Image Processing in C
Second Edition

o il
[(30 gk
i

«4

-

Dwayne Phillips

This first edition of “Image Processing in C” (Copyright 1994, ISBN 0-13-
104548-2) was published by

R & D Publications
1601 West 23rd Street, Suite 200
Lawrence, Kansas 66046-0127

R & D Publications has since been purchased by Miller-Freeman, Inc. which
has been purchased by CMP Media, Inc. I recommend reading “The C/C++
Users Journal” now published by CMP Media, Inc. See http://www.cuj.com.

The Electronic Second Edition of this text is Copyright (©2000 by Dwayne
Phillips. Dwayne Phillips owns the electronic rights of this text. No part of
this text may be copied without the written permission of Dwayne Phillips.
If you have purchased the electronic edition of this text, you may print a

copy.
Electronic Edition 1.0, 26 April 2000

The Source Code listed in this text is available at
http://members.aol.com /dwaynephil /cips2edsrc.zip

Preface

This book is a tutorial on image processing. Each chapter explains basic
concepts with words and figures, shows image processing results with pho-
tographs, and implements the operations in C. Information herein comes
from articles published in The C/C++ Users Journal from 1990 through
1998 and from the first edition of this book published in 1994. This second
(electronic) edition contains new material in every chapter.

The goals of the first edition of this book were to (1) teach image pro-
cessing, (2) provide image processing tools, (3) provide an image processing
software system as a foundation for growth, and (4) make all of the above
available to anyone with a plain, garden variety PC.

These goals remain the same today, but much else has changed. The
update to this text reflects many of these changes. The Internet exploded,
and this brought a limitless supply of free images to those of us who like to
process them. With these images have come inexpensive software packages
that display and print images as well as convert file formats.

The operating systems on home desktop and laptop computers have come
of age. These have brought flat, virtual memory models so that it is easy
to pull entire image files into memory for processing. This permitted the
software revisions that are the basis of this second edition.

The software presented in this book will run on any computer using a
32-bit operating system (Windows 95, 98, NT and all flavors of UNIX). I
compiled it using D.J. Delorie’s port of the (free) GNU C compiler (DJGPP,
see www.delorie.com). It should compile fine using commercially available
C/C++ compilers. The software works on 8-bit, gray scale images in TIFF
and BMP file formats. Inexpensive programs are available to convert almost
any image into one of these formats.

Chapter 0 introduces the C Image Processing System. This chapter ties
together many of the concepts of the software and how to use it.

1

Chapter 1 presents the image file input and output (I/O) routines used
by the image operators in the remainder of the text. These I/O routines
underwent major changes from the first edition of this text. The changes in
the I/O code means chapter 1 is much longer in this edition and the remaining
chapters and their source code are shorter.

Chapter 2 describes showing image numbers on a screen and dumping
them to a text file for printing. I now leave image viewing and printing in
today’s windows systems to other, inexpensive programs.

Chapter 3 describes the halftoning technique that transform a gray scale
image to a black and white image that looks like it has shades of gray. This
chapter also shows how to use this to print wall posters of images.

Chapter 4 delves into histograms and histogram equalization. Histogram
equalization allows you to correct for poor contrast in images. It presents
a program that creates a picture of an image’s histogram. It also gives a
program that pastes images together.

Chapter 5 introduces edge detection — a basic operation in image pro-
cessing.

Chapter 6 explains advanced edge detection techniques. We will use these
techniques later in the book for segmentation.

Chapter 7 addresses spatial frequency filtering. It shows how to use var-
ious high-pass and low-pass filters to enhance images by removing noise and
sharpening edges.

Chapter 8 considers sundry image operations. It demonstrates how to
add and subtract images and cut and paste parts of images.

Chapter 9 introduces image segmentation. Segmentation is an attempt to
divide the image into parts representing real objects in the image. Chapter
9 shows how to use simple histogram based segmentation.

Chapter 10 continues image segmentation with several advanced tech-
niques. It discusses using edges, gray shades, and complex region growing
algorithms.

Chapter 11 demonstrates morphological filtering or manipulating shapes.
It describes erosion, dilation, outlining, opening, closing, thinning, and me-
dial axis transforms.

Chapter 12 discusses Boolean operations and image overlaying. It shows
how to use Boolean algebra to place a label on an image and how to overlay
images for a double exposure effect.

Chapter 13 describes how to alter the geometry of images by displace-
ment, scaling, rotation, and cross products. It provides a utility I often use

111

that stretches and compresses images.

Chapter 14 presents image warping and morphing. Warping is a 1960s
technique that Hollywood embraced in the early 1990s. It leads to morphing.

Chapter 15 looks at textures and texture operators. Texture is hard to
explain and harder to classify with computers. Nevertheless, there are a few
ways to work this problem.

Chapter 16 explains stereograms. These dot-filled images contain 3-D
objects if viewed correctly. Stereograms flooded the market in the early
1990s. The theory and techniques are simple and easy to use.

Chapter 17 examines steganography — the ability to hide information in
images. Steganography exploits the unnecessary resolution of gray in images.

Chapter 18 shows how to write DOS .bat programs to use the programs
of the C Image Processing System.

Chapter 19 shows the Windows interface I created for the C Image Pro-
cessing System. I used the tcl/tk language and the Visual Tcl tool to create
this. The tcl/tk scripting language is perfect for gluing together a set of
programs like the image processing ones in this book.

The appendices provide information on the programming aspects of this
book. They discuss the makefile for the programs (appendix A) and the
stand alone application programs in CIPS (appendix B). Appendix C lists
the individual functions and the source code files containing them. Appendix
D gives all the image processing algorithms and the chapters in which they
appear. Appendix E is a bibliography enumerating the books that have been
of great help to me.

Appendix F contains all the source code listings. I struggled with putting
the listings in each chapter or all together at the end of thebook. I chose
the end as that makes it easier to print the text without lots of source code
listings. You may download a copy of the source code from
http://members.aol.com/dwaynephil /cips2edsre.zip

Have fun with this. I had fun updating the software and the descriptions.
Thanks to the Internet (lots of free images) and newer operating systems
(32-bit), image processing is more fun than ever before. Everyone is doing
image processing today. Use the tools and techniques described here to join
in. Every technique brings with it ideas for other things to do. So much fun
and so little time.

Many thanks to the staff of The C/C++ Users Journal and Miller-
Freeman past and present. In particular I want to thank Howard Hyten,
Diane Thomas, Martha Masinton, Bernie Williams, P.J. Plauger, and Robert

v

and Donna Ward. They allowed me to keep writing installments to this series
and put this book together.

Thanks also to my wife Karen. Marrying her was the smartest thing I
ever did.

Dwayne Phillips Reston, Virginia May 2000

Contents

Introduction to CIPS

0.1 Imtroduction
0.2 System Considerations
0.3 The Three Methods of Using CIPS
0.4 Implementation
0.5 Conclusions
0.6 References

Image File Input and Output

1.1 Imtroduction
1.2 Image Data Basics,
1.3 Image File I/O Requirements
1.4 TIFFo

141 ThelIFDo

1.42 The TIFF Code
1.5 BMP . . .o

1.5.1 The BMP Code
1.6 A Simple Program
1.7 Converting Between TIFF and BMP
1.8 Conclusions
1.9 References

Viewing and Printing Image Numbers

2.1 Imtroduction
2.2 Displaying Image Numbers
2.3 Printing Image Numbers
2.4 Viewing and Printing Images
2.5 Conclusions

vi CONTENTS

3 Halftoning 27
3.1 Introduction 27
3.2 The Halftoning Algorithm 27
3.3 Sample Output 29
3.4 Printingan Imageo oL 31
3.5 Conclusions 31
3.6 Reference 31
4 Histograms and Equalization 33
4.1 Introduction Lo 33
4.2 Histogramso 33
4.3 Histogram Equalization 35
4.4 Equalization Results 39
4.5 TImplementation oL 44
4.6 The side Program 44
4.7 Conclusions 45
4.8 Reference 45
5 Basic Edge Detection 47
5.1 Imntroduction 47
5.2 Edge Detectiono A7
5.3 Implementing Edge Detectors o1
54 Results 52
5.5 Conclusion 52
5.6 References 56
6 Advanced Edge Detection 57
6.1 Introduction o7
6.2 Homogeneity Operator 58
6.3 Difference Operator 58
6.4 Difference of Gaussians 60
6.5 More Differences 65
6.6 Contrast-based Edge Detector 66
6.7 Edge Enhancement 69
6.8 Variance and Range. L. 70
6.9 Applications 70
6.10 Conclusions Lo 73

6.11 References 73

CONTENTS

7 Spatial Frequency Filtering

8

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Spatial Frequencies L
Filtering
Application of Spatial Image Filtering
Frequency vs. Spatial Filtering
Low-Pass Filtering
Median Filters
Effects of Low-Pass Filtering
Implementing Low-Pass Filtering
High-Pass Filtering
Effects of High-Pass Filtering
Implementing High-Pass Filtering
Conclusion
References

Image Operations

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Introduction
Addition and Subtraction
Rotation and Flipping
Cut and Paste
Image Scaling oo
Blank Images oo
Inverting Images L.
Conclusion

Histogram-Based Segmentation

9.1
9.2
9.3
9.4

9.5
9.6
9.7

Histogram-Based Segmentation
Histogram Preprocessing
Thresholding and Region Growing
Histogram-Based Techniques
9.4.1 Manual Technique
9.4.2 Histogram Peak Technique
9.4.3 Histogram Valley Technique
9.4.4 Adaptive Histogram Technique
An Application Program
Conclusionso
Referenceo

Vil

75
5
5
7
7
78
80
81
87
88
88
92
92
93

95
95
95
98
98
99
99
100
101

viii CONTENTS
10 Segmentation via Edges & Gray Shades 125
10.1 Introductiono 125
10.2 Segmentation Using Edges & Gray Shades 125
10.3 Problemso 129
10.4 Solutions 132
10.4.1 Preprocessing 132

10.4.2 Improved Edge Detection 136

10.4.3 Improved Region Growing 138

10.5 The Three New Techniques 145
10.5.1 Edges Only oL 145

10.5.2 Gray Shades Only 146

10.5.3 Edges and Gray Shade Combined 146

10.6 Integrating the New Techniques 149
10.7 Conclusionso 149
10.8 Reference 151
11 Manipulating Shapes 153
11.1 Introduction 153
11.2 Working with Shapes 153
11.3 Erosion and Dilation 156
11.4 Opening and Closing 160
11.5 Special Opening and Closing 163
11.6 Outlining 171
11.7 Thinning and Skeletonization 176
11.8 A Shape Operations Application Program 179
11.9 Conclusions 179
11.10References 181

12 Boolean and Overlay Operations 183
12.1 Introductiono 183
12.2 Boolean Operations 183
12.3 Applications of Boolean Operations 184
12.4 Overlay Operations 188
12.5 Applications of Overlay Operations 188

12.6 Conclusions 196

CONTENTS

13 Geometric Operations
13.1 Introductiono
13.2 Geometric Operations
13.3 Rotation About Any Point
13.4 Bi-Linear Interpolation
13.5 An Application Program
13.6 A Stretching Program
13.7 Conclusions
13.8 Referenceso

14 Warping and Morphing
14.1 Introduction
14.2 Tmage Warping
14.3 The Warping Technique
144 Two Waysto Warp
14.5 Shearing Images
14.6 Morphingo
14.7 A Warping Application Program
14.8 Conclusions
14.9 References

15 Basic Textures Operations
15.1 Introduction
15.2 Textures
15.3 Edge Detectors as Texture Operators
15.4 The Difference Operator
15.5 The Hurst Operator
15.6 The Compare Operator
15.7 An Application Program
15.8 Conclusions
15.9 References

16 Random Dot Stereograms
16.1 Introductiono
16.2 Stereogram Basicso
16.3 Stereogram Algorithms
16.4 Source Code and Examples.
16.5 Colorfield Stereograms

X

197
197
197
202
203
206
207
208
208

209
209
209
210
212
216
218
221
222
222

223
223
223
225
231
234
239
241
241
241

16.6 Conclusions
16.7 Reference

17 Steganography: Hiding Information

17.1 Introduction
17.2 Hidden Writing
17.3 Watermarkingo
17.4 Hiding Images in Images
175 Extensionso
17.6 Conclusions
17.7 Reference

18 Command-Line Programming

18.1 Introduction
18.2 Batch Programming with .bat Files
18.3 Basics of .bat Programming
18.4 Uses and Examples
18.5 Conclusions

19 A Tcl/Tk Windows Interface

19.1 Introduction
19.2 The Need for a Windows Interface.
19.3 Options
19.4 The Tcl/Tk Graphical User Interface
19.5 Conclusions
19.6 Reference

A The makefile

A1 The Listings

A.2 Commands to Build The C Image Processing System

A.3 Reference
A4 Code Listings,

B The Stand-Alone Application Programs

C Source Code Tables of Contents

C.1 Listings

CONTENTS

277
..... 277
..... 277
..... 278
..... 280
..... 282

283
..... 283
..... 283
..... 284
..... 285
..... 288
..... 288

289
..... 290
..... 291
..... 291
..... 291

301

307

CONTENTS

D Index of Image Processing Algorithms
D.1 Algorithms Listed in Order of Appearance
D.2 Algorithms Listed Alphabetical Order

E Bibliography
E.1 Image Processing Books
E.2 Programming Books

F Source Code Listings
F.1 Code Listings for Chapter 1
F.2 Code Listings for Chapter 2
F.3 Code Listings for Chapter 3
F.4 Code Listings for Chapter 4
F.5 Code Listings for Chapter 5
F.6 Code Listings for Chapter 6
F.7 Code Listings for Chapter 7
F.8 Code Listings for Chapter 8
F.9 Code Listings for Chapter 9
F.10 Code Listings for Chapter 10.
F.11 Code Listings for Chapter 11.
F.12 Code Listings for Chapter 12.
F.13 Code Listings for Chapter 13.
F.14 Code Listings for Chapter 14.
F.15 Code Listings for Chapter 15.
F.16 Code Listings for Chapter 16
F.17 Code Listings for Chapter 17.
F.18 Code Listings for Chapter 18
F.19 Code Listings for Chapter 19.

el

xii

CONTENTS

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
2.2
2.3
0.4
2.5
2.6

A Sample Program 9
Existing Standard TIFF Tags 12
The Structure of a TIFF File 13
The Beginning of a TIFF File 14
Possible Data Types and Lengths 15
The BMP File Header 18
The Bit Map Header 19
The Basic Halftoning Algorithm 28
Input Boy Imageo 30
Output Halftoned Boy Image 30
Poster Created with the dumpb Program 32
Simple Histogram 34
Histogram of a Poorly Scanned Image 35
Boy Image with Histogram 36
House Image with Histogram 37
Image with Poor Contrast 38
Histogram Equalization Algorithm 40
Equalized Version of Figure 4.5 41
Comparing Figures 4.6 and 4.7 42
Equalizing a Properly Scanned Image 43
Graphs of Gray Scale Values at Edges 48
Masks Used by Faler for Edge Detection 49
Masks for Edge Detection 50
The House Image 53
The Result of the Kirsch Masks 53
The Result of the Prewitt Masks 54

Xlil

X1v

5.7
2.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15
6.16

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

LIST OF FIGURES

The Result of the Sobel Masks 54
The Result of the Sobel Masks Without Thresholding 55
The Result of the Quick Mask 55
Original House Image 57
An Example of the Homogeneity Operator 29
Result of Homogeneity Edge Detector 60
An Example of the Difference Operator 61
Result of Difference Edge Detector 62
Gaussian “Mexican Hat” Masks 63
Detecting Small Edges 64
Result of Gaussian Edge Detector with 7x7 Mask 65
Result of Gaussian Edge Detector with 9x9 Mask 66
Contrast-Based Edge Detector 67
Result of Quick Edge Detector 68
Result of Contrast-Based Edge Detector 69
Result of Edge Enhancement 70
The Results of Applying the Variance and Range Operators

to an Array of Numbers 71
Result of Variance Edge Detector 72
Result of Range Edge Detector 72
Side View of an Image with Low Spatial Frequencies 76
Side View of an Image with High Spatial Frequencies 76
Low-Pass Filter Convolution Masks 78
An Image Segment with Low Spatial Frequencies 79
An Image Segment with High Spatial Frequencies 79
Low-Pass Filtering of Figure 7.4 80
Low-Pass Filtering of Figure 7.5 81
Noisy Aerial Image 82
Result of Low-Pass Filter Mask #6 82
Result of Low-Pass Filter Mask #9 83
Result of Low-Pass Filter Mask #10 83
Result of Low-Pass Filter Mask #16 84
Result of 3x3 Median Filter 84
House Image 85
Result of 3x3 Median Filter 86
Result of 5x5 Median Filter 86

LIST OF FIGURES XV

7.17
7.18
7.19
7.20
7.21
7.22
7.23

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3

9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17

9.18

Result of 7x7 Median Filter 87
High-Pass Filter Convolution Masks 89
Result of High-Pass Filter on Figure 7.4 89
Result of High-Pass Filter on Figure 7.5 90
Result of High-Pass Filter Mask #1 91
Result of High-Pass Filter Mask #2 91
Result of High-Pass Filter Mask #3 92
Addition and Subtraction of Images 96
A House Image 96
Edge Detector Output of Figure 82 97
Figure 8.2 Minus Figure 8.3 (Edges Subtracted) 97
Cutting and Pasting 98
Section of Figure 8.3 Cut and Pasted Into Figure 8.2 99
Two Images Pasted Onto a Blank Image 100
An Image Example 104
A Histogram of the Image of Figure 9.1 105
The Image in Figure 9.1 with All the Pixels Except the 8s

Blanked Out o 105
Figure 9.1 with a Threshold Point of 5 106
Aerial Image with Poor Contrast 107
Result of Histogram Equalization on Figure 9.5 108
Result of High-Pass Filtering on Figure 9.6 109
The Result of Smoothing the Histogram Given in Figure 9.2 . 110
The Result of Correctly Thresholding Figure 9.1 111
The Result of Region Growing Performed on Figure 9.9 112
Pseudocode for Region Growing 114
Input Image for Segmentation Examples 115
Threshold of Figure 9.12 with High=255 and Low=125 115
Threshold of Figure 9.12 with High=255 and Low=175 116
Threshold of Figure 9.12 with High=255 and Low=225 116
Result of Incorrect Peak Separation 118
A Histogram in which the Highest Peak Does Not Correspond

to the Background 119
Threshold of Figure 9.12 Using Peak Technique (High=255

and Low=166) 120

Xvi

LIST OF FIGURES

9.19 Threshold of Figure 9.12 Using Valley Technique (High=255

and Low=241) 121
9.20 Threshold of Figure 9.12 Using Adaptive Technique (High=255

and Low=149) 122
10.1 Using Edges to Segment an Image 126
10.2 Growing Objects Using Gray Shades 127
10.3 Growing Objects Using Gray Shades and Edges 128
10.4 Aerial Image of House Trailers 129
10.5 House Image 130
10.6 Edge Detector Output from Figure 10.5. 130
10.7 A Small Edge Detector Error Leads to a Big Segmentation Error131
10.8 Edge Detector Output from Figure 10.4. 132
10.9 Triple-Thick Edges Distort Objects 133
10.10Result of Mistaking Edges for Objects 134
10.110utput of Median, High-Pixel, and Low-Pixel Filters 135
10.12Low-Pixel Filtering Performed on Figure 10.5 136
10.13Edge Detector Output from Figure 10.12 137
10.14Edge Detector Output from Figure 10.4 — Thresholded at 70%138
10.15Result of Eroding Stray Edges 139
10.16Eroding Away Thick Edges 140
10.17Result of Eroding the Edges in Figure 10.13 141
10.18 The Region Growing Algorithm from Chapter 9 142
10.19The Improved Region Growing Algorithm (Part 1) 143
10.19The Improved Region Growing Algorithm (Part 2) 144
10.20Sobel Edge Detector Output from Figure 10.4 (after Erosion) . 147
10.21Result of Edge-Only Segmentation of Figure 10.4 148
10.22Result of Gray-Shade-Only Segmentation of Figure 10.4 148
10.23Result of Edge and Gray Shade Segmentation of Figure 10.4 . 149
10.24Result of Edge-Only Segmentation of Figure 10.5 150
10.25Result of Gray-Shade-Only Segmentation of Figure 10.5 150
10.26Result of Edge and Gray Shade Segmentation of Figure 10.5 . 151
11.1 Aerial Image 154
11.2 Segmentation of Aerial Image 154
11.3 House Image oo 155
11.4 Segmentation of House Image 155

11.5 A Binary Image 156

LIST OF FIGURES xvil

11.6 The Result of Eroding Figure 11.5. 156
11.7 The Result of Dilating Figure 11.5 157
11.8 The Result of Eroding Figure 11.5 Using a Threshold of 2 . . 158
11.9 The Result of Dilating Figure 11.5 Using a Threshold of 2 . . 158

11.10Four 3x3 Masks 158
11.11The Result of Dilating Figure 11.5 with the Four Masks of
Figure 11.9 o 159
11.12Examples of Masked Vertical and Horizontal Dilations 161
11.13Two Objects Joined by a Thread, Separated by opening and
a Hole Enlarged by opening 162
11.14A Segmentation and the Result of Opening 163
11.15Two Objects that Should be Joined, How closing Removes the
Break and Fills Unwanted Holes 164
11.16An Unwanted Merging of Two Objects 165
11.17Closing of Segmentation in Figure 11.2 166
11.18 An Unwanted Splitting of an Object 167
11.19Result of Special Routines that Open and Close Objects but
do not Join or Break Them 168
11.20Result of Opening of a 2-Wide Object 169
11.21Cases Where Objects Can and Cannot be Eroded 169
11.22Cases that do and do not Require a Special Closing Routine . 170
11.23Special Closing of Segmentation of Figure 11.2 171
11.24Frosion of Segmentation in Figure 11.4 172
11.25Special Closing of Figure 11.24 172
11.260utline of Segmentation in Figure 11.4 173
11.27The Interior Outline of an Object 174
11.28The Exterior Outline of an Object 175
11.29Thinning a Rectangle until it is One Pixel Wide 176
11.30A Square, its Euclidean Distance Measure, and its Medial Axis
Transform (Part 1) 178
11.30A Square, its Euclidean Distance Measure, and its Medial Axis
Transform (Part 2) 179
11.31A Rectangle and its Medial Axis Transform 180
11.32(Clockwise from Upper Left) A, Its Outline, Medial Axis Trans-
form, and Thinning L. 181
12.1 Existing Standard TIFF Tags 184

12.2 Original Aerial Image 185

xviii LIST OF FIGURES

12.3 Segmentation of Aerial Image (from Chapter 10) 185
12.4 Segmented Aerial Image Masked with Original 186
12.5 ilabel Output on Left, Dilation in Center, XOR of Both on Right 187
12.6 Labeled Boy Image 187
127 Images Aand Bo 189
12.8 Result of Overlay Non-Zero A 190
12.9 Result of Overlay Zero A 190
12.10Result of Overlay Greater A 191
12.11Result of Overlay Less A 191
12.12Result of Average Overlay 192
12.13Two Images Side by Side 192
12.14Two Images Averaged 193
12.15Leafy Texture Image 193
12.16House Image 194
12.17Averaging Leafy Texture and House Image 194
12.18 White Frame in Blank Image 195
12.19Frame Overlaid on Boy Image 196
13.1 The Three Basic Geometric Operations: Displacement, Stretch-

ing, and Rotation o000 198
13.2 Examples of Displacement 199
13.3 Examples of Stretching 200
13.4 Examples of Rotation about the Origin 200
13.5 Examples of Cross Products 201
13.6 Combining All Four Geometric Operations 202
13.7 Rotation About any Point mmn 203
13.8 Examples of Rotation About Any Point 204
13.9 A Comparison of Not Using Bi-Linear Interpolation and Using

Bi-Linear Interpolation 205
13.10Bi-Linear Interpolation 206
13.11The Boy Image Enlarged Horizontally and Shrunk Vertically . 207
14.1 Bi-Linear Interpolation of a Quadrilateral 211
14.2 The Control Point Warping Process 213
14.3 Examples of Control Point Warping 215
14.4 The Object Warping Process 215
14.5 Examples of Object Warping 217

14.6 Warped House Image 217

LIST OF FIGURES Xix

14.7 Another Warped House Image 218
14.8 Examples of Image Shearing 219
14.9 Morphing a Black Circle to a White Pentagon 220
14.10A Morphing Sequence 220
15.1 Examples of Textures 224
15.2 Four Textureso 224
15.3 An Example of How the Sobel Edge Detector Does Not Work

Well with a Texture 226

15.4 The Result of Applying the Range Edge Detector to a Texture 227
15.5 The Result of Applying the Variance Edge Detector to a Texture228
15.6 The Result of Applying the Sigma Edge Detector to a Texture 230
15.7 The Result of Applying the Skewness Operator to a Texture . 231
15.8 The Result of Applying the Difference Operator to a Texture . 232
15.9 The Result of Applying the Mean Operator to the Same Tex-

ture as in Figure 15.8 oo oL 233
15.10Three Size Areas for the Hurst Operator 235
15.11Two Example Image Sections 236
15.12Values Calculated by the Hurst Operator 237
15.13The Result of Applying the Hurst Operator to a Texture . . . 238
15.14The Failed Result of Applying the Hurst Operator to the

House Image 239

15.15The Result of Applying the Compare Operator to a Texture . 240
15.16The Result of Applying the Compare Operator to the House

Image 241
16.1 Divergent Viewing 244
16.2 The Repeating Pattern 244
16.3 Deleting an Element from the Pattern 245
16.4 Inserting an Element into the Pattern 246
16.5 Deleting and Inserting to Create an Object 247
16.6 A Character Stereogram 247
16.7 A Random Character Stereogram 248

16.8 Substitution Values for the First Line of Figures 16.6 and 16.7 249
16.9 A Depth Image and Random Character Stereogram Image . . 250
16.10The Stereogram Processing Loop 251
16.11The Shorten Pattern Algorithm 252
16.12The Lengthen Pattern Algorithm 253

XX

LIST OF FIGURES
16.13A Simple Depth File Image 254
16.14A Random Dot Stereogram from Figure 16.13 255
16.15A Random Dot Stereogram 256
16.16A “Colorfield” Image of Boys 257
16.17A Colorfield Stereogram from Figure 16.16 258
16.18A Colorfield Image of Houses 259
16.19A Depth Image oL 260
16.20The Stereogram from Figures 16.18 and 16.19 261
16.21A Character Depth File 262
16.22A Character Colorfied Stereogram 263
17.1 The Original Boy Image 267
17.2 The Watermark Image 267
17.3 Overlaying the Watermark on the Boy Image 268
17.4 Hiding the Watermark on the Boy Image 268
17.5 Hiding Message Image Pixels in a Cover Image 270
17.6 The Cover Image 271
17.7 The Message Image 272
17.8 The Cover Image with the Message Image Hidden In It 272
17.9 The Unhidden Message Image 273
181 A bat File. 278
18.2 Another Simple .bat File 279
18.3 A .bat File with Replaceable Parameters 279
18.4 A .bat File that Checks for Parameters 280
19.1 The Main CIPS Window 286
19.2 The Window for the stretch Program 287

19.3 The Window for the Various Texture Operators 287

Chapter 0O

Introduction to CIPS

0.1 Introduction

This chapter presents the underlying concepts of the remaining chapters in
this electronic book. The first edition of this book [0.18] was released in 1994
from R&D Publications. That book was first written as separate articles
for The C Users Journal from 1991 through 1993 [0.2- 0.12]. Since then,
R&D Publications was purchased by Miller-Freeman, The C' Users Journal
became The C/C++ Users Journal, and much has changed in the world of
image processing. The C/C++ Users Journal published five more articles
from 1995 through 1998 [0.13-0.17]. Versions of these articles are included.

Every chapter in this edition of the book is different from the first edition.
All the source code has been modified. The goals of the following chapters
are to (1) teach image processing, (2) provide image processing tools, (3)
provide an image processing software system as a foundation for growth, and
(4) make all of the above available to anyone with a plain, garden variety PC.
The C/C++ Users Journal is an excellent forum for teaching. The publisher
and editors have allowed me to explain image processing from the basic to
the advanced. Each chapter reviews image processing techniques with words,
figures, and photographs. After examining the ideas, each chapter discusses
C source code to implement the operations. The complete source code is
listed in Appendix F. The source code can be downloaded from

http://members.aol.com/dwaynephil /cips2edsre.zip

The techniques in this collection would fill a large part of a college or
graduate level textbook. The textbooks, however, do not give useful source

1

2 CHAPTER 0. INTRODUCTION TO CIPS

code.

It is the source code that keeps this book from being another academic or
reference work. The intent was to give people working edge detectors, filters,
and histogram equalizers so they would not need to write them again. An
equally important goal was to give people disk 1/O, display, and print rou-
tines. These routines make a collection of operators into a software system.
They handle the dull necessities and allow you to concentrate on exciting,
new operations and techniques.

The overriding condition continues to do all this using a basic personal
computer. The basic personal computer of 2000 is much different from 1994,
but the routines do not require special hardware.

0.2 System Considerations

Image processing software performs image disk I/O, manipulates images, and
outputs the results. This book will be easier to understand if you know how
the C Image Processing System (CIPS) performs these three tasks.

The first task is image disk I/O, and the first item needed is an im-
age file format. The file format specifies how to store the image and infor-
mation about itself. The software in this book works with Tagged Image
File Format (TIFF) files and Windows bit mapped (BMP) files. Aldus (of
PageMaker fame) invented TIFF in the mid-1980s and worked with several
scanner manufacturers and software developers to create an established and
accepted standard. The source code in this text works with 8-bit gray scale
TIFF files (no compression). The source code also works with 8-bit BMP files
(again, no compression). These are basic pixel-based image files. Images are
available from many sources today (the Internet is a limitless source). Also
available are inexpensive programs ($50 down to free) that convert images
to the formats I support. Chapter 1 discusses these formats and shows code
that will read and write these files.

The second task is image manipulation. This is how the software holds
the image data in memory and processes it. The CIPS described in this
edition is much better than the first edition in this respect. The first edition
used a 16-bit compiler and was limited by the 64K byte memory segments in
the PC. This edition uses a 32-bit compiler that can use virtually limitless
memory. Therefore, this software reads entire images into a single array. This
allows the image processing programmer to concentrate on image processing.

0.3. THE THREE METHODS OF USING CIPS 3

The final task is outputting results. CIPS can write results to TIFF and
BMP image files, display image numbers on the screen, and dump image
numbers to a text file. This is less than the CIPS presented in the first
edition. I now leave image display and printing to others. This is because
Windows-based image display programs are available free or at low cost on
the Internet and elsewhere. (If you double click on a .bmp file, Microsoft
Paint will display it). I use and recommend VuePrint from Hamrick Software
(http://www.hamrick.com).

0.3 The Three Methods of Using CIPS

There are three ways to use CIPS: (1) interactively, (2) by writing C pro-
grams, and (3) by writing .bat files. Now that we are all in the Windows
world, I have included a Windows application that allows the user to click
buttons and fill in blanks. I created this using The Visual tcl toolkit and the
tcl scripting language. Chapter 18 describes this process.

All the image processing subroutines share a common format that allows
you to call them from your own C programs. The common format has a
parameter list containing image file names, and listing items specific to each
operator. The subroutines call the disk I/O routines and perform their spe-
cific image processing function. Writing stand-alone application programs is
not difficult with CIPS. This book contains more than a dozen such programs
as examples (Appendix B gives a list and explanation of these).

The third method of using the CIPS software is by writing DOS .bat
files. The stand-alone programs in this book are all command-line driven.
The advantage to this is that you can call them from .bat files. Chapter 17
explains this technique in detail and gives several examples.

0.4 Implementation

[implemented this software using a DOS port of the GNU C compiler. This
is the well known D.J. Delorie port (see http://delorie.com). It is free to
download, is updated regularly, and works well. The source code ports to
other C compilers and systems reasonably well. I created a large makefile
to help manage the software (see Appendix A). It allows you to make code
changes and rebuild the programs with simple commands.

4 CHAPTER 0. INTRODUCTION TO CIPS

0.5 Conclusions

Enjoy this book. Use the source code and experiment with images. One
of the good things about image processing is you can see the result of your
work. Investigate, explore different combinations of the techniques men-
tioned. There are no right or wrong answers to what you are doing. Each
image has its own characteristics, challenges, and opportunities.

0.6 References

0.1 “TIFF, Revision 6.0, Final, June 3, 1993,” Aldus Developers Desk,
For a copy of the TIFF 6.0 specification, call (206) 628-6593. See also
http:www.adobe.comsupportservicedevrelationsPDFSTNTIFF6.pdf.

0.2 “Image Processing, Part 11: Boolean and Overlay Operations,” Dwayne
Phillips, The C Users Journal, August 1993.

0.3 “Image Processing, Part 10: Segmentation Using Edges and Gray Shades,”
Dwayne Phillips, The C Users Journal, June 1993.

0.4 “Image Processing, Part 9: Histogram-Based Image Segmentation,” Dwayne
Phillips, The C Users Journal, February 1993.

0.5 “Image Processing, Part 8: Image Operations,” Dwayne Phillips, The C
Users Journal, November 1992.

0.6 “Image Processing, Part 7: Spatial Frequency Filtering,” Dwayne Phillips,
The C Users Journal, October 1992.

0.7 “Image Processing, Part 6: Advanced Edge Detection,” Dwayne Phillips,
The C Users Journal, January 1992.

0.8 “Image Processing, Part 5: Writing Images to Files and Basic Edge
Detection,” Dwayne Phillips, The C Users Journal, November 1991.

0.9 “Image Processing, Part 4. Histograms and Histogram Equalization,”
Dwayne Phillips, The C Users Journal, August 1991.

0.10 “Image Processing, Part 3: Displaying and Printing Images Using Halfton-
ing,” Dwayne Phillips, The C Users Journal, June 1991.

0.11 “Image Processing, Part 2: Displaying Images and Printing Numbers,”
Dwayne Phillips, The C Users Journal, May 1991.

0.12 “Image Processing, Part 1: Reading the Tag Image File Format,” Dwayne
Phillips, The C Users Journal, March 1991.

0.13 “Geometric Operations,” Dwayne Phillips, The C/C++ Users Journal,
August 1995.

0.6. REFERENCES 5

0.14 “Warping and Morphing,” Dwayne Phillips, The C/C++ Users Journal,
October 1995.

0.15 “Texture Operations,” Dwayne Phillips, The C/C++ Users Journal,
November 1995.

0.16 “Stereograms,” Dwayne Phillips, The C/C++ Users Journal, April 1996.
0.17 “Steganography,” Dwayne Phillips, The C/C++ Users Journal, Novem-
ber 1998.

0.18 “Image Processing in C,” Dwayne Phillips, R&D Publications Inc., 1994,
ISBN 0-13-104548-2.

CHAPTER 0. INTRODUCTION TO CIPS

Chapter 1

Image File Input and Output

1.1 Introduction

Image processing involves processing or altering an existing image in a desired
manner. The first step is obtaining an image in a readable format. This is
much easier today than five years back. The Internet and other sources
provide countless images in standard formats. This chapter describes the
TIFF and BMP file formats and presents source code that reads and writes
images in these formats.

Once the image is in a readable format, image processing software needs
to read it so it can be processed and written back to a file. This chapter
presents a set of routines that do the reading and writing in a manner that
frees the image processing programming from the details.

1.2 Image Data Basics

An image consists of a two-dimensional array of numbers. The color or gray
shade displayed for a given picture element (pixel) depends on the number
stored in the array for that pixel. The simplest type of image data is black
and white. It is a binary image since each pixel is either 0 or 1.

The next, more complex type of image data is gray scale, where each pixel
takes on a value between zero and the number of gray scales or gray levels
that the scanner can record. These images appear like common black-and-
white photographs — they are black, white, and shades of gray. Most gray
scale images today have 256 shades of gray. People can distinguish about 40

7

8 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

shades of gray, so a 256-shade image “looks like a photograph.” This book
concentrates on gray scale images.

The most complex type of image is color. Color images are similar to
gray scale except that there are three bands, or channels, corresponding to
the colors red, green, and blue. Thus, each pixel has three values associated
with it. A color scanner uses red, green, and blue filters to produce those
values.

Images are available via the Internet, scanners, and digital cameras. Any
picture shown on the Internet can be downloaded by pressing the right mouse
button when the pointer is on the image. This brings the image to your PC
usually in a JPEG format. Your Internet access software and other software
packages can convert that to a TIFF or BMP.

Image scanners permit putting common photographs into computer files.
The prices of full-color, full-size scanners are lower than ever (some available
for less than $100). Be prepared to experiment with scanning photographs.
The biggest problem is file size. Most scanners can scan 300 dots per inch
(dpi), so a 3”x5” photograph at 300 dpi provides 900x1500 pixels. At eight
bits per pixel, the image file is over 1,350,000 bytes.

Digital cameras have come out of the research lab and into consumer
electronics. These cameras store images directly to floppy disk. Most cameras
use the JPEG file format to save space. Again, there are many inexpensive
image viewing software packages available today that convert JPEG to TIFF
and BMP.

1.3 Image File I/O Requirements

Image file I/O routines need to read and write image files in a manner that
frees the programmer from worrying about details. The routines need to hide
the underlying disk files.

Figure 1.1 shows what a programmer would like to write when creating
a routine. The first three lines declare the basic variables needed. Line 3
creates the output image to be just like the input image (same type and
size). The output image is needed because the routines cannot write to an
image file that does not exist. Line 4 reads the size of the input image. The
height and width are necessary to allocate the image array. The allocation
takes place in line 5. The size (height and width) does not matter to the
programmer. Line 6 reads the image array from the input file. The type of

1.3. IMAGE FILE I/O REQUIREMENTS 9

Line

0 char *in_name, *out_name;
1 short **the_image;

2 long height, width;

3 create_image_file(in_name, out_name);

4 get_image_size(in_name, &height, &width);

5 the_image = allocate_image_array(height, width);
6 read_image_array(in_name, the_image);

7 call an image processing routine
8 write_image_array(out_name, the_image);
9 free_image_array(the_image, height);

Figure 1.1: A Sample Program

input file (TIFF or BMP) does not matter. Line 7 is where the programmer
calls the desired processing routine. Line 8 writes the resulting image array
to the output file, and line 9 frees the memory array allocated in line 5.

The routines in figure 1.1 are the top-level of a family of routines. These
hide the image file details from the programmer. The underlying routines
do the specific work. This structure removes all file I/O from the image
processing routines. All routines receive an array of numbers and the size
of the array. This improves the portability of the image processing routines.
They do not depend on image formats or sources.

This structure also makes it easier to add more image file formats. The
read_image_array function rides on top of a set of routines that determine the
specific file format and read it. Adding new routines below read_image_array
will not affect the vast majority of code in the image processing system.

Listing 1.1 shows the high-level 1/O routines. It begins with the basic
read_image_array and write_image_array. These routines call routines that
check the file format and call the read and write routines for those specific
formats. Adding new file formats means adding calls to those routines here.
The next routine in listing 1.1 is create_image_file. It also calls routines to
determine the specific file format and create files for those formats.

10 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

The get_image size routine determines the size of the image to process.
This information is needed to allocate image arrays and to pass to processing
routines. The processing routines will receive a pointer to an array. They
must also receive the size of the image or they cannot process through the
numbers. The get_image_size routine determines the specific file format and
calls routines to read the image headers.

The next two routines, allocate_image_array and free_image_array, create
and free memory for arrays of numbers. This completes the routines shown
in figure 1.1. The remaining routines in listing 1.1 are used in many of the
programs presented in this book. Like the routines described earlier, they
ride on top of other routines that work with specific image file formats. They
create files, determine if files exist, manipulate headers, and pull important
information from image headers.

1.4 TIFF

Several computer and scanner companies created an industry standard for
digital image data communication [1.1]. Their collaboration resulted in the
TIFF specification. Since most scanner manufacturers support the standard
in their PC and Macintosh products, TIFF is a natural for PC-based image
processing.

The goals of the TIFF specification are extensibility, portability, and
revisability. TIFF must be extensible in the future. TIFF must be able to
adapt to new types of images and data and must be portable between different
computers, processors, and operating systems. TIFF must be revisable — it
is not a read-only format. Software systems should be able to edit, process,
and change TIFF files.

The tag in Tag Image File Format refers to the file’s basic structure. A
TIFF tag provides information about the image, such as its width, length,
and number of pixels. Tags are organized in tag directories. Tag directories
have no set length or number, since pointers lead from one directory to an-
other. The result is a flexible file format that can grow and survive in the
future. Figure 1.2 contains the existing standard tags. Figure 1.3 shows the
structure of TIFF. The first eight bytes of the file are the header. These
eight bytes have the same format on all TIFF files. They are the only items
set in concrete for TIFF files. The remainder of the file differs from image
to image. The IFD, or Image File Directory, contains the number of direc-

1.4. TIFF 11

tory entries and the directory entries themselves. The right-hand column in
Figure 1.2 shows the structure of each directory entry. Each entry contains
a tag indicating what type of information the file holds, the data type of the
information, the length of the information, and a pointer to the information
or the information itself.

Figure 1.4 shows the beginning of a TIFF file. The addresses are located
on the left side in decimal, and the bytes and their values are in the table in
hex.

Glancing between Figures 1.3 and 1.4 should clarify the structure. The
first eight bytes are the header. Bytes zero and one tell whether the file stores
numbers with the most significant byte (MSB) first, or least significant byte
(LSB) first. If bytes zero and one are II (0x4949), then the least significant
byte is first (predominant in the PC world). If the value is MM (0x4D4D),
the most significant byte is first (predominant in the Macintosh world). Your
software needs to read both formats.

The example in Figure 1.4 shows LSB first. Bytes two and three give the
TIFF version number, which should be 42 (0x2A) in all TIFF images. Bytes
four to seven give the offset to the first Image File Directory (IFD). Note
that all offsets in TIFF indicate locations with respect to the beginning of
the file. The first byte in the file has the offset 0. The offset in Figure 1.4 is
8, so the IFD begins in byte nine of the file.

1.4.1 The IFD

The content of address eight is 27, indicating that this file has 27 12-byte
directory entries. The first two bytes of the entry contain the tag, which
tells the type of information the entry contains. The directory entry at
location 0 (Figure 1.4) contains tag=255. This tag tells the file type. (Refer
to Figure 1.2 for possible tags.) The next two bytes of the entry give the
data type of the information (Figure 1.5 lists the possible data types and
their lengths). Directory entry 0 in Figure 1.4 is type=3, a short (two-byte
unsigned integer). The next four bytes of the entry give the length of the
information. This length is not in bytes, but rather in multiples of the data
type. If the data type is a short and the length is one, the length is one
short, or two bytes. An entry’s final four bytes give either the value of the
information or a pointer to the value. If the size of the information is four
bytes or less, the information is stored here. If it is longer than four bytes, a
pointer to it is stored. The information in directory entry zero is two bytes

12 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

SubfileType
Tag = 255 (FF) Type = short N=1
Indicates the kind of data in the subfile.

ImageWidth
Tag = 256 (100) Type = short N=1
The width (x or horizontal) of the image in pixels.

Imagelength
Tag = 257 (101) Type = short N=1
The length (y or height or vertical) of the image in pixels.

RowsPerStrip
Tag = 278 (116) Type = long N =1
The number of rows per strip.
The default is the entire image in one strip.

StripOffsets
Tag = 273 (111) Type = short or long N = strips per image
The byte offset for each strip.

StripByteCounts
Tag = 279 (117) Type = long N=1
The number of bytes in each strip.

SamplesPerPixel
Tag = 277 (115) Type = short N=1
The number of samples per pixel
(1 for monochrome data, 3 for color).

BitsPerSample
Tag = 258 (102) Type = short N = SamplesPerPixel
The number of bits per pixel. 2**BitsPerSample = # of gray levels.

Figure 1.2: Existing Standard TIFF Tags

1.4. TIFF

Header
0
2
4
] I —
IFf)
A B
A+2
A+14
A+26
A+2+H = C _]
B*12
v

Byte Order

Version

Offset to Oth IFD

Entry Count
Directory Entry 0
Directory Entry 1

Directory Entry 2

Offset to next IFD

Directory Entry

X+2

X+4

X+8

Tag
Type

Length

Value

Offset

Value

Figure 1.3: The Structure of a TIFF File

13

14 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

address contents
(decimal) (hex)
header
0 49 49
2 2A 00
4 08 00 00 00
IFD
8 1B 00
Oth directory entry
10 FF 00 tag=255
12 03 00 type=3 (short)
14 01 00 00 00 length=1
18 01 00 00 00 value=1
lrst directory entry
22 00 01 tag=256
24 03 00 type=3 (short)
26 01 00 00 00 length=1
30 58 02 00 00 value=600
2nd directory entry
34 01 01 tag=257
36 03 00 type=3 (short)
38 01 00 00 00 length=1
42 5A 02 00 00 value=602

offset to next IFD
334 00 00 00 00
offset=0 so there are no more IFD’s

Figure 1.4: The Beginning of a TIFF File

1.4. TIFF 15

Type Length of the Type
1 = byte 8 bit unsigned integer
2 = ASCII 8 bit bytes that store ASCII codes
(the last byte must be null)
3 = short 16 bit (2 byte) unsigned integer
4 = long 32 bit (4 byte) unsigned integer
5 = rational Two long’s: The first is the numerator,

the second is the denominator

Figure 1.5: Possible Data Types and Lengths

long and is stored here with a value of 1. (This value has no meaning for this
tag.)

As for the next two entries, the first entry has tag=256. This is the image
width of the image in number of columns. The type is short and the length
of the value is one short, or two bytes. The value 600 means that there are
600 columns in the image. The second entry has tag=257. This is the image
length or height in number of rows. The type is short, the length is one, and
the value is 602, meaning that the image has 602 rows.

You continue through the directory entries until you reach the offset to
the next IFD. If this offset is 0, as in Figure 1.4, no more IFDs follow in the
file.

1.4.2 The TIFF Code

The code in Listing 1.2 reads image arrays from and writes them to TIFF
files. The code works with eight-bit gray scale TIFF images. It sits one level
closer to the files than the general routines given in listing 1.1.

Listing 1.4 (cips.h shown later) contains the #include files, constants and
the data structures. The structure tiff_header_struct holds the essential tags
we must extract from the TIFF header.

The function read_tiff header in Listing 1.2 first determines whether the
file uses LSB-first or MSB-first since the method used influences the manner
in which the functions extract_long_from_buffer and extract_short_from_buffer
read the remainder of the file header. Next, the offset to the Image File
Directory is read. The next section seeks to the IFD and reads the entry

16 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

count, or number of entries in the IFD. Finally, the code loops over the
number of entries. It reads each entry and picks out the necessary tags. The
essential information is the width and length of the image, the bits per pixel
(four-bit or eight-bit data), and the offset to the start of the data.

The function read_tiff_image in Listing 1.2 uses read_tiff_header and the
header information to read data into an array of shorts. The code seeks to
the beginning of the data and loops through the lines in the image to read
all the data. The function read_line reads the image data into a buffer, and
places the data into the array of shorts. read_line uses unions defined in
cips.h and also depends on the number of bits per pixel.

The next functions in Listing 1.2 write TIFF files to disk. The function
create_tiff_file_if_needed receives the name of an input file and an output file
and looks for that output file on the disk. If the output file does not exist, it
creates it to be the same basic size as the input file. create_tiff_file_if needed
uses the functions does_not_exist and create_allocate_tiff_file, both described
below, to check for the existence of the output file and to create it.

The next function in Listing 1.2 is create_allocate_tiff_file. This function
takes in a file name and information about the TIFF file header and creates
a file on disk. It allocates disk space by writing enough zeros to the file to
hold an image. The image width and length specified in the tiff_header_struct
indicate how large an image the disk file must be able to hold. In writing the
file header, create_allocate_tiff_file always specifies the least-significant-byte-
first (LSB) order. It goes on to write all the tags required by the new TIFF
[1.1] specification for gray scale image files. After writing the file header, it
goes into a loop and writes out bytes of zeros to the file.

The next function in Listing 5.1 is write_tiff image. Image processing
functions will use this to write an array of pixels into existing TIFF files. It
takes in the file name, looks at the file header, and uses the header informa-
tion to write an array of pixels into the file. Its form is similar to that of the
function read_tiff_image shown above. The function write_tiff_image seeks to
where the image data begins and loops through the writing the lines.

The function write_line (shown next in Listing 1.2) actually writes the
bytes into the file. It converts the short values (16 bits) to either eight- or
four-bit values and writes them.

The other functions in the listing are often-used utilities. The function
is_a_tiff looks at the file name and header information to determine a file is a
TIFF file. The function equate_image_headers sets the primary information
of two image headers to be equal. The following functions insert shorts and

1.5. BMP 17

longs into and extracts them from buffers. The TIFF I/O functions in this
listing and the BMP file functions in listing 1.3 use these utilities.

1.5 BMP

The Microsoft Windows Bitmap (BMP) file format is a basic file format for
digital images in the Microsoft Windows world. The BMP format is simpler
and less capable than the TIFF format. It does what it is supposed to do
— store digital images, but technically is not as good as TIFF. Simplicity,
however, is a blessing in that the files are easier to read and write.

This is the native graphics format for the Windows world, so the vast
majority of Windows-based software applications support this format. Since
BMP was created for Microsoft Windows, it was created for the Intel pro-
cessors only. Hence, it is all least significant byte first. This differs from the
TIFF discussed earlier where it could be either least or most significant byte
first. Microsoft’s Paint program (free with all Windows) works with BMP
files, so everyone using Windows can display and print BMP files. The down
side of BMP is that most UNIX systems do not support BMP files.

The BMP file format has grown and changed as Microsoft Windows has
grown and changed. There are five or six different versions of BMP files. The
code presented herein works with version of BMP created for Windows 3.x,
eight bits per pixel, gray shades, no compression.

An excellent source of information for BMP and all other image file for-
mats is [1.2]. Further information for BMP is in [1.3] and [1.4] while source
code to read and write all BMP formats is available at [1.5] and [1.6].

BMP files have (1) a file header, (2) a bit map header, (3) a color table,
and (4) the image data. The file header, shown in figure 1.6, occupies the
first 14 bytes of all BMP files. The first two bytes are the file type which
always equals 4D42 hex or ‘BM.” The next four bytes give the size of the
BMP file. The next two bytes are reserved and are always zero. The last
four bytes of the header give the offset to the image data. This value points
to where in the file the image data begins. This value, and the other four
byte values in the header, is an unsigned number (always positive).

The next 40 bytes, shown in figure 1.7, are the bit map header. These are
unique to the 3.x version of BMP files. The bit map header begins with the
size of the header (always 40). Next come the width and height of the image
data (the numbers of columns and rows). If the height is a negative number,

18 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

0
File Type 9
File Size

6
Zero 8
Zero 10
Bit Map
Offset

Figure 1.6: The BMP File Header

the image is stored bottom-up. That is the normal format for BMP files.
The number of color planes is usually 1. The bits per pixel is important. My
code works with eight bits per pixel only to provide 256 shades of gray.

The next two fields deal with image data compression. The compression
field is 0 for no compression and 1 for run length encoding compression. My
code does not work with compression. The size of bitmap field gives the
size of the image data when the data is compressed. It is zero when not
compressed, and the software calculates the size of the data.

The next two field deal with the resolution of the image data and the
final two deal with the colors or gray shades in the image. The horizontal
and vertical resolutions are expressed in pixels per meter. The color fields
help the software decipher the color table discussed below. The colors field
states how many colors or gray shades are in the image. The images do not
always have 256 gray shades. If only 30 are present, this field equals 30 and
the color table only has 30 entries. The important colors field states how
many of the colors are important to the image.

After the headers come the color table. A color table is a lookup table
that assigns a gray shade or color to a number given in the image data. In
BMP files, just because the number 12 is in the image data does not mean
that the pixel is the 12th darkest gray shade. It means that the pixel has the
gray shade given in the 12th place in the color table. That gray shade might
be 100, 200, or anything. Color tables offer the opportunity to save space
in image files and to match the image colors to a display or printing device.
They do not play an important role in the image processing routines in this
text.

1.5. BMP

Header
Size

Image

Width

Image
Height

Color Planes

Bits Per Pixel

Compression

Size of
Bitmap

Horizontal
Resolution

Vertical
Resolution

Colors

Important
Colors

12
14
16
20
24
28
32

36

Figure 1.7: The Bit Map Header

19

20 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

The BMP color table has four bytes in each color table entry. The bytes
are for the blue, green, and red color values. The fourth byte is padding and
is always zero. For a 256 gray shade image, the color table is 4x256 bytes
long. The blue, green, and red values equal one another.

The final part of the BMP file is the image data. The data is stored row
by row with padding on the end of each row. The padding ensures the image
rows are multiples of four. The four, just like in the color table, makes it
easier to read blocks and keep track of addresses.

1.5.1 The BMP Code

The code in Listing 1.3 reads image arrays from and writes them to BMP
files. The code works with eight-bit gray scale BMP images. It sits one level
closer to the files than the general routines given in listing 1.1.

Listing 1.4 (cips.h shown later) contains the #include files, constants and
the data structures. The structures bmpfileheader and bitmapheader hold
the information from the BMP file header and bit map header.

Listing 1.3 begins with the functions that read the essential header infor-
mation from a BMP file. The function read_bmp_file_header reads the first
information in the BMP file. The function read_bm_header reads the bit map
header information. The function read_color_table reads the essential color
table.

Next comes reading image data from file with read_bmp_image. This calls
the above functions to learn the header information. It seeks to the start of
the image data and reads the data one byte at a time. This function uses the
color table information to convert the read byte to the proper short value. If
necessary, flip_image_array is called to turn the image right-side up.

The next functions create a blank BMP file on disk. The function cre-
ate_bmp_file_if needed checks the file name given it does_not_exist. If it does
not, create_bmp_file_if_needed calls create_allocate_bmp_file to create and fill
the blank BMP file. It writes the necessary header information and color
table before writing zeros to the file.

The function write_bmp_image writes an array of numbers into a BMP
file. First, it reads the header information and seeks to the color table loca-
tion. After writing the color table to file, it loops over the height and width
of the array of numbers. It writes the image data to disk by filling a buffer
with one row of image data at a time and writing this buffer to disk.

1.6. A SIMPLE PROGRAM 21

The remaining functions in listing 1.3 are utilities. The function is_a_bmp
looks at a file name and then the information in the file header to determine
if a file is a BMP image file. The function calculate_pad calculates the extra
bytes padded to the end of a row of numbers to keep the four-byte boundaries
in place. The function equate_bmpfileheaders sets the essential file header
information equal for two headers, and flip_image_array flips the image num-
bers right-side up.

1.6 A Simple Program

Listing 1.5 shows how a simple program can use the I/O routines presented
earlier. This listing shows the round program that rounds off a part of an
input file and stores it to an output file. The basic use of this program is
to create a new file that contains the desired part of an existing file. The
user specifies the desired starting point in the existing file and the size of the
output file.

The program first interprets the command line to obtain the file names
and output image size. It calls the is_a routines to determine the type of
file being used. The next calls create the desired output file. Calls to the
previously discussed routines allocated two arrays of shorts and read the
input image. The loop over out_length and out_width copy the desired part
of the input image to an output image array. The final calls write the output
image to the output file and free the memory used by the two image arrays.

1.7 Converting Between TIFF and BMP

The final two listings in this chapter show short programs that convert be-
tween the TIFF and BMP image file formats. Listing 1.6 shows the tif2bmp
program. It checks the command line parameters to ensure the user entered
the proper file names. The program obtains the size of the input TIFF image
file, allocates an image array of that size, and creates an output BMP image
file also of that size. It then reads the image data from the input file and
writes it to the output file.

Listing 1.7 shows the bmp2tiff program. This program is similar to the
tif2bmp program described above. It reads data from a BMP image file,
creates a TIFF image file, reads the data from the BMP image file, and

22 CHAPTER 1. IMAGE FILE INPUT AND OUTPUT

writes it to the TIFF file.

1.8 Conclusions

This chapter has discussed image file input and output. Image I/O is a
fundamental part of image processing. Images are easier to find today than
ever before. The second edition of this book is based on the new image 1/O
routines described in this chapter. These routines allow the image processing
programmer to concentrate on image processing operators. The current I/0O
routines work with 8-bit gray scale TIFF images and 8-bit gray scale BMP
images. Inexpensive software products are available to convert almost any
image to one of these formats.

1.9 References

1.1. “TIFF Revision 6.0,” Final, June 3, 1993, Aldus Developers Desk, Aldus
Corporation, 411 First Avenue South, Seattle, WA 98104-2871, (206) 628-
6593. See also
http:www.adobe.comsupportservicedevrelationsPDFSTNTIFF6.pdf.

1.2. “Encyclopedia of Graphics File Formats,” James D. Murray, William
vanRyper, O’Reilly and Associates, 1996.

1.3. “The BMP File Format: Part I,” David Charlap, Dr. Dobb’s Journal,
March 1995.

1.4. “The BMP File Format: Part II,” David Charlap, Dr. Dobb’s Journal,
April 1995.

1.5. ftp://ftp.mv.com/pub/ddj/1995/1995.03 /bmp.zip

1.6. ftp://ftp.mv.com/pub/ddj/1995/1995.04 /bmp.zip

Chapter 2

Viewing and Printing Image
Numbers

2.1 Introduction

Image processing is a visual task. Therefore, displaying images in various
forms is a necessity. This chapter presents techniques to display the numbers
in an image on a screen, print the numbers in an image, and display and
print the image like a photograph.

2.2 Displaying Image Numbers

There are times when the best technique an image processor can use is to
look at the raw image numbers. The numbers tell exactly what is happening.
They show what the image operators are doing to the image.

The first method of looking at image numbers is to display them on the
screen. The first program presented in this chapter shows the image numbers
on a DOS text window on a PC. This would also work in a text window on
a UNIX machine.

Listing 2.1 presents the show: program. It reads the image numbers from
the input file and shows a portion of the numbers on the screen. The user
can alter which part of the image is displayed via keystrokes. This is a short,
simple program that is quite useful when trying to have a quick view of the
image numbers.

23

24 CHAPTER 2. VIEWING AND PRINTING IMAGE NUMBERS

2.3 Printing Image Numbers

Printing image numbers on paper gives the image processor something noth-
ing else will — a hard copy of the image in your hand to study. The program
in listing 2.2 takes the easy route by dumping all the image numbers to a
text file. Common word processors can do the work of printing to paper.
When the image exceeds page width (which happens almost all the time),
the user can adjust font size and page orientation and resort to that tried
and true technique of taping pages together.

Listing 2.2 shows the dumpi program. It reads the entire input image
into an array and writes the numbers in each line to a buffer. The program
writes each buffered line of numbers to a text file.

2.4 Viewing and Printing Images

Viewing and printing images like photographs is easier today than ever in
the past. Discretion is the better part of valor, so I opted out of writing
viewing and printing programs for the Windows environment. There are
many excellent programs available at little or no cost. As in chapter 0, I
recommend VuePrint from Hamrick Software (http://www.hamrick.com).

This approach also improves portability. Users of UNIX systems can also
find free or inexpensive image viewers and printers.

Word processors are much better today than five years ago. Almost any
word processor can import a file and print it alone and in a document. It
seems a long time ago when that was not possible. That is why I struggled
with photographing CRT displays and included those photographs in the first
edition of this book. Those less than wonderful pictures are absent from this
edition. The publisher, and almost anyone else, can now import the image
files into a publishing package with much better results.

Use what is available in the marketplace to view and print images. This
continues with the spirit of the C Image Processing System. Concentrate
on image operators and leave the details of image 1/O (including display) to
someone else.

2.5. CONCLUSIONS 25

2.5 Conclusions

This chapter has discussed methods of viewing an image. Often, there is no
substitute for looking at the raw image numbers. This chapter presented a
program to see the numbers on the screen and another one that dumps the
image numbers to a text file. Word processors can print those numbers to
paper for examination. Viewing and printing images in visual format has
been left to others. Inexpensive programs that display images on the screen
are available. Today’s word processors are much more powerful than five
years ago. They can import and print images to paper.

26 CHAPTER 2. VIEWING AND PRINTING IMAGE NUMBERS

Chapter 3

Halftoning

3.1 Introduction

Black and white printers put gray shade images on paper via the presence
or absence of black ink on paper. Printers do not contain ink with varying
shades of gray. These black and white output devices create the illusion of
shades of gray via haltoning.

This chapter presents a halftoning algorithm that converts a gray scale
image into an image containing only 1s and 0s. The image display sources of
chapter 2 can output the resulting image.

This chapter also presents a program that dumps the 1/0 image to a text
file as spaces and asterisks. A word processor can print that text file allowing
the user to make a large wall display of an image.

3.2 The Halftoning Algorithm

Figure 3.1 shows the basic halftoning algorithm. Reference [3.1] is the source
of the original algorithm. The basis of the algorithm is an error-diffusion
technique. When the “error” reaches a certain value, turn a pixel on and
reset the error. If the error is not great enough, leave the pixel turned off.
Errors result from approximating a gray shade image with only ones and
Zeros.

Figure 3.1 shows the input image I with R rows and C columns. E,(m,n)
is the sum of the errors propagated to position (m,n) due to earlier 1 or 0
assignments. E,(m,n) is the total error generated at location (m,n). C(I, J)

27

28 CHAPTER 3. HALFTONING

Define:
I(R,C) - input image with R rows and C columns
Ep(m,n) - sum of the errors propogated to position (m,n) due
to prior assignments
Eg(m,n) - the total error generated at position (m,n).
C(i,j) - the error distribution function with I rows and J
columns
1. Set Ep(m,n) = Eg(m,n) = 0 for R rows and C columns
2. 1loop m=1,R

3. 1loop n=1,C

4. Calculate the total propogated error at (m,n) due to
prior assignments

5. Sum the current pixel value and the total propogated
error: T = I(m,n) + Ep(m,n)

6. IF T > threshold
THEN do steps 7. and 8.
ELSE do steps 9. and 10.

7. Set pixel (m,n) on

8. Calculate error generated at current location
Eg(m,n) = T - 2*threshold

9. Set pixel (m,n) off

10. Calculate error generated at current location
Eg(m,n) = threshold

3. end loop over n

2. end loop over m

Figure 3.1: The Basic Halftoning Algorithm

3.3. SAMPLE OUTPUT 29

is the error distribution function, whose size and values were set experimen-
tally for the “best” results. The elements in C' must add up to one. The
authors of reference [3.1] set C' to be a 2x3 matrix with the values shown in
equation 3.1:

0.00.20.0

Cii = 0.60.10.1

(3.1)

The results from using this error-diffusion method have been satisfactory.
You may want to experiment with the equations. Equation 3.2 (in Figure
3.1) shows that E,(m,n), the error propagated to location (m,n), is the
combination of the error distribution function C' and the error generated
E,(m,n).

After calculating the propagated error E,(m,n), add it to the input image
I(m,n) and give the sum to 7. Now compare T to a threshold value, which
is usually set to half the number of gray shades. For instance, for an image
with 256 gray shades, set threshold = 128. If the results are unsatisfactory,
experiment with different values for the threshold. If T' is greater than the
threshold, set the (m,n) pixel to 1 and reset the generated error E,(m,n). If
T is less than the threshold, set the (m,n) pixel to 0 and set the generated
error E,(m,n) to threshold.

Listing 3.1 shows the code that implements the halftoning algorithm via
the function half tone. First, the code initializes the error-distribution func-
tion in the array c. Next it sets the error arrays eg and ep to 0 (step 1 of
the algorithm). The loops over m and n implement steps 2 and 3 of the al-
gorithm. The code performs the total propagated error calculation of step 4
inside the loops over i and j. The code calculates t and then decides whether
to set the pixel to 1 or 0.

3.3 Sample Output

Figure 3.2 shows a picture of a boy. Figure 3.3 shows the resulting of halton-
ing figure 3.2 with threshold set to 128 (half of 256). The result of halftoning
is easy to recognize when compared with the input image. The true value
of this 1/0 image comes in the next section because it can be printed as a
poster.

30 CHAPTER 3. HALFTONING

Figure 3.2: Input Boy Image

Al \ |

Figure 3.3: Output Halftoned Boy Image

3.4. PRINTING AN IMAGE 31

3.4 Printing an Image

One use of halftoning and the dumpb program is creating a wall poster from
a gray scale image. The first step is to halftone the original image as shown
in figures 3.2 and 3.3. The next step is to run the dumpb program to create a
large text file of spaces and asterisks. Finally, use a word processor to print
the space-asterisk text file.

The final step takes some work and skill. The space-asterisk text file will
probably be too wide to fit on a piece of printer paper. Use a word processor,
set all the text to a fixed-space font (some type of courier), and use a small
font (down to 2 or 3 points). That usually narrows the image to a page
width. Maybe set the printer to print sideways instead of regular.

The “image” will still not be right because it will long stretched vertically.
This is because the characters are taller than they are wide (the line feeds
makes it look this way). Replace every two spaces with three spaces and do
the same for the asterisks. Now the image “looks right.” Print it. Cutting
and pasting will be necessary to remove the white space from page breaks.

Figure 3.4 shows the result. This is a picture of a simple boy poster
hanging on the wall. The more work and skill, the better the result. Still,
this is a nice wall picture.

3.5 Conclusions

This chapter has discussed halftoning — a method for transforming a gray
scale image to a black and white (1/0) image. The 1/0 image appears to have
shades of gray. A program that performs this transformation was described.
An interesting use of halftoning is to dump the 1/0 image to a text file and
use a word processor to print a wall poster.

3.6 Reference

3.1. “Personal Computer Based Image Processing with Halftoning,” John A
Saghri, Hsieh S. Hou, Andrew F. Tescher, Optical Engineering, March 1986,
Vol. 25, No. 3, pp. 499-504.

32 CHAPTER 3. HALFTONING

Figure 3.4: Poster Created with the dumpb Program

Chapter 4

Histograms and Equalization

4.1 Introduction

CIPS is almost ready for image processing operators except for one more
“preliminary” capability — histograms and histogram equalization. This
chapter shows why histogram equalization is a prerequisite to performing
other image processing operations and presents source code to implement
histogram equalization. It also presents a program that creates an image of
an image’s histogram and another program that permits combining the two
images into one.

4.2 Histograms

A histogram uses a bar graph to profile the occurrences of each gray level
present in an image. Figure 4.1 shows a simple histogram. The horizontal
axis is the gray-level values. It begins at zero and goes to the number of
gray levels (256 in this example). Each vertical bar represents the number
of times the corresponding gray level occurred in the image. In Figure 4.1
the bars “peak” at about 70 and 110 indicating that these gray levels occur
most frequently in the image.

Among other uses, histograms can indicate whether or not an image was
scanned properly. Figure 4.2 shows a histogram of an image that was poorly
scanned. The gray levels are grouped together at the dark end of the his-
togram. This histogram indicates poor contrast. When produced from a
normal image, it indicates improper scanning. The scanned image will look

33

34 CHAPTER 4. HISTOGRAMS AND EQUALIZATION

*
* *% *% * *

* * **% ok *kok * * ok

* * ok okkok %k *kok * % * ok ok *
dokk ckk dokdokkok ok okskokk *okok Kok fokokdokkok kok

ko kokokokokk kokckskskokokk kkkkk kokokokskokk kokkkskskkkk kkk
sk 3kookokokodkook ook ok k sk ko skoskookdkodkok ok ko sk sk sk 3k ok ok ok ok >k %k >k ok k 3k 3k ok ok ok ok >k %k >k sk %k k
>k >k >k 3k 3k 3k 3k 5k 3k 5k >k >k >k >k 3k 3k 5k 5k 5k 5k >k >k >k 5k >k 5k 3k 5k 5k 3k 5k 5k >k >k 3k >k >k 3k >k 5k 3k >k *k %k >k %k k >k

Figure 4.1: Simple Histogram

like a TV picture with the brightness and contrast turned down. (Of course,
the same histogram could indicate proper scanning for certain unusual im-
ages, such as a black bear at night).

Histograms also help select thresholds for object detection (an object
being a house, road, or person). Objects in an image tend to have similar
gray levels. For example, in an image of a brick house, all the bricks will
usually have similar gray levels. All the roof shingles will share similar gray
levels, but differ from the bricks. In Figure 4.1, for example, the valleys
between the peaks at about 60 and 190 might indicate that the image contains
three major kinds of objects perhaps bricks, roof, and a small patch of sky.
Practical object identification is never simply a matter of locating histogram
peaks, but histograms have been important to much of the research in object
identification.

Figure 4.3 shows the an image with its histogram. The gray levels in
the histogram reach across most of the scale, indicating that this image
was scanned with good contrast. Figure 4.4 shows a house image with its
histogram. Again, the histogram stretches across much of the scale indicating
good scanning and contrast.

Because the dark objects and the bright objects in an image with poor

4.3. HISTOGRAM EQUALIZATION 35

%% Kk kKK
*% *k kKK
*kk *k kKK
*kk kkk dokk
* kkok kokkok koK
* kokskokkkokdkok kKK
Kok K ok ok ok ok K ok ok kK

Figure 4.2: Histogram of a Poorly Scanned Image

contrast have almost the same gray level, the gray shades from such an image
will be grouped too closely together (Figure 4.2). Frequently the human eye
will have difficulty distinguishing objects in such an image. Image processing
operators will have even less success.

4.3 Histogram Equalization

Figure 4.5 shows an image with poor contrast (a poorly scanned aerial pho-
tograph). The rectangles in the center of the picture are house trailers. The
areas around the house trailers are roads, parking lots, and lawns. The his-
togram in the lower right-hand corner shows that the gray levels are grouped
in the dark half of the scale. There are trees and bushes in the lawn areas of
the image. You cannot see them, however, because their gray levels are too
close to the gray levels of the grass.

The cure for low contrast images is “histogram equalization.” Equaliza-
tion causes a histogram with a mountain grouped closely together to “spread
out” into a flat or equalized histogram. Spreading or flattening the histogram
makes the dark pixels appear darker and the light pixels appear lighter. The

36 CHAPTER 4. HISTOGRAMS AND EQUALIZATION

Figure 4.3: Boy Image with Histogram

4.3. HISTOGRAM EQUALIZATION 37

Figure 4.4: House Image with Histogram

key word is “appear.” The dark pixels in Figure 4.5 cannot be any darker. If,
however, the pixels that are only slightly lighter become much lighter, then
the dark pixels will appear darker. Please note that histogram equalization
does not operate on the histogram itself. Rather, histogram equalization uses
the results of one histogram to transform the original image into an image
that will have an equalized histogram.

The histogram equalization algorithm may make more sense by outlining
the derivation of the underlying mathematical transform. (The full deriva-
tion is found in Reference [4.1].) Equation 4.1 represents the equalization
operation, where ¢ is an image with a poor histogram. The as yet unknown
function f transforms the image c into an image b with a flat histogram.

b(z,y) = fle(z,y)] (4.1)

Equation 4.2 shows the probability-density function of a pixel value a.
p1(a) is the probability of finding a pixel with the value a in the image. Area;
is the area or number of pixels in the image and H;(a) is the histogram of
the image.

Hy(a) (4.2)

38 CHAPTER 4. HISTOGRAMS AND EQUALIZATION

Figure 4.5: Image with Poor Contrast

4.4. EQUALIZATION RESULTS 39

For example, if

a = 100

Area; = 10,000
H,(100) = 10
then

p1(100) = 10/10,000 = 0.001

Equation 4.3 shows the cumulative-density function (cdf) for the pixel
value a. The cdf is the sum of all the probability density functions up to the
value a.

LS) (43)

=0

Pi(a) = Areaq

For example,

P;(10) = 1/10,000 = [H(0) + H(1) + ... + H(10)]

Equation 4.4 shows the form of the desired histogram equalization func-
tion f(a). H.(a) is the histogram of the original image ¢ (the image with
the poor histogram). D,, is the number of gray levels in the new image b.
D,,, = 1/p(a) for all pixel values a in the image b. Note that the image b has
a “flat” histogram
H0)=H(1)=H(2) = ..
because the probability of each pixel value is now equal — they all occur
the same number of times. So f(a) simply takes the probability density
function for the values in image b and multiplies this by the cumulative
density function of the values in image c¢. It is important to realize that
histogram equalization reduces the number of gray levels in the image. This
seems to be a loss, but it is not.

LS () (4.4

=0

fla) =

m
Areaq

The algorithm for performing histogram equalization (see Figure 4.6) is
simpler than the equations.

4.4 Equalization Results

Figures 4.7, 4.8, and 4.9 show the result of histogram equalization. The
appearance of some images improves after histogram equalization while it

40

CHAPTER 4. HISTOGRAMS AND EQUALIZATION

calculate histogram
loop over i ROWS of input image
loop over j COLS of input image
k = input_imagel[i] [j]
hist[k] = hist[k] + 1
end loop over j
end loop over i

calculate the sum of hist
loop over i gray levels
sum = sum + hist[i]
sum_of _hist[i] = sum
end loop over i

transform input image to output image
area = area of image (ROWS x COLS)
Dm = number of gray levels in output image
loop over i ROWS
loop over j COLS
k = input_imagel[i] [j]
out_image[i] [j] = (Dm/area) x sum_of_hist [k]
end loop over j
end loop over i

Figure 4.6: Histogram Equalization Algorithm

4.4. EQUALIZATION RESULTS 41

degrades with other images. For Figure 4.7 (an equalized version of Figure
4.6) the appearance improves. Note the equalized histogram.

Figure 4.7: Equalized Version of Figure 4.5

The aerial photograph, although fuzzy, has much improved contrast. The
dark spots in the lawn areas are trees. If you look closely at Figure 4.7 you
may be able to see these trees. Figure 4.8 shows details from these two
images together with their histograms. The unequalized image on the left of
Figure 4.8 is dark. In the equalized image on the right of Figure 4.8 you can
distinguish the trees and bushes from the grass.

With some photographs the equalized image may appear worse than the
original image. In a properly scanned image, for example, histogram equal-
ization can introduce “noise” into what were uniform areas of an image. Such
“noise” may not be undesirable — in many cases it reflects subtle texture or

42 CHAPTER 4. HISTOGRAMS AND EQUALIZATION

Figure 4.8: Comparing Figures 4.6 and 4.7

detail lost in the more “natural” image.

Figure 4.9 (segments from the house in Figure 4.4) shows how equalization
affects a properly scanned image. The histogram for the unequalized image
on the top stretches across much of the scale. The bricks, windows, and trees
are easy to see. However, in the equalized image on the bottom, the window
and the brick appear too bright. While the equalized image does not appear
as pleasant, it does have better contrast. The darks appear darker and the
lights appear lighter. In this case, however, they are probably too dark and
too light.

Since variations in scanning can significantly affect the results of image
processing operators, histogram equalization is a prerequisite for further im-
age processing. If you scan an image too bright or too dark, you can remove
objects from an image. The result may “improve” the apparent performance
of processing and lead you to overestimate the effectiveness of an operator.
Consistently pre-processing images with a histogram equalization operation
will ensure consistency in all results.

4.4. EQUALIZATION RESULTS

Figure 4.9: Equalizing a Properly Scanned Image

43

44 CHAPTER 4. HISTOGRAMS AND EQUALIZATION

4.5 Implementation

The code in Listing 4.1 implements the histogram operations. The ba-
sic data structure is a 256-element array of unsigned longs. The function
zero_histogram zeros or clears the histogram array. The function calcu-
late_histogram creates the histogram for an image array. It loops through
the image array, takes the pixel value, and increments that element in the
histogram array.

The function perform_histogram_equalization implements the algorithm
shown in Figure 4.6. The first loop over i calculates the sum_of_h array. The
loops over length and width transforms each pixel in the image to a new value
using the number of gray levels in the new image, the area of the image, and
the sum_of_h array.

The code in Listing 4.2 is the main routine of the histeq program. It calls
the histogram routines of Listing 4.1 to transform an image by equalizing its
histogram. This program produced Figure 4.7 and part of Figure 4.9. Its
structure is like the halftone program of chapter 3 and the vast majority of
programs in this book. It checks the command line, creates arrays, reads
input, call the histogram functions, and writes output.

Listing 4.3 shows the source code for the himage program. This program
reads an image, calculates its histogram, and draws that histogram to another
image file. This program produced the histograms that appeared with the
images in this chapter. The opening structure of himage is similar to histeq
as it reads the input file and calculates its histogram. The remainder of
himage draws an axis and tick marks in the output file and draws lines to
represent the histogram levels. The code scales the lines to keep them in
the image. The user can specify the size of the histogram image or use the
default values of L and W. The user must specify a width of more than 256
(the number of gray shades). It is best to have the histogram image the same
width as the original image. That allows you to combine the two image with
the side program described next.

4.6 The side Program

A bonus in this chapter is the side program. It combines to images into one
image by either pasting them side by side or on top of one another. The side
program created the images shown in the chapter where the image and its

4.7. CONCLUSIONS 45

histogram are shown together. The himage program created the image of
the histogram, and the side program pasted them together. Listing 4.4 show
the side program. A key to the program is that the two images to be pasted
together must have the correct dimensions. If they are to be combined side
by side, they must have the same height. If they are to be combined top
to bottom, they must have the same width. The program simply reads the
two input images, combines them in a large output image array, and writes
the result to a large output file. The side program is very useful when you
want to show two images at once to highlight differences and illustrate how
an operator alters an image.

4.7 Conclusions

This chapter has discussed histograms and histogram equalization. His-
tograms show the occurrences of gray shades in an image as a bar graph.
Histogram equalization adjusts the contrast in an image by spreading its his-
togram. This often improves the appearance of an image. Also presented
in this chapter is a program that calculates an images histogram and stores
that as a picture in an image file. Another program presented pastes images
side by side.

4.8 Reference

4.1 “Digital Image Processing,” Kenneth R. Castleman, Prentice-Hall, 1979.

46

CHAPTER 4. HISTOGRAMS AND EQUALIZATION

Chapter 5

Basic Edge Detection

5.1 Introduction

Edge detection is one of the fundamental operations in image processing.
Many other operations are based on edge detection and much has been writ-
ten about this subject. This chapter will discuss the subject and explore
some basic techniques. The next chapter will discuss some advanced forms
of edge detection.

5.2 Edge Detection

This chapter introduces edge detection and shows some basic edge detectors.
The next chapter continues with some advanced edge detectors. Detecting
edges is a basic operation in image processing. The edges of items in an
image hold much of the information in the image. The edges tell you where
items are, their size, shape, and something about their texture.

The top part of Figure 5.1 shows the side view of an ideal edge. An edge
is where the gray level of the image moves from an area of low values to high
values or vice versa. The edge itself is at the center of this transition. An
edge detector should return an image with gray levels like those shown in the
lower part of Figure 5.1. The detected edge gives a bright spot at the edge
and dark areas everywhere else. Calculus fans will note the detected edge is
the derivative of the edge. This means it is the slope or rate of change of the
gray levels in the edge. The slope of the edge is always positive or zero, and
it reaches its maximum at the edge. For this reason, edge detection is often

47

48 CHAPTER 5. BASIC EDGE DETECTION

called image differentiation.

Gray};evel

Ideal
Edge

Gray‘Level

Detected
Edge
(derivative
of edge)

Transition
Point of Edge

Figure 5.1: Graphs of Gray Scale Values at Edges

The problem in edge detection is how to calculate the derivative (the
slope) of an image in all directions? Convolution of the image with masks is
the most often used technique of doing this. An article by Wesley Faler in
The C Users Journal discussed this technique [5.1]. The idea is to take a 3
x 3 array of numbers and multiply it point by point with a 3 x 3 section of
the image. You sum the products and place the result in the center point of
the image.

The question in this operation is how to choose the 3 x 3 mask. Faler
used several masks shown in Figure 5.2. These are basic masks that amplify
the slope of the edge. Take the simple one-dimensional case shown in Figure
5.1. Look at the points on the ideal edge near the edge. They could have
values such as [3 5 7]. The slope through these three points is (7 — 3)/2 =
2. Convolving these three points with [-1 0 1] produces -3 + 7 = 4. The
convolution amplified the slope, and the result is a large number at the

5.2. EDGE DETECTION 49

-1 0 1 1 1 1 -1-1-1 0 1 0
-1 0 1 0 0 O -1 8 -1 -1 0 1
-1 0 1 -1 -1-1 -1 -1-1 0-1 0

Figure 5.2: Masks Used by Faler for Edge Detection

transition point in the edge. Convolving [-1 0 1] with a line performs a type
of differentiation or edge detection.

The number of masks used for edge detection is almost limitless. Re-
searchers have used different techniques to derive masks and then experi-
mented with them to discover more masks. Figure 5.3 shows four masks used
in the source code and examples in this chapter. The first three masks are
the Kirsch, Prewitt, and Sobel masks as given in Levine’s text [5.2] (there are
different masks bearing the same name in the literature) [5.3]. The fourth
mask, the “quick” mask, is one I “created” while working on this process
(there is no doubt that someone else created this mask before me).

The Kirsch, Prewitt, and Sobel masks are “compass gradient” or direc-
tional edge detectors. This means that each of the eight masks detects an
edge in one direction. Given a pixel, there are eight directions to travel to
a neighboring pixel (above, below, left, right, upper left, upper right, lower
left, and lower right). Therefore, there are eight possible directions for an
edge. The directional edge detectors can detect an edge in only one of the
eight directions. To detect only left to right edges, use only one of the eight
masks. To detect all of the edges, perform convolution over an image eight
times using each of the eight masks. The “quick mask” is so named because
it can detect edges in all eight directions in one convolution. This has obvious
speed advantages. There are, however, occasions when detecting one type of
edge is desired, so use a directional mask for those occasions.

There are two basic principles for each edge detector mask. The first
is that the numbers in the mask sum to zero. If a 3 x 3 area of an image
contains a constant value (such as all ones), then there are no edges in that
area. The result of convolving that area with a mask should be zero. If the
numbers in the mask sum to zero, convolving the mask with a constant area
will result in the correct answer of zero. The second basic principle is that
the mask should approximate differentiation or amplify the slope of the edge.
The simple example [-1 0 1] given earlier showed how to amplify the slope of
the edge. The first Kirsch, Prewitt, and Sobel masks use this idea to amplify

CHAPTER 5. BASIC EDGE DETECTION

20

Quick mask

Prewitt Sobel
-1

Kirsch

0 -1
4

5
-3 0 -3
-3 -3 -3

0
-1 -2 -1

0 -1

-1

-1-1-1

-3 5 b5
-3 0 5
-3 -3 -3

0 -1

1

-2 -1

1

0 -2 -2

1-1-1

0 -1

1

2
1

-3 -3 5
-3 0 5
-3 -3 5

0 -2
0 -1

-2 -1

1

0-1-2

1

1-1-1

1

-3 -3 -3
-3 0 5
-3 5 b5

0 -1

-2 -1

-1 -2 -1

-1 -1 -1

1

-3 -3 -3
-3 0 -3

0

5

0

-2 -1

1
1

-1 -1
-1

-3 -3 -3

-2

0 -3
5 -3

5 -3 -3

-2 0 2

-2 1

-1

0 -3
5 -3 -3

5 -3
0 -3

-3 -3 -3

-2 1
1

-1

0

-2 -1

-1 -1

Figure 5.3: Masks for Edge Detection

5.3. IMPLEMENTING EDGE DETECTORS ol

an edge ramping up from the bottom of an image area to the top.

5.3 Implementing Edge Detectors

Listing 5.1 shows source code that will implement the four edge detectors
shown in Figure 5.3. The first section of code declares the masks shown in
Figure 5.3. The functions detect_edges and perform_convolution implement
the Kirsch, Prewitt, and Sobel edge detectors. The detect_edges function
calls perform_convolution to detect the edges. Next, it “fixes” the edges of
the output image (more on this later) and writes it to the output image file.

The function perform_convolution does the convolution operation eight
times (once for each direction) to detect all the edges. First, it calls setup_masks
to copy the correct masks. The parameter detect_type determines which
masks to use. The convention is type 1=Prewitt, 2=Kirsch, and 3=Sobel.
The function perform_convolution clears the output image, sets several max-
imum values, and does the convolution eight times over the entire image
array. At each point, the code checks to see if the result of convolution is
greater than the maximum allowable value or less than zero, and corrects for
these cases.

After convolution, there is the option of thresholding the output of edge
detection. Edge detectors produce results that vary from zero to the maxi-
mum gray level value. This variation shows the strength of an edge. An edge
that changes from 10 to 200 will be stronger than one that changes from 10
to 50. The output of convolution will indicate this strength. It is often desir-
able to threshold the output so strong edges will appear relatively bright (or
dark) and weak edges will not appear at all. This lowers the amount of noise
in the edge detector output and yields a better picture of the edges. The
detect_edges and perform_convolution functions pass a threshold parameter.
If threshold == 1, perform_convolution goes through the output image and
sets any pixel above the high parameter to the maximum and any pixel below
the high parameter to zero.

The quick_edge function performs edge detection using the single 3 x 3
quick_mask. It performs convolution over the image array using the quick_mask.
It thresholds the output image if requested, and fixes the edges of the out-
put image. All these operations are the same as in the detect_edges and
perform_convolution functions.

Several short utility functions make up the remainder of Listing 5.1. The

52 CHAPTER 5. BASIC EDGE DETECTION

setup_masks function copies the desired type of mask (Kirsch, Prewitt, or So-
bel) into the mask arrays for the perform_convolution function. The fix_edges
function corrects the output image after convolution (fix_edges is shown in
this listing, but resides in source code file utility.c). Convolving a 3 x 3 mask
over an image array does not process the pixels along on the outer edge of
the image. The result is a blank line around the image array. The fix_edges
function goes around the edge of the image array and copies valid values out
to the edge. This removes the distracting lines.

These edge detectors are called by the main routine of the medge program.
The medge program ties these and the edge detectors described in the next
chapter into one convenient program. That program is presented in the next
chapter.

5.4 Results

Let’s close with examples of the edge detectors in action. Figure 5.4 shows
a house image. Figure 5.5 shows the result of applying the Kirsch edge
detector masks. Figure 5.6 shows the result of the Prewitt masks and Figure
5.7 shows the result of the Sobel masks. Figures 5.5, 5.6, and 5.7 are outputs
that were thresholded. Edge values above a threshold of 33 were set to 255
and all others were set to zero. This gives a clear picture of edges and non-
edges. Figure 5.8 shows the result of applying the Sobel masks and not
thresholding the result. If you look closely, you can see some variations in
gray level indicating some edges are stronger than others. Figure 5.9 shows
the result of applying the quick mask. The results of the quick mask are as
good as the other masks, and it operates in one-eighth the time.

5.5 Conclusion

This chapter discussed basic edge detection. The next chapter continues the
discussion of edge detection. There are many creative methods of detect-
ing edges in images. The next chapter discusses the homogeneity operator,
the difference operator, contrast-based edge detection, and edge filtering by
varying the size of the convolution mask.

5.5. CONCLUSION

Figure 5.4: The House Image

23

54 CHAPTER 5. BASIC EDGE DETECTION

S i | S = = T

Figure 5.7: The Result of the Sobel Masks

5.5. CONCLUSION 55

Figure 5.8: The Result of the Sobel Masks Without Thresholding

Figure 5.9: The Result of the Quick Mask

26 CHAPTER 5. BASIC EDGE DETECTION

5.6 References

5.1 “Image Manipulation By Convolution,” Wesley Faler, The C Users Jour-
nal, Vol. 8 No. 8, August 1990, pp. 95-99.

5.2 “Vision in Man and Machine,” Martin D. Levine, McGraw-Hill, 1985.
5.3 “Digital Image Processing,” Kenneth R. Castleman, Prentice-Hall, 1979.

Chapter 6

Advanced Edge Detection

6.1 Introduction

There are many different methods of edge detection. Chapter 5 discussed
some basic techniques. This chapter discusses some unusual and advanced
ideas and presents four edge detectors. The first two do not use the convo-
lution operation — they use only subtraction. The third edge detector can
vary the level of detail of the edges it will detect. The fourth edge detector
will detect edges in unevenly lit images. Finally, an edge detector is used to
enhance the appearance of an original image. Figure 6.1 shows the original
image used by all the operators.

Figure 6.1: Original House Image

57

58 CHAPTER 6. ADVANCED EDGE DETECTION

6.2 Homogeneity Operator

The first edge detector is the homogeneity operator [6.1] which uses subtrac-
tion to find an edge. Figure 6.2 shows an example of this operator. The
operator subtracts each of the pixels next to the center of a 3x3 area from
the center pixel. The result is the maximum of the absolute value of these
subtractions. Subtraction in a homogeneous region (one that is a solid gray
level) produces zero and indicates an absence of edges. A region containing
sharp edges, such as area 2 of Figure 6.2, has a large maximum.

The first section of Listing 6.1 shows the homogeneity function. This
function is similar in form to the edge detectors discussed in Chapter 5. In
the loop over rows and cols, the code performs the subtraction and finds
the maximum absolute value of the subtractions. The homogeneity operator
requires thresholding (which you can specify). A perfectly homogeneous 3x3
area is rare in an image. If you do not threshold, the result looks like a faded
copy of the original. Thresholding at 30 to 50 for a 256 gray level image gives
good results.

Figure 6.3 shows the result of the homogeneity operator. This operator
gives a good rendition of the edges in the original house image. This is a
quick operator that performs only subtraction — eight operations per pixel
— and no multiplication.

6.3 Difference Operator

The next edge detector is the difference operator, another simple operator
that uses subtraction. Recall that edge detection is often called image differ-
entiation (detecting the slope of the gray levels in the image). The difference
operator performs differentiation by calculating the differences between the
pixels that surround the center of a 3x3 area.

Figure 6.4 shows an example of the difference operator. The difference
operator finds the absolute value of the differences between opposite pixels,
the upper left minus lower right, upper right minus lower left, left minus
right, and top minus bottom. The result is the maximum absolute value.
The results shown in Figure 6.4 are similar but not exactly equal to those
from the homogeneity operator in Figure 6.2.

The second part of Listing 6.1 shows the difference_edge function, which
is similar to the homogeneity function. The difference_edge function loops

6.3. DIFFERENCE OPERATOR

Area 1:

max of {

Area 2:
10 10 10
10 10 10
10 10 1

Output of homogeneity edge detector is:

max of {
10 - 10		10 - 10		10 - 10
10 - 10		10 - 10		10 - 10
10 - 10		10 - 1		

}=9

Area 3:

10 5 3

10 5 3

10 5 3

Output of homogeneity edge detector is:

max of {
5 - 10]	5 -5		5 -3	
5 - 10		5 -3		5 - 10
5 -5		5 -3		

} =5

Figure 6.2: An Example of the Homogeneity Operator

60 CHAPTER 6. ADVANCED EDGE DETECTION

Figure 6.3: Result of Homogeneity Edge Detector

over the input image array and calculates the absolute values of the four
differences. As in the homogeneity case, the difference operator requires
thresholding.

Figure 6.5 shows the result of the difference edge detector. This result
is similar to that shown in Figure 6.3. The difference edge detector did de-
tect more of the brick and mortar lines than the homogeneity operator. The
choice between the two edge detectors depending on the desired detail. The
difference operator is faster than the homogeneity operator. The difference
operator uses only four integer subtractions per pixel, while the homogeneity
operator uses eight subtractions per pixel. These compare to the nine mul-
tiplications and additions for the convolution-based edge detectors discussed
in Chapter 5.

6.4 Difference of Gaussians

The next operator to examine is the difference of Gaussians edge detector,
which allows varying the width of a convolution mask and adjusting the
detail in the output [6.2, 6.3]. The results in Figures 6.3 and 6.5 are good.
Suppose, however, we wanted to detect only the edges of the large objects
in the house image (door, windows, etc.) and not detect the small objects
(bricks, leaves, etc.).

Varying the width of convolution masks eliminates details. If a mask
is wide, convolving an image will smooth out details, much like averaging.

6.4. DIFFERENCE OF GAUSSIANS

Area

Area

Area

1:

o0 o N
©O© O W

1
4
7

Output of difference edge detector is:

max of {
| 1 -

9 | | 7 -3 |
| 4 -6 | | 2 - 8 |

10 10 10
10 10 10
10 10 1

Output of difference edge detector is:

max of {
| 10 - 1 | | 10 - 10 |
| 10 - 10 | | 10 - 10 |

e
o O O
o O O
w w w

Output of difference edge detector is:

max of {
| 10 - 3| | 10 - 3|
| 10 - 3| | 5 -5 |
y=7

Figure 6.4: An Example of the Difference Operator

61

62 CHAPTER 6. ADVANCED EDGE DETECTION

iR] T A I

Figure 6.5: Result of Difference Edge Detector

Stock market prices vary greatly by the minute. The variations lesson when
the prices are examined hourly. Examining the prices weekly causes the
variations to disappear and general trends to appear. Convolving an image
with a wide, constant mask, smoothes the image. Narrower, varying masks,
permit the details to remain.

Figure 6.6 shows two example masks. These masks are “difference of
Gaussians” or “Mexican hat” functions. The center of the masks is a positive
peak (16 in the 7x7 masks — 19 in the 9x9 mask). The masks slope downward
to a small negative peak (-3 in both masks) and back up to zero. The curve
in the 9x9 mask is wider than that in the 3x3 mask. Notice how the 9x9 mask
hits its negative peak three pixels away from the center while the 7x7 masks
hits its peak two pixels away from the center. Also, notice these masks use
integer values. Most edge detectors of this type use floating point numbers
that peak at +1. Using integers greatly increases the speed.

Figure 6.7 illustrates how the narrower mask will detect small edges the
wide mask misses. Each area in Figure 6.7 has a small pattern similar to the
brick and mortar pattern in the house image. This pattern has small objects
(bricks) with many edges. Convolving the 7x7 mask in Figure 6.6 with the
7x7 area in Figure 6.7, results in a +40; the 7x7 mask detected an edge at
the center of the 7x7 area. Doing the same with the 9x9 mask in Figure 6.6
with the 9x9 area in Figure 6.7, produces a -20; the 9x9 mask did not detect
any edges. The “hat” in the 9x9 mask was wide enough to smooth out the
edges and not detect them.

63

6.4. DIFFERENCE OF GAUSSIANS

7x7 mask

9x9 mask

Figure 6.6: Gaussian “Mexican Hat” Masks

64 CHAPTER 6. ADVANCED EDGE DETECTION

7x7 area with lines

(e o]
(I
o

o O
—_
o

o O
—
o

o O

[y
o
o O O
—_
o
o O O
—_
o
o O O
[y
o

o O O
[EY
o

o O O
[ERY
o

O O O
—
o

O O O

[
o
o O
(I
o
o O
—_
o
o O
—_
o

result of convolution with 7x7 mask = 40

9x9 area with lines
0O 0 0O 0O 0O0O 0 0 O
10 010 0 10 0 10 0 10
0O 0 0O 0O0O0O 0 0 O
10

—_
o

0
0

o O
o O

[
o
o
—_
o

o O O
—_
o

o O O
[
o

o O O
[
o

o O O
[ERY
o

o O O
[ERY
o

O O O
[ERY
o

o O O
=
o

O O O

(@]
(@]

result of convolution with 9x9 mask = -20

Figure 6.7: Detecting Small Edges

6.5. MORE DIFFERENCES 65

The first section of Listing 6.1 shows the two Gaussian masks and the
function gaussian_edge. gaussian_edge has the same form as the other edge
detectors. An additional size parameter (either 7 or 9) specifies mask width.
The inner loop over a and b varies with this parameter. The processing
portion is the same as the other convolution mask edge detectors presented
in Chapter 5. With gaussian_edge, thresholding can produce a clear edge
image or leave it off to show the strength of the edges.

Figure 6.8 shows the result of edge detection using the narrower 7x7 mask
and Figure 6.9 shows the result of the wider 9x9 mask. The narrower mask
(Figure 6.8) detected all the edges of the bricks, roof shingles, and leaves.
The wider mask (Figure 6.9) did not detect the edges of small objects, only
edges of the larger objects. Figure 6.8 might be too cluttered, so use the
wider mask. If fine detail is desired, the narrower mask is the one to use.

L

] L)
% AR B
H a1 o :; ﬁ 2 E m A= smprrgra
3 e T m = LLLL R
e poneTEEE It | o ::‘_ o]i] '_:_
et e REGE

Figure 6.8: Result of Gaussian Edge Detector with 7x7 Mask

6.5 More Differences

The other edge detectors presented so far can detect edges on different size
objects. The homogeneity operator can take the difference of the center pixel
and a pixel that is two or three pixels away. The difference edge detector
can take the difference of opposite pixels in a 5xb or 7x7 area instead of a
3x3 area. The quick mask in Chapter 5 can change from 3x3 to 5x5 with the
center value equal to 4 and the four corners equal to -1. Try these changes
as an exercise.

66 CHAPTER 6. ADVANCED EDGE DETECTION

s
P =,
L
= o= i L}
v, £ ;
2 5
) s
- ;
. ., . 2 =

S L —

= _‘--;,'-.-'
B B T e THa LY LU

Figure 6.9: Result of Gaussian Edge Detector with 9x9 Mask

6.6 Contrast-based Edge Detector

One problem with detecting edges involves uneven lighting in images. The
contrast-based edge detector [6.4] helps take care of this problem. In well lit
areas of an image the edges have large differences in gray levels. If the same
edge occurs in a poorly lit area of the image, the difference in gray levels is
much smaller. Most edge detectors result in a strong edge in the well lit area
and a weak edge in the poorly lit area.

The contrast-based edge detector takes the result of any edge detector and
divides it by the average value of the area. This division removes the effect
of uneven lighting in the image. The average value of an area is available by
convolving the area with a mask containing all ones and dividing by the size
of the area.

Figure 6.10 illustrates the contrast-based edge detector. Almost any edge
detector can be the basis for this operation. Figure 6.10 uses the quick edge
detector from Chapter 5. The edge in the well lit area is an obvious and
strong edge. Convolving the quick mask with this area yields 100. The edge
in the poorly lit area is easy to see, but convolving with the quick mask
results in 10, a weak edge that thresholding would probably eliminate. This
distinction should be avoided. The well lit and poorly lit edges are very
similar; both change from one gray level to another gray level that is twice
as bright.

Dividing by the average gray level in the area corrects this discrepancy.
Figure 6.10 shows the smoothing mask that calculates the average gray level.

6.6. CONTRAST-BASED EDGE DETECTOR 67

Edge Detector Mask
-1 0 -1
0 4 O
-1 0-1

Edge in well 1lit area

50 100 100
50 100 100 convolution with edge mask yields:
50 100 100 400 - 50 - 50 - 100 - 100 = 100

Edge in poorly 1lit area

5 10 10
5 10 10 convolution with edge mask yields:
5 10 10 40 - 5 -5-10 - 10 = 10

Smoothing mask
179« 1 1 1
1 1 1

convolution of smoothing mask with edge in well 1it area yields:
50+50+50+100+100+100+100+100+100 / 9 = 750/9 = 83

convolution of smoothing mask with edge in poorly 1lit area yields:
5+5+5+10+10+10+10+10+10 / 9 = 75/9 = 8

dividing original convolution by the smoothing mask result:

edge in well 1lit area: 100 / 83 =1

Il
'_L

edge in poorly lit area: 10 / 8

Figure 6.10: Contrast-Based Edge Detector

68 CHAPTER 6. ADVANCED EDGE DETECTION

Convolving the well lit area yields an average value of 83. Convolving the
poorly lit area yields an average value of eight. Dividing (integer division)
the strong edge in the well lit area by 83 yields one. Dividing the weak edge
by eight also gives a result of one. The two edges from unevenly lit areas
yield the same answer and you have consistent edge detection.

The next section of Listing 6.1 shows the contrast_edge function that
follows the same steps as the other edge detector functions. The difference is
in the processing loop over a and b, which calculates two convolutions: sum_n
(the numerator or quick edge output) and sum_d (the smoothing output).
After the loops over a and b, divide sum_d by nine and divide sum_n by this
result. The e mask at the beginning of Listing 6.1 replaces the quick mask
from Chapter 5, with every element in the quick mask multiplied by nine.
The larger values are necessary because dividing by the average gray level
could reduce the strength of all edges to zero.

Figure 6.11 shows the result of the regular quick edge detector. Fig-
ure 6.12 shows the result of dividing the quick edge result by the average
value to produce contrast-based edge detection. Notice the inside of the up-
stairs and downstairs windows. Figure 6.11 (quick edge) shows edges inside
the downstairs windows, but not inside the upstairs windows. Figure 6.12
(contrast-based) shows details inside the downstairs and upstairs windows.
Refer to the original image (Figure 6.1). The downstairs windows are shaded
and the upstairs windows are not. Contrast-based edge detection gives better
results in uneven lighting.

Figure 6.11: Result of Quick Edge Detector

6.7. EDGE ENHANCEMENT 69

Figure 6.12: Result of Contrast-Based Edge Detector

Contrast-based edge detection is possible with any edge detector. As a
project, try modifying the homogeneity edge detector by dividing its result
by the average gray level — but first multiply the result of homogeneity by
a factor (nine or more) so dividing does not reduce edge strengths to zero.
Modify any of the other edge detectors in a similar manner.

6.7 Edge Enhancement

A good application of edge detectors is to enhance edges and improve the
appearance of an original image. Detect the edges in an image and overlay
these edges on top of the original image to accent its edges. The last section
of Listing 6.1 shows the enhance_edges function, which repeats the quick_edge
function from Chapter 5 with a few added lines of code. Examine the code
right after the loops over a and b. If the result of convolution (the sum
variable) is greater than a user-chosen threshold, the output image is assigned
that value. If not, the output image is assigned the value from the input
image. The result is the input image with its strong edges accented.

Figure 6.13 shows the result of enhancing the edges of Figure 6.1. The
edges of the bricks, the siding in the left, and the lines on the garage door
are all sharper.

Any edge detector can be used to enhance the edges in an input image.
Simply add the option of taking the edge detector result or a value from the
input image. An interesting project would be to use the 9x9 Gaussian mask

70 CHAPTER 6. ADVANCED EDGE DETECTION

Figure 6.13: Result of Edge Enhancement

to detect the edges of large objects and then use these edges to enhance the
input image.

6.8 Variance and Range

The chapter ends with two edge detectors similar to the difference edge de-
tector in that they look at the image numbers inside a small area. The
variance operator, examines a 3x3 area and replaces the center pixel with
the variance. The variance operator subtracts the pixel next to the center
pixel, squares that difference, adds up the squares of the differences from
the eight neighbors, and takes the square root. The other edge detector, the
range operator, sorts the pixels in an nxn area and subtracts the smallest
pixel value from the largest to produce the range.

Figure 6.14 shows the results of applying the variance and range operators
to an array of numbers. Figures 6.15 and 6.16 show the outcome of applying
these operators.

6.9 Applications
Listing 6.2 shows the medge program that ties together all the edge detectors

from this and the previous chapter. The user chooses among 11 different edge
detectors. Entering the medge command without any parameters causes the

71

6.9. APPLICATIONS

Input

5 5 5 510 10 10 10 20 20 20 20
5 5 5 510 10 10 10 20 20 20 20
5 5 5 510 10 10 10 20 20 20 20
5 5 5 510 10 10 10 20 20 20 20
5 5 5 510 10 10 10 20 20 20 20
5 5 5 510 10 10 10 20 20 20 20
5 5 5 510 10 10 10 20 20 20 20
5 5 5 510 10 10 10 20 20 20 20

Variance Output

0 0 07 7 0 01414 0 O O
0 0 07 7 0 01414 0 O O
0o 0 6 7 7 0 01414 0 O O
0 0 6 7 7 0 01414 0 O O
0 0 06 7 7 0 01414 0 O O
0 0 07 7 0 01414 0 O O
0O 0 07 7 0 01414 0 O O
0o 0 6 7 7 0 01414 0 O O

Range Output

0 0 055 0 01010 0 0 O
0 0 055 0 01010 0 0 O
0 6 06 65 0 01010 0 0 O
0 6 06 565 0 01010 0 0 O
0 6 0 55 0 01010 0 0 O
0 0 0 55 0 01010 0 0 O
0 0 055 0 01010 0 0 O
0 0 06 565 0 01010 0 0 O

Figure 6.14: The Results of Applying the Variance and Range Operators to

an Array of Numbers

72 CHAPTER 6. ADVANCED EDGE DETECTION

Figure 6.15: Result of Variance Edge Detector

st s et 7

Figure 6.16: Result of Range Edge Detector

6.10. CONCLUSIONS 73

usage message to appear and give examples of each operator. Regardless of
the operator chosen, the program does the usual creating an output image
file, allocating arrays, and reading input data. The program uses the second
command line parameter to step into an if statement to interpret the other
parameters. It then calls the desired edge detector and writes the result
to the output image. The medge program serves as a pattern for programs
in the following chapters that collect a number of related image processing
operations.

6.10 Conclusions

This chapter has continued the discussion of edge detectors. The homogene-
ity, difference, variance, and range edge detectors work by subtracting pixel
values inside a small area around an edge. The Gaussian edge detector con-
volves an image with a “Mexican hat” image piece. The contrast-based edge
detector compensates for differences in brightness levels in different parts of
an image. These edge detectors will be used again during the segmentation
chapters later in this book.

6.11 References

6.1 “Recognizing Objects in a Natural Environment: A Contextual Vision
System (CVS),” Martin A. Fischler, Thomas M. Strat, Proceedings Image
Understanding Workshop, pp. 774-796, Morgan Kaufmann Publishers, May
1989.

6.2 “Digital Image Processing,” Kenneth R. Castleman, Prentice-Hall, 1979.
6.3 “Vision in Man and Machine,” Martin D. Levine, McGraw-Hill, 1985.
6.4. “Contrast-Based Edge Detection,” R. P. Johnson, Pattern Recognition,
Vol. 23, No. 3/4, pp. 311-318, 1990.

74

CHAPTER 6. ADVANCED EDGE DETECTION

Chapter 7

Spatial Frequency Filtering

7.1 Spatial Frequencies

All images and pictures contain spatial frequencies. Most of us are familiar
with some type of frequency such as the 60-cycle, 110-volt electricity in our
homes. The voltage varies in time as a sinusoid, and the sinusoid completes
a full cycle 60 times a second — a frequency of 60 Hertz.

Images have spatial frequencies. The gray level in the image varies in
space (not time), i.e. it goes up and down. Figure 7.1 shows the side view of
an image with low spatial frequencies. The gray level is low at the left edge
of the figure, stays constant for a while, then shifts to a higher gray level.
The gray level is fairly constant throughout (only one change in space) and
so the figure has low spatial frequencies.

Figure 7.2 shows the side view of an image with high spatial frequencies.
The gray level changes many times in the space of the image. The rate or
frequency of change in the space of the image is high, so the image has high
spatial frequencies.

7.2 Filtering

Filtering is also a common concept. Adjusting the bass and treble on stereos
filters out certain audio frequencies and amplifies others. High-pass filters
pass high frequencies and stop low frequencies. Low-pass filters stop high
frequencies and pass low frequencies. In the same manner, it is possible to
filter spatial frequencies in images. A high-pass filter will amplify or “pass”

5

76 CHAPTER 7. SPATIAL FREQUENCY FILTERING

Gray‘Level

»
>

Distance

Figure 7.1: Side View of an Image with Low Spatial Frequencies

Gray‘};evel

[
»

Distance

Figure 7.2: Side View of an Image with High Spatial Frequencies

7.3. APPLICATION OF SPATIAL IMAGE FILTERING 7

frequent changes in gray levels and a low-pass filter will reduce frequent
changes in gray levels.

Consider the nature of a frequent or sharp change in gray level. Figure 7.1
showed an image with only one change in gray level. That change, however,
was very sharp — it was an edge. A high-pass filter will pass, amplify, or
enhance the edge. A low-pass filter will try to remove the edge. Instead of an
instant move from one gray level to another, the low-pass filter will produce
a gradual slope between the two levels. The two gray levels will still exist,
but the transition will be slower.

7.3 Application of Spatial Image Filtering

Spatial image filtering has several basic applications in image processing.
Among these are noise removal, smoothing, and edge enhancement. Noise in
an image usually appears as snow (white or black) randomly sprinkled over
an image. Spikes, or very sharp, narrow edges in the image cause snow. A
low-pass filter smoothes and often removes these sharp edges.

Edge enhancement improves the appearance of an image by sharpening
the outlines of objects. Chapter 6 described how an edge detector enhanced
edges. The detected edges were overlaid on top of the original image to
emphasize the edges. A high-pass filter produces the same result in one
operation.

7.4 Frequency vs. Spatial Filtering

Consider sound as noise varying in the time domain, i.e. the pitch of the noise
varies with time. A pure sinusoid completing a cycle 1000 times a second is a
1KHz tone. In the frequency domain, this is a single value at 1000. To filter
it out, multiply it by a low-pass filter that only passes frequencies below 900
cycles per second. Picture the low-pass filter as an array with the value of
one in all places from zero through 900 and the value zero in all places above
900.

Multiplication in the frequency domain is a simple idea, however, there
is one problem. People hear sound in the time domain. The signal, however,
must be transformed to the frequency domain before multiplication. Fourier
transforms do this tranformation [7.1]. Fourier transforms require substantial

78 CHAPTER 7. SPATIAL FREQUENCY FILTERING

0 1 0
1/6 x 1 2 1
0 1 0
1 1 1
1/9 x 1 1 1
1 1 1
1 1 1
1/10 x 1 2 1
1 1 1
1 2 1
1/16 * 2 4 2
1 2 1

Figure 7.3: Low-Pass Filter Convolution Masks

computations, and in some cases is not worth the effort.

Multiplication in the frequency domain corresponds to convolution in the
time and the spatial domain (such as in Chapter 5). Using a small convolution
mask, such as 3x3, and convolving this mask over an image is much easier
and faster than performing Fourier transforms and multiplication.

7.5 Low-Pass Filtering

Low-pass filtering smoothes out sharp transitions in gray levels and removes
noise. Figure 7.3 shows four low-pass filter convolution masks. Convolving
these filters with a constant gray level area of an image will not change the
image. Notice how the second convolution mask replaces the center pixel
of the input image with the average gray level of the area. The other three
masks have the same general form — a “peak” in the center with small values
at the corners.

The next four figures show numerical examples of how a low-pass fil-
ter affects an image. Figure 7.4 shows an image segment with low spatial
frequencies. The image segment changes gray level once, but with a sharp

7.5. LOW-PASS FILTERING 79

150 150 150 150 150
150 150 150 150 150
150 150 150 150 150
150 150 150 150 150
150 150 150 150 150

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Figure 7.4: An Image Segment with Low Spatial Frequencies

150 150 150 150 150
1 1 1 1 1
150 150 150 150 150
1 1 1 1 1
150 150 150 150 150
1 1 1 1 1
150 150 150 150 150
1 1 1 1 1
150 150 150 150 150
1 1 1 1 1

Figure 7.5: An Image Segment with High Spatial Frequencies

transition. Figure 7.5 shows an image segment with higher spatial frequen-
cies. It changes gray level every row of pixels, with every change a sharp
transition.

Figure 7.6 shows the result of convolving the first 3x3 low-pass filter
mask of Figure 7.3 with the image segment given in Figure 7.4. The high
and low gray-level rows remain, but the transition differs. The low-pass filter
smoothed the transition from one row to three rows of pixels. In a photograph
this would make the edge look fuzzy or blurred.

Figure 7.7 shows the result of convolving the first 3x3 low-pass filter
mask of Figure 7.3 with the image segment given in Figure 7.5. The image
in Figure 7.7 still has transitions or edges from row to row. The low-pass

80 CHAPTER 7. SPATIAL FREQUENCY FILTERING

150 150 150 150 150
150 150 150 150 150
150 150 150 150 150
150 150 150 150 150
125 125 125 125 125
256 256 256 25 25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Figure 7.6: Low-Pass Filtering of Figure 7.4

filter, however, reduced the magnitude of these transitions. In a photograph
they would appear dimmer or washed out when compared with the original
in Figure 7.5.

7.6 Median Filters

A special type of low-pass filter is the median filter [7.2]. The median filter
takes an area of an image (3x3, 5x5, 7x7, etc.), looks at all the pixel values in
that area, and replaces the center pixel with the median value. The median
filter does not require convolution. It does, however, require sorting the
values in the image area to find the median value.

There are two noteworthy features of the median filter. First, it is easy
to change the size of the median filter. (The images later will show the effect
of using a different size.) Implementing the different size is a simple matter
of for loops in the code.

Second, median filters remove noise in images, but change noise-free parts
of images minimally. Consider the influence of a 3x3 median filter on the
image segments in Figures 7.4 and 7.5. The image in Figure 7.4 would not
change. Centering the 3x3 filter on the last row of 150s yields a median value
of 150. Centering it the first row of 1s yields a median value of one. The
image in Figure 7.5 would change, but the change would not be obvious. The
filter would replace the rows of 150s with rows of 1s and would replace the

7.7. EFFECTS OF LOW-PASS FILTERING 81

100 100 100 100 100
50 50 50 50 50
100 100 100 100 100
50 50 50 50 50
100 100 100 100 100
50 50 50 50 50
100 100 100 100 100
50 50 50 50 50
100 100 100 100 100
50 50 50 50 50

Figure 7.7: Low-Pass Filtering of Figure 7.5

rows of 1s with rows of 150s.

7.7 Effects of Low-Pass Filtering

Figure 7.8 is an aerial image spotted with noise. There are two streets running
vertically with rows of houses on either sides of the streets. The white dots all
over the trees are noise. The noise came from a poor photograph compounded
by less than perfect scanning. Figures 7.9, 7.10, 7.11, and 7.12 show the result
of applying the low-pass filters to the image in Figure 7.8. The four results
are all similar. The filters removed the snow from Figure 7.8 and retained the
appearance of the houses and streets. My personal favorite is Figure 7.12,
but you should apply all four masks to your image and decide for yourself.
The masks are different and produce different results sometimes noticeable,
sometimes not.

Figure 7.13 shows the result of applying a 3x3 median filter to Figure
7.8. The filter removed the snow but left the areas of houses and streets
unchanged.

Figures 7.15, 7.16, and 7.17 show the result of applying three different
median filters (3x3, 5x5, and 7x7) to the house image in Figure 7.14. In
the result of the 3x3 filter (Figure 7.15), the trees start to appear fuzzy
and the lines between the bricks disappear. In the result of the 5x5 filter
(Figure 7.16), the trees are blotches, the bricks only textures, and the other
details are disappearing. Finally, the 7x7 filter (Figure 7.17) eliminates all

82 CHAPTER 7. SPATIAL FREQUENCY FILTERING

Figure 7.8: Noisy Aerial Image

Figure 7.9: Result of Low-Pass Filter Mask #6

7.7. EFFECTS OF LOW-PASS FILTERING

Figure 7.11: Result of Low-Pass Filter Mask #10

83

84 CHAPTER 7. SPATIAL FREQUENCY FILTERING

Figure 7.13: Result of 3x3 Median Filter

7.7. EFFECTS OF LOW-PASS FILTERING 85

detail. The “best” filter for this image is probably the 3x3 filter. Images
with different size details and noise would require different size filters.

Figure 7.14: House Image

Note how in Figure 7.17 only the large objects are recognizable, such as
windows, roof, window frames, door frames, and door. This is an excellent
starting point for a part of image processing called segmentation. In segmen-
tation, the computer attempts to find the major objects in the image and
separate or segment them from the other objects. Segmentation would be
difficult with Figure 7.14 because it contains too many small and insignifi-
cant objects, such as bricks and leaves. Figure 7.17 is so fuzzy that only the
large objects are recognizable. Later chapters will discuss segmentation.

Although the size and results of median filters are easy to change, the
process can be slow. The 3x3 median filter and the 3x3 convolution filters
work equally fast. However, when moving to 5x5 and beyond, the median
filter slows down noticeably because of the continuous sorting and picking of
the median value.

86 CHAPTER 7. SPATIAL FREQUENCY FILTERING

Figure 7.15: Result of 3x3 Median Filter

Figure 7.16: Result of 5x5 Median Filter

7.8. IMPLEMENTING LOW-PASS FILTERING 87

Figure 7.17: Result of 7x7 Median Filter

7.8 Implementing Low-Pass Filtering

Listing 7.1 shows the source code for the low-pass and median filters. The
first section of code declares the four low-pass filter masks (then three high-
pass filter masks which we’ll discuss later).

The major filtering function is filter_image. This implements the low-pass
(and high-pass) convolution filters. filter_image resembles the convolution-
based, edge-detection functions in Chapters 5 and 6.

The d=type statements set up the denominator for later use. The low-
pass filter masks should have fractions in front of them (1/6, 1/9, 1/10, and
1/16). Using the fractions in convolution masks would require floating-point
arrays and operations. It is much simpler and quicker to use shorts and then
divide the final result.

filter_image reads an array from the input image and goes into the for
loops to perform the convolution. These loops move through the image array
and do the 3x3 multiplication and summing. The sum is divided by the
denominator mentioned above and set to the max or min value in case of
overrun. filter_image finishes by calling fix_edges to fill the edges of the
output and writes the array to the output file.

The next function in Listing 7.1, median_filter, implements the variable-

88 CHAPTER 7. SPATIAL FREQUENCY FILTERING

size median filter. The key to this filter is finding the median pixel value in
the nxn area being filtered. This routine does this by creating an array to
hold the pixel values, sorting the array, and taking the middle number in the
sorted array. First, it allocates the elements array to hold the pixel values
by calling malloc.

median_filter goes into a series of loops which cover the entire image
array. As it moves through the image, it copies an nxn area of pixel values
surrounding each point to the elements array. The output image array is set
to the median_of the elements array. median filter calls fix_edges to fill out
the edges of the output and writes it to the output image file.

The next function in Listing 7.1 is median_of. This calls fsort_elements to
sort the elements array and returns the middle element of the sorted array.
The fsort_elements function (next in Listing 7.1) is a bubble sort. It calls the
fswap function (also in Listing 7.1) to swap elements.

7.9 High-Pass Filtering

High-pass filters amplify or enhance a sharp transition (an edge) in an image.
Figure 7.18 shows three 3x3 high-pass filter convolution masks. Each will
leave a homogenous area of an image unchanged. They all have the same
form — a peak in the center, negative values above, below, and to the sides of
the center, and corner values near zero. The three masks, however, produce
different amplifications to different high spatial frequencies.

7.10 Effects of High-Pass Filtering

Figures 7.19 and 7.20 show the results of applying the first high-pass filter
mask to Figures 7.4 and 7.5. In Figure 7.19 (the result of filtering Figure
7.4) the high-pass filter amplified the edge. The transition from 150 to one is
now from 255 to zero. In a photograph this would appear as adjacent black
and white lines. In Figure 7.20 (the result of filtering Figure 7.5) the high-
pass filter amplified the many edges, making the transitions all from 255 to
zero. This would appear as alternating black and white lines in a photograph.
Notice the differences between Figures 7.19 and 7.20 and Figures 7.5 and 7.6.
The low-pass filter (Figures 7.5 and 7.6) smoothed the edges. In contrast,
the high-pass filter enhanced them.

7.10. EFFECTS OF HIGH-PASS FILTERING

150 150
150 150
150 150
150 150
255 255

= e e
ke

Figure 7.18: High-Pass Filter Convolution Masks

150 150 150
150 150 150
150 150 150
150 150 150
255 255 255

i i =
[l i
el el e e @)

Figure 7.19: Result of High-Pass Filter on Figure 7.4

90 CHAPTER 7. SPATIAL FREQUENCY FILTERING

255 255 255 255 255
6o o0 0 0 O
255 255 255 265 255
6o o0 0 0 O
255 255 255 255 255
0o o0 o0 0 O
255 255 2565 266 265
6o o0 0 0 O
255 255 255 2565 255
0o o0 0 0 O

Figure 7.20: Result of High-Pass Filter on Figure 7.5

Figures 7.21, 7.22, and 7.23 show what the high-pass filters will do to the
house image of Fiure 7.14. Figure 7.21 shows the result of the first high-pass
filter convolution mask. Look closely at the differences between Figures 7.14
and 7.21. In Figure 7.21 you can see leaves, shingles on the roof, the texture
of the screen door, and far greater contrast in the bricks and mortar. This
high-pass filter has enhanced the details of the image.

Figure 7.22 shows the result of the second high-pass filter convolution
mask. This image is almost black and white (few gray levels between). The
details (edges) were enhanced, but probably too much. Figure 7.23 shows
the result of the third high-pass filter convolution mask. This image contains
many tiny highlights in the leaves of the trees and noise or snow in the
remaining parts.

These images show the differences in the filtering properties of the three
masks. The third filter mask has little affect on low spatial frequencies and
a great affect on areas with relatively high spatial frequencies. So it does not
enhance the bricks but does enhance the tiny leaves in the trees. The second
filter has a high gain on most high frequencies (edges). So it produced an
almost black and white image — all the edges were amplified greatly. The
first filter amplifies all edges, but not with a high gain. The filter enhanced,
but did not saturate, the edges. Each filter has its own unique properties
and you should use them to their advantage. Try all three on an image and
choose the enhancement you prefer.

7.10. EFFECTS OF HIGH-PASS FILTERING 91

Figure 7.21: Result of High-Pass Filter Mask #1

Figure 7.22: Result of High-Pass Filter Mask #2

92 CHAPTER 7. SPATIAL FREQUENCY FILTERING

Figure 7.23: Result of High-Pass Filter Mask #3

7.11 Implementing High-Pass Filtering

The high-pass filters use the same function, filter_image, as the low-pass
filters, but the user send filter_image it a different filter mask. Listing 7.1,
contains the function setup_filters. This copies a filter mask declared at the
top of Listing 7.1 into a 3x3 filter array.

Listing 7.2 shows the main routine of the mfilter program. This is similar
to the medge program described in chapter 6. The mfilter program interprets
the command line input to call one of several types of image filters. It contains
the usual calls to create an output image, allocate image arrays, read input,
and finally write the result to the output image file.

7.12 Conclusion

This chapter has discussed spatial frequencies in images and how to filter
these frequencies. It demonstrated several types of low-pass and high-pass
filters on various images. These are not the only filter masks available. Those
familiar with Fourier transforms could derive other masks and also experi-
ment with band-pass and band-stop filters.

7.13. REFERENCES 93

7.13 References

7.1 “An Introduction to Digital Signal Processing,” John H. Karl, Academic

Press, 1989.
7.2 “Vision in Man and Machine,” Martin D. Levine, McGraw-Hill, 1985.

94

CHAPTER 7. SPATIAL FREQUENCY FILTERING

Chapter 8

Image Operations

8.1 Introduction

This chapter introduces several basic image operations that allow you to
have fun with images. These operations are adding and subtracting images
and cutting and pasting parts of images. The chapter ends with two utility
programs. The first creates blank images, and the second inverts the pixel
values in images. As the images will show, these allow editing images by
piecing them together.

8.2 Addition and Subtraction

Figure 8.1 illustrates the first operations: image addition and subtraction.
Image addition adds each pixel in one image to each pixel in another and
places the result in a third image. If the sum is greater than the maximum
pixel value, it sets the sum to the maximum value. Image subtraction is the
same. If the difference is less than 0, it sets it to zero.

Image addition and subtraction can place objects into and remove objects
from images. One application subtracts two images in a sequence to see what
has changed. For example, take an aerial photograph of a factory two days
in a row, subtract the second from the first, and detect what has moved from
day to day.

Image subtraction can also remove features. Figure 8.2 shows a house.
Figure 8.3 shows the output of an edge detector applied to Figure 8.2. Figure
8.4 shows the result of subtracting the edges from the original image. Note

95

96

Image A
0 100
200 255

A+ B
50 250
255 255

Image B
50 150
250 200

A-B
0 0
0 55

CHAPTER 8. IMAGE OPERATIONS

Figure 8.1: Addition and Subtraction of Images

how the edges in Figure 8.4 are whitened out or removed.

Figure 8.2: A House Image

Listing 8.1 shows the functions that implement image addition and sub-
traction. The add_image_array function adds two image arrays. This func-
tion shows the simplicity of image operators using the structure of image
I/O routines presented in chapter 1. The operators don’t do any image 1/0
— they simply operator on images. The code adds the two image arrays
and puts the result in the output image array. If the sum of two pixels is
greater than the maximum pixel value, you set it to the maximum value.
The subtract_image_array function is the same as add_image_array except

8.2. ADDITION AND SUBTRACTION

Figure 8.4: Figure 8.2 Minus Figure 8.3 (Edges Subtracted)

97

98 CHAPTER 8. IMAGE OPERATIONS

Image A Image B Cut and Paste Result
1 2 3 4 0 1 0 1 1 2 3 4
5 6 7 8 0 1 0 1 5 1 0 1
9 10 11 12 0 1 0 1 9 1 0 1
13 14 15 16 0 1 0 1 131 0 1

Figure 8.5: Cutting and Pasting

it subtracts the pixels in one image array from the corresponding pixels in
another image array.

These simple functions may seem insignificant. They only add and sub-
tract, but did you ever do anything useful by adding and subtracting num-
bers? Think of the possibilities and experiment.

Listing 8.2 shows the mainas program. It allows a person to call the
add_image_array and subtract_image_array routines from the command line.
It has the same form as other main routines. Note how it uses the
are_not_same_size routine to ensure the two images have the same size.

8.3 Rotation and Flipping

The first edition of this book presented software that could rotate and flip
images. This edition covers these topics in chapter 13. The methods used
for rotation in this edition are far superior to those given in the first edition.

8.4 Cut and Paste

The next operations are image cut and paste. They allow cutting rectangular
areas from one image and pasting them into another. Figure 8.5 shows a cut
and paste example where a section of image B was pasted into image A by
reading from one image and writing into another one. Figure 8.6 shows the
result of pasting parts of the image in Figure 8.3 into the image in Figure
8.2. This demonstrates a method of judging the affect of image processing
operators by pasting the processing results back into the original image.
Listing 8.3 shows the function paste_image_piece. This takes in two image
arrays and line and element parameters that describe where in the input array
to cut a rectangle and where in the output array to paste it. The code that

8.5. IMAGE SCALING 99

Figure 8.6: Section of Figure 8.3 Cut and Pasted Into Figure 8.2

performs the pasting comprises simple loops that copy numbers from one
array to another.

Much of the cut and paste work is done is the main routine of the
maincp program shown in listing 8.4. The main program checks the com-
mand line parameters, allocates arrays, and reads image arrays. It then
calls check_cut_and_paste_limits to ensure that the input rectangle exists and
that it will fit in the output image. Listing 8.3 shows the source code for
check_cut_and_paste_limits.

8.5 Image Scaling

The first edition of this book presented software that could scale images.
This edition covers this topic in chapter 13. The method used for scaling in
this edition is far superior to that given in the first edition.

8.6 Blank Images

A handy utility program is one that creates a blank image. A blank image is
useful as a bulletin board to paste other images together. Figure 8.7 shows a

100 CHAPTER 8. IMAGE OPERATIONS

composite made of two images pasted onto a blank image. The two images
are of a boy with one being the negative of the other (more on this in the
next section).

Figure 8.7: Two Images Pasted Onto a Blank Image

Listing 8.5 shows the create program that created the blank image. This
interprets the command line, sets up the image header, and calls with cre-
ate_allocate_tiff_file or create_allocate_bmp_file. Those routines fill the blank
image with zeros.

8.7 Inverting Images

Another handy utility program inverts the pixels in an image. Some images
appear as negatives for certain image viewers. The boy in the upper part of
Figure 8.7 is the negative of the boy in the lower part. The invert program
created on from the other. The invert program reads the input image, inverts

8.8. CONCLUSION 101

the pixels by subtracting them from the number of gray shades (0 becomes
255, 1 becomes 254, etc.), and writes the output image to disk. I don’t use
invert often, but it is essential.

8.8 Conclusion

This chapter described several image operations that provide the ability to
edit images by adding and subtracting and cutting and pasting. It described
two utility programs that create blank images and invert images. These
operations are fun because they allow you to place original images and pro-
cessing results together in combinations and display them all at once. Enjoy
and experiment. These are low-level tools that you can combine in an endless
variety of ways.

102 CHAPTER 8. IMAGE OPERATIONS

Chapter 9

Histogram-Based Segmentation

This chapter describes simple image segmentation based on histograms and
image thresholding. Image segmentation is the process of dividing an image
into regions or objects. It is the first step in the task of image analysis. Image
processing displays images and alters them to make them look “better,” while
image analysis tries to discover what is in the image.

The basic idea of image segmentation is to group individual pixels (dots
in the image) together into regions if they are similar. Similar can mean they
are the same intensity (shade of gray), form a texture, line up in a row, create
a shape, etc. There are many techniques available for image segmentation,
and they vary in complexity, power, and area of application.

9.1 Histogram-Based Segmentation

Histogram-based image segmentation is one of the most simple and most
often used segmentation techniques. It uses the histogram to select the gray
levels for grouping pixels into regions. In a simple image there are two
entities: the background and the object. The background is generally one
gray level and occupies most of the image. Therefore, its gray level is a large
peak in the histogram. The object or subject of the image is another gray
level, and its gray level is another, smaller peak in the histogram.

Figure 9.1 shows an image example and Figure 9.2 shows its histogram.
The tall peak at gray level 2 indicates it is the primary gray level for the
background of the image. The secondary peak in the histogram at gray level
8 indicates it is the primary gray level for the object in the image. Figure

103

104 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

22222232221222212222
32222321250132123132
22588897777788888232
12988877707668882122
22888892326669893213
21278221222666665222
22002222220226660225
21221231223266622321
32238852223266821222
21288888342288882232
22328888899888522121
22123988888889223422
23222278888882022122
22232323883212123234
25221212222222222222
22122222320222202102
20222322412212223221
22221212222222342222
21222222221222222142

Figure 9.1: An Image Example

9.3 shows the image of Figure 9.1 with all the pixels except the 8s blanked
out. The object is a happy face.

This illustrates histogram-based image segmentation. The histogram will
show the gray levels of the background and the object. The largest peak
represents the background and the next largest peak the object. We choose
a threshold point in the valley between the two peaks and threshold the
image. Thresholding takes any pixel whose value is on the object side of the
point and sets it to one; it sets all others to zero. The histogram peaks and
the valleys between them are the keys.

The idea of histogram-based segmentation is simple, but there can be
problems. Where is the threshold point for the image of Figure 9.17 Choosing
the point mid-way between the two peaks (threshold point = 5), produces
the image of Figure 9.4. This is not the happy face object desired. Choosing
the valley floor values of 4 or 5 as the threshold point, also produces a poor
result. The best threshold point would be 7, but how could anyone know

9.1. HISTOGRAM-BASED SEGMENTATION 105

Number
A

>

012345617829 Gray Level

Figure 9.2: A Histogram of the Image of Figure 9.1

——--88--—————- g---—-

Figure 9.3: The Image in Figure 9.1 with All the Pixels Except the 8s Blanked
Out

106 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

00000000000000000000
00000000000000000000
00011111111111111000
00111111101111110000
00111110001111110000
00011000000111110000
00000000000001110000
00000000000011100000
00001100000011100000
00011111000011110000
00001111111111000000
00000111111111000000
00000011111110000000
00000000110000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 9.4: Figure 9.1 with a Threshold Point of 5

that without using trial and error?
This example is difficult because there are only ten gray levels and the
object (happy face) is small. In practice, the techniques discussed below will

perform adequately, but there will be problems. Automatic techniques will
fail.

9.2 Histogram Preprocessing

Histogram-based segmentation depends on the histogram of the image. There-
fore, the image and its histogram may need preprocessing before analyzing
them. The first step is histogram equalization, explained in Chapter 4. His-
togram equalization attempts to alter an image so its histogram is flat and
spreads out over the entire range of gray levels. The result is an image with
better contrast.

9.2. HISTOGRAM PREPROCESSING 107

Figure 9.5 shows an aerial image of several house trailers with its his-
togram. The contrast is poor and it would be very difficult to find objects
based on its histogram. Figure 9.6 shows the result of performing histogram
equalization. The contrast is much better and the histogram is spread out
over the entire range of gray levels. Figure 9.7 shows the result of performing
high-pass filtering on the image of Figure 9.6, explained in Chapter 7. It
is easy to see the house trailers, sidewalks, trees, bushes, gravel roads, and
parking lots.

Figure 9.5: Aerial Image with Poor Contrast

The next preprocessing step is histogram smoothing. When examining
a histogram, look at the peaks and valleys. Too many tall, thin peaks and
deep valleys will cause problems. Smoothing the histogram removes these
spikes and fills in empty canyons while retaining the same basic shape of the
histogram.

Figure 9.8 shows the result of smoothing the histogram given in Figure
9.2. You can still see the peaks corresponding to the object and background,

108 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

Figure 9.6: Result of Histogram Equalization on Figure 9.5

9.2. HISTOGRAM PREPROCESSING 109

Figure 9.7: Result of High-Pass Filtering on Figure 9.6

110 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

but the peaks are shorter and the valleys are filled.

Number
A

»

0123456173829 Gray Level
Figure 9.8: The Result of Smoothing the Histogram Given in Figure 9.2

Smoothing a histogram is an easy operation. It replaces each point with
the average of it and its two neighbors. Listing 9.1 shows the smooth_histogram
function that performs this operation.

9.3 Thresholding and Region Growing

There are two more topics common to all the methods of image segmenta-
tion: image thresholding and region growing. Image thresholding sets the
pixels in the image to one or zero. Listing 9.2 shows all the subroutines
used in this chapter’s segmentation techniques. It begins with the routine
threshold_image_array that accomplishes this task.

The difficult task is region growing. Figure 9.9 shows the result of thresh-
olding Figure 9.1 correctly. The “object” in Figure 9.9 is a happy face. It
comprises three different regions (two eyes and the smile). Region growing
takes this image, groups the pixels in each separate region, and gives them
unique labels. Figure 9.10 shows the result of region growing performed on
Figure 9.9. Region growing grouped and labeled one eye as region 1, the
other eye as region 2, and the smile as region 3.

Figure 9.11 shows the algorithm for region growing. It begins with an
image array g comprising zeros and pixels set to a value. The algorithm loops

9.3. THRESHOLDING AND REGION GROWING

00000000000000000000
00000000000000000000
00011100000011111000
00011100000001110000
00111100000000100000
00001000000000000000
00000000000000000000
00000000000000000000
00001100000000100000
00011111000011110000
00001111100111000000
00000011111110000000
00000001111110000000
00000000110000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 9.9: The Result of Correctly Thresholding Figure 9.1

111

112 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

00000000000000000000
00000000000000000000
00011100000022222000
00011100000002220000
00111100000000200000
00001000000000000000
00000000000000000000
00000000000000000000
00003300000000300000
00033333000033330000
00003333300333000000
00000033333330000000
00000003333330000000
00000000330000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 9.10: The Result of Region Growing Performed on Figure 9.9

9.4. HISTOGRAM-BASED TECHNIQUES 113

through the image array looking for a g(i,j) == value. When it finds such a
pixel, it calls the label_and_check neighbor routine. label and_check neighbor
sets the pixel to g label (the region label) and examines the pixel’s eight
neighbors. If any of the neighbors equal value, they are pushed onto a stack.
When control returns to the main algorithm, each pixel on the stack is popped
and sent to label_and_check_neighbor. All the points on the stack equaled
value, so set them and check their neighbors. After setting all the pixels in
the first region, increment g_label and begin looking for the next region.

Listing 9.2 next shows the functions that implement region growing with
grow being the primary routine. grow runs through the region-growing algo-
rithm and calls label_and_check neighbor (shown next in Listing 9.2). The
grow and label_and_check _neighbor functions follow the region- growing al-
gorithm step for step.

9.4 Histogram-Based Techniques

The following pages present four segmentation techniques: manual technique,
histogram peak technique, histogram valley technique, and adaptive tech-
nique.

9.4.1 Manual Technique

In the manual technique the user inspects an image and its histogram man-
ually. Trial and error comes into play and the result is as good as you want
it to be.

Figure 9.12 is the input for all the segmentation examples. Figures 9.13,
9.14, and 9.15 show the result of segmentation using three different thresh-
olds. The result in Figure 9.14 used a high of 255 and a low of 125. The
segmentation included the white gravel roads as well as the house trailers
and sidewalks. The result in Figure 9.14 used a high of 255 and a low of
175. The gravel roads begin to disappear, but the house trailers and side-
walks remain. Figure 9.15 shows the result using a high of 255 and a low of
225. This segmentation only finds the four dominant house trailers. Which
answer is correct? That depends on what you wanted to find.

Note that all image segmentations will appear rough. It is possible to
perform additional processing to make the result more pleasing to the eye
(see chapter 11 for erosion and dilation techniques), but that is not the

114 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

1. Given an image g with m rows and n columns
g(i,j) for i=1,m j=1,n
g(i,j) = value for object
= 0 for background

2. set g_label=2 this is the label value

3. for (i=0; i<m; i++)
scan ith row
for (j=0; j<n; j++)
check jth element
stack_empty = true
if g(i,j) == value
label_and_check_neighbor(g(i,j),g_label)
while stack_empty = false do
pop element (i,j) off the stack
label_and_check_neighbor(g(i,j),g_label)
end while
g_label = g_label + 1
end of checking jth element
end of scanning ith row

4. The End

procedure label_and_check_neighbor(g(r,e), g_label)
g(r,e) = g_label
for (R=r-1; r<=r+1; R++)
for (E=e-1; e<=e+l; e++)
if g(R,E) == value then
push (R,E) onto the stack
stack_empty = false
end if
end loop over E
end loop over R
end procedure label_and_check_neighbor

Figure 9.11: Pseudocode for Region Growing

9.4. HISTOGRAM-BASED TECHNIQUES 115

.-

P e e b 1k =

i

Figure 9.12: Input Image for Segmentation Examples

Figure 9.13: Threshold of Figure 9.12 with High=255 and Low=125

116 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

Figure 9.14: Threshold of Figure 9.12 with High=255 and Low=175

ok e B A EmEmEE

-' '.I. ".I H

Figure 9.15: Threshold of Figure 9.12 with High=255 and Low=225

9.4. HISTOGRAM-BASED TECHNIQUES 117

purpose of segmentation. The purpose is to break the image into pieces
so later computer processing can interpret their meaning. The output is
for computer not human consumption. Also note how difficult it is for the
computer, even with manual aid, to find objects that are trivial for humans
to see. Anyone could trace over the input image and outline the objects
better than the segmentation process.

Listing 9.2 next shows the code that implements manual segmentation.
The function manual_threshold _segmentation has the same form as the other
subroutines.

manual_threshold _segmentation has the usual inputs as well as the high
and low threshold values and the value and segment parameters. The value
parameter specifies the value at which to set a pixel if it falls between the
high and low thresholds. value is usually one since those pixels outside the
high-low range are set to zero. The segment parameter specifies whether or
not to grow regions after thresholding. Sometimes you only want to threshold
an image and not grow regions. The two operations are identical except for
the last step. If segment == 1, manual_threshold_segmentation calls the
region-growing routines.

Manual segmentation is good for fine tuning and understanding the op-
eration. Its trial-and-error nature, however, makes it time consuming and
impractical for many applications. We need techniques that examine the
histogram and select threshold values automatically.

9.4.2 Histogram Peak Technique

The first technique to examine the histogram and select threshold values
automatically uses the peaks of the histogram. This technique finds the two
peaks in the histogram corresponding to the background and object of the
image. It sets the threshold halfway between the two peaks. Look back at
the smoothed histogram in Figure 9.8. The background peak is at two and
the object peak is at seven. The midpoint is four, so the low threshold value
is four and the high is nine.

The peak technique is straightforward except for two items. In the his-
togram in Figure 9.8, you'll note the peak at seven is the fourth highest peak.
The peaks at one and three are higher, but they are part of the background
mountain of the histogram and do not correspond to the object. Searching
the histogram for peaks requires peak spacing to ensure the highest peaks
are separated. If the peak technique does not, then it would choose two as

118 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

————e— e e ——— *____*____
——————— K*——kk——k——k——

e e *——
__________________ *_
—fm———— fmm
——kk—————— *————— *——
—k——k——k——————————— *
——— — ————————————— *___
_* __________________
————————————————— *—k
e
e ok —
____________ Kk
____*_* _____________
——k————— e
—k——————— K——k—————— *
K
—k———————— *—————— *——

Figure 9.16: Result of Incorrect Peak Separation

the background peak and one as the object peak. Figure 9.16 shows the
disastrous effect of this.

The second item to watch carefully is determining which peak corresponds
to the background and which corresponds to the object. Suppose an image
had the histogram shown in Figure 9.17. Which peak corresponds to the
background? The peak for gray level eight is the highest, but it corresponds
to the object not the background. The reason is the mountain surrounding
the peak at gray level two has a much greater area than that next to gray
level eight. Therefore, gray levels zero through six occupy the vast majority
of the image, and they are the background.

Listing 9.2 next shows the source code to implement the peak technique.
peak_threshold_segmentation is the primary function. Next, it calls new func-
tions to find the histogram peaks and determine the high and low threshold
values. Finally, it thresholds the image, performs region growing if desired,
and writes the result image to the output file.

9.4. HISTOGRAM-BASED TECHNIQUES 119

Number
A

»

012345617829 Gray Level

Figure 9.17: A Histogram in which the Highest Peak Does Not Correspond
to the Background

The functions find_peaks and insert_into_peaks in Listing 9.2 analyze the
histogram to find the peaks for the object and background. These functions
build a list of histogram peaks. There are several ways to do this. I used
an array of values. find_peaks loops through the histogram and calls in-
sert_into_peaks, which puts the histogram values in the proper places in the
array. find_peaks ends by looking at the spacing between the largest peaks
to ensure we do not have a disaster such as shown in Figure 9.16.

The function peaks_high low takes the two peaks from find _peaks and cal-
culates the high-and low-threshold values for segmentation. peaks_high_low
examines the mountains next to the peaks as illustrated in Figure 9.17. It
then finds the midpoint between the peaks and sets the high and low thresh-
old values.

Figure 9.18 shows the result of applying the peak technique to the image
of Figure 9.12. The peak technique found the two peaks at 255 and 77. The
midpoint is 166, so the high threshold is 255 and the low threshold is 166.
This is a reasonably good segmentation of Figure 9.12.

9.4.3 Histogram Valley Technique

The second automatic technique uses the peaks of the histogram, but con-
centrates on the valleys between them. Instead of setting the midpoint arbi-

120 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

Figure 9.18: Threshold of Figure 9.12 Using Peak Technique (High=255 and
Low=166)

trarily halfway between the two peaks, the valley technique searches between
the two peaks to find the lowest valley.

Look back at the histogram of Figure 9.17. The peaks are at gray levels
two and eight and the peaks technique would set the midpoint at five. In
contrast, the valley technique searches from two through eight to find the
lowest valley. In this case, the “valley point” is at gray level seven.

Listing 9.2 shows the code that implements the valley technique. The pri-
mary function is valley_threshold_segmentation. It calculates and smoothes
the histogram and finds the peaks as peak_threshold _segmentation did. It
finds the valley point via the functions valley_high low, find_valley_point, and
insert_into_deltas. find_valley_point starts at one peak and goes to the next,
inserting the histogram values into a deltas array via the insert_into_deltas
function. This uses an array to create a list of deltas in the same manner
as insert_into_peaks did. Once it has valley point, valley_high low checks
the mountains around the peaks to ensure it associates the peaks with the
background and object correctly.

Figure 9.19 shows the result of applying the valley technique to the image
in Figure 9.12. It found the peaks at 77 and 255 and went from 77 up to
255 looking for the lowest valley. It pinpointed the lowest valley at gray level
241.

9.4. HISTOGRAM-BASED TECHNIQUES 121

1
"

L
-

Figure 9.19: Threshold of Figure 9.12 Using Valley Technique (High=255
and Low=241)

9.4.4 Adaptive Histogram Technique

The final technique uses the peaks of the histogram in a first pass and adapts
itself to the objects found in the image in a second pass [9.1]. In the first
pass, the adaptive technique calculates the histogram for the entire image.
It smoothes the histogram and uses the peak technique to find the high and
low threshold values.

In the second pass, the technique segments using the high and low values
found during the first pass. Then, it calculates the mean value for all the
pixels segmented into background and object. It uses these means as new
peaks and calculates new high and low threshold values. Now, it segments
that area — again using the new values.

Listing 9.2 next shows the code that implements the adaptive technique
with adaptive_threshold segmentation being the primary function. It is very
similar to the peak_threshold _segmentation function in that it uses all that
code for its first pass. The second pass starts by calling
threshold_and_find_means. This function thresholds the image array into
background and object and calculates the mean pixel value for each. The
second pass continues by using peaks_high_low to find new threshold values
based on the background and object means. Finally, threshold the image
using these new threshold values.

Figure 9.20 shows the result of applying the adaptive technique to the
image of Figure 9.12. The first pass found the high-and low-threshold values

122 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

to be 255 and 166. The second pass thresholded the image array and found
the background mean to be 94 and the object mean to be 205. The new
threshold values were 255 and 149.

Figure 9.20: Threshold of Figure 9.12 Using Adaptive Technique (High=255
and Low=149)

9.5 An Application Program

Listing 9.3 shows the source code for the mainseg program. It has the same
form as the other application programs in this text. It interprets the com-
mand line parameters, reads the input file, selects the desired segmentation
method, and writes the result.

9.6 Conclusions

This chapter introduced image segmentation. This is the first step in locating
and labeling the contents of an image. The techniques discussed work on
simple images with good contrast and gray level separation between the
object and background. We will need additional techniques to attack more
complex images.

9.7. REFERENCE 123

9.7 Reference

9.1 “Digital Image Processing,” Kenneth R. Castleman, Prentice-Hall, 1979.

124 CHAPTER 9. HISTOGRAM-BASED SEGMENTATION

Chapter 10

Segmentation via Edges &
Gray Shades

10.1 Introduction

This chapter explains image segmentation using edges and gray shades. The
previous chapter discussed image segmentation using histograms. That basic
technique examined the histogram of an image, transformed the image into
a 1-0 image, and “grew” regions. The results were acceptable given the
simplicity of the approach.

There are more powerful segmentation techniques that use the edges in
an image, grow regions using the gray shades in an image, and use both the
edges and gray shades. These techniques work well over a range of images
because edges and gray shades are important clues to objects in a scene.

10.2 Segmentation Using Edges & Gray Shades

Figure 10.1 shows the result of using edges to segment an image. The left
side shows the output of an edge detector. The right side is the result of
grouping the pixels “inside” the edges as objects — a triangle and rectangle.
This idea is simple. Detect the edges and group the pixels as objects.
Figure 10.2 illustrates growing objects using the gray shades in an image.
Pixels are grouped with a neighboring pixel if their gray shades are close
enough. Two pixels are replaced with their average and examination shifts
to the neighbors of this two-pixel object. If the gray shades of the neighbors

125

126 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

00000000000000000000
00000000000000000000
00000001000000000000
00000010100000000000
00000100010000000000
00001000001000000000
00010000000100000000
00111111111110000000
00000000000000000000
00000000000000000000
00000111111111111000
00000100000000001000
00000100000000001000
00000100000000001000
00000100000000001000
00000100000000001000
00000111111111111000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 10.1: Using Edges to Segment an Image

—————— otk ok ok ok ok ok ————
—————— otk ok ok ok ok ok ————
—————— ootk ok ok sk ok ok ————
—————— $okok ok ok k ok ok ——— —
—————— otk ok ok sk ok ok ————

10.2. SEGMENTATION USING EDGES & GRAY SHADES

12121212111122211221 11111111111111111111
13121312123121312312 11111111111111111111
12213121212131212122 11111111111111111111
22222218212113112122 11111112111111111111
12111187732121211122 11111122211111111111
12211788872221212211 11111222221111111111
22118778888212212212 11112222222111111111
12121222121222211212 11111111111111111111
21222122111222312123 11111111111111111111
32121321213221322121 11111111111111111111
22121122222121222122 11111111111111111111
22122298989999992212 11111133333333331111
12222298889998992112 11111133333333331111
12212189999898892122 11111133333333331111
12122299998999992122 11111133333333331111
22133389989988982123 11111133333333331111
12122212312321212212 11111111111111111111
13121213212132121321 11111111111111111111
11323212212121112222 11111111111111111111
12212121222222111122 11111111111111111111

Figure 10.2: Growing Objects Using Gray Shades

are close enough, they become part of the object and their values adjust the
average gray shade of the object. The left side shows the input, and the
right side shows the result of growing objects in this manner. The 1s are the
background object produced by grouping the 1s, 2s, and 3s. The triangle of
2s is a grouping of the 7s and 8s, and the rectangle of 3s is the 8s and 9s.

Figure 10.3 combines the two techniques. The left side shows a gray shade
image with the output of an edge detector (*s) superimposed. The right side
shows the result of growing regions using the gray shades while ignoring the
detected edges (*s). The result is the three objects produced in Figure 10.2
separated by the edges.

These three simple techniques work well in ideal situations. Most images,
however, are not ideal. Real images and image processing routines introduce
problems.

128 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

12121212111122211221
13121312123121312312
1221312%212131212122
222222x8%x12113112122
12111%877%2121211122
1221%78887%221212211
221%8778888%12212212
1 QkskskkkokkkkkkD2211212
21222122111222312123
32121321213221322121
22121 k*kxkkkokkkkkk]DD
22122%9898999999%212
12222%x9888999899%112
12212%x8999989889%122
12122%x9999899999%122
22133%8998998898%123
12122%xxkkkkkkkkk%kD1 D
13121213212132121321
11323212212121112222
12212121222222111122

Figure 10.3: Growing Objects Using Gray Shades and Edges

11111111111 111111111
11111111111111111111
1111111-111111111111
111111-2-11111111111
11111-222-1111111111
1111-22222-111111111
111-2222222-11111111
1--— 1111111
11111111111111111111
11111111111111111111

11111-3333333333-111
11111-3333333333-111
11111-3333333333-111
11111-3333333333-111
11111-3333333333-111

11111111111111111111
11111111111111111111
11111111111111111111

10.3. PROBLEMS 129

10.3 Problems

There are three potential problems using these segmentation techniques: (1)
the input image can have too many edges and objects, (2) the edge detectors
may not be good enough, and (3) unwanted items ruin region growing.

The input image can be too complicated and have small, unwanted ob-
jects. Figure 10.4 shows an aerial image of house trailers, roads, lawns, trees,
and a tennis court. The white house trailers are obvious and easy to detect.
Other objects (tennis court) have marks or spots that fool the edge detectors
and region growing routines. Figure 10.5 shows a house, and Figure 10.6
shows its edges. Segmentation should detect the roof, windows, and door.
The bricks, leaves, and shutter slats are real, but small, so unwanted.

Figure 10.4: Aerial Image of House Trailers

High quality edge detection is essential to use these techniques. Figure
10.8 demonstrates how a small edge detector error leads to a big segmen-
tation error. On the left side of the figure, I poked a small hole in the left
edge of the rectangle. The right side shows the terrible segmentation result.
Edge detectors do not produce these 1-0 images without thresholding them
as explained in Chapter 5. Figure 10.8 shows the result of edge detection on
Figure 10.4. Thresholding the strong (bright) and weak (faint) edges pro-
duces a clean 1-0 image. This requires a consistent and automatic method

130 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

Figure 10.5: House Image

Figure 10.6: Edge Detector Output from Figure 10.5

10.3. PROBLEMS

00000000000000000000
00000000000000000000
00000001000000000000
00000010100000000000
00000100010000000000
00001000001000000000
00010000000100000000
00111111111110000000
00000000000000000000
00000000000000000000
00000111111111111000
00000100000000001000
00000100000000001000
00000000000000001000
00000100000000001000
00000100000000001000
00000111111111111000
00000000000000000000
00000000000000000000
00000000000000000000

stk ok ok ok ok ok sk ok sk ok ook ok skok ok ok
kst ok st ok st ok ook ook sk sk ok ok ok ok
ook ok ok ook — ok ook sk ok ok ok ok ok
ootk ok ok — sk — ok ok okok ok ok ok
skookok ok — ok ook — okok skok ok ok ok
ook ok ok — sk ok ok ok — sk ok ok skok ok ok
skokok — ok sk ok ook ok — okok ok ok ok
B *okok ok ok
ootk ok ok ook ook sk okok ok ok ok
skoskok ok ok ook ook ok skok ok ok ok

ok ok sk — ok ok ok ok ok ok — %ok ok
ook ok sk — ok K ok K ok ok ok ok — ok K
ook sk ok ok ok ok ok K ok ok ook ok — ook K
ook ok sk — ok ok ok ok K ok ok — ok K
ok ok sk ok — ok ok ok ok ok ok — ok k

>k >k 3k 3k ok 5k 5k >k %k >k >k %k %k 5k 5k >k >k %k k%
>k 3k 3k 3k 5k 5k 5k >k >k >k >k %k %k 5k 5k 5k >k k% >k
>k 3k 3k 3k 5k 3k 5k >k %k >k >k %k %k ok 5k 5k k k% >k

131

Figure 10.7: A Small Edge Detector Error Leads to a Big Segmentation Error

to find the threshold point. Detected edges can be too thin and too thick.
A surplus of stray, thin edges misleads segmentation, and heavy, extra-thick
edges ruin objects. Figure 10.9 shows how the triple thick edges on the left
side produce the distorted objects on the right side.

The region-growing algorithm in Chapter 6 must limit the size of objects
and exclude unwanted pixels. The house in Figure 10.5 contains objects of
widely varying size. “Unwanted” objects may be the bricks or they may be
the large objects. There are different situations with different desired results.
The left side of Figure 10.10 is a repeat of Figure 10.1 while the right side
shows what happens when the region grower mistakes the edges for objects.

132 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

Figure 10.8: Edge Detector Output from Figure 10.4

10.4 Solutions

Some solutions to the object detection problems include preprocessing, better
edge detection, and better region growing.

10.4.1 Preprocessing

Preprocessing involves smoothing the input image to remove noise, marks,
and unwanted detail. The median filter from Chapter 7, one form of smooth-
ing, sorts the pixels in an nxn area (3x3, 5x5, etc.), and replaces the center
pixel with the median value. High- and low-pixel filters, variations of the
median filter, sort the pixels in an nxn area and replace the center pixel with
either the highest or lowest pixel value.

Figure 10.11 illustrates the median, high-pixel, and low-pixel filters. The
left side shows the input — the image section. The right side shows the
output for each filter processing a 3x3 area. The median filter removes the
spikes of the larger numbers. The high-pixel filter output has many high
values because the input has a large number in most of its 3x3 areas. The
low-pixel filter output is all 1s because there is a 1 in every 3x3 area of the
input.

10.4. SOLUTIONS

00000000000000000000
00000001000000000000
00000011100000000000
00000111110000000000
00001110111000000000
00011100011100000000
00111111111110000000
01111111111111000000
11111111111111100000
00001111111111111100
00001111111111111100
00001111111111111100
00001110000000011100
00001110000000011100
00001110000000011100
00001111111111111100
00001111111111111100
00001111111111111100
00000000000000000000
00000000000000000000

Figure 10.9: Triple-Thick Edges Distort Objects

133

134 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

00000000000000000000
00000000000000000000
00000001000000000000
00000010100000000000
00000100010000000000
00001000001000000000
00010000000100000000
00111111111110000000
00000000000000000000
00000000000000000000
00000111111111111000
00000100000000001000
00000100000000001000
00000100000000001000
00000100000000001000
00000100000000001000
00000111111111111000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 10.10

————— 333333333333-——-
————— 344444444443-—-
————— 344444444443---
————— 344444444443---
————— 344444444443---
————— 344444444443---
————— 333333333333---

: Result of Mistaking Edges for Objects

10.4. SOLUTIONS

111212163
111212877
181212123
177212123
116212123
111217123
111217123
111217123
111212123

111212163
111212877
181212123
177212123
116212123
111217123
111217123
111217123
111212123

111212163
111212877
181212123
177212123
116212123
111217123
111217123
111217123
111212123

-1112123-
-1212123-
-1222122-
-1222122-
-1112122-
-1112122-
-1112122-

-8822888-
-8772888-
-8872223-
=T7777773-
-6667773-
-1227773-
-1227773-

-1111111-
-1111111-
-1111111-
-1111111-
-1111111-
-1111111-
-1111111-

135

Median Filter Output

High-Pixel Filter Output

Low-Pixel Filter Output

Figure 10.11: Output of Median, High-Pixel, and Low-Pixel Filters

136 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

Figures 10.12 and 10.13 show how the low-pixel filter reduces the clutter
in the edge detector output. Figure 10.12 is the result of the low-pixel filter
applied to Figure 10.5. The dark window shutters are larger, and the mortar
lines around the bricks are gone. Figure 10.13 is the output of the edge
detector applied to Figure 10.12. Compare this to Figure 10.6. The edges
around the small objects are gone.

Figure 10.12: Low-Pixel Filtering Performed on Figure 10.5

Listing 10.1 shows the high _pixel and low_pixel subroutines. They loop
through the image arrays and place the pixels in the nxn area into the ele-
ments array. They sorts the array, and place the highest or lowest pixel value
into the output array.

10.4.2 Improved Edge Detection

Accurate edge detectors with automatic thresholding of edges and the ability
to thin edges are needed for effective segmentation.

Good edge detection requires a technique for thresholding the edge detec-
tor output consistently and automatically. One technique sets the threshold
point at a given percentage of pixels in the histogram. This calculates the
histogram for the edge detector output and sums the histogram values be-
ginning with zero. When this sum exceeds a given percent of the total, this

10.4. SOLUTIONS 137

Figure 10.13: Edge Detector Output from Figure 10.12

is the threshold value. This method produces consistent results without any
manual intervention. A good percentage to use is 50 percent for most edge
detectors and images.

Figure 10.14 shows the thresholded edge detector output of Figure 10.4.
That is, I processed Figure 10.4 with the edge detector (Figure 10.8 shows
the result) and set the threshold at 70 percent. Listing 10.2 shows the
find_cutoff_point subroutine that looks through a histogram to find the thresh-
old point. It takes in the histogram and the desired percent and returns the
threshold point. This is a simple accumulate-and-compare operation.

The erosion operation [10.1] can solve the final problem with edge detec-
tors, removing extra edges and thinning thick edges. Erosion looks at pixels
turned on (edge detector outputs) and turns them off if they have enough
neighbors that are turned off. Figures 10.15 and 10.16 illustrate erosion. In
Figure 10.15, the left side shows edges (1s) around the triangle and rectangle
and several stray edges. The right side shows the result of eroding or remov-
ing any 1 that has seven 0 neighbors. In Figure 10.16, the left side shows
very thick edges around the triangle and rectangle. The right side shows the
result of eroding any 1 that has three 0 neighbors. The edges are thinner,
and the objects inside the edges are more accurate.

Listing 10.2 shows the erosion subroutine erode_image_array. The looping

138 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

Figure 10.14: Edge Detector Output from Figure 10.4 — Thresholded at
70%

structure examines every pixel in the_ image that equals value. It counts
the number of neighboring 0 pixels and sets the out_image to zero if this
count exceeds the threshold parameter. The threshold parameter controls
the erosion. Threshold was six in Figure 10.15 and two in Figure 10.16.
Figure 10.17 shows the result of eroding the thick edges of Figure 10.13.
Note how it thinned the thick edges and removed the stray edges in the
house, lawn, and tree. The threshold parameter was three for this example.

10.4.3 Improved Region Growing

Accurate region growing is essential to implement the edge and gray shade
segmentation techniques. Figure 10.18 shows the region-growing algorithm
used in Chapter 9. This worked for binary images containing Os and a value.
If the algorithm found a pixel equal to value, it labeled that pixel and checked
its neighbors to see if they also equaled value (step 3).

The region-growing algorithm needs improvements to work with any gray
shades, limit the size of regions, and exclude pixels with special values (like
edges). Figure 10.19 shows the new region-growing algorithm. The input
image g contains gray shades and may contain special pixels equal to FOR-

10.4. SOLUTIONS

00000000000000000000
01000000000000111000
00000001000000000000
01100010100000000010
00000100010000000010
00001000001000000010
00010000000100000000
00111111111110000000
00000000000000000110
00100000000000000000
01000111111111111000
00000100000000001000
00000100000000001000
00000100000000001000
00100100000000001000
00100100000000001000
00000111111111111000
00000000000000000000
00011000000000000000
00000100000000000000

Figure 10.15: Result of Eroding Stray Edges

00000000000000000000
00000000000000010000
00000001000000000000
00000010100000000000
00000100010000000010
00001000001000000000
00010000000100000000
00111111111110000000
00000000000000000000
00000000000000000000
00000111111111111000
00000100000000001000
00000100000000001000
00000100000000001000
00000100000000001000
00000100000000001000
00000111111111111000
00000000000000000000
00001000000000000000
00000000000000000000

139

140 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

00000000000000000000
00000001000000000000
00000011100000000000
00000111110000000000
00001110111000000000
00011100011100000000
00111111111110000000
01111111111111000000
11111111111111100000
00001111111111111100
00001111111111111100
00001111111111111100
00001110000000011100
00001110000000011100
00001110000000011100
00001111111111111100
00001111111111111100
00001111111111111100
00000000000000000000
00000000000000000000

Figure 10.16: Eroding Away Thick Edges

00000000000000000000
00000000000000000000
00000001000000000000
00000011100000000000
00000100010000000000
00001100011000000000
00011110111100000000
00111111111110000000
00011111111111000000
00000111111111111000
00000111111111111000
00000111000000111000
00000110000000011000
00000100000000001000
00000110000000011000
00000110000000111000
00000111111111111000
00000000000000000000
00000000000000000000
00000000000000000000

10.4. SOLUTIONS 141

Figure 10.17: Result of Eroding the Edges in Figure 10.13

GET_IT. The output image array holds the result. There are three new
parameters: diff, min_area, and max_area. diff specifies the allowable differ-
ence in gray shade for two pixels to merge into the same object. min_area
and max_area specify the limits on the size of objects.

The major differences in the algorithm begin at step 4. Instead of checking
if g(i,j) == value, the algorithm performs these checks:

g(i,j) cannot equal FORGET IT,
output(i,j) must equal zero, and
g(i,j) cannot differ from the target by more than diff.

The first two are simple. The algorithm must exclude certain pixels, so
set them to FORGET_IT and ignore them. The output must not be part of
an object, so it must be zero.

A third test allows working with gray shade images. In step 3, cre-
ate a target equal to the average gray shade of the pixels in an object.
Group neighboring pixels whose values do not differ by more than the diff
parameter. The is_close routine at the bottom of Figure 10.19 tests for
this condition. If the pixel g(i,j) is close enough to the target, call the
pixel_label_and_check_neighbor routine to add that pixel to the object and
check its neighbors. The pixel label and_check neighbor routine updates the
target or average gray shade of the object.

142 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

1. Given an image g with m rows and n columns
g(i,j) for i=1,m j=1,n
g(i,j) = value for object
= 0 for background

2. set g_label=2 this is the label value

3. for (i=0; i<m; i++)
scan ith row
for (j=0; j<n; j++)
check jth element
stack_empty = true
if g(i,j) == value
label_and_check_neighbor(g(i,j),g_label)
while stack_empty = false do
pop element (i,j) off the stack
label_and_check_neighbor(g(i,j),g_label)
end while
g_label = g_label + 1
end of checking jth element
end of scanning ith row

4. The End

procedure label_and_check_neighbor(g(r,e), g_label)
g(r,e) = g_label
for (R=r-1; r<=r+1; R++)
for (E=e-1; e<=e+l; e++)
if g(R,E) == value then
push (R,E) onto the stack
stack_empty = false
end if
end loop over E
end loop over R
end procedure label_and_check_neighbor

Figure 10.18: The Region Growing Algorithm from Chapter 9

10.4. SOLUTIONS 143

1. Given:
Image g with m rows and n columns
g(i,j) for i=1,m j=1,n
g(i,j) = gray shades
= FORGET_IT value is edges are overlayed (optional)
Image output with m rows and n columns
output(i,j) for i=1,m j=1,n
output(i,j) = all zeros
Parameter diff = allowable difference in gray shades
Parameter min_area = minimum size of a region allowed
Parameter max_area = maximum size of a region allowed
2. set g_label=2 this is the label value
3. for (i=0; i<m; i++)
scan ith row
for (j=0; j<n; j++)
check jth element
stack_empty = true

target = g(i,3)
sum = target
count =0
4. if g(i,j) I= FORGET_IT AND
output(i,j) == AND

is_close(g(i,j), target, diff)
pixel_label_and_check_neighbor(g(i,j), output,
count, sum, target, diff)
object_found = 1
end if
5. while stack_empty = false do
pop element (i,j) off the stack
pixel_label_and_check_neighbor(g(i,j), output,
count, sum, target, diff)
end while
6. if (object_found == 1)
object_found = 0
if (count >= min_area AND
count <= max_area)
g_label = g_label + 1
else remove object
for all output(i,j) = g_label
output(i,j) =0
input(i,j) = FORGET_IT
end else remove object
end if
end of checking jth element
end of scanning ith row
7. The End

Figure 10.19: The Improved Region Growing Algorithm (Part 1)

144 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

procedure pixel_label_and_check_neighbor(g(r,e), output,
count, sum,
target, diff)

output(r,e) = g_label

count = count+1
sum = sum + g(r,e)
target = sum/count

for (R=r-1; r<=r+1; R++)
for (E=e-1; e<=e+l; e++)

if g(R,E) != FORGET_IT AND
output (R,E) == AND
is_close(g(R,E), target, diff)
push (R,E) onto the stack
stack_empty = false
end if

end loop over E
end loop over R
end procedure pixel_label_and_check_neighbor

procedure is_close(pixel, target, diff)
if absolute value(pixel - target) < diff
return 1
else
return O
end procedure is_close

Figure 10.19: The Improved Region Growing Algorithm (Part 2)

10.5. THE THREE NEW TECHNIQUES 145

The new algorithm limits the size of objects in step 6. It tests count
(the size of an object) against min_area and max_area. If the object fails the
test, you set all pixels of g in the object to FORGET_IT and set all pixels
in output to zero. This removes the object from output and eliminates the
pixels from any future consideration in g.

I've already discussed how the new algorithm excludes pixels with certain
values via the FORGET _IT value. To remove edges from consideration, lay
the edge detector output on top of the input image and set to FORGET_IT
all pixels corresponding to the edges.

Listing 10.2 shows the source code for the three subroutines outlined in
Figure 10.19 (pixel_grow, pixel label_and_check neighbor, and is_close). They
follow the algorithm closely.

The improved region-growing algorithm is the key to the new techniques.
It ignores certain pixels and eliminates objects of the wrong size. These small
additions produce segmentation results that are much better than those in
Chapter 9.

10.5 The Three New Techniques

Now that I've laid all the groundwork, let’s look at the three new techniques.

10.5.1 Edges Only

The edge_region subroutine shown in Listing 10.7 implements this technique.
The algorithm is
Edge detect the input image
Threshold the edge detector output
Erode the edges if desired
Set the edge values to FORGET _IT
Grow the objects while ignoring the edges
Steps 1 through 4 should produce an image like that shown in Figure
10.1. Step 5 grows the objects as outlined by the edges. The edge_region
subroutine calls any of the edge detectors from this and previous chapters,
the histogram functions from previous chapters, and the find_cutoff_point,
erode_image_array, and pixel_grow functions from Listing 10.2.

The edge_type parameter specifies which edge detector to use. min_area
and max_area pass through to the pixel_grow routine to constrain the size of

Gl W=

146 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

the objects detected. diff passes through to pixel_grow to set the tolerance on
gray shades added to an object. diff has little meaning for this technique be-
cause the image in which regions are grown contains only Os and FORGET _IT
pixels. The percent parameter passes through to the find_cutoff_point rou-
tine to threshold the edge detector output. The set_value parameter is the
turned-on pixel in the threshold_image_array and erode_image_array routines.
Finally, the erode parameter determines whether to perform erosion on the
edge detector output. If erode is not zero, it is the threshold parameter for
erode_image_array.

10.5.2 Gray Shades Only

The short gray_shade_region subroutine in Listing 10.2 implements this tech-
nique. This subroutine calls the pixel_grow function. pixel_grow does all the
work since it handles the gray shade region growing and limits the sizes of
the objects. The diff, min_area, and max_area parameters play the same role
as in the edge_region routine described above.

10.5.3 Edges and Gray Shade Combined

The technique for combining edges and gray shades is implemented by the
edge_gray_shade_region function in Listing 10.2. The algorithm is:
Edge detect the input image
Threshold the edge detector output
Erode the edges if desired
Read the input image again
Put the edge values on top of the input image setting them to FORGET_IT
Grow gray shade regions while ignoring the edges
The differences between edge_region and edge_gray_shade_region are in
steps 4 and 5. At this point, edge_gray_shade_region reads the original input
image again and overlays it with the detected edges. Step 8 grows gray
shade regions while ignoring the detected edges. Steps 1 through 7 generate
an image like the left side of Figure 10.3. Step 8 generates the right side of
Figure 10.3.

Figures 10.20 through 10.23 illustrate these techniques on the aerial image
of Figure 10.4. Figure 10.20 shows the result of the Sobel edge detector after
erosion. The edges outline the major objects in the image fairly well.

AR ANl

10.5. THE THREE NEW TECHNIQUES 147

: ".1 _" g] = -
o S d];{ll 'i I I I k|
iaM i

= "“«a ol daiotinl]
By "_Eﬁ'@ "-.; P .
il g Ik -r.'"f !— | e 5 : !
I?IF‘IL Iflﬁ’l s
- i ‘_. ; _' i ‘;4';_-“‘-..:.:-_.'-_”. nl-;-. :ﬁ.‘;—-l £ '

Figure 10.20: Sobel Edge Detector Output from Figure 10.4 (after Erosion)

Figure 10.21 shows the result of the edge-only segmentation of Figure
10.4. Tt is the result of growing the black regions of Figure 10.20. This is a
good segmentation as it denotes the house trailers, roads, trees, and parking
lots. This is not just the negative image of Figure 10.20. Regions too small
and too large were eliminated.

Figure 10.21 is the result of the gray-shade-only segmentation of Figure
10.4. This segmentation also found the major objects in the image. The
combination of edge and gray shade segmentation in Figure 10.26 shows the
edges of Figure 10.20 laid on top of the input image of Figure 10.4. Figure
10.23 shows the final result of growing gray shade regions inside these edges.
This segmentation has better separation of objects than the gray-shade-only
segmentation of Figure 10.21. The edges between the objects caused this
spacing.

Which segmentation is best? That is a judgment call. All three segmen-
tations, however, are better than those produced by the simple techniques in
Chapter 9.

Figures 10.24, 10.25, and 10.26 show the results of the three techniques
applied to the house image of Figure 10.5. The edge-only segmentation of
Figure 10.24 is fairly good as it denotes most of the major objects in the
image. The gray-shade-only result in Figure 10.25 is not very good because

148 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

_'\'H';r
a=

o T .;;;th-_'._. :...-I-..'ﬂ'-“_
aeTy .

DS " LR e iings foe O R
Figure 10.22: Result of Gray-Shade-Only Segmentation of Figure 10.4

10.6. INTEGRATING THE NEW TECHNIQUES 149

s B Dl e S0
: ‘_.r.;.rr . 1
- -.':.__...l f ' I
. i

: l::' P aca il Y

By
;..

‘-’rﬂ:‘ Igir,l If“

J-ti- R &

Figure 10.23: Result of Edge and Gray Shade Segmentation of Figure 10.4

all the objects are right next to each other and hard to distinguish. The
combination segmentation in Figure 10.26 is an excellent result. It detected
objects not found in the edge-only technique and also eliminated many of
the unwanted bricks.

10.6 Integrating the New Techniques

Listing 10.3 shows the main2seg program for segmenting entire images using
the new techniques. It is command-line driven and calls the functions given
in the previous listings. It follows the same pattern as the mainseg program
of chapter 9 and other programs shown in this text.

10.7 Conclusions

This chapter described three powerful image segmentation techniques that
work on complicated images. The techniques, however, are only combinations
of existing tools and tricks. Given different images, you might have used
different combinations of tools. Experiment, try different combinations, and
modify existing tools to create new ones.

150 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

A
)

& oufl
Fie T

=

ol

B
i [_:-;_Iq
._‘_"t.!

F IR R ¥,

A T L e S AT e i B

Figure 10.25: Result of Gray-Shade-Only Segmentation of Figure 10.5

10.8. REFERENCE 151

¥
= R u 7
L R e e P e 5
T ke e e L o i L LR B

Figure 10.26: Result of Edge and Gray Shade Segmentation of Figure 10.5

10.8 Reference

10.1 “The Image Processing Handbook, Third Edition,” John C. Russ, CRC
Press, 1999.

152 CHAPTER 10. SEGMENTATION VIA EDGES & GRAY SHADES

Chapter 11

Manipulating Shapes

11.1 Introduction

This chapter will discuss manipulating shapes. The last two chapters dis-
cussed image segmentation. Segmentation took an image and produced a
binary output showing the objects of interest. This chapter will describe
several techniques for taking those objects and improving their appearance.

11.2 Working with Shapes

A major goal of image processing is to improve the appearance of an image.
Figure 11.1 shows an aerial image, and Figure 11.2 a segmentation of it.
Figure 11.3 shows a house, and Figure 11.4 a segmentation of it. These are
good segmentations, but they have problems.

Segmentation results have “holes” in them. The roof in Figure 11.4 should
be solid, but has holes. Larger holes can even break objects. The opposite
can also be true, as segmentation can join separate objects. Segmentation
results often have little or no meaning. The solid objects resemble blobs and
are hard to interpret.

The answer to these problems is morphological filtering or manipulating
shapes. Useful techniques include erosion and dilation, opening and closing,
outlining, and thinning and skeletonization .

These techniques work on binary images where the object equals a value
and the background is zero. Figure 11.5 shows a binary image with the
background equal to zero and the object equal to 200. All the figures in the

153

154 CHAPTER 11. MANIPULATING SHAPES

Figure 11.2: Segmentation of Aerial Image

11.2. WORKING WITH SHAPES 155

Figure 11.4: Segmentation of House Image

156

200
200
200
200
200
200

O O O O O O O O O o
O O O O O O O O o o

o O O

200
200
200
200

O O O O O O O O O o
O O O O O O O O o o

o O O

chapter will use the same format.

11.3 Erosion and Dilation

200
200
200
200
200
200

200
200
200
200
200
200

200
200
200
200
200
200

0

200
200
200
200
200
200

200
200
200
200
200
200

0

0
200
200
200
200
200
200

CHAPTER 11.

200
200
200
200
200
200

0

0
200
200
200
200
200
200

200
200
200
200
200
200

oS O O

200
200
200
200

o O O

O O O O O OO O oo

O O O O O OO O oo

O O O O O O O o oo

O O O O O O O o oo

MANIPULATING SHAPES

Figure 11.5: A Binary Image

Figure 11.6: The Result of Eroding Figure 11.5

The erosion and dilation operations make objects smaller and larger. These
operations are valuable in themselves and are the foundation for the opening
and closing operations. FErosion, discussed briefly in Chapter 10, makes an
object smaller by removing or eroding away the pixels on its edges. Figure
11.6 shows the result of eroding the rectangle in Figure 11.5.

Dilation makes an object larger by adding pixels around its edges. Figure

11.3. EROSION AND DILATION 157

o o o0 o0 o o0 o0 oO
sokok kokk kokk kkk kokk fokok kskk kokok
*kk 200 200 200 200 200 200 **x*
*xx 200 200 200 200 200 200 **x*
*%kx 200 200 200 200 200 200 **x*
*kk 200 200 200 200 200 200 ***
*kx 200 200 200 200 200 200 **x*
*kk 200 200 200 200 200 200 **x*
sokk kkok skokok kokk kokk skokk kkok kokok

O O O O O OO O oo
O O O O O OO o oo

Figure 11.7: The Result of Dilating Figure 11.5

11.7 shows the result of dilating the rectangle in Figure 11.5. 1 set any zero
pixel that was next to a 200 pixel (shown as asterisks).

There are two general techniques for erosion and dilation. The technique
introduced in Chapter 10 employs a threshold [11.1]. Another technique uses
masks to erode and dilate in desired directions [11.2].

The threshold technique looks at the neighbors of a pixel and changes
its state if the number of differing neighbors exceeds a threshold. Listing
11.1 shows the erosion and dilation routines that use this method. The loops
in the erosion routine examine every pixel equal to value in the_image. The
loops count the number of zero neighbors and set the pixel in question to zero
if the count exceeds the threshold parameter. Figure 11.6 used a threshold
parameter of three. Compare this to Figure 11.8 (threshold = two).

The loops in the dilation routine do the opposite. They count the value
pixels next to a zero pixel. If the count exceeds the threshold parameter, set
the zero pixel to value. The dilation in Figure 11.7 used threshold = three,
while Figure 11.9 used threshold = two.

The masking technique [11.2] lays an nxn (3x3, 5x5, etc.) array of 1s and
Os on top of an input image and erodes or dilates the input. With masks
you can control the direction of erosion or dilation. Figure 11.10 shows four
3x3 masks (bx5, 7x7, etc. masks are other possibilities). The first two masks
modify the input image in the vertical or horizontal directions while the
second two perform in both directions.

Figure 11.11 shows the results of dilating the object of Figure 11.5 using
the four masks of Figure 11.10. The procedure is:

158

O O O O O OO o oo

Figure 11.8: The Result of Eroding Figure

O O O OO OO o oo

*%
*%
*%
*%

O OO O O O O o o o

0
0
0
*
*

*
*

o O O

O O O O O OO o oo

0

0
200
200
200
200
200
200

0
0
0

0
0
0

0
0
0

CHAPTER 11.

0
0
0

200 200 200 200
200 200 200 200
200 200 200 200
200 200 200 200

0
0
0

0
K%k
200
200
200
200
200
200
*ok ok

0
0
0

0
*ok ok
200
200
200
200
200
200
*okk

0

0
0
0

0
%k
200
200
200
200
200
200
*okok

0

0
0
0

0
Kk k
200
200
200
200
200
200
*okk

0

O OO O O O OO o o

0
0
200
200
200
200
200
200
0
0

O O O O O OO O oo

0
0
0
KKk
KKk
KKk
KKk

o O O

MANIPULATING SHAPES

O O O O O O O o oo

11.5 Using a Threshold of 2

O O O O O O O o oo

Figure 11.9: The Result of Dilating Figure 11.5 Using a Threshold of 2

vertical mask
010

0
0

1
1

0
0

horizontal mask
000

11

1

000

horizontal and vertical masks
010

1
0

1
1

1
0

11
11
11

1
1
1

Figure 11.10: Four 3x3 Masks

11.3. EROSION AND DILATION 159

Vertical Dilation Only

o o0 o o o0 o
sk ckokk okokk kokk kskok koksk
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
kokok kkk kokk kokok ko kokok

o o0 o o o0 o

O O O O OO OO O Oo
O OO O OO O OO Oo
O OO O OO OO OoOOo
O OO OO OO OO Oo

Horizontal Dilation Only
o o o o o o0 o0
o o o o0 o o o0 o0
*x% 200 200 200 200 200 200 *x*x
*x% 200 200 200 200 200 200 %
*x% 200 200 200 200 200 200 *x*x*
*xk 200 200 200 200 200 200 *x*x
*xx 200 200 200 200 200 200 *x*x*
*x% 200 200 200 200 200 200 *x*x*
o o o0 o o o o0 o0
o o o0 o o o o0 o0

o

O O O O O O O O O O
O OO O OO OO O o

Dilation in Both Directions
0 0 0 0 0 0 0 0
O skkk kkk kokk kkk kokk koK 0
**xx 200 200 200 200 200 200 **x*
**xx 200 200 200 200 200 200 **x*
**xx 200 200 200 200 200 200 **x*
%% 200 200 200 200 200 200 **x*
**xx 200 200 200 200 200 200 *x*x*
**xx 200 200 200 200 200 200 **x*
O skkk kkk kokk kkk kokk kKoK 0
0 0 0 0 0 0 0 0

O O O O O O O O O O
O O O O OO O O O o

Dilation in Both Directions

0 0 0 0 0 0 0 0
$okk kdok dokk kdkok dokk kkok dokk kakok
**xx 200 200 200 200 200 200 **x*
**xx 200 200 200 200 200 200 **x*
**xx 200 200 200 200 200 200 **x*
**xx 200 200 200 200 200 200 *x*x*
**xx 200 200 200 200 200 200 **x*
**xx 200 200 200 200 200 200 **x*
dokk kkok dokk kdkok dokk kskok dokk kkok

O O O O O O O O O O
O O O O O OO O O o

Figure 11.11: The Result of Dilating Figure 11.5 with the Four Masks of
Figure 11.9

160 CHAPTER 11. MANIPULATING SHAPES

1. Place the 3x3 mask on the object so that the center of the 3x3 array lies
on the edge of the object.
2. Place a 200 everywhere a one from the mask lies.

The object in the first part of Figure 11.11 has been dilated, or stretched,
vertically. The second result is a horizontal dilation. The third and fourth
show dilation in both directions. These last two differ in dilating the corners
of the object.

Mask erosion is the same, but opposite. It lays the 3x3 mask on the image
so that the center of the array is on top of a zero. If any of the 1s in the
mask overlap a 200 in the image, set the 200 to zero. Vertical mask erosion
removes the top and bottom rows from an object. Horizontal mask erosion
removes the left and right columns, and the other masks remove pixels from
all edges.

Listing 11.1 shows the routines for mask erosion and dilation. mask_dilation
copies the correct directional mask specified by the mask_type parameter and
goes into the looping code. The loop moves through the input image and lays
the 3x3 mask on top of every pixel in the image. The inner loops examine
those places where the 3x3 mask equals one. If the_image is greater than
one (non-zero) at that place, set max to the input image value. After exiting
the loop, set the out_image to max. This changes zero pixels to value and
enlarges or dilates an object in the_image.

The mask_erosion routine performs the opposite function. Its inner loops
look at those places where the 3x3 mask is one and try to find pixels in
the_image that are less than min (that are zero). If there are any zeros in
this part of the_image, set out_image to zero. This removes value pixels,
makes them zeros, and erodes an object in the_image.

Figure 11.12 illustrates directional dilation. The left section shows the
segmentation of the house image. The center section shows dilating with a
vertical mask, and the right section shows dilating with a horizontal mask.

11.4 Opening and Closing

Opening and closing help separate and join objects. They are powerful op-
erators that are simple combinations of erosion and dilation. opening spaces
objects that are too close together, detaches objects that are touching and
should not be, and enlarges holes inside objects. The first part of Figure
11.13 shows two objects joined by a “thread.” The second part shows how

11.4. OPENING AND CLOSING 161

s d : o e f -_ 3
i b S P S e = 2

[ttt oo e e 3 ' | I 1l T T T S St e

Figure 11.12: Examples of Masked Vertical and Horizontal Dilations

opening eliminated the thread and separated the two objects. The rest of
the figure shows how opening enlarged a desired hole in an object.

Opening involves one or more erosions followed by one dilation. Eroding
the object of Figure 11.13 twice erases the thread. A dilation enlarges the
two objects back to their original size, but does not re-create the thread. The
left side of Figure 11.14 is a segmentation of the house image from Chapter
10. The right side is the result of opening (three erosions followed by one
dilation). Although excessive, it shows how opening spaces the major objects.

Closing joins broken objects and fills in unwanted holes in objects. The
first part of Figure 11.15 shows two objects that should be joined to make a
line. The second part shows how closing removes the break in the line. The
last two parts of Figure 11.15 show how closing fills in unwanted holes in
objects.

Closing involves one or more dilations followed by one erosion. Dilating
the top part of Figure 11.14 twice enlarges the two objects until they join.
An erosion thins them back to their original width. Dilating the third part
of Figure 11.15 twice makes the box bigger and eliminates the hole. Eroding
shrinks the box back to its initial size.

Listing 11.1 shows the routines that perform opening and closing. They
call the mask erosion and dilation routines, but calling the threshold erosion
and dilation routines would work just as well (homework for the reader).
opening calls mask_dilation one or more times and mask_erosion once. closing
calls mask_erosion one or more times and mask _dilation once. These are

162 CHAPTER 11. MANIPULATING SHAPES

Two objects joined by a thread
200 200 200 200 O O 200 200 200 200
200 200 200 200 O O 200 200 200 200
200 200 200 200 O O 200 200 200 200
200 200 200 200 O O 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 O O 200 200 200 200
200 200 200 200 O O 200 200 200 200
200 200 200 200 O O 200 200 200 200
200 200 200 200 O O 200 200 200 200
200 200 200 200 O O 200 200 200 200

Opening separates them
200 200 200 200 O O 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200

O OO O OO O O o
O OO O OO O oo

An object with a single small hole in it
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 0 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200

Opening enlarges the hole
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 O 0 0 200 200 200 200
200 200 200 0 O O 200 200 200 200
200 200 200 0 O 0O 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200

Figure 11.13: Two Objects Joined by a Thread, Separated by opening and
a Hole Enlarged by opening

11.5. SPECIAL OPENING AND CLOSING 163

W au * "

AR e "

Figure 11.14: A Segmentation and the Result of Opening

simple, yet powerful routines.

11.5 Special Opening and Closing

The opening and closing operators work well, but sometimes produce unde-
sired side effects. closing merges objects, but sometimes merges objects that
it shouldn’t. Figure 11.16 shows such a case. Figure 11.17 shows the result
of closing applied to Figure 11.2. closing closed the holes in the objects, but
also joined distinct objects. This distorted the segmentation results. opening
enlarges holes in objects, but can break an object. Figure 11.18 shows a case
where opening broke an object and eliminated half of it.

The answer is special opening and closing routines that avoid these prob-
lems. Figure 11.19 shows the desired result of such special routines that open
and close objects, but do not join or break them.

The first difficulty to overcome is what I call the 2-wide problem. In
opening, you erode an object more than once, and an object that is an even
number of pixels wide can disappear. The first part of Figure 11.20 shows
a 2-wide object. The second part shows the object after one erosion, and
the third part shows it after two erosions. The object will disappear entirely
after several more erosions.

A solution to the 2-wide problem is my own variation of the grass fire
wavefront technique [11.3]. My technique scans across the image from left to
right looking for a 0 to value transition. When it finds one, it examines the

164 CHAPTER 11. MANIPULATING SHAPES

A broken line

o o o0 o O o o o o0 o
o o o0 o o o o o o0 o
o o o o o o o o o0 o
o o o0 o o o o o o o
200 200 200 200 0 200 200 200 200 200
200 200 200 200 0 200 200 200 200 200
o o o0 o o0 o o o o0 o
o o o0 o o0 o o o o0 o
o o o o o o o o o0 o
o o o0 o o0 o o o o0 o
Closing joins the broken line
o o o0 o o o o o o0 o
o o o0 o o0 o o o o0 o
o o o0 o o0 o o o o0 o
o o o o o0 o o o o0 o

200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200

o o o0 o0 o o o0 o o0 o
o o o o0 o o o o o0 o
o o0 o0 o o o0 o o o o
o o0 o0 o o o0 o o o o

An object with a hole in it

o o0 O 0 o0

0o o o0 o0 o0 O
200 200 200 200 200 200
200 200 200 200 200 200
200 200 0 200 200 200
200 200 0 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200

o

O OO OO OO O oo
O O O OO OO OoOoOOo
O OO OO OO OoOOoOOo
O OO O OO0 O oo

Closing fills the hole
0o o o o o0 o
0o o o0 o0 o0 o
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200
200 200 200 200 200 200

o

O OO O OO OO oo
O O O O OO O oo

O OO OO OO OoOoOOo
O OO OO0 OOOoOOo

Figure 11.15: Two Objects that Should be Joined, How closing Removes the
Break and Fills Unwanted Holes

11.5. SPECIAL OPENING AND CLOSING

Two separate objects

6o o o o o o O o o0 o
6o o0 o o o o O o o0 o
0 0200200 0200200 O O O
0O 0200200 020020 O O O
0 0200200 020020 O O O
0 0200200 0200200 O O O
0 0200200 0200200 O O O
0 0200200 020020 O O O
o o o o o o o o o o
6o o0 o o o o o o o0 o

Closing joins the objects (unwanted)
o o o0 o0 o o0 o ©O

0o o0 0 0 O
200 200 200 200 200
200 200 200 200 200
200 200 200 200 200
200 200 200 200 200
200 200 200 200 200
200 200 200 200 200

O O O O O OO o oo
O O O OO O O O O
O O O O O O O O O
O O O O O O O O O
O O O O O OO o oo

Figure 11.16: An Unwanted Merging of Two Objects

165

166 CHAPTER 11. MANIPULATING SHAPES

Figure 11.17: Closing of Segmentation in Figure 11.2

value pixel to determine if removing it will break an object. If removal does
not break the object, it sets the pixel to 0 and continues scanning. Next,
it scans the image from right to left and does the same operation. Then it
scans from top to bottom, and finally from bottom to top. The different
scans will not erode away an object that is 2-wide.

The key to special opening is not breaking the object. One solution places
the pixel in question in the center of a 3x3 array. Find every value pixel next
to the center pixel. Do all of those pixels have value neighbors other than
the center pixel? If yes, erode or remove the center pixel. If no, removing
the center pixel will break the object. The top part of Figure 11.21 shows
cases where removing the center pixel will break the object. The bottom
part shows cases where removing the center pixel will not break the object.
Here, every 200 has a 200 neighbor other than the center pixel.

A similar problem in special closing is not joining two separate objects
when dilating or setting a pixel. One solution is to place the pixel in question
in the center of a 3x3 array. Grow objects in this array and check if the center
pixel has neighbors whose values differ as shown in Chapter 9. If their values
differ, do not set the center pixel because this will join different objects. The
top part of Figure 11.22 shows 3x3 arrays and the results of growing objects.
The center pixel has neighbors that are parts of different objects, so do not

11.5. SPECIAL OPENING AND CLOSING

Object with a hole in it

0

O O O O O OO O oo
O O O O OO O O O

0

0
200
200
200
200
200
200

o

0

0
200
200
200
200
200
200

0
0
200
200
0
0
200
200

0

0
200
200
200
200
200
200

0

0
200
200
200
200
200
200

Opening removes the hole

0

O O O O O OO O oo
O O O OO O O O O

O O O O O OO O oo

Figure 11.18: An Unwanted Splitting of an Object

0

O O O O O O O O O

O O O O O OO O oo

0

0
200
200
200
200
200
200

0

0
200
200
200
200
200
200

200
200
200
200
200
200

but

200
200
200
200
200
200

O OO O OO O o o o

breaks the object

0

O O O OO O O o o

O O O OO OO o oo

O O O OO OO o oo

167

168

Special closing does

0

O O O O O O O O oo
O O O OO O O O O

0
0
0
200
200
200

200
0

0
0

0
0
0
200
200
200
200
0
0
0

O O O O O OO O oo

0
0
0
200
200
200
200

oS O O

Special opening does

0

O O O OO OO o oo
O O O O O O O O O

O O O

200
200
200
200

o O O

0

0
200
200
200
200
200
200

0

0
200
200
200
200
200
200

CHAPTER 11.

MANIPULATING SHAPES

not join objects

0
0
0
200
200
200
200

O O O

not

200
200
200
200
200
200

0

O O O OO O O oo

break

200
200
200
200

o O O

0 O
0 O
0 O
0 O
0 O
0 O
0 O
0 O
0 O
0 O
object
0 O
0 O
0 O
0 O
0 O
0 O
0 O
0 O
0 O
0 O

Figure 11.19: Result of Special Routines that Open and Close Objects but
do not Join or Break Them

11.5. SPECIAL OPENING AND CLOSING 169

A 2-Wide Object
0 200 200 0 O
0 200 200 0 O

o O

The Object After One Erosion
0O 0200 0 O
0 200 200 0 O

o O

The Object After Two Erosions
0o 0 o0 0 O
0 200 200 0O O

o O

Figure 11.20: Result of Opening of a 2-Wide Object

Cases where you cannot erode center pixel

0200 O 200 0 200 200 200 O
0200 O 0 200 O 0200 O
0200 O 0 0 O 0 0 200

Cases where you can erode the center pixel

200 200 200 200 0 O 0 200 O
0200 O 200 200 O 200 200 O
0 o0 O 0 0 O 0 o0 O

Figure 11.21: Cases Where Objects Can and Cannot be Eroded

170 CHAPTER 11. MANIPULATING SHAPES

Cases where you cannot dilate the center pixel

200 0 200 2000 0 O 0 200 O
200 0 200 0O 0 O 200 0 O
200 0 200 200 0 O 0 0 200
1 0 2 1 0 O 0o 1 O
1 0 2 0 O 1 0 O
1 0 2 1 0 O 0 0 2

Cases where you can dilate the center pixel

200 200 200 0200 O 0 200 200
200 0 O 200 0 O 200 0 200
200 200 200 0 0 O 0 0 200
1 1 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 0 O 0 O 1

Figure 11.22: Cases that do and do not Require a Special Closing Routine

set the center pixel. The bottom part of Figure 11.22 shows another set of
3x3 arrays. Here, the non-zero neighbors of the center pixel all have the same
value, so setting the center pixel is alright.

The source code to implement special opening and special closing, shown
in Listing 11.2, is basic but long. The special_opening routine calls thinning
(instead of erosion — thinning is discussed in a later section) one or more
times before calling dilation once. thinning works around the 2-wide problem
while performing basic threshold erosion. thinning has four sections — one
for each scan (left to right, right to left, top to bottom, and bottom to top) re-
counted earlier. Whenever thinning finds a pixel to remove, it calls can_thin
to prevent breaking an object. can_thin checks the non-zero neighbors of
the center pixel. If every non-zero pixel has a non-zero neighbor besides the
center pixel, can_thin returns a one, else it returns a zero.

The special _closing routine calls dilate_not_join one or more times before
calling erosion once. dilate_not_join uses the basic threshold technique for di-
lation and calls can_dilate to prevent joining two separate objects. can_dilate
grows objects in a 3x3 array and checks if the center pixel has neighbors with

11.6. OUTLINING 171

different values. If it does, the neighbors belong to different objects, so it
returns a zero. can_dilate grows objects like the routines in Chapters 9 and
10. can_dilate calls little_label and_check which resembles routines described
in those two chapters.

Figure 11.23 shows the result of special closing. Compare this with Fig-
ures 11.2 and 11.17. Figure 11.2, the original segmentation, is full of holes.
Figure 11.17 closed these holes, but joined objects and ruined the segmenta-
tion result. Figure 11.23 closes the holes and keeps the segmentation result
correct by not joining the objects.

Figure 11.23: Special Closing of Segmentation of Figure 11.2

Figures 11.24 and 11.25 show how to put everything together to improve
segmentation results. Figure 11.24 shows the outcome of eroding the seg-
mentation result of Figure 11.4. Applying special closing to Figure 11.24
produces Figure 11.25. Compare Figures 11.4 and 11.25. Figure 11.25 has
all the major objects cleanly separated without holes.

11.6 Outlining

Outlining is a type of edge detection. It only works for zero-value images,
but produces better results than regular edge detectors. Figure 11.26 shows

172 CHAPTER 11. MANIPULATING SHAPES

Figure 11.25: Special Closing of Figure 11.24

11.6. OUTLINING 173

the exterior outline of the objects in Figure 11.4.

Figure 11.26: Outline of Segmentation in Figure 11.4

Outlining helps understand an object. Figures 11.27 and 11.28 show the
interior and exterior outlines of objects. Outlining zero-value images is quick
and easy with erosion and dilation. To outline the interior of an object, erode
the object and subtract the eroded image from the original. To outline the
exterior of an object, dilate the object and subtract the original image from
the dilated image. Exterior outlining is easiest to understand. Dilating an
object makes it one layer of pixels larger. Subtracting the input from this
dilated, larger object yields the outline.

Listing 11.1 shows the source code for the interior_outline and exte-
rior_outline operators. The functions call the mask_erosion and mask_dilation
routines. They could have called the threshold erosion and dilation routines
(homework for the reader). The interior_outline routine erodes the input im-
age and subtracts the eroded image from the original. The exterior_outline
routine dilates the input image and subtracts the input image from the di-
lated image.

174

200
200
200
200
200
200
200
200
200
200

O O O O O OO o oo

200
200
200
200
200
200
200
200
200
200

200
200
200
200
200
200
200
200

200
200

O O O O O O

200
200

o

200

O O O O O O

200

200
200

O O O O O O

200
200

200

O O O O O O

200

200
200

O O O O O O

200
200

(@)

200

O O O O O O

200

200
200

O O O O O o

200
200

200

O O O O O O

200

CHAPTER 11.

200
200

O O O O O O

200
200

O

200

O O O O O O

200

200
200

O O O O O O

200
200

200

O O O O O O

200

200
200
200
200
200
200
200
200
200
200

200
200
200
200
200
200
200
200

200
200
200
200
200
200
200
200
200
200

O O O O O O O o oo

MANIPULATING SHAPES

Figure 11.27: The Interior Outline of an Object

11.6. OUTLINING

O O O O O O OO oo

O O O O O OO O oo

O OO OO O O O oo

200
200
200
200
200
200
200
200

200
200
200
200
200
200

(@)

200

O O O O O O

200

200
200
200
200
200
200

o

200

O O O O O O

200

Figure 11.28: The Exterior Outline of an Object

200
200
200
200
200
200

(@)

200

O O O O O O

200

200
200
200
200
200
200

o

200

O O O O O O

200

200
200
200
200
200
200

(@)

200

O O O O O O

200

200
200
200
200
200
200

o

200

O O O O O O

200

O OO O O O O o oo

200
200
200
200
200
200
200
200

O O O O O OO o oo

O O O O O OO o oo

175

176 CHAPTER 11. MANIPULATING SHAPES

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

O O O O O OO OO O O OO
O OO O OO OO OO O oo

o o o0 o0 o o o o o o o o o o o o o
o o o o0 o o o o o o o o o o o o o
o o o0 o o o o o o o o o o o o o o
o o o0 o o o o o o o o o o o o o o
o o o0 o o o0 o o o o o o o o o o o
o o o0 o0 o o o o o o o o o o o o o
0 o0 O O 0 0200 200 200200200 O O O O O O
o o o0 o0 o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o
o o o0 o o o o o o o o o o o o o o
o o o0 o o o o o o o o o o o o o o
o o o0 o0 o o o o o o o o o o o o o
o o o0 o0 o o o o o o o o o o o o o

Figure 11.29: Thinning a Rectangle until it is One Pixel Wide

11.7 Thinning and Skeletonization

Thinning is a data reduction process that erodes an object until it is one-pixel
wide, producing a skeleton of the object. It is easier to recognize objects such
as letters or silhouettes by looking at their bare bones. Figure 11.29 shows
how thinning a rectangle produces a line of pixels.

There are two basic techniques for producing the skeleton of an object:
basic thinning and medial axis transforms.

Thinning erodes an object over and over again (without breaking it) until
it is one-pixel wide. Listing 11.2 contains the thinning routine. The spe-
cial_opening routine used thinning to erode objects without breaking them.

11.7. THINNING AND SKELETONIZATION 177

In that context, the once_only parameter of thinning is one, so that it would
erode an image only one time. Setting once_only to zero causes thinning to
keep eroding until the objects in the image are all one-pixel wide.

This basic thinning technique works well, but it is impossible to re-create
the original object from the result of thinning. Re-creating the original re-
quires the medial axis transform.

The medial axis transform finds the points in an object that form lines
down its center, that is, its medial axis. It is easier to understand the medial
axis transform if you first understand the Euclidean distance measure (don’t
you love these big terms that really mean very simple things?). The Euclidean
distance measure is the shortest distance from a pixel in an object to the edge
of the object. Figure 11.30 shows a square, its Euclidian distance measure
(distance to the edge), and its medial axis transform.

The medial axis transform consists of all points in an object that are
minimally distant to more than one edge of the object. Every pixel in the
bottom of Figure 11.30 was the shortest distance to two edges of the object.
The advantage of the medial axis transform is you can re-create the original
object from the transform (more homework). Figure 11.31 shows a rectangle
(from Figure 11.29) and its medial axis transform. Figure 11.32 shows a
block letter A, and going clockwise, the result of exterior outline, medial axis
transform, and thinning.

Listing 11.2 shows the source code to implement the FEuclidean distance
measure and the medial axis transform. edm calculates the Euclidean dis-
tance measure. It loops through the image and calls distance_8 to do most of
the work. distance 8 has eight sections to calculate eight distances from any
value pixel to the nearest zero pixel. distance 8 returns the shortest distance
it found.

The functions mat and mat_d calculate the medial axis transform in a
similar manner. mat loops through the image and calls mat_d to do the
work. mat_d calculates the eight distances and records the two shortest
distances. If these two are equal, the pixel in question is minimally distant
to two edges, is part of the medial axis transform, and causes mat_d to return
value.

178 CHAPTER 11. MANIPULATING SHAPES

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

O O O O O OO OO0 OO0 OO OoOOo
O OO OO OO OO0 OOO0OOoOOoOOoOOo

O O O O OO OO OO0 OOoOOoO oo o
O O O OO OO OO0 O0OOOOoO o OoOo
OCOrRr PR KPERPREPRRPLPRLRPELRPLRRPLRLROO
O O FL NDNNNNNNDMDNDNNDMNNDNDNNDE OO
OO F N WWWWWWWWWNDRFOOo
CORNWEAAMBRABEDRMDNAWNDRL OO
OC O L NWH Lo d WN - OO
OC O L NWHEUTTOOO U P WNEREL OO
OO L NWP IO NOOG P WNERLOO
OO P NWPH TTOO O bk WNEFE OO
OO L NWPH T O WN = OO
CORNWEABAMBRABEADRDNAWNDRL OO
O O FRL N WWWWWWWWWNEROOo
OO L NNNNNMNMDNNNMNNDNDNE OO
OCOrRr PR KPRPRRERRPLPRLREPEPRPLRPRRPLRLROO
O O O O O O OO OO OO OOoo oo
O O O O O OO OO OOOOOoO o oo

Figure 11.30: A Square, its Euclidean Distance Measure, and its Medial Axis
Transform (Part 1)

11.8. A SHAPE OPERATIONS APPLICATION PROGRAM 179

o6 o o0 o0 o o o o o o o o o o o o o
o o o0 o0 o o o o o o o o o o o o o
0o 020 o0 0 O O0 o0 o0 o o0 o o 0200 o0 O
o o0 020 0 O0 O0 O O O o0 O 0200 O 0 O
o o o0 020 OO0 O O O O o0 0200 0 O 0 O
6o o o0 o0 020 0 0 0 0 020 0 0 0 o0 o0
o o o0 o o 0200 0 O 0200 O O O O 0 O
o o o0 o o o0 0200 0200 0 O O O O 0 O
o o o0 o o o o 0620 O O O O 0 O o0 o0
o o o0 o0 o o0 0200 0200 O O O O O o0 O
6o o o0 o o 0200 0 O 0200 0 O O O 0 O
o o o0 o0 020 0 0 0 0 020 0 0 0 o0 o0
o o o0 020 0 OO0 0 O O o0 0200 0 0 0 O
o o0 020 0 O0 0 O O O o0 O 0200 O 0 O
0o 020 o0 o0 O0 O0 o0 o0 o o0 o o 0200 o0 O
o o o0 o0 o o o o o o o o o o o o o
o o o0 o0 o o o o o o o o o o o o o

Figure 11.30: A Square, its Euclidean Distance Measure, and its Medial Axis
Transform (Part 2)

11.8 A Shape Operations Application Pro-
gram

Listing 11.3 shows application program mainsk that ties together all the
routines that manipulate shapes. It can call 14 different operations. The
format of mainsk is the same as the other applications presented in this text.

11.9 Conclusions

This chapter discussed shape operations or morphological filters. These tech-
niques help you improve the appearance of segmentation results. They are
also useful for other situations. As with all the image processing operators in
this system, you must experiment. Try the techniques and tools in different
combinations until you find what works for the image or class of images at
hand.

180 CHAPTER 11. MANIPULATING SHAPES

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

O O O O O OO OO OO oo
O O O O O OO OO0 O oo

o o o0 o0 o o o o o o o o o o o o o
o o o0 o o o o o o o o o o o o o o
0o 020 o0 0 O0 0 o0 O0o O o0 O o0 0200 o0 o0
o o 0200 0 0 O O O O o O 0200 O o0 O
o o o0 0200 O O O O O O 0200 O O O O
o o o0 o0 020 o0 0 O O 020 o0 0 0 o0 o
0 o0 O O O 0200 200 200 200200 O O O O O O
o o0 o0 o 0200 0 O O O 020 0 0 0 0 o
o o o0 0200 0 O O O O O 0200 0 0 o0 O
o o 0200 0 0 O O O O O O 0200 O o0 O
0 o020 o0 0 OO0 O o0 o0 o0 o o o0 0200 o0 o0
o o o o o o o o o o o o o o o o o
o o o0 o o o o o o o o o o o o o o

Figure 11.31: A Rectangle and its Medial Axis Transform

11.10. REFERENCES 181

Figure 11.32: (Clockwise from Upper Left) A, Its Outline, Medial Axis Trans-
form, and Thinning

11.10 References

11.1 “The Image Processing Handbook, Third Edition,” John C. Russ, CRC
Press, 1999.

11.2 “Computer Imaging Recipes in C,” Harley R. Myler, and Arthur R.
Weeks, Prentice Hall Publishing, Englewood Cliffs, New Jersey, 1993.

11.3 “Vision in Man and Machine,” Martin D. Levine, McGraw-Hill, 1985.

182 CHAPTER 11. MANIPULATING SHAPES

Chapter 12

Boolean and Overlay
Operations

12.1 Introduction

This chapter will discuss Boolean and overlay operations. These operations
are useful for combining images in interesting ways. They are also good for
creating special effects in images. The goal is to combine two images to
produce a third that has features of the two inputs. The Boolean operations
use the functions of Boolean algebra. The overlay operations lay selected
pixels from one image on top of another. These are similar to the image
addition and subtraction of Chapter 8.

12.2 Boolean Operations

The Boolean operations execute the basic functions from Boolean algebra.
Figure 12.1 shows the truth table for these operations. The output of the
AND is one when both inputs are one. The output of the OR is one if either
of the inputs are one. The output of the exclusive or (XOR) is one if one but
not both of the inputs is one. The NAND is the opposite of the AND, the
NOR is opposite of the OR, and the NOT reverses the input.

It is a simple matter to extend Boolean operations for gray scale images.
Replace the 1s in the A and B columns of the truth table with any non-zero
value. Replace the 1s in the output columns with the non-zero value from
the A column. For example, if the A image contains all 200s and the B image

183

184 CHAPTER 12. BOOLEAN AND OVERLAY OPERATIONS

a b aANDb aORb aXORb aNANDb aNORD NOT a
0 O 0 0 0 1 1 1
0 1 0 1 1 1 0 1
1 0 0 1 1 1 0 0
1 1 1 1 0 0 0 0

Figure 12.1: Existing Standard TIFF Tags

contains all 100s, the output of A AND B will be all 200s.

Listing 12.1 shows the subroutines that implement the Boolean opera-
tions. Each of the routines (and_image, or_image, xor_image, nand_image,
nor_image, not_image) follows the usual pattern. They combine the input
image arrays using the truth table and return the result. These are simple,
yet powerful routines.

Listing 12.2 shows the boolean program. This program allows the user to
apply any of the Boolean operators to images. It follows the same pattern
as all main programs in this text.

12.3 Applications of Boolean Operations

Let’s look at two applications of the Boolean operations: masking and label-
ing images. Masking places the gray shades of an image on top of a binary
image derived from it. Figure 12.2 shows an aerial image, and Figure 12.3
shows a segmentation of it from Chapter 10. This is a fairly accurate seg-
mentation, but it is difficult to correlate the white shapes to objects in the
image. Is the large rectangle to the left grass or a parking lot? One way of
determining the source of the objects is to mask the original over the seg-
mentation using the AND operation. Figure 12.4 shows the result of masking
(ANDing). It is easy to see that the large rectangle is a tennis court, some
of the roads are cement (white), and others are asphalt (gray).

Another use of the Boolean operations is to create and place labels on top
of images. Listing 12.3 shows an image labeling program called ¢label. This
program writes simple 9x7 block letters to an image file. The user calls the
program by giving an output image name, a line and element in the image,
and the text to go in the image. For example,
ilabel a.tif 10 20 adam
places the letters ADAM in the image a.tif starting in the tenth row, twentieth

12.3. APPLICATIONS OF BOOLEAN OPERATIONS 185

Figure 12.3: Segmentation of Aerial Image (from Chapter 10)

186 CHAPTER 12. BOOLEAN AND OVERLAY OPERATIONS

element. Most of the listing is the arrays defining the block letters, numbers,
and a few punctuation marks. The program itself loops through the letters
in the text and copies each letter’s array into the image array.

Figure 12.4: Segmented Aerial Image Masked with Original

The left side of the image in Figure 12.5 shows the output of the ilabel
program. The words ADAM PHILLIPS are clear enough, but they will
disappear if laid on top of an image. They need a background. The center
section of Figure 12.5 shows the result of dilating the words as in Chapter
11. The right side of Figure 12.5 shows the final label — black letters on a
white background. The final label is the result of the exclusive or (XOR) of
the letters and their dilation. The output of the XOR is white only where
one or the other image is white, but not both.

Figure 12.6 is the outcome of labeling. It is the result of ORing the final
label of Figure 12.5 with the boy image. ORing allows us to see through the
label to the image underneath. It is also possible to label the image using
the greater overlay discussed later. Creating the label, however, is possible
only via the XOR, operation.

These are only two possible uses of the Boolean operations. There are
many more, especially when you start combining them. After all, combining
Boolean operations is how people build computers.

12.3. APPLICATIONS OF BOOLEAN OPERATIONS 187

e 0 s aOEh
PHILLIFS MIOLLIFS EHILLIES

Figure 12.5: ilabel Output on Left, Dilation in Center, XOR of Both on Right

Figure 12.6: Labeled Boy Image

188 CHAPTER 12. BOOLEAN AND OVERLAY OPERATIONS

12.4 Overlay Operations

The overlay operations lay select pixels from one image on top of another
and place the output into a third image. This chapter shows five types of
pixel overlay operations from image A on top of image B. These are

1. overlay non-zero pixels from A onto B,

overlay zero pixels from A onto B,

overlay pixels from A onto B if they are greater,

overlay pixels from A onto B if they are less, and

average the pixels from A and B and use this as the output.

Figures 12.7 through 12.12 illustrate these operations. Figure 12.7 shows
two image arrays: A and B. Figure 12.8 shows the result of laying the non-
zero pixels of A on top of B. This looks like image A except for the absence
of the 2x2 area of Os in the lower right. Figure 12.9 shows the result of laying
the zero pixels of A on top of B. This looks like image B except for the
addition of the 2x2 area of 0s. Figure 12.10 shows the result of overlaying
the pixels in A that are greater than the corresponding pixels in B. Note the
column of 100s to the far right. Figure 12.11 shows the result of overlaying
the pixels in A that are less than the corresponding pixels in B. Note the
predominance of 50s and the 0s. Figure 12.12 shows the result of averaging
images A and B. Figure 12.12 is not easy to perceive or read and is better
illustrated with the images discussed below.

Listing 12.4 shows the subroutines that implement the overlay operations.
The following routines follow the usual model: non_zero_overlay, zero_overlay,
greater_overlay, less_overlay, and average overlay. They combine the input
image arrays and return the result.

Gl W

12.5 Applications of Overlay Operations

Let’s look at two applications of image overlaying. The first is the double
exposure. Figure 12.13 shows two images side by side. Figure 12.14 shows
the result of averaging the two together. This resembles a double exposure
image, as it contains both images.

This technique can also apply a pattern or texture to an image. Figure
12.15 shows a leafy texture, and Figure 12.16 shows a house. Figure 12.17 is
the result of averaging the two. It is easy to recognize the house, but parts
of it (notably the roof and door) have a texture or pattern to them.

12.5. APPLICATIONS OF OVERLAY OPERATIONS

Image A

50
50
50
50
50
50
50
50
50
50

50
50
50
50
50
50
50
100
50
50

Image B

50
50
75
75
75
75
75
75
50
50

50
50
75
75
75
75
75
75
50
50

50
50
265
255
50
50
50
100
50
50

50
50
200
200
200
200
200
200
50
50

50
50
255
255
50
50
50
100
50
50

50
50
200
200
200
200
200
200
50
50

50
50
50
50
50
50
50
100
50
50

50
50
200
200
200
200
200
200
50
50

50
50
50
50
50
50
50
100
50
50

50
50
200
200
200
200
200
200
50
50

Figure 12.7: Images A and B

50
50
50
50

50
100
50
50

50
50
200
200
200
200
200
200
50
50

50
50
50
50

50
100
50
50

50
50
200
200
200
200
200
200
50
50

50
50
50
50
50
50
50
100
50
50

50
50
75
75
75
75
75
75
50
50

100
100
100
100
100
100
100
100
100
100

50
50
75
75
75
75
75
75
50
50

189

190 CHAPTER 12. BOOLEAN AND OVERLAY OPERATIONS

50 50 50 560 50 50 50 50 50 100
50 50 50 50 50 50 560 50 50 100
50 50 2565 2656 50 50 560 50 50 100
50 50 255 2656 50 50 50 50 50 100
50 50 50 560 50 50 200 200 50 100
50 50 50 560 50 50 200 200 50 100
50 50 50 50 50 50 560 50 50 100
50 100 100 100 100 100 100 100 100 100
50 50 50 50 50 50 50 50 50 100
50 50 50 560 50 50 50 50 560 100

Figure 12.8: Result of Overlay Non-Zero A

50 50 50 50 50 50 560 50 50 50
50 50 50 50 50 50 560 50 50 50
75 75 200 200 200 200 200 200 75 75
75 75 200 200 200 200 200 200 75 75
75 75 200 200 200 200 O O 75 75
75 75 200 200 200 200 O O 75 75
75 75 200 200 200 200 200 200 75 75
75 75 200 200 200 200 200 200 75 75
50 50 50 560 50 50 50 50 560 50
50 50 50 560 50 50 50 50 560 50

Figure 12.9: Result of Overlay Zero A

12.5. APPLICATIONS OF OVERLAY OPERATIONS

50
50
75
75
75
75
75
75
50
50

50
50
50
50
50
50
50
50
50
50

50
50
75
75
75
75
75
100
50
50

50
50
50
50
50
50
50
75
50
50

50
50
255
255
200
200
200
200
50
50

50
50
200
200
50
50
50
100
50
50

50
50
255
255
200
200
200
200
50
50

50
50
200
200
200
200
200
200
50
50

50
50
200
200
200
200
200
200
50
50

50
50
200
200
200
200
200
200
50
50

50
50
200
200
200
200
200
200
50
50

Figure 12.10: Result

50
50
200
200
50
50
50
100
50
50

50
50
50
50
50
50
50
100
50
50

Figure 12.11: Result of Overlay Less A

50
50
50
50
50
50
50
100
50
50

50
50
50
50
0

0
50
100
50
50

50
50
50
50
0

0
50
100
50
50

50
50
75
75
75
75
75
100
50
50

of Overlay Greater A

50
50
50
50
50
50
50
75
50
50

100
100
100
100
100
100
100
100
100
100

50
50
75
75
75
75
75
75
50
50

191

192 CHAPTER 12. BOOLEAN AND OVERLAY OPERATIONS

50 50 50 50 50 560 50 50 50 75
50 50 50 50 50 560 50 50 50 75
62 62 227 227 125 125 125 125 125 87
62 62 227 227 125 125 125 125 125 87
62 62 125 125 125 125 100 100 125 87
62 62 125 125 125 125 100 100 125 87
62 62 125 125 125 125 125 125 125 87
62 87 150 150 150 150 150 150 87 87
50 50 50 50 50 50 50 50 50 75
50 50 50 50 50 50 50 50 50 75

Figure 12.12: Result of Average Overlay

Figure 12.13: Two Images Side by Side

12.5. APPLICATIONS OF OVERLAY OPERATIONS 193

Figure 12.14: Two Images Averaged

Figure 12.15: Leafy Texture Image

194 CHAPTER 12. BOOLEAN AND OVERLAY OPERATIONS

Figure 12.16: House Image

Figure 12.17: Averaging Leafy Texture and House Image

12.5. APPLICATIONS OF OVERLAY OPERATIONS 195

A second application of overlaying is to frame an area of interest in an
image. The first step is to create a frame. Figure 12.18 shows a white frame
in a blank image. I created this by modifying the create program of chapter
8 (left as an exercise for the reader).

Figure 12.18: White Frame in Blank Image

Laying the rectangle of Figure 12.18 on top of a boy image produces
Figure 12.19. The frame draws attention to a spot on the boy image. This is
the result of overlaying the pixels in Figure 12.18 that are greater than the
pixels in the boy image. The dark pixels inside the frame of Figure 12.18 are
all zero so they disappear in the overlaying process. The white frame pixels
are all 255 so they show up well in the result.

It is possible to create a frame of all zeros with a small area of 255s in
the center. Using the zero_overlay or less_overlay would produce a thick dark
frame around an area of interest.

Listing 12.5 shows the mainover program. This application allows the
user to call any of the overlay programs discussed here and shown in listing
12.4. Tt follows the same pattern as the other applications discussed in this
text.

196 CHAPTER 12. BOOLEAN AND OVERLAY OPERATIONS

AN

Figure 12.19: Frame Overlaid on Boy Image

12.6 Conclusions

This chapter has discussed Boolean and overlay operations. Though not
complicated, these operations allow you to combine images in interesting
and creative ways. There are endless possibilities to the combinations. As
with all the other operators in this system, you should experiment. Use the
operators as building blocks and mix them to fit your needs.

Chapter 13

Geometric Operations

13.1 Introduction

Basic image processing operations include the geometric type that rotate
images and scale them (make them bigger and smaller). The first edition of
this text included some simple forms of these operations. Those operators
are not in this edition. Instead, this chapter discusses a powerful geometric
operator that displaces, rotates, stretches, and bends images. It also includes
a useful and simple program that stretches images to almost any size.

13.2 (Geometric Operations

Geometric operations change the spatial relationships between objects in an
image. They do this by moving objects around and changing the size and
shape of objects. Geometric operations help rearrange an image so we can
see what we want to see a little better.

The three basic geometric operations are displacement, stretching, and
rotation. A fourth operation is the cross product (included here to show how
to distort an image using higher order terms).

Displacement moves or displaces an image in the vertical and horizontal
directions. Stretching enlarges or reduces an image in the vertical and hor-
izontal directions. Rotation turns or rotates an image by any angle. Figure
13.1 shows the basic idea of these three operations.

Equations (13.1) and (13.2) describe mathematically how to perform
these operations [13.1]. The first two terms in each equation perform the

197

198 CHAPTER 13. GEOMETRIC OPERATIONS

v

Origin

y_stretch

A
v

X_stretch
v

Figure 13.1: The Three Basic Geometric Operations: Displacement, Stretch-
ing, and Rotation

rotation by any angle 0 . The Zgispiace and Ygispiace terms perform displace-
ment. They shift the image in either direction (shift to the left for zgspiace
greater than zero, shift to the right for less than zero). The x times Tg eten
enlarges or shrinks the image in the horizontal direction while the y times
Ystreten does the same in the vertical direction. The x..0ss and Yeross terms
distort the image and an example explains them better than words.

X =x-cos(0) +y-sin(0) + Taisplace + T * Tstreteh + T Y * Teross (13.1)

Y = Y- 005(0) — T S’LTL(Q) + Ydisplace + Y * Ystretch +x- Y * Yeross (132)

The power of equations (13.1) and (13.2) is that they do all three (four)
operations at one time. Setting the terms accomplishes any or all the oper-
ations.

Figures 13.2 through 13.6 illustrate the operations. Figure 13.2 shows
displacement. The upper left hand corner shows in the input image. This is
a window and brick wall from a house. The upper right hand corner shows

13.2. GEOMETRIC OPERATIONS 199

the result of displacing the input image up and to the left. The lower left
hand corner shows the result of displacing the input image down and to the
right (Zaisplace a0d Ydispiace are negative values such as -10). The lower right
hand corner shows displacement up and to the right.

Figure 13.2: Examples of Displacement

Note that when any operator moves an image, blank areas fill in the
vacant places.

Figure 13.3 shows stretching. The upper left hand corner is the input.
The upper right hand corner is the result of stretching the input image in
both directions (set Zsireten and Yspreten to 2.0). The lower left hand corner
is the result of stretching the input image with values less than 1.0. This
causes shrinking. The lower right hand corner shows how to combine these
effects to enlarge the image in the horizontal direction and shrink it in the
vertical direction.

Figure 13.4 shows rotation. The upper left hand corner is the input image.
The other areas show the result of rotating the input image by pinning down
the upper left hand corner (the origin). The other areas show rotations of
= 30, 45, and 60 degrees.

Figure 13.5 shows the influence of the cross product terms o5 and Yeross-
Setting these terms to anything but 0.0 introduces non-linearities (curves).
This is because equations (13.1) and (13.2) multiply the terms by both and

200 CHAPTER 13. GEOMETRIC OPERATIONS

Figure 13.4: Examples of Rotation about the Origin

13.2. GEOMETRIC OPERATIONS 201

y. The input image is on the left side of Figure 13.5 with the output shown
on the right (Zeross and Yeress = 0.01). Values much bigger than this distort
the output image to almost nothing.

Figure 13.5: Examples of Cross Products

Using higher order terms in equations (13.1) and (13.2) can cause greater
distortion to the input. You can add a third order term to equation (13.1)
(17 XY xdoublecross) and equation (132) (y Yy-x- ydoublecross)' Tl'y this for
homework. It will be easy given the source code.

Figure 13.6 shows the result of using all four operations at once. This is
the result of displacing down and to the right, enlarging in both directions,
rotating 30 degrees, and using cross products. It is a simple matter of setting
the terms in the equations.

Listing 13.1 shows the geometry routine that implements these opera-
tions. It has the same form as the other image processing operators in this
series. The parameters are from equations (13.1) and (13.2). First, geometry
converts the input angle theta from degrees to radians and calculates the sine
and cosine. The next section prepares the stretch terms to prevent dividing
by zero.

The loops over i and j move through the input image. All the math uses
doubles to preserve accuracy. new_i and new_j are the coordinates of the
pixels in the input image to copy to the output image.

The final section of geometry sets the output image to the new points
in the input image. If bilinear == 1, we will call the bi-linear interpolation
function described below. If bilinear == 0, we set the output image directly.

202 CHAPTER 13. GEOMETRIC OPERATIONS

Figure 13.6: Combining All Four Geometric Operations

The compound if statement checks if the new points are inside the image
array. If they are not, set the out_image to the FILL value (this fills in
vacant areas).

13.3 Rotation About Any Point

The geometric operations above can rotate an image, but only about the
origin (upper left hand corner). Another type of rotation allows any point
(m, n) in the image to be the center of rotation. Equations (13.3) and
(13.4) describe this operation [13.2]. Figure 13.7 illustrates how the input
image (the rectangle) revolves about the point (m, n). Figure 13.8 shows
several examples. The upper left hand corner is the input image. The other
three quadrants show 45 degree rotations about different points in the image.
Almost anything is possible by combining the basic geometric operations
shown earlier with this type of rotation. For example, you can displace and
stretch an image using the earlier operations and rotate that result about
any point.

X =x-cos(0) —y-sin(@) —m - cos(theta) +n - sin(d) +m (13.3)

13.4. BI-LINEAR INTERPOLATION 203

Y =y-cos(0) + z - sin(0) —m - sin(theta) —n - sin(6) +n (13.4)
X
[—
Y

v

(m.n)

]

Figure 13.7: Rotation About any Point m,n

Listing 13.1 next shows the routine arotate that performs rotation about
any point (m, n). arotate converts the angle of rotation from degrees to
radians and calculates the sine and cosine. It loops through the image and
calculates the new coordinates tmpx and tmpy using equations (13.3) and
(13.4). If bilinear == 1, use bi-linear interpolation (coming up next). If
bilinear == 0, check to see if the new coordinates are in the image array. If
the are, set the output image to those points in the input image.

13.4 Bi-Linear Interpolation

Now that we have some basics behind us, let’s move forward. Critical to mak-
ing the results of any of the operations look good is bi-linear interpolation.
Bi-linear interpolation is present in any good image processing applications
performed today in commercials, music videos, and movies. As usual, bi-
linear interpolation is a big name for a common sense idea. It fills in holes
with gray levels that make sense [13.3] [13.4].

204 CHAPTER 13. GEOMETRIC OPERATIONS

Figure 13.8: Examples of Rotation About Any Point

The bent lines in Figure 13.9 show why bi-linear interpolation is impor-
tant. The left side did not use bi-linear interpolation. It has jagged lines.
The smooth bent lines in the right side illustrate how bi-linear interpolation
makes things look so much better.

There is a reason for the jagged lines. In many geometric operations,
the resulting pixel lies somewhere between pixels. A pixel’s new coordinates
could be x=25.38 and y=47.83. Which gray level is assigned to that pixel?
Rounding off suggests x=25 and y=48. (That is what happens in the code
listings when the parameter bilinear == 0.) Rounding off produces the jagged
lines.

Bi-linear interpolation removes jagged lines by finding a gray level be-
tween pixels. Interpolation finds values between pixels in one direction (inter-
polating 2/3’s of the way between 1 and 10 returns 7). Bi-linear interpolation
finds values between pixels in two directions, hence the prefix “ bi.”

Figure 13.10 illustrates how to perform bi-linear interpolation. Point P3
(x, y) is somewhere between the pixels at the four corners. The four corners
are at integer pixels (x=25, x=26, y=47, y=48). Equations (13.5), (13.6),
and (13.7) find a good gray level for point P3. In these equations, x and
y are fractions (if x=25.38 and y=47.83, then in the equations x=0.38 and
y=0.83).

13.4. BI-LINEAR INTERPOLATION 205

Figure 13.9: A Comparison of Not Using Bi-Linear Interpolation and Using
Bi-Linear Interpolation

gray(P1) = (1 —x) - gray(floor(x), floor(y)) + x - gray(ceiling(x), floor(y))

gray(P2) = (1—x)-gray(floor(z), ceiling(y))+x-gray(ceiling(x), ceiling(y))
(13.6)

gray(P3) = (1 —y) - gray(P1) +y - gray(P2) (13.7)

Equation (13.5) finds the gray level of point P1 by interpolating between
the two upper corners. Equation (13.6) finds the gray level of point P2 by
interpolating between the two lower corners. Equation (13.7) finally finds
the gray level of P3 by interpolating between points P1 and P2.

Listing 13.1 shows the routine bilinear_interpolate that implements these
equations. The input parameters are the image array the image and the
point (x, y) (in their full form x=25.38 and y=47.83). bilinear_interpolate
returns the gray level for (x, y). This routine contains slow, double precision
floating point math. This is the trade-off between techniques — speed verses
good looks.

This first part of bilinear_interpolate checks if x and y are inside the image
array. If not, the routine returns a FILL value. The next statements create
the floor x and y, ceiling x and y, fractional parts of x and y, and one minus

206 CHAPTER 13. GEOMETRIC OPERATIONS

X

Y (floor x, floory) (x, floory) (ceiling X, floory)

.—’Om .

(X)

OP2

(floor x, ceiling y) (x, ceiling y) (ceiling x, ceiling y)

' —’Ops '

Figure 13.10: Bi-Linear Interpolation

the fractions shown in the figure and needed by the equations. The final
statements calculate the gray levels of points P1, P2, and P3. The routine
returns the final gray level of P3.

Bi-linear interpolation is a simple idea, uses a simple routine, and makes
a world of difference in the output image. The images shown earlier for ge-
ometric operations all used the bi-linear option. I recommend the rounding
method for quick experiments and bi-linear interpolation for final presenta-
tions.

13.5 An Application Program

Listing 13.2 shows the geometry program. This program allows the user to
either perform the geometric operations of figure 13.1 or the rotation about
a point of figure 13.7. geometry interprets the command line, loads the
parameters depending on the desired operation, and calls the operations. It
has the same form as the other applications in this text.

13.6. A STRETCHING PROGRAM 207

13.6 A Stretching Program

A useful utility for image processing is enlarging and shrinking an entire im-
age. The many uses include making an image fit a display screen for printing
or imaging and making two images about the same size for comparisons.
The stretching and bi-linear interpolation tools now available permit general
stretching.

The main routine and subroutines shown in listing 13.3 make up the
stretch program. The command line is:

stretch input-image-file output-image-file x-stretch y- stretch bilinear

If the bilinear parameter is 1, stretch uses bi-linear interpolation otherwise
it uses basic rounding.

stretch has the same form as most applications in this text. It uses the
create_resized image _file because the output file and input file have different
sizes. The main routine allocates the image arrays (different sizes), reads
the input, calls the stretch subroutine, and writes the output. The stretch
subroutine borrows heavily from the geometry subroutine shown in listing
13.1.

Figure 13.11 shows results of the stretch program. It demonstrates how
stretch can enlarge in one direction while shrinking in another. The more
you experiment with image processing, the more you will find yourself using
stretch. It is very handy.

SN

Figure 13.11: The Boy Image Enlarged Horizontally and Shrunk Vertically

208 CHAPTER 13. GEOMETRIC OPERATIONS

13.7 Conclusions

This chapter discussed geometric operations. These powerful and flexible
operations change the relationships, size, and shape of objects in images.
They allow you to manipulate images for better display, comparison, etc.
Keep them handy in your collection of tools.

13.8 References

13.1 “Digital Image Processing,” Kenneth R. Castleman, Prentice-Hall, 1979.
13.2 “Mathematical Elements for Computer Graphics,” David F. Rogers, J.
Alan Adams, McGraw-Hill, New York, New York, 1976.

13.3 “The Image Processing Handbook, Third Edition,” John C. Russ, CRC
Press, 1999.

13.4. “Modern Image Processing,” Christopher Watkins, Alberto Sadun,
Stephen Marenka, Academic Press, Cambridge, Mass., 1993.

Chapter 14

Warping and Morphing

14.1 Introduction

This chapter extends the discussion of geometric operations and delves into
warping and morphing (Hollywood, here we come). Image warping is a
technique that Hollywood discovered in the 1980’s. The result is the magic
we see every day in commercials, music videos, and movies. Warping (and
its cousin morphing) “melts” old cars into new ones and can turn a car into
a tiger.

14.2 Image Warping

Image warping is a technique that bends and distorts objects in images.
Remember pressing a flat piece of silly putty on a newspaper to copy the
image to the silly putty? Grabbing and pulling the silly putty distorted the
appearance of the image. Bending and stretching the silly putty caused the
objects in the image to assume weird and wonderful shapes. Image warping
does the same for digitized images as silly putty did for us as kids.

Using a computer to warp images is not new. It began in the 1960’s with
early space probes. The pictures of the moon produced by the “cameras” on
the probes were distorted. Straight lines appeared bent and the objects were
out of proportion. Image processors at the Jet Propulsion Laboratory [14.1]
transformed these square images into the shape of pie pieces. The resulting
pie piece images had straight lines where straight lines belonged.

The special effects artists in Hollywood discovered warping in the 1980’s.

209

210 CHAPTER 14. WARPING AND MORPHING

They decided to apply this technique to entertainment. The result is what
we see every day in commercials, music videos, and movies.

14.3 The Warping Technique

The basic idea behind warping is to transform a quadrilateral to a rectangle.
A quadrilateral is a four-cornered region bounded by straight lines. Trans-
forming a quadrilateral to a rectangle warps the objects inside the quadrilat-
eral.

Figure 14.1 shows a quadrilateral with a point P inside [14.2]. Trans-
forming a quadrilateral to a rectangle requires finding the coordinates of any
point P inside the quadrilateral. This is possible given the coordinates of the
four corners P1, P2, P3, and P4 and the fractions a and b along the edges.
The key to finding P is using bi-linear interpolation. In the last chapter,
bi-linear interpolation found the gray level of a pixel between other pixels
(gray level bi-linear interpolation). It can also find the location of a pixel
between other pixels (spatial bi-linear interpolation).

NOTE: This chapter works with shapes that have four Parts (1, 2, 3, and
4). Part 1 will be in the upper left-hand corner, and parts 2, 3, and 4 will
proceed clockwise.

Equations (14.1) through (14.7) show how to find the coordinates of point
P. (If mathematical derivation is not for you, skip down to the results in
equations (14.6) and (14.7). The source code given later will implement
these equations). These equations run through bi-linear interpolation. They
interpolate along the top and bottom of the quadrilateral and then along the
sides. In the equations, a and b are fractions (0 <a < 1,0 <b 1).

Equation (14.1) finds point Q by interpolating between points P1 and P2
using a. Equation (14.2) finds point R by interpolating between points P3
and P4 using a. Equation (14.3) finds point P by interpolating between Q
and R using b. Equation (14.4) is the result of substituting the values of Q
and R from equations (14.1) and (14.2) into equation (14.3). Equation (14.5)
gathers all the terms from (14.4).

Q(CL) :P1+(P2—P1)a (141)

R(a) = Py + (P; — Py)a (14.2)

14.3. THE WARPING TECHNIQUE 211

\4

P3

Figure 14.1: Bi-Linear Interpolation of a Quadrilateral

212 CHAPTER 14. WARPING AND MORPHING

Pa,b) =Q + (R— Q)b (14.3)

P(a,b) =P+ (Po— P))a+ [(Py+ (Ps— Pya) — (P + (P, — Py)a)|b (14.4)

P(a,b):P1+(P2—Pl)a+(P4—P1)b+(P1—P2+P3—P4)ab (145)

Equations (14.6) and (14.7) are the final answers. Equation (14.6) shows
how to find the x coordinate of any point P given the x coordinates of the
four corners and the fractions a and b. Equation (14.7) does the same for
the y coordinate. The subroutines described below will implement equations
(14.6) and (14.7). Notice the ab term in the equations. This term introduces
non-linearities or curves into the results.

P(x) =14 (23 — z1)a+ (24 — 21)b + (21 — 22 + 23 — x4)ab (14.6)

P(x) =y + (2 —y1)a+ (ya — y1)b+ (y1 — Y2 + ys — ya)ab (14.7)

14.4 Two Ways to Warp

This chapter implements two kinds of warping. The first is control point
warping illustrated in figure 14.2. Divide a section of an image into four
smaller squares 1, 2, 3, and 4. Pick a control point anywhere inside the square
section. This control point divides the square section into four quadrilaterals
as shown in the top part of figure 14.2. Equa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>