'scussion in the previous section can be summarized in the following 
-step procedure involving MATLAB functions, where f is the image to 

>> PQ = p a d d e d s i z e ( s i z e ( f ) ) ;  red, g is the result, and it is assumed that the filter function H ( u ,  v) is of 

>> Fp = f f t 2 ( f ,  P Q ( l ) ,  P Q ( 2 ) ) ;  % Compute t h e  FFT w i t h  paddin me size as the padded image: 
>> Hp = l p f i l t e r ( ' g a u s s i a n ' ,  P Q ( l ) ,  P Q ( 2 ) ,  2 * s i g ) ;  
>Z Gp = Hp.*Fp; btain the padding parameters using function paddedsize: 
>> gp = r e a l ( i f f t 2 ( G p ) ) ;  = p a d d e d s i z e ( s i z e ( f ) ) ;  
>> gpc = g p ( l : s i z e ( f , l ) ,  l : s i z e ( f , 2 ) ) ;  
>> imshow(gp, [ I )  tain the Fourier transform with padding: 

= f f t 2 ( f ,  P Q ( I ) ,  P Q ( 2 ) ) ;  

where we used 2*sig because the filter size is now twice the size of the fil nerate a filter function, H, of size PQ(1 ) x PQ(2) using any of the 
used without padding. thods discussed in the remainder of this chapter.The filter must be in 

Figure 4.7 shows the full, padded result, gp.The final result in Fig. 4.5(c) format shown in Fig. 4.4(b). If it is centered instead, as in Fig. 4.4(a), 
obtained by cropping Fig. 4.7 to the original image size (see the next-to-1 H = f f t s h i f  t ( H )  before using the filter. 
command above). This result can be explained with the aid of Fig. 4.6( 
which shows the dashed image padded with zeros as it would be set up int ltiply the transform by the filter: 

nally in f f t 2 ( f ,  P Q ( 1 )  , PQ(2) ) prior to computing the transform.The i 
plied periodicity is as explained earlier. The image now has a uniform bl btain the real part of the inverse FFT of G: 
border all around it, so convolving a smoothing filter with this infinite = r e a l ( i f f t 2 ( G ) ) ;  
quence would show a gray blur in the light edges of the images. A similar res 
would be obtained by performing the following spatial filtering, rop the top, left rectangle to the original size: 

= g ( l : s i z e ( f ,  I ) ,  l : s i z e ( f ,  2 ) ) ;  

>> h = f s p e c i a l ( ' g a u s s i a n ' ,  15, 7 ) ;  
>> gs = i m f i l t e r ( f ,  h) ;  is filtering procedure is summarized in Fig. 4.8. The preprocessing stage 

ompass procedures such as determining image size, obtaining the 
arameters, and generating a filter. Postprocessing entails computing 

the result, cropping the image, and converting it to class u in t8  
FIGURE 4.7 Full 
padded image 
resulting from 
~f f t2 after 
filtering. This 
image is of size 
512 x 512 pixels. 

Frequency domain filtering operations FIGURE 4.8 
Basic steps for 
filtering in the 
frequency 
domain. 

g(*, Y) 
Filtered 
image 
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The filter function H ( u ,  v) in Fig. 4.8 multiplies both the ne and algorithms used and on issues such the sizes of buffers, how well 
parts of F(r1, v). If H ( u ,  u )  is real, then the phase of the resul 
fact that can be seen in the phase equation (Section 4.1) by noting that,if the m 
tipliers of the real and imaginary parts are equa 
phase angle unchanged. Filters that operate in this 
shiftfilters.These are the only types of linear filters considered in this chapter. arge. Thus, it is useful to  know how to convert a spatial filter into an 

It is well known from linear system theory that, under certain mild con nt frequency domain filter in order to obtain meaningful comparisons 
tions, inputting an impulse into a linear system completely characterizes t 
system. When working with finite, discrete data 
sponse of a linear system, including the response ponds to  a given spatial filter, h, is to let H = f f t 2  (h,  PQ( 1 ) , PQ ( 2 )  ) ,  
the linear system is just a spatial filter, then we can completely determine the values of vector PQ depend on the size of the image we want to  fil- 
filter simply by observing its response to  an impu1se.A filter determined in t discussed in the last section. However, we are interested in this section 
manner is called a fitzite-inzp~~lse-response (FIR) filter. All the linear spatial 
ters in this book are FIR filters. 

4.3.3 An M-function for Filtering in the Frequency Domain techniques discussed in the previous section. Because, as explained 

The sequence of filtering steps described in the previous 
throughout this chapter and parts of the next, so it will be co 
available an M-function that accepts as inputs an image and 
handles all the filtering details, and outputs the 
following function does this. 

d f t f  lit function g = d f t f i l t ( f ,  H )  
:,>*d;" ... . 

%DFTFILT Performs frequency domain f i l t e r i n g .  
% G = DFTFILT(F, H )  f i l t e r s  F i n  the frequency domain using the t in the present discussion is 
% f i l t e r  t rans fe r  function H .  The output,  G, i s  the f i l t e r e d  
% image, which has the same s ize  as F.  DFTFILT automatically pads H = f r e q z 2 ( h ,  R,  C )  
% F t o  be the same s ize  as  H .  Function PADDEDSIZE can be used 
% t o  determine an appropriate s i z e  f o r  H .  
/o 

% DFTFILT assumes t h a t  F i s  r e a l  and tha t  H i s  a r e a l ,  uncentered, 
% circularly-symmetric f i l t e r  function. 

% Obtain the FFT of the padded input. value of H is displayed on the MATLAB desktop as a 3-D perspec- 
F = f f t 2 ( f ,  s ize(H,  I ) ,  size(H, 2 ) ) ;  The mechanics involved in using function f reqz2 are easily ex- 
% Perform f i l t e r i n g .  
g = r e a l ( i f f t 2 ( H . * F ) ) ;  

% Crop t o  o r ig ina l  s i z e .  ider the image, f, of size 600 X 600 pixels shown in Fig. 4.9(a). In EXAMPLE 4.2: 

g = g ( l : s i z e ( f ,  I ) ,  l : s i z e ( f ,  2 ) ) ;  requency domain filter, H, corresponding to * comparison of 
that enhances vertical edges (see Table 3.4). We then ~ ~ ~ ! ~ ~ ~ , ~ L h e  

Techniques for generating frequency-domain filters are discussed in the fol iltering f in the spatial domain with the Sobel mask frequency 
lowing three sections. imf i l t e r )  against the result obtained by performing the equivalent domains. 

in the frequency domain. In practice, filtering with a small filter like 

,:~payI mask would be implemented directly in the spatial domain, as men- .,,,,. Obtaining Frequency Domain Filters from Spatial Filters 
In general, filtering in the spatial domain is more efficient 
than frequency domain filtering when the filters are small. The definition and straightforward to compare. Larger spatial filters are handled in 
st?1~1ll is a complex question whose answer depends on such factors as t the same manner. 
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FIGURE 4.9 
(a) A gray-scale 
image. (b) Its 
Fourler spectrum. 

4.4 Obtaining Frequency Domain Filters from Spatial Filters 125 

how(abs(H), [ I )  
ure, imshow(abs(HI), [ I )  

t, we generate the filtered images. In the spatial domain we use 
To view a plot of the corresponding frequency domain filter we type 

= imfilter(double(f), h); 
>> freqz2(h) 

h pads the border of the image with 0s by default. The filtered image ob- 
Figure 4.10(a) shows the result, with the axes suppressed (techniques for o d by frequency domain processing is given by 
taining perspective plots are discussed in Section 4.5.3).The filter itself was 0 
tained using the commands: = dftfilt(f, HI); 

7> PQ = paddedsize(size(f)); ures 4.11(a) and (b) show the result of the commands: 
>> H = freqz2(h, PQ(l), PQ(2)); 
7> HI = ifftshift(H); 

lgure, irnshow(gf, [ I )  
where, as noted earlier, ifftshif t is needed to rearrange the data so that t 
origin is at the top, left of the frequency rectangle. Figure 4.10(b) shows a ality in the images is due to the fact that both gs and g f  have neg- 
of abs (HI ) .  Figures 4.10(c) and (d) show the absolute values of H and H , which causes the average value of the images to be increased by 
image form, displayed with the commands imshow command. As discussed in Sections 6.6.1 and 10.1.3, the 

FIGURE 4.10 
(a) Absolute 
value of the 
frequency 
domaln filter 
corresponding to 
a vertical Sobel 
mask. (b) The 
same filter after 
processing with 
function 
f f t s h l f t .  Figures 
(c) and (d) are the 
filters in (a) and 
(b) shown as 
Images. 

We use d o u b l e ( f )  
/lei-r so tlzcrt 
i m f  i l t e r  willpro- 
dttce nn onrptlr of 
cLws d o u b l e ,  0s ex- 
plrrinrd BI  Secrion 
3.4.1. n ~ e  d o u b l e  
foromlar is recl~rired 
,for ~ o t n e  o f  rhr oper- 
rrriotls rlzarfollow. 
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Sobel mask, h, generated above is used to detect vertical edges in an imag 
using the absolute value of the response. Thus, it is more relevant to show th 
absolute values of the images just computed. Figures 4.11(c) and (d) sho h just explained can be used to implement in the frequency do- 

the images obtained using the commands 
1 filtering approach discussed in Sections 3.4.1 and 3.5.1, as well 

spatial filter of arbitrary size. 

>> figure, imshow(abs(gs), [ 1 )  
>> figure, imshow(abs(gf), [ 1 )  Generating Filters Directly in the Frequency Domain 

The edges can be seen more clearly by creating a thresholded binar s section, we illustrate how to implement filter functions directly in the 

image: n. We focus on circularly symmetric filters that are specified 
functions of distance from the origin of the transform. The M- 

>> figure, imshow(abs(gs) > 0,2*abs(max(gs(:)))) eveloped to implement these filters are a foundation that is easily 
>> figure, imshow(abs(gf) > 0.2*abs(max(gf(:)))) e to other functions within the same framework. We begin by imple- 

ng several well-known smoothing (lowpass) filters. Then. we s l~ow how 
where the 0.2 multiplier was selected (arbitrarily) to  show only the edges wit e several of MATLAB's wireframe and surface plotting capabilities that 
strength greater than 20% of the maximum values of g s  and gf. Figures 4.12(a filter visualization. We conclude the section with a brief discussion of 
and (b) show the results. ning (highpass) filters. 
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4.5,; Creating Meshgrid Arrays for Use in Implementing Filters 
in the Frequency Domain lowing the basic format explained in 

f t to obtain the distances with respect 
Central to the M-functions in the following discussion is the need to ComPu center of the frequency rectangle, 
distance functions from any point to a specified point in the frequency rectangl 
Because FFT computations in MATLAB assume that the origin of the 
form is at the top, left of the frequency rectangle, our distance computations a 
with respect to that point.The data can be rearranged for visualization pu 
(so that the value at the origin is translated to the center of the frequency re 20 17 16 17 20 
tangle) by using function f f t s h i f  t. 13 10 9 10 13 

The following M-function, which we call d f t u v ,  provides the n 8 5 4 5 8  

meshgrid array for use in distance computations and other similar a 5 2 1 2 5  

tions. (see section 2.10.4 for an explanation of function meshgr id  use 4 1 0 1 4  

following code.). The meshgrid arrays generated by df t u v  are in the orde 5 2 1 2 5  

quired for processing with f f t 2  or iff t2,  so no rearranging of the da 
8 5 4 5 8  

13 10 9 10 13 
required. 

distance is now 0 at coordinates ( 5 , 3 ) ,  and the array is symmetric about 
d f t u v  

,,w.*e" .. 
func t ion  [U, V] = dftuv(M, N) 
%DFTUV Computes meshgrid frequency matr ices. 

&# 

% [U, V] = DFTUV(M, N) computes meshgrid frequency matr ices U and 

% V.  u and v are usefu l  fo r  computing frequency -domain f i l t e r  
% funct ions t h a t  can be used w i t h  DFTFILT. U and V are both 

% M-by-N. 1 if D(u,  v) 5 Do 
% Set up range o f  var iab les.  
u = O:(M - 1 ) ;  

0 if D(u, v) > Do 

v = O:(N - 1 ) ;  

% Compute the ind ices f o r  use i n  meshgrid. 
Flincrion f i n d  is i d x  = f i n d ( u  > Ml2); urier transform of an 
rlisc~~ssetl in Secriotl u ( i d x )  = u ( i d x )  - M; ) all components of F 
5.2.2. i d y  = f i n d ( v  > Nl2) ;  nd leaves unchanged (multiplies by 1) all components on, or 

v ( i d y )  = v ( i d y )  - N; though this filter is not realizable in analog form using elec- 

% Compute the meshgrid arrays. onents, it certainly can be simulated in a computer using the preced- 

[ V ,  U] = meshgrid(v, u ) ;  function.The properties of ideal filters often are useful in explaining 

EXAMPLE 4.3: 3 As an illustration, the following commands compute the distance W a r  ) of order n, with a cutoff frequency at a 
Using function from every point in a rectangle of size 8 x 5 to the origin of the rectangle: e Do from the origin, has the transfer function 
df  tuv. 

>r [U, V] = d f t u v ( 8 ,  5 ) ;  
>> D = U.^2  + V . ^ 2  
D = 

0 1 4 4 1  
1 2 5 5 2  
4 5 8 8 5  
9 10 13 13 10 

16 17 20 20 17 
9 10 13 13 10 
4 5 8 8 5  
1 2 5 5 2  
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where u is the standard deviation. By letting u = DO, we obtain the followi can view the filter as an image [Fig. 4.13(b)] by typing 
expression in terms of the cutoff parameter Do: 

f i g u r e ,  imshow(ff tshi f t (H) ,  [ 1 )  
H ( ~ ~ ,  .U) = e - ~ 2 ( u .  (!)/2Di 

rnilarly, the spectrum can be displayed as an image [Fig. 4.13(c)] by typing 
When D(u,  ,u) = Do the filter is down to 0.607 of its maximum value of 1. 

f igu re ,  imshow(log(1 + a b s ( f f t s h i f t ( F ) ) ) ,  [ I )  
EXAMPLE 4.4: i:R As an illustration, we apply a Gaussian lowpass filter to the 500 X 500-pix 
Lowpass filtering. image, f ,  in Fig. 4.13(a). We use a value of Do equal to 5% of the padded imag ally, Fig. 4.13(d) shows the output image, displayed using the command 

width. With reference to the filtering steps discussed in Section 4.3.2 we hav 
f igu re ,  imshow(g, [ I )  

>> PQ = p a d d e d s i z e ( s i z e ( f ) ) ;  
>> [U, V ]  = d f t u v ( P Q ( l ) ,  P Q ( 2 ) ) ;  expected, this image is a blurred version of the original. B.4 
>> DO = 0.05*PQ(2) ;  
>> F = f f t Z ( f ,  P Q ( l ) ,  P Q ( 2 ) ) ;  ollowing function generates the transfer functions of all the lowpass 
>> H = exp(-(U.^2 + V . ^ 2 ) / ( 2 * ( D O A 2 ) ) ) ;  scussed in this section. 
>> g = d f t f i l t ( f ,  H); 

nction [ H ,  D l  = lpf i l te r ( type ,  M ,  N ,  DO, n )  l t e r  
LPFILTER Computes frequency domain lowpass f i l t e r s .  

FIGURE 4.13 
Lowpass filtering. 
(a) Original 
image. 
(b) Gaussian 
lowpass filter 
shown as an 
image. 
(c) Spectrum of 
(a). (d) Processed 
image. 

H = LPFILTER(TYPE, M, N, DO, n )  creates the transfer function of 
a lowpass f i l t e r ,  H, of the specified TYPE and size ( M - b y - N ) .  To 
view the f i l t e r  as an image or mesh plot, it should be centered 
using H = f f t sh i f t (H) .  

Valid values for TYPE, D O ,  and n are: 

' ideal '  Ideal lowpass f i l t e r  w i t h  cutoff frequency D O .  n need 
not be supplied. DO must be positive. 

' b t w '  Butterworth lowpass f i l t e r  of order n ,  and cutoff 
D O .  The default value for n i s  1.0. DO must be 
positive. 

'gaussian' Gaussian lowpass f i l t e r  w i t h  cutoff (standard 
deviation) D O .  n need not be supplied. DO must be 
positive. 

% Use function dftuv to set up  the meshgrld arrays needed for 
% computina the required distances. 

Begin f i l t e r  computations. 
itch type 
se ' ideal ' 

H = double(D <= D O ) ;  
Case ' btw' 

rl 3 1 a a a 3 if nargln == 4 
- ,  
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FIGURE 4.14 
Geometry for 
function vlew. 

132 Chapter 4 a Frequency Domain Processing 

end 
H = 1 . / ( 1  t (D./D0).^(2*n));  

case 'gaussian' 
H = e x p ( - ( D . * 2 ) . 1 ( 2 * ( D O A 2 ) ) ) ;  

otherwise 
error('Unknown f i l t e r  t ype . ' )  

end 

Function l p f i l t e r  is used again in Section 4.6 as the basis for generatin 
highpass filters. 

4,s-3 Wireframe and Surface Plotting 
Plots of functions of one variable were introduced in Section 3.3.1. In the 
lowing discussion we introduce 3-D wireframe and surface plots, 
useful for visualizing the transfer functions of 2-D filters. The easiest 
draw a wireframe plot of a given 2-D function, H, is to use function mesh, 
has the basic syntax 

mesh (H) 

This function draws a wireframe for x = I :M and y = 1 : N, where [ M ,  N]  determine the current viewing geometry, we type 
s ize(H) .  Wireframe plots typically are unacceptably dense if M and N ar 
large, in which case we plot every kth point using the syntax [ az ,  e l ]  = view; 

mesh(H(i:k:end, 1 :k :end))  set the viewpoint to the default values, we type 

As a rule of thumb, 40 to 60 subdivisions along each axis usually provide 
good balance between resolution and appearance. 

MATLAB plots mesh figures in color, by default. The command 

colormap([O 0 01 ) 

sets the wireframe to black (we discuss function colormap in Chapter an coordinates, (x, y, z ) ,  which is ideal when working with RGB data. 
MATLAB also superimposes a grid and axes on a mesh plot. These can 
turned off using the commands 

g r id  off Consider a Gaussian lowpass filter similar to the one used in Example 4.4: EXAIMPLE 4.5: 
ax i s  off  Wireframe 

H = fftshift(lpfilter('gaussian', 500, 500, 5 0 ) ) ;  plotting. 
They can be turned back on by replacing off with on in these two statement 
Finally, the viewing point (location of the observer) is controlled by functio ure 4.15(a) shows the wireframe plot produced by the commands 
view, which has the syntax 

mesh(H(I:10:500, 1:10:500)) 
view(az, e l )  ax i s ( [O  50 0 50 0 I ] )  

As Fig. 4.14 shows, az and e l  represent azimuth and elevation angles (in d here the ax i s  command is as described in Section 3.3.1, except that it con- 
grees), respectively. The arrows indicate positive direction. The default valu ins a third range for the z axis. 
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a. b 
c d. function produces a plot identical to mesh, with the exception that the 

1 
FIGURE 4.1 5 

erals in the mesh are filled with colors (this is called faceted shading). 
0.8 

(a) A plot rt the colors to gray, we use the command 
obtained using 0.6 
function mesh. 0.4 colormap(gray) 
(b) Axes and grid 0.2 
removed. (c) A 

0 axis, grid, and view functions work in the same way as described ear- 
different 50 
perspective view 0 mesh. For example, Fig. 4.16(a) is the result of the following sequence 
obtained using 
function view. 
(d) Another view = fftshift(lpfilter('gaussian', 500, 500, 50)); 

urf (H(l :10:500, 1:10:500)) 
xis([O 50 0 50 0 11) 

rid off ; axis off 

e faceted shading can be smoothed and the mesh lines eliminated by in- 
lation using the command 

,dz:. 
Z>( . \ 

shading interp .y$$*ghadjng in terp  . /,,'"> . ~ 
, ,. 

this command at the prompt produced Fig. 4.16(b). 
As noted earlier in this section, the wireframe is in color by default, tran n the objective is to plot an analytic function of two variables, we use 

tioning from blue at the base to red at the top. We convert the plot lines id to generate the coordinate values and from these we generate the 
black and eliminate the axes and grid by typing (sampled) matrix to use in mesh or surf. For example, to plot 

>> colormap([O 0 01) f ( x ,  y) = x e ( - ~ 2 - ~ 2 )  
>> axis off 
>> grid off 2 to 2 in increments of 0.1 for both x and y, we write 

Figure 4.15(b) shows the result. Figure 4.15(c) shows the result of , XI = meshgrid(-2:0.1:2, -2:0.1:2); 
command = X.*exp(-X.^2 - Y.*2); 

>> view(-25, 30) n use mesh (Z )  or surf (Z) as before. Recall from the discussion in 
2.10.4 that that columns ( Y )  are listed first and rows (X) second in 

which moved the observer slightly to the right, while leaving the elevation c 
stant. Finally, Fig. 4.15(d) shows the result of leaving the azimuth at -25 
setting the elevation to 0: 

>> view(-25, 0) a b  

This example shows the significant plotting power of the simple function mesh FIGURE 4.1 6 
(a) Plot obtained 
using function 

Sometimes it is desirable to plot a function as a surface instead of as a w su r f .  (b) Result 
frame. Function surf does this. Its basic syntax is of using the 

command 
surf (H) shading i n t e r p .  surf 
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Sharpening Frequency Domain Filters 

Just as lowpass filtering blurs an image, the opposite process, highpass filte 
sharpens the image by attenuating the low frequencies and leaving the 
frequencies of the Fourier transform relatively unchanged. In this secti 
consider several approaches to highpass filtering. 

4,b.l Basic Highpass Filtering 
Given the transfer function H I p ( ~ i ,  v) of a lowpass filter, we obtain the tran 
function of the corresponding highpass filter by using the simple relation 

HhP(u, V )  = 1 - HlP(z1, v) .  

Thus, function lpf  i l t e r  developed in the previous section can be used as 
basis for a highpass filter generator, as follows: 

h p f i l t e r  function H = hpfil ter(type,  M ,  N ,  DO, n )  
wsm-------- %HPFILTER Computes frequency domain highpass f i l t e r s .  

% H = HPFILTER(TYPE,  M, N ,  DO, n )  creates the transfer function 
% a highpass f i l t e r ,  H ,  of the specified TYPE and size (M-by-N).  
% Valid values for  TYPE, DO,  and n are: 
% 
% ' ideal '  Ideal highpass f i l t e r  w i t h  cutoff frequency D O .  n 
% need not be supplied. DO must be positive. 
% 
% 'btw' Butterworth highpass f i l t e r  of order n ,  and cutoff 
% DO.  The default value for n i s  1.0.  DO must be 
% positive. 
% 
% 'gaussian' Gaussian highpass f i l t e r  w i t h  cutoff (standard 
/o deviation) D O ,  n need not be supplied. DO must be 
% positive. 

% The transfer function Hhp of a highpass f i l t e r  i s  1 - Hlp, rresponding image in Fig. 4.17(d) was generated using the command 
% where H l p  i s  the transfer function of the corresponding lowpass 
% f i l t e r .  Thus, we can use function lp f i l t e r  to generate highpass gure, imshow(H, [ I )  
% f i l t e r s .  

i f  nargin == 4 e the thin black border is superimposed on the image to delineate its 
n = 1; % Default value of n. dary. Similar commands yielded the rest of Fig. 4.17 (the Butterworth fil- 

end B 

% Generate highpass f i l t e r .  
H l p  = lpf i l te r ( type ,  M ,  N ,  D O ,  n ) ;  
H = 1 - Hlp; 

EXAMPLE 4.6: B Figure 4.17 shows plots and images of ideal, Butterworth, and Gaussi 
Highpass filters. highpass filters. The plot in Fig. 4.17(a) was generated using the commands 

>> H = fftshift(hpfilter('ideal', 500, 500, 5 0 ) ) ;  = h p f i l t e r ( ' g a u s s i a n ' ,  P Q ( l ) ,  PQ(2), DO); 
>> mesh(H(1:10:500, 1 :10 :500) ) ;  = d f t f i l t ( f ,  H ) ;  

>> a x i s ( [ o  50 o 50 o 1 1 )  igure,  imshow(g, [ 1 )  
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in the original. This problem is addressed in the following section. 
re 4.19(b) shows the result of filtering Fig. 4.19(a) with a Butterworth 
ss filter of order 2, and a value of Do equal to 5% of the vertical dimen- 4h.2 High-Frequency Emphasis Filtering of the padded image. Highpass filtering is not overly sensitive to the value 

As mentioned in Example 4.7, highpass filters zero out the dc term, thus re as long as the radius of the filter is not so small that frequencies near the 
ducing the average value of an image to 0. An approach to compensate for t of the transform are passed. As expected, the filtered result is rather fea- 
is to add an offset to a highpass filter. When an offset is combined with mu ess, but it shows faintly the principal edges in the image.The advantage of 
plying the filter by a constant greater than 1, the approach is called hig -emphasis filtering (with a = 0.5 and b = 2.0 in this case) is shown in the 
freqirency emphasis filtering because the constant multiplier highlights t e of Fig. 4.19(c), in which the gray-level tonality due to the low-frequency 
high frequencies. The multiplier increases the amplitude of the low freque onents was retained. The following sequence of commands was used to 
cies also, but the low-frequency effects on enhancement are less than tho ate the processed images in Fig. 4.19, where f denotes the input image 
due to high frequencies, as long as the offset is small compared to the multip ast command generated Fig. 4.19(d)]: 
er. High-frequency emphasis has the transfer function 

Q = p a d d e d s i z e ( s i z e ( f ) ) ;  
H h f e ( ~ ,  V) = a + b H h p ( ~ ,  v) O = 0 ,05*PQ( l ) ;  

BW = h p f i l t e r ( ' b t w ' ,  P Q ( l ) ,  PQ(2) ,  DO, 2 ) ;  
where a is the offset, b is the multiplier, and Hhp(zi, v) is the transfer functio = 0 .5  + 2*HBW; 
of a highpass filter. bw = d f t f i l t ( f ,  HBW); 

gbw = gscale(gbw); 
EXAMPLE 4.8: a Figure 4.19(a) shows a chest X-ray image, f .  X-ray imagers cannot be f hf = d f t f i l t ( f ,  H ) ;  
Combining high- cused in the same manner as optical lenses, so the resulting images generau hf = gscale (ghf)  ; 
frequency tend to be slightly blurred. The objective of this example is to s he = h i s t eq (ghf ,  256) ;  
emphasis and 
histogram Fig. 4.19(a). Because the gray levels in this particular image are biased 
equalization. the dark end of the gray scale, we also take this opportunity to give an exa s indicated in Section 3.3.2, an image characterized by gray levels in a nar- 

ple of how spatial domain processing can be used to complement frequenc range of the gray scale is an ideal candidate for histogram equalization. As 
domain filtering. g. 4.19(d) shows, this indeed was an appropriate method to further enhance 
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FIGURE 4.1 9 H~gh- 
frequency 
emphasls filtering 
(a) Or~glnal image. 
(b) Hlghpass 
filtenng result 
(c) High-frequency 
emphasls result 
(d) Image (c) after 
histogram 
equal~zat~on 
(Onglnal Image 
courtesy of Dr 
Thomas R Gest, 
D~vis~on of 
Anatormcal 
Saences, 
Unlverslty of 
Mlchlgan Medlcal 
School ) 
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the image in this example. Note the clarity of the bone structure and ot 
tails that simply are not visible in any of the other three images. The 
hanced image appears a little noisy, but this is typical of X-ray ima 
their gray scale is expanded.The result obtained using a combination of 
frequency emphasis and histogram equalization is superior to the result th 
would be obtained by using either method alone. 

Summary 
In addition to the image enhan 
and the preceding chapter, the 
ters provide the basis for other 
cussions in the book. Intensity t 
and spatial filtering is used extensively for image restoration in the next chapter 
color processing in Chapter 6, for image segmentation in Chapter 10, and for extrac 
descriptors from an image in Chapter 11. The Fourier techniques developed in 
chapter are used extensively in the next chapter for image restoration, in Chapter 8 
image compression, and in Chapter 11 for image description. 

s approach usually involves formulating a criterion of goodness that 
an optimal estimate of the desired result. By contrast, enhancement 

For example, contrast stretching is considered an enhancement tech- 

1 degradation phenomena and to formulate restoration solutions. A s  in 
pters 3 and 4, some restoration techniques are best formulated in the spa- 
domain, while others are better suited for the frequency domain. Both 
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A Model of the Image DegradationIRestoration Process Noise Models 

As Fig. 5.1 shows, the degradation process is modeled in this chapter as 
degradation function that, together with an additive noise term, operates o 
an input image f ( x ,  y )  to produce a degraded image g(x ,  y ) :  

g(x3y) = H [ f ( x , y ) l  + V ( X ? Y )  

Given g ( x ,  y ) ,  some knowledge about the degradation function H, and so 
e in this chapter that noise is independent of image coordinates. 

obtain an estimate, f ( x ,  y ) ,  of the original image. We want the estimate to be Adding Noise with Function imnoise 

close as possible to the original input image. In general, the more we know abo olbox uses function imnoise to corrupt an image with noise. This func- 

Hand 77, the closer j ( x ,  y )  will be to f ( x ,  y) .  has the basic syntax 

If His  a linear, spatially invariant process, it can be shown that the degrad &$>?:,I 
image is given in the spatial domain by g = imnoise( f ,  type ,  parameters)  z+$>:$% fmnoi s e 

G,~:", , . %  
,* _, 

Followrng conven- g (x> Y )  = h(x7  Y )  * f ( x ,  Y )  + V ( X ,  Y )  re f is the input image, and type and parameters are as explained later. 
tion, we use an 
in-line asterisk in converts the input image to class double in the range [O,1] 
erlrlariotw to denote e adding noise to it. This must be taken into account when specifying 
convol~~tion and a 
slrperscript asterisk 

parameters. For example, to add Gaussian noise of mean 64 and variance 

to denote the corn- o an u i n t 8  image, we scale the mean to 64/255 and the variance to 
plex cotlj~[gate. A s  the preceding model in an equivalent frequency domain representation: t into imnoise. The syntax forms for this function are: 
reqrrired, we also Lrse 
nn asterisk in MAT- G(u, V )  = H ( u ,  v ) F ( u ,  V )  + N ( u ,  V )  
LAB expressions to 
denote mr~ltiplica- 

tior'. Cure shOrrld be 
taken not to conjirse 
t,7ese [,nrelafed [lses 

o f  the same synzbol. 

s f  
t f 

tion process is sometimes referred to as deconvolution. imnoise ( f  , ' s a l t  & pepper '  , d )  corrupts image f with salt and 

= imnoise ( f ,  ' speckle '  , var)  adds multiplicative noise to image f ,  
FIGURE 5.1 sing the equation g = f + n*f, where n is uniformly distributed random 
A model of the 
image degradation1 f(sj Y )  
restoration process. noise from the data instead 

of photons (or any other quanta of information). Double-precision 
Degradation Restoration ages are used when the number of photons per pixel is larger than 65535 
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(but less than 10"). The intensity values vary between 0 and 1 and corre MATLAB this result is easily generalized to an M X N array, R, of ran- 
spond to the number of photons divided by 1012. numbers by using the expression 

Several illustrations of imnoise are given in the following sections. R = a + sqrt(b*log(l - rand(M, N))); 

5.1.2 Generating Spatial Random Noise with a Specified ion 3.2.2, log is the natural logarithm, and, as men- 
Distribution earlier, rand generates uniformly distributed random numbers in the inter- 

Often, it is necessary to be able to generate noise of types and parameters the preceding MATLAB command line yields a 
yond those available in function imnoise. Spatial noise values are variable with a Rayleigh distribution characterized by 
bers, characterized by a probability density function (PDF) or, equi B 

the corresponding cumulative distribution function (CDF). Random nu 
generation for the types of distributions in which we are interested follow e expression z = a + d m  sometimes is called a random num- 
fairly simple rules from probability theory. enerator equation because it establishes how to generate the desired ran- 

Numerous random number generators are based on expressing numbers. In this particular case, we were able to find a closed-form 
tion problem in terms of random numbers with a uniform CDF in t ion. As will be shown shortly, this is not always possible and the problem 
( 0 , l ) .  In some instances, the base random number generator of becomes one of finding an applicable random number generator equation 
generator of Gaussian random numbers with zero mean and u pproximate random numbers with the specified CDF. 
Although we can generate these two types of noise using imnoi .1 lists the random variables of interest in the present discussion, along 
meaningful in the present context to use MATLAB function ran random number generator equations. In some cases, 
random numbers and randn for normal (Gaussian) random numbers. The and exponential variables, it is possible to find a closed-form 
functions are explained later in this section. and its inverse.This allows us to write an expression for the 

The foundation of the approach described in this section is 
result from probability (Peebles [1993]) which states that if w is a unifor 
distributed random variable in the interval (0, I ) ,  then we can obtain a ra for the CDF do not exist, and it becomes necessary to find 
dom variable z with a specified CDF, F,, by solving the equation 

z = F;'(w) 

This simple, yet powerful, result can be stated equivalently as finding a sol 
tion to the equation Fz(z) = W. antageous to reformulate the problem to obtain 

r example, it can be shown that Erlang random numbers 
EXAMPLE 5.1: fB Assume that we have a generator of uniform random numbers, w, in the i b can be obtained by adding b exponentially distributed 
Using uniform terval (0, I), and suppose that we want to use it to generate random numbers, umbers that have parameter a (Leon-Garcia [1994]). 

numbers with a Rayleigh CDF, which has the form 
to generate ndom number generators available in imnoise and those shown in 
random numbers 

{ 
1 - e-(z-a)2/b for z 2 a rtant role in modeling the behavior of random noise in 

with a specified Fz(z) = o for z < a cations. We already saw the usefulness of the uniform 
distribution. ting random numbers with various CDFs. Gaussian 

To find z we solve the equation is used as an approximation in cases such as imaging sensors operating at 

1 - e-(i-a)2/b = W 
ght levels. Salt-and-pepper noise arises in faulty switching devices. The 

of silver particles in a photographic emulsion is a random variable de- 

or d by a lognormal distribution. Rayleigh noise arises in range imaging, 

z = a + d w  exponential and Erlang noise are useful in describing noise in laser 

Because the square root term is nonnegative, we are assured that no values 0 later in this section, generates random num- 
less than a are generated. This is as required by the definition o ble 5.1.This function makes use of MATLAB func- 
CDEThus, a uniform random number w from our generator can be used in rand, which, for the purposes of this chapter, has the syntax 
previous equation to generate a random variable having a Rayleigh distri 
tion with parameters a and b. A = rand(M, N )  
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nction generates an array of size M x N whose entries are uniformly dis- 
d numbers with values in the interval (0, 1). If N is omitted it defaults to 
ed without an argument, rand generates a single random number that 
each time the function is called. Similarly, the function 

A = randn(M, N )  

tes an M x N array whose elements are normal (Gaussian) numbers 
ro mean and unit variance. If N is omitted it defaults to M. When called 
an argument, randn generates a single random number. 
tion imnoise2 also uses MATLAB function f i n d ,  which has the fol- 

I = f i n d ( A )  
[ r ,  C] = f i n d ( A )  

[ r ,  C ,  V ]  = f i n d ( A )  

st form returns in I all the indices of array A that point to rlonzero ele- 
If none is found, f i n d  returns an empty matrix. The second form 
the row and column indices of the nonzero entries in the matrix A. In 

n to returning the row and column indices, the third form also returns 
onzero values of A as a column vector, v. 

first form treats the array A in the format A (  : ) , s o  I is a column vector. 
rm is quite useful in image processing. For example, to find and set to 0 
Is in an image whose values are less than 128 we write 

= f i n d ( A  < 1 2 8 ) ;  

I1 that the logical statement A < 128 returns a 1 for the elements of A that 
the logical condition and 0 for those that d o  not.To set to  128 all pixels 
closed interval [64,192] we write 

= f i n d ( A  >= 64 & A <= 1 9 2 ) ;  

irst two forms of function f i n d  are used frequently in the remaining 
ers of the book. 

imnoise, the following M-function generates an M x N noise array, R, 
scaled in any way. Another major difference is Illat irnnoise outputs 

image, while imnoise2 produces the noise pattern itself.The user speci- 
e desired values for the noise parameters directly. Note that the noise 

sulting from salt-and-pepper noise has three values: 0 corresponding to 
noise, 1 corresponding to salt noise, and 0.5 corresponding to n o  noise. 

oise Models 

randn 

f i n d  
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image Restoration 

This array needs t o  be processed fur ther  t o  m a k e  i t  useful. F o r  example, t 
rupt a n  image w i t h  this array, w e  find (using funct ion  f i n d )  a l l  t h e  coord  
in R that have value 0 a n d  set the  corresponding coordinates in t he  image 
smallest possible gray-level value (usually 0). Similarly, we  find a l l  the  c 
nates in R that  have value 1 and  set a l l  the  corresponding coordinates in 
image t o  the  highest possible value (usually 255 f o r  a n  8-bit image).?his p r o  
simulates h o w  salt-and-pepper noise affects a n  image in practice. 

f u n c t i o n  R = imnoise2(type, M, N, a, b)  
%IMNOISE2 Generates an a r r a y  o f  random numbers w i t h  s p e c i f i e d  PDF. 
% R = IMNOISE2(TYPE, M, N, A, 8) generates an ar ray ,  R, o f  s i z e  
% MM-y-N, whose elements a re  random numbers o f  t h e  s p e c i f i e d  TYP 
% w i t h  parameters A and B. I f  o n l y  TYPE i s  i nc luded  i n  t he  
% i n p u t  argument l i s t ,  a s i n g l e  random number o f  t h e  spec i f i ed  
% TYPE and d e f a u l t  parameters shown below i s  generated. If only  
% TYPE, M, and N are  provided, t h e  d e f a u l t  parameters shown be lo  
% are  used. I f  M = N = 1, IMNOISE2 generates a s i n g l e  random 
% number o f  t h e  s p e c i f i e d  TYPE and parameters A and B. 
% 
% V a l i d  values f o r  TYPE and parameters A and B are:  e r r o r (  'The sum Pa + Pb must n o t  exceed 1 .  ' ) 
% 
% ' un i f o rm '  Un i fo rm random numbers i n  t h e  i n t e r v a l  (A, 0 ) .  
% The d e f a u l t  va lues a re  (0,  1). eflerate an M-by-N a r r a y  o f  u n i f o r m l y - d i s t r i b u t e d  random numbers 
% 'gaussian ' Gaussian random numbers w i t h  mean A and standa n t he  range (0, 1 ) .  Then, Pa*(M*N) o f  them w i l l  have values <= 
% d e v i a t i o n  B. The d e f a u l t  values a r e  A = 0 ,  B . The coord inates  o f  these p o i n t s  we c a l l  0 (pepper 
% ' s a l t  & pepper '  S a l t  and pepper numbers o f  ampl i tude 0 w i t h  o i se ) .  S i m i l a r l y ,  Pb*(M*N) p o i n t s  w i l l  have values i n  t h e  range 
% p r o b a b i l i t y  Pa = A, and ampl i tude 1 w i t h  c a l l  1 ( s a l t  no i se ) .  
% p r o b a b i l i t y  Pb = B. The d e f a u l t  va lues a re  Pa 
% Pb = A = B = 0.05. Note t h a t  t h e  no i se  has 
% values 0 ( w i t h  p r o b a b i l i t y  Pa = A) and 1 ( w i t  
% p r o b a b i l i t y  Pb = B ) ,  so s c a l i n g  i s  necessary 
% values o t h e r  than 0 and 1 are  requ i red .  The n 
% m a t r i x  R i s  assigned t h r e e  values. If R ( x ,  y )  
% 0, t h e  no ise  a t  ( x ,  y )  i s  pepper ( b l a c k ) .  I f  
% R(x,  y )  = 1, t h e  no ise  a t  (x,  y)  i s  s a l t  
% (wh i t e ) .  I f  R(x, y )  = 0.5, t h e r e  i s  no no ise  a = 1; b = 0.25; 
% assigned t o  coord inates  ( x ,  y ) .  
% ' l ogno rma l '  Lognormal numbers w i t h  o f f s e t  A and shape 
% parameter B. The d e f a u l t s  are  A = 1 and B = 
% 0.25. 
% ' r a y l e i g h '  Ray le igh no ise  w i t h  parameters A and B. The 
% d e f a u l t  values a re  A = 0 and B = 1. 
% ' exponen t i a l '  Exponen t i a l  random numbers w i t h  parameter A. Th 
% d e f a u l t  i s  A = 1 .  
% ' e r l ang  ' E r l ang  (gamma) random numbers w i t h  parameters 
-6 and B. B must be a p o s i t i v e  i n t e g e r .  The e r r o r (  'parameter a must be p o s i t i v e  f o r  exponent ia l  type.  I )  
d d e f a u l t s  a re  A = 2 and B = 5. E r l ang  random 
0, numbers a re  approximated as t h e  sum o f  B 
% exponen t i a l  random numbers. 
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EXAMPLE 5.2: 
Histograms of 
data generated 
using the function 
imnoise2.  

1 
Image Restoration 

1 

case ' e r lang '  
i f  nargin <= 3 

a = 2 ;  b = 5 ;  
end 
i f  (b  -= round(b) I b <= 0 )  

error( 'Param b must be a posi t ive integer  f o r  Er lang . ' )  
end 
k = - l / a ;  
R = zeros(M, N ) ;  
fo r  j = l : b  

R = R + k*log(l - rand(M, N ) ) ;  
end 

otherwise 
error('Unknown d is t r ibu t ion  t y p e . ' )  

end 

I Figure 5.2 shows histograms of all the random number tvDes in Table 5 1 , L 
~ - -  

The data for each plot weie generated using function imnoise2. For examp 
the data for Fig. 5.2(a) were generated by the following command: 

. - - - 1 , - >  . , I  

This statement generated a column vector, r ,  with 100000 elements, e 
being a random number from a Gaussian distribution with mean 0 and st 
dard deviation of 1. The histogram was then obtained using function h i s  

In each case, t h e  parameters chosen were the iefault values listed in the ex 
planation of function imnoise2. 

- ', 
which has the svntax 

p = h i s t ( r ,  b i n s )  

where b i n s  is the number of bins. We used b i n s  = 50 to generate the his- 
tograms in Fig. 5.2. The other histograms were generated in a similar manner. 

f' t ;.L.? Periodic Noise 

Periodic noise in an image arises typically from electrical and/or electromechani- a 
cal interference during image acquisition.This is the only type of spatially depen- 
dent noise that will be considered in this c h a ~ t e r .  As diqcursed in %-tion 5.4. 

h we see is a pair of complex conjugate impulses located at  
- - - - - - . - - -- - - - . - - - - - - - - uo, v + vo) and (LI - 110, v - vO), respectively. 

periodic noise is typically handled in an image by filtering in the frequency e following M-function accepts an arbitrary number of impulse locations 
main. Our model of periodic noise is a 2-D sinusoid with equation equency coordinates), each with its own amplitude, frequencies, and phase 

r ( x ,  y) = A sin[Z.rr~l(,(n + B,T)/M + 2.rrvo(y + B,)lN1 *'% displacement pal 
" "  

rameters, and computes r ( x ,  y) as the sum of sinusoids of the ,.. 
where A is the amplitude, 11, and vo determine the sinusoidal frequencies wi 
respect to the x- and y-axis, respectively, and B,. and B,, are vhase d i s ~ l a c  
ments with respect to the origin.-The M k N DFT of thi; equation is 

' 

I the previous paragraph.The function also outputs the Fourier 
sum of sinusoids, R(u, v), and the spectrum of R(u,  v). The sine 

a gGLIGLoted from the given impulse location information via the inverse 
This makes it more intuitive and simplifies visualization of frequency con- 

A n the spatial noise pattern. Only one pair of coordinates is required to de- 
R ( I ~ ,  V) = j- [(ei2TLi[~B~/"')s(l~ + 1lO, v + %)o) - (~J~T"OB?I*)S(L~ - ll", n - w") 

2 e the location of an impulse.The program generates the conjugate symmetric 
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a b  
c d 
e f 
FIGURE 5.2 
Histograms of 
random numbel 5 

(a) Gaussldn, 
(b) un~form. 
(c) lognormal, 
(d) Rayle~gh, 
(e) exponent~al, 
and ( f )  Erlang In 
each case the 
detault 
parameters hsted 
In the explanat~on 
of funct~on 
lmnoise2  weie 
used. 
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impulses. (Note in the code the use of function i f f  t s h i f  t to convert the c ures 5.3(a) and (b) show the spectrum and spatial sine noise pattern EXAMPLE 5.3: 

tered R into the proper data arrangement for the i f f t 2  operation, as discus ted using the following commands: Using function 
imnoise3. 

in Section 4.2.) 
= [0  64; 0 128; 32 32; 64 0 ;  128 0 ;  -32 321; 

imnoise3 function [ r ,  R, S] = imnoise3(MJ N ,  C ,  A ,  B )  r ,  R ,  S] = imnoise3(512, 512, C )  ; 
iwmr----- %IMNOISE3 Generates periodic noise. 

% [ r ,  R ,  S] = IMNOISE3(MJ N ,  C ,  A ,  B ) ,  generates a spatial  r e ,  imshow(r, [ I )  
% sinusoidal noise pattern, r ,  of size M-by-N, i t s  Fourier 
% transform, R ,  and spectrum, S. The remaining parameters are as at the order of the coordinates is (u, v). These two values are speci- 
% follows: reference to the center of the frequency rectangle (see Section 4.2 for 
% on of the coordinates of this center point). Figures 5.3(c) and (d) 
% C i s  a K-by-2 matrix containing K pairs of frequency domain 
% coordinates (u, v )  indicating the locations of impulses i n  the result obtained by repeating the previous commands, but with 

% frequency domain. These locations are w i t h  respect to the 
% frequency rectangle center a t  (Mi2 + 1 ,  N/2 + 1 ) .  O n l y  one pai [ 0  32; 0 64; 16 16; 32 0;  64 0;  -16 161; 
% of coordinates i s  required for  each impulse. The program 
% automatically generates the locations of the conjugate symmet ly, Fig. 5.3(e) was obtained with 
% impulses. These impulse pairs determine the frequency content 
% of r .  
% [6 32; -2 21; 
% A i s  a I -by-K vector that contains the amplitude of each of t h  
% K impulse pairs. If A i s  not included i n  the argument, the 5.3(f) was generated with the same C, but using a nondefault amplitude 
% default used i s  A = ONES(1, K ) .  B i s  then automatically set  to 
% i t s  default values (see next paragraph). The value specified 
% for A(j)  i s  associated w i t h  the coordinates i n  C( j ,  1 :2) .  
e 

% B i s  a K-by-2 matrix containing the Bx and By phase components R, S] = imnoise3(512, 512, C ,  A); 

% for each impulse pair. The default values for  B are B(l :K, 1 :2) 
% = 0. 5.3(f) shows, the lower-frequency sine wave dominates the image.This 

pected because its amplitude is five times the amplitude of the higher- 
% Process input parameters. 
[ K ,  n] = s i ze (C) ;  

?d 

i f  nargin == 3 
A(1:K) = 1 .O; imating Noise Parameters 
0(1:K, 1:2) = 0;  

e l se i f  nargin == 4 meters of periodic noise typically are estimated by analyzing the 
B(l :K, 1:2) = 0; ectrum of the image. Periodic noise tends to produce frequency 

end often can be detected even by visual inspection. Automated analy- 

% Generate R .  ble in situations in which the noise spikes are sufficiently pro- 

R = zeros(M, N ) ;  , or when some knowledge about the frequency of the interference is 

f o r  j = 1:K 
ul = M/2 + 1 + C ( j ,  1 ) ;  vl = N/2 + 1 + C ( j ,  2 ) ;  ase of noise in the spatial domain, the parameters of the PDF may 
R(u1, v l )  = i * ( A ( j ) / 2 )  * exp(i*2*pi*C(j ,  1 )  * B ( j ,  l ) /M) ;  partially from sensor specifications, but it is often necessary to esti- 
% Complex conjugate. em from sample images. The relationships between the mean, m, and 
u2 = M/2 + 1 - C ( j ,  I ) ;  v2 = N/2 + 1 - C ( j ,  2 ) ;  e, u2, of the noise, and the parameters a and b required to completely 
R(u2, v2) = -i * ( A ( j ) / 2 )  * exp(i*2*pi*C(jJ 2)  * B ( j ,  2)/N) he noise PDFs of interest in this chapter are listed in Table 5.1. Thus, 

end lem becomes one of estimating the mean and variance from the sam- 
% Compute spectrum and s p a t i a l  s inusoidal  pa t t e rn .  e(s) and then using these estimates to solve for a and b. 
S = abs (R) ;  zi be a discrete random variable that denotes intensity levels in an 
r = real(ifft2(ifftshift(R))); ge, and let p ( z i ) ,  i = 0, 1.2,. . . , L - 1, be the corresponding normalized 
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interest (ROI) in MATLAB we use function r o i p o l y ,  which generat 
polygonal ROI. This function has the basic syntax 

B = r o i p o l y ( f ,  c ,  r )  

where f  is the image of interest, and c and r are vectors of corresponding -.--.~mw 

quential) column and row coordinates of the vertices of the polygon (n 
columns are specified first). The output, 8, is a binary image the same 
with 0's outside the region of interest and 1's inside. Image B is used as a m 5.4(a) shows a noisy image, denoted by f  in the following discussion. 
to limit operations to within the region of interest. tive of this example is to estimate the noise type and its Parameters 

To specify a polygonal ROI interactively, we use the syntax ed thus far. Figure 5.4(b) shows the 

B = r o i p o l y ( f )  
, c ,  r ]  = r o i p o l y ( f ) ;  

which displays the image f  on the screen and lets the user specify the 
using the mouse. I f f  is omitted, r o i p o l y  operates on the last image di 5.4(~) was generated using the commands 
Using normal button clicks adds vertices to the polygon. Pressing Bac 
or Delete removes the previously selected vertex. A shift-click, rig np ix]  = h i s t r o i ( f ,  C ,  r ) ;  
double-click adds a final vertex to the selection and starts the fill of the u r e ,  b a r ( p ,  1)  
onal region with Is. Pressing Return finishes the selection withou 
a vertex. 

To obtain the binary image and a list of the polygon vertices, we use 
construct 

[B, c ,  r l  = r o i p o l y ( .  . . )  

where r o i p o l y  ( . . . ) indicates any valid syntax for this functi 
fore, c and r are the column and row coordinates of the vertices. 
particularly useful when the ROI is specified interactively because it 
coordinates of the polygon vertices for use in other programs or for 
plication of the same ROI. 

The following function computes the histogram of an image wit 
onal region whose vertices are specified by vectors c  and r ,  as in t 
discussion. Note the use within the program of function r o i p o l y  to 
the polygonal region defined by c and r .  

function [ p ,  npix] = h i s t r o i ( f ,  c ,  r )  - 1 2 0 -  
%HISTROI Computes the histogram of an ROI i n  an image. 

- 100- 
% [P, NPIX] = HISTROI(F, C ,  R )  computes the histogram, P, of a  
% polygonal region of i n t e r e s t  (ROI) i n  image F.  The polygonal 
% region i s  defined by the column and row coordinates of i t s  
% ver t ices ,  which are  specif ied (sequent ial ly)  i n  vectors C and R, 
% respectively. A l l  p ixels  of F must be >= 0. Parameter NPIX i s  t h  
% number of pixels  in  the polygonal region. 

% Generate t h e  binary mask image. 
B = r o i p o l y ( f ,  c ,  r ) ;  

EXAMPLE 5.4: 
Estimating noise 
parameters. 

a b  
:c d 

FIGURE 5.4 
(a) (b) Noisy ROI image. 

generated 
interactively. 
(c) Histogram of 
ROI. (d) Histogram of 

Gaussian data 
generated using 
function 
1mnolse2. 
(Orig~nal image 
courtesy of L l x ~  
Inc. ) 
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The mean and variance of the region masked by B were obtained as follo Spatial Noise Filters 

>> [ v ,  unv] = statmoments(h, 2 ) ;  5.2 lists the spatial filters of interest in this section, where S,, denotes an 
>> v subimage (region) of the input noisy image, g. The subscripts on S indi- 

v = 
at the subimage is centered at coordinates (x ,  y ) ,  and f ( x ,  y)  (an esti- 

f )  denotes the filter response at those coordinates. The linear filters 
0.5794 0.0063 lemented using function i m f i l t e r  discussed in Section 3.4. The 

>> unv max, and min filters are nonlinear, order-statistic filters. The median 

147.7430 410.9313 can be implemented directly using IPT function medf i l t 2 .The  max and 
s are implemented using the more general order-filter function 

It is evident from Fig. 5.4(c) that the noise is approximately Gaussian discussed in Section 3.5.2. 
general, it is not possible to know the exact mean and variance of the noise lowing function, which we call spf ilt, performs filtering in the spa- 
cause it is added to the gray levels of the image in region 5. However, by main with any of the filters listed in Table 5.2. Note the use of function 
lecting an area of nearly constant background level (as we did here), comb (mentioned in Table 2.5) to compute the linear combination of the 
because the noise appears Gaussian, we can estimate that the average .The syntax for this function is 
level of the area B is reasonably close to the average gray level 
without noise, indicating that the noise has zero mean. Also, the fact that B = imlincomb(c1, A l l  c2,  A2, . . . ,  ck,  A k )  comb 
area has a nearly constant gray level tells us that the variability in the reg 
defined by B is due primarily to the variance of the noise. (When feasible, implements the equation 
other way to estimate the mean and variance of the noise is by imaging a 
get of constant, known gray level.) Figure 5.4(d) shows the histogram of B = cl*AI + c2*A2 + . . . + ck*Ak 
of npix (this number is returned by h i s t r o i )  Gaussian random variables 
mean 147 and variance 400, obtained with the following commands: the c's are real, double scalars, and the A's are numeric arrays of the 

lass and size. Note also in subfunction gmean how function warning can 
>> X = imno i se2( ' gauss i an ' ,  npix,  1 ,  147, 20 ) ;  
>> f i g u r e ,  h i s t ( X ,  130) ed on and off. In this case, we are suppressing a warning that would be 

>> a x i s ( [ O  300 0 1401) by MATLAB if the argument of the log function becomes 0. In general, 
ng can be used in any program.The basic syntax is 

where the number of bins in h i s t  was selected so that the result would 
compatible with the plot in Fig. 5.4(c). The histogram in this figure was warning( 'message')  
tained within function h i s t r o i  using imhist  (see the preceding 
employs a different scaling than h i s t .  We chose a set of npix ran nction behaves exactly like function disp, except that it can be turned 
ables to generate X, so that the number of samples was the same in off with the commands warning on and warning off .  
tograms. The similarity between Figs. 5+4(c) and (d) clearly indicates 
noise is indeed well-approximated by a Gaussian distribution with paramete ion f = spfilt(g, type, m ,  n ,  parameter) s p f i l t  
that are close to the estimates v ( 1 ) and v ( 2 ) .  FILT Performs linear and nonlinear spatial filtering. wmr---'---'-- 

= SPFILT(G, TYPE, M I  N ,  PARAMETER) performs spatial filtering 
Restoration in the Presence f image G using a TYPE f i l ter  of size M-by-N.  Valid calls to 

of Noise Only-Spatial Filtering PFILT are as follows: 

When the only degradation present is noise, then it follows from the mode F = SPFILT(G, 'amean ' , M I  N )  Arithmetic mean filtering. 
Section 5.1 that F = SPFILT(G, 'gmean' , MI N )  Geometric mean filtering. 

F = SPFILT(G, 'hmean' , M ,  N )  Harmonic mean filtering. 
g(xt Y )  = f (-r, Y )  + 7 7 ( ~ ,  Y )  F = SPFILT(G, 'chmean' , M I  N ,  Q )  Contraharmonic mean 

The method of choice for reduction of noise in this case is spatial filtering, us' filtering of order Q. The 
default i s  Q = 1.5.  techniques similar to those discussed in Sections 3.4 and 3.5. In this section we F = SPFILT(G, 'median', MI N )  Median filtering. 

marize and implement several spatial filters for noise reduction. Additional F = SPFILT(G, 'max', M I  N )  Max filtering . 
on the characteristics of these filters are discussed by Gonzalez and Wo F I SPFILT(G, ' m i n ' ,  M ,  N )  Min filtering. 
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5.3 Restoration in the Presence of Noise Only-5 

F = SPFILT(G, 'm idpo in t ' ,  M, N) Midpoint  f i l t e r i n g .  
F = SPFILT(G, 'atrimmed' , MI N, D) Alpha-trimmed mean f i l t e r i n g .  

Parameter D must be a nonnegative 
even in teger ;  i t s  d e f a u l t  
value i s  D = 2. 

he de fau l t  values when only  G and TYPE are inpu t  are M = N = 3, 
= 1.5, and D = 2. 

3; n = 3 ;  Q =  1.5; d =  2; 

r o r (  'Wrong number o f  i npu ts .  ' )  ; 

- harmean(g, m,  n)  ; 

= med f i l t 2 (g ,  [m n ] ,  'symmetr ic ' ) ;  

= o r d f i l t 2 ( g ,  m*n, ones(m, n ) ,  'symmetric '  ) ;  

(d  < 0) I ( d l 2  -= round(d l2 ) )  
e r r o r ( ' d  must be a nonnegative, even i n t e g e r . ' )  

= a lphatr im(g,  m, n, d ) ;  

. . . . . . . . . . . . . . . . . . . . . .  % 

atial Filtering 
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EXAMPLE 5.5: 
Using function 
s p f i l t .  

function f = gmean(g, m, n) 
% Implements a geometric mean filter. 
inclass = class(g) ; 
g = im2double(g); 
% Disable log(0) warning. 
warning off; 
f = exp(infilter(log(g), ones(m, n), 'replicate')) . ^ ( I  I m I n)  ; 
warning on; 
f = changeclass(inclass, f) ; 

function f = harmean(g, m, n) 
% Implements a harmonic mean filter. 
inclass = class(g) ; 
g = im2double(g) ; 
f = m * n . I  imfilter(l./(g + eps), ones(m, n), 'replicate'); 
f = changeclass (inclass, f) ; 

function f = charmean(g, m, n, q) 
% Implements a contraharmonic mean filter. 
inclass = class(g) ; 
g = im2double(g); 
f = imfllter(g.A(q+l), ones(m, n), 'replicate'); 
f = f . / (imfilter(g.^q, ones(m, n), 'replicate') + eps); 
f = changeclass (inclass, f ) ; 

function f = alphatrim(g, m, n, d) 
% Implements an alpha-trimmed mean filter. 
inclass = class(g) ; 
g = im2double(g) ; 
f = imfilter(g, ones(m, n), 'symmetric'); 
for k = 1:d/2 

f = imsubtract (f, ordfilt2(g1 k, ones(m, n) , 'symmetric')); 
end 
for k = (m*n - (d/2) + l):m*n 

f = imsubtract(f, ordfilt2(g1 k, ones(m, n), 'symmetric')); 
end 
f = f / (m*n - d); 
f = changeclass (inclass, f) ; 

1 T h e  image in Fig. 5.5(a) is a n  uint8 image corrupted by peppel 
with probability 0.1.This image w a s  generated using the following 
[f denotes the original image, which is Fig. 3.18(a)]: 

>> [M, N] = size(f); 
>> R = imnoise2('salt & pepper', M, N ,  0.1, 0); 
>> c = find(R == 0); 
>> g p  = f ;  
>> gp(c) = 0 ;  

T h e  image in Fig. 5.5(b), corrupted by salt noise only, was generate 

- -  

: noise 
c o m n  

:d usin 

FIGURE 5.5 
(a )  Image 
corrupted by 
pepper noise with 
probability 0.1. 
(b) Image 
corrupted by salt 
noise with the 
same probability. 
(c) Result of 
filtering (a) with a 
3 x 3 
contraharmonic 
filter of order 
Q = 1.5. (d) 
Result of filtering 
(b) with 
Q = -1.5. 
(e) Result of 
filtering (a) with a 
3 X 3 max filter. 
( f )  Result of 
filtering (b) with a 
3 X 3 ~nin filter. 

statements 
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A good approach for filtering pepper noise is to use a contraharmonic f 
with a positive value of Q. Figure 5.5(c) was generated using the statemen 

>> f p  = s p f i l t ( g p ,  'chmean' ,  3, 3, 1 . 5 ) ;  

Similarly, salt noise can be filtered using a contraharmonic filter with a n 
tive value of Q: 

>> f s  = s p f i l t ( g s ,  'chmean' ,  3 ,  3 ,  -1 .5 ) ;  

Figure 5.5(d) shows the result. Similar results can be obtained using max 
min filters. For example, the images in Figs. 5.5(e) and (f) were generated f 
Figs. 5.5(a) and (b), respectively, with the following commands: 

noise with density 0.25. (b) Result obtained using a 

>> fpmax = s p f i l t ( g p ,  'max ' ,  3 ,  3 ) ;  adaptive median filtering with S,,, = 7. 

>> fsmin = s p f i l t ( g s ,  ' m i n ' ,  3 ,  3 ) ;  

Other solutions using spf ilt are implemented in a similar manner. bedded in a constant background having the same value as pepper 

5.3.2 Adaptive Spatial Filters 
-function that implements this algorithm, which we call adpmedian, is 

The filters discussed in the previous section are applied to an image w in Appendix C. The syntax is 
regard for how image characteristics vary from one location to an 
some applications, results can be improved by using filters capable of ad f = adpmedian(g, Smax) 
their behavior depending on the characteristics of the image in the area 
filtered. As an illustration of how to implement adaptive spatial 
MATLAB, we consider in this section an adaptive median filter. As befo g is the image to be filtered, and, as defined above, Smax is the maxi- 

denotes a subimage centered at location (x, y )  in the image being proc llowed size of the adaptive filter window. 

The algorithm, which is explained in detail in Gonzalez and Woods [2002 
follows: Let ure 5.6(a) shows the circuit board image, f ,  corrupted by salt-and- EXAMPLE 5.6: 

noise, generated using the command Adaptive median 
zmin = minimum intensity value in S,y, filtering. 

z,,, = maximum intensity value in Sxy imnoise(f ,  ' s a l t  & pepper ' ,  . 2 5 ) ;  
z,,, = median of the intensity values in S,, 

z,, = intensity value at coordinates ( x ,  y)  .6(b) shows the result obtained using the command (see Section 3.5.2 
the use of medf i l t 2 ) :  

The adaptive median filtering algorithm works in two levels, denoted lev 
and level B: medf i l t2(g ,  [ 7  71, ' symmetr ic ' ) ;  

Level A: If zmin < zn,,, < zmax, go to level B 
Else increase the window size 
If window size 5 S,,,, repeat level A 
Else output zmed 

Level B: If z,in < z,, < z ,,,, output z.,, 
Else output zmed = adpmedian(g, 7 ) ;  

where S,,, denotes the maximum allowed size of the adaptive filter 
Another option in the last step in Level A is to output z,, instead of the the image in Fig. 5.6(c), which is also reasonably free of noise, but is 

This produces a slightly less blurred result but can fail.to detect salt ( rably less blurred and distorted than Fig. 5.6(b). % 
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Ecd Periodic Noise Reduction Another important degradation model is image blur due to uniform lin- 
tion between the sensor and scene during image acquisition. Image blur 

by Frequency Domain Filtering modeled using IPT function f s p e c i a l :  
As noted in Section 5.2.3, periodic noise manifests itself as impulse-like bu 
that often are visible in the Fourier spectrum. The principal approach for PSF = f s p e c i a l ( ' m o t i o n l ,  l e n ,  t h e t a )  

tering these components is via notch filtering. The transfer function of a 
terworth notch filter of order tz is given by all to f s p e c i a l  returns a PSF that approximates the effects of linear 

of a camera by l e n  pixels. Parameter t h e t a  is in  degrees, measured 

H (u,  v) = 
1 pect to the positive horizontal axis in a counter-clockwise direction. 

en is 9 and the default t h e t a  is 0, which corresponds to  
n of 9 pixels in the horizontal direction. 
use function imf i l t e r  to create a degraded image with a PSF that is 

where known or  is computed by using the method just described: 

Dl(u,  V )  = [(L( - M/2 - + (v - N / 2  - v~))~]'/* = i m f i l t e r ( f ,  PSF, ' c i r c u l a r ' ) ;  
and 

e ' c i r c u l a r  ' (Table 3.2) is used to reduce border effects. We then com- 
D~(zr,  V )  = [ ( [ I  - M / 2  f no)' + (v - N / 2  + v~)']'/~ the degraded image model by adding noise, as appropriate: 

where ([LO, vo) (and by symmetry) ( -uo,  -vo) are the locations of the "notch 
and Do is a measure of their radius. Note that the filter is specified with res 
to the center of the frequency rectangle, so it must be preprocessed with f 
tion f f  t s h i f  t prior to its use, as explained in Sections 4.2 and 4.3. no ise  is a random noise image of the same size as g, generated using 

Writing a n  M-function for notch filtering follows the same principles us the methods discussed in Section 5.2. 

in Section 4.5. It is good practice to write the function so that multiple notch en comparing in a given situation the suitability of the various ap- 

can be input, as in the approach used in Section 5.2.3 to  generate multiple es discussed in this and the following sections, it is useful to use the 

nusoidal noise patterns. Once H has been obtained, filtering is done us ttern so that comparisons are meaningful. The test pat- 

function df t f  i l t  explained in Section 4.3.3. d by function checkerboard is particularly useful for this pur- 
its size can be scaled without affecting its principal features. The 

%%@ Modeling the Degradation Function 

When equipment similar to the equipment that generated a degraded ima C = checkerboard(NP, M ,  N )  
available, it is generally possible to  determine the nature of the degradatio 
experimenting with various equipment settings. However, relevant ima e NP is the number of pixels on the side of each square, M is the number of 
equipment availability is the exception, rather than the rule, in the solution ,and ti is the number of columns. If N is omitted, it defaults to M. If both M 
image restoration problems, and a typical approach is to  experiment by gen are omitted, a square checkerboard with 8 squares on  the side is gener- 
ating PSFs and testing the results with various restoration algorithms.Ano is omitted, it defaults to  10 pixels. The light squares on 
approach is to attempt to model the PSF mathematical1y.This approach is half of the checkerboard are white. The light squares on  the right half 
side the mainstream of our discussion here; for an introduction to this to checkerboard are gray. To generate a checkerboard in which all light 
see Gonzalez and Woods [2002]. Finally, when no information is ayailab es are white we use the command 
about the PSF, we can resort to  "blind deconvolution" for inferring th 
This approach is discussed in Section 5.10. The focus of the remainder K = im2double(checkerboard(NP, M ,  N ) )  > 0 .5 ;  
present section is on various techniques for modeling PSFs by using fu 
imf i l t e r  and f s p e c i a l ,  introduced in Sections 3.4 and 3.5, respectively, an ages generated by function checkerboard are of class double with val- 
the various noise-generating functions discussed earlier in this chapter. 

One of the principal degradations encountered in image restoration pro ecause some restoration algorithms are slow for large images, a good ap- 
lems is image blur. Blur that occurs with the scene and sensor at  rest with r ch is to  experiment with small images to  reduce computation time and 
spect to  each other can be modeled by spatial or frequency domain lowpas improve interactivity. In this case, it is useful for display purposes to  be 

on Function 167 

checke rboa rd  

U.rirlg ill? > operrtror 
l~rotirlce.~ rr l o g i c a l  
reslllt; im2double  i.7 
llserl ro prurilrcc. on 
ilnrtgr o f  cili.>.s 
double .  1vllic11 is 
c o ~ z ~ i s ~ c ~ ~ r  111ith the 
o~i ip~r i for t~~rrr  o f  
~ ' I I I I C ~ ~ O I ?  

checkerboard.  
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EXAMPLE 5.7: 
Modeling a 
blurred, noisy 
image. 

5.6 a Direct Inverse Filtering 169 mage Restoration 

able to zoom an image by pixel replication. The following function does th ate that the PSF is just a spatial filter. Its values are 

(see Appendix C for the code): 

B = pixeldup(A, m, n) 
0 0 0 0 0 0.0145 0 

This function duplicates every pixel in A a total of rn times in the vertical dire 0 0 0 0 0.0376 0.1283 0.0145 
0 0 0 0.0376 0.1283 0.0376 

tion and n times in the horizontal direction. If n is omitted, it defaults to m. 
0 

0 0 0.0376 0.1283 0.0376 0 0 
0 0.0376 0.1283 0.0376 0 0 0 

B Figure 5.7(a) shows a checkerboard image generated by the command 0.0145 0.1283 0.0376 0 0 0 0 

0 0.0145 0 0 0 0 0 
>> f = checkerboard(8); 

noisy pattern in Fig. 5.7(c) was generated using the command 
The degraded image in Fig. 5.7(b) was generated using the commands 

oise = imnoise(zeros(size(f)), 'gaussian', 0, 0.001); 
>> PSF = fspecial('motion', 7, 45); 
>> gb = imfilter(f, PSF, 'circular'); ally, we would have added noise to gb directly using imnoise(gb, 

ssian ' , 0, 0.001 ) . However, the noise image is needed later in this 

FIGURE 5.7 
(a) Original 
image. (b) Image 
blurred using 
f speclal w ~ t h  
len = 7 ,  and 
theta = -45 
degrees 
(c) No~se Image. 
(d) Sum of (b) 
and (c). 
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This deceptively simple expression tells us that. even if we knew H(i1 v 
actly, we could not recover F(u .  ,u) [and hence the original, undegrade 1 
f ( s .  y ) ]  because the noise component is a random function whose f - --- C C s f ( l l ,  'u)  
transform, N ( u ,  v ) .  is not known. I11 addition, there usually is a pro * - MN ,, " 
practice with function H ( M ,  v) having numerous zeros. Even if the and N denote the vertical and horizontal sizes of the image and noise 
N ( u ,  v )  were negligible, dividing it by vanishing values of H ( u ,  .u) would spectively. These quantities are scalar constants, and their ratio, 
inate restoration estimates. 

The typical approach when attempting inverse filtering is to form the R = %  
~ ( L L .  v) = G ( u ,  v ) /H( i r ,  v )  and then limit the frequency range for o o ~ a  f~ 
the inverse, to frequencies "near" the origin. The idea is that zeros in H ( u ,  also a scalar. is used sometimes to generate a constant array in place 
are less likely to  occur near the origin because the magnitude of the transfo nctio~l S,(LL, v ) / S J ( i ~ ,  ,u). In this case, even if the actual ratio is not 
typically is at its highest value in that region.There are numerous variatio it becomes a simple matter to experiment interactively varying the 
this basic theme, in which special treatment is given at values of (11, v t and viewing the restored results. This, of course, is a crude approxi- 
which H is zero or  near zero. This type of approach sometimes is cal that assumes that the functions are constant. Replacing 
yse~cdoinverse filtering. In general, approaches based on inverse filtering / S f ( ~ 1 ,  v )  by a constant array in the preceding filter equation results in 
this type are seldom practical, as Example 5.8 in the next section shows. -called paranzetric Wiener filter. A s  illustrated in Example 5.8, the simple 

using a constant array can yield significant improvements over direct in- 

Wiener Filtering 
er filtering is implemented in IPT using function deconvwnr, which 

Wiener filtering (after N. Wiener, who first proposed the method in 1942 e possible syntax forms. In all these forms, g denotes the degraded 
one of the earliest and best knoyn  approaches to linear image restoratio and f r is the restored image.The first syntax form, 
Wiener filter seeks an estimate f' that minimizes the statistical error funct 

f r = deconvwnr ( g ,  PSF) 
e2 = ~ { ( f  - j)') 

where E is the expected value operator and f is the undegraded image.The es that the noise-to-signal ratio is zero. Thus, this form of the Wiener fil- 
lution to  this expression in the frequency domain is he inverse filter mentioned in Section 5.6.The syntax 

1 H ( L L ,  ,u) l 2  
F ( L L ,  v )  = - ]G(LL,  V )  f r  = deconvwnr(g, PSF, NSPR) 

H(l1, ,u) 1 ~ ( u ,  v)12 + S,(LL, v ) / S f ( i ~ ,  v )  [ 
that the noise-to-signal power ratio is known, either as a constant o r  

where ay; the function accepts either one. This is the syntax used to imple- 

H ( u ,  .v) = the degradation function e parametric Wiener filter, in which case NSPR would be an interactive 
r input. Finally, the syntax 

l ~ ( 1 . 1 ,  v)12 = H * : ( ~ ~ ,  . U ) H ( L L ,  v )  

H;;'(LL, u )  = the complex conjugate of H ( I L ,  ,u) f r  = deconvwnr(g, PSF, NACORR, FACORR) 

S,,(LI, v )  = ( ~ ( 1 1 ,  ?))I2 = the power spectrum of the noise 
es that autocorrelation functions. NACORR and FACORR, of the noise and Sf(11, ,u) = l ~ ( u ,  u)12 = the power spectrum of the undegraded image 
raded image are known. Note that this Corm of deconvwnr uses the au- 

The ratio S,(14. u ) / S / . ( ~ l ,  71) is called the noise-to-sigtzal power r d o .  We see elation of 7 and f' instead of the power spectrum of these functions. 
if the noise power spectrum is zero for all relevant values of u and v, this r the correlation theorem we know that 
becomes zero and the Wiener filter reduces to the inverse filter discusse 
the previous section. I ~ ( u ; u j l '  = 3 [ f ( x ,  y )  o f ( x .  Y ) ]  

Two related quantities of interest are the average noise power and the ave re " 0 " denotes the correlation operation and ,'; denotes the Fourier 
age image power. defined as This expression indicates that we can obtain the autocorrelation 

' ( x .  y) 0 f ( x ,  y ) ,  for use in deconvwnr by computing the inverse 
1 ransform of the power spectrum. Similar comments hold for the auto- 

ation of the noise. 

deconvwnr 
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edgetaper 

EXAMPLE 5.8: 
Using function 
deconvwnr to 
restore a blurred. 
noisy image. 

FIGURE 5.8 
(a) Blurred, noisy 
image. (b) Result 
of inverse 
filtering. 
(c) Result of 
Wiener filtering 
using a constant 
ratio. (d) Result 
of Wiener filtering 
using 
autocorrelation 
functions. 
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If the restored image exhibits ringing introduced by the discrete Fou g is the corrupted image and PSF is the point spread function computed 
transform used in the algorithm, it sometimes helps to use function edgetap 
prior to calling deconvwnr.The syntax is 

J = edgetaper(1 ,  PSF) 
ratio, R, discussed earlier in this section, was obtained using the original 

This function blurs the edges of the input image, I ,  using the point spread fu ise images from Example 5.7: 
tion, PSF.The output image, J ,  is the weighted sum of I and its blurred j~ersi 
The weighting array, determined by the autocorrelation function L .  P n = a b s ( f f t 2 ( n o i s e ) ) . ^ 2 ;  % noise power spectrum 
makes J equal to I in its central region, and equal to the blurred version o A = sum(Sn(:))/prod(size(noise)); % noise average power 
near the edges. f = a b s ( f f t 2 ( f ) ) . " 2 ;  % image power spectrum 

A = sum(Sf(:))/prod(size(f)); % image average power 
@i Figure 5.8(a) is the same as Fig. 5.7(d), and Fig. 5.8(b) was obtained u 
the command 

>> f r l  = deconvwnr(g, PSF) ; 
2 = deconvwnr(g, PSF, R); 

ORR = fftshift(real(ifft2(Sn))); 
ORR = fftshift(real(ifft2(Sf))); 

r3 = deconvwnr(g, PSF, NCORR, ICORR); 

accomplished with Wiener deconvolution in this case. The challenge in 
e, when one (or more) of these quantities is not known, is the intelligent 

ns used in experimenting, until an acceptable result is 
I 

Constrained Least Squares (Regularized) Filtering 
er well-established approach to linear restoration is constrained least 

T documentation. The defini- 

1 M-1 N-1 

h ( x ,  y )* f  ( x ,  Y )  = - C, C, f (m,  n ) h ( x  - m, Y  - n )  
MNm=o n = O  

this equation, we can express the linear degradation model discussed in 
n 5.1, g ( x ,  y )  = h ( x ,  y)*f ( x ,  y )  + ~ ( x ,  y ) ,  in vector-matrix form, as 

g = H f + q  
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For example, suppose that g(x, y)  is of size M  X N. Then we can form the 
N  elements of the vector g by using the image elements in the first ro  
g ( . ~ ,  y), the next N  elements from the second row, and so on.The resulting 
tor will have dimensions MN x 1. These also are the dimensions o f f  and 
these vectors are formed in the same manner. The matrix H then has dim 
sions MN x MN. Its elements are given by the elements of the preceding c 
volution equation. 

It would be reasonable to arrive at  the conclusion that the restoration p 
lem can now be reduced to simple matrix manipulations. Unfortunatel) th 
not the case. For instance, suppose that we are working with images of med onvreg, which has the syntax 
size; say M = N  = 512. Then the vectors in the preceding matrix equa 

f r  = deconvreg(g ,  PSF, NOISEPOWER, RANGE)  v r e g  

Although we do not derive the method of constrained least squares 
are about to present, central to this method is the issue of the sensitivit 

rs inside the brackets are  the noise variance and noise 

what is desired is to find the minimum of a criterion function, C, defined a 

M - I  N - I  now restore the image in Fig. 5.7(d) using deconvreg. The image is of EXAMPLE 5.9: 

c = 2 2 [v2f(xt y)12 x 64 and we know from Example 5.7 that the noise has a variance of Using function 
s=O y=O and zero mean. So, our initial estimate of NOISEPOWER is decOnvreg to 

restore a blurred. 
subject to the constraint 

.OO1 - 01 = 4 Figure 5.9(a) shows the result of using the command 
image, 

I I ~  - H~II' = IIVII* = deconvreg(g ,  PSF, 4 ) ;  

a b  
FIGURE 5.9 
(a) The image in 
Fig. 5.7(d) 
restored using a 
regularized filter 
with NOISEPOWER 
equal to 4. (b) The 
same image 

form of the function restored with 
NOISEPOWERequal 
to 0.4 and a RANGE 
of [Ie-7 l e7] .  
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where g and PSF are from Example 5.7.The image was improved so he estimate of the undegraded 
the original, but obviously this is not a particularly good value for NO 
After some experimenting with this parameter and parameter RANGE, 
at the result in Fig. 5.9(b), which was obtained using the command 

most nonlinear methods, the question of when to stop the L-R al- 
>> f r  = deconvreg(g, PSF, 0 .4 ,  [le-7 l e 7 1 ) ;  difficult to answer in general.The approach often followed is to ob- 

stop the algorithm when a result acceptable in a given 
Thus we see that we had to go down one orde n has been obtained. 
and RANGE was tighter than the -R algorithm is implemented in IPT by function deconvlucy, which 
Fig. 5.8(d) is much better, but we o 
the noise and image spectra. Without that information, the results obtai 
by experimenting with the two filters often are comparable. 

f r  = deconvlucy(g, PSF, NUMIT, DAMPAR, WEIGHT) 

If the restored image exhibits ringing introduced by the discrete Fou 
transform used in the algorithm, it usually helps to use function edgeta f r is the restored image, g is the degraded image, PSF is the point 
(see Section 5.7) prior to calling deconvreg. function, NUMIT is the number of iterations (the default is lo), and 

and WEIGHT are defined as follows. 
AR is a scalar that specifies the threshold deviation of the resulting 

Iterative Nonlinear Restoration Using the rom image g.  Iterations are suppressed for the pixels that deviate 
Lucy-Richardson Algorithm the DAMPAR value from their original value. This suppresses noise gen- 

preserving necessary image details.The default is 0 (no 
The image restoration methods discuss 
linear. They also are "direct" in the sens 
specified, the solution is obtained via one ap 
ity of implementation, coupled with modes can be excluded from the solution by assigning to it a zero weight 
a well-established theoretical base, have made linear techniques a fundam other useful application of this array is to let it adjust the weights of 
tal tool in image restoration for many years. 

During the past two decades, nonlinear iterative techniques have been 
ing acceptance as restoration tools that often yield results superio 
obtained with linear methods. The principal objections to nonlinea 
are that their behavior is not always predictable and that they generally 
quire significant computational resources. The first objection often loses i 
portance based on the fact that nonlinear methods have been shown to 
superior to linear techniques in a broad spectrum of applications (Jans inging introduced by the discrete Fourier 
[1997]). The second objection has become less of an issue due to th rithm, it sometimes helps to use function edgetaper 
increase in inexpensive computing power o 
method of choice in the toolbox is a technique developed 
119721 and by Lucy [1974], working independently. The toolbox re gure 5.10(a) shows an image generated using the command method as the Lucy-Richardson (L-R) algorithm, but we also see it quote 
the literature as the Richardson-Lucy algorithm. 

The L-R algorithm arises from a maximum-likelihood formulation ( f = checkerboard(8);  

Section 5.10) in which the image is modeled with Poisson statistics. Maxim 
ing the likelihood function of the model yields an equation that is satisfi are image of size 64 x 64 pixels. As before, the size of 
when the following iteration converges: image was increased to size 512 x 512 for display purposes by using func- 

j k + 1 ( ~ ,  Y )  = j k ( x ,  Y )  
imshow(pixeldup(f, 8 ) ) ;  

deconvlucy 

EXAMPLE 
Using funcli 
deconvlucy  
restore a b l ~  
noisy image. 
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FIGURE 5.1 0 
(a) Original 
image. (b) Image 
blurred and 
corrupted by 
Gaussian noise. 
(c) through ( f )  
Image (b) 
restored using the 
L-R algorithm 
with 5, 10,20, and 
100 iterations. 
respectively. 
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ship between pixels in an image. Thev are often called iubber>lzeet ~rnj?d 

tion, a process that takes two images of the same scene and aligns them <# 
they can be merged for visualization, or for quantitative comparison. In 1 
following sections, we discuss (1) spatial transformations and how to defi 
and visualize them in MATLAB; (2) how to apply spatial transformations 
images; and (3) how to determine spatial transformations for use in ima 
registration. 

%, I  1'  i Geometric Spatial Transformations 
Suppose that an image, f ,  defined over a (w, z )  coordinate system, undergc 

FIGURE 5.12 A simple spatial transformation. (Note that the .ry-axes in this figur 
not correspond to the image axis coordinate system defined in Section 2.1.1. 
mentioned in that section, IPT on occasion uses the so-called spatial coordin 
system in which y designates rows and x designates columns. This is the system 
throughout this section in order to be consistent with IPT documentation on the 
of geometric transformations.) 

See Sectior~s 2.10.6 
and 11.1.1 fora dis- 
cussion of stn~crures. 

TABLE 5.3 
Types of affine 
transformations. 
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The first input argument, t ransf  orm-type, is one of these strings: ' af f 
' project ive  ' , ' box ' , ' composite ' , or ' custom'. These transform typ 
described in Table 5.4, Section 5.11.3. Additional arguments depend o 2 = tforminv(XY, tform) 
transform type and are described in detail in the help page for maketf orm. 

In this section our interest is on affine transforms. For example, one w 
create an affine t f  orm is to provide the T matrix directly, as in 

2-7 T = [ 2  0 0;  0 3 0 ;  0 0 I ] ;  1 for the effects of a particular spatial transformation, it 
>7 tform = make t fo rm( ' a f f ine l ,  T) useful to see how it transforms a set of points arranged on a grid. The 
tform = 

ndims-in: 2 
ndims-out: 2 

forward-fcn: @fwd-affine 
inverse-fcn: @inv-affine 

t d a t a :  [ I  x 1 s t r u c t ]  

Although it is not necessary to use the fields of the t f  orm structure on vistformfwd(tform, wdata, zdata, N) 
to be able to apply it, information about T, as well as about T-', is cont ORMFWD Visualize forward geometric transform. 
the t d a t a  field: STFORMFWD(TFORM, WRANGE, ZUANGE, N )  shows two plots: an N-by-N 

i d  i n  the W-Z coordinate system, and the spatial ly transformed 
>> t form. tdata  i d  i n  the X - Y  coordinate system. WRANGE and ZRANGE are 
ans = o-element vectors specifying the desired range for  the grid.  N 

T: [3 x 3 double] n be omitted, i n  which case the default value i s  10. 
Tinv: [3 x 3 double] 

2 1  t f0rm. tdata .T 
ans = 

2 0 0 t e  the  w-z g r id  and transform i t .  
0 3 0  = meshgrid(linspace(wdata(l), z d a t a ( 2 ) ,  N ) ,  . . .  
0 0 1  l inspace (wda ta ( l ) ,  z d a t a ( 2 ) ,  N ) ) ;  

>> t form. tdata .Tinv 
ans = 

0.5000 0 0 
0 0.3333 0 ulate the m i n i m u m  and maximum values of w and x ,  
0 0 1 .oooo e l l  as z and y .  These are used so the two plots can be 

layed using the same scale. 
shape(xy(:, I ) ,  s ize(w)) ;  % reshape i s  discussed i n  Sec. 8.2.2. IPT provides two functions for applying a spatial transformation reshape(xy ( : , 2 ) ,  s ize(z)  ) ; 

points: tformfwd computes the forward transformation, T { ( w ,  z ) ) ,  a 
t f  orminv computes the inverse transformation, T - ' { ( x ,  y)).  The c 
syntax for tformfwd is X Y  = tformfwd(WZ, t fo rm) .  Here, WZ is a P 
matrix of points; each row of WZ contains the w  and z coordinates of 
point. Similarly, XY is a P X 2 matrix of points; each row contains the 
y coordinates of a transformed point. For example, the followin 
mands compute the forward transformation of a pair of points, follo ( w ,  z, ' b ' ) ,  axis equal, axis i j  
the inverse transform to verify that we get back the original data: 

>> wz = [ I  1 ;  3 21; 
>> XY = tformfwd(WZ, tform) 
XY = 
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se t (gca ,  'XAxisLocation', ' t o p ' )  
x l a b e l ( ' w l ) ,  y l a b e l ( ' z l )  

% C r e a t e  t h e  x -y  p l o t .  
s u b p l o t ( 1 ,  2 ,  2 )  FIGURE 5.1 3 
p l o t ( x ,  y ,  ' b ' ) ,  a x i s  e q u a l ,  a x i s  i j  Visualizing affine 
hold on transformations 
p l o t ( x l ,  y ' ,  ' b ' )  
hold o f f  
x l i m ( w x 1 i m i . t ~ )  
y l i m ( z y 1 i m i t s )  tforml. 
s e t ( g c a ,  'XAxisLoca t ion ' ,  ' t o p ' )  (c) Grid 2. 
x l a b e l ( ' x l ) ,  y l a b e l ( ' y l )  

EXAMPLE 5.12: ## In this example we use vis t formfwd to visualize the effect of sever 
Visualizing affine ferent affine transforms. We also explore a n  alternate way to create an 
transforms using tf orm using maketf orm. We start with an affine transform that scales ho v i s t f  ormfwd. 

tally by a factor of 3 and vertically by a factor of 2: 

> > T I  = [ 3  0 0 ;  0 2 0 ;  0 0 I ] ;  
>> t f o r m l  = m a k e t f o r m ( ' a f f i n e l ,  T I ) ;  
>> vis t fo rmfwd( t form1,  [ 0  1001, [ 0  1 0 0 1 ) ;  

Figures 5.13(a) and (b) show the result. 
A shearing effect occurs when t21 or  t I 2  is nonzero in the affine T mat zu X 

such as 

>> T2 = [ I  0 0 ;  . 2  1 0 ;  0 0 I ] ;  
>> t form2 = m a k e t f o r m ( ' a f f i n e ' ,  T 2 ) ;  
>> v i s t f o r m f w d ( t f o r m 2 ,  [ 0  1 0 0 ] ,  [ 0  1001) ;  

Figures 5.13(c) and (d) show the effect of the shearing transform on a grid. 
A n  interesting property of affine transforms is that the compositio 

era1 affine transforms is also an affine transform. Mathematically, affin 
forms can be generated simply by using multiplication of the T matrices. 
next block of code shows how to generate and visualize an affine transfor 
that is a combination of scaling, rotation, and shear. 

>> T s c a l e  = [ 1 . 5  0 0 ;  0 2 0 ;  0 0 1 1 ;  
>> T r o t a t i o n  = [ c o s ( p i i 4 )  s i n ( p i i 4 )  0 .?. Applying Spatial Transformations to Images - s i n ( p i / 4 )  c o s ( p i J 4 )  0 

0 0 1 1 ;  t computational methods for spatially transforming a n  image fall into 
>> Tshear  = [ I  0 0 ;  . 2  1 0 ;  0 0 I ] ;  of two categories: methods that use forward mapping,  and methods that 
>> T3 = T s c a l e  * T r o t a t i o n  * Tshear ;  inverse mapping. Methods based on forward mapping scan each input 
>> t fo rm3 = m a k e t f o r m ( ' a f f i n e l ,  T 3 ) ;  1 in turn, copying its value into the output image at  the location deter- 
>> vis t fo rmfwd( t for rn3 ,  [ 0  1001, [ 0  1001) ed by T { ( w ,  z)).  One problem with the forward mapping procedure is 

two or more different pixels in the input image could be  transformed 
Figures 5.13(e) and (f) show the results. the same pixel in the output image, raising the question of how to 
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,, lmf ransf orm 

EXAMPLE 5.13: 
Spatially 
transforming 
images. 
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a b  
c d 
e 

FIGURE 5.14 
Affine 
transformations 
of the 
checkerboard 
image. 
(a) Or~glnal 
Image (b) Linear 
conformal 
transformation 
using the default 
interpolation 
(bilinear). 
(c) Using nearest 
ne~ghbor 
~nterpolatlon. 
(d) Spec~fying an 
alternate fill 
value. 
(e) Controlling 
the output space 
location so that 
translation 1s 
visible. 
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i m t r a n s f  orm: 

>> 92 = i m t r a n s f o r m ( f ,  t f o r m ,  ' n e a r e s t ' ) ;  

e images were taken at different times using the same instrument, such 
lite images of a given location taken several days, months, or even years 
n either case, combining the images or performing quantitative analysis 
mparisons requires compensating for geometric aberrations caused by 
nces in camera angle, distance, and orientation; sensor resolution; shift 

Function i m t  r a n s f  orm has several additional optional parameters that ect position; and other factors. 
useful at times. For example, passing it a F i l l V a l u e  parameter controls 
color i m t  r a n s f  orm uses for pixels outside the domain of the input image: 

>> 93 = i m t r a n s f o r m ( f ,  t f o r m ,  ' F i l l v a l u e ' ,  0 . 5 ) ;  1 points using a test pattern and a version of the test pattern that has un- 
projective distortion. Once a sufficient number of control points have 

In Fig. 5.14(d) the pixels outside the original image are mid-gray instead of bl sen, IPT function c p 2 t f  orm can be used to fit a specified type of spatial 
Other extra parameters can help resolve a common source of confusion 

garding translating images using im t rans fo rm.  For example, the follow 
commands perform a pure translation: 

>> T2 = [ l  0  0;  0  1 0 ;  50 50 I ] ;  
>> t f o r m 2  = m a k e t f o r m ( ' a f f i n e 1 ,  T 2 ) ;  
>> 94 = i m t r a n s f o r m ( f ,  t f o r m 2 ) ;  

The result, however, would be identical to the original image in Fig. 5.14 
This effect is caused by default behavior of im t rans fo rm.  Specific 
i m t r a n s f  orm determines the bounding box (see Section 11.4.1 for a defini 

pute the result. XData is a two-element vector that specifies the location o 
left and right columns of the output image; YData is a two-element vector 
specifies the location of the top and bottom rows of the output image.The 
lowing command computes the output image in the region betwe 
( x ,  y )  = (1, I )  and ( x ,  y) = (400,400). 

>> 95 = imtransform(f ,  t form2, 'XData' ,  [ I  4001, 'YData', [ I  4001, . . .  
' F i l l V a l t i e ' ,  0 .5) ;  

Figure 5.14(e) shows the result. 

Most of the relevant toolbox documentation is in the help pages f 
imtransformandmakeresampler .  
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FIGURE 5.1 5 
Image registration 
based on control 
points. 
(a) Original image 
with control 
points (the small 
circles 
superimposed on 
the image). 
(b) Geometrically 
distorted image 
with control 
points. 
(c) Corrected 
image using a 
projective 
transformation 
inferred from the 
control points. 
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TABLE 5.4 
Transformation 
types supported 
by cp2tf orm an' 
maketform. 

mage Restoration 

Independent scaling and translation 
along each dimension; a subset 

A collection of spatial 
transformations that are applied 

Linear conformal Scaling (same in all dimensions), 

Local weighted mean; a locally- 
varying spatial transformation. 

Piecewise linear Locally varying spatial transformation. cp2tf orm olbox includes a graphical user interface designed for the interactive 

Input spatial coordinates are a of control points on a pair of images. Figure 5.16 shows a screen cap- 
function of output is tool, which is invoked by the command c p s e l e c t .  

spatial coordinates. 

As with the affine transformation, 
straight lines remain straight, 
but parallel lines converge toward 
vanishing points. 

transformation to the control points (using least squares techniques).Tne s 

lications that enhance the capabilities of an already large set of existing tools. 

the commands needed to align image g to image f are as follows: 

>> basepoints = [83 81; 450 56; 43 293; 249 392; 436 4421; 
>> i n p u t p o i n t s  = [68 66; 375 47; 42 286; 275 434; 523 5321; 
>> t f o r m  = cp2t form( inputpo ints ,  basepoints, ' p r o j e c t i v e ' ! ;  
>> gp = imtransform(g, t form,  'XData' , [ I  5021, 'YData' , [I 5021) 

Figure 5.15(c) shows the transformed image. 
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FIGURE 5.16 
Interactive tool 
for choosing 
control points. 

cpselect 
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..... 
...... 

- Blue component image 

- Green component image 

Red component image 

mage is (zbl3, where b is the number of bits in each 

R, fG, and f B represent three R G B  component images. A n  R G B  image 
by using the c a t  (concatenate) operator to stack 

rgb-image = c a t ( 3 ,  fR,  f G ,  f B )  

additional color generation and transformation functions. The discussi 
this chapter assumes familiarity on  the part of the reader with the princip 
and terminology of color image processing at an introductory level. 

Color Image Representation in MATLAB 
A s  noted in Section 2.6, the Image Processing Toolbox handles color 
either as indexed images or R G B  (red, green, blue) images. In this sec 
discuss these two image types in some detail. 

3.1": RGB Images f R  = rgb-image(:, :, 1 ) ;  
fG = rgb-image(:,  :, 2 ) ;  

A n  RGB color inznge is an M X N X 3 array of colorpi.refs, wh fB = rgb-image(:,  :, 3 ) ;  
pixel is a triplet corresponding to the red, green, and blue compon 
RGB image at  a specific spatial location (see Fig. 6.1). An RGB ima 
viewed as a "stack" of three gray-scale images that, when fed int 
green, and blue inputs of a color monitor, produce a color image on the s n, magenta, and yellow) colors of light. 
By convention, the three images forming an R G B  color image are e able to  view the color cube from any perspective. 
as the red, green, and blue conzponent in~nges.The data class of the compo nction rgbcube is used for this purpose.The syntax is 
images determines their range of values. If an R G B  image is of class dou 
the range of values is [0, I]. Similarly, the range of values is [0, 2551 or [O, 65 rgbcube(vx ,  vy ,  v z )  
for  R G B  images of class u i n t 8  or  u i n t l 6 .  respectively. The number of 
used to represent the pixel values of the component images determ , v z )  at  the prompt produces an R G B  cube on the 
depth of an R G B  image. For example, if each component image is an 8 LAB desktop, viewed from point ( v x  , vy , vz ) . The resulting image 
image, the corresponding RGB image is said to  be 24 bits deep. Generally, e saved to disk using function p r i n t ,  discussed in Section 2.4. The code 
number of bits in all component images is the same. In this case, the nurnbe is function follows. I t  is self-explanatory. 

FIGURE 6.1 
Schematic 
showing how 
p~xels of an RGB 
color image are 
formed from the 
corresponding 
pixels of the three 
component 
images. 

rgbcube ., " - 





TABLE 6.1 
RGB values of 
some basic colors. 
The long or short 
names (enclosed 
by quotes) can be 
used instead of 
the numerical 
triplet to specify 
an RGB color. 

Color Image Processing 6.1 ;sa Color Image Representation 

Sometimes it is necessary to approximate an indexed image by one with er colors in addition to the ones shown in Table 6.1 involve fractional val- 
fewer colors. For this we use function imapprox, whose syntax is ce , [ .5  .5  . 5 ]  isgray, [ . 5  0 0 ]  isdarkred,and [ .49  1 .831 

[Y, newmap] = imapprox(X,  map, n) provides several predefined color maps, accessed using the 

This function returns an array Y with colom~ap newmap, which has at most n color 
The input array X can be of class u i n t 8 ,  u i n t l 6 ,  or double.The output Y is of clas colormap(map-name) 
u i n t 8  if n is less than or equal to 256. If n is greater than 256, Y is of class double. 

When the number of rows in map is less than the number of distinct integer val- ich sets the colormap to the matrix map-name; an example is 
ues in X, multiple values in X are displayed using the same color in map. For exam- 
ple, suppose that X consists of four vertical bands (of equal width, with values I,@, > colormap(copper) 

128, and 256. If we specify the colormap map = [ 0  0 0; 1 1 1 1, then all the el- 
ements in X with value 1 would point to the first row (black) of the map and all the re copper is one of the prespecified MATLAB colormaps. The colors in 

other elements would point to the second row (white). Thus, the command map vary smoothly from black to bright copper. If the last image displayed 

imshow(x, map) would display an image with a black band followed by thr as an indexed image, this command changes its colormap to copper. Alter- 

white bands. In fact, this would be true until the length of the map became 65, atively, the image can be displayed directly with the desired colormap: 

which time the display would be a black band, followed by a gray band, followe 
by two white bands. Nonsensical image displays cam result if the length of the map imshow(X, copper) 

exceeds the allowed range of values of the elements of X. ble 6.2 lists some of the colormaps available in MATLAB.The length (number 
There are several ways to specify a color ma~p. One approach is to use th colors) of these colormaps can be specified by enclosing the number in paren- statement 

eses. For example, gray ( I  6)  generates a colormap with 16 shades of gray. 

>> map(k, : )  = I r ( k )  g ( k )  b ( k ) l  
1.3 IPT Functions for Manipulating RGB and Indexed Images 

where [ r ( k ) g ( k ) b ( k ) 1 are RGB values that specify one row of a col- ble 6.3 lists the IPT functions suitable for converting between RGB, in- ormap. The map is filled out by varying k. 
xed, and gray-scale images. For clarity of notation in this section, we use 

Table 6.1 lists the RGB values for some basic colors. Any of the three for- 
b-image to denote RGB images, gray-image to denote gray-scale images, 

mats shown in the table can be used to specify colors. For example, the back- to denote black and white images, and X, to denote the data matrix compo- 
ground color of a figure can be changed to green by using any of the following nt of indexed images. Recall that an indexed image is composed of an inte- three statements: 

r data matrix and a colormap matrix. 

>> w h i t e b g ( ' g l )  Function d i t h e r  is applicable both to gray-scale and color images. Dither- 
>> w h i t e b g ( ' g r e e n l )  a process used mostly in the printing and publishing industry to give the 
>> w h i t e b g ( [ O  1 01)  1 impression of shade variations on a printed page that consists of dots. In 

e case of gray-scale images, dithering attempts to capture shades of gray by 
oducing a binary image of black dots on a white background (or vice versa). 

sizes of the dots vary, from small dots in light areas to increasingly larger 
for dark areas. The key issue in implementing a dithering algorithm is a Long name Short name 

eoff between "accuracy" of visual perception and computational complex- 
Black k 10 0  01 ty.The dithering approach used in IPT is based on the Floyd-Steinberg algo- 
B l u e  b [O 0 11 hm (see Floyd and Steinberg [1975], and Ulichney [19871). The syntax used 
Green 9 [ o  1  01 function d i t h e r  for gray-scale images is 
Cyan c 
Red [ I  0 01 bw = d i the r (g ray - image)  
Magenta [ 1  0  11 
Yellow 11 1 0 1  
W h i t e  ere, as noted earlier, gray-image is a gray-scale image and bw is the 

11 1 11 thered result (a binary image). 
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TABLE 6.2 
Some of the 
MATLAB 
predefined 
colormaps. 

TABLE 6.3 
IPT functions for 
converting 
between RGB, 
indexed, and gray- 
scale intensity 
images. 

Color Image Processing 6.1 a Color Image Representation 

ind  to reduce the number of colors in an image. This 

Function g r a y s l i c e  has the syntax 

X = grays l ice (gray- image ,  n )  
colorcube Contains as many regularly spaced colors in RGB color space as 

possible, while attempting to provide more steps of gray, pure red, 
pure green, and pure blue. 
Consists of colors that are shades of cyan and magenta. It varies 
smoothly from cyan to magenta. 
Varies smoothly from black to bright copper. 1 2  n - 1  --, -, . . . , - 
Consists of the colors red, white, blue, and black.This colormap ,a n n  
completely changes color with each index increment. 
Returns a linear gray-scale colormap. 
Varies smoothly from black, through shades of red, orange, and 
yellow, to white. 
Varies the hue component of the hue-saturation-value color 
model. The colors begin with red, pass through yellow, green, cyan, X = grays l ice (gray- image ,  v )  
blue, magenta, and return to red. The colormap is particularly 
appropriate for displaying periodic functions. r whose values are used to threshold gray-image. When 
Ranges from blue to red, and passes through the colors cyan, in conjunction with a colormap, g r a y s l i c e  is a basic tool for pseudocol- 
yellow, and orange. 
Produces a colormap of colors specified by the ColorOrder 

age processing, where specified gray intensity bands are  assigned differ- 

property and a shade of gray. Consult online help regarding colors. The input image can be of class u i n t 8 ,  u i n t l 6 ,  o r  double.  The 

function ColorOrder. shold values in v must between 0 and 1, even if the input image is of class 

Contains pastel shades of pink. The pink colormap provides sepia 8 or u i n t  16. The function performs the necessary scaling. 
tone colorization of grayscale photographs. unction gray2ind,  with syntax 
Repeats the six colors red, orange, yellow, green, blue, and violet. 
Consists of colors that are shades of magenta and yellow. [X, map] = gray2ind(gray_image,  n)  

s, then rounds image gray-image to produce an indexed image X with 
If n is omitted, it defaults to  64. The input image can be of 
, o r  double.The class of the output image X is u i n t 8  if n is 

han or equal to  256, or of class u i n t l 6  if n is greater than 256. 
unction ind2gray,  with the syntax 

gray-image = ind2gray(X,  map) 

st in this chapter for function rgb2ind has the form 

[X, map] = rgb2ind(rgb_image,  n ,  d i t h e r - o p t i o n )  

here n determines the length (number of colors) of map, and di ther-opt ion 
Can have one of two values: ' l d i t h e r '  (the default) dithers, if necessary, to 
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EXAMPLE 6.1: 
Illustration of 
some of the 
functions in 
Table 6.3. 

a 
b c 
d e 
FIGURE 6.4 
(a) RGB image. 
(b) Number of 
colors reduced 
to 8 without 
dithering. 
(c) Number of 
colors reduced to 
8 with dithering. 
(d) Gray-scale 
version of (a) 
obtained using 
function 
rgb2gray. 
(e) Dithered gray- 
scale image (this 
is a binary image). 
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The image in Fig. 6.4(e) is a binary image, which again represents a sign 
degree of data reduction. By looking at Figs. 6.4(c) and (e), it is clear 
dithering is such a staple in the printing and publishing industry, especial 
situations (such as in newspapers) where paper quality and printing resolu 
are low. unction ntsc2rgb implements this equation: 

Converting to Other Color Spaces 
rgb-image = ntsc2rgb(yiq_image) 

As explained in the previous section, the toolbox represents colors as RGB the input and output images are of class double. 
ues, directly in an RGB image, or indirectly in an indexed image, where the 
ormap is stored in RGB format. However, there are other color spaces ( The YCbCr Color Space 
called color models) whose use in some applications may be more conven CbCr color space is used widely in digital video. In this format, luminance 
and/or appropriate. These include the NTSC, YCbCr, HSV, CMY, CMYK, ation is represented by a single component, Y, and color information is 
HSI color spaces. The toolbox provides conversion functions from RGB to as two color-difference components, Cb and Cr. Component Cb is the dif- 
NTSC, YCbCr, HSV and CMY color spaces, and back. Functions for conver between the blue component and a reference value, and component Cr is 
to and from the HSI color space are developed later in this section. 

6.2.1 NTSC Color Space 

conversion function is 

ycbcr-image = rgb2ycbcr(rgb_image) 

input RGB image can be of class uint8,  u in t l6 ,  or double. The output 
the transformation e is of the same class as the input. A similar transformation converts from 

Cr back to RGB: 

rgb-image = ycbcr2rgb(ycbcr_image) 

input YCbCr image can be of class uint8,  u in t l6 ,  or double.The output 
ge is of the same class as the input. 

an image. Function rgb2ntsc performs the transformation: 
(hue, saturation, value) is one of several color systems used by people to 

t colors (e.g., of paints or inks) from a color wheel or palette. This color 
yiq-image = rgb2ntsc(rgb_image) is considerably closer than the RGB system to the way in which hu- 

where the input RGB image can be of class uint8,  u in t l6 ,  or double. 
output image is an M X N X 3 array of class double. Component i ated by looking at the RGB color cube along 
yiq-image ( : , : , 1 ) is the luminance, yiq-image ( : , : , 2)  is the hue, an 
yiq-image ( : , : , 3)  is the saturation image. 

Similarly, the RGB components are obtained from the YIQ component 
using the transformation: 

Zolor Spaces 205 

To see the tramforma- 
tion matrix used to 
convert from YCbCr 
to RGB, type the fol- 
lowing command at 
the prompt: 
>> e d i t  ycbcr2rgb 



206 Chapter 6 rn ( 

a b  
FIGURE 6.5 
(a) The HSV 
color hexagon. 
(b) The HSV 
hexagonal cone. 
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devices that deposit colored pigments on paper, such as color printers 
iers, require CMY data input or perform an RGB to CMY conversion 

This conversion is performed using the simple equation 

ere the assumption is that all color values have been normalized to the range 
n demonstrates that light reflected from a surface coated with 
t contain red (that is, C = 1 - R in the equation). Similarly, 

inant color in printing), a fourth color, black, is added, giving rise to the 
color model. Thus, when publishers talk about "four-color printing," 

0" axis. Value is measured along the axis of the cone. The V = 0 end of the 
is black. The V = 1 end of the axis is white, which lies in the center of the 
color hexagon in Fig. 6.5(a). Thus, this axis represents all shades of gray. Sat m RGB to CMY 

tion (purity of the color) is measured as the distance from the V axis. 
cmy-image = imcomplernent(rgb-image) 

use this function also to convert a CMY image to RGB: 
ues (which are in Cartesian coordinates) to cylindrical coordinates. 
is treated in detail in most texts on computer graphics (e.g., see Rogers rgb-image = imcomplement(cmy-image) 
so we do not develop the equations here. 

The MATLAB function for converting from RGB to HSV is rgb2hs 5 The HSI Color Space 
whose syntax is 

hsv-image = rgb2hsv(rgb_image) 

The input RGB image can be of class uint8, uintl6, or double; the out 
image is of class double.The function for converting from HSV back to R 
is hsv2rgb: 

orange, or red), whereas saturation gives a measure of the degree to 

rgb-image = hsv2rgb(hsv_image) olor is diluted by white light. Brightness is a subjective descrip- 
to measure. I t  embodies the achromatic no- 

The input image must be of class double. The output also is of class doubl 
ost useful descriptor of monochromatic im- 
easurable and easily interpretable. 

6.2.4 The CMY and CMYK Color Spaces 
Cyan, magenta, and yellow are the secondary colors of light or, alternati 
the primary colors of pigments. For example, when a surface coated with 
pigment is illuminated with white light, no red light is reflected 
face. That is, the cyan pigment subtracts red light from reflected 
which itself is composed of equal amounts of red, green, and blue light. 
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a b  
FIGURE 6.6 
Relationship 
between the RGB 
and HSI color 
models. 
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similar, but its focus is on presenting colors that are meaningful when interpre 
ed in terms of a color artist's palette. 

As discussed in Section 6.1.1, an RGB color image is composed 
monochrome intensity images, so it should come as no surprise that 
be able to extract intensity from an RGB image.This becomes quite c 
take the color cube from Fig. 6.2 and stand it on the black, (0,0, O), ver 
with the white vertex, (1,1, I), directly above it, as Fig. 6.6(a) shows. 
in connection with Fig. 6.2, the intensity is along the line joining the 
tices. In the arrangement shown in Fig. 6.6, the line (intensity axis) j 
black and white vertices is vertical. Thus, if we wanted to determine 
sity component of any color point in Fig. 6.6, we would simply pass a 
perpendicular to the intensity axis and containing the color point. The 
section of the plane with the intensity axis would give us an intensity va 
the range [O,l]. We also note with a little thought that the saturation (p 
of a color increases as a function of distance from the intensity axis. In fact, 
saturation of points on the intensity axis is zero, as evidenced by the fact t 
all points along this axis are gray. g discussion, we see that the HSI space consists of a 

In order to see how hue can be determined from a given RGB point, co 1 intensity axis and the locus of color points that lie on a plane perpen- 

sider Fig. 6.6(b), which shows a plane defined by three points, (black, to this axis. As the plane moves up and down the intensity axis, the 

and cyan). The fact that the black and white points are contained in the pl 
tells us that the intensity axis also is contained in the plane. Furthermore, 
see that all points contained in the plane segment defined by the intensi down its gray-scale axis, as shown in Fig. 6.7(a). In 

and the boundaries of the cube have the same hue (cyan in this case). Thi rimary colors are separated by 120". The secondary 

because the colors inside a color triangle are various combinations or mixture 
of the three vertex colors. If two of those vertices are black and white, and t 
third is a color point, all points on the triangle must have the same hue sin 
the black and white components do not contribute to changes in h 
course, the intensity and saturation of points in this triangle do change). By 
tating the shaded plane about the vertical intensity axis, we would obtain 
ferent hues. From these concepts we arrive at the conclusion that the ical axis) is the length of the vector from the origin 

saturation, and intensity values required to form the HSI space can be origin is defined by the intersection of the color 

tained from the RGB color cube. That is, we can convert any RGB point with the vertical intensity axis. The important components of the HSI 

corresponding point is the HSI color model by working out the geometri space are the vertical intensity axis, the length of the vector to a color 

formulas describing the reasoning just outlined in the preceding discussion. tor makes with the red axis. Therefore, it is not un- 
efined is terms of the hexagon just discussed, a tri- 

White gs. 6.7(c) and (d) show. The shape chosen is not 

verting Colors from RGB to HSI 

the address is listed in Section 1.5) 
Given an image in RGB color for- 

at, the H component of each RGB pixel is obtained using the equation 

Black 
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FlGlJRE 6.7 Hue and 
saturat~on in the HSI 
color model.The dot 
is an arbitrary color 
pomt.The angle from 
the red axis gives the 
hue, and the length of 
the vector is the 
saturation.The 
intensity of all colors 
in any of these planes 
is given by the 
position of the plane 
on the vertical 
Intensity axis. 
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FIGURE 6.8 The 
HSI color model 
based on (a) 
triangular and (b) 
circular color 
planes. The 
triangles and 
circles are 
perpendicular to 
the vertical 
intensity axis. 
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; [ ( R  - G )  + ( R  - B ) ]  
e = COS-I 

[ ( R  - G ) ~  + ( R  - B ) ( G  - B ) ] ' / ~  

saturation component is given by 

I 
S = l -  

3 
( R  + G + B )  [min(R, G,  B ) ]  

ally, the intensity component is given by 

1 
I = - ( R  + G + B )  

3 

assumed that the RGB values have been normalized to the range [0, 11, 
that angle 0 is measured with respect to the red axis of the HSI space, as in- 
ted in Fig. 6.7. Hue can be normalized to the range [O,1] by dividing by 360" 
alues resulting from the equation for H. The other two HSI components al- 

dy are in this range if the given RGB values are in the interval [O, l ] .  

verting Colors from HSI to RGB 
n values of HSI in the interval [0, 11, we now find the corresponding RGB 

ues in the same range. The applicable equations depend on the values of H. 
are three sectors of interest, corresponding to the 120" intervals in the 
tion of primaries (see Fig. 6.7). We begin by multiplying H by 360°, 
returns the hue to its original range of [0°, 36O0]. 

sector (0" 5 H < 120"): When H i s  in this sector, the RGB components 
given by the equations 

B = Z(1 - S )  

[ S cos H 
R = I  l +  

cos(60° - H )  1 
G = 31 - ( R  + B )  

sector (120" 5 H < 240"): If the given value of H is in this sector, we 
rst subtract 120" from it: 

H = H - 120" 

en the RGB components are 

R = 1(1 - S )  

S cos H 
cos(60° - H )  1 

Color Spaces 
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and 

B = 31 - (R + G) 

BR sector (240" I: H 5 360"): Finally, if H  is in this range, we subtract 2 
from it: 

H = H - 240" 

Then the RGB components are 

G = 1(1 - S )  

S  cos H  
cos(60° - H )  1 

and 

R = 3 1  - (G + B )  

Use of these equations for image processing is discussed later in this chapter. 

An M-function for Converting from RGB to HSI 
The following function, 

h s i  = rgb2hsi(rgb) 

implements the equations just discussed for converting from RGB to HSI 
simplify the notation, we use rgb and h s i  to denote RGB and HSI images, 
spectively. The documentation in the code details the use of this function. 

function hsi = rgb2hsi(rgb) 
%RGB2HSI Converts an RGB image to HSI. 
% HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image 
% i s  assumed to be of size M-by-N-by-3, where the third dimension 
% accounts for three image planes: red, green, and blue, i n  that 
% order. If a l l  RGB component images are equal, the HSI conversion 
% i s  undefined. The i n p u t  image can be of class double ( w i t h  values 
% i n  the range [ O ,  I ] ) ,  uint8, or uintl6. 
% 
% The output image, HSI, i s  of class double, where: 
% h s i ( : ,  : ,  1 )  = hue image normalized to the range [0, 11 by 
% dividing a l l  angle values by 2*pi. 
% hsi ( : ,  :, 2) = saturation image, i n  the range [0, I ] .  
% hs i ( : ,  :, 3) = intensity image, i n  the range [0,  I ] .  

% Extract  t h e  ind iv idua l  component immages. 
rgb = im2double(rgb);  
r = rgb( :  , : ,  I ) ;  
g = r g b ( : ,  :, 2 ) ;  
b = r g b ( : ,  :, 3 ) ;  

% Implement t h e  conversion equations.  
num = 0 . 5 * ( ( r  - g )  + ( r  - b ) ) ;  

6.2 a Converting to Other 

= s q r t ( ( r  - ~ 7 1 . ~ 2  + ( r  - b ) . * ( g  - b ) ) ;  
a = acos(num./(den + e p s ) ) ;  

b > g) = 2*pi - H ( b  > g ) ;  

= min(min(r, g ) ,  b ) ;  

(den == 0)  = eps;  
1 - 3 . *  num./den; 

ombine a l l  t h r e e  r e s u l t s  i n t o  an h s i  image. 
= c a t ( 3 ,  H, S ,  I ) ;  

M-function for Converting from HSI to RGB 
following function, 

rgb = hs i2 rgb(hs i )  

lements the equations for converting from HSI to RGB. The documenta- 
on in the code details the use of this function. 

ct ion rgb = hs i2 rgb(hs i )  
I2RGB Converts an HSI image t o  RGB. 

RGB = HSI2RGB(HSI) converts  an HSI image t o  R G B ,  where HSI 
is  assumed t o  be of c l a s s  double wi th :  

h s i ( : ,  :, 1 )  = hue image, assumed t o  be i n  t he  range 
[O, 11 by having been divided by 2*pi .  

h s i ( : ,  : ,  2 )  = sa tu ra t ion  image, i n  t h e  range [ O ,  I ] .  
h s i ( : ,  :, 3 )  = i n t e n s i t y  image, i n  t he  range [ 0 ,  1 1 .  

The components of t h e  output image a r e :  
rgb ( : ,  :, 1 )  = red .  
r g b ( : ,  :, 2)  = green. 
r g b ( : ,  :, 3 )  = blue.  

Extract t he  ind iv idua l  HSI component images. 
= h s i ( : ,  :, 1 )  * 2 * p i ;  

= h s i ( : ,  :, 3 ) ;  

Implement t h e  conversion equations.  
= z e r o s ( s i z e ( h s i ,  I ) ,  s i z e ( h s i ,  2 ) ) ;  
= z e r o s ( s i z e ( h s i ,  I ) ,  s i z e ( h s i ,  2 ) ) ;  
= z e r o s ( s i z e ( h s i ,  l ) ,  s i z e ( h s i ,  2 ) ) ;  

RG sector (0 <= H < 2*pi/3).  
dx = f ind( (0 <= H )  & ( H  < 2*p i /3 ) ) ;  
(idx) = I ( idx)  .* (1  - S( idx) ) ;  

zolor Spaces 
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R ( i d x )  = I ( idx )  . *  (1  + S(idx) . *  cos(H(idx)) . /  . . .  0" to 360' (i.e., from the lowest to highest possible values of hue). This 
cos(pi13 - H(idx)) ) ; cisely what Fig. 6.9(a) shows because the lowest value is represented as 

G ( i d x )  = 3*I(idx) - (R(idx) + B(idx)) ;  and the highest value as white in the figure. 

% BG sec tor  (2*pi/3 <= H < 4*pi /3) .  e saturation image in Fig. 6.9(b) shows progressively darker values to- 

idx = f i n d (  (2*pi /3  <= H )  & ( H  < 4*pi/3) ) ; d the white vertex of the RGB cube, indicating that colors become less and 
R(idx) = I ( i d x )  . *  (1 - S ( i d x ) ) ;  saturated as they approach white. Finally, every pixel in the intensity 
G(idx) = I ( i d x )  .* (1 + S(idx)  .*  cos(H(idx) - 2*pi/3) . I  . . .  ge shown in Fig. 6.9(c) is the average of the RGB values at the corre- 

cos ( p i  - H ( i d x ) ) ) ;  nding pixel in Fig. 6.2(b). Note that the background in this image is white 
B(idx) = 3*I ( idx)  - (R(idx) + G(idx) ) ;  ause the intensity of the background in the color image is white. It is black 

% BR sector.  e other two images because the hue and saturation of white are zero. 
idx = f ind(  (4*pi/3 <= H )  & ( H  <= 2*p i ) ) ;  
G ( i d x )  = I ( idx )  .* (1  - S ( i d x ) ) ;  The Basics of Color Image Processing 
B(idx) = I ( idx )  . *  (1 + S(idx) . *  cos(H(idx) - 4*pil3) . /  . . . 

cos(5*pi/3 - H(idx)))  ; his section we begin the study of processing techniques applicable to color 

R(idx) = 3*I(idx) - ( G ( i d x )  + B(idx)) ;  ges. Although they are far from being exhaustive, the techniques devel- 
d in the sections that follow are illustrative of how color images are han- 

% Combine a l l  t h ree  r e su l t s  in to  an RGB image. Clip t o  [0 ,  1 1  t led for a variety of image-processing tasks. For the purposes of the following 
% compensate f o r  f loa t ing-point  arithmetic rounding e f fec t s .  on we subdivide color image processing into three principal areas: 
rgb = c a t ( 3 ,  A, G ,  B); 
rgb = max(min(rgb, I ) ,  0 ) ;  r transformations (also called color mappings); (2) spatial processing of 

ual color planes; and (3) color vectorprocessing. The first category deals 

EXAMYLE6.2: @ Figure 6.9 shows the hue, saturation, and intensity components of recessing the pixels of each color plane based strictly on their values and ' 

Convertingfronl image of an RGB cube on a white background, similar to the image their spatial coordinates. This category is analogous to the material in 
RGB HS1. Fig. 6.2(b). Figure 6.9(a) is the hue image. Its most distinguishing feature 3.2 dealing with intensity transformations. The second category deals 

the discontinuity in value along a 45" line in the front (red) plane of the spatial (neighborhood) filtering of individual color planes and is analo- 
cube. To understand the reason for this discontinuity, refer to Fig. 6.2( s to the discussion in Sections 3.4 and 3.5 on spatial filtering. 

draw a line from the red to the white vertices of the cube, and select a po e third category deals with techniques based on processing all compo- 

in the middle of this line. Starting at that point, draw a path to the right, fo of a color image simultaneously. Because full-color images have at least 
lowing the cube around until you return to the starting point.The major components, color pixels really are vectors. For example, in the RGB sys- 
ors encountered on this path are yellow, green, cyan, blue, magenta, and b ,each color point can be interpreted as a vector extending from the origin 

to red. According to Fig. 6.7, the value of hue along this path should incr that point in the RGB coordinate system (see Fig. 6.2). 
Let c  represent an arbitrary vector in RGB color space: 

This cquation indicates that thc components of c  are simply the RGB compo- 
' nents of a color image at a point. We take into account the fact that thc color 

components are a function of coordinales ( x ,  y) by using the notation 

R ( s ,  y)  

: For an imagt: of size .%I x N ,  there are .4lN such vzctors, c ( x ,  y) ,  for 
a b c  = 0 , 1 , 2  ,..., M - 1 a n d y = 0 , 1 , 2  ,..., N - 1. 

FIGURE 6.9 HSI component images of an image of an RGB color cube. (a) Hue, (b) saturation, and ( In some cases, equivalent results are obtained whether color images are 
intensity images. ocessed one plane at a time or as vector quantities. However, as explained in 
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Spatial mask 

RGB color image 
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a b  
FIGURE 6.10 
Spatial masks for 
gray-scale and 
RGB color 
images. 

with pseudo- and full-color mappings-particularly when human 
nd interpretation (e.g., for color balancing) are involved. In such ap- 

more detail in Section 6.6, this is not always the case. In order for indep the selection of appropriate mapping functions is best accomplished 
color component and vector-based processing to be equivalent, two con manipulating graphical representations of candidate functions and 
have to be satisfied: First, the process has to be applicable to both 
scalars. Second, the operation on each component of a vector m 
pendent of the other components. As an illustration, Fig. 6.10 s 
neighborhood processing of gray-scale and full-color images. Suppose 
process is neighborhood averaging. In Fig. 6.10(a), averaging would be 
plished by summing the gray levels of all the pixels in the neighborh 
dividing by the total number of pixels in the neighborhood. In Fig. 6. ar and cubic spline interpolations, respectively. Both types of interpolation 
eraging would be done by summing all the vectors in the neighborho supported in MATLAB. Linear interpolation is implemented by using 
viding each component by the total number of vectors in the ne 
But each component of the average vector is the sum of the pixels in z = interplq(x, y, xi) 
corresponding to that component, which is the same as the result that woul 

ich returns a column vector containing the values of the linearly interpolat- be obtained if the averaging were done on the neighborhood of each compo 
nent image individually, and then the color vector were formed. 1-D function z at points xi. Column vectors x and y specify the horizontal 

Color Transformations 
The techniques described in this section are based on processing 

z = interplq([O 2 5 5 ] ' ,  [ 0  2 5 5 ] ' ,  [O: 2551 ' )  components of a color image or intensity component of a monochrome imag 
within the context of a single color model. For color images, we rest a 256-element one-to-one mapping connecting control points (0,O) 
tion to transformations of the form ,255)-thatis, z = [ 0  1 2 . . . 2551 ' .  

s i=T, ( r i ) ,  i = 1 , 2  ,..., n 

where ri and si are the color components of the input and output images, n is 
the dimension of (or number of color components in) the color space of ri, and 
the Ti are referred to as fill-color transformation (or mapping) functions. 

If the input images are monochrome, then we write an equation of the form 

si = G ( r ) ,  i = 1,2, .  . . , n 

where r denotes gray-level values, si and T, are as above, and n is the number of 
color components in si. This equation describes the mapping of gray levels into 
arbitrary colors, a process frequently referred to as a pseudocolor transforma- 
tion or pseudocolor mapping. Note that the first equation can be used to process mapping functions using control points: (a) and (c) linear interpolation, and 
monochrome images in RGB space if we let rl = r2 = r3 = r. In either case, the 

_f Spatial mask 

Gray-scale image 

transformation functions { T I ,  T2,. . . , K,} are 

of the gray-scale transformations introduced in Chapter 3, like 
ement, which computes the negative of an image, are independent of 

ay-level content of the image being transformed. Others, like histeq, 
ive, but the transformation 
stimated. And still others, 
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In a similar manner, cubic spline interpolation is implemented using t 
sp l ine  function, 

,>>, 

i d :  \ 
.> ..;:;?, S P % ~  z = s p l i n e ( x ,  y ,  x i )  

, of the syntax of function ice: 

% O n l y  the ice graphical 
over, if y contains two more elements than x, its first and last entries are % interface i s  displayed. 
sumed to be the end slopes of the cubic spline. The function depicted % Shows and returns the mapped 

% image g . 
= ice('imagei, f ,  'wait ' ,  'off ' ) ;  % Shows g and returns 

% the handle. 
= ice( 'image', f ,  'space', ' hsi' ) ; % Maps RGB image f i n  HSI space. 

editing) function does precisely this. Its syntax is that when a color space other than RGB is specified, the input image 
ther monochrome or RGB) is transformed to the specified space before 

i ce  g = i c e ( ' P r o p e r t y  Name', 'Property Value ' ,  . . . )  
r-------- 

The developmentof where ' Property Name ' and ' Property Value ' must appear in pairs, 
firnction ice, given the dots indicate repetitions of the pattern consisting of corresponding in 
in Appendix B, is a pairs. Table 6.4 lists the valid pairs for use in function ice.  Some examples comprehensive illus- 
tration of how to de- 
sign a graphical user 
interface (GUz) in M A  T L A  B. 

result is image g. When ' off ' is selected, g is the handlet of the proce 
image, and control is returned immediately to the command window; ther 
fore, new commands can be typed with the i c e  function still active. To obta 
the properties of an image with handle g we use the get  function 

,-- 
, ,&:, 

.,..I>, a ' 

h = g e t ( g )  - :3:L;r,*?:,, 
.( ., . 

TABLE 6.4 
Valid inputs for 
function ice. An RGB or monochrome input image, f, to be transformed b 

interactively specified mappings. 
The color space of the components to be modified. Possible 
valuesare ' rgb ' ,  'cmy', ' h s i ' ,  'hsv' ,  'n tsc '  (or 'yiql) ,an 
'ycbcrl.The default is ' rgb' .  

directly. 
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TABLE 6.5 
Manipulating 
control points 
with the mouse. 

EXAMPLE 6.3: 
Inverse mapping 
monochrome 
negatives and 
color 
complements. 

TABLE 6.6 
Function of the 
checkboxes and 
pushbuttons in 
the i ce  GUI. 

Color Image Processing 6.4 pl Color Tran 

the transformation curve is a straight line with a control point at each 
Control points are manipulated with the mouse, as summarized in Table 
Table 6.6 lists the function of the other GUI components.The following ex 
ples show typical applications of function ice .  

e or negative mapping functions also are  useful in color processing. 
e seen in Figs. 6.14(a) and (b), the result of the mapping is reminiscent 

entional color film negatives. For instance, the red stick of chalk in the 
row of Fig. 6.14(a) is transformed to cyan in Fig. 6.14(b)-the color 

Display probability density function(s) [i.e., histogram(s)] o f t  
image components affected by the mapping function. 

Show CDF Display cumulative distribution function(s) instead of PDFs. 
(Note: PDFs and CDFs cannot be displayed simultaneously.) 

otherwise the unmapped bars (a gray wedge and hue wedge, 
respectively) are displayed. 
Initialize the currently displayed mapping function and unchec 
all curve parameters. 
Initialize all mapping functions. 

InputIOutput Shows the coordinates of a selected control point on the 
transformation curve. Input refers to the horizontal axis, and 
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FIGURE 6.1 3 
(a) A negative 
mapping function, 
and (b) its effect 
on the 
monochrome 
image of Fig. 6.12. 

Default (i.e., 1:l) 
fnnppings are no! 
shown in most 
examples. 

FIGURE 6.14 
(a) A full color 
image, and (b) its 
negative (color 
complement). 
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EXAMPLE 6.4: W Consider next the use of function i c e  for monochrome and color contrast e red, green, and blue components of the input images in Examples 6.3 and 
Monochrome and manipulation. Figures 6.15(a) through (c) demonstrate the effectiveness of e mapped identically-that is, using the same transformation function. To 

'Ontrast I c e  in processing monochrome images. Figures 6.15(d) through (f) show specification of three identical functions, function i c e  provides an "all 
enhancement. similar effectiveness for color inputs. As in the prevlous example, map nts" function (the RGB curve when operating in the RGB color space) 

functions that are not shown remain in their default or 1 : 1 state. In both used to map all input components. The remaining examples demonstrate 
cessing sequences, the Show PDF checkbox is enabled. Thus, the histogra rmations in which the three components are processed differently. 
the aerial photo in (a) is displayed under the gamma-shaped mapping func-* 
tion (see Section 3.2.1) in (c); and three histograms are provided in (f) for As noted earlier, when a monochrome image is represented in the RGB 
the color image in (d)-one for each of its three color components. Although color space and the resulting components are mapped independently, the 
the S-shaped mapping function in (f) increases the contrast of the image iq transformed result is a pseudocolor image in which input image gray levels 
(d) [compare it to (e)], it also has a slight effect on hue. The small change of have been replaced by arbitrary colors.Transformations that do this are useful 
color is virtually imperceptible in (e), but is an obvious result of the ma uman eye can distinguish between millions of colors-but rela- 
ping, as can be seen in the mapped full-color reference bar in (f). Recall fr des of gray. Thus, pseudocolor mappings are used frequently to 
the previous example that equal changes to the three components of e small changes in gray level visible to the human eye or to highlight im- 
RGB image can have a dramatic effect on color (see the color complem nt gray-scale regions. In fact, the principal use of pseudocolor is human 
mapping in Fig. 6.14). tion-the interpretation of gray-scale events in an image or sequence 

s via gray-to-color assignments. 
(a) is an X-ray image of a weld (the horizontal dark region) con- 

EXAMPLE 6.5: 
Pseudocolor 
mappings. 

FIGURE 6.1 6 
(a) X-ray of a 
defective weld; 
(b) a pseudo- 
color version of 
the weld; (c) and 
(dl mapping 
functions for the 
green and blue 
components. 
(Original image 
courtesy of X- 
TEK Systems, 
Ltd.) 
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the input in a variety of color spaces, as detailed in Table 6.4.To inter- 
ents of RGB image f 1,  for example, the ap- 

f 2  = i c e ( ' i m a g e l ,  f l ,  ' s p a c e ' ,  ' C M Y ' ) ;  

se in magenta had a significant impact on 

Histogram equalization is a gray-level mapping process that seeks to pro- EXAMPLE 6.7: 
EXAMPLE 6.6: BB Figure 6.17 shows an application involving a full-color image, in which it tensity histograms. As discussed in Hlstogram based 
Color balancing advantageous to map an image's color components independently. Common ion is the cumulative distribution mappings. 

called color balancing or color correction, this type of mapping has been he gray levels in the input image. Because color images 
nents, the gray-scale technique must be modified to han- 

more than one component and associated histogram. As might be expect- 
it is unwise to histogram equalize the components of a color image 

sult usually is erroneous color. A more logical approach 
are possible when white areas, where the RGB or CMY components should nsities uniformly, leaving the colors themselves (i.e., the 
equal, are present. As can be seen in Fig. 6.17, skin tones also are excellen 
samples for visual assessments because humans are highly perceptive of prop e of a caster stand containing cruets and 
er skin color. ers. The transformed image in Fig. 6.18(b), which was produced using the 

Figure 6.17(a) shows a CMY scan of a mother and her child with an exces Figs. 6.18(c) and (d), is significantly brighter. Several of 
ble on which the caster is resting are 

t was mapped using the function in 
es the CDF of that component (also dis- 

e hue mapping function in Fig. 6.18(d) was selected to 
or perception of the intensity-equalized result. Note 
e input and output image's hue, saturation, and inten- 

ponents are shown in Figs. 6.18(e) and (f), respectively. The hue com- 
are virtually identical (which is desirable), while the intensity and 

ere altered. Finally note that, to process an RGB 
ce, we included the input property nametvalue pair 

El 

the preceding examples in this section are of 
ochrome results, as in Example 6.3, all three 

components of the RGB output are identical. A more compact representation 
can be obtained via the rgb2gray function of Table 6.3 or by using the command 

FIGURE 6.17 Uslng function i c e  for color balancing: (a) an image heavy in magenta; (b) the correcte ere f 2 is an RGB image generated by Ice  and f 3  1s a standard MATLAB 
Image; and (c) the mapplng function used to correct the ~mbalance. 
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a b  
c d 
e f 

FIGURE 6.1 8 
Histogram 
equalization 
followed by 
saturation 
adjustment in the 
HSI color space 
(a) mput image, 
(b) mapped 
result, 
(c) Intensity 
component 
mapping funct~on 
and cumulative 
distr~bution 
function, 
(d) saturation 
component 
mapping funct~on, 
(e) mput image's 
component 
h~stograms, and 
(f) mapped 
result's 
component 
histograms 

6.5 ira Spatial Filtering of 

Spatial Filtering of Color Images 
erial in Section 6.4 deals with color transformations performed on sin- 
e pixels of single color component planes. The next level of complexi- 

but the basic concepts are applicable to other color models as 
ate spatial processing of color images by two examples of linear 

te the set of coordinates defining a neighborhood centered at 
image. The average of the RGB vectors in this neighborhood is 

re K is the number of pixels in the neighborhood. It follows from the dis- 
ion in Section 6.3 and the properties of vector addition that 

s ian  ' (see Table 3.4). Once a filter has been generated, fil- 
by using function imf i l t e r ,  introduced in Section 3.4.1. 
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EXAMPLE 6.8: 
Color image 
smoothing. 
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Clearly, the two filtered results are quite different. For example, in additio 

the Laplacian filter mask 

, as in Example 3.9, the enhanced image was computed and displayed 
the commands 

filtering the RGB component images and the intensity component of th 
equivalent image also decrease. fen  = imsubtrac t ( fb ,  i m f i l t e r ( f b ,  lapmask, ' r e p l i c a t e ' ) ) ;  

6.5.2 Color Image Sharpening 
Sharpening an RGB color image with a linear spatial filter follows the s 
procedure outlined in the previous section, but using a sharpening filter 

the same calling syntax) when using imf i l t e r .  Figure 6.22(b) shows 
. Note the significant increase in sharpness of features such as the 

P 

Laplacian of vector c  introduced in Section 6.3 is 

V 2 R ( x ,  Y )  
V 2 [ c ( x ,  y ) ]  = V2G(x, Y )  

Working Directly in RGB Vector Space [ V2BIX,  * I  1 AS mentioned in Section 6.3, there are cases in which processes based on indi- . . 
vldual color planes are not equivalent to working directly in RGB vector 

which, as in the previous section, tells us that we can compute the Laplacian space. This is demonstrated in this section, where we illustrate vector process- 
a full-color image by computing the Laplacian of each component ima "ing by considering two important applications in color image processing: color 
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FIGURE 6.22 
(a) Blurred image. 
(b) Image 
enhanced using 
the Laplaclan, 
followed by 
contrast 
enhancement 
using function 
Ice. 

EXAMPLE 6.9: 
Color image 
sharpening. 

separately. 
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direction of maximum rate of change of c(x, y) as a function (x, y) is giv 
by the angle 

and that the value of the rate of change (i.e., the magnitude of the gradient) 
the directions given by the elements of 0(x, y) is given by 

1 
Fdx,  Y) = {?[(& + gyy) + (gxx - gyy) cos 20 + 2gxy sin 201 

Note that 0(x, y) and FO(x, y) are images of the same size as the input i 
The elements of B(x, y) are simply the angles at each point that the grad 
calculated, and Fo(x, y) is the gradient image. 

these results is rather lengthy, and we would gain little in terms of the 
mental objective of our current discussion by detailing it here. The interes 

ed using, for example, the Sobel operators discussed earlier in thi 
The following function implements the color gradient for RGB 

Appendix C for the code): 

[VG, A, PPG] = co lo rg rad( f ,  T )  

6.6 m Working Directly in RGB Vector Space 235 

:omponent images (black is 0 and white is 255). (d) Corresponding color 
irectly in RGB vector space. (f) Composite gradient obtalned by 
RGB component image separately and adding the results. 

- - 

image in Fig. 6.24(d), the command 

where f is an RGB image, T is an optional threshold in the range [O,1] (the de '>> [VG, A, PPG] = c o l o r g r a d ( f ) ;  
fault is 0); VG is the RGB vector gradient Fo(x, y); A is the angle image 0(x, y) 
in radians; and PPG is the gradient formed by summing the 2-D gradients of th Produced the images VG and PPG shown in Figs. 6.24(e) and (f). The most im- 
individual color planes (generated for comparison purposes). These latter gra Portant difference between these two results is how much weaker the horizon- 
dients are VR(x, y), VG(x, y), and VB(x, y), where the V operator is as de edge in Fig. 6.24(f) is than the corresponding edge in Fig. 6.24(e). The 
fined earlier in this section. All the derivatives required to implement th reason is simple: The gradients of the red and green planes [Figs. 6.24(a) and 
preceding equations are implemented in function colorgrad using Sobel oper (b)] produce two vertical edges, while the gradient of the blue plane yields a 
ators.The outputs VG and PPG are normalized to the range [0, 11 by colorgrad single horizontal edge. Adding these three gradients to form PPG produces a 
and they are thresholded so that VG ( x , y ) = 0 for values less than or equal t :vertical edge with twice the intensity as the horizontal edge. 
T and VG (x , y ) = VG (x , y ) otherwise. Similar comments apply to PPG. " On the other hand, when the gradient of the color image is computed directly 

'mvector space [Fig. 6.24(e)], the ratio of the values of the vertical and horizontal 
EXAMPLE 6.10: M Figures 6.24(a) through (c) show three simple monochrome images which, edges is fl instead of 2. The reason again is simple: With reference to the color 
RGB edge when used as RGB planes, produced the color image in Fig. 6.24(d). The ob- *?be in Fig. 6.2(a) and the image in Fig. 6.24(d) we see that the vertical edge in the 
detection uslng jectives of this example are (1) to illustrate the use of function colorgrad, and >Wlor image is between a blue and white square and a black and yellow square. 
function 
co lo rgrad .  

(2) to show that computing the gradient of a color image by combining the ''he distance between these colors in the color cube is a, but the distance be- 
gradients of its individual color planes is quite different from computing the heen black and blue and yellow and white (the horizontal edge) is only 1. Thus 
gradient directly in RGB vector space using the method just explained. :the ratio of the vertical to the horizontal differences is V?!. If edge accuracy is an 
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FIGURE 6.25 
(a) RGB image. 
(b) Gradient 
computed in RG 
vector space. 
(c) Gradient 
computed as in 
Fig. 6.24(f). 
(d) Absolute 
difference 
between (b) and 
(c), scaled to the 
range [O, 11. 
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Following conven- 
tion, we use a super- 
script, 7; to indicate 
vector or matrix 
transposition and a 
normal, inline, T to 
denote a threshold 
value. Care should 
be exercised not to 
confuse these unre- 
lared wes  of the 
same variable. 

a b  
FIGURE 6.26 Two 
approaches for 
enclosing data in 
RGB vector space 
for the purpose of 
segmentation. 
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See Section 12.2 for 
a detailed discursion 
on efficient imple- 
mentations for com- 
puting the Euclidean 
and Mahalanobis 
distances. 

colorseg --- 

EXAMPLE 6.11: 
RGB color image 
segmentation. 

a b  
FIGURE 6.27 
(a) Pseudocolor 
of the surface of 
Jupiter's Moon 10. 
(b) Region of 
interest extracted 
interactively using 
function ro ipo ly .  
(Original image 
courtesy of 
NASA.) 

Color Image Processing 6.6 8 Working Directly in RGB 

k = r o i p o l y ( f ) ;  % S e l e c t  region i n t e r a c t i v e l y .  
where C is the covariance matrixt of the samples representative of the c = immultiply(mask, f ( : ,  :, 1 ) ) ;  
we wish to segment. This distance is commonly referred to as the Mahalan en = immultiply(mask, f ( : ,  :, 2 ) ) ;  
distance.The locus of points such that D(z ,  m) I T describes a solid 3-D e e = immultiply(mask, f ( : ,  :, 3 ) ) ;  
tical body [see Fig. 6.26(b)] with the important property that its principal a c a t ( 3 ,  red ,  green,  b l u e ) ;  
are oriented in the direction of maximum data spread. When C = I, the id 
tity matrix, the Mahalanobis distance reduces to the Euclidean distance. S 
mentation is as described in the preceding paragraph, except that the data ask is a binary image (the same size as f) with 0s in the background 
now enclosed by an ellipsoid instead of a sphere. the region selected interactively. 

Segmentation in the manner just described is implemented by funct we compute the mean vector and covariance matrix of the points in 
colorseg (see Appendix C for the code), which has the syntax ,but first the coordinates of the points in the ROI must be extracted. 

S = colorseg(method, f ,  T,  parameters) 
eshape(g, M * N, 3 ) ;  % reshape is  discussed i n  Sec. 8.2.2. 

where method is either ' euclidean ' or ' mahalanobis ' , f is the RGB i 
to be segmented, and T is the threshold described above.The input parame = double(I(idx, 1 : 3 ) ) ;  
are either m if ' euclidean ' is chosen, or m and C if ' mahalanobis ' is cho , m ]  = covmatrix(1); % See Sec. 11.5 f o r  deta i l s  on covmatrix. 
Parameter m is the vector, m, described above, in either a row or co 
mat, and C is the 3 X 3 covariance matrix, C. The output, S, is a econd statement rearranges the color pixels in g as rows of I ,  and the 
image (of the same size as the original) containing 0s in the points statement finds the row indices of the color pixels that are not black. 
threshold test, and Is in the locations that passed the test. The 1s i are the non-background pixels of the masked image in Fig. 6.27(b). 
regions segmented from f based on color content. reliminary computation is to determine a value for T. A good 

is to let T be a multiple of the standard deviation of one of the 
31 Figure 6.27(a) shows a pseudocolor image of a region on the surface of ents. The main diagonal of C contains the variances of the RGB 
Jupiter Moon 10. In this image, the reddish colors depict materials newly eje ponents, so all we have to do is extract these elements and compute their 
ed from an active volcano, and the surrounding yellow materials are older 
fur deposits. This example illustrates segmentation of the reddish region u 
both options in function colorseg. 

First we obtain samples representing the range of colors to be segme 
One simple way to obtain such a region of interest (ROI) is to use func 22.0643 24.2442 16.1806 
roipoly  described in Section 5.2.4, which produces a binary mask of a regi 
selected interactively. Thus, letting f denote the color image in Fig. 6.27(a), rst element of sd is the standard deviation of the red component of the 
region in Fig. 6.27(b) was obtained using the commands r pixels in the ROI, and similarly for the other two components. 

now vroceed to segment the image using values of T equal to multiples - " 
hich is an approximation to the largest standard deviation: T = 25,50, 

.For the ' euclidean ' option with T = 25, we use 

= co lo r seg( ' euc l idean ' ,  f ,  25, m); 

ure 6.28(a) shows the result, and Figs. 6.28(b) through (d) show the seg- 
ntation results with T = 50, 75, 100. Similarly, Figs. 6.29(a) through (d) 

Vector Space 

d = diag(C) 
returns in vector 
the main diagon 
matrix C. 

= 75 and 100 produced significant oversegmentation. On the other hand, 
'Computation of the covariance matrix of a set of vector samples is discussed in Section 11.5. e results with the 'mahalanobis ' option make a more sensible transition 
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a b  
c d 

FIGURE 6.28 
(a) through 
(d) Segmentation 
of Fig. 6.27(a) 
using option 
'euclidean ' in 
funct~on 
colorseg with 
T = 25,50,75, 
and 100, 
respectively. 

FIGURE 6.29 
(a) through 
(d) Segmentation 
of Fig. 6.27(a) 
using option 
'mahalanobls' 
in function 
colorseg with 
T = 25,50,75, 
and 100, 
respectively. 
Compare with 
Fig. 6.28. 

easing values of T. The reason is that the 3-D color data spread in the 
fitted much better in this case with an ellipsoid than with a sphere. 
at in both methods increasing T allowed weaker shades of red to be 
d in the segmented regions, as expected. 
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f ( &  Y )  = T ( u ,  v, I l l  ( r ,  Y )  
11 1' 

and h,, , in these equations are called forward and Inverse trans- 
on kernels, respectively. They determine the nature, computational 

f with respect to {h,, , ). That IS, the inverse transformation 

e , 2 r r ( l ~ ! / M + u v / N )  hll ,(x, Y )  = g: ,(,G Y )  = - GN 
I = fi, is the complex conjugate operator, 11  = 0,1, . , M - 1, 
= 0 , l . .  . , N - 1 Transform domain variables v and 11 represent hori- 
and vertical frequency, respect~vely. The kernels are separable since 

h,, . (x,  Y )  = h,,(x)hu(y) 
Preview 
When digital images are to be viewed or processed at multiple resolutions 
discrete wavelet transform (DWT) is the mathematical tool of choice. In a 
tion to being an efficient, highly intuitive framework for the repr 
and storage of mu~tiresoluhon images, the DWT provides powerful insight rthonormal since 
an image's spatial and frequency characteristics. The Fourier transform, o 
other hand, reveals only an image's frequency attributes. 

In this chapter, we explore both the computation and use 
wavelet transform. We introduce the Wavelet Toolbox, a 
Mathworks' functions designed for wavelet analysis but not ) is the inner product operator.The separability of the kernels simpll- 
MATLAB's Image Processzng Toolbox (IPT), and develop a com 
routines that allow basic wavelet-based processing using IPT 
without the Wavelet Toolbox.These custom functions, in combin 
provide the tools needed to implement all the concepts discussed i ntical ~f the functions were real). 
of Digztal Image Processzng by Gonzalez and Woods [2002].They are like the discrete Fourier transform, which can be completely defined by 

much the same way-and provide a s~milar range of capabilities-as 
tions f f t2 and l f  f t2 in Chapter 4. 

transformat~ons that differ not only in the transformation kernels em- = Background 
Conslder an image f ( x ,  y )  of size M x N whose forward, discrete transfor 
T(LL,  v,. . . ), can be expressed in terms of the general relation 

T ( u ,  v,. . .) = Zf ( x ,  y ) g u , ,  ( x ,  Y )  
x,  Y 

where x and y are spatial variables and u, v, . . . are transform domazn 
ables. Given T ( u ,  v, . . . ), f ( x ,  y )  can be obtained using the generalized in 
discrete transform 

7.1 3 Background 243 
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FIGURE 7.1 
(a) The familiar 
Fourier expansion 
functions are 
sinusoids of 
varying frequency 
and infinite 
duration. 
(b) DWT 
expansion 
functions are 
"small waves" of 
finite duration 
and varying 
frequency. 

Wavelets 7.2 The Fast Wavelet 

+w- A-. orthogonal to its integer translates. 
set of functions that can be represented as a series expansion of pj, k at 
scales or resolutions (i.e., small j )  is contained within those that can be 

I" esented at higher scales. 
only function that can be represented at every scale is f (x) = 0. 

y function can be represented with arbitrary precision as j -+ m. 

-w- .-A- hese conditions are met, there is a companion wavelet + j ,  that, together 
teger translates and binary scalings, spans-that is, can represent-the 

ce between any two sets of q, -representable functions at adjacent scales. 

?1 ty 3: Orthogonality. The expansion functions [ i .e . ,{~,  k(x))] form an 
+ 4 ma1 or biorthogonal basis for the set of 1-D measurable, square- 

nctions. To be called a basis, there must be a unique set of expan- 
ents for every representable function. As was noted in the 
remarks on Fourier kernels, g,,,v ,,,. = h,,, ,,,., for real, orthonor- 

completely describes them all. Instead, we characterize each DWT by a 
form kernel pair or  set of parameters that defines the pair. The v 

{ 
1 r = s  

transforms are related by the fact that their expansion functions are (h,, g ~ )  = 4, = 0 otherwise 
waves" (hence the name wavelets) of varying frequency and limited dur 
[see Fig. 7.1(b)]. In the remainder of the chapter, we introduce a numb called the dual of h. For a biorthogonal wavelet transform with scaling 
these "small wave" kernels. Each possesses the following general prope avelet functions qj, k ( ~ )  and i,hj, k ( ~ ) ,  the duals are denoted Fj, k(x) and 

Property 1: Separability, Scalability, and Translatability. The kernels ca 
represented as three separable 2-D wavelets 

The Fast Wavelet Transform 
t/JH(.? Y) = t/J(x)cp(y) 

t/JV(.> Y)  = cp(x)t/J(y) 
ortant consequence of the above properties is that both ~ ( x )  and t/J(x) 

pressed as linear combinations of double-resolution copies of them- 
$D(x% Y) = t/J(x)t/J(~) at is, via the series expansions 

where +H(x, y), t/JV(x, y), and ~ ~ ( x ,  y) are called horizontal, vertical, 
diagonal wavelets, respectively, and one separable 2-D scalingfunction 

4 ~ )  = C h , ( n ) 6 ( 2 x  - n)  
Y) = q(x)cp(y) 

n 

Each of these 2-D functions is the product of two 1-D real, square-integra 
*(x) = Ch*(n)ficp(2x - n)  

n 

scaling and wavelet functions 
h, and h$-the expansion coefficients-are called scaling and wavelet 

pj, k(x) = 2 ~ ~ ~ ~ ( 2 j x  - k )  , respectively. They are the filter coefficients of the fast wavelet trans- 
+,,k(x) = 2j1'+(2jx - k) (FWT), an iterative computational approach to the DWT shown in 

2. The W,(j, m, n) and { ~ i ( j ,  m, n) for i = H, V, D) outputs in this 
Translation k determines the position of these 1-D functions along the X-a are the DWT coefficients at scale j. Blocks containing time-reversed 
scale j determines their width-how broad or narrow they are along x- 

g and wavelet vectors-the h,(-n) and h$(-m)-are lowpass and 2jI2 controls their height or amplitude. Note that the associated expan 
ass decompositionfilters, respectively. Finally, blocks containing a 2 and a functions are binary scalings and integer translates of mother wav 
arrow represent downsampling-extracting every other point from a se- 

t/J(x) = t/Jo, o(x) and scaling function q (x )  = po, ,,(x). e of points. Mathematically, the series of filtering and downsampling 
ions used to compute ~ f ( j ,  m, n) in Fig. 7.2 is, for example, 

Property 2: Multiresolution Compatibility. The 1-D scaling function just int 
duced satisfies the following requirements of multiresolution analysis: (1, m, n) = hg(-m) * [h,(--n) * W,(j + 1, m, n)ln=2k,kzO]lrn=2k,k20 

Transform 
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FIGURE 7.2 The 
2-D fast wavelet 

TABLE 7.1 

transform (FWT) wavelet Toolbox 

filter bank. Each FWT filters and 
pass generates one d b 2 ' ,  'db3 ' ,  ..., 'db45' filter family 

DWT scale. In the c o i f 1  ' ,  ' c o i f 2 ' ,  ..., ' c o i f 5 '  names. 
first iteration, Wv(j  + 1.1n+n)o-- sym2' ,  'sym3'. ..., 'sym45' 
W,(j + 1, m. tz) = Discrete Meyer ' dmey ' 

f ( ~ ,  Y ) .  ' b i o r l . l ' ,  ' b io r l  . 3 ' ,  ' b io r1 .5 ' ,  ' b i o r 2 . 2 ' ,  
' b io r2 .4 ' ,  ' b i o r 2 . 6 ' ,  'b ior2.B1,  'bior3.1 ' ,  
' b io r3 .3 ' ,  ' b i o r 3 . 5 ' ,  ' b io r3 .7 ' ,  ' b io r3 .9 ' ,  
'bior4.4','bior5.5','bior6.8' 

' rb io l  . I 1 ,  ' rb io l  .3', ' rb io1 .5 ' ,  ' rb io2 .2 ' ,  
'rbio2.4','rbio2.6','rbio2.8','rbio3.1', 
'rbio3.3','rbio3.5','rbio3.7','rbio3.9', 

indices is equivalent to  filtering and downsampling by 2. 
Each pass through the filter bank in Fig. 7.2 decomposes the input into f 

h t y p e  set to ' d ' , ' r ' , ' 1 ' , or ' h ' to  obtain a pair of decomposition, re- 

first iteration. Note that the operations i 
e 7.1 lists the FWT filters included in the Wavelet Toolbox. Their 

vertical translation, n and m. These variables correspond to u, V ,  . . . in the fi 
two equations of Section 7.1. solution analysis. Some of the more important properties are provided by 

Wavelet Toolbox's waveinfo and wavef un functions. To print a written 

.JS2. ii FWTS Using the Wavelet Toolbox 

waveinfo(wfami1y) 2 .: c j  

to  do this without the Wavelet Toolbox (i.e., with IPT alone).The material here @k? waveinfo 

lays the groundwork for their development. 
The Wavelet Toolbox provides decomposition filters for a wide variety MATLAB prompt.To obtain a digital approximation of an orthonormal 

fast wavelet transforms.The filters associated with a specific transform are a orm's scaling andlor wavelet functions, type 

T l ~ r  on the icon 
is r~sed to rlenote a 
MATLAB Wavelrr 
Toolbox ,fiinclion, 11) 

o111>osetl to rr 
MATLAB o r  Itnnge 
Processing fi)olbox 
fi~nction. 

cessed via the function wf i l t e r s ,  which has the following general syntax: 
[ p h i ,  p s i ,  x v a l ]  = wavefun(wname, i t e r )  

[Lo-0, Hi-D, Lo-R, Hi-R] = wfi l te r s (wname)  
hich returns approximation vectors, p h i  and p s i ,  and evaluation vector 

Here, input parameter wname determines the returned filter coefficients in ac- a l .  Positive integer i t e r  determines the accuracy of the approximations by 
cordance with Table 7.1: outputs Lo-D, Hi-D, Lo-R, and H i - R  are  row vecto trolling the number of iterations used in their computation. For biorthogo- 
that return the lowpass decomposition, highpass decomposition, lowpass transforms, the appropriate syntax is 
construction, and highpass reconstruction filters, respectively. (Reconstruct 
filters are discussed in Section 7.4.) Frequently coupled filter pairs can alte [ p h i l ,  p s i l ,  ph i2 ,  p s i 2 ,  x v a l ]  = wavefun(wname, i t e r )  
nately be retrieved using 

ere ph i l  and p s i l  are decomposition functions and phi2 and p s i 2  are 
[ F l ,  F2] = wfi l te r s (wname,  t y p e )  onstruction functions. 

wavef u n  
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Haar filters, 
scaling, and 
wavelet functions. 
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B The oldest and simplest wavelet transform is based on the Haar scali Haar wavelet function FIGURE 7.3 The 
Haar scaling and 
wavelet functions. wavelet functions. The decomposition and reconstruction filters for a 1.5 

based transform are of length 2 and can be obtained as follows: 
1 

2 1  [Lo-D, Hi-D, Lo-R, Hi-R] = wfilters('haar') 
LO-D = 0.5 

0.7071 0.7071 
Hi-D = ,, 

-0.7071 0.7071 
LO-R = -0.5 

0.7071 0.7071 
Hi-R = -1 

0.7071 -0.7071 

-1.5 
Their key properties (as reported by the waveinf o function) and plots of o 0.5 1 
associated scaling and wavelet functions can be obtained using 

>> waveinfo('haarl); bplot(122); plot(xva1, psi, ' k ' ,  xval, xaxis, '--kt); 
is([O 1 -1.5 1.51); axis square; HAARINFO Information on Haar wavelet. tle('Haar Wavelet Function'); 

Haar Wavelet 

General characteristics: Compactly supported 7.3 shows the display generated by the final six commands. Functions 
wavelet, the oldest and the simplest wavelet. , axis, and plot were described in Chapters 2 and 3; function subplot 

to subdivide the figure window into an array of axes or subplots. It has 
scaling function phi = 1 on [0 1 1  and 0 otherwise. 
wavelet function psi = 1 on [0 0.51, = -1 on [0.5 1 1  an lowing generic syntax: 
otherwise. 

H = subplot(m, n, p) or H = subplot(mnp) 
Family Haar 
Short name haar 
Examples re m and n are the number of rows and columns in the subplot array, re- haar is the same as dbl 
Orthogonal Yes ively. Both m and n must be greater than 1. Optional output variable H is 
Biorthogonal Yes andle of the subplot (i.e., axes) selected by p, with incremental values of p 
Compact support Yes ginning at 1) selecting axes along the top row of the figure window, then the 
DWT possible nd row, and so on. With or without H, the pth axes is made the current plot. 
CWT possible s the subplot (122) function in the commands given previously selects 

Support width 1 ot in row 1 and column 2 of a 1 X 2 subplot array as the current plot; the 
Filters length 2 quent axis and title functions then apply only to it. 
Regularity haar is not continuous e Haar scaling and wavelet functions shown in Figure 7.3 are discontinu- 
Symmetry Yes and compactly supported, which means they are 0 outside a finite interval 
Number of vanishing the support. Note that the support is 1. In addition, the waveinf o data 
moments for psi 1 s that the Haar expansion functions are orthogonal, so that the forward 

Reference: I. Daubechies, inverse transformation kernels are identical. 1 

Ten lectures on wavelets, 
CBMS, SIAM, 61, 1994, 194-202. en a set of decomposition filters, whether user provided or generated by 

>> [phi, psi, xval] = wavefun('haarl, 10); ilters function, the simplest way of computing the associated wavelet 
>> xaxis = zeros(size(xva1)); orm is through the Wavelet Toolbox's wavedec2 function. It is invoked 
>> subplot(l21); plot(xva1, phi, 'k', xval, xaxis, '--k'); 
>> axis([O 1 -1.5 1.51); axis square; 
>> title('Haar Scaling Function'); [C, S] = wavedec2(X, N, Lo-D, Hi-D) 

, , 

- I 

- 

------------ 

- 

- 

- 

- 

-------- ---- 

- 

I 
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EXAMPLE 7.2: 
A simple FWT 
using Haar filters. 

Wavelets 7.2 r The Fast Wavelet 

where X is a 2-D image or matrix, N is the number of scales to be com on. It we were to extract the horizontal detail coefficient matrix from 
(i.e., the number of passes through the FWT filter bank in Fig. 7.2). and cl , for example, we would get 
and H i - D  are decomposition filters. The slightly more efficient syntax 

[C, S] = wavedec2(X, N ,  wname) 

in which wname assumes a value from Table 7.1, can also be used. Output 
structure [ C ,  S ]  is composed of row vector C (class double), which con 
the computed wavelet transform coefficients, and bookkeeping matrix S 
class double), which defines the arrangement of the coefficients in C.The 
tionship between C and S is introduced in the next example and describ ed detail or approximation matrix; the second element is the number 
detail in Section 7.3. 

'@ Consider the following single-scale wavelet transform with respe 
wavelets: 

c2, s 2 ]  = wavedec2(f, 2 ,  ' h a a r ' )  
>> f = magic(4)  
f =  Columns 1 through 9 

16 2 3 13  
5 11 10 8 
9 7 6 12 
4 14 15  1 

Columns 10 through 16 
4.0000 10.0000 6.0000 

>> [ c l ,  s l ]  = wavedec2(f ,  1 ,  ' h a a r ' )  -6.0000 -10.0000 
c l  = 

Columns 1 through 9 
17.0000 17.0000 17.0000 17.0000 
-1 .OOOO -1.0000 1 .OOOO 4.0000 

Columns 10 through 16 
-4.0000 -4.0000 4.0000 10.0000 
-6.0000 -1 0.0000 

s l  = 
2 2 
2 2 
4 4 

ding single-scale transform and substituted for the approximation coeffi- 
Here, a 4 X 4 magic square f is transformed into a 1 X 16 wa from which they were derived. Bookkeeping matrix s 2  is then updated 
sition vector c l  and 3 X 2 bookkeeping matrix s 1. The entire ect the fact that the single 2 X 2 approximation matrix in c l  has been 
is performed with a single execution (with f used as the input) of ed by four 1  x 1 detail and approximation matrices in c2. Thus, 
tions depicted in Fig. 7.2. Four 2 x 2 outputs-a downsampled appro 
and three directional (horizontal, vertical, and diagonal) detail matrices 
generated. Function wavedec2 concatenates these 2 X 2 matrices column rices at scale 0, and s 2  (1  , : ) is the size of the final 
in row vector c l  beginning with the approximation coefficients : 'XI  B 

with the horizontal, vertical, and diagonal details. That is, 
c l  ( 4 )  are approximation coefficients W,(l,O, 0 ) ,  W,( l , l ,O) ,  W J 1 ,  conclude this section, we note that because the FWT is based on digital 
W,(l, 1, 1)  from Fig. 7.2 with the scale o f f  assumed arbitrarily to b d thus convolution, border distortions can arise. To min- 
through c1 ( 8 )  are ~ ; ( 1 , 0 ,  O ) ,  ~ $ ( 1 , 1 , 0 ) ,  ~ $ ( 1 , 0 ,  I ) ,  and ~ $ ( 1 , 1 , 1  , the border must be treated differently from the other 

Transform 253 



254 Chapter 7 a Wavelets 

case 'sym4' 
Id = [-7.576571478927333e-002 -2.963552764599851e-002 . . .  

4.976186676320155e-001 8.037387518059161e-001 . . .  
2.978577956052774e-001 -9.921954357684722e-002 ... 
-1.260396726203783e-002 3.222310060404270e-002]; 

t = (0 :7 ) ;  
h d = l d ;  hd(end:-1:l) = c o s ( p i *  t )  . * I d ;  
l r  = l d ;  l r (end:-1: l )  = l d ;  
hr = c o s ( p i  * t )  . * I d ;  

case ' b io r6 .8 '  
Id = [O 1.908831736481291e-003 -1.914286129088767e-003 . . .  

-1.699063986760234e-002 1.193456527972926e-002 . . .  
4.973290349094079e-002 -7.726317316720414e-002 . . .  
-9.405920349573646e-002 4.207962846098268e-001 ... 
8.259229974584023e-001 4.207962846098268e-001 ... 
-9.405920349573646e-002 -7.726317316720414e-002 . . .  
4.973290349094079e-002 1.193456527972926e-002 . . .  
-1.699063986760234e-002 -1.914286129088767e-003 . . .  
1 ,908831 736481291 e-0031; 

hd = [O 0 0 1.442628250562444e-002 -1.446750489679015e-002 
-7.872200106262882e-002 4.036797903033992e-002 . . .  
4.178491091502746e-001 -7.589077294536542e-001 . . .  
4.178491091502746e-001 4.036797903033992e-002 . . .  
-7.872200106262882e-002 -1.446750489679015e-002 ... 
1.442628250562444e-002 0 0 0 01; 

t = (0:17) ;  
l r  = c o s ( p i  * (t  + 1 ) )  . *  hd; 
hr = cos (p i  * t )  . *  Id;  

case ' jpeg9.7 '  
Id = [0 0.02674875741080976 -0.01686411844287495 . . .  

-0.07822326652898765 0.2668641184428723 . . .  
0.6029490182363579 0.2668641184428723 . . .  
-0.07822326652898785 -0.01686411844287495 . . .  
0.026748757410809761; 

hd = [O -0.09127176311424948 0.05754352622849957 ... 
0.5912717631142470 -1.115087052456994 . . .  
0.5912717631142470 0.05754352622849957 . . .  
-0.09127176311424948 0 01; 

t = (0 :9 ) ;  
l r  = c o s ( p i  * (t  + 1 ) )  .* hd; 
hr = c o s ( p i  * t )  . *  Id; 

otherwise 
e r r o r (  'Unrecognizable wavelet name (WNAME) . ' ) ; 

end 

7.2 T11e Fast Wavelet Transform 255 

varargout = { l r ,  h r l ;  

-- *..wMs3 

normal filter in wavef l l t e r  (i.e., ' h a a r  ' , ' d b 4  ' , and  
rsed versions of the  decomposi- 

s decompositlon filter is a modulated verslon of its 
he lowpass decomposition filter coefficients need t o  

ining filter coefftcients can be  
vef l l t e r ,  time reversal is carried out by reordering 

s between 1 and -1 as t increases from 0 in integer 
nal filter in wavef i l t e r  (i.e., ' b 1 o r 6 . 8 '  and 

ositlon filters are  specified; 
ns of them. F~nally, we note 

t e r  generated decompositlon filters, it is easy t o  
utine for the computation of the  related fast 
s t o  devise an  efficient algorrthm based o n  the  fil- 

aintaln compatibility with 
decomposition structure 
m a bookkeeping matrix). 

we call wavef a s t ,  uses symmetric image exten- 
n to  reduce the  border dis tor t~on associated with the  computed FWT. 

respect t o  decomposltlon f l l t e r s  LP and 
HP. 

[ C ,  L] = WAVEFAST(X, N ,  WNAME) performs t h e  same operation but 
fe tches  f i l t e r s  LP and HP f o r  wavelet WNAME using WAVEFILTER. 

Scale parameter N must be l e s s  than or  equal t o  log2 of the  

wavef a s t  
\rams - -- 
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rem ( X ,  Y )  returns 
the remainder of the 
division of X by Y .  

Wavelets 

reduce border d i s t o r t i o n ,  X i s  symmetr ical ly extended. That i s ,  
i f  X = [ c l  c2 c3 . . . cn] ( i n  ID) ,  then i t s  symmetric extension 
would be [ .  . . c3 c2 c l  c l  c2 c3 . . . cn cn cn-1 cn-2 . . .  I. 
OUTPUTS : 

Ma t r i x  C i s  a c o e f f i c i e n t  decomposition vec tor :  

where a, h, v, and d are  columnwise vectors conta in ing 
approximation, ho r i zon ta l ,  v e r t i c a l ,  and diagonal  c o e f f i c i e n t  
mat r ices ,  r espec t i ve l y .  C has 3n + 1 sec t ions  where n i s  the  
number o f  wavelet  decompositions. 

Ma t r i x  S i s  an (n t2)  x 2 bookkeeping mat r ix :  

where sa and sd are approximation and d e t a i l  s i z e  e n t r i e s .  

See a l so  WAVEBACK and WAVEFILTER. 

% Check t h e  i n p u t  arguments f o r  reasonableness. 
er ror (nargchk(3 ,  4, na rg in ) )  ; 

i f  na rg in  == 3 
i f  ischar (vararg in(1) )  

[ l p ,  hp] = w a v e f i l t e r ( v a r a r g i n { l } ,  ' d ' )  ; 
e l s e  

e r r o r ( ' M i s s i n g  wavelet name.'); 
end 

e l se  
l p  = varargin(1);  hp = varargin(2);  

end 

i f  (ndims(x) -= 2) ( (min(sx) < 2) 1 - i s r e a l ( x )  I - isnumeric(x)  
e r r o r ( ' X  must be a r e a l ,  numeric m a t r i x . ' ) ;  

end 

i f  (ndims(1p) -= 2) 1 - i s r e a l ( l p )  I - i snumer ic ( lp )  . . . 
I (ndims(hp) -= 2 )  1 - i s rea l (hp )  I - isnumeric(hp) . . . 
( ( f l  -= length(hp)  ) ( rem(f1, 2)  -= 0 

e r r o r ( [ ' L P  and HP must be even and equal  l eng th  r e a l ,  ' . . .  
'numeric f i l t e r  v e c t o r s . ' ] ) ;  

end 

i f  - i s r e a l ( n )  I - isnumeric(n) I (n  < 1 )  I (n > logZ(max(sx)))  
e r r o r ( [ ' N  must be a r e a l  sca lar  between 1 and ' . . .  

'log2(rnax(size((X))).']); 
end 

7.2 a The Fast 

the s t a r t i n g  output data  s t ruc tu res  and i n i t i a l  approx imat i  
s = sx; app = double(x);  

ach decomposition . . . 
xtend the  approximation symmetr ical ly.  
p, keep] = symextend(app, f l )  ; 

onvolve rows w i t h  HP and downsample. Then convolve columns 
i t h  HP and LP t o  get  t he  diagonal  and v e r t i c a l  c o e f f i c i e n t s .  
s = symconv(app, hp, ' r ow ' ,  f l ,  keep); 
f s  = symconv(rows, hp, ' c o l ' ,  f l ,  keep); 

- [ c o e f s ( : ) ' c ] ;  s = [ s i z e ( c o e f s ) ; s ] ;  
efs = symconv(rows, l p ,  ' c o l t ,  f l ,  keep) ; 

volve rows w i t h  LP and downsample. Then convolve columns 
h HP and LP t o  get t h e  h o r i z o n t a l  and next approximation 

= symconv(app, l p ,  ' r ow ' ,  f 1, keep) ; 
= syrnconv(rows, hp, ' c o l '  , f 1, keep) ; 

symconv(rows, l p ,  ' c o l ' ,  f l ,  keep); 

f i n a l  approximation s t ruc tu res .  
( : ) '  c l ;  s = [s ize(app) ;  s ] ;  

- - -_ - - -_ - - - . - - -_ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - -  
n [y, keep] = symextend(x, f l )  
t e  the  number o f  c o e f f i c i e n t s  t o  keep a f t e r  convo lu t ion  
ownsampling. Then extend x i n  both dimensions. 

= f l o o r ( ( f 1  + s i ze (x )  - 1) / 2 ) ;  
adarray(x,  [ ( f l  - 1) ( f l  - 1)  1, 'symmetr ic ' ,  ' b o t h ' ) ;  

. - - - _ - - _ - - _ _ _ - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

i on  y = symconv(x, h, type, f l ,  keep) 
volve' the  rows o r  columns o f  x w i t h  h, downsample, 
ex t rac t  t he  Center sec t ion  s ince symmetr ical ly extended. 

rcmp(type, ' r o w ' )  

= y ( : ,  1:2:end); 
= y ( : ,  f l  1 2 + 1 : f l  1 2 + keep(2) ) ;  

= conv2(x, h ' ) ;  
= y(l:2:end, : ) ;  
= y ( f 1  / 2 + 1 : f l  / 2 + keep( l ) ,  : ) ;  

Iave 

. - %  

- % 

'let Transform 

C = c o n v 2  ( A ,  B )  
performs the 2-D 
convol~rrion of  no- 
trices A and B. 
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EXAMPLIE 7.3: 
Comparing the 
execution times of 
wavefast and 
wavedec2. 

Wavelets 

flecting f 1 - 1 of its elements (the length of the decomposition filter minu; 
across its border. 

Function symextend returns an extended matrix of approximation toe_ 

cients and the number of pixels that should be extracted from the cente?' 4 any subsequently convolved and downsampled results. The rows of the & 

paragraph. ~ o n v o l v e d  output, rows, is then submitted to symconv to convc 

are inserted into decomposition vector c (working from the last element 
ward the first) and the process is repeated in accordance with Fig. 7.2 tog  
erate the horizontal detail and approximation coefficients (the bottom t d  
branches of the figure). 

Function symconv uses the conv2 function to d o  the bulk of the transfc 
computation work. It convolves filter h with the rows or  columns of x (dt 

convolution; using column filter vector h ' results in a columnwise convolutio~ 

As can be seen in the main routine, only one f o r  loop, which cycles thr 
the decomposition levels (or scales) that are generated, is used to orch 
the entire forward transform computation. For each execution of the 10 
current approximation image, app, which is initially set to x, is symme 
extended by internal function symextend.This function calls padarray,  
was introduced in Section 3.4.2, to extend app in two dimensions by mirro 

tended approximation are next convolved with highpass decomposition fii{ 
h p  and downsampled via symconv. This function is described in the follo ' 

and downsample its columns with filters hp and lp-generating the dia 
and vertical detail coefficients of the top two branches of Fig. 7.2.These r 

pending on type) ,  discards the even indexed rows or columns (i.e., do 
ples by 2), and extracts the center keep elements of each row or 
Invoking conv2 with matrix x and row filter vector h initiates a row-b 

I The following test routine uses functions t i c  and t o c  to compare th 
cution times of the Wavelet Toolbox function wavedec2 and custom func 
wavef a s t :  3 4 * 
function [ r a t i o ,  maxdiff ] = fwtcompare(f , n, wname) 
%FWTCOMPARE Compare wavedec2 and wavefast. 
% [RATIO, MAXDIFF] = FWTCOMPARE(F, N ,  WNAME) compares the operat 
% of toolbox function WAVEDEC2 and custom function WAVEFAST. 
0, 

% INPUTS: 
% F Image t o  be transformed. 
% N Number of scales t o  compute. 
% WNAME Wavelet t o  use. 
% 
% OUTPUTS: 
% RATIO Execution tune r a t l o  (custom/toolbox) 
% MAXDIFF Maxlmum coeff lclent  difference. 

% Get t ransform and c o m ~ u t a t i o n  t lme f o r  wavedec2. 

7.3 @ Working with Wa Dec In Structures 259 

Get transform and computation time f o r  wavefast .  
.6 ; 
:2, s2] = w a v e f a s t ( f ,  n, wname) ; 
?"= t o c ;  
I 
'Compare t h e  r e s u l t s .  
t i o  = t 2  / ( r e f t i m e  + e p s ) ;  
xdiff = abs (max(c1 - c2) ) ; 
"i 

1; the 512 X 512 image of Fig. 7.4 and a five-scale wavelet transform with 
jpect to 4th order Daubechies' wavelets, fwtcompare yields 

f = i m r e a d ( ' V a s e i ,  ' t i f ' ) ;  
[ r a t i o ,  maxdlfference]  = fwtcompare( f ,  5 ,  ' d b 4 ' )  

ice 

pote that custom function wavef a s t  was almost twice as fast as its Wavelet 
F l b o x  counterpart while producing virtually identical results. 

1 Working with Wavelet Decomposition Structures - 
E$e wavelet transformation functions of the previous two sectlons produce 

n~ndlspla~nble  data structures of the form {c, S) ,  where c  1s a transform coef- 
cient vector and S is a bookkeeping matrix that defines the arrangement of 

fficients In c. To process images, we must be able to  examine and/or modify 
this sect~on,  we formally define { c ,  S}, examine some of the Wavelet Tool- 

L A " ,  
funct~ons for manipulating rt, and develop a set of custom functions that 

[ c l ,  s l ]  = wavedec2(f ,  n ,  wname); be used without the Wavelet Toolbox. These functions are then used to 
re f t lme  = t o c ;  Julld a general purpose rout~ne for displaying c. 

FIGURE 7.4 
A 512 X 512 
image of a vase. 
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The representation scheme introduced in Example 7.2 integra 
cients of a multiscale two-dimensional wavelet transform into 
dimensional vector 

c = [AN(:)' HN(:)' ' ' '  Hi(:)' Vi(:)' Di(:)' ... Vl(:)' 

where AN is the approximation coefficient matrix of the Nth deco 
level and Hi, V,, and Di for i = 1,2 , .  . . N are the horizontal, vertica 
agonal transform coefficient matrices for level i. Here, Hi(:)', for 
the row vector formed by concatenating the transposed columns of m ox = appcoef2(cl ,  s l ,  ' h a a r ' )  
That is, if 

zdet2 = d e t c o e f 2 ( ' h ' ,  c l ,  s l ,  2)  

0 -0.2842 

cl = wthcoef2 ( ' h1 ,  c l ,  s l ,  2 ) ;  
horizdet2 = d e t c o e f 2 ( ' h 1 ,  newcl, s l ,  2)  

three-level decomposition with respect to Haar wavelets is performed 

ated with i = N. Thus, the coefficients of c are ordered from low to 
Matrix S of the decomposition structure is an (N + 2) x 2 

array of the form cl  span ( N  - 2) = (5 - 2) = 3 decomposition levels. Thus, it 
tes the elements needed to populate 3N + 1 = 3(3) + I = 10 ap- 

S=[saN; sdN; S ~ N - ~ ;  ... sdi; . . .  sdl; 

e e s l ( 1 ,  : )  a n d s l  ( 2 ,  : ) ] , (b )  three2 X 2detail 
dimensions of Nth-level approximation AN, ith-level details (Hi, V,, s1 ( 3 ,  : )I, and (c) three 4 X 4 detail matrices for level 
for i = 1,2, .  . . N), and original image F, respectively.The information i 

has the following syntax: 
of S are organized as a column vector. 

a = appcoefZ(c, s ,  wname) w '  appcoef  2  

EXAMPLE 7.4: $WI The Wavelet Toolbox provides a variety of functions for locating, ext 
Wavelet Toolbox ing, reformatting, and/or manipulating the approximation and horizontal, 
functions for 
manipulating tical, and diagonal coefficients of c as a function of decomposition level. 

transform introduce them here to illustrate the concepts just discusse n of similar syntax 
decomposition the way for the alternative functions that will be developed in the 
vector c. Consider, for example, the following sequence of commands: d = detcoef2(o ,  c ,  s ,  n )  wf d e t c o e f 2  

>> f = magic(8);  
>> [ c l ,  s l ]  = wavedec2(f, 3 ,  ' h a a r ' ) ;  which o is set to ' h ' , ' v ' , or ' d ' for the horizontal, vertical, and diagonal 
>> s i z e ( c 1 )  esired decomposition level. In this example, 2 X 2 matrix 
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wavework 
eavz - - ---- "" 

Wavelets 7.3 a Working with Wavelet Decom~ 

horizdet2 is returned.The coefficients corresponding to horizdet2 in is a decomposition level (Ignored if TYPE = 'a'). 
then zeroed using wthcoef 2, a wavelet thresholding function of the for is a two-dimensional coefficient matrix for pasting. 

nc = wthc0ef2(typej c ,  S, n, t, sorh) also WAVECUT, WAVECOPY, and WAVEPASTE. 

where type is set to ' a ' to threshold approximation coefficients and ' 

or ' d ' to threshold horizontal, vertical, or dia S(~) -= 2) ( (size(c, 1)  -= 1) 
n is a vector of decomposition leve r( 'C must be a row vector. ' ) ; 
sponding thresholds in vector t, whil 
thresholding, respectively. If t is omitted, all coefficients meeting the S )  [   is numeric(^) 1 (size(s, 2 )  -= 2) 
n specifications are zeroed. Output nc is the modified (i.e., thresh0 umeric ~ W O - C O ~ U ~ ~  array.'); 

other syntaxes that can be examined using the MATLAB help com % Coefficient matrix elements. 

7,3.1 Editing Wavelet Decomposition Coefficients ts(2:end - 1 ) )  >= eleme*ts(end) 
without the Wavelet Toolbox ,.(['[C SI must form a standard wavelet decomposition ' 

Without the Wavelet Toolbox, bookkeeping matrix S is the key to ac 'structure. ' I) ; 
the individual approximation and detail coefficients of multiscale vect 
this section, we use S to build a set of mp(lower(opcode(l:3)), 'pas') & napgin ' 6 
ulation of c. Function wavework is t r('Not enough input arguments.'); 
which are based on the familiar cut-copy-paste metaphor of modern w 
cessing applications. 

% Default level is 1 .  
function [varargoutl = wavework(opcode, type, c, s, n, x )  
%WAVEWORK is used to edit wavelet decomposition structures. % Maximum levels in [C, Sl. 
% [VARARGOUT] = WAVEWORK(OPCODE, TYPE, C, S, N, X) gets the 
% coefficients specified by TYPE and N for access or modif icat 
% based on OPCODE. 
% 
% INPUTS: 
% OPCODE Operation to perform % Make pointers into C. 
/o . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% ' copy' [varargoutl = Y = requested (via TYPE and N)  
% coefficient matrix 
% 'cut' lvarargoutl = [NC, Y] = New decomposition vector 
% (with requested Coefficient matrix zeroed) AND 
a, requested coefficient matrix 
% 'paste' [varargoutl = [NC]  = new decomposition vector wit 
% coefficient matrix replaced by x 
% 
% TYPE Coefficient category % Index to detail info. 
0/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% 'a' Approximation coefficients 
% 'h' Horizontal details 
% Iv' Vertical details 
% 'd' Diagonal details 
% 
% [ C ,  Sl is a wavelet toolbox decomposition structure. 

losition Struct 
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wavecut - -  

Wavelets 7.3 @ Working with Wavelet Decornpositi 

swi tch  lower (opcode) % Do requested ac t i on .  d N) have been zeroed. The c o e f f i c i e n t s  t h a t  were zeroed a r e  
case { ' c o p y ' ,  ' c u t ' }  

y = repmat (0, ~ ( n i n d e x ,  : ) )  ; 
y ( : )  = c ( s t a r t : s t o p ) ;  nc = c; 
if strcmp(lower(opcode(1:3)), ' c u t ' )  C o e f f i c i e n t  category 

nc (s ta r t : s top )  = 0; varargout = {nc, y); 
e l s e  Approximation c o e f f i c i e n t s  

varargout = {y } ;  H o r i z o n t a l  d e t a i l s  
end V e r t i c a l  d e t a i l s  

case ' pas te '  Diagonal  d e t a i l s  
i f  p r o d ( s i z e ( x ) )  -= elernents(end - n t s t )  

e r r o r ( ' X  i s  no t  s ized f o r  t h e  requested paste.  ' ) ;  [c, S] i s  a wavelet da ta  s t r u c t u r e .  
e l se  N s p e c i f i e s  a decomposit ion l e v e l  ( ignored i f  TYPE = ' a ' ) .  

nc = c;  nc (s ta r t : s top )  = x ( : ) ;  varargout = (nc}; 
end 

otherwise 
e r r o r  ( 'Unrecognized OPCODE. ' ) ; 

end 

c, y ]  = wavework( 'cut l ,  type,  c,  s ) ;  -- 
on y = wavecopy(type, c, s, n)  

s w i t c h  statement then begins the computation of a pair of point 
efficients associated with input parameters t y p e  and n. For the approxi WAVECOPY(TYPE, C, S, N) r e t u r n s  a c o e f f i c i e n t  a r r a y  based on 
case (i.e., c a s e  ' a ' ), the computation is trivial since the coefficients are 
at the start of c (so pointer s t a r t  is 1); the ending index, pointer s t o p  

C o e f f i c i e n t  category 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Approximation c o e f f i c i e n t s  

zontal, vertical, or diagonal coefficients, respectively, and n i n d e x  is a H o r i z o n t a l  d e t a i l s  
V e r t i c a l  d e t a i l s  

to the row of s that corresponds to input parameter n. Diagonal  d e t a i l s  
The second s w i t c h  statement in function wavework performs the 

tion requested by opcode. For the ' c u t  ' and ' copy  ' cases, the coe S] i s  a wavelet  da ta  s t r u c t u r e .  
c between s t a r t  and s t o p  are copied into y, which has be p e c i f i e s  a decomposit ion l e v e l  ( ignored i f  TYPE = ' a ' ) .  
two-dimensional matrix whose size is determin 

B = r e p m a t  (A ,  M, N) , is used to create a large matrix B composed of M x 
copies of A. For the ' p a s t e  ' case, the elements of x are copied into nc, 
of input c, between s t a r t  and s top .  For both the ' c u t '  and ' p a s t e '  = wavework('copyl, type, c, s, n ) ;  
tions, a new decomposition vector nc  is returned. 

= wavework('copy' , type, c, s )  ; 
--".dmm 

f u n c t i o n  [ n c ,  y ]  = w a v e c u t ( t y p e ,  c, s ,  n )  nc  = w a v e p a s t e ( t y p e ,  c ,  s, n,  x )  
%WAVECUT Zeroes c o e f f i c i e n t s  i n  a wavelet  decomposit ion s t r u c t u r  
% [NC, Y] = WAVECUT(TYPE, C, S, N)  r e tu rns  a new decomposit ion 
% v e c t o r  whose d e t a i l  o r  approximat ion c o e f f i c i e n t s  (based on 

on Structures 

wavecopy 
"- 

wavepaste 
m€m---------. 
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EXAMPLE 7.5: 
Manipulating c 
with wavecut and 
wavecopy. 

Wavelets 7.3 % Working with Wavelet Decomposition 

% ces that replace the two- 
% INPUTS: 
% TYPE Coeff icient  category 
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 ' a '  Approximation coef f ic ien t s  

' h '  % Horizontal d e t a i l s  
% ' v '  Ver t ica l  d e t a i l s  
% ' d '  Diagonal d e t a i l s  
% 
% [C, S]  i s  a wavelet data  s t r u c t u r e .  
% N s p e c i f i e s  a decomposition l e v e l  (Ignored i f  TYPE = ' a '  e t  coeff icient  image. 
% X i s  a two-dimensional approximation or  d e t a i l  coef f ic ie  
% matrix whose dimensions a r e  appropriate f o r  decomposit 
% l e v e l  N .  Display wldefaults.  
0 
0 o = wave2gray(c1 s ) ;  Display and return.  

% See a l s o  WAVEWORK, WAVECUT, and WAVECOPY. o = wave2gray(c1 s ,  4 ) ;  Magnify the d e t a i l s .  
o = wave2gray(c, s ,  -4) ;  Magnify absolute values. 

error(nargchk(5,  5,  nargin))  o = wave2gray (c ,  s ,  1 ,  'append' ) ; Keep border values. 
nc = w a v e w o r k ( ' p a s t e l ,  t y p e ,  c ,  s , .  n, x ) ;  

a Functions wavecopy and wavecut can be used to reproduce the 
Toolbox based results of Example 7.4: 

>> f = m a g i c ( 8 ) ;  Detail  coeff icient  scaling 
>> [ c l ,  s l ]  = wavedec2( f ,  3, ' h a a r ' ) ;  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
>> a p p r o ~  = w a v e c o p y ( ' a ' ,  c l ,  s l )  Maximum range (defau l t )  
approx = Magnify default by the scale  fac tor  

260.0000 1 ,  - 2 . . .  Magnify absolute values by abs(sca1e) 

>> h o r i z d e t 2  = w a v e c o p y ( ' h l ,  c l ,  s l ,  2 )  
h o r i z d e t 2  = Border between wavelet decompositions 

- - - - - - - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

1.0e-013 * 
Border replaces image (defau l t )  

0 -0.2842 Border increases width of image 
0 0 

>> [newcl ,  hor izde t21  = w a v e c u t ( ' h l ,  c l ,  s l ,  2 ) ;  
>> newhorizdet2 = w a v e c o p y ( ' h ' ,  newcl, s l ,  2 )  
newhorizdet2 = 

0 0 
0 b 

Note that all extracted matrices are identical to those 
example. 

-, ." . V / j  Displaying Wavelet Decomposition Coefficients 

A s  was indicated at the start of Section 7.3, the coefficients that are 
into one-dimensional wavelet decomposition vector c are, in 
cients of the two-dimensional output arrays from the filter bank in 
each iteration of the filter bank, four quarter-size coefficient 
any expansion that may result from the convolution proce 

Structures 



Chapter 7 H Wavelets 

% Here, n denotes the decomposition step scale and a ,  h, v,  d 
% approximation, horizontal, vert ical ,  and diagonal detail  
% coefficients, respectively. 

% Check input  arguments f o r  reasonableness.  
e r ror(nargchk(2,  4 ,  n a r g i n ) ) ;  

i f  (ndims(c) -= 2) 1 (size(c,  1)  -= 1) 
error('C must be a row vector . ' ) ;  end 

i f  (ndims(s) -= 2) 1 - isreal(s)  I -isnumeric(s) I (size(s,  2) -= 2) 
er ror( 'S  must be a real, numeric two-column array. ' ) ;  end 

elements = prod(s, 2 ) ;  
i f  (length(c) < elements(end)) I . . .  

-(elements(l ) + 3 * sum(elements(2:end - 1 ) ) >= elements(end)) 
er ror( [ ' [C S] must be a standard wavelet ' ... 

'decomposition s t ructure . ' ] ) ;  
end 
if  (nargin > 2)  & (-isreal(sca1e) I -isnumeric(scale)) 

error('SCALE must be a real, numeric sca la r . ' ) ;  
end 

i f  (nargin > 3) & (-ischar(border)) 
error( 'BORDER must be character string. ' ) ;  

end 

i f  nargin == 2 
s c a l e  = 1 ;  % Default  s ca le .  

end 
i f  nargin < 4 

border = ' abso rb '  ; % Default border. 
end 

% Scale c o e f f i c i e n t s  and determine pad f i l l .  
absf lag  = s c a l e  < 0 ;  
s c a l e  = a b s ( s c a 1 e ) ;  
i f  s c a l e  == 0 

s c a l e  = 1 ; 
end 

[cd ,  w ]  = w a v e c u t ( ' a l ,  c ,  s ) ;  w = rnat2gray(w); 
cdx = max(abs (cd( : ) ) )  I s c a l e ;  
i f  absf lag  

cd = mat2gray(abs(cd),  [O, c d x ] ) ;  f i l l  = 0;  
e l s e  

cd = mat2gray(cd, [-cdx, c d x ] ) ;  f i l l  = 0.5;  
end 

% B u i l d  gray image one decomposition a t  a time. 
f o r  i = s i z e ( s ,  1 )  - 2:-1:l 

w s  = s i z e ( w ) ;  

h = wavecopy( 'h l ,  cd ,  s ,  i ) ;  
pad = ws - s i z e ( h ) ;  frontporch = round(pad / 2 ) ;  
h = padarray(h ,  f rontporch,  f i l l ,  ' p r e ' ) ;  
h = padarray(h ,  pad - f rontporch,  f i l l ,  ' p o s t ' ) ;  

7.3 %i Working with Wavelet Decompositic 

= wavecopy( 'v ' ,  cd, s ,  i ) ;  
ad = ws - s i z e ( v ) ;  frontporch = round(pad / 2 ) ;  
= padarray(v, f rontporch,  f i l l ,  ' p r e ' ) ;  
= padarray(v,  pad - f rontporch,  f i l l ,  ' p o s t ' ) ;  
= wavecopy( 'd ' ,  cd,  s ,  i ) ;  

ad = ws - s i z e ( d ) ;  frontporch = round(pad / 2 ) ;  
= padarray(d,  f rontporch,  f i l l ,  ' p r e ' ) ;  
= padarray(d,  pad - f rontporch,  f i l l ,  ' p o s t ' ) ;  
~ d d  1 p ixe l  white border. 

witch lower(border)  

w = padarray(w, [ I  I ] ,  1 ,  ' p o s t ' ) ;  
h = padarray(h,  [ I  01, 1, ' p o s t ' ) ;  
v = padarray(v,  [ 0  I ] ,  1 ,  ' p o s t ' ) ;  

ase ' absorb '  
w ( : ,  end) = 1 ;  w(end, : )  = 1 ;  
h(end, : )  = 1 ;  v ( : ,  end) = 1 ;  

error( 'Unrec0gnized BORDER pa ramete r . ' ) ;  

% Concatenate coefs .  

% Display r e s u l t .  

"help text" or header section of wave2gray details the structure of gen- 
output image w. The subimage in the upper left corner of w, for instance, 

approximation array that results from the final decomposition step. It is 
unded-in a clockwise manner-by the horizontal, diagonal, and vertical 

oefficients that were generated during the same decomposition.The re- 
2 X 2 array of subimages is then surrounded (again in a clockwise 

er) by the detail coefficients of the previous decomposition step; and 
tern continues until all of the scales of decomposition vector c are 
ed to two-dimensional matrix w. 
compositing just described takes place within the only f o r  loop in 
ray. After checking the inputs for consistency, wavecut is called to re- 
e approximation coefficients from decomposition vector c. These coeffi- 

then scaled for later display using mat2gray. Modified decomposition 
(i.e., c without the approximation coefficients) is then similarly scaled. 

Ive values of input scale,  the detail coefficients are scaled so that a co- 
value of 0 appears as middle gray; all necessary padding is performed 

fill value of 0.5 (mid-gray). If sca le  is negative, the absolute values of 
il coefficients are displayed with a value of 0 corresponding to black and 
f i l l  value is set to 0. After the approximation and detail coefficients 

een scaled for display, the first iteration of the f o r  loop extracts the last 
position step's detail coefficients from cd and appends them to w (after 

ng to make the dimensions of the four subimages match and insertion of a 

Stn uctl 



EXAMPLE 7.6: 
Transform 
coefficient display 
using wave2gray. 

FIGURE 7.5 
D~splay~ng a two- 
scale wavelet 
transform of the 
lmage in Fig. 7 4. 
(a) Automat~c 
scal~ng, 
(b) add~t~onal  
scaling by 8, and 
(c) absolute 
values scaled by 8 
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Wavelets 

one-pixel white border) via the w = [ w  h ; v dl statement.This process is then 
peated for each scale in c. Note the use of wavecopy to extract the various de 
coefficients needed to form w. 

Figure 7.5(c) shows the effect of taking the absolute values of the 
Is. Here, all padding is done in black. @! 

,% The following sequence of commands computes the two-scale DWT of 
image in Fig. 7.4 with respect to fourth-order Daubechies' wavelets and The Inverse Fast Wavelet Transform 
plays the resulting coefficients: 

ts forward counterpart, the inverse fast wavelet tra~zsfornz can be com- 
>> f = i m r e a d ( ' v a s e . t i f l ) ;  
>> [ c ,  s ]  = w a v e f a s t ( f ,  2 ,  ' d b 4 ' ) ;  
>> wave2gray(c ,  s ) ;  
>> f i g u r e ;  wave2gray(c ,  s ,  8 ) ;  
>> f i g u r e ;  wave2gray(c ,  S, - 8 ) ;  

velets employed in the forward transform. Recall that they can be ob- 
from the wf i l t e r s  and wavef i l t e r  functions of Section 7.2 with input 

verse FWT of wavelet decomposition structure [C, S] .  It is invoked using 

g = waverec2(C, S ,  wname) 

g is the resulting reconstructed two-dimensional image (of class double). 
quired reconstruction filters can be alternately supplied via syntax 

.: 
g = waverec2(C, S,  Lo-R, H i - R )  f* w a v e r e c ~  

llowing custom routine, which we call waveback, can be used when the 
let Toolbox is unavailable. It is the final function needed to complete our 
et-based package for processing images in conjunction with IPT (and 
ut the Wavelet Toolbox). 

FIGURE 7.6 The 
2-D FWT-' filter 
bank. The boxes 
with the up 
arrows represent 
upsampling by 
inserting zeroes 
between every 
element. 
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waveback 
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Navelets 7.4 a The Inverse Fast 

f unc t i on  [ va ra rgou t ]  = waveback(c, s, va ra rg in )  e r r o r (  'Wrong number o f  ou tput  arguments. ' ) ; 
%WAVEBACK Performs a m u l t i - l e v e l  two-dimensional  i nve rse  FWT. 
% [VARARGOUT] = WAVEBACK(C, S, VARARGIN) computes a 2D N - l e v e l  
% p a r t i a l  o r  complete wavelet r econs t ruc t i on  o f  decomposit ion 
% s t r u c t u r e  [C, S ] .  l p ,  hp] = wavefi l ter(wname, ' r '  ) ; 
% n = varargin(2);  nchk = 1; 
% SYNTAX: 
% Y = WAVEBACK(C, S, 'WNAME'); Output i nve rse  NVT m a t r i x  Y l p  = varargin(1);  hp = varargin(2);  
% Y = WAVEBACK(C, S, LR, HR); us ing  lowpass and highpass f i l t e r c h k  = 1; n = nmax; 
% recons t ruc t i on  f i l t e r s  (LR an if nargout -= 1 
% HR) o r  f i l t e r s  obta ined by er ror ( 'Wrong number o f  ou tput  arguments. ' ) ;  
% c a l l i n g  WAVEFILTER w i t h  'WNAM 
% 
% [NC, NS] = WAVEBACK(C, S, 'WNAME', N); Output new wavelet 
% [NC, NS] = WAVEBACK(C, S, LR, HR, N); decomposit ion s t r u c t  = v a r a r g i n j l ) ;  hp = varargin(2);  f i l t e r c h k  = 1; 
% [NC, NS] a f t e r  N ste = vararg in I3) ;  nchk = 1 ; 
% recons t ruc t i on .  
% or( '1mproper number o f  i n p u t  arguments. ' ) ;  
% See a l so  WAVEFAST and WAVEFILTER. 

% Check t h e  i n p u t  and output  arguments f o r  reasonableness. 
er ror (nargchk(3 ,  5, n a r g i n ) )  ; % Check f i l t e r s  
er ror (nargchk(1 ,  2, nargout ) ) ;  (ndims(1p) -= 2 )  1 - i s r e a l ( l p )  ( - i snumer i c ( l p )  . . . 
i f  (ndims(c) -= 2) 1 ( s i ze (c ,  1) -= 1) I (ndims(hp) -= 2) 1 - i s rea l (hp )  I - isnumeric(hp) . . . 

e r r o r ( ' C  must be a row v e c t o r . ' ) ;  I ( f l  -= length(hp) )  I rem(f1,  2) -= 0 
end e r r o r ( [ ' L P  and HP must be even and equal  l e n g t h  r e a l ,  ' . . . 

'numeric f i l t e r  vec tors .  ' I )  ; 
i f  (ndims(s) -= 2 )  1 - i s r e a l ( s )  I - isnumeric(s)  I ( s i ze (s ,  2) -= 2) 

e r r o r ( ' S  must be a r e a l ,  numeric two-column a r r a y . ' ) ;  
end 

chk & (- isnumeric(n) I - i s r e a l ( n ) )  % Check sca le  N. 
elements = prod(s,  2 ) ;  r r o r ( ' N  must be a r e a l  numeric. ' ) ; 
i f  ( l eng th (c )  < elements(end) ) ( . . . 

- (e lements( l )  + 3 * sum(elements(2:end - 1 ) )  >= elements(end) n > nmax) I (n < 1)  
e r r o r ( [ ' [ C  S] must be a standard wavelet  ' . . .  e r r o r ( ' 1 n v a l i d  number (N) o f  r econs t ruc t i ons  reques ted . ' ) ;  

'decomposit ion s t r u c t u r e . ' ] ) ;  
end n -= nmax) & (nargout -= 2) 
% Maximum l e v e l s  i n  [C, S] . e r r o r (  'Not enough output arguments. ' ) ; 
nmax = s i ze (s ,  1 )  - 2; 
% Get t h i r d  i n p u t  parameter and i n i t  check f l a g s .  
wname = varargin(1);  f i l t e r c h k  = 0; nchk = 0; C; ns = s; nnmax = nmax; % I n i t  decomposit i  

sw i t ch  na rg in  Compute a new approximation. 
case 3 = S Y ~ C O ~ V U ~ ( W ~ V ~ C O ~ ~ ( ' ~ '  , nc, ns) ,  l p ,  l p ,  f l ,  ns(3, : ) )  t . . 

i f  ischar(wname) symconvup(wavecopy('h', nc, ns, nnmax), . . .  
[ l p ,  hp] = wavefi l ter(wname, ' r ' ) ;  n = nmax; hp, l p ,  f l ,  ns(3, : ) )  + . .  . 

e l se  s ~ ~ c o ~ v u ~ ( w ~ v ~ c o ~ ~ ( ' v ' ,  nc, ns, nnmax), . . .  
e r ro r ( 'Unde f i ned  f i l t e r . ' ) ;  l p ,  hp, f l ,  ns(3, : ) )  + . .  . 

end symconvup(wavecopy ( ' d  ' , nc, ns, nnmax) , . . . 
i f  nargout -= 1 h P ~  h ~ J  flJ ns (3J  :I); 
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% Update decomposition. following test routine compares the execution times of Wavelet Tool- 
nc = nc(4 * prod(ns(1, : ) )  + 1:end);  nc = [ a ( : ) '  nc]; 
ns = ns(3:end, : ) ;  ns = [ n s ( l ,  : ) ;  ns];  nd custom function waveback using a simple modifi- 

nnmax = s ize (ns ,  1 )  - 2; 
end 

% For complete reconstructions, reformat output as  2-D. 
i f  nargout == 1 

a = nc; nc = repmat(0, ns(1,  : ) ) ;  n c ( : )  = a;  
end 

varargout(1) = nc; 
i f  nargout == 2 

varargout{2) = ns; Image t o  transform and inverse transform. 
end Number of scales t o  compute. 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  NAME Wavelet t o  use. 
function z = symconvup(x, f l ,  f 2 ,  f l n ,  keep) 
% Upsample rows and convolve columns w i t h  f l ;  upsample columns an 
% convolve rows w i t h  f2 ;  then extract  center assuming symmetrical 
% extension. 

y = zeros ( [2  11 . *  s i z e ( x ) ) ;  y( l :2:end,  : )  = x; 
y = conv2(y, f l ' ) ;  
z = zeros ( [ l  21 .* s i z e ( y ) ) ;  z ( : ,  1:2:end) = y;  
z = conv2(z, f 2 ) ;  verec2(cl, s l  , wname) ; 
z = z(f1n - 1 : f l n  + keep(1) - 2,  f l n  - 1: f ln  t keep(2) - 2) 

The main routine of function waveback is a simple f o r  loop that 
through the requested number of decomposition levels (i.e., scales) in I = wavefast (f , n ,  wname) ; 
sired reconstruction. As can be seen, each loop calls internal fu 
symconvup four times and sums the returned matrices. Decomposition veback(c2, s2, wname) ; 
nc, which is initially set to c, is iteratively updated by replacing the four 
cient matrices passed to symconvup by the newly created approxima 
Bookkeeping matrix ns  is then modified accordingly-there is n are the resul ts .  

scale in decomposition structure [ n c ,  n s ] .  This sequence of o 
= t 2  1 (reftime + eps);  
f = abs(max(max(g1 - 92) ) )  ; 

slightly different than the ones outlined in Fig. 7.6, in which the top two 
are combined to yield 

scale transform of the 512 X 512 image in Fig. 7.4 with respect to 4th-order 
[w$'(j, n?, n )  t2"' * h,(m) + w ; ( j ,  nz, n )  f2"' :I: h,(,n)]t2" h,,,(n) 

where f2"' and t2" denote upsampling along rn and n, respectively. Fun 
waveback uses the equivalent computation 

[ W y ( j ,  m. n)r2"' * h,,,(m)]fZn * h,(n) + [ ~ i ( j ,  rn, n)f2"' * h,(m)]f2" * 
Function symconvup performs the convolutions and upsampling re 

compute the contribution of one input of Fig. 7.6 to output W,(j + 1, nl 
cordance with the proceding equation. Input x is first upsampled in th 
tion to yield y, which is convolved columnwise with filter f 1 .The resulti 
which replaces y, is then upsampled in the column direction and convolved r 
row with f 2 to produce z. Finally, the center keep elements of z (the final c 
lution) are returned as input x's contribution to the new approximation. 
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EXAMPLE 7.7: 
Comparing the 
execution times of 
wavebackand 
waverec2. 
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EXAMPLE 7.8: 
Wavelet 
directionality and 
edge detection. 

EXAMPLE 7.9: 
Wavelet-based 
image smoothing 
or blurring. 

Wavelets 7.5 .W Wavelets in Image 

Wavelets in Image Processing 
As in the Fourier domain (see Section 4.3.2), the basic approach to w 
based image processing is to 

1. Compute the two-dimensional wavelet transform of an image. 
2. Alter the transform coefficients. 
3. Compute the inverse transform. 

Because scale in the wavelet domain is analogous to frequency in the 
domain, most of the Fourier-based filtering techniques of Chapter 4 h 
equivalent "wavelet domain" counterpart. In this section, we use the pre 
three-step procedure to give several examples of the use of wavelets in 
processing. Attention is restricted to the routines developed earlier 
chapter; the Wavelet Toolbox is not needed to implement the example 
here-nor the examples in Chapter 7 of Digital Image Processing (Go 
and Woods [2002]). 

[OIO. Consider the 500 X 500 test image in Fig. 7.7(a). This image was u 
Chapter 4 to illustrate smoothing and sharpening with Fourier tra 
Here, we use it to demonstrate the directional sensitivity of the 2-D 
transform and its usefulness in edge detection: 

>> f = i m r e a d ( ' A . t i f l ) ;  
>> imshow(f); 
>> [ c ,  S ]  = wavefas t ( f ,  1, ' sym4' ) ;  
>> f i g u r e ;  wave2gray(c, s ,  -6);  
>> [nc,  y] = w a v e c u t ( ' a l ,  c ,  s ) ;  
>> f i g u r e ;  wave2gray(nc, s ,  -6) ;  
>> edges = abs(waveback(nc, s ,  ' sym4 ' ) ) ;  
>> f i g u r e ;  imshow(mat2gray(edges)); 

mlets is shown in Fig. 7.8(b), where it is clear that a four-scale decom- 
The horizontal, vertical, and diagonal directionality of the sing1 has been performed. To streamline the smoothing process, we employ 

wavelet transform of Fig. 7.7(a) with respect to ' sym4 ' wavelets is clea wing utiiity function: 
ible in Fig. 7.7(b). Note, for example, that the horizontal edges of the o 
image are present in the horizontal detail coefficients of the upper-r n [nc, g8] = wavezero(c, s ,  1, wnarne) 
rant of Fig. 7.7(b).The vertical edges of the image can be similarly id RO Zeroes wavelet transform de ta i l  coeff ic ients .  
the vertical detail coefficients of the lower-left quadrant. To combi , G8] = WAVEZERO(C, S, L, WNAME) zeroes the level  L d e t a i l  
formation into a single edge image, we simply zero the approximatl e f f ic ients  i n  wavelet decomposition s t ructure  [ C ,  S] and 
cients of the generated transform, compute its inverse, and take th omputes the resulting inverse transform w i t h  respect t o  WNAME 
value. The modified transform and resulting edge image are sho 
Figs. 7.7(c) and (d), respectively. A similar procedure can be used to is01 001 = Wavecut('hl, C ,  S, 1 ) ;  
vertical or horizontal edges alone. 001 = wavecut( 'vl ,  nc, s ,  1); 

001 =wavecu t ( ' d ' ,  nc, s ,  1 ) ;  
%Bs Wavelets, like their Fourier counterparts, are effective instrume aveback(nc, s ,  wname); 
smoothing or blurring images. Consider again the test image of Fig. irn2uint8(rnat2gray (i) ) ; 
which is repeated in Fig. 7.8(a). Its wavelet transform with respect to f 
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a b  
c d 
FIGURE 7.7 
Wavelets In edge 
detection: 
(a) A s~mple test 
image; (b) its 
wavelet 
transform; (c) the 
transform 
modified by 
zeroing all 
approximation 
coefficients; and 
(d) the edge 
image resulting 
from computing 
the absolute value 
of the inverse 
transform. 

wavezero  
.!mmr------ 
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a b  
c d 
e f 

FIGURE 7.81 
Wavelet-based 
image smoothing: 
(a) A test Image; 
(b) ~ t s  wavelet 
transform; (c) the 
inverse transform 
after zerolng the 
tlrst-level detall 
coefflclents; and 
(d) through 
(f) s ~ m ~ l a r  results 
after zerolng the 
second-, thlrd-, 
and fourth-level 
details 
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EXAMPLE 7.10: 
Progressive 
reconstruction. 
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% Approximation 1 

= wavecopy('al, c, s ) ;  
gure; imshow(mat2gray ( f )  ) ; 
, S ]  = waveback(c, s, ' j peg9 .7 ' ,  1);  % F i n a l  image 
= wavecopy( 'al ,  c, s ) ;  
gure; imshow(mat2gray(f)); 

that the final four approximations use waveback t o  perform single level 
i$ 

e detection to image smoothing, both of which are considered in the material 
se they provide significant insight into both an image's spatial and 
tics, wavelets can also be used in applications in which Fourier 
suited, like progressive image reconstruction (see Example 7.10). 
ocessing Toolbox does not include routines for computing or using 

Toolbox. In the next chapter, wavelets will be used for image compression, an 

a. 'ch they have received considerable attention in the literature. 

brd: d e. f 

so on. Figures 7.9(d) through (f) provide three additional reconstructions 
increasing resolution. This progressive reconstruction process is easily s i m ~ l  
ed using the following MATLAB command sequence: 

>> f = imread('Strawberries.tift); % Generate t ransform 
>> I c ,  S ]  = wave fas t ( f ,  4, ' j p e g 9 . 7 ' ) ;  
>> wave2gray(cJ s, 8) ;  
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s as though they were conventional M-files or built-in functions, 
rates that MATLAB can be an effective tool for prototyping image 
sion systems and algorithms. 

be seen in Fig. 8.1, image compression systems are composed of two 
structural blocks: an encoder and a decoder. Image f (x, y )  is fed into 

achieved can be quantified numerically via the 

n 1 CR = - 
n2 

10 (or 10: 1) indicates that the original image has 

Preview 
of two image files andlor variables can be computed with the follow- 

c t i o n  c r  = i m r a t i o ( f 1 ,  f 2 )  
RATIO Computes t h e  r a t i o  o f  t h e  by tes  i n  two images lvar iab les .  
CR = IMRATIO(F1, F2) r e t u r n s  t h e  r a t i o  o f  t h e  number o f  by tes  i n  

of an image; andlor (3) psychovisual redundancy, which is due to data v a r i a b l e s l f i l e s  F1 and F2. I f  F1 and F2 a re  an o r i g i n a l  and 

ignored by the human visual system (i.e., visually nonessential informatio compressed image, respec t i ve l y ,  CR i s  t h e  compression r a t i o .  

or(nargchk(2,  2, n a r g i n ) ) ;  % Check i n p u t  arguments 
= b y t e s ( f 1 )  I b y t e s ( f 2 ) ;  % Compute t h e  r a t i o  

compression standards-JPEG and JPEG 2000. These standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  % 
concepts introduced earlier in the chapter by combining techniques c t i o n  b  = b y t e s ( f )  
lectively attack all three data redundancies. e tu rn  t h e  number o f  by tes  i n  i n p u t  f .  I f  f i s  a  s t r i n g ,  assume 

hat  i t  i s  an image fi lename; if not ,  i t  i s  an image v a r i a b l e .  

Quantizer + ! 
because variable-length coding is a mainstay of imag coder 1 
MATLAB is best at processing matrices of uniform (i.e., fixe 

I 

During the development of the function, we assume that the reader has Encoder image 
working knowledge of the C language and focus our discussion on how 

r------------------ 
I I 

terface M-functions to preexisting 
I 

Symbol lnverse I 
--f decoder mapper I *I(x, Y )  

ized M-functions still need to be speeded up (e.g., when 
adequately vectorized). In the end, the range of compression 

I I 
L------------------l 

oped in this chapter, together with MATLAB's ability to treat C and Fortra Decoder 
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imratio 

FIGURE 8.1 
A general image 
compression 
system block 
diagram. 
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i f  i s c h a r ( f )  the dynamic structure fieldname syntax to set andlor get the contents 
i n f o  = d i r ( f ) ;  b  = in fo.bytes;  e field F, respectively. 

e l s e i f  i s s t r u c t ( f )  and/or use a compressed (i.e., encoded) image, it must be fed into a 
% MATLAB's whos func t ion  repor ts  an ex t ra  124 bytes o f  memory 
% per s t ruc tu re  f i e l d  because o f  the  way MATLAB stores see Fig. 8.1), where a reconstructed output image, f (x, y),  is generated. 
% s t ructures i n  memory. Don' t  count t h i s  e x t r a  memory; i n s t e  f'(x, y) may or may not be an exact representation off (x, y). If it is, 
% add up the memory associated w i t h  each f i e l d .  is called error free, information preserving, or lossless; if not, some 
b = 0; ortion is present in the reconstructed image. In the latter case, which 
f i e l d s  = f ie ldnames( f ) ;  ed lossy compression, we can define the error e(x, y )  between f ( x ,  Y )  and 
f o r  k  = 1  : length ( f  i e l d s )  ), for any value of x and y as 

b = b  + b y t e s ( f .  ( f i e l d s t k ) ) ) ;  
end e(x, Y) = A x ,  Y) - f (x, Y) 

else 
i n f o  = w h o s ( ' f l ) ;  b  = in fo.bytes;  t the total error between the two images is 

end M-1 N - 1  

I: C, I&, Y) - f (x, y) l  
x=o y=o For example, the compression of the JPEG encoded image in Fig. 2.4(c 

Chapter 2 can be computed via e rms (root-mean-square) error em, between f (x, Y) and f (x, Y) is the 
e root of the squared error averaged over the M X N array, or 

>> r = imratio(irnread('b~bbles25.jpg')~ ' b u b b l e s 2 5 . j p g ' )  I M - I  N-I 112 

r = ems = [- MN .=o 2 Y=O C, ricx, Y) - f ( ~ .  y)12] 
35.1612 

lowing M-function computes e,,, and displays (if ems + 0) both e(x, Y) 
Note that in function i m r a t i o ,  internal function b = b y t e s  ( f  ) is desig histogram. Since e(x, y) can contain both positive and negative values, 

to return the number of bytes in (1) a file, (2) a structure variable, andlor (3 rather than i m h i s t  (which handles only image data) is used to generate 
nonstructure variable. If f is a nonstructure variable, function whos 
duced in Section 2.2, is used to get its size in bytes. Iff is a file name 

,,.<+!&zh . , $'., d i r  performs a similar service. In the syntax employed, d i r  returns a ion rmse = compare(f1, f 2 ,  scale) compare 
' 15 ,. '4. ARE Computes and displays the e r ro r  between two matrices. - --- (see Section 2.10.6 for more on structures) with fields name, date,  bytes, 

i s d i r .  They contain the file's name, modification date, size in bytes a MSE = COMPARE(F1, F2, SCALE) returns the root-mean-square e r ro r  

whether or not it is a directory ( i s d i r  is 1 if it is and is 0 otherwise), re etween inputs  F1 and F2, displays a histogram o f  the di f ference, 

tively. Finally, if f is a structure, b y t e s  calls itself recursively to sum the nd displays a  scaled dif ference image. When SCALE i s  omitted, a  

ber of bytes allocated to each field of the structure. This eliminates cale fac to r  of 1 i s  used. 

overhead associated with the structure variable itself (124 bytes per field), ck input  arguments and set defaults.  

,,;&-, turning only the number of bytes needed for the data in the fields. Functi (nargchk(2, 3, narg in) )  ; 
..-:. ...:: . A?, ;:,?tii&,1dnames .-.> f ieldnarnes is used to retrieve a list of the fields in f, and the statements ,~< * \ 

names = f o r  k  = l : l e n g t h ( f i e l d s )  
fieldnames(s) re- b = b + b y t e s ( f . ( f i e l d s { k } ) ) ;  Compute the root-mean-square error .  
turns a cell array o f  
strings containing 

double(f 1  ) - double(f 2 )  ; 
the structure field perform the recursions. Note the use of dynamic structure fieldnames in the 
namesassociated cursive calls to bytes.  If S is a structure and F is a string variable containin 

se = sqrt(sum(e(:) . ^  2) 1 (m * n)); 
with structure s. 

field name, the statements Output e r ro r  image & histogram i f  an e r ro r  ( i . e . ,  rmse -= 0 ) .  

S.(F) = f o o ;  % Form error  histogram. 

f i e l d  = S.(F) ;  emax = max(abs(e(:))); 
[h, x ]  = h i s t ( e ( : ) ,  emax); 
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i f  length(h) >= 1 
figure; bar(x, h ,  ' k ' ) ;  

% Scale the error image symmetrically and display 
emax = emax I scale; 
e = matZgray(e, [-emax, emax]); 
figure; imshow(e); 

end 
end 

Finally, we note that the encoder of Fig. 8.1 is responsible for redu 
coding, interpixel, and/or psychovisual redundancies of the input image 
first stage of the encoding process, the mapper transforms the input ima 
a (usually nonvisual) format designed to reduce interpixel redundanci 
second stage, or quantizer block, reduces the accuracy of the mapp 
in accordance with a predefined fidelity criterion-attempting to e 
only psychovisually redundant data.This operation is irreversible a 
omitted when error-free compression is desired. In the third and fi 
the process, a symbol coder creates a code (that reduces coding red 
for the quantizer output and maps the output in accordance with the co 

The decoder in Fig. 8.1 contains only two components: a symbo 
and an inverse mapper. These blocks perform, in reverse order, the inve = 3(0.1875) + l (0.5)  + 3(0.125) + 2(0.1875) = 1.8125 erations of the encoder's symbol coder and mapper blocks. Because qu 
tion is irreversible, an inverse quantization block is not included. resulting compression ratio is Cr = 211.8125 - 1.103. The underlying 

r the compression achieved by Code 2 is that its code words are of 

Coding Redundancy 
Let the discrete random variable rk for k = 1,2 , .  . . , L with associated 
bilities pr(rk) represent the gray levels of an L-gray-level image. 
Chapter 3, rl corresponds to gray level 0 (since MATLAB array indices c at is sufficient to describe completely an image without loss of informa- 
be 0 )  and 

nk 
pr(rk) = - k = 1,2 , .  . . , L n 

where nk is the number of times that the kth gray level appears in the ima 
and n is the total number of pixels in the image. If the number of bits used 1 
represent each value of rk is I(rk) ,  then the average number of bits required I ( E )  = log ---- = -log P ( E )  
represent each pixel is P ( E )  

L of information. If P ( E )  = 1 (that is, the event always occurs), I ( E )  = 0 
Lt?~g  = l ( ~ k ) ~ r ( ~ k )  

k = l  

That is, the average length of the code words assigned to the various gray-leve the event has occurred. Given a source of random events from the dis- 
e set of possible events { a l ,  az , .  . . , a ] )  with associated  roba abilities values is found by summing the product of the number of bits used to re 
a ] ) ,  P(a2) ,  . . . , P (a , / ) ) ,  the average information per source output, called sent each gray level and the probability that the gray level occurs. Thus 

total number of bits required to code an M X N image is MNLaVg. entropy of the source, is 

When the gray levels of an image are represented using a natural m-bit J 

nary code, the right-hand side of the preceding equation reduces t H = - P(a j )  log P ( a j )  
j=1 

TABLE 8.1 
Illustration of 
coding redunda 
La,, = 2 for 
Code 1; Lavg = 
for Code 2. 
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entropy 
wi84m----------. 

EXAMPLE 8.1: 
Computing first- 
order entropy 
estimates. 

8.2 hP Coding Redundancy 289 Image Compression 

If an image is interpreted as a sample of a "gray-level source" that emi 3 119 168 168 
we can model that source's symbol probabilities using the gray-lev g 119 107 119 
togram of_the observed image and generate an estimate, called the first 7 107 119 119 
estimate, H, of the source's entropy: 

L 

fi = -x pr ( rk )  1% pr(rk) 
k=l 1875 0 . 5  0.125 0 0 0 0 0.1875 

Such an estimate is computed by the following M-function and, under th 
sumption that each gray level is coded independently, is a lower bou 
the compression that can be achieved through the removal of coding r 
dancy alone. 

function h = entropy(x, n )  Table 8.1, with Lavg C= 1.81, approaches this first-order entropy esti- 
%ENTROPY Computes a f i rs t -order  estimate of the entro is a minimal length binary code for image f .  Note that gray level 107 
% H = ENTROPY(X, N )  returns the f i rs t -order  estimate o f  matrix ds to rl and corresponding binary codeword 0112 in Table 8.1, 119 
% w i t h  N symbols ( N  = 256 i f  omitted) i n  bitslsymbol. The estim ode I,, and 123 and 168 correspond to 0102 and 002, 
% assumes a s t a t i s t i ca l ly  independent source characterized by t lsl 
% relat ive frequency of occurrence of the elements i n  X .  

error(nargchk(1, 2, nargin));  % Check input arguments Huffman Codes 
i f  nargin < 2 

n = 256; % Default for n .  an image or the output of a gray-level mapping 
end nces, run-lengths, and so on), H u f i a n  codes contain 

of code symbols (e.g., bits) per source symbol x = double(x); % Make input double 
xh = h i s t ( x ( : ) ,  n) ;  % Compute N-bin histogram ubject to the constraint that the source symbols are 

xh = xh  1 sum(xh(:)); % Compute probabilities 

% Make mask to  eliminate 0 ' s  since log2(0) = -inf. 
i = f ind(xh);  

ining the lowest probability symbols into a single symbol that replaces 
h = -sum(xh(i) . *  log2(xh( i ) ) ) ;  % Compute entropy in the next source reduction. Figure 8.2(a) illustrates the process for the 

-level distribution in Table 8.1.At the far left, the initial set of source sym- 
Note the use of the MATLAB f i n d  function, which is employed to d s are ordered from top to bottom in terms of de- 
the indices of the nonzero elements of histogram xh.The statement f i rm the first source reduction, the bottom two 
equivalent to f i n d  (x -= 0) .  Function entropy uses f i n d  to create a 
of indices, i ,  into histogram xh, which is subsequently employed t is compound symbol and its associated probability 
all zero-valued elements from the entropy computation in th e reduction column so that the probabilities of the 
If this were not done, the log2 function would force output h 
is not n number) when any symbol probability was 0. 

&l Consider a simple 4 X 4 image whose histogram (see p in the an's procedure is to code each reduced source, 
code) models the symbol probabilities in Table 8.1. The following c est source and working back to the original source. The 
line sequence generates one such image and computes a first-order estimate a1 length binary code for a two-symbol source, of course, consists of the 
its entropy. ) shows, these symbols are assigned to the two 

; reversing the order of the 0 
> > f  = [ I19  123 168 119; 123 119 168 1681; 
>> f = [ f ;  119 119 107 119; 107 107 119 1191 was generated by combining two symbols in the reduced source to its left, 
f =  0 used to code it is now assigned to both of these symbols, and a 0 and 1 

119 123 168 119 arbitrarily appended to each to distinguish them from each other. This 
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FIGURE 8.2 
Huffman (a) 
source reduction 
and (b) code 
asslgnme~lt 
procedures. 

huffman ---- 

Image Compression 8.2 @ Coding 

Onginal Source Source Reduct~on 

Symbol Probabtllty , U n l v e r s l t y  of Northumbrla, 
Newcastle UK. Ava i l ab le  a t  t he  MATLAB Cen t ra l  F l l e  Exchange: 

ocesslng and Communlcatlons. 

k the  l n p u t  arguments f o r  reasonableness. 
nargchk(1 , 1, narg ln)  ; 

dlms(p) -= 2)  1 (m ln (s l ze (p ) )  > 1)  I - i s r e a l ( p )  I - ~snumer l c (p )  
r o r ( ' P  must be a  r e a l  numerlc v e c t o r . ' ) ;  

a1 va r l ab le  surviving a l l  recurs ions o f  f u n c t l o n  'makecode' 

% I n l t  t he  g l o b a l  c e l l  a r ray  

% When more than one symbol . . .  
% Normalize t h e  i n p u t  p r o b a b l l l t l e s  
% Do Huffman source symbol reductions 
% Recurs ive ly  generate t h e  code 

% Else,  t r l v l a l  one symbol case! 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  % 

ly decodable block code. It is a block code because each source s 
mapped into a fixed sequence of code symbols. It is instantaneous 
each code word in a string of code symbols can be decoded without r 
ing succeeding symbols. That is, in any given Huffman code, no code wor c e l l ( l e n g t h ( p )  , 1 ) ; 

prefix of any other code word. And it is uniquely decodable because a stri 
code symbols can be decoded in only one way. Thus, any string of Huffma 
coded symbols can be decoded by examining the individual symbols o r 1 = 1  : l eng th (p )  
string in a left-to-right manner. For the 4 X 4 image in Example 8.1, a t 

% So r t  t h e  symbol p r o b a b l l l t l e s  
2  lowest p r o b a b l l l t l e s  

% and prune the  lowest  one 

% Reorder t r e e  f o r  new p r o b a b l l l t l e s  
s{2) = { s { l ) ,  ~ ( 2 ) ) ;  % and merge & prune ~ t s  nodes 

% t o  match the  p r o b a b l l l t l e s  
The source reduction and code assignment procedures just described 

implemented by the following M-function, which we call h u f f  man. 9. ---.-....-.......---------------------.--------------------------- 0 

nct lon  makecode(sc, codeword) 
f ~ n c t l o n  CODE = huffman(p) Scan the  nodes of a  Huffman source reduction t r e e  recursively t o  
%HUFFMAN B u l l d s  a  v a r l a b l e - l e n g t h  Huffman code f o r  a  symbol source. generate t he  indicated v a r l a b l e  l e n g t h  code words. 
% CODE = HUFFMAN(P) r e t u r n s  a  Huffman code as b i n a r y  s t r l n g s  l n  
% c e l l  a r r a y  CODE f o r  l n p u t  symbol p r o b a b i l i t y  vec to r  P. Each wo 
% l n  CODE corresponds t o  a  symbol whose probability 1s a t  t h e  

Redundancy 291 
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An eqrrivalent ex- 
pression is X = 
cell([m, n ] ) . F c  
other forms, type 
>> h e l o  cell. 

Image Compression 8.2 i~ Coding 

i f  i sa(sc ,  ' c e l l ' )  % For ce l l  array nodes, atrix. That is, X{1)  refers to the contents of the first element (an 
makecode(sc{l), [codeword 01 ) ; 
makecode(sc{2), [codeword 11 ) ; 

else 
CODE(sc1 = char ( ' 0 '  + codeword); 

end 
CODE is initialized and the input probability vector is normalized 

e Huffman code for normalized proba- 
The following command line sequence uses huff man t .The first step, which is initiated by the 
Fig. 8.2: ce ( p )  statement of the main routine, is to call internal function 

whose job is to perform the source reductions illustrated in 
>> p = [0.1875 0 . 5  0.125 0.18751; itially empty source reduction 
>> c = huffman(p) CODE, are initialized to their indices. 
C = 

'011 ' 
' 1  ' 
' 010 '  
' 0 0 '  

[ y ,  i] = s o r t ( x )  
Note that the output is a variable-length character array in which ea 
string of 0s and 1s-the binary code of the correspondingly indexed output y is the sorted elements of x and index vector i is such that 
p. For example, ' 01 0 ' (at array index 3) is the code for the gray ).When p has been sorted, the lowest two probabilities are merged by probability 0.125. 

their composite probability in p ( 2 )  ,and p ( 1 ) is pruned.The source re- 
In the opening lines of huff man, input argument p (the i cell array is then reordered to match p based on index vector i using s 

ability vector of the symbols to be encoded) is checked for r . Finally, s (2)  is replaced with a two-element cell array containing the 
global variable CODE is initialized as a MATLAB cell probability indices via s (2)  = {s{ l ) ,  ~ ( 2 ) )  (an example of content 
Section 2.10.6) with length  ( p )  rows and a single colum g), and cell indexing is employed to prune the first of the two merged a1 variables must be declared in the functions that refer 
statement of the form 

global  X Y Z 

This statement makes variables X, Y, and Z available to th 
c e l l d i s p ( s ) ;  they are declared. When several functions declare the same global v 
c e l l p l o t ( s ) ;  they share a single copy of that variable. In huff man, the main routine 

ternal function makecode share global variable CODE. Note that it is cus 
to capitalize the names of global variables. Nonglobal vari 
ables and are available only to the functions in which they 
other functions or the base workspace); they are typically denoted 

In huff man, CODE is initialized using the c e l l  function, s{l){l)  = 4  

X = ce l l (m,  n )  st1){2){1) = 3  

s{1){2){2) = 1 
It creates an m X n array of empty matrices that can be r 
by content. Parentheses, " ( ) ", are used for cell indexing; c 
used for content indexing. Thus, X ( 1 ) = [ ] indexes and removes eleme 
from the cell array, while XI?) = [ ] sets the first cell array element to 

a b c  
FIGURE 8.3 
Source reductions 
of Fig. 8.2(a) using 
function h u f  fman: 
(a) binary tree 
equivalent; 
(b) display 
generated by 
cellplot ( s ) ,  
(c) celldlsp(s)  
output. 
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between the last two statements of the huff man main routine. MATLA Origin sc codeword 
tion c e l l d i s p  prints a cell array's contents recursively; function ce 

main routine (1x2 cell) [ 1 
[21 

2 makecode [4] (1x2 cell} 0 source reduction tree nodes in Fig. 8.3(a): (1) each two-way bra 
3 makecode 4 0 0 (which represents a source reduction) corresponds to a two-element 
4 makecode [31 [I] 0 1 in s; and (2) each two-element cell array contains the indices of the sy 
5 makecode 3 0 1 0  

that were merged in the corresponding source reduction. For exa 
6 makecode 1 0 1  1 

merging of symbols a3 and a1 at the bottom of the tree produces th 7 makecode 2 1 

element cell array s t 1  ){2), where s{l){2){1} = 3 and s{1}{2){2) = 
indices of symbol a3 and a l ,  respectively). The root of the tree is the top 
two-element cell array s .  e that s c  is not a cell array, as in rows 3,5,6, and 7 of the table, addi- 

The final step of the code generation process (i.e., the assignment of recursions are unnecessary; a code string is created from codeword and 
based on source reduction cell array s)  is triggered by the final statem ed to the source symbol whose index was passed as sc. 
huff man-the makecode ( s , [ ] ) call. This call initiates a recursive co 
signment process based on the procedure in Fig. 8.2(b). Although rec Huffman Encoding 
generally provides no savings in storage (since a stack of values an code generation is not (in and of itself) compression. To realize the 
processed must be maintained somewhere) or increase in speed. it has pression that is built into a Huffman code, the symbols for which the code 
vantage that the code is more compact and often easier to understand. created, whether they are gray levels, run lengths, or the output of some 
ularly when dealing with recursively defined data structures like t mapping operation, must be transformed or mapped (i.e., en- 
MATLAB function can be used recursively; that is, it can call itself ance with the generated code. 
rectly or indirectly. When recursion is used, each function call generates a 
set of local variables, independent of all previous sets. Consider the simple 16-byte 4 X 4 image: 

Internal function makecode acce 
2 = u i n t 8 ( [ 2 3  4 2 ;  3 2 4 4 ;  2 2 1 2 ;  1 1  2 21) 

array, it contains the two source symbols (or composite symbols) that w 
joined during the source reduction process. Since they must be individu 2 3 4 2  
coded, a pair of recursive calls (to makecode) is issued for the elements-a1 3 2 4 4  
with two appropriately updated code words (a 0 and 1 are appende 2 2 1 2  

1 1 2 2  

using CODE{sc} = char  ( ' 0 '  + codeword). As was noted in Section 2. S ize  Bytes Class 
MATLAB function char converts an array containing positive integers 

16 uint8  ar ray  

nd t o t a l  i s  16 elements using 16 bytes 
string ' 01 0 ' , since adding a 0 to the ASCII code for a 0 yields an ASCII ' 
while adding a 1 to an ASCII ' 0 ' yields the ASCII code for a 1, namely ' an 8-bit byte; 16 bytes are used to represent the entire 

Table 8.2 details the sequence of makecode calls that results for the sou gray levels of f 2 are not equiprobable, a variable-length 
reduction cell array in Fig. 8.3. Seven calls are required to encode the f (as was indicated in the last section) will reduce the amount of memory 
symbols of the source.The first call (row 1 of Table 8.2) is made from them ired to represent the image. Function huff man computes one such code: 
routine of huff man and launches the encoding process with inputs codewo 
and s c  set to the empty matrix and cell array s,  respectively. In accordan c = huffman(hist(double(f2(:)), 4 ) )  
with standard MATLAB notation, {I x2 c e l l )  denotes a cell arr 
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TABLE 8.2 
C o d e  assignment 
process for the 
source reduction 
cell array in 
Fig. 8.3. 

EXAMPLE 8.2: 
Variable-length 
code mappings in 
MATLAB. 
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Since Huffman codes are based on the relative frequency of occurrence rmed into a 3 x 16 character array, h2f 2. Each 
source symbols being coded (not the symbols themselves), c is i of h2f  2 corresponds to a pixel of f 2  in a top-to-bottom left-to-right 
code that was constructed for the image in Example 8.1. In fact, image at blanks are inserted to size the array proper- 
be obtained from f in Example 8.1 by mapping gray levels 107, 119,l since two bytes are required for each ' 0 ' or ' 1 ' of a code word, the 
168 to 1, 2, 3, and 4, respectively. For either image, p = [ o .  1875 0.5 emow used by h2f 2 is 96 bytes-still six times greater than the original 
0.18751. s needed for f 2. We can eliminate the inserted blanks using 

A simple way to encode f 2 based on code c is to perform a straightfo 
lookup operation: 

>> h l f 2  = c ( f 2 ( : ) ) '  

h l f 2  = 
char a r ray  

Columns 1 through 9 

' 1 '  '010'  ' 1 '  1 1  '010' ' 1 '  ' 1 '  ' 1  ' 0  

Columns 10 through 16 required memory is still greater than f 2's original 16 bytes. 
' 00 '  1 ' 1 '  ' 1 '  ' 00 '  ' 1 '  ' 1  ' e c must be applied at the bit level, with several encod- 

>> w h o s ( ' h l f 2 ' )  1s packed into a single byte: 

Name Size Bytes Class 

h l f 2  1x16 1530 c e l l  a r ray  

Grand t o t a l  i s  45 elements using 1530 bytes 

Here, f2  (a two-dimensional array of class UINTS) is transformed into h i s t :  [ 3  8 2 31 
1 X 16 cell array, h l  f 2 (the transpose compacts the display). The e code: [43867 19441 
h l  f 2 are strings of varying length and correspond to the pixels of 
bottom left-to-right (i.e., columnwise) scan. As can be seen, the enc Size  Bytes Class 
uses 1530 bytes of storage-almost 100 times the memory required b 

The use of a cell array for h l  f 2  is logical because it is one of t s t r u c t  a r r a y  

MATLAB data structures (see Section 2.10.6) for dealing with arrays of nd t o t a l  i s  13 elements us ing  518 by tes  
similar data. In the case of h l  f 2, the dissimilarity is the length of the chara 
strings and the price paid for transparently handling it via the c f returns a structure, h3f 2, requiring 518 bytes of 
memory overhead (inherent in the cell array) that is required ory, most of it is associated with either (1) structure variable overhead 
sition of the variable-length elements. We can eliminate th 11 from the Section 8.1 discussion of i m r a t i o  that MATLAB uses 124 
transforming h l  f 2 into a conventional two-dimensional character array: ure field) or (2) mat2huf f generated information 

g. Neglecting this overhead, which is negligible 
>> h2f2  = c h a r ( h l f 2 ) '  considering practical (i.e., normal size) images, mat2huf f compresses f 2 
h2f2  = factor of 4:  1. The 16 8-bit pixels of f 2  are compressed into two 16-bit 

1010011000011011 s-the elements in field code of h3f2: 
1 1 1  1001 0 
0 1 0  1 1 

hcode = h3f2.code; 
>> w h o s ( ' h 2 f 2 ' )  

Name S ize  Bytes Class 

h2 f  2 3x1 6 9 6 char a r ray  hcode 1x2 4 u i n t l 6  a r r a y  

Grand t o t a l  i s  48 elements us ing  96 by tes  

Redundancy 
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Colrvercs rt deci~~rnl 
b~rcger to ( I  boinrj> 
slri~rg For 11to1.e 111- 

fofor-iirario~l, t!pr 
>> h e l p  dec2bin. 

8.2 #! Coding Redundancy 299 Image Compression 

>> d e c 2 b i n ( d o u b l e ( h c o d e ) )  ore the  s ize  of input  X .  

ans  = ze = u in t32 (s i ze (x )  ) ; 

1010101101011011 nd the range o f  x  values and s tore  i t s  minimum value biased 
0000011110011000 +32768 as a  UINT16. 

round(double(x) ; 
Note that d e c 2 b i n  has been employed to display the individual 
h3f  2 .  code. Neglecting the terminating modulo-16 pad bits (i.e., the fina 
Os), the 32-bit encoding is equivalent to the previously generated = doub le( in t l6 (xmin) ) ;  

Section 8.2.1) 29-bit instantaneous uniquely decodable block c = u in t l6 (pmin  + 32768) ; y  .min = pmin; 

10~0~01~010110110000011110011. mpute the input  histogram between xmin and xmax w i t h  u n i t  
dth bins,  scale t o  UINT16, and s tore .  

As was noted in the preceding example, function m a t 2 h u f f  embeds t 
formation needed to decode an encoded input array (e.g., its original histC(X, xmin:xmax) ; 
sions and symbol probabilities) in a single MATLAB structure varia 
information in this structure is documented in the help text sect1 = 65535 * h  / max(h); 

m a t 2 h u f f  itself: u i n t l 6 ( h ) ;  y .h is t  = h; 

func t ion  y  = mat2huff (x )  de the i npu t  mat r ix  and s to re  the  r e s u l t .  
%MAT2HUFF Huffman encodes a  mat r ix .  = huffman(double(h)); % Make Huffman code map 
% Y = MAT2HUFF(X) Huffman encodes ma t r i x  X us ing symbol = map(x(:) - xmin + 1 ) ;  % Map image 
% p r o b a b i l i t i e s  i n  u n i t - w i d t h  histogram b ins  between X ' s  minimum % Convert t o  char ar ray  
% and maximum values. The encoded data i s  returned as a  s t ruc tu re  
% Y :  % Remove blanks 
, Y.code The Huffman-encoded values o f  X, s tored i n  = ce i l ( l eng th (hx )  1 16); % Compute encoded s i z e  
% a  u i n t l 6  vector.  The o ther  f i e l d s  o f  Y  conta in  = repmat( 'O8,  1, ysize * 16); % Pre-a l locate  modulo-16 vector 
% a d d i t i o n a l  decoding in format ion ,  i nc lud ing :  l : l e n g t h ( h x ) )  = hx; % Make hx modulo-16 i n  l eng th  
, Y.min The minimum value o f  X  p lus  32768 = reshape(hxl6, 16, ys i ze ) ;  % Reshape t o  16-character words 
% Y.size The s i ze  o f  X  % Convert b inary s t r i n g  t o  decimal 
0 

D Y.h i s t  The histogram o f  X = p0~2(15:-1:O); 
% e  = u in t l6 (sum(hx l6  .* twos(ones(ysize, I ) ,  : ) ,  2 ) ) ' ;  --- 
% I f  X i s  l o g i c a l ,  u i n t8 ,  u i n t l 6 ,  u in t32,  i n t 8 ,  i n t l 6 ,  o r  double, 
% w i t h  i n tege r  values, i t  can be i n p u t  d i r e c t l y  t o  MAT2HUFF. The that the statement y = ma t2hu f  f ( x )  Huffman encodes input matrix x % minimum value o f  X  must be representable as an i n t l 6 .  
% unit-width histogram bins between the minimum and maximum values 
% I f  X i s  double w i t h  non- in teger  v a l u e s - - - f o r  example, an image x. When the encoded data in y .  code is later decoded, the Huffman code 
% w i t h  values between 0  and 1 - - - f i r s t  sca le  X t o  an appropr iate ded to decode it must be re-created from y . min,  the minimum value of X, 

% i n tege r  range before the  c a l l .  For example, use Y = y  . h i s t ,  the histogram of x. Rather than preserving the Huffman code it- 
% MAT2HUFF(255*X) f o r  256 gray l e v e l  encoding. m a t 2 h u f f  keeps the probability information needed to regenerate it. 
% h this, and the original dimensions of matrix x, which is stored in y . s i z e ,  
% NOTE: The number o f  Huffman code words i s  round(max(X(:)))  - ion h u f f 2 m a t  of Section 8.2.3 (the next section) can decode y .  code to 
% round(min(X(:)))  + 1.  You may need t o  scale i npu t  X t o  generate 
% codes of reasonable length .  The maximum row o r  column dimension steps involved in the generation of y . code are summarized as follows: 
% o f  X  i s  65535. 
% Compute the histogram, h, of input x between the minimum and maxi- 
% See a lso  HUFF2MAT. mum values of x using unit-width bins and scale it to fit in a UINT16 
if ndims(x) -= 2  1 - i s r e a l ( x )  I ( - isnumeric(x)  & - i s l o g i c a l ( x ) )  

e r r o r ( ' X  must be a  2 - 0  r e a l  numeric o r  l o g i c a l  m a t r i x . ' ) ;  Use huffman to create a Huffman code, called map, based on the scaled 
end 

This ,f~lnc[ion is sinti- 
ltrr to h i s t .  For 
  no re rletails, type 
>> h e l p  h i s t c .  
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i 

reshape 

EXAMPLE 8.3: 
Encoding with 
matzhuff. 

Image Compression 8.2 B Coding R 

3. Map input x using map (this creates a cell array) and convert it to a oving the coding redundancy associated with its conventional 8-bit bi- 
acter array, hx, removing the blanks that are inserted like in h2f coding, the image has been compressed to about 80% of its original 
Example 8.2. n with the inclusion of the decoding overhead information). 

4. Construct a version of vector hx that arranges its characters in the output of mat2huff is a structure, we write it to disk using the 
character segments. This is done by creating a modulo-16 character 
that will hold it (hx16 in the code), copying the elements of hx into 11, 
reshaping it into a 16 row by ysize array, where ysize = ceil (length e SqueezeTracy C; 
I 16).  Recall from Section 4.2 that the ceil function rounds a numb = imratio('Tracy.tifi, 'SqueezeTracy.matl) 
ward positive infinity. The generalized MATLAB function 

y = reshape(x, m, n) 
ve function, like the Save Workspace As and Save Selection As menu 

returns an m by n matrix whose elements are taken column wise fro nds in Section 1.7.4, appends a .mat extension to the file that is creat- 
An error is returned if x does not have m*n elements. resulting file-in this case, SqueezeTracy . mat, is called a MAT-file. It 

5. Convert the 16-character elements of hx16 to 16-bit binary numbers ( ary data file containing workspace variable names and values. Here, it 
unitl6's). Three statements are substituted for the more compact alns the single workspace variable c. Finally, we note that the small differ- 
uintl6 (bin2dec (hxl6 ' ) ) .They are the core of bin2dec, which returns t e in compression ratios crl and c r 2  computed previously is due to 
decimal equivalent of a binary string (e.g., bin2dec ( ' 101 ' ) returns 5) but a LAB data file overhead. kill 
faster because of decreased generality. MATLAB function pow2 ( y ) is u 
return an array whose elements are 2 raised to the y power. That is, t 3 Huffman Decoding 
pow2 ( 15 : -1 : 0 )  creates the array [32768 16384 8192 . . . 8 4 2 11. an encoded images are of little use unless they can be decoded to re- 

e the original images from which they were derived. For output y = 
8 To illustrate further the compression performance of Huffman encod X) of the previous section, the decoder must first compute the 
consider the 512 x 512 8-bit monochrome image of Fig. 8.4(a). The camp de used to encode x (based on its histogram and related informa- 
sion of this image using mat2huff is carried out by the following comm hen inverse map the encoded data (also extracted from y) to re- sequence: 

x. As can be seen in the following listing of function x = huff 2mat ( y ) , 
>> f = imread('Tracy.tif'); rocess can be broken into five basic steps: 
>> c = mat2huff(f); xtract dimensions m and n, and minimum value xmin (of eventual out- 
>> Crl = imratio(f, c) ut x) from input structure y. 
crl = -create the Huffman code that was used to encode x by passing its his- 

1.2191 ram to function huff man.The generated code is called map in the listing. 
a structure (transition and output table link) to streamline the 
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Function syntax 
save file var 
stores workspace 
variable var to disk 
as a MATLAB data 
file called 
'file.matC. 

a b  
FIGURE 8.4 A 
512 X 512 8-bit 
monochrome 
image of a woman 
and a close-up of 
her right eye. 
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% Y a m i n  M i n i m u m  value of X plus 32768 ed Huffman encoded string-which must of course be a ' 0 ' or a ' 1 '- 
% Y . s i ze  Size of X 

rs a binary decoding decision based on transition and output table l i n k .  % Y.hist Histogram of X 
% onstruction of l i n k  begins with its initialization in statement l i n k  = [ 2 ;  Y.code Huffman code 
d Each element in the starting three-state l i n k  array corresponds to a 
% The output X i s  of c lass  double. an encoded binary string in the corresponding cell array code; initially, 
% = c e l l s t r  ( c h a r  ( ' ' , ' 0 '  , ' 1 ' ) ).The null string, code (1  ) , is  the starting 
% See also MAT2HUFF. (or initial decoding state) for all Huffman string decoding.The associated 

i n k ( 1  ) identifies the two possible decoding states that follow from ap- 
i f  - i s s t ruc t (y)  I - i s f ie ld (y ,  'min t )  I - i s f ie ld (y ,  ' s i z e ' )  I . . . a ' 0 ' and ' 1 ' to the null string. If the next encountered Huffman en- 

- i s f i e l d ( y ,  ' h i s t ' )  ) - i s f i e l d ( y ,  ' code ' )  t is a ' 0 ' ,  the next decoding state is l i n k  ( 2 )  [since code ( 2 )  = ' 0 '  , the 
error( 'The input must be a s t ructure as  returned by MAT2HUFF.'); tring concatenated with ' 0 '1; if it is a ' 1 ' ,  the new state is l i n k  ( 3 )  [at end (2 + 1) or 3, with code(3)  = ' 1  '1. Note that the corresponding l i n k  

sz = double(y.s ize) ;  m = s z ( 1 ) ;  n = s z ( 2 ) ;  entries are &indicating that they have not yet been processed to reflect 
xmin = double(y.min) - 32768; % Get X m i n i m u m  oper decisions for Huffman code map. During the construction of l i n k ,  if 
map = huffman(double(y.hist)); % Get Huffman code ( c e l l )  string (i.e., the ' 0 ' or ' 1 ' ) is found in map (i.e., it is a valid Huffman code 
% Create a binary search table  f o r  the Huffman decoding process. , the corresponding 0 in l i n k  is replaced by the negative of the corre- 
% 'code' contains source symbol s t r ings  corresponding t o  ' l i n k '  ing map index (which is the decoded value). Otherwise, a new (positive 
% nodes, while ' l i n k '  contains the addresses ( t )  t o  node pairs  for  d) l i n k  index is inserted to point to the two new states (possible Huffman 
% node symbol s t r ings  plus ' 0 '  and ' 1 '  or addresses (-) t o  decoded words) that logically follow (either ' 00 ' and ' 01 ' or ' 10 ' and ' 1 1 ' ). 
% Huffman codewords i n  'map'. Array ' l e f t '  is a l i s t  of nodes yet to new and as yet unprocessed l i n k  elements expand the size of l i n k  (cell 
% be processed f o r  ' l i n k '  en t r ies .  

code must also be updated), and the construction process is continued 
code = c e l l s t r ( c h a r ( " ,  'O', ' 1 ' ) ) ;  % Set s ta r t ing  conditions as here are no unprocessed elements left in l i n k .  Rather than continually 
link = [2;  0; 01; l e f t  = [2 31; % 3 nodes w/2 unprocessed ng l i n k  for unprocessed elements, however, huff2mat maintains a 
found = 0; tofind = length(map); % Tracking variables ng array, called l e f t ,  which is initialized to [ 2 ,  3 ] and updated to contain 
while length(1eft)  & (found < tof ind)  dices of the link elements that have not been examined. 

look = find (strcmp(map, code{left (1 ) } )  ) ; % IS s t r ing  in  map? ble 8.3 shows the l i n k  table that is generated for the Huffman code in 
i f  look % Yes le 8.2. If each l i n k  index is viewed as a decoding state, i ,  each binary 

l i n k ( l e f t ( 1 ) )  = -look; % Point t o  Huffman map decision (in a left-to-right scan of an encoded string) andlor Huffman 
l e f t  = l e f t ( 2 : e n d ) ;  % Delete current node ed output is determined by l i n k  ( i ) :  found = found + 1; % Increment codes found 

else  % No, add 2 nodes & pointers n k ( i )  < 0 (i.e., negative), a Huffman code word has been decoded. 
len = length(code); % P u t  pointers i n  node The decoded output is I l i n k  (i) 1 ,  where I I denotes the absolute value. 
l i n k ( l e f t ( 1 ) )  = len + 1;  . If l i n k  ( i)  > 0 (i.e., positive) and the next encoded bit to be processed is a 

l i n k  = [ l i n k ;  0; 01; % Add unprocessed nodes 0, the next decoding state is index l i n k  ( i ) . T h a t  is, we let i = l i n k  ( i ) .  

code{end + I} = s t r c a t ( c o d e { l e f t ( l ) } ,  ' 0 ' )  ; . If l i n k  (i) > 0 and the next encoded bit to be processed is a I ,  the next de- 

codeiend t 1) = s t r c a t ( c o d e { l e f t ( l ) } ,  ' 1 ' ) ;  coding state is index l i n k  (i) + 1 .That is, i = l i n k  ( i)  + 1. 

l e f t  = l e f t ( 2 : e n d ) ;  % Remove processed node 
TABLE 8.3 
Decoding table 

l e f t  = [ l e f t  len + 1 let7 + 21; % Add 2 unprocessed nodes 
end 

end 

x = unravel(y.code ' ,  l i n k ,  m * n ) ;  % Decode using C 'unravel '  
x = x + x m i n  - 1 ;  % X minimum offset  adjust 
x = reshape(x, m, n )  ; % Make vector an array ...-. 

As indicated earlier, huff2mat-based decoding is built on a series of bin 
searches or two-outcome decoding decisions. Each element of a sequentia 

for the source 
reduction cell 
array in Fig. 8.3. 

Index i Value in link(i) 

1 2 
2 4 
3 -2 
4 -4 
5 6 
6 -3 
7 - 1 
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FIGURE 8.5 
Flow diagram for 
C function 
unravel .  

A MATLAB 
e.rternnlfitnc1ion - 
produced from C or 
Fortran source code. 
It lirts a pln/fonn- 
dependent e.rter~sio~i 
(e.g.. . d l 1  for 
Windows). 

8.2 H Coding 

Start with they streamline bottleneck computations that do not run fast enough 
n = o LAB M-files but can be coded in C or Fortran for increased efficiency. 

ther C or Fortran is used, the resulting functions are referred to as 
les; they behave as though they are M-files or ordinary MATLAB 

Unlike M-files, however, they must be compiled and linked using 
's mex script before they can be called.To compile and link u n r a v e l  
ows platform from the MATLAB command line prompt, for exam- 

Start over with 
n = o  

ex un rave1 .c  

EX-file named u n r a v e l .  d l 1  with extension . d l 1  will be created. Any 
text, if desired, must be provided as a separate M-file of the same name 

have a . m extension). 
source code for C MEX-file u n r a v e l  has a . c extension and follows: 

.................................................................. .................................................................. 

odes a  va r i ab le  l eng th  coded b i t  sequence (a vector o f  
b i t  i n tege rs )  using a  b ina ry  s o r t  from the  MSB t o  t h e  LSB 
ross word boundaries) based on a  t r a n s i t i o n  t a b l e .  

1 

unravel(unsigned shor t  *hx, double * l i n k ,  double *x, 
double xsz, i n t  hxsz) 

The C source code 
used ro build n 
MEX-file. 

n = link(n) t i = 15, j = 0, k  = 0, n  = 0; I* S t a r t  a t  r o o t  node, 1 s t  * /  
I *  hx b i t  and x  element * /  - i l e  (xsz - k )  { I *  Do u n t i l  x  i s  f i l l e d  * /  

i f  ( * ( l i n k  + n) > 0) { / *  I s  t he re  a l i n k ?  * /  
i f ( ( * ( h x + j ) > > i ) & O x O O O l )  / * I s b i t a l ? * /  

n  = * ( l i n k  + n ) ;  / *  Yes, get new node * I  As noted previously, positive l i n k  entries correspond to binary deco else n  = * ( l i n k  + n) - 1; I*  I t ' s  0  so get  new node * /  
transitions, while negative entries determine decoded output values. As e i f  ( i )  i--; e lse  {j++;  i = 15;) I *  Set i, j t o  next b i t  * /  
Huffman code word is decoded, a new binary search is started at l i n k  i I *  B i t s  l e f t  t o  decode? * /  
i = 1. For encoded string 101010110101.. . of Example 8.2, the resulting mexErrMsgTxt("0ut o f  code b i t s  ???" ) ;  
transition sequence is i = 1 , 3 ,  1 , 2 ,  5, 6, 1 , . . . ; the corresponding out 
sequence is -, 1-2 ( , -, -, -, 1-3 1 , - . . . , where - is used to denote the / *  It must be a  l e a f  node * /  
sence of an output. Decoded output values 2 and 3 are the first two pixel * ( x  + k t + )  = - * ( l i n k  t n) ;  I*  Output value * I  
the first column of test image f 2 in Example 8.2. I *  S t a r t  over a t  r o o t  * /  

C function u n r a v e l  accepts the link structure just described and uses i 
drive the binary searches required to decode input hx.  Figure 8.5 diagrams I *  I s  one l e f t  over? * I  
basic operation, which follows the decision-making process that was describe * ( x  + k t+)  = - * ( l i n k  + n) ; 
in conjunction with Table 8.3. Note, however, that modifications are needed t 
compensate for the fact that C arrays are indexed from 0 rather than 1. d mexFunct ion( int  n lhs,  mxArray * p l h s [ ]  , 

Both C and Fortran functions can be incorporated into MATLAB an i n t  nrhs,  const mxArray * p r h s [ ] )  
serve two main purposes: (1) They allow large preexisting C and Fortran 
grams to be called from MATLAB without having to be rewritten as M- double * l i n k ,  *x ,  xsz; 
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unsigned short *hx; unravel ,  contains the C code that implements the link-based decod- 
i n t  hxsz; cess of Fig. 8.5. The gateway routine, which must always be named 
I* Check inputs f o r  reasonableness * /  c t i o n ,  interfaces C computational routine unrave l  to  M-file calling 
i f (n rhs  != 3) n, huf f2mat. It uses MATLAB's standard MEX-file interface, which is 

mexErrMsgTxt("Three inputs requ i red ." ) ;  
e lse  i f  ( n l h s  > 1 )  

mexErrMsgTxt ( "Too many output arguments. " ) ; ur standardized input/output parameters-nlhs, plhs ,  nrhs,  and prhs. 
ese parameters are the number of left-hand-side output arguments (an 

I* I s  l a s t  input argument a scalar?  * /  
i f  (!mxIsDouble(prhs[2] ) I I mxIsComplex(prhs[2] ) I I eger), an array of pointers to the left-hand-side output arguments (all 

mxGetN(prhs[2]) * mxGetM(prhs[2]) != 1 )  ATLAB arrays), the number of right-hand-side input arguments (an- 

mexErrMsgTxt("1nput XSIZE must be a s c a l a r . " ) ;  integer), and an array of pointers to the right-hand-side input argu- 
(also MATLAB arrays), respectively. 

/ *  Create input matrix pointers and get scalar  *I TLAB provided set of Application Program Interface (API) func- 
hx = mxGetPr(prhs[O] ) ; / *  UINT16 *I 

/ *  DOUBLE *I s. API functions that are prefixed with mx are used to create, access, 
l i n k  = mxGetPr(prhs[l]);  
xsz = mxGetScalar(prhs[2]); I* DOUBLE *I manipulate, and/or destroy structures of class mxArray. For example, 

mxCal loc  dynamically allocates memory like a standard C calloc 
I* Get the number of elements in  hx * I  function. Related functions include mxMalloc and mxRealloc that are 
hxsz = mxGetM(prhs[O]); used in place of the C nzalloc and realloc functions. 
I* Create ' x s z '  x 1 output matrix * /  mxGetScalar extracts a scalar from input array prhs.  Other mxGet . . . 
plhs[O] = mxCreateDoubleMatrix(xsz, 1 ,  mxREAL); functions, like mxGetM, mxGetN, and mxGetString, extract other types 
I* Get C pointer t o  a copy of the output matrix * I  
x = mxGetPr(plhs[O]); mxCreateDoubleMatrix creates a MATLAB output array for p lhs .  

I *  Call the C subroutine * /  Other mxcrea te . .  . functions, like m x c r e a t e s t r i n g  and mxcreate-  

unravel(hx, l ink,  x, xsz, hxsz); NumericArray, facilitate the creation of other data types. 

} 
PI functions prefixed by mex perform operations in the MATLAB 

nvironment. For example, mexErrMsgTxt outputs a message to the 

The companion help text is provided in M-file u n r a v e l .  m: ATLAB workspace. 

nction prototypes for the API mex and mx routines noted in item 2 of the 
%UNRAVEL Decodes a variable-length b i t  stream. ding list are maintained in MATLAB header files mex. h and mat r ix  . h, 
% X = UNRAVEL(Y,  LINK, X L E N )  decodes UINT16 input vector Y based 0 ectively. Both are located in the < m a t l a b > / e x t e r n / i n c l u d e  directory, 
% t ransi t ion and output table  LINK. The elements of Y are re <matlab> denotes the top-level directory where MATLAB is installed 
% considered t o  be a contiguous stream of encoded b i t s - - i . e . ,  the 
% MSB of one element follows the LSB of the previous element. InpU ur system. Header mex. h, which must be included at the beginning of all 

% XLEN i s  the number code words i n  Y ,  and thus the s ize of output inclusion statement # i n c l u d e  "mex. h " at the start 

% vector X ( c lass  D O U B L E ) .  Input LINK i s  a t ransi t ion and output -file unravel) ,  includes header file m a t r i x .  h .  The prototypes of the 
% table  ( t h a t  drives a se r ies  of binary searches): nes that are contained in these files define the para- 
0 
o ers that they use and provide valuable clues about their general operation. 

% 1 .  LINK(0) i s  the entry point f o r  decoding, i . e . ,  s t a t e  n = 0. itional information is available in MATLAB's External Interfaces refer- 
% 2 .  If LINK(n) < 0 ,  the decoded output i s  /LINK(n) ( ;  s e t  n = 0. 
% 3. If LINK(n) > 0 ,  get the next encoded b i t  and t ransi t ion t o  gure 8.6 summarizes the preceding discussion, details the overall struc- 
% s t a t e  [LINK(n) - 11 i f  the b i t  i s  0, e l se  LINK(n). of C MEX-file unravel ,  and describes the flow of information between it 

M-file huff 2mat. Though constructed in the context of Huffman decod- 
Like all C MEX-files, C MEX-file u n r a v e l .  c consists of two distinct par the concepts illustrated are easily extended to other C- and/or Fortran- 

a computational routine and a gateway routine.The computational routine, a1 d MATLAB functions. 

Redundancy 307 
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8.3 .@ Interpixel 

Image Compression 

Because the gray levels of the images are not equally probable, variable-1 
coding can be used to reduce the coding redundancy that would result 
natural binary coding of their pixels: 

>> fl = imread('Randorn Matches.tifl); 
>7 cl = mat2huff (fl) ; 
>> entropy (f 1 ) 

ans = 
7.4253 

>> imratio(f I ,  cl ) 

ans = 
. 1 .0704 

>> f2 = imread('A1igned Matches.tifl); 
>> c2 = mat2huff(f2); 
>> entropy ( f 2 )  

ans = der and decoder, each contining an identical predictor. As each successive 
7.3505 of the input image, denoted fa ,  is introduced to the encoder, the predic- 

>> imratio(f2, c2) enerates the anticipated value of that pixel based on some number of past 

ans = t s . p e  output of the predictor is then rounded to the nearest integer, de- 
1.0821 d f,, and used to form the difference or prediction error 

Note that the first-order entropy estimates of the two images are about en = f N  - ftl 

same (7.4253 and 7.3505 bitslpixel); they are compressed similarly 
mat2huff (with compression ratios of 1.0704 versus 1.0821). These obse 
tions highlight the fact that variable-length coding is not designed to take 
vantage of the obvious structural relationships between the aligned matc 
Fig. 8.7(c). Although the pixel-to-pixel correlations are more evident in 
image, they are present also in Fig. 8.7(a). Because the values of the pi f r r  = en + f n  

either image can be reasonably predicted from the values of their nei us local, global, and adaptive methods can be used to generate f,. In 
the information carried by individual pixels is relatively small. Much o f t  cases, however, the prediction is formed by a linear combination of rn 
sual contribution of a single pixel to an image is redundant; it could have be 
guessed on the basis of the values of its neighbors. These correlations are t 
underlying basis of interpixel redundancy. 

In order to reduce interpixel redundancies, the 2-D 
used for human viewing and interpretation must be 
efficient (but normally "nonvisual") format. For exa 
tween adjacent pixels can be used to represent an im 
this type (that is, those that remove interpixel redundancy) are referred 
mappings. They are called reversible mnppings if the original image ele 
can be reconstructed from the transformed data set. 

A simple mapping procedure is illustrated in Fig. 8.8. The approac 
lossless predictive coding, eliminates the interpixel redundancies o 
spaced pixels by extracting and coding only the new information in each 

atial coordinates x and y. Note that prediction f ( x ,  y) is a function of the The new informution of a pixel is defined as the difference between the actu 
evious pixels on the current scan line alone. and predicted value of that pixel. As can be seen, the system consists of a 

a 
b 

FIGURE 8.8 A 
lossless predlctive 
coding model: 
(a) encoder and 
(b) decoder. 
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M-functions mat2lpc and lpc2mat implement the predictive encodin ediction coefficients i n  F and the assumption of 1 - D  lossless 
decoding processes just described (minus the symbol coding and dec edictive coding. If F i s  omitted, f i l t e r  F = 1 (for previous 

steps). Encoding function mat2lpc employs a f o r  loop to build simultan xel coding) i s  assumed. 

ly the prediction of every pixel in input x. During each iteration, xs, whit 
gins as a copy of x, is shifted one column to the right (with zero paddin e also MAT2LPC. 

on the left), multiplied by an appropriate prediction coefficient, and ad nargchk(1, 2, nargin) ) ; % Check input arguments 
prediction sum p. Since the number of linear prediction coefficients is n % Set default f i l t e r  i f  omitted 
ly small, the overall process is fast. Note in the following listing that if p 
tion filter f is not specified, a single element filter with a coefficient o 
used. 

% Reverse the f i l t e r  coefficients 
% Get dimensions of output matrix 

function y = mat2lpc(x, f )  % Get order of linear predictor 
%MAT2LPC Compresses a matrix using 1 -D lossles predictive coding. % Duplicate f i l t e r  for vectorizing 
% Y = MAT2LPC(X, F )  encodes matrix X using 1 - D  lossless predictiv eros(m, n + order); % Pad for 1st 'order' column decodes 
% coding. A linear prediction of X i s  made based on the 
% coefficients i n  F. If F i s  omitted, F = 1 (for previous pixel ode the output one column at  a time. Compute a prediction based 
% coding) i s  assumed. The prediction error i s  then computed and the 'order' previous elements and add it to the prediction 
% o u t p u t  as encoded matrix Y .  or. The result i s  appended to the output matrix being b u i l t .  
% 
% See also LPC2MAT. 

, j j )  = y ( : ,  j )  + round(sum(f(:, order:-1:l) . *  . . .  
error(nargchk(1, 2 ,  nargin)); % Check i n p u t  arguments x ( : ,  ( j j  - 1):-I:(]]  - order)) ,  2 ) ) ;  
i f  nargin < 2 % Set default f i l t e r  if omitted 

f = I ;  
end :, order t 1:end); % Remove l e f t  padding 

x = double(x); % Ensure double for computations er encoding the image of Fig. 8.7(c) using the simple first-order lin- 
[m, n ]  = s ize(x) ;  % Get dimensions of i n p u t  matrix 
p = zeros(m, n ) ;  % Init  linear prediction t o  0 
xs = x; zc = zeros(m, 1 ) ;  % Prepare for input shift  and pad f'(x, y) = round[af(x, Y - I ) ]  

for j = l : length(f)  % For each f i l t e r  coefficient ... edictor of this form commonly is called aprevious pixel predictor, and the 
xs = [zc xs ( : ,  1:end - 1 ) ) ;  % Shift and zero pad x onding predictive coding procedure is referred to as differential coding 
p = p + f ( j )  * xs; % Form part ial  prediction sums ious pixel coding. Figure 8.9(a) shows the prediction error image that 

end with (Y = 1. Here, gray level 128 corresponds to a prediction error of 0, 
y = x - round(p); % Compute the prediction error 

Decoding function lpc2mat performs the inverse operations of enc 14000 I I I I I  

counterpart mat2lpc. As can be seen in the following listing, it employs a 
12000 - - 

eration f o r  loop, where n is the number of columns in encoded input mat - 
Each iteration computes only one column of decoded output x ,  since 10000 - 

coded column is required for the computation of all subsequent col 8000 - - 

decrease the time spent in the f o r  loop, x is preallocated to its maxi 
padded size before starting the loop. Note also that the computations e 
ployed to generate predictions are done in the same order as they were 
lpc2mat to avoid floating point round-off error. 

function x = lpc2mat ( y ,  f )  x lo4 
%LPC2MAT Decompresses a 1 - D  lossless predictive encoded matrix. 
% X = LPC2MAT(Y, F )  decodes input matrix Y based on linear 

EXAMPLE 8.5: 
Lossless 
predictive coding. 

FIGURE 8.9 
(a) The predict~on 
error image for 
Fig. 8.7(c) with 
f = [ I ] .  
(b) Histogram of 
the pred~ct~on 
error. 
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while nonzero positive and negative errors (under- and overestimates sychovisual Redundancy scaled by mat2gray to become lighter or darker shades of gray, respec 
ng and interpixel redundancy, psychovisual redundancy is associat- 

>> f = imread('A1igned M a t c h e s . t i f l ) ;  or quantifiable visual information. Its elimination is desirable be- 
>> e = mat2 lpc ( f ) ;  formation itself is not essential for normal visual processing. Since 
>> imshow(mat2gray(e)); nation of psychovisually redundant data results in a loss of quantita- 
>> en t ropy(e )  nformation, it is called quantization. This terminology is consistent with 
ans = ormal usage of the word, which generally means the mapping of a broad 

5.9727 of input values to a limited number of output values. As it is an irre- 
ible operation (i.e., visual information is lost), quantization results in lossy 

Note that the entropy of the prediction ,rror, e, is substantially lowe ,. . 
the entropy of the original image, f .  The entropy has been reduced fr 
7.3505 bitslpixel (computed at the beginning of this section) to nsider the images in Fig. 8.10. Figure 8.10(a) shows a monochrome EXAMPLE 8.6: 
bitslpixel, despite the fact that for m-bit images, ( m  + 1)-bit numbe with 256 gray levels. Figure 8.10(b) is the same image after uniform Compression 
needed to represent accurately the resulting error sequence. This red zation to four bits or 16 possible 1evels.The resulting compression ratio quantization. 
in entropy means that the prediction error image can be coded m . Note that false contouring is present in the previously smooth regions 
ciently that the original image-which, of course, is the goal of the original image. This is the natural visual effect of more coarsely repre- 
Thus, we get g the gray levels of the image. 

ure 8.10(c) illustrates the significant improvements possible with quanti- 
>> c = mat2huff(e) ;  that takes advantage of the peculiarities of the human visual system. Al- 
>> c r  = i m r a t i o ( f ,  c )  the compression resulting from this second quantization also is 2 : 1, 
c r  = ntouring is greatly reduced at the expense of some additional but less 

1.3311 onable graininess. Note that in either case, decompression is both un- 
ary and impossible (i.e., quantization is an irreversible operation). M 

and see that the compression ratio has, as expected, increased from 1 
(when Huffman coding the gray levels directly) to 1.3311. 

The histogram of prediction error e is shown in Fig. 8.9(b)-and compu 
as follows: 

>> [ h ,  x] = h i s t ( e ( : )  * 512, 512) ;  
>> f i g u r e ;  b a r ( x ,  h ,  ' k t ) ;  

Note that it is highly peaked around 0 and has a relatively small varianc 
comparison to the input images gray-level distribution [see Fig. 8.7(d)]. 
reflects, as did the entropy values computed earlier, the removal of a great 
of interpixel redundancy by the prediction and differencing process. We 
clude the example by demonstrating the lossless nature of the predictive 
ing scheme-that is, by decoding c and comparing it to starting image f :  

>> g = lpc2mat(huff2mat(c)) ;  
>> compare(f ,  g )  
ans = 

0 
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quantize -- 

To compare string 
sl and s2 ignoring 
case, use s = 
strcmpi(s1, s2). 

Image Compression 8.5 a JPEG 

ssedThey usually entail a decrease in the image's spatial and/or gray-scale 

cy detail loss) when a 2-D frequency transform 1s 

low-order bit truncation. Note that the IGS implementation is 
that input x is processed one column at a tnme. To generate a 
4-bit result in Fig. 8.10(c), a column sum s-initially set to all ze 
as the sum of one column of x and the four least significant bits 
(previously generated) sums. If the four most significant bits of any x val ss predictive coding, and Huffman coding to compress the image 
11112, however, 00002 is added instead.The four most significant bit to less than a quarter of its original size: 
sulting sums are then used as the coded pxxel values for the col 
processed. f = ~ m r e a d ( ' B r u s h e s . t l f ' ) ;  

q  = q u a n t l z e ( f ,  4, ' l g s ' ) ;  

f u n c t l o n  y  = quan t l ze (x ,  b, t ype )  qs = d o u b l e ( q )  / 16; 

%QUANTIZE Quantizes t h e  elements o f  a  UINT8 ma t r l x .  e  = m a t 2 l p c ( q s )  ; 
% Y = QUANTIZE(X, 8, TYPE) quantizes X t o  B b l t s .  Truncation i s  c  = m a t 2 h u f f  ( e ) ;  

% used un less  TYPE 1s ' l g s '  f o r  Improved Gray Scale quan t l za t l o  ~ m r a t l o ( f ,  c )  

e r ror (nargchk(2 ,  3, n a r g l n ) ) ;  % Check i n p u t  arguments 
lf ndlms(x) -= 2  1 - ~ s r e a l ( x )  I . . . 

- isnumer lc (x )  I - ~ s a ( x ,  ' u l n t 8 ' )  
e r r o r ( ' T h e  l n p u t  must be a  UINT8 numerlc m a t r l x . ' ) ;  oded result c can be decompressed by the inverse sequence of operations 

end hout 'inverse quantization'): 

% Create b l t  masks f o r  t h e  q u a n t l z a t l o n  
10 = U l n t 8 ( 2  * (8  - b) - 1 ) ;  
h l  = u l n t 8 ( 2  A 8 - double(10) - 1 ) ;  

% Perform standard q u a n t l z a t l o n  un less  IGS i s  s p e c l f l e d  
lf narg ln  < 3 1 - s t r cmp l  ( type,  ' l g s ' )  

y = b l t and (x ,  h l )  ; 

% Else IGS q u a n t l z a t l o n .  Process column-wlse. I f  the  MSB's o f  the  rmse = c o m p a r e ( f ,  nq )  
% p l x e l  a re  a l l  l ' s ,  t h e  sum 1s s e t  t o  t h e  p l x e l  value. Else,  add 
% t he  p l x e l  va lue t o  t h e  LSB's o f  t h e  prev lous sum. Then take the 
% MSB's of t h e  sum as t h e  quantized value. 
e l se  

[m, n ]  = s l z e ( x ) ;  s  = zeros(m, 1 ) ;  
h l t e s t  = doub le (b l t and (x ,  h l )  -= h l ) ;  x  = doub le(x) ;  
f o r  ] = l : n  

s  = x ( : ,  I) + h l t e s t ( : ,  I )  . *  doub le (b l t and (u ln t8 (s ) ,  l o ) ) ;  JPEG Compression 
y( : ,  1 )  = b l t a n d ( u l n t B ( s ) ,  h l ) ;  

end techniques of the previous sections operate dlrectly on the pixels of an 
end In methods. In this section, we consider a fam- 

standards that are based on modifying the trans- 
Improved gray-scale quantization is typical of a large group of q tives are to introduce the use of 2-D transforms in 

procedures that operate directly on the gray levels of the image to be co age compression, to provide additional examples of how to reduce the 

EXAMPLE 8.7: 
Combining IGS 
quantization with 
lossless predictive 
and Huffman 
coding. 
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a 
b 
FIGURE 8.1 1 
JPEG block 
d~agram: 
(a) encoder and 
(b) decoder. 

Image Compression 8.5 a JPEG 

image redundancies discussed in Section 8.2 through 8.4, and to giv 
er a feel for the state of the art in image compression.The standard 
(although we consider only approximations of them) are designed 
wide range of image types and compression requirements. 

In transfornz coding, a reversible, linear transform like the DFT of Chapt 
or the discrete cosine transform (DCT) 

M - I N - I  

T ( L L ,  v) = 2 2 f (x, y)a(~~)a(v) cos 
.r=O y = O  

where 

[and similarly for a( 

quantized (or discarded en 

8.5.1 JPEG 
One of the most popular and comprehensive continuous tone, still frame co 
pression standards is the JPEG (for Joint Photographic Experts Group) sta 
dard. In the JPEG baseline codingsystern, which is based on the discrete co 

subimage extraction, DCT computation, quantization, and variable-len 
code assignment. 

The first step in the JPEG compression process is to subdivide the 
image into nonoverlapping pixel blocks of size 8 X 8. They are subseque previous subimage. Default AC and DC Huffman coding tables are pro- 
processed left to right, top to bottom. As each 8 x 8 block or subimag by the standard, but the user is free to construct custom tables, as well as 
processed, its 64 pixels are level shifted by subtracting 2"'-', where 2"' is 
number of gray levels in the image, and its 2-D discrete cosine transfor 

ile a full implementation of the JPEG standard is beyond the scope of 
chapter, the following M-file approximates the baseline coding process: 

lnput 8 x 8 block Normalizeri Symbol C t i 0 n  y = im2jpeg(x, quali ty) Dm image * extractor 
+ + 

quantizer 
* 

encoder 2JPEG Compresses an image using a JPEG approximation. 
Y = IM2JPEG(X, QUALITY) compresses image X based on 8 x 8 DCT 
transforms, coefficient quantization, and Huffman symbol 
coding. Input QUALITY determines the amount of information that  
i s  los t  and compression achieved. Y i s  an encoding structure 
Containing f i e lds :  

Compression 

FIGURE 8.1 2 
(a) The defaul 
JPEG 
norrnalizat~on 
array. (b) The 
JPEG zigzag 
coeffic~ent 
ordering 
sequence. 

im21 peg 
mww- -- - - -- 
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% Y .  s ize Size of X count + 1):end) = [ I ;  % Delete unusued portion of r 
% Y.numblocks Number of 8-by-8 encoded blocks = uintl6([xm xn]) ;  
% Y.quality Quali ty factor ( a s  percent) umblocks = uintl6(xb);  
% Y-huffman Huffman encoding structure,  as returned by 

MAT2HUFF 
uality = uintl6(quality * 100); 

% uffman =mat2huff( r ) ;  
-2awS 

% 
% See also JPEG2IM. 

n accordance with the block diagram of Fig. 8.11(a), function im2 j peg 
error(nargchk(1, 2 ,  nargin)) ;  % Check input arguments 
i f  ndims(x) -= 2 1 - i s r ea l (x )  I -isnumeric(x) I - i sa(x ,  ' u in t8 ' )  

es distinct 8 x 8 sections or blocks of input image x one block at a time 

error( 'The i n p u t  must be a UINT8 image. ' ) ;  than the entire image at once). Two specialized block processing func- 
end ns-blkproc and im2col-are used to simplify the computations. Function 

i f  nargin < 2 kproc, whose standard syntax is 

quali ty = 1;  % Default value fo r  quali ty.  
end B = blkproc(A, [M N ] ,  FUN, PI ,  P2, . . . ) ,  

m = [16 11  10 16 24 40 51 61 % JPEG normalizing array 
12 12 14 19 26 58 60 55 % and zig-zag redorderin amlines or automates the entire process of dealing with images in blocks. It 
14 13 16 24 40 57 69 56 % p a t t e r n .  ts an input image A, along with the size ([M N]) of the blocks to be 
14 17 22 29 51 87 80 62 ssed, a function (FUN) to use in processing them, and some number of op- 
18 22 37 56 68 109 10377 input parameters PI , P2, . . . for block processing function FUN. Func- 
24 35 55 64 81 104 11392 n blkproc then breaks A into M x N blocks (including any zero padding that 
49 64 78 87 103 121 120 101 y be necessary), calls function FUN with each block and parameters P1 , P2, 
72 92 95 98 112 100 103 991 * quali ty;  . , and reassembles the results into output image B. 

order = [ l  9 2 3 10 1 7 2 5  18 11  4 5 12 1 9 2 6 3 3  . . .  The second specialized block processing function used by im2 j peg is func- 
41 34 27 20 13 6 7 14 21 28 35 42 49 57 50 . . .  im2col. When blkproc is not appropriate for implementing a specific 
43 36 29 22 15 8 16 23 30 37 44 51 58 59 52 . . .  ck-oriented operation, im2col can often be used to rearrange the input so 
45 38 31 24 32 39 46 53 60 61 54 47 40 48 55 . . .  t the operation can be coded in a simpler and more efficient manner (e.g., 
62 63 56 641; llowing the operation to be vectorized). The output of im2col is a matrix 

[xm, x n ]  = s i ze (x ) ;  % Get i n p u t  s ize.  hich each column contains the elements of one distinct block of the input 
x = double(x) - 128; % Level shi f t  i n p u t  ge. Its standardized format is 
t = dctmtx(8); % Compute 8 x 8 DCT matrix 

% Compute DCTs of 8x8 blocks and quantize the coefficients. B = im2col(A, [ M  N ] ,  ' d i s t i n c t ' )  
y = blkproc(x, [8 81, ' P I  * x * P2', t ,  t ' ) ;  
y = blkproc(y, [8 81, 'round(x . I  P I ) ' ,  m); re parameters A, B, and [ M  N ]  are as were defined previously for function 
y = im2col(y, [8  81, ' d i s t i n c t ' )  ; % Break 8x8 blocks into columns pi-OC. String ' d i s t i n c t  ' tells im2col that the blocks to be processed are 
xb = s ize(y ,  2) ; % Get number of blocks overlapping; alternative string ' s l i d i n g  ' signals the creation of one col- 

y = y(order, : ) ;  % Reorder column elements in B for every pixel in A (as though a block were slid across the image). 

eob = max(x(:)) + 1; % Create end-of-block symbol im2 j peg, function blkproc is used to facilitate both DCT computation 

r = zeros(numel(y) + size(y,  2 ) ,  1 ) ;  coefficient denormalization and quantization, while im2col is used to 

count = 0; plify the quantized coefficient reordering and zero run detection. Unlike 

for j = 1:xb % Process 1 block (col)  a t  a time JPEG standard, im2j peg detects only the final run of zeros in each re- 
i = max(find(y(:, j ) ) ) ;  % Find  las t  non-zero element ered coefficient block, replacing the entire run with the single eob symbol. 
if  isempty (i) % No nonzero block values lly, we note that although MATLAB provides an efficient FFT-based 

i = 0; tion for large image DCTs (refer to MATLAB's help for function dct2),  
end j peg uses an alternate matrix formulation: 
p = count + 1; 
q = p + i ;  T = H F H ~  
r(p:q) = [ y ( l : i ,  j ) ;  eob]; % Truncate trai l ing O's, add EOBI 
count = count + i + 1; % and add to  output vector ere F is an 8 X 8 block of image f ( x ,  y), H is an 8 X 8 DCT transformation 

end trix generated by dctmtx(8),  and T is the resulting DCT of F. Note that 
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To compute the DCT 
o f f  in 8 X 8 nonover- 
lapping blocks ruing 
the matrix operation 
h* f*h l , l e th= 
dc tm tx (8 ) .  

d A  
d c t m t x  
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% Get x columns. 
% Get x rows. 
% Huffman decode. 
% Get end-of -block symbol 

% Form block columns by copying 
% successive values from x into 
% columns of z ,  while changing 
% t o  the next column whenever 
% an EOB symbol i s  found. 

mage Compression 

the is used to denote the transpose operation. In the absence of quantiza 
the inverse D C T  of T is 

F = H ~ T H  

This formulation is particularly effective when transforming small square 
ages (like JPEG's 8 X 8 DCTs).Thus, the statement 

y = b l k p r o c ( x ,  [ 8  8 1 ,  'PI  * x * P 2 ' ,  h, h ' )  k = k + 1;  break; 

computes the DCTs of image x in 8 X 8 blocks, using DCT transfor z ( i ,  j )  = x(k) ;  
and transpose h ' as parameters PI and P2 of the D C T  matrix mu1 
PI * x * P2. 

Similar block processing and matrix-based transformations 
Fig. 8.1 l (b)]  are required to  decompress an im2 j peg compressed i 
tion j peg2im, listed next, performs the necessary sequence of inverse % Restore order 
tions (with the obvious exception of quantization). It  uses generic funct % Form matrix blocks 

% Oenormalize DCT 

A = co12im(B1 [ M  N], [MM NN], ' d i s t i n c t ' )  % Get 8 x 8 DCT matrix 

% Level s h i f t  -- 
function x = jpeg2im(y) 
WPEG2IM Decodes an IM2JPEG compressed image. eate a 2-D image from the columns of matrix z, where each 64-element 
% X = JPEG2IM(Y) decodes compressed image Y ,  generating is an 8 X 8 block of the reconstructed image. Parameters A, B, [ M  N]. 
% reconstructed approximation X .  Y i s  a structure generated by c o l ,  while array [MM NN] spec- 
% IM2JPEG. 
% 
% See also IM2JPEG. EG coded and subsequently decoded 
error(nargchk(1, 1 ,  narg in) ) ;  % Check input arguments mations of the monochrome image in Fig. 8.4(a).The first result, which 

m = [16 11 10 16 24 40 51 61 % JPEG normalizing array s a compression ratio of about 18 to 1, was obtained by direct applica- 
12 12 14 19 26 58 60 55 % and zig-zag reordering .12(a). The second, which compresses 
14 13 16 24 40 57 69 56 % pattern. as generated by multiplying (scaling) 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 10411392  
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 991; ray 1evels.The impact of these errors 

o r d e r =  [ l  9 2 3 1 0 1 7 2 5  1 8 1 1  4 5 1 2 1 9 2 6 3 3  . . .  omed images of Figs. 8.13(e) and (f). 
41 34 27 20 13 6 7 14 21 28 35 42 49 57 50 . . .  
43 36 29 22.15 8 16 23 30 37 44 51 58 59 52 . . .  
45 38 31 24 32 39 46 53 60 61 54 47 40 48 55 . . .  oomed original.] Note the blocking 
62 63 56 641; that is present in both zoomed approximations. 

rev = order; % Compute inverse ordering images in Fig. 8.13 and the numerical results just discussed were gener- 
fo r  k = l : length(order)  

rev(k) = find(order == k ) ;  
end = i r n r e a d ( ' T r a c y . t i f l ) ;  

m = double(y.quality) 1 100 * m; % Get encoding qual i ty .  
xb = double(y.numblocks); % Get x blocks. 
sz  = double(y . s i z e )  ; 

EXAMPLE 8.8: 
JPEG 
compression. 
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FIGURE 8.13 Let 
column 
Approximations 
of Fig 8 4 uslng 
the DCT and 
normalization 
array of 
Fig 8.12(a) Rlgk 
column Slm~lar 
results wlth the 
normallzat~on 
array scaled by a 
factor of 4 
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a 
b 
FIGURE 8.14 
JPEG 2000 block 
diagram: 
(a) encoder and 
(b) decoder. 
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ed to represent the original image and the analysis gain bits for subband 

computed. For error-free compression, the transform used is biorthog band analysis gain bits follow the simple pattern shown in Fig. 8.15. For 
with a 5-3 coefficient scaling and wavelet vector. In lossy applications, a 9 le, there are two analysis gain bits for subband b = 1HH. 
efficient scaling-wavelet vector (see the wavef i l t e r  function of Chapte error-free compression, p b  = 0 and Rb = c6 so that Ah = 1. For irre- 
employed. In either case. the initial decomposition results in four subban e compression, no particular quantization step size is specified. Instead, 
low-resolution approximation of the image and the image's horizontal, umber of exponent and mantissa bits must be provided to the decoder on 
cal, and diagonal frequency characteristics. band basis, called e,rplicit quantization, or for the NLLL subband only, 

Repeating the decomposition process Nt times, with subsequent itera inzplicit quantization. In the latter case, the remaining subbands are 
restricted to  the previous decomposition's approximation coefficients, ized using extrapolated NLLL subband parameters. Letting co and po be 
duces an NL-scale wavelet transform. Adjacent scales are related spatiall umber of bits allocated to  the NLLL subband, the extrapolated parame- 
powers of 2, and the lowest scale contains the only explicitly defined a for subband b are 
mation of the original image. A s  can be surmised from Fig. 8.15, where 
tation of the standard is summarized for the case of NL = 2, a ge Pb = Po 
NL-scale transform contains 3NL + 1 subbands whose coefficients are d ~b = EU + nsdb - nsdo 
ed ah for b = NLLL, NLHL, ... , l H L ,  l L H ,  1HH. The standard doe nsdb denotes the number of subband decomposition levels from the 
specify the number of scales t o  be computed. 1 image to subband b. The final step of the encoding process is to  code 

After the NL-scale wavelet transform has been computed, the total n ntized coefficients arithmetically on a bit-plane basis. Although not 
of transform coefficients is equal to the number of samples in the o in the chapter, arithrneric coding is a variable-length coding proce- 
image-but the important visual information is concentrated in a few co , like Huffman coding, is designed to reduce coding redundancy. 
cients. To reduce the number of bits needed to represent them, coeffi ustom function im2 j peg2k approximates the JPEG 2000 coding process 
al,(u, v) of subband b is quantized to value qh(ll, v) using .8.14(a) with the exception of the arithmetic symbol coding. As can be 

[lflbt;v)l] the following listing, Huffman encoding augmented by zero run-length 
qb(u, v) = sign[ah(u, v)]  - floor --- is substituted for simplicity. 

where the "sign" and "floor" operators behave like MATLAB functions ion y = im2jpeg2k(x, n, q) im2j peg2k 
same name (i.e.. functions s i g n  and f l o o r ) .  Quantization step size Ai, is PEG2K Compresses an image using a JPEG 2000 approximation. ". 

= IM2JPEG2K(X, N, Q )  compresses image X using an N-scale JPEG 

A, = 2R,J-i.,(1 + $) K wavelet transform, implicit  or expl ici t  coefficient 
For roc11 eIen7r1tt of 
x .  sign(x) retrlms 1 uantization, and Huffman symbol coding augmented by zero 
if the elrtttet~r is un-length coding. If quantization vector Q contains two 
,sreorcrrllflt~ zero, 0 i f  where Rh is the nominal dynamic range of subband 0, and E(, and pl, are lements, they are assumed t o  be implicit  quantization 
it ecl~~nls zero, rrr~rl -, i f  it is ,hen 

number of bits allotted to  the exponent and mantissa of the subband's co ameters; e l se ,  i t  i s  assumed t o  contain expl ici t  subband step 
cients. The nominal dynamic range of subband b is the sum of the numb es .  Y i s  an encoding s tructure containing Huffman-encoded zero. ata and additional parameters needed by JPEG2K2IM f o r  decoding. 

FIGURE 8.1 5 See also JPEG2K2IM. 
JPEG 2000 two- 
scale wavelet 
transform 
coefficient r(nargchk(3, 3, nargin)) ; % Check input arguments 
notation and dims(x) -= 2 1 - i s rea l (x)  I -isnumeric(x) ( - i sa (x ,  ' u i n t 8 ' )  
analysis gain rror( 'The input must be a UINT8 image. ' ) ; 
( in  the circles). 

ength(q) -= 2 & length(q) -= 3 * n t 1 
rror( 'The quantization s tep s ize  vector i s  b a d . ' ) ;  
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% Level s h i f t  the input and compute i t s  wavelet transform. 
x = double(x) - 128; 
[ c ,  s ]  = wavefast(x, n, ' j p e g 9 . 7 ' ) ;  

% Quantize the wavelet coeff icients .  
q = stepsize(n,  q ) ;  
sgn = s i g n ( c ) ;  sgn(find(sgn == 0 ) )  = 1; c = a b s ( c ) ;  
f o r  k = 1:n 

q i = 3 *  k - 2 ;  
c = wavepas te ( 'h l ,  c ,  s ,  k, wavecopy('h', c ,  s ,  k )  I q ( q i ) ) ;  
c = wavepaste( 'vl ,  c ,  s ,  k ,  wavecopy('vl, c ,  s, k )  I q ( q i  + 1 ) ) ;  
c = wavepaste( 'dl ,  c ,  s ,  k, wavecopy('dl, c ,  s ,  k )  I q ( q i  + 2 ) ) ;  

end 
c = wavepas te ( ' a l ,  c ,  s ,  k ,  wavecopy('al,  c ,  s ,  k )  I q ( q i  + 3 ) ) ;  
c = f l o o r ( c ) ;  c = c .* sgn; 

% Run-length code zero runs of more than 10. Begin by creating 
% a special  code f o r  0 runs ( ' z r c ' )  and end-of-code ( ' e o c ' )  and 
% making a run-length tab le .  
zrc = m i n ( c ( : ) )  - 1;  eoc = zrc - 1;  RUNS = [65535]; 

% F i n d  the run t rans i t ion  points: ' p lus '  contains the index of the 
% s t a r t  of a zero run; the corresponding 'minus' i s  i t s  end + 1 .  
z = c == 0. z = z - [0 z(1:end - I ) ] ;  
plus = f ind(z  == 1 ) ;  minus = f ind(z  == -1); 

% Remove any terminating zero run from ' C ' .  

i f  length(p1us) -= length(minus) 
c(plus(end):end) = [ I ;  c = [ c  eoc]; 

end 

% Remove a l l  other zero runs (based on 'p lus '  and 'minus') from ' c '  
fo r  i = length(minus):-1:1 

run = m i n u s ( i )  - p l u s ( i ) ;  
i f  run > 10 

ovrflo = f loor(run 1 65535); run = run - ovrflo * 65535; 
c = [ c ( l : p l u s ( i )  - 1 )  repmat([zrc I ] ,  1, ovrflo) zrc . . .  

runcode(run) c(minus(i) :end)] ;  
end 

end 

% Huffman encode and add misc. information for  decoding. 
y.runs = uintlG(RUNS); 
Y - S  = u i n t l 6 ( s ( : ) ) ;  
y .zrc  = uintl6(-zrc) ; 
Y.9 = uint16(100 * q ' ) ;  
Y.n = u i n t l 6 ( n ) ;  
y-huffman = mat2huff(c); 

function y = runcode(x) 
% Find a zero run i n  the run-length table .  If not found, create a 
% new entry i n  the t ab le .  Return the index of the run. 
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% Impllcit  Quantization 

% Expliclt Quantization 

= round(q * 100) 1 100; % Round t o  11100th place 
any(1oo * q > 65535) 
error('The quantlzlng steps are not UINT16 represen tab le . ' ) ;  

bands are reconstructed. Although the encoder may 
d Mb bit-planes for a particular subband, the user- 

e to the embedded nature of the codestream-may choose to decode only 
bit-planes. This amounts to quantizing the coefficients using a step size of 
b-Nb. Ab. Any non-decoded bits are set to zero and the resulting coeffl- 

ents, denoted Zfb(u, v), are denormalized using 

(%(u, v) + 2Mh-Nb(" .  "I) Ah ij6(ur v) > 0 
U ,  V) - 2 Mb-Nh(u, . Ah a ( ~ ,  V) < 0 

- 
9 b ( ~ l ,  v) = 0 

normalized transform coefficient and Nb(u, v) is 
-planes for %(u, v). The denormalized coefficients 

then inverse transformed and level shifted to  yield an approximation of 
orig~nal image. Custom function J peg2k21m approximates this process, re- 
sing the compression of 1m2 ] peg2k introduced earlier. 
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1 peg2k21.m 
e, \ - - "  

Image Compression 8.5 JPEG ( 

functlon x = ]peg2k2lm(y) transform and level  s h l f t .  
PdPEG2K2IM Decodes an IM2JPEG2K compressed Image. 
% X = JPEG2K2IM(Y) decodes compressed lmage Y, reconstructing --~u=%s 

% approxlmatlon of the orlglnal  lmage X .  Y 1s an encodlng 
% structure returned by IM2JPEG2K. e principal difference between the wavelet-based JPEG 2000 system of 
% -14 and the DCT-based JPEG system of Fig. 8.11 is the omission of the 
% See also IM2JPEG2K. 7~ subimage processing stages. Because wavelet transforms are both com- 

error (nargchk(1, 1, nargin) ) ; % Check i n p u t  arguments cal (i.e., their basis functions are limited 

% Get decodlng parameters: scale,  quantlzatlon vector, run-leng 
% table s lze ,  zero run code, end-of-data code, wavelet bookkeep 
% array, and run-length table.  
n = double(y.n); 
q = double(y.q) / 100; 
runs = double(y.runs); 
rlen = length(runs);  cted from an encoding that compressed 
zrc = -double(y.zrc); as generated from an 88 : 1; encoding. 
eoc = zrc - 1; 
s = double(y.s); 
s = reshape(s, n + 2, 2 ) ;  the JPEG 2000's bit-plane-oriented arithmetic coding, the 
% Compute the slze of the wavelet transform. n rates just noted differ from those that would be obtained by a true 
c l  = prod(s(1, : ) ) ;  encoder. In fact, the actual rates would increase by a factor of 2. 
for  1 = 2:n + 1 ression of the results in the left column of Fig 8.16 is 

c l  = c l  + 3 * prod(s(1, : ) ) ;  
end 

% Perform Huffman decodlng followed by zero run decoding. -based JPEG results of Figs. 
r = huff2mat(y.huffman); veals a noticeable decrease of error 
c = [ ] ;  z l = f l n d ( r = = z r c ) ;  1 = 1 ;  
for  J = 1 : length(zl)  

c = [ C  r ( l : z l ( ] )  - 1 )  zeros(1, runs ( r ( z l (1 )  + I ) ) ) ] ;  
1 = z ~ ( J )  + 2; 0-based coding dramatically in- 

end sense) image quality. This is particularly evident in 
z l  = f lnd ( r  == eoc); % Undo terminating zero run e blocking artifact that dominated the corresponding 
~f length(z1) == 1 % or l a s t  non-zero run. 

c = [c  r ( l : z l  - I ) ] ;  
c = [ c  zeros(1, c l  - l eng th (c ) ) l ;  

else 
c = [ C  r ( l : e n d ) ] ;  els.The results of Fig. 8.16 were generated with the 

end 

% Denormallze the coefflclents. 
c = c + ( c  > 0) - (c  < 0 ) ;  f = i m r e a d ( ' T r a c y . t l f l ) ;  
for  k = 1:n cl = 1m2]peg2k(f, 5, [8 8.51) ;  

q 1 = 3 * k - 2 ;  
c = wavepaste('h',  c ,  s ,  k, wavecopy('h', c ,  s ,  k )  * q(q1) ) ;  
c = wavepaste('v',  c, s ,  k ,  wavecopy('vl, c ,  s ,  k )  * q(q l  + 1 )  
c = wavepaste('d',  c ,  s ,  k ,  wavecopy('d', c ,  s ,  k )  * q(q l  + 2)  

end 
c = wavepaste( 'al ,  c ,  s ,  k, wavecopy('a', c ,  s ,  k )  * q(q l  + 3 ) ) ;  ' crl  = i m r a t l o ( f ,  cl  ) 

EXAMPLE 8.9: 
JPEG 2000 
compression. 
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a b  
c d 
e f 
FIGURE 8.1 6 Left 
column: JPEG 
2000 
approxlmatlons of 
Fig. 8.4 using five 
scales and lmpliclt 
quantization with 

= 8 and 
EO = 8.5. Rlght 
column: Slmllar 
results wlth 
E" = 7. 
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erlying the development of 
s that extract "meaning" from an image. Other approaches are de- 
nd applied In the remaining chapters of the book 

Preliminaries 
I j. 

> $ti>a: 
f <$ 
' i t  
"! 

Some Basic Concepts from Set Theory 

Preview whose coordinates and amplitude (i e., mtensity) values are integers. 
be a set in z2, the elements of which are pixel coordinates ( x ,  y). If 

zu E A 

arly, if w is not an element of A, we write 

we A  

t B of pixel coordinates that satisfy a particular cond~tion is written as 
Images, and dlscuss binary sets and logical operators. In Section 9.2 we B =  condition) 
two fundamental morphological operations, dihrlon and eroscon, in te 

complex morpholog~cal operations. Section 9.4 introduces techniques = { W ~ W G A )  
bellng connected components in an image. This 1s a fundamental step 
tractlng objects from an image tor subsequent analysis. et is called the conzplenzent of A. 

Section 9.5 deals with morphological reconstriiction, a morphological tra e unzon of two sets, denoted by 
formation involving two images, rather than a single image and a structur C = A U B  
element, as is the case In Sections 9.1 through 9.4. Section 9.6 extends morp 
logical concepts to gray-scale lmages by replacing set union and Intersect 

have applications that are unique to gray-scale images, such as peak fi C = A n B  
The material in this chapter begins a transition from image-pro 

methods whose Inputs and outputs are images, to image analysis m 
whose outputs in some way descrlbe the contents of the Image. Morpholo 

'relim 
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a b c  
d e 

FIGURE 9.1 
(a) ?iyo sets A  
and B. (b) The 
union of A and B. 
(c) The 
Intersection of A 
and B. (d) The 
complement of A. 
(e) The difference 
between A and B. 

a b  
FIGURE 9.2 
(d) Translat~on of 
A b y z  
(b) Retlect~on ot 
B The sets A and 
B are from 
hg. 9 1. 

Morphological Image Processing 9.2 #8 Dilation 

Binary Images, Sets, a n d  Logical Operators 

e and theory of mathematical morphology often present a dual 
y images. As in the rest of the book, a binary image can be viewed 

d functzon of x and y. Morphological theory views a binary image 
its foreground (1-valued) pixels, the elements of which are in z2. 

oreground pixel if either or both of the 
eground pixels. In the first view, that of 

1 if either A(x, y) or B ( x ,  y) is 1, or if both are 1 

the set view, on the other hand, Cis given by 

C = { ( x , y ) l ( x , y ) ~ ~ o r ( x , y ) ~ ~ o r  ( x , y ) ~ ( A a n d B ) I  

A - B = { ~ U ~ W E A , W ~ B }  
simple illustration, Fig. 9.3 shows the results of applying several logical 

Figure 9.1 illustrates these basic set operations.The result of each operati rs to two binary images containing text. (We follow the IPT conven- 
shown In gray t foreground (1-valued) pixels are displayed as white.) The image in 

In addition to the preceding basic operations, morpholog~cal opera 
often require two operators that are specificto sets whose elements are 
coordinates. The reflectron of set B, denoted B, is defined as he letters in "UTK" and "GT" over- 

[Fig. 9.3(f)] shows the letters in "UTK" 

The traflslatlofl of set A by point z = (zl, z2), denoted (A),, is defined as 
Dilation a n d  E r o s i o n  (A); = {c/c = a + z, for a E A} 

zon are fundamental to morphological 
Figure 9.2 illustrates these two definitions uslng the sets from Fig. 9 1. processing. Many of the algorithms presented later in t h ~ s  chapter are 
black dot identifies the orcgrn assigned (arbitrarily) to the sets on these operations, which are defined and illustrated in the discussion 

MATLAB Expression 
Set Operation for Binary Images Name 

A n B  A & B  AND 
A U B  A I B  O R  
A" -A NOT 
A - B  A & - B  DIFFERENCE 

and Erosion 

TABLE 9.1 
Using logical 
expressions in 
MATLAB to 
perform set 
operations on 
binary images 
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a b c  
d e f  

FIGURE 9.3 (a) B~nary Image A. (b) Binary image B. (c) Complement -A. (d) Union A I B. (e) Intersectio 
A & B. ( f )  Set d~fference A & -6. 

The structuring element translated to 
these locations does not overlap any 
1-valued pixels in-the original image. 

, --. "4" locations. the 

9.2 % Dilation and Erosion 339 

*- j -A - - - -- --' , -  -"- , I structurlne element 

9.,:2,,7 Dilation cL> { )  c )  i ;  t %  +i 1 1 1 1 1 1 1 1 t i  u q  3 1  

i t  ; j  (1 ( 8  8 1  1 1 1 1 1 1 1 1 1 i ;  ; I  1 ;  

Dilation is an operation that "grows" or "thickens" objects in a binary ima 'I i j  * I  i; 1  I I 1  I 1  1 1  1 i l  0 i i  '! 

The specific manner and extent of this thickening is controlled by a shape ! I ,  ,I 1 1 1 1 1 1 1 1 1 ;, : I  ' ,  0 ,; 
:! I ,  , !  1 1 1 1 1 1 1 1 >!! ! t  1 1  :j ( 1  5 2  

ferred to  as a str~ictclring element. Figure 9.4 illustrates how dilation wor ,: ti 0 1 1 1 1 1 1 1 1 1  . I  (I 9 1 1  1 1  $ 8  

Figure 9.4(a) shows a simple binary image containing a rectangular objec ;; l j  t,i 0 ,I 0 ,'! t i  !! 1 %  : !  ,! xi :! !!  ,! 

Figure 9.4(b) is a structuring element, a five-pixel-long diagonal line in ii ii II ; i  ( 1  11 ( !  I! 1 1  I )  0 i !  II i )  0 i !  

(i (I 1 1  i j  % !  ! I  i! 0 ii 1.1 1 )  1 1  f )  (i ( j  case. Computationally, structuring elements typically are represented by a 
trix of 0s and Is; sometimes it is convenient to show only the Is, as illustra 
in the figure. In addition, the origin of the structuring element must be clear re C3 is the empty set and B is the structuring element. In words, the dila- 
identified. Figure 9.4(b) shows the origin of the structuring element u of A by B is the set consisting of all the structuring element origin loca- 
black outline. Figure 9.4(c) graphically depicts dilation as a process that s where the reflected and translated B overlaps at  least some portion of A. 
lates the origin of the structuring element throughout the domain of the translation of the structuring element in dilation is similar to  the mechan- 
and checks to see where it overlaps with 1-valued pixels. The output image atial convolution discussed in Chapter 3. Figure 9.4 does not show the 
Fig. 9.4(d) is 1 at  each location of the origin such that the structuring elem ing element's reflection explicitly because the structuring element is 
overlaps at least one 1-valued pixel in the input image. rical with respect to  its origin in this case. Figure 9.5 shows a nonsyrn- 

Mathematically, dilation is defined in terms of set operations. Tne dilat tric structuring element and its reflection. 
of A by B, denoted A  @ B, is defined as ilation is conzmutntive; that is, A @ B = B @ A. It is a convention in image 

A $ B  = { Z I ( ~ ) : ~ A  + 0) recessing to let the first operand of A $ B be the image and the second 

FIGURE 9.4 
Illustration of 
dilation. 
(a) Original image 
with rectangular 
object. 
(b) Structuring 
element with five 
pixels arrang,ed in 
a diagonal line. 
The origin of the 
structuring 
element is shown 
with a dark 
border. 
(c) Structuring 
element 
translated to 
several locations 
on the image. 
(d) Output irnage. 
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FlGUlRE 9.5 
Structuring 
element 
refle1:tion. 
(a) Nonsymmetric 
structuring 
element. 
(b) Structuring 
element reflected 
about its origin. 

EXAMPLE 9.1: 
A simple 
application of 
dilation. 

a b  
FIGURE 9.6 
A slmple example 
of d~lation. 
(a) Input Image 
conta~~n~ng broken 
text. ~(b) Dllated 
Image 

dorpholog~cal Image Processing 4 

operand be the structuring element, which usually is much smaller than t 
image. We follow this convention from this point on. 

IPT function imdilate performs dilation. Its basic calling syntax is 

A 2  = imdilate(A, B) 

where A and A 2  are binary images, and B is a matrix of 0s and 1s that sp 
the structuring element. Figure 9.6(a) shows a sample binary image cont 
text with broken characters. We want to use imdilate to dilate the image 
the structuring element: 

The following commands read the image from a file, form the structuring e 
ment matrix, perform the dilation, and display the result. 

>> A = imread('broken-text.tifl); 
>> B = [ O  1 0 ;  1 1  1; 0 1 0 1 ;  
>> A2 = imdilate(A, 8); 
>> imshow(A2) 

Figure 9.6(b) shows the resulting image. 

tructuring Element Decomposition 
n is associative. That is, 

A $ ( B $ C )  = ( A $ B ) $ C  

9.2 Dilation and Erosion 341 

e associative property is important because the time required to com- 
dilation is proportional to the number of nonzero pixels in the structuring 

ement. Consider, for example, dilation with a 5 X 5 array of 1s: 

P 
$fh~~ structuring element can be decomposed into a five-element row of 1s and 
~afive-element column of Is: 

erhead associated with each dilation operation, and at least 
tions are required when using the decomposed form. How- 
eed with the decomposed implementation is still significant. 

The s tre l  Function 
function strel constructs structuring elements with a variety of shapes 
sizes. Its basic syntax is 

F se = strel(shape, parameters) 
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EXAMPLE 9.2: 
An illustration of 
structuring 
element 
decomposition 
using s t r e l .  

getsequence 

! Morphological Image Processing 

where shape is a string specifying the desired shape, and parameters 
of parameters that specify information about the shape, such as its size. 
ample, st  r e1  ( ' diamond ' , 5)  returns a diamond-shaped structuring e 
that extends f 5 pixels along the horizontal and vertical axes. Table 9. 
marizes the various shapes that s t r e l  can create. 

In addition to simplifying the generation of common structuring e 
shapes, function s t r e l  also has the important property of producing st 
ing elements in decomposed form. Function imdi la te  automatically t r e l ( ' d i s k l ,  R )  

decomposition information to speed up the dilation process. The follo 
ample illustrates how s t r e l  returns information related to the decompo 
of a structuring element. 

s t r e l ( ' l i n e ' ,  LEN, D E G )  

Consider again the creation of a diamond-shaped structuring element 
s t r e l :  

>> se  = s t r e l ( ' d i amond l ,  5)  
s t r e l ( ' o c t a g o n ' ,  R )  

se = 

Flat STREL object containing 61 neighbors. 

Decomposition: 4 STREL objects containing a t o t a l  of 17 neigh 

Neighborhood: 
0 0 0 0 0 1 0 0 0 0 0  = s t r e l ( ' p a i r ' ,  OFFSET) 
0 0 0 0 1 1 1 0 0 0 0  
0 0 0 1 1 1 1 1  0 0 0  
0 0 1 1 1 1 1  1 1 0 0  
0 1 1 1 1 1 1 1 1 1 0  
1 1 1 1 1 1 1 1 1 1 1  
0 1  1 1 1 1 1 1 1 1 0  = s t r e l ( ' p e r i o d i c l i n e ' ,  P, V 
0 0 1 1 1 1 1 1 1 0 0  
0 0 0 1 1 1 1 1 0 0 0  
0 0 0 0 1 1 1 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0  

We see that s t r e l  does not display as a normal MATLAB matrix; it retu 
instead a special quantity called an strel object. The command-window disp = s t r e l ( ' r e c t a n g l e ' ,  M N )  

of an strel object includes the neighborhood (a matrix of Is in a diam 
shaped pattern in this case); the number of I-valued pixels in the struct 
element (61); the number of structuring elements in the decomposition 
and the total number of 1-valued pixels in the decomposed structuring 
ments (17). Function getsequence can be used to extract and examine se 
rately the individual structuring elements in the decomposition. 

e =  s t r e l ( ' s q u a r e l ,  W )  

>> decomp = getsequence(se) ;  
>> whos 

Name Size  e = s t r e l ( ' a r b i t r a r y ' ,  NHOOD) 
Bytes Class e = strel(NH0OD) 

decomp 4x1 1716 s t r e l  object  
s e  1 xl 3309 s t r e l  object  

Grand t o t a l  i s  495 elements using 5025 bytes 

9.2 % Dilation 

Description 

Creates a flat, diamond-shaped 
structuring element. where R specifies the 
distance from the structuring element 
origin to the extreme points of the 
diamond. 
Creates a flat. disk-shaped structuring 
element with radius R.  (Additional 
parameters may be specified for the disk; 
see the s t r e l  help page for details.) 
Creates a flat, linear structuring element, 
where LEN specifies the length, and DEG 
specifies the angle (in degrees) of the 
line, as measured in a counterclockwise 
direction from the horizontal axis. 
Creates a flat, octagonal structuring 
element, where R specifies the distance 
from the structuring element origin to the 
sides of the octagon, as measured along 
the horizontal and vertical axes. R must 
be a nonnegative multiple of 3. 
Creates a flat structuring element 
containing two members. One member is 
located at the origin.The second 
member's location is specified by the 
vector OFFSET, which must be a two- 
element vector of integers. 
Creates a flat structuring element 
containing 2*P + i members. v is a two- 
element vector containing integer-valued 
row and column offsets. One structuring 
element member is located at the origin. 
The other members are located at I *V, 
-1*V,2*V,-2*V, . . . ,  P*V,and-P*V. 
Creates a flat, rectangle-shaped 
structuring element, where MN specifies 
the size. MN must be a two-element vector 
of nonnegative integers.The first element 
of M N  is the number rows in the 
structuring element; the second element 
is the number of columns. 
Creates a square structuring element 
whose width is W pixels. w must be a 
nonnegative integer scalar. 
Creates a structuring element of 
arbitrary shape. NHOOD is a matrix of 
0s and Is that specifies the shape.The 
second, simpler syntax form shown 
performs the same operation. 

and Erosion 3843 

TABLE 9.2 
The various 
syntax forms of 
function s t r e l .  
(The word flnt 
means that the 
structuring 
element has zero 
height. This is 
mt:aningful only 
for gray-scale 
dilation and 
erosion. See 
Section 9.6.1.) 
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The output of whos shows that s e  and decomp are both strel objec 
further, that decomp is a four-element vector of strel objects.The four st "shrinks" or "thins" objects in a binary image. A s  in dilation, the man- 
ing elements in the decomposition can be examined individually by ind extent of shrinking is controlled by a structuring element. Figure 9.7 il- 
into decomp: the erosion process. Figure 9.7(a) is the same as Fig. 9.4(a). 

7(b) is the structuring element, a short vertical line. Figure 9.7(c) 
22 decomp (1 ) ly depicts erosion as a process of translating the structuring element 

ans  = ut the domain of the image and checking to see where it fits entirely 

F l a t  STREL o b j e c t  c o n t a i n i n g  5 ne ighbors .  
0 [I 0 ( 1  (1 9 0 0 (I li 0 0 0 0 I! 1 1  0 

Neighborhood: II !i ii 0 o (I I! 11 o o o ii o !I !I o (I 

0 1 0  11 I 1  (1 0 0 0 (I 11 0 0 0 [I 0 11 f j  0 (1 
1 1  1  !) 0 f! 0 0 0 0 0 !J 0 0 0 0 (1 0 i! i! 

0 1 0  0 0 0 0 0 O 0 0 111 11 0 0 0 0 11 !.I 0 
0 ii !: 0 0 1 1 1  1 1 1  1 0 ii 0 0 11 1 

>> decomp(2) 11 (! !) (1 o 1 1  1 1  1 1  1 II ii (! 0 (I Ik'i 
-. . 

0 ii (1 il 0 1 1 1 1 1  1  1  0 !j i~ t i  i! 1 
ans  = 0 0  0 I1 1 1  0 0 0 (j li 0 0 0 ('1 0 i t  0 

0 t i  0 0 0 0 i j  0 0 1) (1 I) 0 ii I! 0 0 
F l a t  STREL o b j e c t  c o n t a i n i n g  4 ne ighbors .  11 11  o o 0 II 11 I) {I (1 o i t  ti o 0 !I 

Neighborhood: i t  11 (1 (1 o [I i! !I o o i) 11 (I r] o (1 

0 1 0  
!j 0 0 11 I! 0 0 il il t i  t i  0 (1 i,! 11 !I !) 

1 0 1  Output is zero in these locations because 
0 1 0  the structuring element overlaps the 

>> decomp(3) 

ans  = 

F l a t  STREL o b j e c t  c o n t a i n i n g  4 ne ighbors .  

Neighborhood: 
0 0 1 0 0  
0  0 0  0  0  
1 0 0 0 1  
0  0  0  0  0  
0 0 1 0 0  

>> decomp(4) 

a n s  = (> 0 i! II o (1 (I o \! II !I 0 o 0 1 1  11 o 
[I 11 0 11 i! !J 11 !I 0 (1 0 fl ! I  0 I1 !I 0 

F l a t  STREL o b j e c t  c o n t a i n i n g  4 ne ighbors .  II 1 1  I! ( j  (I [I 11  11 ;I i j  0 ( 1  II II o o 11  

0 0 !I 0 0 i) il 0 0 i !  i) 0 !! 0 0 11 !) 
Neighborhood: (1 i) ( 1  11 !I !I (1 (I I )  II 11 i) (1 o !I I I  11 

0 1 0  0 ii ii 11 0 0 t l  0 !j 0 li 0 11 !I i! 1: 0 
1 0 1  ii $ 1  ( 1  !J 0 1 1  1  1 1 1 1 0 O 0 11 

0 1 0  ( 1  (1 I; () a ~ i  !I (1 ( 1  0 i j  61 ii 11 0 11 0 !i 
0 i) 11 1 1  11 0 0 0 !I i l  !I 0 0 0 I 1  I1 i l  

1; ( j  ii I 1  1) ;) 1) 0 [I i i il f) i j  (I 11 I] ( 1  

Function i m d i l a t e  uses the decomposed form of a structuring element 1 )  ,I t i  i j  (J ij 11 i i t l  11 (I 11  1 1  il !I o (1 

tomatically, performing dilation approximately three times faster ( s  611 I, 11 (; [ j  i! (1 11 0 i! (1 (I [I !I II I) o t,! 

than with the non-decomposed form. 0 (j 0 I 1  ( 1  ( 1  0 1.1 (1 i t  li It ( I  'I 11 I1 f !  

and Erosion 

d, 
FIGURE 9.7 
Illustration of 
erosion. 
(a) Original Image 
with rectangular 
object. 
(b) Structuring 
element with 
three pixels 
arranged In a 
vertlcal Ime. The 
origin of the 
structuring 
element 1s shown 
with a dark 
border. 
(c) Structuring 
element 
translated to 
several locations 
on the image. 
(d) Output image. 
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EXAMPLE 9.3: 
An illustration of 
erosion. 

FIGURE 9.8 An 
illustration of 
erosion. 
(a) Original 
image. 
(b) Erosion with a 
disk of radius 10. 
(c) Erosion with a 
disk of radius 5. 
(d) Erosion with a 
disk of radius 20. 

\~lorphological Image Processing 9.3 a Combining Dila ti01 

= imread('wirebond-maskstif'); 
= strel('diskl, 10); 
= imerode(A, se) ; 

A 8  B  = { z I ( B ) , n A C  f 0 )  

In other words, erosion of A  by B  is the set of all structuring element origi = strel('diskl, 5); 
cations where the translated B has no overlap with the background of A. = imerode(A, se) ; 

Erosion is performed by IPT function imerode. Suppose that we wa 
remove the thin wires in the image in Fig. 9.8(a), but we want to preserv 

appens if we choose a structuring element that is too large: 

= imerode(A, strel('diskl, 20)); 

wire leads were removed, but so were the border leads. 

Combining Dilation and Erosion 
tical image-processing applications, dilation and erosion are used most 

in various combinations. An image will undergo a series of dilations 

alternative mathematical formulation of opening is 

A o B  = U { ( B ) , I ( B ) , C A )  

tion: A B is the union of all translations of B  that fit entirely within 
9.9 illustrates this interpretation. Figure 9.9(a) shows a set A  and a 

d region in Fig. 9.9(c); this region is the complete opening.The white re- 
in this figure are areas where the structuring element could not fit 

and Erosion 

imerode 
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a b: 
c d-. 
FIGURE 9.10 
Illustration of 
opening and 
closing. 
(a) Original 
image. 
(b) Opening. 
(c) Closing. 

is example illustrates the use of functions imopen and imclose. The EXAMPLE 9.4: 
e shapes. tif shown in Fig. 9.10(a) has several features designed to illus- Working with 
the characteristic effects of opening and closing, such as thin protrusions, 

~ ~ ~ , " , " ~ ~ s m e O p e n  
,gulfs, an isolated hole, a small isolated object, and a jagged boundary.The 
wing commands open the image with a 20 x 20 structuring element: 

e = strel('squarel, 20); 

A . B  = ( A $ B ) G B  o = imopen(f, se); 

Geometrically, A .  B is the complement of the union of all translation 
that do not overlap A. Figure 9.9(d) illustrates several translations of B t 

fc = imclose(f, se); 

C = imopen(A, 0) 

and lier opening has the net effect of smoothing the object quite significantly. 
close the opened image as follows: 

C = imclose(A, 0) 
f oc = imclose(f o, se) ; 

where A is a binary image and B is a matrix of 0s and 1s that specifies the stru 
turing element. A strel obiect. SE. can be used instead of 0. 

ure 9.10(d) shows the resulting smoothed objects. 
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,! 0  i r  i! ;) 1 1  il (1 !I 0 11 '1 ti i i  i l  , :  a b  
0 1 1  1  ! J  ; I  (1 it (1 i j  t l  i) ;! 1 1  (1 I l  8 1  C 

el (1 1  I,! (1 1 1  1  1  1  1  , I  { J  i j  1 1  (1 , :  BI d e 
0 1  1  1  I '  ii I ]  !I (: ! I  !i i l  1 1 11 I !  f 
(> i j  1  !I !! 8 1  .:J :I i~ { )  !> 1  1  1  !: 1 g 
11 i j  I I  t ;  (1 1  (> i! I t  (> g !  (1 i! I (J l a 1  
(j  !I  0 ;; 1  1 1  !; i j  I !  (1 ( I  I !  i j  I I  i ;  1 FIGLIRE 9.1 2 

: I  ( j  ( 1  ,I $! 1  !! G ,  t, <! g )  !! <J i! i j  s 8  
(a) Original image 

i! x,! t i  i; [I  1 1  $ >  {i (1 !\ l~i 0 (1 I ?  {I i l  
A. (b) Structuring 
element BI . 
(c) Erosion of A 

0 {) 11 \! :j l >  () f !  ! !  i) < I  (1 r j  I 1  1; ,, 

a b c  (1 ( 1  c, 1; { i  I !  (; () I !  (1 ;! f )  ( 1  by Bl. 
I.', !! ( 1  :! (1 ( 1  !I <; { )  i l  l !  (; i j  f >  ii i,) 

(d) Complement of 
ening followed by closing. (0 the original image, 

i! 1 )  I ( !  i )  1 1  ( I  0 1, 0  i! (1 0 i l  (1 f !  A'. (e) Structuring 
[I 11 (> I >  I !  (j [ I  ;i !I 1 1  (1 i i  ! I  1  $ 1  :; ~elernent B2. 
! I  (1 l l  (: ! I  (i ( j  I !  !i I 1  i l  !! ! I  0  
1) 1)  (1 i j  !\ 1  ' j  \> \ I  !; 11 0 $ 1  I !  

(f) Erosion of A' 
Figure 9.11 further illustrates the usefulness of closing and opening 

11 l l  0 ti : I  (1 1 1  (1 :i {I (1 (1 (1 l i  g j  ;; by B2. (9) Output 
plying these operations to  a noisy fingerprint [Fig. 9.ll(a)J.  The comman l l  I ?  k t  :? [ I  0 (.8 { I  t !  11 :I t~ (1 t :  

image. 

>> f = imread('fingerprint.tifl); 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1  
>> s e  = s t r e l ( ' s q u a r e l ,  3 ) ;  1 1 ~ ! 1 1 1 1 1 1 1 1 1 1 1 1 1  
>> f o  = i m o p e n ( f ,  s e ) ;  I I ! ~ ~ I I ~ ~ ! ! ~ ) ~ I I ~ ~ ~ ~ I  

1 1 1 i l ! ' ! 1 1  1 1  l l l l ' i t i 1 1  B? 
>> imshow(fo) 

1 1 1 1 1 1 1 1 I 1 1 1 1 0 ~ ~ 0 1  
1 1 1 1 1 ~ ! 1 1 1 1 1 1 1 0 1 1  

1 1  
produced the image in Fig. 9.11(b). Note that noisy spots were remove I I I I ! ; ! ! ~ I I I I ~ I I ~ I ~  
opening the image, but this process introduced numerous gaps in the ridg l l l l ~ ~ r l l ~ ~ l l ~ l l t  1 1  
the fingerprint. Many of the gaps can be filled in by following the opening ~ l ~ l l l ~ l l l l l ~ l t l  
a closing: 

l ~ ~ l i ~ l l l l l l l l l l  I 1  
1 i j  1  !: 1 ! I  I: i )  :1 i )  1 1  1 1 1  1  1 

>> f o c  = i r n c l o s e ( f o , s e ) ;  
i! 0  11 ;! L! 1 1  1  1  1  1  11 1: i l  11 1  

>> ~ . ~ s ~ o w ( ~ o c )  1  1 1  1  !) 1  I !  i ;  :> I !  I \  i! \ i  $ 1  :> 
1 1  i ]  0 .'! i j  1 1  1  1 0  :! ! I  8,) 1  

Figure 9.11(c) shows the final result. 1  1 1  1  :; I, # I  I I  :I 1  1  1 ( I  t! i,! t i  < i  

1 1 1 1 ~ ~ 1 ~ i 1 1 1 1 I i ! I ~ i 1  

3,3,.2 The Hit-or-Miss Transformation 1 1  I i 1 : 1 ! ' i 1 ' l 1 1 1  1 1 1 1  1  
I l l l ! ! l i ~ l l l l l l l l l  

Often, it is useful to be able to  identify specified configurations of pixels, s 
i j  i j  i) 0  I ?  (I ' j  11 0  i, !j i )  11 I) :J 

as isolated foreground pixels, o r  pixels that are end points of line segme 
[ I  11 !I (1 t )  ( 1  I! (1  ( I  0 11 !J i! i t  I I  0 

The hit-or-miss transformation is useful for applications such as these. The (1 ! I  (1 (': <! 0 < \  ( j  0 { I  i \  :) i i  (1 I I  ( 1  

or-miss transformation of A by B is denoted A @ B. Here, B is a structuri o (1 1 ,I I >  :i  ;I i )  1 1  it I I  ,,I i )  1 1  (1 I )  

element pair, B = ( B ,  , B2),  rather than a single element, as before.The hit- :! i l  (j i! i l  il i l  ii I) I t  (1 !) [ I  i! ( i  !l 

(1  I! 1) (; i! I !  , I  0 [! 1 1  I; :! :! [) i i  :I miss transformation is defined in terms of these two structuring elements 
i! (1 I I  t )  ! ~ I  1  (1 i !  (! [! 5.1 !! ( 1  11 i) 

A @ B = ( A  8 5,) fl (AC 8 B2) () I 1  C) i !  !, !) , I  I 1  !? I 1  (1 !! el iJ 1: I !  

I 1  i] i l  11  i) I !  \ I  i] I 1  i )  i l  !! (i 1 1  (! 1 )  

Figure 9.12 shows how the hit-or-miss transformation can be used to ide 
fy the locations of the following cross-shaped pixel configuration: 

re 9.12(a) contains this configuration of pixels in two different locations. 
0 1 0  ion with structuring element BI determines the locations of foreground 
1 1 1  s that have north, east, south, and west foreground neighbors. Erosion of 
0 1 0  omplement with structuring element B2 determines the locations of all 

ixels whose northeast, southeast, southwest, and northwest neighbors 
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EXAMPLE 9.5: 
Csing IPT 
function 
b w h i t m i s s .  

a b  
FIGURE 9.13 
(a) Or~glnal 
midge (b) Result 
of applying the 
hlt-or-miss 
tr%nsforn~at~on 
(the dots shown 
were enlarged to 
faclhtate vlewlng) 

Morphological Image Processing 9.3 k% Combining Dilation and Erosion 353 

belong to the background. Figure 9.12(g) shows the intersection (1 single-pixel dot in Fig. 9.13(b) is an upper-left-corner pixel of the objects 
AND) of these two operations. Each foreground pixel of Fig. 9.12(g) is t .9,13(a).The pixels in Fig. 9.13(b) were enlarged for clarity. @a 
cation of a set of pixels having the desired configuration. 

The name "hit-or-miss transformation" is based on how the result is Using Lookup Tables 
the hit-or-miss structuring elements are small, a faster way to compute 

sformation is to use a lookup table (LUT).The technique is 
e neighborhood config- 
use. For instance, there 

= 512 different 3 X 3 configurations of pixel values in a binary image. 
bwhitmiss, which has the syntax of lookup tables practical, we must assign a unique index 

sible configuration. A simple way to do this for, say, the 3 X 3 case, 
C = bwhitmiss(A, 81, 82) ly each 3 X 3 configuration element-wise by the matrix 

where C is the result,A is the input image, and 81 and 82 are the structuri 1 8 64 

ements just discussed. 2 16 128 
4 32 256 

n sum all the products. This procedure assigns a unique value in the 
h different 3 X 3 neighborhood configuration. For exam- 

value assigned to the neighborhood 

west, west, or southwest neighbors (these are "misses"). These requir 1 1 0  

lead to the two structuring elements: 1 0 1  
1 0  1 

>> 81 = strel([O 0 0; 0 1 1 ;  0 1 01); 
>> 82 = strel([l 1 1; 1 0 0; 1 0 01); 

+ 2(1) + 4(1) + 8(1) + 16(0) + 32(0) + 64(0) + 128(1) + 
= 399, where the first number in these products is a coefficient from 

receding matrix and the numbers in parentheses are the pixel values, Note that neither structuring element contains the southeast neighbor, w 
is called a don't care pixel. We use function bwhitmiss to compute the tr 

s two functions, makelut and a p p l y  lut (illustrated formation, where f is the input image shown in Fig. 9.13(a): t can be used to implement this technique. Function ?... 

>> g = bwhitmiss(f, B1 ,82);  
a lookup table based on a user-supplied function, and 

vi ,.::,,",y. , & g a k e l u t  

>> imshow(g) binary images using this lookup table. Continuing with ~".d~~@'plylut 

makelut requires writing a function that accepts a 3 X 3 
matrix and returns a single value, typically either a 0 or 1. Function 
ut calls the user-supplied function 512 times, passing it each possible 
neighborhood. It records and returns all the results in the form of a 512- 

rite a function, endpoints. m, that uses makelut and 
oints in a binary image. We define an end point as a 

at has exactly one foreground neighbor. Function 
oints computes and then applies a lookup table for detecting end points 
input image. The line of code 

persistent lut s t e n t  

establishes a variable called lut and declares it to 
rsistent variables in be- 
s is called, variable lut 
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See Section 3.4.2 for 
LI disczlssion offilnc- 
tion hanrlle, @. 

EXAMPLE 9.6: 
Playing Conway's 
Game of Life 
using binary 
images and 
lookup-table- 
based 
computation. 

Morphological Image Processing 

is automatically initialized to the empty matrix ( [ I ) .  When lut is empt 
function calls makelut, passing it a handle to subfunction endpoint- 
Function applylut then finds the end points using the lookup table. 
lookup table is saved in persistent variable lut so that, the next 
endpoints is called, the lookup table does not need to be recomputed. 

function g = endpoints(f) 
%ENDPOINTS Computes end points of a binary image. 
% G = ENDPOINTS(F) computes the end points of the binary image F 
% and returns them in the binary image G. 

persistent lut 

if isempty(1ut) 
lut = makelut(@endpoint-fcn, 3); 

end 

g = applylut(f, lut); 
% - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

function is-end-point = endpoint-fcn(nhood) 
% Determines if a pixel is an end point. 
% IS-END-POINT = ENDPOINT-FCN(NHO0D) accepts a 3-by-3 binary 
% neighborhood, NHOOD, and returns a 1 if the center element i 
% end point; otherwise it returns a 0. 

is-end-point = nhood(2, 2) & (sum(nhood(:)) == 2); 
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Figure 9.14 illustrates a typical use of function endpoints. Figure 9.14( 
a binary image containing a morphological skeleton (see Section 9.3.4), implement the game of life using makelut and applylut, we first write 
Fig. 9.14(b) shows the output of function endpoints. ction that applies Conway's genetic laws to a single pixel and its 3 X 3 

if## An interesting application of lookup tables is Conway's "Game of ction out = conwaylaws(nhood) 
which involves "organisms" arranged on a rectangular grid. We include it ONWAYLAWS Applies Conway's genetic laws to a single pixel. 
as another illustration of the power and simplicity of lookup tables. There a OUT = CONWAYLAWS(NHO0D) applies Conway's genetic laws to a single 
simple rules for how the organisms in Conway's game are born, survive, pixel and its 3-by-3 neighborhood, NHOOD. 
die from one "generation" to the next. A binary image is a convenient re m-neighbors = sum(nhood( : ) )  - nhood(2, 2); 
sentation for the game, where each foreground pixel represents a living or nhood(2, 2) == 1 
ism in that location. if num-neighbors <= 1 

Conway's genetic rules describe how to compute the next generatio out = 0; % Pixel dies from isolation. 
next binary image) from the current one: elseif num-neighbors > = 4 

out = 0; % Pixel dies from overpopulation. 
1. Every foreground pixel with two or three neighboring foreground p 

survives to the next generation. out = 1 ;  % Pixel survives. 
2. Every foreground pixel with zero, one, or at least four foreground nei 

bors "dies" (becomes a background pixel) because of "isolation' 
"overpopulation." if num-neighbors == 3 

3. Every background pixel adjacent to exactly three foreground neighbo out = 1; % Birth pixel. 

a "birth" pixel and becomes a foreground pixel. 
out = 0; % Pixel remains empty. 

All births and deaths occur simultaneously in the process of computing 
next binary image depicting the next generation. 

FIGURE 9.1 4 
(a) Image of a 
morpholog~cal 
skeleton. 
(b) Output of 
functlon 
enclpolnts.The 
pixels In (b) were2 
enlarged for 
clatlty. 

conwaylaws 
'"UUi 
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The lookup table is constructed next by calling makelut with a fu 

handle to  conwaylaws: 

>> lut = makelut(@conwaylaws, 3); 

Various starting images have been devised to demonstrate the effect Remove isolated foreground pixels. 
way's laws on successive generations (see Gardner, [1970,1971]). Cons Closing using a 3 x 3 structuring element; use imclose for other 
example, an initial image called the "Cheshire cat configuration," structuring elements. 

Fill in around diagonally connected foreground pixels. 
> > b w l  ~ [ O O O O O O O O O O  Dilation using a 3 X 3 structuring element; use imdilate for 

0 0 0 0 0 0 0 0 0 0  other structuring elements. 
0 0 0 1 0 0 1 0 0 0  Erosion using a 3 X 3 structuring element; use imerode for other 0 0 0 1 1 1 1 0 0 0  structuring elements. 
0 0 1 0 0 0 0 1 0 0  
0 0 1 0 1 1 0 1 0 0  Fill in single-pixel "holes" (background pixels surrounded by 
0 0 1 0 0 0 0 1 0 0  
0 0 0 1 1 1 1 0 0 0  
0 0 0 0 0 0 0 0 0 0  Remove H-connected foreground pixels. 
O O O O O O O O O O ] ;  Make pixel p a foreground pixel if at least five pixels in N s ( p )  

(see Section 9.4) are foreground pixels; otherwise make p a 

The following commands perform the computation and display up  to the background pixel. 
generation: Opening using a 3 X 3 structuring element; use function imopen 

for other structuring elements. 
>> imshow(bw1, 'n'), title('Generati0n 1') Remove "interior" pixels (foreground pixels that have no 
>> bw2 = applylut(bw1, lut); background neighbors). 
>> figure, imshow(bw2, 'n'); title('Generati0n 2') Shrink objects with no holes to points; shrink objects with holes 
>> bw3 = applylut(bw2, lut); 
>> figure, imshow(bw3, 'n'); title('Generati0n 3') Skeletonize an image. 

Remove spur pixels. 
We leave it as a n  exercise to show that after a few generations the cat fad Thicken objects without joining disconnected Is. 
a "grin" before finally leaving a "paw print." 

Thin objects without holes to minimally connected strokes; 
thin objects with holes to rings. 

9J.4 Function bwmcnrph "Top-hat" operation using a 3 x 3 structuring element; 
IPT function bwmorph implements a variety of useful operations based use imtophat (see Section 9.6.2) for other structuring 
binations of dilations, erosions, and lookup table operations. Its calling synt 

g = bwmorph(f, operation, n )  

where f is an input binary image, operation is a string specifying the d 
operation, and n is a positive integer specifying the number of times the 
ation is to be repeated. Input argument n is optional and can be om 

ing the thinning operation one and two times. which case the operation is performed once. Table 9.3 describes the set of va 
operations for bwmorph. In the rest of this section we concentrate on two f = imread('fingerprint-cleaned.tifl); 
these: thinning and skeletonization. gl = bwmorph(f, 'thin', 1); 

Thinning means reducing binary objects or shapes in an image to stro g2 = bwmorph(f, 'thin', 2); 
that are  a single pixel wide. For example, the fingerprint ridges shown imshow(gl), figure, imshow(g2) 

and Erosion 

TABLE 9.3 
Operations 
supported by 
function bwmo 

357 

rph. 
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a b c  
FIGURE 9.15 (a) Fingerprint image from Fig. 9.11(c) thinned once. (b) Image thinned twice. (c) I 
thinned until stability. 

9.4 @ Label. ing Connected Con~ponents 359 

>> ginf = bwmorph(f, 'thin', Inf); 
>> imshow(ginf) 

As Fig. 9.15(c) shows, this is a significant improvement over Fig. 9.11(c). 
Skeletonizntion is another way to reduce binary image objects to 

thin strokes that retain important information about the shapes of the Labeling Connected Components 
objects. (Skeletonization is described in more detail in Gonzalez and 
[2002].) Function bwmorph performs skeletonization when operation 
' s kel ' . Let f denote the image of the bonelike object in Fig. 9.16(a). To 
pute its skeleton, we call bwmorph, with n = Inf: 

>> fs = bwmorph(f, 'skel', Inf); 
>> imshow(f), figure, imshow(fs) 

Figure 9.16(b) shows the resulting skeleton, which is a reasonable likeness 
the basic shape of the object. 

Skeletonization and thinning often produce short extraneous spurs, som 
times called parasitic conzponents. The process of cleaning up (or rem 
these spurs is called pruning. Function endpoints (Section 9.3.3) can be u erate on objects, we need a more precise set of definitions for key terms. 
for this purpose. The method is to iteratively identify and remove endpoi pixel p at coordinates ( x ,  y)  has two horizontal and two vertical neigh- 
The following simple commands, for example, postprocesses the skele 
image f s through five iterations of endpoint removals: 

>> for k = 1 :5  
fs = fs & -endpoints(fs); 

end 

Figure 9.16(c) shows the result. 
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FIGURE 9.1 7 

containing ten 
objects (b) A 
subset of pixels 

a: b ,G: 
&"e- 
k g, 

FIGURE 9.18 (a) Pixelp and its 
4-neighbors, N4(p) (b) Pixel p 
and its diagonal neighbors, 
ND(p). (c) Pixelp and its 
8-neighbors, Ns(p). (d) Pixels p 
and q are 4-adjacent and m connected component was just defined in terms of a path, and the 
8-adjacent (e) IPixelsp and q are of a path in turn depends on adjacency. 111s implies that the nature 
8-adjacent but not 4-adjacent 
( f )  The shaded pixels are both connected component depends on which form of adjacency we choose, 
4-connected and 8-connected. 4- and 8-adjacency being the most common. Figure 9.19 illustrates the ef- 
(g) The shaded foreground 
pixels are 8-connected but not 

ected components. Figure 9.19(b) shows that choosing 8-adjacency re- 
he number of connected components to two. 

I_- I function bwlabel computes all the connected components in a binary 
e. The calling syntax IS 

these concepts. A path between pixels pl and p, is a sequence o [ L ,  num] = bwlabel(f, conn) 
p,,p2,.  . . , p n P 1 ,  pn such that pk is adjacent to p k + ~ ,  for 1 5 k < n. 
can be 4-connected or 8-connected, depending on the definition of adjac f is an input binary image and conn specifies the deslred connectiv~ty 
used. r 4 or  8). Output L is called a label matnx, and num (optional) gives the 

Two foreground pixels p and q are said to  be Cconnected if there e number of connected components found. If parameter conn is omitted, 
lue defaults to 8. Figure 9.19(c) shows the label matrix corresponding to 
.19(a), computed using bwlabel (f , 4) .The pixels In each different con- 
d component are assigned a unique integer, from 1 to the total number 

onnected components. In other words, the p~xe ls  labeled 1 belong to the 

FIGURE 9.1 9 
Connected 
components 
(a) Four 
4-connected 
components. 
(b) Two 
8-connected 
components. 
(c) Label matrix 
obtained using 
4-connectivity 
(d) Label matrix 
obtained using 
8-connectivity. 
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EXAMPLE 9.7: 
Computing and 
displaying the 
center of mass of 
connected 
components. 

'," , -: mean 

If A is (1 vector. 
mean ( A )  cuniputes 
the nvernge vnl~re of 
its rlemetlrs. If A is n 
nintrix, mean(A) 
(rents the coliimns of 
A as vectors, retltrri- 
big n row vector qf 
nlerln vulires. The 
.sytztflx mean ( A ,  
dim) returns the 
r77eciri vrr1ue.s of the 
elenients along the 
dinicnsion of A .spec- 
ifi'ed by scillnr dim. 

Morphological Image Processing 9.5 icn Morphological Re( 

first connected component; the pixels labeled 2 belong to the second 
ed component; and so on. Background pixels are labeled 0. Figure 
shows the label matrix corresponding to Fig. 9.19(a), compute 
bwlabel ( f ,  8 ) .  

% This example shows how to compute and display the center of mass 
connected component in Fig. 9.17(a). First, we use bwlabel to compute 
connected components: 

>> f = i m r e a d ( ' o b j e c t s . t i f ' ) ;  
>> [ L ,  n] = bwlabe l ( f ) ;  

Function f ind  (Section 5.2.2) is useful when working with label matric 
example, the following call to f i n d  returns the row and column indices 
the pixels belonging to the third object: 

>> [ r ,  C ]  = f ind(L == 3 ) ;  

n this section we use 8-connectivity (the default), which 
Function mean with r and c as inputs then computes the center of mass o hat B in the following discussion is a 3 x 3 matrix of Is, with the cen- object. ed at coordinates (2,2). 

the mask and f is the marker, the reconstruction of g from f ,  denoted >> rbar = mean(r);  
>> cbar = mean(c); e following iterative procedure: 

A loop can be used to compute and display the centers of mass of a1 
jects in the image. To make the centers of mass visible when superimpos 
the image, we display them using a white " * " marker on top of a black 
circle marker, as follows: h k + l  = ( h k  @ B )  n g 

>> imshow(f) 
>> hold on % So l a t e r  plotting commands plot on top of the rker f must be a subset of g; that is, 
>> for k = 1:n 

[ r ,  C] = find(L == k) ;  f C g  

rbar = mean(r) ; re 9.21 illustrates the preceding iterative procedure. Note that, al- 
cbar = mean(c); this iterative formulation is useful conceptually, much faster computa- 
plot(cbar, rbar, 'Marker', ' o ' ,  'MarkerEdgeColor', ' k t ,  . . .  algorithms exist. IPT fucction imreconst ruc t  uses the "fast hybrid 

'MarkerFaceColor', ' k ' ,  'Markersize', 10)  m described in Vincent [1993]. The calling syntax for 
plot(cbar, rbar, 'Marker', I * ' ,  'MarkerEdgeColor', ' w ' )  econstruct  is end 

out = imreconstruct(marker,  mask) Figure 9.20 shows the result. 

ere marker and mask are as defined at the beginning of this section. w& Morphological Reconstruction 
Reconstruction is a morphological transformation involving two ima 
structuring element (instead of a single image and structuring element) ogical opening, erosion typically removes small objects, and the 
image, the marker, is the starting point for the transformation. The dilation tends to restore the shape of the objects that remain. 
image. the nzask, constrains the transformation. The structuring element cy of this restoration depends on the similarity between 

FIGURE 9.20 Centers 
of mass (white 
astensks) shown 
superimposed on 
then corresponding 
connected 
components. 

See Secriorls 10.4.2 
arid 10.4.3 for nddi- 
tiot~nl irpp1icfrtiotz.s 
qf'nrorphologicnl 
I ~ ~ C O I I S I I ~ L I C ~ ~ N I ~ .  
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FIGURE 9.22 
Morphological 
reconstruct~on: 
(a) Orlginal 
image. (b) Eroded 
with vert~cal Ilne. 
(c) Opened with a 
vertical h e .  
(d) Opened by 
reconstruction 
with a vertical 
line. (e) Holes 
filled. 
(f) Characters 
touching the 
border (see r~ght 
border). 
(g) Border 
characters 
removed. 

that the vertical strokes were restored, but not the rest of the characters the shapes and the structuring element. The method discussed in this section 
ining the strokes. Finally, we obtain the reconstruction: openrng by reconstructron, restores exactly the shapes of the objects that re 

main after erosion. The opening by reconstruction of f ,  using structuring eie 
ment B, is defined as R f ( f  8 B). I obr = imreconst ruct ( fe ,  f ) ;  

result in Fig. 9.22(d) shows that characters containing long vertical strokes EXAMPLE9.8: 1 A comparison between opening and opening by reconstructio 
Opening by restored exactly; all other characters were removed.The remaining parts 

image containing text is shown in Fig. 9.22. In this example, we are in g. 9.22 are explained in the following two sections. !# 
in extracting from Fig. 9.22(a) the characters that contain long vertical 
Since opening by reconstruction requires an eroded image, we perform 
step first, using a thin, vertical structuring element of length proportional 
the height of the characters: uction has a broad spectrum of ~ractical applications, 

he selection of the marker and mask images. For exam- 
>> f = imread('book-text-bw.tifl); hoose the marker image, f,,, to be 0 everywhere except 
>> f e  = imerode(f ,  ones(51,  1 ) ) ;  here it is set to 1 - f :  

Y E e "  Figure 9.22(b) shows the result. The opening, shown in Fig. 9.22(c), is cornput- . (1 - f (x, y )  if (x, y )  is on the border off  
f (Y v \ =  

ed using imopen: J i n t - 7  J / L o  otherwise 



366 Chapter 9 s Morphological Image Processing 9.6 aY Gray-Scale 

Then g = [ R f  c ( f , , , ) l C  has the effect of filling the holes in f ,  as illustr the structuring element about its origin and translating it to all loca- 

Fig. 9.22(e). IPT function imf ill performs this computation autom lution kernel is rotated and then translated 

when the optional argument ' holes ' is used: nslated location, the rotated structuring element 

g = i m f i l l ( f ,  ' h o l e s ' )  
latter, Do, a binary matrix, defines which locations in the 

This function is discussed. in more detail in Section 11.1.2. d are included in the max operation. In other words, for an 
pair of coordinates (xo, yo) in the domain of Db, the sum 

9.5.3 Clearing Border Objects 
Another useful application of reconstruction is removing objects th 

11 coordinates (x', y ' )  E Db each time that 
the border of an image. Again, the key task is to select the appropriate tting b(xl, y ' )  as a function of coordinates x' and mask images to achieve the desired effect. In this case, we use the 
image as the mask, and the marker image, f,, is defined as 

f (x, y )  if (x, y )  is on the border off 
fm(x7 Y )  = otherwise 

Figure 9.22(f) shows that the reconstruction, Rf( f , , ) ,  contains only the 
touching the border.The set difference f - Rf(fm), shown in Fig. 9.22( b(xl, y ' )  = 0 for (x', y') E Ub 

tains only the objects from the original image that do not touch the se, the max operation is specified completely by the pattern of 0s and 
IPT function imclearborder performs this entire procedure automa ary matrix Db, and the gray-scale dilation equation simplifies to 
Its syntax is 

(f @ b)(x, y)  = max{f (x - x', Y - y ' )  1 (x', Y ' )  E Db) 

g = imclearborder( f ,  conn) at gray-scale dilation is a local-maximum operator, where the rnaxi- 
taken over a set of pixel neighbors determined by the shape of Db. 

where f is the input image and g is the result. The value of conn can be 
4 or 8 (the default). This function suppresses structures that are ligh 
their surroundings and that are connected to the image border. Input f a second matrix specifying height values, b(xl, y ' ) .  For example, 
a gray-scale or binary image. The output image is a gray-scale or binary 
respectively. = s t r e l ( [ l  1 I ] ,  [ I  2 I ] )  

Gray-Scale Morphology Nonflat STREL object  containing 3 neighbors. 
All the binary morphological operations discussed in this chapter, wi 
ception of the hit-or-miss transform, have natural extensions to gray 1 1  1 
ages. In this section, as in the binary case, we start with dilation and 
which for gray-scale images are defined in terms of minima and m 
pixel neighborhoods. 

a 1 x 3 structuring element whose height values are b(0, -1) = 1, 9h. ii Dilation and Erosion 

The gray-scale dilation of f by structuring element 6, denoted f $6, is for gray-scale images are created using s t r e l  in 
fined as way as for binary images. For example, the following commands 

(f @ b)(x, Y )  = max{f (x - x', y  - y ' )  + b(xl, y ' )  I (x', y ' )  E Do) 
to dilate the image f in Fig. 9.23(a) using a flat 3 X 3 structuring 

where Db is the domain of b,  and f (x, y )  is assumed to equal -cc outside 
domain off .  This equation implements a process similar to the concept of s se = s t r e l ( ' s q u a r e ' ,  3 ) ;  
tial convolution, explained in Section 3.4.1. Conceptually, we can think gd = i m d i l a t e ( f ,  s e ) ;  
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9.23(c) shows the result of using imerode with the same structuring el- 
used for Fig. 9.23(b): 

FlGlURE 9.23 
Dilation and = i m e r o d e ( f ,  s e ) ;  
ero!sion. 

age from its dilated version produces a "mor- 
measure of local gray-level variation in the 

h-grad = i m s u b t r a c t ( g d ,  g e ) ;  

ening and Closing 
for opening and closing gray-scale images have the same form 

counterparts. The opening of image f by structuring element b, 

f o b  = ( f G b ) $ b  

by b, followed by the dilation of the 
,denoted f . b, is dilation followed by 

f . b =  ( f @ b ) 8 b  

e geometric interpretations. Suppose that an image 
Figure 9.23(b) shows the result. As expected, the image is slightly blurre x, y) is viewed as a 3-D surface; that is, its intensity values are in- 
rest of this figure is explained in the following discussion. s height values over the xy-plane. Then the opening o f f  by b can 

The gray-scale erosion o f f  by structuring element b, denoted f 8 b, is structuring element b up against the 
fined as across the entire domain o f f .  The 

(f 9 b)(x, Y)  = min{f (x  + x', y + y') - b(xf, y') I ( x ' ,  y') E Db) ing the highest points reached by any part of the 
against the undersurface o f f .  

where Db is the domain of b and f ( x ,  y) is assumed to be +GO outside the ne dimension. Consider the curve in 
le row of an image. Figure 9.24(b) 

nt in several positions, pushed up against the 
element values are subtracted from the image pixel values and the mini lete opening is shown as the curve along the 
is taken. . 9.24(c). Since the structuring element is too 

As with dilation, gray-scale erosion is most often performed using flat s ak on the middle of the curve, that peak is re- 
by the opening. In general, openings are used to remove small bright 

(f e b ) ( x ,  Y )  = min{f (x  + x', y + Y') I (x', y') E Dh) 
s while leaving the overall gray levels and larger bright features rela- 

Thus, flat gray-scale erosion is a local-minimum operator, in which the aphical illustration of closing. Note that the 
wn on top of the curve while being translated 
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Conzputing the mor- 
phological gradient 
requires a different 
procedure for non- 
sy~iznzetric smrctur- 
ing elements. 
Specifically, a reflect- 
ed strrtctrrring ele- 
nzent nirrsr be used 
in the dilation step. 
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a 

C 

e 
FIGURE 9.24 
Opening and (a) Original image 
closing in one of wood dowel 
dimension. 
(a) Original 1-D 
signal. (b) Flat 
structuring 
element pushed 
up underneath 
the signal. 
(c) Opening. 

structuring 
element pushed 
down along the 

;,f = imread ( ' p l u g s .  j pg ' ) ; 

ing produces similar results. 
nother way to use openings and closings in combination is in alternating 

to  all locations. The closing, shown in Fig. 9.24(e), is constructed d to obtain Figs. 9.25(b) and (c): 
lowest points reached by any part of the structuring element as it 

smaller than the structuring element. 

EXAMPLE 9.9: 1 Because opening suppresses bright details smaller than the structuring f a s f  = i m c l o s e ( i m o p e n ( f a s f ,  s e ) ,  s e ) ;  
Mor~hological ment, and closing suppresses dark details smaller than the structuring elem 

using they are used often in combination for image smoothing and noise remova openings and 
closings. this example we use irnopen and imclose  to smooth the image of wood do e result, shown in Fig. 9.25(d), yielded slightly smoother results than using a 

plugs shown in Fig. 0.25(a): gle open-close filter, at the expense of additional processing. iig 
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is syntax is the same as using the call imtophat ( f , st re1 ( NHOOD) ) . 
ated function, imbothat, performs a bottom-hat transformation, de- 
the closing of the image minus the image. Its syntax is the same as for 

n imtophat. These two functions can be used together for contrast en- 
ent using commands such as 

= strel('diskl, 3); 
irnsubtract(imadd(f, irntophat(f, se)), imbothat(f , se)); fill 

hniques for determining the size distribution of particles in an image 
important part of the field of granulometry. Morphological techniques 
used to measure particle size distribution indirectly; that is, without 
ing explicitly and measuring every particle. For particles with regular 

CI e that are lighter than the background, the basic approach is to apply 
ological openings of increasing size. For each opening, the sum of all the 
alues in the opening is computed; this sum sometimes is called the 
area of the image. The following commands apply disk-shaped open- 
h radii 0 to 35 to the image in Fig. 9.25(a): 

EXAMPLE 9.10: k# Openings can be used to compensate for nonuniform background illum 
Using the tophat tion. Figure 9.26(a) shows an image, f, of rice grains in which the backgro f = imread('p1ugs.jpg'); 

is darker towards the bottom than in the upper portion of the image. The sumpixels = zeros (1 , 36) ; 
even illumination makes image thresholding (Section 10.3) d or k = 0:35 

Figure 9.26(b), for example, is a thresholded version in which grains at se = strel('diskl, k); 
fo = kmopen(f, se); 

of the image are well separated from the background, but grains at the sumpixels(k + 1) = sum(fo(:)); 
are improperly extracted from the background. Opening the image can 
duce a reasonable estimate of the background across the image, as long as 
structuring element is large enough so that it does not fit entirely within lot(0:35, sumpixels), xlabel('kl), ylabel('Surface area') 
rice grains. For example, the commands 

ure 9.27(a) shows the resulting plot of sumpixels versus k. More interest- 
>> se = strel('diskl, 10); the reduction in surface area between successive openings: 
>> fo = irnopen(f, se); 

lot(-diff(sumpixe1s)) 
resulted in the opened image in Fig. 9.26(c). By subtracting this image from 
original image, we can produce an image of the grains with a reasonably e ylabel('Surface area reduction') 
background: 

.'h 
J,', ,- +25.', .'* 

..,$$;:.;imbot h a t  
""9 .' ; -.\ 
5, 

EXAMPLE 9.11: 
Granulometry. 

I f  v is a vector, lhen 
d i f  f ( v )  retzrrns a 
vector, one element 
shorter than v ,  of dif- 
ferences between adja- 
cent elements. I f  X is a 
matrix, then d i f  f ( X )  
ret~rrns n matrix of 
row differences: 
X ( 2 :  e n d ,  : ) -  
X ( 1 :  e n d - I ,  : ) .  

; d l f f  
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FIGURE 9.27 
Granulometry. 
(a) Surface area 
versus structuring 
element radius. 
(b) Reduction in 
surface area 
versus radius. 
(c) Reduction in 
surface area 
versus radius for a 
smoothed image. 
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C 

FIGURE 9.28 Gray- 
scale morpholog~cal 
reconstruction 1n 
one dimens~on. 
(a) Mask (top) and 
marker curves 
(b) Iterative 
computation of- the 
reconstruction. 
(c) Reconstruction 
result (black curve). 
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Fig. 9.30(d). This is done by performing opening-bi-reconstruction wi 
small horizontal line: 

>> g-obr = imreconstruct(imerode(f-thr, ones(1, ll)), f-thr 

In the result [Fig. 9.30(f)], the vertical reflections are gone, but so are thin 
tical-stroke characters, such as the slash on the percent symbol and the " 
ASIN. We take advantage of the fact that the characters that have been 
pressed in error are very close to other characters still present by first 
forming a dilation [Fig. 9.30(g)], 

>> g-obrd = imdilate(g-obr, ones(1, 21)); 

followed by a final reconstruction with f-thr as the mask and m i n  (g-0 
f-thr ) as the marker: 

>> f 2  = imreconstruct(min(g-obrd, f-thr), f-thr); 

Figure 9.30(h) shows the final result. Note that the shading and reflection 
the background and keys were removed successfuily. 

-by-reconstruction. 
using a horizontal 
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color images are discussed in Section 6.6). We begin the development 
thods suitable for detecting intensity discontinuities such as points, 
d edges. Edge detection in particular has been a staple of segmentation 

s for many years. In addition to edge detection per se, we also discuss 
linear edge segments using methods based on the Hough transform. 

ussion of edge detection is followed by the introduction to threshold- 
chniques. Thresholding also is a fundamental approach to segmentation 

oys a significant degree of popularity, especially in applications where 
an important factor. The discussion on thresholding is followed by the 

pment of region-oriented segmentation approaches. We conclude the 
r with a discussion of a morphological approach to segmentation called 
hed segmentation. This approach is particularly attractive because it pro- 
closed, well-defined regions, behaves in a global fashion, and provides a 

ework in which a priori knowledge about the images in a particular appli- 
can be utilized to improve segmentation results. 

Point, Line, and Edge Detection 

Preview section we discuss techniques for detecting the three basic types of in- 
y discontinuities in a digital image: points, lines, and edges. The most 

The material in the previous chapter began a transition from image n way to look for discontinuities is to run a mask through the image in 
methods whose inputs and outputs are images to methods in which ner described in Sections 3.4 and 3.5. For a 3 X 3 mask this procedure 
are images, but the outputs are attributes extracted from those im computing the sum of products of the coefficients with the intensity 
mentation is another major step in that direction. ontained in the region encompassed by the mask.That is, the response, 

Segmentation subdivides an image into its constituent regions or o e mask at any point in the image is given by 
The level to which the subdivision is carried depends on the problem 
solved.That is, segmentation should stop when the objects of interest in R = wlzl + W Z Z ~  + . . .  -k wgzg 

9 
plication have been isolated. For example, in the automated inspection o = 2 WiZi 
tronic assemblies, interest lies in analyzing images of the products wi i= I 
objective of determining the presence or absence of specific anomalies, s 

re zi is the intensity of the pixel associated with mask coefficient wi. As be- missing components or broken connection paths. There is no point in car 
segmentation past the level of detail required to identify those elements. ,the response of the mask is defined with respect to its center. 

Segmentation of nontrivial images is one of the most difficult tasks in ' 
processing. Segmentation accuracy determines the eventual success or fail 1 Point Detection 

computerized analysis procedures. For this reason, considerable care sho detection of isolated points embedded in areas of constant or nearly con- 
taken to improve the probability of rugged segmentation. In some situ intensity in an image is straightforward in principle. Using the mask 
such as industrial inspection applications, at least some measure of contro n in Fig. 10.1, we say that an isolated point has been detected at the loca- 
the environment is possible at times. In others, as in remote sensing, user con n which the mask is centered if 
over image acquisition is limited principally to the choice of imaging senso I R I  2 T 

Segmentation algorithms for monochrome images generally are bas 
one of two basic properties of image intensity values: discontinuity and 
larity. In the first category, the approach is to partition an image base 
abrupt changes in intensity, such as edges in an image.The principal approa 
es in the second category are based on partitioning an image into regions t 
are similar according to a set of predefined criteria. 

In this chapter we discuss a number of approaches in the two categorie 
mentioned as they apply to monochrome images (edge detection and segme 

Detection 

FllGURE 10.1 
A mask for point 
detect~on. 
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e filtered image, g, and then find- 
uch that g >= T, we identify the points that give the largest 
ption is that all these points are isolated points embedded 

Note that the test against T was 
be 0 in areas of constant intensity. ncy in notation. Since T was se- 

o be the maximum value in g, clearly there can be no points 
proach just discussed: h values greater than T. As Fig. 10.2(b) shows, there was a single isolat- 

t that satisfied the condition g >= T with T set to max (g ( : ) ) . B 
>> g = abs(imfilter(double(f), w ) )  >= T; 

other approach to point detection is to find the points in all neighbor- 
of size rn X n for which the difference of the maximum and minimum 

lues exceeds a specified value of T. This approach can be implement- 
function ordf ilt2 introduced in Section 3.5.2: 

irnsubtract(ordfilt2(fJ m*n, ones(mJ n)), ... 
ordfilt2(fJ 1, ones(rn, n))); 

which case the previous command string is broken down into three 

(1) Compute the filtered image, a b s  (imf ilter(double(f) , w )  ), ily verified that choosing T = max(g ( : ) ) yields the same result as in 
e flexible than using the mask in 
ute the difference between the 

and the next highest pixel value in a neighborhood, we would replace 
EXA.MPLE 10.1: k?4 Figure 10.2(a) shows an image with a nearly invisible black point n the far right of the preceding expression by m*n - 1. Other variations 
Point detection. dark gray area of the northeast quadrant. Letting f denote this image, w basic theme are formulated in a similar manner. 

the location of the point as follows: 
2 Line Detection 

>> w = [-1 -1 -1 ; -1 8 -1 ; -1 -1 -1 ] ; 
>> g = abs(imfilter(double(f), w)); 
>> T = max(g(:)); 

hick) oriented horizontally. With a constant background, 
ximum response would result when the line passed through the middle 
the mask. Similarly, the second mask in Fig. 10.3 responds best to lines 

third mask to vertical lines; and the fourth mask to lines 
a b  . Note that the preferred direction of each mask is 

FlGUKli 10.2 other possible directions. The 
(a) Gray-scale ing a zero response from the 
image with a 
nearly invisible 
isolated black 
point in the dark 
gray area of the FIGURE 10.3 Line 
northeast detector masks. 
quadrant. 
(b) Image 
showing the 
detected point. 
(The point was 
enlarged to make 
it easier to see.) Vertical -45" 
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Let R, ,  R2, R3, and R4 denote the responses of the masks in Fig. 10.3,frd 
left to right, where the R's are given by the equation in the previous sectin 

EXA 
Dete 
in a 5 

direc 

LMPLE 10.2: 
:ction of lines 
;pecified 
:tion. 

Su 
tai 

- 
.ppose that the four m: 
,n point in the image, / 

- 
~ s k s  are run 
~ i l  > JR;J, 

divici 
r all j 

hroi 
.hat 

nagt 
said 

:. If, at a 
to ben 

likelv associated with a line in the'direction of mask i. For example, if at a oai 
in 
lik 

thk image, [R , (  > 1 ~ ~ 1  
ely associated with a 1- 

for j = 2,3 
iorizontal li 

, that 
:. Alte 

oint is 
e may 

saic 
be i 

i toben 
ntereste 

detecting lines in a specified direction. In this case, we would use the mask a 
sociated with that direction and threshold its output, as in the equation in tf 
previous section. In other words, if we are interested in detecting all the lint 
in an image in the direction defined by a given mask, we simply run the ma! 
through the image and threshold the absolute value of the result. The pain 
that are left are the strongest responses, which, for lines one pixel thick, cori  
spond closest to the direction defined by the mask. The following example 
lustrates this procedure. 

Figure 10.4(a) shows 
electronic circuit. The 

a digitized 
: image size 

inary) 
486 : 

I porti 
X 486 

a wire 
j. SUPP 

-bol 
lose 

ad mask 
that we 

interested in finding all the lines that are one pixel thick, oriented at -45". l? 
this purpose, we use the last mask in Fig. 10.3. Figures 10.4(b) through (f) we1 
generated using the following commands, where f is the image in Fig. 10.4(a 

>> w = [ 2  -1 -1 ; -1 2 -1; -1 -1 21; 
>> q = imfilter(double(f), w); 

i r n ~ h o w ( ~ ,  [ I )  S 
gtop = g(1:120, 1 
gtop = pixeldup(g 
figure, irnshow(gt 
gbot = g(end-119: 

i Fig. 10. 
:120); 
t o p ,  4 ) ;  
OP, [ I )  
end, end- 

b) 

Fig. 
9: en  

>> gbot = pixeldup(gbot, 4); 
>> figure, imshow(gbot, [ I) % Fig. 10.4(d) 

g = abs(g); 
figure, imshow(g, 
T = max (g ( : ) ) ;  
g = g >= T ;  

>> figure, imshow(g) % Fig. 10.4(f) s ;a 
4 
4 

The shades darker than the gray background in Fig. 10.4(b) correspond to neg% 
3 

tive values. There are two main segments oriented in the -45" direction, one a& 
the top, left and one at the bottom, right [Figs. 10.4(c) and (d) show zoomed seer; 
tions of these two areas]. Note how much brighter the straight line segment $j 
Fig 
in t 

.10A(d) is than the seg 
he bottom, right of Fig 

:men t in Fig 
.10.4(a) is o 

D.4(c) 
pixel 

.The r 
thick, 

easc 
whi 

is that 
the on 

the 
~e at 

compor 
the top, 

is not.The mask response is stronger for the one-pixel-thick component. it, 
Figure 10.4(e) shows the absolute value of Fig. 10.4(b). Since we are i n t e ~ j  

ested in the strongest response, we let T equal the maximum value in this: 

10.1 gnr Point, Line, and Ed e Detection 383 

a b  
c d 
e t  

FIGURE 10.4 
(a) Image of a 
w~re-bond mask 
(b) Result of 
processing w ~ t h  
the -45" detect01 
In Fig 10.3. 
(c) Zoomed vlew 
of the top, left 
reglon of (b). 
(d) Zoomed view 
of the bottom, 
r~gh t  sectlon of 
(b). (e) Absolute 
value of (b). 
(f) All polnts (In 
whlte) whose 
values sat~shed 
the cond~ t~on  
g >= T, where g IS 

the image In (e) 
(The polnts In (f) 
were enlarged 
slightly to make 
them easler to 
see.) 

image. Figure 10.4(f) shows in white the points whose values satisfied 
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condition g >= T, where g is the image in Fig. 10.4(e).The isolated points in t econd-order derivatives in image processing are generally computed using 

such a way that the mask produced a maximum response at those iso 
cations. These isolated points can be detected using the mask in Fig. 
then deleted, or they could be deleted using morphological operators, a 
cussed in the last chapter. lacian is seldom used by itself for edge detection because, as a second- 

10,1.3 Edge Detection Using Function edge 

Although point and line detection certainly are important in any this section, the Laplacian can be a powerful complement when used in 
ation with other edge-detection techniques. For example, although its 

one of two general criteria: 

he intensity is greater in magni- 

The magnitude of this vector is 

Vf = mag(Vf) = [G: + G;]~'' edge detector is sensitive to horizontal or vertical edges or to both. The 
= [ (a f~ax)~ + (af/ay)2]1'2 era1 syntax for this function is 

To simplify computation, this quantity is approximated sometimes by omit 
the square-root operation, [g ,  t ]  = e d g e ( f ,  'method ' ,  parameters)  

Vf - G: + G: f is the input image, method is one of the approaches listed in 
or by using absolute values, 

vf Fz IGx~ + Icy1 ewhere. Parameter t is option- 
These approximations still behave as derivatives; that is, they are zero in ves the threshold used by edge to determine which gradient values are 
constant intensity and their values are proportional to enough to be called edge points. 

A fundamental property of the gradient vector is that it points in the di obel edge detector uses the masks in Fig. 10.5(b) to approximate digital- 
tion of the maximum rate of change o f f  at coordinates ( x ,  y). The angl e first derivatives G, and G,. In other words, the gradient at the center 
which this maximum rate of change occurs is t i n  a neighborhood is computed as follows by the Sobel detector: 

One of the key issues is how to estimate the derivatives G, and G, digitally. 
various approaches used by function edge are discussed later in this section. + [ ( ~ 3  f 226 f zg)  - (21 + 224 + ~ 7 ) ] ~ } ~ "  

Detection 
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TABLE 10.1 
Edge detectors 
available in 
function edge. 
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a 
b 
c' 
d 
FIGURE 10.5 
Some detector edge masks 

Image neighborhood 

Zero crossings 

Canny 

G.< = (z7 + 2 ~ 8  + Zg) - Gv = ( ~ 3  + 2 ~ 6  + ~ 9 )  - 
(ZI + 222 + z3) (ZI + 2z.1 + ~ 7 )  

Then, we say that a pixel at location (x, y) is an edge pixel if g 2 T at tha 
cation, where T is a specified threshold. Prewitt 

G, = (z, + Zs f zg) - Gy = ( ~ 3  Z6 + ZY) - 
(21 + 22 + 23) (z, + Z4 + z7) 

Roberts 

The general calling syntax for the Sobel detector is 

[g, t] = edge(f, 'sobel', T, dir) 

Prewitt edge detector uses the masks in Fig. 10.5(c) to approximate digi- 
the first derivatives G, and G,. Its general calling syntax is 

[g, t] = edge(f, 'prewitt', T, dir) 

threshold it determines automatically and then uses for edge detection 
the principal reason for including t in the output argument is to get a 
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Roberts Edge Detector 

The Roberts edge detector uses the masks in Fig. 10.5(d) to approximate nny [1986]) is the most powerful edge detector pro- 
tally the first derivatives G, and G,. Its general calling syntax is The method can be summarized as follows: 

[ g ,  t ]  = edge( f ,  ' r o b e r t s ' ,  T, d i r )  image is smoothed using a Gaussian filter with a specified standard 

The parameters of this function are identical to the Sobel parame ation, u ,  to reduce noise. 

Roberts detector is one of the oldest edge detectors in digital image local gradient, g(x, y) = [G: + G$]~/', and edge direction, 
ing, and as Fig. 10.5(d) shows, it is also the simplest.This detector is u y) = tan-'(G,/G,), are computed at each point. Any of the first 
siderably less than the others in Fig. 10.5 due in part to its limited func e techniques in Table 10.1 can be used to compute G, and G,. An edge 
(e.g., it is not symmetric and cannot be generalized to detect edges t is defined to be a point whose strength is locally maximum in the di- 
multiples of 45"). However, it still is used frequently in hardware impleme ction of the gradient. 
tions where simplicity and speed are dominant factors. edge points determined in (2) give rise to ridges in the gradient mag- 

de image. The algorithm then tracks along the top of these ridges and Laplacian of a Gaussian (LOG) Detector 
to zero all pixels that are not actually on the ridge top so as to give a 

Consider the Gaussian function 
r2 -- line in the output, a process known as nonmaximal suppression. The 

h(r )  = -e 2n2 
n thresholded using two thresholds, TI and T2, with 

T2. Ridge pixels with values greater than T2 are said to be "strong" 
where r2 = x2 + y2 and u is the standard deviation. This is a smoothing fu pixels. Ridge pixels with values between T1  and T2 are said to be 
tion which, if convolved with an image, will blur it.The degree of blurring is 
termined by the value of u .  The Laplacian of this function (the sec performs edge linking by incorporating the weak 
derivative with respect to r) is 1s that are 8-connected to the strong pixels. 

[r2 Iu']e-$ v2h(r) = - - ntax for the Canny edge detector is 

[ g ,  t ]  = edge(f ,  ' c a n n y ' ,  T ,  sigma) 
For obvious reasons, this function is called the Laplacian of a Gaussian (L 
Because the second derivative is a linear operation, convolving (filterin re T is a vector, T = [TI , T2], containing the two thresholds explained in 
image with v2h(r)  is the same as convolving the image with the smoo 3 of the preceding procedure, and sigma is the standard deviation of the 
function first and then computing the Laplacian of the result. This is cluded in the output argument, it is a two-element 
concept underlying the LOG detector. We convolve the image with o threshold values used by the algorithm. The rest of 
knowing that it has two effects: It smoothes the image (thus reducing or the other methods, including the automatic com- 
and it computes the Laplacian, which yields a double-edge image. T is not supplied.The default value for sigma is 1. 
edges then consists of finding the zero crossings between the double edges. 

The general calling syntax for the LOG detector is 
can extract and display the vertical edges in the image, f ,  of Fig. 10.6(a) 

[ g ,  t ]  = edge( f ,  ' l o g ' ,  T, sigma) 

where sigma is the standard deviation and the other parameters are as e v,  t ]  = edge(f ,  ' s o b e l ' ,  ' v e r t i c a l ' ) ;  
plained previously. The default value for sigma is 2. As before, edge ignor 
any edges that are not stronger than T. If T is not provided, or it is empty, [ 
edge chooses the value automatically. Setting T to 0 produces edges that a 
closed contours, a familiar characteristic of the LOG method. 

Zero-Crossings Detector 

This detector is based on the same concept as the LOG method, but the conv Fig. 10.6(b) shows, the predominant edges in the result are vertical (the 
lution is carried out using a specified filter function, H.The calling syntax is lined edges have vertical and horizontal components, so they are detect- 

[ g ,  t ]  = edge( f ,  ' z e r o c r o s s ' ,  T, H )  as well). We can clean up the weaker edges somewhat by specifying a 
er threshold value. For example, Fig. 10.6(c) was generated using the 

The other parameters are as explained for the LOG detector. 

dge Detection 389 

EXAMPLE 10.3: 
Edge extraction 
with the Sobel 
detector. 
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a b  
c d 
e f 

FIGURE 10.6 
(a) Original 
image. (b) Result 
of function edge 
using a vertical 
Sobel mask with 
the threshold 
determined 
automatically. 
(c) Result using a 
specified 
threshold. 
(d) Result of 
determining both 
vertlcal and 
hor~zontal edges 
wlth a specifled 
threshold. 
(e) Result of 
computing edges 
at 45' with 
imf l l t e r  using a 
speclfied mask 
and a speclfied 
threshold. (f) 
Result of 
computing edges 
at -45" with 
lrnf l l t e r  using a 
specdied mask 
and a specified 
threshold. 

computations were t s  = 0.074, t l o g  = 0.0025, and t c  = [ O  .019, 
.The  defaults values of s igma for the  ' l o g  ' and ' canny ' options were  
1.0, respectively. With the  exception of the  Sobel image, the  default re- 
re far f rom the  objective of producing clean edge maps. 

dge Detection 39 

The value of T was 
chosen experinten- 
tally to show res~rlts 
conl~arable with 
~ i ~ s . '  IO(C) and 
lO(d). 

EXAMPLE 10.4: 
Cornparison of 
the Sobel, LOG, 
and Canny edge 
detectors. 
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FIGURE 10.7 Left 
column Default 
results for the 
Sobel, LOG, and 
Canny edge 
detectors Rlght 
column. Results 
obtained 
interactively to 
bring out the 
principal features 
In the orlginal 
image of 
Fig 10 6(a) whlle 
reducing 
irrelevant, fine 
derall The Canny 
edge detector 
produced the best 
results by far. 

. . .  
space associated with it, and this line interskcti the line associated with 
) at (a', b ' ) ,  where a' is the slope and b' the intercept of the line con- 
g both ( x i ,  y;) and ( x i ,  yj) in the xy-plane. In fact, all points contained on 

line have lines in parameter space that intersect at (a ' ,  b ' ) .  Figure 10.8 il- 
trates these concepts. 

Transform 
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a b  e computational attractiveness of the Hough transform arises from sub- 

FIGURE 10.8 ng the p0 parameter space into so-called accurnulntor cells, as illustrated 
(a) xy-plane. re 10.9(c), where ( p m i n ,  pmax) and ( O m i n ,  Omax) are the expected ranges 

parameter values. Usually, the maximum range of values is 

age.The cell at coordinates ( i ,  j ) ,  with accumulator value A ( i ,  j), cor- 
to the square associated with parameter space coordinates ( p i ,  Bj) .  

these cells are set to zero. Then, for every nonbackground point 
in the image plane, we let 0  equal each of the allowed subdivision val- 
the 0  axis and solve for the corresponding p  using the equation 

x then incremented. At the end of this procedure, a value of Q in A ( i ,  j ) ,  
points in the xy-plane lie on the line x cos Bj + y sin Oj = pi .  

r of subdivisions in the p0-plane determines the accuracy of the co- 

r of nonzero elements. This characteristic provides advantages in 
use the normal representation of a line: atrix storage space and computation time. Given a matrix A, we con- 

x cos tJ + y sin e = p  

Figure 10.9(a) illustrates the geometric interpretation of the parameters p 
0 .  A horizontal line has 6  = 0°, with p  being equal to the positive x-interc S = sparse(A)  
Similarly, a vertical line has 0  = 90°, with p  being equal to the po 

= [ O  0 0 5 
0 2 0 0  
1 3 0 0  
0 0 4 0 1 ;  

x elements of S, together with their row and col- 
s are sorted by columns. 

a b c' syntax used more frequently with function sparse  consists of five 

S = s p a r s e ( r ,  c ,  s,  rn, n )  

I Transform 3'95 
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Here, r and c are vectors of row and column indices, respectively, of the ((M - 1)A2 + (N - llA2); 
ro elements of the matrix w e  wish to convert to sparse format. Param 
a vector containing the values that correspond to the index pairs (r, c 

and n are the row and column dimensions for the resulting matrix. linspace(-q*drho, q*drho, nrho); 
stance, the matrix S in the previous example can be generated directl val] = find (f ) ; 
the command - I ;  y = y - I ;  

ialize output. 
>> S = sparse(l3 2 3 4 11, [I 2 2 3 4 1 ,  [I 2 3 4 5 1 ,  4, ros(nrho, length(theta)); 

There are a number of other syntax forms for function sparse, as det void excessive memory usage, process 1000 nonzero pixel 
the help page for this function. es at a time. 

Given a sparse matrix S generated by any of its applicable syntax for = l:ceil(length(val)/l000) 
can obtain the full matrix back by using function full, whose syntax is st = (k - 1)*1000 + 1; 

t = min(first+999, length(x)); 

A = full(S) atrix = repmat(x(first:last), 1, ntheta); 
= repmat(y(first:last), 1 ,  ntheta); 

To explore Hough transform-based line detection in M A T L A B ,  we matrix = repmat(val(first:last), 1, ntheta); 
write a function, hough . m, that computes the Hough transform: ta-matrix = repmat(theta, size(x-matrix, I), l)*pi/180; 

matrix = x-matrix.*cos(theta-matrix) + . . .  
function [h, theta, rho] = hough(f, dtheta, drho) y -mat r i x . *s in ( the ta_mat r i x ) ;  
%HOUGH Hough transform. = (nrho - l)/(rho(end) - rho(1)); 
% [H, THETA, RHO1 = HOUGH(F, DTHETA, DRHO) computes the Hough in-index = round(slope*(rho-matrix - rho(1)) + 1); 
% transform of the image F. DTHETA specifies the spacing (in 
% degrees) of the Hough transform bins along the theta axis. DRH bin-index = repmat(l:ntheta, size(x-~natrix, I), 1); 
% specifies the spacing of the Hough transform bins along the rh ke advantage of the fact that the SPARSE function, which 
% axis. H is the Hough transform matrix. It is NRHO-by-NTHETA, nstructs a sparse matrix, accumulates values when input 
% where NRHO = 2*ceil(norm(size(F))/DRHO) - 1, and NTHETA = dices are repeated. That's the behavior we want for the 
% 2*ceil(SO/DTHETA). Note that if SOIDTHETA is not an integer, ugh transform. We want the output to be a full (nonsparse) 
% actual angle spacing will be 90 1 ceil(SO/DTHETA). trix, however, so we call function FULL on the output of 
0, 

% THETA is an NTHETA-element vector containing the angle (in h + full(sparse(rho-bindindex(:), theta-bin-index(:), . a .  

% degrees) corresponding to each column of H. RHO is an val-matrix(:), nrho, ntheta)); 
% NRHO-element vector containing the value of rho corresponding 
% each row of H. 
% this example we illustrate the use of function h o ~ g h  on a simple binary 
% [H, THETA, RHO] = HOUGH(F) computes the Hough transform using . First w e  construct an image containing isolated foreground pixels in 
% DTHETA = 1 and DRHO = 1 .  

if nargin < 3 
drho = 1 ;  = zeros(l01, 101); 

end = 1 ;  f(101, 1) = 1 ;  f(1, 101) = 1 ;  

if nargin < 2 f(101, 101) = 1; f(51, 51) = 1 ;  
dtheta = 1 ;  

end ure 10.10(a) shows our test image. Next w e  compute and display the Hough 

f = double(f); 
[M,N] = size(f); H = hough(f); 
theta = limpace(-90, 0, ceil(90ldtheta) + 1); imshow(H, [ I )  
theta = [theta -fliplr(theta(2:end - I))]; 
ntheta = length(theta); ure 10.10(b) shows the result, displayed with imshow in the familiar way. 

wever, it often is more useful to visualize Hough transforms in a larger plot, 

. . , .. 

EXAMPLE 10.5: 
Illustration of the 
Hough transform. 
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FIGURE 10.10 
(a) Binary image 
with five dots 
(four of the dots 
are in the 
corners). 
(b) Hough 
transform 
displayed using 
imshow. 
(c) Alternative 
Hough transform 
display with axis 
labeling. (The 
dots in (a) were 
enlarged to make 
them easier to 
see.) 

two-element vec tor  spec i f y i ng  t h e  s i z e  o f  t h e  suppression 
neighborhood. Th is  i s  t he  neighborhood around each peak t h a t  i s  

-I Tran sform 

ghpeak 
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% set to zero after the peak is identified. The elements of NHOo done = length(r) == numpeaks; 
% must be positive, odd integers. R and C are the row and column 
% coordinates of the identified peaks. HNEW is the Hough transfo 
% with peak neighborhood suppressed. 
% 
% If NHOOD is omitted, it defaults to the smallest odd values >= 
% size(H)/50. If THRESHOLD is omitted, it defaults to on houghpeaks is illustrated in Example 10.6. 
% 0.5*max(H( : ) ) . If NUMPEAKS is omitted, it defaults to 1 . 
if nargin < 4 Hough Transform Line Detection and Linking 

nhood = size(h)/50; a set of candidate peaks has been identified in the Hough transform, it 
% Make sure the neighborhood size is odd. s to be determined if there are line segments associated with those 
nhood = max(2*ceil(nhood/2) + 1, 1); as well as where they start and end. For each peak, the first step is to 

end location of all nonzero pixels in the image that contributed to that if nargin < 3 
threshold = 0.5 * max(h(:)); r this purpose, w e  write function houghpixels. 

end 
if nargin < 2 tion [r, c] = houghpixels(f, theta, rho, rbin, cbin) 

numpeaks = 1 ;  GHPIXELS Compute image pixels belonging to Hough transform bin. 
end [R, C] = HOUGHPIXELS(F, THETA, RHO, REIN, CEIN) computes the 

row-column indices (R, C) for nonzero pixels in image F that map 
done = false; to a particular Hough transform bin, (RBIN, CBIN). REIN and CBIN 
hnew = h; r = [ I ;  c = [ I ;  are scalars indicating the row-column bin location in the Hough 
while -done transform matrix returned by function HOUGH. THETA and RHO are 

[p, q] = find(hnew == max(hnew(:))); the second and third output arguments from the HOUGH function. 
P = P(l); q = q(l); y, val] = find(f); if hnew(p, q) >= threshold x - 1 ;  y = y - 1 ;  r(end + 1) = p; c(end + 1) = q; 

ta-c = theta(cbin) * pi / 180; 
% Suppress this maximum and its close neighbors. xy = x*cos(theta-c) + y*sin(theta-c); 
pl = p - (nhood(1) - 1)/2; p2 = p + (nhood(1) - 1)/2; o = length(rh0); 
ql = q - (nhood(2) - 1)/2; q2 = q + (nhood(2) - 1)/2; pe = (nrho - l)l(rho(end) - rho(1)); 
[PP, qql = ndgrid(pl:p2, ql:q2); bin-index = round(slope*(rho-xy - rho(1)) + 1) ; 
PP = pp(:); qq = qq(:); 

= find(rho-bin-index == rbin); 
% Throw away neighbor coordinates that are out of bounds in 

x(idx) + 1 ;  c = y(idx) + 1 ;  % the rho direction. 
badrho = find((pp < 1) I (pp > size(h, 1))); pixels associated with the locations found using houghpixels must be 
pp(badrho) = [I; qq(badrho) = [ I ;  uped into line segments. Function houghlines uses the following strategy: 
% For coordinates that are out of bounds in the theta Rotate the pixel locations by 90" - 0 so that they lie approximately along 
% direction, we want to consider that H is antisymmetric 
% along the rho axis for theta = +/- 90 degrees. 
theta-too-low = find(qq < 1); Sort the pixel locations by their rotated x-values. 

qq(theta-too-low) = size(h, 2) + qq(theta-too-low); Use function dif f to locate gaps. Ignore small gaps; this has the effect of 
pp(theta-too-low) = size(h, 1) - pp(theta-too-low) + 1 ;  merging adjacent line segments that are separated by a small space. 
theta-too-high = find(qq > size(h, 2)); Return information about line segments that are longer than some mini- 
qq(theta-too-high) = qq(theta-too-high) - size(h, 2); m u m  length threshold. 
pp(theta-too-high) = size(h, 1) - pp(theta-too-high) + 1 ;  

Ction lines = houghlines(f, theta, rho, rr, cc,fillgap,minlength) 
% Convert to linear indices to zero out all the values. UGHLINES Extract line segments based on the Hough transform. 
hnew(sub2ind(size(hnew), pp, qq)) = 0; LINES = HOUGHLINES(F, THETA, RHO, RR, CC, FILLGAP, MINLENGTH) 

h o u g h p i x e l s  
~-------"-- 

h o u g h l i n e s  .- , 
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% extracts line segments in the image F associated with particul % Rotate the end-point locations back to the original 
% bins in a Hough transform. THETA and RHO are vectors returned 
% function HOUGH. Vectors RR and CC specify the rows and columns Tinv = inv(T) ; 
% of the Hough transform bins to use in searching for line point1 = point1 * Tinv; point2 = point2 * Tinv; 
% segments. If HOUGHLINES finds two line segments associated wit numlines = numlines + 1 ;  
% the same Hough transform bin that are separated by less than lines(numlines).pointl = pointl + 1 ;  
% FILLGAP pixels, HOUGHLINES merges them into a single line lines(numlines).point2 = point2 + 1; 
% segment. FILLGAP defaults to 20 if omitted. Merged line lines(numlines).length = linelength; 
% segments less than MINLENGTH pixels long are discarded. lines(numlines).theta = theta(cbin); 
% MINLENGTH defaults to 40 if omitted. lines(numlines).rho = rho(rbin); 
% 
% LINES is a structure array whose length equals the number of 
% merged line segments found. Each element of the structure arra - - 
% has these fields: 
% 
% point1 End-point of the line segment; two-element vector n this example w e  use functions hough, houghpeaks, and houghlines to 

% point2 End-point of the line segment; two-element vector a set of line segments in the binary image, f, in Fig. 10.7(f). First, w e  com- 
% length Distance between point1 and point2 e and display the Hough transform, using a finer angular spacing than the 
% theta Angle (in degrees) of the Hough transform bin ault (be = 0.5 instead of 1.0). 
% rho Rho-axis position of the Hough transform bin 

if nargin < 6 [H, theta, rho] = hough(f, 0.5); 

fillgap = 20; imshow(theta, rho, H, [ I, 'notruesize'), axis on, axis normal 
end xlabel( ' \theta' ) , ylabel( ' \rho1) 
if nargin < 7 

minlength = 40; t w e  use function houghpeaks to find five Hough transform peaks that are 
end ely to be significant. 

numlines = 0; lines = struct; 
for k = l:length(rr) [r, c] = houghpeaks(H, 5); 

rbin = rr(k); cbin = cc(k); 
> plot(theta(c), rho(r), 'linestyle', 'none', . . .  

% Get all pixels associated with Hough transform cell. 'marker', ' s ' ,  'color', 'w') 
[r, c] = houghpixels(f, theta, rho, rbin, cbin); 
if isempty (r) re 10.11(a) shows the Hough transform with the peak locations superim- 

continue 
end d. Finally, w e  use function houghlines to find and link line segments, and 

% Rotate the pixel locations about (1,l) so that they lie 
% approximately along a vertical line. 
omega = (90 - theta(cbin)) * pi / 180; 
T = [cos(omega) sin(omega); -sin(omega) cos(omega)]; 
x y =  [ r - 1  c - 1 1  * T ;  
x = sort(xy(:,l)); 

% Find the gaps larger than the threshold. 
diff-x = [diff(x); Inf]; 
idx = [O; find(diff_x > fillgap)]; 
for p = l:length(idx) - 1 

xl = x(idx(p) + 1); x2 = x(idx(p + 1)); 
linelength = x2 - X I ;  
if linelength >= minlength 

pointl = 1x1 rho(rbin)]; point2 = [x2 rho(rbin)]; 

I Transform 403 

B = inv(A) con!- 
plites ihe inverse of 
square 111flrri.~ A. 

EXAMPLE 10.6: 
Using the Hough 
transform for line 
detection and 
linking. 

a b  

FIGURE 10.1 1 
(a) Hough 
transform with 
five peak 
locations selected. 
(b) Line segments 
corresponding to 
the Hough 
transform peaks. 
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FIGURE 10.12 
Selecting a 
threshold by 
visually analyzing 
a blmodal 
histogram. 

Image Segmentation 10.3 % 4111 

we superimpose the line segments on the original binary image using i m  s for choosing a global threshold are discussed in Section 10.3.1. In 
hold on, and plot :  10.3.2 we discuss allowing the threshold to vary, which is called local 

>> l ines = houghlines(f, the ta ,  rho, r ,  c )  
>> f igure,  imshow(f), hold on 
>> fo r  k = l : length( l ines)  Global Thresholding 
xy = [ l ines(k) .point l  ; l ines(k) .point2] ;  ay to choose a threshold is by visual inspection of the image histogram. 
p lo t (xy( : ,2 ) ,  x y ( : , l ) ,  'Linewidth', 4 ,  'Color ' ,  [ . 6  . 6  .6]); stogram in Figure 10.12 clearly has two distinct modes; as a result, it is 
end choose a threshold T that separates them. Another method of choosing 

trial and error, picking different thresholds until one is found that pro- 
Figure 10.11(b) shows the resulting image with the detected segments s good result as judged by the observer. This is particularly effective in 
imposed as thick, gray lines. active environment, such as one that allows the user to change the 

d using a widget (graphical control) such as a slider and see the result 
Thresholding 

choosing a threshold automatically, Gonzalez and Woods [2002] de- 
Because of its intuitive properties and simplicity of implementation, the following iterative procedure: 
thresholding enjoys a central position in applications of image se 
Simple thresholding was first introduced in Section 2.7.2, and we h lect an initial estimate for T. (A suggested initial estimate is the mid- 
various discussions in the preceding chapters. In this section, we di int between the minimum and maximum intensity values in the image.) 
choosing the threshold value automatically, and we consider a met gment the image using T. This will produce two groups of pixels: G1, 
ing the threshold according to the properties of local image neighborhoods. nsisting of all pixels with intensity values r T, and G2, consisting of pix- 

Suppose that the intensity histogram shown in Fig. 10.12 corresponds with values < T. 
image, f (x, y), composed of light objects on a dark background, in such mpute the average intensity values p1 and p2 for the pixels in regions 
that object and background pixels have intensity levels grouped into two 
inant modes. One obvious way to extract the objects from the backgroun mpute a new threshold value: 
select a threshold T that separates these modes. Then any point (x, 
which f (x, y) 2 T is called an object point; otherwise, the point is c 1 

T = $P1 + ~ 2 )  
background point. In other words, the thresholded image g(x, y)  is def 

{ 
Repeat steps 2 through 4 until the difference in. T in  successive iterations 

1 iff ( x ,  y) r T is smaller than a predefined parameter To. 
g(x3 Y )  = o iff(x,  y) < T 

show how to implement this procedure in MATLAB in Example 10.7. 
Pixels labeled 1 correspond to objects, whereas pixels labeled 0 correspond t e toolbox provides a function called graythresh that computes a thresh- 
background. When T is a constant, this approach is called global thresh01 using Otsu's method (Otsu [1979]). To examine the formulation of this 

ogram-based method, we start by treating the normalized histogram as a 
rete probability density function, as in 

(1 
p,(r,)=; q = O , 1 , 2  , . . . ,  L - 1  

n is the total number of pixels in the image, n, is the number of pix- 
t have intensity level rq, and L is the total number of possible inten- 

evels in the image. Now suppose that a threshold k is chosen such that 
the set of pixels with levels [ O , l , .  . . , k - 11 and C1 is the set of pixels 

h levels [k, k + 1,. . . , L - 11. Otsu's method chooses the threshold 
e k that maximizes the between-class variance (T;, which is defined as 

a28 = ~o(/- 'o - w T ) ~  + u l ( ~ /  -' P T ) ~  
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where 

EXAMPLE 10.7: 
Computing global 
thresholds. 

FIGURE 10.13 
(a) Scanned text. 
(b) Thresholded 
text obtained 
using function 
gray th resh .  

10.4 B Region-Based SE 

xt we compute a threshold using function gray thresh :  
k - I  

wo = x pq(rq) 
q=o = g r a y t h r e s h ( f )  
L- l 

w,  = x p,(rq) 
q=k 
k-1  

Po = c. 4pq(rq)/w0 
q=O 
L- l  

P1 = 2 qPq(rJ/w~ sholding using these two values produces images that are almost indistinguish- 
q=k 
L-1 from each other. Figure 10.13(b) shows the image thresholded using T2. 

PT = 2 q ~ q ( ~ q )  
9=0 .2 Local Thresholding 

bal thresholding methods can fail when the background illumination is un- 
Function g r a y t h r e s h  takes an image, computes its histogram, and then fi 

was illustrated in Figs. 9.26(a) and (b). A common practice in such sit- 
the threshold value that maximizes a;. The threshold is returned as a nor 

is to preprocess the image to compensate for the illumination 
ized value between 0.0 and 1.0.The calling syntax for g r a y t h r e s h  is 

ems and then apply a global threshold to the preprocessed image. The 

T = g r a y t h r e s h ( f )  roved thresholding result shown in Fig. 9.26(e) was computed by applying 
rphological top-hat operator and then using g r a y t h r e s h  on  the result. 

where f is the input image and T is the resulting threshold. To segmen an show that this process is equivalent to  thresholding f (x ,  y )  with a lo- 

image we use T in function im2bw introduced in Section 2.7.2. Becaus varying threshold function T ( x ,  y):  

threshold is normalized to the range [0, 11, it must be scaled to  the p 

{ 1 i f f  ( x ,  Y )  2 T ( x ,  Y )  
range before it is used. For example, if f is of class u i n t 8 ,  we multiply T b 
before using it. 

0 i f f  ( x ,  y )  < T ( x ,  Y )  

In this example we illustrate the iterative procedure described previou 
as well as Otsu's method on the gray-scale image, f ,  of scanned text, show T ( x 7  Y )  = f ~ ( x ,  Y )  + TO 

Fig. 10.13(a).The iterative method can be implemented as follows: image ,f,(x, y) is the morphological opening of f ,  and the constant To is 
result of function g r a y t h r e s h  applied to f,. 

>> T = 0 . 5 * ( d o u b l e ( m i n ( f ( : ) ) )  + d o u b l e ( m a x ( f ( : ) ) ) ) ;  
>> done = f a l s e ;  Region-Based Segmentation 
>> w h i l e  -done 

g = f >= T ;  objective of segmentation is to partition an image into regions. In 
Tnext = 0 . 5 * ( m e a n ( f ( g ) )  + m e a n ( f ( - g ) ) ) ;  tions 10.1 and 10.2 we approached this problem by finding boundaries be- 
done = a b s ( T  - Tnext )  < 0 . 5 ;  en regions based on discontinuities in intensity levels, whereas in 
T = Tnext ;  tion 10.3 segmentation was accomplished via thresholds based on the dis- 

end ution of pixel properties, such as intensity values. In this section we discuss 

For this particular image, the w h i l e  loop executes four times and terminal gmentation techniques that are based on finding the regions directly. 

.4.1 Basic Formulation 
t R represent the entire image region. We may view szgmentation as a 

itions R into n subregions, R, .  R2 , .  . . . R,,. such that 

cted region. i = 1. 2. .  . . . 17. 
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117 rile contexr of the 
disoi~ssion irt Secr io~~ 
9.4, rwo disjoinr re- 
gions, R, and R,, are 
said to be adjacent if 
their. ~~rzion for17u a 
corinected 
component. 

Image Segmentation 10.4 28 Region-Based SE 

(c) Ri n R, = 0 for all i and j, i # j. f size, likeness between a candidate pixel and the pixels 
(d) P(Ri) = TRUE for i = 1 ,2 , .  .., n. omparison of the intensity of a candidate and the av- 
( e )  P(Ri U R,) = FALSE for any adjacent regions Ri and R,. region), and the shape of the region being grown. 

descriptors is based on the assumption that a model 
Here, P(Ri) is a logical predicate defined over the points in set Ri and at least partially available. null set. 

rinciples of how region segmentation can be handled in Condition (a) indicates that the segmentation must be compl 
AB, we develop next an M-function, called reg iong row ,  to do basic re- 

every pixel must be in a region. The second condition requires that point owing. The syntax for this function is region be connected in some predefined sense (e.g., 4- or &connected). C 
tion (c) indicates that the regions must be disjoint. Condition (d) deals 

[ g ,  NR, S I ,  T I ]  = r e g i o n g r o w ( f ,  S, T )  the properties that must be satisfied by the pixels in a segmented region 
example P(Ri) = TRUE if all pixels in Ri have the same gray level. Fi 
condition (e) indicates that adjacent regions Ri and Rj are different in to be segmented and parameter S can be an array (the 
sense of predicate P. calar. If S is an array, it must contain Is at all the coordi- 

ts are located and 0s elsewhere. Such an array can be de- 
16.4.2 Region Growing by inspection, or by an external seed-finding function. If S is a scalar, 

an intensity value such that all the points in f with that value become 
As its name implies, region growing is a procedure that groups pixels or 

T can be an array (the same size as f) or a scalar. If T is gions into larger regions based on predefined criteria for growth. 
hreshold value for each location in f. If T is scalar, it de- proach is to start with a set of "seed" points and from these grow 

global threshold.The threshold value(s) is (are) used to test if a pixel in appending to each seed those neighboring pixels that have predefined pro 
age is sufficiently similar to the seed or seeds to which it is 8-connected. ties similar to the seed (such as specific ranges of gray level or color). 

a and T = b, and we are comparing intensities, then a Selecting a set of one or more starting points often can be based on the 
(in the sense of passing the threshold test) if the ture of the problem, as shown later in Example 10.8. When a priori infor 
nce between its intensity and a is less than or tion is not available, one procedure is to compute at every pixel the 

1 to b. If, in addition, the pixel in question is 8-connected to one or more properties that ultimately will be used to assign pixels to regions during 
values, then the pixel is considered a member of one or more regions. growing process. If the result of these computations shows clusters of val 

mments hold if S and T are arrays, the basic difference being that the pixels whose properties place them near the centroid of these clusters 
with the appropriate locations defined in S and corre- be used as seeds. 

The selection of similarity criteria depends not only on the problem un output, g is the segmented image, with the members of each region 
consideration, but also on the type of image data available. For example 

eled with an integer value. Parameter NR is the number of different analysis of land-use satellite imagery depends heavily on the use of color. 
s an image containing the seed points, and parameter T I  problem would be significantly more difficult, or even impossible, to ha 
the pixels that passed the threshold test before they without the inherent information available in color images. When 

ity. Both S I  and T I  are of the same size as f. are monochrome, region analysis must be carried out with a set of desc 
g i o n g r o w  is as follows. Note the use of Chapter 9 based on intensity levels (such as moments or texture) and spatial prop 

uce to 1 the number of connected seed points in each 
We discuss descriptors useful for region characterization in Chapter 11. n array) and function i m r e c o n s t r u c t  to find pixels 

Descriptors alone can yield misleading results if connectivi 
nected to each seed. information is not used in the region-growing process. For examp 

random arrangement of pixels with only three distinct intensity val 
c t i o n  [g, NR, SI ,  T I ]  = reg iongrow( f ,  S, T )  ing pixels with the same intensity level to form a "region" without GIONGROW Perform segmentation by reg ion  growing. 

tention to connectivity would yield a segmentation result that is m [G, NR, SI ,  T I ]  = REGIONGROW(F, SR, T ) .  S can be an a r r a y  ( t h e  
in the context of this discussion. same s i z e  as F) w i t h  a  1 a t  t h e  coord inates  o f  every seed p o i n t  

Another problem in region growing is the formulation of a st and 0s elsewhere. S can a l so  be a s i n g l e  seed va lue.  S i m i l a r l y ,  
Basically, growing a region should stop when no more pixels satis T can be an a r ray  ( t he  same s i z e  as F )  con ta in ing  a  t h resho ld  
for inclusion in that region. Criteria such as intensity values, text value f o r  each p i x e l  i n  F. T can a l so  be a sca la r ,  i n  which 
are local in nature and do not take into account the "history" of re case i t  becomes a  g l o b a l  t h resho ld .  
Additional criteria that increase the power of a region-growing 

r e g i o n g r o w  
b ~ - - - - - - - -  
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t rue  
false 

t r u e  is eqlrivale~lt to 
l o g i c a l ( 1  ), L I I I ~  

false is eq~livcilent 
to l o g i c a l ( 0 ) .  

% On the output,  G i s  the  resu l t  of region growing, with each 
% region labeled by a d i f fe ren t  integer ,  NR i s  the number of 
% regions, SI is the  f i n a l  seed image used by the algorithm, an 
% is  the image consisting of the pixels  i n  F tha t  s a t i s f i e d  the 
% threshold t e s t .  

f = double ( f )  ; 
% If  S i s  a s c a l a r ,  obtain t h e  seed image. 
i f  numel(S) == 1 

SI = f == S' 
S1 = S; 

e l s e  
% S i s  an a r ray .  Eliminate dupl ica te ,  connected seed loca t io  
% t o  reduce t h e  number of loop executions i n  the  following 
% sec t ions  of code. 
SI = bwmorph(S, ' s h r i n k ' ,  I n f ) ;  
J = f i n d ( S 1 ) ;  
S1 = f ( J ) ;  % Array of seed values. 

end 

TI = f a l s e ( s i z e ( f ) ) ;  
f o r  K = 1 : l e n g t h ( S l )  

seedvalue = S1(K); 
S = abs(f  - seedvalue) <= T; 
TI = TI I s ;  

end 

% Use funct ion imreconstruct with SI  a s  the  marker image t o  
% obtain t h e  regions corresponding t o  each seed i n  S. Functi 
% bwlabel assigns a d i f f e r e n t  in teger  t o  each connected r e g i  
[ g ,  NU] = bwlabel(imreconstruct(S1, T I ) ) ;  

connected to at least one pixel in a region to be included in that region. If 
EXAMPLE 10.8: Figure 10.14(a) shows an X-ray image of a weld (the horizontal dark el is found to be connected to more than one region, the regions are auto- 
*pplication gion) containing several cracks and porosities (the bright, white streaks ly merged by regiongrow. 
region ning horizontally through the middle of the image). We wish to  use fun re 10.14(b) shows the seed points (image SI) .  They are numerous in weld porosity 
detection. regiongrow to segment the regions corresponding to weld failures. These case because the seeds were specified simply as all points in the image 

mented regions could be used for inspection, for inclusion in a database of a value of 255. Figure 10.14(c) is image TI. It shows all the points that 
torical studies, for controlling an automated welding system, and for 0th ssed the threshold test; that is, the points with intensity z,, such that 
numerous applications. - S/  5 T. Figure 10.14(d) shows the result of extracting all the pixels in 

The first order of business is to determine the initial seed points. In  this a ure 10.14(c) that were connected to the seed points.This is the segmented 
plication, it is known that some pixels in areas of defective welds tend to h e, g. It is evident by comparing this image with the original that the region 
the maximum allowable digital value (255 in this case). Based in this infor ing procedure did indeed segment the defective welds with a reasonable 
tion, we let S = 255. The next step is to choose a threshold or threshold ar 
In this particular example we used T = 65. This number was based on anal Finally, we note by looking at the histogram in Fig. 10.15 that it would not 
of the histogram in Fig. 10.15 and represents the difference between 255 a ave been possible to  obtain the same or equivalent solution by any of the 
the location of the first major valley to  the left, which is representative o f t  resholding methods discussed in Section 10.3. The use of connectivitL was a 
highest intensity value in the dark weld region. As noted earlier, a pixel has ndamental requirement in this case. ,a 

FIGURE 10.14 
(a) Image 
showlny defect~ve 
welds polnts. (b) (c) Seed B~ndry 

Image showing all 
the p~xels (In 
whrte) that passed 
the threshold test. 
(d) Result after 
all the p~xels ln 

(c) were analyzed 
for 8-connect~v~ty 
to the seed polnts. 
(Or~g~nal Image 
courtesy TEK Systems, of X- 

Ltd ) 
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FIGURE 10.15 
Histogram of 
Fig. lO.l4(a) 

a b  

FIGURE 10.1 6 
(a) Partitioned 
image 
(b) Corresponding 
quadtree. 
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as splitting. Satisfying the constraints of Section 10.4.1 requires merging only 
combined pixels satisfy the predicate P.That is, two adja- 
re merged only if P(Ri U Rk) = TRUE. 
sion may be summarized by the following procedure 

region Ri for which P(Ri )  = FALSE. 
e, merge any adjacent regions Rj and 

p when no further merging is possible. 

merous variations of the preceding basic theme are possible. For exam- 
significant simplification results if we allow merging of any two adjacent 

ns Ri and Rj if each one satisfies the predicate individually. This results in 
h simpler (and faster) algorithm because testing of the predicate is limit- 

le 10.9 shows, this simplification is still 
esults in practice. Using this approach 
ns that satisfy the predicate are filled 

'3 8.4.3 Region Splitting and Merging ily examined using, for example, func- 
ffect, accomplishes the desired merg- 
gions that do not satisfy the predicate 

ed with 0s to create a segmented image. 
function in IPT for implementing quadtree decomposition is qtdecomp. 

S  = qtdecomp(f ,  @ s p l i t - t e s t ,  parameters)  

f is the input image and S  is a sparse matrix containing the quadtree 
f S  ( k  , m) is nonzero, then ( k , m) is the upper-left corner of a block in 
position and the size of the block is S( k ,  m). Function s p l i t - t e s t  

erge below for an example) is used to determine whether 
t or not, and parameters are any additional parameters 
s) required by s p l i t - t e s t . T h e  mechanics of this are sim- 

r to those discussed in Section 3.4.2 for function c o l t f  i l t. 
To get the actual quadregion pixel values in a quadtree decomposition we 
function q t g e t b l k ,  with syntax 

with identical properties. This drawback can be remedied by allowing mergi 
[ v a l s ,  r ,  c ]  = q t g e t b l k ( f ,  S, m) 

y containing the values of the blocks of size m x m in the 
dtree decomposition of f, and S is the sparse matrix returned by 
ecomp. Parameters r and c  are vectors containing the row and column co- 

left corners of the blocks. 
We illustrate the use of function qtdecomp by writing a basic split-and- 

M-function that uses the simplification discussed earlier, in which two 
s are merged if each satisfies the predicate individually. The function, 
we call sp l i tmerge ,  has the following calling syntax: 

g  = s p l i t m e r g e ( f ,  mindim, @ p r e d i c a t e )  

.d :;: qtdecornp 

Other fowls of 
qtdecornp are dis 
clsssed in 
Section 11.2.2. 
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where f is the input image and g is the output image in which each con FLAG = PREDICATE(REG1ON) which must return TRUE if  the pixels 
region is labeled with a different integer. Parameter mindim defines the i n  REGION satisfy the predicate defined by the code i n  the 
the smallest block allowed in the decomposition; this parameter has t function; otherwise, the value of FLAG must be FALSE. 
positive integer power of 2. 

Function predicate  is a user-defined function that must be included he following simple example of function PREDICATE i s  used i n  

MATLAB path. Its syntax is xample 10.9 of the book. I t  sets  FLAG to  TRUE i f  the 
tensities of the pixels i n  REGION have a standard deviation 

hat exceeds 10, and their  mean intensity i s  between 0 and 125. f l a g  = predicate( region)  therwise FLAG i s  set  to false.  

This function must be written so that it returns t r u e  (a logical 1) if function flag = predicate(region) 
in region satisfy the predicate defined by the code in the function; sd = std2(region); 
the value o f f  l a g  must be f a l s e  (a logical 0). Example 10.9 illustra m = mean2(region); 
of this function. flag = (sd 7 10) & ( m  > 0)  & ( m  < 125); 

Function spl i tmerge  has a simple structure. First, the image is par 
image w i t h  zeros to  guarantee that  function qtdecomp w i l l  using function qtdecomp. Function s p l i t - t e s t  uses predicate  to d 

lit regions down to  size 1 -by- 1 . if a region should be split or not. Because when a region is split into 
2*nextpow2(rnax(size(f))); not known which (if any) of the resulting four regions will pass the pre 

test individually, it is necessary to examine the regions after the fact adarray(f, [ Q  - M, Q - Nl, ' p o s t ' ) ;  
which regions in the partitioned image pass the test. Function predic 
used for this purpose also. Any quadregion that passes the test is filled rform spl i t t ing  f i r s t .  
Any that does not is filled with 0s. A marker array is created by select qtdecornp(f, @split-test, mindim, fun) ;  

element of each region that is filled with Is. This array is used in conju w merge by looking a t  each quadregion and sett ing a l l  i t s  
with the partitioned image to determine region connectivity (adjacency); ements to 1 i f  the block sa t i s f i e s  the predicate. 
tion imreconstruct  is used for this purpose. 

The code for function spli tmerge follows. The simple predicate fun t the size of the largest block. Use f u l l  because S is sparse. 

shown in the comments section of the code is used in Example 10.9. Note = fu l l (max(S( : ) ) ) ;  
t the output image i n i t i a l l y  to  a l l  zeros. The MARKER array i s  the size of the input image is brought up to a square whose dimensions a ed l a t e r  to  establish connectivity. 

minimum integer power of 2 that encompasses the image. This is a re ze ros ( s i ze ( f ) ) ;  
ment of function qtdecomp to guarantee that splits down to size 1 are po KER = ze ros ( s i ze ( f ) ) ;  

egin the merging stage. 
function g = splitmerge(f, mindim, fun) 
%SPLITMERGE Segment an image using a split-and-merge algorithm. [vals, r ,  c]  = qtgetblk(f ,  S, K ) ;  
% G = SPLITMERGE(F, MINDIM, @PREDICATE) segments image F by using 
% split-and-merge approach based on quadtree decomposition. MIND1 % Check the predicate for each of the regions 
% (a positive integer power of 2 )  specifies the m i n i m u m  dimension % of size K-by-K w i t h  coordinates given by vectors 
% of the quadtree regions (subimages) allowed. If necessary, the % r and c.  
% program pads the input image w i t h  zeros to  the nearest square for I = l : length(r )  
% size that i s  an integer power of 2. This guarantees that the xlow = r ( 1 ) ;  ylow = c ( 1 ) ;  
% algorithm used i n  the quadtree decomposition w i l l  be able to x h i g h  = xlow + K - 1 ;  yhigh = ylow + K - 1;  
% sp l i t  the image down t o  blocks of size 1-by-I.  The result i s  region = f(xlow:xhigh, y1ow:yhigh); 
% cropped back to the original size of the i n p u t  image. In the flag = feval(fun, region) ; 
% output, G ,  each connected region i s  labeled w i t h  a different 
% integer. g(xlow:xhigh, y1ow:yhigh) = 1 ;  
% MARKER(xlow, ylow) = 1; 
% Note that i n  the function ca l l  we use @PREDICATE for the value 
% f u n .  PREDICATE i s  a function i n  the MATLAB path, provided by th 
% user. I t s  syntax i s  
-6 

Segmentation 

f e v a l ( f u n ,  
param) evcr[lccrtes 
function f u n  with 
pnrn~nrter param. 
Srr rlrr help pngr for 
f e v a l  fur othersyn- 
tax forn7s ~rpplicab[e 
ro thisfic~~crio~z. 
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% Finally, obtain each connected region and labe l  i t  with a 
% different  integer  value using function bwlabel. 
g = bwlabel(imreconstruct(MARKER, g ) ) ;  

% Crop and e x i t  
g = g(l:M, 1:N); 

% - - . - . . . - - - - - - . - - . - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
function v = spl i t - test(B,  mindim, fun) 
% THIS FUNCTION IS PART OF FUNCTION SPLIT-MERGE. IT DETERMINES 
% WHETHER QUADREGIONS ARE SPLIT. The function returns i n  v 
% logical  Is (TRUE)  f o r  the blocks tha t  should be s p l i t  and 
% logical  0s (FALSE) f o r  those tha t  should not. 

% Quadregion B, passed by qtdecomp, is the current decomposition of 
% the image in to  k blocks of s ize  m-by-m. 

% k i s  the number of regions in  B a t  t h i s  point i n  the procedure. 
k = size(B,  3 ) ;  

% Perform the s p l i t  t e s t  on each block. I f  the predicate function 
% ( f u n )  returns TRUE, the region i s  s p l i t ,  so we se t  the appropria 
% element of v t o  TRUE. Else, the appropriate element of v is set  
% FALSE. 
v(1:k) = f a l s e ;  
f o r  I = 1 : k  

quadregion = B(: ,  :, I ) ;  
i f  size(quadregion, 1 )  <= mindim 

v(1)  = f a l s e ;  
continue 

end 
f lag  = feva l ( fun ,  quadregion); 
i f  f l ag  

v(1)  = t rue ;  
end 

end 

function s p l i t m e r g e  with mindim values of 32,16,8,4, and 2, respec- 
EXAMPLE 10.9: 3 Figure 10.17(a) shows an X-ray band image of the Cygnus Loop.The ima All images show segmentation results with levels of detail that are in- 
Image is of size 256 X 256 pixels. The objective of this example is to  segment out 
segmentation 
using region the image the "ring" of less dense matter surrounding the dense center. results in Fig. 10.17 are reasonable segmentations. If one of these images 
splitting and gion of interest has some obvious characteristics that should help in 
merging. mentation. First, we note that the data has a random nature to it, in 

that its standard deviation should be greater than the standard deviation 
the background (which is 0) and of the large central region. Similarly, t 
mean value (average intensity) of a region containing data from the outer ri 
should be  greater than the mean of the background (which is 0) and less than 
the mean of the large, lighter central region. Thus, we should be able to se 
ment the region of interest by using these two parameters. In fact, the pre Segmentation Using the Watershed Transform 

cate function shown as an example in the documentation of functi geography, a watershed is the ridge that divides areas drained by different river 
s p l i t m e r g e  contains this knowledge about the problem.The parameters were stems. A catchment basin is the geographical area draining into a river or reser- 
determined by computing the mean and standard deviation of various regions ir. The watershed transform applies these ideas to  gray-scale image processing 
in Fig. 10.17(a). a way that can be used to solve a variety of image segmentation problems. 
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FIGURE 10.1 8 
(a) Gray-scale 
image of dark blot 
(b) Image viewed 
a surface, with 
labeled watershed 
ndge line and 
catchment basins. 

a b  

FIGURE 10.19 
(a) Small binary 
image. 
(b) Distance 
transform. 

Understanding the watershed tr 
scale image as a topological surface 
ed as heights. We can, for example, 
as the three-dimensional surface in 

-ansform 
:,where 
visualize 
Fig. 10.1 - 

this surface, it is clear that water would collect in the two areas labele 
catchment basins. Rain falling exactlv on the labeled watershed r i d ~ e  

.2 

would be  equally likely t o  collect i 
watershed transform finds the catcl 
image. In terms of solving image sel 
change the starting image into anot 
objects or regions we want to identj 

m either 
~ m e n t  b~ 
gmentati 
her imaf 
ify. 

Methods for computing the watershed transform are discussed in det 
Gonzalez and Woods [2002] and in Soille [2003]. In particular, the algor 
used in IPT is adapted from Vincent and Soille [1991]. 

10.5,1 Watershed Segmentation Using the Distance Transform 
A tool commonly used in conjunction with the watershed transform for se 
mentation is the distance transform. The distance transform of a hinarv ima 
is a relatively simple concept: I t  is tl 
nonzero-valued pixel. Figure 10.19 

- . - - - - - 

l e  distan 
illustrat 

10.19(a) shows a-small binary image matrix. Figure 10.19(b) shows the c&re- ,%; 
sponding distance transform. Note 
form value of 0. The distance trans! 

that 1-va 
:orm can 

bwdist, whose calling syntax is 

10.5 a Segmentation Using the Watershe 

D = bwdist ( f )  

In this example we show how the distance transform can be used with IPT's 
tershed transform to segment circular blobs, some of which are  touching 

ach other. Specifically, we want to segment the preprocessed dowel image, f, 
n in Figure 9.29(b). First, we convert the image to binary using im2bw and 
thresh,  as described in Section 10.3.1. 

ure 10.20(a) shows the result. The next steps are to complement the image, 
ompute its distance transform, and then compute the watershed transform of 
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FIGURE 10.20 
(a) B~nary image. 
(b) Complement 
of Image in (a). 
(c) D~stance 
transform. 
(d) Watershed 
ridge lines of the 
negatlve of the 
distance 
transform. 
(e) Watershed 
ridge llnes 
superimposed in 
black over 
original binary 
image. Some 
oversegmentation 
is evident. 

EXAMPLE 10.10: 
Segmenting a 
binary image 
using the distance 
and watershed 
transforms. 
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using the watershed transform for segmentation. The gradient magnitud 
image has high pixel values along object edges, and low pixel values Fig. 10.21(c) shows, this is not a good segmentation result; there are too 

where else. Ideally, then, the watershed transform would result in wat ny watershed ridge lines that do not correspond to the objects in which we 

ridge lines along object edges. The next exampIe illustrates this concept. interested. This is another example of oversegmentation. One approach to 
problem is to smooth the gradient image before computing its watershed 

EXAMPLE 10.11: a Figure 10.21(a) shows an image, f, containing several dark blobs. We sta nsform. Here we use a close-opening, as described in Chapter 9. 
Segmenting a by computing its gradient magnitude, using either the linear filtering metho 92 = imclose(imopen(g, ones(3,3)), ones(3,3)); graYscale image described in Section 10.1, or using a morphological gradient as described using gradients L2 = watershed(g2); 
and the watershed Section 9.6.1. wr2 = L2 == 0; 
transform. f2 = f ;  

>> h = fspecial('sobe1'); f2(wr2) = 255; 
>> fd = double(f); 
>> g = sqrt(imfilter(fd, h, 'replicate') . ^  2 + . . .  last two lines in the preceding code superimpose the watershed ridgelines 

imfilter(fd, h', 'replicate') . ^  2); r as white lines in the original image. Figure 10.21(d) shows the superim- 

Figure 10.21(b) shows the gradient magnitude image, g. Next we compute th ed result. Although improvement over Fig. 10.21(c) was achieved, there are 

watershed transform of the gradient and find the watershed ridge lines. some extraneous ridge lines, and it can be difficult to determine which 
tchment basins are actually associated with the objects of interest. The next 

>> L = watershedla): ction describes further refinements of watershed-based segmentation that 

FIGURE 10.21 
(a) Gray-scale 
image of small 
blobs. (b) Gradient 
magnitude image. 
(c) Watershed 
transform of (b), 
showing severe 
oversegmentation. 
(d) Watershed 
transform of the 
smoothed gradient 
image; some 
oversegmentation 
is still evident. 
(Original image 
courtesy of Dr. S. 
Beucher, 
CMMIEcole de 
Mines de Paris.) 

. . -- - - . -. -- .. - . . 
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EXAMPLE 10.12: 
Illustration of 
marker-controlled 
watershed 
segmentation. 

Image Segmentation 
10.5 Segmentation Using the Watershed Transform 423 

1 Q,5.3 Marker-Controlled Watershed Segmentation 

number of segmented regions. A practical solution to this problem is to 
the number of allowable regions by incorporating a preprocessing stage 

markers. A marker is a connected component belonging to an image. We 
like to have a set of internal markers, which are inside each of the obje 
terest, as well as a set of external markers, which are contained within t 

sults obtained from computing the watershed transform of the gradient 
without any other processing. 

>> h = fspecial('sobelt); 
>> fd = double(f); 
>> g = sqrt(imfilter(fd, h, 'replicate') . ^  2 + . . .  

imfilter(fd, h', 'replicate') . *  2); 
>> L = watershed(g); 
>> w r  = L == 0; 

computes the location of all regional minima in an image. Its calling s 

rm = imregionalmin(f) 

where f is a gray-scale image and rm is a binary image whose foreground P 
els mark the locations of regional minima. We can use imregionalmin On t entation resulting from applying the watershed transform to the 

gradient image to see why the watershed function produces so many sm nima of gradient magnitude. (d) Internal markers. (e) External 
catchment basins: . (g) Segmentation result. (Original image courtesy of Dr. S. 

>> rm = imregionalmin(g); 

Most of the regional minima locations shown in Fig. 10.22(c) are very sh 
low and represent detail that is irrelevant to our segmentation problem 
eliminate these extraneous minima we use IPT function imextended 



424 Chapter 10 Image Segmentation 

which computes the set of "low spots" in the image that are deeper (by 2 = imimposemin(g, im I em); 
tain height threshold) than their immediate surroundings. (See Soill 
for a detailed explanation of the extended minima transform and relat e 10.22(f) shows the result. We are finally ready to compute the water- 
ations.) The calling syntax for this function is transform of the marker-modified gradient image and look at the result- 

atershed ridgelines: 
im = imextendedmin(f, h) 

2 = watershed(g2); 

where f is a gray-scale image, h is the height threshold, and im is a binary 
2(L2 == 0) = 255; whose foreground pixels mark the locations of the deep regional minima. 

we use function imextendedmin to obtain our set of internal markers: 
ast two lines superimpose the watershed ridge lines on the original image. 
esult, a much-improved segmentation, is shown in Fig. 10.22(g). @ 

>> im = imextendedmin(f, 2); 
>> fim = f; 
>> fim(im) = 175; arker selection can range from the simple procedures just described to 

derably more complex methods involving size, shape, location, relative 
ces, texture content, and so on (see Chapter 11 regarding descriptors). The last two lines superimpose the extended minima locations as gray 

point is that using markers brings a priori knowledge to bear on the seg- on the original image, as shown in Fig. 10.22(d). We see that the resulting 
tation problem. Humans often aid segmentation and higher-level tasks in do a reasonably good job of "marking" the objects we want to segment. 

ryday vision by using a priori knowledge, one of the most familiar being the Next we must find external markers, or pixels that we are confident b 
of context. Thus, the fact that segmentation by watersheds offers a frame- 

to the background. The approach we follow here is to mark the backgrou that can make effective use of this type of knowledge is a significant ad- finding pixels that are exactly midway between the internal markers. Su 
ingly, we do this by solving another watershed problem; specifically, we 
pute the watershed transform of the distance transform of the internal m 
image, im: 

eliminary step in most automatic pictorial pat- 
>> Lim = watershed(bwdist(im)); tion and scene analysis problems. As indicated by the range of examples 
>> em = Lim == 0; this chapter, the choice of one segmentation technique over another is dic- 

by the particular characteristics of the problem being considered. The 
Figure 10.22(e) shows the resulting watershed ridge lines in the binary ough far from exhaustive, are representative of 
em. Since these ridgelines are midway in between the dark blobs marked 
they should serve well as our external markers. 

Given both internal and external markers, we use them now to mo 
gradient image using a procedure called minima imposition. The min 
position technique (see Soille [2003] for details) modifies a gray-scale Im 

so that regional minima occur only in marked locations. Other pixel values 
"pushed up" as necessary to remove all other regional minima. IPT functi 
imimposemin implements this technique. Its calling syntax is 

m p  = imimposemin(f, mask) 

where f is a gray-scale image and mask is a binary image whose foregrou 
pixels mark the desired locations of regional minima in the output image, 
We modify the gradient image by imposing regional minima at the locations 
both the internal and the external markers: 

Summary 425 
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m the definition given in the previous paragraph, it follows that a 
ary is a connected set of points. The points on a boundary are said to be 

ed if they form a clockwise or counterclockwise sequence. A boundary is 
0 be mininlally connected if each of its points has exactly two 1-valued 
bors that are not 4-adjacent. An interior point is defined as a point any- 
in a region, except on its boundary. 

e material in this chapter differs significantly from the discussions thus 
the sense that we have to be able to handle a mixture of different types 
a such as boundaries, regions, topological data, and so forth. Thus, before 
eding, we pause briefly to introduce some basic MATLAB and IPT con- 
and functions for use later in the chapter. 

Cell Arrays and Structures 
egin with a discussion of MATLAB's cell arrays and structures, which 
introduced briefly in Section 2.10.6. 

rrays provide a way to combine a mixed set of objects (e.g., numbers, 
Preview cters, matrices, other cell arrays) under one variable name. For example, 
After an image has been segmented into regions by methods such as those se that we are working with (1) an uint8  image, f, of size 512 X 512; (2) 
cussed in Chapter 10, the next step usually is to represent and describe the uence of 2-D coordinates in the form of rows of a 188 X 2 array, b; and 
gregate of segmented, "raw" pixels in a form suitable for further compu cell array containing two character names, char-array = { ' a r e a '  , 
processing. Representing a region involves two basic choices: (1) We can r t r o i d  ' ). These three dissimilar entities can be organized into a single 
resent the region in terms of its external characteristics (its boundary), or ble, C, using cell arrays: 
we can represent it in terms of its internal characteristics (the pixels comp 
ing the region). Choosing a representation scheme, however, is only part of C = { f ,  b, char-array) 
task of making the data useful to a computer. The next task is to describe t 
region based on the chosen representation. For example, a region may the curly braces designate the contents of the cell array. Typing C at the 
represented by its boundary, and the boundary may be described by featu t would output the following results: 
such as its length and the number of concavities it contains. 

An external representation is selected when interest is on shape charact 
istics. An internal representation is selected when the principal focus is on r 
gional properties, such as color and texture. Both types of representa [512x512 uint81 [188x2 double] (1x2 c e l l )  
sometimes are used in the same application to solve a problem. In either 
the features selected as descriptors should be as insensitive as possible to other words, the outputs are not the values of the various variables, but a 
ations in region size, translation, and rotation. For the most part: the descr scription of some of their properties instead.To address the complete con- 
tors discussed in this chapter satisfy one or more of these properties. of an element of the cell, we enclose the numerical location of that ele- 

in curly braces. For instance, to see the contents of char-array we 
Background 

A region is a connected component, and the bo~lndnry (also called the border or 
contour) of a region is the set of pixels in the region that have one or more neigh- 
bors that are not in the region. Points not on a boundary or region are call 
background points. Initially we are interested only in binary images, so region ' a r e a '  ' c e n t r o i d '  
boundary points are represented by Is and background points by 0s. Later in t 
chapter we allow pixels to have gray-scale or multispectral values. r we can use function ce l ld i sp :  
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See the c e l l f  un 
help page for a list 
valid entries for 
f name. 

Representation and Description 11.1 a 

>> celldisp(C(3)) uppose that we want to write a function that outputs the average intensity 
ans{l) = image, its dimensions, the average intensity of its rows, and the average 

area sity of its columns. We can do it in the "standard" way by writing a func- 

ans{2) = 

centroid tion [AI, dim, AIrows, AIcols] = image-stats(f) 

Using parentheses instead of curly braces on an element of C gives a des ws = mean(f, 2); 
tion of the variable, as above: 1s = mean(f, 1); 

2' C(3) f is the input image and the output variables correspond to the quanti- 
ans = t mentioned. Using cells arrays, we would write 

(1x2 cell) ction G = image-stats(f) 

We can work with specified contents of a cell array by transferring t 
numeric or other pertinent from of array. For instance, to extract f from ) = mean(f, 2); 

) = mean(f, 1); 
'> f = C(1); 

ng G (1 ) = {size (f) ), and similarly for the other terms, also is accept- 
e. Cell arrays can be multidimensional. For instance, the previous function Function size gives the size of a cell array: 

uld be written also as 

>> size(C) ction H = image_stats2(f) 
ans = , 1) = {size(f)); 

1 3  , 2) = {mean2(f)); 
, 1) = {mean(f, 2)); 
, 2) = {mean(f, 1)); 

Function cellf un, with syntax 
r, we could have used H{1,1) = size (f ) , and so on for the other variables. 

D = cellfun('fnamel, C) dditional dimensions are handled in a similar manner. 
Suppose that f is of size 512 X 512. Typing G and H at the prompt would 

applies the function f name to the elements of cell array C and returns the 
sults in the double array D. Each element of D contains the value returned 
f name for the corresponding element in C. The output array D is the same s G = image-stats(f) 

as the cell array C. For example, H = image_stats2(f); 

>> D = cellfun('length', C) 
D = [Ax2 double] [I] [512x1 double] [1x512 double] 

512 188 2 

Inother words,length(f) =512,length(b) = 188 and length(char-array) 
Recall from Section 2.10.3 that length (A) gives the size of the longest dimensi [ 1x2 double] [ 
of a multidimensional array A. 

1 I 
[512x1 double] [1x512 double] 

Finally, keep in mind the comment made in Section 2.10.6 that cell ar 
contain copies of the arguments, not pointers to those arguments. Thus, if we want to work with any of the variables contained in G, we extract it by ad- 
of the arguments of C in the preceding example were to change after C was essing a specific element of the cell array, as before. For instance, if we want 
ated, that change would not be reflected in C. work with the size o f f ,  we write 

: . 

Background 429 

EXAMPLE 11.1: 
A simple 
illustration of cell 
arrays. 
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EXAMPLE 11.2: 
A simple 
illustration of 
structures. 

11.1 Background 431 Representation and Description 

>> v = G(1) 

or 

>> v = H(1,l) 

te that s itself is a scalar, with four fields associated with it in this case. 
where v is a 1 X 2 vector. Note that we did not use the familiar command see in this example that the logic of the code is the same as before, but 
N ]  = G(1)  to obtain the size of the image. This would cause an error beca nization of the output data is much clearer. As in the case of cell ar- 
only functions can produce multiple outputs. To obtain M and N we would advantage of using structures would become even more evident if we 
M = ~ ( 1 )  andN = v ( 2 ) .  a larger number of outputs. lsll 

The economy of notation evident in the preceding example becomes ev 
more obvious when the number of outputs is large. One drawback is the loss The preceding illustration used a single structure. If, instead of one image, 

clarity in the use of numerical addressing, as opposed to assigning name had Q images organized in the form of an M X N X Q array, the function 

the outputs. Using structures helps in this regard. 

Structures ction s = image-stats(f) 

Structures are similar to cell arrays in the sense that they allow groupi 
collection of dissimilar data into a single variable. However, unlike cell s(k).dim = size(f(:, :, k)); 
where cells are addressed by numbers, the elements of structures are s(k).AI = mean2(f(:, :, k)); 
dressed by names called fields. s(k).AIrows = mean(f(:, :, k), 2); 

s(k).AIcols = mean(f(:, :, k), 1); 

Continuing with the theme of Example 11.1 will clari& these concep 
Using structures, we write 

ther words, structures themselves can be indexed. Although, like cell ar- 
function s = image-stats(f ) tructures can have any number of dimensions, their most common form 
s.dim = size(f); tor, as in the preceding function. 
s.AI = mean2(f); acting data from a field requires that the dimensions of both s and the 
s.AIrows = mean(f, 2); e kept in mind. For example, the following statement extracts all the val- 
s.AIcols = mean(f, 1); of AIrows and stores them in v: 

where s is a structure. The fields of the structure in this case are A1 r k = 1 :length(s) 
scalar), dim (a 1 X 2 vector), AIrows (an M X 1 vector), and AIcols v(:, k) = s(k).AIrows; 
1 X N vector), where M and N are the number of rows and columns of 
image. Note the use of a dot to separate the structure from its various fie 
The field names are arbitrary, but they must begin with a nonnume that the colon is in the first dimension of v and that k is in the second because 
character. f dimension 1 X Q and A1 rows is of dimension M X Q. Thus, because k goes 

Using the same image as in Example 11.1 and typing s and size (s ) at t m 1 to Q, v is of dimension M X Q. Had we been interested in extracting the 
prompt gives the following output: es of AIcols instead, we would have used v ( k , : ) in the loop. 

22 s = 
quare brackets can be used to extract the information into a vector or ma- 
if the field of a structure contains scalars. For example, suppose that 

s = rea contains the area of each of 20 regions in an image. Writing 

dim: [512 5121 
AI: 1 w = [D.Area]; 

AIrows: [512x1 double] 
AIcols: [1x512 doub:le] tes a 1 X 20 vector w in which each elements is the area of one of the 
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As with cell arrays, when a value is assigned to a structure field, MATL e 2-D coordinates of regions or boundaries are organized in this chapter 
makes a copy of that value in the structure. If the original value is changed form of np X 2 arrays, where each row is an (x, y) coordinate pair, and 
later time, the change is not reflected in the structure. he number of points in the region or boundary. In some cases it is neces- 

to sort these arrays. Function sortrows can be used for this purpose: 11.1.2 Some Additional MATLAB and IPT Functions Used in Th 
Chapter ,,&% z = sortrows(S) -Sort ' ; rows 

Function imf ill was mentioned briefly in Table 9.3 and in Section 9.5.2. \ LI : A , <L, 

function performs differently for binary and intensity image inputs, so, to unction sorts the rows of S in ascending order. Argument S must be either 
clarify the notation in this section, we let f B and f I represent binary and x or a column vector. In this chapter, s o r t  rows is used only with np X 2 
tensity images, respectively. If the output is a binary image, we denote it by . If several rows have identical first coordinates, they are sorted in ascend- 
otherwise we denote simply as g.The syntax er of the second coordinate. If we want to sort the rows of S and also 

te duplicate rows, we use function unique, which has the syntax 
gB = i m f i l l ( f B ,  loca t ions ,  conn) h$t::,. 

[ z ,  m, n ]  = unique(S, ' r a w s ' )  .a?: .  jq u e - ;* ,, ", , - ~k 
performs a flood-fill operation on background pixels (i.e., it cha \ , A .  .. , 

ground pixels to 1) of the input binary image f B, starting from the p e z is the sorted array with no duplicate rows, and m and n are such that 
ified in 1ocations.This parameter can be an n X 1 vector (n is the (m, : ) a n d S = z ( n ,  :) .Forexample,ifS=[l  2; 6 5; 1 2 ;  4 31,then 
locations), in which case it contains the linear indices (see Section 1 2 ; 4 3 ; 6 5 ] , m = [ 3 ;  4; 2 ] , a n d n = [ l ;  3;  1 ;  2 l .No te tha tz i s  
starting coordinate locations. Parameter locat ions  can also be an n X 2 anged in ascending order and that m indicates which rows of the original 
trix, in which each row contains the 2-D coordinates of one of the starting 
cations in fB. Parameter conn specifies the connectivity to be used on quently, it is necessary to shift the rows of an array up, down, or sideways 
background pixels: 4 (the default), or 8. If both locat ion and conn are o ified number of positions. For this we use function c i r c s h i f  t :  
ted from the input argument, the command gB = imf ill (f  B )  displays th 

A%@~\, 
nary image, fB, on the screen and lets the user select the starting locatio z = c i r c s h i f t ( S ,  [ u d  11-1) .5$~:.y@~~~ h i f  t 

.kw,{;,fy.' ., 
using the mouse. Click the left mouse button to add points. Press BackSpa 
Delete to remove the previously selected point. A shift-click, right-clic ud is the number of elements by which S is shifted up or down. If ud is 
double-click selects a final point and then starts the fill operation. Press1 e, the shift is down; otherwise it is up. Similarly, if l r  is positive, the array 
Return finishes the selection without adding a point. ed to the right l r  elements; otherwise it is shifted to the left. If only up 

Using the syntax down shifting is needed, we can use a simpler syntax 

gB = i m f i l l ( f B ,  conn, ' h o l e s ' )  z = c i r c s h i f t ( S ,  ud) 

fills holes in the input binary image. A hole is a set of background pixels t is an image, c i r c sh i f  t is really nothing more than the familiar scrolling 
cannot be reached by filling the background from the edge of the image. and down) or panning (right and left), with the image wrapping around. 
before, conn specifies connectivity: 4 (the default) or 8. 

The syntax 3 Some Basic Utility M-Functions 

g = i m f i l l ( f 1 ,  conn, ' h o l e s ' )  s such as converting between regions and boundaries, ordering boundary 
ts in a contiguous chain of coordinates, and subsampling a boundary to 

fills holes in an input intensity image, f I .  In this case, a hole is an area of its representation and description are typical of the processes that are 
pixels surrounded by lighter pixels. Parameter conn is as before. d routinely in this chapter. The following utility M-functions are used 

See Section 5.2.2 for Function f ind  can be used in conjunction with bwlabel to return vecto ese purposes. To avoid a loss of focus on the main topic of this chapter, 
discrLssion ofblnc-  coordinates for the pixels that make up a specific object. For example, if [ 

lion f i n d  and 
iscuss only the syntax of these functions. The documented code for each 

Sec,io,z 9,4forcr dis- num] = bwlabel ( f  8) yields more than one connected region (i.e., num > l ) , w  MATLAB function is included in Appendix C. As noted earlier, bound- 
cussion of'bwlabel. obtain the coordinates of, say, the second region using are represented as np X 2 arrays in which each row represents a 2-D pair 

ordinates. Many of these functions automatically convert 2 X np coordi- 
[ r ,  C ]  = f i n d ( g  == 2)  arrays to arrays of size np X 2. 
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Function ction inserts new boundary pixels wherever there is a diagonal con- 
thus producing an output boundary in which pixels are only 4- 

cted. Code listings for both functions can be found in Appendix C. 
B = boundar ies( f ,  conn, d i r )  

traces the exterior boundaries of the objects in .f, which is assumed to be g = bound2im(b, M ,  N,  xO, yo) 
nary image with 0s as the background. Parameter conn specifies the de 
connectivity of the output boundaries; its values can be 4 or 8 (the defa ates a binary image, g, of size M X N, with 1s for boundary points and a 
Parameter d i r  specifies the direction in which the boundaries are tra round of 0s. Parameters xO and y o  determine the location of the mini- 
values can be ' cw ' (the default) or ' ccw ' ,  indicating a clockwise or cou x- and y-coordinates of b in the image. Boundary b must be an np  x 2 
clockwise direction. Thus, if 8-connectivity and a ' cw ' direction are ac X np) array of coordinates, where, as mentioned earlier, np is the num- 
able, we can use the simpler syntax f points. If xO and yo are omitted, the boundary is centered approximate- 

the M X N array. If, in addition, M and N are omitted, the vertical and 

B = boundar ies( f )  ontal dimensions of the image are equal to the height and width of 
b. If function boundaries finds multiple boundaries, we can get all 
nates for use in function bound2im by concatenating the various el- 

Output B in both syntaxes is a cell array whose elements are the coordinate 
the boundaries found. The first and last points in the boundaries return See Section 6.1.1 for 

on e.xp/anarion o,f t l ~ r  
function boundaries are the same.This produces a closed boundary. b = c a t ( 1 ,  B{:)) c a t  operator. See 

As an example to fix ideas, suppose that we want to find the bounda also E.~anlple 11.13. 

the object with the longest boundary in image f (for simplicity we assume t ere the 1 indicates concatenation along the first (vertical) dimension of the 
the longest boundary is unique). We do this with the following sequenc 
commands: 

>> B = boundar i e s ( f ) ;  [ s ,  SU]  = bsubsamp(b, gr idsep)  bsubsamp a p<,., ... --- . 
>> d = c e l l f u n ( ' l e n g t h ' ,  8 ) ;  

see section 2.10.2 >> [ inax-d, k I = max ( d )  ; ples a (single) boundary b onto a grid whose lines are separated by 
for an explanation of >> v = ~ { k  ( 1 ) 1 ; p pixels.The output s is a boundary with fewer points than b, the num- 
this use offimction 
max. 

such points being determined by the value of gridsep,  and su is the set 

Vector v contains the coordinates of the longest boundary in the input im ndary points scaled so that transitions in their coordinates are unity. 

and k is the corresponding region number; array v is of size np x 2.The last st IS useful for coding the boundary using chain codes, as discussed in 

ment simply selects the first boundary of maximum length if there is more on 11.1.2. It is required that the points in b be ordered in a clockwise or 

one such boundary. As noted in the previous paragraph, the first and last p ckwise direction. 

of every boundary computed using function boundaries are the same, SO boundary is subsampled using bsubsamp, its points cease to be con- 

v(1 ,  : )  is thesameasrowv(end, :).  onnected by using 
Function bound2eight with syntax z = connec tpo ly ( s ( : ,  I ) ,  s ( : ,  2 ) )  

b8 = bound2eight(b) re the rows of s are the coordinates of a subsampled boundary. It is re- 
ed that the points in s be ordered. either in a clockwise or counterclock- 

removes from b pixels that are necessary for 4-connectedness but not nec direction. The rows of output z are the coordinates of a connected 
sary for 8-connectedness, leaving a boundary whose pixels are on oundary formed by connecting the points in s with the shortest possible 
8-connected. Input b must be an np X 2 matrix, each row of which contai th consisting of 4- or 8-connected straight segments. This function is useful 
the (x, y) coordinates of a boundary pixel. It is required that b be a close producing a polygonal, fully connected boundary that is generally 
connected set of pixels ordered sequentially in the clockwise or counte other (and simpler) than the original boundary, b, from which s was ob- 
clockwise direction. The same conditions apply to function bound2f ou r: ned. Function connectpoly also is quite useful when working with func- 

ns that generate only the vertices of a polygon. such as minperpoly, 

b4 = bound2four(b) cussed in Section 11.2.3. 

connectpoly  
$>%., 
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intline is ail rln- 

docliinenfed IPT 
irtilityfLinclion. Ils 
code is included iit 
Appendix C. 

FIGURE 1 1.1 
(a) Direction 
numbers for 
(a) a 4-directional 
chain code, and 
(b) an 8-d~rect~onz 
cham code. 

fchcode 
w8~---- - - 
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Computing the integer coordinates of a straight line joining two point lockwise direction in Fig. 11.1) that separate two adjacent elements of the 
basic tool when working with boundaries (for example, function connectp e. For instance, the first difference of the 4-direction chain code 10103322 is 
requires a subfunction that does this). IPT function i n t l i n e  is well suite 030. If we elect to treat the code as a circular sequence, then the first ele- 
this purpose. Its syntax is of the difference is computed by using the transition between the last 

mponents of the chain. Here, the result is 33133030. Normalization 
[ x ,  y] = i n t l i n e ( x 1 ,  x2, y l ,  y2) t to arbitrary rotational angles is achieved by orienting the bound- 

respect to some dominant feature, such as its major axis, as discussed 
where ( x l  , y I ) and (x2,  y2) are the integer coordinates of the two poin 
be connected. The outputs x and y are column vectors containing the in unction fchcode, with syntax 
x- and y-coordinates of the straight line joining the two points. 

c = fchcode(b,  conn, d i r )  

Representation 
tes the Freeman chain code of an np X 2 set of ordered boundary 

As noted at the beginning of this chapter, the segmentation techniques stored in array b. The output c is a structure with the following fields, 
cussed in Chapter 10 yield raw data in the form of pixels along a boundar the numbers inside the parentheses indicate array size: 
pixels contained in a region. Although these data sometimes are used dir 
to obtain descriptors (as in determining the texture of a region), stan c . f cc = Freeman chain code (1 x np) 

practice is to use schemes that compact the data into representations tha c . d i f  f = First difference of code c . f cc (1  X np) 

considerably more useful in the computation of descriptors. In this section c . mm = Integer of minimum magnitude (1 x np) 

discuss the implementation of various representation approaches. c . dif  f mm = First difference of code c . mm (1 X np) 
. xOyO = Coordinates where the code starts (1  x 2) 

9 8.2.1 Chain Codes ter conn specifies the connectivity of the code; its value can be 4 or 8 

Chain codes are used to represent a boundary by a connected sequenc default). A value of 4 is valid only when the boundary contains no diago- 

straight-line segments of specified length and direction. Typically, this rep 
sentation is based on 4- or 8-connectivity of the segments. The directi rameter d i r  specifies the direction of the output code: If 'same ' is spec- 

each segment is coded by using a numbering scheme such as the ones sho the code is in the same direction as the points in b. Using ' reverse '  

Figs. l l . l (a)  and (b). Chain codes based on this scheme are referred s the code to be in the opposite direction. The default is ' same ' . Thus, 

Freeman chain codes. = fchcode(b,  conn) uses the default direction,and c = fchcode(b) 

The chain code of a boundary depends on the starting point. However, efault connectivity and direction. 

code can be normalized with respect to the starting point by treating it as a 
cular sequence of direction numbers and redefining the starting point so that ure 11.2(a) shows an image, f ,  of a circular stroke embedded in specular 

resulting sequence of numbers forms an integer of minimum magnitude. We se.The objective of this example is to obtain the chain code and first differ- 

normalize for rotation [in increments of 90" or 45", as shown in Figs. ll.l(a) of the object's boundary. It is obvious by looking at Fig. 11.2(a) that the 

(b)] by using the first difference of the chain code instead of the code itself. fragments attached to the object would result in a very irregular bound- 

difference is obtained by counting the number of direction changes (in a co ot truly descriptive of the general shape of the object. Smoothing is a rou- 
process when working with noisy boundaries. Figure 11.2(b) shows the 
It, g, of using a 9 x 9 averaging mask: 

I 2 

EXAMPLE 11.3: 
Freeman chain 
code and some of 
its variations. 

A h = f s p e c i a l ( ' a v e r a g e ' ,  9 ) ;  

3 \ / 1 * 0  

g = i m f i l t e r ( f ,  h ,  ' r e p l i c a t e ' ) ;  

binary image in Fig. 11.2(c) was then obtained by thresholding: 

7 g = im2bw(g, 0 . 5 ) ;  

2 - 

7 'I e boundary of this image was computed using function boundaries dis- 
3 6 ssed in the previous section: 

A 

- 0 

4 * / \  5 
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2> B = boundar ies(g) ;  we used a grid separation equal to  approximately 10% the width of the 
,which in this case was of size 570 x 570 pixels. The resulting points can 
played as an image [Fig. 11.2(e)]: 

>> d  = c e l l f u n ( ' l e n g t h ' ,  6); 2  = bound2im(s, M, N, m in (s ( : ,  I ) ) ,  min (s ( : ,  2 ) ) ) ;  
2> [max-d, k ]  = max(d); 
2> b  = B(1); a connected sequence [Fig. 11.2(f)] by using the commands 

The boundary image in Fig. 11.2(d) was generated using the commands cn = connectpoly(s( : ,  l ) ,  s ( : ,  2 ) ) ;  
2 = bound2im(cn, M, N,  rn in (cn( : ,  I ) ) ,  min (cn ( : ,  2 ) ) ) ;  

>> [M N] = s i z e ( g ) ;  
>> g = bound2irn(b, M, N, m in(b( : ,  I ) ) ,  rnin(b(:,  2 ) ) ) ;  dvantage of using this representation, as opposed to Fig. 11.2(d), for 

coding purposes is evident by comparing this figure with Fig. 11.2(f).The 
Obtaining the chain code of b  directly would result in a long sequenc code is obtained from the scaled sequence su: 

small variations that are not necessarily representative of the general sh 
the image. Thus, as is typical in chain-code processing, we subsamp 
boundary using function bsubsamp discussed in the previous section: 

command resulted in the following outputs: 
>> [ s ,  SU]  = bsubsamp(b, 50) ;  

0 2 2 0 2 0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2  

0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2  

d e f  gital boundary can be approximated with arbitrary accuracy by a polygon. 
FIGURE 11.2 (a) Noisy image. (b) Image s 9 x 9 averaging mask. (c) Thresholded im r a closed curve, the approximation is exact when the number of segments in 
(d) Boundary of binary image. (e) Subsamp Connected points from (e). e polygon is equal to  the number of points in the boundary, so that each pair 
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FlGUKlE 1 1.3 
(a) Object 
boundary 
enclosed by cells. 
(b) Minimum- 
per~meter 
polygon. 
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a b  
FIGURE 1 1.4 (a) Region 

"essence" of the boundary shape. enclosed by the inner wall 
A particularly attractive approach to of the cellular complex in 

Fig. ll.3(a). 
(b) Convex (.) and 
concave (0) corner 
markers for the boundary 
of the region in (a). Note 

plementation of the procedure. The method is restricted to simple p that concave markers are 
placed diagonally opposite 

(i.e., polygons with no self-intersections). Also, regions with peninsular their corresponding 

proximation has been computed. 

Foundation c in formulating an approach for finding 

The MPP corresponding to a simply connected cellular complex is not 
self-intersecting. Let P denote this MPP. 

des with a (but not every is a vertex 

des with a o (but not every is a vertex 

Sklansky's approach uses a so-called cellular complex or cellular rn If a in fact is part of P, but it is not a convex vertex of P, then it lies on the 

which, for our purposes, is the set of square cells used to enclose a boundary, 
Fig. 11.3(a). Figure 11.4(a) shows the region (shaded) enclosed by the cel discussion, a vertex of a polygon is defined to be convex if its interior 
complex. Note that the boundary of this region forms a 4-connected path. s in the range 0" < 8 < 180"; otherwise the vertex is concave. As in the The conditio~z 6, = 0" 
traverse this path in a clockwise direction, we assign a black dot (.) to the co respect to the interior region is not aNowed(lnd 
corners (those with interior angles equal to 90') and a white dot ( 0 )  to the 0 = 180" is rrenred 

(IS a sl~ecic~l case. 
cave corners (those with interior angles equal to 270'). As Fig. 11.4(b) show 
black dots are placed on the convex corners themselves. The white dot 

finding the vertices of an MPPThere are 
sky et al. [1972], and Kim and Sklansky 

is designed to take advantage of two basic 
B functions. The first is qtdecomp, which performs quadtree de- 
that lead to the cellular wall enclosing the data of interest.The sec- 

determine which points lie outside, on, or 
ned by a given set of vertices. 

cedure for finding MPPs in the context 
d 11.4 again for this purpose. An ap- 

boundary of the shaded inner region in 
section. After the boundary has been ob- 

ed, the next step is to find its corners, which we do by obtaining its Free- 
n chain code. Changes in code direction indicate a corner in the boundary. 

ravel in a clockwise direction through 
y task to determine and mark the convex 

d concave corners, as in Fig. 11,4(b).The specific approach for obtaining the 
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markers is documented in M-function minperpoly discussed later in th 
tion. The corners determined in this manner are as in Fig. 11.4(b), wh' 
show again in Fig. ll.S(a).The shaded region and background grid are 
ed for easy reference.The boundary of the shaded region is not shown t 
confusion with the polygonal boundaries shown throughout Fig. 11.5. 

Next, we form an initial polygon using only the initial convex vertices (th 
dots), as Fig. 11.5(b) shows. We know from property 2 that the set of MPP co 
vertices is a subset of this initial set of convex vertices. We see that all the con 
vertices (white dots) lying outside the initial polygon do not form concavi 
the polygon. For those particular vertices to become convex at a later stage 
algorithm, the polygon would have to pass through them. But, we know tha 
can never become convex because all possible convex vertices are accoun 
at this point (it is possible that their angle could become 180" later, but that 
have no effect on the shape of the polygon).Thus, the white dots outside the 
polygon can be eliminated from further analysis, as Fig. 11.5(c) shows. 

The concave vertices (white dots) inside the polygon are associated 
concavities in the boundary that were ignored in the first pass.Thus, thes 
tices must be incorporated into the polygon, as shown in Fig. 11.5(d) 
point generally there are vertices that are black dots but that have ceas 
convex in the new polygon [see the black dots marked with arro 
Fig. 11.5(d)]. There are two possible reasons for this. The first reason 
that these vertices are part of the starting polygon in Fig. 11.5(b), wh 
cludes all convex (black) vertices. The second reason could be that they 
become convex as a result of our having incorporated additional (white) 
tices into the polygon as in Fig. ll.S(d).Therefore, all black dots in the poly 
must be tested to  see if any of the vertex angles at  those points now exc 
180". All those that d o  are deleted. The procedure in then repeated. 

Figure 11.5(e) shows only one new black vertex that has become conc 
during the second pass through the data. The procedure terminates when 
further vertex changes take place, a t  which time all vertices with angles of 1 
are deleted because they are on an edge, and thus do not affect the sha 
the final polygon. The boundary in Fig. 11.5(f) is the MPP for our exa 
This polygon is the same as the polygon in Fig. 11.3(b). Finally, Fig. 1 
shows the original cellular complex superimposed on  the MPP. 

The preceding discussion is summarized in the following steps for fin 
the MPP of a region: 

1. Obtain the cellular complex (the approach is discussed later in this section) 
2. Obtain the region internal to the cellular complex. 
3. Use function boundaries  to obtain the boundary of the region in step 2 a 

a 4-connected, clockwise sequence of coordinates. 
4. Obtain the Freeman chain code of this Cconnected sequence using func 

tion f chcode. URE 11.5 (a)  Convex (black) and concave (white) vertices of the 
5. Obtain the convex (black dots) and concave (white dots) vertices from th ygon joining all convex vertices. (c) Result after deleting conca 

chain code. Result of incorporating the remaining concave vertices into the 
ices that have become concave and will be deleted). ( e )  Result of 

6. Form an initial polygon using the black dots as vertices, and delete fro w indicates a black vertex that now has become concavel. IF)  Fin 
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boundary in Fig. 11.4(a). (b) Initial 
ve vertices outside of the polygon. 
polygon (the arrows indicate black 
deleting concave black vertices (the 
al result showing the MPP. (g) MPP 

further analysis any white dots that are outside this polygon (whlte dots with boundary cell5 supel~rn~osed. 
on the polygon boundary are kept). 
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EXAMPLE 11.4: 
Obtaining the 
cellular wall of 
the boundary of a 
region. 

Representation and Description 11.2 Rep 

7. Form a polygon with the remaining black and white dots as vertices. 
8. Delete all black dots that are concave vertices. 
9. Repeat steps 7 and 8 until all changes cease, at which time all vertice 

angles of 180" are deleted.The remaining dots are the vertices of the 

Some of the  M-Functions Used i n  Implementing the MPP Algorith 

We use function qtdecomp introduced in Section 10.4.2 as the first step in 
taining the cellular complex enclosing a boundary. As usual, we consider 
region, B, in question to be composed of Is and the background of 0s. 
qtdecomp syntax applicable to our work here is 

Q = qtdecomp(B, threshold ,  [mindim maxdim]) 

where Q is a sparse matrix containing the quadtree structure. If Q ( k ,  
nonzero, then ( k ,  m )  is the upper-left comer of a block in the decompo 
and the size of the block is Q ( k  , m )  . 

A block is split if the maximum value of the block elements minus th 
mum value of the block elements is greater than threshold.The value 
parameter is specified between 0 and 1, regardless of the class of the 
image. Using the preceding syntax, function qtdecomp will not produce b 

must be a power of 2. 
If only one of the two values is specified (without the brackets), the 

K >= max(size(B) ) and ~lmindim = 2^p, or K = mindim*(2^p). Solving fo 
gives p = 8, in which case M = 768. 

To get the block values in a quadtree decomposition we use functi 
q tgetblk ,  discussed in Section 10.4.2: 

[ v a l s ,  r, c ]  = q tge tb lk (6 ,  Q ,  mindim) 

where va l s  is an array containing the values of the mindim x mindim block 
the quadtree decomposition of 8, and Q is the sparse matrix returned 
qtdecomp. Parameters r and c are vectors containing the row and column 
ordinates of the upper-left corners of the blocks. 

B = bwperim(B, 8 ) ;  

nal padding is required for the specified value of mindim. The 4-connected 
To see how steps 1 through 4 of the MPP algorithm are implemented, C undary of the region is obtained using the following command (the margin 

sider the image in Fig. 11.6(a), and suppose that we specify mindim = 2. te in the next page explains why 8 is used in the function call): 
show individual pixels as small squares to facilitate explanation of 
qtdecomp. The image is of size 32 x 32, and it is easily verified that no ad 
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FIGURE 1 1.6 
(a) Original 
image, where the 
small squares 
denote individual 
pixels. (b) 4- 
connected 
boundary. 
(c) Quadtree 
decomposition 
using blocks of 
minimum size 2 
pixels on the side. 
(d) Result of 
filling with 1s all 
blocks of size 
2 X 2 that 
contained at least 
one element 
valued 1. This is 
the cellular 
complex. 
(e) Inner region 
of (d). 
(f) 4-connected 
boundary points 
obtained using 
function 
boundaries.The 
chain code was 
obtained using 
function f chcode. 
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The synrax for Figure 11.6(b) shows the result. Note that B is still an image, which no -Function for Computing MPPs 
bwperim is tains only a 4-connected boundary (keep in mind that the small squares 
Q = 1 through 9 of the MPP algorithm are implemented in function 
bwperim(f, corm) dividual pixels). rpoly, whose listing is included in Appendix C. The syntax is 
where conn idenri- Figure 11.6(c) shows the quadtree decomposition of B, obtained usi 
fies the desired con- 
nectivity: 4 (rhe [x, y ]  = minperpoly(B, cellsize) 
defarrlt) or 8. The 
connecrivityiswith > > Q =  qtdecomp(B, 0 ,  2); 
respect to the back- 
ground pixels. Thus, 
ro obtain 4-connect- where 0 was used for the threshold so that blocks were split down to the 
edobject boundaries mum 2 x 2 size, regardless of the mixture of 1s and 0s they contained 
we specify 8 for such block is capable of containing between zero and four pixels). Not 
connecredbound- there are numerous blocks of size greater than 2 X 2, but they a 
aries result from homogeneous. ure 11.7(a) shows an image, B, of a maple leaf, and Fig. 11.7(b) is the EXAMPLE 11.5: 
specifying a vakre o f  ary obtained using the commands Using function 

minperpoly. 

= boundaries(B, 4, 'cw'); 

objects in f. This 

in detail in Section min = min(b(:, 1)); 
11.3.1. in = min(b(:, 2)); 

m = bound2im(b, M, N, xmin, ymin); 

>> R = imfill(BF, ' h o l e s ' )  & -BF; 

Figure 11.6(e) shows the result. We are interested in the 4-connected boun 
of this region, which we obtain using the commands ample. Figure 11.7(c) is the result of using the commands 

>> b = boundaries(b, 4, ' c w ' ) ;  , y] = minperpoly(B, 2); 
>> b = b(1); = connectpoly(x, y); 

= bound2im(b2, M, N, xmin, ymin); 
Figure 11.6(f) shows the result. The Freeman chain code shown in this fig 
was obtained using function f chcode. This completes steps 1 through 4 of 
MPP algorithm. ly, Figs. 11.7(d) through (f) show the MPPs obtained using square cells of 

polygon; the syntax is 

IN = inpolygon(X, Y, xv, yv) 

where X and Y are vectors containing the x- and y-coordinates of the points 

rated with cells of sizes 2 and 4. 

minperpoly 
m%w----- -- 





11.2 %i Representation 451 

FIGURE 11.10 
Axis convention 
used by 
MATLAB for 
performing 
conversions 
between polar 
and Cartesian 
coordinates, and 
vice versa. 
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a b  Y 
c d A 

FIGURE 1 1.9 
(a) and (b) 
Circular and P 
square objects. 
(c) and (4 
Corresponding 
distance versus 
angle signatures. 

*X 
H 

as a function of increasing angle is output in st. Coordinates (xo, 
input are the coordinates of the origin of the vector extending to the 
If these coordinates are not included in the argument, the function 
ordinates of the centroid of the boundary by default. In either case, 
of (xO, yo) used by the function are included in the output. The 

tational aberrations for each shape of interest. arrays st and angle is 360 X 1, indicating a resolution of one degree. 
Another way is to select a point on the major eigen axis (see Secti one-pixel-thick boundary obtained, for example, using 

undaries (see Section 11.1.3).As before, we assume that a bound- 
a closed curve. 

er way is to obtain the chain code of the boundary and then use the ap nction signature utilizes MATLAB's function cart2pol to convert 
discussed in Section 11.1.2, assuming that the rotation can be approximat sian to polar coordinates. The syntax is 
the discrete angles in the code directions defined in Fig. 11.1. 

Based on the assumptions of uniformity in scaling with respect to bot [THETA, RHO] = cart2pol(X, Y) 
and that sampling is taken at equal intervals of 8, changes in size of a sh 
sult in changes in the amplitude values of the corresponding signature. 0 X and Y are vectors containing the coordinates of the Cartesian points. The 
to normalize for this dependence is to scale all functions so that they s THETA and RHO contain the corresponding angle and length of the polar co- 
span the same range of values, say, [O, 11. The main advantage of this me X and Y are row vectors, so are THETA and RHO, and similarly in the 
simplicity, but it has the potentially serious disadvantage that scaling of 11.10 shows the convention used by MATLAB for coordi- 
tire function is based on only two values: the minimum and maximum. ions. Note that the MATLAB coordinates (X, Y )  in this situation are 
shapes are noisy, this can be a source of error from object to object. A d to our image coordinates (x , y) as X = y and Y = -x [see Fig. Z.l(a)]. 
rugged approach is to divide each sample by the variance of the signatu ion pol2cart is used for converting back to Cartesian coordinates: 
suming that the variance is not zero-as in the case of Fig. 11.9(a)-or so 
that it creates computational difficulties. Use of the variance yields a va [ X ,  Y ]  = pol2~art(THETA, RHO) 
scaling factor that is inversely proportional to changes in size and works 
as automatic gain control does. Whatever the method used, keep in mind d (b) show the boundaries, bs and bt, of an irregular 
the basic idea is to remove dependency on size while preserving the funda riangle, respectively, embedded in arrays of size 674 X 674 pixels. 
tal shape of the waveforms. ll.ll(c) shows the signature of the square, obtained using the commands 

Function signature, included in Appendix C, finds the signature of a 
boundary. Its syntax is t, angle, xO, yo] = signature(bs); 

[st, angle, xO, yo] = signature(b, xO, yo) 

s of xO and yo obtained in the preceding command were [342,326]. 
pair of commands yielded the plot in Fig. I l . l l (d) ,  whose centroid is 

EXAMPLE 11.6: 
Signatures. 
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FIGURE 1 1.1 2 
FIGURE 11.1 1 (a) A region S 

and its convex 
Boundaries of an 

(shaded). 

. In practice, this type of processing is preceded typically by aggres- 
smoothing to reduce the number of "insignificant" concavities. The 
tools necessary to implement boundary decomposition in the man- 

nting the structural shape of a plane region 
tion may be accomplished by obtaining the 

of the region via a thinning (also called skeletonizing) algorithm. 
keleton of a region may be defined via the medial axis transformation 

.The MAT of a region R with border b is as follows. For each point p in 
nd its closest neighbor in b. If p has more than one such neighbor, it is 

oint on the boundary of a re- 
merous algorithms have been proposed for improving computational 

located at [416, 3351. Note that simp1 cy while at the same time attempting to approximate the medial axis 
peaks in the two signatures is suffici ntation of a region. 
boundaries. skeleton of all regions con- 

in a binary image B via function bwmorph, using the following syntax: 
11.2.4 Boundary Segments 
Decomposing a boundary into seg S = bwrnorph(B, ' s k e l ' ,  I n f )  
duces the boundary's complexity and 
This approach is particularly attractiv 

preserves the Euler number (defined in Table 11.1). 

robust decomposition of the boundary. 
The convex hull H of an arbitrary set S is the smallest convex set conk 

S. The set difference H - S is called 
see how these concepts might be used 
segments, consider Fig. 11.12(a), to compute the skeleton of the chromosome. 

deficiency (shaded regions). The reg early, the first step in the process must be to isolate the chromosome from 
lowing the contour of S and marking ackground of irrelevant detail. One approach is to smooth the image and 
into or out of a component of the convex deficiency. Figure 11.12(b) shows threshold it. Figure 11.13(b) shows the result of smoothing f with a 
result in this case. In principle, this scheme is independent of region size 25 Gaussian spatial mask with s i g  = 15: 
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a SI c 
d e f  oundary is 8-connected, we count vertical and horizontal transitions as 1, 

agonal transitions as fi. 
man chromosome. (b) Image ~11100th~~ using a 25 25 

n. (e) Skeleton after 8 applica extract the boundary of objects contained in image f using function 
erim, introduced in Section 11.2.2: 

>> f = 
im2double ( f  ) ; >> h = fS 

>> = P e c i a l ( ' g a u s s i a n ' ,  25,  1 5 ) ;  
i l t e r  ( f  , h ,  r e p l i c a t e '  ) ; 

>> i m s h O ~ ( g )  % F i g .  1 1 . 1 3 ( b )  

Next' we threshold the smoothed image: 
> > g = .  

I m 2 b ~ ( ~ ,  1 . 5 * g r a y t h r e s h ( g ) )  ; 
>> imshow(g) % F i g .  1 1 . 1 3 ( ~ )  

g = bwperim(f ,  conn) 

9 is a binary image containing the boundaries of the objects in f .  For 
nectivity, which is our focus, conn can have the values 4 or 8, depend- 

e r  4- or 8-connectivity (the default) is desired (see the margin 
ple 11.4 concerning the interpretation of these connectivity val- 
cts in f can have any pixel values consistent with the image class, 

ackground pixels have to be 0. By definition, the perimeter pixels are 
and are connected to at least one other nonzero pixel. 

where the automarically determined threshold. g r a y t h r e s h  ( g  ) .  nectivity can be defined in a more general way in IPT by using a 3 X 3 

piled by 1 .S to increase by 50% the amount of threrholding The reason of 0s and 1s for conn. The 1-valued elements define neighborhood 
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locations relative to the center element of conn. For example, conn = 0 

boundary of each object in the input is of class log ica l .  
The diameter of a boundary is defined as the Euclidean distance 

be a useful descriptor, it is best applied to boundaries with a single 
thest points.t The line segment connecting these points is called the 
of the boundary. The minor axis of a boundary is defined as the line 
dicular to the major axis and of such length that a box passing throu 
outer four points of intersection of the boundary with the two axes co 
ly encloses the boundary.This box is called the basic rectangle, and the 
the major to the minor axis is called the eccentricity of the boundary. 

Function diameter (see Appendix C for a listing) computes the di 
major axis, minor axis, and basic rectangle of a boundary or region. Its s 

s = diameter(L) 
Chaincode: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1  1 

where L is a label matrix (Section 9.4) and s is a structure with the fol Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0  
Shapeno.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3  

fields: 

s.Diameter 
in the corresponding region. to rotations that are multiples of 90". An approach used frequently 

s.MajorAxis A 2 X 2 matrix. The rows contain the row and 
coordinates for the endpoints of the major axi 
corresponding region. 

s.MinorAxis 
coordinates for the endpoints of the minor axis ave been developed already. They consist of function boundaries to ex- 

the boundary, function diameter to find the major axis, function 

coordinates of a corner of the basic rectangle. 

1 1.3.2 Shape Numbers 1 with 4-connectivity specified. As indicated in Fig. 11.14, compensa- 
rotation is based on aligning one of the coordinate axes with the major 

e x-axis can be aligned with the major axis of a region or boundary by 
and Guzman [1980], Bribiesca [1981]).The order of a shape number is de function x2maj oraxis.  The syntax of this function follows; the code is 
at the number of digits in its representation. Thus, the shape number 
boundary is given by parameter c . dif  f mm in function f chcode discuss 
Section 11.2.1, and the order of the shape number is compute [ B ,  t h e t a ]  = x2majoraxis(A, B )  

length(c.diffmm). 
As noted in Section 11.2.1,4-directional Freeman chain codes can be 

or boundary list. (As before, we assume that a boundary is a connected, 
curve.) On the output, B has the same form as the input (i.e., a binary 
or a coordinate sequence. Because of possible round-off error, rotations 
sult in a disconnected boundary sequence, so postprocessing to relink 

oints (using, for example, bwmorph) may be required. 

a b  
c d 
FIGURE 11.14 
Steps in the 
generation of a 
shape number. 
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th in order to illustrate the effect that reducing the number of descriptors 
% t o  length(Z) .  The output, S, i s  an ND-by-2 matr ix  containing undary.The image in Fig. 11.16(b) was generated using 
% coordinates o f  a closed boundary. 

% Pre l iminar ies.  
np = length(z) ;  b o u n d a r i e s ( f ) ;  
% Check inputs .  
i f  nargin == 1 I nd > np = bound2im(b, 344, 270); 

nd = np; 
end 

the dimensions shown are the dimensions of f. Figure 11.16(b) shows 
% Create an a l te rna t ing  sequence o f  1s and - Is  f o r  use i n  cen te r i  The boundary shown has 1090 points. Next, we computed the 
% the transform. 
x = O:(np - 1 ) ;  
m = ((-1) . ^  x ) ' ;  

% Use only nd descr ip tors  i n  the inverse. Since the 
% descriptors are centered, (np - nd) /2 terms from each end o f  
% the sequence are set t o  0. tained the inverse using approximately 50% of the possible 1090 
d = round((np - nd) /2 ) ;  % Round i n  case nd i s  odd. 
z(1:d) = 0; 
z(np - d + 1:np) = 0; 
% Compute the inverse and convert back t o  coordinates. 6 = i f r d e s c p ( z ,  546) ;  

zz = i f f t ( z ) ;  6im = bound2im(z546, 344, 270) ;  

s(: ,  1 )  = rea l (zz ) ;  
s(:, 2) = imag(zz); 11.17(a)] shows close correspondence with the orig- 
% M u l t i p l y  by a l te rna t ing  1 and -1s t o  undo the e a r l i e r  undary in Fig. 11.16(b). Some subtle details, like a 1-pixel bay in the 
% centering. facing cusp in the original boundary, were lost, but, for all practical 
s(: ,  I )  = m.*s(:, 1 ) ;  
s(:, 2) = m.*s(:, 2); 

EXAMPLE 11.8: 
Fourier but obtained using a Gaussian mask of size 15 X 15 with sigma = The result obtained using 110 descriptors [Fig. 11.17(c)] shows 
descriptors. thresholded at 0.7.The purpose was to generate an image that was not 

ary, Figure 11.17(f) shows distortion that is unacceptable be- 
main feature of the boundary (the four long protrusions) was 

FIGURE 1 1.1 6 
(a) Binary image. 
(b) Boundary me of the boundaries in Fig. 11.17 have one-pixel gaps due to round off in 
extracted using 
function values. These small gaps, common with Fourier descriptors, can be re- 
boundaries.The d with function bwmorph using the ' b r i d g e  ' option. B 
boundary has 

mentioned earlier, descriptors should be as insensitive as possible to 
ation, rotation, and scale changes. In cases where results depend on the 
in which points are processed, an additional constraint is that descriptors 

these geometric changes, but the changes in these parameters can 
to simple transformations on the descriptors (see Gonzalez and 
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a b  
FIGURE 1 1.1 8 
(a) Boundary 
segment. 
(b) Representat~on 
as a 1-D funct~on. 

ndary reconstructed using 546, 110, 56,28, 14, and 8 Fourier descriptors out 
Regional Descriptors 

13.3.4 Statistical Moments his section we discuss a number of IPT functions for region processing and 
oduce several additional functions for computing texture, moment invari- 

The shape of 1-D boundary representations (e.g., boundary segments and , and several other regional descriptors. Keep in mind that function 
ture waveforms) can be described quantitatively by using statistical mo orph discussed in Section 9.3.4 is used frequently for the type of process- 
such as the mean, variance, and higher-order moments. Consider Fig. 11. e outline in this section. Function roipoly (Section 5.2.4) also is used 
which shows a boundary segment, and Fig. 11.18(b), which shows the segme ently in this context. 
represented as a 1-D function, g( r ) ,  of an arbitrary variable r.This function w 
obtained by connecting the two end points of the segment to form a "major" 
and then using function x2maj oraxis discussed in Section 11.3.2 to align .% Function regionprops 
major axis with the x-axis. ction regionprops is IPT's principal tool for computing region descrip- 

One approach for describing the shape of g(r )  is to normalize it to unit area a .This function has the syntax 
treat it as a histogram. In other words, g(r i )  is treated as the probability of val 
occurring. In this case, r is considered a random variable and the moments are D = regionprops(L, properties) 



464 Chapter 11 R Representation and Description 

element is the vertical coordinate (or y-coordinate). 
respectively. For the purposes of our discussion, on pixels are valued Scalar; the number of pixels in ' GonvexImage ' . 
off pixels are valued 0. 

EXAMPLE 11.9: a As a simple illustration, suppose that we want to obtain the area and 
Using function bounding box for each region in an image 0. We write 
regionprops. 

>> B = bwlabel (0) ;  % Convert B t o  a l a b e l  matrix.  
2> D = regionprops(B, ' a r e a ' ,  'boundingbox') ;  region.The eccentricity is the ratio of the distance between the foci of th 

and its major axis 1ength.The value is between 0 and 1, with 0 and 1 bein 
To extract the areas and number of regions we write degenerate cases (an ellipse whose eccentricity is 0 is a circle, while an el 

an eccentricity of 1 is a line segment). 
>> w = [D.Area]; EquivDiameter ' Scalar; the diameter of a circle with the same area as the region. Comput 
>> NR = length(w);  s q r t  (4*Area/pi) .  

EulerNumber' Scalar; equal to the number of objects in the region minus the number o 
where the elements of vector w are the areas of the regions and NR is the n 
ber of regions. Similarly, we can obtain a single matrix whose rows are 
bounding boxes of each region using the statement 

V = c a t ( 1 ,  D.BoundingBox); 

l e f t ,  l e f t -bo t tom,  l e f t - t o p ] .  
This array is of dimension NR X 4. The c a t  operator is explained The number of on pixels in FilledImage. 
Section 6.1.1. Binary image of the same size as the bounding box of the region.The on 

correspond to the region, with all holes filled. 
1 1.4.2 Texture Binary image of the same size as the bounding box of the region; the on 

correspond to the region, and all other pixels are o f f .  
MajorAxisLength ' The length (in pixels) of the major axist of the ellipse that has the same s 

texture based on statistical and spectral measures. 

Statistical Approaches moments as the region. 
The angle (in degrees) between the x-axis and the major axist of the elli 
has the same second moments as the region. 
A matrix whose rows are the [ x  , y ] coordinates of the actual pixels in the 

about the mean is given by 
L-1 

PII = C (zi - m)"p(zi) 
i=O 

465 
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TABLE 1 1.2 TABLE 1 1.3 
Some descriptors Texture measures 
of texture based for the regions 
on the intensity 00th 87.02 11.17 0.002 -0.011 shown in 
histogram of a Fig. 11.19. 
region. Standard deviation u = = fi A measure of average contrast. 

R = 1 - 1/(1 + u2)  Measures the relative smoothness 0 

the intensity in a region. R is 0 for 
region of constant intensity and t = s t a t x t u r e ( f ,  s c a l e )  statxture 

L-""-.- 
approaches 1 for regions with large 
excursions in the values of its e f is an input image (or subimage) and t is a 6-element row vector whose 
intensity levels. In practice, the onents are the descriptors in Table 11.2, arranged in the same order. Para- 
variance used in this measure is s c a l e  also is a 6-element row vector, whose components multiply the cor- 
normalized to the range [O, 11 by 
dividing it by (L - I ) ~ .  nding elements of t for scaling purposes. If omitted, s c a l e  defaults to all Is. 

Tnird moment p3 = (zi - m)3p(zi) Measures the skewness of a histogram e three regions outlined by the white boxes in Fig. 11.19 represent, from EXAMPLE 11.10: 

?his measure is 0 for symmetric o right, examples of smooth, coarse and periodic texture. The histograms Statistical texture 

histograms, positive by histograms these regions, obtained using function i m h i s t ,  are  shown in Fig. 11.20. The measures. 

skewed to the right (about the mean tries in Table 11.3 were obtained by applying function s t a t x t u r e  to  each 
and negative for histograms skewed to the subimages in Fig. 11.19.These results are in general agreement with the 
the 1eft.Values of this measure are ture content of the respective subimages. For example, the entropy of the 
brought into a range of values rse region [Fig. 11.19(b)] is higher than the others because the values of 
comparable to the other five measures pixels in that region are more random than the values in the other 
by dividing p3 by (L - 1)2 also, whi 
is the same divisor we used to 
normalize the variance. 

L-1 

U = p2(zi) Measures uniformity.This measure 
i=O maximum when all gray levels are 

equal (maximally uniform) and 
decreases from there. 

where zi is a random variable indicating intensity, p ( z )  is the histogram of th 
intensity levels in a region, L is the number of possible intensity levels, and 

L-1 

m = 2 z i ~ ( z i )  
i=O 

is the mean (average) intensity. These moments can be computed with 
tion statmoments discussed in Section 5.2.4. Table 11.2 lists some commo 
scriptors based on statistical moments and also on  uniformity and entro 
Keep in mind that the second moment, p2(z), is the variance, v2. 

Writing an M-function to compute the texture measures in Table 11.3 URE 11.19 The subimages shown represent. from left to right, smooth, coarse, and periodic texture. 

straightforward. Function s t a t x t u r e ,  written for this purpose, is included se are optical microscope images of a superconductor, human cholesterol, and a microprocessor. 
inal images courtesy of Dr. Michael W. Davidson, Florida State University.) 

Appendix C.The syntax of this function is 
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esults of these two equations constitute a pair of values [S(r), S(O)] for 
r of coordinates (r, 0). By varying these coordinates we can generate 

a~ b C' 

[ s r a d ,  sang, S]  = specx tu re ( f )  specxture 

regions. This also is true for the contrast and for the average intensity in 
ammr--- ----- 

case. On the other hand, this region is the least smooth and the least unif srad is S(r), sang is S(O), and S is the spectrum image (displayed using 
as revealed by the values of R and the uniformity measure. The histogra , as explained in Chapter 4). 
the coarse region also shows the greatest lack of symmetry with respect to 
location of the mean value, as is evident in Fig. 11.20(b), and also by 
largest value of the third moment shown in Table 11.3. 

Spectral Measures of Texture 
Spectral measures of texture are based on the Fourier spectrum, which is 

of high-energy bursts in the spectrum, generally are quite difficult to detect d by the random orientation of the strong edges in Fig. 11.21(a). By 
spatial methods because of the local nature of these techniques.Thus spectral , the main energy in Fig. 11.21(d) not associated with the background 
ture is useful for discriminating between periodic and nonperiodic texture 
terns, and, further, for quantifying differences between periodic patterns. 

function and r and 0 are the variables in this coordinate system. For eac 
rection 0, S(r, 8) may be considered a 1-D function, SB(r). Similarly, for 
frequency r, Sr(8) is a 1-D function. Analyzing Se(r) for a fixed value 
yields the behavior of the spectrum (such as the presence of peaks) along xis([horzmin horzmax vertmin vertmax]) 
dial direction from the origin, whereas analyzing Sr(8) for a fixed value 
yields the behavior along a circle centered on the origin. 

A global description is obtained by integrating (summing for discrete 
ables) these functions: 

IT 

S(r)  = C, Sdr )  
B=O 

ot of S(r)  corresponding to the ordered matches shows a strong peak 
and = 15 and a smaller one near r = 25. Similarly, the random nature of the 

Ro 

s (0 )  = C, Sr(0) 
r = l  

where Ro is the radius of a circle centered at the origin. 
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a. b 
c d 

FIGURE 11.22 
Plots of (a) S(r )  
and (b) S(8) for 
the random 
Image. (c) and (d) 
are plots of S ( r )  
and S(8) for the 
ordered image. 

FIGURE 11.21 
(a) and (b) 
Images of 
unordered and 
ordered objects. 
(c) and (dl 
Corresponding 
spectra. 

- ( p  + q )  is defined as 

, where 

Y 
L 

F 3 A.3 Moment Invariants 
+ q = 2 ,3 ,  ... . The 2-D moment of order ( p  + q)  of a digital image f ( x ,  y )  is defined as 

set of seven 2-D moment i n v a r i a n t s  that are insensitive to translation, scale 
e, mirroring, and rotation can be derived from these equations.They are 

mpq = C, C, x P Y y 4 ( x ,  Y )  
" Y 41 = 7720 + 7702 

for p, q = 0 , 1 , 2 , .  . . , where the summations are over the values of the 42 = (7720 - 7 7 0 2 ) ~  f 477:1 
coordinates x and y spanning the image. The corresponding c e n t r a l  mo 4 3  = (77311 - 3 ~ 1 2 ) ~  (37721 - 7 7 0 3 ) ~  
defined as 

4 4  = ( 7 3 0  + ~ 1 2 ) ~  + (7721 + ~ 0 3 ) ~  

Ppr, = C, C, ( X  - y ) P ( ~  - 7)"f ( 4  Y )  $5  = (7730 - 37712)(7730 + 7 7 1 2 ) [ ( ~ 3 0  + ~ 1 2 ) ~  
X Y -3 (%I  + ~ 0 3 ) ~ l  + (37721 - ~ 0 3 ) ( ~ 2 1  + 7703) 

where [3(7730 + ~ 1 2 ) ~  - (7721 + 7 7 0 3 ) ~ 1  

mrn mnr $6 = (7720 - ~ 0 2 ) [ ( ~ 3 0  + 7 7 1 2 ) ~  - (7721 7 7 0 3 ) ~ I  - ... L" ... 
x = -- and = 2 

m o o  moo 
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invmoments 
-,- 

EXAMPLE 11.12 
Moment 
invariants. 

B = fliplr(A) 
returns A with the 
columns flipped 
about the vertical 
axis, and 
B = flipud(A) 
retltrns A with the 
rowsflipped abo~tr 
the horizontal axis. 

The image size is increased automatically by padding to fit the rotation. 
' c rop '  is included in the argument, the central part of the rotated image 
cropped to the same size as the original. The default is to specify angle  only. 
which case ' nearest ' interpolation is used and no cropping takes place. 
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a 
b c 
d e' 

FIGURE 1 1.23 
(a) Original, 
padded image. 
(b) Half size 
image. 
(c) Mirrored 
Image. (d) Image 
rotated by 2". 
(e) Image rotated 
45". The zero 
padd~ng ln (a) 
through (d) was 
done to make the 
images cons~stent 
in slze with (e) for 
viewing purposes 
only. 
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TABLE 1 1.4 
The seven moment 
invariants of the 
images in 
Figs. 11.23(a) 
through (e). Note 
the use of the 
magnitude of the 
log in the first 
column. 

Description 475 Representation and Description 11.5 BI Using Principal Components for 

FIGURE 1 1.24 
Forming a vector 
from 
corresponding 
plxels In a stack of 
images of the 
same size. 

...... ..... .... .... .... 
...... / ..... .... ...... ..... .... .... .... 

32.102 32.094 
Image n 

-- Image 2 
>> f r 2  = i m r o t a t e ( f ,  2 ,  ' b i l i n e a r ' ) ;  column vector 
>> f r2p  = padarray(f r2 ,  [76 761, ' b o t h ' ) ;  Image 1 

>> f r45  = i m r o t a t e ( f ,  45, ' b i l i n e a r ' ) ;  
images are of size M X N, there will be total of MN such n-dimensional 

rs comprising all pixels in the n images. 
image in the set. The 0s in both rotated images were generated by IPT i e mean vector, m,,  of a vector population can be approximated by the 
process of rotation. 

The seven moment invariants of the five images just discussed were g 
ated using the commands l K  m ,  = --Exk 

K k = l  
>> phiorig = abs(log(invmoments(f))); 
>> phihalf = abs(log(invmoments(fhs))); imilarly, the n X n covariance matrix, C, ,  of the population 
>> phimirror = abs(log(invmoments(fm))); be approximated by 
>> phirot2  = abs(log(invmoments(fr2))); 
>> phirot45 = abs(log(invmoments(fr45))); l K  c, = - 2 ( ~ k  - m x ) ( x k  - mX)* 

K - 1 k = ,  
Note that the absolute value of the log was used instead of the mome 

re K - 1 instead of K is used to obtain an unbiased estimate of C ,  from 
use C, is real and symmetric, finding a set of n orthonormal 

vectors always is possible. 
onents trrinsfornz (also called the Hotelling transform) is 

y = A ( x  - m,) 

s not difficult to show that the elements of vector y are uncorrelated.Thus, 
trix Cy is diagonal. The rows of matrix A are the normalized 

tion for more than four decades. nvectors of C, .  Because C, is real and symmetric, these vectors form an 
nd it follows that the elements along the main diagonal of 

Using Principal Components for Description lues of C, .  The main diagonal element in the ith row of Cy 
variance of vector element yi. 

Suppose that we have n registered images, "stacked" in the arrangem ecause the rows of A are orthonormal, its inverse equals its transpose. 
shown in Fig. 11.24.There are n pixels for any given pair of coordinates (i, e x's by performing the inverse transformation 
one pixel at that location for each image. These pixels may be arranged in 
form of a column vector x = ATY + mx 

importance of the principal components transform becomes evident when 
s are used, in which case A becomes a q X n matrix, A,,. 
tion is an approximation: 
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covmatr ix  
,- .---,.--.---- 

11.5 !# Using Principal Components for Description 477 Representation and Description 

The mean square error == 1 % Handle s p e c i a l  case. 
the x's is given by the expression 

n 4 

ems = 2 Ai - I] Ai 
i=1 i=1 Compute an unbiased es t imate  o f  m. 

Subt rac t  t h e  mean from each row o f  X. 
= X - m(ones(K, I ) ,  : ) ;  

The first line of this equation indicates that the error is zero if q = n (that is, Compute an unbiased est imate o f  C. Note t h a t  t he  product  i s  

the eigenvectors are us X1*X because t h e  vectors  are  rows o f  X. 
= (X1*X) I (K  - 1) ;  

shows that the error can = m';  % Convert t o  a column vec to r .  
sociated with the largest 

A 

optimal in the sense that 
x and their approximations e following function implements the concepts developed in this section. 
vectors corresponding to the largest (principal) eigenvalues of the the use of structures to simplify the output arguments. 
matrix. The example given later in this section further clarifies this 

A set of n registered images (each of size M X N) is converted to a sta i o n  P = princomp(X, q) 
the form shown in Fig. 11.24 by using the command: INCOMP Obtain principal-component vectors and re la ted  quan t i t i es .  

P = PRINCOMP(X, Q) Computes the principal-component vectors o f  

>> S = c a t ( 3 ,  f l ,  f 2 ,  . . . ,  f n ) ;  the  vec tor  populat ion contained i n  t he  rows o f  X, a ma t r i x  o f  
s ize  K-by-n where K i s  t he  number o f  vectors and n i s  t h e i r  

This image stack array, which is of size M x N x n, is converted to an dimensional i ty.  Q, w i t h  values i n  t he  range [0, n ]  , i s  the  number 

whose rows are n-dimensional vectors by using function i m s t a c k  
o f  eigenvectors used i n  const ruc t ing  the  pr incipal-components 
t ransformat ion mat r ix .  P i s  a s t ruc tu re  w i t h  the  f o l l o w i n g  

Appendix C for the code), which has the syntax 

[X ,  R] = i m s t a c k 2 v e c t o r s ( S ,  MASK) K-by-Q mat r ix  whose columns are t he  p r i n c i p a l -  
component vectors.  

where S is the image stack and X is the array of vectors extracted from S Q-by-n p r i n c i p a l  components t rans format ion  ma t r i x  
the approach shown in Fig. 11.24. Input MASK is an M X N logical or nu whose rows are t he  Q eigenvectors o f  Cx corresponding 
image with nonzero elements in the locations where elements of S are t o  the  Q l a r g e s t  eigenvalues. 
used in forming X and 0s in locations to be ignored. For exampl K-by-n ma t r i x  whose rows are  the  vectors  reconstructed 
to use only vectors in the right, upper quadrant of the images in the sta from the  principal-component vectors.  P.X and P.Y are 

MASK would contain Is  in that quadrant and 0s elsewhere. If MASK is i d e n t i c a l  if Q = n. 

cluded in the argument, then all image locations are used in forming X. P.ems The mean square e r r o r  incur red i n  using on l y  t he  Q 

parameter R is an array whose rows are the 2-D coordinates corres eigenvectors corresponding t o  t he  l a r g e s t  
eigenvalues. P.ems i s  0 i f  Q = n. 

the location of the vectors used to form X. We show how to use MASK in Ex The n-by-n covariance ma t r i x  o f  t he  popu la t ion  i n  X. 
ple 12.2. In the present discussion we use the default. The n-by-1 mean vector  o f  t he  popu la t ion  i n  X. 

The following M-function, c o v m a t r i x ,  computes the mean vector and The Q-by-Q covariance ma t r i x  o f  the  popu la t ion  i n  
variance matrix of the vectors in X. Y. The main diagonal  contains t he  eigenvalues ( i n  

descending order)  corresponding t o  t he  Q eigenvectors.  
f u n c t i o n  [C, m ]  = covmatr ix(X) 
%COVMATRIX Computes t h e  covar iance m a t r i x  o f  a v e c t o r  popu la t ion .  
% [C, MI = COVMATRIX(X) computes t h e  covar iance ma t r i x  C and the  
% mean vec to r  M of a vec to r  popu la t ion  organized as t h e  rows of covariance mat r ix  o f  t he  vectors i n  X. 
% ma t r i x  X. C i s  o f  s i z e  N-by-N and M i s  o f  s i z e  N -by - I ,  where N 
% t h e  dimension o f  t h e  vec tors  ( t he  number o f  columns o f  X).  vec tor  t o  a row vector.  

[K, n ]  = s i ze (X ) ;  Obtain t h e  eigenvectors and corresponding eigenvalues o f  Cx. The 
X = double(X);  e igenvectors a re  t h e  columns of n -by -n  m a t r i x  V.  D i s  an n -by -n  

princomp --- 
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[ V ,  Dl = e i g ( A )  
returns the eigenvec- 
tors of A as the 
columns of matrix V ,  
and the correspond- 
ing eigenval~ies 
along the main diag- 
onal of diagonal ma- 
trix D. 

EXAMPLE 11.13: 
Principal 
components. 

Next, we obtain the six principal-component images by using q = 6 in fun e first component image is generated and displayed with the commands 
tion princomp: gl = P . Y ( : ,  1); 

gl = reshape(g1, 512, 512); 
2> P = princomp(X, 6); imshow(g1, I I )  

FIGURE 1 1.25 
Six multispectral 
images in the 
(a) visible blue, 
(b) visible green, 
(c) visible red, 
(d) near infrared, 
(e) middle 
infrared, and 
(f) thermal 
infrared bands. 
(Images courtesy 
of NASA.) 
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>> Dl = double(f1)  - double(h1) ;  
>> Dl = gscale(D1) ; 
>> imshow(D1) 

Figure 11.28(a) shows the result.The low contrast in this image is an ind' 
tion that little visual data was lost when only two principal component ima 
were used to reconstruct the original image. Figure 11.28(b) shows the di 
ence of the band 6 images. The difference here is more pronounced bec 
the original band 6 image is actually blurry. But the two principal-compo 
images used in the reconstruction are sharp, and they have the strongest i 
ence on the reconstruction. The mean square error incurred in using only two 
principal component images is given by 

P .  ems 

, Description 

FIGURE 11.26 
Principal- 
component 
images 
corresponding 
the images in 
Fig. 11.25. 

ans = 

1 .7311 e+003 A2 A3 A, As A6 
IABLt 1 1.3 

Eigenvalues of 

which is the sum of the four smaller eieenvalues in Table 11.5. 

ans = 
TABLE 1 1.5 

1 .7311 e+003 Eigenvalues of 
10352 2959 1403 203 94 31 P.Cy whenq = 6. 

which is the sum of the four smaller eigenvalues in Table 11.5. 





12.2 Computing Distance Measures 

X = [::I 
x n  

re each component, xi, represents the ith descriptor and n is the total num- 
of such descriptors associated with the pattern. Sometimes it is necessary 

putations to use row vectors of dimension 1 x n, obtained simply by 
g the transpose, xT, of the preceding column vector. 
nature of the components of a pattern vector x depends on the ap- 

oach used to describe the physical pattern itself. For example, consider the 
of automatically classitying alphanumeric characters. Descriptors 

for a decision-theoretic approach might include measures such 2-D 
invariants or a set of Fourier coefficients describing the outer bound- 

some applications, pattern characteristics are best described by structur- 
tionships. For example, fingerprint recognition is based on the interrela- 
ips of print features called minutiae. Together with their relative sizes 

Preview ocations, these features are :primitive components that describe finger- 

We conclude the book with a discussion and development of several M-functi such as abrupt endings, branching, merging, and discon- 

for region and/or boundary recognition, which in this chapter we call objects cognition problems of this type, in which not only 

patterns. Approaches to computerized pattern recognition may be divided i asures about each feature but also the spatial relationships be- 

two principal areas: decision-theoretic and structural. The first category de res determine class membership, generally are best solved by 

with patterns described using quantitative descriptors, such as length, area 
ture, and many of the other descriptors discussed in Chapter 11.The second e material in the following sections is representative of techniques for 

gory deals with patterns best represented by symbolic information, suc ementing pattern recognition solutions in MATLAB. A basic concept in 

strings, and described by the properties and relationships between those symb gnition, especially in decision-theoretic applications, is the idea of pattern 

as explained in Section 12.4. Central to the theme of recognition is the conce hing based on measures of distance between pattern vectors. Therefore, 

"learning" from sample patterns. Learning techniques for both decision-the0 egin the discussion with various approaches for the efficient computation 

and structural approaches are implemented and illustrated in the material distance measures in MATLAB. 

follows. Computing Distance Measures in MATLAB 
material in this section deals with vectorizing distance computations that 

Background rwise would involve f o r  or w h i l e  loops. Some of the vectorized expres- 
ns presented here are considerably more subtle than most of the examples 

A pattern is an arrangement of descriptors, such as those discussed vious chapters, so the reader is encouraged to study them in detail. 
Chapter 11.The name feature is used often in the pattern recognition literatu wing formulations are based on a summary of similar expressions 
to denote a descriptor. A pattern class is a family of patterns that share a set 0 

common properties. Pattern classes are denoted wl , w,, . . . , w w ,  where etween two n-dimensional (row or column) vec- 
the number of classes. Pattern recognition by machine involves technique rs x and y is defined as the scalar 
assigning patterns to their respective classes-automatically and with as 
human intervention as possible. d(x, y) = jjx - yl[ = Ily - x[[ = [(xl - y1)2 + ... + (x, - y,,)2]112 

The two principal pattern arrangements used in practice are vectors is expression is simply the norm of the difference between the two vectors, 
quantitative descriptions) and strings (for structural descriptions). Pa we compute it using MATLAB'!; function norm: 
vectors are represented by bold lowercase letters, such as x, y, and z, and 

in MATLAB 

norm the n x 1 vector form 
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rse matrix operation is the most time-consuming computational task 
ahalanobis distance. This operation can be opti- 

by using MATLAB's matrix right division operator ( 1 )  in- 
2.4 (see also the margin note in the following page). 

iven in Section 11.5. 
tance between y and each element of X is contained in the p X 1 vecto of p, n-dimensional vectors, and let Y denote 

nal vectors, such that the vectors in both X and 
d = sqrt(sum(abs(X - repmat(y, p, 1 ) ) . ^ 2 ,  2 ) )  hese arrays. The objective of the following M-function is 

where d ( i )  is the Euclidean distance betw'een y and the ith row of ute the Mahalanobis distance between every vector in Y and the 
X ( i ,  : )]. Note the use of function repmat to duplicate row vector y p 
and thus form a p X n matrix to match the dlimensions of X. The last 2 
right of the preceding line of code indicates; that sum is to operate a1 
mension 2; that is, to sum the elements along the horizontal dimension. 

bis distance between 
the vectors i n  X ,  and 

of these two populations can be obtained using the expression h i s  size(Y, 1 ) .  The 
vectors i n  X and Y are assumed to be organized as rows. The 

D = sqrt(sum(abs(repmat(permute(X, [ I  3 2 ] ) ,  [ I  q I ] )  . .  i n p u t  data can be real of complex. The outputs are real 
- repmat(permute(Y, [ 3  1 2 ] ) ,  [p  1 1 ] ) ) . * 2 ,  3 

where D (i ,  j ) is the Euclidean distance between the ith and jth rows o D = MAHALANOBIS(Y, C X ,  MX) computes the Mahalanobis distance 
populations; that is, the distance between X ( I'L , : ) and Y (  j , : ) . between each vector i n  Y and the given mean vector, MX. The 

The syntax for function permute in the preceding expression is results are output i n  vector D, whose length i s  size(Y, 1 ) .  The 
vectors i n  Y are assumed to be organized as the rows of this  

B = permute(A, order)  array. The input data can be real or complex. The outputs are 
real quantities. In addition to the mean vector MX, the 

This function reorders the dimensions of A according to the elements of the ve covariance matrix CX of a population of vectors X also must be 
order (the elements of this vector must be unique). For example, if A is a provided. Use function COVMATRIX (Section 11.5) to compute MX and 
array, the statement B = permute ( A ,  [2 1 1 ) simply interchanges th 
columns of A, which is equivalent to letting B equal the transpose of A. I y Manipulation Tips 
of vector order is greater than the number of dimensions of A, 

home .online. no/-pjacklam/matlab/doclmtt/index. h t m l  

the third dimension, each being a column (dimension 1) of X. Since there www,prenhall.com/gonzalezwoodseddins 
columns in X, n such arrays are created, with each array being of dimension p ram = varargin; % Keep i n  mind that param i s  a ce l l  array. 
Therefore, the command perrnute(X, [ I  3 :!I ) creates an array of dimen 
p X 1 X n. Similarly, the command permute (Y, [3 1 21 ) creates an array o = size(Y, 1 ) ;  % Number of vectors i n  Y .  

length(param) == 2 

rix of the vectors 
other command involving Y. Basically, the preceding expression for D is sim 
vectorization of the expressions that would be written using f o r  or while 1 [Cx,  mx] = covmatrix(X) ; 

In addition to the expressions just discussed, we use in this chapter a n vector provided. 
tance measure from a vector y to the mean m, of a vector population, wei 
ed inversely by the covariance matrix, C,, of the population. 
called the Mahalanobis distance, is defined as; 

error( 'Wrong number of inputs. ' ) 
d(y, m,) = ( Y  - m,)TC:;'(y - m,) 

mahalanobis 
m----- 
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mx = mx(:) ' ;  % Make sure that mx i s  a row vector. 

% Subtract the mean vector from each vector i n  Y .  
Yc = Y - mx(ones(ny, I ) ,  : ) ;  

% Compute the Mahalanobis distances. texture in Table l1.2. 
With A O  square nza- d = real(sum(Yc/Cx. *conj ( Y c )  , 2)  ) ; roach used quite frequently when dealing with (registered) 
trix, the MATLAB 
matrix operation ges is to stack the images and then form vectors from corre- 
A,B is a nlore accrr- The call to r e a l  in the last line of code is to remove "numeric noise," a 
rate (andgenerally did in Chapter 4 after filtering an image. If the data are known to alway 
faster) implements- real, the code can be simplified by removing functions r e a l  and con j .  
tion of the operation 
B * i n v  ( A ) .  Similar- S = c a t ( 3 ,  f l ,  f 2 ,  . . .  9 f n )  
ly, A\ 8 is a preferred 
inlplernentation of 

Recognition Based on Decision-Theoretic Methods 
the operation 
i n v ( A )  *B. See 
Table 2.4. cussed in Section 11.5. See Example 12.2 for an illustration. 

es, wl, q,. . . , OW, the basic problem in decision-theoretic pattern recog atching Using Minimum-Distance Classifiers 
is to find W decision functions dl(x), d2(x), . . . , dW(x) with the property 
a pattern x belongs to class mi, then ose that each pattern class,  LO^, is characterized by a mean vector mi. That 

use the mean vector of eaclh population of training vectors as being rep- 
di(x) > dj(x) j = 1,2, .  . . , W ;  j # i 

In other words, an unknown pattern x is said to belong to the ith pattern cl 
if, upon substitution of x into all decision functions, di(x) yields the largest j = 1,2 ,  ..., w 
merical value. Ties are resolved arbitrarily. 

The decision boundary separating class oi from wj is given by values of x pattern vectors from class wj and the sum- 
which di(x) = dj(x) or, equivalently, by values of x for which s before, Wis the number of pattern class- 

One way to determine the class membership of an unknown pattern vector 
di(x) - dj(x) = 0 

Common practice is to express the decision boundary between two classe 
ing the distance measures: 

Dj(x) = llx -. mill j = 1,2 , .  . . , W 

then assign x to class oi if Di(x) is the smallest distance. That is, the small- 
t distance implies the best match in this formulation. 
Suppose that all the mean vectors are organized as rows of a matrix M. 

d = sqrt(sum(abs(M - repmat(x, W, 1 ) ) . ^ 2 ,  2 ) )  

ause all distances are positive, this statement can be simplified by ignoring 
s q r t  operation. The minimum of d determines the class membership of 

12.3.: Forming Pattern Vectors > c l a s s  = f i n d ( d  == m i n ( d ) ) ;  
As noted at the beginning of this chapter, pattern vectors can be formed 
quantitative descriptors, such as those discussed in Chapter 11 for re other words, if the minimum of d is in its kth position (i.e., x belongs to the 
and/or boundaries. For example, suppose that we describe a boundary by u h pattern class), then scalar c l a s s  will equal k. If more than one minimum 
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exists, c l a s s  would equal a vector, with each of its elements pointing to a 
ferent location of the minimum. 

If, instead of a single 
of a matrix, X, then we 
Section 12.2 to obtain a matrix D, whose element D ( I ,  J ) is the Euclidean f (x, y)w*(x,  y)  - F(u, v )  o H ( u ,  v )  

tance between the ith pattern vector in X and the jth mean vector in M. Thu second aspect of the correlation theorem is included for completeness. It 
find the class membership of, say, the ith pattern in X, we find the column 10 t used in this chapter. 
tion in row i of D that yields the smallest value. Multiple minima yield multi mplementation of the first correlation result in the form of an M-function 
values, as in the single-vector case discussed in the last paragraph. traightforward, as the following code shows. 

It is not difficult to show that selecting the s~nallest distance is equivalen 
evaluating the functions 

1 G = DFTCORR(F, W )  performs the correlation of a mask, W, w i t h  
d,(x) = xrmi - -mTmi j = 1,2 , .  . . , w 

2 image F.  The output, G ,  i s  the correlation image, of class 
double. The output i s  of the same size as F.  When, as i s  

and assigning x to class generally true i n  practice, the mask image i s  much smaller than 

mulation agrees with the concept of a decision function defined earlier. G ,  wraparound error i s  negligible i f  W i s  padded t o  s ize(F) .  

The decision boundary between classes wi and wi for a minimum dista 
classifier is 

conj (fft2(w, M, N ) ) ;  
d i j ( x )  = di(x)  - d,(x) r ea l ( i f f t2 (w.* f ) ) ;  

- 1 
- xT(mi - mi) - - (mi  - mi)T(mi + mi) = 0 Figure 12.l(a) shows an image of Hurricane Andrew, in which the eye of 

2 storm is clearly visible. As an example of correlation, we wish to find the 

The surface given by this equation is the perpeindicular bisector of the line se tion of the best match in (a) of the eye image in Fig. 12.l(b). The image is 

ment joining mi and mi. For n = 2, the perpendicular bisector is a line, fo ze 912 X 912 pixels; the mask is of size 32 x 32 pixels. Figure 12.l(c) is the 

n = 3 it is a plane, and for n > 3 it is called a hyperplane. uit of the following commands: 

g = d f t c o r r ( f ,  w); 
'6 2-3-3 Matching by Correlation gs = g s c a l e ( g ) ;  

Correlation is quite sim 
tion problem is to find e blurring evident in the correlation image of Fig. 12.l(c) should not be a 
(also called a mask or template) w(x ,  y) .  Typically, w(x ,  y )  prise because the image in 12.l(b) has two dominant, nearly constant re- 
than f ( x ,  y) .  One approach for finding match~:~ is to treat w ( x ,  ns, and thus behaves similarly to a lowpass filter. 
filter and compute the sum of products (or a normalized version o 
location of w in f ,  in exactly the same manner explained in Sectio 
the best match (matches) of w ( x ,  y )  in f ( x ,  y )  is (are) the location( 
maximum value(s) in the resulting correlation image. Unless w ( x ,  y )  
the approach just described generally becomes computationally inten [ I ,  J ]  = f i n d ( g  == m a x ( g ( : ) ) )  
this reason, practical implementations of spatial correlation typically re 
hardware-oriented solutions. 

For prototyping, an alternative approach is to implement correlation in 
frequency domain, making use of the correlation theorem, which, like the c 
volution theorem discussed in Chapter 4, relates spatial correlation to 
product of the image transforms. Letting " 0 " denote correlation an 
complex conjugate, the correlation theorem stmates that this case the highest value is unique.As explained in Section 3.4.1, the coor- 

ates of the correlation image correspond to displacements of the template, 
f ( x ,  Y )  o ~ ( x ,  y )  o F ( u ,  v)H*(u,  v) coordinates [ I ,  J ] correspond to the location of the bottom, left corner of 
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d f t c o r r  - ------- "-- 

EXAMPLE 12.1: 
Using correlation 
for image 
matching. 



492 Chapter 12 s Object Recognition 12.3 Recognition Based on Decision-Theoretic Methods 493 

FIGURE 12.1 
(a) Multlspectral 
Image of 
Hurricane 
Andrew. 
(b) Template. 
(c) Correlation of 
Image and 
template. 
(d) Locatlon of 
the best match. 
(Ong~nal Image 
courtesy of 
NOAA.) 

1 1 
d , (x )  = In P ( w j )  - - l n J ~ , ]  - -[(x - m j ) T ~ 7 ' ( x  - m j ) ]  

See Fig. 3.14 for nn the template. If the template were so located on top of the image, we wou 2 2 
ofthe find that the template aligns quite closely with the eye of the hurricane 

mechanics of 
those coordinates. Another approach for finding the locations of the matche j = 1,2 , .  . . , W. The term inside the brackets is recognized as the Maha- 

correlation. 
is to threshold the correlation image near its maximum, or threshold its scale obis distance discussed in Section 12.2, for which we have a vectorized imple- 

version, gs, whose highest value is known to be 255. For example, the image in entation. We also have an efficient method for computing the mean and 

Fig. 12.l(d) was obtained using the command variance matrix from Section 11.5, so implementing the Bayes classifier for the 
ultivariate Gaussian case is straightforward, as the following function shows. 

Aligning the bottom, left corner of the template with the small white dot in 
Fig. 12.l(d) again reveals that the best match is near the eye of the 
hurricane. B 

12.3.4 Optimum Statistical Classifiers 
The well-known Bayes classifier for a 0-1 loss function (Gonzalez and Woods 
[2002]) has decision functions of the form 

d 1 ( x )  = p ( x / w I ) P ( w I )  j = 1.2,. . . , W 

func t ion  d  = bayesgauss(X, CA, MA, P) bayesgauss 
%BAYESGAUSS Bayes c l a s s i f i e r  for  Gaussian pa t te rns .  a w d  -.  - - .  

% D = BAYESGAUSS(X, CA, MA, P) computes t he  Bayes dec i s i on  
% func t ions  of t h e  pa t te rns  i n  t h e  rows o f  a r ray  X us ing t h e  
% covar iance mat r ices  and and mean vectors  prov ided i n  t h e  ar rays  

CA and MA. CA i s  an a r ray  o f  s i z e  n-by-n-by-W, where n  i s  t h e  
d imens iona l i t y  o f  t he  pa t te rns  and W i s  t h e  number o f  
c lasses.  Ar ray  MA i s  o f  dimension n-by-W ( i . e . ,  t h e  columns o f  MA 
are  t h e  i n d i v i d u a l  mean vec to rs ) .  The l o c a t i o n  of t he  covar iance 
ma t r i ces  and t h e  mean vectors  i n  t h e i r  respect ive  ar rays  must 
correspond. There must be a covar iance ma t r i x  and a  mean vector  
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for each pattern class, even i f  some of the covariance matrices 
and/or mean vectors are equal. X i s  an array of size K-by-n, 
where K i s  the to ta l  number of patterns to  be classified ( i . e . ,  
the pattern vectors are rows of X ) .  P i s  a I-by-W array, 
containing the probabilities of occurrence of each class. If 
P i s  not included i n  the argument l i s t ,  the classes are assumed 
to be equally likely. 

The output, D l  i s  a column vector of length K .  I t s  Ith element i s  
the class number assigned to  the Ith vector i n  X during Bayes 
classif ication.  

d = [ 1; % In i t ia l ize  d .  
error(nargchk(3, 4, nargin)) % Verify correct no. of inputs. 
n = size(CA, 1 ) ;  % Dimension of patterns. 

% Protect against the possibility that the class number i s  
% included as an (n+l)th element of the vect:ors. 
X = double(X(:, 1 : n ) ) ;  
W = size(CA, 3 ) ;  % Number of pattern classes. 
K = size(X, 1 ) ;  % Number of patterns to cl i~ssify.  
if  nargin == 3 

P(1:W) = l/W; % Classes assumed equally likely. 
else 

i f  sum(P) -= 1 
error('E1ements of P must sum to  I . ' ) ; ,  

end 
end 

% Compute the determinants. 
for J = l:W 

DM(J) = det(CA(:, :, J ) ) ;  
end 

% Compute Inverses, uslng rlght dlvlslon (IIA/CA), where IM = 
% eye(slze(CA, 1 ) )  1s the n - b y - n  ldentity matrix. Reuse CA to 

f \ 

'/$ ' - % conserve memory. 
IM = eye(slze(CA,l)); 
for J = 1 : W  

! y e ( n ) r e t u n l s t h e n  C A ( : J : J J ) = I M / C A ( : ~ : ~ J ) ;  
: n identity matrix; end 
! y e ( m ,  n )  or 
! ye  ( [ m  n ]  ) returns 
m m x n matrix 
vith Is  along the di- 
rgonal and 0s else- 
vhere. The syntax 
? y e ( s i z e ( A )  ) 
rives the same result 
rs the previous for- 
nat, with m and n 
)eing the ni~nlber of 
.ows and columns in 
4, respectively. 

% Evaluate the decision functions. The sum terms are the 
% Mahalanobis distances discussed i n  Sectiorn 12.2. 
MA = MA'; % Organize the mean vectors as rows. 
for I = l:K 

for J = 1:W 
m = W ( J ,  : ) ;  
Y = X - m(ones(size(X, I ) ,  I ) ,  : ) ;  
i f  P(J)  == 0 

D(1, J )  = -1nf; 
else 

D ( 1 ,  J )  = log(P(J) )  - 0.5*10g(DM(J)) ... 
- 0.5*sum(Y(IJ :)*(CA(:, :, J)*Y(I,  : ) I ) ) ;  

12.3 Ei Recognition Based on Decision-Theoretic Methods 495 

Find  the maximum i n  each row of D. These maxima 
% give the class of each pattern: 

J = find(D(1, :)  == max(D(1, : ) ) ) ;  
d(1,  : )  = J ( : ) ;  

When there are multiple maxima the decision is  
arbitrary. Pick the f i r s t  one. 

6 Bayes recognition is used frequently for automatically classifying regions in EXAMPLE 12.2: 
multispectral imagery. Figure 12.2 shows the first four images from Fig. 11.25 Bayes 

(three visual bands and one infrared band). As a simple illustration, we apply of 
multispectral 

the Bayes classification approach to three types (classes) of regions in these data, 
ages: water, urban, and vegetation. The pattern vectors in this example are 
rmed by the method discussed in Sections 11.5 and 12.3.1, in which corre- 
onding pixels in the images are organized as vectors. We are dealing with 
ur images, so the pattern vectors are four dimensional. 
To obtain the mean vectors and covariance matrices, we need samples rep- 

ntative of each pattern c1ass.A simple way to obtain such samples interac- 
ly is to use function roipoly (see Section 5.2.4) with the statement 

re f is any of the multispectral images and 6 is a binary mask image. With 
format, image B is generated interactively on the screen. Figure 12.2(e) 

ows a composite of three mask images, 61,B2, and 83, generated using this 
ethod. The numbers 1,2, and 3 identify regions containing samples represen- 

tative of water, urban development, and vegetation, respectively. 
Next we obtain the vectors corresponding to each region. The four images 

lready are registered spatially, so they simply are concatenated along the 
third dimension to obtain an image stack: 

1 >> s tack = c a t ( 3 ,  f l ,  f 2 ,  f 3 ,  f 4 ) ;  

where f 1 thorough f 4 are the four images in Figs. 12.2(a) through (d). Any 
point, when viewed through these four images, corresponds to a four- 
dimensional pattern vector (see Fig. 11.24). We are interested in the vectors 
contained in the three regions shown in Fig. 12.2(e), which we obtain by using 
function imstack2vectors discussed in Section 11.5: 

>> [ X I  R ]  = imstack2vectors(stackJ 6 ) ;  

where X is an array whose rows are the vectors, and R is an array whose rows 
are the locations (2-D region coordinates) corresponding to the vectors in X. 
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FIGURE 12.2 
Bayes 
classification of 
multispectral 
data. 
(a)-(c) Images in 
the blue, green, 
and red visible 
wavelengths. 
(d) Infrared 
image. (e) Mask 
showing sample 
regions of water 
(1), urban 
development (2), 
and vegetation 
(3). (f) Results of 
:lassification. The 
black dots denote 
points classified 
incorrectly.The 
3ther (white) 
Joints in the 
:egions were 
classified 
correctly. 
,Original images 
:ourtesy of 
NASA.) 
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Using imstack2vectors with the three masks BI,B2, and 83 yielded three 
ector sets, XI, X2, and X3, and three sets of coordinates, R1, R2, and R3. Then 
ree subsets Y1, Y2, and Y3 were extracted from the X's to use as training Sam- 
es to estimate the covariance matrices and mean vectors. The Y's were gen- 

rated by skipping every other row of XI, X2, and X3. The covariance matrix 
nd mean vector of the vectors in Yl were obtained with the command 

and similarly for the other two classes. Then we formed arrays CA and MA for 
use in bayesgauss as follows: 

>> CA = c a t ( 3 ,  C1,  C2, C3); 
>> MA = c a t ( 2 ,  ml, m2, 1713); 

The performance of the classifier with the training patterns was determined by 
classifying the training sets: 

>> dY1 = bayesgauss(Y1, CA, MA); 

and similarly for the other two cla~~ses. The number of misclassified patterns of 
class 1 was obtained by writing 

e class into which the patterns were misclassified is straightforward. 
ce, length ( f  i n d  (dY1 =:= 2 )  ) gives the number of patterns from 
were misclassified into c:lass 2.The other pattern sets were handled 

a similar manner. 
Table 12.1 summarizes the recognition results obtained with the training 

nd independent pattern sets.The piercentage of training and independent pat- 
rns recognized correctly was about the same with both sets, indicating stabil- 
y in the parameter estimates. The largest error in both cases was with 

patterns from the urban area. This is not unexpected, as vegetation is present 
there also (note that no patterns in the urban or vegetation areas were mis- 
classified as water). Figure 12.2(f) shows as black dots the points that were 

isclassified and as white dots the points that were classified correctly in each 
ion. No black dots are readily visible in region 1 because the 7 misclassified 

are very close to, or on, the boundary of the white region. 
ditional work would be required to design an operable recognition sys- 

or multispectral classification. However, the important point of this ex- 
ample is the ease with which such a system could be prototyped using 
MATLAB and IPT functions, comp;lemented by some of the functions devel- 
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TABLE 12.1 Bayes classif~cat~on of mult~spectral image data 

Training Patterns Independent Patterns 

No. of Classified into Class '/a 

Class Samples 1 2 3 

1 484 482 2 0 99.6 1 483 
2 933 0 885 48 94.9 2 932 880 52 94.4 
3 483 0 19 464 96.1 3 482 16 466 96.7 

I? .> f 1 ,t..u*2 Adaptive Learning Systems 
The approaches discussed in Sections 12.3.1 and 12.3.3 are based on the use of 
sample patterns to estimate the statistical parameters of each pattern class. 
The minimum-distance classifier is specified corr~pletely by the mean vector of 
each class. Similarly, the Bayes classifier for Gaussian populations is specified 
completely by the mean vector and covariance matrix of each class of patterns. 

In these two approaches, training is a simple matter.The training patterns of 
each class are used to compute the parameters of the decision function corre- 
sponding to that class. After the parameters in q,uestion have been estimated, 
the structure of the classifier is fixed, and its even.tua1 performance will depend 
on how well the actual pattern populations satisfy the underlying statistical as- 
sumptions made in the derivation of the classification method being used. 

As long as the pattern classes are characterized, at least approximately, by 
Gaussian probability density functions, the methods just discussed can be 
quite effective. However, when this assumption is not valid, designing a statis- 
tical classifier becomes a much more difficult task because estimating multi- 
variate probability density functions is not a trivial endeavor. In practice, such 
decision-theoretic problems are best handled by methods that yield the re- 
quired decision functions directly via training. Then making assumptions re- 
garding the underlying probability density functions or other probabilistic 
information about the pattern classes under consideration is unnecessary. 

The principal approach in use today for this type of classification is based on 
neural networks (Gonzalez and Woods [2002]).The scope of implementing neur- 
al networks suitable for image-processing applications is not beyond the capabil- 
ities of the functions available to us in MATLAB and IPT. However, this effort 
would be unwarranted in the present context because a comprehensive neural- 
networks toolbox has been available from The Ma.thWorks for several years. 

Structural Recognition 

Structural recognition techniques are based generally on representing objects of 
interest as strings, trees, or graphs and then defining descriptors and recognition 
rules based on those representations. The key difference between decision- 
theoretic and structural methods is that the former uses quantitative descriptors 
expressed in the form of numeric vectors. Struc1:ural techniques, on the other 
hand, deal principally with symbolic information. For instance. suppose that ob- 
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ect botindaries in a given application are represented by minimum-perimeter 
polygons. A decision-theoretic approach might be based on forming vectors 
whose elements are the numeric values of the interior angles of the polygons, 
while a structural approach might be based on defining symbols for runges of 
angle values and then forming a string of such symbols to describe the patterns. 

Strings are by far the most common representation used in structural recogni- 
tion, so we focus on this approach in this section. A s  will become evident shortly, 
MATLAB has an extensive set of functions specialized for string manipulation. 

% 12.4, P Working with Strings in MATLAB 
In MATLAB, a string is a one-dimensional array whose components are the nu- 
meric codes for the characters in the string. The characters displayed depend on 
the character set used in encoding a given font.The length of a string is the num- 
ber of characters in the string, including spaces. It  is obtained using the familiar 
function 1ength.A string is defined by enclosing its characters in single quotes (a 
textual quote within a string is indicated by two quotes). 

Table 12.2 lists the principal MATLAB functions that deal with stringst 
Considering first the general category, function b l a n k s  has the syntax: 

ates a string consisting of n blanks. Function c e l l s t r  creates a cell 
strings from a character array. One of the principal advantages of stor- 
s in cell arrays is that it eliminates the need to pad strings with blanks 

to create character arrays with rows of equal length (e.g., to perform string 
comparisons). The syntax 

c e l l s t r  

1 places the rows of the character array S into separate cells of c. Function c h a r  
is used to convert back to a string matrix. ~ i r  example, consider the string [ matrix 

>> S = [ '  a b c ' ;  ' d e f g ' ;  ' h i  ' 1  % Note t h e  b lanks .  

S = 
abc 

C def g 
h i  

I Typing whos S at the prompt displays the following information: 

>> whos S 
S i z e  Bytes  C l a s s  
3x4 24 c h a r  a r r a y  

1 1 'iorne of the rtrln. funcl~ons dncuned in lhls reclion were introduced in earlier chapters. 
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char Create character array (string). 
deblank Remove trailing blanks. 
eval Execute string with MATLAB expression. 

String tests i s c e l l s t r  True for cell array of strings. 

TABLE 12.2 
MATLAB's 
,tring- 
~nanipulation 
functions. 

String operations 

- 
Category Function Name Explanation - 
General blanks String of blanks. 

c e l l s t r  Create cell array of strings from character 
array. Use function char to convert back to a 
character string. 

String to number 
conversion 

Base number 
conversion 

ischar 
i s l e t t e r  
isspace 
lower 
regexp 
regexpi 
regexprep 
s t r c a t  
strcmp 
strcmpi 
s t r f ind  
s t r j u s t  
strmatch 
strncmp 
strncmpi 
s t rread 

s t r rep  
s t r tok 
s t rvcat  
upper 
double 
i n t 2 s t r  
mat2str 

num2str 
sprintf 
str2double 
str2num 
sscanf 
base2dec 
bin2dec 
dec2base 
dec2bin 
dec2hex 
hex2dec 
hex2num 

True for character array. 
True for letters of the alphabet. 
True for whitespace characters. 
Convert string to lowercase. 
Match regular expression. 
Match regular expression, ignoring case. 
Replace string using regular expression. 
Concatenate strings. 
Compare strings (see Section 2.10.5). 
Compare strings, ignoring case. 
Find one string within another. 
Justify string. 
Find matches for string. 
Compare first n characters of strings. 
Compare first n characters, ignoring case. 
Read formatted data from a string. See 
Section 2.10.5 for a detailed explanation. 
Replace a string within another. 
Find token in string. 
Concatenate strings vertically. 
Convert string to uppercase. 
Convert string to numeric codes. 
Convert integer to string. 
Convert matrix to a string suitable for 
processing with the eval function. 
Convert number to string. 
Write formatted data to string. 
Convert string to double-precision value. 
Convert string to number (see Section 2.10.5). 
Read string under format control. 
Convert base B string to decimal integer. 
Convert binary string to decimal integer. 
Convert decimal integer to base B string. 
Convert decimal integer to binary string. 
Convert decimal integer to hexadecimal string. 
Convert hexadecimal string to decimal integer. 
Convert IEEE hexadecimal to double- 
precision number. 

Note in the first command line that two of the three strings in S have trailing 
blanks because all rows in a string matrix must have the same number of char- 
acters. Note also that no quotes enclose the strings in the output because S is a 
character array. The following command returns a 3 x 1 cell array: 

C = 

' a b c '  
' d e f g '  
' h i '  

>> whos c 
Name 
C 

S i z e  
3x1 

Bytes 
294 

C l a s s  
c e l l  a r r a y  

where, for example, c ( 1 ) = ' abc ' . Note that quotes appear around the strings 
in the output, and that the strings have n o  trailing blanks.To convert back to a 
string matrix we let 

Z = c h a r ( c )  
z = 

abc 
def  g 
h i  

Function e v a l  evaluates a string that contains a MATLAB expression.The 
call e v a l ( e x p r e s s i o n )  executes express ion ,  a string containing any valid 
MATLAB expression. For example, if t is the character string t = ' 3"2  ' , typ- 
ing e v a l  ( t )  returns a 9. 

The next category of functions deals with string tests. A 1 is returned if the 
funtion is t r u e ;  otherwise the value returned is O.Thus, in the preceding exam- 
ple, i s c e l l s t r ( c )  would return i3 1 and i s c e l l s t r ( S )  would return a 0. l s t r  
Similar comments apply to the other functions in this category. 

String operations are next. Functions lower (and upper) are self explana- 
tory. They are discussed in Section 2.10.5. The next three functions deal with 
regular  expression^,^ which are sets of symbols and syntactic elements used 
commonly to match patterns of text. A simple example of the power of regular 
expressions is the use of the familiar wildcard symbol " * " in a file search. For 
instance, a search for imagex.m in a typical search command window would re- 
turn all the M-files that begin with the word "image." Another example of the 
use of regular expressions is in a search-and-replace function that searches for 
an instance of a given text string and replaces it with another. Regular expres- 
sions are formed using metacharacters, some of which are listed in Table 12.3. 

Regular expresslons can be traced to the work of Amencan mathematlclan Stephen Kleene, who devel- 

1 
oped regular expresslons as a notatlon for descr~b~ng what he called "the algebra of regular sets.' 

1 
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metacharacters 
used in regular 
expressions for 
matching. See the 
regular 
expressions 
help page for a 
complete list. 

TABLE 12.3 
Some of the 

Matches any one character. 
[ ab . .  . ]  Matches any one of the characters, (a, b, . . .),contained within 

the brackets. 
[ ^ a b . .  . ] Matches any character except those contained within the 

brackets. 
? Matches any character zero or one times. 
* Matches the preceding element :zero or more times. 
t Matches the preceding element one or more times. 
Inurn) Matches the preceding element num times. 
{ m i n ,  max) Matches the preceding element at least m i n  times, but not 

Metacharacters Usage 1 

more than max times. 
Matches either the expression preceding or following the 
metacharacter I .  
Matches when a string begins with chars. 
Matches when a string ends with chars. 
Matches when a word begins with chars. 
Matches when a word ends with, chars. 
Exact word match. 

In the context of this discussion, a "word" is a substring within a string, preced- 
ed by a space or the beginning of the string, and ending with a space or the end 
of the string. Several examples are given in the following paragraph. 

Function regexp matches a regular expression. Using the basic syntax 

i d x  = r e g e x p ( s t r ,  e x p r )  

returns a row vector, idx ,  containing the indices (locations) of the substrings 
in s t r  that match the regular expression string, expr .  For example, suppose 
that expr  = ' b .  * a 4 .  Then the expression i d x  = r e g e x p ( s t r ,  e x p r )  would 
mean find matches in string s t r  for any b that is followed by any character (as 
specified by the metacharacter ".") any number of times, including zero times 
(as specified by *),followed by a n  a.The indices of any locations in s t r  meet- 
ing these conditions are stored in vector idx. If n o  such locations are found, 
then i d x  is returned as the empty matrix. 

A few more examples of regular expressions for expr  should clarify these 
concepts. The regular expression ' b . + a ' would be as in the preceding exam- 
ple, except that "any number of times, including zero times" would be replaced 
by "one or more times." The expression ' b [ 0-9 1 ' means any b followed by 
any number from 0 to 9; the expression ' b [O-9]* ' means any b followed by 
any number from 0 to  9 any number of times; and ' b [O-91 + ' means b fol- 
lowed by any number from 0 to 9 one or more times. For example, if s t r  = 
' b0123c234bcd ' ,  the preceding three instancles of expr  would give the fol- 
lowingresu l t s : idx=l ;  i d x = [ l  l O ] ; a n d i d x = l .  

As an example of the use of regular expressic~ns for recognizing object char- 
acteristics, suppose that the boundary of an object has been coded with a four- 
directional Freeman chain code [see Fig. Il.l(a)J, stored in string s t r ,  so that 

>> s t r  

s t r  = 

000300333222221111 
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Suppose also that we are interested in finding the locations in the string where 
the direction of travel turns from east (0) t o  south (3), and stays there for a t  
least two increments, but n o  more than six increments. This is a "downward 
step" feature in the object, larger than a single transition, which may be due to 
noise. We can express these requirements in terms of the following regular ex- 
pression: 

>> expr  = ' 0 [3 ]{2 ,  6 ) ' ;  

Then 

>> i d x  = r e g e x p ( s t r ,  expr )  

idx = 

6 

The value of i d x  identifies the point in this case where a 0 is followed by three 
3s. More complex expressions are formed in a similar manner. 

Function r e g e x p i  behaves in the manner just described for regexp, except ,*$eg?xpl 
that it ignores character (upper and lower) case. Function regexprep,  with 
syntax 

s = r e g e x p r e p ( s t r ,  expr ,  r e p l a c e )  

replaces with string r e p l a c e  all occurrences of the regular expression expr  in 
string, str. The new string is returned. If n o  matches are found regexprep re- 
turns st  r ,  unchanged. 

Function s t r c a t  has the syntax 

This function concatenates (horizontally) corresponding rows of the character 
arrays S I ,  S2, S3, and so  on. All input arrays must have the same number of 
rows (or any can be a single string). When the inputs are all character arrays, 
the output is also a character array. If any of the inputs is a cell array of 
strings, s t r c a t  returns a cell array of strings formed by concatenating corre- 
sponding elements of S1, S2, S3, and so on. The inputs must all have the same 
size (or any can be a scalar). Any of the inputs can also be character arrays. 
Trailing spaces in character array inputs are ignored and d o  not appear in the 
output. This is not true for inputs that are cell arrays of strings. To preserve 
trailing spaces the familiar concatenation syntax based on square brackets, 
IS1 S2 S3 . . . I ,  should be used. For example, 

i 

strcat  
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>> a = ' h e l l o  ' % Note the  t r a i l i n g  blank space.  
>> b = 'goodbye' 
>> s t r c a t  ( a ,  b )  
ans = 

hellogoodbye 
[ a  b l  
ans = 

he l lo  goodbye 

Function s t r v c a t ,  with syntax 

forms the character array S containing the text strings (or string matrices) 
t 1 , t 2 ,  t3 ,  . . . as rows. Blanks are appended to each string as necessary to 
form a valid matrix. Empty arguments are ignored. For example, using the 
strings a and b in the previous example, 

>> s t r v c a t  ( a ,  b)  

ans = 

he l lo  
goodbye 

Function strcmp, with syntax 

compares the two strings in the argument and returns 1 ( t rue)  if the strings 
are identical. Otherwise it returns a 0 (false).  A more general syntax is 

where either S or T is a cell array of strings, and K is an array (of the same size 
as S and T) containing Is for the elements of S and T that match, and 0s for the 
ones that do not. S and T must be of the same size (or one can be a scalar cell). 
Either one can also be a character array with the proper number of rows. 
Function st  rcmpi performs the same operation as st rcmp, but it ignores char- 
acter case. 

Function s t  rncmp, with syntax 

returns a logical t r u e  (1) if the first n characters of the strings s t r l  and s t r2  
are the same, and returns a logical f a l s e  (0) otherwise. Arguments s t  r l  and 
s t r 2  can be cell arrays of strings also.The syntax 
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where S and T can be cell arrays of strings, returns an array R the same size as 
S and T containing 1 for those elements of S and T that match (up to n charac- 
ters), and 0 otherwise. S and T must be the same size (or one can be a scalar 
cell). Either one can also be a character array with the correct number of rows. 
The command strncmp is case sensitive. Any leading and trailing blanks in ei- 
ther of the strings are included in the comparison. Function strncmpi per- ; "stcncmpl 
forms the same operation as strncmp, but ignores character case. 

Function s t  rf  ind, with syntax 

+<' \ 

I = s t r f i n d ( s t r ,  pa t t e rn )  a e s t v f l n d  
I *  

searches string st r for occurrences of a shorter string, pa t tern ,  returning the 
starting index of each such occurrence in the double array, I. If pa t t e rn  is not 
found in s t r ,  or if pa t tern  is longer than s t r ,  then s t r f i n d  returns the 
empty array, [ 1. 

Functi0.n s t  r j ust has the syntax 

Q = s t r j u s t ( A ,  d i r e c t i o n )  

where A is a character array, and d i r ec t ion  can have the justification values 
' r i g h t  ' , ' l e f t  ' ,and ' center  ' .The default justification is ' r i g h t  ' .The out- 
put array contains the same strings as A, but justified in the direction specified. 
Note that justification of a string implies the existence of leading and/or trail- 
ing blank characters to provide space for the specified operation. For instance, 
letting the symbol "0" represents a blank character, the string '0 q abc ' with 
two leading blank characters does not change under ' r i g h t  ' justification; be- 
comes 'abcOO'  with ' l e f t '  justifiication; and becomes the string 'OabcO' 
with ' c e n t e r '  justification. Clearl:y, these operations have no effect on a 
string that does not contain any leading or trailing blanks. 

Function strmatch, with syntax 

m = s t r m a t c h ( ' s t r l ,  STRS) 

looks through the rows of the character array or cell array of strings, STRS, to 
find strings that begin with string st  r, returning the matching row indices.The 
alternate syntax 

m = s t r m a t c h ( ' s t r ' ,  STRS, ' e x a c t ' )  

returns only the indices of the strings in STRS matching s t r  exactly. For exam- 
ple, the statement 

>> m = s t rmatch( 'max ' ,  s t r v c a t ( ' m a x l ,  'minimax', 'maximum')); 

returns m = [ 1 ; 31 because rows 1 and 3 of the array formed by s t r v c a t  begin 
with ' max ' . On the other hand. the statement 

,$" 
.f,*Astr u s t  i 
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>> m = strmatch('max', s t rvca t ( 'max ' ,  'minimax', 'maximum'), ' e x a c t ' ) ;  

returns m = 1, because only row 1 matches ' max ' exactly. 
Function s t  r r e p ,  with syntax 

s t r r e p  r = s t r r e p ( ' s t r l 1 ,  ' s t r 2 ' ,  ' s t r 3 ' )  

replaces all occurrences of the string s t r 2  within string s t r l  with the string 
s t r 3 .  If any of s t r l ,  s t r 2 ,  or s t r 3  is a cell array of strings, this function re- 
turns a cell array the same size as s t  r l ,  s t r 2 ,  and s t r 3 ,  obtained by perform- 
ing a s t r r e p  using corresponding elements of the inputs. The inputs must all 
be of the same size (or any can be a scalar cell). Any one of the strings can also 
be a character array with the correct number of rows. For example, 

>> s = 'Image p r o c e s s i n g  and r e s t o r a t i o n . ' ;  
>> s t r  = s t r r e p ( s ,  ' p r o c e s s i n g ' ,  ' enhancement ' )  

s t r  = 

Image enhancement and r e s t o r a t i o n .  

Function s t  r t o k ,  with syntax 

t = s t r t o k ( ' s t r l ,  de l im)  

returns the first token in the text string s t r ,  that is, the first set of characters 
before a delimiter in del im is encountered. Parameter del im is a vector con- 
taining delimiters (e.g., blanks, other characters, strings). For example, 

>> s t r  = 'An image i s  an ordered  s e t  of p i x e l s ' ;  
>> del im = [ ' x ' ] ;  
>> t = s t r t o k ( s t r ,  d e l i m )  

Note that function s t r t o k  terminates after the first delimiter is encountered. 
(i.e., a blank character in the example just given). If we change del im to delim 
= [ ' x ' 1, then the output becomes 

>> t = s t r t o k ( s t r ,  d e l i m )  

t = 

An image i s  an ordered  s e t  of p i  

The next set of functions in Table 12.2 deals with conversions between 
strings and numbers. Function i n t 2 s t r ,  with syintax 

l n t 2 s t r  s t r  = i n t 2 s t r ( N )  

converts an 
integer or a 
conversion. 
tor inputs, i 
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integer to  a string with integer format. The input N can be a single 
vector or matrix of integers. Noninteger inputs are rounded before 
For example, i n t 2 s t r  ( 2  + 3 )  is the string ' 5 ' .  For matrix or vec- 

. n t 2 s t r  returns a string matrix: 

>> s t r  = i n t 2 s t r ( e y e ( 3 ) )  

ans = 

1 0 0  
0 1 0  
0 0 1  

>> c l a s s ( s t r )  

mat2s t r ,  with syntax 

s t r  = mat2s t r (A)  

converts matrix A into a string, suitable for input to the e v a l  function, using 
full precision. Using the syntax 

1; s t r  = mat2s t r (A,  n )  fi converts matrix A using n digits of precision. For example, consider the matrix 

where b IS a string of 9 characters, including the square brackets, spaces, and a 
semicolon. The command 

>> e v a l ( m a t 2 s t r  ( A )  ) 

1 reproduces A.The other functions in this category have sinl~lar interpretations. 
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The last category in Table 12.2 deals with base number conversions. For ex- 
ample, function deczbase, with syntax 

s t r  = dec2base(d, base) 

converts the decimal integer d to the specified base, where d must be a non- 
negative integer smaller than 2^52, and base must be an integer between 2 
and 36.The returned argument st  r is a string. For example, the following com- 
mand converts 2310 to base 2 and returns the result as a string: 

>> s t r  = dec2base(23, 2 )  

s t r  = 

10111 

>> c l a s s ( s t r )  

ans = 

char 

Using the syntax 

s t r  = dec2base(d, base,  n )  

produces a representation with at least n digits. 

12.4.2 String Matching 
In addition to the string matching and comparing functions in Table 12.2, it is 
often useful to have available measures of similarity that behave much like the 
distance measures discussed in Section 12.2. We illustrate this approach using 
a measure defined as follows. 

Suppose that two region boundaries, a and b,  are coded into strings 
a la2 . .  . a,  and blb2 . .  . bn,  respectively. Let a denote the number of matches 
between these two strings, where a match is said to occur in the kth position if 
ak = bk .  The number of symbols that do not match is 

where largl is the length (number of symbols) of the string in the argument. It 
can be shown that p = 0 if and only if a and b are identical strings. 

A simple measure of similarity between a and b is the ratio 

This measure, proposed by Sze and Yang [1981], is infinite for a perfect 
match and 0 when none of the corresponding symbols in a and b match ( a  is 
0 in this case). 
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Because matching is performe'd between corresponding symbols, it is re- 
quired that all strings be "registered" in some position-independent manner in 
order for this method to make sen:se. One way to register two strings is to shift 
one string with respect to the other until a maximum value of R is obtained. 
This and other similar matching strategies can be developed using some of the 
string operations detailed in Table 12.2. Typically, a more efficient approach is 
to define the same starting point for all strings based on normalizing the 
boundaries with respect to size anti orientation before their string representa- 
tion is extracted.This approach is illustrated in Example 12.3. 

The following M-function computes the preceding measure of similarity for 
two character strings. 

function R = strsimilari ty(a,  b) strsimilarity 
,mr-. " %STRSIMILARITY Computes a similarity measure between two str ings.  

% R = STRSIMILARITY(A, 0) computes the similarity measure, R ,  
% defined i n  Section 12.4.2 for strings A and 6. The strings do not 
% have to be of the same length, but if  one is shorter than other, 
% then it i s  assumed that the shorter str ing has been padded w i t h  
% leading blanks so that it i!; brought into the necessary 
% registration prior to  using th i s  function. O n l y  one of the 
% strings can have blanks, anti these must be leading and/or 
% t rai l ing blanks. Blanks are not counted when computing the length 
% of the strings for use i n  the similarity measure. 

% Verify ,that a and b are character str ings.  
if -ischar(a) I -ischar(b) 

error('1nputs must be charact:er s t r i n g s . ' )  
end 

% Find any blank spaces. 
I = find(a == ' ' ) ;  
J = find(b == ' I ) ;  

LI = length(1); LJ = length(J);  
if LI -= 0 & LJ -= 0 

error( '0nly one of the strings can contain blanks. ') 
end 

% Pad the end of the appropriate str ing.  I t  i s  assumed 
% that they are registered i n  terms of the i r  beginning 
% positions. 
a = a ( : ) ;  b = b ( : ) ;  
La = length(a); Lb = length(b); 
if LI == 0 & LJ == 0 

i f  La > Lb 
b = [b; blanks(La - Lb) ' 1 ;  

else 
a = [a ;  blanks(Lb - L a ) ' ] ;  

end 
elseif isempty ( I )  

Lb = length(b) - length(J);  
b = [b; blanks(La - Lb - L J ) ' ] ;  
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EXAMPLE 12.3: 
3bject 
recognition based 
3n string 
matching. 

randvertex 
iYLkm -- "- 

polyangles 
.aw- "-" 

The x and y inputs 
ro fi~ncrion 
polyangles are 
vectors contaitting 
rhe ,r- and y-  
coordinares of the 
vertices of a poly- 
gon, ordered in the 
clockwise direcrion. 
The oLltpur is a vec- 
tor containltzg the 
corresponding interi. 
or artgles, in degrees. 

else 
La = length(a) - length(1); 
a = [a ;  blanks(Lb - La - L I ) ' ] ;  

end 

% Compute the similarity measure. 
I = find(a == b) ;  
alpha = length(1); 
den = max(La, Lb) - alpha; 
if  den == 0 

R = Inf; 
else 

R = alphaiden; 
end 

BIl Figures 12.3(a) and (d) show silhouettes of two samples of container bot- 
tles whose principal shape difference is the curvature of their sides. For pur- 
poses of differentiation, objects with the curvature characteristics of 
Fig. 12.3(a) are said to be from class 1. Objects with straight sides are said to be 
from class 2. The images are of size 372 X 288 pixels. 

To illustrate the effectiveness of measure R fc~r differentiating between ob- 
jects of classes 1 and 2, the boundaries of the objects were approximated by 
minimum-perimeter polygons using function minperpoly (see Section 11.2.2) 
with a cell size of 8. Figures 12.3(b) and (e) show the results. Then noise was 
added to the coordinates of each vertex of ithe polygons using function 
randvertex (the listing is included in Appendix C), which has the syntax 

[xn,  yn] = randvertex(x,  y, npix) 

where x and y are column vectors containing the coordinates of the vertices of 
a polygon, xn and yn are the corresponding noisy coordinates, and npix is the 
maximum number of pixels by which a coordinate is allowed to be displaced in 
either direction. Five sets of noisy vertices were generated for each class using 
npix = 5. Figures 12.3(c) and (f) show typical results. 

Strings of symbols were generated for each class by coding the interior angles 
of the polygons using function polyangles (see Appendix C for the code listing): 

>> angles = polyangles(x,  y ) ;  

Then a string, s ,  was generated from a given angles array by quantizing the 
angles into 45' increments, using the statement 

This yielded a string whose elements were num.bers between 1 and 8, with 1 
designating the range 0" 5 8 < 45", 2 designating the range 45" 5 8 4 90°1 
and so forth, where 8 denotes an interior angle. 

Because the first vertex in the output of minperpoly is always the top, left 
vertex of the boundary of the input, B, the first element of string s corresponds 
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rninperpoly with a 

' 
to the interior angle of that vertex. This automatically registers the strings (if 
the objects are not rotated) because they all start at the top, left vertex in all 

, images.The direction of the vertices output by minperpoly is clockwise, so the 
elements of s also are in that direction. Finally, each s was converted from a 
string of integers to a character string using the command 

i In this example the objects are of comparable size and they are all vertical, ' so normalization of neither size nor orientation was required. If the objects ' 
had been of arbitrary size and orientation, we could have aligned them along 
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>ection A.1 of this appendix contains a listing of all the functions in the Image Processing Toolbox, 
nd all the new functions developed in the preceding chapters. The latter functions are referred to as 

DIPUM functions, a term derived from the  first letter of the words in the title of the book. Section A.2 
lists the MATLAB functions used throughout the book.Al1 page numbers listed refer t o  pages in the 
look. indicating where a function is first used and illustrated. In some instances, more  than one loca- 

don is given, indicating that the function is explained in different ways, depending on  the  application. 
Some IPT functions were not used in ou r  discussions. These are identified by a reference to online 

elp instead of a page number. All MATLAB functions listed in Section A.2 are  used in the book. 
iach page number in that section identifies the first use of the  MATLAB function indicated. 

IPT and DIPUM Functions 

h e  following functions are  loosely grouped in categories similar to those found in IPT documenta- 
lion. A new category (e.g., wavelets) was created in cases where there are no existing I P T  functions. 

Function Category Page or Other 
and Name Description Location 

Image Display 

colorbar  
getimage 
i c e  (DIPUM) 
image 
lmagesc 
immovie 
imshow 
imview 

Display colorbar (MATLAB). 
Get image data from axes. 
Interactive color editing. 
Create and display image object (MATLAB). 
Scale data and display as image (MATLAB). 
Make movie from multiframe image. 
Display image. 
Display image in Image Viewer. 

online 
online 

218 
online 
online 
online 

16 
online 
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montage 
movie 
rgbcube (DIPUM) 
subimage 
t r u e s i z e  
warp 

Image file I/0 
dicominf o 
dicomread 
dicomwrite 
dicom-dict  . t x t  
dicomuid 
imf inf  o 
imread 
imwrite 

Image arithmetic 

imabsdif f 
imadd 
imcomplement 
imdivide 
imlincomb 
immultiply 
imsubtract 

Geometric transformations 

checkerboard 
findbounds 
f l i p t fo rm 
imcrop 
imresize 
imrotate 
imtransform 
i n t l i n e  

makeresampler 
maketf orm 
pixeldup (DIPUM) 
tformarray 
tformfwd 
tforminv 
vistformfwd (DIPUM) 

Image registration 

cps t ruc t2pa i r s  
Cp2tf orm 
cpcorr 
Cpselect 
normxcorr2 

Display multiple image frames as rectangular montage. 
Play recorded movie frames (MATLAB). 
Display a color RGB cube. 
Display multiple images in single figure. 
Adjust display size of image. 
Display image as texture-mapped surface. 

Read metadata from a DICOM message. 
Read a DICOM image. 
Write a DICOM image. 
Text file containing DICOM data dictionary. 
Generate DICOM unique identifier. 
Return information about image file (MATLAB). 
Read image file (MATLAB). 
Write image file (MATLAB). 

Compute absolute difference of two images. 
Add two images, or add constant to image. 
Complement image. 
Divide two images, or divide image by constant. 
Compute linear combination of images. 
Multiply two images, or multiply image by constant. 
Subtract two images, or subtract constant from image. 

Create. checkerboard image. 
Find output bounds for geometric transformation. 
Flip the input and output roles of a TFORM struct. 
Crop image. 
Resize image. 
Rotate image. 
Apply geometric transformation to image. 
Integer-coordinate line drawing algorithm. 
(Undocumented IPT function). 
Create resampler structure. 
Create geometric transformation structure (TFORM). 
Duplicate pixels of an image in both directions. 
Apply geometric transformation to N-D array. 
Apply forward geometric transformation. 
Apply inverse geometric transformation. 
Visualize forward geometric transformation. 

Convert CPSTRUCT to valid pairs of control points. 
Infer geometric transformation from control point pairs. 
Tune control point locations using cross-correlation. 
Control point selection tool. 
Normalized two-dimensional cross-correlation. 
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online 
online 

195 
online 
online 
online 

online 
online 
online 
online 
online 

19 
14 
18 

42 
42 

42,67 
42 

42,159 
42 
42 

167 
online 
online 
online 
online 

472 
188 
43 

190 
153 
168 

online 
184 
184 
185 

online 
191 

online 
193 

online 
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Pixel values and statistics 

corr2  Compute 2-D correlation coefficient. 
covmatrix (DIPUM) Compute the covariance matrix of a vector population. 
imcontour 
imhist 
impixel 
improf i l e  
mean2 
pixval 
regionprops 

Create contour plot of image data. 
Display histogram of image data. 
Determine pixel color values. 
Compute pixel-value cross-sections along lline segments. 
Compute mean of matrix elements. 
Display information about image pixels. 
Measure properties of image regions. 

statmoments (DIPUM) Compute statistical central moments of an image histogram. 
s td2 Compute standard deviation of matrix elements. 

Image analysis (includes segmentation, description, and recognition) 

bayesgauss (DIPUM) Bayes classifier for Gaussian patterns. 
bound2eight (DIPUM) Convert Cconnected boundary to 8-connected boundary. 
bound2four (DIPUM) Convert 8-connected boundary to 4-connected boundary. 
bwboundaries Trace region boundaries. 
bwtraceboundary 
bound2im (DIPUM) 
boundaries (DIPUM) 
bsubsamp (DIPUM) 
colorgrad (DIPUM) 
colorseg (DIPUM) 
connectpoly (DIPUM) 
diameter (DIPUM) 
edge 
f chcode (DIPUM) 
f rdescp (DIPUM) 
graythresh 
hough (DIPUM) 
houghlines (DIPUM) 
houghpeaks (DIPUM) 
houghpixels (DIPUM) 
i f  rdescp (DIPUM) 
imstack2vectors (DIPUM) 
invmoments (DIPUM) 
mahalanobis (DIPUM) 

Trace single boundary. 
Convert a boundary to an image. 
Trace region boundaries. 
Subsample a boundary. 
Compute the vector gradient of an RGB image. 
Segment a color image. 
Connect vertices of a polygon. 
Measure diameter of image regions. 
Find edges in an intensity image. 
Compute the Freeman chain code of a boundary. 
Compute Fourier descriptors. 
Compute global image threshold using 0tr;u's method. 
Hough transform. 
Extract line segments based on the Hough transform. 
Detect peaks in Hough transform. 
Compute image pixels belonging to Hough transform bin. 
Compute inverse Fourier descriptors. 
Extract vectors from an image stack. 
Compute invariant moments of image. 
Compute the Mahalanobis distance. 

minperpoly (DIPUM) Compute minimum perimeter polygon. 
polyangles (DIPUM) Compute internal polygon angles. 
princomp (DIPUM) Obtain principal-component vectors and r'elated quantities. 
qtdecomp Perform quadtree decomposition. 
qtgetblk Get block values in quadtree decomposition. 
q tse tblk  Set block values in quadtree decomposition. 
randvertex (DIPUM) Randomly displace polygon vertices. 
regiongrow (DIPUM) Perform segmentation by region growing. 
s ignature  (DIPUM) Compute the signature of a boundary. 
specxture (DIPUM) Compute spectral texture of an image. 
splitmerge (DIPUM) Segment an image using a split-and-merge algorithm. 
s t a t x t u r e  (DIPUM) Compute statistical measures of texture in an image. 

online 
476 

online 
77 

online 
online 

75 
17 

463 
155 
415 

493 
434 
434 

online 
online 

435 
434 
435 
234 
238 
435 
456 
385 
437 
459 
406 
396 
40 1 
399 
401 
45 9 
476 
472 
487 
447 
510 
477 
413 
41 3 

online 
510 
409 
450 
469 
414 
467 
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s t r s l m l l a r l t y  (DIPUM) Similarity measure between two strings. 
x2mal o rax l s  (DIPUM) Align coordinate x with the major axis of a region 

Image Compression 

compare (DIPUM) 
entropy (DIPUM) 
huff2mat (DIPUM) 
huff man (DIPUM) 
im2j peg (DIPUM) 
im2 j peg2k (DIPUM) 
imrat io  (DIPUM) 
j peg2im (DIPUM) 
j peg2k2im (DIPUM) 
lpc2mat (DIPUM) 
mat2huff (DIPUM) 
mat2lpc (DIPUM) 
quant ize  (DIPUM) 

Compute and display the error between two matrices. 
Compute a first-order estimate of the entropy of a matrix. 
Decode a Huffman encoded matrix. 
Build a variable-length Huffman code for symbol source. 
Compress an image using a JPEG approximation. 
Compress an image using a JPEG 2000 approximation. 
Compute the ratio of the bytes in two imageslvariables. 
Decode an IM2JPEG compressed image. 
Decode an IM2JPEG2K compressed image. 
Decompress a 1-D lossless predictive encoded matrix. 
Huffman encodes a matrix. 
Compress a matrix using 1-D lossless predictive coding. 
Quantize the elements of a UINT8 matrix. 

Image enhancement 

adapthis teq  Adaptive histogram equalization. online 
decor r s t r e t ch  Apply decorrelation stretch to multichannel image. online 
gscale  (DIPUM) Scale the intensity of the input image. 76 
his teq  Enhance contrast using histogram equalization. 82 
i n t r a n s  (DIPUM) Perform intensity transformations. 73 
imad j u s t  Adjust image intensity values or colormap. 66 
s t r e t ch l im Find limits to contrast stretch an image. online 

Image noise 

imnoise Add noise to an image. 106 
imnoise2 (DIPUM) Generate an array of random numbers with specified PDF. 148 
imnoise3 (DIPUM) Generate periodic noise. 152 

Linear and nonlinear spatial filtering 

adpmedian (DIPUM) 
convmtx2 
df t c o r r  (DIPUM) 
df t f  ilt (DIPUM) 
f s p e c i a l  
medf i l t 2  
imf i l t e r  
ordf i l t 2  
spf i l t  (DIPUM) 
wiener2 

Linear 2-D filter design 

f reqspace 
f reqz2 
f samp2 
f t r a n s 2  
fwindl 
fwind2 

Perform adaptive median filtering. 
Compute 2-D convolution matrix. 
Perform frequency domain correlation. 
Perform frequency domain filtering. 
Create predefined filters. 
Perform 2-D median filtering. 
Filter 2-D and N-D images. 
Perform 2-D order-statistic filtering. 
Performs linear and nonlinear spatial filtering. 
Perform 2-D adaptive noise-removal filtering. 

165 
online 

491 
122 
99 

106 
92 

105 
159 

online 

Determine 2-D frequency response spacing (MATLAB). online 
Compute 2-D frequency response. 123 
Design 2-D FIR filter using frequency sampling. online 
Design 2-D FIR filter using frequency transformation. online 
Design 2-D FIR filter using 1-D window method. online 
Design 2-D FIR filter using 2-D window method. online 



518 Appendix A a Function Summary 

h p f i l t e r  (DIPUM) Computes frequency domain highpass filters. 
lpf i l t e r  (DIPUM) Computes frequency domain lowpass filters. 

Image deblurring (restoration) 

deconvblind Deblur image using blind deconvolution. 
deconvlucy Deblur image using Lucy-Richardson method. 
deconvreg Deblur image using regularized filter. 
deconvwnr Deblur image using Wiener filter. 
edgetaper Taper edges using point-spread function. 
otf2psf Optical transfer function to point-spread function. 
psf2otf Point-spread function to optical transfer function. 

Image transforms 

dct2 
dctmtx 
fan2para 
f anbeam 
f f t 2  
f f t n  
f f t s h i f t  
i dc t2  
i f  anbeam 
i f f t 2  
i f f t n  
iradon 
para2f an 
phantom 
radon 

Wavelets 

wave2gray (DIPUM) 
waveback (DIPUM) 
wavecopy (DIPUM) 
wavecut (DIPUM) 
wavef a s t  (DIPUM) 
wavef i l ter  (DIPUM) 
wavepaste (DIPUM) 
wavework (DIPUM) 
wavezero (DIPUM) 

2-D discrete cosine transform. 
Discrete cosine transform matrix. 
Convert fan-beam projections to parallel-beam. 
Compute fan-beam transform. 
2-D fast Fourier transform (MATLAB). 
N-D fast Fourier transform (MATLAB). 
Reverse quadrants of output of FFT (MATLAB). 
2-D inverse discrete cosine transform. 
Compute inverse fan-beam transform. 
2-D inverse fast Fourier transform (MATLAB). 
N-D inverse fast Fourier transform (MATLAB). 
Compute inverse Radon transform. 
convert parallel-beam projections to fan-beam. 
Generate a head phantom image. 
Compute Radon transform. 

Display wavelet decomposition coefficients. 
Perform a multi-level 2-dimensional inverse FWT. 
Fetch coefficients of wavelet decomposition structure. 
Set to zero coefficients in a wavelet decomposition structure 
Perform a multilevel 2-dimensional fast wavelet transform. 
Create wavelet decomposition and reconstruction filters. 
Put coefficients in a wavelet decomposition structure. 
Edit wavelet decomposition structures. 
Set wavelet detail coefficients to zero. 

Neighborhood and block processing 

bestblk Choose block size for block processing. 
blkproc Implement distinct block processing for image. 
col2im Rearrange matrix columns into blocks. 
colf  ilt Columnwise neighborhood operations. 
im2col Rearrange image blocks into columns. 
nlf i l t e r  Perform general sliding-neighborhood operations. 

Morphological operations (intensity and binary images) 

conndef 
imbothat 
imclearborder 

Default connectivity. 
Perform bottom-hat filtering. 
Suppress light structures connected to image border. 
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Close image. 
Dilate image. 
Erode image. 

imextendedmax Extended-maxima transform. 
180 
177 
175 
171 
172 
142 
142 

321 
321 

online 
online 

112 
online 

112 
online 
online 

114 
online 
online 
online 
online 
online 

267 
272 
265 
264 
255 
252 
265 
262 
277 

online 
321 
322 
97 

321 
96 

online 
373 
366 

lmextendedmln Extended-minima transform 
lmf 111 Fill image regions and holes. 
imhmax H-maxima transform. 
imhmin 
imimposemin 
imopen 
imreconstruct 
imregionalmax 
imregionalmin 
imtophat 
watershed 

H-minima transform. 
Impose minima. 
Open image. 
Morphological reconstruction. 
Regional maxima. 
Regior~al minima. 
Perform tophat filtering. 
Watershed transform. 

Morphological operations (binary images) 

applylut  
bwarea 
bwareaopen 
bwdist 
bweuler 
bwhitmiss 
bwlabel 
bwlabeln 
bwmorph 
bwpack 
bwperim 
bwselect 
bwulterode 
bwunpack 
endpoints (DIPUM) 
makelut 

Perform neighborhood operations using lookup tables. 
Compute area of objects in binary image. 
Binary area open (remove small objects). 
Compu~te distance transform of binary image. 
Compute Euler number of binary image. 
Binary hit-miss operation. 
Label connected components in 2-D binary image. 
Label connected components in N-D binary image. 
Perfornn morphological operations on binary image. 
Pack binary image. 
Determine perimeter of objects in binary image. 
Select objects in binary image. 
Ultimate erosion. 
Unpack binary image. 
Compute end points of a binary image. 
Constru~ct lookup table for use with applylut. 

Structuring element (STREL) creation and manipulation 

getheight  
getneighbors 
getnhood 
getsequence 
i s f  l a t  
r e f l e c t  
s t r e l  
t r a n s l a t e  

Get strel height. 
Get offs8et location and height of strel neighbors. 
Get strel neighborhood. 
Get seq,uence of decomposed strels. 
Return Itrue for flat strels. 
Reflect strel about its center. 
Create morphological structuring element. 
Translate strel. 

Region-based processing 

h l s t r o i  (DIPUM) Compute the histogram of an ROI in an image. 
poly2mask Convert ROI polygon to mask. 
ro i co lo r  Select region of interest, based on color. 
ro i f  ill Smoothly interpolate within arbitrary region. 
ro i f  i l t 2  Filter a region of interest. 
roipoly Select polygonal region of interest. 
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348 
340 
347 

online 
online 

366 
online 

374 
424 
348 
363 

online 
422 
373 
420 

353 
online 
online 

418 
online 

352 
361 

online 
356 

online 
445 

online 
online 
online 

354 
353 

online 
online 
online 

342 
online 
online 

341 
online 

156 
online 
online 
online 
online 

156 
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Colormap manipulation 

brighten 
cmpermute 
cmunique 
colormap 
imapprox 
rgbplot 

Color space conversions 

applycform 
hsv2rgb 
iccread 
lab2double 
lab2uint l6  
lab2uint8 
makecf orm 
ntsc2rgb 
rgb2hsv 
rgb2ntsc 
rgb2ycbcr 
ycbcr2rgb 
rgb2hsi (DIPUM) 
hsi2rgb (DIPUM) 
whitepoint 
xyz2double 
xyz2uintl6 

Array operations 

Brighten or darken colormap (MATLAEL). 
Rearrange colors in colormap. 
Find unique colormap colors and corresponding image. 
Set or get color lookup table (MATLAB). 
Approximate indexed image by one with fewer colors. 
Plot RGB colormap components (MATLAB). 

Apply device-independent color space transformation. 
Convert HSV values to RGB color space (MATLAB). 
Read ICC color profile. 
Convert L2':a*b* color values to class double. 
Convert Lika*b* color values to class u in t l6 .  
Convert L*a*be color values to class uint8.  
Create device-independent color space transform structure. 
Convert NTSC values to RGB color space. 
Convert RGB values to HSV color space (MATLAB). 
Convert RGB values to NTSC color space. 
Convert RGB values to YCBCR color space. 
Convert YCBCR values to RGB color space. 
Convert RGB values to HSI color space. 
Convert HSI values to RGB color space. 
Returns XYZ values of standard illuminants. 
Convert XYZ color values to class double. 
Convert XYZ color values to class u in t l6 .  

c i r c sh i f  t Shift array circularly (MATLAB). 
df tuv (DIPUM) Compute meshgrid arrays. 
padarray Pad array. 
paddedsize (DIPUM) Compute the minimum required pad size for use in FFTs. 

Image types and type conversions 

changeclass 
d i t h e r  
gray2ind 
g rays l i ce  
im2bw 
im2double 
im2 j ava 
im2 j ava2d 
im2uint8 
im2uintl6 

Change the class of an image (undocumemted IPT function). 
Convert image using dithering. 
Convert intensity image to indexed image:. 
Create indexed image from intensity image by thresholding. 
Convert image to binary image by thresholding. 
Convert image array to double precision. 
Convert image to Java image (MATLAB). 
Convert image to Java buffered image ob,ject. 
Convert image array to 8-bit unsigned integers. 
Convert image array to 16-bit unsigned integers. 
Convert indexed image to intensity image:. 
Convert indexed image to RGB image (MATLAB). 
Convert label matrix to RGB image. 
Convert matrix to intensity image. 
Convert RGB image or colormap to grayscale. 
Convert RGB image to indexed image. 

online 
online 
online 

132 
198 

online 

online 
206 

onliile 
online 
online 
online 
online 

205 
206 
204 
205 
205 
212 
213 

online 
online 
online 

72 
199 
201 
201 
26 
26 

online 
online 

26 
26 

201 
202 

online 
26 

202 
200 
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Miscellaneous 

conwaylaws (DIPUM) Apply Conway's genetic laws to a single pixel. 355 
manualhist (DIPUM) Generate a 2-mode histogram interactively. 87 
twomodegauss (DIPUM) Generate a 2-mode Gaussian function. 86 
u i n t l u t  Compute new array values based on lookup table. online 

Toolbox preferences 

i p tge tp re f  
i p t s e t p r e f  

Get value of Image Processing Toolbox preference. 
Set value of Image Processing Toolbox preference. 

online 
online 

MATLAB Functions 

The following MATLAB functions, listed alphabetically, are used in the book. See the pages indi- 
cated and/or online help for additional details. 

MATLAB Function Description 

A 
abs Absolute value and complex magnitude. 
a l l  Test to determine if all elements are nonzero. 
ans The most recent answer. 
any Test for any nonzeros. 
ax i s  Axis scaling and appearance. 

B 
bar Bar chart. 
bin2dec Binary to decimal number conversion. 
blanks A string of blanks. 
break Terminate execution of a f o r  loop or while loop. 

C 
ca r t zpo l  Transform Cartesian coordinates to polar or cylindrical. 
c a t  Concatenate arrays. 
c e i l  Round toward infinity. 
c e l l  Create cell array. 
c e l l d i s p  Display cell array contents. 
c e l l f  un Apply a function to each element in a cell array. 
c e l l p l o t  Graphically display the structure of cell arrays. 
c e l l s t r  Create cell array of strings from character array. 
char Create character array (string). 
c i r c s h i f  t Shift array circularly. 
colon Colon operator. 
colormap Set and get the current colormap. 
computer Identify information about computer on which MATLAB 

is running. 
continue Pass control to the next iteration o f f  or  or while loop. 
conv:! Two-dimensional convolution. 

Pages 
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ctranspose 

D 
dec2base 
dec2bin 
diag 
di f  f 
d i r  
d i sp  
double 

E 
e d i t  
e ig  
end 

eps 
e r ro r  
eval  
eye 

F 
f a l s e  
f e v a l  
f f t 2  
f f t s h i f t  
fieldnames 
f i g u r e  
f ind  
f l i p l r  
f l ipup 
f l o o r  
f o r  
f u l l  

G 
gca 
ge t  
get f  i e l d  
g lobal  
g r id  
guidata  
guide 

H 
help 
h i s t  
h i s t c  
hold on 

Vector and matrix complex transpose. 
(See transpose for real data.) 
Cumulative sum. 

Decimal number to base conversion. 
Decimal to binary number conversion. 
Diagonal matrices and diagonals of a matrix. 
Differences and approximate derivatives. 
Display directory listing. 
Display text or array. 
Convert to double precision. 

Edit or create an M-file. 
Find eigenvalues and eigenvectors. 
Terminate fo r ,  while, switch, t r y ,  and i f  statements 
or indicate last index. 
Floating-point relative accuracy. 
Display error message. 
Execute a string containing a MATLAB expression. 
Identity matrix. 

Create false array. Shorthand for l o g i c a l ( 0 ) .  
Function evaluation. 
Two-dimensional discrete Fourier transform. 
Shift zero-frequency component of DFT to center of spectrum. 
Return field names of a structure, or property names of an object. 
Create a figure graphics object. 
Find indices and values of nonzero elements. 
Flip matrices left-right. 
Flip matrices up-down. 
Round towards minus infinity. 
Repeat a group of statements a fixed number of times. 
Convert sparse matrix to full matrix. 

Get current axes handle. 
Get object properties. 
Get field of structure array. 
Define a global variable. 
Grid lines for two- and three-dimensional plots. 
Store or retrieve application data. 
Start the GUI Layout Editor. 

Display help for MATLAB functions in Command Window. 
Compute and/or display histogram. 
Histogram count. 
Retain the current plot and certain axis properties. 

lower 

M 
magic 
mat2str 
max 
mean 
median 
mesh 
meshgrid 
mf ilename 
min 
minus 
mldivide 
mpower 
mrdivide 
mtimes 

N 
nan or NaN 
nargchk 
nargin 
nargout 
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Conditionally execute statements. 
Two-dimensional inverse discrete Fourier transform. 
Inverse FFT shift. 
Imaginary part of a complex number. 
Convert to signed integer. 
Detect points inside a polygonal region. 
Request user input. 
Integer to string conversion. 
Convert 1:o signed integer. 
Convert i:o signed integer. 
Quick 1-13 linear interpolation. 
Compute matrix inverse. 
See Table 2.9. 
Determine if item is a cell array of strings. 
Determine if item is a logical array. 

Array leflt division. (See mldivide for matrix left division.) 
Length of vector. 
Generate linearly spaced vectors. 
Load workspace variables from disk. 
Natural logarithm. 
Base 10 logarithm. 
Base 2 logarithm. 
Convert numeric values to logical. 
Search for specified keyword in all help entries. 
Convert string to lower case. 

Generate magic square. 
Convert a matrix into a string. 
Maximum element of an array. 
Average or mean value of arrays. 
Median va,lue of arrays. 
Mesh plot. 
Generate .X and Y matrices for three-dimensional plots. 
The name of the currently running M-file. 
Minimum element of an array. 
Array and matrix subtraction. 
Matrix left division. (See 1.divi.de for array left division.) 
Matrix power. (See function power for array power.) 
Matrix right division. (See rdivide  for array right division.) 
Matrix multiplication. (See t imes for array multiplication). 

Not-a-number. 
Check number of input arguments. 
Number of input function arguments. 
Number of output function arguments. 
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ndims 
nextpow2 
norm 
numel 

ones 

P 
patch 
permute 
p e r s i s t e n t  
P i  
p lot  
plus 
pol2car t  
pow2 
power 
p r i n t  
prod 

R 
rand 
randn 
rdivide  
r e a l  
realmax 
realmin 
regexp 
regexpi 
regexprep 
rem 
repmat 
reshape 
re turn  
rot90 
round 

S 
save 
s e t  
s e t f  i e l d  
shading 

sign 
s ing le  
s i z e  
s o r t  
sortrows 

Number of array dimensions. 
Next power of two. 
Vector and matrix norm. 
Number of elements in an array. 

Generate array of ones. 

Create patch graphics object. 
Rearrange the dimensions of a multidimensioilal array. 
Define persistent variable. 
Ratio of a circle's circumference to its diameter. 
Linear 2-D plot. 
Array and matrix addition. 
Transform polar or cylindrical coordinates to Cartesian. 
Base 2 power and scale floating-point numbers. 
Array power. (See mpower for matrix power.) 
Print to file or to hardcopy device. 
Product of array elements. 

Uniformly distributed random numbers and arrays. 
Normally distributed random numbers and arrays. 
Array right division. (See mrdivide for matrix right division.) 
Real part of complex number. 
Largest floating-point number that your computer can represent. 
Smallest floating-point number that your computer can represent. 
Match regular expression. 
Match regular expression, ignoring case. 
Replace string using regular expression. 
Remainder after division. 
Replicate and tile an array. 
Reshape array. 
Return to the invoking function. 
Rotate matrix multiples of 90 degrees. 
Round to nearest integer. 

Save workspace variables to disk. 
Set object properties. 
Set field of structure array. 
Set color shading properties. We use the i n t e r p  mode 
in the book. 
Signum function. 
Convert to single precision. 
Return array dimensions. 
Sort elements in ascending order. 
Sort rows in ascending order. 

sparse 
sp l ine  
sp r in t f  
stem 
s t r *  
str2num 
s t r c a t  
strcmp 
strcmpi 
s t r f  ind 
s t r j u s t  
strmatch 
strncmp 
strncmpi 
s t r r ead  
s t r r e p  
s t r t o k  
s t r v c a t  
subplot 
sum 
surf 
switch 

T 
t e x t  
t i c ,  t oc  
t imes 
t i t l e  
transpose 
t r u e  
t r y  . . .  catch 

U 
u icon t ro l  
u i n t l 6  
uint32 
u in t8  
uiresume 
uiwait  
uminus 
up1us 
unique 
upper 

v 
varargin 
vararout 
version 
view 
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Create sparse matrix. 
Cubic spline data interpolation. 
Write formatted data to a string. 
Plot discrete sequence data. 
String operations. See Table 12.2. 
String to number conversion. 
String concatenation. 
Compare strings. 
Compare strings ignoring case. 
Find one string within another. 
Justify a character array. 
Find possible matches for a string. 
Compare the first n characters of two strings. 
Compare first n characters of strings ignoring case. 
Read formatted data from a string. 
String search and replace. 
First token in string. 
Vertical concatenation of strings. 
Subdivide figure window into array of axes or subplots. 
Sum of array elements. 
3-D shaded surface plot. 
Switch among several cases based on expression. 

Create text object. 79 
Stopwatch timer. 57 
Array multiplication. (See mtimes for matrix multiplication.) 41 
Add title to current graphic. 79 
Matrix or vector transpose. (See c t ranspose  for complex data.) 30.41 
Create true array. Shorthand for l o g i c a l  ( 1 ) . 38,410 
See Table 2.11. 49 

Create user interface control object. 
Convert to unsigned integer. 
Convert to unsigned integer. 
Convert to unsigned integer. 
Control program execution. 
Control program execution. 
Unary minus. 
Unary plus. 
Unique elements of a vector. 
Convert string to upper case. 

Pass a variable number of arguments. 
Return a variable number of arguments. 
Get MATLAB version number. 
Viewpoint specification. 
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W 
warning Display warning message. 
while Repeat statements an indefinite number of times. 
whitebg Change background color. 
whos List variables in the workspace. 

X 
xlabel 
x l i m  
xor 
xtick 

Y 
ylabel 
y l i m  
ytick 

Label the x-axis. 
Set or query x-axis limits. 
Exclusive or. 
Set horizontal axis tick. 

Label the y-axis. 
Set or query y-axis limits. 
Set vertical axis tick. 

z 
z e r o s  Generate array of zeros. 

Preview 
In this appendix we develop the i c e  interactive color editing (ICE) function 
introduced in Chapter 6. The discussion assumes familiarity on the part of the 
reader with the material in Section 6.4. Section 6.4 provides many examples of 
using i c e  in both pseudo- and full-color image processing (Examples 6.3 
through 6.7) and describes the i c e  calling syntax, input parameters, and 
graphical interface elements (they are summarized in Tables 6.4 through 6.6). 
The power of i c e  is its ability to let users generate color transformation curves 
interactively and graphically, while displaying the impact of the generated 
transformations o n  images in real or near real time. 

Creating ICE'S Graphical User Interface 
MATLAB's Grnphical User In ter j ke  Development Environment (GUIDE) 
provides a rich set of tools for incclrporating graphical user interfaces (GUIs) 
in M-functions. Using GUIDE, the processes of (1) laying out a G U I  (i.e., its 
buttons, pop-up menus, etc.) and (2) programming the operation of the GUI 
are divided conveniently into two easily managed and relatively independent 
tasks. The resulting graphical M-function is composed of two identically 
named (ignoring extensions) files: 

1. A file with extension . f i g ,  called a FIG-file, that contains a complete 
graphical description of all the function's G U I  objects or elements and 
their spatial arrangement. A FJG-file contains binary data that does not 
need to be  parsed when the associated GUI-based M-function is execut- 
ed.The FIG-file for ICE ( i c e .  l ' ig)  is described later in this section. 

f 2. A file with extension .m,  called a GUI M-file, whlch contains the code that 
; controls the GUI operation This file includes functions that are called 

E 
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when the GUI is launched and exited, and cclllbnck functions that are 
executed when a user interacts with GUI objects-for example, when a 
button is pushed.The GUI M-file for ICE ( i ce .  m) is described in the next 
section. 

To launch GUIDE from the MATLAB command 'window, type 

guide filename 

where filename is the name of an existing FIG-file on the current path. If 
filename is omitted, GUIDE opens a new (i.e., blank) window. 

Figure B.l shows the GUIDE Layout Editor (launched by entering guide 
i c e  at the MATLAB >> prompt) for the Interactive Color Editor (ICE) lay- 
out. The Layout Editor is used to select, place, size, align, and manipulate 
graphic objects on a mock-up of the user interface under development. The 
buttons on its left side form a Component Palette containing the GUI objects 
that are supported-Push Buttons, Toggle Buttons, Radio Buttons, Checkboxes, 
Edit Texts, Static Texts, Sliders, Frames, Lzstboxes, Popup Menus, and Axes. Each 
object is similar in behavior to its standard Windows' counterpart. And any 
combination of objects can be added to the figure object in the layout area on 
the right side of the Layout Editor. Note that the I'CE GUI includes checkbox- 
es (Smooth, Clamp Ends, Show PDF, Show CDF, Map Bars, and Map Image), static 
text ("Component:", "Curve", . . .), a frame outlining the curve controls, two 

GURE B.l 
he GUIDE 
avout Editor 
,dckup of the 
3E GUI. 

M-file Menu Property Object 
Align Edit Edit Inspector B'rowser Run 

\ I / / ' / '  
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push buttons (Reset and Reset A l l ) ,  a popup menu for selecting a color trans- 
formation curve, and three axes objects for displaying the selected curve (with 
associated control points) and its effect on both a gray-scale wedge and hue 
wedge. A hierarchical list of the elements comprising ICE (obtained by clicking 
the Object Browser button in the task bar at the top of the Layout Editor) is 
shown in Fig. B.2(a). Note that each element has been given a unique name or 
tag. For example, the axes object for curve display (at the top of the list) is as- 
signed the identifier curve-axes [the identifier is the first entry after the open 
parenthesis in Fig. B.2(a)J. 

Tags are one of several properties that are common to all GUI objects. A 
scrollable list of the properties characterizing a specific object can be obtained 
by selecting the object [in the Object Browser list of Fig. B.2(a) or layout area 
of Fig. B.l using the Selection Tool] and clicking the Property Inspector button 
on the Layout Editor's task bar. Figure B.2(b) shows the list that is generated 
when the f igu re  object of Fig. B.2(a) is selected. Note that the f igu re  ob- 
ject's Tag property [highlighted in Fig. B.2(b)] is ice.  This property is impor- 
tant because GUIDE uses it to automatically generate f igu re  callback TheGUIDEgener- 
function names.Thus, for example, the WindowButtonDownFcn property at the "led f i g u r e  Object 

is u conlniner for nil bottom of the scrollable Property Inspector window, which is executed when a objects in 
mouse button is pressed over the figure window, is assigned the name inrerfnce. 
ice~WindowButtonDownFcn. Recall that callback functions are merely 
M-functions that are executed when a user interacts with a GUI object. Other 

! 
U I C O ~ C L U ~  (componenc~opup "RCE") k- SelecUonHi~hllghl on 

TW uicontrol ( text2  "Input:") I.& normal 
ral uicancrol (cexc3 "D~cpuc:") ,- Sha~BCOIOrS 

ulconrrol (snoom-checkbou "Snooch") 

/ W u i c o n t r o l  (reset~ushbuccon "Rcscc") 

9: ~ I ~ m t ~ o l  ( text4  "Curve") 

Or uicontrol (Inpu.c_ceYt ""1 
rrr mcorrtrol (ourput-text "", 
B u ~ c o n t r o l  (slope-chcckbox "Clamp Ends") 

~ u i c o n t r o l  (resetallgushbucton "Reset hll"i 

u ~ c m t r o l  (pdt-checkbux "Show PDP") 

uxcontral (cdf-checkbox "Show CDF"1 

i*'urconcrol (blue-eerc " " I  
irr uxconrrol (green-text '"'i 

a! uiconcrol ired-text "")  

*r uzconcrol (text10 "Pseudo-color Blr"1 

mr uxcontrol ( z e x t l l  "Pull-color Ear") 

@ ulcontrar (mapbar-chcckbox , l a p  Bars") 

uicontrol (mapimage-checkbox "Nap Image") 

I -Units 

1 ~ s e r ~ a l a  z:~e amad 
I d 

Llsible d o n  
I I i , wndowsuttonDownFcn ice(ice~w~ndow~unonDownFcn gcno o guldata(gcb0)) 

dow8uUonl~atlonFcn.Qcbo O.~uldata(ocbo)) I i -U&-&---X-. 

FIGURE B.2 (a) The GUIDE Object Browser and (b) Property Inspector for the ICE "figure" object. 
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notable (and common to all GUI objects) properties include the P0siti.0 function component~popup~Cal lback(hObject ,  eventdata, handles) 

and Units properties, which define the size and locatio~~ of an object. 
function smooth~checkbox~Callback(h0bject, eventdata, handles) 
function reset-pushbutton-Callback(hObject, eventdata, handles) 

Finally, we note that some properties are unique to particular objects. A push- function slope~checkbox~Callback(h0bject, eventdata, handles) 
button object, for example, has a Callback property that defines the functi function resetall~pushbutton~Callback(hObject , eventdata, handles) 
that is executed when the button is pressed and the St r ing property that det function pdf~checkbox~Callback(hObject, eventdata, handles) 
mines the button's label. The Callback property of the ICE Reset button is function cdf~checkbox~Callback(h0bject, eventdata, handles) 
reset-pushbutton-Callback [note the incorporation of its Tag property from function mapbar~checkbox~Cal lback(h0b jec t ,  eventdata, handles) 
Fig. B.2(a) in the callback function name]; its St r ing property is "Reset". Note, function mapimage~checkbox~Callback(h0bject, eventdata, handles) 
however, that the Reset pushbutton does not have a WindowButtonMotionFcn 
property; it is specific to "figure" objects. This automatically generated file is a useful starting point or prototype for the 

development of the fully functional i c e  interface. (Note that we have stripped 

ml Programming the ICE Interface the file of many GUIDE-generated comments to save space.) In the sections 
that follow, we break this code into four basic sections: (1) the initialization code 

When the ICE FIG-file of the previous section is first saved or the GUI is first between the two "DO NOT EDIT" ciomment lines, (2) the figure opening and out- 
run (e.g., by clicking the Run button on the Layout Editor's task bar). GUIDE put functions (ice-0peningFcn isnd ice-OutputFcn), (3) the figure callback 
generates a starting GUI M-file called i c e .  m. This file, which can be modified functions (i.e., the ice-WindowButtonDownFcn, ice-WindowButtonMotion- 
using a standard text editor or MATLAB's M-file editor, determines how the Fcn, and ice-WindowButtonUpFcn functions), and (4) the object callback func- 
interface responds to user actions. The automatically generated GUI M-file tions (e.g., reset-pus hbu t t on-Call bac k). When considering each section, 
for ICE is as follows: completely developed versions of the i c e  functions contained in the section are 

given, and the discussion is focuse~d on features of general interest to most GUI 
i c e  function varargout = ice(varargin) 

e . . . .- .- - M-file developers. The code introduced in each section will not be consolidated 
- * i  % Begin initialization code - DO NOT EDIT (for the sake of brevity) into a single comprehensive listing of i c e .  m. It is intro- 
GUIDEge,~ernted gui-singleton = 1 ; duced in a piecemeal manner. 
srar?0zg M-file. gui-State = struct ( 'gui-Name', mfilename, ... 

'gui-Singleton', gui-Singleton, . . .  The operation of i c e  was described in Section 6.4. It is also summarized in 

'gui-OpeningFcnl, @ice-OpeningFcn, ... the following Help text block from the fully developed i c e .  m M-function: 
gui-OutputFcni, @ice-OutputFcn, ... 
gui-LayoutFcn', [ I ,  . . . %ICE Interactive Color Editor. 
'gui -Callback1, [ I ) ;  

if nargin & ischar (varargin{l ) )  
gui-State.gui-Callback = str2func(varargin{l}); 

end 

if nargout 
[varargout{l:nargout)] = gui-mainfcn(gui-State, varargin{:)); 

else 
gui-mainf cn(gui-State, varargini:)) ; 

end 
% End initialization code - DO NOT EDIT 

function ice-OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = h0bject; 
guidata(hObject, handles) ; 
% uiwait (handles.figure1); 

function varargout = ice-OutputFcn(hObject, eventdata, handles) 
varargout{l) = handles .output; 

function ice-WindowButtonDownFcn ( h O b j  ect , eventdata, handles) 
function ice~WindowButtonMotionFcn(h0bj ect, eventdata, handles) 
function ice-WindowButtonUpFcn(h0b ject , eventdata, handles) 

OUT = ICE('Property Name', 'Property Value', ;..) transforms an Help text block of 

image ' s color components bas;ed on interactively specified mapping Pnn1 
functions. Inputs are Property NameIProperty Value pairs: 

Name Value 

' image ' An RGB or monochrome i n p u t  image to be 
transformed by interactively specified 
mappings. 

' space' The col~or space of the components to be 
modified. Possible values are 'rgb' , 'cmy ' , 
' h s i ' ,  'hsv' ,  'ntsc' (or ' y i q ' ) ,  'ycbcr' . When 
omitted, the RGB color space i s  assumed. 

'wait' If 'on' (the default), OUT i s  the mapped i n p u t  
image and ICE returns to the calling function 
or workspace when closed. If ' o f f ' ,  OUT i s  the 
handle of the mapped i n p u t  image and ICE 
returns immediately. 
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, 

% EXAMPLES: 
, ice OR i c e ( ' w a i t l ,  ' o f f ' )  96 Demo user interface 
, ice( ' imagei ,  f )  96 Map RGB or mono image 
% i c e ( ' i m a g e ' , f , ' s p a c e ' , ' h s v ' )  g6 Map HSV of RGB image 
% g = i c e ( ' i m a g e l , f )  96 Return mapped image 
% g = ice( ' imagel ,  f ,  'wai t ' ,  'off ' ) ;  % Return i t s  handle 
% 

% ICE displays one popup menu selectable mapping function a t  a 
% time. Each image component i s  mapped by a dedicated curve (e .g . ,  
% R, G ,  or 8 )  and then by an all-component curve ( e . g . ,  R G B ) .  Each 
% curve's control points are depicted as c i rc les  that  can be moved, 
% added, or deleted w i t h  a two- or three-button mouse: 
, 

% Mouse Button Editing Operation 

% Left Move control point by pressing and dragging. 
% Middle Add and position a control point by pressing 
% and dragging. (Optio~nally Shift-Left) 
% Right Delete a control point. (Optionally 
% Control-Left) 
% 
% Checkboxes determine how mapping functions are computed, whether 
% the input image and reference pseudo- and ful l -color  bars are 
% mapped, and the displayed reference curve information ( e . g . ,  
% PDF) :  
% 

% Checkbox Function 
% _ _ _ _ _ _ _ _ _ _ _ _ _ _  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% Smooth Checked for  cubic spline (smooth curve) 
% interpolation. If unchecked, piecewise linear. 
% Clamp Ends Checked t o  force the s tar t ing and ending curve 
, slopes i n  cubic spline interpolation to 0. No 
% effect on piecewise l inear .  
0 Show PDF Display probability density function(s) [ i . e . ,  
, histogram(s)] of the image components affected 
% by the mapping function. 
0 
O Show CDF Display cumulative distributions function(s) 

o instead of PDFs. 
0 

O <Note: Show PDFICDF are mutually exclusive.> 
% Map Image If checked, image mapping i s  enabled; e lse  
, not. 
% Map Bars If checked, pseudo- and ful l -color  bar mapping 
% i s  enabled; e lse  display the unmapped bars (a 

gray wedge and hue wedge, respectively). 

% - - - - - - - - - - - - - -  _ _ _ _ _ _ _ _ _ _ _ _ - - - - _ _ _ - - ~ - - . ~ ~ ~ ~ ~ - ~ - ~ - ~ - - - - - - - - - - - -  
% Reset In i t  the currently displayed mapping function 
% and uncheck a l l  curve parameters. 
% Reset A l l  In i t i a l i ze  a l l  mapping functions. 

I!' B.2.1 Initialization Code 
The opening section of code in the starting G U I  M-file (at the beginning of 
Section B.2) is a standard GUIDE-generated block of initialization code. Its 
purpose is to build and display ICE'S G U I  using the M-file's companion FIG- 
file (see Section B.l) and control access to  all internal M-file functions. As the 
enclosing "DO NOT EDIT" comment lines indicate, the initialization code 
should not be modified. Each time i c e  is called, the initialization block builds 
a structure called gui-State ,  which contains information for accessing i c e  
functions. For instance, named field gui-Name (i.e., gui-State  . gui-Name) 
contains the MATLAB function mf i lename,  which returns the name of the name 
currently executing M-file. In  a similar manner, fields gui-OpeningFcn and 
gui-OutputFcn are  loaded with the G U I D E  generated names of i ce ' s  open- 
ing and output functions (discussed in the next section). If an ICE G U I  object 
is activated by the user (e.g., a button is pressed), the name of the object's call- 
back function is added as field gui-Callback [the callback's name would 
have been passed as a string in v a r a r g i n  ( 1 ) 1. 

After structure gui-State  is formed, it is passed as an input argument, 
along with v a r a r g i n  ( : ) , to  function gui-mainf cn. This MATLAB function a i n f c n  
handles GUI  creation, layout, and callback dispatch. For i c e ,  it builds and dis- 
plays the user interface and generates all necessary calls to its opening, output, 
and callback functions. Since older versions of MATLAB may not include this 
function, GUIDE is capable of generating a stand-alone version of the normal 
GUI M-file (i.e., one that works without a FIG-file) by selecting Export. . . 
from the File menu. In the stand-alone version, function gui-mainf cn and two 
supporting routines, ice-LayoutFcn and local-openf i g ,  are appended to the 
normally FIG-file dependent M-file. The role of ice-LayoutFcn is to create 
the ICE GUI. In the stand-alone version of i c e ,  it begins with the statement 

hl = f igure ( .  . . 
'Uni ts ' ,  'characters ' ,  . . . 
' Color ' , [O .87843137254902 0.874509803921 569 0.8901 96078431 3731 , . . . 
'Colormap', [ O  0 0.5625;O 0 0.625;O 0 0.6875;O 0 0.75;.  . . 

0 0 0.8125;O 0 0.875;O 0 0.9375;O 0 l;O 0.0625 1; . . .  
0 0.125 l;O 0.1875 l;O 0.25 l;O 0.3125 l;O 0.375 1; . . .  
0 0.4375 l;O 0.5 l;O 0.5625 l;O 0.625 l;O 0.6875 1; . . .  
0 0.75 l;O 0.8125 l;O 0.875 l;O 0.9375 l;O 1 1 ;  . . .  
0.0625 1 1;0.125 1 0.9375;0.1875 1 0.875; . . .  



Fzinction u i c o n t r o l  
"Proper tyNamel ' ,  
' a l u e l ,  . . .  ) 
recrtes a user interface 

corztrol in the cirrretzt 
window with the speci- 
"erl properties and re- 
lrns ( I  hanrlle to it. 

0.25 1 0.8125;0.3125 1 0.75;0.375 1 0.6875; ... , G U I  object) in the current figure window based on property namelvalue 
0.4375 1 0.625;0.5 1 0.5625;0.5625 1 0.5; .  . . s (e.g., 'Tag '  plus ' reset-pushbutton ' )  and returns a handle to it. 
0.625 1 0.4375;0.6875 1 0.375;0.75 1 0.3125; ... 
0.8125 I 0.25;0.875 1 0.1875;0.9375 1 0.125; . . .  .? The Opening and Output Functions 
1 1 0.0625;l 1 0; l  0.9375 0 ; l  0.875 0 ; l  0.8125 0; . . .  
1 0.75 0 ; l  0.6875 0 ; l  0.625 0 ; l  0.5625 0; l  0.5 0; . . .  
1 0.4375 0 ; l  0.375 0; l  0.3125 0 ; l  0.25 0; ... 
1 0.1875 0 ; l  0.125 0 ; l  0.0625 0 ; l  0 0;0.9375 0 0; ... 
0.875 0 0;0.8125 0 0;0.75 0 0;0.6875 0 0;0.625 0 0; . . .  
0.5625 0 01, . . .  

' IntegerHandle' , ' o f f '  , . . . 
' InvertHardcopy ' , get (0, 'defaultfigureInvertHardcopyl ) , . . . 
'MenuBar', 'none',  . . .  
'Name', 'ICE - Interactive Color Editor ' ,  . . . 
'NumberTitle', ' o f f ' ,  . . .  
'PaperPosition ' , get (0, 'def aultfigurePaperPosition ' ) , . . . 
' Pos i t ion ' ,  [0.8 65.2307692307693 92.6 30.0769230769231], . . .  
'Renderer', get (0 ,  ' de fau l t f i gu re f l ende re r ' )  , . . . 
'RendererMode', 'manual', ... 
'WindowButtonDownFcn' , ' i c e (  ' 'ice-WindowButtonDownFcn' ' , gcbo, [ I , .  . . 

guidata(gcbo)) ' ,  . . .  
'WindowButtonMotionFcnl, ' ice(" ice~WindowButtonMot ionFcn",  gcbo, ... 

[ I ,  guidata(gcbo)) ' ,  ... 
'WindowButtonUpFcnl, ' ice("ice-WindowButtonUpFcn", gcbo, [ I ,  . . .  

guidata(gcbo)) ' ,  . . .  
'Handlevis ibi l i ty ' ,  'cal lback ' ,  . . .  
'Tag ' ,  ' i c e ' ,  . . .  
' UserData' , zeros(1,O)) ; 

to create the main figure window. GUI objects are then added with statements like 

h13 = u i c o n t r o l (  . . .  
' P a r e n t ' ,  h i ,  . . .  
' U n i t s ' ,  ' n o r m a l i z e d ' ,  . . .  
' C a l l b a c k ' ,  'ice("reset-pushbutton-Callback", gcbo, [ I ,  . . .  

g u i d a t a ( g c b o ) ) ' ,  . . .  
' F o n t s i z e ' ,  10 ,  . . .  
' L i s t b o x T o p l ,  0 ,  . . .  
' P o s i t i o n ' ,  [0.710583153347732 0.508951406649616.. .  

0.211663066954644 0.0767263427109974], . . .  
' S t r i n g ' ,  ' R e s e t '  , . . .  
' T a g ' ,  ' r e s e t - p u s h b u t t o n ' ) ;  

The first two functions following the initialization block in the starting G U I  
M-file at the beginning of Section 18.2 are called opening and output functions, 
respectively. They contain the code that is executed just before the G U I  is 
made visible to  the user and when the G U I  returns its output to  the command 
line or calling routine. Both functions are passed arguments hobjec t ,  
even tda ta ,  and handles. (These arguments are  also inputs to  the callback 
functions in the next two sections.) Input hob j e c t  is a graphics object handle, 
even tda ta  is reserved for future use, and handles  is a structure that provides 
handles to  interface objects and any application specific or user defined data. 
To implement the desired functionality of the ICE interface (see the Help 
text), both ice-OpeningFcn and ice-OutputFcn must be  expanded beyond 
the "barebones" versions in  the starting G U I  M-file. The expanded code is as 
follows: 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function ice-OpeningFcn(hObject, eventdata, handles, varargin) ~ c e - o p e n l n g f c n  
% When ICE is  opened, perform basic initialization ( e . g . ,  setup mm---- ---- .- 

% g l o b a l ~ ,  ...) before it is made v i s ib le .  
Fronz the final 

% Set ICE globals t o  defaults.  M-file. 

handles. updown = ' none ' ; % Mouse updown s t a t e  
handles.plotbox = [0 0 1 I ] ;  % Plot area parameters i n  pixels 
handles.set1 = [0 0; 1 11 ; % Curve 1 control points 
handles.set2 = [O 0; 1 I ] ;  % Curve 2 control points 
handles.set3 = [0 0; 1 11; % Curve 3 control points 
handles.set4 = [O 0; 1 I ] ;  % Curve 4 control polnts 
handles-curve = ' s e t l ' ;  % Structure name of selected curve 
handles.cindex = 1 ; % Index of selected curve 
handles.node = 0; % Index of selected control point 
handles. below = 1 ; % Index of node below control point 
handles-above = 2; % Index of node above control point 
handles.smooth = [O; 0; 0; 01; % Curve smoothing s ta tes  
handles.slope = [O; 0; 0; 01; % Curve end slope control s ta tes  
handles.cdf = [O; 0; 0; 01; % Curve CDF s ta tes  
handles-pdf = [O; 0; 0; 01 ; % Curve PDF s ta tes  
handles.output = [ I  ; % Output image handle 
handles. df = [ 1 ; % Input PDFs and CDFs 
handles.colortype = ' rgb' ; % Input lmage color space 
handles. lnput = [ I  ; % Input image data 
handles. imagemap = 1 ; % Image map enable 
handles. barmap = 1 ; % Bar map enable 
handles .graybar = [ I  ; % pseudo' (gray) bar image 

which adds the Reset  pushbutton to the figure. Note that these statements handles. colorbar = [ ]  ; % Color (hue) bar image 
specify explicitly properties that were defined originally using the Property In- 
spector of the G U I D E  Layout Editor. Finally, we note that the f i g u r e  func- % Process Property NameiProperty Value input argument pairs .  

tion was introduced in Section 2.3; u i c o n t r o l  creates a user interface control wait = ' on ' ;  
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% Update handles and make ICE wait before exit if  required. 
guidata(hObject, handles) ; 
i f  strcmpi (wait, 'on ' ) 

uiwait (handles. ice) ; 
end 

LC~-Outputfcn function varargout = ice-OutputFcn(hObject, eventdata, handles) 
m"ws 

% After ICE i s  closed, get the image data of the current figure 
7ronf the final % for the output. If 'handles' exists, ICE i sn ' t  closed (there was 
d-file. % no 'uiwait ' )  so output figure handle. 

if  max(size(hand1es)) == 0 
figh = get(gcf);  
imageh = get(figh.Children); 
if max(size(imageh)) > 0 

image = get(imageh.Chi1dren); 
varargout(1) = image.CData; 

must survive every call to i c e  and are added to handles at the start of 
ice--0peningFcn. For instance, the handles. s e t l  global is created by the 
statement 

handles.set1 = [0 0 ;  1 1 1  
-% 

where s e t l  is a named field clontaining the control points of a color map- 
ping function to be added to tlhe handles structure and [ 0  0 ;  1 1 ] is its 
default value [curve endpoint:; (0,O) and (1, I)]. Before exiting a function 
in which handles is modified, 

guidata(hObject ,  handles) 

must be called to store variable handles as the application data of the fig- F~rnct~ort g u i d a t a  

ure with handle hob j ec t .  ( H  , DATA) stores 
the spec~fied rlata ~n 

end 2. Like many built-in graphics fi~nctions, ice-Openingfcn processes input thefiguris 'ppsca- 

else tion data. H is a lzan- 
arguments (except hob  j e c t ,  event data,  and handles) in property name dle ,hot varargoutjl} = h0bject; and value pairs. When there a.re more than three input arguments (i.e., if figrrre-it can be the 

end nargin > 3), a loop that skips through the input arguments in pairs [for figrlreitself;orany 
object contobled in 

i = 1 : 2 :  (nargin - 3 ) ]  is executed. For each pair of inputs, the first is used thefigttre, Rather than examining the intricate details of these functions (see the code's to drive the switch construct, 
comments and consult Appendix A or the index for help on specific func- 
tions), we note the followi& commonalities with most GUI opening and out- 
put functions: 

1. The handles structure (as can be seen from its numerous references in 
the code) plays a central role in most GUI M-files. It serves two crucial 
functions. Since it provides handles for all the graphic objects in the inter- 
face, it can be used to access and modify object properties. For instance, 
the i c e  opening function uses 

s e t ( h a n d l e s . i c e ,  ' U n i t s ' ,  ' p i x e l s ' ) ;  
u i sz  = ge t (hand les . i ce ,  ' P o s i t i o n ' ) ;  

to access the size and location of the ICE GUI (in pixels). This is accom- 
plished by setting the Units property of the i c e  figure, whose handle is 
available in handles. i ce ,  to ' pixels  ' and then reading the Posit ion 
property of the figure (using the get  function). The get  function, which 
returns the value of a property associated with a graphics object, is also 
used to obtain the computer's display area via the s s z  = get (0, 
' Screensize ' ) statement near the end of the opening function. Here, 0 is 
the handle of the computer display (i.e., root figure) and ' Screensize ' is 
a property containing its extent. 

In addition to providing access to GUI objects, the handles structure is 
a powerful conduit for sharing application data. Note that it holds the default 
values for twenty-three global i c e  parameters (ranging from the mouse 
state in handles. updown to the entire input image in handles. input).TneY 

switch lo'ryer(varargin{i}) 

which processes the second parameter appropriately. For case ' space ' , 
for instance, the statement 

I1 

handles.colortype = lower(varargin{i + I } ) ;  

sets named field colortype to the value of the second argument of the 
input pair. This value is then used to setup ICE'S color component popup 
options (i.e., the S t r ing  property of object component-popup). Later, it is 
used to transform the compont:nts of the input image to the desired map- 
ping space via 

where built-in function eval  ( s )  causes MATLAB to execute string s as 
an expression or statement (see Section 12.4.1 for more on function 
eval). If handles. input is ' hsv ' ,  for example, eval  argument [ ' rgb2' 
' h s v  ' ' (handles.  i npu t )  ' ] becomes the concatenated string 
' rgb2hsv (handles.  i npu t )  ' , which is executed as a standard MATLAB 
expression that transforms the l7GB components of the input image to the 
HSV color space (see Section 6.2.3). 
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3. The statement % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function graph(hand1es) i c e  
k,k<mir ". *., " ,  . ".. 

% uiwait(handles.figure1); % Interpolate and plot mapping functions and optional reference 
% PDF(s) or CDF(s). Fi17al M-,file i n ren~a l  

in the starting GUI M-file is converted into the conditional statement filrzctions. 
nodes = getf ield (handles, handles. curve) ; 

i f  s t rcmpi(wai t ,  ' o n ' )  u iwai t (hand1es . ice) ;  end c = handles.cindex; dfx = 0:1/255:1; 
colors = [ ' k '  ' r '  ' g '  ' b ' ] ;  

in the final version of ice-Openingfcn. In general, % For piecewise linear interpolation, plot a map, map + PDFICDF, or 
% map + 3 PDFsICDFs. 

uiwait ( f i g )  if -handles. smooth (handles. cindex) 

blocks execution of a MATLAB code stream until either a uiresume is if  (-handles. pdf (c )  & -handles .cdf ( c ) )  I . . . 
(size(handles.df, 2) == 0) 

executed or figure f i g  is destroyed (i.e., closed). [With no input argu- plot(nodes(:, I ) ,  nodes(:, 2 ) ,  ' b - ' ,  ... 
ments, uiwait is the same as uiwait (gcf ) where MATLAB function gcf nodes(:, I ) ,  nodes(:, 2 ) ,  ' ko' , . . . 
returns the handle of the current figure]. When i c e  is not expected to re- ' Parent ' , handles.curve-axes) ; 
turn a mapped version of an input image, but return immediately (i.e., be- elseif c > 1 
fore the ICE GUI is closed), an input p:roperty namelvalue pair of i = 2 * c - 2 - handles.pdf(c); 
'wai t  ' / ' off ' must be included in the call. Otherwise, ICE will not re- plot(dfx, handles.df(i, : ) ,  [colors(c) ' - ' I ,  . . .  
turn to the calling routine or command line until it is closed. That is, until nodes(:, I ) ,  nodes(:, 2 ) ,  ' k - ' ,  ... 
the user is finished interacting with the interface (and color mapping func- nodes(:, I ) ,  nodes(:, 2 ) ,  'ko ' ,  . . .  
tions). In this situation, function ice-Outl~utFcn can not obtain the 'Parent' ,  handles.curve-axes); 

mapped image data from the handles struct.ure, because it does not exist elseif c == 1 

after the GUI is closed. As can be seen in the final version of the function, i = handles.cdf(c); 
plot(dfx, handles.df(i + 1 ,  : ) ,  ' r - ' ,  . . .  

ICE extracts the image data from the CDat:a property of the surviving dfx, handles.df(i + 3, : ) ,  'g - ' ,  . . .  
mapped image output figure. If a mapped output image is not to be re- dfx, handles.df(i + 5, : ) ,  'b-', . . .  
turned by i ce ,  the uiwait  statement in ice-~OpeningFcn is not executed, nodes(:, 1 ) , nodes(:, 2 ) ,  ' k-' , . . . 
ice-Output Fcn is called immediately after the opening function (long be- nodes(:, I ) ,  nodes(:, 2 ) ,  ' k o '  , . . . 
fore the GUI is closed), and the handle of the mapped image output figure 'Parent ' , handles ,curve-axes) ; 
is returned to the calling routine or commancl line. end 

Finally, we note that several internal functions are invoked by % Do the same for smooth (cubic spline) interpolations. 
ice-OpeningFcn. These-and all other i c e  internal functions-are listed else 

next. Note that they provide additional examp1.e~ of the usefulness of the x = 0:O.Ol:l; 

handles structure in MATLAB GUIs. For instan'ce, the 
i f  -handles. slope (handles. cindex) 

y = spline(nodes(:, I ) ,  nodes(:, 2 ) ,  x ) ;  
else 

nodes = ge t f i e ld (hand les ,  handles.curve) y = spline(nodes(:, I ) ,  10; nodes(:, 2 ) ;  01, x ) ;  
end 

and i = find(y > 1 ) ;  y ( i )  = I ;  

i = find(y < 0 ) ;  y ( i )  = 0; 
nodes = g e t f i e l d ( h a n d l e s ,  [ ' s e t '  n u m 2 s t r ( i ) ] )  

i f  (-handles. pdf (c)  & -handles. cdf ( c ) )  I . . . 
statements in internal functions graph and render, respectively, are used to (size(hand1es .df, 2) == 0) 

access the interactively defined control points of 1:CE's various color mapping plot(nodes(:, I ) ,  nodes(:, 2 ) ,  'ko ' ,  x ,  y ,  ' b - ' ,  . . .  
' Parent ' , handles. curve-axes) ; curves. In its standard form, elseif c > 1 

F = g e t f i e l d ( S , ' f i e l d l )  i = 2 * c - 2 - handles.pdf(c); 
e ld  plot(dfx, handles.df(i, : ) ,  [colors(c) ' - ' I ,  . . .  

nodes( : ,  I ) ,  nodes(: ,  2 ) ,  ' k o ' ,  x, y, ' k - ' ,  . . .  
returns to F the contents of named field ' f i e l d  ' from structure S. 
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'Parent', handles.curve-axes); 
elseif c == 1 

i = handles.cdf(c); 
plot(dfx, handles.df(i + 1, : ) ,  'r-', . . .  

dfx, handles.df(i + 3, : ) ,  'g-', . . .  
dfx, handles.df(i + 5, : ) ,  'b-', . . .  
nodes(:, I), nodes(:, 2), 'ko', x, y, 'k-', . . .  
'Parent', hand1es.curv.e-axes); 

end 
end 

% Put legend if more than two curves are shown. 
s = handles.colortype; 
if strcmp(s, 'ntsc' ) 

s = 'yiq'; 
end 
if (c == 1 )  & (handles.pdf(c) I handles.cdf(c)) 

sl = [ ' - -  ' upper(s(1)) I ;  
if length(s) == 3 

~2 = [ I - -  I upper(s(2)) 1 ;  s3 = [ ' - -  ' upper(s(3))I; 
else 

~2 = [ I - -  I upper(s(2)) s(3)]; s3 = [ ' - -  ' upper(s(4)) s(5)1; 
end 

else 
sl = " a  s2 = " '  s3 = " '  

end 
set(handles.red-text, 'String', sl); 
set(handles.green-text, 'String', s2); 
set(handles.blue-text, 'String', s3); 

function [inplot, x, y] = cursor(h, handles) 
% Translate the mouse position to a coordinate with respect to 
% the current plot area, check for the mouse in the area and if so 
% save the location and write the coordinates below the plot. 

set(h, 'Units', 'pixels'); 
p = get(h, 'CurrentPoint'); 
x = (p(1, 1) - handles.plotbox(1)) / handles.plotbox(3); 
y = (p(1, 2) - handles.plotbox(2)) / handles.plotbox(4); 
if x > 1.05 1 x < -0.05 1 y > 1.05 1 y < -0.05 

inplot = 0; 
else 

x = min(x, 1); x = max(x, 0); 
y = min(y, 1); y = max(y, 0); 
nodes = getfield(handles, handles.curve); 
x = round(256 * x) / 256; 
inplot = 1 ; 
set(handles.input-text, 'String', num2str(x, 3)); 
set(handles.output-text, 'String', num2str(y, 3)); 
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end 
set(h, 'Units', 'normalized'); 
% - - - - - - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  % 
function y = render(hand1es) 
% Map the input image and bar components and convert them to RGB 
% (if needed) and display. 

set(handles.ice, 'Interrupti.ble', 'off'); 
set(handles.ice, 'Pointer', 'watch'); 
ygb = handles.graybar; ycb = handles.colorbar; 
yi = handles.input; mapon = handles.barmap; 
imageon = handles.imagemap &I size(handles.input, 1); 

for i = 2:4 
nodes = getfield(handles, ['set' num2str(i)]); 
t = lut(nodes, handles.smooth(i), handles.slope(i)); 
if imageon 

yi(:, :, i -  1) = t(yi(:, : ,  i -  1 )  + 1); 
end 
if mapon 

ygb(:, :, i - 1) = t(ygb(:, :, i - 1)  + 1); 
ycb(:, :, i - 1) = t(ycb(:, :, i - 1) + 1); 

end 
end 
t = lut(handles.set1, handles.smooth(l), handles.slope(1)); 
if imageon 

yi = t(yi + 1); 
end 
if mapon 

ygb = t(ygb + 1 ) ;  ycb = t(ycb + 1); 
end 

if -strcmp(handles.colortype, 'rgb') 
if size(handles.input, 1 )  

yi = yi 1 255; 
yi = eval([handles.colortype '2rgb(yi)'J); 
yi = uint8(255 * yi); 

end 
ygb = ygb / 255; ycb = ycb / 255; 
ygb = eval([handles.colortype '2rgb(ygb)']); 
ycb = eval([handles.colortype '2rgb(ycb)']); 
ygb = uint8(255 * ygb); ycb = uint8(255 * ycb); 

else 
yi = uint8(yi); ygb = uint8(ygb); ycb = uint8(ycb); 

end 

if size(handles.input, 1) 
figure(handles.output); imshow(yi); 

end 
Ygb = repmat(ygb, [32 1 I]); ycb = repmat(ycb, [32 1 I]); 
axes(handles.gray-axes); imshow(ygb); 
axes(handles.color-axes); irnshow(ycb); 
figure(handles.ice); 
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set(handles.ice, 'Pointer', 'arrow'); 
set(handles.ice, 'Interruptible', 'on'); 

function t = lut(nodes, smooth, slope) 
% Create a 256 element mapping function from a set of control 
% points. The output values are integers in the interval [O, 2551. 
% Use piecewise linear or cubic spline with or without zero end 
% slope interpolation. 

t = 255 * nodes; i = 0:255; 
if -smooth 

t = [t; 256 2561; t = interplq(t(:, I), t(::, 2), i'); 
else 

if -slope 
t = spline(t(:, I), t(:, 2), i); 

else 
t = spline(t(:, I), [O; t(:, 2); 01, i); 

end 
end 
t = round(t); t = max(0, t); t = min(255, t); 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - -  % 

function out = spreadout(in) 
% Make all x values unique. 

% Scan forward for non-unique x's and bump the higher indexed x-- 
% but don't exceed 1. Scan the entire range. 
nudge = 1 1 256; 
for i = 2:size(inJ 1) - 1 

if in(i, 1 )  <= in(i - 1, 1 )  
in(i, 1 )  = min(in(i - 1, 1)  + nudge, 1); 

end 
end 

% Scan in reverse for non-unique x ' s  and decrealje the lower indexed 
% x - -  but don't go below 0. Stop on the first non-unique pair. 
if in(end, 1 )  == in(end - 1 ,  1 )  

for i = size(in, 1):-1 :2 
if in(i, 1) <= in(i - 1, 1) 

in(i - 1 ,  1) = max(in(i, 1) - nudge, 0); 
else 

break; 
end 

end 
end 

% If the first two x's are now the same, init the curve. 
if in(1, 1) == in(2, 1 )  

in = [0 0; 1 I]; 
end 
out = in; 

8.2 r Programming the ICE Interface 545 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function g = rgb2cmy(f) 
% Convert RGB to CMY using IPT's imcomplement. 

fi g = imcomplement (f); 

% - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  % 
function g = cmy2rgb(f) 
% Convert CMY to RGB using IPT's imcomplement. 

g = imcomplement(f); 

1; S.Z.3 Figure Callback Functions 
The three functions immediately following the I C E  opening and closing func- 
tions in the starting GUI M-file at the beginning of Section B.2 are figure call- 
backs ice-WindowButtonDownFcn, ice~WindowButtonMotionFcn, and 
ice-WindowButtonUpFcn. In the automatically generated M-file, they are 
function stubs-that is, MATLAB function definition statements without 
supporting code. Fully developed versions of the three functions, whose joint 
task is to process mouse events (clicks and drags of mapping function control 
points on ICE'S curve-axes object), are as follows: 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
% ice 

function ice~WindowButtonDownFcn(hObject, eventdata, handles) Figure Cnllbacks 
% Start mapping function control point editing. Do move, add, or WB~K-------- 

% delete for left, middle, and right button mouse clicks ('normal', 
% 'extend', and 'alt' cases) over plot area. 

set (handles.curve-axes, ' Units ' , 'pixels' ) ; 
handles. plotbox = get (handles. curve~axes, ' Position' ) ; 
set (handles. curve-axes, ' Units ' , ' normalized ' ) ; 
[inplot, x, y] = cursor(hObject, handles); 
if inplot 

nodes = getfield(handles, handles.curve); 
i=find(x>=nodes(:,I)); below=max(i); 
above = min(be1ow + 1 ,  size(nodes, 1)); 
if (x - nodes(below, 1)) > (nodes(above, 1) - x) 

node = above; 
else 

node = below; 
end 
deletednode = 0; 

switch get (hobject, 'SelectionType' ) 
case 'normal' 

if node == above 
above = min(above + 1 ,  size(nodes, 1)); 

elseif node == below 
below = max(be1ow - 1 ,  1); 

end 
if node == size(nodes, 1) 
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Fltnctions S = 
etfield(S, 
field', V) sets 

,,ie contents of the 
specifiedfield to 
vnlue V. The ckangerl 

rtrctblre is ret~lrned. 

below = above; 
elseif node == 1 

above = below; 
end 
if x > nodes(above, 1) 

x = nodes(above, 1); 
elseif x < nodes(below, 1) 

x = nodes(below, 1); 
end 
handles. node = node; handles. updown = 'down ' ; 
handles. below = below; handles. above = above; 
nodes(node, : )  = [x y]; 

case 'extend' 
if -length(find(nodes(:, 1) == x)) 

nodes = [nodes(l:below, : ) ;  [x y]; nodes(above:end, : ) I ;  
handles. node = above; handles. updown = ' down' ; 
handles.below = below; handles.above = above + 1; 

end 
case ' alt ' 

if (node -= 1) & (node -= size(nodes, 1)) 
nodes(node, : )  = [ I ;  deletednode = 1 ;  

end 
handles.node = 0; 
set(handles.input-text, 'String', " ) ;  
set (handles.output-text, 'String' , ' ' ) ; 

end 

handles = setfield(handles, handles.curve, nodes); 
guidata(h0bject , handles) ; 
graph(hand1es); 
if deletednode 

render(hand1es); 
end 

end 

function ice~WindowButtonMotionFcn(hObject, eventdata, handles) 
% Do nothing unless a mouse 'down' event has occurred. If it has, 
% modify control point and make new mapping function. 

if -strcmpi(handles. updown, 'down ' ) 
return; 

end 
[inplot, x, y] = cursor(hObject, handles); 
if inplot 

nodes = getfield(handles, handles.curve); 
nudge = handles.smooth(hand1es.cindex) 1 256; 
if (handles-node -= 1) & (handles.node -= size(nodes, 1)) 

if x >= nodes(handles.above, 1 )  
x = nodes(handles.above, 1) - nudge; 

elseif x <= nodes(handles.below, 1) 
x = nodes(handles.below, 1) + nudge; 

end 

else 
if x > nodes(handles.above, 1 ) 

x = nodes(handles.abovc?, 1 ) ; 
elseif x < nodes (handles. below, 1 ) 

x = nodes(handles.below, 1 ) ;  
end 

end 
nodes(handles.node, : ) = [x y]  ; 
handles = setfield(handles, h~andles.curve, nodes); 
guidata(hObject, handles) ; 
graph (handles) ; 

end 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * - . - - - - - - - - - - - - - - - - . - - - - - - - - - - - . - - - - - - - - -  % 
function ice-WindowButtonUpFcn (hob j ect , eventdata, handles) 
% Terminate ongoing control point move or add operation. Clear 
% coordinate text below plot a~nd update display. 

update = strcmpi(hand1es. updown, 'down ' ) ; 
handles.updown = 'up'; handlessnode = 0; 
guidata(hObject, handles) ; 
if update 

set(handles.input-text, 'String', ' I ) ;  

set(handles.output-text, 'String', " ) ;  
render (handles) ; 

end 

In general, figure callbacks are launched in response to interactions with a fig- 
ure object or window-not an activle uicontrol object. More specifically, 

The WindowButtonDownFcn is executed when a user clicks a mouse but- 
ton with the cursor in a figure but not over an enabled uicontrol (e.g., a 
pushbutton or popup menu). 
The WindowButtonMotionFcn is executed when a user moves a de- 
pressed mouse button within a figure window. 
The WindowButtonUpFcn is executed when a user releases a mouse but- 
ton, after having pressed the mouse button within a figure but not over an 
enabled uicontrol. 

The purpose and behavior of ice's figure callbacks are documented (via com- 
ments) in the code. W e  make the following general observations about the 
final implementations: 

1. Because the ice~WindowBut tonI~ownFcn is called on all mouse button clicks 
in the ice figure (except over an active graphic object), the first job of the 
callback f~~nction is to see if the cursor is within ice's plot area (i.e., the ex- 
tent of the curve-axes object). If the cursor is outside this area, the mouse 
should be ignored.The test for this is performed by internal function cursor, 
whose listing was provided in the previous section. In cursor, the statement 
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returns the current cursor coordinates. Variable h is passed from 
ice~WindowButtonDownFcn and originates as input argument hObject. 
In all figure callbacks, h o b  j e c t  is the handle of the figure requesting ser- 
vice. Property 'Currentpoint  ' contains the position of the cursor rela- 
tive to the figure as a two-element row vector [X y]. 

2. Since i c e  is designed to work with two- and three-button mice, 
ice-WindowButtonDownFcn must determine ,which mouse button causes 
each callback. As can be seen in the code, this is done with a switch con- 
struct using the figure's 'SelectionType'  property. Cases 'normal',  
' extent  ' , and ' a l t  ' correspond to the left, middle, and right button 
clicks on three-button mice (or the Ieft, shift-left, and control-left clicks of 
two-button mice), respectively, and are used to trigger the add control 
point, move control point, and delete control point operations. 

3. The displayed ICE mapping function is updated (via internal function 
graph) each time a control point is modified, but the output figure, whose 
handle is stored in handles. output,  is updatied on mouse button releases 
oialy. This is because the computation of the output image, which is per- 
formed by internal function render, can be time-consuming. It involves 
mapping separately the input image's three color components, remapping 
each by the "all-component" curve, and conlierting the mapped compo- 
nents to the RGB color space for display. Nott: that without adequate pre- 
cautions, the mapping function's control points could be modified 
inadvertently during this lengthy output mapping process. 

To prevent this, i ce  controls the interruptibility of its various callbacks. All 
MATLAB graphics objects have an In ter rupt ib le  property that determines 
whether their callbacks can be interrupted.The default value of every object's 
' In ter rupt ib le  ' property is 'on ' ,which means that object callbacks can be 
interrupted. If switched to ' off ' , callbacks that occur during the execution of 
the now noninterruptible callback are either ignored (i.e., cancelled) or placed 
in an event queue for later processing.The dispclsition of the interrupting call- 
back is determined by the ' BusyAction ' property of the object being inter- 
rupted. If ' Bus yAct ion ' is ' cancel ' , the callback is discarded; if ' queue ' , 
the callback is processed after the noninterruptilble callback finishes. 

The ice-WindowButtonUpFcn function uses the mechanism just de- 
scribed to suspend temporarily (i.e., during output image computations) the 
user's ability to manipulate mapping function control points. The sequence 

s e t ( h a n d l e s . i c e ,  ' I n t e r r u p t i b l e ' ,  ' o f f ' ) ;  
s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' w a t c h ' ) ;  

s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' a r r o w ' ) ;  
s e t ( h a n d l e s . i c e ,  ' I n t e r r u p t i b l e ' ,  ' o n ' ) ;  

in internal function render sets the i c e  figure: window's ' In ter rupt ib le  ' 
property to ' off ' during the mapping of the output image and pseudo- and 
full-color bars.This prevents users from modifying mapping function control 

8.2 M Programming the ICE Interface 549 

points while a mapping is being performed. Note also that the figure's 

j? ' Pointer ' property is set to 'watch to indicate visually that ~ c e  i; busy 

1: and reset to ' arrow ' when the output computation is completed 

1 8.2. I Object Callback Functions 
The final nine lines of the starting GUI M-file at the beginning of Section B.2 
are object callback function stubs. Like the automatically generated figure call- 
backs of the previous section, they are initially void of code. Fully developed 
versions of the functions follow. Note that each function processes user inter- 
action with a different i c e  u icontrol  object (pushbutton, etc.) and is named 
by concatenating its Tag property with string '-Callback ' . For example, the 
callback function responsible for handling the selection of the displayed map- 
ping function is named the component~popup~Callback. It is called when the 
user activates (i.e., clicks on) the popup selector. Note also that input argu- 
ment hob j e c t  is the handle of the popup graphics object-not the handle of 
the i c e  figure (as in the figure callbacks of the previous section). ICE'S object 
callbacks involve minimal code and are self-documenting. 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  % i c e  
function component~popup~Cal lback(hObject ,  eventdata, handles) Object Callbacks 
% Accept Color component se lec t ion,  update component spec i f i c  '+w~~.--'--.""'~-- 
% parameters on GUI, and draw the  selected mapping function.  

c = get(hObject, 'Va lue ' ) ;  
handles.cindex = c; 
handles.curve = s t r c a t ( ' s e t l ,  num2str(c));  
guidata(hObject, handles); 
set(handles.smooth~checkbox, 'Value ' ,  handles.smooth(c)); 
set(handles.slope~checkbox, 'Value' ,  hand les . s lope (c ) ) ;  
set(handles.pdf~checkbox, 'Value' ,  handles .pdf(c) ) ;  
set(handles.cdf~checkbox, 'Value ' ,  handles .cdf(c) ) ;  
graph(hand1es); 

I % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function srnooth~checkbox~Callback(hObject, eventdata, handles) 
% Accept smoothing parameter f o r  currently selected color 

1 % component and redraw mapping function.  

i f  get(hObject, 'Value')  
handles.smooth(handles.cindex) = 1 ;  
nodes = getfield(handles,  handles.curve); 
nodes = spreadout(nodes); 
handles = se t f ie ld(handles ,  handles.curve, nodes); 

e l se  
handles.smooth(handles.cindex) = 0;  

end 
guidata(hObject, handles); 
se t (handles . ice ,  ' P o i n t e r ' ,  'wa tch ' ) ;  
graph(hand1es); render(hand1es); 
se t (handles . ice ,  'Po in te r ' ,  ' a r r o w ' ) ;  



. .  . 

50 Appendix B &T ICE and MATLAB Graphical User Interfaces B.2 Programming the ICE Interface 551 

% - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O  -6 

f unc t ion  r e s e t ~ p u s h b u t t o n ~ C a l l b a c k ( h O b j e c t l  eventdata, handles)  f u n c t i o n  pdf~checkbox~Callback(hObject, even tda ta ,  hand les )  

% I n i t  a l l  d i s p l a y  parameters f o r  c u r r e n t l y  s e l e c t e d  c o l o r  % Accept PDF ( p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o r  h is togram)  d i s p l a y  

% component, make map 1 : 1 ,  and redraw i t .  % parameter  f o r  c u r r e n t l y  s e l e c t e d  c o l o r  component and redraw 

handles = s e t f i e l d ( h a n d l e s ,  hand les .cu rve ,  [ 0  0; 1 11) ;  
% mapping f u n c t i o n  if smocithing i s  on. I f  s e t ,  c l e a r  CDF d i s p l a y .  

c  = handles.c index;  
handles.smooth(c)  = 0; set(handles.smooth~checkbox, ' V a l u e ' ,  0); 
hand les .s lope(c )  = 0; set(handles.slope~checkbox, ' V a l u e ' ,  0 ) ;  
h a n d l e s . p d f ( c )  = 0; set(handles.pdf~checkbox, ' V a l u e ' ,  0); 
handles . cd f  ( c )  = 0;  set(handles.cdf~checkbox, ' V a l u e ' ,  0 ) ;  
gu ida ta (hOb jec t ,  h a n d l e s ) ;  
s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' w a t c h ' ) ;  
graph(hand1es); render(hand1es) ;  
s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' a r r o w ' ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - -  % 

f u n c t i o n  s l o p e ~ c h e c k b o x ~ C a l l b a c k ( h O b j e c t l  even tda ta ,  hand les )  
% Accept s lope  clamp f o r  c u r r e n t l y  s e l e c t e d  c o l o r  component and 
% draw f u n c t i o n  i f  smoothing i s  on. 

i f  ge t (hOb jec t ,  ' V a l u e ' )  
handles.slope(hand1es.cindex) = 1;  

e l s e  
handles.slope(hand1es.cindex) = 0; 

end 
gu ida ta (hOb jec t ,  hand les ) ;  
i f  handles.smooth(handles.cindex) 

s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' w a t c h ' ) ;  
graph(hand1es); render (hand1es) ;  
s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' a r r o w ' ) ;  

end 

i f  g e t ( h O b j e c t ,  ' V a l u e ' )  
handles.pdf(handles.cindex) = 1; 
set(handles.cdf-checkbox, ' V a l u e ' ,  0 ) ;  
handles.cdf(hand1es.cindex) = 0; 

e l s e  
handles.pdf(hand1es.cindex) = 0; 

end 
g u i d a t a ( h O b j e c t ,  h a n d l e s ) ;  graph(hand1es) ;  

f u n c t i o n  c d f ~ c h e c k b o x ~ C a l l b a ~ c k ( h O b j e c t l  eventdata,  hand les )  
% Accept CDF ( c u m u l a t i v e  d i s t r i b u t i o n  f u n c t i o n )  d i s p l a y  parameter  
% f o r  s e l e c t e d  c o l o r  compolnent and redraw mapping f u n c t i o n  i f  
% smoothing i s  on. I f  s e t ,  c l e a r  CDF d i s p l a y .  

i f  g e t ( h O b j e c t ,  ' V a l u e ' )  
handles.cdf(hand1es.cindex) = 1; 
set(handles.pdf-checkbox, ' V a l u e ' ,  0 ) ;  
handles.pdf(handles.c inde)c)  = 0; 

e l s e  
handles.cdf(handles.cindex) = 0; 

end 
g u i d a t a ( h O b j e c t ,  hand les ) ;  graph(hand1es) ;  

%-.---------------------...--..........--...-.-..-..-----------------------.-- % 
f u n c t i o n  mapbar~checkbox~Ca l l .back(hOb jec t ,  even tda ta ,  hand les )  
% Accept changes t o  b a r  map enable s t a t e  and redraw b a r s .  

% - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - -  % handles.barmap = g e t ( h O b j e c t ,  ' V a l u e ' ) ;  
f u n c t i o n  r e s e t a l l ~ p u s h b u t t o n ~ C a l l b a c k ( h O b j e c t ,  even tda ta ,  hand les )  g u i d a t a ( h O b j e c t ,  hand les ) ;  render (hand1es) ;  
% I n i t  d i s p l a y  parameters f o r  c o l o r  components, make a l l  maps 1:1,  
% and redraw d i s p l a y .  % - - - - - -  - - - . - - - - . . - - - - - - - - - - - - - - - - . - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - o  -6 

f u n c t i o n  mapimage~checkbox~Callback(hObjectl even tda ta ,  hand les )  
f o r  c  = 1 :4  % Accept  changes t o  t h e  image map s t a t e  and redraw image. 

handles.smooth(c)  = 0 ;  h a n d l e s . s l o p e ( c )  = 0; 
h a n d l e s . p d f ( c )  = 0; h a n d l e s . c d f ( c )  = 0; handles.imagemap = g e t ( h O b j e c t ,  ' V a l u e ' ) ;  
handles = s e t f i e l d ( h a n d l e s ,  [ ' s e t '  n u m 2 s t r ( c ) ] ,  [ 0  0; 1  I ] ) ;  g u i d a t a ( h O b j e c t ,  h a n d l e s ) ;  render (hand1es) ;  

end 
set(handles.smooth~checkbox, ' V a l u e ' ,  0 ) ;  
set(handles.slope~checkbox, ' V a l u e ' ,  0 ) ;  
set (handles.pdf -checkbox,  ' V a l u e ' ,  0 ) ;  
set(handles.cdf~checkbox, ' V a l u e ' ,  0 ) ;  
g u i d a t a ( h O b j e c t ,  h a n d l e s ) ;  
s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' w a t c h ' ) ;  
graph(hand1es); render(hand1es) ;  
s e t ( h a n d l e s . i c e ,  ' P o i n t e r ' ,  ' a r r o w ' ) ;  



Preview 
This appendix contains a l i s t ing  o f  a l l  the M- funct ions  that  are n o t  l is ted earli- 
e r  in the book.The funct ions are organized alphabetically.The f i rs t  t w o  l ines o f  
each funct ion  are t yped  in b o l d  let ters as a v isual  cue t o  faci l i tate f ind ing the 
funct ion and reading i ts  summary  description. 

function f = adpmedian(g, Smax) 
%ADPMEDIAN Perform adaptive median filtering . 
% F = ADPMEDIAN(G, SMAX) performs adapt ive median f i l t e r i n g  of 
% image G. The median f i l t e r  s t a r t s  a t  s i z e  3-by-3  and i t e r a t e s  up 
% t o  s i ze  SMAX-by-SMAX. SMAX must be an odd i n t e g e r  g rea te r  than 1. 

% SMAX must be an odd, p o s i t i v e  i n t e g e r  g rea te r  than 1. 
i f  (Smax <= 1)  I (Smax12 == round(Smaxt2)) I (Smax -= round(Smax)) 

error('SMAX must be an odd i n tege r  > 1 . ' )  
end 
[MI  N] = s i z e ( g ) ;  

% I n i t i a l  setup. 
f = g; 
f ( : )  = 0; 
alreadyprocessed = f a l s e ( s i z e ( g ) ) ;  

% Begin f i l t e r i n g .  
f o r  k = 3:2:Smax 

zmin = o r d f i l t 2 ( g ,  1, ones(k, k ) ,  ' s ymmet r i c ' ) ;  
zmax = o r d f i l t 2 ( g ,  k * k ,  ones(k,  k ) ,  ' s ymm~e t r i c ' ) ;  
zmed = m e d f i l t 2 ( g ,  [ k  k ]  , 'symmetr ic ' )  ; 
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processUsingLevelB = (zmed > zmin) & (zmax > zmed) & . . .  
-alreadyProcessed; 

zB = ( g  > zmin) & (zmax > g ) ;  
outputzxy = processUsingLevelB & zB; 
outputzmed = processUsingLevelB & -zB; 
f ( 0u tpu tZxy )  = g(0utputZxy) ;  
f (outputzmed) = zrned(outputZmed) ; 

alreadyprocessed = alreadyprocessed I processUsingLevelB; 
i f  a l l (a l readyProcessed(  : ) ) 

break; 
end 

end 

% Output zmed f o r  any remaining unprocessed p i x e l s .  Note t h a t  t h i s  
% zmed was computed us ing a window o f  s i ze  Smax-by-Smax, which i s  
% t he  f i n a l  value o f  k i n  t he  loop.  
f ( -a l readyprocessed) = zmed(-alreadyprocessed); 

function rc-new = bound2eight(rc) 
%BOUND2EIGHT Convert 4-connected boundary to 8-connected boundary. 
% RC-NEW = BOUNDZEIGHT(RC) converts a four-connected boundary t o  an 
% eight-connected boundary. RC i s  a P-by-2 mat r ix ,  each row o f  
% which conta ins  t he  row and column coordinates o f  a boundary 
% p i x e l .  RC must be a c losed boundary; i n  o ther  words, t he  l a s t  
% row o f  RC must equal  t he  f i r s t  row o f  R C .  BOUND2EIGHT removes 
% boundary p i x e l s  t h a t  are necessary f o r  four-connectedness but  no t  
% necessary f o r  eight-connectedness. RC-NEW i s  a Q-by-2  ma t r i x ,  
% where Q <= P. 

~f - ~ s e m p t y ( r c )  & - i s e q u a l ( r c ( l ,  : ) ,  rc(end, : ) )  
e r ro r ( 'Expec ted  l n p u t  boundary t o  be c l o s e d . ' ) ;  1 end 1 i f  s i z e ( r c ,  1 )  < = 3  

! % Degenerate case. 
rc-new = r c ;  t re tu rn ;  

end 

% Remove l a s t  row, which equals the  f i r s t  row. 
r c - n e w = r c ( l : e n d - 1 ,  : ) ;  

1 % Remove t h e  mlddle p l x e l  I n  four-connected r l g h t - a n g l e  t u rns .  We 
' 

% can do t h l s  I n  a vec tor lzed fashlon, but we c a n ' t  do l t  a l l  a t  
% once. S l m l l a r  t o  t he  way the ' t h l n '  algorithm works l n  bwmorph, 
% w e ' l l  remove f l r s t  t h e  mlddle p l x e l s  I n  four-connected tu rns  where 
% t he  row and column are  both  even; then the mlddle p l x e l s  I n  a l l  
% the  remaining four-connected t u r n s  where the  row 1s even and t h e  
% column 1s odd; then agaln where the row 1s odd and the  column 1s  
% even; and f l n a l l y  where both t he  row and column are odd. 



54 Appendix C a M-Funtions Appendix C e M-Funtions 555 

remove-locations = compute~remove~locations (rc-new) ; 
f i e l d 1  = remove-locations & (rem(rc-new( : , I ) ,  2)  == 0)  & . . . 

(rem(rc-new(:, 2 ) ,  2 )  == 0 ) ;  
rc-new(f ie ld1,  : )  = [ I ;  
remove-locations = compute~remove~locations(rc~new); 
f i e l d 2  = remove-locations & (rem(rc-new(:, I ) ,  2 )  == 0) & . . . 

(rem(rc-new(:, 2 ) ,  2 )  == 1)  ; 
rc-new(f ie ld2,  : )  = [ I ;  

remove-locations = compute~remove~locations(rc~new); 
f i e l d 3  = remove-locations & (rem(rc-new( : , 1 ) , 2 )  == 1 ) & . . . 

(rem(rc-new( : , 2 ) ,  2) == 0) ; 
rc-new(field3, : )  = [ I ;  

remove-locations = c o m p u t e ~ r e m o v e ~ l o c a t i o n s ( r c ~ n e w ) ;  
f i e l d 4  = remove-locations & (rem(rc-new(:, I ) ,  2)  == 1)  & . .  . 

(rem(rc-new(:, 2 ) ,  2 )  == 1 ) ;  
rc-new(field4, : )  = [ I ;  
% Make the  output  boundary c losed again.  
rc-new = [rc-new; rc-new(1, : ) 1 ; 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  % 

f unc t i on  remove = compute~remove~locations(rc) 

% C i r c u l a r  d i f f .  
d = [ rc(2:end, : ) ;  r c (1 ,  : ) I  - r c ;  

% Dot product of each row of d w i t h  t he  subsequent row o f  d, 
% performed i n  c i r c u l a r  fash ion.  
d l  = [d(2:end, : ) ;  d(1, : ) I ;  
dotprod = sum(d . * d l ,  2 )  ; 

% Locat ions o f  N, S, E, and W t r a n s i t i o n s  f o l l owed  by 
% a r i g h t - a n g l e  t u r n .  
remove = - a l l ( d ,  2 )  & (dotprod == 0 ) ;  

% But we r e a l l y  want t o  remove the  middle p i x e l  o f  t he  t u r n .  
remove = [remove(end, : ) ;  remove(1:end - 1, : ) I ;  

i f  -any (remove) 

r c l  = [ rc (end - 1, : ) ;  r c ]  ; 
wh l l e  -done 

d = d l f f ( r c 1 ,  1 ) ;  
diagonal-locations = a l l ( d ,  2 ) ;  
double-diagonals = dlagornal-locations (1  :end - 1 ) & . . . 

(dlff(dlagona1-locations, 1)  == 0 ) ;  
double-diagonal-ldx = firid(doub1e-diagonals); 
t u r n s  = any(d(doub1e-diagonal-ldx, : )  -= . . .  

d(doub1e-dlacjonal-ldx + 1, : ) , 2) ; 
turns- ldx = double-diagonal-ldx(turns); 
l f  ~sempty( turns- ldx)  

done = I ;  
e lse  

f i r s t - t u r n  = tu rns- ldx(1) ;  
r c l ( f i r s t - t u r n  t 1, : ]  = ( r c l ( f l r s t - t u r n ,  : )  + ... 

r c l ( f 1 r s t - t u r n  + 2, : ) )  / 2; 
l f  f l r s t - t u r n  == 1 

r c l ( end ,  : )  = r c I ( 2 ,  : ) ;  
end 

end 
end 
r c l  = rc l (2:end, : ) ;  

end 

% Phase 2: i n s e r t  ex t ra  p i x e l s  where the re  are  d iagona l  connections. 

rowd i f f  = d i f f ( r c l ( : ,  1 ) ) ;  
c o l d i f f  = d i f f  ( r c l ( : ,  2 ) ) ;  

1 diagonal- locat ions = rowd i f f  & c o l d i f f ;  

1 num-old-pixels = s i ze ( r c1 ,  1) ; 
num-new-pixels = num-old-pixels + sum(diagona1-locations); 
rc-new = zeros(num-new-pixels, 2 ) ;  

% I n s e r t  the  o r i g i n a l  values i n t o  t he  proper l o c a t l o n s  i n  t h e  new RC 
% ma t r i x .  
i d x  = (1:num-old-pixels)' + [O; cumsum(diagonal-locations)]; 
rc-new(idx, : )  = r c l  ; 

done = 1 ; 
e l se  4 % Compute t he  new p i x e l s  t o  be ~ n s e r t e d .  

l d x  = f ind(remove);  ! new_plxel-offsets = [O 1 ;  -1 0; 1 0; 0 -1 1 ;  

r c ( l d x ( I ) ,  : )  = [ I ;  b f f s e t - c o d e s  = 2 * (1  - ( c o l d l f f  (diagonal-locations) + 1 ) / 2 )  + . 
end (2  - ( rowd l f f  (d iagonal- locat l~ons) + 1 ) 12) ; 

4 new-plxels = r c l  (d iagonal- locat i~ons, : ) + . . . 
function rc-new = bound2four(rc) new-plxel-of f sets (o f  f set-codes , : ) ; 
%BOUND2FOUR Convert 8-connected boundary t o  4-connected boundary. 
% RC-NEW = BOUND2FOUR(RC) converts an elght-connected boundary t o  a I % Where do the  new p l x e l s  go? 

% four-connected boundary. RC 1s a P-by-2 ma t r l x ,  each row of l n ~ e r t l ~ ~ - l ~ ~ a t l ~ f l ~  = zeros(num-.new-plxels, 1 ) ;  
% which conta ins  t he  row and column coord inates  o f  a boundary 1 insertion-locatlons(~dx) = 1 ; 

% p l x e l .  BOUND2FOUR l n s e r t s  new boundary p i x e l s  wherever t he re  1s i insertion-locations = -1nsert lon1~1ocat lons;  
% a d iagona l  connection. % I n s e r t  t he  new p l x e l s .  

~f s l z e ( r c ,  1 )  > 1 rc-new(lnsertlon-locations, : )  = new-pixels; 
% Phase 1: remove d lagona l  t u r n s ,  one a t  a t lme u n t l l  they  are  a l l  gone. a 
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f u n c t i o n  B = bound2im(b, M, N, xO, yo )  
%BOUND2IM Converts a boundary t o  an image. 
% B = BOUND2IM(b) converts b, an np-by-2 o r  2-by-np a r ray  
% represent ing t h e  i n t e g e r  coord inates  o f  a boundary, i n t o  a b ina ry  
% image w i t h  1s i n  t h e  l o c a t i o n s  def ined by t h e  coordinates i n  b 
% and 0s elsewhere. 
% 
% B = BOUND21M(bJ M, N) p laces t h e  boundary approximately centered 
% i n  an M-by-N image. If any p a r t  o f  t h e  boundary i s  ou ts ide  t h e  
% M-by-N rec tang le ,  an e r r o r  i s  issued. 
% 
% B = BOUND2IM(b, M, N, XO, YO) places t h e  boiindary i n  an image o f  
% s i ze  M-by-N, w i t h  t h e  topmost boundary point: l oca ted  a t  XO and 
% t he  l e f tmos t  p o i n t  l oca ted  a t  YO. I f  t h e  shi.fted boundary i s  
% outs ide t h e  M-by-N rec tang le ,  an e r r o r  i s  issued. XO and XO must 
% be p o s i t i v e  i n tege rs .  

[np, nc]  = s i z e ( b ) ;  
l f  np < nc 

b = b ' ;  % To conver t  t o  s i z e  np-by-2.  
[np, nc]  = s i z e ( b ) ;  

end 

% Make sure t he  coord inates  are  i n tege rs .  
x = round(b( : ,  1 ) ) ;  
y = round(b(: ,  2 ) ) ;  

% Set up the  d e f a u l t  s i z e  parameters. 
x = x - min(x)  + 1; 
y = y - min(y)  + 1; 
B = fa lse(max(x) ,  max(y) ) ;  
C = max(x) - min(x)  + 1; 
D = max(y) - min(y)  + 1 ;  

i f  narg in  == 1 
% Use the  preceding d e f a u l t  values. 

e l s e i f  narg in  == 3 
i f  C > M  I D > N  

e r r o r ( ' T h e  boundary i s  ou ts ide  the  M-by-N r e g i o n . ' )  
end 
% The image s i z e  w i l l  be M-by-N. Set up the  parameters f o r  t h i s .  
B = fa lse(M,  N ) ;  
% D i s t r i b u t e  e x t r a  rows approx. even between top  and bottom. 
NR = round((M - C ) / 2 ) ;  
NC = round((N - D ) / 2 ) ;  % The same f o r  columns. 
x = x + NR; % O f f s e t  t he  boundary t o  new p o s i t i o n .  
y = y + NC; 

e l s e i f  narg in  == 5 
i f x O < O  I y O < O  

e r r o r ( ' x 0  and yo must be p o s i t i v e  i n t e g e r s . ' )  
end 
x = x + round(x0) - 1; 
y = y + round(y0) - 1 ; 
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c = c + x o - 1 ;  
D = D + y O - I ;  
i f  C > M  I D > N  

e r r o r (  'The s h i f t e d  boundary i s  outs ide the  M-by-N reg ion.  ' ) 
end 
B = fa lse(M, N); 

e l se  
e r r o r ( ' 1 n c o r r e c t  number o f  i n p u t s . ' )  

end 

B(sub2ind(size(B),  x, y ) )  = t rue ;  

f u n c t i o n  B = boundaries(BW, conn, d i r )  
%BOUNDARIES Trace  o b j e c t  boundaries.  
% B = BOUNDARIES(BW) t races  t h e  e x t e r i o r  boundaries of ob jec t s  i n  
% t he  b ina ry  image BW. B i s  a P-by-1 c e l l  a r ray ,  where P i s  t he  
% number o f  ob jec ts  i n  t he  image. Each c e l l  contains a Q-by-2  
% ma t r i x ,  each row o f  which conta ins  t he  row and column coordinates 
% of a boundary p i x e l .  Q i s  t he  number o f  boundary p i x e l s  f o r  t he  
% corresponding ob jec t .  Object  boundaries are t raced i n  t h e  
% c lockwise d i r e c t i o n .  
% 
% B = BOUNDARIES(BW, CONN) s p e c i f i e s  t he  c o n n e c t i v i t y  t o  use when 
% t r a c i n g  boundaries. CONN may be e i t h e r  8 o r  4. The d e f a u l t  
% value f o r  CONN i s  8.  
% 
% B = BOUNDARIES(BW, CONN, DIR) s p e c i f i e s  t h e  d i r e c t i o n  used f o r  
% t r a c i n g  boundaries. DIR should be e i t h e r  'cw'  ( t r a c e  boundaries 
% c lockwise) o r  ' ccw '  ( t r a c e  boundaries counterc lockwise) .  I f  DIR 
% i s  omi t ted  BOUNDARIES t races  i n  t h e  c lockwise d i r e c t i o n .  

i f  na rg in  < 3 
d i r  = 'cw ' ;  

end 

i f  na rg in  < 2 
conn = 8; 

end 

L = bwlabel(BW, conn); 

% The number o f  ob jec t s  i s  the  maximum value o f  L.  I n i t i a l i z e  t he  
% c e l l  a r ray  B so t h a t  each c e l l  i n i t i a l l y  conta ins  a 0-by-2  ma t r i x .  
nunobjects = max (L ( : ) ) ;  
i f  numobjects > 0 

B = {zeros(O, 2) ) ;  
B = repmat(8, numObjects, 1 ) ;  

e l se  
= 0 ;  

end 

% Pad l a b e l  ma t r i x  w i t h  zeros. Th is  l e t s  us w r i t e  t he  
% boundary- fo l lowing l oop  w i thou t  wor ry ing about going o f f  t h e  edge 
% o f  t he  image. 
Lp = padarray(L, [ I  11, 0, ' b o t h ' ) ;  
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% Compute t h e  l i n e a r  index ing o f f s e t s  t o  take us from a p i x e l  t o  i t s  
% neighbors. 
M = s ize(Lp,  1 ) ;  
i f  conn == 8 

% Order i s  N NE E SE S SW W NW. 
o f f s e t s  = [ - I ,  M -  1, M, M + 1, 1, 4 + 1, 4, + l ] ;  

e lse  
% Order i s  N E S W. 
o f f s e t s  = [ - I ,  M, 1, 41; 

end 

% next-search-direction-lut i s  a lookup t a b l e .  Given t h e  d i r e c t i o n  

% from p i x e l  k t o  p i x e l  k+ l ,  what i s  t he  d i r e c t i o n  t o  s t a r t  w i t h  when 
% examining the  neighborhood o f  p i x e l  k+ l?  
i f  conn == 8 

next-search-direction-lut = [8 8 2 2 4 4 6 61; 
e l se  

next-search-direction-lut = [ 4  1 2 31; 
end 

% next -d i rec t ion- lu t  i s  a lookup t a b l e .  Given t h a t  we j u s t  looked a t  
% neighbor i n  a g iven d i r e c t i o n ,  which neighbor do we l o o k  a t  next? 
i f  conn == 8 

next -d i rec t ion- lu t  = [ 2  3 4 5 6 7 8 I ] ;  
e l se  

next -d i rec t ion- lu t  = [ 2  3 4 I ] ;  
end 

% Values used f o r  marking t h e  s t a r t i n g  and boundary p i x e l s .  
START = -1 ; 
BOUNDARY = -2; 

% I n i t i a l i z e  sc ra t ch  space i n  which t o  record  t h e  boundary p i x e l s  as 
% w e l l  as f o l l o w  t h e  boundary. 
scra tch  = zeros(100, 1 ) ;  

% F ind candidate s t a r t i n g  l o c a t i o n s  f o r  boundaries. 
[ r r ,  CC]  = f ind((Lp(2:end-1,  : )  > 0)  & (Lp(1:end-2, : )  == 0 ) ) ;  
rr = rr + I; 

f o r  k = 1 : l e n g t h ( r r )  
r = r r ( k ) ;  
c = c c ( k ) ;  
i f  (Lp ( r , c )  > 0)  & ( L p ( r  - 1, c )  == 0)  & isempty(B{Lp(r ,  c ) ) )  

% We've found t h e  s t a r t  o f  t h e  next  boundary. Compute i t s  
% l i n e a r  o f f s e t ,  record  which boundary i t  i s ,  mark i t ,  and 
% i n i t i a l i z e  t he  counter f o r  t h e  number o f  boundary p i x e l s .  
i d x  = ( c - l ) * s i ze (Lp ,  1)  + r; 
which = L p ( i d x ) ;  

scra tch(1)  = i d x ;  
Lp ( i dx )  = START; 
numpixels = 1; 
c u r r e n t p i x e l  = i d x ;  
i n i t i a l - depa r tu re -d i rec t i on  = [ j ; 
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done = 0; 
next-search-direction = 2; 
w h i l e  -done 

% Find t h e  next boundary p i x e l .  
d i r e c t i o n  = next-search-direction; 
found-next-pixel = 0; 
f o r  k = l : l eng th (o f f se t s )  

neighbor = cur rentP ixe1 + o f f s e t s ( d i r e c t i o n ) ;  
i f  Lp(neighbor) -= 0 

% Found the  next boundary p i x e l .  

if (Lp(currentPixe1) == START) & . . . 
isempty ( i n i t i a l - depa r tu re -d i rec t i on )  

% We are  making the  i n i t i a l  departure f rom 
% t he  s tar t in lg  p i x e l .  
i n i t i a l - depa r tu re -d i rec t i on  = d i r e c t i o n ;  

e l s e i f  (Lp(currentPixe1) == START) & . . . 
( i n i t i a l - depa r tu re -d i rec t i on  == d i r e c t i o n )  

% We are about t o  re t race  our  path.  
% That means we ' re  done. 
done = I; 
found-next-pixel = 1 ; 
break; 

end 

% Take the  next s tep along t h e  boundary. 
next-search-direction = ... 

next-search-direction-lut(direction); 
found-next-pixel = 1; 
numpixels = numpixels + 1; 
i f  numpixels > s ize(scra tch ,  1 )  

% Double the  scra tch  space. 
scra tch(2*s ize(scra tch ,  1 ) )  = 0; 

end 
scratch(numPixe1s) = neighbor; 

if Lp(neighbor) -:: START 
Lp (neighbor) = BOUNDARY; 

end 

c u r r e n t p i x e l  = neighbor; 
break; 

end 

d i r e c t i o n  = next -d i rec t ion- lu t  ( d i r e c t i o n )  ; 
end 

if -found-next-pixel 
% I f  the re  i s  no next neighbor, t h e  ob jec t  must j u s t  
% have a s i n g l e  p i x e l .  
numpixels = 2; 
scra tch(2)  = scra tch(1)  ; 
done = 1; 
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end 
end 

% Convert l i n e a r  i nd i ces  t o  row-column coord inates  and save 
% i n  t he  output c e l l  a r ray .  
[row, c o l ]  = ind2sub(s ize(Lp) ,  scra tch(1 :numPixe ls ) ) ;  
B{which) = [ row - 1 ,  c o l  - I ] ;  

end 
end 

i f  s t r cmp(d i r ,  'ccw'  ) 
f o r  k  = l : l e n g t h ( B )  

B{k) = B{k) (end: - l : l ,  : ) ;  
end 

end 

f u n c t i o n  [ s ,  su] = bsubsamp(b, gr idsep)  
%BSUBSAMP Subsample a boundary. 
% [S, SU] = BSUBSAMP(B, GRIDSEP) subsamples thle boundary B  by 
% ass ign ing each o f  i t s  p o i n t s  t o  t h e  g r i d  nodle t o  which i t  i s  
% c l oses t .  The g r i d  i s  s p e c i f i e d  by GRIDSEP, which i s  t h e  
% separat ion i n  p i x e l s  between t h e  g r i d  l i n e s .  For example, i f  
% GRIDSEP = 2, t he re  are  two p i x e l s  i n  between g r i d  l i n e s .  So, f o r  
% ins tance,  t h e  g r i d  p o i n t s  i n  t h e  f i r s t  row would be a t  (1 ,I ) ,  
% (1 ,4) ,  (1,6),  . . . ,  and s i m i l a r l y  i n  t he  y  d i r e c t i o n .  The va lue 
% o f  GRIDSEP must be an even i n t e g e r .  The boundary i s  s p e c i f i e d  by 
% a  se t  o f  coord inates  i n  t he  form o f  an np-by-2  ar ray .  I t  i s  
% assumed t h a t  t h e  boundary i s  one p i x e l  t h i c k .  
% 
% Output S  i s  t he  subsampled boundary. Output SU i s  normal ized so 
% t h a t  t h e  g r i d  separa t ion  i s  u n i t y .  Th is  i s  u s e f u l  f o r  ob ta in ing  
% t he  Freeman chain code o f  t h e  subsampled boundary. 

% Check i n p u t .  
[np, nc ]  = s i z e ( b ) ;  
i f  np < nc 

e r r o r ( ' 8  must be o f  s i z e  np-by-2.  ' ) ;  
end 
i f  g r i dsep i2  -= round(gr idsep i2)  

error('GR1DSEP must be an even i n t e g e r . ' )  
end 

% Some boundary t r a c i n g  programs, such as boundaries.m, end w i t h  
% the  beginning, r e s u l t i n g  i n  a  sequence i n  which the  coord inates  
% o f  t h e  f i r s t  and l a s t  p o i n t s  are  t h e  same. I f  t h i s  i s  t h e  case 
% i n  b, e l im ina te  t h e  l a s t  p o i n t .  
i f  i sequa l (b (1 ,  : ) ,  b(np, : ) )  

np = n p -  1; 
b  = b ( l : n p ,  : ) ;  

end 

% Find t h e  max x  and y  spanned by t h e  boundary. 
xmax = max(b(:, 1 ) ) ;  
ymax = max(b(: ,  2 ) ) ;  
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% Determine the number o f  g r i d  l i n e s  w i t h  gr idsep p o i n t s  i n  
% between them t h a t  can f i t  i n  the  i n t e r v a l s  [ l ,xmax],  [ l ,ymax],  
% w i t hou t  any p o i n t s  i n  b  being l e f t  over. I f  p o i n t s  are l e f t  
% over, add zeros t o  extend xmax and ymax so t h a t  an i n t e g r a l  
% number o f  g r i d  l i n e s  are  obtained. 
% S ize  needed i n  the  x - d i r e c t i o n :  
L  = gr idsep + 1; 
n  = ce i l (xmax/L) ;  
T = (n  - l ) * L  + 1; 

% Zx i s  t he  number of zeros t h a t  would be needed t o  have g r i d  
% l i n e s  w i thout  any po in t s  i n  b  being l e f t  over. 
Zx = abs(xmax - T  - L) ;  

% Number of g r i d  l i n e s  i n  t he  x -d i rec t i on ,  w i t h  L  p i x e l  spaces 
% i n  between each g r i d  l i n e .  
GLx = (xmax + Zx - 1) /L  + 1  ; 

% And f o r  t he  y - d i r e c t i o n :  
n  = ce i l (ymax/L) ;  
T = (n  - l ) * L  + 1; 
Zy = abs(ymax - T - L) ;  

GLy = (ymax + Zy - 1 ) l L  + 1; 

% Form vectors  o f  x  and y  g r i d  l oca t i ons .  

% Vector o f  g r i d  l i n e  l oca t i ons  i n t e r s e c t i n g  x - a x i s .  
X(1) = g r i dsep* I  + ( I  - gr idsep) ;  

% Vector o f  g r i d  l i n e  l oca t i ons  i n t e r s e c t i n g  y - a x i s .  
Y(J) = gr idsep*J  + ( J  - gr idsep) ;  

% Compute both components o f  t h e  c i t y b l o c k  d is tance between each 
% element o f  b  and a l l  t he  g r i d - l i n e  i n t e r s e c t i o n s .  Assign each 
% p o i n t  t o  t he  g r i d  l o c a t i o n  f o r  which each comp o f  t h e  c i t y b l o c k  
% d is tance was l e s s  than gr idsep i2 .  Because gr idsep i s  an even 
% i n tege r ,  these assignments are  unique. Note t he  use o f  meshgrid t o  
% op t imize the code. 
DIST = gr idsep i2 ;  
[XG, YG] = meshgrid(X, Y); 

[ I , J ]  = f ind(abs(XG - b(k ,  1 ) )  <= DIST & abs(YG - b(k ,  2 ) )  <= . . .  
DIST) : . , 

I L  = l e n g t h ( 1 ) ;  
o rd  = k*ones(IL,  1 ) ;  % To keep t r a c k  o f  order o f  i n p u t  coord inates  
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K = Q + I L - 1 ;  
d l (Q :K ,  : )  = ca t (2 ,  X ( I ) ,  o rd ) ;  
d2(Q:K, : )  = ca t (2 ,  Y(J), o r d ) ;  
Q = K + l ;  

end 

% d  i s  t he  s e t  o f  p o i n t s  assigned t o  t h e  new g r i d  w i t h  l i n e  
% separat ion of g r idsep.  Note t h a t  it i s  formed as d=(d2,dl)  t o  
% compensate f o r  t h e  coord inate  t r a n s p o s i t i o n  i nhe ren t  i n  us ing 
% meshgrid (see Chapter 2 ) .  
d  = ca t  (2, d2( : ,  1  ) , d l  ) ; % The second column o f  d l  i s  ord.  

% So r t  t he  p o i n t s  us ing  t h e  values i n  ord,  which i s  t h e  l a s t  c o l  i n  
% d. 
d  = f l i p l r ( d ) ;  % So t h e  l a s t  column becomes f i r s t .  
d  = sor t rows(d) ;  
d  = f l i p l r ( d ) ;  % F l i p  back. 

% E l im ina te  d u p l i c a t e  rows i n  t h e  f i r s t  two components o f  
% d  t o  c reate  t h e  output .  The cw o r  ccw order  MUST be preserved. 
s  = d ( : ,  1 :2) ;  
[ s ,  rn, n ]  = unique(s,  ' r ows ' ) ;  

% Funct ion  unique s o r t s  t h e  data- -Restore  t o  o r i g i n a l  o rder  
% by us ing t h e  contents  o f  m. 
s  = [ s ,  m]; 
s  = f l i p l r ( s )  ; 
s  = so r t rows (s ) ;  
s  = f l i p l r ( s ) ;  
s  = s ( : ,  1:2);  

% Scale t o  u n i t  g r i d  so t h a t  can use d i r e c t l y  t o  o b t a i n  Freeman 
% chain code. The shape does not  change. 
su = round(s . /g r idsep)  + 1 ;  

function image = changeclass(class, varargin) 
%CHANGECLASS changes the  storage class of an image. 
% I 2  = CHANGECLASS(CLASS, I ) ;  
% RGB2 = CHANGECLASS(CLASS, RGB); 
% BW2 = CHANGECLASS(CLASS, BW); 
% X2 = CHANGECLASS(CLASS, X, ' i ndexed ' ) ;  

% Copyr ight  1993-2002 The Mathworks, I n c .  Used w i t h  permission. 
% $Revis ion: 1.2 $ $Date: 2003/02/19 22:09:58 $ 

swi tch  c l ass  
case ' u i n t 8 '  

image = im2u in tB (va ra rg in { : } ) ;  
case ' u i n t l 6 '  

image = i m 2 u i n t l 6 ( v a r a r g i n { : } ) ;  
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case 'doub le '  
image = im2double(varargin{:}) ;  

otherwise 
e r r o r (  'Unsupported IPT data c lass .  ' ) ; 

end 

function [VG, A, PPG]= colorgrad(f, T) 
%COLORGRAD Computes the vector gradient of an RGB image. 
% [VG, VA, PPG] = COLORGRAD(F:, T) computes t he  vector  g rad ien t ,  VG, 
% and corresponding angle ar ray ,  VA, ( i n  radians) o f  RGB image 
% F. I t  a l so  computes PPG, t h ~ e  per -p lane composite g rad ien t  
% obtained by summing the 2-El g rad ients  o f  t he  i n d i v i d u a l  c o l o r  
% planes. I npu t  T  i s  a  th resho ld  i n  t h e  range [0, I ] .  I f  i t  i s  
% inc luded i n  t he  argument l i s t ,  t he  values o f  VG and PPG are  
% thresholded by l e t t i n g  VG(x,y) = 0  f o r  values <= T and VG(x,y) = 
% VG(x,y) otherwise. S i m i l a r  comments apply t o  PPG. I f  T i s  not  
% inc luded i n  t he  argument l i s t  then T i s  se t  t o  0. Both output 
% grad ients  a re  scaled t o  t h e  range [O, I]. 

i f  (ndims(f)  -= 3)  1 ( s i z e ( f ,  3 )  -= 3)  
e r r o r  ( ' I npu t  image must be RGB. ' ) ; 

end 

% Compute t h e  x  and y  d e r i v a t i v e s  o f  t he  t h ree  component images 
% us ing Sobel operators.  
sh = f s p e c i a l  ( ' sobel  ' ) ; 
sv = sh'  ; 
Rx = i m f  i l t e r  (double(f  ( : , : , 1 ) ) , sh, ' r e p l i c a t e  ' ) ; 
Ry = i m f i l t e r ( d o u b l e ( f  ( : ,  :, I ) ) ,  sv, ' r e p l i c a t e '  ) ; 
Gx = i m f i l t e r ( d o u b l e ( f ( : ,  :, 2 ) ) ,  sh, ' r e p l i c a t e ' ) ;  
Gy = i m f i l t e r ( d o u b l e ( f  ( :  , : , 2 ) ) ,  sv, ' r e p l i c a t e ' )  ; 
Bx = i m f i l t e r ( d o u b l e ( f ( : ,  :, 3 ) ) ,  sh, ' r e p l i c a t e ' ) ;  
By = i m f i l t e r ( d o u b l e ( f  ( :  , :, 3 ) ) ,  sv, ' r e p l i c a t e ' ) ;  

% Compute t h e  parameters o f  t h e  vec tor  grad ient .  
gxx = Rx.^2 + Gx.^2 + Bx.^2; 
gyy = Ry. "2 + Gy.^2 + By. "2; 
gxy = Rx.*Ry + Gx.*Gy + Bx.*By; 
A = 0.5*(atan(2*gxy./ (gxx - gyy t eps ) ) )  ; 
G1 = 0 .5* ( (gxx  + gyy) + (gxx - gyy).*cos(2*A) + 2*gxy . *s in (2*A) ) ;  

% Now repeat f o r  angle + p i / 2 .  Then se lec t  t he  maximum a t  each p o i n t .  
A  = A + p i / 2 ;  
G2 = 0.5*(  (gxx + gyy) + (gxx - gyy) .*cos(2*A) + 2*gxy . *s in (2*A) )  ; 
GI = G1.^0.5; 
G2 = G2.^0.5; 
% Form VG by p i c k i n g  the  maximum a t  each (x ,y )  and then sca le  
% t o  t h e  range [0,  I ] .  
VG = mat2gray (max(G1, G2) ) ; 

% Compute t he  per -p lane g rad ien ts .  
RG = Sqrt(RX.^2 + Ry.^2); 
GG = sqr t (Gx.^2  + Gy.*2); 



BG = sqr t (Bx.*2  + By . *2 ) ;  
% Form the composite by adding the i n d i v i d u a l  r e s u l t s  and 
% scale t o  [0, I ] .  
PPG = matZgray(RG + GG + BG); 

% Threshold t h e  r e s u l t .  
i f  narg in  == 2  

VG = (VG > T).*VG; 
PPG = (PPG > T).*PPG; 

end 

function I = colorseg(varargin) 
%COLORSEG Performs segmentation of a color imagc?. 
% S = COLORSEG('EUCLIDEAN', F, T, M) performs segmentation o f  c o l o r  
% image F using a  Eucl idean measure o f  s i r n i l a t - i t y .  M i s  a  1 -by -3  
% vec tor  represent ing  t he  average c o l o r  used f o r  segmentation ( t h i s  
% i s  t he  center o f  t h e  sphere i n  F i g .  6.26 o f  DIPUM). T  i s  t h e  
% th resho ld  aga ins t  which t h e  d is tances are  compared. 
% 
% S = COLORSEG('MAHALANOBIS', F, T, MI C) performs segmentation o f  
% co lo r  image F us ing t h e  Mahalanobis d is tance as a  measure o f  
% s i m i l a r i t y .  C i s  t h e  3-by-3  covar iance m a t r i x  o f  t h e  sample c o l o r  
% vectors of t h e  c l ass  o f  i n t e r e s t .  See f u n c t i o n  covmatr ix f o r  t h e  
% computation o f  C and M. 
% 
% S i s  the  segmented image (a b ina ry  ma t r i x )  i.n which 0s denote t he  
% background. 

% P re l im ina r i es .  
% Reca l l  t h a t  va ra rg in  i s  a  c e l l  a r ray .  
f = varargin(2);  
i f  (ndims(f)  -= 3)  1 ( s i z e ( f ,  3 )  -= 3) 

e r r o r ( ' 1 n p u t  image must be RGB.'); 
end 
M = s i z e ( f ,  1 ) ;  N = s i z e ( f ,  2 ) ;  
% Convert f t o  vec tor  format us ing f u n c t i o n  imstack2vectors.  
[ f ,  L ]  = imstack2vectors( f ) ;  
f = doub le( f )  ; 
% I n i t i a l i z e  I as a  column vec to r .  I t  w i l l  be reshaped l a t e r  
% i n t o  an image. 
I = zeros(M*N, 1 ) ;  
T = varargin{3);  
m = varargin(4);  
m = m ( : ) ' ;  % Make sure t h a t  m i s  a  row vec to r .  

i f  l eng th (va ra rg in )  == 4 
method = ' e u c l i d e a n ' ;  

e l s e i f  l eng th (va ra rg in )  == 5 
method = 'mahalanobis' ; 

e l se  
er ror ( 'Wrong number o f  i n p u t s . ' ) ;  

end 
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swi tch  method 
case 'euc l idean '  

% Compute the Euclidean d is tance between a l l  rows o f  X  and m. See 
% Sect ion  12.2 o f  DIPUM f o r  an exp lanat ion  o f  the  f o l l o w i n g  
% expression. D ( i )  i s  t he  Euclidean d is tance between vector  X ( i , : )  
% and vector  m .  
p  = l e n g t h ( f ) ;  
D = sqrt(sum(abs(f  - repmat(m, p, 1 ) )  ."2 ,  2 ) ) ;  

case 'mahalanobis' 
C = varargin(5);  
D = mahalanobis(f, C, m); 

otherwise 
error('Unknown segmentation method.') 

end 

% D i s  a  vec tor  o f  s i z e  MN-by-1 conta in ing t h e  distance computations 
% from a l l  t he  c o l o r  p i x e l s  t o  vec tor  m. F i nd  the  d is tances <= T. 
J = f i n d ( D  <= T); 

% Set t h e  values o f  I ( J )  t o  1 .  These are  t h e  segmented 
% c o l o r  p i x e l s .  
I ( J )  = 1; 

% Reshape I i n t o  an M-by-N image. 
I = reshape(1, M, N ) ;  

function c = connectpoly(x, y) 
%CONNECTPOLY Connects vertices of a polygon. 
% C = CONNECTPOLY(X, Y) connects t h e  p o i n t s  w i t h  coordinates given 
% i n  X and Y w i t h  s t r a i g h t  l i n e s .  These p o i n t s  are assumed t o  be a  
% sequence o f  polygon v e r t i c e s  organized i n  t he  c lockwise o r  
% counterclockwise d i r e c t i o n .  The output,  C, i s  the  se t  o f  po in t s  
% along the boundary of t he  polygon i n  the  form o f  an n r - b y - 2  
% coord inate  sequence i n  t he  same d i r e c t i o n  as t he  i n p u t .  The l a s t  
% p o i n t  i n  t he  sequence i s  equal  t o  t he  f i r s t .  

v  = [ x ( : ) ,  y ( : ) 1 ;  

% Close polygon. 
i f  - isequal(v(end, : ) ,  v (1 ,  : ) )  

v(end + 1, : )  = v (1 ,  : ) ;  
end 

% Connect vertices. 
a segments = c e l l ( 1 ,  l eng th (v )  - 1) ;  

f o r  I = 2: length(v)  
[ x ,  y ]  = i n t l r n e ( v ( 1  - 1, I ) ,  v (1 ,  I ) ,  v ( 1  - 1, 2 ) ,  v (1 ,  2 ) ) ;  
segments(1 - 1) = [ x ,  y ] ;  

end 

function s = diameter(L) 
%DIAMETER Measure diameter and related properties of image regions. 
% S = DIAMETER(L) computes t h e  diameter, t h e  major a x l s  endpoints, 
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% the  minor a x i s  endpoints, and t h e  bas ic  rec tang le  o f  each l abe led  

% reg ion i n  t h e  l a b e l  ma t r i x  L. P o s i t i v e  i n t e g e r  elements of L num-pixels = l eng th ( rp )  ; 
% correspond t o  d i f f e r e n t  regions. For example, t h e  se t  o f  elements swi tch  nun-pixels 
% o f  L equal t o  1 corresponds t o  reg ion  1; t h e  se t  o f  elements of L 

% equal  t o  2 corresponds t o  reg ion  2; and so on. S i s  a s t r u c t u r e  

% ar ray  o f  l eng th  max (L ( : ) ) .  The f i e l d s  o f  t h e  s t r u c t u r e  a r ray  
% inc lude:  

% Diameter 
% MajorAxis 
% MinorAxis 
% BasicRectangle d = ( rP(2)  - r p ( l ) ) * 2  + (cp(2) - cp(1) )^2 ;  
% majoraxis = [ r p  cp]; 
% The Diameter f i e l d ,  a sca la r ,  i s  t he  maximum d is tance between any 

% two p i x e l s  i n  t h e  corresponding reg ion.  
% Generate a l l  combinations o f  1:num-pixels taken two a t  a t  t ime,  

% The MajorAxis f i e l d  i s  a 2-by-2  ma t r i x .  The rows con ta in  t he  row % Method suggested by Peter i2cklam. 

% and column coordinates f o r  t h e  endpoints o f  t h e  major a x i s  of t h e  [ i d x ( : ,  2) i d x ( : ,  I ) ]  = f ind i ( t r i l (ones(num-p ixe ls ) ,  -1 ) ) ;  
% corresponding reg ion.  rr = r p ( i d x ) ;  
% cc = cp ( i dx ) ;  
% The MinorAxis f i e l d  i s  a 2-by-2  m a t r i x .  The rows con ta in  t h e  row dist-squared = ( r r ( : ,  1) - r r ( : ,  2 ) ) . ^ 2  + . . .  
% and column coordinates f o r  t h e  endpoints o f  t h e  minor a x i s  of t h e  (cC(:, 1) - cc( : ,  2 ) ) . *2 ;  
% corresponding reg ion.  [max-dist-squared, i d x ]  = max(dist-squared); 
% majorax is  = [ r r ( i d x , : ) '  ~ ~ ( i d x , : ) ' ] ;  
% The BasicRectangle f i e l d  i s  a 4-by-2  ma t r i x .  Each row conta ins  

% t h e  row and column coord inates  o f  a corner o f  t h e  d = s q r t  (max-dist-squared) ; 
% reg ion-enc los ing rec tang le  def ined by t he  major and minor axes. uPPer-image-row = s . BoundingBox (2) + 0.5; 
S, l e f  t-image-col = s . BoundingBox ( i ) + 0 . 5 ;  
% For more i n fo rma t i on  about these measurements, see Sect ion  11.2.1 
% o f  D i g i t a l  Image Processing, by Gonzalez and Woods, 2nd e d i t i o n ,  malorax is ( : ,  1 )  = majoraxis( : ,  1) + upper-image-row - 1 ; 
% Prent ice  H a l l .  malorax is ( : ,  2)  = majorax is ( : ,  2 )  + left- image-col - 1 ; 

s = regionprops(L, { ' Image ' ,  'BoundingBox')) ;  

f o r  k = l : l e n g t h ( s )  
[s(k) .Diameter,  s (k ) .MajorAx is ,  perim-r, perim-c] = . . .  

compute-diameter(s(k)); 
[s(k) .BasicRectangle,  s (k ) .MinorAx is ]  = . . .  

compute-basic-rectangle ( s  (k)  , perim-r, perim-c) ; 
end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

f u n c t i o n  [d,  majoraxis,  r, c ]  = compute-diameter(s) 
% [D, MAJORPXIS, R ,  C] = COMPUTE-DIAMETER(S) computes t h e  diameter 
% and major a x i s  f o r  t h e  reg ion  represented by t h e  s t r u c t u r e  S. S 
% must con ta in  t he  f i e l d s  Image and BoundingBox. COMPUTE-DIAMETER 
% a lso  re tu rns  t he  row and column coord inates  (R and C )  o f  t h e  
% per imeter p i x e l s  o f  s.Image. 

% Compute row and column coord inates  o f  per imeter p i x e l s .  
[ r ,  c ]  = f ind(bwperim(s. Image));  
r = r ( : ) ;  

% - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  % 
func t ion  [ bas i c rec t ,  minorax is ]  = compute-basic-rectangle(s, . . . 

perim-r, perim-c) 
% [BASICRECT,MINORAXIS] = COMPLJTE-BASIC-RECTANGLE(S, PERIM-R, 
% PERIM-C) computes the  basic rec tang le  and the  minor a x i s  
% end-points f o r  the  reg ion represented by t h e  s t r u c t u r e  S. S must 
% conta in  the  f i e l d s  Image, Bo~lndingBox, MajorAxis,  and 
% Diameter. PERIM-R and PERIM-C: are t he  row and column coord inates  
% o f  per imeter o f  s .  Image. BASICRECT i s  a 4-by-2  mat r ix ,  each row 
% of which conta ins  t he  row and column coord inates  o f  one corner  o f  
% t he  bas ic  rec tang le .  

% Compute t he  o r i e n t a t i o n  o f  t he  major a x l s .  
t he ta  = atan2(s.MajorAxis(2, 1) - s.Ma]orAxls( l ,  I ) ,  . . .  

s.MajorAxis(2, 2)  - s.MajorAxls(1,  2 ) ) ;  

% Form r o t a t i o n  ma t r i x .  
T = [ cos ( the ta )  s i n ( t h e t a ) ;  - s i n ( t he ta )  c o s ( t h e t a ) ] ;  
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% Rotate per imeter p i x e l s .  
p  = [perim-c per im-r] ;  
p  = p  * T ' ;  

% Ca lcu la te  minimum and maximum x -  and y-coord inates  f o r  t he  r o t a t e d  
% per imeter p i x e l s .  
x  = p ( : ,  1 ) ;  
Y = p ( : ,  2 ) ;  
min-x = min(x) ;  
max-x = max(x) ; 
min-y = min(y) ;  
max-y = max(y);  

corners-x = [min-x max-x max-x min-x] ' ;  
corners-y = [min-y min-y max-y max-y]'; 

% Rotate corners o f  t he  bas i c  rec tang le .  
corners = [corners-x corners-y] * T; 

% Trans la te  according t o  t h e  r e g i o n ' s  bounding box. 
upper-image-row = s  . BoundingBox (2) + 0.5; 
left- image-col = s.BoundingBox(1) + 0.5;  

bas i c rec t  = [ co rne rs ( : ,  2)  + upper-image-row - 1,  . . . 
corners( : ,  1  ) + lef t - image-col  - 1  ] ; 

% Compute minor a x i s  end-po in ts ,  r o ta ted .  
x  = (min-x + max-x) 1 2; 
y l  = min-y ; 
y2 = max-y; 
endpoints = [ x  y l ;  x  y21; 

% Rotate minor a x i s  end-po in ts  back. 
endpoints = endpoints * T; 

% Trans la te  according t o  t h e  r e g i o n ' s  bounding box. 
minoraxis = [endpoints( : ,  2 )  + upper-image-row - 1, . . . 

endpoints ( : , 1  ) + l e f  t-image-col - 1  ]  ; 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

f u n c t i o n  [ r ,  c ]  = p rune -p i xe l - l i s t ( r ,  c)  
% [R, C ]  = PRUNE-PIXEL-LIST(R, C) removes p i x e l s  f rom the  vectors  
% R and C  t h a t  cannot be endpoints o f  t he  major a x i s .  Th is  

% e l i m i n a t i o n  i s  based on geometr ica l  c o n s t r a i n t s  descr ibed i n  
% Russ, Image Processing Handbook, Chapter 8. 

t op  = m i n ( r ) ;  
bottom = max(r) ;  
l e f t  = min(c) ; 
r i g h t  = max(c); 

% Which p o i n t s  are  i n s i d e  t h e  upper c i r c l e ?  
x  = ( l e f t  + r i g h t ) / 2 ;  
y  = t op ;  
rad ius  = bottom - top;  
inside-upper = ( ( c  - x) . ^ 2  + ( r  - y )  . * 2  ) < r a d i ~ u s ~ 2 ;  
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% Which po ln t s  are i n s i d e  the lower c i r c l e ?  
y  = bottom; 
inside- lower = ( ( c  - x) . "2  + ( r  - y ) . ^ 2  ) < rad iusA2;  

% Which p o i n t s  are i n s i d e  the  l e f t  c i r c l e ?  
x  = l e f t ;  
y = ( t o p  + bottom)/2;  
r ad ius  = r i g h t  - l e f t ;  
i n s i d e - l e f t  = ( ( c  - x ) . ^2  + ( r  - y )  . ^ 2  ) < rad iusA2;  

% Which p o i n t s  are  i n s i d e  the r i g h t  c i r c l e ?  
x = r i g h t ;  
i ns ide - r i gh t  = ( ( c  - x ) . ^ 2  + ( r  - y ) . ^ 2  ) < rad iusA2;  

% E l im ina te  po in t s  t h a t  are i n s i d e  a l l  f o u r  c i r c l e s .  
delete- idx = f i n d ( i n s i d e - l e f t  & i ns ide - r i gh t  & . . .  

inside-upper & inside- lower);  
r (de1ete- idx) = I ] ;  
c(de1ete-idx) = [ I ;  

funct ion c = fchcode(b, conn, d i r )  
%FCHCODE Computes t h e  Freeman chain code o f  a boundary. 
% C = FCHCODE(B) computes t h e  8-connected Freeman chain code o f  a  
% se t  o f  2-D coordinate p a i r s  contained i n  6, an np-by-2  a r ray .  C 
% i s  a  s t r u c t u r e  w i t h  t he  f o l l o w i n g  f i e l d s :  
% 
% c . f cc  = Freeman chain code ( I - by -np )  
% c . d i f f  = F i r s t  d i f f e rence  o f  code c . f cc  ( I - b y - n p )  
% c.mm = In tege r  of minimum magnitude from c . f cc  (1-by-np)  
% c.diffmm = F i r s t  d i f fe rence o f  code c.mm (1-by-np) 
% c.xOy0 = Coordinates where t h e  code s t a r t s  (1 -by-2)  
% 
% C = FCHCODE(6, CONN) produces the same outputs as above, bu t  
% w i t h  t he  code connec t i v i t y  spec i f i ed  i n  CONN. CONN can be 8  f o r  
% an 8-connected cha in  code, o r  CONN can be 4  f o r  a  4-connected 
% chain code. Spec i fy ing  CONN=4 i s  v a l i d  on l y  i f  t h e  i n p u t  
% sequence, 6, contains t r a n s i t i o n s  w i t h  values 0, 2, 4, and 6, 
% exc lus i ve l y .  
% 
% C = FHCODE(B, CONN, DIR) produces t h e  same outputs  as above, but ,  
% i n  add i t i on ,  t h e  desired code d i r e c t i o n  i s  spec i f i ed .  Values f o r  
% DIR can be: 
% 
0 

O 'same' Same as the  order  o f  t h e  sequence o f  p o i n t s  i n  b. 
, This  i s  the  d e f a u l t .  
% 
% ' r eve rse '  Outputs the  code i n  t h e  d i r e c t i o n  opposi te t o  t h e  
% d i r e c t i o n  o f  t he  p o i n t s  i n  6.  The s t a r t i n g  p o i n t  
% f o r  each D I R  i s  t he  same. 
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e 

% The elements o f  B  a re  assumed t o  correspond t o  a  1 - p i x e l - t h i c k ,  
% fu l l y -connected,  c losed boundary. B cannot con ta in  d u p l i c a t e  
% coord inate  p a i r s ,  except i n  t h e  f i r s t  and l a s t  p o s i t i o n s ,  which 
% i s  a  common f e a t u r e  o f  boundary t r a c i n g  programs. 
% 
% FREEMAN CHAIN CODE REPRESENTATION 
% The t a b l e  on t h e  l e f t  shows t h e  8-connected Freeman chain codes 
% corresponding t o  a l lowed de l t ax ,  de l t ay  p a i r s .  An 8-cha in  i s  
% converted t o  a  4 -cha in  i f  (1)  i f  conn = 4; and (2) o n l y  
% t r a n s i t i o n s  0, 2, 4, and 6  occur i n  t he  8-code. Note t h a t  
% d i v i d i n g  0, 2, 4, and 6  by 2  produce t h e  4-code. 
0, 

% . . . . . . . . . . . . . . . . . . . . . . . .  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - - -  
% d e l t a ~  I d e l t a y  I 8-code corresp 4-code 
% ___________________.- - - -  _ _ _ _ _ _ _ . . _ _ - - - -  
% 0  1  0  0  
% -1 1  1  
9 -1 0  2  1  
% -1 -1 3  
% 0 -1 4 2 
% 1  -1 5  
% 1  0  6 3  
9 1 1  7 
0, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - -  _ _ _ _ _ _ _ _ _ _ - - - -  
0 

% The formula  z  = 4 * ( d e l t a x  + 2) + ( d e l t a y  + 2) g ives  t h e  f o l l o w i n g  
% sequence corresponding t o  rows 1 - 8  i n  t he  preceding t a b l e :  z = 
% 11,7,6,5,9,13,14,15. These values can be u s e d a s  i n d i c e s  i n t o  t he  
% t ab le ,  improving t h e  speed o f  computing t h e  cha in  code. The 
% preceding formula  i s  no t  unique, b u t  i t  i s  based on t h e  smal les t  
% i n t e g e r s  ( 4  and 2 )  t h a t  a re  powers o f  2. 

% P re l im ina r i es .  
i f  na rg in  == 1  

d i r  = 'same'; 
conn = 8; 

e l s e i f  na rg in  == 2 
d i r  = 'same'; 

e l s e i f  na rg in  == 3  
% Nothing t o  do here.  

e l se  
e r r o r ( ' 1 n c o r r e c t  number o f  i n p u t s . ' )  

end 
[np, nc ]  = s i ze (b ) ;  
i f  np < nc 

e r r o r ( ' B  must be o f  s i z e  n p - b y - 2 . ' ) ;  
end 

% Some boundary t r a c i n g  programs, such as boundaries.m, output a  
% seauence i n  which t h e  coord inates  o f  t h e  f i r s t  and l a s t  p o i n t s  are  

% t he  same. I f  t h i s  i s  t he  Case, e l im ina te  t h e  l a s t  p o i n t .  
i f  i sequa l (b (1 ,  : ) ,  b(np, : ) )  

np = np - 1; 
b  = b( l :np ,  : ) ;  

end 

% B u i l d  t h e  code t a b l e  us ing t h e  s i n g l e  i nd i ces  f rom the  formula  
% f o r  z  g iven above: 
C( l l )=O;  C(7)=1; C(6)=2; C(5)=3; C(9)=4; 
C(13)=5; C(14)=6; C(15)=7; 

% End o f  P re l im ina r i es .  

% Begin processing. 
xO = b(1,  1 ) ;  
yo = b(1,  2 ) ;  
c.xoy0 = [XO, yo] ;  

% Make sure t h e  coordinates are  organized sequen t i a l l y :  
% Get t he  de l t ax  and d e l t a y  between successive p o i n t s  i n  b. The 
% l a s t  row o f  a  i s  t he  f i r s t  row o f  b. 
a  = c i r c s h i f t ( b ,  [ - I ,  01); 

% DEL = a  - b i s  an n r -by -2  ma t r i x  i n  which t h e  rows con ta in  t h e  
% de l t ax  and de l t ay  between succ:essive po in t s  i n  b.  The two 
% components i n  t h e  k t h  row o f  ma t r i x  DEL are de l t ax  and d e l t a y  
% between p o i n t  (xk ,  yk)  and (xk+ l ,  y k + l ) .  The l a s t  row o f  DEL 
% contains t h e  de l t ax  and de l t ay  between (xnr ,  y n r )  and ( x i ,  y l ) ,  
% ( i . e . ,  between the  l a s t  and f i r s t  po in t s  i n  b ) .  
DEL = a  - b; 

% I f  the  abs value of e i t h e r  ( o r  both) components o f  a  p a i r  
% (de l tax ,  de l t ay )  i s  greater  than 1, then by d e f i n i t i o n  t h e  curve 
% i s  broken ( o r  t he  p o i n t s  are  out o f  o rde r ) ,  and the  program 
% terminates.  
i f  any(abs(DEL(:, 1 ) )  > 1)  ( any(abs(DEL(:, 2 ) )  > 1 ) ;  

e r r o r ( ' T h e  i n p u t  curve i s  broken o r  po in t s  are  out o f  o r d e r . ' )  
end 

% Create a  s i n g l e  index vector  us ing t h e  formula descr ibed above. 
z  = 4*(DEL(:, 1) + 2) + (DEL(:, 2) + 2) ;  

% Use t h e  index t o  map i n t o  t he  t a b l e .  The f o l l o w i n g  are  
% t he  Freeman 8-cha in  codes, organized i n  a  I - b y - n p  ar ray .  
f c c  = C(z);  

% Check i f  d i r e c t i o n  o f  code sequence needs t o  be reversed. 
i f  s t rcmp(d i r ,  ' r e v e r s e ' )  

fcc = coderev( fcc) ;  % See below f o r  f u n c t i o n  coderev. 
end 

% I f  4 -connec t i v i t y  i s  spec i f i ed ,  check t h a t  a l l  components 
% o f  f c c  are  0, 2, 4, o r  6 .  
i f  conn == 4  

v a l  = f i n d ( f c c  == 1  I f c c  == 3 / f c c  == 5 1 f c c  ==7 ) ;  
i f  isempty(va1) 



72 Appendix C $8 M-Funtions 

f c c  = fcc.12; 
e l se  

warning( 'The s p e c i f i e d  4-connected code cannot be s a t i s f i e d . ' )  
end 

end 

% Freeman chain code f o r  s t r u c t u r e  output  
c . f cc  = f cc ;  

% Obtain t h e  f i r s t  d i f f e r e n c e  o f  f c c .  
c . d i f f  = coded i f f ( fcc ,conn) ;  % See below f o r  f u n c t i o n  coded i f f .  

% Obtain code o f  t h e  i n t e g e r  o f  minimum magnitude. 
c.mm = minmag(fcc); % See below f o r  f u n c t i o n  minmag. 

% Obtain t he  f i r s t  d i f f e r e n c e  o f  f c c  
c.diffmm = codediff(c.mm, conn); 

f u n c t i o n  c r  = coderev( fcc)  
% Traverses the  sequence o f  8-connected Freemain chain code f c c  i n  
% t h e  opposi te d i r e c t i o n ,  changing the  values o f  each code 
% segment. The s t a r t i n g  p o i n t  i s  not  changed. f c c  i s  a  1-by-np 
% ar ray .  

% F l i p  t he  a r ray  l e f t  t o  r i g h t .  Th i s  redef ines  the  s t a r t i n g  p o i n t  
% as t he  l a s t  p o i n t  and reverses t h e  order  o f  " t r a v e l "  through the  
% code. 
c r  = f l i p l r ( f c c ) ;  

% Next, ob ta in  t h e  new code values by t r a v e r s i n g  the  code i n  t h e  
% opposi te d i r e c t i o n .  ( 0  becomes 4, 1  becomes 5, . . . , 5  becomes 1, 
% 6 becomes 2, and 7 becomes 3 ) .  
i n d l  = f i n d ( 0  <= c r  & c r  <= 3 ) ;  
i nd2  = f i n d ( 4  <= c r  & c r  <= 7 ) ;  
c r ( i nd1 )  = c r ( i n d 1 )  t 4; 
c r ( i n d 2 )  = c r ( i n d 2 )  - 4; 

f u n c t i o n  z = minmag(c) 
%MINMAG Finds the  i n t e g e r  o f  minimum magnitude i n  a  cha in  code. 
% Z = MINMAG(C) f i n d s  t he  i n t e g e r  o f  minimum magnitude i n  a  g iven 
% 4- o r  8-connected Freeman cha in  code, C. The code i s  assumed t o  
% be a  I - b y - n p a r r a y .  

% The i n t e g e r  o f  minimum magnitude s t a r t s  w i t h  m in (c ) ,  bu t  t he re  
% may be more than one such value. F ind  them a l l ,  
I = f i n d ( c  == m i n ( c ) ) ;  
% and s h i f t  each one l e f t  so t h a t  i t  s t a r t s  w i t h  min(c) .  
J  = 0; 
A  = z e r o s ( l e n g t h ( I ) ,  l e n g t h ( c ) ) ;  
f o r  k = I; 

J = J t l ;  
A(J,  : )  = c i r c s h i f t ( c ,  [O - ( k - l ) ] ) ;  

end 
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% Ma t r i x  A contains a l l  t he  poss ib le  candidates f o r  the  i n t e g e r  o f  
% minimum magnitude. S t a r t i n g  w i t h  t he  2nd column, succes ive ly  f i n d  
% t h e  minima i n  each column o f  A. The number o f  candidates decreases 
% as t h e  seach moves t o  t he  r i g h t  on A. Th is  i s  r e f l e c t e d  i n  t he  
% elements o f  J .  When l e n g t h ( J ) = l ,  one candidate remains. Th is  i s  
% t he  i n t e g e r  o f  minimum magnitude. 
[M, N] = s ize(A) ; 
J  = (1 :M) ' ;  
f o r  k = 2:N 

D(l:M, 1) = I n f ;  
D(J,  1 )  = A(J, k ) ;  
amin = min(A(J, k ) ) ;  
J  = f i n d ( D ( : ,  1 )  == amin); 
i f  l eng th (J )== l  

z = A(J, : ) ;  
r e t u r n  

end 
end 

% . . . . - . - - - - - . . . . . . . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - %  

f u n c t i o n  d  = c o d e d i f f ( f c c ,  conn) 
%CODEDIFF Computes t h e  f i r s t  d i f f e rence  o f  a  cha in  code. 
% D  = CODEDIFF(FCC) computes the  f i r s t  d i f f e rence  o f  code, FCC. The 
% code FCC i s  t r ea ted  as a  c i r c u l a r  sequence, so t h e  l a s t  element 
% o f  D  i s  the  d i f f e r e n c e  between the  l a s t  and f i r s t  elements o f  
% FCC. The i n p u t  code i s  a  1-by-np vector .  
% 
% The f i r s t  d i f f e r e n c e  i s  found by count ing t h e  number o f  d i r e c t i o n  
% changes ( i n  a  counter-c lockwise d i r e c t i o n )  t h a t  separate two 
% adjacent elements o f  t he  code. 

s r  = c i r c s h i f t ( f c c ,  [O, -11); % S h i f t  i npu t  l e f t  by 1  l o c a t i o n .  
d e l t a  = s r  - fcc ;  
d  = d e l t a ;  
I = f i nd (de1 ta  < 0 ) ;  

type = conn; 
swi tch  type 
case 4  % Code i s  4-connected 

d(1)  = d(1)  + 4; 
case 8  % Code i s  8-connected 

d(1)  = d (1 )  + 8; 
end 

function g = gscale(f, varargin) 
%GSCALE Scales the intensity o f  the input image. 
% G  = GSCALE(F, ' f u 1 1 8 ' )  scales t h e  i n t e n s i t i e s  o f  F  t o  t h e  f u l l  
% 8 - b i t  i n t e n s i t y  range [O, 2551. Th is  i s  t he  de fau l t  i f  the re  i s  
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% on l y  one i n p u t  argument. 
% 
% G = GSCALE(F, ' fu1116 ' )  sca les  t h e  i n t e n s i t i e s  o f  F  t o  t he  f u l l  
% 1 6 - b i t  i n t e n s i t y  range [O, 655351. 
% 
% G = GSCALE(F, 'minmax' , LOW, HIGH) sca les  t h e  i n t e n s i t i e s  of F t o  
% t he  range [LOW, HIGH]. These values must be provided, and they 
% must be i n  t he  range [0, I ] ,  independent ly o f  t h e  c l a s s  o f  t he  
% i n p u t .  GSCALE performs any necessary sca l i ng .  I f  t h e  i n p u t  i s  o f  
% c l ass  double, and i t s  values are  not  i n  t he  range [O, I ] ,  then 
% GSCALE scales i t  t o  t h i s  range be fo re  processing. 
5 

% The c l a s s  o f  t h e  output  i s  t h e  same as t h e  c lass  o f  t h e  i n p u t .  

i f  l eng th (va ra rg in )  == 0  % I f  o n l y  one argument i t  must be f .  
method = ' f u118 ' ;  

e l se  
method = v a r a r g i n t l ) ;  

end 

i f  s t r cmp(c lass ( f ) ,  ' d o u b l e ' )  & (max ( f ( : ) )  > 1  I m i n ( f ( : ) )  < 0) 
f = mat2gray( f ) ;  

end 

% Perform t h e  s p e c i f i e d  sca l i ng .  
swi tch  method 
case ' f u118 ' 

g  = im2uint8(mat2gray (double ( f )  ) ) ; 
case ' f ~ 1 1 1 6 '  

g  = im2uintl6(mat2gray(double(f))); 
case 'minmax' 

low = varargin(2);  h i gh  = varargin(3);  
i f  low > 1 I low s 0 I h igh  > 1  I h igh  < 0  

er ror ( 'Parameters  l ow  and h igh  must be i n  the  range [0 ,  I ] . ' )  
end 
i f  s t r cmp(c lass ( f ) ,  ' d o u b l e ' )  

low-in = m i n ( f ( : ) ) ;  
h igh- in = m a x ( f ( : ) ) ;  

e l s e i f  s t r cmp(c lass ( f ) ,  ' u i n t 8 ' )  
low-in = doub le (m in ( f ( : ) ) ) . / 255 ;  
high-in = doub le(max( f ( : ) ) ) . /255;  

e l s e i f  strcmp(c1ass ( f )  , ' u i n t l 6 '  ) 
low-in = double(min(f(:)))./65535; 
high- in = double(max(f(:)))./65535; 

end 
% imadjus t  au toma t i ca l l y  matches t h e  c lass  o f  t h e  i n p u t .  
g  = imadjust  ( f ,  [ low-in high- in]  , [ l ow  h igh ]  ) ; 

otherwise 
error('Unknown method. ' )  

end 
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function [X, R ]  = imstack2vectors(S, MASK) 
SIMSTACK2VECTORS Extracts vectors from an image stack. 
% [X, R ]  = imstack2vectors(S, MASK) e x t r a c t s  vec tors  f rom S, which 
% i s  an M-by-N-by-n stack a r ray  o f  n  reg i s te red  images o f  s i z e  
% M-by-N each (see F ig .  11.24). The ex t rac ted vectors  are  arranged 
% as t h e  rows o f  a r ray  X. I n p u t  MASK i s  an M-by-N l o g i c a l  o r  
% numeric image w i t h  nonzero values ( I s  i f  i t  i s  a  l o g i c a l  a r ray )  
% i n  t h e  l oca t i ons  where elelnents o f  S are  t o  be used i n  forming X 
% and 0s i n  l oca t i ons  t o  be ignored. The number o f  row vectors  i n  X 
% i s  equal  t o  t h e  number o f  nonzero elements of MASK. I f  MASK i s  
% omit ted,  a l l  M*N l o c a t i o n s  are  used i n  fo rming X. A simple way t o  
% ob ta in  MASK i n t e r a c t i v e l y  i s  t o  use f u n c t i o n  r o i p o l y .  F i n a l l y ,  R 
% i s  an ar ray  whose rows are  t he  2-D coord inates  con ta in ing  t h e  
% reg ion  l oca t i ons  i n  MASK from which t h e  vectors  i n  S were 
% ex t rac ted t o  form X. 

% P re l im ina r i es .  
[M, N, n ]  = s ize(S) ;  
i f  na rg in  == 1  

MASK = true(M, N); 
e l se  

MASK = MASK -= 0; 
end 

% F ind the  set  o f  l oca t i ons  where t h e  vectors  w i l l  be kept before  
% MASK i s  changed l a t e r  i n  t h e  program. 
[ I ,  J] = find(MASK); 
R = [ I ,  J]; 

% Now f i n d  X. 

% F i r s t  reshape S i n t o  X by t u r n i n g  each se t  o f  n  values along the  t h i r d  
% dimension o f  S  so t h a t  i t  betimes a row o f  X. The order  i s  from t o p  t o  
% bottom along t h e  f i r s t  column, t h e  second column, and so on. 
Q = M*N; 
X = reshape(S, Q, n) ; 
% Now reshape MASK so t h a t  i t  corresponds t o  t h e  r i g h t  l o c a t i o n s  
% v e r t i c a l l y  along the  elements o f  X. 
MASK = reshape(MASK, Q, 1 ) ;  

% Keep t h e  rows o f  X  a t  l o c a t i o n s  where MASK i s  not  0. 
X = X(MASK, : ) ;  

function [x, y] = intline(x1, x2, yl, y2) 
%INTLINE Integer-coordinate line! drawing algorithm. 
% [X, Y] = INTLINE(X1, X2, Y1, Y2) computes an 
% approximation t o  t he  l i n e  segment j o i n i n g  (X l ,  Y1) and 
% (X2, Y2) w i t h  i n t e g e r  coordinates.  X I ,  X2, Y1, and Y2 
% should be i n tege rs .  INTLINE i s  reve rs ib le ;  t h a t  i s ,  
% INTLINE(X1, X2, Y1, Y2) produces t h e  same r e s u l t s  as 
% FLIPUD(INTLINE(X2, XI, Y2, Y I ) )  . 
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dx = abs(x2 - x l ) ;  
dy = abs(y2 - y l ) ;  

% Check f o r  degenerate case. 
i f  ( (dx  == 0) & (dy == 0 ) )  

x = x l ;  
Y = y l ;  
re turn ;  

end 

f l i p  = 0; 
i f  (dx >= dy) 

i f  (x1 > x2) 
% Always "draw" f rom l e f t  t o  r i g h t .  
t = x l ;  x l  = x2; x2 = t; 
t = y l ;  y l  = y2; y2 = t; 
f l i p  = 1; 

end 
m = (y2 - y l ) / ( x 2  - x l ) ;  
x = ( x l : x 2 ) . ' ;  
y = round(y1 + m*(x - x l ) ) ;  

e l se  
i f  ( y l  > y2) 

% Always "draw" f rom bottom t o  top .  
t = x l ;  x l  = x2; x2 = t; 
t = y l ;  y l  = y2; y2 = t; 
f l i p  = 1; 

end 
m = (x2 - x l ) / ( y 2  - y l ) ;  
y = ( y l : y 2 ) . ' ;  
x = round(x1 + m*(y - y l ) ) ;  

end 

i f  ( f l i p )  
x = f l i p u d ( x ) ;  
y = f l i p u d ( y )  ; 

end 

f u n c t i o n  p h i  = invmoments(F) 
%INVMOMENTS Compute i n v a r i a n t  moments o f  image. 
% PHI = INVMOMENTS(F) computes t h e  moment i n v a ~ r i a n t s  o f  t h e  image 
% F. PHI i s  a seven-element row vec to r  contain. ing t h e  moment 
% i nva r i an t s  as def ined i n  equat ions (11.3-17) through (11.3-23) of 
% Gonzalez and Woods, D i g i t a l  Image Processing, 2nd Ed. 
% 
% F must be a 2-D, r e a l ,  nonsparse, numeric o r  l o g i c a l  ma t r i x .  

if (ndims(F) -= 2 )  / i s spa rse (F )  I - i s r e a l ( F )  I - ( i snumer ic (F)  I . . 
i s l o g i c a l ( F ) )  

e r r o r ( [ ' F  must be a 2-D, r e a l ,  nonsparse, numeric o r  l o g i c a l  ' . .  
' m a t r i x . ' ] ) ;  

end 
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phi = compute~phi(compute~eta(compute~m(F) ) ) ; 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - %  

f u n c t i o n  m = compute-m(F) 

[M, N] = s ize(F)  ; 
[ x ,  y ]  = meshgrid(l:N, 1:M); 

% Turn x, y, and F i n t o  column vectors  t o  make the  summations a b i t  
% eas ie r  t o  compute i n  t he  f o l l o w i n g .  
x = x ( : ) ;  
Y = y ( : ) ;  
F = F ( : ) ;  

% DIP equat ion (11.3-12) 
m.mOO = sum(F); 
% P ro tec t  against  d i v i de -by -ze ro  warnings. 
i f  (m.mO0 == 0) 

m.mOO = eps; 
end 
% The o the r  c e n t r a l  moments: 
m . m l O  = sum(x . *  F);  
m . m O l  = sum(y .* F ) ;  
m . m l l  = sum(x . *  y .* F ) ;  
m.m20 = sum(x.^2 .* F) ;  
m.m02 = sum(y.^2 . *  F);  
m.m30 = sum(x.^3 . *  F); 
m.mO3 = sum(y.*3 .* F);  
m.ml2 = sum(x .* y . ^2  .* F ) ;  
m.m21 = sum(xmA2 . *  y .* F);  

f u n c t i o n  e = compute-eta(m) 

% DIP equations (11.3-14) through (11.3-16).  

xbar = m . m l O  1 m.mO0; 
ybar = m . m O l  I m.mO0; 

e .e ta l1  = (m.ml1 - ybar*m.mlO) / m.m00A2; 
e.eta20 = (m.m20 - xbar*m.mlO) 1 m.m00A2; 
e.eta02 = (m.mO2 - ybar*m.mOl) / m.m00A2; 
e.eta30 = (m.m30 - 3 * xbar * m.m20 + 2 * xbarA2 * m.ml0) / m.m00A2.5; 
e.eta03 = (m.mO3 - 3 * ybar * m.mO2 + 2 * ybarA2 * m.mO1) I m.m00A2.5; 
e.eta21 = (m.m21 - 2 * xbar * m . m l l  - ybar * m.m20 + . . .  

2 * xbarA2 * m.mO1) / m.m00^2.5; 
e .e ta l2  = (m.ml2 - 2 * ybar * m . m l l  - xbar * m.mO2 + ... 

2 * ybarA2 * m.ml0) / m.m00A2.5; 

f u n c t i o n  p h i  = compute-phi(e) 

% DIP equat ions (11.3-17) through (11.3-23) .  
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f u n c t i o n  B = pixeldup(A, m, n)  
%PIXELDUP Dupl ica tes  p i x e l s  o f  an image i n  both  d i rec t i ons .  
% B = PIXELDUP(A, M, N)  dup l i ca tes  each p i x e l  o f  A M t imes i n  t h e  
% v e r t i c a l  d i r e c t i o n  and N t imes i n  t he  h o r i z o n t a l  d i r e c t i o n .  
% Parameters M and N must be i n tege rs .  I f  N i s  not  included, i t  

% d e f a u l t s  t o  M. 

% Check i npu ts .  
i f  na rg in  < 2 

e r r o r ( ' A t  l e a s t  two i n p u t s  a re  requ i red.  ' ) ;  
end 
i f  na rg in  == 2 

n = m; 
end 

% Generate a vec tor  w i t h  elements l : s i z e ( A ,  1 ) .  
u = l : s i z e ( A ,  1 ) ;  

% Dup l ica te  each element o f  t he  vec to r  m t imes 
m = round(m); % P r o t e c t  aga ins t  non in tergers .  
u = u(ones(1, m), : ) ;  
u = u ( : ) ;  

% Now repeat f o r  t h e  o t h e r  d i r e c t i o n .  
v = l : s i z e ( A ,  2 ) ;  
n = round(n);  
v = v(ones(1, n ) ,  : ) ;  
v = v ( : ) ;  
B = A(u, v ) ;  

f u n c t i o n  angles = polyangles(x,  y) 
%POLYANGLES Computes i n t e r n a l  polygon angles. 
% ANGLES = POLYANGLES(X, Y) computes t he  i n t e r i o r  angles ( i n  
% degrees) o f  an a r b i t r a r y  polygon whose v e r t i c e s  are g iven i n  
% [ X ,  Y ] ,  ordered i n  a c lockwise manner. The program e l im ina tes  
% dup l i ca te  adjacent rows i n  [X Y ] ,  except t h a t  t h e  f i r s t  row may 
% equal  t he  l a s t ,  so t h a t  t h e  polygon i s  c losed. 

% P re l im ina r i es .  
[ X  y ]  = dupgone(x, y )  ; % E l im ina te  d u p l i c a t e  ve r t i ces .  
X Y  = [ x ( : )  y ( : ) l ;  
i f  isempty (xy)  

% No v e r t i c e s !  
angles = zeros(0,  1 ) ;  
r e tu rn ;  

end 
i f  s ize(xy ,  1) == 1 I - i s e q u a l ( x y ( l ,  : ) ,  xy(end, : ) )  

% Close t h e  polygon 
xy(end + 1, : )  = xy(1 ,  : ) ;  

end 

v l  = -d(l:end, : ) ;  
v2 = [d(2:end, : ) ;  d(1, : ) I ;  
vl-dot-v2 = sum(v1 . *  v2, 2 ) ;  
mag-vl = s q r t  (sum(v1. ̂ 2, 2)  ) ; 
mag-v2 = s q r t ( ~ u m ( v 2 . ~ 2 ,  2 ) ) ;  

% Pro tec t  against  near ly  dup l i ca te  ve r t i ces ;  ou tput  angle w i l l  be 90 
% degrees f o r  such cases. The " r e a l "  f u r t h e r  p r o t e c t s  aga ins t  
% poss ib le  smal l  imaginary angle components i n  those cases. 
mag-vl(-mag-vl) = eps; 
mag-v2 (-mag-v2) = eps; 
angles = real(acos(v1-dot-v2 . /  mag-vl . I  mag-v2) * 180 / p i ) ;  

% The f i r s t  angle computed was f o r  t h e  second ver tex ,  and the  
% l a s t  was f o r  t he  f i r s t  ver tex .  S c r o l l  one p o s i t i o n  down t o  
% make the  l a s t  ver tex  be the  f i r s t .  
angles = c i r c s h i f t  (angles, [ I ,  01 ) ; 

% NOW determine i f  any v e r t l c e r  are concave and ad lus t  t h e  angles 1 % accord ing ly .  
sgn = convex-angle-test(xy); 

! % Any element o f  sgn t h a t ' s  -1 i nd i ca tes  t h a t  t h e  angle 1s  
3 % concave. The corresponding an~gles have t o  be subt rac ted 

% f rom 360. ' I = f i n d  (sgn == -1 ) ; 

/ angles(1) = 360 - angles(1) ; 

i f unct lon  sgn = convex-angle-test (xy) 

/ % The rows o f  a r ray  xy are  ordered v e r t l c e s  o f  a polygon. I f  the  
% k t h  angle 1s convex (>O and <= 180 degress) then sgn(k) = I % 1. Otherwise sgnjk)  = -1. Thls f u n c t l o n  assumes t h a t  t he  f l r s t  

I % ver tex  ~n the  1st 1s convex, and t h a t  no o the r  ve r tex  has a 
% smal ler  value o f  x-coordinate. These two cond l t l ons  a re  t r u e  i n  
% t h e  f l r s t  ver tex  generated by t h e  MPP algorithm. Also the  
% v e r t l c e s  are assumed t o  be ~ r d e r e d  I n  a clockwise sequence, and 
% t he re  can be no dup l i ca te  v e r t i c e s .  
% , % The t e s t  1s based on t h e  f a c t  t h a t  every convex ve r tex  1s  on t h e  
% p o s l t l v e  s lde  o f  t he  l l n e  passlng through the  two v e r t l c e s  

I 

% lmmedlately following each ver tex  belng considered. I f  a ver tex  
% 1s concave then ~t l l e s  on the negat lve s l de  o f  t h e  l l n e  j o l n l n g  
% t he  next two ve r t l ces .  Th ls  proper ty  1s t r u e  a l so  l f  p o s l t l v e  and 
% negat lve are Interchanged 111 t he  preceding two sentences. 

% I t  i s  assumed t h a t  the  polygori i s  closed. I f  no t ,  c lose i t .  
i f  s i ze (xy ,  1 )  == 1 I - i s e q u a l ( x y ( l ,  : ) ,  xy(end, : ) )  

xy(end + 1, : )  = xy(1 ,  : ) ;  
end 

% Sign convention: sgn = 1 f o r  convex v e r t i c e s  ( l . e ,  l n t e r l o r  angle > 0 
% and <= 180 degrees), sgn = -1 f o r  concave v e r t i c e s .  

% Precompute some q u a n t i t i e s .  
d = d i f f ( x y ,  1 ) ;  
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% Extreme p o i n t s  t o  be used i n  t h e  f o l l o w i n g  loop.  A  1  i s  appended 
% t o  perform the  i n n e r  (do t )  p roduct  w i t h  w, which i s  1-by-3  (see 
% below).  
L  = 10^25; 
t o p - l e f t  = [-L, -L, I ] ;  
top- r igh t  = [-L, L, 11; 
bot tom- le f t  = [L,  -L, I ] ;  
bot tom-r ight  = [L,  L, I ] ;  

sgn = 1; % The f i r s t  ve r tex  i s  known t o  be convex. 

% S t a r t  f o l l o w i n g  t h e  v e r t i c e s .  
f o r  k  = 2 : l eng th (xy )  - 1  

p f i r s t =  xy (k  - 1, : ) ;  
psecond = xy(k ,  : ) ;  % Th is  i s  t h e  p o i n t  t es ted  f o r  convex i ty .  
p t h i r d  = xy(k  + 1, : ) ;  
% Get t h e  c o e f f i c i e n t s  o f  t h e  l i n e  (polygon edge) passing 
% through p f i r s t  and psecond. 
w  = po l yedge (p f i r s t ,  psecond); 

% Es tab l i sh  t h e  p o s i t i v e  s i de  o f  t h e  l i n e  wlx + w2y + w3 = 0.  
% The p o s i t i v e  s i de  o f  t h e  l i n e  should be i n  t h e  r i g h t  s ide  o f  t h e  
% vec tor  (psecond - p f i r s t ) ,  d e l t a x  and de l t ay  o f  t h i s  vec tor  
% g i ve  t he  d i r e c t i o n  o f  t r a v e l .  Th is  es tab l ishes which o f  t h e  
% extreme p o i n t s  (see above) should be on the  + s ide.  I f  t h a t  
% p o i n t  i s  on the  negat ive  s i d e  o f  t h e  l i n e ,  then w  i s  replaced by -w. 

de l t ax  = psecond(:, 1 )  - p f i r s t ( : ,  1 ) ;  
de l t ay  = psecond(:, 2)  - p f i r s t ( : ,  2 ) ;  
i f  de l t ax  == 0  & d e l t a y  == 0  

e r r o r ( ' D a t a  i n t o  convex i ty  t e s t  i s  0  o r  d u p l i c a t e d . ' )  
end 
i f  de l t ax  <= 0  & d e l t a y  >= 0  % Bottom-right should be on + s ide.  

vector-product = dot(w, bot tom-r igh t ) ;  % I nne r  product.  
w  = s ign(vector-product)  *w; 

e l s e i f  de l t ax  <= 0  & d e l t a y  <= 0  % Top-right should be on + s ide .  
vector-product = dot(w, t op - r i gh t ) ;  
w = s i gn  (vector-product)  *w; 

e l s e i f  de l t ax  >= 0  & d e l t a y  <= 0 % Top- lef t  should be on + s ide .  
vector-product = dot(w, t o p - l e f t ) ;  
w  = s ign(vector-product)  *w; 

e l se  % de l t ax  >= 0  & d e l t a y  >= 0, so bot tom- le f t  should be on + s ide .  
vector-product = dot(w, bo t tom- le f t ) ;  
w  = s i g n ( v e c t o r ~ p r o d u c t ) * w ;  

end 
% For t h e  ver tex  a t  psecond t o  be convex, p t h i r d  has t o  be on the  
% p o s i t i v e  s i de  o f  t h e  l i n e .  
sgn(k) = 1; 
i f  ( w ( l ) * p t h i r d ( : ,  1 )  + w ( 2 ) * p t h i r d ( : ,  2) + w(3) )  < 0  

sgn(k) = -1; 
end 

end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  % 

f u n c t i o n  w  = polyedge(p1, p2) 
% Outputs t he  c o e f f i c i e n t s  o f  the  l i n e  passing through p l  and 
% p2. The l i n e  i s  o f  the  form wlx + w2y + w3 = 0.  

x l  = p i ( : ,  1 ) ;  y l  = p l ( : ,  2) ;  
x2 = p2( : ,  1 ) ;  y2 = p2( : ,  2 ) ;  
i f  xI==x2 

w2 = 0; 
wl = -1 1x1; 
w3 = 1; 

e l s e i f  y l  ==y2 
wl = 0; 
w2 = - l / y l ;  
w3 = 1; 

e l s e i f  x i  == y l  & x2 == y2 
wl = I; 
w2 = 1; 
w3 = 0; 

e l se  
wl = ( y l  - y Z ) / ( x l * ( y 2  - y l )  - y l * ( x 2  - x l )  + eps); 
w2 = - w l * ( x 2  - x l ) l ( y 2  - y l ) ;  
w3 = 1; 

end 
w  = [w l ,  w2, w31; 

f u n c t i o n  [xg, yg ]  = dupgone(x, y )  
% E l lmlnates  dup l i ca te ,  adjacent rows ~n  [ x  y ] ,  except t h a t  t he  
% f l r s t  and l a s t  rows can be equal  so t h a t  t h e  polygon i s  c losed. 

f u n c t i o n  [xn, yn] = randver tex(x ,  y, n p i x )  
%RANDVERTEX Adds random noise t o  t h e  v e r t i c e s  o f  a polygon. 
% [XN, YN] = RANDVERTEX[X, Y, NPIX] adds un i f o rm ly  d l s t r l b u t e d  
% no lse  t o  t he  coordlnates o f  v e r t l c e s  o f  a  polygon. The 
% coordinates o f  t h e  v e r t l c e s  are l n p u t  l n  X  and Y, and NPIX 1s t h e  
% maxlmum number o f  p l x e l  locations by whlch any p a l r  (X(1) ,  Y ( 1 ) )  
% 1s  al lowed t o  dev la te .  For example, l f  NPIX = 1, t he  l o c a t i o n  o f  
% any X(1) w l l l  not  dev la te  by more than one p i x e l  l o c a t l o n  i n  t h e  
% x - d l r e c t l o n ,  and s l m l l a r l y  f o r  Y ( 1 ) .  N o s e  1s  added independently 
% t o  t he  two coordlnates.  
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f u n c t i o n  [x ,  y ]  = minperpoly(0, c e l l s i z e )  
%MINPERPOLY Computes t h e  minimum per imeter  polygon. 
% [ X ,  Y] = MINPERPOLY(F, CELLSIZE) computes the  v e r t i c e s  i n  [ X ,  Y] 
% o f  t he  minimum per imeter  polygon o f  a  s i n g l e  b ina ry  reg ion o r  
% boundary i n  image 0 .  The procedure i s  based on S lansky ' s  
% sh r i nk ing  rubber band approach. Parameter CELLSIZE determines the  
% s i z e  o f  t h e  square c e l l s  t h a t  enclose t h e  boundary of t h e  reg ion  
% i n  8. CELLSIZE must be a  nonzero i n t e g e r  g rea te r  than 1 .  
% 
% The a lgo r i t hm i s  app l i cab le  on l y  t o  boundaries t h a t  a re  not  
% s e l f - i n t e r s e c t i n g  and t h a t  do no t  have o n e - p i x e l - t h i c k  
% p ro t rus ions .  

i f  c e l l s i z e  <= 1 
error('CELLS1ZE must be an i n t e g e r  > 1 . ' ) ;  

end 

% F i l l  B  i n  case the  i n p u t  was provided as a  boundary. La ter  
% t h e  boundary w i l l  be ex t rac ted  w i t h  4 -connec t i v i t y ,  which 
% i s  requ i red by t h e  a lgor i thm.  The use o f  bwperim assures 
% t h a t  4 - connec t i v i t y  i s  preserved a t  t h i s  p o i n t .  
B  = i m f i l l ( B ,  ' h o l e s ' ) ;  
B  = bwperim(0); 
[MI N] = s i ze (6 ) ;  

% Increase image s i z e  so t h a t  t h e  image i s  o f  s i z e  K-by-K 
% w i t h  ( a )  K  >= max(M,N) and (b )  K / c e l l s i z e  = a  power o f  2. 
K  = nextpow2(max(MJ N ) / c e l l s i z e ) ;  
K = (2^K) *ce l l s i ze ;  

% Increase image s i z e  t o  nearest  i n t e g e r  power o f  2, by 
% appending zeros t o  t h e  end o f  t h e  image. Th is  w i l l  a l l o w  
% quadtree decomposit ions as sma l l  as c e l l s  o f  s i ze  2-by-2 ,  
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% which i s  the  smal lest  al lowed va lue o f  c e l l s i z e .  
M = K - M ;  
N = K - N ;  
B  = padarray(B, [M N ] ,  ' p o s t ' ) ;  % f i s  now o f  s i z e  K-by-K 

% Quadtree decomposition. 
Q  = qtdecomp(B, 0, c e l l s i z e )  ; 

% Get a l l  t he  subimages o f  s i ze  c e l l s i z e - b y - c e l l s i z e .  
[ va l s ,  r, c ]  = q tge tb l k (6 ,  Q, c e l l s i z e ) ;  

% Get a l l  the  subimages t h a t  conta in  a t  l e a s t  one b lack  
% p i x e l .  These are  t he  c e l l s  of t h e  w a l l  enc los ing  t h e  boundary. 
I = find(sum(sum(vals(:, :, : ) )  >= 1 ) ) ;  
x  = r ( 1 ) ;  
Y = ~ ( 1 ) ;  

% [ x ' ,  y ' ]  i s  a  l eng th (1 ) -by -2  a r ray .  Each member o f  t h i s  a r r a y  i s  
% t he  l e f t ,  t op  corner o f  a  b lack  c e l l  o f  s i z e  c e l l s i z e - b y - c e l l s i z e .  
% F i l l  t he  c e l l s  w i t h  b lack  t o  form a  c losed border o f  b l ack  c e l l s  
% around i n t e r i o r  po in t s .  These! c e l l s  are t h e  c e l l u l a r  complex. 
f o r  k  = l : l e n g t h ( I )  

B (x (k ) : x ( k )  + cel ls ize-1,  y ( k ) : y ( k )  + ce l ls ize-1)  = 1; 
end 

BF = i m f  i l l ( B ,  ' ho les '  ) ; 

% Ex t rac t  t he  po in t s  i n t e r i o r  t o  t he  b lack  border .  Th is  i s  t h e  reg ion  
% o f  i n t e r e s t  around which t h e  MPP w i l l  be found. 
B  = BF & (-6);  

% Ex t rac t  t he  4-connected boundary. 
B  = boundaries(B, 4, ' c w ' ) ;  
% F ind the  l a r g e s t  one i n  case o f  p a r a s i t i c  reg ions.  
J = c e l l f u n ( ' l e n g t h ' ,  0 ) ;  
I = f i n d ( J  == max(J)); 
B  = B( I (1) ) ;  

% Funct ion boundaries outputs t he  l a s t  coord inate  p a i r  equa l  t o  t he  
% f i r s t .  Delete i t .  
B  = B(1:end-I,:); 

% Obtain the  xy coordinates o f  t h e  boundary. 
x  = B ( : ,  1 ) ;  
y = B ( : ,  2 ) ;  

% Find the  smal les t  x -coord inate  and corresponding 
% smal les t  y  -coordinate.  
cx = f i n d ( x  == m i n ( x ) ) ;  
cy = f i n d ( y  == m in (y (cx ) ) ) ;  

% The c e l l  w i t h  t op  le f tmost  corner a t  ( x l ,  y l )  below i s  t h e  f i r s t  
% p o i n t  considered by t he  a lgor i thm.  The remaining p o i n t s  are  
% v i s i t e d  i n  t he  c lockwise d i rec i t ion  s t a r t i n g  a t  ( x l ,  y l ) .  
X I  = x ( c x ( 1 ) ) ;  
Y l  = y ( c y ( 1 ) ) ;  
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% S c r o l l  da ta  so t h a t  t h e  f i r s t  p o i n t  i s  ( x i ,  y l ) .  
I = f i n d ( x  == x l  & y  == y l ) ;  
x  = c i r c s h i f t ( x ,  [ - ( I  - I ) ,  01) ;  
y  = c i r c s h i f t ( y ,  [ - ( I  - I ) ,  01 ) ;  

% The same s h i f t  app l i es  t o  B. 
B  = c i r c s h i f t ( B ,  [-(I - I ) ,  01); 

% Get t he  Freeman cha in  code. The f i r s t  row o f  B  i s  t he  requ i red  
% s t a r t i n g  p o i n t .  The f i r s t  element o f  t h e  code i s  t he  t r a n s i t i o n  
% between the  1 s t  and 2nd element o f  B, t h e  secon~d element o f  
% t he  code i s  t h e  t r a n s i t i o n  between t h e  2nd and 3rd elements of B, 
% and so on. The l a s t  element o f  t h e  code i s  t h e  t r a n s i t i o n  between 
% t he  l a s t  and 1s t  elements o f  B. The elements o f  B  form a  cw 
% sequence (see above), so we use 'same' f o r  t h e  d i r e c t i o n  i n  
% f u n c t i o n  fchcode. 
code = fchcode(B, 4, ' same' ) ;  
code = code- fcc ;  . 
% Fo l low t h e  code sequence t o  e x t r a c t  t he  Black Dots, BD, (convex 
% corners) and White Dots, WD, (concave corners) .  The t r a n s i t i o n s  are  
% as f o l l o w s :  0-to-l=WD; 0-to-3=BD; I-to-O=BD; I-to-2=WD; 2-to- l=BD; 
% 2-to-3=WD; 3-to-O=WD; 3- to-2=dot .  The formula t = 2 * f i r s t  - second 
% g ives  t h e  f o l l o w i n g  unique values f o r  these t r a n s i t i o n s :  -1, -3, 2, 
% 0, 3, 1, 6, 4. These are app l i cab le  t o  t r a v e l  i n  t he  cw d i r e c t i o n .  
% The WD's are d isp laced one -ha l f  a  d iagona l  f rom t h e  8D 's  t o  form 
% t he  h a l f - c e l l  expansion requ i red  i n  t h e  a lgor i thm.  

% Ver t ices  w i l l  be computed as a r ray  " v e r t i c e s "  o f  dimension nv-by-3 ,  
% where nv i s  t he  number o f  v e r t i c e s .  The f i r s t  two elements o f  any 
% row o f  a r ray  v e r t i c e s  a re  t h e  (x ,y )  coord inates  o f  t h e  ve r tex  
% corresponding t o  t h a t  row, and t h e  t h i r d  element i s  1  i f  t h e  
% ver tex  i s  convex (BD) o r  2  i f  i t  i s  concave (WD). The f i r s t  ver tex  
% i s  known t o  be convex, so i t  i s  b lack .  
v e r t i c e s  = [ x l ,  y l ,  I ] ;  
n  = 1;  
k = 1; 
f o r  k  = 2: length(code) 

i f  code(k - 1) -= code(k) 
n = n + l ;  
t = 2*code(k-I) - code(k) ;  % t = value o f  formula.  
if t == -3 1 t == 2  1 t == 3  1 t == 4 % Convex: Black Dots. 

ve r t i ces (n ,  1:3) = [ x ( k ) ,  y ( k ) ,  I ] ;  
e l s e i f  t == -1 I t == 0  I t == 1  I t == 6 % Concave: White Dots. 
if t == -1 

v e r t i c e s ( n ,  1 :3)  = [ x ( k )  - c e l l s i z e ,  y ( k )  - ce l l s i ze ,21 ;  
e l s e i f  t==O 

ve r t i ces (n ,  1  :3)  = [ x ( k )  t c e l l s i z e ,  y ( k )  - ce l l s i ze ,21  ; 
e l s e i f  t = = l  

v e r t i c e s ( n ,  1:3) = [ x ( k )  + c e l l s i z e ,  y ( k )  + c e l l s i z e , 2 ] ;  
e l se  

v e r t i c e s ( n ,  1:3) = [ x ( k )  - c e l l s i z e ,  y ( k )  + c e l l s i z e , 2 ] ;  
end 

% Nothing t o  do here. 
end 

end 
end 

% The r e s t  o f  minperpo1y.m processes the  v e r t i c e s  t o  
% a r r i v e  a t  t he  MPP. 

f l a g  = I ;  
wh i l e  f l a g  

% Determine which v e r t i c e s  l i e  on o r  i n s i d e  t h e  
% polygon whose v e r t i c e s  a re  the  Black Dots. Delete a l l  
% o ther  po in t s .  
I = f i n d ( v e r t i c e s ( : ,  3) == 1) ;  
xv = ve r t i ces (1 ,  1 ) ;  % Coordinates o f  t he  Black Dots. 
yv = ve r t i ces (1 ,  2 ) ;  
X  = v e r t i c e s ( : ,  1 ) ;  % Coordinates o f  a l l  ve r t i ces .  
Y  = v e r t i c e s ( : ,  2 ) ;  
I N  = inpolygon(X, Y, xv, yv) ;  
I = f i nd (1N  -= 0 ) ;  
v e r t i c e s  = ve r t i ces (1 ,  : ) ;  

% Now check f o r  any Black Dots t h a t  may have been turned i n t o  
% concave v e r t i c e s  a f t e r  t he  previous d e l e t i o n  step. De le te  
% any such Black Dots and recompute t he  polygon as i n  t h e  
% previous sec t i on  of code. When no more changes occur,  se t  
% f l a g  t o  0, which causes the  loop t o  te rminate .  
x  = v e r t i c e s ( : ,  1 ) ;  
y  = v e r t i c e s ( : ,  2 ) ;  
angles = polyangles(x,  y ) ;  % Find a l l  t he  i n t e r i o r  angles. 
I = f ind(ang1es > 180 & ve r t i ces ( : ,  3 )  == 1) ;  
i f  isempty ( I )  

f l a g  = 0; 
e l se  

J  = 1 : l eng th (ve r t i ces )  ; 
f o r  k  = l : l e n g t h ( I )  

K = f i n d ( J  -= I ( k ) ) ;  
J = J(K) ;  

end 
v e r t i c e s  = ve r t i ces (J ,  : ) ;  

end 
end 

% F i n a l  pass t o  de le te  t he  v e r t i c e s  w i t h  angles o f  180 degrees. 
x  = v e r t i c e s ( : ,  1 ) ;  
y  = v e r t i c e s ( : ,  2 ) ;  
angles = polyangles (x ,  y  ) ; 
I = f ind(ang1es -= 180); 

% Ver t ices  o f  t he  MPP: 
x  = ve r t i ces (1 ,  1 ) ;  
y  = ve r t i ces (1 ,  2 ) ;  
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% Convert t o  columns. 
x  = x ( : ) ;  
Y = y ( : ) ;  

% Pre l iminary  c a l c u l a t i o n s .  
L  = l eng th (x ) ;  
xnoise = rand(L,  1 ) ;  
ynoise = rand(L, 1 ) ;  
xdev = npix*xnoise.*sign(xnoise - 0.5) ;  
ydev = npix*ynoise.*sign(ynoise - 0.5); 

% Add no ise  and round. 
xn = round(x + xdev); 
yn = round(y + ydev); 

% A l l  p i x e l  l o c a t i o n s  must be no l e s s  than 1.  
xn = max(xn, 1 ) ;  
yn = max(yn, 1 ) ;  

function [st, angle, xO, y o ]  = signature(b, varargin) 
%SIGNATURE Computes t h e  signature of a boundary. 
% [ST, ANGLE, XO, YO] = SIGNATURE(B) computes the  
% s ignature  o f  a  g iven boundary, B, where B i s  an np-by-2  a r ray  
% (np > 2) con ta in ing  the  (x,  y )  coord inates  o f  t h e  boundary 
% ordered i n  a  c lockwise o r  counterclockwise d i r e c t i o n .  The 
% ampl i tude o f  t h e  s i gna tu re  as a  f u n c t i o n  o f  i nc reas ing  ANGLE i s  
% output i n  ST. (X0,YO) a re  t h e  coord inates  o f  t he  c e n t r o i d  o f  t he  
% boundary. The maximum s i z e  o f  a r rays  ST and ANGLE i s  360-by-1, 
% i n d i c a t i n g  a maximum r e s o l u t i o n  o f  one degree. The i n p u t  must be 
% a  o n e - p i x e l - t h i c k  boundary obtained, f o r  example, by us ing the 
% f u n c t i o n  boundaries. By d e f i n i t i o n ,  a  boundary i s  a  c losed curve. 
% 
% [ST, ANGLE, XO, YO] = SIGNATURE(B) computes the  s ignature ,  us ing  
% t he  c e n t r o i d  as t he  o r i g i n  o f  t h e  s ignature  vec tor .  
0, 

% [ST, ANGLE, XO, YO] = SIGNATURE(B, XO, YO) computes the  boundary 
% us ing the  s p e c i f i e d  (XO, YO) as t h e  o r i g i n  of t he  s ignature  
% vec tor .  

% Check dimensions o f  b.  
[np, nc]  = s i ze (b ) ;  
if (np nc I nc -= 2 )  

e r r o r ( ' B  must be o f  s i z e  n p - b y - 2 . ' ) ;  
end 

% Some boundary t r a c i n g  programs, such as boundaries.m, end where 
% they  s ta r ted ,  r e s u l t i n g  i n  a  sequence i n  which the  coord inates  
% o f  t he  f i r s t  and l a s t  p o i n t s  a re  t h e  same. I f  t h i s  i s  t h e  case, 
% i n  b, e l im ina te  t he  l a s t  p o i n t .  
i f  i sequa l (b (1 ,  : ) ,  b(np, : ) )  

b  = b(1:np - 1 ,  : ) ;  

np = n p -  1; 
3% end 
Bc 

- % Compute parameters. 
. ~f narg ln  == 1 

xO = round(sum(b(:, 1 ) ) l n p ) ;  % Coordinates o f  t he  centroid. 
yo = round(sum(b(:, 2 ) ) l n p ) ;  

e l s e i f  narg in  == 3  
xO = varargin(1);  
yo = varargin(21; 

e lse  
e r r o r ( ' 1 n c o r r e c t  number o f  i n p u t s . ' ) ;  

end 

% S h i f t  o r i g i n  o f  coord system t o  (xO, y o ) ) .  
b ( : ,  I )  = b(: ,  I) - xo; 
b ( : ,  2)  = b ( : ,  2 )  - YO; 

% Convert the  coordinates t o  po la r .  But f i r s t  have t o  conver t  t h e  
% g iven image coordinates,  ( x ,  y ) ,  t o  t h e  coord inate  system used by 
% MATLAB f o r  conversion betweell Car tes ian and p o l a r  cord inates .  
% Designate these coordinates by (xc,  y c ) .  The two coord inate  systems 
% are  r e l a t e d  as f o l l ows :  xc = y  and yc = -x. 
xc = b ( : ,  2 ) ;  
yc = -b(: ,  1 ) ;  
[ t he ta ,  rho ]  = car t2po l (xc ,  yc ) ;  

% Convert angles t o  degrees. 
t h e t a  = t h e t a . * ( 1 8 0 / p i ) ;  

% Convert t o  a l l  nonnegative angles. 
j = t h e t a  == 0; % Store t he  i nd i ces  o f  t h e t a  = 0  f o r  use below. 
t h e t a  = the ta . * (0 ,5*abs( l  + s i g n ( t h e t a ) ) ) .  . . 

- 0.5*(-1 + s i g n ( t h e t a ) )  . * (360 + t h e t a ) ;  
t h e t a ( j )  = 0; % To preserve t h e  0  values. 

temp = t he ta ;  
% Order temp so t h a t  sequence s t a r t s  w i t h  t h e  smal les t  angle.  
% Th is  w i l l  be used below i n  a  check f o r  monoton ic i ty .  
I = f ind( temp == min(temp));  

% S c r o l l  up so t h a t  sequence s t a r t s  w i t h  t he  smal les t  angle.  
% Use I ( 1 )  I n  case the min i s  nlot unique ( i n  t h i s  case t h e  
% sequence w i l l  not  be monoton~c anyway). 
temp = c i r c s h i f t ( t e m p ,  [ - ( I (1)  - I ) ,  01) ;  

% Check f o r  monotonic l ty,  and issue a  warning i f  sequence 
% i s  not  monotonic. F i r s t  determine i f  sequence i s  
% cw o r  ccw. 
k1 = abs(temp(1) - temp(2) ) ;  
k2 = abs(temp(1) - temp(3)) ;  
i f  h2 > k l  

sense = I; % ccw 
e l s e l f  k2 < k l  

sense = -1; % cw 



588 Appendix C @ M-Funtions 

e l se  
warn ing( [ 'The f i r s t  3 p o i n t s  i n  B do no t  form a monotonic ' . . .  

' sequence . ' ] ) ;  
end 
% Check the  r e s t  o f  t h e  sequence f o r  monoton ic i ty .  Because 
% t he  angles are  rounded t o  t he  neares t  i n t e g e r  l a t e r  i n  t h e  
% program, on l y  d i f f e r e n c e s  g rea te r  than 0.5 degrees are  
% considered i n  t he  t e s t  f o r  monoton ic i ty  i n  t h e  r e s t  o f  
% t he  sequence. 
f l a g  = 0; 
f o r  k = 3 : length( temp)  - 1 

d i f f  = sense*(temp(k + 1)  - temp(k ) ) ;  
i f  d i f f  < -.5 

f l a g  = I; 
end 

end 
i f  f l a g  

warning('Ang1e.s do no t  form a monotonic seqluence.'); 
end 

% Round t h e t a  t o  1 degree increments.  
t h e t a  = round( theta) ;  

% Keep t h e t a  and rho toge the r .  
t r  = [ t he ta ,  r ho ] ;  

% Delete dup l i ca te  angles.  The unique opera t ion  
% a lso  s o r t s  t he  i n p u t  i n  ascending order .  
[w, u, V ]  = u n i q u e ( t r ( : ,  1 ) ) ;  
t r  = t r ( u , : ) ;  % u i d e n t i f i e s  t he  rows kept by unique. 

% I f  the  l a s t  angle equals 360 degrees p l u s  t h o  f i r s t  
% angle, de le te  t h e  l a s t  angle.  
i f  t r (end ,  1 )  == t r ( 1 )  + 360 

tr = t r ( 1 : e n d  - 1, : ) ;  
end 

% Output t he  angle values. 
angle = t r ( : ,  1 ) ;  

% The s ignature  i s  t h e  s e t  o f  values o f  rho  corresponding 
% t o  the  angle values. 
s t  = t r ( : ,  2 ) ;  

funct ion [srad,  sang, S]  = specxture( f )  
%SPECXTURE Computes s p e c t r a l  t e x t u r e  o f  an imagle. 
% [SRAD, SANG, S] = SPECXTURE(F) computes SRPtD, t h e  s p e c t r a l  energy 
% distribution as a f u n c t i o n  o f  r ad ius  f rom t h e  center  o f  t he  
% spectrum, SANG, t h e  s p e c t r a l  energy d i s t r i b ~ u t i o n  as a f u n c t i o n  o f  
% angle f o r  0 t o  180 degrees i n  increments o f  1 degree, and S = 
% l o g ( 1  + spectrum o f  f ) ,  normal ized t o  t h e  range [0 ,  11. The 
% maximum va lue o f  r ad ius  i s  min(M,N), where M and N are  t h e  number 
% o f  rows and columns o f  image ( reg ion )  f .  Thus, SRAD i s  a row 
% vec tor  o f  l e n g t h  = (min(M, N ) /2 )  - 1; and SANG i s  a row Vector of 
% l eng th  180. 
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% Obtain the centered spectrum, S, o f  f .  The va r i ab les  o f  S are 
% (u, v ) ,  running from 1 :M and 1 :N, w i t h  t he  center  (zero f requency) 
% a t  [MI2 + 1, N/2 + 1 ]  (see Chapter 4 ) .  
S = f f t s h i f t ( f f t 2 ( f ) ) ;  
S = abs(S); 
[M, N] = s ize(S) ; 
x0 = MI2 + 1; 
y0 = N/2 + 1; 

% Maximum rad ius  t h a t  guarantees a c i r c l e  centered a t  (xO, yo) t h a t  
% does not exceed the  boundaries o f  S. 
rmax = min(M, N ) /2  - 1; 

% Compute srad. 
srad = zeros(1, rmax); 
srad(1) = S(x0, yo) ;  
f o r  r = 2:rmax 

[xc,  yc ]  = h a l f c i r c l e ( r ,  xO, yo); 
s rad ( r )  = sum(S(sub2ind(size(S), xc, yc)  ) ) ; 

end 

% Compute sang. 
[xc,  yc ]  = ha l f c i r c l e ( rmax ,  xO, yo); 
sang = zeros(1, l eng th (xc ) ) ;  
f o r  a = l : l eng th (xc )  

[ x r ,  y r ]  = rad ia l ( x0 ,  yo, xc (a ) ,  y c ( a ) ) ;  
sang(a) = sum(S(sub2ind(size(S), x r ,  y r ) ) ) ;  

end 

% Output t he  l o g  o f  t he  spectrum f o r  eas ie r  v iewing, scaled t o  the  
% range [0,  1 ]  . 
S = mat2gray( log( l  + S ) ) ;  

%..-...........-.---------------------------------------------------- % 

func t i on  [xc,  yc] = h a l f c i r c l e ( r ,  xO, yo) 
% Computes the i n tege r  coordinates o f  a h a l f  c i r c l e  o f  r ad ius  r and 
% center a t  (x0,yO) us ing one degree increments.  
% 
% Goes from 91 t o  270 because we want t h e  h a l f  c i r c l e  t o  be i n  t he  
% region def ined by t op  r i g h t  and t o p  l e f t  quadrants, i n  t h e  
% standard image coordinates.  

theta=91:270; 
t he ta  = t h e t a * p i / l 8 0 ;  
[xc ,  yc ]  = po l2ca r t ( t he ta ,  r ) ;  
xc = round(xc) '  + xO; % Column vector .  
yc = round(yc) '  + yo; 
% - - . . . . - . - . . . . . . . - . - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - %  

f unc t i on  [ x r ,  y r ]  = rad ia l ( x0 ,  yo, x, y ) ;  
% Computes the  coordinates o f  a s t r a i g h t  l i n e  segment extending 
% from (xO, yo) t o  (x ,  y ) .  
0, 
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% Based on f u n c t i o n  in t1 ine.m.  x r  and y r  are  
% re turned as column vectors .  

[ x r ,  y r ]  = i n t l i n e ( x 0 ,  x, yo, y ) ;  

function [v ,  unv] = statmoments(p, n)  
%STATMOMENTS Computes s t a t i s t i c a l  cen t ra l  moments o f  image histogram. 
% [ W ,  UNV] = STATMOMENTS(P, N) computes up t o  t he  Nth s t a t i s t i c a l  
% c e n t r a l  moment o f  a histogram whose components are i n  vec tor  
% P. The l e n g t h  o f  P must equal  256 o r  65536. 
% 
% The program outputs  a vec to r  V w i t h  V(1) = mean, V(2) = var iance, 
% V(3) = 3 r d  moment, . . . V(N) = Nth c e n t r a l  moment. The random 
% v a r i a b l e  values are  normalized t o  t he  range [O, 11, so a l l  
% moments a l s o  are  i n  t h i s  range. 
$ 

% The program a l so  outputs  a vec tor  UNV con ta in ing  the  same moments 
% as V, b u t  us ing un-normal ized random v a r i a b l e  values (e.g., 0 t o  
% 255 i f  l eng th (P )  = 2*8) .  For example, i f  length(P)  = 256 and V(1) 
% = 0.5, then UNV(1) would have t h e  value UNV(1) = 127.5 ( h a l f  o f  
% t h e  [ 0  2551 range).  

Lp = l eng th (p ) ;  
i f  (Lp -= 256) & (Lp -= 65536) 

e r r o r ( ' P  must be a 256- o r  65536-element v e c t o r . ' ) ;  
end 
G = Lp - 1; 

% Make sure t h e  histogram has u n i t  area, and convert  i t  t o  a 
% column vector .  
P = pIsum(p);  P = p ( : ) ;  

% Form a vec to r  o f  a l l  t h e  poss ib le  values o f  t h e  
% random v a r i a b l e .  
z = 0:G: 

% Now normal ize t h e  z ' s  t o  t h e  range [O, I ] .  
z = z./G; 

% The mean. 
m = z*p; 

% Center random va r i ab les  about t h e  mean. 
z = z - m ;  

% Compute t h e  c e n t r a l  moments. 
v = zeros(1,  n)  ; 
v (1 )  = m; 
f o r  j = 2:n 

v ( j )  = ( z . * j ) * p ;  
end 

i f  nargout > 1 
% Compute t he  uncen t ra l i zed  moments. 
unv = zeros(1,  n ) ;  
unv(l)=m.*G; 

f o r  j = 2:n 
u n v ( j )  = ((z*G) . ^ j ) * p ;  

end 
end 

function [ t ]  = statxture( f ,  scale) 
%STATXTURE Computes stat is t ica l1  measures o f  texture  i n  an image. 
% T = STATXURE(F, SCALE) conlputes s i x  measures o f  t e x t u r e  f rom an 
% image ( reg ion)  F. Parameter SCALE i s  a 6-dim row vector  whose 
% elements m u l t i p l y  t he  6 corresponding elements o f  T f o r  s c a l i n g  
% purposes. I f  SCALE i s  not  prov ided i t  d e f a u l t s  t o  a l l  1s.  The 
% output  T i s  6-by-1  vec tor  w i t h  t h e  f o l l o w i n g  elements: 
% T(1) = Average gray l e v e l  
% T(2) = Average con t ras t  
% T(3) = Measure o f  smoothness 
% T ( 4 )  = Th i rd  moment 
% T(5) = Measure o f  u n i f o r m i t y  
% T ( 6 )  = Entropy 

i f  na rg in  == 1 
s c a l e ( l : 6 )  = 1; 

e l se  % Make sure i t ' s  a row vec to r .  
sca le  = s c a l e ( : ) ' ;  

end 
% Obtain histogram and normal ize i t .  
p = i m h i s t ( f ) ;  
p = p . l nume l ( f ) ;  
L = l eng th (p ) ;  

% Compute t h e  th ree moments. W e  need t h e  unnormalized ones 
% f rom f u n c t i o n  statmoments. These are  i n  vec tor  mu. 
[ v ,  mu] = statmoments(p, 3 ) ;  

% Compute t h e  s i x  t e x t u r e  measures: 
% Average gray l e v e l .  
t ( 1 )  = mu(1); 

' % Standard dev ia t i on .  
t ( 2 )  = mu(2).^0.5; 
% Smoothness. 
% F i r s t  normal ize t he  var iance t o  [ 0  11 by 
% d i v i d i n g  i t  by (L-1)^2. 
varn  = mu(2)1(L - 1)*2;  
t ( 3 )  = 1 - 1 / ( 1  + varn);  
% T h i r d  moment (normalized by ( L  - 1 ) ^ 2  a l s o ) .  
t ( 4 )  = mu(3) / (L  - 1)^2 ;  
% Un i f o rm i t y .  

1 t ( 5 )  = s u m ( p . ~ ) ;  
% Entropy. 
t ( 6 )  = -sum(p.*(log2(p t eps ) ) ) ;  

% Scale t he  values. 
t = t . * s c a l e ;  
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X 
f u n c t i o n  [B ,  t h e t a ]  = xZmajoraxis(A, B,  type)  
%XPMAJORAXIS A l i g n s  coord inate  x  w i t h  t h e  major aixis o f  a  region. 
% [B2, THETA] = X2MAJORAXIS(A, B, TYPE) a l i g n s  t he  X-coord inate  
% a x i s  w i t h  t he  major a x i s  o f  a  reg ion  o r  boundary. The y - a x i s  i s  
% perpend icu lar  t o  t h e  x - a x i s .  The rows o f  2 -by -2  m a t r i x  A a re  t he  
% coord inates  of t h e  two end p o i n t s  o f  t h e  major ax i s ,  i n  t he  form 
% A  = [ x l  y l ;  x2 y2 ] .  On i n p u t ,  B i s  e i t h e r  a  b ina ry  image ( i . e . ,  
% an a r ray  o f  c l ass  l o g i c a l )  con ta in ing  a  sing1.e region, o r  i t  i s  
% an np-by-2  se t  o f  p o i n t s  represent ing  a  (connected) boundary. I n  
% the  l a t t e r  case, t h e  f i r s t  column o f  B  must represent 
% x -coord inates  and t h e  second column must represent t h e  
% corresponding y-coord inates .  On output,  B conta ins  t he  same data, 
% as t h e  i n p u t ,  bu t  a l i gned  w i t h  t h e  major ax i s .  I f  t h e  i n p u t  i s  an 
% image, so i s  t h e  output ;  s i m i l a r l y  t he  outpul: i s  a  sequence o f  
% coord inates  if t h e  i n p u t  i s  such a  sequence. Parameter THETA i s  
% t he  i n i t i a l  angle between t h e  major a x i s  and the  x - a x i s .  The 
% o r i g i n  o f  t he  x y - a x i s  system i s  a t  t he  bottorn l e f t ;  t h e  x - a x i s  i s  
% t he  h o r i z o n t a l  a x i s  and t h e  y - a x i s  i s  t h e  v e r t i c a l .  
0, 

% Keep i n  mind t h a t  r o t a t i o n s  can in t roduce round-o f f  e r r o r s  when 
% t he  data  a r e  converted t o  i n t e g e r  coordinates,  which i s  a  
% requirement.  Thus, postprocessing (e .g . ,  w i t h  bwmorph) o f  t he  
% output  may be requ i red  t o  reconnect a  bounda~ry. 

% P re l im ina r i es .  
i f  i s l o g i c a l ( 8 )  

type = ' r e g i o n ' ;  
e l s e i f  s i ze (B ,  2) == 2  

type = 'boundary ' ;  
[M,  N ]  = s i ze (B ) ;  
i f M < N  

e r r o r ( ' B  i s  boundary. It must be o f  s i z e  np-by-2; np > 2 . ' )  
end 
% Compute c e n t r o i d  f o r  l a t e r  use. c  i s  a  1 -by -2  vec to r .  
% I t s  1 s t  component i s  t h e  mean o f  t h e  boundary i n  t h e  x - d i r e c t i o n .  
% The second i s  t he  mean i n  t he  y - d i r e c t i o n .  
c ( 1 )  = round( (min(B( : ,  1 ) )  + max(B(:, 1 ) ) 1 2 ) ) ;  
c (2 )  = round((min(B(: ,  2 ) )  + max(B(:, 2 ) ) / 2 ) ) ;  

% I t  i s  poss ib le  f o r  a  connected boundary t o  develop smal l  breaks 
% a f t e r  r o t a t i o n .  To prevent  t h i s ,  t he  i n p u t  boundary i s  f i l l e d ,  
% processed as a  reg ion,  and then t h e  boundary i s  re -ex t rac ted .  Th is  
% guarantees t h a t  t h e  output  w i l l  be a  connected boundary. 
m = max(s ize(0) ) ;  
% The f o l l o w i n g  image i s  o f  s i z e  m-by-m t o  ma~ke sure t h a t  t he re  
% t he re  w i l l  be no s i z e  t r u n c a t i o n  a f t e r  r o t a t i o n .  
B  = bound2im(B,m,m); 
B  = i m f i l l ( 8 , ' h o l e s ' ) ;  
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e lse  
e r ro r ( ' 1npu t  must be a  boundary o r  a  b ina ry  image' . )  

end 

% Major ax i s  i n  vec tor  form. 
~ ( 1 )  = A(2, 1 )  - A(1 , 1 ) ;  
v (2)  = A(2, 2) - A(1, 2 ) ;  
v  = v ( : ) ;  % v  i s  a  c o l  vec tor  

% U n i t  vec tor  along x -ax i s .  
u = [ l ;  01; 

% F ind angle between major a x i s  and x -ax i s .  The angle i s  
% g iven by acos o f  the  i nne r  product o f  u  and v  d i v i ded  by 
% t he  product of t h e i r  norms. Because the  i n p u t s  are  image 
% po in t s ,  they a re  i n  t h e  f i r s t  quadrant. 
nv = norm(v); 
nu = norm(u); 
t he ta  = acos(u'*v/nv*nu);  
i f  t h e t a  > p i12 

t h e t a  = - ( t he ta  - p i12 ) ;  
end 
t h e t a  = the ta* lEO/p i ;  % Convert angle t o  degrees. 

% Rotate by angle t he ta  and crop t h e  ro ta ted  image t o  o r i g i n a l  s i ze .  
B  = imrota te(6 ,  the ta ,  ' b i l i n e a r ' ,  ' c r o p ' ) ;  

% If the  i n p u t  was a  boundary, r e - e x t r a c t  i t .  
i f  strcmp(type, 'boundary ' )  

B  = boundaries(8); 
B = B(1); 
% S h i f t  so t h a t  cen t ro id  o f  the  ex t rac ted  boundary i s  
% approx equal  t o  t he  cen t ro id  o f  t he  o r i g i n a l  boundary: 
B ( :  , 1) = B ( : ,  1) - min(B(: ,  1 ) )  + c ( 1 ) ;  
B ( : ,  2) = B ( : ,  2)  - min(B(: ,  2 ) )  + c ( 2 ) ;  

end 
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abs, 112 
Accumulator cells. See Hough 

Transform 
Adaptlve learn~ng systems, 498 
Adaptlve med~an filter, 164 
Adjacency, 408,413,427 
adpmedian, 165 
Affine, 183 

transform (v~suallz~ng), 186 
transformation matrlx, 188 

a l l ,  46 
Alpha-trlmmed mean hlter, 160 
Alternating sequentla1 f~lter~ng, 

371 
AND, 45,337 
ans, 48 
any, 46 
appcoef 2,261 
applylut ,  353 
Anthmetlc mean filter, 160 
Arlthmetlc operators, 40 
Array, 12 

ar~thmettc operators. 41 
dlmens~ons, 37 
ed~tor,  8 
~ndex~ng, 30 
operations summary. 514-526 

Artificial intelligence, 3 
ASCII code, 294 
@, 97 
Average value, 138 
axis ,  78 

B 
bar,  77 
Basic rectangle, 456 
Bayes classifier, 492 
bayesgauss, 493 
Between-class variance, 405 
bin2dec. 300 
Binary image, 24.25 
Bit depth, 194 
blanks, 499 
BLAS, definition of, 4 
Blind deconvolution. See 

Restoration 
blkproc, 321 
BLPF, 129 
BMP, 15 
Book Web site, 6 
Border. See Region 
Bottomhat transformation. See 

Morphology 
bound2eight. 434 
bound2four, 434 

bound2im, 435 
boundaries, 434 
Boundary, 426. See also Region 

descriptors, 455 
segments, 452 

break, 49 
Brightness, 207 
bsubsamp, 435 
Butterworth. See also Filtering 

(frequency domain) 
highpass filter, 136 
lowpass filter, 129 

bwdist, 418 
bwhitmiss, 352 
bwlabel, 361 
bwmorph, 356 
bwperim, 445 

C MEX-file, 305 
Canny edge detector, 389 
cart2po1.451 
Cartesian product, 335 
c a t ,  195.435 
Catchment basin. See Morphology 
CCITT. 21 
CDF. See Curnularive distribution 

function 
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c~ i .1 .  114 
( I array. 48.62,427 
C-.I indexing, 292 
ce l l .  292 
c . l d i s p .  293,428 
c . lfun, 428 
c e l l p l o t .  293 
c e l l s t r .  499 
( lular. See Minimum perimeter 

polygon 
complex. 440 
mosaic. 440 

( ]in codes. See Freeman chain 
codes 

changeclass, 26,72 
c '  -.r, 23,24,61,499 
c mckerboard, 167 
c ~ i , c s h i f t ,  433 
c i r cu la r .  94 
: aring border objects. See 

Morphology 
Close-open filtering. See 

Morphology 
: sing-by-reconstruction. See 

Morphology 
Code optimization, 55. See 01.70 

Vectorizing 
: le words. See Compression 
C-ding redundancy. See 

Compression 
: 2im.322 
J f i l t . 9 6  
Colon. 31.41 

indexing, 43 
: or (image processing), 

1 94-241 
basics of processing, 215 
hit depth, 194 
rightness. 207 
:MY color space, 206 

CMYK color space, 206 
3lor balancing, 224 
olor contrast, 222 

color correction, 224 
color cube. 195 
31or edge detection, 232 

color mappings. 215 
color pixels, 194 
color segmentation, 237 
color vector gradient, 232 
colormap, 197,199 
colormap matrix, 197 
colors. 195 
component images, 194 
conversion between color 

models, 204-215 
function summary, 514.520 
histograms, 225 
HSI color space, 207 
HSV color space, 205 
hue. 204,207 
image representation in 

MATLAB, 194 
image sharpening, 230 
image smoothing, 227 
images, 12,194-215 
indexed images, 197 
interactive color editing (ICE), 

218,527-551 
IPT color functions. 199-204 
NTSC color space. 204 
number of RGB colors, 195 
primary colors, 195 
representation in MATLAB, 

194 
RGB color space. 195 
RGB images. 194 
saturation, 204,207 
secondary colors. 195 
segmentahon in RGB vector 

space. 237 
sharpening. 23 1 
smoothing, 227 
spaces. 204 
transformations, 215-227 
vector processing, 215 
YCbCr color space. 205 

colorgrad. 234 
colormap. 132 
colorseg, 238 
Column vector. 14 
Columns, 13 

Command 
history, 7 
History window, 9 
line, 15 
prompt, 8 
Window, 7? 8 ,15 

Comment lines, 40 
Comments, 39 
compare, 285 
Complement 

image, 42,67 
set. 335 

Component images, 194 
Compression, 282-333 

binary code. 289 
block code, 290 
blocking artifact, 323 
code word, 286,290 
coding redundancy, 282,286 
compression ratio, 21,283 
decoder, 283 
differential coding, 313 
encoder, 283 
entropy, 287,288 
error free, 285 
first-order estimate, 288 
Huffman coding and decoding, 

289-309 
implicit quantization, 327 
improved gray-scale (IGS) 

quantization, 316 
information preserving, 285 
information theory, 287 
instantaneous code, 290 
interpixel redundancy, 282,309, 

310,314 
inverse mapper, 286 
JPEG baseline coding system, 

318 
JPEG compression, 317-333 
lossless, 285,313 
lossy compression. 285 
mapper. 286 
mappings, 3 10 
packbits. 21 
prediction error. 314 

predictive coding, 310,313 
predictor, 311 
previous pixel coding, 313 
psychovisual redundancy, 282, 

315 
quantization, 315 
quantizer, 286 
redundancies, 282 
symbol coder, 286 
symbol decoder, 286 
transform coding, 318 
transform normalization array, 

319 
uniquely decodable, 290 
variable-length coding, 282, 

295.310 
Computer vision, 3 
computer, 48 
Concave vertex, 441 
Connected component, 359.360, 

408,422,426. See also 

Morphology 
Connectivity. 408,455 

minimally connected, 427 
connectpoly, 435 
Constants. See MATLAB 
Constrained least squares 

filtering, 173 

Convex 
deficiency, 452 
hull, 452 
vertex. 441 

Convolution. 89,90,92,115 
filter. 89 
kernel, 89 
mask, 89 
periodic functions, 116 
theorem, 115 

Conway's Game of Life, 354 
conwaylaws, 355 
Coordinate conventions, 13 
Coordinates, 12 
corr ,  94 
Correlation, 90-95 

between pixels. 282 
mask, 490 
matching, 490 
template, 490 

Covariance matrix, 238,475,486 
covmatrix, 476 
cp2tform. 192 
cpse lec t ,  I93 
Cumulative distribution function, 

81,144,220 
table of, 146 

cumsum. 82 
continue, 49 
Contour. See Region 
Contraharmonic mean filter, 

160 
Contrast, 480 

enhancement, 373 
stretching transformat~on, 68 

Control points, 191,217 
choosing interact~vely, 193 

conv, 94 
j conv2,257 
I Converting 

between data classes, 25 
between image classes, 26 
between Image types, 26 
colors from HSI to RGB. 21 1 
colors from RGB to HIS, 209 
to other color spaces, 204 

Current Directory, 7,8,15 
Current Directory window, g 
Cygnus Loop, 4 16 

Data classes, 23 
converting, 25 

Data matrix, 197 
DC component, 109 

average value, 109,138 
DCT, 318 
idctmtx, 321 
dec2base. 508 
dec2bin. 298 
Decision. See a l ~ o  Recognition 

boundary, 488 
function, 488 
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Decoder. See Compression 
deconvblind, 180 
deconvlucy, 177 
Deconvolution. 142 

blind, 166,179,180 
Wiener, 173 

deconvreg, 175 
deconvwnr. I71 
Degradation function, 142 

estimating, 166.179 
modeling, 166 

Delimiter, 61 
Description, 455-483 

basic rectangle. 456 
boundary, 455 
boundary length, 455 
boundary segments. 452 
diameter, 456 
eccentricity, 456,465 
end points, 456 
Fourier descriptors, 458 
IPT function regionprops, 463 
major axis, 456 
minor axis, 456 
moment invariants. 470-474 
principal components, 

474483 
shape numbers, 456 
statistical moments, 462 
texture, 464-470 

detcoef2.261 
DFT, 108. See Discrete Fourier 

transform 
d f t c o r r ,  491 
d f t f i l t .  122 
df tuv,  128 
diag, 239 
Diagonal neighbors. 359 
diameter, 456 
Diameter. See Description 
d i f  f ,  373 
DIFFERENCE. 337 
Difference of sets, 336 
Differential coding. See 

Co~nprrssion 
Digital image. See Image 
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ttion. See Morphology 
.37 
' UM 
:fined, 514 
~nction summary, 514-521 
,284 
:ctories, 15 
:rete cosine transform, 318 
:rete Fourier transform 

(DF-I'), 108 
FT. 112 
verse, 110,114 
-igin of, 11 1 
idding, 91.93.116 
)ectrum, 70,109 
.mmetry, 110 
:ro padding, 116 
:riminant function. See 

Recognition 
3, 59 
)lay pane, 9 
)laying images, 16 
ance 
)mputing, 485 
uclidean, 17,237-239.456, 

485,489 
ahalanobis, 237-239,486 
snsform. 418 
ier.  199 
notation, 40 
lie, 24 
21 

T. See Wavelets 
node. 252 
aniic range, l6.69. 1 14 
w, 16, 18 
anipulating, 69,81,474 
)minal. 326 

jacent, 359 
nnected path. 360 
nnectivity, 436 
ighbors, 359 
.~itricity. Sec Description 

Edge (detection), 384-393 
Canny edge detector, 389 
color. 232 
derivative approximations, 387 
direction. 384 
double. 385 
gradient, 384 
IPT function edge, 384 
Laplacian of Gaussian (LOG), 

388 
location, 385 
magnitude. 384 
masks, 387 
Prewitt detector, 100,387 
Roberts detector, 388 
second-order derivative, 385 
Sobel detector, 126,385 
zero crossings, 388 

edgetaper,  I72 
e d i t ,  40 
e ig ,  478 
Eigen axes. 450 
Eigenvalues. 475-476,480 
Eigenvector, 475476 

axis alignment, 483,512 
principal components, 475 

EISPACK, definition of, 4 
Encoder. See Compression 
end, 31 
endpoints,  354 
Endpoints, 350,358,456. See also 

Description 
Enhancement, 65,108,141,222, 

369,373,517 
Entropy, 287.288.314,466. See 

~11so Compression 
eps, 48. 69.70 
Erlang. See Probability density 

function 
Erosion. See Morphology 
e r r o r ,  50 
Euclidean distance. See 

Distance 
eval.  501 
Exponential. See Probability 

density function 

Export, 23 
Extended 

minima transform, 424 
(padded) function, 116. See 

also Function 
External markers, 422. See 

Segmentation 
eye, 494 

4-adjacent, 359 
4-co~lnected path, 360 
4-connectivity, 436 
4-neighbors, 359 
Faceted shading, 135 
f a l s e ,  38 
f a l s e ,  410 
f chcode, 437,446 
f eval.  415 
FFT, 112. See Discrete Fourier 

transform 
f f t2 ,112  
f f t s h i f t ,  112 
f ieldnames, 284 
Fieldls, 21,63,184,430 
Figure callback functions, 545 
Figuire window, 7 
f igu re ,  18 
Filling holes, 365. See also 

Morphology 
Filter(ing) (frequency domain). 

115-139 
basic steps, 121 
Butterworth, lowpass, 129 
convolution theorem, 115 
convolution, 115 
extended functions, 11 6 
filter transfer function, 115 
finite-impulse-response (FIR), 

122 
from spatial filter, 122 
G,aussian highpass, 136 
Gaussian lowpass. 129 
generating directly, 127 
high frequency emphasis. 138 

highpass, 127,136 
ideal lowpass, 129 
lowpass, 116,127,129 
meshgrid arrays. 128 
M-function for filtering, 122 
obtaining from spatial filters, 

122 
padded functions, 116 
periodic noise filtering, 166 
plotting, 132 
sharpening, 136-139 
smoothing (lowpass filtering), 

129-132 
transfer function, 115 
wraparound error, 11 6 
zero-phase-shift, 122 

Filter(ing) (spatial), 65,89-107, 
158-166 

adaptive median filter, 164 
alpha-trimmed mean filter, 

160 
arithmetic mean filter, 160 
averaging filter, 100 
contraharmonic mean filter, 

160 
convolution, 89-94 
correlation, 90-94 
Gaussian filter, 100 
generating filters with function 

f specia l ,  99 
geometric mean filter, 160 
harmonic mean filter, 160 
kernel, 89 
Laplacian filter, 100 
Laplacian of Gaussian (LOG) 

filter, 100 
linear, 89.99 
mask, 89 
max filter, 105,160 

I 
i mechanics of linear spatial 
1 filtering, 89 

median adaptive filter, 164 
median filter, 105,160 
midpoint filter, 160 
min filter. 105,160 
motion filter. 100 

nonlinear, 89,96,104 
order-statistic filter, 104 
Prewitt filter, 100 
rank filter, 104 
response of filter, 89,379 
Sobel filter, 100 
supported by IPT, 99 
template, 89 
unsharp filter, 100 
using IPT function imf i l t e r ,  

99 
window, 89 

Filtering, 65,89,122 
frequency domain. See Filter 

(frequency domain) 
restoration. See Restoration 
spatial. See Filter (spatial) 

f ind,  147,432 
First difference, 436,456 
Flat structuring elements, 343, 

367-370 
f l i p l r ,  472 
f l ipud, 472 
f l o o r ,  114 
Flow control, 49 
Floyd-Steinberg algorithm, 199 
Folders, 15 
f o r ,  49 
Forming pattern vectors, 488 
Formulation, 407 
Fourier 

coefficients, 109 
descriptors, 458 
spectrum, 70,109. See Discrete 

Fourier transform 
transform. See Discrete Fourier 

transform 
f rdescp, 459 
Freeman chain codes, 436 
Frequency 

domain, 108 
filter. See Filter (frequency 

domain) 
rectangle, 109 
response of FIR filter, 122 

f reqz2, 123 

f spec ia l ,  99,120,167 
filter list. 100 

f u11,94,396 
Function. See olso M-function 

body, 39 
categories, 514-52 1 
definition line, 39 
extended (padded), 91,93,116 
handle, 97 
IPT summary, 514-521 
MATLAB summary, 521-526 
optimization, 55 
padding, 91,93,116 
zero padding, 116 

Fuzzy logic. 4 
FWT. See Wavelets 

G 
Gamma, 67,72,148. See ~11so 

Erlang 
Gaussian, 38,86,100,129,136, 

148 
expressions for, 146,388 
highpass filter, 136-138 
Laplacian of, 388 
lowpass filter, 129 
multivariate PDF, 493 
noise, 143,148 
spatial filter, 100 

gca, 78 
gcf,  540 
Generator equation, 145 
Geometric mean filter, 160 
Geometric transformations, 

182-1 93 
affine transform (visualizing), 

186 
affine transformation matrix. 

188 
forward mapping, 187 
inverse mapping. 187 
registration, 191 

ge t ,  218 
get f  i e l d ,  540 
getsequence, 342 
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;IF. 15 
- bal thresholding. 404,405. See 

also Segmentation 
lobal ,  292 

PF? 129 
: . dient, 232,384 

--finition, 232,384 
detectors. See Edge detection, 

Filter (spatial) 
color vector space, 233 

In watershed segmentation, 420 
morphological, 369 

; nulometry. See Morphology 
i phical user interface (GUI), 

59,527-551 
;raphics formats, 15 
i phs, 498 
;. ..j level. See Intensity 
ray2ind, 200,201 
i y-scale. See ulso Intensity 

)ages. See Image. 
Jee Morphology 

raysl ice .  200,201 
r ( thresh, 406 
r 1,132 
scale ,  76 
i111.59.527-551 
i -mainf cn, 533 
c Iata.539 

Highpass filtering. 136 
h i s t ,  I50 
h i s t c ,  299 
his teq .  82 
Histogram, 76 

equalization, 81 
mappings, 225 
matching. 84 
processing, 76 
specification. 84 

h i s t r o i .  156 
Hit-or-miss transformation, 350 
h-minima transform, 374 
hold on, 81 
Hotelling transform, 475 
Hough transform, 393 

accumulator cells, 395 
line detection and linking, 401 
peak detection. 399 

hough. 396 
houghlines, 401 
houghpeaks, 399 
houghpixels, 401 
h p f i l t e r ,  136 
HSI color space. 207 
hsi2rgb, 213 
HSV color space, 205 
hsv2rgb. 206 
HTML, 9 
Hue, 204,207 
huff2mat. 301 
Huffman, 290. See also 

I ine, 10,39 
Compression 

landle. 218 
codes, 289 

','--nonic mean filter, 160 
decoding, 301 

i 1.39 
encoding, 295 

iclp. 9 
Hurricane Andrew, 491 

hrowser. 9 
vlgator pane, 9 
ftatn~ng, 9 I 

page. 10 1.48 
iext, 10 lce .  218 

.ct block, 10 Interactive color ed~tlng (ICE). 
_ frequency emphas~s 218,527-551 

fllter~ng, 138 ice-0peningFcn 
-<er-lcvel processes, 3 lce-OutputFcn 

Ideal lowpass filter, 129 
Identity matrix. 494 
i f .  49 
i f f t2 .114 
i f f t s h i f t .  114 
i f  rdescp, 459 
IGS. See Compression 
ILPF, 129 
im2bw, 26.406 
im2co1,321 
im2double. 26 
im2j peg, 319 
im2 j peg2k, 327 
im2uint 16,26 
im2uint8,26 
imabsdif f ,  42 
imadd, 42 
imadjust, 66 
imag, 115 
Image, 2.12,335 

analysis, 3,334 
arithmetic operators, 42 
as a matrix, 14 
background, 426 
binary, 24.25 
blur, 166,167 
color. See Color image 

processing 
compression. See Compression 
converting, 26 
coordinates, 12 
debiuring. See Restoration 
description. See Description 
digital. 2, 13 
display options, 514 
displaying, 16 
element, 14 
enhancement, 65 
formats, 15 
gray-scale, 66,94,199,200,204 
indexed. 24,197 
intensity. See Intensity 
monochrome, 12,24,66,222.408 
morphology. See Morphology 
multispectral, 479,492,496 
noise. See Noise 

origin. defined. 13 
processing. 2.3 
recognition. See Recognition 
registration, 191 
registration, 191-193 
representation, 12. See also 

Representation 
restoration. See Restoration 
segmentation. See 

Segmentation 
transforms. See Transforms 
types. 24 

Image Processing Toolbox. See 
also MATLAB 

background, l ,4,12 
complementary toolboxes, 4 
coordinate convention, 13 
function summary, 514-521 
image representation, 13 

imapprox, 198 
imbothat, 373 
imclearborder,366 
imclose, 348 
imcomplement, 42.67 
imdilate,  340 
imdivide, 42 
imerode, 347 
imextendedmin, 424 
imf i l l ,  366,432 
imf i l t e r ,  92 

options for, 94 
imfinfo, 18 
imhist ,  77 
i m h m i n ,  374 
imimposemin, 424 
imlincomb, 42.159 
immultiply, 42 
imnoise, 106,143 

options for. 143 
imnoise2, 148 
imnoise3,152 
imopen, 348 
Improved gray-scale (IGS) 

quantization, 316 
Impulse, 92. 122,151. 166 
imratio,  283 

imread, 14 
imreconstruct,  363,410 
imregionalmin, 422 
imrotate.  472 
imshow. 16 
imstack2vectors. 476 
imsubtract,  42 
imtophat, 373 
imtransform, 188 
imwrite, 18 
ind2gray, 200,201 
ind2rgb, 200,202 
Indexed images. See Image 
Indices, 32,42,56,147 
inpolygon, 446 
input,  60 
Input, interactive, 59 
in t16,24 
i n t 2 s t r ,  506 
int32.24 
in t8 ,24 
Intensity, 2,12. See also 

Histogram 
image type, 24 
in HSI color model, 207 
in indexed images, 197 
in pseudocolor, 216 
in set theory view, 335 
PDF, 155 
scaling, 75 
transformations, 65-76 

Interactive IiO,59 
Interior 

angle, 441 
point, 427 

Internal markers, 422 
in t e rp lq ,  217 
Interpixel redundancy. See 

Compression 
Interpolation. 472 

bicubic, 188,472 
bilinear. 188,472 
cubic spline. 217 
in faceted shading. 135 
nearest neighbor. 188, 190,472 

Intersection. See Set operations 
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i n t l i n e ,  436 
in t r ans .  73 
inv, 41,403 
Inverse mapping, 85,187,220 
invmoments, 472 
IPT1. See Image Processing 

Toolbox 
i s * ,  48 
i s c e l l ,  48 
i s c e l l s t r ,  501 
i s l o g i c a l ,  25 

1.48 
Joint Photographic Experts 

Group, 15 
JPEG2000,282,325,331 
JPEG Compression. See 

Compression 
JPEG, 15,323 
JPEG, 323 
j peg2im, 322 
j peg2k2im. 330 

Kernel, 89,243,245,367 

Label matrix, 361 
Labeling connected components, 

359 
LAPACK, definition of, 4 
Laplacian, 100, 174,230,385 

of a Gaussian (LOG), 388 
operator, 175 

length ,  51 
Length 

of array, 5 1 
of boundary, 455 
of string, 499 

Line 
detection, 381-384 
detection and linking, 403 
joining two points, 436 
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ar 
D filter design. 517 

editor, 9 Mid-level processes, 3 
Midpoint filter, 160 
min, 42 
Minima imposition, 424 
Minimally connected, 427 
Minimum-perimeter polygons, 

439-449 
cellular conlplex, 440 
cellular mosaic, 440 

Minor axis, 456 
minperpoly, 447 
MLE, 180 
Moment 

about the mean, 155,464 
central, 155 
invariants, 463,470-474 
order, 155,470 

Monochrome image. See Image 
Monospace font, 14 
Morphology, Morphological, 

334-377 
adjacency. 359 
alternating sequential filtering, 

7 7  1 

gray-scale morphology, 
366-377 

hit-or-miss transformation, 350 
h-minima transform, 374 
labeling connected 

components, 359 
look-up tables, 353 
marker, 362 
mask, 362 
open-close filtering, 371 
opening, 347 
opening by reconstruction, 363 
opening gray-scale images, 369 
operations, table of, 357 
parasitic components, 358 
pruning, 358 
reconstruction, 362 
reconstruction, gray-scale 

images, 374 
reflection of structuring 

element, 336 
skeletonizing, 356,358 
strel object, 342 
structuring element, 334,338 
structuring element 

decomposition, 341 
thinning, 356 
tophat-by-reconstruction, 376 
watershed. See Segmentation 

Motion, 100 
Multiresolution, 244 
mxArray, 307 
mxcalloc, 307 
mxcreate, 307 
mxGet, 307 

Neighborhood, 65,104 
gradient, 232 
implementation, 90 
in color images, 216 
processing, 89 

Neural network. 4,498 
nextpow2, 117 
nlf  i l t e r ,  96 
Noise 

2-D sinusoid, 150 
Erlang, 145,146 
estimating parameters, 153 
exponential, 148 
filtering. See Filtering 
frequency filters. See Filter 

(frequency domain) 
Gaussian, 143,148 
generating, 143,148,152 
lognormal, 148 
models, 143 
periodic, 150,152,166 
Poisson, 143 
Rayleigh, 148 
salt & pepper, 107,143,148 
spatial filters. See Filter 

(spatial) 
speckle, 143 
uniform, 148 

Norm (Euclidean), 485 
norm, 485 
Normalized histogram. 76 
NOT, 45,337 
NTSC color space. See Color 
ntsc2rgb. 205 
Number representation, 49 
numel, 51 

environment, 7 
function summary, 521-526 magic, 38 d spatial invariance, 142 

mbination. 42,159 
nformal transformation, 

188 

Mahalanobis distance. See 
Distance 

fundamentals, 12-64 
help, 9 
M-function. See M-function Major axis. 456. See Description 

makelut. 353 :quency domain filtering. See number representation, 49 
opt:rators. See Operators maketf orm, 183 Filter (frequency 

transformations supported, 192 
manualhist, 87 
Mapping 

color, 216,223 
forward, 187 
in compression. See 

plotting. See Plotting domain) 
dexing, 35 
]ear process, 142 
otion, 100 
atial filtering. See Filter 

(spatial) 

pre:defined colormaps, 200 
programming, 3&64 
prompt, 15 
retrieving work session, 10 
saving work session, 10 
stri~ng manipulation, 499 
variables, 48 

Compression 
in indexed images, 197 

stems and convolution, 115 
PACK, definition of, 4 
space, 32,185 
11 
adient. 389 
axima of gradient, 386 

intensities. See Intensity 
transformations 

inverse, 187 
inverse, 220 
in set theory, 335 

Marker 

Matrix. See also Array 
arithmetic operations, 40 
dirnensions, 37 
indexing, 30,32 

aximum operator, 367 max, 42 
Maximum-likelihood estimation 

(MLE), 180 
Mean, 147,153,158,466 

inimum operator, 368 
resholding, 405,407 
iriables, 292 

in morphological 
reconstruction, 362 

68 
10,68 
!, 68 
srithm transformation, 

68.70 
ica l ,  25 
ical, 23 
nctions, 45.46 
)era tors, 45 
normal. See Probability 

density function 
c f  or, 10.40 
kup tables. 353 
p, 51,52. See Vectorizing 
:r, 62 
!-level processes, 3 
>pass filter. See Filter 

(frequency domain) 
!mat, 312 
i l t e r ,  131 
y-Richal.dson algorithm, 176 
linance. 204 

in plots, 79 
in region segmentation, 414 
in watershed segmentation, 422 

Mask, 89,362,379. See also Filter 
(spatial) 

matzlpc, 312 
mat2gray. 26,43 
mat2huf f ,  298 
matzs t r ,  507 
Matching. See also Recognition 

correlation, 490 
regular expression, 502 
string, 508 

MAT-files, 11 
Mathworks web site, 5 
MATLAB 

array indexing, 30 
background, 4 
command line, 15 
constants, 48 
definition of, 4 
desktop, 7 

Mean vector, 475 
mean, 362 
mean2,75 
medf i l t 2 ,106  
Medial axis, 453 
Median filter, 105,160 

adaptive, 164 
median, 105 
 mesh^, 132 
mesh~grid, 55,185 
Metacharacters, 501,502 
mexErrMsgTxt, 307 
ME:<-file, 305 
M-file, 4 
mf ilename, 533 
M-file. See M-function 
M-function, 4 

components, 10 
editing. 9 
help. 10 
listings, 552-593 
programming, 38-64 

J /  1 

bottomhat transformation, 373 
clearing border objects, 366 
close-open filter~ng, 371 
clos~ng gray-scale images, 369 
clos~ng, 348 
clostng-by-reconstruction, 375 
connected component. 359-362 
Conway's Game of Life, 354 
dilation, 338 
eroslon, 345 
filling holes, 365 
flat structuring elements, 343, 

367-370 / functton bwmorph, 356 

I functlon s t r e l ,  341 
gradient, 369 
granulometry, 373 
gray-scale d~lation, 366 
gray-scale erosion, 368 
gray-scale morpholog~cal 

reconstruction, 374 

NaN, 48 
nan, 48 
nargchk, 71 
nargin, 71 
nargout, 71 
ndims, 37 
Negative image, 67 
Neighbor, 359 

Object, 359. See also Connected 
component 

callback functions. 549 
recognition, 484 

ones, 38 
Opening and closing. See 

Morphology 
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lening by reconstruction. See 
Morphology 

I  tor. See also Filter (spatial) 
irithmetic, 40 
:--catenate, 195 
. ivative, 101 
+ected value, 170 
dentity, 142 
. ,lacian, 174 
L, ,cat, 45 
relational, 44 
\tical transfer function (OTF). 

See Restoration 
: 1um statistical classifiers, 

492 
, 45,337 

r-statistic filters. See Filter 
(spatial) 

df i l t2.105 
n 

i Ige, 13,66,90,93 
Fourier transform, 111,112 
structuring element, 336, 

338-339.343 
- ~gonality, 245 
of eigenvectors, 475 
F See Restoration 

,sf ,  142 
1,- s method, 405 
~ersegmentation, 420,422 

darray, 97 
adsize. 117 

I ing. See Function 
~rameter space. See Hough 

transform 
I ;itic components, 358 
I h, 196 
lth 
between pixels, 360 

kTLAB, 8 
~..,rn. See Recognition 
3F. See Probability density 

function 

Pel, 14 
Pepper noise, 162 
Periodic 

noise. See Noise 
sequence, 119 

Periodicity, 110 
permute, 486 
p e r s i s t e n t ,  353 
Phase angle, 109 
pi,  48 
Picture element, 14 
Pixel, 14 
pixeldup, 168 
pixval,  17 
p lo t ,  37,80 
Plotting 

1-D functions, 37,7681 
2-D functions, 132-135 

PNG, 15 
Point detection, 379 
Point spread function (PSF). See 

Restoration 
Poisson. See Noise 
po12cart, 451 
polyangles, 510 
Polygonal approximation, 439 
PNG, 15 
~ 0 ~ 2 , 3 0 0  
Power spectrum, 109,170 
Predicate, 408 
Prewitt edge detector. See Edge 
Primary color. See Color 
Principal components transform, 

475 
princomp, 477 
p r i n t ,  23 
Probability density function 

(PDF), 81,144 
Erlang, 146 
estimating parameters, 153 
exponential, 146 
Gaussian, 38,86,143, 146,493 
generating random numbers, 

144,148 
histogram equalization, 81 
in color transformations, 220 

lognormal. 146 
multivariate, 493 
Rayleigh, 146 
salt & pepper, 146 
table of, 146 
uniform, 146 

prod, 98 
Prompt, 15 
Pruning. See Morphology 
Pseudocolor. See Color 
psf Zotf, 142 
Psychovisual redundancy. See 

Compression 

qtdecomp, 413 
qtgetblk ,  413 
Quadimages, 412 
Quadregions, 412 
Quadtree, 412 
Quality, in JPG images, 19 
Quantization, 13. See also 

Compression 

rand, 38,144,145 
randn, 38,144,147 
Random number, 145 
randvertex, 510 
Rayleigh. See Probability density 

function 
Reading images, 14 
r ea l ,  115 
realmax, 48 
realmin, 48 
Recognition, 484-513 

adaptive learning, 498 
Bayes classifier. 492 
correlation, 490 
decision boundary, 488 
decision function, 488 
decision-theoretic methods, 

488 
discriminant function, 488 
distance measures, 485 

matching regular expressions, 
502 

matching, 489492,502, 
minimum-distance classifier, 

489 
neural networks, 498 
pattern class, 484 
pattern vectors. 488 
pattern, 484 
regular expressions, 501 
string matching, 508 
string representation, 499 
string similarity, 508 
structural methods, 498 
structural, 498-512 
training, 488 

References, organization of, 11 
Reflection of structuring element, 

336 
regexp, 502 
regexpi, 503 
regexprep, 503 
Region, 3,426. See also 

Description 
border, 426 
boundary, 426 
classifying in multispectral 

imagery, 495 
contour, 426 
of interest (ROI), 156 

Region-based segmentation, 407 
regiongrow, 409 
Region growing, 408-411 

adjacency, 408,413 
regionprops, 463 
Region splitting and merging, 

412-417 
adjacency, 408,413 

Registered images, 476 
Regular expressions, 501. See 

Recognition 
Regularized filtering. See 

Restoration 
Relational operators. See 

Operators 
rem. 256 

r e p l i c a t e ,  94 
repmat, 264 
Representation, 43&-455 

boundary segments. 452 
convex deficiency, 452 
convex hull. 452 
Freeman chain codes, 436 
minimum perimeter polygons. 

439 
polygonal, 439 
signatures, 449 
skeletons, 453 

reshape, 300 
Resolution, 21 
Response, of filter, 89,379 
Restoration, 141-193 

blind deconvolut~on, 179 
constrained least squares 

filtering, 173 
deconvolution, 142,179 
degradation modeling, 142, 

166-169 
geometric transformations. 

182-190 
image registration, 191-193 
inverse filter, 169 
inverse filtering, 169 
iterative techniques, 176-182 
Lucy-Richardson algorithm, 

176 
noise generation and modeling, 

143-158 
noise reduction, 158-166 
nonlinear, iterative, 176 
optical transfer function 

(OTF), 142 
point spread function (PSF), 

142 
regularized filtering, 173 
Richardson-Lucy algorithm. 

176 
using spatial filters, 158 
Wiener deconvolution, 173 
Wiener filter, parametric, 171 
Wiener filtering, 170 

Retrieving a work session, 10 

r e tu rn ,  49 
RGB. See Color 

RGB color space. See Color 
rgb2gray. 20.202 
rgb2hsi, 212 
rgb2hsv, 206 
rgb2ind, 200,201 
rgb2ntsc. 204 
rgbzycbcr, 205 
rgbcube, 195 
Richardson-Lucy algorithm, 176 
Rms (root-mean-square) error, 

285 
Roberts edge detector. See Edge 
ROI. See Region 
roipoly,  156 
rOt90,94 
round, 22 
Row vector, 14 
Rows, 13 
Rubber-sheet transformation. 182 

Salt 8~ pepper noise. See Noise 
salt noise, 162 
same, 94 
Sampling, 13 
Saturation. See Color 
save, 301 
Saving a work session, 10 
Scalar, 14 
Scaling, 18 
Screen capture, 17 
Search path, 9 
Secondary color. See Color 
Second-order derivatives, 385 
Seed points, 408 
Segmentation, 378425 

color, 237 
double edges, 385 
edge detection, 384-393. See 

also Edge 
edge location. 385 
extended minima transform, 

424 
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gmentatlon icotlr ) 

:xternal markers. 422 
;lobal thresholdlng. 404-407 
-1ough tlansform, 393-404 See 

also Hough transform 
n RGB Vector Space, 237 
me detect~on, 381 
ocal threshold~ng, 407 
)olnt detect~on, 379 

-.on growlng, 408 
,glol, +*ng and merglng, 412 

zglon-basecl, 417 
latershed segmenldklk~i~ 

417425 
ratershed transform, 417 
-1ntersectlng polygon. 441 
~lcolon, 15 
operat~ons, 335.337 
smplement, 335 
~fference, 336 
~tersectlon, 335 
nlon, 335 
path, 9 
,78 
f l e l d ,  546 
dlng ln t e rp ,  135 
pe numbers, 456 
rpemng frequency domaln 

f~lters, 136 
rpenmg, 101 

ng, 92 
I ,  326 
al processing, 4 
l a tu re ,  450 
atures. 449 
~larlty, 237,408,489,508 
ple polygon, 440 
le subscript. 35 
jle. 24 
leton d~mens~on,  37 
2 .  13.15 
etons, 453 See 

Representatlon 
e, 69 
othness. 466 

Sobel. See Edge, Filtering (spatial) s t  rread, 61 

s o r t .  293 s t r rep ,506 
sortrows. 433 s t r s i m i l a r i t y ,  509 uicontrol.  534 
Sparse matrices, 395 s t r t o k ,  506 
sparse ,  395 Str~uctural recognition. See 
Spatial Recognition 

coordinates, 2,14 Structures, 21,48,63,430 
domain. 109 Structuring element. See 
filter. See Filter (spatial) Morphology 
invariance, 142 s t r v c a t ,  504 
processing, 65,215 subplot,  249 

Speckle noise. See Noise s u r f ,  134 
Spectral measures of texture, 468 Surface area. See Morphology 
~ ~ ; - p ~ t r u m  features. 468 switch, 49 linear motion, 167 

Spec t r~ i~~ i .  ='. '0'9 symmetric. 94 
uniform noise. See N 

specxture.  469 

T Union. See Set operatio Speed comparisons. 57 
spf i l t ,  159 

Tagged Image File Format. 15 unrave1.c. 305 
sp l ine ,  218 

Template, 89 unravel .m, 306 spli tmerge, 414 
t e x t ,  79 s p r i n t f .  52 X Window Dump, 15 

Standard arrays, 37 Texture. See Description 

Standard deviation, 86,100,130, Tform structure, 183 

148,388,466 t f  ormfwd, 184 
Statistical error function, 170 tf orminv,  184 

Statistical moments, 462 Tninning. See Morphology 
varargout, 72 

statmoments, 155 Thresholding. See Segmentation Variable 
s t a t x t u r e ,  467 t l~C,  57 number of inputs, 71 

Tie points, 191 stem, 79 number of outputs, 71 
TIFF, 15 Variables. See MATLAB str2num, 60 
t ~ t l e ,  79 strcmp. 504 Variance, 38,143,146,147,153, YCbCr color space. See 
toc ,  57 strcmp. 62 155,158,466 
Tophat. See Morphology Toolbox, 252 strcmpi,  316 Vector ycbcr2rgb. 205 
Transform coding. See in image processing, 276 

strcmpi,  504 complex conjugate, 41 ylabel ,  79 
Compression inverse fast wavelet transform, lim, 80 Strel object, 342 Euclidean norm, 174 

Transforms 271 
s t r e l .  341 indexing, 30 yt ick ,  78 

Discrete cosine, 318 kernel properties, 244 
s t r f  ind, 505 transpose, 41 

Fourier. See Discrete Fourier kernel, 244 
Strings, 498 ~ectorizing, 36.52.55 

Wavelet. See Wavelets mother wavelet, 244 
Z 

manipulation functions, 500 speed comparison. 57 
matching, 508 Iianspose operator. See 

progressive reconstruction, Zero-crossings detector. 386 
loops, 55 

Operators 279 Zero-padding, 91,93,116 
measure of similarity, 508 version. 48 

Trees. 498 Toolbox, 4,242 Zero-phase-shift filters. 1Z2 s t r j u s t . 5 0 5  view, 132 
strmatch, 505 t rue .  38,410 . - vistformfwd, 185 waverec2,271 zeros,  38 

strncmp. 504 
strncmpi, 505 

t r y . .  .ca tch ,  4Y 

.twomodegauss, 86 
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