

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized authoring and corporate training organization.
The company offers instructor-led courses delivered at client sites worldwide on programming languages
and other software topics such as C++, Visual C++®, C, Java™, C#®, Visual Basic®, Objective-C®, XML®,
Python®, JavaScript, object technology, Internet and web programming, and Android and iPhone app
development. The company’s clients include many of the world’s largest companies, as well as govern-
ment agencies, branches of the military and academic institutions. To learn more about Deitel Pearson
Higher Education publications and Dive Into® Series corporate training, e-mail deitel@deitel.com
or visit www.deitel.com/training/. Follow Deitel on Facebook® at www.deitel.com/deitelfan/
and on Twitter® @deitel.

Deitel® How to Program Series Cover Theme
The cover theme for the DEITEL® HOW TO PROGRAM SERIES emphasizes social consciousness issues such
as going green, clean energy, recycling, sustainability and more. Within the text, in addition to conven-
tional programming exercises, we’ve included our Making a Difference exercise set to raise awareness of
issues such as global warming, population growth, affordable healthcare, accessibility, privacy of electronic
records and more. In this book, you’ll use C++ to program applications that relate to these issues.
We hope that what you learn in C++ How to Program, 8/e will help you to make a difference.

Rainforests
The world’s rainforests are often referred to as the “Earth’s lungs,” the “jewels
of the Earth” and the “world’s largest pharmacy.” Approximately 50% of the
world’s tropical rainforests are in Central and South America, over 33% are in
Asia and Oceania (which consists of Australia, New Zealand and various South
Pacific Islands), and 15% are in Africa. Rainforests absorb from the atmos-
phere vast amounts of carbon dioxide—a gas that many scientists blame for
global warming—and they provide approximately 40% of the world’s oxygen.
They regulate water flow to surrounding areas preventing mudslides and crop
loss. Rainforests also support the livelihoods of 1.6 billion people, providing
food, fresh water, medicines and more. Approximately 25% of Western med-
icines used to treat infections, viruses, cancer and more are derived from plants

found in rainforests. The U.S. National Cancer Institute has found about 2100 rainforest plant species
that are effective against cancer cells. Fewer than one percent of rainforest plant species have been tested
for medical use.

Rainforests are being deforested at an alarming rate. According to a March 2010 report by the United
Nations Food and Agriculture Organization, deforestation has slowed over the last 10 years,
but more than 30 million acres of forests are still lost annually, and they’re not easily renewed.
The United Nations Environment Programme Plant for the Planet: Billion Tree Campaign is one of
many reforestation initiatives. To learn more about how you can make a difference, visit
www.unep.org/billiontreecampaign/index.asp. For further information visit:

www.rain-tree.com/facts.htm

www.savetherainforest.org/savetherainforest_007.htm

en.wikipedia.org/wiki/Rainforest

www.rainforestfoundation.org/

❝I really like the Making a Difference programming exercises. The game programming [in the Functions chapter] gets
students excited.❞—Virginia Bailey, Jackson State University

❝It’s great that the text introduces object-oriented programming early. The car analogy was well-thought out. An
extremely meticulous treatment of control structures. The virtual function figure and corresponding explanation in the
Polymorphism chapter is thorough and truly commendable .❞—Gregory Dai, eBay, Inc.

❝An excellent ‘objects first’ coverage of C++ that remains accessible to beginners. The example-driven presentation is
enriched by the optional OO design case study that contextualizes the material in a software engineering project.❞
—Gavin Osborne, Saskatchewan Institute of Applied Science and Technology

❝It is excellent that [the authors] use the STL and standard libraries early.❞—John Dibling, SpryWare

❝Provides a complete basis of fundamental instruction in all core aspects of C++. Examples provide a solid grounding in
the construction of C++ programs. A solid overview of C++ Stream I/O.❞
—Peter DePasquale, The College of New Jersey

❝Great discussion about the mistakes resulted from using = for == and vice versa!❞
—Wing-Ning Li, University of Arkansas

❝Thorough and detailed coverage of exceptions from an object-oriented point of view.❞
—Dean Mathias, Utah State University

❝Chapter 20 (Data Structures) is very good. The examples are accessible to CS, IT, software engineering and business stu-
dents.❞—Thomas J. Borrelli, Rochester Institute of Technology

❝The Simpletron exercises are brilliant. The Polymorphism chapter explains one of the hardest topics to understand
in OOP in a clear manner. Great job! The writing is excellent, the examples are well developed and the exercises
are interesting.❞— José Antonio González Seco, Parliament of Andalusia, Spain

❝Introducing the UML early is a great idea.❞—Raymond Stephenson, Microsoft

❝Good use of diagrams, especially of the activation call stack and recursive functions.❞
—Amar Raheja, California State Polytechnic University, Pomona

❝Terrific discussion of pointers—the best I have seen.❞—Anne B. Horton, Lockheed Martin

❝Great coverage of polymorphism and how the compiler implements polymorphism ‘under the hood.’ I wish I had such a
clear presentation of data structures when I was a student.❞—Ed James-Beckham, Borland

❝A nice introduction to searching and sorting, and Big-O.❞—Robert Myers, Florida State University

❝Will get you up and running quickly with the memory management and regular expression libraries.❞
—Ed Brey, Kohler Co.

❝Excellent introduction to the Standard Template Library (STL). The best book on C++ programming for the serious
student!❞—Richard Albright, Goldey-Beacom College

❝Each code example is completely reviewed. This is a critical step for students to learn good programming practices.❞
—Jack R. Hagemeister, Washington State University

❝The most thorough C++ treatment I’ve seen. Replete with real-world case studies covering the full software
development lifecycle. Code examples are extraordinary!❞—Terrell Hull, Logicalis Integration Solutions

Continued from Back Cover

Cpphtp8e_final:Layout 1 1/19/11 10:30 AM Page 2

Deitel® Series Page
How To Program Series
C++ How to Program, 8/E
C How to Program, 6/E
Java™ How to Program, 9/E
Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 4/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2010 How to Program
Visual C#® 2010 How to Program, 3/E
Small Java™ How to Program, 6/E
Small C++ How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2008, 3/E: An App-Driven

Tutorial Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 5/E, 6/E, 7/E & 8/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 6/E, 7/E, 8/E & 9/E

(continued next column)

(continued)
Simply Visual Basic 2008: An App-Driven

Tutorial Approach, 3/E
Visual Basic® 2010 How to Program
Visual Basic® 2008 How to Program
Visual C#® 2010 How to Program, 4/E
Visual C#® 2008 How to Program, 3/E

Deitel® Developer Series
C++ for Programmers
AJAX, Rich Internet Applications and Web

Development for Programmers
Android for Programmers: An App-Driven

Approach
C# 2010 for Programmers, 3/E
iPhone for Programmers: An App-Driven Approach
Java™ for Programmers
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

C++ Fundamentals
Java™ Fundamentals
C# Fundamentals
iPhone® App Development Fundamentals
JavaScript Fundamentals
Visual Basic Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

follow us on Twitter®

@deitel

and become a Deitel & Associates fan on Facebook®

www.deitel.com/deitelfan/

To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel &
Associates, Inc. worldwide, visit:

www.deitel.com/training/

or write to
deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:
www.deitel.com
www.pearsonhighered.com/deitel/

Check out our Resource Centers for valuable web resources that will help you master C++, other impor-
tant programming languages, software, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/deitelfan/
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Vice President and Editorial Director: Marcia J. Horton
Editor-in-Chief: Michael Hirsch
Associate Editor: Carole Snyder
Vice President, Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Senior Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Associate Managing Editor: Robert Engelhardt
Operations Specialist: Lisa McDowell
Art Director: Linda Knowle
Cover Design: Abbey S. Deitel, Harvey M. Deitel, Marta Samsel
Cover Photo Credit: © James Hardy/PhotoAlto/Getty Images
Media Editor: Daniel Sandin
Media Project Manager: Wanda Rockwell

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2012, 2008, 2005, 2003, 2001 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501
Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Deitel, Paul J.
C++ : how to program / P.J. Deitel, H.M. Deitel. -- 8th ed.

p. cm.
Includes index.
ISBN 978-0-13-266236-9
1. C++ (Computer program language) I. Deitel, Harvey M. II. Title.

QA76.73.C153D45 2012
005.13'3--dc22

2011000245

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-266236-1

ISBN-13: 978-0-13-266236-9

In memory of Ken Olsen,
Founder of Digital Equipment Corporation (DEC):

We are deeply grateful for the opportunities
DEC extended to us, enabling us to form and grow
Deitel & Associates, Inc.

Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Microsoft and the Windows logo are either registered trademarks or trademarks of Microsoft Corpora-
tion in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Chapters 25–26 and Appendices F–I are PDF documents posted online at the book’s
Companion Website, which is accessible from www.pearsonhighered.com/deitel.

Preface xxi

1 Introduction to Computers and C++ 1
1.1 Introduction 2
1.2 Computers: Hardware and Software 5
1.3 Data Hierarchy 6
1.4 Computer Organization 7
1.5 Machine Languages, Assembly Languages and High-Level Languages 9
1.6 Introduction to Object Technology 10
1.7 Operating Systems 13
1.8 Programming Languages 15
1.9 C++ and a Typical C++ Development Environment 17
1.10 Test-Driving a C++ Application 21
1.11 Web 2.0: Going Social 27
1.12 Software Technologies 29
1.13 Future of C++: TR1, the New C++ Standard and the Open Source

Boost Libraries 31
1.14 Keeping Up-to-Date with Information Technologies 32
1.15 Wrap-Up 32

2 Introduction to C++ Programming 37
2.1 Introduction 38
2.2 First Program in C++: Printing a Line of Text 38
2.3 Modifying Our First C++ Program 42
2.4 Another C++ Program: Adding Integers 43
2.5 Memory Concepts 47
2.6 Arithmetic 48
2.7 Decision Making: Equality and Relational Operators 51
2.8 Wrap-Up 55

Contents

www.pearsonhighered.com/deitel

viii Contents

3 Introduction to Classes, Objects and Strings 64
3.1 Introduction 65
3.2 Defining a Class with a Member Function 65
3.3 Defining a Member Function with a Parameter 68
3.4 Data Members, set Functions and get Functions 71
3.5 Initializing Objects with Constructors 77
3.6 Placing a Class in a Separate File for Reusability 81
3.7 Separating Interface from Implementation 84
3.8 Validating Data with set Functions 90
3.9 Wrap-Up 95

4 Control Statements: Part 1 101
4.1 Introduction 102
4.2 Algorithms 102
4.3 Pseudocode 103
4.4 Control Structures 104
4.5 if Selection Statement 107
4.6 if…else Double-Selection Statement 108
4.7 while Repetition Statement 113
4.8 Formulating Algorithms: Counter-Controlled Repetition 114
4.9 Formulating Algorithms: Sentinel-Controlled Repetition 120
4.10 Formulating Algorithms: Nested Control Statements 130
4.11 Assignment Operators 134
4.12 Increment and Decrement Operators 135
4.13 Wrap-Up 138

5 Control Statements: Part 2 152
5.1 Introduction 153
5.2 Essentials of Counter-Controlled Repetition 153
5.3 for Repetition Statement 155
5.4 Examples Using the for Statement 158
5.5 do…while Repetition Statement 162
5.6 switch Multiple-Selection Statement 164
5.7 break and continue Statements 173
5.8 Logical Operators 174
5.9 Confusing the Equality (==) and Assignment (=) Operators 179
5.10 Structured Programming Summary 180
5.11 Wrap-Up 185

Contents ix

6 Functions and an Introduction to Recursion 194
6.1 Introduction 195
6.2 Program Components in C++ 196
6.3 Math Library Functions 197
6.4 Function Definitions with Multiple Parameters 198
6.5 Function Prototypes and Argument Coercion 203
6.6 C++ Standard Library Headers 205
6.7 Case Study: Random Number Generation 207
6.8 Case Study: Game of Chance; Introducing enum 212
6.9 Storage Classes 215
6.10 Scope Rules 218
6.11 Function Call Stack and Activation Records 221
6.12 Functions with Empty Parameter Lists 225
6.13 Inline Functions 225
6.14 References and Reference Parameters 227
6.15 Default Arguments 231
6.16 Unary Scope Resolution Operator 232
6.17 Function Overloading 234
6.18 Function Templates 236
6.19 Recursion 239
6.20 Example Using Recursion: Fibonacci Series 242
6.21 Recursion vs. Iteration 245
6.22 Wrap-Up 248

7 Arrays and Vectors 267
7.1 Introduction 268
7.2 Arrays 269
7.3 Declaring Arrays 270
7.4 Examples Using Arrays 271

7.4.1 Declaring an Array and Using a Loop to Initialize
the Array’s Elements 271

7.4.2 Initializing an Array in a Declaration with an
Initializer List 272

7.4.3 Specifying an Array’s Size with a Constant Variable
and Setting Array Elements with Calculations 273

7.4.4 Summing the Elements of an Array 275
7.4.5 Using Bar Charts to Display Array Data Graphically 276
7.4.6 Using the Elements of an Array as Counters 277
7.4.7 Using Arrays to Summarize Survey Results 278
7.4.8 Static Local Arrays and Automatic Local Arrays 281

x Contents

7.5 Passing Arrays to Functions 283
7.6 Case Study: Class GradeBook Using an Array to Store Grades 287
7.7 Searching Arrays with Linear Search 293
7.8 Sorting Arrays with Insertion Sort 294
7.9 Multidimensional Arrays 297
7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 300
7.11 Introduction to C++ Standard Library Class Template vector 307
7.12 Wrap-Up 313

8 Pointers 330
8.1 Introduction 331
8.2 Pointer Variable Declarations and Initialization 331
8.3 Pointer Operators 332
8.4 Pass-by-Reference with Pointers 335
8.5 Using const with Pointers 339
8.6 Selection Sort Using Pass-by-Reference 343
8.7 sizeof Operator 347
8.8 Pointer Expressions and Pointer Arithmetic 349
8.9 Relationship Between Pointers and Arrays 352
8.10 Pointer-Based String Processing 354
8.11 Arrays of Pointers 357
8.12 Function Pointers 358
8.13 Wrap-Up 361

9 Classes: A Deeper Look, Part 1 379
9.1 Introduction 380
9.2 Time Class Case Study 381
9.3 Class Scope and Accessing Class Members 388
9.4 Separating Interface from Implementation 389
9.5 Access Functions and Utility Functions 390
9.6 Time Class Case Study: Constructors with Default Arguments 393
9.7 Destructors 398
9.8 When Constructors and Destructors Are Called 399
9.9 Time Class Case Study: A Subtle Trap—Returning a Reference to a

private Data Member 402
9.10 Default Memberwise Assignment 405
9.11 Wrap-Up 407

10 Classes: A Deeper Look, Part 2 414
10.1 Introduction 415

Contents xi

10.2 const (Constant) Objects and const Member Functions 415
10.3 Composition: Objects as Members of Classes 423
10.4 friend Functions and friend Classes 429
10.5 Using the this Pointer 431
10.6 static Class Members 436
10.7 Proxy Classes 441
10.8 Wrap-Up 445

11 Operator Overloading; Class string 451
11.1 Introduction 452
11.2 Using the Overloaded Operators of Standard Library Class string 453
11.3 Fundamentals of Operator Overloading 456
11.4 Overloading Binary Operators 457
11.5 Overloading the Binary Stream Insertion and Stream Extraction

Operators 458
11.6 Overloading Unary Operators 462
11.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 463
11.8 Case Study: A Date Class 464
11.9 Dynamic Memory Management 469
11.10 Case Study: Array Class 471

11.10.1 Using the Array Class 472
11.10.2 Array Class Definition 475

11.11 Operators as Member Functions vs. Non-Member Functions 483
11.12 Converting between Types 483
11.13 explicit Constructors 485
11.14 Building a String Class 487
11.15 Wrap-Up 488

12 Object-Oriented Programming: Inheritance 499
12.1 Introduction 500
12.2 Base Classes and Derived Classes 500
12.3 protected Members 503
12.4 Relationship between Base Classes and Derived Classes 503

12.4.1 Creating and Using a CommissionEmployee Class 504
12.4.2 Creating a BasePlusCommissionEmployee Class Without

Using Inheritance 508
12.4.3 Creating a CommissionEmployee–

BasePlusCommissionEmployee Inheritance Hierarchy 514
12.4.4 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using protected Data 519

xii Contents

12.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Data 522

12.5 Constructors and Destructors in Derived Classes 527
12.6 public, protected and private Inheritance 527
12.7 Software Engineering with Inheritance 528
12.8 Wrap-Up 529

13 Object-Oriented Programming: Polymorphism 534
13.1 Introduction 535
13.2 Introduction to Polymorphism: Polymorphic Video Game 536
13.3 Relationships Among Objects in an Inheritance Hierarchy 536

13.3.1 Invoking Base-Class Functions from
Derived-Class Objects 537

13.3.2 Aiming Derived-Class Pointers at Base-Class Objects 540
13.3.3 Derived-Class Member-Function Calls via

Base-Class Pointers 541
13.3.4 Virtual Functions 543

13.4 Type Fields and switch Statements 549
13.5 Abstract Classes and Pure virtual Functions 549
13.6 Case Study: Payroll System Using Polymorphism 551

13.6.1 Creating Abstract Base Class Employee 552
13.6.2 Creating Concrete Derived Class SalariedEmployee 556
13.6.3 Creating Concrete Derived Class CommissionEmployee 558
13.6.4 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 560
13.6.5 Demonstrating Polymorphic Processing 562

13.7 (Optional) Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood” 566

13.8 Case Study: Payroll System Using Polymorphism and Runtime
Type Information with Downcasting, dynamic_cast, typeid
and type_info 569

13.9 Virtual Destructors 573
13.10 Wrap-Up 573

14 Templates 579
14.1 Introduction 580
14.2 Function Templates 580
14.3 Overloading Function Templates 583
14.4 Class Templates 584

Contents xiii

14.5 Nontype Parameters and Default Types for Class Templates 590
14.6 Wrap-Up 591

15 Stream Input/Output 595
15.1 Introduction 596
15.2 Streams 597

15.2.1 Classic Streams vs. Standard Streams 597
15.2.2 iostream Library Headers 598
15.2.3 Stream Input/Output Classes and Objects 598

15.3 Stream Output 601
15.3.1 Output of char * Variables 601
15.3.2 Character Output Using Member Function put 601

15.4 Stream Input 602
15.4.1 get and getline Member Functions 602
15.4.2 istream Member Functions peek, putback and ignore 605
15.4.3 Type-Safe I/O 605

15.5 Unformatted I/O Using read, write and gcount 605
15.6 Introduction to Stream Manipulators 606

15.6.1 Integral Stream Base: dec, oct, hex and setbase 607
15.6.2 Floating-Point Precision (precision, setprecision) 607
15.6.3 Field Width (width, setw) 609
15.6.4 User-Defined Output Stream Manipulators 610

15.7 Stream Format States and Stream Manipulators 612
15.7.1 Trailing Zeros and Decimal Points (showpoint) 612
15.7.2 Justification (left, right and internal) 613
15.7.3 Padding (fill, setfill) 615
15.7.4 Integral Stream Base (dec, oct, hex, showbase) 616
15.7.5 Floating-Point Numbers; Scientific and Fixed

Notation (scientific, fixed) 617
15.7.6 Uppercase/Lowercase Control (uppercase) 618
15.7.7 Specifying Boolean Format (boolalpha) 618
15.7.8 Setting and Resetting the Format State via

Member Function flags 619
15.8 Stream Error States 620
15.9 Tying an Output Stream to an Input Stream 622
15.10 Wrap-Up 623

16 Exception Handling: A Deeper Look 632
16.1 Introduction 633

xiv Contents

16.2 Example: Handling an Attempt to Divide by Zero 633
16.3 When to Use Exception Handling 639
16.4 Rethrowing an Exception 640
16.5 Exception Specifications 641
16.6 Processing Unexpected Exceptions 642
16.7 Stack Unwinding 642
16.8 Constructors, Destructors and Exception Handling 644
16.9 Exceptions and Inheritance 645
16.10 Processing new Failures 645
16.11 Class unique_ptr and Dynamic Memory Allocation 648
16.12 Standard Library Exception Hierarchy 650
16.13 Wrap-Up 652

17 File Processing 658
17.1 Introduction 659
17.2 Files and Streams 659
17.3 Creating a Sequential File 660
17.4 Reading Data from a Sequential File 664
17.5 Updating Sequential Files 669
17.6 Random-Access Files 670
17.7 Creating a Random-Access File 671
17.8 Writing Data Randomly to a Random-Access File 675
17.9 Reading from a Random-Access File Sequentially 677
17.10 Case Study: A Transaction-Processing Program 679
17.11 Object Serialization 686
17.12 Wrap-Up 686

18 Class string and String Stream Processing 696
18.1 Introduction 697
18.2 string Assignment and Concatenation 698
18.3 Comparing strings 700
18.4 Substrings 703
18.5 Swapping strings 703
18.6 string Characteristics 704
18.7 Finding Substrings and Characters in a string 706
18.8 Replacing Characters in a string 708
18.9 Inserting Characters into a string 710
18.10 Conversion to C-Style Pointer-Based char * Strings 711
18.11 Iterators 713

Contents xv

18.12 String Stream Processing 714
18.13 Wrap-Up 717

19 Searching and Sorting 724
19.1 Introduction 725
19.2 Searching Algorithms 725

19.2.1 Efficiency of Linear Search 726
19.2.2 Binary Search 727

19.3 Sorting Algorithms 732
19.3.1 Efficiency of Selection Sort 733
19.3.2 Efficiency of Insertion Sort 733
19.3.3 Merge Sort (A Recursive Implementation) 733

19.4 Wrap-Up 740

20 Custom Templatized Data Structures 746
20.1 Introduction 747
20.2 Self-Referential Classes 748
20.3 Dynamic Memory Allocation and Data Structures 749
20.4 Linked Lists 749
20.5 Stacks 764
20.6 Queues 768
20.7 Trees 772
20.8 Wrap-Up 780

21 Bits, Characters, C Strings and structs 791
21.1 Introduction 792
21.2 Structure Definitions 792
21.3 typedef 794
21.4 Example: Card Shuffling and Dealing Simulation 794
21.5 Bitwise Operators 797
21.6 Bit Fields 806
21.7 Character-Handling Library 810
21.8 Pointer-Based String Manipulation Functions 815
21.9 Pointer-Based String-Conversion Functions 822
21.10 Search Functions of the Pointer-Based String-Handling Library 827
21.11 Memory Functions of the Pointer-Based String-Handling Library 831
21.12 Wrap-Up 835

xvi Contents

22 Standard Template Library (STL) 850
22.1 Introduction to the Standard Template Library (STL) 851
22.2 Introduction to Containers 853
22.3 Introduction to Iterators 856
22.4 Introduction to Algorithms 861
22.5 Sequence Containers 863

22.5.1 vector Sequence Container 864
22.5.2 list Sequence Container 871
22.5.3 deque Sequence Container 875

22.6 Associative Containers 877
22.6.1 multiset Associative Container 877
22.6.2 set Associative Container 880
22.6.3 multimap Associative Container 881
22.6.4 map Associative Container 883

22.7 Container Adapters 885
22.7.1 stack Adapter 885
22.7.2 queue Adapter 887
22.7.3 priority_queue Adapter 888

22.8 Algorithms 890
22.8.1 fill, fill_n, generate and generate_n 890
22.8.2 equal, mismatch and lexicographical_compare 892
22.8.3 remove, remove_if, remove_copy and remove_copy_if 895
22.8.4 replace, replace_if, replace_copy and replace_copy_if

879
22.8.5 Mathematical Algorithms 900
22.8.6 Basic Searching and Sorting Algorithms 903
22.8.7 swap, iter_swap and swap_ranges 905
22.8.8 copy_backward, merge, unique and reverse 906
22.8.9 inplace_merge, unique_copy and reverse_copy 909
22.8.10 Set Operations 910
22.8.11 lower_bound, upper_bound and equal_range 913
22.8.12 Heapsort 915
22.8.13 min and max 918
22.8.14 STL Algorithms Not Covered in This Chapter 919

22.9 Class bitset 920
22.10 Function Objects 924
22.11 Wrap-Up 927

23 Boost Libraries, Technical Report 1 and C++0x 936
23.1 Introduction 937

Contents xvii

23.2 Deitel Online C++ and Related Resource Centers 937
23.3 Boost Libraries 937
23.4 Boost Libraries Overview 938
23.5 Regular Expressions with the regex Library 941

23.5.1 Regular Expression Example 942
23.5.2 Validating User Input with Regular Expressions 944
23.5.3 Replacing and Splitting Strings 947

23.6 Smart Pointers 950
23.6.1 Reference Counted shared_ptr 950
23.6.2 weak_ptr: shared_ptr Observer 954

23.7 Technical Report 1 960
23.8 C++0x 961
23.9 Core Language Changes 962
23.10 Wrap-Up 967

24 Other Topics 974
24.1 Introduction 975
24.2 const_cast Operator 975
24.3 mutable Class Members 977
24.4 namespaces 979
24.5 Operator Keywords 982
24.6 Pointers to Class Members (.* and ->*) 984
24.7 Multiple Inheritance 986
24.8 Multiple Inheritance and virtual Base Classes 991
24.9 Wrap-Up 996

Chapters on the Web 1001

A Operator Precedence and Associativity 1002

B ASCII Character Set 1004

C Fundamental Types 1005

D Number Systems 1007
D.1 Introduction 1008

xviii Contents

D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 1011
D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 1012
D.4 Converting from Binary, Octal or Hexadecimal to Decimal 1012
D.5 Converting from Decimal to Binary, Octal or Hexadecimal 1013
D.6 Negative Binary Numbers: Two’s Complement Notation 1015

E Preprocessor 1020
E.1 Introduction 1021
E.2 #include Preprocessor Directive 1021
E.3 #define Preprocessor Directive: Symbolic Constants 1022
E.4 #define Preprocessor Directive: Macros 1022
E.5 Conditional Compilation 1024
E.6 #error and #pragma Preprocessor Directives 1025
E.7 Operators # and ## 1026
E.8 Predefined Symbolic Constants 1026
E.9 Assertions 1027
E.10 Wrap-Up 1027

Appendices on the Web 1033

Index 1035

Chapters 25–26 and Appendices F–I are PDF documents posted online at the book’s
Companion Website, which is accessible from www.pearsonhighered.com/deitel.

25 ATM Case Study, Part 1:
Object-Oriented Design with the UML 25-1

25.1 Introduction 25-2
25.2 Introduction to Object-Oriented Analysis and Design 25-2
25.3 Examining the ATM Requirements Document 25-3
25.4 Identifying the Classes in the ATM Requirements Document 25-10
25.5 Identifying Class Attributes 25-17
25.6 Identifying Objects’ States and Activities 25-21
25.7 Identifying Class Operations 25-25
25.8 Indicating Collaboration Among Objects 25-32
25.9 Wrap-Up 25-39

www.pearsonhighered.com/deitel

Contents xix

26 ATM Case Study, Part 2:
Implementing an Object-Oriented Design 26-1

26.1 Introduction 26-2
26.2 Starting to Program the Classes of the ATM System 26-2
26.3 Incorporating Inheritance into the ATM System 26-8
26.4 ATM Case Study Implementation 26-15

26.4.1 Class ATM 26-16
26.4.2 Class Screen 26-23
26.4.3 Class Keypad 26-25
26.4.4 Class CashDispenser 26-26
26.4.5 Class DepositSlot 26-28
26.4.6 Class Account 26-29
26.4.7 Class BankDatabase 26-31
26.4.8 Class Transaction 26-35
26.4.9 Class BalanceInquiry 26-37
26.4.10 Class Withdrawal 26-39
26.4.11 Class Deposit 26-44
26.4.12 Test Program ATMCaseStudy.cpp 26-47

26.5 Wrap-Up 26-47

F C Legacy Code Topics F-1
F.1 Introduction F-2
F.2 Redirecting Input/Output on UNIX/Linux/Mac OS X

and Windows Systems F-2
F.3 Variable-Length Argument Lists F-3
F.4 Using Command-Line Arguments F-5
F.5 Notes on Compiling Multiple-Source-File Programs F-7
F.6 Program Termination with exit and atexit F-9
F.7 Type Qualifier volatile F-10
F.8 Suffixes for Integer and Floating-Point Constants F-10
F.9 Signal Handling F-11
F.10 Dynamic Memory Allocation with calloc and realloc F-13
F.11 Unconditional Branch: goto F-14
F.12 Unions F-15
F.13 Linkage Specifications F-18
F.14 Wrap-Up F-19

G UML 2: Additional Diagram Types G-1
G.1 Introduction G-1
G.2 Additional Diagram Types G-2

xx Contents

H Using the Visual Studio Debugger H-1
H.1 Introduction H-2
H.2 Breakpoints and the Continue Command H-2
H.3 Locals and Watch Windows H-8
H.4 Controlling Execution Using the Step Into, Step Over, Step Out

and Continue Commands H-11
H.5 Autos Window H-13
H.6 Wrap-Up H-14

I Using the GNU C++ Debugger I-1
I.1 Introduction I-2
I.2 Breakpoints and the run, stop, continue and print Commands I-2
I.3 print and set Commands I-8
I.4 Controlling Execution Using the step, finish and

next Commands I-10
I.5 watch Command I-13
I.6 Wrap-Up I-15

“The chief merit of language is clearness …”
—Galen

For the Student
Welcome to the C++ computer programming language and C++ How to Program, Eighth
Edition! This book presents leading-edge computing technologies, and is particularly ap-
propriate for inroductory course sequences based on the curriculum recommendations of
two key professional organizations—the ACM and the IEEE.

The new Chapter 1 presents intriguing facts and figures. Our goal is to get you excited
about studying computers and programming. The chapter includes a table of some of the
research made possible by computers; current technology trends and hardware discussions;
the data hierarchy; social networking; a table of business and technology publications and
websites that will help you stay up-to-date with the latest technology news, trends and
career opportunities; additional Making a Difference exercises and more.

We focus on software engineering best practices. At the heart of the book is our sig-
nature “live-code approach”—programming concepts are presented in the context of com-
plete working programs, rather than in code snippets. Each C++ code example is
accompanied by live sample executions, so you can see exactly what each program does
when it’s run on a computer. All the source code is available at www.deitel.com/books/
cpphtp8/ and www.pearsonhighered.com/deitel/.

Much of this Preface is addressed to instructors. Please be sure to read the sections enti-
tled Pedagogic Features; Teaching Approach; Software Used in C++ How to Program, 8/e;
C++ IDE Resource Kit and CourseSmart Web Books.

We believe that this book and its support materials will give you an informative, inter-
esting, challenging and entertaining C++ educational experience. As you read the book, if
you have questions, send an e-mail to deitel@deitel.com—we’ll respond promptly. For
updates on this book, visit www.deitel.com/books/cpphtp8/, follow us on Facebook
(www.deitel.com/deitelfan) and Twitter (@deitel), and subscribe to the Deitel® Buzz
Online newsletter (www.deitel.com/newsletter/subscribe.html). Good luck!

New and Updated Features
Here are the updates we’ve made for C++ How to Program, 8/e:

Impending New C++ Standard
• Optional sections. We cover various features of the new standard (sometimes called

C++0x and due late in 2011 or early in 2012) in optional modular sections and in
Chapter 23. These are easy to include or omit. Popular compilers such as Microsoft
Visual C++ 2010 and GNU C++ 4.5 already implement many of these features. To

Preface

www.deitel.com/books/cpphtp8/
www.deitel.com/books/cpphtp8/
www.pearsonhighered.com/deitel/
www.deitel.com/books/cpphtp8/
www.deitel.com/deitelfan
www.deitel.com/newsletter/subscribe.html

xxii Preface

enable the new standard features in GNU C++, use the -std=C++0x flag when you
compile the corresponding programs.

• Boost C++ Libraries, Technical Report 1 (TR1) and C++0x. In Chapter 23, we
introduce the Boost C++ Libraries, Technical Report 1 (TR1) and C++0x. The
free Boost open source libraries are created by members of the C++ community.
Technical Report 1 describes the proposed changes to the C++ Standard Library,
many of which are based on current Boost libraries. The C++ Standards Com-
mittee is revising the C++ Standard—the main goals are to make C++ easier to
learn, improve library building capabilities, and increase compatibility with the
C programming language. The new standard will include many of the libraries in
TR1 and changes to the core language. We overview the Boost libraries and pro-
vide code examples for the “regular expression” and “smart pointer” libraries.
Regular expressions are used to match specific character patterns in text. They can
be used, for example, to validate data to ensure that it’s in a particular format, to
replace parts of one string with another, or to split a string. Many common bugs
in C and C++ code are related to pointers, a powerful programming capability
you’ll study in Chapter 8. Smart pointers help you avoid errors by providing ad-
ditional functionality to standard pointers.

• unique_ptr vs. auto_ptr. We replaced our auto_ptr example with the impend-
ing standard’s class unique_ptr, which fixes various problems that were associat-
ed with class auto_ptr. Use of auto_ptr is deprecated and unique_ptr is already
implemented in many popular compilers, including Visual C++ 2010 and GNU
C++ 4.5.

• Initializer lists for user-defined types. These enable objects of your own types to
be initialized using the same syntax as built-in arrays.

• Range-based for statement. A version of the for statement that iterates over all
the elements of an array or container (such as an object of the vector class).

• Lambda expressions. These enable you to create anonymous functions that can
be passed to other functions as arguments.

• auto storage class specifier. The keyword auto can no longer be used as a storage
class specifier.

• auto. This keyword now deduces the type of a variable from its initializer.

• nullptr.This keyword is a replacement for assigning zero to a null pointer.

• static_assert. This capability allows you to test certain aspects of the program
at compile time.

• New long long and unsigned long long types. These new types were introduced
for use with 64-bit machines.

Pedagogic Features
• Enhanced Making a Difference exercises set. We encourage you to use computers

and the Internet to research and solve significant social problems. These exercises
are meant to increase awareness and discussion of important issues the world is
facing. We hope you’ll approach them with your own values, politics and beliefs.

New and Updated Features xxiii

Check out our new Making a Difference Resource Center at www.deitel.com/
MakingADifference for additional ideas you may want to investigate further.

• Page numbers for key terms in chapter summaries. For key terms that appear in
the chapter summaries, we include the page number of each term’s defining oc-
currence in the chapter.

• VideoNotes. The Companion Website includes 15+ hours of VideoNotes in
which co-author Paul Deitel explains in detail most of the programs in the core
chapters. Instructors have told us that their students find the VideoNotes valu-
able for preparing for and reviewing lectures.

• Modular presentation. We’ve grouped the chapters into teaching modules. The
Chapter Dependency Chart (later in this Preface) reflects the modularization.

Object Technology
• Object-oriented programming and design. We introduce the basic concepts and

terminology of object technology in Chapter 1. Students develop their first cus-
tomized classes and objects in Chapter 3. Presenting objects and classes early gets
students “thinking about objects” immediately and mastering these concepts
more thoroughly. [For courses that require a late-objects approach, consider C++
How to Program, Late Objects Version, Seventh Edition, which begins with six
chapters on programming fundamentals (including two on control statements)
and continues with seven chapters that gradually introduce object-oriented pro-
gramming concepts.]

• Integrated case studies. We provide several case studies that span multiple sections
and chapters. These include development of the GradeBook class in Chapters 3–7,
the Time class in Chapters 9–10, the Employee class in Chapters 12–13, and the op-
tional OOD/UML ATM case study in Chapters 25–26.

• Integrated GradeBook case study. The GradeBook case study uses classes and ob-
jects in Chapters 3–7 to incrementally build a GradeBook class that represents an
instructor’s grade book and performs various calculations based on a set of stu-
dent grades, such as calculating the average grade, finding the maximum and
minimum, and printing a bar chart.

• Exception handling. We integrate basic exception handling early in the book. In-
structors can easily pull more detailed material forward from Chapter 16, Excep-
tion Handling: A Deeper Look.

• Prefer vectors to C arrays. C++ offers two types of arrays—vector class objects
(which we start using in Chapter 7) and C-style, pointer-based arrays. As appro-
priate, we use class template vector instead of C arrays throughout the book.
However, we begin by discussing C arrays in Chapter 7 to prepare you for work-
ing with legacy code and to use as a basis for building your own customized Array

class in Chapter 11.

• Prefer string objects to C strings. Similarly, C++ offers two types of strings—
string class objects (which we use starting in Chapter 3) and C-style, pointer-
based strings. We continue to include some early discussions of C strings to give

www.deitel.com/MakingADifference
www.deitel.com/MakingADifference

xxiv Preface

you practice with pointer manipulations, to illustrate dynamic memory alloca-
tion with new and delete and to prepare you for working with C strings in the
legacy code that you’ll encounter in industry. In new development, you should
favor string class objects. We’ve replaced most occurrences of C strings with in-
stances of C++ class string to make programs more robust and eliminate many
of the security problems that can be caused by using C strings.

• Optional case study: Using the UML to develop an object-oriented design and C++
implementation of an ATM. The UML™ (Unified Modeling Language™) is the
industry-standard graphical language for modeling object-oriented systems.
Chapters 25–26 include an optional online case study on object-oriented design us-
ing the UML. We design and implement the software for a simple automated teller
machine (ATM). We analyze a typical requirements document that specifies the
system to be built. We determine the classes needed to implement that system, the
attributes the classes need to have, the behaviors the classes need to exhibit and spec-
ify how the classes must interact with one another to meet the system requirements.
From the design we produce a complete C++ implementation. Students often re-
port having a “light-bulb moment”—the case study helps them “tie it all together”
and really understand object orientation.

• Standard Template Library (STL). This might be one of the most important top-
ics in the book in terms of your appreciation of software reuse. The STL defines
powerful, template-based, reusable components that implement many common
data structures and algorithms used to process those data structures. Chapter 22
introduces the STL and discusses its three key components—containers, iterators
and algorithms. The STL components provide tremendous expressive power, of-
ten reducing many lines of code to a single statement.

Other Features
• Printed book contains core content; additional chapters are online. Several online

chapters are included for more advanced courses and for professionals. These are
available in searchable PDF format on the book’s password-protected Compan-
ion Website—see the access card in the front of this book.

• Reorganized Chapter 11, Operator Overloading; Class string. We reorganized
this chapter to begin with standard library class string so readers can see an elegant
use of operator overloading before they implement their own. We also moved the
section on proxy classes to the end of Chapter 10, where it’s a more natural fit.

• Enhanced use of const. We increased the use of const book-wide to encourage
better software engineering.

• Software engineering concepts. Chapter 1 briefly introduces very current software
engineering terminology, including agile software development, Web 2.0, Ajax,
SaaS (Software as a Service), PaaS (Platform as a Service), cloud computing, web
services, open source software, design patterns, refactoring, LAMP and more.

• Compilation and linking process for multiple-source-file programs. Chapter 3 in-
cludes a detailed diagram and discussion of the compilation and linking process
that produces an executable program.

Our Text + Digital Approach to Content xxv

• Function Call Stack Explanation. In Chapter 6, we provide a detailed discussion
with illustrations of the function call stack and activation records to explain how
C++ is able to keep track of which function is currently executing, how automatic
variables of functions are maintained in memory and how a function knows
where to return after it completes execution.

• Tuned Treatment of Inheritance and Polymorphism. Chapters 12–13 have been
carefully tuned using a concise Employee class hierarchy. We use this same treat-
ment in our C++, Java, C# and Visual Basic books—one of our reviewers called
it the best he had seen in 25 years as a trainer and consultant.

• Discussion and illustration of how polymorphism works “under the hood.”
Chapter 13 contains a detailed diagram and explanation of how C++ can imple-
ment polymorphism, virtual functions and dynamic binding internally. This
gives students a solid understanding of how these capabilities work.

• ISO/IEC C++ standard compliance. We’ve audited our presentation against the
ISO/IEC C++ standard document.

• Debugger appendices. We provide two Using the Debugger appendices on the
book’s Companion Website—Appendix H, Using the Visual Studio Debugger,
and Appendix I, Using the GNU C++ Debugger.

• Code tested on multiple platforms. We tested the code examples on various pop-
ular C++ platforms including GNU C++ on Linux and Microsoft Windows, and
Visual C++ on Windows. For the most part, the book’s examples port to popular
standard-compliant compilers.

• Game Programming. Because of limited interest, we’ve removed from the book
Chapter 27, Game Programming with Ogre (which covers only Linux). For in-
structors who would like to continue using this material with C++ How to Pro-
gram, 8/e, we’ve included the version from C++ How to Program, 7/e on the
book’s Companion Website.

Our Text + Digital Approach to Content
We surveyed hundreds of instructors teaching C++ courses and learned that most want a
book with content focused on their introductory courses. With that in mind, we moved
various advanced chapters to the web. Having this content in digital format makes it easily
searchable, and gives us the ability to fix errata and add new content as appropriate. The
book’s Companion Website, which is accessible at

(see the access card at the front of the book) contains the following chapters in searchable
PDF format:

• Chapter 25, ATM Case Study, Part 1: Object-Oriented Design with the UML

• Chapter 26, ATM Case Study, Part 2: Implementing an Object-Oriented Design

• Game Programming with Ogre (from C++ How to Program, 7/e)

• Appendix F, C Legacy Code Topics

www.pearsonhighered.com/deitel/

www.pearsonhighered.com/deitel/

xxvi Preface

• Appendix G, UML 2: Additional Diagram Types

• Appendix H, Using the Visual Studio Debugger

• Appendix I, Using the GNU C++ Debugger

The Companion Website also includes:

• Extensive VideoNotes—watch and listen as co-author Paul Deitel discusses the
key features of the code examples in Chapters 2–13 and portions of Chapters 16
and 17.

• Two true/false questions per section with answers for self-review.

• Solutions to approximately half of the solved exercises in the book.

The following materials are posted at the Companion Website and at www.deitel.com/
books/cpphtp8/:

• An array of function pointers example and additional function pointer exercises
(from Chapter 8).

• String Class Operator Overloading Case Study (from Chapter 11).

• Building Your Own Compiler exercise descriptions (from Chapter 20).

Dependency Chart
The chart on the next page shows the dependencies among the chapters to help instructors
plan their syllabi. C++ How to Program, 8/e is appropriate for CS1 and CS2 courses.

Teaching Approach
C++ How to Program, 8/e, contains a rich collection of examples. We stress program clarity
and concentrate on building well-engineered software.

Live-code approach. The book is loaded with “live-code” examples—most new concepts are
presented in the context of complete working C++ applications, followed by one or more exe-
cutions showing program inputs and outputs. In the few cases where we use a code snippet,
we tested it in a complete working program, then copied and pasted it into the book.

Syntax coloring. For readability, we syntax color all the C++ code, similar to the way most
C++ integrated-development environments and code editors syntax color code. Our col-
oring conventions are as follows:

Code highlighting. We place light blue shaded rectangles around each program’s key code
segments.

Using fonts for emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold blue text for easy reference. We emphasize on-screen compo-
nents in the bold Helvetica font (e.g., the File menu) and C++ program text in the Lucida

font (for example, int x = 5;).

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears in black

www.deitel.com/books/cpphtp8/
www.deitel.com/books/cpphtp8/

Teaching Approach xxvii

Introduction
1 Introduction to

Computers and C++

Intro to Programming,
Classes and Objects
2 Intro to C++ Programming

3 Intro to Classes and Objects

Control Statements,
Methods and Arrays
4 Control Statements: Part 1

5 Control Statements: Part 2

6 Functions and an
Intro to Recursion

7 Arrays and Vectors

Object-Oriented
Programming

Object-Oriented
Design with the UML

26 (Optional) Implementing an
Object-Oriented Design

25 (Optional) Object-Oriented
Design with the UML

6.19–6.21 Recursion

22 Standard Template Library

19 Searching and
Sorting

20 Custom Templatized
Data Structures

Data Structures

Other Topics and
the Future of C++

Streams, Files and
Strings

Chapter
Dependency
Chart

1.Most of Chapter 15 is readable after Chapter 7. A
small portion requires Chapters 12 and 14.

[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

15 Stream
Input/Output1

17 File
Processing

18 Class
string and
String Stream

Processing

24 Other
Topics

23 Boost Libraries,
Technical Report 1

and C++0x

10 Classes: A Deeper
Look, Part 2

14 Templates

9 Classes: A Deeper
Look, Part 1

11 Operator Overloading

13 OOP: Polymorphism

12 OOP: Inheritance

16 Exception Handling:
A Deeper Look

8 Pointers21 Bits, Characters,
C-Strings and structs

Legacy C Topics

xxviii Preface

Objectives. The opening quotes are followed by a list of chapter objectives.

Illustrations/ figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined seven decades of programming and teaching experience.

Summary bullets. We present a section-by-section bullet-list summary of the chapter with
the page references to the defining occurrence for many of the key terms in each section.

Self-review exercises and answers. Extensive self-review exercises and answers are included
for self study. All of the exercises in the optional ATM case study are fully solved.

Exercises. Each chapter concludes with a substantial set of exercises including:

• simple recall of important terminology and concepts

• What’s wrong with this code?

• What does this code do?

• writing individual statements and small portions of functions and classes

• writing complete functions, classes and programs

• major projects.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center
which contains the book’s instructor supplements, including the exercise solutions. Ac-

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs; many
describe aspects of C++ that prevent bugs from getting into programs in the first place.

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Software Used in C++ How to Program, 8/e xxix

cess is limited strictly to college instructors teaching from the book. Instructors may ob-
tain access only through their Pearson representatives. Solutions are not provided for
“project” exercises. Check out our Programming Projects Resource Center for lots of ad-
ditional exercise and project possibilities (www.deitel.com/ProgrammingProjects/).

Index. We’ve included an extensive index. Defining occurrences of key terms are high-
lighted with a bold blue page number.

Software Used in C++ How to Program, 8/e
We wrote C++ How to Program, 8/e using Microsoft’s free Visual C++ Express Edition
(which is available free for download at www.microsoft.com/express/downloads/) and
the free GNU C++ (gcc.gnu.org/install/binaries.html), which is already installed on
most Linux systems and can be installed on Mac OS X and Windows systems. Apple in-
cludes GNU C++ in their Xcode development tools, which Mac OS X users can download
from developer.apple.com/technologies/tools/xcode.html.

C++ IDE Resource Kit
Your instructor may have ordered through your college bookstore a Value Pack edition of
C++ How to Program, 8/e that comes bundled with the C++ IDE Resource Kit. This kit
contains CD or DVD versions of:

• Microsoft® Visual Studio 2010 Express Edition (www.microsoft.com/express/)

• Dev C++ (www.bloodshed.net/download.html)

• NetBeans (netbeans.org/downloads/index.html)

• Eclipse (eclipse.org/downloads/)

• CodeLite (codelite.org/LiteEditor/Download)

You can download these software packages from the websites specified above. The C++ IDE
Resource Kit also includes access to a Companion Website containing step-by-step written
instructions and VideoNotes to help you get started with each development environment. If
your book did not come with the C++ IDE Resource Kit, you can purchase access to the Re-
source Kit’s Companion Website from www.pearsonhighered.com/cppidekit/.

CourseSmart Web Books
Today’s students and instructors have increasing demands on their time and money. Pear-
son has responded to that need by offering digital texts and course materials online
through CourseSmart. CourseSmart allows faculty to review course materials online, sav-
ing time and costs. It offers students a high-quality digital version of the text for less than
the cost of a print copy of the text. Students receive the same content offered in the print
textbook enhanced by search, note-taking, and printing tools. For more information, visit
www.coursesmart.com.

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

www.deitel.com/ProgrammingProjects/
www.microsoft.com/express/downloads/
www.microsoft.com/express/
www.bloodshed.net/download.html
www.pearsonhighered.com/cppidekit/
www.coursesmart.com
www.pearsonhighered.com/irc

xxx Preface

• Solutions Manual with solutions to the vast majority of the end-of-chapter exer-
cises and Lab Manual exercises. We’ve added dozens of Making a Difference ex-
ercises, most with solutions.

• Test Item File of multiple-choice questions (approximately two per book section)

• Customizable PowerPoint® slides containing all the code and figures in the text,
plus bulleted items that summarize the key points in the text

If you’re not already a registered faculty member, contact your Pearson representative or
visit www.pearsonhighered.com/educator/replocator/.

Acknowledgments2
We’d like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. We’re fortunate to have worked with the dedicated team of
publishing professionals at Pearson. We appreciate the guidance, savvy and energy of Mi-
chael Hirsch, Editor-in-Chief of Computer Science. Carole Snyder recruited the book’s
reviewers and managed the review process. Bob Engelhardt managed the book’s produc-
tion.

Reviewers
We wish to acknowledge the efforts of our seventh and eighth edition reviewers. They
scrutinized the text and the programs and provided countless suggestions for improving
the presentation: Virginia Bailey (Jackson StateUniversity), Thomas J. Borrelli (Rochester
Institute of Technology), Chris Cox (Adobe Systems), Gregory Dai (eBay), Peter J. De-
Pasquale (The College of New Jersey), John Dibling (SpryWare), Susan Gauch (Univer-
sity of Arkansas), Doug Gregor (Apple, Inc.), Jack Hagemeister (Washington State
University), Williams M. Higdon (University of Indiana), Wing-Ning Li (University of
Arkansas), Dean Mathias (Utah State University), Robert A. McLain (Tidewater Commu-
nity College), April Reagan (Microsoft), José Antonio González Seco (Parliament of An-
dalusia, Spain), Dave Topham (Ohlone College) and Anthony Williams (author and C++
Standards Committee member).

Well, there you have it! As you read the book, we would sincerely appreciate your
comments, criticisms, corrections and suggestions for improving the text. Please address
all correspondence to:

We’ll respond promptly. We hope you enjoy working with C++ How to Program, Eighth
Edition as much as we enjoyed writing it!

Paul and Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of C++, Java, C#, Visual Basic, C and Internet programming
courses to industry clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Lu-

deitel@deitel.com

www.pearsonhighered.com/educator/replocator/

About Deitel & Associates, Inc. xxxi

cent Technologies, Fidelity, NASA at the Kennedy Space Center, the National Severe
Storm Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, SunGard
Higher Education, Stratus, Cambridge Technology Partners, One Wave, Hyperion Soft-
ware, Adra Systems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, In-
vensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-
selling programming-language textbook authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees from MIT in Electrical Engineering and a Ph.D. in Mathematics from Boston
University—at both he studied computing before separate computer science degree pro-
grams were created. He has extensive college teaching experience, including earning tenure
and serving as the Chairman of the Computer Science Department at Boston College
before founding Deitel & Associates, Inc., with his son, Paul J. Deitel. He and Paul are
the co-authors of dozens of books and LiveLessons multimedia packages. With transla-
tions published in Japanese, German, Russian, Chinese, Spanish, Korean, French, Polish,
Italian, Portuguese, Greek, Urdu and Turkish, the Deitels’ texts have earned international
recognition. Dr. Deitel has delivered hundreds of professional programming language
seminars to major corporations, academic institutions, government organizations and the
military.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized corporate training and author-
ing organization specializing in computer programming languages, Internet and web soft-
ware technology, object-technology and Android™ and iPhone® education and
applications development. The company provides instructor-led courses delivered at client
sites worldwide on major programming languages and platforms, such as C++, Visual
C++®, C, Java™, Visual C#®, Visual Basic®, XML®, Python®, object technology, Inter-
net and web programming, Android and iPhone app development, and a growing list of
additional programming and software-development courses. The founders of Deitel & As-
sociates, Inc., are Paul J. Deitel and Dr. Harvey M. Deitel. The company’s clients include
many of the world’s largest corporations, government agencies, branches of the military,
and academic institutions. Through its 35-year publishing partnership with Prentice Hall/
Pearson Higher Education, Deitel & Associates, Inc., publishes leading-edge
programming textbooks, professional books, interactive multimedia Cyber Classrooms, and
LiveLessons DVD-based and web-based video courses. Deitel & Associates, Inc., and the
authors can be reached via e-mail at:

To learn more about Deitel & Associates, Inc., its publications and its Dive Into® Series
Corporate Training curriculum delivered at client locations worldwide, visit:

subscribe to the free Deitel® Buzz Online e-mail newsletter at:

and follow the authors on Facebook (www.deitel.com/deitelfan) and Twitter (@deitel).

deitel@deitel.com

www.deitel.com/training/

www.deitel.com/newsletter/subscribe.html

www.deitel.com/deitelfan
www.deitel.com/training/
www.deitel.com/newsletter/subscribe.html

xxxii Preface

Individuals wishing to purchase Deitel books, and LiveLessons DVD and web-based
training courses can do so through www.deitel.com. Bulk orders by corporations, the gov-
ernment, the military and academic institutions should be placed directly with Pearson.
For more information, visit

www.pearsonhighered.com

www.deitel.com
www.pearsonhighered.com

1Introduction to Computers
and C++

Man is still the most
extraordinary computer of all.
—John F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

How wonderful it is that
nobody need wait a single
moment before starting to
improve the world.
—Anne Frank

O b j e c t i v e s
In this chapter you’ll learn:

■ Exciting recent developments
in the computer field.

■ Computer hardware, soft-
ware and networking basics.

■ The data hierarchy.

■ The different types of
programming languages.

■ Basic object-technology
concepts.

■ The importance of the
Internet and the web.

■ A typical C++ program-
development environment.

■ To test-drive a C++
application.

■ Some key recent software
technologies.

■ How computers can help you
make a difference.

2 Chapter 1 Introduction to Computers and C++

1.1 Introduction
Welcome to C++—a powerful computer programming language that’s appropriate for
technically oriented people with little or no programming experience, and for experienced
programmers to use in building substantial information systems. You’re already familiar
with the powerful tasks computers perform. Using this textbook, you’ll write instructions
commanding computers to perform those kinds of tasks. Software (i.e., the instructions
you write) controls hardware (i.e., computers).

You’ll learn object-oriented programming—today’s key programming methodology.
You’ll create and work with many software objects in this text.

C++ is one of today’s most popular software development languages. This text pro-
vides an introduction to programming in the version of C++ standardized in the United
States through the American National Standards Institute (ANSI) and worldwide
through the efforts of the International Organization for Standardization (ISO).

In use today are more than a billion general-purpose computers and billions more cell
phones, smartphones and handheld devices (such as tablet computers). According to a
study by eMarketer, the number of mobile Internet users will reach approximately 134
million by 2013.1 Other studies have projected smartphone sales to surpass personal com-
puter sales in 20112 and tablet sales to account for over 20% of all personal computer sales
by 2015.3 By 2014, the smartphone applications market is expected to exceed $40 bil-
lion,4 which is creating significant opportunities for programming mobile applications.

Computing in Industry and Research
These are exciting times in the computer field. Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hew-

1.1 Introduction
1.2 Computers: Hardware and Software
1.3 Data Hierarchy
1.4 Computer Organization
1.5 Machine Languages, Assembly

Languages and High-Level Languages
1.6 Introduction to Object Technology
1.7 Operating Systems
1.8 Programming Languages
1.9 C++ and a Typical C++ Development

Environment

1.10 Test-Driving a C++ Application
1.11 Web 2.0: Going Social
1.12 Software Technologies
1.13 Future of C++: TR1, the New C++

Standard and the Open Source Boost
Libraries

1.14 Keeping Up-to-Date with
Information Technologies

1.15 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference |
Making a Difference Resources

1. www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/.
2. www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html.
3. www.forrester.com/ER/Press/Release/0,1769,1340,00.html.
4. Inc., December 2010/January 2011, pages 116–123.

www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/
www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html
www.forrester.com/ER/Press/Release/0,1769,1340,00.html

1.1 Introduction 3

lett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twit-
ter, Groupon, Foursquare, Yahoo!, eBay and many more—these are major employers of
people who study computer science, information systems or related disciplines. At the
time of this writing, Apple was the second most valuable company in the world and the
most valuable technology company.5 Computers are also used extensively in academic and
industrial research. Figure 1.1 provides just a few examples of exciting ways in which com-
puters are used in research and industry.

5. www.zdnet.com/blog/apple/apple-becomes-worlds-second-most-valuable-company/9047.

Name Description

Internet The Internet—a global network of computers—was made possible by the
convergence of computing and communications. It has its roots in the 1960s,
when research funding was supplied by the U.S. Department of Defense.
Originally designed to connect the main computer systems of about a dozen
universities and research organizations, the Internet today is accessible by bil-
lions of computers and computer-controlled devices worldwide. Computers
break lengthy transmissions into packets at the sending end, route the packets
to their intended receivers and ensure that those packets are received in
sequence and without error at the receiving end. According to a study by For-
rester Research, the average U.S. online consumer now spends as much time
online as watching television (forrester.com/rb/Research/understanding_
changing_needs_of_us_online_consumer,/q/id/57861/t/2).

Human
Genome
Project

The Human Genome Project was founded to identify and analyze the
20,000+ genes in human DNA . The project used computer programs to
analyze complex genetic data, determine the sequences of the billions of
chemical base pairs that make up human DNA and store the information in
databases which have been made available to researchers in many fields. This
research has led to tremendous innovation and growth in the biotechnology
industry.

World
Community
Grid

World Community Grid (www.worldcommunitygrid.org) is a non-profit
computing grid. People worldwide donate their unused computer processing
power by installing a free secure software program that allows the World
Community Grid to harness the excess power when the computers are idle.
The computing power is used in place of supercomputers to conduct scien-
tific research projects that are making a difference, including developing
affordable solar energy, providing clean water to the developing world, fight-
ing cancer, curing muscular dystrophy, finding influenza antiviral drugs,
growing more nutritious rice for regions fighting hunger and more.

Medical
imaging

X-ray computed tomography (CT) scans, also called CAT (computerized
axial tomography) scans, take X-rays of the body from hundreds of different
angles. Computers are used to adjust the intensity of the X-ray, optimizing
the scan for each type of tissue, then to combine all of the information to cre-
ate a 3D image.

Fig. 1.1 | A few uses for computers. (Part 1 of 3.)

www.zdnet.com/blog/apple/apple-becomes-worlds-second-most-valuable-company/9047
www.worldcommunitygrid.org

4 Chapter 1 Introduction to Computers and C++

GPS Global Positioning System (GPS) devices use a network of satellites to retrieve
location-based information. Multiple satellites send time-stamped signals to the
device GPS device, which calculates the distance to each satellite based on the
time the signal left the satellite and the time the signal was received. The loca-
tion of each satellite and the distance to each are used to determine the exact
location of the device. Based on your location, GPS devices can provide step-
by-step directions, help you easily find nearby businesses (restaurants, gas sta-
tions, etc.) and points of interest, or help you find your friends.

Microsoft’s
SYNC®

Many Ford cars now feature Microsoft’s SYNC technology, providing speech-
synthesis (for reading text messages to you) and speech-recognition capabili-
ties that allow you to use voice commands to browse music, request traffic
alerts and more.

AMBER™
Alert

The AMBER (America’s Missing: Broadcast Emergency Response) Alert Sys-
tem is used to find abducted children. Law enforcement notifies TV and
radio broadcasters and state transportation officials, who then broadcast alerts
on TV, radio, computerized highway signs, the Internet and wireless devices.
AMBER Alert recently partnered with Facebook. Facebook users can “Like”
AMBER Alert pages by location to receive alerts in their news feeds.

Robots Robots are computerized machines that can perform tasks (including physical
tasks), respond to stimuli and more. They can be used for day-to-day tasks
(e.g., iRobot’s Roomba vacuum), entertainment (such as robotic pets), mili-
tary combat, space and deep sea exploration, manufacturing and more. In
2004, NASA’s remote-controlled Mars rover—which used Java technology—
explored the surface to learn about the history of water on the planet.

One Laptop
Per Child
(OLPC)

One Laptop Per Child (OLPC) is providing low-power, inexpensive, Inter-
net-enabled laptops to poor children worldwide—enabling learning and
reducing the digital divide (one.laptop.org). By providing these educational
resources, OLPC is increasing the opportunities for poor children to learn
and make a difference in their communities.

Game
programming

The computer game business is larger than the first-run movie business. The
most sophisticated video games can cost as much as $100 million to develop.
Activision’s Call of Duty 2: Modern Warfare, released in November 2009,
earned $310 million in just one day in North America and the U.K.
(news.cnet.com/8301-13772_3-10396593-52.html?tag=mncol;txt)! Online
social gaming, which enables users worldwide to compete with one another, is
growing rapidly. Zynga—creator of popular online games such as Farmville
and Mafia Wars—was founded in 2007 and already has over 215 million
monthly users. To accommodate the growth in traffic, Zynga is adding nearly
1,000 servers each week (techcrunch.com/2010/09/22/zynga-moves-1-peta-
byte-of-data-daily-adds-1000-servers-a-week/)! Video game consoles are
also becoming increasingly sophisticated. The Wii Remote uses an accelerom-
eter (to detect tilt and acceleration) and a sensor that determines where the
device is pointing, allowing the device to respond to motion. By gesturing
with the Wii Remote in hand, you can control the video game on the screen.

Name Description

Fig. 1.1 | A few uses for computers. (Part 2 of 3.)

1.2 Computers: Hardware and Software 5

1.2 Computers: Hardware and Software
A computer is a device that can perform computations and make logical decisions phe-
nomenally faster than human beings can. Many of today’s personal computers can per-
form billions of calculations in one second—more than a human can perform in a lifetime.
Supercomputers are already performing thousands of trillions (quadrillions) of instructions
per second! To put that in perspective, a quadrillion-instruction-per-second computer can
perform in one second more than 100,000 calculations for every person on the planet!
And—these “upper limits” are growing quickly!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide the computer through orderly sets of actions specified by
people called computer programmers. The programs that run on a computer are referred
to as software. In this book, you’ll learn today’s key programming methodology that’s
enhancing programmer productivity, thereby reducing software-development costs—
object-oriented programming.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVDs and processing units). Computing costs are
dropping dramatically, owing to rapid developments in hardware and software technolo-
gies. Computers that might have filled large rooms and cost millions of dollars decades ago
are now inscribed on silicon chips smaller than a fingernail, costing perhaps a few dollars
each. Ironically, silicon is one of the most abundant materials—it’s an ingredient in
common sand. Silicon-chip technology has made computing so economical that more
than a billion general-purpose computers are in use worldwide, and this is expected to
double in the next few years.

Computer chips (microprocessors) control countless devices. These embedded systems
include anti-lock brakes in cars, navigation systems, smart home appliances, home security
systems, cell phones and smartphones, robots, intelligent traffic intersections, collision
avoidance systems, video game controllers and more. The vast majority of the microproces-
sors produced each year are embedded in devices other than general-purpose computers.6

(cont.) With Microsoft’s Kinect for Xbox 360, you—the player—become the con-
troller. Kinect uses a camera, depth sensor and sophisticated software to fol-
low your body movement, allowing you to control the game
(en.wikipedia.org/wiki/Kinect). Kinect games include dancing, exercising,
playing sports, training virtual animals and more.

Internet TV Internet TV set-top boxes (such as Apple TV and Google TV) give you access
to content—such as games, news, movies, television shows and more—allow-
ing you to access an enormous amount of content on demand; you no longer
need to rely on cable or satellite television providers to get content.

6. www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/
Real-men-program-in-C?pageNumber=1.

Name Description

Fig. 1.1 | A few uses for computers. (Part 3 of 3.)

www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/Real-men-program-in-C?pageNumber=1
www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/Real-men-program-in-C?pageNumber=1

6 Chapter 1 Introduction to Computers and C++

Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the costs of hardware supporting these technologies. For many decades,
hardware costs have fallen rapidly. Every year or two, the capacities of computers have ap-
proximately doubled without any increase in price. This remarkable observation often is
called Moore’s Law, named for the person who identified the trend, Gordon Moore, co-
founder of Intel—a leading manufacturer of the processors in today’s computers and em-
bedded systems. Moore’s Law and related observations are especially true in relation to the
amount of memory that computers have for programs, the amount of secondary storage
(such as disk storage) they have to hold programs and data over longer periods of time, and
their processor speeds—the speeds at which computers execute their programs (i.e., do
their work). Similar growth has occurred in the communications field, in which costs have
plummeted as enormous demand for communications bandwidth (i.e., information-car-
rying capacity) has attracted intense competition. We know of no other fields in which
technology improves so quickly and costs fall so rapidly. Such phenomenal improvement
is truly fostering the Information Revolution.

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from bits to characters to fields, and so on. Figure 1.2
illustrates a portion of the data hierarchy. Figure 1.3 summarizes the data hierarchy’s levels.

Fig. 1.2 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Byte (ASCII character J)

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

1.4 Computer Organization 7

1.4 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.4).

Level Description

Bits The smallest data item in a computer can assume the value 0 or the value 1.
Such a data item is called a bit (short for “binary digit”—a digit that can
assume one of two values). It’s remarkable that the impressive functions per-
formed by computers involve only the simplest manipulations of 0s and 1s—
examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to 0
or from 0 to 1).

Characters It’s tedious for people to work with data in the low-level form of bits. Instead,
they prefer to work with decimal digits (0–9), letters (A–Z and a–z), and special
symbols (e.g., $, @, %, &, *, (,), –, +, ", :, ? and /). Digits, letters and special
symbols are known as characters. The computer’s character set is the set of all
the characters used to write programs and represent data items. Computers pro-
cess only 1s and 0s, so a computer’s character set represents every character as a
pattern of 1s and 0s. C++ uses the ASCII (American Standard Code for Infor-
mation Interchange) character set (Appendix B).

Fields Just as characters are composed of bits, fields are composed of characters or
bytes. A field is a group of characters or bytes that conveys meaning. For exam-
ple, a field consisting of uppercase and lowercase letters can be used to represent
a person’s name, and a field consisting of decimal digits could represent a per-
son’s age.

Records Several related fields can be used to compose a record (implemented as a class in
Java). In a payroll system, for example, the record for an employee might consist
of the following fields (possible types for these fields are shown in parentheses):
• Employee identification number (a whole number)
• Name (a string of characters)
• Address (a string of characters)
• Hourly pay rate (a number with a decimal point)
• Year-to-date earnings (a number with a decimal point)
• Amount of taxes withheld (a number with a decimal point)
Thus, a record is a group of related fields. In the preceding example, all the
fields belong to the same employee. A company might have many employees
and a payroll record for each one.

Files A file is a group of related records. [Note: More generally, a file contains arbitrary
data in arbitrary formats. In some operating systems, a file is viewed simply as a
sequence of bytes—any organization of the bytes in a file, such as organizing the
data into records, is a view created by the application programmer.] It’s not
unusual for an organization to have many files, some containing billions, or even
trillions, of characters of information.

Fig. 1.3 | Levels of the data hierarchy.

8 Chapter 1 Introduction to Computers and C++

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for processing.
Most information is entered into computers through keyboards, touch screens
and mouse devices. Other forms of input include speaking to your computer,
scanning images and barcodes, reading from secondary storage devices (like
hard drives, DVD drives, Blu-ray Disc™ drives and USB flash drives—also
called “thumb drives” or “memory sticks”), receiving video from a webcam and
having your computer receive information from the Internet (such as when you
download videos from YouTube™ or e-books from Amazon). Newer forms of
input include reading position data from a GPS device, and motion and orien-
tation information from an accelerometer in a smartphone or game controller.

Output unit This “shipping” section takes information that the computer has processed
and places it on various output devices to make it available for use outside the
computer. Most information that’s output from computers today is displayed
on screens, printed on paper, played as audio or video on portable media
players (such as Apple’s popular iPods) and giant screens in sports stadiums,
transmitted over the Internet or used to control other devices, such as robots
and “intelligent” appliances.

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by the
output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called
either memory or primary memory. Typical main memories on desktop and
notebook computers contain between 1 GB and 8 GB (GB stands for
gigabytes; a gigabyte is approximately one billion bytes).

Arithmetic
and logic unit
(ALU)

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms
that allow the computer, for example, to compare two items from the mem-
ory unit to determine whether they’re equal. In today’s systems, the ALU is
usually implemented as part of the next logical unit, the CPU.

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of the
other sections. The CPU tells the input unit when information should be read
into the memory unit, tells the ALU when information from the memory unit
should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s
computers have multiple CPUs and, hence, can perform many operations
simultaneously. A multi-core processor implements multiple processors on a
single integrated-circuit chip—a dual-core processor has two CPUs and a quad-
core processor has four CPUs. Today’s desktop computers have processors that
can execute billions of instructions per second.

Secondary
storage unit

This is the long-term, high-capacity “warehousing” section. Programs or data
not actively being used by the other units normally are placed on secondary

Fig. 1.4 | Logical units of a computer. (Part 1 of 2.)

1.5 Machine Languages, Assembly Languages and High-Level Languages 9

1.5 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately
reduced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language program that adds overtime
pay to base pay and stores the result in gross pay:

Programming in machine language was simply too slow and tedious for most pro-
grammers. Instead of using the strings of numbers that computers could directly under-
stand, programmers began using English-like abbreviations to represent elementary
operations. These abbreviations formed the basis of assembly languages. Translator pro-
grams called assemblers were developed to convert early assembly-language programs to
machine language at computer speeds. The following section of an assembly-language pro-
gram also adds overtime pay to base pay and stores the result in gross pay:

Secondary
storage unit
(cont.)

storage devices (e.g., your hard drive) until they’re again needed, possibly
hours, days, months or even years later. Information on secondary storage
devices is persistent—it’s preserved even when the computer’s power is turned
off. Secondary storage information takes much longer to access than informa-
tion in primary memory, but the cost per unit of secondary storage is much
less than that of primary memory. Examples of secondary storage devices
include CD drives, DVD drives and flash drives, some of which can hold up
to 128 GB. Typical hard drives on desktop and notebook computers can hold
up to 2 TB (TB stands for terabytes; a terabyte is approximately one trillion
bytes).

+1300042774
+1400593419
+1200274027

load basepay
add overpay
store grosspay

Logical unit Description

Fig. 1.4 | Logical units of a computer. (Part 2 of 2.)

10 Chapter 1 Introduction to Computers and C++

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

Computer usage increased rapidly with the advent of assembly languages, but pro-
grammers still had to use many instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

From the programmer’s standpoint, high-level languages are preferable to machine and
assembly languages. C++, C, Microsoft’s .NET languages (e.g., Visual Basic, Visual C++ and
Visual C#) and Java are among the most widely used high-level programming languages.

Compiling a large high-level language program into machine language can take a con-
siderable amount of computer time. Interpreter programs were developed to execute high-
level language programs directly (without the delay of compilation), although slower than
compiled programs run.

1.6 Introduction to Object Technology
Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precise-
ly—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable soft-
ware components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g., cal-
culating, moving and communicating). Software developers are discovering that using a
modular, object-oriented design and implementation approach can make software-devel-
opment groups much more productive than was possible with earlier popular techniques
like “structured programming”—object-oriented programs are often easier to understand,
correct and modify.

The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal hides the mechanisms that slow the car, and the steering wheel “hides” the
mechanisms that turn the car. This enables people with little or no knowledge of how en-
gines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make the car

grossPay = basePay + overTimePay

1.6 Introduction to Object Technology 11

go faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so
the driver must press the pedal to accelerate the car.

Member Functions and Classes
Let’s use our car example to introduce some key object-oriented programming concepts. Per-
forming a task in a program requires a member function, which houses the program state-
ments that actually perform its task. The member function hides these statements from its
user, just as the accelerator pedal of a car hides from the driver the mechanisms of making
the car go faster. In C++, we create a program unit called a class to house the set of member
functions that perform the class’s tasks. For example, a class that represents a bank account
might contain one member function to deposit money to an account, another to withdraw
money from an account and a third to inquire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accelerator
pedal, steering wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s member functions define. The process of doing this is called instantiation. An
object is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

Messages and Member Function Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a member function call that tells a member function of the object to perform its task.
For example, a program might call a particular bank account object’s deposit member func-
tion to increase the account’s balance.

Attributes and Data Members
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing pieces wherever possible. This software reuse is a key benefit of object-oriented
programming.

12 Chapter 1 Introduction to Computers and C++

odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank account object has
a balance attribute that represents the amount of money in the account. Each bank account
object knows the balance in the account it represents, but not the balances of the other
accounts in the bank. Attributes are specified by the class’s data members.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and member functions into objects—an object’s
attributes and member functions are intimately related. Objects may communicate with
one another, but they’re normally not allowed to know how other objects are implement-
ed—implementation details are hidden within the objects themselves. This information
hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C++. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of 1,000 software developers building the next U.S.
air traffic control system? For projects so large and complex, you should not simply sit
down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C++ are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 3
and 4, then use them in our deeper treatment of object-oriented programming through

1.7 Operating Systems 13

Chapter 13. In our optional ATM Software Engineering Case Study in Chapters 25–26 we
present a simple subset of the UML’s features as we guide you through an object-oriented
design experience.

1.7 Operating Systems
Operating systems are software systems that make using computers more convenient for us-
ers, application developers and system administrators. Operating systems provide services
that allow each application to execute safely, efficiently and concurrently (i.e., in parallel) with
other applications. The software that contains the core components of the operating system
is called the kernel. Popular desktop operating systems include Linux, Windows 7 and Mac
OS X. Popular mobile operating systems used in smartphones and tablets include Google’s
Android, BlackBerry OS and Apple’s iOS (for its iPhone, iPad and iPod Touch devices).

Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system of the time that users interacted with by typing commands. Windows bor-
rowed from many concepts (such as icons, menus and windows) popularized by early Apple
Macintosh operating systems and originally developed by Xerox PARC. Windows 7 is Mi-
crosoft’s latest operating system—its features include enhancements to the user interface,
faster startup times, further refinement of security features, touch-screen and multi-touch
support, and more. Windows is a proprietary operating system—it’s controlled by one com-
pany exclusively. Windows is by far the world’s most widely used operating system.

Linux—An Open-Source Operating System
The Linux operating system is perhaps the greatest success of the open-source movement.
Open-source software is a software development style that departs from the proprietary de-
velopment that dominated software’s early years. With open-source development, individu-
als and companies contribute their efforts in developing, maintaining and evolving software
in exchange for the right to use that software for their own purposes, typically at no charge.
Open-source code is often scrutinized by a much larger audience than proprietary software,
so errors often get removed faster. Open source also encourages more innovation.

Some organizations in the open-source community are the Eclipse Foundation (the
Eclipse Integrated Development Environment helps C++ programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides the tools for managing open source
projects—it has over 260,000 of them under development). Rapid improvements to com-
puting and communications, decreasing costs and open-source software have made it
much easier and more economical to create a software-based business now than just a few
decades ago. A great example is Facebook, which was launched from a college dorm room
and built with open-source software.7

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers, and is

7. developers.facebook.com/opensource/.

14 Chapter 1 Introduction to Computers and C++

popular in servers, personal computers and embedded systems. Unlike that of proprietary
operating systems like Microsoft’s Windows and Apple’s Mac OS X, Linux source code
(the program code) is available to the public for examination and modification and is free
to download and install. As a result, users of the operating system benefit from a commu-
nity of developers actively debugging and improving the kernel, an absence of licensing
fees and restrictions, and the ability to completely customize the operating system to meet
specific needs.

In 1991, Linus Torvalds, a 21-year-old student at the University of Helsinki, Finland,
began developing the Linux kernel as a hobby. (The name Linux is derived from “Linus”
and “UNIX”—an operating system developed by Bell Labs in 1969.) Torvalds wished to
improve upon the design of Minix, an educational operating system created by Professor
Andrew Tanenbaum of the Vrije Universiteit in Amsterdam. The Minix source code was
publicly available to allow professors to demonstrate basic operating-system implementa-
tion concepts to their students.

Torvalds released the first version of Linux in 1991. The favorable response led to the
creation of a community that has continued to develop and support Linux. Developers
downloaded, tested, and modified the Linux code, submitting bug fixes and feedback to
Torvalds, who reviewed them and applied the improvements to the code.

The 1994 release of Linux included many features commonly found in a mature oper-
ating system, making Linux a viable alternative to UNIX. Enterprise systems companies
such as IBM and Oracle became increasingly interested in Linux as it continued to stabilize
and spread to new platforms.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. But Linux has become extremely popular on servers and in embedded
systems, such as Google’s Android-based smartphones.

Android
Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. One benefit of developing Android apps is the openness of the plat-
form. The operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 compa-
nies initially and 79 by 2010—was formed to continue developing Android. As of
December 2010, more than 300,000 Android smartphones were being activated each
day!8 Android smartphones are now outselling iPhones.9 The Android operating system is
used in numerous smartphones (such as the Motorola Droid, HTC EVO™ 4G, Samsung
Vibrant™ and many more), e-reader devices (such as the Barnes and Noble Nook™),
tablet computers (such as the Dell Streak, the Samsung Galaxy Tab and more), in-store
touch-screen kiosks, cars, robots and multimedia players.

Android smartphones include the functionality of a mobile phone, Internet client (for
web browsing and Internet communication), MP3 player, gaming console, digital camera

8. www.pcmag.com/article2/0,2817,2374076,00.asp.
9. mashable.com/2010/08/02/android-outselling-iphone-2/.

www.pcmag.com/article2/0,2817,2374076,00.asp

1.8 Programming Languages 15

and more, wrapped into handheld devices with full-color multitouch screens—these allow
you to control the device with gestures involving one touch or multiple simultaneous
touches. You can download apps directly onto your Android device through Android
Market and other app marketplaces. As of December 2010, there were over 200,000 apps
in Google’s Android Market.

1.8 Programming Languages
In this section, we provide brief comments on several popular programming languages
(Fig. 1.5). In the next section we introduce C++.

Programming
language Description

Fortran Fortran (FORmula TRANslator) was developed by IBM Corpora-
tion in the mid-1950s to be used for scientific and engineering
applications that require complex mathematical computations. It’s
still widely used and its latest versions support object-oriented
programming.

COBOL COBOL (COmmon Business Oriented Language) was developed
in the late 1950s by computer manufacturers, the U.S. govern-
ment and industrial computer users based on a language devel-
oped by Grace Hopper, a career U.S. Navy officer and computer
scientist. COBOL is still widely used for commercial applications
that require precise and efficient manipulation of large amounts of
data. Its latest version supports object-oriented programming.

Pascal Research in the 1960s resulted in structured programming—a disci-
plined approach to writing programs that are clearer, easier to test
and debug and easier to modify than large programs produced
with previous techniques. One of the more tangible results of this
research was the development of Pascal by Professor Niklaus
Wirth in 1971. It was designed for teaching structured program-
ming and was popular in college courses for several decades.

Ada Ada, based on Pascal, was developed under the sponsorship of the
U.S. Department of Defense (DOD) during the 1970s and early
1980s. The DOD wanted a single language that would fill most of
its needs. The Pascal-based language was named after Lady Ada
Lovelace, daughter of the poet Lord Byron. She’s credited with
writing the world’s first computer program in the early 1800s (for
the Analytical Engine mechanical computing device designed by
Charles Babbage). Its latest version supports object-oriented pro-
gramming.

Basic Basic was developed in the 1960s at Dartmouth College to famil-
iarize novices with programming techniques. Many of its latest
versions are object oriented.

Fig. 1.5 | Other programming languages. (Part 1 of 3.)

16 Chapter 1 Introduction to Computers and C++

C C was implemented in 1972 by Dennis Ritchie at Bell Laborato-
ries. It initially became widely known as the UNIX operating sys-
tem’s development language. Today, most of the code for general-
purpose operating systems is written in C or C++.

Objective-C Objective-C is an object-oriented language based on C. It was
developed in the early 1980s and later acquired by Next, which in
turn was acquired by Apple. It has become the key programming
language for the Mac OS X operating system and all iOS-powered
devices (such as iPods, iPhones and iPads).

Java Sun Microsystems in 1991 funded an internal corporate research
project led by James Gosling, which resulted in the C++-based
object-oriented programming language called Java. A key goal of
Java is to be able to write programs that will run on a great variety
of computer systems and computer-control devices. This is some-
times called “write once, run anywhere.” Java is used to develop
large-scale enterprise applications, to enhance the functionality of
web servers (the computers that provide the content we see in our
web browsers), to provide applications for consumer devices (e.g.,
smartphones, television set-top boxes and more) and for many
other purposes.

Visual Basic Microsoft’s Visual Basic language was introduced in the early
1990s to simplify the development of Microsoft Windows appli-
cations. Its latest versions support object-oriented programming.

Visual C# Microsoft’s three object-oriented primary programming languages
are Visual Basic (based on the original Basic), Visual C++ (based
on C++) and C# (based on C++ and Java, and developed for inte-
grating the Internet and the web into computer applications).

PHP PHP is an object-oriented, “open-source” (see Section 1.7) “script-
ing” language supported by a community of users and developers
and is used by numerous websites including Wikipedia and Face-
book. PHP is platform independent—implementations exist for
all major UNIX, Linux, Mac and Windows operating systems.
PHP also supports many databases, including MySQL.

Perl Perl (Practical Extraction and Report Language), one of the most
widely used object-oriented scripting languages for web program-
ming, was developed in 1987 by Larry Wall. It features rich text-
processing capabilities and flexibility.

Python Python, another object-oriented scripting language, was released
publicly in 1991. Developed by Guido van Rossum of the
National Research Institute for Mathematics and Computer Sci-
ence in Amsterdam (CWI), Python draws heavily from Modula-
3—a systems programming language. Python is “extensible”—it
can be extended through classes and programming interfaces.

Programming
language Description

Fig. 1.5 | Other programming languages. (Part 2 of 3.)

1.9 C++ and a Typical C++ Development Environment 17

1.9 C++ and a Typical C++ Development Environment
C++ evolved from C, which was developed by Dennis Ritchie at Bell Laboratories. C is
available for most computers and is hardware independent. With careful design, it’s pos-
sible to write C programs that are portable to most computers.

The widespread use of C with various kinds of computers (sometimes called hardware
platforms) unfortunately led to many variations. A standard version of C was needed. The
American National Standards Institute (ANSI) cooperated with the International Organi-
zation for Standardization (ISO) to standardize C worldwide; the joint standard docu-
ment was published in 1990 and is referred to as ANSI/ISO 9899: 1990.

C99 is the latest ANSI standard for the C programming language. It was developed
to evolve the C language to keep pace with increasingly powerful hardware and ever more
demanding user requirements. C99 also makes C more consistent with C++. For more
information on C and C99, see our book C How to Program, 6/e and our C Resource
Center (located at www.deitel.com/C).

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell
Laboratories. C++ provides a number of features that “spruce up” the C language, but
more importantly, it provides capabilities for object-oriented programming.

JavaScript JavaScript is the most widely used scripting language. It’s primarily
used to add programmability to web pages—for example, anima-
tions and interactivity with the user. It’s provided with all major
web browsers.

Ruby on Rails Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an
open-source, object-oriented programming language with a simple
syntax that’s similar to Perl and Python. Ruby on Rails combines
the scripting language Ruby with the Rails web application frame-
work developed by 37Signals. Their book, Getting Real (getting-
real.37signals.com/toc.php), is a must read for web developers.
Many Ruby on Rails developers have reported productivity gains
over other languages when developing database-intensive web
applications. Ruby on Rails was used to build Twitter’s user inter-
face.

Scala Scala (www.scala-lang.org/node/273)—short for “scalable lan-
guage”—was designed by Martin Odersky, a professor at École
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.
Released in 2003, Scala uses both the object-oriented program-
ming and functional programming paradigms and is designed to
integrate with Java. Programming in Scala can reduce the amount
of code in your applications significantly. Twitter and Foursquare
use Scala.

Programming
language Description

Fig. 1.5 | Other programming languages. (Part 3 of 3.)

www.deitel.com/C
www.scala-lang.org/node/273

18 Chapter 1 Introduction to Computers and C++

You’ll begin developing customized, reusable classes and objects in Chapter 3, Intro-
duction to Classes, Objects and Strings. The book is object oriented, where appropriate,
from the start and throughout the text.

We also provide an optional automated teller machine (ATM) case study in
Chapters 25–26, which contains a complete C++ implementation. The case study presents
a carefully paced introduction to object-oriented design using the UML—an industry
standard graphical modeling language for developing object-oriented systems. We guide
you through a friendly design experience intended for the novice.

C++ Standard Library
C++ programs consist of pieces called classes and functions. You can program each piece
yourself, but most C++ programmers take advantage of the rich collections of classes and
functions in the C++ Standard Library. Thus, there are really two parts to learning the
C++ “world.” The first is learning the C++ language itself; the second is learning how to
use the classes and functions in the C++ Standard Library. We discuss many of these classes
and functions. P. J. Plauger’s book, The Standard C Library (Upper Saddle River, NJ:
Prentice Hall PTR, 1992), is a must read for programmers who need a deep understanding
of the ANSI C library functions included in C++. Many special-purpose class libraries are
supplied by independent software vendors.

The advantage of creating your own functions and classes is that you’ll know exactly
how they work. You’ll be able to examine the C++ code. The disadvantage is the time-con-
suming and complex effort that goes into designing, developing and maintaining new
functions and classes that are correct and that operate efficiently.

We now explain the commonly used steps in creating and executing a C++ application
using a C++ development environment (illustrated in Figs. 1.6–1.11). C++ systems gen-
erally consist of three parts: a program development environment, the language and the
C++ Standard Library. C++ programs typically go through six phases: edit, preprocess,

Software Engineering Observation 1.2
Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use
existing pieces wherever possible. Called software reuse, this practice is central to object-
oriented programming.

Software Engineering Observation 1.3
When programming in C++, you typically will use the following building blocks: classes
and functions from the C++ Standard Library, classes and functions you and your
colleagues create and classes and functions from various popular third-party libraries.

Performance Tip 1.1
Using C++ Standard Library functions and classes instead of writing your own versions
can improve program performance, because they’re written carefully to perform efficiently.
This technique also shortens program development time.

Portability Tip 1.1
Using C++ Standard Library functions and classes instead of writing your own improves
program portability, because they’re included in every C++ implementation.

1.9 C++ and a Typical C++ Development Environment 19

compile, link, load and execute. The following discussion explains a typical C++ program
development environment.

Phase 1: Creating a Program
Phase 1 consists of editing a file with an editor program, normally known simply as an editor
(Fig. 1.6). You type a C++ program (typically referred to as source code) using the editor,
make any necessary corrections and save the program on a secondary storage device, such as
your hard drive. C++ source code filenames often end with the .cpp, .cxx, .cc or .C exten-
sions (note that C is in uppercase) which indicate that a file contains C++ source code. See
the documentation for your C++ compiler for more information on file-name extensions.

Two editors widely used on Linux systems are vi and emacs. C++ software packages
for Microsoft Windows such as Microsoft Visual C++ (microsoft.com/express) have
editors integrated into the programming environment. You can also use a simple text
editor, such as Notepad in Windows, to write your C++ code.

For organizations that develop substantial information systems, integrated develop-
ment environments (IDEs) are available from many major software suppliers. IDEs pro-
vide tools that support the software-development process, including editors for writing
and editing programs and debuggers for locating logic errors—errors that cause programs
to execute incorrectly. Popular IDEs include Microsoft® Visual Studio 2010 Express Edi-
tion, Dev C++, NetBeans, Eclipse and CodeLite.

Phase 2: Preprocessing a C++ Program
In Phase 2, you give the command to compile the program (Fig. 1.7). In a C++ system, a
preprocessor program executes automatically before the compiler’s translation phase be-
gins (so we call preprocessing Phase 2 and compiling Phase 3). The C++ preprocessor
obeys commands called preprocessor directives, which indicate that certain manipula-
tions are to be performed on the program before compilation. These manipulations usu-
ally include other text files to be compiled, and perform various text replacements. The
most common preprocessor directives are discussed in the early chapters; a detailed discus-
sion of preprocessor features appears in Appendix E, Preprocessor.

Fig. 1.6 | Typical C++ development environment—editing phase.

Fig. 1.7 | Typical C++ development environment—preprocessor phase.

Disk
Editor

Phase 1:
Programmer creates program
in the editor and stores it on
disk

Disk
Preprocessor

Phase 2:
Preprocessor program
processes the code

20 Chapter 1 Introduction to Computers and C++

Phase 3: Compiling a C++ Program
In Phase 3, the compiler translates the C++ program into machine-language code—also
referred to as object code (Fig. 1.8).

Phase 4: Linking
Phase 4 is called linking. C++ programs typically contain references to functions and data
defined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project (Fig. 1.9). The object code produced by the C++
compiler typically contains “holes” due to these missing parts. A linker links the object code
with the code for the missing functions to produce an executable program (with no missing
pieces). If the program compiles and links correctly, an executable image is produced.

Phase 5: Loading
Phase 5 is called loading. Before a program can be executed, it must first be placed in
memory (Fig. 1.10). This is done by the loader, which takes the executable image from
disk and transfers it to memory. Additional components from shared libraries that support
the program are also loaded.

Fig. 1.8 | Typical C++ development environment—compilation phase.

Fig. 1.9 | Typical C++ development environment—linking phase.

Fig. 1.10 | Typical C++ development environment—loading phase.

Disk
Compiler

Phase 3:
Compiler creates
object code and stores
it on disk

Disk
Linker

Phase 4:
Linker links the object
code with the libraries,
creates an executable file and
stores it on disk

Disk

Loader

Phase 5:
Loader puts program
in memory

.
.
.

Primary
Memory

.
.
.

1.10 Test-Driving a C++ Application 21

Phase 6: Execution
Finally, the computer, under the control of its CPU, executes the program one instruction
at a time (Fig. 1.11). Some modern computer architectures can execute several instruc-
tions in parallel.

Problems That May Occur at Execution Time
Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we’ll discuss throughout this book. For example, an executing program
might try to divide by zero (an illegal operation for whole-number arithmetic in C++).
This would cause the C++ program to display an error message. If this occurred, you’d
have to return to the edit phase, make the necessary corrections and proceed through the
remaining phases again to determine that the corrections fixed the problem(s). [Note:
Most programs in C++ input or output data. Certain C++ functions take their input from
cin (the standard input stream; pronounced “see-in”), which is normally the keyboard,
but cin can be redirected to another device. Data is often output to cout (the standard
output stream; pronounced “see-out”), which is normally the computer screen, but cout
can be redirected to another device. When we say that a program prints a result, we nor-
mally mean that the result is displayed on a screen. Data may be output to other devices,
such as disks and hardcopy printers. There is also a standard error stream referred to as
cerr. The cerr stream (normally connected to the screen) is used for displaying error mes-
sages.

1.10 Test-Driving a C++ Application
In this section, you’ll run and interact with your first C++ application. You’ll begin by run-
ning an entertaining guess-the-number game, which picks a number from 1 to 1000 and

Fig. 1.11 | Typical C++ development environment—execution phase.

Common Programming Error 1.1
Errors such as division by zero occur as a program runs, so they’re called runtime errors
or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

CPU
Phase 6:
CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

.
.

Primary
Memory

.
.
.

22 Chapter 1 Introduction to Computers and C++

prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct,
the application indicates whether your guess is higher or lower than the correct number.
There is no limit on the number of guesses you can make. [Note: For this test drive only,
we’ve modified this application from the exercise you’ll be asked to create in Chapter 6,
Functions and an Introduction to Recursion. Normally this application randomly selects
the correct answer as you execute the program. The modified application uses the same
correct answer every time the program executes (though this may vary by compiler), so you
can use the same guesses we use in this section and see the same results as we walk you
through interacting with your first C++ application.]

We’ll demonstrate running a C++ application using the Windows Command Prompt
and a shell on Linux. The application runs similarly on both platforms. Many develop-
ment environments are available in which you can compile, build and run C++ applica-
tions, such as GNU C++, Dev C++, Microsoft Visual C++, CodeLite, NetBeans, Eclipse
etc. Consult your instructor for information on your specific development environment.

In the following steps, you’ll run the application and enter various numbers to guess
the correct number. The elements and functionality that you see in this application are
typical of those you’ll learn to program in this book. We use fonts to distinguish between
features you see on the screen (e.g., the Command Prompt) and elements that are not
directly related to the screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif Helvetica font and to emphasize filenames, text dis-
played by an application and values you should enter into an application (e.g., Guess-
Number or 500) in a sans-serif Lucida font. As you’ve noticed, the defining occurrence
of each term is set in blue, bold type. For the figures in this section, we point out signifi-
cant parts of the application. To make these features more visible, we’ve modified the
background color of the Command Prompt window (for the Windows test drive only). To
modify the Command Prompt colors on your system, open a Command Prompt by selecting
Start > All Programs > Accessories > Command Prompt, then right click the title bar and
select Properties. In the "Command Prompt" Properties dialog box that appears, click the
Colors tab, and select your preferred text and background colors.

Running a C++ Application from the Windows Command Prompt
1. Checking your setup. It’s important to read the Before You Begin section at

www.deitel.com/books/cpphtp8/ to make sure that you’ve copied the book’s
examples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To
change to the directory for the completed GuessNumber application, type
cd C:\examples\ch01\GuessNumber\Windows, then press Enter (Fig. 1.12). The
command cd is used to change directories.

Fig. 1.12 | Opening a Command Prompt window and changing the directory.

www.deitel.com/books/cpphtp8/

1.10 Test-Driving a C++ Application 23

3. Running the GuessNumber application. Now that you are in the directory that
contains the GuessNumber application, type the command GuessNumber

(Fig. 1.13) and press Enter. [Note: GuessNumber.exe is the actual name of the ap-
plication; however, Windows assumes the .exe extension by default.]

4. Entering your first guess. The application displays "Please type your first

guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.13). At the prompt, enter 500 (Fig. 1.14).

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess. So, you should enter a lower number for your next guess. At the
prompt, enter 250 (Fig. 1.15). The application again displays "Too high. Try

again.", because the value you entered is still greater than the number that the
application chose as the correct guess.

6. Entering additional guesses. Continue to play the game by entering values until
you guess the correct number. The application will display "Excellent! You

guessed the number!" (Fig. 1.16).

Fig. 1.13 | Running the GuessNumber application.

Fig. 1.14 | Entering your first guess.

Fig. 1.15 | Entering a second guess and receiving feedback.

24 Chapter 1 Introduction to Computers and C++

7. Playing the game again or exiting the application. After you guess correctly, the
application asks if you’d like to play another game (Fig. 1.16). At the "Would you
like to play again (y or n)?" prompt, entering the one character y causes the
application to choose a new number and displays the message “Please type your
first guess.” followed by a question mark prompt (Fig. 1.17) so you can make
your first guess in the new game. Entering the character n ends the application
and returns you to the application’s directory at the Command Prompt
(Fig. 1.18). Each time you execute this application from the beginning (i.e., Step
3), it will choose the same numbers for you to guess.

8. Close the Command Prompt window.

Fig. 1.16 | Entering additional guesses and guessing the correct number.

Fig. 1.17 | Playing the game again.

Fig. 1.18 | Exiting the game.

1.10 Test-Driving a C++ Application 25

Running a C++ Application Using GNU C++ with Linux
For this test drive, we assume that you know how to copy the examples into your home
directory. Please see your instructor if you have any questions regarding copying the files
to your Linux system. Also, for the figures in this section, we use a bold highlight to point
out the user input required by each step. The prompt in the shell on our system uses the
tilde (~) character to represent the home directory, and each prompt ends with the dollar
sign ($) character. The prompt will vary among Linux systems.

1. Locating the completed application. From a Linux shell, change to the completed
GuessNumber application directory (Fig. 1.19) by typing

then pressing Enter. The command cd is used to change directories.

2. Compiling the GuessNumber application. To run an application on the GNU
C++ compiler, you must first compile it by typing

as in Fig. 1.20. This command compiles the application and produces an execut-
able file called GuessNumber.

3. Running the GuessNumber application. To run the executable file GuessNumber,
type ./GuessNumber at the next prompt, then press Enter (Fig. 1.21).

4. Entering your first guess. The application displays "Please type your first

guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.21). At the prompt, enter 500 (Fig. 1.22). [Note: This is the same appli-
cation that we modified and test-drove for Windows, but the outputs could vary
based on the compiler being used.]

cd Examples/ch01/GuessNumber/GNU_Linux

~$ cd examples/ch01/GuessNumber/GNU_Linux
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.19 | Changing to the GuessNumber application’s directory.

g++ GuessNumber.cpp -o GuessNumber

~/examples/ch01/GuessNumber/GNU_Linux$ g++ GuessNumber.cpp -o GuessNumber
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.20 | Compiling the GuessNumber application using the g++ command.

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.21 | Running the GuessNumber application.

26 Chapter 1 Introduction to Computers and C++

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess (Fig. 1.22). At the next prompt, enter 250 (Fig. 1.23). This time
the application displays "Too low. Try again.", because the value you entered is
less than the correct guess.

6. Entering additional guesses. Continue to play the game (Fig. 1.24) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number."

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
?

Fig. 1.22 | Entering an initial guess.

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
? 250
Too low. Try again.
?

Fig. 1.23 | Entering a second guess and receiving feedback.

Too low. Try again.
? 375
Too low. Try again.
? 437
Too high. Try again.
? 406
Too high. Try again.
? 391
Too high. Try again.
? 383
Too low. Try again.
? 387
Too high. Try again.
? 385
Too high. Try again.
? 384
Excellent! You guessed the number.
Would you like to play again (y or n)?

Fig. 1.24 | Entering additional guesses and guessing the correct number.

1.11 Web 2.0: Going Social 27

7. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the "Would

you like to play again (y or n)?" prompt, entering the one character y causes
the application to choose a new number and displays the message "Please type

your first guess." followed by a question mark prompt (Fig. 1.25) so you can
make your first guess in the new game. Entering the character n ends the appli-
cation and returns you to the application’s directory in the shell (Fig. 1.26). Each
time you execute this application from the beginning (i.e., Step 3), it will choose
the same numbers for you to guess.

1.11 Web 2.0: Going Social
The web literally exploded in the mid-to-late 1990s, but the “dot com” economic bust
brought hard times in the early 2000s. The resurgence that began in 2004 or so has been
named Web 2.0. Google is widely regarded as the signature company of Web 2.0. Some
other companies with “Web 2.0 characteristics” are YouTube (video sharing), FaceBook
(social networking), Twitter (microblogging), Groupon (social commerce), Foursquare
(mobile check-in), Salesforce (business software offered as online services), Craigslist (free
classified listings), Flickr (photo sharing), Second Life (a virtual world), Skype (Internet
telephony) and Wikipedia (a free online encyclopedia).

Google
In 1996, Stanford computer science Ph.D. candidates Larry Page and Sergey Brin began
collaborating on a new search engine. In 1997, they changed the name to Google—a play
on the mathematical term googol, a quantity represented by the number “one” followed by
100 “zeros” (or 10100)—a staggeringly large number. Google’s ability to return extremely
accurate search results quickly helped it become the most widely used search engine and
one of the most popular websites in the world.

Google continues to be an innovator in search technologies. For example, Google
Goggles is a fascinating mobile app (available on Android and iPhone) that allows you to

Excellent! You guessed the number.
Would you like to play again (y or n)? y

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.25 | Playing the game again.

Excellent! You guessed the number.
Would you like to play again (y or n)? n

~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.26 | Exiting the game.

28 Chapter 1 Introduction to Computers and C++

perform a Google search using a photo rather than entering text. You simply take pictures
of a landmarks, books (covers or barcodes), logos, art or wine bottle labels, and Google
Goggles scans the photo and returns search results. You can also take a picture of text (for
example, a restaurant menu or a sign) and Google Goggles will translate it for you.

Ajax
Ajax is one of the premier Web 2.0 software technologies. Ajax helps Internet-based ap-
plications perform like desktop applications—a difficult task, given that such applications
suffer transmission delays as data is shuttled back and forth between your computer and
server computers on the Internet. Using Ajax, applications like Google Maps have
achieved excellent performance and approach the look-and-feel of desktop applications.

Social Applications
Over the last several years, there’s been a tremendous increase in the number of social ap-
plications on the web. Even though the computer industry is mature, these sites were still
able to become phenomenally successful in a relatively short period of time. Figure 1.27
discusses a few of the social applications that are making an impact.

Company Description

Facebook Facebook was launched from a Harvard dorm room in 2004 by classmates
Mark Zuckerberg, Chris Hughes, Dustin Moskovitz and Eduardo Saverin and
is already worth an estimated $70 billion. By January 2011, Facebook was the
most active site on the Internet with more than 600 million users—nearly 9%
of the Earth’s population—who spend 700 billion minutes on Facebook per
month (www.time.com/time/specials/packages/article/
0,28804,2036683_2037183,00.html). At its current rate of growth (about 5%
per month), Facebook will reach one billion users in 2012, out of the two bil-
lion people on the Internet! The activity on the site makes it extremely attrac-
tive for application developers. Each day, over 20 million applications are
installed by Facebook users (www.facebook.com/press/info.php?statistics).

Twitter Twitter was founded in 2006 by Jack Dorsey, Evan Williams and Isaac “Biz”
Stone—all from the podcast company, Odeo. Twitter has revolutionized
microblogging. Users post tweets—messages of up to 140 characters in length.
Approximately 95 million tweets are posted per day (twitter.com/about). You
can follow the tweets of friends, celebrities, businesses, government representa-
tives (including the U.S. President, who has 6.3 million followers), etc., or you
can follow tweets by subject to track news, trends and more. At the time of this
writing, Lady Gaga had the most followers (over 7.7 million). Twitter has
become the point of origin for many breaking news stories worldwide.

Groupon Groupon, a social commerce site, was launched by Andrew Mason in 2008. By
January 2011, the company was valued around $15 billion, making it the fast-
est growing company ever! It’s now available in hundreds of markets world-
wide. Groupon offers one daily deal in each market for restaurants, retailers,
services, attractions and more. Deals are activated only after a minimum num-
ber of people sign up to buy the product or service. If you sign up for a deal

Fig. 1.27 | Social applications. (Part 1 of 2.)

www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.facebook.com/press/info.php?statistics

1.12 Software Technologies 29

1.12 Software Technologies
Figure 1.28 lists a number of buzzwords that you’ll hear in the software development com-
munity. We’ve created Resource Centers on most of these topics, with more on the way.

Groupon
(cont.)

and it has yet to meet the minimum, you might be inclined to tell others about
the deal by email, Facebook, Twitter, etc. If the deal does not meet the mini-
mum sales, it’s cancelled. One of the most successful national Groupon deals to
date was a certificate for $50 worth of merchandise from a major apparel com-
pany for $25. Over 440,000 vouchers were sold in one day.

Foursquare Foursquare—launched in 2009 by Dennis Crowley and Naveen Selvadurai—is
a mobile check-in application that allows you to notify your friends of your
whereabouts. You can download the app to your smartphone and link it to
your Facebook and Twitter accounts so your friends can follow you from mul-
tiple platforms. If you do not have a smartphone, you can check in by text
message. Foursquare uses GPS to determine your exact location. Businesses use
Foursquare to send offers to users in the area. Launched in March 2009, Four-
square already has over 5 million users worldwide.

Skype Skype is a software product that allows you to make mostly free voice and
video calls over the Internet using a technology called VoIP (Voice over IP; IP
stands for “Internet Protocol”). Skype was founded in 2003 by Niklas
Zennström and Dane Janus Friis. Just two years later, the company was sold to
eBay for $2.6 billion.

YouTube YouTube is a video-sharing site that was founded in 2005. Within one year, the
company was purchased by Google for $1.65 billion. YouTube now accounts
for 10% of all Internet traffic (www.webpronews.com/topnews/2010/04/16/
facebook-and-youtube-get-the-most-business-internet-traffic). Within
one week of the release of Apple’s iPhone 3GS—the first iPhone model to offer
video—mobile uploads to YouTube grew 400% (www.hypebot.com/hypebot/
2009/06/youtube-reports-1700-jump-in-mobile-video.html).

Technology Description

Agile software
development

Agile software development is a set of methodologies that try to get soft-
ware implemented faster and using fewer resources than previous method-
ologies. Check out the Agile Alliance (www.agilealliance.org) and the
Agile Manifesto (www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. It’s widely
employed with agile development methodologies. Many IDEs include
refactoring tools to do major portions of the reworking automatically.

Fig. 1.28 | Software technologies. (Part 1 of 2.)

Company Description

Fig. 1.27 | Social applications. (Part 2 of 2.)

www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.agilealliance.org
www.agilemanifesto.org

30 Chapter 1 Introduction to Computers and C++

Design
patterns

Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries to
enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort.

LAMP MySQL is an open-source database management system. PHP is the most
popular open-source server-side Internet “scripting” language for develop-
ing Internet-based applications. LAMP is an acronym for the set of open-
source technologies that many developers use to build web applications—
it stands for Linux, Apache, MySQL and PHP (or Perl or Python—two
other languages used for similar purposes).

Software as a
Service (SaaS)

Software has generally been viewed as a product; most software still is
offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions of the software appear, you upgrade your software, often
requiring significant time and at considerable expense. This process can
become cumbersome for organizations with tens of thousands of systems
that must be maintained on a diverse array of computer equipment. With
Software as a Service (SaaS), the software runs on servers elsewhere on the
Internet. When that server is updated, all clients worldwide see the new
capabilities—no local installation is needed. You access the service
through a browser. Browsers are quite portable, so you can run the same
applications on a wide variety of computers from anywhere in the world.
Salesforce.com, Google, and Microsoft’s Office Live and Windows Live all
offer SaaS.

Platform as a
Service (PaaS)

Platform as a Service (PaaS) provides a computing platform for develop-
ing and running applications as a service over the web, rather than install-
ing the tools on your computer. PaaS providers include Google App
Engine, Amazon EC2, Bungee Labs and more.

Cloud
computing

SaaS and PaaS are examples of cloud computing in which software, plat-
forms and infrastructure (e.g., processing power and storage) are hosted on
demand over the Internet. This provides users with flexibility, scalability and
cost savings. For example, consider a company’s data storage needs which
can fluctuate significantly over the course of a year. Rather than investing in
large-scale storage hardware—which can be costly to purchase, maintain
and secure, and would most likely not be used to capacity at all times—the
company could purchase cloud-based services (such as Amazon S3, Google
Storage, Microsoft Windows Azure™, Nirvanix™ and others) dynamically
as needed.

Software
Development
Kit (SDK)

Software Development Kits (SDKs) include the tools and documentation
developers use to program applications.

Technology Description

Fig. 1.28 | Software technologies. (Part 2 of 2.)

1.13 TR1, the New C++ Standard and the Open Source Boost Libraries 31

Figure 1.29 describes software product release categories.

1.13 Future of C++: TR1, the New C++ Standard and the
Open Source Boost Libraries
Bjarne Stroustrup, the creator of C++, has expressed his vision for the future of C++. The
main goals for the new standard are to make C++ easier to learn, improve library building
capabilities, and increase compatibility with the C programming language.

Throughout the book, we discuss in optional sections various key features of the new
C++ standard. In addition, Chapter 23 introduces the Boost C++ Libraries, Technical
Report 1 (TR1) and more new C++ features.

Technical Report 1 describes the proposed changes to the C++ Standard Library.
These libraries add useful functionality to C++. The C++ Standards Committee is cur-
rently finishing the revision of the C++ Standard. The last standard was published in 1998.
Work on the new standard began in 2003. At that time, it was referred to as C++0x
because the standard was scheduled to be released before the end of the decade. The new
standard includes most of the libraries in TR1 and changes to the core language.

The Boost C++ Libraries are free, open-source libraries created by members of the
C++ community. Boost has grown to over 100 libraries, with more being added regularly.
Today there are thousands of programmers in the Boost open source community. Boost
provides C++ programmers with useful libraries that work well with the existing C++ Stan-
dard Library. The Boost libraries can be used by C++ programmers working on a wide
variety of platforms with many different compilers. Several of the Boost libraries are
included in TR1 and will be part of the new standard. We overview the libraries included

Version Description

Alpha An alpha version of software is the earliest release of a software product that’s
still under active development. Alpha versions are often buggy, incomplete
and unstable and are released to a relatively small number of developers for
testing new features, getting early feedback, etc.

Beta Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release
candidates

Release candidates are generally feature complete and (supposedly) bug free and
ready for use by the community, which provides a diverse testing environ-
ment—the software is used on different systems, with varying constraints and
for a variety of purposes. Any bugs that appear are corrected and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous
beta

Software that’s developed using this approach generally does not have version
numbers (for example, Google search or Gmail). The software, which is
hosted in the cloud (not installed on your computer), is constantly evolving
so that users always have the latest version.

Fig. 1.29 | Software product release terminology.

32 Chapter 1 Introduction to Computers and C++

in TR1 and provide code examples for the “regular expression” and “smart pointer”
libraries.

Regular expressions are used to match specific character patterns in text. They can be
used to validate data to ensure that it’s in a particular format, to replace parts of one string
with another, or to split a string.

Many common bugs in C and C++ code are related to pointers, a powerful program-
ming capability C++ absorbed from C. Smart pointers help you avoid errors by providing
additional functionality, typically strengthens the process of memory allocation and deal-
location.

1.14 Keeping Up-to-Date with Information Technologies
Figure 1.30 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of
Internet- and web-related Resource Centers at www.deitel.com/resourcecenters.html.

1.15 Wrap-Up
In this chapter we discussed computer hardware, software, programming languages and
operating systems. We introduced the basics of object technology. You learned about some
of the exciting recent developments in the computer field. We overviewed a typical C++
program development environment and you test-drove a C++ application. We also dis-
cussed some key software development terminology.

Publication URL

Bloomberg BusinessWeek www.businessweek.com

CNET news.cnet.com

Computer World www.computerworld.com

Engadget www.engadget.com

eWeek www.eweek.com

Fast Company www.fastcompany.com/

Fortune money.cnn.com/magazines/fortune/

InfoWorld www.infoworld.com

Mashable mashable.com

PCWorld www.pcworld.com

SD Times www.sdtimes.com

Slashdot slashdot.org/

Smarter Technology www.smartertechnology.com

Technology Review technologyreview.com

Techcrunch techcrunch.com

Wired www.wired.com

Fig. 1.30 | Technical and business publications (many are free).

www.deitel.com/resourcecenters.html
www.businessweek.com
www.computerworld.com
www.engadget.com
www.eweek.com
www.fastcompany.com/
www.infoworld.com
www.pcworld.com
www.sdtimes.com
www.smartertechnology.com
www.wired.com

Self-Review Exercises 33

In Chapter 2, you’ll create your first C++ applications. You’ll see how programs dis-
play messages on the screen and obtain information from the user at the keyboard for pro-
cessing. You’ll see several examples that demonstrate how programs display messages on
the screen and obtain information from the user at the keyboard for processing.

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) The company that popularized personal computing was .
b) The computer that made personal computing legitimate in business and industry was

the .
c) Computers process data under the control of sets of instructions called .
d) The key logical units of the computer are the , , , ,

and .
e) The three types of languages discussed in the chapter are , and

.
f) The programs that translate high-level language programs into machine language are

called .
g) is a smartphone operating system based on the Linux kernel and Java.
h) software is generally feature complete and (supposedly) bug free and ready for

use by the community.
i) The Wii Remote, as well as many smartphones, uses a(n) which allows the de-

vice to respond to motion.

1.2 Fill in the blanks in each of the following sentences about the C++ environment.
a) C++ programs are normally typed into a computer using a(n) program.
b) In a C++ system, a(n) program executes before the compiler’s translation

phase begins.
c) The program combines the output of the compiler with various library func-

tions to produce an executable program.
d) The program transfers the executable program from disk to memory.

1.3 Fill in the blanks in each of the following statements (based on Section 1.6):
a) Objects have the property of —although objects may know how to commu-

nicate with one another across well-defined interfaces, they normally are not allowed to
know how other objects are implemented.

b) C++ programmers concentrate on creating , which contain data members and
the member functions that manipulate those data members and provide services to cli-
ents.

c) The process of analyzing and designing a system from an object-oriented point of view
is called .

d) With , new classes of objects are derived by absorbing characteristics of existing
classes, then adding unique characteristics of their own.

e) is a graphical language that allows people who design software systems to use
an industry-standard notation to represent them.

f) The size, shape, color and weight of an object are considered of the object’s class.

Answers to Self-Review Exercises
1.1 a) Apple. b) IBM Personal Computer. c) programs. d) input unit, output unit, memory
unit, central processing unit, arithmetic and logic unit, secondary storage unit. e) machine lan-

34 Chapter 1 Introduction to Computers and C++

guages, assembly languages, high-level languages. f) compilers. g) Android. h) Release candidate.
i) accelerometer.

1.2 a) editor. b) preprocessor. c) linker. d) loader.

1.3 a) information hiding. b) classes. c) object-oriented analysis and design (OOAD).
d) inheritance. e) The Unified Modeling Language (UML). f) attributes.

Exercises
1.4 Fill in the blanks in each of the following statements:

a) The logical unit of the computer that receives information from outside the computer
for use by the computer is the .

b) The process of instructing the computer to solve a problem is called .
c) is a type of computer language that uses English-like abbreviations for ma-

chine-language instructions.
d) is a logical unit of the computer that sends information which has already

been processed by the computer to various devices so that it may be used outside the
computer.

e) and are logical units of the computer that retain information.
f) is a logical unit of the computer that performs calculations.
g) is a logical unit of the computer that makes logical decisions.
h) languages are most convenient to the programmer for writing programs

quickly and easily.
i) The only language a computer can directly understand is that computer’s .
j) is a logical unit of the computer that coordinates the activities of all the other

logical units.

1.5 Fill in the blanks in each of the following statements:
a) is used to develop large-scale enterprise applications, to enhance the function-

ality of web servers, to provide applications for consumer devices and for many other
purposes.

b) initially became widely known as the development language of the Unix op-
erating system.

c) The Web 2.0 company is the fastest growing company ever.
d) The programming language was developed by Bjarne Stroustrup in the early

1980s at Bell Laboratories.

1.6 Fill in the blanks in each of the following statements:
a) C++ programs normally go through six phases— , , ,

, and .
b) A(n) provides many tools that support the software development process,

such as editors for writing and editing programs, debuggers for locating logic errors in
programs, and many other features.

c) The command java invokes the , which executes Java programs.
d) A(n) is a software application that simulates a computer, but hides the under-

lying operating system and hardware from the programs that interact with it.
e) The takes the .class files containing the program’s bytecodes and transfers

them to primary memory.
f) The examines bytecodes to ensure that they’re valid.

1.7 You’re probably wearing on your wrist one of the world’s most common types of objects—
a watch. Discuss how each of the following terms and concepts applies to the notion of a watch:

Making a Difference 35

object, attributes, behaviors, class, inheritance (consider, for example, an alarm clock), abstraction,
modeling, messages, encapsulation, interface and information hiding.

Making a Difference
Throughout the book we’ve included Making a Difference exercises in which you’ll be asked to
work on problems that really matter to individuals, communities, countries and the world. For
more information about worldwide organizations working to make a difference, and for related
programming project ideas, visit our Making a Difference Resource Center at www.deitel.com/

makingadifference.

1.8 (Test Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

www.terrapass.com/carbon-footprint-calculator/

and Carbon Footprint

www.carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon footprint calculator. To
prepare for this, research the formulas for calculating carbon footprints.

1.9 (Test Drive: Body Mass Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at www.nhlbisupport.com/bmi/. Use it to calculate
your own BMI. An exercise in Chapter 2 will ask you to program your own BMI calculator. To pre-
pare for this, research the formulas for calculating BMI.

1.10 (Attributes of Hybrid Vehicles) In this chapter you learned the basics of classes. Now you’ll
begin “fleshing out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increas-
ingly popular, because they often get much better mileage than purely gasoline-powered vehicles.
Browse the web and study the features of four or five of today’s popular hybrid cars, then list as many
of their hybrid-related attributes as you can. For example, common attributes include city-miles-per-
gallon and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.11 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” by “spouse,” “man” by “person,”
“daughter” by “child” and so on), explain the procedure you’d use to read through a paragraph of
text and manually perform these replacements. How might your procedure generate a strange term
like “woperchild,” which is actually listed in the Urban Dictionary (www.urbandictionary.com)? In
Chapter 4, you’ll learn that a more formal term for “procedure” is “algorithm,” and that an algo-
rithm specifies the steps to be performed and the order in which to perform them.

1.12 (Privacy) Some online email services save all email correspondence for some period of time.
Suppose a disgruntled employee of one of these online email services were to post all of the email
correspondences for millions of people, including yours, on the Internet. Discuss the issues.

1.13 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s health or even their lives. Suppose a software bug in one of your

www.deitel.com/makingadifference
www.deitel.com/makingadifference
www.terrapass.com/carbon-footprint-calculator/
www.carbonfootprint.com/calculator.aspx
www.nhlbisupport.com/bmi/
www.urbandictionary.com

36 Chapter 1 Introduction to Computers and C++

programs were to cause a cancer patient to receive an excessive dose during radiation therapy and
that the person is either severely injured or dies. Discuss the issues.

1.14 (2010 “Flash Crash”) An example of the consequences of our excessive dependency on com-
puters was the so-called “flash crash” which occurred on May 6, 2010, when the U.S. stock market fell
precipitously in a matter of minutes, wiping out trillions of dollars of investments, and then recovered
within minutes. Use the Internet to investigate the causes of this crash and discuss the issues it raises.

Making a Difference Resources
The Microsoft Image Cup is a global competition in which students use technology to try to solve
some of the world’s most difficult problems, such as environmental sustainability, ending hunger,
emergency response, literacy, combating HIV/AIDS and more. For more information about the com-
petition and to learn about the projects developed by previous winners, visit www.imaginecup.com/
about. You can also find several project ideas submitted by worldwide charitable organizations at
www.imaginecup.com/students/imagine-cup-solve-this. For additional ideas for programming
projects that can make a difference, search the web for “making a difference” and visit the following
websites:
www.un.org/millenniumgoals
The United Nations Millennium Project seeks solutions to major worldwide issues such as environ-
mental sustainability, gender equality, child and maternal health, universal education and more.
www.ibm.com/smarterplanet/

The IBM® Smarter Planet website discusses how IBM is using technology to solve issues related to
business, cloud computing, education, sustainability and more.
www.gatesfoundation.org/Pages/home.aspx

The Bill and Melinda Gates Foundation provides grants to organizations that work to alleviate hun-
ger, poverty and disease in developing countries. In the U.S., the foundation focusses on improving
public education, particularly for people with few resources.
www.nethope.org/

NetHope is a collaboration of humanitarian organizations worldwide working to solve technology
problems such as connectivity, emergency response and more.
www.rainforestfoundation.org/home

The Rainforest Foundation works to preserve rainforests and to protect the rights of the indigenous
people who call the rainforests home. The site includes a list of things you can do to help.
www.undp.org/

The United Nations Development Programme (UNDP) seeks solutions to global challenges such
as crisis prevention and recovery, energy and the environment, democratic governance and more.
www.unido.org

The United Nations Industrial Development Organization (UNIDO) seeks to reduce poverty, give
developing countries the opportunity to participate in global trade, and promote energy efficiency
and sustainability.
www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict prevention, humanitarian
aid and more.
www.toyota.com/ideas-for-good/

Toyota’s Ideas for Good website describes several Toyota technologies that are making a difference—
including their Advanced Parking Guidance System, Hybrid Synergy Drive®, Solar Powered Venti-
lation System, T.H.U.M.S. (Total Human Model for Safety) and Touch Tracer Display. You can par-
ticipate in the Ideas for Good challenge by submitting a short essay or video describing how these
technologies can be used for other good purposes.

www.imaginecup.com/
www.imaginecup.com/students/imagine-cup-solve-this
www.un.org/millenniumgoals
www.ibm.com/smarterplanet/
www.gatesfoundation.org/Pages/home.aspx
www.nethope.org/
www.rainforestfoundation.org/home
www.undp.org/
www.unido.org
www.usaid.gov/
www.toyota.com/ideas-for-good/

2Introduction to C++
Programming

What’s in a name? that
which we call a rose
By any other name
would smell as sweet.
—William Shakespeare

When faced with a decision, I
always ask, “What would be the
most fun?”
—Peggy Walker

High thoughts must have high
language.
—Aristophanes

One person can make a
difference and every person
should try.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll learn:

■ To write simple computer
programs in C++.

■ To write simple input and
output statements.

■ To use fundamental types.

■ Basic computer memory
concepts.

■ To use arithmetic operators.

■ The precedence of arithmetic
operators.

■ To write simple decision-
making statements.

38 Chapter 2 Introduction to C++ Programming

2.1 Introduction
We now introduce C++ programming, which facilitates a disciplined approach to program
design. Most of the C++ programs you’ll study in this book process information and dis-
play results. In this chapter, we present five examples that demonstrate how your programs
can display messages and obtain information from the user for processing. The first three
examples simply display messages on the screen. The next obtains two numbers from a
user, calculates their sum and displays the result. The accompanying discussion shows you
how to perform arithmetic calculations and save their results for later use. The fifth exam-
ple demonstrates decision-making by showing you how to compare two numbers, then
display messages based on the comparison results. We analyze each program one line at a
time to help you ease your way into C++ programming.

2.2 First Program in C++: Printing a Line of Text
C++ uses notations that may appear strange to nonprogrammers. We now consider a sim-
ple program that prints a line of text (Fig. 2.1). This program illustrates several important
features of the C++ language.

Comments
Lines 1 and 2

2.1 Introduction
2.2 First Program in C++: Printing a Line of

Text
2.3 Modifying Our First C++ Program
2.4 Another C++ Program: Adding Integers

2.5 Memory Concepts
2.6 Arithmetic
2.7 Decision Making: Equality and

Relational Operators
2.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 2.1: fig02_01.cpp
2 // Text-printing program.
3 #include <iostream> // allows program to output data to the screen
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n"; // display message
9

10 return 0; // indicate that program ended successfully
11 } // end function main

Welcome to C++!

Fig. 2.1 | Text-printing program.

// Fig. 2.1: fig02_01.cpp
// Text-printing program.

2.2 First Program in C++: Printing a Line of Text 39

each begin with //, indicating that the remainder of each line is a comment. You insert
comments to document your programs and to help other people read and understand
them. Comments do not cause the computer to perform any action when the program is
run—they’re ignored by the C++ compiler and do not cause any machine-language object
code to be generated. The comment Text-printing program describes the purpose of the
program. A comment beginning with // is called a single-line comment because it termi-
nates at the end of the current line. [Note: You also may use C’s style in which a com-
ment—possibly containing many lines—begins with /* and ends with */.]

#include Preprocessor Directive
Line 3

is a preprocessor directive, which is a message to the C++ preprocessor (introduced in
Section 1.9). Lines that begin with # are processed by the preprocessor before the program
is compiled. This line notifies the preprocessor to include in the program the contents of
the input/output stream header <iostream>. This header must be included for any pro-
gram that outputs data to the screen or inputs data from the keyboard using C++’s stream
input/output. The program in Fig. 2.1 outputs data to the screen, as we’ll soon see. We
discuss headers in more detail in Chapter 6 and explain the contents of <iostream> in
Chapter 15.

Blank Lines and White Space
Line 4 is simply a blank line. You use blank lines, space characters and tab characters (i.e.,
“tabs”) to make programs easier to read. Together, these characters are known as white
space. White-space characters are normally ignored by the compiler.

The main Function
Line 5

is another single-line comment indicating that program execution begins at the next line.
Line 6

is a part of every C++ program. The parentheses after main indicate that main is a program
building block called a function. C++ programs typically consist of one or more functions
and classes (as you’ll learn in Chapter 3). Exactly one function in every program must be
named main. Figure 2.1 contains only one function. C++ programs begin executing at
function main, even if main is not the first function in the program. The keyword int to

Good Programming Practice 2.1
Every program should begin with a comment that describes the purpose of the program.

#include <iostream> // allows program to output data to the screen

Common Programming Error 2.1
Forgetting to include the <iostream> header in a program that inputs data from the key-
board or outputs data to the screen causes the compiler to issue an error message.

// function main begins program execution

int main()

40 Chapter 2 Introduction to C++ Programming

the left of main indicates that main “returns” an integer (whole number) value. A keyword
is a word in code that is reserved by C++ for a specific use. The complete list of C++ key-
words can be found in Fig. 4.3. We’ll explain what it means for a function to “return a
value” when we demonstrate how to create your own functions in Section 3.3. For now,
simply include the keyword int to the left of main in each of your programs.

The left brace, {, (line 7) must begin the body of every function. A corresponding
right brace, }, (line 11) must end each function’s body.

An Output Statement
Line 8

instructs the computer to perform an action—namely, to print the string of characters
contained between the double quotation marks. A string is sometimes called a character
string or a string literal. We refer to characters between double quotation marks simply as
strings. White-space characters in strings are not ignored by the compiler.

The entire line 8, including std::cout, the << operator, the string "Welcome to

C++!\n" and the semicolon (;), is called a statement. Every C++ statement must end with
a semicolon (also known as the statement terminator). Preprocessor directives (like
#include) do not end with a semicolon. Output and input in C++ are accomplished with
streams of characters. Thus, when the preceding statement is executed, it sends the stream
of characters Welcome to C++!\n to the standard output stream object—std::cout—
which is normally “connected” to the screen.

The std Namespace
The std:: before cout is required when we use names that we’ve brought into the pro-
gram by the preprocessor directive #include <iostream>. The notation std::cout spec-

std::cout << "Welcome to C++!\n"; // display message

Common Programming Error 2.2
Omitting the semicolon at the end of a C++ statement is a syntax error. The syntax of a
programming language specifies the rules for creating proper programs in that language.
A syntax error occurs when the compiler encounters code that violates C++’s language
rules (i.e., its syntax). The compiler normally issues an error message to help you locate and
fix the incorrect code. Syntax errors are also called compiler errors, compile-time errors
or compilation errors, because the compiler detects them during the compilation phase.
You cannot execute your program until you correct all the syntax errors in it. As you’ll see,
some compilation errors are not syntax errors.

Good Programming Practice 2.2
Indent the body of each function one level within the braces that delimit the function’s
body. This makes a program’s functional structure stand out and makes the program easier
to read.

Good Programming Practice 2.3
Set a convention for the size of indent you prefer, then apply it uniformly. The tab key
may be used to create indents, but tab stops may vary. We prefer three spaces per level of
indent.

2.2 First Program in C++: Printing a Line of Text 41

ifies that we are using a name, in this case cout, that belongs to “namespace” std. The
names cin (the standard input stream) and cerr (the standard error stream)—introduced
in Chapter 1—also belong to namespace std. Namespaces are an advanced C++ feature
that we discuss in depth in Chapter 24, Other Topics. For now, you should simply re-
member to include std:: before each mention of cout, cin and cerr in a program. This
can be cumbersome—in Fig. 2.13, we introduce the using directive, which will enable
you to omit std:: before each use of a name in the std namespace.

The Stream Insertion Operator and Es’cape Sequences
The << operator is referred to as the stream insertion operator. When this program exe-
cutes, the value to the operator’s right, the right operand, is inserted in the output stream.
Notice that the operator points in the direction of where the data goes. The right operand’s
characters normally print exactly as they appear between the double quotes. However, the
characters \n are not printed on the screen (Fig. 2.1). The backslash (\) is called an escape
character. It indicates that a “special” character is to be output. When a backslash is en-
countered in a string of characters, the next character is combined with the backslash to
form an escape sequence. The escape sequence \n means newline. It causes the cursor (i.e.,
the current screen-position indicator) to move to the beginning of the next line on the
screen. Some common escape sequences are listed in Fig. 2.2.

The return Statement
Line 10

is one of several means we’ll use to exit a function. When the return statement is used at
the end of main, as shown here, the value 0 indicates that the program has terminated suc-
cessfully. The right brace, }, (line 11) indicates the end of function main. According to the
C++ standard, if program execution reaches the end of main without encountering a re-

turn statement, it’s assumed that the program terminated successfully—exactly as when
the last statement in main is a return statement with the value 0. For that reason, we omit
the return statement at the end of main in subsequent programs.

Escape
sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.
\t Horizontal tab. Move the screen cursor to the next tab stop.
\r Carriage return. Position the screen cursor to the beginning of the

current line; do not advance to the next line.
\a Alert. Sound the system bell.
\\ Backslash. Used to print a backslash character.
\' Single quote. Use to print a single quote character.
\" Double quote. Used to print a double quote character.

Fig. 2.2 | Escape sequences.

return 0; // indicate that program ended successfully

42 Chapter 2 Introduction to C++ Programming

2.3 Modifying Our First C++ Program
We now present two examples that modify the program of Fig. 2.1 to print text on one line
by using multiple statements and to print text on several lines by using a single statement.

Printing a Single Line of Text with Multiple Statements
Welcome to C++! can be printed several ways. For example, Fig. 2.3 performs stream inser-
tion in multiple statements (lines 8–9), yet produces the same output as the program of
Fig. 2.1. [Note: From this point forward, we use a yellow background to highlight the key
features each program introduces.] Each stream insertion resumes printing where the pre-
vious one stopped. The first stream insertion (line 8) prints Welcome followed by a space,
and because this string did not end with \n, the second stream insertion (line 9) begins
printing on the same line immediately following the space.

Printing Multiple Lines of Text with a Single Statement
A single statement can print multiple lines by using newline characters, as in line 8 of
Fig. 2.4. Each time the \n (newline) escape sequence is encountered in the output stream,
the screen cursor is positioned to the beginning of the next line. To get a blank line in your
output, place two newline characters back to back, as in line 8.

1 // Fig. 2.3: fig02_03.cpp
2 // Printing a line of text with multiple statements.
3 #include <iostream> // allows program to output data to the screen
4
5 // function main begins program execution
6 int main()
7 {
8
9

10 } // end function main

Welcome to C++!

Fig. 2.3 | Printing a line of text with multiple statements.

1 // Fig. 2.4: fig02_04.cpp
2 // Printing multiple lines of text with a single statement.
3 #include <iostream> // allows program to output data to the screen
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n";
9 } // end function main

Welcome
to

C++!

Fig. 2.4 | Printing multiple lines of text with a single statement.

std::cout << "Welcome ";
std::cout << "to C++!\n";

\n \n\n

2.4 Another C++ Program: Adding Integers 43

2.4 Another C++ Program: Adding Integers
Our next program uses the input stream object std::cin and the stream extraction
operator, >>, to obtain two integers typed by a user at the keyboard, computes the sum of
these values and outputs the result using std::cout. Figure 2.5 shows the program and
sample inputs and outputs. In the sample execution, we highlight the user’s input in bold.

The comments in lines 1 and 2 state the name of the file and the purpose of the pro-
gram. The C++ preprocessor directive in line 3 includes the contents of the <iostream>

header. The program begins execution with function main (line 6). The left brace (line 7)
begins main’s body and the corresponding right brace (line 22) ends it.

Variable Declarations
Lines 9–11

are declarations. The identifiers number1, number2 and sum are the names of variables. A
variable is a location in the computer’s memory where a value can be stored for use by a
program. These declarations specify that the variables number1, number2 and sum are data
of type int, meaning that these variables will hold integer values, i.e., whole numbers such

1 // Fig. 2.5: fig02_05.cpp
2 // Addition program that displays the sum of two integers.
3 #include <iostream> // allows program to perform input and output
4
5 // function main begins program execution
6 int main()
7 {
8 // variable declarations
9

10
11
12
13 std::cout << "Enter first integer: "; // prompt user for data
14
15
16 std::cout << "Enter second integer: "; // prompt user for data
17
18
19
20
21 std::cout << "Sum is " << sum << ; // display sum; end line
22 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.5 | Addition program that displays the sum of two integers entered at the keyboard.

int number1; // first integer to add
int number2; // second integer to add
int sum; // sum of number1 and number2

int number1; // first integer to add
int number2; // second integer to add
int sum; // sum of number1 and number2

std::cin >> number1; // read first integer from user into number1

std::cin >> number2; // read second integer from user into number2

sum = number1 + number2; // add the numbers; store result in sum

std::endl

44 Chapter 2 Introduction to C++ Programming

as 7, –11, 0 and 31914. All variables must be declared with a name and a data type before
they can be used in a program. Several variables of the same type may be declared in one
declaration or in multiple declarations. We could have declared all three variables in one
declaration by using a comma-separated list as follows:

This makes the program less readable and prevents us from providing comments that de-
scribe each variable’s purpose.

Fundamental Types
We’ll soon discuss the type double for specifying real numbers, and the type char for spec-
ifying character data. Real numbers are numbers with decimal points, such as 3.4, 0.0 and
–11.19. A char variable may hold only a single lowercase letter, a single uppercase letter, a
single digit or a single special character (e.g., $ or *). Types such as int, double and char

are called fundamental types. Fundamental-type names are keywords and therefore must ap-
pear in all lowercase letters. Appendix C contains the complete list of fundamental types.

Identifiers
A variable name (such as number1) is any valid identifier that is not a keyword. An iden-
tifier is a series of characters consisting of letters, digits and underscores (_) that does not
begin with a digit. C++ is case sensitive—uppercase and lowercase letters are different, so
a1 and A1 are different identifiers.

Placement of Variable Declarations
Declarations of variables can be placed almost anywhere in a program, but they must ap-
pear before their corresponding variables are used in the program. For example, in the pro-
gram of Fig. 2.5, the declaration in line 9

int number1, number2, sum;

Good Programming Practice 2.4
Place a space after each comma (,) to make programs more readable.

Portability Tip 2.1
C++ allows identifiers of any length, but your C++ implementation may restrict identifier
lengths. Use identifiers of 31 characters or fewer to ensure portability.

Good Programming Practice 2.5
Choosing meaningful identifiers makes a program self-documenting—a person can under-
stand the program simply by reading it rather than having to refer to manuals or comments.

Good Programming Practice 2.6
Avoid using abbreviations in identifiers. This improves program readability.

Good Programming Practice 2.7
Do not use identifiers that begin with underscores and double underscores, because C++
compilers may use names like that for their own purposes internally. This will prevent the
names you choose from being confused with names the compilers choose.

2.4 Another C++ Program: Adding Integers 45

could have been placed immediately before line 14

the declaration in line 10

could have been placed immediately before line 17

and the declaration in line 11

could have been placed immediately before line 19

Obtaining the First Value from the User
Line 13

displays Enter first integer: followed by a space. This message is called a prompt be-
cause it directs the user to take a specific action. We like to pronounce the preceding state-
ment as “std::cout gets the character string "Enter first integer: ".” Line 14

uses the standard input stream object cin (of namespace std) and the stream extraction
operator, >>, to obtain a value from the keyboard. Using the stream extraction operator
with std::cin takes character input from the standard input stream, which is usually the
keyboard. We like to pronounce the preceding statement as, “std::cin gives a value to
number1” or simply “std::cin gives number1.”

When the computer executes the preceding statement, it waits for the user to enter a
value for variable number1. The user responds by typing an integer (as characters), then
pressing the Enter key (sometimes called the Return key) to send the characters to the com-
puter. The computer converts the character representation of the number to an integer
and assigns (i.e., copies) this number (or value) to the variable number1. Any subsequent
references to number1 in this program will use this same value.

The std::cout and std::cin stream objects facilitate interaction between the user
and the computer. Because this interaction resembles a dialog, it’s often called interactive
computing.

Obtaining the Second Value from the User
Line 16

int number1; // first integer to add

std::cin >> number1; // read first integer from user into number1

int number2; // second integer to add

std::cin >> number2; // read second integer from user into number2

int sum; // sum of number1 and number2

sum = number1 + number2; // add the numbers; store result in sum

Good Programming Practice 2.8
Always place a blank line between a declaration and adjacent executable statements. This
makes the declarations stand out and contributes to program clarity.

std::cout << "Enter first integer: "; // prompt user for data

std::cin >> number1; // read first integer from user into number1

std::cout << "Enter second integer: "; // prompt user for data

46 Chapter 2 Introduction to C++ Programming

prints Enter second integer: on the screen, prompting the user to take action. Line 17

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by the User
The assignment statement in line 19

adds the values of variables number1 and number2 and assigns the result to variable sum us-
ing the assignment operator =. The statement is read as, “sum gets the value of number1 +

number2.” Most calculations are performed in assignment statements. The = operator and
the + operator are called binary operators because each has two operands. In the case of
the + operator, the two operands are number1 and number2. In the case of the preceding =

operator, the two operands are sum and the value of the expression number1 + number2.

Displaying the Result
Line 21

displays the character string Sum is followed by the numerical value of variable sum fol-
lowed by std::endl—a so-called stream manipulator. The name endl is an abbreviation
for “end line” and belongs to namespace std. The std::endl stream manipulator outputs
a newline, then “flushes the output buffer.” This simply means that, on some systems
where outputs accumulate in the machine until there are enough to “make it worthwhile”
to display them on the screen, std::endl forces any accumulated outputs to be displayed
at that moment. This can be important when the outputs are prompting the user for an
action, such as entering data.

The preceding statement outputs multiple values of different types. The stream inser-
tion operator “knows” how to output each type of data. Using multiple stream insertion
operators (<<) in a single statement is referred to as concatenating, chaining or cascading
stream insertion operations. It’s unnecessary to have multiple statements to output mul-
tiple pieces of data.

Calculations can also be performed in output statements. We could have combined
the statements in lines 19 and 21 into the statement

thus eliminating the need for the variable sum.
A powerful feature of C++ is that you can create your own data types called classes (we

introduce this capability in Chapter 3 and explore it in depth in Chapters 9 and 10). You
can then “teach” C++ how to input and output values of these new data types using the
>> and << operators (this is called operator overloading—a topic we explore in
Chapter 11).

std::cin >> number2; // read second integer from user into number2

sum = number1 + number2; // add the numbers; store result in sum

Good Programming Practice 2.9
Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

std::cout << "Sum is " << sum << std::endl; // display sum; end line

std::cout << "Sum is " << number1 + number2 << std::endl;

2.5 Memory Concepts 47

2.5 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size and a value.

In the addition program of Fig. 2.5, when the statement in line 14

is executed, the integer typed by the user is placed into a memory location to which the
name number1 has been assigned by the compiler. Suppose the user enters 45 as the value
for number1. The computer will place 45 into the location number1, as shown in Fig. 2.6.
When a value is placed in a memory location, the value overwrites the previous value in
that location; thus, placing a new value into a memory location is said to be destructive.

Returning to our addition program, suppose the user enters 72 when the statement

is executed. This value is placed into the location number2, and memory appears as in
Fig. 2.7. The variables’ locations are not necessarily adjacent in memory.

Once the program has obtained values for number1 and number2, it adds these values
and places the total into the variable sum. The statement

replaces whatever value was stored in sum. The calculated sum of number1 and number2 is
placed into variable sum without regard to what value may already be in sum—that value
is lost). After sum is calculated, memory appears as in Fig. 2.8. The values of number1 and
number2 appear exactly as they did before the calculation. These values were used, but not
destroyed, as the computer performed the calculation. Thus, when a value is read out of a
memory location, the process is nondestructive.

std::cin >> number1; // read first integer from user into number1

std::cin >> number2; // read second integer from user into number2

sum = number1 + number2; // add the numbers; store result in sum

Fig. 2.6 | Memory location showing the name and value of variable number1.

Fig. 2.7 | Memory locations after storing values the variables for number1 and number2.

Fig. 2.8 | Memory locations after calculating and storing the sum of number1 and number2.

45number1

45

72

number1

number2

45

72

117

number1

number2

sum

48 Chapter 2 Introduction to C++ Programming

2.6 Arithmetic
Most programs perform arithmetic calculations. Figure 2.9 summarizes the C++ arithme-
tic operators. Note the use of various special symbols not used in algebra. The asterisk (*)
indicates multiplication and the percent sign (%) is the modulus operator that will be dis-
cussed shortly. The arithmetic operators in Fig. 2.9 are all binary operators, i.e., operators
that take two operands. For example, the expression number1 + number2 contains the bi-
nary operator + and the two operands number1 and number2.

Integer division (i.e., where both the numerator and the denominator are integers)
yields an integer quotient; for example, the expression 7 / 4 evaluates to 1 and the expres-
sion 17 / 5 evaluates to 3. Any fractional part in integer division is discarded (i.e., trun-
cated)—no rounding occurs.

C++ provides the modulus operator, %, that yields the remainder after integer divi-
sion. The modulus operator can be used only with integer operands. The expression x % y

yields the remainder after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. In later
chapters, we discuss many interesting applications of the modulus operator, such as
determining whether one number is a multiple of another (a special case of this is deter-
mining whether a number is odd or even).

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C++ must be entered into the computer in straight-line form.
Thus, expressions such as “a divided by b” must be written as a / b, so that all constants,
variables and operators appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C++ expressions in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence
C++ applies the operators in arithmetic expressions in a precise order determined by these
rules of operator precedence, which are generally the same as those in algebra:

C++ operation
C++ arithmetic
operator

Algebraic
expression

C++
expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm or b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Modulus % r mod s r % s

Fig. 2.9 | Arithmetic operators.

x
y--

a
b
--

2.6 Arithmetic 49

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested,
or embedded, parentheses, such as

the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an ex-
pression contains several multiplication, division and modulus operations, oper-
ators are applied from left to right. Multiplication, division and modulus are said
to be on the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains
several addition and subtraction operations, operators are applied from left to
right. Addition and subtraction also have the same level of precedence.

The set of rules of operator precedence defines the order in which C++ applies oper-
ators. When we say that certain operators are applied from left to right, we are referring to
the associativity of the operators. For example, the addition operators (+) in the expression

associate from left to right, so a + b is calculated first, then c is added to that sum to determine
the whole expression’s value. We’ll see that some operators associate from right to left.
Figure 2.10 summarizes these rules of operator precedence. We expand this table as we in-
troduce additional C++ operators. A complete precedence chart is included in Appendix A.

Sample Algebraic and C++ Expressions
Now consider several expressions in light of the rules of operator precedence. Each exam-
ple lists an algebraic expression and its C++ equivalent. The following is an example of an
arithmetic mean (average) of five terms:

(a * (b + c))

a + b + c

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the expression in
the innermost pair is evaluated first. [Caution: If you have an
expression such as (a + b) * (c - d) in which two sets of
parentheses are not nested, but appear “on the same level,”
the C++ Standard does not specify the order in which these
parenthesized subexpressions will be evaluated.]

*, /, % Multiplication,
Division,
Modulus

Evaluated second. If there are several, they’re evaluated left
to right.

+
-

Addition
Subtraction

Evaluated last. If there are several, they’re evaluated left to
right.

Fig. 2.10 | Precedence of arithmetic operators.

Algebra:

C++: m = (a + b + c + d + e) / 5;

m
a b c d e+ + + +

5
-------------------------------------=

50 Chapter 2 Introduction to C++ Programming

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + c + d + e / 5, which evaluates incorrectly as

The following is an example of the equation of a straight line:

No parentheses are required. The multiplication is applied first because multiplication has
a higher precedence than addition.

The following example contains modulus (%), multiplication, division, addition, sub-
traction and assignment operations:

The circled numbers under the statement indicate the order in which C++ applies the op-
erators. The multiplication, modulus and division are evaluated first in left-to-right order
(i.e., they associate from left to right) because they have higher precedence than addition and
subtraction. The addition and subtraction are applied next. These are also applied left to
right. The assignment operator is applied last because its precedence is lower than that of
any of the arithmetic operators.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of a second-degree polynomial y = ax 2 + bx + c:

The circled numbers under the statement indicate the order in which C++ applies the op-
erators. There is no arithmetic operator for exponentiation in C++, so we’ve represented x 2

as x * x. We’ll soon discuss the standard library function pow (“power”) that performs ex-
ponentiation. Because of some subtle issues related to the data types required by pow, we
defer a detailed explanation of pow until Chapter 6.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.11 illustrates the order in which the
operators are applied and the final value of the expression.

As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make
the expression clearer. These are called redundant parentheses. For example, the pre-
ceding assignment statement could be parenthesized as follows:

Algebra:

C++: y = m * x + b;

y = (a * x * x) + (b * x) + c;

a b c d
e
5
---+ + + +

y mx b+=

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:

C++:

6 1 2 4 3 5

y = a * x * x + b * x + c;

2.7 Decision Making: Equality and Relational Operators 51

2.7 Decision Making: Equality and Relational Operators
We now introduce a simple version of C++’s if statement that allows a program to take
alternative action based on whether a condition is true or false. If the condition is true, the
statement in the body of the if statement is executed. If the condition is false, the body
statement is not executed. We’ll see an example shortly.

Conditions in if statements can be formed by using the equality operators and rela-
tional operators summarized in Fig. 2.12. The relational operators all have the same level of
precedence and associate left to right. The equality operators both have the same level of pre-
cedence, which is lower than that of the relational operators, and associate left to right.

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

Common Programming Error 2.3
Reversing the order of the pair of symbols in the operators !=, >= and <= (by writing them as
=!, => and =<, respectively) is normally a syntax error. In some cases, writing != as =! will
not be a syntax error, but almost certainly will be a logic error that has an effect at execution
time. You’ll understand why when you learn about logical operators in Chapter 5. A fatal
logic error causes a program to fail and terminate prematurely. A nonfatal logic error al-
lows a program to continue executing, but usually produces incorrect results.

Common Programming Error 2.4
Confusing the equality operator == with the assignment operator = results in logic errors.
Read the equality operator should be read “is equal to” or “double equals,” and the assign-
ment operator should be read “gets” or “gets the value of” or “is assigned the value of.” As
we discuss in Section 5.9, confusing these operators may not necessarily cause an easy-to-
recognize syntax error, but may cause extremely subtle logic errors.

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

3 * 5 is 15

Step 4. y = 50 + 15 + 7;

50 + 15 is 65

Step 5. y = 65 + 7;

65 + 7 is 72

Step 6. y = 72

52 Chapter 2 Introduction to C++ Programming

Using the if Statement
The following example (Fig. 2.13) uses six if statements to compare two numbers input
by the user. If the condition in any of these if statements is satisfied, the output statement
associated with that if statement is executed.

Standard algebraic
equality or relational
operator

C++ equality
or relational
operator

Sample
C++
condition

Meaning of
C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. 2.12 | Equality and relational operators.

1 // Fig. 2.13: fig02_13.cpp
2 // Comparing integers using if statements, relational operators
3 // and equality operators.
4 #include <iostream> // allows program to perform input and output
5
6
7
8
9

10 // function main begins program execution
11 int main()
12 {
13 int number1; // first integer to compare
14 int number2; // second integer to compare
15
16 cout << "Enter two integers to compare: "; // prompt user for data
17
18
19
20
21
22 if ()
23 cout << number1 << " != " << number2 << endl;
24
25 if ()
26 cout << number1 << " < " << number2 << endl;

Fig. 2.13 | Comparing integers using if statements, relational operators and equality operators.
(Part 1 of 2.)

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

cin >> number1 >> number2; // read two integers from user

if (number1 == number2)
cout << number1 << " == " << number2 << endl;

number1 != number2

number1 < number2

2.7 Decision Making: Equality and Relational Operators 53

using Directives
Lines 6–8

are using directives that eliminate the need to repeat the std:: prefix as we did in earlier
programs. We can now write cout instead of std::cout, cin instead of std::cin and
endl instead of std::endl, respectively, in the remainder of the program.

In place of lines 6–8, many programmers prefer to use the directive

which enables a program to use all the names in any standard C++ header (such as
<iostream>) that a program might include. From this point forward in the book, we’ll use
the preceding directive in our programs.

Variable Declarations and Reading the Inputs from the User
Lines 13–14

declare the variables used in the program.

27
28 if ()
29 cout << number1 << " > " << number2 << endl;
30
31 if ()
32 cout << number1 << " <= " << number2 << endl;
33
34 if ()
35 cout << number1 << " >= " << number2 << endl;
36 } // end function main

Enter two integers to compare: 3 7
3 != 7
3 < 7
3 <= 7

Enter two integers to compare: 22 12
22 != 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 == 7
7 <= 7
7 >= 7

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

using namespace std;

int number1; // first integer to compare
int number2; // second integer to compare

Fig. 2.13 | Comparing integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

number1 > number2

number1 <= number2

number1 >= number2

54 Chapter 2 Introduction to C++ Programming

The program uses cascaded stream extraction operations (line 17) to input two inte-
gers. Remember that we’re allowed to write cin (instead of std::cin) because of line 7.
First a value is read into variable number1, then a value is read into variable number2.

Comparing Numbers
The if statement in lines 19–20

compares the values of variables number1 and number2 to test for equality. If the values are
equal, the statement in line 20 displays a line of text indicating that the numbers are equal.
If the conditions are true in one or more of the if statements starting in lines 22, 25, 28,
31 and 34, the corresponding body statement displays an appropriate line of text.

Each if statement in Fig. 2.13 has a single statement in its body and each body state-
ment is indented. In Chapter 4 we show how to specify if statements with multiple-state-
ment bodies (by enclosing the body statements in a pair of braces, { }, creating what’s
called a compound statement or a block).

White Space
Note the use of white space in Fig. 2.13. Recall that white-space characters, such as tabs,
newlines and spaces, are normally ignored by the compiler. So, statements may be split
over several lines and may be spaced according to your preferences. It’s a syntax error to
split identifiers, strings (such as "hello") and constants (such as the number 1000) over
several lines.

Operator Precedence
Figure 2.14 shows the precedence and associativity of the operators introduced in this
chapter. The operators are shown top to bottom in decreasing order of precedence. All
these operators, with the exception of the assignment operator =, associate from left to
right. Addition is left-associative, so an expression like x + y + z is evaluated as if it had
been written (x + y) + z. The assignment operator = associates from right to left, so an ex-

if (number1 == number2)
cout << number1 << " == " << number2 << endl;

Good Programming Practice 2.10
Indent the statement(s) in the body of an if statement to enhance readability.

Common Programming Error 2.5
Placing a semicolon immediately after the right parenthesis after the condition in an if

statement is often a logic error (although not a syntax error). The semicolon causes the body
of the if statement to be empty, so the if statement performs no action, regardless of
whether or not its condition is true. Worse yet, the original body statement of the if state-
ment now becomes a statement in sequence with the if statement and always executes,
often causing the program to produce incorrect results.

Good Programming Practice 2.11
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose meaningful breaking points, such as after a comma in a comma-sepa-
rated list, or after an operator in a lengthy expression. If a statement is split across two or
more lines, indent all subsequent lines and left-align the group of indented lines.

2.8 Wrap-Up 55

pression such as x = y = 0 is evaluated as if it had been written x = (y = 0), which, as we’ll
soon see, first assigns 0 to y, then assigns the result of that assignment—0—to x.

2.8 Wrap-Up
You learned many important basic features of C++ in this chapter, including displaying
data on the screen, inputting data from the keyboard and declaring variables of fundamen-
tal types. In particular, you learned to use the output stream object cout and the input
stream object cin to build simple interactive programs. We explained how variables are
stored in and retrieved from memory. You also learned how to use arithmetic operators to
perform calculations. We discussed the order in which C++ applies operators (i.e., the
rules of operator precedence), as well as the associativity of the operators. You also learned
how C++’s if statement allows a program to make decisions. Finally, we introduced the
equality and relational operators, which you use to form conditions in if statements.

The non-object-oriented applications presented here introduced you to basic program-
ming concepts. As you’ll see in Chapter 3, C++ applications typically contain just a few lines
of code in function main—these statements normally create the objects that perform the
work of the application, then the objects “take over from there.” In Chapter 3, you’ll learn
how to implement your own classes and use objects of those classes in applications.

Operators Associativity Type

() [See caution in Fig. 2.10] grouping parentheses
* / % left to right multiplicative
+ - left to right additive
<< >> left to right stream insertion/extraction
< <= > >= left to right relational
== != left to right equality
= right to left assignment

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

Good Programming Practice 2.12
Refer to the operator precedence and associativity chart (Appendix A) when writing ex-
pressions containing many operators. Confirm that the operators in the expression are per-
formed in the order you expect. If you’re uncertain about the order of evaluation in a
complex expression, break the expression into smaller statements or use parentheses to force
the order of evaluation, exactly as you’d do in an algebraic expression. Be sure to observe
that some operators such as assignment (=) associate right to left rather than left to right.

Summary
Section 2.2 First Program in C++: Printing a Line of Text
• Single-line comments (p. 39) begin with //. You insert comments to document your programs

and improve their readability.

56 Chapter 2 Introduction to C++ Programming

• Comments do not cause the computer to perform any action (p. 40) when the program is run—
they’re ignored by the compiler and do not cause any machine-language object code to be gen-
erated.

• A preprocessor directive (p. 39) begins with # and is a message to the C++ preprocessor. Prepro-
cessor directives are processed before the program is compiled and don’t end with a semicolon.

• The line #include <iostream> (p. 39) tells the C++ preprocessor to include the contents of the
input/output stream header, which contains information necessary to compile programs that use
std::cin (p. 43) and std::cout (p. 40) and the stream insertion (<<, p. 40) and stream extrac-
tion (>>, p. 43) operators.

• White space (i.e., blank lines, space characters and tab characters, p. 39) makes programs easier
to read. White-space characters outside of literals are ignored by the compiler.

• C++ programs begin executing at main (p. 39), even if main does not appear first in the program.

• The keyword int to the left of main indicates that main “returns” an integer value.

• The body (p. 40) of every function must be contained in braces ({ and }).

• A string (p. 40) in double quotes is sometimes referred to as a character string, message or string
literal. White-space characters in strings are not ignored by the compiler.

• Every statement (p. 40) must end with a semicolon (also known as the statement terminator).

• Output and input in C++ are accomplished with streams (p. 40) of characters.

• The output stream object std::cout—normally connected to the screen—is used to output data.
Multiple data items can be output by concatenating stream insertion (<<) operators.

• The input stream object std::cin—normally connected to the keyboard—is used to input data.
Multiple data items can be input by concatenating stream extraction (>>) operators.

• The notation std::cout specifies that we are using cout from “namespace” std.

• When a backslash (i.e., an escape character) is encountered in a string of characters, the next char-
acter is combined with the backslash to form an escape sequence (p. 41).

• The newline escape sequence \n (p. 41) moves the cursor to the beginning of the next line on the
screen.

• A message that directs the user to take a specific action is known as a prompt (p. 45).

• C++ keyword return (p. 41) is one of several means to exit a function.

Section 2.4 Another C++ Program: Adding Integers
• All variables (p. 43) in a C++ program must be declared before they can be used.

• A variable name is any valid identifier (p. 44) that is not a keyword. An identifier is a series of
characters consisting of letters, digits and underscores (_). Identifiers cannot start with a digit.
Identifiers can be any length, but some systems or C++ implementations may impose length re-
strictions.

• C++ is case sensitive (p. 44).

• Most calculations are performed in assignment statements (p. 46).

• A variable is a location in memory (p. 47) where a value can be stored for use by a program.

• Variables of type int (p. 44) hold integer values, i.e., whole numbers such as 7, –11, 0, 31914.

Section 2.5 Memory Concepts
• Every variable stored in the computer’s memory has a name, a value, a type and a size.

• Whenever a new value is placed in a memory location, the process is destructive (p. 47); i.e., the
new value replaces the previous value in that location. The previous value is lost.

Self-Review Exercises 57

• When a value is read from memory, the process is nondestructive (p. 47); i.e., a copy of the value
is read, leaving the original value undisturbed in the memory location.

• The std::endl stream manipulator (p. 46) outputs a newline, then “flushes the output buffer.”

Section 2.6 Arithmetic
• C++ evaluates arithmetic expressions (p. 48) in a precise sequence determined by the rules of op-

erator precedence (p. 48) and associativity (p. 49).

• Parentheses may be used to group expressions.

• Integer division (p. 48) yields an integer quotient. Any fractional part in integer division is trun-
cated.

• The modulus operator, % (p. 48), yields the remainder after integer division.

Section 2.7 Decision Making: Equality and Relational Operators
• The if statement (p. 51) allows a program to take alternative action based on whether a condi-

tion is met. The format for an if statement is

if (condition)
statement;

If the condition is true, the statement in the body of the if is executed. If the condition is not
met, i.e., the condition is false, the body statement is skipped.

• Conditions in if statements are commonly formed by using equality and relational operators
(p. 51). The result of using these operators is always the value true or false.

• The using directive (p. 53)

using std::cout;

informs the compiler where to find cout (namespace std) and eliminates the need to repeat the
std:: prefix. The directive

using namespace std;

enables the program to use all the names in any included C++ standard library header.

Self-Review Exercises
2.1 Fill in the blanks in each of the following.

a) Every C++ program begins execution at the function .
b) A(n) begins the body of every function and a(n) ends the body.
c) Every C++ statement ends with a(n) .
d) The escape sequence \n represents the character, which causes the cursor to

position to the beginning of the next line on the screen.
e) The statement is used to make decisions.

2.2 State whether each of the following is true or false. If false, explain why. Assume the state-
ment using std::cout; is used.

a) Comments cause the computer to print the text after the // on the screen when the pro-
gram is executed.

b) The escape sequence \n, when output with cout and the stream insertion operator,
causes the cursor to position to the beginning of the next line on the screen.

c) All variables must be declared before they’re used.
d) All variables must be given a type when they’re declared.
e) C++ considers the variables number and NuMbEr to be identical.
f) Declarations can appear almost anywhere in the body of a C++ function.
g) The modulus operator (%) can be used only with integer operands.

58 Chapter 2 Introduction to C++ Programming

h) The arithmetic operators *, /, %, + and – all have the same level of precedence.
i) A C++ program that prints three lines of output must contain three statements using

cout and the stream insertion operator.

2.3 Write a single C++ statement to accomplish each of the following (assume that using direc-
tives have not been used):

a) Declare the variables c, thisIsAVariable, q76354 and number to be of type int.
b) Prompt the user to enter an integer. End your prompting message with a colon (:) fol-

lowed by a space and leave the cursor positioned after the space.
c) Read an integer from the user at the keyboard and store it in integer variable age.
d) If the variable number is not equal to 7, print "The variable number is not equal to 7".
e) Print the message "This is a C++ program" on one line.
f) Print the message "This is a C++ program" on two lines. End the first line with C++.
g) Print the message "This is a C++ program" with each word on a separate line.
h) Print the message "This is a C++ program". Separate each word from the next by a tab.

2.4 Write a statement (or comment) to accomplish each of the following (assume that using
directives have been used for cin, cout and endl):

a) State that a program calculates the product of three integers.
b) Declare the variables x, y, z and result to be of type int (in separate statements).
c) Prompt the user to enter three integers.
d) Read three integers from the keyboard and store them in the variables x, y and z.
e) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
f) Print "The product is " followed by the value of the variable result.
g) Return a value from main indicating that the program terminated successfully.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that calculates
and displays the product of three integers. Add comments to the code where appropriate. [Note:
You’ll need to write the necessary using directives.]

2.6 Identify and correct the errors in each of the following statements (assume that the state-
ment using std::cout; is used):

a) if (c < 7);

cout << "c is less than 7\n";

b) if (c => 7)

cout << "c is equal to or greater than 7\n";

Answers to Self-Review Exercises
2.1 a) main. b) left brace ({), right brace (}). c) semicolon. d) newline. e) if.

2.2 a) False. Comments do not cause any action to be performed when the program is exe-
cuted. They’re used to document programs and improve their readability.

b) True.
c) True.
d) True.
e) False. C++ is case sensitive, so these variables are unique.
f) True.
g) True.
h) False. The operators *, / and % have the same precedence, and the operators + and - have

a lower precedence.
i) False. One statement with cout and multiple \n escape sequences can print several lines.

2.3 a) int c, thisIsAVariable, q76354, number;

Exercises 59

b) std::cout << "Enter an integer: ";

c) std::cin >> age;

d) if (number != 7)

std::cout << "The variable number is not equal to 7\n";

e) std::cout << "This is a C++ program\n";

f) std::cout << "This is a C++\nprogram\n";

g) std::cout << "This\nis\na\nC++\nprogram\n";

h) std::cout << "This\tis\ta\tC++\tprogram\n";

2.4 a) // Calculate the product of three integers

b) int x;

int y;

int z;

int result;

c) cout << "Enter three integers: ";

d) cin >> x >> y >> z;

e) result = x * y * z;

f) cout << "The product is " << result << endl;

g) return 0;

2.5 (See program below.)

2.6 a) Error: Semicolon after the right parenthesis of the condition in the if statement.
Correction: Remove the semicolon after the right parenthesis. [Note: The result of this
error is that the output statement executes whether or not the condition in the if state-
ment is true.] The semicolon after the right parenthesis is a null (or empty) statement
that does nothing. We’ll learn more about the null statement in Chapter 4.

b) Error: The relational operator =>.
Correction: Change => to >=, and you may want to change “equal to or greater than” to
“greater than or equal to” as well.

Exercises
2.7 Discuss the meaning of each of the following objects:

a) std::cin

b) std::cout

1 // Calculate the product of three integers
2 #include <iostream> // allows program to perform input and output
3 using namespace std; // program uses names from the std namespace
4
5 // function main begins program execution
6 int main()
7 {
8 int x; // first integer to multiply
9 int y; // second integer to multiply

10 int z; // third integer to multiply
11 int result; // the product of the three integers
12
13 cout << "Enter three integers: "; // prompt user for data
14 cin >> x >> y >> z; // read three integers from user
15 result = x * y * z; // multiply the three integers; store result
16 cout << "The product is " << result << endl; // print result; end line
17 } // end function main

60 Chapter 2 Introduction to C++ Programming

2.8 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
b) The object used to print information on the screen is .
c) A C++ statement that makes a decision is .
d) Most calculations are normally performed by statements.
e) The object inputs values from the keyboard.

2.9 Write a single C++ statement or line that accomplishes each of the following:
a) Print the message "Enter two numbers".
b) Assign the product of variables b and c to variable a.
c) State that a program performs a payroll calculation (i.e., use text that helps to document

a program).
d) Input three integer values from the keyboard into integer variables a, b and c.

2.10 State which of the following are true and which are false. If false, explain your answers.
a) C++ operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,

his_account_total, a, b, c, z, z2.
c) The statement cout << "a = 5;"; is a typical example of an assignment statement.
d) A valid C++ arithmetic expression with no parentheses is evaluated from left to right.
e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.11 Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

.
b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .
c) A location in the computer’s memory that may contain different values at various times

throughout the execution of a program is called a(n) .

2.12 What, if anything, prints when each of the following C++ statements is performed? If noth-
ing prints, then answer “nothing.” Assume x = 2 and y = 3.

a) cout << x;

b) cout << x + x;

c) cout << "x=";

d) cout << "x = " << x;

e) cout << x + y << " = " << y + x;

f) z = x + y;

g) cin >> x >> y;

h) // cout << "x + y = " << x + y;

i) cout << "\n";

2.13 Which of the following C++ statements contain variables whose values are replaced?
a) cin >> b >> c >> d >> e >> f;

b) p = i + j + k + 7;

c) cout << "variables whose values are replaced";

d) cout << "a = 5";

2.14 Given the algebraic equation y = ax 3 + 7, which of the following, if any, are correct C++
statements for this equation?

a) y = a * x * x * x + 7;

b) y = a * x * x * (x + 7);

c) y = (a * x) * x * (x + 7);

d) y = (a * x) * x * x + 7;

Exercises 61

e) y = a * (x * x * x) + 7;

f) y = a * x * (x * x + 7);

2.15 (Order of Evalution) State the order of evaluation of the operators in each of the following
C++ statements and show the value of x after each statement is performed.

a) x = 7 + 3 * 6 / 2 - 1;

b) x = 2 % 2 + 2 * 2 - 2 / 2;

c) x = (3 * 9 * (3 + (9 * 3 / (3))));

2.16 (Arithmetic) Write a program that asks the user to enter two numbers, obtains the two
numbers from the user and prints the sum, product, difference, and quotient of the two numbers.

2.17 (Printing) Write a program that prints the numbers 1 to 4 on the same line with each pair
of adjacent numbers separated by one space. Do this several ways:

a) Using one statement with one stream insertion operator.
b) Using one statement with four stream insertion operators.
c) Using four statements.

2.18 (Comparing Integers) Write a program that asks the user to enter two integers, obtains the
numbers from the user, then prints the larger number followed by the words "is larger." If the
numbers are equal, print the message "These numbers are equal."

2.19 (Arithmetic, Smallest and Largest) Write a program that inputs three integers from the key-
board and prints the sum, average, product, smallest and largest of these numbers. The screen dialog
should appear as follows:

2.20 (Diameter, Circumference and Area of a Circle) Write a program that reads in the radius of
a circle as an integer and prints the circle’s diameter, circumference and area. Use the constant value
3.14159 for π. Do all calculations in output statements. [Note: In this chapter, we’ve discussed only
integer constants and variables. In Chapter 4 we discuss floating-point numbers, i.e., values that can
have decimal points.]

2.21 (Displaying Shapes with Asterisks) Write a program that prints a box, an oval, an arrow and
a diamond as follows:

2.22 What does the following code print?

cout << "*\n**\n***\n****\n*****" << endl;

2.23 (Largest and Smallest Integers) Write a program that reads in five integers and determines
and prints the largest and the smallest integers in the group. Use only the programming techniques
you learned in this chapter.

Input three different integers: 13 27 14
Sum is 54
Average is 18
Product is 4914
Smallest is 13
Largest is 27

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

62 Chapter 2 Introduction to C++ Programming

2.24 (Odd or Even) Write a program that reads an integer and determines and prints whether
it’s odd or even. [Hint: Use the modulus operator. An even number is a multiple of two. Any mul-
tiple of two leaves a remainder of zero when divided by 2.]

2.25 (Multiples) Write a program that reads in two integers and determines and prints if the first
is a multiple of the second. [Hint: Use the modulus operator.]

2.26 (Checkerboard Pattern) Display the following checkerboard pattern with eight output
statements, then display the same pattern using as few statements as possible.

2.27 (Integer Equivalent of a Character) Here is a peek ahead. In this chapter you learned about
integers and the type int. C++ can also represent uppercase letters, lowercase letters and a consider-
able variety of special symbols. C++ uses small integers internally to represent each different charac-
ter. The set of characters a computer uses and the corresponding integer representations for those
characters are called that computer’s character set. You can print a character by enclosing that char-
acter in single quotes, as with

cout << 'A'; // print an uppercase A

You can print the integer equivalent of a character using static_cast as follows:

cout << static_cast< int >('A'); // print 'A' as an integer

This is called a cast operation (we formally introduce casts in Chapter 4). When the preceding
statement executes, it prints the value 65 (on systems that use the ASCII character set). Write a
program that prints the integer equivalent of a character typed at the keyboard. Store the input in a
variable of type char. Test your program several times using uppercase letters, lowercase letters, dig-
its and special characters (like $).

2.28 (Digits of an Integer) Write a program that inputs a five-digit integer, separates the integer
into its digits and prints them separated by three spaces each. [Hint: Use the integer division and
modulus operators.] For example, if the user types in 42339, the program should print:

2.29 (Table) Using the techniques of this chapter, write a program that calculates the squares and
cubes of the integers from 0 to 10. Use tabs to print the following neatly formatted table of values:

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

4 2 3 3 9

integer square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Making a Difference 63

Making a Difference
2.30 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.9. The formulas for calculating BMI are

or

Create a BMI calculator application that reads the user’s weight in pounds and height in inches
(or, if you prefer, the user’s weight in kilograms and height in meters), then calculates and displays
the user’s body mass index. Also, the application should display the following information from
the Department of Health and Human Services/National Institutes of Health so the user can eval-
uate his/her BMI:

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 4 you’ll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

2.31 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.
b) Cost per gallon of gasoline.
c) Average miles per gallon.
d) Parking fees per day.
e) Tolls per day.

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

BMI weightInPounds 703×
heightInInches heightInInches×
--=

BMI weightInKi ramslog
heightInMeters heightInMeters×
---=

3 Introduction to Classes,
Objects and Strings

Nothing can have value without
being an object of utility.
—Karl Marx

Your public servants serve you
right.
—Adlai E. Stevenson

Knowing how to answer
one who speaks,
To reply to one who
sends a message.
—Amenemopel

O b j e c t i v e s
In this chapter you’ll learn:

■ How to define a class and use
it to create an object.

■ How to implement a class’s
behaviors as member
functions.

■ How to implement a class’s
attributes as data members.

■ How to call a member
function of an object to
perform a task.

■ The differences between data
members of a class and local
variables of a function.

■ How to use a constructor to
initialize an object’s data
when the object is created.

■ How to engineer a class to
separate its interface from its
implementation and
encourage reuse.

■ How to use objects of class
string.

3.1 Introduction 65

3.1 Introduction
In Chapter 2, you created simple programs that displayed messages to the user, obtained
information from the user, performed calculations and made decisions. In this chapter,
you’ll begin writing programs that employ the basic concepts of object-oriented program-
ming that we introduced in Section 1.6. One common feature of every program in
Chapter 2 was that all the statements that performed tasks were located in function main.
Typically, the programs you develop in this book will consist of function main and one or
more classes, each containing data members and member functions. If you become part of a
development team in industry, you might work on software systems that contain hun-
dreds, or even thousands, of classes. In this chapter, we develop a simple, well-engineered
framework for organizing object-oriented programs in C++.

We present a carefully paced sequence of complete working programs to demonstrate
creating and using your own classes. These examples begin our integrated case study on
developing a grade-book class that instructors can use to maintain student test scores. We
also introduce the C++ standard library class string.

3.2 Defining a Class with a Member Function
We begin with an example (Fig. 3.1) that consists of class GradeBook (lines 8–16)—which,
when it’s fully developed in Chapter 7, will represent a grade book that an instructor can
use to maintain student test scores—and a main function (lines 19–23) that creates a
GradeBook object. Function main uses this object and its member function to display a
message on the screen welcoming the instructor to the grade-book program.

3.1 Introduction
3.2 Defining a Class with a Member

Function
3.3 Defining a Member Function with a

Parameter
3.4 Data Members, set Functions and get

Functions
3.5 Initializing Objects with

Constructors

3.6 Placing a Class in a Separate File for
Reusability

3.7 Separating Interface from
Implementation

3.8 Validating Data with set Functions
3.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 3.1: fig03_01.cpp
2 // Define class GradeBook with a member function displayMessage,
3 // create a GradeBook object, and call its displayMessage function.
4 #include <iostream>
5 using namespace std;

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 1 of 2.)

66 Chapter 3 Introduction to Classes, Objects and Strings

Class GradeBook
Before function main (lines 19–23) can create a GradeBook object, we must tell the com-
piler what member functions and data members belong to the class. The GradeBook class
definition (lines 8–16) contains a member function called displayMessage (lines 12–15)
that displays a message on the screen (line 14). We need to make an object of class Grade-
Book (line 21) and call its displayMessage member function (line 22) to get line 14 to
execute and display the welcome message. We’ll soon explain lines 21–22 in detail.

The class definition begins in line 8 with the keyword class followed by the class
name GradeBook. By convention, the name of a user-defined class begins with a capital
letter, and for readability, each subsequent word in the class name begins with a capital
letter. This capitalization style is often referred to as Pascal case, because the pattern of
uppercase and lowercase letters resembles the silhouette of a camel.

Every class’s body is enclosed in a pair of left and right braces ({ and }), as in lines 9
and 16. The class definition terminates with a semicolon (line 16).

Recall that the function main is always called automatically when you execute a pro-
gram. Most functions do not get called automatically. As you’ll soon see, you must call
member function displayMessage explicitly to tell it to perform its task.

Line 10 contains the keyword public, which is an access specifier. Lines 12–15 define
member function displayMessage. This member function appears after access specifier
public: to indicate that the function is “available to the public”—that is, it can be called
by other functions in the program (such as main), and by member functions of other

6
7
8
9

10
11
12
13
14
15
16
17
18 // function main begins program execution
19 int main()
20 {
21
22
23 } // end main

Welcome to the Grade Book!

Common Programming Error 3.1
Forgetting the semicolon at the end of a class definition is a syntax error.

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

// GradeBook class definition
class GradeBook
{
public:

// function that displays a welcome message to the GradeBook user
void displayMessage()
{

cout << "Welcome to the Grade Book!" << endl;
} // end function displayMessage

}; // end class GradeBook

GradeBook myGradeBook; // create a GradeBook object named myGradeBook
myGradeBook.displayMessage(); // call object's displayMessage function

3.2 Defining a Class with a Member Function 67

classes (if there are any). Access specifiers are always followed by a colon (:). For the
remainder of the text, when we refer to the access specifier public, we’ll omit the colon as
we did in this sentence. Section 3.4 introduces the access specifier, private. Later in the
book we’ll study the access specifier protected.

Each function in a program performs a task and may return a value when it completes
its task—for example, a function might perform a calculation, then return the result of
that calculation. When you define a function, you must specify a return type to indicate
the type of the value returned by the function when it completes its task. In line 12, key-
word void to the left of the function name displayMessage is the function’s return type.
Return type void indicates that displayMessage will not return any data to its calling
function (in this example, line 22 of main, as we’ll see in a moment) when it completes its
task. In Fig. 3.5, you’ll see an example of a function that does return a value.

The name of the member function, displayMessage, follows the return type (line
12). By convention, function names begin with a lowercase first letter and all subsequent
words in the name begin with a capital letter. This capitalization style is often refered to
as camel case and is also used for variable names. The parentheses after the member func-
tion name indicate that this is a function. An empty set of parentheses, as shown in line
12, indicates that this member function does not require additional data to perform its
task. You’ll see an example of a member function that does require additional data in
Section 3.3. Line 12 is commonly referred to as a function header. Every function’s body
is delimited by left and right braces ({ and }), as in lines 13 and 15.

The body of a function contains statements that perform the function’s task. In this
case, member function displayMessage contains one statement (line 14) that displays the
message "Welcome to the Grade Book!". After this statement executes, the function has
completed its task.

Testing Class GradeBook
Next, we’d like to use class GradeBook in a program. As you saw in Chapter 2, the function
main (lines 19–23) begins the execution of every program.

In this program, we’d like to call class GradeBook’s displayMessage member function
to display the welcome message. Typically, you cannot call a member function of a class
until you create an object of that class. (As you’ll learn in Section 10.6, static member
functions are an exception.) Line 21 creates an object of class GradeBook called myGrade-

Book. The variable’s type is GradeBook—the class we defined in lines 8–16. When we
declare variables of type int, as we did in Chapter 2, the compiler knows what int is—it’s
a fundamental type that’s “built into” C++. In line 21, however, the compiler does not auto-
matically know what type GradeBook is—it’s a user-defined type. We tell the compiler
what GradeBook is by including the class definition (lines 8–16). If we omitted these lines,
the compiler would issue an error message. Each class you create becomes a new type that
can be used to create objects. You can define new class types as needed; this is one reason
why C++ is known as an extensible language.

Line 22 calls the member function displayMessage using variable myGradeBook fol-
lowed by the dot operator (.), the function name displayMessage and an empty set of
parentheses. This call causes the displayMessage function to perform its task. At the
beginning of line 22, “myGradeBook.” indicates that main should use the GradeBook object
that was created in line 21. The empty parentheses in line 12 indicate that member func-

68 Chapter 3 Introduction to Classes, Objects and Strings

tion displayMessage does not require additional data to perform its task, which is why we
called this function with empty parentheses in line 22. (In Section 3.3, you’ll see how to
pass data to a function.) When displayMessage completes its task, the program reaches
the end of main (line 23) and terminates.

UML Class Diagram for Class GradeBook
Recall from Section 1.6 that the UML is a standardized graphical language used by soft-
ware developers to represent their object-oriented systems. In the UML, each class is mod-
eled in a UML class diagram as a rectangle with three compartments. Figure 3.2 presents
a class diagram for class GradeBook (Fig. 3.1). The top compartment contains the class’s
name centered horizontally and in boldface type. The middle compartment contains the
class’s attributes, which correspond to data members in C++. This compartment is cur-
rently empty, because class GradeBook does not have any attributes. (Section 3.4 presents
a version of class GradeBook with an attribute.) The bottom compartment contains the
class’s operations, which correspond to member functions in C++. The UML models op-
erations by listing the operation name followed by a set of parentheses. Class GradeBook
has only one member function, displayMessage, so the bottom compartment of Fig. 3.2
lists one operation with this name. Member function displayMessage does not require ad-
ditional information to perform its tasks, so the parentheses following displayMessage in
the class diagram are empty, just as they are in the member function’s header in line 12 of
Fig. 3.1. The plus sign (+) in front of the operation name indicates that displayMessage
is a public operation in the UML (i.e., a public member function in C++).

3.3 Defining a Member Function with a Parameter
In our car analogy from Section 1.6, we mentioned that pressing a car’s gas pedal sends a
message to the car to perform a task—make the car go faster. But how fast should the car
accelerate? As you know, the farther down you press the pedal, the faster the car acceler-
ates. So the message to the car includes both the task to perform and additional information
that helps the car perform the task. This additional information is known as a parameter—
the value of the parameter helps the car determine how fast to accelerate. Similarly, a mem-
ber function can require one or more parameters that represent additional data it needs to
perform its task. A function call supplies values—called arguments—for each of the func-
tion’s parameters. For example, to make a deposit into a bank account, suppose a deposit
member function of an Account class specifies a parameter that represents the deposit
amount. When the deposit member function is called, an argument value representing
the deposit amount is copied to the member function’s parameter. The member function
then adds that amount to the account balance.

Fig. 3.2 | UML class diagram indicating that class GradeBook has a public displayMessage
operation.

GradeBook

+ displayMessage()

3.3 Defining a Member Function with a Parameter 69

Defining and Testing Class GradeBook
Our next example (Fig. 3.3) redefines class GradeBook (lines 9–18) with a display-

Message member function (lines 13–17) that displays the course name as part of the wel-
come message. The new version of displayMessage requires a parameter (courseName in
line 13) that represents the course name to output.

Before discussing the new features of class GradeBook, let’s see how the new class is
used in main (lines 21–34). Line 23 creates a variable of type string called nameOfCourse

1 // Fig. 3.3: fig03_03.cpp
2 // Define class GradeBook with a member function that takes a parameter,
3 // create a GradeBook object and call its displayMessage function.
4 #include <iostream>
5
6 using namespace std;
7
8 // GradeBook class definition
9 class GradeBook

10 {
11 public:
12 // function that displays a welcome message to the GradeBook user
13 void displayMessage()
14 {
15 cout << "Welcome to the grade book for\n" << << "!"
16 << endl;
17 } // end function displayMessage
18 }; // end class GradeBook
19
20 // function main begins program execution
21 int main()
22 {
23 // string of characters to store the course name
24 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
25
26 // prompt for and input course name
27 cout << "Please enter the course name:" << endl;
28
29 cout << endl; // output a blank line
30
31 // call myGradeBook's displayMessage function
32 // and pass nameOfCourse as an argument
33
34 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function.

#include <string> // program uses C++ standard string class

string courseName

courseName

string nameOfCourse;

getline(cin, nameOfCourse); // read a course name with blanks

myGradeBook.displayMessage(nameOfCourse);

70 Chapter 3 Introduction to Classes, Objects and Strings

that will be used to store the course name entered by the user. A variable of type string

represents a string of characters such as “CS101 Introduction to C++ Programming". A
string is actually an object of the C++ Standard Library class string. This class is defined
in header <string>, and the name string, like cout, belongs to namespace std. To enable
lines 13 and 23 to compile, line 5 includes the <string> header. The using directive in
line 6 allows us to simply write string in line 23 rather than std::string. For now, you
can think of string variables like variables of other types such as int. You’ll learn addi-
tional string capabilities in Section 3.8 and in Chapter 18.

Line 24 creates an object of class GradeBook named myGradeBook. Line 27 prompts
the user to enter a course name. Line 28 reads the name from the user and assigns it to the
nameOfCourse variable, using the library function getline to perform the input. Before
we explain this line of code, let’s explain why we cannot simply write

to obtain the course name. In our sample program execution, we use the course name
“CS101 Introduction to C++ Programming,” which contains multiple words separated by
blanks. (Recall that we highlight user-supplied input in bold.) When cin is used with the
stream extraction operator, it reads characters until the first white-space character is reached.
Thus, only “CS101” would be read by the preceding statement. The rest of the course name
would have to be read by subsequent input operations.

In this example, we’d like the user to type the complete course name and press Enter
to submit it to the program, and we’d like to store the entire course name in the string

variable nameOfCourse. The function call getline(cin, nameOfCourse) in line 28 reads
characters (including the space characters that separate the words in the input) from the
standard input stream object cin (i.e., the keyboard) until the newline character is encoun-
tered, places the characters in the string variable nameOfCourse and discards the newline
character. When you press Enter while typing program input, a newline is inserted in the
input stream. The <string> header must be included in the program to use function get-

line, which belongs to namespace std.
Line 33 calls myGradeBook’s displayMessage member function. The nameOfCourse

variable in parentheses is the argument that’s passed to member function displayMessage so
that it can perform its task. The value of variable nameOfCourse in main is copied to member
function displayMessage’s parameter courseName in line 13. When you execute this pro-
gram, member function displayMessage outputs as part of the welcome message the course
name you type (in our sample execution, CS101 Introduction to C++ Programming).

More on Arguments and Parameters
To specify in a function definition that the function requires data to perform its task, you
place additional information in the function’s parameter list, which is located in the pa-
rentheses following the function name. The parameter list may contain any number of pa-
rameters, including none at all (represented by empty parentheses as in Fig. 3.1, line 12)
to indicate that a function does not require any parameters. Member function displayMe-

ssage’s parameter list (Fig. 3.3, line 13) declares that the function requires one parameter.
Each parameter specifies a type and an identifier. The type string and the identifier
courseName indicate that member function displayMessage requires a string to perform
its task. The member function body uses the parameter courseName to access the value
that’s passed to the function in the function call (line 33 in main). Lines 15–16 display

cin >> nameOfCourse;

3.4 Data Members, set Functions and get Functions 71

parameter courseName’s value as part of the welcome message. The parameter variable’s
name (courseName in line 13) can be the same as or different from the argument variable’s
name (nameOfCourse in line 33)—you’ll learn why in Chapter 6.

A function can specify multiple parameters by separating each from the next with a
comma. The number and order of arguments in a function call must match the number
and order of parameters in the parameter list of the called member function’s header. Also,
the argument types in the function call must be consistent with the types of the corre-
sponding parameters in the function header. (As you’ll learn in subsequent chapters, an
argument’s type and its corresponding parameter’s type need not always be identical, but
they must be “consistent.”) In our example, the one string argument in the function call
(i.e., nameOfCourse) exactly matches the one string parameter in the member-function
definition (i.e., courseName).

Updated UML Class Diagram for Class GradeBook
The UML class diagram of Fig. 3.4 models class GradeBook of Fig. 3.3. Like the class Grade-
Book defined in Fig. 3.1, this GradeBook class contains public member function dis-

playMessage. However, this version of displayMessage has a parameter. The UML models
a parameter by listing the parameter name, followed by a colon and the parameter type in
the parentheses following the operation name. The UML has its own data types similar to
those of C++. The UML is language independent—it’s used with many different program-
ming languages—so its terminology does not exactly match that of C++. For example, the
UML type String corresponds to the C++ type string. Member function displayMessage

of class GradeBook (Fig. 3.3, lines 13–17) has a string parameter named courseName, so
Fig. 3.4 lists courseName : String between the parentheses following the operation name
displayMessage. This version of the GradeBook class still does not have any data members.

3.4 Data Members, set Functions and get Functions
In Chapter 2, we declared all of a program’s variables in its main function. Variables de-
clared in a function definition’s body are known as local variables and can be used only
from the line of their declaration in the function to closing right brace (}) of the block in
which they’re declared. A local variable must be declared before it can be used in a function.
A local variable cannot be accessed outside the function in which it’s declared. When a
function terminates, the values of its local variables are lost. (You’ll see an exception to this in
Chapter 6 when we discuss static local variables.)

A class normally consists of one or more member functions that manipulate the attri-
butes that belong to a particular object of the class. Attributes are represented as variables
in a class definition. Such variables are called data members and are declared inside a class

Fig. 3.4 | UML class diagram indicating that class GradeBook has a public displayMessage
operation with a courseName parameter of UML type String.

GradeBook

+ displayMessage(courseName : String)

72 Chapter 3 Introduction to Classes, Objects and Strings

definition but outside the bodies of the class’s member-function definitions. Each object
of a class maintains its own copy of its attributes in memory. These attributes exist
throughout the life of the object. The example in this section demonstrates a GradeBook

class that contains a courseName data member to represent a particular GradeBook object’s
course name.

GradeBook Class with a Data Member, a set Function and a get Function
In our next example, class GradeBook (Fig. 3.5) maintains the course name as a data mem-
ber so that it can be used or modified at any time during a program’s execution. The class
contains member functions setCourseName, getCourseName and displayMessage. Mem-
ber function setCourseName stores a course name in a GradeBook data member. Member
function getCourseName obtains the course name from that data member. Member func-
tion displayMessage—which now specifies no parameters—still displays a welcome mes-
sage that includes the course name. However, as you’ll see, the function now obtains the
course name by calling another function in the same class—getCourseName.

1 // Fig. 3.5: fig03_05.cpp
2 // Define class GradeBook that contains a courseName data member
3 // and member functions to set and get its value;
4 // Create and manipulate a GradeBook object with these functions.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {
12 public:
13
14
15
16
17
18
19
20
21
22
23
24
25 // function that displays a welcome message
26 void displayMessage()
27 {
28 // this statement calls getCourseName to get the
29 // name of the course this GradeBook represents
30 cout << "Welcome to the grade book for\n" << << "!"
31 << endl;
32 } // end function displayMessage

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get functions.
(Part 1 of 2.)

// function that sets the course name
void setCourseName(string name)
{

courseName = name; // store the course name in the object
} // end function setCourseName

// function that gets the course name
string getCourseName()
{

return courseName; // return the object's courseName
} // end function getCourseName

getCourseName()

3.4 Data Members, set Functions and get Functions 73

A typical instructor teaches multiple courses, each with its own course name. Line 34
declares that courseName is a variable of type string. Because the variable is declared in
the class definition (lines 10–35) but outside the bodies of the class’s member-function
definitions (lines 14–17, 20–23 and 26–32), the variable is a data member. Every instance
(i.e., object) of class GradeBook contains one copy of each of the class’s data members—if
there are two GradeBook objects, each has its own copy of courseName (one per object), as
you’ll see in the example of Fig. 3.7. A benefit of making courseName a data member is
that all the member functions of the class can manipulate any data members that appear
in the class definition (in this case, courseName).

Access Specifiers public and private
Most data-member declarations appear after the private access specifier. Variables or func-
tions declared after access specifier private (and before the next access specifier if there is
one) are accessible only to member functions of the class for which they’re declared (or to
“friends” of the class, as you’ll see in Chapter 10, Classes: A Deeper Look, Part 2). Thus, data
member courseName can be used only in member functions setCourseName, getCourse-
Name and displayMessage of class GradeBook (or to “friends” of the class, if there were any).

33
34
35 }; // end class GradeBook
36
37 // function main begins program execution
38 int main()
39 {
40 string nameOfCourse; // string of characters to store the course name
41 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
42
43 // display initial value of courseName
44 cout << "Initial course name is: " <<
45 << endl;
46
47 // prompt for, input and set course name
48 cout << "\nPlease enter the course name:" << endl;
49 getline(cin, nameOfCourse); // read a course name with blanks
50
51
52 cout << endl; // outputs a blank line
53 myGradeBook.displayMessage(); // display message with new course name
54 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get functions.
(Part 2 of 2.)

private:
string courseName; // course name for this GradeBook

myGradeBook.getCourseName()

myGradeBook.setCourseName(nameOfCourse); // set the course name

74 Chapter 3 Introduction to Classes, Objects and Strings

The default access for class members is private so all members after the class header
and before the first access specifier (if there are any) are private. The access specifiers
public and private may be repeated, but this is unnecessary and can be confusing.

Declaring data members with access specifier private is known as data hiding. When
a program creates a GradeBook object, data member courseName is encapsulated (hidden)
in the object and can be accessed only by member functions of the object’s class. In class
GradeBook, member functions setCourseName and getCourseName manipulate the data
member courseName directly.

Member Functions setCourseName and getCourseName
Member function setCourseName (lines 14–17) does not return any data when it com-
pletes its task, so its return type is void. The member function receives one parameter—
name—which represents the course name that will be passed to it as an argument (as we’ll
see in line 50 of main). Line 16 assigns name to data member courseName. In this example,
setCourseName does not validate the course name—i.e., the function does not check that
the course name adheres to any particular format or follows any other rules regarding what
a “valid” course name looks like. Suppose, for instance, that a university can print student
transcripts containing course names of only 25 characters or fewer. In this case, we might
want class GradeBook to ensure that its data member courseName never contains more
than 25 characters. We discuss validation in Section 3.8.

Member function getCourseName (lines 20–23) returns a particular GradeBook

object’s courseName. The member function has an empty parameter list, so it does not
require additional data to perform its task. The function specifies that it returns a string.
When a function that specifies a return type other than void is called and completes its
task, the function uses a return statement (as in line 22) to return a result to its calling
function. For example, when you go to an automated teller machine (ATM) and request
your account balance, you expect the ATM to give you back a value that represents your
balance. Similarly, when a statement calls member function getCourseName on a Grade-

Book object, the statement expects to receive the GradeBook’s course name (in this case, a
string, as specified by the function’s return type).

If you have a function square that returns the square of its argument, the statement

Software Engineering Observation 3.1
Generally, data members should be declared private and member functions should be
declared public.

Error-Prevention Tip 3.1
Make the data members of a class private and the member functions of the class public.
This facilitates debugging because problems with data manipulations are localized to ei-
ther the class’s member functions or the friends of the class.

Common Programming Error 3.2
An attempt by a function, which is not a member of a particular class (or a friend of that
class) to access a private member of that class is a compilation error.

result = square(2);

3.4 Data Members, set Functions and get Functions 75

returns 4 from function square and assigns to variable result the value 4. If you have a
function maximum that returns the largest of three integer arguments, the statement

returns 114 from function maximum and assigns to variable biggest the value 114.
The statements in lines 16 and 22 each use variable courseName (line 34) even though

it was not declared in any of the member functions. We can do this because courseName

is a data member of the class.

Member Function displayMessage
Member function displayMessage (lines 26–32) does not return any data when it com-
pletes its task, so its return type is void. The function does not receive parameters, so its
parameter list is empty. Lines 30–31 output a welcome message that includes the value of
data member courseName. Line 30 calls member function getCourseName to obtain the
value of courseName. Member function displayMessage could also access data member
courseName directly, just as member functions setCourseName and getCourseName do.
We explain shortly why it’s preferable to call member function getCourseName to obtain
the value of courseName.

Testing Class GradeBook
The main function (lines 38–54) creates one object of class GradeBook and uses each of its
member functions. Line 41 creates a GradeBook object named myGradeBook. Lines 44–45
display the initial course name by calling the object’s getCourseName member function. The
first line of the output does not show a course name, because the object’s courseName data
member (i.e., a string) is initially empty—by default, the initial value of a string is the
so-called empty string, i.e., a string that does not contain any characters. Nothing appears
on the screen when an empty string is displayed.

Line 48 prompts the user to enter a course name. Local string variable nameOfCourse
(declared in line 40) is set to the course name entered by the user, which is obtained by the
call to the getline function (line 49). Line 50 calls object myGradeBook’s setCourseName
member function and supplies nameOfCourse as the function’s argument. When the func-
tion is called, the argument’s value is copied to parameter name (line 14) of member func-
tion setCourseName. Then the parameter’s value is assigned to data member courseName
(line 16). Line 52 skips a line; then line 53 calls object myGradeBook’s displayMessage

member function to display the welcome message containing the course name.

Software Engineering with Set and Get Functions
A class’s private data members can be manipulated only by member functions of that
class (and by “friends” of the class). So a client of an object—that is, any statement that
calls the object’s member functions from outside the object—calls the class’s public mem-
ber functions to request the class’s services for particular objects of the class. This is why
the statements in function main call member functions setCourseName, getCourseName
and displayMessage on a GradeBook object. Classes often provide public member func-
tions to allow clients of the class to set (i.e., assign values to) or get (i.e., obtain the values
of) private data members. These member function names need not begin with set or get,
but this naming convention is common. In this example, the member function that sets
the courseName data member is called setCourseName, and the member function that gets
the value of the courseName data member is called getCourseName. Set functions are some-

biggest = maximum(27, 114, 51);

76 Chapter 3 Introduction to Classes, Objects and Strings

times called mutators (because they mutate, or change, values), and get functions are also
called accessors (because they access values).

Recall that declaring data members with access specifier private enforces data hiding.
Providing public set and get functions allows clients of a class to access the hidden data,
but only indirectly. The client knows that it’s attempting to modify or obtain an object’s
data, but the client does not know how the object performs these operations. In some cases,
a class may internally represent a piece of data one way, but expose that data to clients in
a different way. For example, suppose a Clock class represents the time of day as a private
int data member time that stores the number of seconds since midnight. However, when
a client calls a Clock object’s getTime member function, the object could return the time
with hours, minutes and seconds in a string in the format "HH:MM:SS". Similarly, suppose
the Clock class provides a set function named setTime that takes a string parameter in
the "HH:MM:SS" format. Using string capabilities presented in Chapter 18, the setTime

function could convert this string to a number of seconds, which the function stores in
its private data member. The set function could also check that the value it receives rep-
resents a valid time (e.g., "12:30:45" is valid but "42:85:70" is not). The set and get func-
tions allow a client to interact with an object, but the object’s private data remains safely
encapsulated (i.e., hidden) in the object itself.

The set and get functions of a class also should be used by other member functions
within the class to manipulate the class’s private data, although these member functions
can access the private data directly. In Fig. 3.5, member functions setCourseName and
getCourseName are public member functions, so they’re accessible to clients of the class,
as well as to the class itself. Member function displayMessage calls member function get-

CourseName to obtain the value of data member courseName for display purposes, even
though displayMessage can access courseName directly—accessing a data member via its
get function creates a better, more robust class (i.e., a class that’s easier to maintain and less
likely to malfunction). If we decide to change the data member courseName in some way,
the displayMessage definition will not require modification—only the bodies of the get
and set functions that directly manipulate the data member will need to change. For
example, suppose we want to represent the course name as two separate data members—
courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ Program-

ming"). Member function displayMessage can still issue a single call to member function
getCourseName to obtain the full course name to display as part of the welcome message.
In this case, getCourseName would need to build and return a string containing the
courseNumber followed by the courseTitle. Member function displayMessage could
continue to display the complete course title “CS101 Introduction to C++ Programming.”
The benefits of calling a set function from another member function of the same class will
become clear when we discuss validation in Section 3.8.

Good Programming Practice 3.1
Always try to localize the effects of changes to a class’s data members by accessing and ma-
nipulating the data members through their get and set functions.

Software Engineering Observation 3.2
Write programs that are clear and easy to maintain. Change is the rule rather than the
exception. You should anticipate that your code will be modified.

3.5 Initializing Objects with Constructors 77

GradeBook’s UML Class Diagram with a Data Member and set and get Functions
Figure 3.6 contains an updated UML class diagram for the version of class GradeBook in
Fig. 3.5. This diagram models GradeBook’s data member courseName as an attribute in the
middle compartment. The UML represents data members as attributes by listing the at-
tribute name, followed by a colon and the attribute type. The UML type of attribute
courseName is String, which corresponds to string in C++. Data member courseName is
private in C++, so the class diagram lists a minus sign (–) in front of the corresponding
attribute’s name. The minus sign in the UML is equivalent to the private access specifier
in C++. Class GradeBook contains three public member functions, so the class diagram
lists three operations in the third compartment. Operation setCourseName has a String

parameter called name. The UML indicates the return type of an operation by placing a
colon and the return type after the parentheses following the operation name. Member
function getCourseName of class GradeBook has a string return type in C++, so the class
diagram shows a String return type in the UML. Operations setCourseName and dis-

playMessage do not return values (i.e., they return void in C++), so the UML class dia-
gram does not specify a return type after the parentheses of these operations.

3.5 Initializing Objects with Constructors
As mentioned in Section 3.4, when an object of class GradeBook (Fig. 3.5) is created, its
data member courseName is initialized to the empty string by default. What if you want
to provide a course name when you create a GradeBook object? Each class you declare can
provide a constructor that can be used to initialize an object of the class when the object
is created. A constructor is a special member function that must be defined with the same
name as the class, so that the compiler can distinguish it from the class’s other member
functions. An important difference between constructors and other functions is that con-
structors cannot return values, so they cannot specify a return type (not even void). Normal-
ly, constructors are declared public.

C++ requires a constructor call for each object that’s created, which helps ensure that
each object is initialized properly before it’s used in a program. The constructor call occurs
implicitly when the object is created. If a class does not explicitly include a constructor, the
compiler provides a default constructor—that is, a constructor with no parameters. For
example, when line 41 of Fig. 3.5 creates a GradeBook object, the default constructor is
called. The default constructor provided by the compiler creates a GradeBook object
without giving any initial values to the object’s fundamental type data members. [Note:
For data members that are objects of other classes, the default constructor implicitly calls
each data member’s default constructor to ensure that the data member is initialized prop-

Fig. 3.6 | UML class diagram for class GradeBook with a private courseName attribute and
public operations setCourseName, getCourseName and displayMessage.

GradeBook

– courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

78 Chapter 3 Introduction to Classes, Objects and Strings

erly. This is why the string data member courseName (in Fig. 3.5) was initialized to the
empty string—the default constructor for class string sets the string’s value to the empty
string. You’ll learn more about initializing data members that are objects of other classes
in Section 10.3.]

In the example of Fig. 3.7, we specify a course name for a GradeBook object when the
object is created (e.g., line 46). In this case, the argument "CS101 Introduction to C++

Programming" is passed to the GradeBook object’s constructor (lines 14–17) and used to
initialize the courseName. Figure 3.7 defines a modified GradeBook class containing a con-
structor with a string parameter that receives the initial course name.

1 // Fig. 3.7: fig03_07.cpp
2 // Instantiating multiple objects of the GradeBook class and using
3 // the GradeBook constructor to specify the course name
4 // when each GradeBook object is created.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {
12 public:
13
14
15
16
17
18
19 // function to set the course name
20 void setCourseName(string name)
21 {
22 courseName = name; // store the course name in the object
23 } // end function setCourseName
24
25 // function to get the course name
26 string getCourseName()
27 {
28 return courseName; // return object's courseName
29 } // end function getCourseName
30
31 // display a welcome message to the GradeBook user
32 void displayMessage()
33 {
34 // call getCourseName to get the courseName
35 cout << "Welcome to the grade book for\n" <<
36 << "!" << endl;
37 } // end function displayMessage
38 private:
39 string courseName; // course name for this GradeBook
40 }; // end class GradeBook

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 1 of 2.)

// constructor initializes courseName with string supplied as argument
GradeBook(string name)
{

setCourseName(name); // call set function to initialize courseName
} // end GradeBook constructor

getCourseName()

3.5 Initializing Objects with Constructors 79

Defining a Constructor
Lines 14–17 of Fig. 3.7 define a constructor for class GradeBook. Notice that the construc-
tor has the same name as its class, GradeBook. A constructor specifies in its parameter list
the data it requires to perform its task. When you create a new object, you place this data
in the parentheses that follow the object name (as we did in lines 46–47). Line 14 indicates
that class GradeBook’s constructor has a string parameter called name. Line 14 does not
specify a return type, because constructors cannot return values (or even void).

Line 16 in the constructor’s body passes the constructor’s parameter name to member
function setCourseName (lines 20–23), which simply assigns the value of its parameter to
data member courseName. You might be wondering why we make the call to setCourseName

in line 16—the constructor certainly could perform the assignment courseName = name. In
Section 3.8, we modify setCourseName to perform validation (ensuring that, in this case, the
courseName is 25 or fewer characters in length). At that point the benefits of calling set-

CourseName from the constructor will become clear. Both the constructor (line 14) and the
setCourseName function (line 20) use a parameter called name. You can use the same param-
eter names in different functions because the parameters are local to each function; they do
not interfere with one another.

Testing Class GradeBook
Lines 43–53 of Fig. 3.7 define the main function that tests class GradeBook and demon-
strates initializing GradeBook objects using a constructor. Line 46 creates and initializes
GradeBook object gradeBook1. When this line executes, the GradeBook constructor (lines
14–17) is called (implicitly by C++) with the argument "CS101 Introduction to C++ Pro-
gramming" to initialize gradeBook1’s course name. Line 47 repeats this process for Grade-
Book object gradeBook2, this time passing the argument "CS102 Data Structures in C++"
to initialize gradeBook2’s course name. Lines 50–51 use each object’s getCourseName

member function to obtain the course names and show that they were indeed initialized
when the objects were created. The output confirms that each GradeBook object maintains
its own copy of data member courseName.

41
42 // function main begins program execution
43 int main()
44 {
45 // create two GradeBook objects
46
47
48
49 // display initial value of courseName for each GradeBook
50 cout << "gradeBook1 created for course: " <<
51 << "\ngradeBook2 created for course: " <<
52 << endl;
53 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 2 of 2.)

GradeBook gradeBook1("CS101 Introduction to C++ Programming");
GradeBook gradeBook2("CS102 Data Structures in C++");

gradeBook1.getCourseName()
gradeBook2.getCourseName()

80 Chapter 3 Introduction to Classes, Objects and Strings

Two Ways to Provide a Default Constructor for a Class
Any constructor that takes no arguments is called a default constructor. A class can get a
default constructor in one of two ways:

1. The compiler implicitly creates a default constructor in a class that does not de-
fine a constructor. Such a constructor does not initialize the class’s data members,
but does call the default constructor for each data member that’s an object of an-
other class. An uninitialized variable typically contains a “garbage” value.

2. You explicitly define a constructor that takes no arguments. Such a default con-
structor will call the default constructor for each data member that’s an object of
another class and will perform additional initialization specified by you.

If you define a constructor with arguments, C++ will not implicitly create a default constructor
for that class. For each version of class GradeBook in Fig. 3.1, Fig. 3.3 and Fig. 3.5 the com-
piler implicitly defined a default constructor.

Adding the Constructor to Class GradeBook’s UML Class Diagram
The UML class diagram of Fig. 3.8 models the GradeBook class of Fig. 3.7, which has a
constructor with a name parameter of type string (represented by type String in the
UML). Like operations, the UML models constructors in the third compartment of a class
in a class diagram. To distinguish a constructor from a class’s operations, the UML places
the word “constructor” between guillemets (« and ») before the constructor’s name. By
convention, you list the class’s constructor before other operations in the third compart-
ment.

Error-Prevention Tip 3.2
Unless no initialization of your class’s data members is necessary (almost never), provide
a constructor to ensure that your class’s data members are initialized with meaningful val-
ues when each new object of your class is created.

Software Engineering Observation 3.3
Data members can be initialized in a constructor, or their values may be set later after
the object is created. However, it’s a good software engineering practice to ensure that an
object is fully initialized before the client code invokes the object’s member functions. You
should not rely on the client code to ensure that an object gets initialized properly.

Fig. 3.8 | UML class diagram indicating that class GradeBook has a constructor with a name
parameter of UML type String.

GradeBook

– courseName : String

«constructor» + GradeBook(name : String)
+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

3.6 Placing a Class in a Separate File for Reusability 81

3.6 Placing a Class in a Separate File for Reusability
One of the benefits of creating class definitions is that, when packaged properly, your
classes can be reused by other programmers. For example, you can reuse C++ Standard Li-
brary type string in any C++ program by including the header <string> (and, as you’ll
see, by being able to link to the library’s object code).

Programmers who wish to use our GradeBook class cannot simply include the file from
Fig. 3.7 in another program. As you learned in Chapter 2, function main begins the execu-
tion of every program, and every program must have exactly one main function. If other pro-
grammers include the code from Fig. 3.7, they get extra “baggage”—our main function—
and their programs will then have two main functions. Attempting to compile a program
with two main functions produces an error when the compiler tries to compile the second
main function it encounters. So, placing main in the same file with a class definition prevents
that class from being reused by other programs. In this section, we demonstrate how to make
class GradeBook reusable by separating it into another file from the main function.

Headers
Each of the previous examples in the chapter consists of a single .cpp file, also known as a
source-code file, that contains a GradeBook class definition and a main function. When
building an object-oriented C++ program, it’s customary to define reusable source code
(such as a class) in a file that by convention has a .h filename extension—known as a head-
er. Programs use #include preprocessor directives to include headers and take advantage
of reusable software components, such as type string provided in the C++ Standard Li-
brary and user-defined types like class GradeBook.

Our next example separates the code from Fig. 3.7 into two files—GradeBook.h

(Fig. 3.9) and fig03_10.cpp (Fig. 3.10). As you look at the header in Fig. 3.9, notice that
it contains only the GradeBook class definition (lines 8–38), the appropriate headers and a
using directive. The main function that uses class GradeBook is defined in the source-code
file fig03_10.cpp (Fig. 3.10) in lines 8–18. To help you prepare for the larger programs
you’ll encounter later in this book and in industry, we often use a separate source-code file
containing function main to test our classes (this is called a driver program). You’ll soon
learn how a source-code file with main can use the class definition found in a header to
create objects of a class.

1 // Fig. 3.9:
2 // GradeBook class definition in a separate file from main.
3 #include <iostream>
4 #include <string> // class GradeBook uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 // constructor initializes courseName with string supplied as argument
12 GradeBook(string name)
13 {

Fig. 3.9 | GradeBook class definition in a separate file from main. (Part 1 of 2.)

GradeBook.h

82 Chapter 3 Introduction to Classes, Objects and Strings

14 setCourseName(name); // call set function to initialize courseName
15 } // end GradeBook constructor
16
17 // function to set the course name
18 void setCourseName(string name)
19 {
20 courseName = name; // store the course name in the object
21 } // end function setCourseName
22
23 // function to get the course name
24 string getCourseName()
25 {
26 return courseName; // return object's courseName
27 } // end function getCourseName
28
29 // display a welcome message to the GradeBook user
30 void displayMessage()
31 {
32 // call getCourseName to get the courseName
33 cout << "Welcome to the grade book for\n" << getCourseName()
34 << "!" << endl;
35 } // end function displayMessage
36 private:
37 string courseName; // course name for this GradeBook
38 }; // end class GradeBook

1 // Fig. 3.10: fig03_10.cpp
2 // Including class GradeBook from file GradeBook.h for use in main.
3 #include <iostream>
4
5 using namespace std;
6
7 // function main begins program execution
8 int main()
9 {

10 // create two GradeBook objects
11 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
12 GradeBook gradeBook2("CS102 Data Structures in C++");
13
14 // display initial value of courseName for each GradeBook
15 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
16 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
17 << endl;
18 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.10 | Including class GradeBook from file GradeBook.h for use in main.

Fig. 3.9 | GradeBook class definition in a separate file from main. (Part 2 of 2.)

#include "GradeBook.h" // include definition of class GradeBook

3.6 Placing a Class in a Separate File for Reusability 83

Including a Header That Contains a User-Defined Class
A header such as GradeBook.h (Fig. 3.9) cannot be used as a complete program, because
it does not contain a main function. If you try to compile and link GradeBook.h by itself
to create an executable application, Microsoft Visual C++ 2010 produces the linker error
message:

To compile and link with GNU C++ on Linux, you must first include the header in a .cpp
source-code file, then GNU C++ produces a linker error message containing:

This error indicates that the linker could not locate the program’s main function. To test
class GradeBook (defined in Fig. 3.9), you must write a separate source-code file containing
a main function (such as Fig. 3.10) that instantiates and uses objects of the class.

The compiler doesn’t know what a GradeBook is because it’s a user-defined type. In
fact, the compiler doesn’t even know the classes in the C++ Standard Library. To help it
understand how to use a class, we must explicitly provide the compiler with the class’s def-
inition—that’s why, for example, to use type string, a program must include the
<string> header. This enables the compiler to determine the amount of memory that it
must reserve for each string object and ensure that a program calls a string’s member
functions correctly.

To create GradeBook objects gradeBook1 and gradeBook2 in lines 11–12 of Fig. 3.10,
the compiler must know the size of a GradeBook object. While objects conceptually con-
tain data members and member functions, C++ objects actually contain only data. The
compiler creates only one copy of the class’s member functions and shares that copy among
all the class’s objects. Each object, of course, needs its own copy of the class’s data mem-
bers, because their contents can vary among objects (such as two different BankAccount
objects having two different balances). The member-function code, however, is not modi-
fiable, so it can be shared among all objects of the class. Therefore, the size of an object
depends on the amount of memory required to store the class’s data members. By
including GradeBook.h in line 4, we give the compiler access to the information it needs
(Fig. 3.9, line 37) to determine the size of a GradeBook object and to determine whether
objects of the class are used correctly (in lines 11–12 and 15–16 of Fig. 3.10).

Line 4 instructs the C++ preprocessor to replace the directive with a copy of the con-
tents of GradeBook.h (i.e., the GradeBook class definition) before the program is compiled.
When the source-code file fig03_10.cpp is compiled, it now contains the GradeBook class
definition (because of the #include), and the compiler is able to determine how to create
GradeBook objects and see that their member functions are called correctly. Now that the
class definition is in a header (without a main function), we can include that header in any
program that needs to reuse our GradeBook class.

How Headers Are Located
Notice that the name of the GradeBook.h header in line 4 of Fig. 3.10 is enclosed in quotes
(" ") rather than angle brackets (< >). Normally, a program’s source-code files and user-
defined headers are placed in the same directory. When the preprocessor encounters a
header name in quotes, it attempts to locate the header in the same directory as the file in
which the #include directive appears. If the preprocessor cannot find the header in that

error LNK2001: unresolved external symbol _mainCRTStartup

undefined reference to 'main'

84 Chapter 3 Introduction to Classes, Objects and Strings

directory, it searches for it in the same location(s) as the C++ Standard Library headers.
When the preprocessor encounters a header name in angle brackets (e.g., <iostream>), it
assumes that the header is part of the C++ Standard Library and does not look in the di-
rectory of the program that’s being preprocessed.

Additional Software Engineering Issues
Now that class GradeBook is defined in a header, the class is reusable. Unfortunately, plac-
ing a class definition in a header as in Fig. 3.9 still reveals the entire implementation of the
class to the class’s clients—GradeBook.h is simply a text file that anyone can open and read.
Conventional software engineering wisdom says that to use an object of a class, the client
code needs to know only what member functions to call, what arguments to provide to
each member function and what return type to expect from each member function. The
client code does not need to know how those functions are implemented.

If client code does know how a class is implemented, the programmer might write
client code based on the class’s implementation details. Ideally, if that implementation
changes, the class’s clients should not have to change. Hiding the class’s implementation
details makes it easier to change the class’s implementation while minimizing, and hopefully
eliminating, changes to client code.

In Section 3.7, we show how to break up the GradeBook class into two files so that

1. the class is reusable,

2. the clients of the class know what member functions the class provides, how to
call them and what return types to expect, and

3. the clients do not know how the class’s member functions are implemented.

3.7 Separating Interface from Implementation
In the preceding section, we showed how to promote software reusability by separating a
class definition from the client code (e.g., function main) that uses the class. We now in-
troduce another fundamental principle of good software engineering—separating inter-
face from implementation.

Interface of a Class
Interfaces define and standardize the ways in which things such as people and systems in-
teract with one another. For example, a radio’s controls serve as an interface between the
radio’s users and its internal components. The controls allow users to perform a limited
set of operations (such as changing the station, adjusting the volume, and choosing be-
tween AM and FM stations). Various radios may implement these operations different-
ly—some provide push buttons, some provide dials and some support voice commands.
The interface specifies what operations a radio permits users to perform but does not spec-
ify how the operations are implemented inside the radio.

Error-Prevention Tip 3.3
To ensure that the preprocessor can locate headers correctly, #include preprocessor direc-
tives should place user-defined headers names in quotes (e.g., "GradeBook.h") and place
C++ Standard Library headers names in angle brackets (e.g., <iostream>).

3.7 Separating Interface from Implementation 85

Similarly, the interface of a class describes what services a class’s clients can use and
how to request those services, but not how the class carries out the services. A class’s public
interface consists of the class’s public member functions (also known as the class’s public
services). For example, class GradeBook’s interface (Fig. 3.9) contains a constructor and
member functions setCourseName, getCourseName and displayMessage. GradeBook’s
clients (e.g., main in Fig. 3.10) use these functions to request the class’s services. As you’ll
soon see, you can specify a class’s interface by writing a class definition that lists only the
member-function names, return types and parameter types.

Separating the Interface from the Implementation
In our prior examples, each class definition contained the complete definitions of the
class’s public member functions and the declarations of its private data members. How-
ever, it’s better software engineering to define member functions outside the class defini-
tion, so that their implementation details can be hidden from the client code. This practice
ensures that you do not write client code that depends on the class’s implementation de-
tails. If you were to do so, the client code would be more likely to “break” if the class’s
implementation changed. Given that one class could have many clients, such a change
could cause wide-ranging problems in a software system.

The program of Figs. 3.11–3.13 separates class GradeBook’s interface from its imple-
mentation by splitting the class definition of Fig. 3.9 into two files—the header Grade-
Book.h (Fig. 3.11) in which class GradeBook is defined, and the source-code file
GradeBook.cpp (Fig. 3.12) in which GradeBook’s member functions are defined. By con-
vention, member-function definitions are placed in a source-code file of the same base
name (e.g., GradeBook) as the class’s header but with a .cpp filename extension. The
source-code file fig03_13.cpp (Fig. 3.13) defines function main (the client code). The
code and output of Fig. 3.13 are identical to that of Fig. 3.10. Figure 3.14 shows how this
three-file program is compiled from the perspectives of the GradeBook class programmer
and the client-code programmer—we’ll explain this figure in detail.

GradeBook.h: Defining a Class’s Interface with Function Prototypes
Header GradeBook.h (Fig. 3.11) contains another version of GradeBook’s class definition
(lines 9–18). This version is similar to the one in Fig. 3.9, but the function definitions in
Fig. 3.9 are replaced here with function prototypes (lines 12–15) that describe the class’s
public interface without revealing the class’s member-function implementations. A function
prototype is a declaration of a function that tells the compiler the function’s name, its re-
turn type and the types of its parameters. Also, the header still specifies the class’s private
data member (line 17) as well. Again, the compiler must know the data members of the
class to determine how much memory to reserve for each object of the class. Including the
header GradeBook.h in the client code (line 5 of Fig. 3.13) provides the compiler with the
information it needs to ensure that the client code calls the member functions of class
GradeBook correctly.

The function prototype in line 12 (Fig. 3.11) indicates that the constructor requires
one string parameter. Recall that constructors don’t have return types, so no return type
appears in the function prototype. Member function setCourseName’s function prototype
indicates that setCourseName requires a string parameter and does not return a value
(i.e., its return type is void). Member function getCourseName’s function prototype indi-
cates that the function does not require parameters and returns a string. Finally, member

86 Chapter 3 Introduction to Classes, Objects and Strings

function displayMessage’s function prototype (line 15) specifies that displayMessage

does not require parameters and does not return a value. These function prototypes are the
same as the corresponding function headers in Fig. 3.9, except that the parameter names
(which are optional in prototypes) are not included and each function prototype must end
with a semicolon.

GradeBook.cpp: Defining Member Functions in a Separate Source-Code File
Source-code file GradeBook.cpp (Fig. 3.12) defines class GradeBook’s member functions,
which were declared in lines 12–15 of Fig. 3.11. The definitions appear in lines 9–32 and
are nearly identical to the member-function definitions in lines 12–35 of Fig. 3.9.

Each member-function name in the function headers (lines 9, 15, 21 and 27) is pre-
ceded by the class name and ::, which is known as the binary scope resolution operator.
This “ties” each member function to the (now separate) GradeBook class definition
(Fig. 3.11), which declares the class’s member functions and data members. Without
“GradeBook::” preceding each function name, these functions would not be recognized by
the compiler as member functions of class GradeBook—the compiler would consider them

1 // Fig. 3.11: GradeBook.h
2 // GradeBook class definition. This file presents GradeBook's public
3 // interface without revealing the implementations of GradeBook's member
4 // functions, which are defined in GradeBook.cpp.
5 #include <string> // class GradeBook uses C++ standard string class
6 using namespace std;
7
8 // GradeBook class definition
9 class GradeBook

10 {
11 public:
12
13
14
15
16 private:
17 string courseName; // course name for this GradeBook
18 }; // end class GradeBook

Fig. 3.11 | GradeBook class definition containing function prototypes that specify the interface
of the class.

Good Programming Practice 3.2
Although parameter names in function prototypes are optional (they’re ignored by the
compiler), many programmers use these names for documentation purposes.

Error-Prevention Tip 3.4
Parameter names in a function prototype (which, again, are ignored by the compiler) can
be misleading if the names used do not match those used in the function definition. For
this reason, many programmers create function prototypes by copying the first line of the
corresponding function definitions (when the source code for the functions is available),
then appending a semicolon to the end of each prototype.

GradeBook(string); // constructor that initializes courseName
void setCourseName(string); // function that sets the course name
string getCourseName(); // function that gets the course name
void displayMessage(); // function that displays a welcome message

3.7 Separating Interface from Implementation 87

“free” or “loose” functions, like main. These are also called global functions. Such functions
cannot access GradeBook’s private data or call the class’s member functions, without spec-
ifying an object. So, the compiler would not be able to compile these functions. For example,
lines 17 and 23 that access variable courseName would cause compilation errors because
courseName is not declared as a local variable in each function—the compiler would not
know that courseName is already declared as a data member of class GradeBook.

To indicate that the member functions in GradeBook.cpp are part of class GradeBook,
we must first include the GradeBook.h header (line 5 of Fig. 3.12). This allows us to access
the class name GradeBook in the GradeBook.cpp file. When compiling GradeBook.cpp,
the compiler uses the information in GradeBook.h to ensure that

1 // Fig. 3.12: GradeBook.cpp
2 // GradeBook member-function definitions. This file contains
3 // implementations of the member functions prototyped in GradeBook.h.
4 #include <iostream>
5
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument
9

10 {
11 setCourseName(name); // call set function to initialize courseName
12 } // end GradeBook constructor
13
14 // function to set the course name
15
16 {
17 courseName = name; // store the course name in the object
18 } // end function setCourseName
19
20 // function to get the course name
21
22 {
23 return courseName; // return object's courseName
24 } // end function getCourseName
25
26 // display a welcome message to the GradeBook user
27
28 {
29 // call getCourseName to get the courseName
30 cout << "Welcome to the grade book for\n" << getCourseName()
31 << "!" << endl;
32 } // end function displayMessage

Fig. 3.12 | GradeBook member-function definitions represent the implementation of class
GradeBook.

Common Programming Error 3.3
When defining a class’s member functions outside that class, omitting the class name and
binary scope resolution operator (::) preceding the function names causes errors.

#include "GradeBook.h" // include definition of class GradeBook

GradeBook::GradeBook(string name)

void GradeBook::setCourseName(string name)

string GradeBook::getCourseName()

void GradeBook::displayMessage()

88 Chapter 3 Introduction to Classes, Objects and Strings

1. the first line of each member function (lines 9, 15, 21 and 27) matches its proto-
type in the GradeBook.h file—for example, the compiler ensures that getCourse-
Name accepts no parameters and returns a string, and that

2. each member function knows about the class’s data members and other member
functions—for example, lines 17 and 23 can access variable courseName because
it’s declared in GradeBook.h as a data member of class GradeBook, and lines 11
and 30 can call functions setCourseName and getCourseName, respectively, be-
cause each is declared as a member function of the class in GradeBook.h (and be-
cause these calls conform with the corresponding prototypes).

Testing Class GradeBook
Figure 3.13 performs the same GradeBook object manipulations as Fig. 3.10. Separating
GradeBook’s interface from the implementation of its member functions does not affect the
way that this client code uses the class. It affects only how the program is compiled and
linked, which we discuss in detail shortly.

As in Fig. 3.10, line 5 of Fig. 3.13 includes the GradeBook.h header so that the com-
piler can ensure that GradeBook objects are created and manipulated correctly in the client
code. Before executing this program, the source-code files in Fig. 3.12 and Fig. 3.13 must
both be compiled, then linked together—that is, the member-function calls in the client
code need to be tied to the implementations of the class’s member functions—a job per-
formed by the linker.

1 // Fig. 3.13: fig03_13.cpp
2 // GradeBook class demonstration after separating
3 // its interface from its implementation.
4 #include <iostream>
5
6 using namespace std;
7
8 // function main begins program execution
9 int main()

10 {
11 // create two GradeBook objects
12 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
13 GradeBook gradeBook2("CS102 Data Structures in C++");
14
15 // display initial value of courseName for each GradeBook
16 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
17 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
18 << endl;
19 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.13 | GradeBook class demonstration after separating its interface from its
implementation.

#include "GradeBook.h" // include definition of class GradeBook

3.7 Separating Interface from Implementation 89

The Compilation and Linking Process
The diagram in Fig. 3.14 shows the compilation and linking process that results in an ex-
ecutable GradeBook application that can be used by instructors. Often a class’s interface
and implementation will be created and compiled by one programmer and used by a sep-
arate programmer who implements the client code that uses the class. So, the diagram
shows what’s required by both the class-implementation programmer and the client-code
programmer. The dashed lines in the diagram show the pieces required by the class-imple-
mentation programmer, the client-code programmer and the GradeBook application user,
respectively. [Note: Figure 3.14 is not a UML diagram.]

A class-implementation programmer responsible for creating a reusable GradeBook

class creates the header GradeBook.h and the source-code file GradeBook.cpp that

Fig. 3.14 | Compilation and linking process that produces an executable application.

GradeBook
Application User

Class Implementation
Programmer

Client Code
Programmer

GradeBook
executable application

GradeBook.h
class definition/interface

main function
(client source code)

GradeBook class's
object code

main function's
object code

compilercompiler

linker

GradeBook.cpp
implementation file

C++ Standard Library
object code

90 Chapter 3 Introduction to Classes, Objects and Strings

#includes the header, then compiles the source-code file to create GradeBook’s object
code. To hide the class’s member-function implementation details, the class-implementa-
tion programmer would provide the client-code programmer with the header Grade-

Book.h (which specifies the class’s interface and data members) and the GradeBook object
code (i.e., the machine-language instructions that represent GradeBook’s member func-
tions). The client-code programmer is not given GradeBook.cpp, so the client remains
unaware of how GradeBook’s member functions are implemented.

The client code needs to know only GradeBook’s interface to use the class and must
be able to link its object code. Since the interface of the class is part of the class definition
in the GradeBook.h header, the client-code programmer must have access to this file and
must #include it in the client’s source-code file. When the client code is compiled, the
compiler uses the class definition in GradeBook.h to ensure that the main function creates
and manipulates objects of class GradeBook correctly.

To create the executable GradeBook application, the last step is to link

1. the object code for the main function (i.e., the client code),

2. the object code for class GradeBook’s member-function implementations and

3. the C++ Standard Library object code for the C++ classes (e.g., string) used by
the class-implementation programmer and the client-code programmer.

The linker’s output is the executable GradeBook application that instructors can use to
manage their students’ grades. Compilers and IDEs typically invoke the linker for you af-
ter compiling your code.

For further information on compiling multiple-source-file programs, see your com-
piler’s documentation. We provide links to various C++ compilers in our C++ Resource
Center at www.deitel.com/cplusplus/.

3.8 Validating Data with set Functions
In Section 3.4, we introduced set functions for allowing clients of a class to modify the val-
ue of a private data member. In Fig. 3.5, class GradeBook defines member function set-

CourseName to simply assign a value received in its parameter name to data member
courseName. This member function does not ensure that the course name adheres to any
particular format or follows any other rules regarding what a “valid” course name looks
like. As we stated earlier, suppose that a university can print student transcripts containing
course names of only 25 characters or less. If the university uses a system containing
GradeBook objects to generate the transcripts, we might want class GradeBook to ensure
that its data member courseName never contains more than 25 characters. The program
of Figs. 3.15–3.17 enhances class GradeBook’s member function setCourseName to per-
form this validation (also known as validity checking).

GradeBook Class Definition
Notice that GradeBook’s class definition (Fig. 3.15)—and hence, its interface—is identical
to that of Fig. 3.11. Since the interface remains unchanged, clients of this class need not
be changed when the definition of member function setCourseName is modified. This en-
ables clients to take advantage of the improved GradeBook class simply by linking the client
code to the updated GradeBook’s object code.

www.deitel.com/cplusplus/

3.8 Validating Data with set Functions 91

Validating the Course Name with GradeBook Member Function setCourseName
The enhancement to class GradeBook is in the definition of setCourseName (Fig. 3.16,
lines 16–29). The if statement in lines 18–19 determines whether parameter name con-
tains a valid course name (i.e., a string of 25 or fewer characters). If the course name is
valid, line 19 stores it in data member courseName. Note the expression name.length()

in line 18. This is a member-function call just like myGradeBook.displayMessage(). The
C++ Standard Library’s string class defines a member function length that returns the
number of characters in a string object. Parameter name is a string object, so the call
name.length() returns the number of characters in name. If this value is less than or equal
to 25, name is valid and line 19 executes.

1 // Fig. 3.15: GradeBook.h
2 // GradeBook class definition presents the public interface of
3 // the class. Member-function definitions appear in GradeBook.cpp.
4 #include <string> // program uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 GradeBook(string); // constructor that initializes a GradeBook object
12 void setCourseName(string); // function that sets the course name
13 string getCourseName(); // function that gets the course name
14 void displayMessage(); // function that displays a welcome message
15 private:
16 string courseName; // course name for this GradeBook
17 }; // end class GradeBook

Fig. 3.15 | GradeBook class definition.

1 // Fig. 3.16: GradeBook.cpp
2 // Implementations of the GradeBook member-function definitions.
3 // The setCourseName function performs validation.
4 #include <iostream>
5 #include "GradeBook.h" // include definition of class GradeBook
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument
9 GradeBook::GradeBook(string name)

10 {
11
12 } // end GradeBook constructor
13
14
15
16
17

Fig. 3.16 | Member-function definitions for class GradeBook with a set function that validates
the length of data member courseName. (Part 1 of 2.)

setCourseName(name); // validate and store courseName

// function that sets the course name;
// ensures that the course name has at most 25 characters
void GradeBook::setCourseName(string name)
{

92 Chapter 3 Introduction to Classes, Objects and Strings

The if statement in lines 21–28 handles the case in which setCourseName receives an
invalid course name (i.e., a name that is more than 25 characters long). Even if parameter
name is too long, we still want to leave the GradeBook object in a consistent state—that is,
a state in which the object’s data member courseName contains a valid value (i.e., a string
of 25 characters or less). Thus, we truncate the specified course name and assign the first
25 characters of name to the courseName data member (unfortunately, this could truncate
the course name awkwardly). Standard class string provides member function substr

(short for “substring”) that returns a new string object created by copying part of an
existing string object. The call in line 24 (i.e., name.substr(0, 25)) passes two integers
(0 and 25) to name’s member function substr. These arguments indicate the portion of
the string name that substr should return. The first argument specifies the starting posi-
tion in the original string from which characters are copied—the first character in every
string is considered to be at position 0. The second argument specifies the number of char-
acters to copy. Therefore, the call in line 24 returns a 25-character substring of name

starting at position 0 (i.e., the first 25 characters in name). For example, if name holds the
value "CS101 Introduction to Programming in C++", substr returns "CS101 Introduc-

tion to Pro". After the call to substr, line 24 assigns the substring returned by substr to
data member courseName. In this way, setCourseName ensures that courseName is always
assigned a string containing 25 or fewer characters. If the member function has to truncate
the course name to make it valid, lines 26–27 display a warning message.

18
19
20
21
22
23
24
25
26
27
28
29
30
31 // function to get the course name
32 string GradeBook::getCourseName()
33 {
34 return courseName; // return object's courseName
35 } // end function getCourseName
36
37 // display a welcome message to the GradeBook user
38 void GradeBook::displayMessage()
39 {
40 // call getCourseName to get the courseName
41 cout << "Welcome to the grade book for\n" << getCourseName()
42 << "!" << endl;
43 } // end function displayMessage

Fig. 3.16 | Member-function definitions for class GradeBook with a set function that validates
the length of data member courseName. (Part 2 of 2.)

if (name.length() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object

if (name.length() > 25) // if name has more than 25 characters
{

// set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // start at 0, length of 25

cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;

} // end if
} // end function setCourseName

3.8 Validating Data with set Functions 93

The if statement in lines 21–28 contains two body statements—one to set the
courseName to the first 25 characters of parameter name and one to print an accompanying
message to the user. Both statements should execute when name is too long, so we place
them in a pair of braces, { }. Recall from Chapter 2 that this creates a block. You’ll learn
more about placing multiple statements in a control statement’s body in Chapter 4.

The statement in lines 26–27 could also appear without a stream insertion operator
at the start of the second line of the statement, as in:

The C++ compiler combines adjacent string literals, even if they appear on separate lines of a
program. Thus, in the statement above, the C++ compiler would combine the string literals
"\" exceeds maximum length (25).\n" and "Limiting courseName to first 25 charac-

ters.\n" into a single string literal that produces output identical to that of lines 26–27
in Fig. 3.16. This behavior allows you to print lengthy strings by breaking them across
lines in your program without including additional stream insertion operations.

Testing Class GradeBook
Figure 3.17 demonstrates the modified version of class GradeBook (Figs. 3.15–3.16) fea-
turing validation. Line 12 creates a GradeBook object named gradeBook1. Recall that the
GradeBook constructor calls setCourseName to initialize data member courseName. In pre-
vious versions of the class, the benefit of calling setCourseName in the constructor was not
evident. Now, however, the constructor takes advantage of the validation provided by set-

CourseName. The constructor simply calls setCourseName, rather than duplicating its vali-
dation code. When line 12 of Fig. 3.17 passes an initial course name of "CS101

Introduction to Programming in C++" to the GradeBook constructor, the constructor
passes this value to setCourseName, where the actual initialization occurs. Because this
course name contains more than 25 characters, the body of the second if statement exe-
cutes, causing courseName to be initialized to the truncated 25-character course name
"CS101 Introduction to Pro" (the truncated part is highlighted in red in line 12). The
output in Fig. 3.17 contains the warning message output by lines 26–27 of Fig. 3.16 in
member function setCourseName. Line 13 creates another GradeBook object called
gradeBook2—the valid course name passed to the constructor is exactly 25 characters.

Lines 16–19 of Fig. 3.17 display the truncated course name for gradeBook1 (we high-
light this in blue in the program output) and the course name for gradeBook2. Line 22
calls gradeBook1’s setCourseName member function directly, to change the course name
in the GradeBook object to a shorter name that does not need to be truncated. Then, lines
25–28 output the course names for the GradeBook objects again.

cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
"Limiting courseName to first 25 characters.\n" << endl;

1 // Fig. 3.17: fig03_17.cpp
2 // Create and manipulate a GradeBook object; illustrate validation.
3 #include <iostream>
4 #include "GradeBook.h" // include definition of class GradeBook
5 using namespace std;

Fig. 3.17 | Creating and manipulating a GradeBook object in which the course name is limited
to 25 characters in length. (Part 1 of 2.)

94 Chapter 3 Introduction to Classes, Objects and Strings

Additional Notes on Set Functions
A public set function such as setCourseName should carefully scrutinize any attempt to
modify the value of a data member (e.g., courseName) to ensure that the new value is ap-
propriate for that data item. For example, an attempt to set the day of the month to 37
should be rejected, an attempt to set a person’s weight to zero or a negative value should
be rejected, an attempt to set a grade on an exam to 185 (when the proper range is zero to
100) should be rejected, and so on

6
7 // function main begins program execution
8 int main()
9 {

10 // create two GradeBook objects;
11 // initial course name of gradeBook1 is too long
12
13 GradeBook gradeBook2("CS102 C++ Data Structures");
14
15 // display each GradeBook's courseName
16 cout << "gradeBook1's initial course name is: "
17 << gradeBook1.getCourseName()
18 << "\ngradeBook2's initial course name is: "
19 << gradeBook2.getCourseName() << endl;
20
21 // modify myGradeBook's courseName (with a valid-length string)
22
23
24 // display each GradeBook's courseName
25 cout << "\ngradeBook1's course name is: "
26 << gradeBook1.getCourseName()
27 << "\ngradeBook2's course name is: "
28 << gradeBook2.getCourseName() << endl;
29 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBook1's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBook1's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Software Engineering Observation 3.4
Making data members private and controlling access, especially write access, to those
data members through public member functions helps ensure data integrity.

Error-Prevention Tip 3.5
The benefits of data integrity are not automatic simply because data members are made
private—you must provide appropriate validity checking and report the errors.

Fig. 3.17 | Creating and manipulating a GradeBook object in which the course name is limited
to 25 characters in length. (Part 2 of 2.)

GradeBook gradeBook1("CS101 Introduction to Programming in C++");

gradeBook1.setCourseName("CS101 C++ Programming");

3.9 Wrap-Up 95

A class’s set functions can return values to the class’s clients indicating that attempts
were made to assign invalid data to objects of the class. A client can test the return value
of a set function to determine whether the attempt to modify the object was successful and
to take appropriate action. In C++, clients of objects can be notified of invalid values via
the exception-handling mechanism, which we begin discussing in Chapter 7 and present in-
depth in Chapter 16. To keep the program of Figs. 3.15–3.17 simple at this early point in
the book, setCourseName in Fig. 3.16 just prints an appropriate message.

3.9 Wrap-Up
In this chapter, you created user-defined classes, and created and used objects of those
classes. We declared data members of a class to maintain data for each object of the class.
We also defined member functions that operate on that data. You learned how to call an
object’s member functions to request the services the object provides and how to pass data
to those member functions as arguments. We discussed the difference between a local vari-
able of a member function and a data member of a class. We also showed how to use a
constructor to specify initial values for an object’s data members. You learned how to sep-
arate the interface of a class from its implementation to promote good software engineer-
ing. We presented a diagram that shows the files that class-implementation programmers
and client-code programmers need to compile the code they write. We demonstrated how
set functions can be used to validate an object’s data and ensure that objects are maintained
in a consistent state. UML class diagrams were used to model classes and their construc-
tors, member functions and data members. In the next chapter, we begin our introduction
to control statements, which specify the order in which a function’s actions are performed.

Summary
Section 3.2 Defining a Class with a Member Function
• A class definition (p. 66) contains the data members and member functions that define the class’s

attributes and behaviors, respectively.

• A class definition begins with the keyword class followed immediately by the class name.

• By convention, the name of a user-defined class (p. 67) begins with a capital letter and, for read-
ability, each subsequent word in the class name begins with a capital letter.

• Every class’s body (p. 66) is enclosed in a pair of braces ({ and }) and ends with a semicolon.

• Member functions that appear after access specifier public (p. 66) can be called by other func-
tions in a program and by member functions of other classes.

• Access specifiers are always followed by a colon (:).

• Keyword void (p. 67) is a special return type which indicates that a function will perform a task
but will not return any data to its calling function when it completes its task.

• By convention, function names (p. 67) begin with a lowercase first letter and all subsequent
words in the name begin with a capital letter.

• An empty set of parentheses after a function name indicates that the function does not require
additional data to perform its task.

• Every function’s body is delimited by left and right braces ({ and }).

• Typically, you cannot call a member function until you create an object of its class.

• Each new class you create becomes a new type in C++.

96 Chapter 3 Introduction to Classes, Objects and Strings

• In the UML, each class is modeled in a class diagram (p. 68) as a rectangle with three compart-
ments, which (top to bottom) contain the class’s name, attributes and operations, respectively.

• The UML models operations as the operation name followed by parentheses. A plus sign (+) pre-
ceding the name indicates a public operation (i.e., a public member function in C++).

Section 3.3 Defining a Member Function with a Parameter
• A member function can require one or more parameters (p. 68) that represent additional data it

needs to perform its task. A function call supplies an argument (p. 68) for each function parameter.

• A member function is called by following the object name with a dot (.) operator (p. 67), the
function name and a set of parentheses containing the function’s arguments.

• A variable of C++ Standard Library class string (p. 69) represents a string of characters. This
class is defined in header <string>, and the name string belongs to namespace std.

• Function getline (from header <string>, p. 70) reads characters from its first argument until a
newline character is encountered, then places the characters (not including the newline) in the
string variable specified as its second argument. The newline character is discarded.

• A parameter list (p. 70) may contain any number of parameters, including none at all (represent-
ed by empty parentheses) to indicate that a function does not require any parameters.

• The number of arguments in a function call must match the number of parameters in the parameter
list of the called member function’s header. Also, the argument types in the function call must be
consistent with the types of the corresponding parameters in the function header.

• The UML models a parameter of an operation by listing the parameter name, followed by a colon
and the parameter type between the parentheses following the operation name.

• The UML has its own data types. Not all the UML data types have the same names as the cor-
responding C++ types. The UML type String corresponds to the C++ type string.

Section 3.4 Data Members, set Functions and get Functions
• Variables declared in a function’s body are local variables (p. 71) and can be used only from the

point of their declaration in the function to the immediately following closing right brace (}).

• A local variable must be declared before it can be used in a function. A local variable cannot be
accessed outside the function in which it’s declared.

• Data members (p. 71) normally are private (p. 73). Variables or functions declared private are
accessible only to member functions of the class in which they’re declared, or to friends of the class.

• When a program creates (instantiates) an object, its private data members are encapsulated (hid-
den, p. 74) in the object and can be accessed only by member functions of the object’s class.

• When a function that specifies a return type other than void is called and completes its task, the
function returns a result to its calling function.

• By default, the initial value of a string is the empty string (p. 75)—i.e., a string that does not
contain any characters. Nothing appears on the screen when an empty string is displayed.

• A class often provides public member functions to allow the class’s clients to set or get (p. 75)
private data members. The names of these member functions normally begin with set or get.

• Set and get functions allow clients of a class to indirectly access the hidden data. The client does
not know how the object performs these operations.

• A class’s set and get functions should be used by other member functions of the class to manipu-
late the class’s private data. If the class’s data representation is changed, member functions that
access the data only via the set and get functions will not require modification.

• A public set function should carefully scrutinize any attempt to modify the value of a data mem-
ber to ensure that the new value is appropriate for that data item.

Self-Review Exercises 97

• The UML represents data members as attributes by listing the attribute name, followed by a co-
lon and the attribute type. Private attributes are preceded by a minus sign (–) in the UML.

• The UML indicates the return type of an operation by placing a colon and the return type after
the parentheses following the operation name.

• UML class diagrams do not specify return types for operations that do not return values.

Section 3.5 Initializing Objects with Constructors
• Each class should provide a constructor (p. 77) to initialize an object of the class when the object

is created. A constructor must be defined with the same name as the class.
• A difference between constructors and functions is that constructors cannot return values, so they

cannot specify a return type (not even void). Normally, constructors are declared public.
• C++ requires a constructor call at the time each object is created, which helps ensure that every

object is initialized before it’s used in a program.
• A constructor with no parameters is a default constructor (p. 77). If you do not provide a con-

structor, the compiler provides a default constructor. You can also define a default constructor
explicitly. If you define a constructor for a class, C++ will not create a default constructor.

• The UML models constructors as operations in a class diagram’s third compartment with the
word “constructor” between guillemets (« and ») before the constructor’s name.

Section 3.6 Placing a Class in a Separate File for Reusability
• Class definitions, when packaged properly, can be reused by programmers worldwide.
• It’s customary to define a class in a header (p. 81) that has a .h filename extension.

Section 3.7 Separating Interface from Implementation
• If the class’s implementation changes, the class’s clients should not be required to change.
• Interfaces define and standardize the ways in which things such as people and systems interact.
• A class’s public interface (p. 85) describes the public member functions that are made available

to the class’s clients. The interface describes what services (p. 85) clients can use and how to re-
quest those services, but does not specify how the class carries out the services.

• Separating interface from implementation (p. 84) makes programs easier to modify. Changes in the
class’s implementation do not affect the client as long as the class’s interface remains unchanged.

• A function prototype (p. 85) contains a function’s name, its return type and the number, types
and order of the parameters the function expects to receive.

• Once a class is defined and its member functions are declared (via function prototypes), the
member functions should be defined in a separate source-code file.

• For each member function defined outside of its corresponding class definition, the function
name must be preceded by the class name and the binary scope resolution operator (::, p. 86).

Section 3.8 Validating Data with set Functions
• Class string’s length member function (p. 91) returns the number of characters in a string.
• Class string’s member function substr (p. 92) returns a new string containing a copy of part

of an existing string. The first argument specifies the starting position in the original string.
The second specifies the number of characters to copy.

Self-Review Exercises
3.1 Fill in the blanks in each of the following:

a) Every class definition contains the keyword followed immediately by the
class’s name.

b) A class definition is typically stored in a file with the filename extension.

98 Chapter 3 Introduction to Classes, Objects and Strings

c) Each parameter in a function header specifies both a(n) and a(n) .
d) When each object of a class maintains its own copy of an attribute, the variable that rep-

resents the attribute is also known as a(n) .
e) Keyword public is a(n) .
f) Return type indicates that a function will perform a task but will not return

any information when it completes its task.
g) Function from the <string> library reads characters until a newline character

is encountered, then copies those characters into the specified string.
h) When a member function is defined outside the class definition, the function header

must include the class name and the , followed by the function name to “tie”
the member function to the class definition.

i) The source-code file and any other files that use a class can include the class’s header via
a(n) preprocessor directive.

3.2 State whether each of the following is true or false. If false, explain why.
a) By convention, function names begin with a capital letter and all subsequent words in

the name begin with a capital letter.
b) Empty parentheses following a function name in a function prototype indicate that the

function does not require any parameters to perform its task.
c) Data members or member functions declared with access specifier private are accessi-

ble to member functions of the class in which they’re declared.
d) Variables declared in the body of a particular member function are known as data mem-

bers and can be used in all member functions of the class.
e) Every function’s body is delimited by left and right braces ({ and }).
f) Any source-code file that contains int main() can be used to execute a program.
g) The types of arguments in a function call must be consistent with the types of the cor-

responding parameters in the function prototype’s parameter list.

3.3 What is the difference between a local variable and a data member?

3.4 Explain the purpose of a function parameter. What’s the difference between a parameter
and an argument?

Answers to Self-Review Exercises
3.1 a) class. b) .h. c) type, name. d) data member. e) access specifier. f) void. g) getline.
h) binary scope resolution operator (::). i) #include.

3.2 a) False. Function names begin with a lowercase letter and all subsequent words in the
name begin with a capital letter. b) True. c) True. d) False. Such variables are local variables and can
be used only in the member function in which they’re declared. e) True. f) True. g) True.

3.3 A local variable is declared in the body of a function and can be used only from its declara-
tion to the closing brace of the block in which it’s declared. A data member is declared in a class,
but not in the body of any of the class’s member functions. Every object of a class has a separate
copy of the class’s data members. Data members are accessible to all member functions of the class.

3.4 A parameter represents additional information that a function requires to perform its task.
Each parameter required by a function is specified in the function header. An argument is the value
supplied in the function call. When the function is called, the argument value is passed into the
function parameter so that the function can perform its task.

Exercises
3.5 (Function Prototypes and Definitions) Explain the difference between a function prototype
and a function definition.

Exercises 99

3.6 (Default Constructor) What’s a default constructor? How are an object’s data members ini-
tialized if a class has only an implicitly defined default constructor?

3.7 (Data Members) Explain the purpose of a data member.

3.8 (Header and Source-Code Files) What’s a header? What’s a source-code file? Discuss the
purpose of each.

3.9 (Using a Class Without a using Directive) Explain how a program could use class string
without inserting a using directive.

3.10 (Set and Get Functions) Explain why a class might provide a set function and a get function
for a data member.

3.11 (Modifying Class GradeBook) Modify class GradeBook (Figs. 3.11–3.12) as follows:
a) Include a second string data member that represents the course instructor’s name.
b) Provide a set function to change the instructor’s name and a get function to retrieve it.
c) Modify the constructor to specify course name and instructor name parameters.
d) Modify function displayMessage to output the welcome message and course name,

then the string "This course is presented by: " followed by the instructor’s name.

Use your modified class in a test program that demonstrates the class’s new capabilities.

3.12 (Account Class) Create an Account class that a bank might use to represent customers’ bank
accounts. Include a data member of type int to represent the account balance. [Note: In subsequent
chapters, we’ll use numbers that contain decimal points (e.g., 2.75)—called floating-point values—
to represent dollar amounts.] Provide a constructor that receives an initial balance and uses it to ini-
tialize the data member. The constructor should validate the initial balance to ensure that it’s greater
than or equal to 0. If not, set the balance to 0 and display an error message indicating that the initial
balance was invalid. Provide three member functions. Member function credit should add an
amount to the current balance. Member function debit should withdraw money from the Account

and ensure that the debit amount does not exceed the Account’s balance. If it does, the balance
should be left unchanged and the function should print a message indicating "Debit amount exceed-

ed account balance." Member function getBalance should return the current balance. Create a
program that creates two Account objects and tests the member functions of class Account.

3.13 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four data members—a part num-
ber (type string), a part description (type string), a quantity of the item being purchased (type
int) and a price per item (type int). [Note: In subsequent chapters, we’ll use numbers that contain
decimal points (e.g., 2.75)—called floating-point values—to represent dollar amounts.] Your class
should have a constructor that initializes the four data members. Provide a set and a get function for
each data member. In addition, provide a member function named getInvoiceAmount that calcu-
lates the invoice amount (i.e., multiplies the quantity by the price per item), then returns the
amount as an int value. If the quantity is not positive, it should be set to 0. If the price per item is
not positive, it should be set to 0. Write a test program that demonstrates class Invoice’s capabilities.

3.14 (Employee Class) Create a class called Employee that includes three pieces of information as
data members—a first name (type string), a last name (type string) and a monthly salary (type
int). [Note: In subsequent chapters, we’ll use numbers that contain decimal points (e.g., 2.75)—
called floating-point values—to represent dollar amounts.] Your class should have a constructor that
initializes the three data members. Provide a set and a get function for each data member. If the
monthly salary is not positive, set it to 0. Write a test program that demonstrates class Employee’s
capabilities. Create two Employee objects and display each object’s yearly salary. Then give each Em-

ployee a 10 percent raise and display each Employee’s yearly salary again.

100 Chapter 3 Introduction to Classes, Objects and Strings

3.15 (Date Class) Create a class called Date that includes three pieces of information as data
members—a month (type int), a day (type int) and a year (type int). Your class should have a con-
structor with three parameters that uses the parameters to initialize the three data members. For the
purpose of this exercise, assume that the values provided for the year and day are correct, but ensure
that the month value is in the range 1–12; if it isn’t, set the month to 1. Provide a set and a get func-
tion for each data member. Provide a member function displayDate that displays the month, day
and year separated by forward slashes (/). Write a test program that demonstrates class Date’s capa-
bilities.

Making a Difference
3.16 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to the
American Heart Association (AHA) (www.americanheart.org/presenter.jhtml?identifier=4736),
the formula for calculating your maximum heart rate in beats per minute is 220 minus your age in
years. Your target heart rate is a range that is 50–85% of your maximum heart rate. [Note: These for-
mulas are estimates provided by the AHA. Maximum and target heart rates may vary based on the health,
fitness and gender of the individual. Always consult a physician or qualified health care professional before
beginning or modifying an exercise program.] Create a class called HeartRates. The class attributes
should include the person’s first name, last name and date of birth (consisting of separate attributes
for the month, day and year of birth). Your class should have a constructor that receives this data as
parameters. For each attribute provide set and get functions. The class also should include a function
getAge that calculates and returns the person’s age (in years), a function getMaxiumumHeartRate that
calculates and returns the person’s maximum heart rate and a function getTargetHeartRate that cal-
culates and returns the person’s target heart rate. Since you do not yet know how to obtain the current
date from the computer, function getAge should prompt the user to enter the current month, day
and year before calculating the person’s age. Write an application that prompts for the person’s in-
formation, instantiates an object of class HeartRates and prints the information from that object—
including the person’s first name, last name and date of birth—then calculates and prints the person’s
age in (years), maximum heart rate and target-heart-rate range.

3.17 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients to share their health profiles and his-
tories among their various health care professionals. This could improve the quality of health care,
help avoid drug conflicts and erroneous drug prescriptions, reduce costs and in emergencies, could
save lives. In this exercise, you’ll design a “starter” HealthProfile class for a person. The class attri-
butes should include the person’s first name, last name, gender, date of birth (consisting of separate
attributes for the month, day and year of birth), height (in inches) and weight (in pounds). Your class
should have a constructor that receives this data. For each attribute, provide set and get functions.
The class also should include functions that calculate and return the user’s age in years, maximum
heart rate and target-heart-rate range (see Exercise 3.16), and body mass index (BMI; see
Exercise 2.30). Write an application that prompts for the person’s information, instantiates an ob-
ject of class HealthProfile for that person and prints the information from that object—including
the person’s first name, last name, gender, date of birth, height and weight—then calculates and
prints the person’s age in years, BMI, maximum heart rate and target-heart-rate range. It should also
display the “BMI values” chart from Exercise 2.30. Use the same technique as Exercise 3.16 to cal-
culate the person’s age.

www.americanheart.org/presenter.jhtml?identifier=4736

4Control Statements: Part 1

Let’s all move one place on.
—Lewis Carroll

The wheel is come full circle.
—William Shakespeare

How many apples fell on
Newton’s head before he took the
hint!
—Robert Frost

All the evolution we know of
proceeds from the vague to the
definite.
—Charles Sanders Peirce

O b j e c t i v e s
In this chapter you’ll learn:

■ Basic problem-solving
techniques.

■ To develop algorithms
through the process of top-
down, stepwise refinement.

■ To use the if and if…else
selection statements to
choose among alternative
actions.

■ To use the while repetition
statement to execute
statements in a program
repeatedly.

■ Counter-controlled repetition
and sentinel-controlled
repetition.

■ To use the increment,
decrement and assignment
operators.

102 Chapter 4 Control Statements: Part 1

4.1 Introduction
Before writing a program to solve a problem, we must have a thorough understanding of
the problem and a carefully planned approach to solving it. When writing a program, we
must also understand the available building blocks and employ proven program construc-
tion techniques. In this chapter and in Chapter 5, Control Statements: Part 2, we discuss
these issues as we present the theory and principles of structured programming. The con-
cepts presented here are crucial to building effective classes and manipulating objects.

In this chapter, we introduce C++’s if, if…else and while statements, three of the
building blocks that allow you to specify the logic required for member functions to per-
form their tasks. We devote a portion of this chapter (and Chapters 5 and 7) to further
developing the GradeBook class. In particular, we add a member function to the GradeBook
class that uses control statements to calculate the average of a set of student grades.
Another example demonstrates additional ways to combine control statements. We intro-
duce C++’s assignment, increment and decrement operators. These additional operators
abbreviate and simplify many program statements.

4.2 Algorithms
Any solvable computing problem can be solved by executing of a series of actions in a spe-
cific order. A procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which the actions execute

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions execute is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to
work prepared to make critical decisions. Suppose the same steps are performed in a dif-
ferent order: (1) Get out of bed, (2) take off pajamas, (3) get dressed, (4) take a shower,
(5) eat breakfast, (6) carpool to work. In this case, our junior executive shows up for work

4.1 Introduction

4.2 Algorithms

4.3 Pseudocode

4.4 Control Structures

4.5 if Selection Statement

4.6 if…else Double-Selection
Statement

4.7 while Repetition Statement

4.8 Formulating Algorithms: Counter-
Controlled Repetition

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition

4.10 Formulating Algorithms: Nested
Control Statements

4.11 Assignment Operators
4.12 Increment and Decrement Operators
4.13 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

4.3 Pseudocode 103

soaking wet. Specifying the order in which statements (actions) execute is called program
control. This chapter investigates program control using C++’s control statements.

4.3 Pseudocode
Pseudocode (or “fake” code) is an artificial and informal language that helps you develop
algorithms without having to worry about the details of C++ language syntax. The pseudo-
code we present is helpful for developing algorithms that will be converted to structured
C++ programs. Pseudocode is similar to everyday English; it’s convenient and user friend-
ly, although it isn’t an actual computer programming language.

Pseudocode does not execute on computers. Rather, it helps you “think out” a pro-
gram before attempting to write it in a programming language, such as C++.

The style of pseudocode we present consists purely of characters, so you can type
pseudocode conveniently, using any editor program. A carefully prepared pseudocode pro-
gram can easily be converted to a corresponding C++ program. In many cases, this simply
requires replacing pseudocode statements with C++ equivalents.

Pseudocode normally describes only executable statements, which cause specific
actions to occur after you convert a program from pseudocode to C++ and the program is
compiled and run on a computer. Declarations (that do not have initializers or do not
involve constructor calls) are not executable statements. For example, the declaration

tells the compiler the type of variable counter and instructs the compiler to reserve space
in memory for the variable. This declaration does not cause any action—such as input,
output or a calculation—to occur when the program executes. We typically do not include
variable declarations in our pseudocode. Some programmers choose to list variables and
mention their purposes at the beginning of pseudocode programs.

Let’s look at an example of pseudocode that may be written to help a programmer
create the addition program of Fig. 2.5. This pseudocode (Fig. 4.1) corresponds to the
algorithm that inputs two integers from the user, adds these integers and displays their
sum. We show the complete pseudocode listing here—we’ll show how to create pseudo-
code from a problem statement later in the chapter.

Lines 1–2 correspond to the statements in lines 13–14 of Fig. 2.5. Notice that the
pseudocode statements are simply English statements that convey what task is to be per-
formed in C++. Likewise, lines 4–5 correspond to the statements in lines 16–17 of Fig. 2.5
and lines 7–8 correspond to the statements in lines 19 and 21 of Fig. 2.5.

int counter;

1 Prompt the user to enter the first integer
2 Input the first integer
3
4 Prompt the user to enter the second integer
5 Input the second integer
6
7 Add first integer and second integer, store result
8 Display result

Fig. 4.1 | Pseudocode for the addition program of Fig. 2.5.

104 Chapter 4 Control Statements: Part 1

4.4 Control Structures
Normally, statements in a program execute one after the other in the order in which
they’re written. This is called sequential execution. Various C++ statements we’ll soon dis-
cuss enable you to specify that the next statement to execute may be other than the next one
in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The finger
of blame was pointed at the goto statement, which allows you to specify a transfer of con-
trol to one of a wide range of possible destinations in a program (creating what’s often
called “spaghetti code”). The notion of so-called structured programming became almost
synonymous with “goto elimination.”

The research of Böhm and Jacopini1 demonstrated that programs could be written
without any goto statements. It became the challenge of the era for programmers to shift
their styles to “goto-less programming.” It was not until the 1970s that programmers
started taking structured programming seriously. The results have been impressive, as soft-
ware development groups have reported reduced development times, more frequent on-
time delivery of systems and more frequent within-budget completion of software proj-
ects. The key to these successes is that structured programs are clearer, are easier to debug,
test and modify and are more likely to be bug-free in the first place.

Böhm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures, namely, the sequence structure, the selection structure
and the repetition structure. The term “control structures” comes from the field of com-
puter science. When we introduce C++’s implementations of control structures, we’ll refer
to them in the terminology of the C++ standard document as “control statements.”

Sequence Structure in C++
The sequence structure is built into C++. Unless directed otherwise, the computer executes
C++ statements one after the other in the order in which they’re written—that is, in se-
quence. The UML activity diagram of Fig. 4.2 illustrates a typical sequence structure in
which two calculations are performed in order. C++ allows you to have as many actions as

1. Böhm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 366–371.

Fig. 4.2 | Sequence-structure activity diagram.

add 1 to counter

add grade to total Corresponding C++ statement:
total = total + grade;

Corresponding C++ statement:
counter = counter + 1;

4.4 Control Structures 105

you want in a sequence structure. As you’ll soon see, anywhere a single action may be
placed, you may place several actions in sequence.

In this figure, the two statements add a grade to a total variable and add the value 1
to a counter variable. Such statements might appear in a program that averages several stu-
dent grades. To calculate an average, the total of the grades being averaged is divided by
the number of grades. A counter variable would be used to keep track of the number of
values being averaged. You’ll see similar statements in the program of Section 4.8.

An activity diagram models the workflow (also called the activity) of a portion of a
software system. Such workflows may include a portion of an algorithm, such as the
sequence structure in Fig. 4.2. Activity diagrams are composed of special-purpose sym-
bols, such as action state symbols (a rectangle with its left and right sides replaced with
arcs curving outward), diamonds and small circles; these symbols are connected by tran-
sition arrows, which represent the flow of the activity.

Activity diagrams clearly show how control structures operate. Consider the
sequence-structure activity diagram of Fig. 4.2. It contains two action states that represent
actions to perform. Each action state contains an action expression—e.g., “add grade to
total” or “add 1 to counter”—that specifies a particular action to perform. Other actions
might include calculations or input/output operations. The arrows in the activity diagram
are called transition arrows. These arrows represent transitions, which indicate the order
in which the actions represented by the action states occur—the program that implements
the activities illustrated by the activity diagram in Fig. 4.2 first adds grade to total, then
adds 1 to counter.

The solid circle at the top of the diagram represents the activity’s initial state—the
beginning of the workflow before the program performs the modeled activities. The solid
circle surrounded by a hollow circle that appears at the bottom of the activity diagram rep-
resents the final state—the end of the workflow after the program performs its activities.

Figure 4.2 also includes rectangles with the upper-right corners folded over. These are
called notes in the UML—explanatory remarks that describe the purpose of symbols in
the diagram. Figure 4.2 uses UML notes to show the C++ code associated with each action
state in the activity diagram. A dotted line connects each note with the element that the
note describes. Activity diagrams normally do not show the C++ code that implements the
activity. We use notes for this purpose here to illustrate how the diagram relates to C++
code. For more information on the UML, see our optional case study, which appears in
Chapters 25–26, and visit our UML Resource Center at www.deitel.com/UML/.

Selection Statements in C++
C++ provides three types of selection statements (discussed in this chapter and Chapter 5).
The if selection statement either performs (selects) an action if a condition is true or skips
the action if the condition is false. The if…else selection statement performs an action
if a condition is true or performs a different action if the condition is false. The switch

selection statement (Chapter 5) performs one of many different actions, depending on the
value of an integer expression.

The if selection statement is a single-selection statement because it selects or ignores
a single action (or, as you’ll soon see, a single group of actions). The if…else statement
is called a double-selection statement because it selects between two different actions (or
groups of actions). The switch selection statement is called a multiple-selection state-
ment because it selects among many different actions (or groups of actions).

www.deitel.com/UML/

106 Chapter 4 Control Statements: Part 1

Repetition Statements in C++
C++ provides three types of repetition statements (also called looping statements or loops)
for performing statements repeatedly while a condition (called the loop-continuation con-
dition) remains true. These are the while, do…while and for statements. (Chapter 5
presents the do…while and for statements.) The while and for statements perform the
action (or group of actions) in their bodies zero or more times—if the loop-continuation
condition is initially false, the action (or group of actions) will not execute. The do…while

statement performs the action (or group of actions) in its body at least once.
Each of the words if, else, switch, while, do and for is a C++ keyword. Keywords

must not be used as identifiers, such as variable names, and must be spelled with only low-
ercase letters. Figure 4.3 provides a complete list of C++ keywords.

Summary of Control Statements in C++
C++ has only three kinds of control structures, which from this point forward we refer to
as control statements: the sequence statement, selection statements (three types—if,

Common Programming Error 4.1
Using a keyword as an identifier is a syntax error.

C++ Keywords

Keywords common to the C and C++ programming languages
auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

C++-only keywords
and and_eq asm bitand bitor

bool catch class compl const_cast

delete dynamic_cast explicit export false

friend inline mutable namespace new

not not_eq operator or or_eq

private protected public reinterpret_cast static_cast

template this throw true try

typeid typename using virtual wchar_t

xor xor_eq

C++0x keywords
alignof axiom char16_t char32_t concept

concept_map constexpr decltype late_check nullptr

requires static_assert thread_local

Fig. 4.3 | C++ keywords.

4.5 if Selection Statement 107

if…else and switch) and repetition statements (three types—while, for and
do…while). Each program combines these control statements as appropriate for the algo-
rithm the program implements. We can model each control statement as an activity dia-
gram with initial and final states that represent a control statement’s entry point and exit
point, respectively. These single-entry/single-exit control statements make it easy to
build programs—control statements are attached to one another by connecting the exit
point of one to the entry point of the next. This is similar to the way a child stacks building
blocks, so we call this control-statement stacking. You’ll see that there’s only one other
way to connect control statements—called control-statement nesting, in which one con-
trol statement is contained inside another.

4.5 if Selection Statement
Programs use selection statements to choose among alternative courses of action. For ex-
ample, suppose the passing grade on an exam is 60. The pseudocode statement

determines whether the condition “student’s grade is greater than or equal to 60” is true
or false. If the condition is true, “Passed” is printed and the next pseudocode statement
in order is “performed” (remember that pseudocode is not a real programming language).
If the condition is false, the print statement is ignored and the next pseudocode state-
ment in order is performed. The indentation of the second line is optional, but it’s recom-
mended because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement can be written in C++ as

The C++ code corresponds closely to the pseudocode. This is one of the properties of
pseudocode that make it such a useful program development tool.

Figure 4.4 illustrates the single-selection if statement. It contains what is perhaps the
most important symbol in an activity diagram—the diamond or decision symbol, which
indicates that a decision is to be made. A decision symbol indicates that the workflow will
continue along a path determined by the symbol’s associated guard conditions, which can
be true or false. Each transition arrow emerging from a decision symbol has a guard con-
dition (specified in square brackets above or next to the transition arrow). If a particular
guard condition is true, the workflow enters the action state to which that transition arrow
points. In Fig. 4.4, if the grade is greater than or equal to 60, the program prints “Passed”
to the screen, then transitions to the final state of this activity. If the grade is less than 60,
the program immediately transitions to the final state without displaying a message.

Software Engineering Observation 4.1
Any C++ program can be constructed from only seven different types of control statements
(sequence, if, if…else, switch, while, do…while and for) combined in only two
ways (control-statement stacking and control-statement nesting).

If student’s grade is greater than or equal to 60
Print “Passed”

if (grade >= 60)
cout << "Passed";

108 Chapter 4 Control Statements: Part 1

You saw in Chapter 2 that decisions can be based on conditions containing relational
or equality operators. Actually, in C++, a decision can be based on any expression—if the
expression evaluates to zero, it’s treated as false; if the expression evaluates to nonzero, it’s
treated as true. C++ provides the data type bool for variables that can hold only the values
true and false—each of these is a C++ keyword.

The if statement is a single-entry/single-exit statement. We’ll see that the activity dia-
grams for the remaining control statements also contain initial states, transition arrows,
action states that indicate actions to perform, decision symbols (with associated guard con-
ditions) that indicate decisions to be made and final states.

Envision seven bins, each containing only empty UML activity diagrams of one of the
seven types of control statements. Your task, then, is assembling a program from the
activity diagrams of as many of each type of control statement as the algorithm demands,
combining the activity diagrams in only two possible ways (stacking or nesting), then
filling in the action states and decisions with action expressions and guard conditions in a
manner appropriate to form a structured implementation for the algorithm. We’ll con-
tinue discussing the variety of ways in which actions and decisions may be written.

4.6 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition
is true; otherwise the action is skipped. The if…else double-selection statement allows
you to specify an action to perform when the condition is true and a different action to
perform when the condition is false. For example, the pseudocode statement

Fig. 4.4 | if single-selection statement activity diagram.

Portability Tip 4.1
For compatibility with earlier versions of C, which used integers for Boolean values, the
bool value true also can be represented by any nonzero value (compilers typically use 1)
and the bool value false also can be represented as the value zero.

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

print “Passed”
[grade >= 60]

[grade < 60]

4.6 if…else Double-Selection Statement 109

prints “Passed” if the student’s grade is greater than or equal to 60, but prints “Failed” if
the student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.”

The preceding pseudocode If…Else statement can be written in C++ as

The body of the else is also indented.

Figure 4.5 illustrates the the if…else statement’s flow of control.

Conditional Operator (?:)
C++ provides the conditional operator (?:), which is closely related to the if…else state-
ment. The conditional operator is C++’s only ternary operator—it takes three operands.
The operands, together with the conditional operator, form a conditional expression. The
first operand is a condition, the second operand is the value for the entire conditional ex-
pression if the condition is true and the third operand is the value for the entire condi-
tional expression if the condition is false. For example, the output statement

contains a conditional expression, grade >= 60 ? "Passed" : "Failed", that evaluates to
the string "Passed" if the condition grade >= 60 is true, but evaluates to "Failed" if the
condition is false. Thus, the statement with the conditional operator performs essentially
the same as the preceding if…else statement. As we’ll see, the precedence of the condi-
tional operator is low, so the parentheses in the preceding expression are required.

if (grade >= 60)
cout << "Passed";

else
cout << "Failed";

Good Programming Practice 4.1
Whatever indentation convention you choose should be applied consistently. It’s difficult
to read programs that do not obey uniform spacing conventions.

Good Programming Practice 4.2
If there are several levels of indentation, each level should be indented the same additional
amount of space to promote readability and maintainability.

Fig. 4.5 | if…else double-selection statement activity diagram.

cout << (grade >= 60 ? "Passed" : "Failed");

print “Passed”print “Failed”
[grade >= 60][grade < 60]

110 Chapter 4 Control Statements: Part 1

The values in a conditional expression also can be actions to execute. For example, the
following conditional expression also prints "Passed" or "Failed":

The preceding conditional expression is read, “If grade is greater than or equal to 60, then
cout << "Passed"; otherwise, cout << "Failed".” This, too, is comparable to the preced-
ing if…else statement. Conditional expressions can appear in some program locations
where if…else statements cannot.

Nested if…else Statements
Nested if…else statements test for multiple cases by placing if…else selection state-
ments inside other if…else selection statements. For example, the following pseudocode
if…else statement prints A for exam grades greater than or equal to 90, B for grades in
the range 80 to 89, C for grades in the range 70 to 79, D for grades in the range 60 to 69
and F for all other grades:

This pseudocode can be written in C++ as

Error-Prevention Tip 4.1
To avoid precedence problems (and for clarity), place conditional expressions (that appear
in larger expressions) in parentheses.

grade >= 60 ? cout << "Passed" : cout << "Failed";

If student’s grade is greater than or equal to 90
Print “A”

Else
If student’s grade is greater than or equal to 80

Print “B”
Else

If student’s grade is greater than or equal to 70
Print “C”

Else
If student’s grade is greater than or equal to 60

Print “D”
Else

Print “F”

if (studentGrade >= 90) // 90 and above gets "A"
cout << "A";

else
if (studentGrade >= 80) // 80-89 gets "B"

cout << "B";
else

if (studentGrade >= 70) // 70-79 gets "C"
cout << "C";

else
if (studentGrade >= 60) // 60-69 gets "D"

cout << "D";
else // less than 60 gets "F"

cout << "F";

4.6 if…else Double-Selection Statement 111

If studentGrade is greater than or equal to 90, the first four conditions are true, but only
the output statement after the first test executes. Then, the program skips the else-part of
the “outermost” if…else statement. Most write the preceding if…else statement as

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form is popular because it avoids deep indentation of the code to the
right, which can force lines to wrap.

Dangling-else Problem
The C++ compiler always associates an else with the immediately preceding if unless told
to do otherwise by the placement of braces ({ and }). This behavior can lead to what’s re-
ferred to as the dangling-else problem. For example,

appears to indicate that if x is greater than 5, the nested if statement determines whether
y is also greater than 5. If so, "x and y are > 5" is output. Otherwise, it appears that if x is
not greater than 5, the else part of the if…else outputs "x is <= 5".

Beware! This nested if…else statement does not execute as it appears. The compiler
actually interprets the statement as

in which the body of the first if is a nested if…else. The outer if statement tests wheth-
er x is greater than 5. If so, execution continues by testing whether y is also greater than 5.

if (studentGrade >= 90) // 90 and above gets "A"
cout << "A";

else if (studentGrade >= 80) // 80-89 gets "B"
cout << "B";

else if (studentGrade >= 70) // 70-79 gets "C"
cout << "C";

else if (studentGrade >= 60) // 60-69 gets "D"
cout << "D";

else // less than 60 gets "F"
cout << "F";

Performance Tip 4.1
A nested if…else statement can perform much faster than a series of single-selection if

statements because of the possibility of early exit after one of the conditions is satisfied.

Performance Tip 4.2
In a nested if…else statement, test the conditions that are more likely to be true at the
beginning of the nested statement. This will enable the nested if…else statement to run
faster by exiting earlier than if infrequently occurring cases were tested first.

if (x > 5)
if (y > 5)

cout << "x and y are > 5";
else

cout << "x is <= 5";

if (x > 5)
if (y > 5)

cout << "x and y are > 5";
else

cout << "x is <= 5";

112 Chapter 4 Control Statements: Part 1

If the second condition is true, the proper string—"x and y are > 5"—is displayed.7How-
ever, if the second condition is false, the string "x is <= 5" is displayed, even though we
know that x is greater than 5.

To force the nested if…else statement to execute as originally intended, we can
write it as follows:

The braces ({}) indicate to the compiler that the second if statement is in the body of the
first if and that the else is associated with the first if. Exercises 4.23–4.24 further inves-
tigate the dangling-else problem.

Blocks
The if selection statement expects only one statement in its body. Similarly, the if and
else parts of an if…else statement each expect only one body statement. To include sev-
eral statements in the body of an if or in either part of an if…else, enclose the statements
in braces ({ and }). A set of statements contained within a pair of braces is called a com-
pound statement or a block. We use the term “block” from this point forward.

The following example includes a block in the else part of an if…else statement.

In this case, if studentGrade is less than 60, the program executes both statements in the
body of the else and prints

Notice the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

would be outside the body of the else part of the if and would execute regardless of
whether the grade was less than 60. This is a logic error.

if (x > 5)
{

if (y > 5)
cout << "x and y are > 5";

}
else

cout << "x is <= 5";

Software Engineering Observation 4.2
A block can be placed anywhere in a program that a single statement can be placed.

if (studentGrade >= 60)
cout << "Passed.\n";

else
{

cout << "Failed.\n";
cout << "You must take this course again.\n";

}

Failed.
You must take this course again.

cout << "You must take this course again.\n";

4.7 while Repetition Statement 113

Just as a block can be placed anywhere a single statement can be placed, it’s also
possible to have no statement at all, which is called a null statement or an empty state-
ment. The null statement is represented by placing a semicolon (;) where a statement
would normally be.

4.7 while Repetition Statement
A repetition statement specifies that a program should repeat an action while some con-
dition remains true. The pseudocode statement

describes the repetition that occurs during a shopping trip. The condition, “there are more
items on my shopping list” is either true or false. If it’s true, then the action, “Purchase
next item and cross it off my list” is performed. This action will be performed repeatedly
while the condition remains true. The statement contained in the While repetition state-
ment constitutes the body of the While, which can be a single statement or a block. Even-
tually, the condition will become false (when the last item on the shopping list has been
purchased and crossed off the list). At this point, the repetition terminates, and the first
pseudocode statement after the repetition statement executes.

As an example of C++’s while repetition statement, consider a program segment
designed to find the first power of 3 larger than 100. Suppose the integer variable product
has been initialized to 3. When the following while repetition statement finishes exe-
cuting, product contains the result:

When the while statement begins execution, product’s value is 3. Each repetition multi-
plies product by 3, so product takes on the values 9, 27, 81 and 243 successively. When
product becomes 243, the while statement condition—product <= 100—becomes false.
This terminates the repetition, so the final value of product is 243. At this point, program
execution continues with the next statement after the while statement.

The UML activity diagram of Fig. 4.6 illustrates the flow of control that corresponds
to the preceding while statement. Once again, the symbols in the diagram (besides the ini-
tial state, transition arrows, a final state and three notes) represent an action state and a

Common Programming Error 4.2
Placing a semicolon after the condition in an if statement leads to a logic error in single-
selection if statements and a syntax error in double-selection if…else statements (when
the if part contains an actual body statement).

While there are more items on my shopping list
Purchase next item and cross it off my list

int product = 3;

while (product <= 100)
product = 3 * product;

Common Programming Error 4.3
Not providing, in the body of a while statement, an action that eventually causes the con-
dition in the while to become false normally results in a logic error called an infinite loop,
in which the repetition statement never terminates. This can make a program appear to
“hang” or “freeze” if the loop body does not contain statements that interact with the user.

114 Chapter 4 Control Statements: Part 1

decision. This diagram also introduces the UML’s merge symbol, which joins two flows
of activity into one flow of activity. The UML represents both the merge symbol and the
decision symbol as diamonds. In this diagram, the merge symbol joins the transitions from
the initial state and from the action state, so they both flow into the decision that deter-
mines whether the loop should begin (or continue) executing. The decision and merge
symbols can be distinguished by the number of “incoming” and “outgoing” transition
arrows. A decision symbol has one transition arrow pointing to the diamond and two or
more transition arrows pointing out from the diamond to indicate possible transitions
from that point. In addition, each transition arrow pointing out of a decision symbol has
a guard condition next to it. A merge symbol has two or more transition arrows pointing
to the diamond and only one transition arrow pointing from the diamond, to indicate mul-
tiple activity flows merging to continue the activity. Unlike the decision symbol, the merge
symbol does not have a counterpart in C++ code.

The diagram of Fig. 4.6 clearly shows the repetition of the while statement discussed
earlier in this section. The transition arrow emerging from the action state points to the
merge, which transitions back to the decision that’s tested each time through the loop until
the guard condition product > 100 becomes true. Then the while statement exits (reaches
its final state) and control passes to the next statement in sequence in the program.

4.8 Formulating Algorithms: Counter-Controlled
Repetition
To illustrate how programmers develop algorithms, this section and Section 4.9 solve two
variations of a class average problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (0 to 100) for this quiz are available to
you. Calculate and display the total of the grades and the class average.

Fig. 4.6 | while repetition statement UML activity diagram.

Performance Tip 4.3
A small performance improvement for code that executes many times in a loop can result
in substantial overall performance improvement.

triple product value

Corresponding C++ statement:
product = 3 * product;

decision
[product <= 100]

[product > 100]

merge

4.8 Formulating Algorithms: Counter-Controlled Repetition 115

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, calculate
the average and print the result.

Pseudocode Algorithm with Counter-Controlled Repetition
Let’s use pseudocode to list the actions to execute and specify the order in which these ac-
tions should occur. We use counter-controlled repetition to input the grades one at a
time. This technique uses a variable called a counter to control the number of times a
group of statements will execute (also known as the number of iterations of the loop).

Counter-controlled repetition is often called definite repetition because the number
of repetitions is known before the loop begins executing. In this example, repetition termi-
nates when the counter exceeds 10. This section presents a fully developed pseudocode
algorithm (Fig. 4.7) and a version of class GradeBook (Fig. 4.8–Fig. 4.9) that implements
the algorithm in a C++ member function. The section then presents an application
(Fig. 4.10) that demonstrates the algorithm in action. In Section 4.9 we demonstrate how
to use pseudocode to develop such an algorithm from scratch.

Note the references in the pseudocode algorithm of Fig. 4.7 to a total and a counter.
A total is a variable used to accumulate the sum of several values. A counter is a variable
used to count—in this case, the grade counter indicates which of the 10 grades is about to
be entered by the user. Variables used to store totals are normally initialized to zero before
being used in a program; otherwise, the sum would include the previous value stored in
the total’s memory location.

Enhancing GradeBook Validation
Let’s consider an enhancement we made to class GradeBook. In Fig. 3.16, our setCourse-
Name member function validated the course name by testing whether the course name’s

Software Engineering Observation 4.3
Experience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution. The process of producing a working C++
program from the algorithm is typically straightforward.

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Prompt the user to enter the next grade
6 Input the next grade
7 Add the grade into the total
8 Add one to the grade counter
9

10 Set the class average to the total divided by ten
11 Print the total of the grades for all students in the class
12 Print the class average

Fig. 4.7 | Pseudocode for solving the class average problem with counter-controlled repetition.

116 Chapter 4 Control Statements: Part 1

length was less than or equal to 25 characters, using an if statement. If this was true, the
course name would be set. This code was followed by an if statement that tested whether
the course name’s length was larger than 25 characters (in which case the course name
would be shortened). The second if statement’s condition is the exact opposite of the first
if statement’s condition. If one condition evaluates to true, the other must evaluate to
false. Such a situation is ideal for an if…else statement, so we’ve modified our code, re-
placing the two if statements with one if…else statement (lines 18–25 of Fig. 4.9).

Implementing Counter-Controlled Repetition in Class GradeBook
Class GradeBook (Fig. 4.8–Fig. 4.9) contains a constructor (declared in line 11 of Fig. 4.8
and defined in lines 9–12 of Fig. 4.9) that assigns a value to the class’s data member
courseName (declared in line 17 of Fig. 4.8). Lines 16–26, 29–32 and 35–29 of Fig. 4.9
define member functions setCourseName, getCourseName and displayMessage, respec-
tively. Lines 42–68 define member function determineClassAverage, which implements
the class average algorithm described by the pseudocode in Fig. 4.7.

1 // Fig. 4.8: GradeBook.h
2 // Definition of class GradeBook that determines a class average.
3 // Member functions are defined in GradeBook.cpp
4 #include <string> // program uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 GradeBook(string); // constructor initializes course name
12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message
15
16 private:
17 string courseName; // course name for this GradeBook
18 }; // end class GradeBook

Fig. 4.8 | Class average problem using counter-controlled repetition: GradeBook header.

1 // Fig. 4.9: GradeBook.cpp
2 // Member-function definitions for class GradeBook that solves the
3 // class average program with counter-controlled repetition.
4 #include <iostream>
5 #include "GradeBook.h" // include definition of class GradeBook
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument
9 GradeBook::GradeBook(string name)

10 {

Fig. 4.9 | Class average problem using counter-controlled repetition: GradeBook source code
file. (Part 1 of 3.)

void determineClassAverage(); // averages grades entered by the user

4.8 Formulating Algorithms: Counter-Controlled Repetition 117

11 setCourseName(name); // validate and store courseName
12 } // end GradeBook constructor
13
14 // function to set the course name;
15 // ensures that the course name has at most 25 characters
16 void GradeBook::setCourseName(string name)
17 {
18 if (name.length() <= 25) // if name has 25 or fewer characters
19 courseName = name; // store the course name in the object
20
21 { // set courseName to first 25 characters of parameter name
22 courseName = name.substr(0, 25); // select first 25 characters
23 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
24 << "Limiting courseName to first 25 characters.\n" << endl;
25 } // end if...else
26 } // end function setCourseName
27
28 // function to retrieve the course name
29 string GradeBook::getCourseName()
30 {
31 return courseName;
32 } // end function getCourseName
33
34 // display a welcome message to the GradeBook user
35 void GradeBook::displayMessage()
36 {
37 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
38 << endl;
39 } // end function displayMessage
40
41 // determine class average based on 10 grades entered by user
42
43 {
44 int total; // sum of grades entered by user
45
46 int grade; // grade value entered by user
47 int average; // average of grades
48
49 // initialization phase
50 total = 0; // initialize total
51
52
53 // processing phase
54 while () // loop 10 times
55 {
56 cout << "Enter grade: "; // prompt for input
57 cin >> grade; // input next grade
58 total = total + grade; // add grade to total
59
60 } // end while
61

Fig. 4.9 | Class average problem using counter-controlled repetition: GradeBook source code
file. (Part 2 of 3.)

else // if name is longer than 25 characters

void GradeBook::determineClassAverage()

int gradeCounter; // number of the grade to be entered next

gradeCounter = 1; // initialize loop counter

gradeCounter <= 10

gradeCounter = gradeCounter + 1; // increment counter by 1

118 Chapter 4 Control Statements: Part 1

Lines 44–47 (Fig. 4.9) declare local variables total, gradeCounter, grade and
average to be of type int. Variable grade stores the user input. Notice that the preceding
declarations appear in the body of member function determineClassAverage.

In this chapter’s versions of class GradeBook, we simply read and process a set of
grades. The averaging calculation is performed in member function determineClass-

Average using local variables—we do not preserve any information about student grades
in the class’s data members. In Chapter 7, Arrays and Vectors, we modify class GradeBook
to maintain the grades in memory using a data member that refers to a data structure
known as an array. This allows a GradeBook object to perform various calculations on a set
of grades without requiring the user to enter the grades multiple times.

Lines 50–51 initialize total to 0 and gradeCounter to 1 before they’re used in calcu-
lations. Counter variables are normally initialized to zero or one, depending on their use.
An uninitialized variable contains a “garbage” value (also called an undefined value)—the
value last stored in the memory location reserved for that variable. The variables grade and
average (for the user input and calculated average, respectively) need not be initialized—
their values will be assigned as they’re input or calculated later in the function.

Line 54 indicates that the while statement should continue looping (also called iter-
ating) as long as gradeCounter’s value is less than or equal to 10. While this condition
remains true, the while statement repeatedly executes the statements between the braces
that delimit its body (lines 55–60).

Line 56 displays the prompt "Enter grade: ". This line corresponds to the pseudo-
code statement “Prompt the user to enter the next grade.” Line 57 reads the grade entered by
the user and assigns it to variable grade. This line corresponds to the pseudocode state-
ment “Input the next grade.” Recall that variable grade was not initialized earlier in the pro-

62 // termination phase
63
64
65 // display total and average of grades
66 cout << "\nTotal of all 10 grades is " << total << endl;
67 cout << "Class average is " << average << endl;
68 } // end function determineClassAverage

Common Programming Error 4.4
Not initializing counters and totals can lead to logic errors.

Error-Prevention Tip 4.2
Initialize each counter and total, either in its declaration or in an assignment statement.
Totals are normally initialized to 0. Counters are normally initialized to 0 or 1, depend-
ing on how they’re used.

Good Programming Practice 4.3
Declare each variable on a separate line with its own comment for readability.

Fig. 4.9 | Class average problem using counter-controlled repetition: GradeBook source code
file. (Part 3 of 3.)

average = total / 10; // integer division yields integer result

4.8 Formulating Algorithms: Counter-Controlled Repetition 119

gram, because the program obtains the value for grade from the user during each iteration
of the loop. Line 58 adds the new grade entered by the user to the total and assigns the
result to total, which replaces its previous value.

Line 59 adds 1 to gradeCounter to indicate that the program has processed a grade
and is ready to input the next grade from the user. Incrementing gradeCounter eventually
causes gradeCounter to exceed 10. At that point the while loop terminates because its
condition (line 54) becomes false.

When the loop terminates, line 63 performs the averaging calculation and assigns its
result to the variable average. Line 66 displays the text "Total of all 10 grades is "

followed by variable total’s value. Line 67 then displays the text "Class average is "

followed by variable average’s value. Member function determineClassAverage then
returns control to the calling function (i.e., main in Fig. 4.10).

Demonstrating Class GradeBook
Figure 4.10 contains this application’s main function, which creates an object of class
GradeBook and demonstrates its capabilities. Line 9 of Fig. 4.10 creates a new GradeBook

object called myGradeBook. The string in line 9 is passed to the GradeBook constructor
(lines 9–12 of Fig. 4.9). Line 11 of Fig. 4.10 calls myGradeBook’s displayMessage mem-
ber function to display a welcome message to the user. Line 12 then calls myGradeBook’s
determineClassAverage member function to allow the user to enter 10 grades, for which
the member function then calculates and prints the average—the member function per-
forms the algorithm shown in the pseudocode of Fig. 4.7.

1 // Fig. 4.10: fig04_10.cpp
2 // Create GradeBook object and invoke its determineClassAverage function.
3 #include "GradeBook.h" // include definition of class GradeBook
4
5 int main()
6 {
7 // create GradeBook object myGradeBook and
8 // pass course name to constructor
9 GradeBook myGradeBook("CS101 C++ Programming");

10
11 myGradeBook.displayMessage(); // display welcome message
12
13 } // end main

Welcome to the grade book for
CS101 C++ Programming

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87

Fig. 4.10 | Class average problem using counter-controlled repetition: Creating an object of
class GradeBook (Fig. 4.8–Fig. 4.9) and invoking its determineClassAverage member function.
(Part 1 of 2.)

myGradeBook.determineClassAverage(); // find average of 10 grades

120 Chapter 4 Control Statements: Part 1

Notes on Integer Division and Truncation
The averaging calculation performed in response to the function call in line 12 of Fig. 4.10
produces an integer result. The sample execution indicates that the sum of the grade values
is 846, which, when divided by 10, should yield 84.6—a number with a decimal point.
However, the result of the calculation total / 10 (line 63 of Fig. 4.9) is the integer 84,
because total and 10 are both integers. Dividing two integers results in integer division—
any fractional part of the calculation is lost (i.e., truncated). We’ll see how to obtain a result
that includes a decimal point from the averaging calculation in the next section.

In Fig. 4.9, if line 63 used gradeCounter rather than 10, the output for this program
would display an incorrect value, 76. This would occur because in the final iteration of the
while statement, gradeCounter was incremented to the value 11 in line 59.

4.9 Formulating Algorithms: Sentinel-Controlled
Repetition
Let’s generalize the class average problem. Consider the following problem:

Develop a class average program that processes grades for an arbitrary number of stu-
dents each time it’s run.

In the previous example, the problem statement specified the number of students, so the
number of grades (10) was known in advance. In this example, no indication is given of
how many grades the user will enter during the program’s execution. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Common Programming Error 4.5
Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
For example, 7 ÷ 4, which yields 1.75 in conventional arithmetic, truncates to 1 in inte-
ger arithmetic, rather than rounding to 2.

Common Programming Error 4.6
Using a loop’s counter-control variable in a calculation after the loop often causes a com-
mon logic error called an off-by-one error. In a counter-controlled loop that counts up by
one each time through the loop, the loop terminates when the counter’s value is one higher
than its last legitimate value (i.e., 11 in the case of counting from 1 to 10).

Fig. 4.10 | Class average problem using counter-controlled repetition: Creating an object of
class GradeBook (Fig. 4.8–Fig. 4.9) and invoking its determineClassAverage member function.
(Part 2 of 2.)

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 121

To solve this problem, we can use a special value called a sentinel value (also called a
signal value, a dummy value or a flag value) to indicate “end of data entry.” After typing
the legitimate grades, the user types the sentinel value to indicate that the last grade has
been entered. Sentinel-controlled repetition is often called indefinite repetition because
the number of repetitions is not known before the loop begins executing.

The sentinel value must be chosen so that it’s not confused with an acceptable input
value. Grades are normally nonnegative integers, so –1 is an acceptable sentinel value.
Thus, a run of the program might process inputs such as 95, 96, 75, 74, 89 and –1. The
program would then compute and print the class average for the grades 95, 96, 75, 74 and
89. Since –1 is the sentinel value, it should not enter into the averaging calculation.

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement: The Top
and First Refinement
We approach the class average program with a technique called top-down, stepwise re-
finement, a technique that’s essential to the development of well-structured programs. We
begin with a pseudocode representation of the top—a single statement that conveys the
overall function of the program:

The top is, in effect, a complete representation of a program. Unfortunately, the top (as in
this case) rarely conveys sufficient detail from which to write a program. So we now begin
the refinement process. We divide the top into a series of smaller tasks and list these in the
order in which they need to be performed. This results in the following first refinement.

This refinement uses only the sequence structure—these steps execute in order.

Proceeding to the Second Refinement
The preceding Software Engineering Observation is often all you need for the first refine-
ment in the top-down process. In the second refinement, we commit to specific variables.
In this example, we need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade as it’s input by the user
and a variable to hold the calculated average. The pseudocode statement

Determine the class average for the quiz for an arbitrary number of students

Initialize variables
Input, sum and count the quiz grades
Calculate and print the total of all student grades and the class average

Software Engineering Observation 4.4
Each refinement, as well as the top itself, is a complete specification of the algorithm; only
the level of detail varies.

Software Engineering Observation 4.5
Many programs can be divided logically into three phases: an initialization phase that
initializes the program variables; a processing phase that inputs data values and adjusts
program variables (such as counters and totals) accordingly; and a termination phase
that calculates and outputs the final results.

Initialize variables

122 Chapter 4 Control Statements: Part 1

can be refined as follows:

Only the variables total and counter need to be initialized before they’re used. The variables
average and grade (for the calculated average and the user input, respectively) need not be
initialized, because their values will be replaced as they’re calculated or input.

The pseudocode statement

requires a repetition statement (i.e., a loop) that successively inputs each grade. We don’t
know in advance how many grades are to be processed, so we’ll use sentinel-controlled
repetition. The user enters legitimate grades one at a time. After entering the last legiti-
mate grade, the user enters the sentinel value. The program tests for the sentinel value after
each grade is input and terminates the loop when the user enters the sentinel value. The
second refinement of the preceding pseudocode statement is then

In pseudocode, we do not use braces around the statements that form the body of the
While structure. We simply indent the statements under the While to show that they be-
long to the While. Again, pseudocode is only an informal program development aid.

The pseudocode statement

can be refined as follows:

We test for the possibility of division by zero—normally a fatal logic error that, if unde-
tected, would cause the program to fail (often called “crashing”). The complete second re-
finement of the pseudocode for the class average problem is shown in Fig. 4.11.

Initialize total to zero
Initialize counter to zero

Input, sum and count the quiz grades

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

Calculate and print the total of all student grades and the class average

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the total of the grades for all students in the class
Print the class average

else
Print “No grades were entered”

Common Programming Error 4.7
An attempt to divide by zero normally causes a fatal runtime error.

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 123

The pseudocode in Fig. 4.11 solves the more general class average problem. This
algorithm required only two levels of refinement. Sometimes more levels are necessary.

Implementing Sentinel-Controlled Repetition in Class GradeBook
Figures 4.12–4.13 show class GradeBook containing member function determineClass-

Average that implements the pseudocode algorithm of Fig. 4.11 (this class is demonstrat-
ed in Fig. 4.14). Although each grade entered is an integer, the averaging calculation is
likely to produce a number with a decimal point—in other words, a real number or float-

1 Initialize total to zero
2 Initialize counter to zero
3
4 Prompt the user to enter the first grade
5 Input the first grade (possibly the sentinel)
6
7 While the user has not yet entered the sentinel
8 Add this grade into the running total
9 Add one to the grade counter

10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 If the counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the total of the grades for all students in the class
16 Print the class average
17 else
18 Print “No grades were entered”

Fig. 4.11 | Class average problem pseudocode algorithm with sentinel-controlled repetition.

Error-Prevention Tip 4.3
When performing division by an expression whose value could be zero, explicitly test for
this possibility and handle it appropriately in your program (such as by printing an error
message) rather than allowing the fatal error to occur. We’ll say more about dealing with
these kinds of errors when we discuss exception handling.

Software Engineering Observation 4.6
Terminate the top-down, stepwise refinement process when the pseudocode algorithm is
specified in sufficient detail for you to be able to convert the pseudocode to C++. Typically,
implementing the C++ program is then straightforward.

Software Engineering Observation 4.7
Many experienced programmers write programs without ever using program development
tools like pseudocode. These programmers feel that their ultimate goal is to solve the
problem on a computer and that writing pseudocode merely delays the production of final
outputs. Although this method might work for simple and familiar problems, it can lead
to serious difficulties in large, complex projects.

124 Chapter 4 Control Statements: Part 1

ing-point number (e.g., 7.33, 0.0975 or 1000.12345). The type int cannot represent
such a number, so this class must use another type to do so. C++ provides several data types
for storing floating-point numbers in memory, including float and double. The primary
difference between these types is that, compared to float variables, double variables can
typically store numbers with larger magnitude and finer detail (i.e., more digits to the right
of the decimal point—also known as the number’s precision). This program introduces a
special operator called a cast operator to force the averaging calculation to produce a float-
ing-point numeric result.

1 // Fig. 4.12: GradeBook.h
2 // Definition of class GradeBook that determines a class average.
3 // Member functions are defined in GradeBook.cpp
4 #include <string> // program uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 GradeBook(string); // constructor initializes course name
12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message
15
16 private:
17 string courseName; // course name for this GradeBook
18 }; // end class GradeBook

Fig. 4.12 | Class average problem using sentinel-controlled repetition: GradeBook header.

1 // Fig. 4.13: GradeBook.cpp
2 // Member-function definitions for class GradeBook that solves the
3 // class average program with sentinel-controlled repetition.
4 #include <iostream>
5
6 #include "GradeBook.h" // include definition of class GradeBook
7 using namespace std;
8
9 // constructor initializes courseName with string supplied as argument

10 GradeBook::GradeBook(string name)
11 {
12 setCourseName(name); // validate and store courseName
13 } // end GradeBook constructor
14
15 // function to set the course name;
16 // ensures that the course name has at most 25 characters
17 void GradeBook::setCourseName(string name)
18 {

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook source code
file. (Part 1 of 3.)

void determineClassAverage(); // averages grades entered by the user

#include <iomanip> // parameterized stream manipulators

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 125

19 if (name.length() <= 25) // if name has 25 or fewer characters
20 courseName = name; // store the course name in the object
21 else // if name is longer than 25 characters
22 { // set courseName to first 25 characters of parameter name
23 courseName = name.substr(0, 25); // select first 25 characters
24 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
25 << "Limiting courseName to first 25 characters.\n" << endl;
26 } // end if...else
27 } // end function setCourseName
28
29 // function to retrieve the course name
30 string GradeBook::getCourseName()
31 {
32 return courseName;
33 } // end function getCourseName
34
35 // display a welcome message to the GradeBook user
36 void GradeBook::displayMessage()
37 {
38 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
39 << endl;
40 } // end function displayMessage
41
42 // determine class average based on 10 grades entered by user
43
44 {
45 int total; // sum of grades entered by user
46 int gradeCounter; // number of grades entered
47 int grade; // grade value
48
49
50 // initialization phase
51 total = 0; // initialize total
52
53
54 // processing phase
55
56
57
58
59
60
61 {
62 total = total + grade; // add grade to total
63 gradeCounter = gradeCounter + 1; // increment counter
64
65
66
67
68 } // end while
69

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook source code
file. (Part 2 of 3.)

void GradeBook::determineClassAverage()

double average; // number with decimal point for average

gradeCounter = 0; // initialize loop counter

// prompt for input and read grade from user
cout << "Enter grade or -1 to quit: ";
cin >> grade; // input grade or sentinel value

// loop until sentinel value read from user
while (grade != -1) // while grade is not -1

// prompt for input and read next grade from user
cout << "Enter grade or -1 to quit: ";
cin >> grade; // input grade or sentinel value

126 Chapter 4 Control Statements: Part 1

This example stacks control statements on top of one another—the while statement
(lines 60–68 of Fig. 4.13) is immediately followed by an if…else statement (lines 71–
83) in sequence. Much of the code in this program is identical to the code in Fig. 4.9, so
we concentrate on the new features and issues.

Line 48 declares the double variable average. Recall that we used an int variable in
the preceding example to store the class average. Using type double in the current example

70 // termination phase
71 if () // if user entered at least one grade...
72 {
73
74
75
76 // display total and average (with two digits of precision)
77 cout << "\nTotal of all " << gradeCounter << " grades entered is "
78 << total << endl;
79 cout << "Class average is " << << << average
80 << endl;
81 } // end if
82 else // no grades were entered, so output appropriate message
83 cout << "No grades were entered" << endl;
84 } // end function determineClassAverage

1 // Fig. 4.14: fig04_14.cpp
2 // Create GradeBook object and invoke its determineClassAverage function.
3 #include "GradeBook.h" // include definition of class GradeBook
4
5 int main()
6 {
7 // create GradeBook object myGradeBook and
8 // pass course name to constructor
9 GradeBook myGradeBook("CS101 C++ Programming");

10
11 myGradeBook.displayMessage(); // display welcome message
12 myGradeBook.determineClassAverage(); // find average of 10 grades
13 } // end main

Welcome to the grade book for
CS101 C++ Programming

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of all 3 grades entered is 257
Class average is 85.67

Fig. 4.14 | Class average problem using sentinel-controlled repetition: Creating a GradeBook
object and invoking its determineClassAverage member function.

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook source code
file. (Part 3 of 3.)

gradeCounter != 0

// calculate average of all grades entered
average = static_cast< double >(total) / gradeCounter;

setprecision(2) fixed

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 127

allows us to store the class average calculation’s result as a floating-point number. Line 52
initializes the variable gradeCounter to 0, because no grades have been entered yet.
Remember that this program uses sentinel-controlled repetition. To keep an accurate
record of the number of grades entered, the program increments variable gradeCounter

only when the user enters a valid grade value and the program completes the processing of
the grade. Finally, notice that both input statements (lines 57 and 67) are preceded by an
output statement that prompts the user for input.

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Compare the program logic for sentinel-controlled repetition in this application with that
for counter-controlled repetition in Fig. 4.9. In counter-controlled repetition, each itera-
tion of the while statement (lines 54–60 of Fig. 4.9) reads a value from the user, for the
specified number of iterations. In sentinel-controlled repetition, the program reads the
first value (lines 56–57 of Fig. 4.13) before reaching the while. This value determines
whether the program’s flow of control should enter the body of the while. If the condition
of the while is false, the user entered the sentinel value, so the body of the while does not
execute (i.e., no grades were entered). If, on the other hand, the condition is true, the body
begins execution, and the loop adds the grade value to the total (line 62) and increments
gradeCounter (line 63). Then lines 66–67 in the loop’s body prompt for and input the
next value from the user. Next, program control reaches the closing right brace (}) of the
body in line 68, so execution continues with the test of the while’s condition (line 60).
The condition uses the most recent grade input by the user to determine whether the
loop’s body should execute again. The value of variable grade is always input from the user
immediately before the program tests the while condition. This allows the program to de-
termine whether the value just input is the sentinel value before the program processes that
value (i.e., adds it to the total and increments gradeCounter). If the sentinel value is in-
put, the loop terminates, and the program does not add the value –1 to the total.

After the loop terminates, the if…else statement in lines 71–83 executes. The con-
dition in line 71 determines whether any grades were entered. If none were, the else part
(lines 82–83) of the if…else statement executes and displays the message "No grades

were entered" and the member function returns control to the calling function.
Notice the block in the while loop in Fig. 4.13. Without the braces, the last three

statements in the body of the loop would fall outside the loop, causing the computer to
interpret this code incorrectly, as follows:

Good Programming Practice 4.4
Prompt the user for each keyboard input. The prompt should indicate the form of the in-
put and any special input values. In a sentinel-controlled loop, the prompts requesting
data entry should explicitly remind the user what the sentinel value is.

// loop until sentinel value read from user
while (grade != -1)

total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
cout << "Enter grade or -1 to quit: ";
cin >> grade;

128 Chapter 4 Control Statements: Part 1

This would cause an infinite loop in the program if the user did not input –1 for the first
grade (in line 57).

Floating-Point Number Precision and Memory Requirements
Variables of type float represent single-precision floating-point numbers and have ap-
proximately seven significant digits on most 32-bit systems. Variables of type double rep-
resent double-precision floating-point numbers. These require twice as much memory as
float variables and provide approximately 15 significant digits on most 32-bit systems—
approximately double the precision of float variables. Most programmers represent float-
ing-point numbers with type double. In fact, C++ treats all floating-point numbers you
type in a program’s source code (such as 7.33 and 0.0975) as double values by default.
Such values in the source code are known as floating-point constants. See Appendix C,
Fundamental Types, for the ranges of values for floats and doubles.

In conventional arithmetic, floating-point numbers often arise as a result of divi-
sion—when we divide 10 by 3, the result is 3.3333333…, with the sequence of 3s
repeating infinitely. The computer allocates only a fixed amount of space to hold such a
value, so clearly the stored floating-point value can be only an approximation.

Although floating-point numbers are not always 100 percent precise, they have
numerous applications. For example, when we speak of a “normal” body temperature of
98.6, we do not need to be precise to a large number of digits. When we read the temper-
ature on a thermometer as 98.6, it may actually be 98.5999473210643. Calling this
number simply 98.6 is fine for most applications involving body temperatures. Due to the
imprecise nature of floating-point numbers, type double is preferred over type float,
because double variables can represent floating-point numbers more accurately. For this
reason, we use type double throughout the book.

Converting Between Fundamental Types Explicitly and Implicitly
The variable average is declared to be of type double (line 48 of Fig. 4.13) to capture the
fractional result of our calculation. However, total and gradeCounter are both integer
variables. Recall that dividing two integers results in integer division, in which any frac-
tional part of the calculation is lost truncated). In the following statement:

the division occurs first—the result’s fractional part is lost before it’s assigned to average.
To perform a floating-point calculation with integers, we must create temporary floating-
point values. C++ provides the unary cast operator to accomplish this task. Line 74 uses
the cast operator static_cast<double>(total) to create a temporary floating-point copy

Common Programming Error 4.8
Omitting the braces that delimit a block can lead to logic errors, such as infinite loops. To
prevent this problem, some programmers enclose the body of every control statement in
braces, even if the body contains only a single statement.

Common Programming Error 4.9
Using floating-point numbers in a manner that assumes they’re represented exactly (e.g.,
using them in comparisons for equality) can lead to incorrect results. Floating-point num-
bers are represented only approximately.

average = total / gradeCounter;

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 129

of its operand in parentheses—total. Using a cast operator in this manner is called explic-
it conversion. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double version
of total) divided by the integer gradeCounter. The compiler knows how to evaluate only
expressions in which the operand types are identical. To ensure that the operands are of
the same type, the compiler performs an operation called promotion (also called implicit
conversion) on selected operands. For example, in an expression containing values of data
types int and double, C++ promotes int operands to double values. In our example, we
are treating total as a double (by using the unary cast operator), so the compiler promotes
gradeCounter to double, allowing the calculation to be performed—the result of the
floating-point division is assigned to average. In Chapter 6, Functions and an Introduc-
tion to Recursion, we discuss all the fundamental data types and their order of promotion.

Cast operators are available for use with every data type and with class types as well.
The static_cast operator is formed by following keyword static_cast with angle
brackets (< and >) around a data-type name. The cast operator is a unary operator—an
operator that takes only one operand. In Chapter 2, we studied the binary arithmetic oper-
ators. C++ also supports unary versions of the plus (+) and minus (-) operators, so that you
can write such expressions as -7 or +5. Cast operators have higher precedence than other
unary operators, such as unary + and unary -. This precedence is higher than that of the
multiplicative operators *, / and %, and lower than that of parentheses. We indicate the
cast operator with the notation static_cast<type>() in our precedence charts.

Formatting for Floating-Point Numbers
The formatting capabilities in Fig. 4.13 are discussed here briefly and explained in depth
in Chapter 15, Stream Input/Output. The call to setprecision in line 79 (with an argu-
ment of 2) indicates that double variable average should be printed with two digits of pre-
cision to the right of the decimal point (e.g., 92.37). This call is referred to as a
parameterized stream manipulator (because of the 2 in parentheses). Programs that use
these calls must contain the preprocessor directive (line 5)

The manipulator endl is a nonparameterized stream manipulator (because it isn’t fol-
lowed by a value or expression in parentheses) and does not require the <iomanip> header.
If the precision is not specified, floating-point values are normally output with six digits of
precision (i.e., the default precision on most 32-bit systems today), although we’ll see an
exception to this in a moment.

The stream manipulator fixed (line 79) indicates that floating-point values should be
output in so-called fixed-point format, as opposed to scientific notation. Scientific nota-
tion is a way of displaying a number as a floating-point number between the values of 1.0
and 10.0, multiplied by a power of 10. For instance, the value 3,100.0 would be displayed
in scientific notation as 3.1 × 103. Scientific notation is useful when displaying values that
are very large or very small. Formatting using scientific notation is discussed further in
Chapter 15. Fixed-point formatting, on the other hand, is used to force a floating-point
number to display a specific number of digits. Specifying fixed-point formatting also
forces the decimal point and trailing zeros to print, even if the value is a whole number
amount, such as 88.00. Without the fixed-point formatting option, such a value prints in
C++ as 88 without the trailing zeros and without the decimal point. When the stream

#include <iomanip>

130 Chapter 4 Control Statements: Part 1

manipulators fixed and setprecision are used in a program, the printed value is rounded
to the number of decimal positions indicated by the value passed to setprecision (e.g.,
the value 2 in line 79), although the value in memory remains unaltered. For example, the
values 87.946 and 67.543 are output as 87.95 and 67.54, respectively. It’s also possible to
force a decimal point to appear by using stream manipulator showpoint. If showpoint is
specified without fixed, then trailing zeros will not print. Like endl, stream manipulators
fixed and showpoint do not use parameters, nor do they require the <iomanip> header.
Both can be found in header <iostream>.

Lines 79 and 80 of Fig. 4.13 output the class average rounded to the nearest hun-
dredth and with exactly two digits to the right of the decimal point. The parameterized
stream manipulator (line 79) indicates that variable average’s value should be displayed
with two digits of precision to the right of the decimal point—indicated by
setprecision(2). The three grades entered during the sample execution of the program
in Fig. 4.14 total 257, which yields the average 85.666666….

4.10 Formulating Algorithms: Nested Control Statements
For the next example, we once again formulate an algorithm by using pseudocode and top-
down, stepwise refinement, and write a corresponding C++ program. We’ve seen that con-
trol statements can be stacked on top of one another (in sequence). Here, we examine the
only other structured way control statements can be connected, namely, by nesting one
control statement within another. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, ten of the students who completed this course took the exam. The col-
lege wants to know how well its students did on the exam. You’ve been asked to write a
program to summarize the results. You’ve been given a list of these 10 students. Next to
each name is written a 1 if the student passed the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message “Enter result” each
time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process test results for 10 students. A counter-controlled loop
can be used because the number of test results is known in advance.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine whether the number is a 1 or a 2. We test for
a 1 in our algorithm. If the number is not a 1, we assume that it’s a 2.
(Exercise 4.20 considers the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number of students
who failed the exam.

4.10 Formulating Algorithms: Nested Control Statements 131

4. After the program has processed all the results, it must decide whether more than
eight students passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Once again, it’s important to emphasize that the top is a complete representation of the
program, but several refinements are likely to be needed before the pseudocode evolves
naturally into a C++ program.

Our first refinement is

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process and a
variable is needed to store the user input. The last variable is not initialized, because its val-
ue is read from the user during each iteration of the loop.

The pseudocode statement

can be refined as follows:

Notice that only the counters are initialized at the start of the algorithm.
The pseudocode statement

requires a loop that successively inputs the result of each exam. Here it’s known in advance
that there are precisely 10 exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop), an if…else statement will determine whether
each exam result is a pass or a failure and will increment the appropriate counter. The re-
finement of the preceding pseudocode statement is then

We use blank lines to isolate the If…Else control structure, which improves readability.

Analyze exam results and decide whether a bonus should be paid

Initialize variables
Input the 10 exam results, and count passes and failures
Display a summary of the exam results and decide whether a bonus should be paid

Initialize variables

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

Input the 10 exam results, and count passes and failures

While student counter is less than or equal to 10
Prompt the user to enter the next exam result
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

132 Chapter 4 Control Statements: Part 1

The pseudocode statement

can be refined as follows:

The complete second refinement appears in Fig. 4.15. Blank lines set off the While struc-
ture for readability. This pseudocode is now sufficiently refined for conversion to C++.

Conversion to Class Analysis
The program that implements the pseudocode algorithm is shown in Fig. 4.16. This ex-
ample does not contain a class—it contains just a source code file with function main per-
forming all the application’s work. In this chapter and in Chapter 3, you’ve seen examples
consisting of one class (including the header and source code files for this class), as well as
another source code file testing the class. This source code file contained function main,
which created an object of the class and called its member functions. Occasionally, when
it does not make sense to try to create a reusable class to demonstrate a concept, we’ll use
an example contained entirely within the main function of a single source code file.

Lines 9–12 declare the variables used to process the examination results. We’ve taken
advantage of a feature of C++ that allows variable initialization to be incorporated into

Display a summary of the exam results and decide whether a bonus should be paid

Display the number of passes
Display the number of failures

If more than eight students passed
Display “Bonus to instructor!”

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student counter to one
4
5 While student counter is less than or equal to 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed

10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15
16 Display the number of passes
17 Display the number of failures
18
19 If more than eight students passed
20 Display “Bonus to instructor!”

Fig. 4.15 | Pseudocode for examination-results problem.

4.10 Formulating Algorithms: Nested Control Statements 133

1 // Fig. 4.16: fig04_16.cpp
2 // Examination-results problem: Nested control statements.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10
11
12 int result; // one exam result (1 = pass, 2 = fail)
13
14 // process 10 students using counter-controlled loop
15 while (studentCounter <= 10)
16 {
17 // prompt user for input and obtain value from user
18 cout << "Enter result (1 = pass, 2 = fail): ";
19 cin >> result; // input result
20
21
22
23
24
25
26
27 // increment studentCounter so loop eventually terminates
28 studentCounter = studentCounter + 1;
29 } // end while
30
31 // termination phase; display number of passes and failures
32 cout << "Passed " << passes << "\nFailed " << failures << endl;
33
34 // determine whether more than eight students passed
35 if (passes > 8)
36 cout << "Bonus to instructor!" << endl;
37 } // end main

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Passed 6
Failed 4

Fig. 4.16 | Examination-results problem: Nested control statements. (Part 1 of 2.)

// initializing variables in declarations
int passes = 0; // number of passes
int failures = 0; // number of failures
int studentCounter = 1; // student counter

// if...else nested in while
if (result == 1) // if result is 1,

passes = passes + 1; // increment passes;
else // else result is not 1, so

failures = failures + 1; // increment failures

134 Chapter 4 Control Statements: Part 1

declarations (passes is initialized to 0, failures is initialized to 0 and studentCounter is
initialized to 1). Looping programs may require initialization at the beginning of each rep-
etition; such reinitialization normally would be performed by assignment statements
rather than in declarations or by moving the declarations inside the loop bodies.

The while statement (lines 15–29) loops 10 times. Each iteration inputs and pro-
cesses one exam result. The if…else statement (lines 22–25) for processing each result is
nested in the while statement. If the result is 1, the if…else statement increments
passes; otherwise, it assumes the result is 2 and increments failures. Line 28 incre-
ments studentCounter before the loop condition is tested again in line 15. After 10 values
have been input, the loop terminates and line 32 displays the number of passes and the
number of failures. The if statement in lines 35–36 determines whether more than
eight students passed the exam and, if so, outputs the message "Bonus to instructor!".

Figure 4.16 shows the input and output from two sample executions of the program.
At the end of the second sample execution, the condition in line 35 is true—more than
eight students passed the exam, so the program outputs a message indicating that the
instructor should receive a bonus.

4.11 Assignment Operators
C++ provides several assignment operators for abbreviating assignment expressions. For
example, the statement

can be abbreviated with the addition assignment operator += as

which adds the value of the expression on the operator’s right to the value of the variable on
the operator’s left and stores the result in the left-side variable. Any statement of the form

in which the same variable appears on both sides of the assignment operator and operator
is one of the binary operators +, -, *, /, or % (or a few others we’ll discuss later in the text),
can be written in the form

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed 9
Failed 1
Bonus to instructor!

c = c + 3;

c += 3;

variable = variable operator expression;

variable operator= expression;

Fig. 4.16 | Examination-results problem: Nested control statements. (Part 2 of 2.)

4.12 Increment and Decrement Operators 135

Thus the assignment c += 3 adds 3 to c. Figure 4.17 shows the arithmetic assignment op-
erators, sample expressions using these operators and explanations.

4.12 Increment and Decrement Operators
In addition to the arithmetic assignment operators, C++ also provides two unary operators
for adding 1 to or subtracting 1 from the value of a numeric variable. These are the unary
increment operator, ++, and the unary decrement operator, --, which are summarized in
Fig. 4.18. A program can increment by 1 the value of a variable called c using the incre-
ment operator, ++, rather than the expression c = c + 1 or c += 1. An increment or decre-
ment operator that’s prefixed to (placed before) a variable is referred to as the prefix
increment or prefix decrement operator, respectively. An increment or decrement opera-
tor that’s postfixed to (placed after) a variable is referred to as the postfix increment or
postfix decrement operator, respectively.

Using the prefix increment (or decrement) operator to add (or subtract) 1 from a vari-
able is known as preincrementing (or predecrementing) the variable. Preincrementing (or
predecrementing) causes the variable to be incremented (decremented) by 1, then the new
value of the variable is used in the expression in which it appears. Using the postfix incre-

Assignment
operator

Sample
expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 4.17 | Arithmetic assignment operators.

Operator Called
Sample
expression Explanation

++ preincrement ++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.18 | Increment and decrement operators.

136 Chapter 4 Control Statements: Part 1

ment (or decrement) operator to add (or subtract) 1 from a variable is known as postin-
crementing (or postdecrementing) the variable. Postincrementing (or postdecrementing)
causes the current value of the variable to be used in the expression in which it appears,
then the variable’s value is incremented (decremented) by 1.

Figure 4.19 demonstrates the difference between the prefix increment and postfix incre-
ment versions of the ++ increment operator. The decrement operator (--) works similarly.

Line 11 initializes c to 5, and line 12 outputs c’s initial value. Line 13 outputs the
value of the expression c++. This postincrements the variable c, so c’s original value (5) is
output, then c’s value is incremented. Thus, line 13 outputs c’s initial value (5) again. Line
14 outputs c’s new value (6) to prove that the variable’s value was incremented in line 13.

Line 19 resets c’s value to 5, and line 20 outputs that value. Line 21 outputs the value
of the expression ++c. This expression preincrements c, so its value is incremented, then

Good Programming Practice 4.5
Unlike binary operators, the unary increment and decrement operators should be placed
next to their operands, with no intervening spaces.

1 // Fig. 4.19: fig04_19.cpp
2 // Preincrementing and postincrementing.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int c;
9

10 // demonstrate postincrement
11 c = 5; // assign 5 to c
12 cout << c << endl; // print 5
13
14
15
16 cout << endl; // skip a line
17
18 // demonstrate preincrement
19 c = 5; // assign 5 to c
20
21
22 cout << c << endl; // print 6
23 } // end main

5
5
6

5
6
6

Fig. 4.19 | Preincrementing and postincrementing.

cout << c++ << endl; // print 5 then postincrement
cout << c << endl; // print 6

cout << c << endl; // print 5
cout << ++c << endl; // preincrement then print 6

4.12 Increment and Decrement Operators 137

the new value (6) is output. Line 22 outputs c’s value again to show that the value of c is
still 6 after line 21 executes.

The arithmetic assignment operators and the increment and decrement operators can
be used to simplify program statements. The three assignment statements in Fig. 4.16:

can be written more concisely with assignment operators as

with prefix increment operators as

or with postfix increment operators as

When you increment (++) or decrement (--) an integer variable in a statement by
itself, the preincrement and postincrement forms have the same logical effect, and the pre-
decrement and postdecrement forms have the same logical effect. It’s only when a variable
appears in the context of a larger expression that preincrementing the variable and postin-
crementing the variable have different effects (and similarly for predecrementing and post-
decrementing).

Figure 4.20 shows the precedence and associativity of the operators introduced to this
point. The operators are shown top-to-bottom in decreasing order of precedence. The
second column indicates the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators preincrement (++), predec-
rement (--), plus (+) and minus (-), and the assignment operators =, +=, -=, *=, /= and %=

associate from right to left. All other operators in Fig. 4.20 associate from left to right. The
third column names the various groups of operators.

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

passes += 1;
failures += 1;
studentCounter += 1;

++passes;
++failures;
++studentCounter;

passes++;
failures++;
studentCounter++;

Common Programming Error 4.10
Attempting to use the increment or decrement operator on an expression other than a mod-
ifiable variable name or reference, e.g., writing ++(x + 1), is a syntax error.

Operators Associativity Type

:: left to right scope resolution

() [See caution in Fig. 2.10] grouping parentheses

Fig. 4.20 | Operator precedence for the operators encountered so far in the text. (Part 1 of 2.)

138 Chapter 4 Control Statements: Part 1

4.13 Wrap-Up
This chapter presented basic problem-solving techniques that you use in building classes
and developing member functions for these classes. We demonstrated how to construct an
algorithm (i.e., an approach to solving a problem) in pseudocode, then how to refine the
algorithm through pseudocode development, resulting in C++ code that can be executed
as part of a function. You learned how to use top-down, stepwise refinement to plan out
the actions that a function must perform and the order in which it must perform them.

You learned that only three types of control structures—sequence, selection and rep-
etition—are needed to develop any algorithm. We demonstrated two of C++’s selection
statements—the if single-selection statement and the if…else double-selection state-
ment. The if statement is used to execute a set of statements based on a condition—if the
condition is true, the statements execute; if it isn’t, the statements are skipped. The
if…else double-selection statement is used to execute one set of statements if a condition
is true, and another set of statements if the condition is false. We then discussed the while
repetition statement, where a set of statements are executed repeatedly as long as a condi-
tion is true. We used control-statement stacking to total and compute the average of a set
of student grades with counter- and sentinel-controlled repetition, and we used control-
statement nesting to analyze and make decisions based on a set of exam results. We intro-
duced assignment operators, which can be used for abbreviating statements. We presented
the increment and decrement operators, which can be used to add or subtract the value 1
from a variable. In the next chapter, we continue our discussion of control statements,
introducing the for, do…while and switch statements.

++ -- static_cast<type>() left to right unary (postfix)

++ -- + - right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Operators Associativity Type

Fig. 4.20 | Operator precedence for the operators encountered so far in the text. (Part 2 of 2.)

Summary
Section 4.2 Algorithms
• An algorithm (p. 102) is a procedure for solving a problem in terms of the actions to execute and

the order in which to execute them.

• Specifying the order in which statements execute in a program is called program control (p. 103).

Summary 139

Section 4.3 Pseudocode
• Pseudocode (p. 103) helps you think out a program before writing it in a programming language.

Section 4.4 Control Structures
• An activity diagram models the workflow (also called the activity, p. 105) of a software system.

• Activity diagrams (p. 105) are composed of symbols, such as action state symbols, diamonds and
small circles, that are connected by transition arrows representing the flow of the activity.

• Like pseudocode, activity diagrams help you develop and represent algorithms.

• An action state is represented as a rectangle with its left and right sides replaced with arcs curving
outward. The action expression (p. 105) appears inside the action state.

• The arrows in an activity diagram represent transitions (p. 105), which indicate the order in
which the actions represented by action states occur.

• The solid circle in an activity diagram represents the initial state (p. 105)—the beginning of the
workflow before the program performs the modeled actions.

• The solid circle surrounded by a hollow circle that appears at the bottom of the activity diagram
represents the final state (p. 105)—the end of the workflow after the program performs its actions.

• Rectangles with the upper-right corners folded over are called notes (p. 105) in the UML. A dot-
ted line (p. 105) connects each note with the element that the note describes.

• A decision symbol (p. 107) in an activity diagram indicates that a decision is to be made. The
workflow follows a path determined by the associated guard conditions. Each transition arrow
emerging from a decision symbol has a guard condition. If a guard condition is true, the work-
flow enters the action state to which the transition arrow points.

• There are three types of control structures (p. 104)—sequence, selection and repetition.

• The sequence structure is built in—by default, statements execute in the order they appear.

• A selection structure chooses among alternative courses of action.

Section 4.5 if Selection Statement
• The if single-selection statement (p. 107) either performs (selects) an action if a condition is

true, or skips the action if the condition is false.

Section 4.6 if…else Double-Selection Statement
• The if…else double-selection statement (p. 108) performs (selects) an action if a condition is

true and performs a different action if the condition is false.

• To include several statements in an if’s body (or the body of an else for an if…else statement),
enclose the statements in braces ({ and }). A set of statements contained in braces is called a block
(p. 112). A block can be placed anywhere in a program that a single statement can be placed.

• A null statement (p. 113), indicating that no action is to be taken, is indicated by a semicolon (;).

Section 4.7 while Repetition Statement
• A repetition statement (p. 113) repeats an action while some condition remains true.

• A UML merge symbol (p. 114) has two or more transition arrows pointing to the diamond and
only one pointing from it, to indicate multiple activity flows merging to continue the activity.

Section 4.8 Formulating Algorithms: Counter-Controlled Repetition
• Counter-controlled repetition (p. 115) is used when the number of repetitions is known before

a loop begins executing, i.e., when there is definite repetition.

140 Chapter 4 Control Statements: Part 1

• The stream manipulator fixed (p. 129) indicates that floating-point values should be output in
so-called fixed-point format, as opposed to scientific notation.

Section 4.9 Formulating Algorithms: Sentinel-Controlled Repetition
• Top-down, stepwise refinement (p. 121) is a process for refining pseudocode by maintaining a

complete representation of the program during each refinement.

• Sentinel-controlled repetition (p. 122) is used when the number of repetitions is not known be-
fore a loop begins executing, i.e., when there is indefinite repetition.

• A value that contains a fractional part is referred to as a floating-point number and is represented
approximately by data types such as float and double (p. 124).

• The unary cast operator static_cast<double> (p. 124) can be used to create a temporary float-
ing-point copy of its operand.

• Unary operators (p. 129) take only one operand; binary operators take two.

• The parameterized stream manipulator setprecision (p. 129) indicates the number of digits of
precision that should be displayed to the right of the decimal point.

Section 4.10 Formulating Algorithms: Nested Control Statements
• A nested control statement (p. 130) appears in the body of another control statement.

Section 4.11 Assignment Operators
• The arithmetic operators +=, -=, *=, /= and %= abbreviate assignment expressions (p. 134).

Section 4.12 Increment and Decrement Operators
• The increment (++) and decrement (--) operators (p. 135) increment or decrement a variable by

1, respectively. If the operator is prefixed to the variable, the variable is incremented or decre-
mented by 1 first, then its new value is used in the expression in which it appears. If the operator
is postfixed to the variable, the variable is first used in the expression in which it appears, then
the variable’s value is incremented or decremented by 1.

Self-Review Exercises
4.1 Answer each of the following questions.

a) All programs can be written in terms of three types of control structures: ,
and .

b) The selection statement is used to execute one action when a condition is true
or a different action when that condition is false.

c) Repeating a set of instructions a specific number of times is called repeti-
tion.

d) When it isn’t known in advance how many times a set of statements will be repeated,
a(n) value can be used to terminate the repetition.

4.2 Write four different C++ statements that each add 1 to integer variable x.

4.3 Write C++ statements to accomplish each of the following:
a) In one statement, assign the sum of the current value of x and y to z and postincrement

the value of x.
b) Determine whether the value of the variable count is greater than 10. If it is, print

"Count is greater than 10."

c) Predecrement the variable x by 1, then subtract it from the variable total.
d) Calculate the remainder after q is divided by divisor and assign the result to q. Write

this statement two different ways.

Answers to Self-Review Exercises 141

4.4 Write C++ statements to accomplish each of the following tasks.
a) Declare variables sum and x to be of type int.
b) Set variable x to 1.
c) Set variable sum to 0.
d) Add variable x to variable sum and assign the result to variable sum.
e) Print "The sum is: " followed by the value of variable sum.

4.5 Combine the statements that you wrote in Exercise 4.4 into a program that calculates and
prints the sum of the integers from 1 to 10. Use the while statement to loop through the calculation
and increment statements. The loop should terminate when the value of x becomes 11.

4.6 State the values of each of these int variables after the calculation is performed. Assume that,
when each statement begins executing, all variables have the integer value 5.

a) product *= x++;

b) quotient /= ++x;

4.7 Write single C++ statements or portions of statements that do the following:
a) Input integer variable x with cin and >>.
b) Input integer variable y with cin and >>.
c) Set integer variable i to 1.
d) Set integer variable power to 1.
e) Multiply variable power by x and assign the result to power.
f) Preincrement variable i by 1.
g) Determine whether i is less than or equal to y.
h) Output integer variable power with cout and <<.

4.8 Write a C++ program that uses the statements in Exercise 4.7 to calculate x raised to the y

power. The program should have a while repetition statement.

4.9 Identify and correct the errors in each of the following:
a) while (c <= 5)

{

product *= c;

++c;

b) cin << value;

c) if (gender == 1)

cout << "Woman" << endl;

else;

cout << "Man" << endl;

4.10 What’s wrong with the following while repetition statement?

while (z >= 0)
sum += z;

Answers to Self-Review Exercises
4.1 a) Sequence, selection and repetition. b) if…else. c) Counter-controlled or definite.
d) Sentinel, signal, flag or dummy.

4.2 x = x + 1;

x += 1;

++x;

x++;

4.3 a) z = x++ + y;

142 Chapter 4 Control Statements: Part 1

b) if (count > 10)

cout << "Count is greater than 10" << endl;

c) total -= --x;

d) q %= divisor;

q = q % divisor;

4.4 a) int sum;

int x;

b) x = 1;

c) sum = 0;

d) sum += x;

or
sum = sum + x;

e) cout << "The sum is: " << sum << endl;

4.5 See the following code:

4.6 =a) product = 25, x = 6;

b) quotient = 0, x = 6;

1 // Exercise 4.5 Solution: ex04_05.cpp
2 // Calculate the sum of the integers from 1 to 10.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int sum; // stores sum of integers 1 to 10
9 int x; // counter

10
11 x = 1; // count from 1
12 sum = 0; // initialize sum
13
14 while (x <= 10) // loop 10 times
15 {
16 sum += x; // add x to sum
17 ++x; // increment x
18 } // end while
19
20 cout << "The sum is: " << sum << endl;
21 } // end main

The sum is: 55

1 // Exercise 4.6 Solution: ex04_06.cpp
2 // Calculate the value of product and quotient.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 5;
9 int product = 5;

10 int quotient = 5;
11
12 // part a
13 product *= x++; // part a statement

Answers to Self-Review Exercises 143

4.7 a) cin >> x;

b) cin >> y;

c) i = 1;

d) power = 1;

e) power *= x;

or
power = power * x;

f) ++i;

g) if (i <= y)

h) cout << power << endl;

4.8 See the following code:

14 cout << "Value of product after calculation: " << product << endl;
15 cout << "Value of x after calculation: " << x << endl << endl;
16
17 // part b
18 x = 5; // reset value of x
19 quotient /= ++x; // part b statement
20 cout << "Value of quotient after calculation: " << quotient << endl;
21 cout << "Value of x after calculation: " << x << endl << endl;
22 } // end main

Value of product after calculation: 25
Value of x after calculation: 6

Value of quotient after calculation: 0
Value of x after calculation: 6

1 // Exercise 4.8 Solution: ex04_08.cpp
2 // Raise x to the y power.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x; // base
9 int y; // exponent

10 int i; // counts from 1 to y
11 int power; // used to calculate x raised to power y
12
13 i = 1; // initialize i to begin counting from 1
14 power = 1; // initialize power
15
16 cout << "Enter base as an integer: "; // prompt for base
17 cin >> x; // input base
18
19 cout << "Enter exponent as an integer: "; // prompt for exponent
20 cin >> y; // input exponent
21
22 // count from 1 to y and multiply power by x each time
23 while (i <= y)
24 {
25 power *= x;
26 ++i;
27 } // end while
28
29 cout << power << endl; // display result
30 } // end main

144 Chapter 4 Control Statements: Part 1

4.9 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement c++;.

b) Error: Used stream insertion instead of stream extraction.
Correction: Change << to >>.

c) Error: Semicolon after else results in a logic error. The second output statement will
always be executed.
Correction: Remove the semicolon after else.

4.10 The value of the variable z is never changed in the while statement. Therefore, if the loop-
continuation condition (z >= 0) is initially true, an infinite loop is created. To prevent the infinite
loop, z must be decremented so that it eventually becomes less than 0.

Exercises
4.11 (Correct the Code Errors) Identify and correct the error(s) in each of the following:

a) if (age >= 65);

cout << "Age is greater than or equal to 65" << endl;

else

cout << "Age is less than 65 << endl";

b) if (age >= 65)

cout << "Age is greater than or equal to 65" << endl;

else;

cout << "Age is less than 65 << endl";

c) int x = 1, total;

while (x <= 10)

{

total += x;

++x;

}

d) While (x <= 100)

total += x;

++x;

e) while (y > 0)

{

cout << y << endl;

++y;

}

4.12 (What Does this Program Do?) What does the following program print?

Enter base as an integer: 2
Enter exponent as an integer: 3
8

1 // Exercise 4.12: ex04_12.cpp
2 // What does this program print?
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int y; // declare y

Exercises 145

For Exercises 4.13–4.16, perform each of these steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Write a C++ program.
d) Test, debug and execute the C++ program.

4.13 (Gas Mileage) Drivers are concerned with the mileage obtained by their automobiles. One
driver has kept track of several trips by recording miles driven and gallons used for each trip. Devel-
op a C++ program that uses a while statement to input the miles driven and gallons used for each
trip. The program should calculate and display the miles per gallon obtained for each trip and print
the combined miles per gallon obtained for all tankfuls up to this point.

4.14 (Credit Limits) Develop a C++ program that will determine whether a department-store
customer has exceeded the credit limit on a charge account. For each customer, the following facts
are available:

a) Account number (an integer)
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The program should use a while statement to input each of these facts, calculate the new bal-
ance (= beginning balance + charges – credits) and determine whether the new balance exceeds the
customer’s credit limit. For those customers whose credit limit is exceeded, the program should dis-
play the customer’s account number, credit limit, new balance and the message “Credit Limit
Exceeded.”

9 int x = 1; // initialize x
10 int total = 0; // initialize total
11
12 while (x <= 10) // loop 10 times
13 {
14 y = x * x; // perform calculation
15 cout << y << endl; // output result
16 total += y; // add y to total
17 x++; // increment counter x
18 } // end while
19
20 cout << "Total is " << total << endl; // display result
21 } // end main

Enter miles driven (-1 to quit): 287
Enter gallons used: 13
MPG this trip: 22.076923
Total MPG: 22.076923

Enter miles driven (-1 to quit): 200
Enter gallons used: 10
MPG this trip: 20.000000
Total MPG: 21.173913

Enter the miles driven (-1 to quit): 120
Enter gallons used: 5
MPG this trip: 24.000000
Total MPG: 21.678571

Enter the miles used (-1 to quit): -1

146 Chapter 4 Control Statements: Part 1

4.15 (Sales Commission Calculator) A large company pays its salespeople on a commission basis.
The salespeople each receive $200 per week plus 9% of their gross sales for that week. For example,
a salesperson who sells $5000 worth of chemicals in a week receives $200 plus 9% of $5000, or a
total of $650. Develop a C++ program that uses a while statement to input each salesperson’s gross
sales for last week and calculates and displays that salesperson’s earnings. Process one salesperson’s
figures at a time.

4.16 (Salary Calculator) Develop a C++ program that uses a while statement to determine the
gross pay for each of several employees. The company pays “straight time” for the first 40 hours
worked by each employee and pays “time-and-a-half” for all hours worked in excess of 40 hours.
You are given a list of the employees of the company, the number of hours each employee worked
last week and the hourly rate of each employee. Your program should input this information for
each employee and should determine and display the employee’s gross pay.

Enter account number (or -1 to quit): 100
Enter beginning balance: 5394.78
Enter total charges: 1000.00
Enter total credits: 500.00
Enter credit limit: 5500.00
New balance is 5894.78
Account: 100
Credit limit: 5500.00
Balance: 5894.78
Credit Limit Exceeded.

Enter Account Number (or -1 to quit): 200
Enter beginning balance: 1000.00
Enter total charges: 123.45
Enter total credits: 321.00
Enter credit limit: 1500.00
New balance is 802.45

Enter Account Number (or -1 to quit): -1

Enter sales in dollars (-1 to end): 5000.00
Salary is: $650.00

Enter sales in dollars (-1 to end): 6000.00
Salary is: $740.00

Enter sales in dollars (-1 to end): 7000.00
Salary is: $830.00

Enter sales in dollars (-1 to end): -1

Enter hours worked (-1 to end): 39
Enter hourly rate of the employee ($00.00): 10.00
Salary is $390.00

Enter hours worked (-1 to end): 40
Enter hourly rate of the employee ($00.00): 10.00
Salary is $400.00

Enter hours worked (-1 to end): 41
Enter hourly rate of the employee ($00.00): 10.00
Salary is $415.00

Enter hours worked (-1 to end): -1

Exercises 147

4.17 (Find the Largest) The process of finding the largest number (i.e., the maximum of a group
of numbers) is used frequently in computer applications. For example, a program that determines
the winner of a sales contest inputs the number of units sold by each salesperson. The salesperson
who sells the most units wins the contest. Write a C++ program that uses a while statement to de-
termine and print the largest number of 10 numbers input by the user. Your program should use
three variables, as follows:

counter: A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 10 numbers have been processed).

number: The current number input to the program.
largest: The largest number found so far.

4.18 (Tabular Output) Write a C++ program that uses a while statement and the tab escape se-
quence \t to print the following table of values:

4.19 (Find the Two Largest Numbers) Using an approach similar to that in Exercise 4.17, find
the two largest values among the 10 numbers. [Note: You must input each number only once.]

4.20 (Validating User Input) The examination-results program of Fig. 4.16 assumes that any val-
ue input by the user that’s not a 1 must be a 2. Modify the application to validate its inputs. On any
input, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

4.21 (What Does this Program Do?) What does the following program print?

4.22 (What Does this Program Do?) What does the following program print?

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

1 // Exercise 4.21: ex04_21.cpp
2 // What does this program print?
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int count = 1; // initialize count
9

10 while (count <= 10) // loop 10 times
11 {
12 // output line of text
13 cout << (count % 2 ? "****" : "++++++++") << endl;
14 ++count; // increment count
15 } // end while
16 } // end main

1 // Exercise 4.22: ex04_22.cpp
2 // What does this program print?
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

148 Chapter 4 Control Statements: Part 1

4.23 (Dangling-else Problem) State the output for each of the following when x is 9 and y is 11
and when x is 11 and y is 9. The compiler ignores the indentation in a C++ program. The C++ com-
piler always associates an else with the previous if unless told to do otherwise by the placement of
braces {}. On first glance, you may not be sure which if and else match, so this is referred to as
the “dangling-else” problem. We eliminated the indentation from the following code to make the
problem more challenging. [Hint: Apply indentation conventions you’ve learned.]

a) if (x < 10)

if (y > 10)

cout << "*****" << endl;

else

cout << "#####" << endl;

cout << "$$$$$" << endl;

b) if (x < 10)

{

if (y > 10)

cout << "*****" << endl;

}

else

{

cout << "#####" << endl;

cout << "$$$$$" << endl;

}

4.24 (Another Dangling-else Problem) Modify the following code to produce the output shown.
Use proper indentation techniques. You must not make any changes other than inserting braces.
The compiler ignores indentation in a C++ program. We eliminated the indentation from the fol-
lowing code to make the problem more challenging. [Note: It’s possible that no modification is nec-
essary.]

if (y == 8)
if (x == 5)
cout << "@@@@@" << endl;
else
cout << "#####" << endl;
cout << "$$$$$" << endl;
cout << "&&&&&" << endl;

8 int row = 10; // initialize row
9 int column; // declare column

10
11 while (row >= 1) // loop until row < 1
12 {
13 column = 1; // set column to 1 as iteration begins
14
15 while (column <= 10) // loop 10 times
16 {
17 cout << (row % 2 ? "<" : ">"); // output
18 ++column; // increment column
19 } // end inner while
20
21 --row; // decrement row
22 cout << endl; // begin new output line
23 } // end outer while
24 } // end main

Exercises 149

a) Assuming x = 5 and y = 8, the following output is produced.

b) Assuming x = 5 and y = 8, the following output is produced.

c) Assuming x = 5 and y = 8, the following output is produced.

d) Assuming x = 5 and y = 7, the following output is produced. [Note: The last three out-
put statements after the else are all part of a block.]

4.25 (Square of Asterisks) Write a program that reads in the size of the side of a square then prints
a hollow square of that size out of asterisks and blanks. Your program should work for squares of all
side sizes between 1 and 20. For example, if your program reads a size of 5, it should print

4.26 (Palindromes) A palindrome is a number or a text phrase that reads the same backward as
forward. For example, each of the following five-digit integers is a palindrome: 12321, 55555,
45554 and 11611. Write a program that reads in a five-digit integer and determines whether it’s a
palindrome. [Hint: Use the division and modulus operators to separate the number into its individ-
ual digits.]

4.27 (Printing the Decimal Equivalent of a Binary Number) Input an integer containing only 0s
and 1s (i.e., a “binary” integer) and print its decimal equivalent. Use the modulus and division op-
erators to pick off the “binary” number’s digits one at a time from right to left. Much as in the dec-
imal number system, where the rightmost digit has a positional value of 1, the next digit left has a
positional value of 10, then 100, then 1000, and so on, in the binary number system the rightmost
digit has a positional value of 1, the next digit left has a positional value of 2, then 4, then 8, and so
on. Thus the decimal number 234 can be interpreted as 2 * 100 + 3 * 10 + 4 * 1. The decimal equiv-
alent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8 or 1 + 0 + 4 + 8, or 13. [Note: To learn more
about binary numbers, refer to Appendix D.]

4.28 (Checkerboard Pattern of Asterisks) Write a program that displays the following checker-
board pattern. Your program must use only three output statements, one of each of the following
forms:

@@@@@
$$$$$
&&&&&

@@@@@

@@@@@
&&&&&

#####
$$$$$
&&&&&

* *
* *
* *

150 Chapter 4 Control Statements: Part 1

cout << "* ";
cout << ' ';
cout << endl;

4.29 (Multiples of 2 with an Infinite Loop) Write a program that prints the powers of the integer
2, namely 2, 4, 8, 16, 32, 64, etc. Your while loop should not terminate (i.e., you should create an
infinite loop). To do this, simply use the keyword true as the expression for the while statement.
What happens when you run this program?

4.30 (Calculating a Circle’s Diameter, Circumference and Area) Write a program that reads the
radius of a circle (as a double value) and computes and prints the diameter, the circumference and
the area. Use the value 3.14159 for π.

4.31 What’s wrong with the following statement? Provide the correct statement to accomplish
what the programmer was probably trying to do.

cout << ++(x + y);

4.32 (Sides of a Triangle) Write a program that reads three nonzero double values and deter-
mines and prints whether they could represent the sides of a triangle.

4.33 (Sides of a Right Triangle) Write a program that reads three nonzero integers and deter-
mines and prints whether they’re the sides of a right triangle.

4.34 (Factorial) The factorial of a nonnegative integer n is written n! (pronounced “n factorial”)
and is defined as follows:

n! = n · (n – 1) · (n – 2) · … · 1 (for values of n greater than 1)
and

n! = 1 (for n = 0 or n = 1).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120. Use while statements in each of the following:

a) Write a program that reads a nonnegative integer and computes and prints its factorial.
b) Write a program that estimates the value of the mathematical constant e by using the

formula:

Prompt the user for the desired accuracy of e (i.e., the number of terms in the summa-
tion).

c) Write a program that computes the value of ex by using the formula

Prompt the user for the desired accuracy of e (i.e., the number of terms in the summation).

Making a Difference
4.35 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

e 1
1
1!

1
2!

1
3!
----- …+ + + +=

ex 1
x
1!

x2

2!

x3

3!
----- …+ + + +=

Making a Difference 151

of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypt it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: Research “public key
cryptography” in general and the PGP (Pretty Good Privacy) specific public key scheme. You may
also want to investigate the RSA scheme, which is widely used in industrial-strength applications.]

4.36 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There is evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it is likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

5 Control Statements: Part 2

Not everything that can be
counted counts, and not every
thing that counts can be
counted.
—Albert Einstein

Who can control his fate?
—William Shakespeare

The used key is always bright.
—Benjamin Franklin

Intelligence … is the faculty of
making artificial objects,
especially tools to make tools.
—Henri Bergson

O b j e c t i v e s
In this chapter you’ll learn:

■ The essentials of counter-
controlled repetition.

■ To use for and do…while
to execute statements in a
program repeatedly.

■ To implement multiple
selection using the switch
selection statement.

■ How break and continue
alter the flow of control.

■ To use the logical operators
to form complex conditional
expressions in control
statements.

■ To avoid the consequences of
confusing the equality and
assignment operators.

5.1 Introduction 153

5.1 Introduction
In this chapter, we continue our presentation of structured programming by introducing
C++’s remaining control statements. The control statements we study here and those you
learned in Chapter 4 will help you build and manipulate objects. We continue our early
emphasis on object-oriented programming that began with a discussion of basic concepts
in Chapter 1 and extensive object-oriented code examples and exercises in Chapters 3–4.

In this chapter, we demonstrate the for, do…while and switch statements. Through
short examples using while and for, we explore counter-controlled repetition. We expand
the GradeBook class to use a switch statement to count the number of A, B, C, D and F
grades in a set of letter grades entered by the user. We introduce the break and continue

program control statements. We discuss the logical operators, which enable you to use
more powerful conditional expressions. We also examine the common error of confusing
the equality (==) and assignment (=) operators, and how to avoid it.

5.2 Essentials of Counter-Controlled Repetition
This section uses the while repetition statement to formalize the elements required to per-
form counter-controlled repetition. Counter-controlled repetition requires

1. the name of a control variable (or loop counter)

2. the initial value of the control variable

3. the loop-continuation condition that tests for the final value of the control vari-
able (i.e., whether looping should continue)

4. the increment (or decrement) by which the control variable is modified each
time through the loop.

The program in Fig. 5.1 prints the numbers from 1 to 10. The declaration in line 8
names the control variable (counter), declares it to be an integer, reserves space for it in
memory and sets it to an initial value of 1. Declarations that require initialization are exe-
cutable statements. In C++, it’s more precise to call a declaration that also reserves memory
a definition. Because definitions are declarations, too, we’ll use the term “declaration”
except when the distinction is important.

Variable counter (line 8) also could have been declared and initializeed with

5.1 Introduction
5.2 Essentials of Counter-Controlled

Repetition
5.3 for Repetition Statement
5.4 Examples Using the for Statement
5.5 do…while Repetition Statement
5.6 switchMultiple-Selection Statement

5.7 break and continue Statements
5.8 Logical Operators
5.9 Confusing the Equality (==) and

Assignment (=) Operators
5.10 Structured Programming Summary
5.11 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

int counter; // declare control variable
counter = 1; // initialize control variable to 1

154 Chapter 5 Control Statements: Part 2

Line 13 increments the loop counter by 1 each time the loop’s body is performed. The
loop-continuation condition (line 10) in the while statement determines whether the
value of the control variable is less than or equal to 10 (the final value for which the con-
dition is true). The body of this while executes even when the control variable is 10. The
loop terminates when the control variable is greater than 10 (i.e., when counter is 11).

Figure 5.1 can be made more concise by initializing counter to 0 and by replacing the
while statement with

This code saves a statement, because the incrementing is done in the while condition be-
fore the condition is tested. Also, the code eliminates the braces around the body of the
while, because the while now contains only one statement. Coding in such a condensed
fashion can lead to programs that are more difficult to read, debug, modify and maintain.

1 // Fig. 5.1: fig05_01.cpp
2 // Counter-controlled repetition.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10 while () // loop-continuation condition
11 {
12 cout << counter << " ";
13
14 } // end while
15
16 cout << endl; // output a newline
17 } // end main

1 2 3 4 5 6 7 8 9 10

Fig. 5.1 | Counter-controlled repetition.

while (++counter <= 10) // loop-continuation condition
cout << counter << " ";

Common Programming Error 5.1
Floating-point values are approximate, so controlling counting loops with floating-point
variables can result in imprecise counter values and inaccurate tests for termination.

Error-Prevention Tip 5.1
Control counting loops with integer values.

Good Programming Practice 5.1
Too many levels of nesting can make a program difficult to understand. As a rule, try to
avoid using more than three levels of indentation.

int counter = 1; // declare and initialize control variable

counter <= 10

++counter; // increment control variable by 1

5.3 for Repetition Statement 155

5.3 for Repetition Statement
In addition to while, C++ provides the for repetition statement, which specifies the
counter-controlled repetition details in a single line of code. To illustrate the power of for,
let’s rewrite the program of Fig. 5.1. The result is shown in Fig. 5.2.

When the for statement (lines 10–11) begins executing, the control variable counter
is declared and initialized to 1. Then, the loop-continuation condition (line 10 between
the semicolons) counter <= 10 is checked. The initial value of counter is 1, so the condi-
tion is satisfied and the body statement (line 11) prints the value of counter, namely 1.
Then, the expression ++counter increments control variable counter and the loop begins
again with the loop-continuation test. The control variable is now equal to 2, so the final
value is not exceeded and the program performs the body statement again. This process
continues until the loop body has executed 10 times and the control variable counter is
incremented to 11—this causes the loop-continuation test to fail and repetition to termi-
nate. The program continues by performing the first statement after the for statement (in
this case, the output statement in line 13).

for Statement Header Components
Figure 5.3 takes a closer look at the for statement header (line 10) of Fig. 5.2. Notice that
the for statement header “does it all”—it specifies each of the items needed for counter-
controlled repetition with a control variable. If there’s more than one statement in the
body of the for, braces are required to enclose the body of the loop.

If you incorrectly wrote counter < 10 as the loop-continuation condition in Fig. 5.2,
then the loop would execute only 9 times. This is a common off-by-one error.

1 // Fig. 5.2: fig05_02.cpp
2 // Counter-controlled repetition with the for statement.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10
11
12
13 cout << endl; // output a newline
14 } // end main

1 2 3 4 5 6 7 8 9 10

Fig. 5.2 | Counter-controlled repetition with the for statement.

Common Programming Error 5.2
Using an incorrect relational operator or using an incorrect final value of a loop counter
in the condition of a while or for statement can cause off-by-one errors.

// for statement header includes initialization,
// loop-continuation condition and increment.
for (int counter = 1; counter <= 10; ++counter)

cout << counter << " ";

156 Chapter 5 Control Statements: Part 2

The general form of the for statement is

where the initialization expression initializes the loop’s control variable, loopContinuation-
Condition determines whether the loop should continue executing and increment incre-
ments the control variable. In most cases, the for statement can be represented by an
equivalent while statement, as follows:

There’s an exception to this rule, which we’ll discuss in Section 5.7.
If the initialization expression declares the control variable (i.e., its type is specified

before its name), the control variable can be used only in the body of the for statement—
the control variable will be unknown outside the for statement. This restricted use of the
control variable name is known as the variable’s scope. The scope of a variable specifies
where it can be used in a program. Scope is discussed in detail in Chapter 6.

As we’ll see, the initialization and increment expressions can be comma-separated lists
of expressions. The commas, as used in these expressions, are comma operators, which
guarantee that lists of expressions evaluate from left to right. The comma operator has the
lowest precedence of all C++ operators. The value and type of a comma-separated list of
expressions is the value and type of the rightmost expression. The comma operator is often used

Fig. 5.3 | for statement header components.

Good Programming Practice 5.2
Using the final value in the condition of a while or for statement and using the <= re-
lational operator will help avoid off-by-one errors. For a loop used to print the values 1 to
10, for example, the loop-continuation condition should be counter <= 10 rather than
counter < 10 (which is an off-by-one error) or counter < 11 (which is nevertheless cor-
rect). Many programmers prefer so-called zero-based counting, in which, to count 10
times through the loop, counter would be initialized to zero and the loop-continuation
test would be counter < 10.

for (initialization; loopContinuationCondition; increment)
statement

initialization;

while (loopContinuationCondition)
{

statement
increment;

}

Initial value of
control variable Loop-continuation

condition

Increment of
control variable

for
keyword

Control
variable
name

Required
semicolon
separator

Required
semicolon
separator

Final value of control
variable for which
the condition is true

for (int counter = 1; counter <= 10; counter++)

5.3 for Repetition Statement 157

in for statements. Its primary application is to enable you to use multiple initialization
expressions and/or multiple increment expressions. For example, there may be several con-
trol variables in a single for statement that must be initialized and incremented.

The three expressions in the for statement header are optional (but the two semicolon
separators are required). If the loopContinuationCondition is omitted, C++ assumes that
the condition is true, thus creating an infinite loop. One might omit the initialization
expression if the control variable is initialized earlier in the program. One might omit the
increment expression if the increment is calculated by statements in the body of the for or
if no increment is needed.

The increment expression in the for statement acts as a stand-alone statement at the
end of the body of the for. Therefore, for integer counters, the expressions

are all equivalent in the increment expression (when no other code appears there). The in-
teger variable being incremented here does not appear in a larger expression, so both pre-
incrementing and postincrementing actually have the same effect.

The initialization, loop-continuation condition and increment expressions of a for

statement can contain arithmetic expressions. For example, if x = 2 and y = 10, and x and
y are not modified in the loop body, the for header

is equivalent to

The “increment” of a for statement can be negative, in which case it’s really a decre-
ment and the loop actually counts downward (as shown in Section 5.4).

If the loop-continuation condition is initially false, the body of the for statement is
not performed. Instead, execution proceeds with the statement following the for.

Frequently, the control variable is printed or used in calculations in the body of a for
statement, but this is not required. It’s common to use the control variable for controlling
repetition while never mentioning it in the body of the for statement.

Good Programming Practice 5.3
Place only expressions involving the control variables in the initialization and increment
sections of a for statement.

counter = counter + 1
counter += 1
++counter
counter++

Common Programming Error 5.3
Placing a semicolon immediately to the right of the right parenthesis of a for header makes
the body of that for statement an empty statement. This is usually a logic error.

for (int j = x; j <= 4 * x * y; j += y / x)

for (int j = 2; j <= 80; j += 5)

Error-Prevention Tip 5.2
Although the value of the control variable can be changed in the body of a for statement,
avoid doing so, because this practice can lead to subtle logic errors.

158 Chapter 5 Control Statements: Part 2

for Statement UML Activity Diagram
The for repetition statement’s UML activity diagram is similar to that of the while state-
ment (Fig. 4.6). Figure 5.4 shows the activity diagram of the for statement in Fig. 5.2.
The diagram makes it clear that initialization occurs once before the loop-continuation test
is evaluated the first time, and that incrementing occurs each time through the loop after
the body statement executes. Note that (besides an initial state, transition arrows, a merge,
a final state and several notes) the diagram contains only action states and a decision.

5.4 Examples Using the for Statement
The following examples show methods of varying the control variable in a for statement.
In each case, we write the appropriate for statement header. Note the change in the rela-
tional operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

b) Vary the control variable from 100 down to 1 in decrements of 1.

c) Vary the control variable from 7 to 77 in steps of 7.

d) Vary the control variable from 20 down to 2 in steps of -2.

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

for (int i = 1; i <= 100; ++i)

for (int i = 100; i >= 1; --i)

for (int i = 7; i <= 77; i += 7)

for (int i = 20; i >= 2; i -= 2)

Determine whether
looping should
continue

[counter > 10]

[counter <= 10]

int counter = 1

counter++

Display the
counter value

Initialize
control variable

Increment the
control variable

cout << counter << " ";cout << counter << " ";

5.4 Examples Using the for Statement 159

e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17.

f) Vary the control variable over the following sequence of values: 99, 88, 77, 66, 55.

Application: Summing the Even Integers from 2 to 20
The program of Fig. 5.5 uses a for statement to sum the even integers from 2 to 20. Each
iteration of the loop (lines 11–12) adds control variable number’s value to variable total.

The body of the for statement in Fig. 5.5 actually could be merged into the incre-
ment portion of the for header by using the comma operator as follows:

for (int i = 2; i <= 17; i += 3)

for (int i = 99; i >= 55; i -= 11)

Common Programming Error 5.4
Not using the proper relational operator in the loop-continuation condition of a loop that
counts downward (such as incorrectly using i <= 1 instead of i >= 1 in a loop counting
down to 1) is a logic error that yields incorrect results when the program runs.

1 // Fig. 5.5: fig05_05.cpp
2 // Summing integers with the for statement.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10 // total even integers from 2 through 20
11
12
13
14 cout << "Sum is " << total << endl; // display results
15 } // end main

Sum is 110

Fig. 5.5 | Summing integers with the for statement.

for (int number = 2; // initialization
number <= 20; // loop continuation condition
total += number, number += 2) // total and increment

; // empty body

Good Programming Practice 5.4
Although statements preceding a for and statements in the body of a for often can be
merged into the for header, doing so can make the program more difficult to read, main-
tain, modify and debug.

int total = 0; // initialize total

for (int number = 2; number <= 20; number += 2)
total += number;

160 Chapter 5 Control Statements: Part 2

Application: Compound Interest Calculations
Consider the following problem statement:

A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming
that all interest is left on deposit in the account, calculate and print the amount of
money in the account at the end of each year for 10 years. Use the following formula
for determining these amounts:

a = p (1 + r)n

where
p is the original amount invested (i.e., the principal),
r is the annual interest rate,
n is the number of years and
a is the amount on deposit at the end of the nth year.

The for statement (Fig. 5.6, lines 21–28) performs the indicated calculation for each
of the 10 years the money remains on deposit, varying a control variable from 1 to 10 in
increments of 1. C++ does not include an exponentiation operator, so we use the standard
library function pow (line 24). The function pow(x, y) calculates the value of x raised to
the yth power. In this example, the algebraic expression (1 + r)n is written as pow(1.0 +

rate, year), where variable rate represents r and variable year represents n. Function
pow takes two arguments of type double and returns a double value.

1 // Fig. 5.6: fig05_06.cpp
2 // Compound interest calculations with for.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 int main()
9 {

10 double amount; // amount on deposit at end of each year
11 double principal = 1000.0; // initial amount before interest
12 double rate = .05; // interest rate
13
14 // display headers
15 cout << "Year" << << "Amount on deposit" << endl;
16
17 // set floating-point number format
18 cout << fixed << setprecision(2);
19
20
21
22
23
24
25
26
27
28
29 } // end main

Fig. 5.6 | Compound interest calculations with for. (Part 1 of 2.)

#include <cmath> // standard C++ math library

setw(21)

// calculate amount on deposit for each of ten years
for (int year = 1; year <= 10; ++year)
{

// calculate new amount for specified year
amount = principal * pow(1.0 + rate, year);

// display the year and the amount
cout << setw(4) << year << setw(21) << amount << endl;

} // end for

5.4 Examples Using the for Statement 161

This program will not compile without including header <cmath> (line 5). Function
pow requires two double arguments. Variable year is an integer. Header <cmath> includes
information that tells the compiler to convert the value of year to a temporary double rep-
resentation before calling the function. This information is contained in pow’s function
prototype. Chapter 6 summarizes other math library functions.

A Caution about Using Type float or double for Monetary Amounts
Lines 10–12 declare the double variables amount, principal and rate. We did this for
simplicity because we’re dealing with fractional parts of dollars, and we need a type that
allows decimal points in its values. Unfortunately, this can cause trouble. Here’s a simple
explanation of what can go wrong when using float or double to represent dollar
amounts (assuming setprecision(2) is used to specify two digits of precision when print-
ing): Two dollar amounts stored in the machine could be 14.234 (which prints as 14.23)
and 18.673 (which prints as 18.67). When these amounts are added, they produce the in-
ternal sum 32.907, which prints as 32.91. Thus your printout could appear as

but a person adding the individual numbers as printed would expect the sum 32.90!
You’ve been warned! In the exercises, we explore the use of integers to perform monetary
calculations. [Note: Some third-party vendors sell C++ class libraries that perform precise
monetary calculations.]

Using Stream Manipulators to Format Numeric Output
The output statement in line 18 before the for loop and the output statement in line 27
in the for loop combine to print the values of the variables year and amount with the for-

Year Amount on deposit
1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28
6 1340.10
7 1407.10
8 1477.46
9 1551.33
10 1628.89

Common Programming Error 5.5
Forgetting to include the appropriate header when using standard library functions (e.g.,
<cmath> in a program that uses math library functions) is a compilation error.

14.23
+ 18.67

32.91

Good Programming Practice 5.5
Do not use variables of type float or double to perform monetary calculations. The im-
precision of floating-point numbers can cause incorrect monetary values.

Fig. 5.6 | Compound interest calculations with for. (Part 2 of 2.)

162 Chapter 5 Control Statements: Part 2

matting specified by the parameterized stream manipulators setprecision and setw and
the nonparameterized stream manipulator fixed. The stream manipulator setw(4) spec-
ifies that the next value output should appear in a field width of 4—i.e., cout prints the
value with at least 4 character positions. If the value to be output is less than 4 character
positions wide, the value is right justified in the field by default. If the value to be output
is more than 4 character positions wide, the field width is extended to accommodate the
entire value. To indicate that values should be output left justified, simply output nonpa-
rameterized stream manipulator left (found in header <iostream>). Right justification
can be restored by outputting nonparameterized stream manipulator right.

The other formatting in the output statements indicates that variable amount is
printed as a fixed-point value with a decimal point (specified in line 18 with the stream
manipulator fixed) right justified in a field of 21 character positions (specified in line 27
with setw(21)) and two digits of precision to the right of the decimal point (specified in
line 18 with manipulator setprecision(2)). We applied the stream manipulators fixed
and setprecision to the output stream (i.e., cout) before the for loop because these
format settings remain in effect until they’re changed—such settings are called sticky set-
tings and they do not need to be applied during each iteration of the loop. However, the
field width specified with setw applies only to the next value output. We discuss C++’s
powerful input/output formatting capabilities in Chapter 15, Stream Input/Output.

The calculation 1.0 + rate, which appears as an argument to the pow function, is con-
tained in the body of the for statement. In fact, this calculation produces the same result
during each iteration of the loop, so repeating it is wasteful—it should be performed once
before the loop.

Be sure to try our Peter Minuit problem in Exercise 5.29. This problem demonstrates
the wonders of compound interest.

5.5 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while state-
ment, the loop-continuation condition test occurs at the beginning of the loop before the
body of the loop executes. The do…while statement tests the loop-continuation con-
dition after the loop body executes; therefore, the loop body always executes at least once.
When a do…while terminates, execution continues with the statement after the while

clause. It’s not necessary to use braces in the do…while statement if there’s only one state-
ment in the body; however, most programmers include the braces to avoid confusion be-
tween the while and do…while statements. For example,

Performance Tip 5.1
Avoid placing expressions whose values do not change inside loops—but, even if you do,
many of today’s sophisticated optimizing compilers will automatically place such ex-
pressions outside the loops in the generated machine-language code.

Performance Tip 5.2
Many compilers contain optimization features that improve the performance of the code
you write, but it’s still better to write good code from the start.

while (condition)

5.5 do…while Repetition Statement 163

normally is regarded as the header of a while statement. A do…while with no braces
around the single statement body appears as

which can be confusing. You might misinterpret the last line—while(condition);—as a
while statement containing as its body an empty statement. Thus, the do…while with
one statement often is written as follows to avoid confusion:

Figure 5.7 uses a do…while statement to print the numbers 1–10. Upon entering the
do…while statement, line 12 outputs counter’s value and line 13 increments counter.
Then the program evaluates the loop-continuation test at the bottom of the loop (line 14).
If the condition is true, the loop continues from the first body statement in the do…while

(line 12). If the condition is false, the loop terminates and the program continues with the
next statement after the loop (line 16).

do…while Statement UML Activity Diagram
Figure 5.8 contains the do…while statement’s UML activity diagram, which makes it
clear that the loop-continuation condition is not evaluated until after the loop performs
its body at least once. Compare this activity diagram with that of the while statement
(Fig. 4.6).

do
statement

while (condition);

do
{

statement
} while (condition);

1 // Fig. 5.7: fig05_07.cpp
2 // do...while repetition statement.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10
11
12
13
14
15
16 cout << endl; // output a newline
17 } // end main

1 2 3 4 5 6 7 8 9 10

Fig. 5.7 | do…while repetition statement.

int counter = 1; // initialize counter

do
{

cout << counter << " "; // display counter
++counter; // increment counter

} while (counter <= 10); // end do...while

164 Chapter 5 Control Statements: Part 2

5.6 switch Multiple-Selection Statement
C++ provides the switch multiple-selection statement to perform many different actions
based on the possible values of a variable or expression. Each action is associated with the
value of a constant integral expression (i.e., any combination of character and integer con-
stants that evaluates to a constant integer value).

GradeBook Class with switch Statement to Count A, B, C, D and F Grades
This next version of the GradeBook class asks the user to enter a set of letter grades, then
displays a summary of the number of students who received each grade. The class uses a
switch to determine whether each grade entered is an A, B, C, D or F and to increment
the appropriate grade counter. Class GradeBook is defined in Fig. 5.9, and its member-
function definitions appear in Fig. 5.10. Figure 5.11 shows sample inputs and outputs of
the main program that uses class GradeBook to process a set of grades.

Like earlier versions of the class definition, the GradeBook class definition (Fig. 5.9)
contains function prototypes for member functions setCourseName (line 12), getCourse-
Name (line 13) and displayMessage (line 14), as well as the class’s constructor (line 11).
The class definition also declares private data member courseName (line 18).

Class GradeBook (Fig. 5.9) now contains five additional private data members (lines
19–23)—counter variables for each grade category (i.e., A, B, C, D and F). The class also
contains two additional public member functions—inputGrades and displayGradeRe-

port. Member function inputGrades (declared in line 15) reads an arbitrary number of
letter grades from the user using sentinel-controlled repetition and updates the appropriate

Fig. 5.8 | UML activity diagram for the do…while repetition statement of Fig. 5.7.

Determine whether
looping should
continue [counter > 10]

[counter <= 10]

counter++

Display the
counter value

Increment the
control variable

cout << counter << " ";

5.6 switch Multiple-Selection Statement 165

grade counter for each grade entered. Member function displayGradeReport (declared in
line 16) outputs a report containing the number of students who received each letter grade.

Source-code file GradeBook.cpp (Fig. 5.10) contains the member-function defini-
tions for class GradeBook. Notice that lines 13–17 in the constructor initialize the five
grade counters to 0—when a GradeBook object is first created, no grades have been entered
yet. As you’ll soon see, these counters are incremented in member function inputGrades

as the user enters grades. The definitions of member functions setCourseName, get-

CourseName and displayMessage are identical to those in the earlier versions of class
GradeBook.

1 // Fig. 5.9: GradeBook.h
2 // Definition of class GradeBook that counts A, B, C, D and F grades.
3 // Member functions are defined in GradeBook.cpp
4 #include <string> // program uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 GradeBook(string); // constructor initializes course name
12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message
15
16
17 private:
18 string courseName; // course name for this GradeBook
19
20
21
22
23
24 }; // end class GradeBook

Fig. 5.9 | GradeBook class definition.

1 // Fig. 5.10: GradeBook.cpp
2 // Member-function definitions for class GradeBook that
3 // uses a switch statement to count A, B, C, D and F grades.
4 #include <iostream>
5 #include "GradeBook.h" // include definition of class GradeBook
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument;
9 // initializes counter data members to 0

10 GradeBook::GradeBook(string name)
11 {
12 setCourseName(name); // validate and store courseName

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 1 of 3.)

void inputGrades(); // input arbitrary number of grades from user
void displayGradeReport(); // display a report based on the grades

int aCount; // count of A grades
int bCount; // count of B grades
int cCount; // count of C grades
int dCount; // count of D grades
int fCount; // count of F grades

166 Chapter 5 Control Statements: Part 2

13
14
15
16
17
18 } // end GradeBook constructor
19
20 // function to set the course name; limits name to 25 or fewer characters
21 void GradeBook::setCourseName(string name)
22 {
23 if (name.length() <= 25) // if name has 25 or fewer characters
24 courseName = name; // store the course name in the object
25 else // if name is longer than 25 characters
26 { // set courseName to first 25 characters of parameter name
27 courseName = name.substr(0, 25); // select first 25 characters
28 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
29 << "Limiting courseName to first 25 characters.\n" << endl;
30 } // end if...else
31 } // end function setCourseName
32
33 // function to retrieve the course name
34 string GradeBook::getCourseName()
35 {
36 return courseName;
37 } // end function getCourseName
38
39 // display a welcome message to the GradeBook user
40 void GradeBook::displayMessage()
41 {
42 // this statement calls getCourseName to get the
43 // name of the course this GradeBook represents
44 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
45 << endl;
46 } // end function displayMessage
47
48 // input arbitrary number of grades from user; update grade counter
49 void GradeBook::inputGrades()
50 {
51 int grade; // grade entered by user
52
53 cout << "Enter the letter grades." << endl
54 << "Enter the EOF character to end input." << endl;
55
56 // loop until user types end-of-file key sequence
57 while ()
58 {
59
60
61
62
63
64
65

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 2 of 3.)

aCount = 0; // initialize count of A grades to 0
bCount = 0; // initialize count of B grades to 0
cCount = 0; // initialize count of C grades to 0
dCount = 0; // initialize count of D grades to 0
fCount = 0; // initialize count of F grades to 0

(grade = cin.get()) != EOF

// determine which grade was entered
switch (grade) // switch statement nested in while
{

case 'A': // grade was uppercase A
case 'a': // or lowercase a

++aCount; // increment aCount
break; // necessary to exit switch

5.6 switch Multiple-Selection Statement 167

Reading Character Input
The user enters letter grades for a course in member function inputGrades (lines 49–98).
In the while header, in line 57, the parenthesized assignment (grade = cin.get()) exe-
cutes first. The cin.get() function reads one character from the keyboard and stores that
character in integer variable grade (declared in line 51). Normally, characters are stored in

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97 } // end while
98 } // end function inputGrades
99
100 // display a report based on the grades entered by user
101 void GradeBook::displayGradeReport()
102 {
103 // output summary of results
104 cout << "\n\nNumber of students who received each letter grade:"
105 << "\nA: " << aCount // display number of A grades
106 << "\nB: " << bCount // display number of B grades
107 << "\nC: " << cCount // display number of C grades
108 << "\nD: " << dCount // display number of D grades
109 << "\nF: " << fCount // display number of F grades
110 << endl;
111 } // end function displayGradeReport

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 3 of 3.)

case 'B': // grade was uppercase B
case 'b': // or lowercase b

++bCount; // increment bCount
break; // exit switch

case 'C': // grade was uppercase C
case 'c': // or lowercase c

++cCount; // increment cCount
break; // exit switch

case 'D': // grade was uppercase D
case 'd': // or lowercase d

++dCount; // increment dCount
break; // exit switch

case 'F': // grade was uppercase F
case 'f': // or lowercase f

++fCount; // increment fCount
break; // exit switch

case '\n': // ignore newlines,
case '\t': // tabs,
case ' ': // and spaces in input

break; // exit switch

default: // catch all other characters
cout << "Incorrect letter grade entered."

<< " Enter a new grade." << endl;
break; // optional; will exit switch anyway

} // end switch

168 Chapter 5 Control Statements: Part 2

variables of type char; however, characters can be stored in any integer data type, because
types short, int and long are guaranteed to be at least as big as type char. Thus, we can
treat a character either as an integer or as a character, depending on its use. For example,
the statement

prints the character a and its integer value as follows:

The integer 97 is the character’s numerical representation in the computer. Most comput-
ers today use the Unicode character set in which 97 represents the lowercase letter 'a'.
Appendix B shows the characters and decimal equivalents from the ASCII (American
Standard Code for Information Interchange) character set, which is a subset of Unicode.

Generally, assignment statements have the value that’s assigned to the variable on the
left side of the =. Thus, the value of the assignment expression grade = cin.get() is the
same as the value returned by cin.get() and assigned to the variable grade.

The fact that assignment expressions have values can be useful for assigning the same
value to several variables. For example,

first evaluates c = 0 (because the = operator associates from right to left). The variable b is
then assigned the value of c = 0 (which is 0). Then, a is assigned the value of b = (c = 0)

(which is also 0). In the program, the value of grade = cin.get() is compared with the
value of EOF (a symbol whose acronym stands for “end-of-file”). We use EOF (which nor-
mally has the value –1) as the sentinel value. However, you do not type the value –1, nor do
you type the letters EOF as the sentinel value. Rather, you type a system-dependent keystroke
combination that means “end-of-file” to indicate that you have no more data to enter. EOF
is a symbolic integer constant that is included into the program via the <iostream> head-
er1. If the value assigned to grade is equal to EOF, the while loop (lines 57–97) terminates.
We’ve chosen to represent the characters entered into this program as ints, because EOF

has type int.
On UNIX/Linux systems and many others, end-of-file is entered by typing

on a line by itself. This notation means to press and hold down the Ctrl key, then press the
d key. On other systems such as Microsoft Windows, end-of-file can be entered by typing

[Note: In some cases, you must press Enter after the preceding key sequence. Also, the char-
acters ^Z sometimes appear on the screen to represent end-of-file, as shown in Fig. 5.11.]

cout << "The character (" << 'a' << ") has the value "
<< static_cast< int > ('a') << endl;

The character (a) has the value 97

a = b = c = 0;

1. To compile this program on Linux, you’ll also need to include the header <cstdio> which defines
the EOF constant.

<Ctrl> d

<Ctrl> z

Portability Tip 5.1
The keystroke combinations for entering end-of-file are system dependent.

5.6 switch Multiple-Selection Statement 169

In this program, the user enters grades at the keyboard. When the user presses the
Enter (or the Return) key, the characters are read by the cin.get() function, one character
at a time. If the character entered is not end-of-file, the flow of control enters the switch

statement (lines 60–96), which increments the appropriate letter-grade counter.

switch Statement Details
The switch statement consists of a series of case labels and an optional default case.
These are used in this example to determine which counter to increment, based on a grade.
When the flow of control reaches the switch, the program evaluates the expression in the
parentheses (i.e., grade) following keyword switch (line 60). This is called the controlling
expression. The switch statement compares the value of the controlling expression with
each case label. Assume the user enters the letter C as a grade. The program compares C to
each case in the switch. If a match occurs (case 'C': in line 72), the program executes
the statements for that case. For the letter C, line 74 increments cCount by 1. The break

statement (line 75) causes program control to proceed with the first statement after the
switch—in this program, control transfers to line 97. This line marks the end of the body
of the while loop that inputs grades (lines 57–97), so control flows to the while’s condi-
tion (line 57) to determine whether the loop should continue executing.

The cases in our switch explicitly test for the lowercase and uppercase versions of the
letters A, B, C, D and F. Note the cases in lines 62–63 that test for the values 'A' and 'a'

(both of which represent the grade A). Listing cases consecutively with no statements
between them enables the cases to perform the same set of statements—when the control-
ling expression evaluates to either 'A' or 'a', the statements in lines 64–65 will execute.
Each case can have multiple statements. The switch selection statement does not require
braces around multiple statements in each case.

Without break statements, each time a match occurs in the switch, the statements
for that case and subsequent cases execute until a break statement or the end of the
switch is encountered. This feature is perfect for writing a concise program that displays
the iterative song “The Twelve Days of Christmas” in Exercise 5.28.

Providing a default Case
If no match occurs between the controlling expression’s value and a case label, the de-

fault case (lines 92–95) executes. We use the default case in this example to process all
controlling-expression values that are neither valid grades nor newline, tab or space char-

Portability Tip 5.2
Testing for the symbolic constant EOF rather than –1 makes programs more portable. The
ANSI/ISO C standard, from which C++ adopts the definition of EOF, states that EOF is a
negative integral value, so EOF could have different values on different systems.

Common Programming Error 5.6
Forgetting a break statement when one is needed in a switch statement is a logic error.

Common Programming Error 5.7
Omitting the space between the word case and the integral value tested in a switch state-
ment—e.g., writing case3: instead of case 3:—is a logic error. The switch statement
will not perform the appropriate actions when the controlling expression has a value of 3.

170 Chapter 5 Control Statements: Part 2

acters. If no match occurs, the default case executes, and lines 93–94 print an error mes-
sage indicating that an incorrect letter grade was entered. If no match occurs in a switch

statement that does not contain a default case, program control continues with the first
statement after the switch.

Ignoring Newline, Tab and Blank Characters in Input
Lines 87–90 in the switch statement of Fig. 5.10 cause the program to skip newline, tab
and blank characters. Reading characters one at a time can cause problems. To have the
program read the characters, we must send them to the computer by pressing the Enter
key. This places a newline character in the input after the character we wish to process.
Often, this newline character must be specially processed. By including these cases in our
switch statement, we prevent the error message in the default case from being printed
each time a newline, tab or space is encountered in the input.

Testing Class GradeBook
Figure 5.11 creates a GradeBook object (line 8). Line 10 invokes the its displayMessage
member function to output a welcome message to the user. Line 11 invokes member func-
tion object’s inputGrades to read a set of grades from the user and keep track of how many
students received each grade. The output window in Fig. 5.11 shows an error message dis-
played in response to entering an invalid grade (i.e., E). Line 12 invokes GradeBook mem-
ber function displayGradeReport (defined in lines 101–111 of Fig. 5.10), which outputs
a report based on the grades entered (as in the output in Fig. 5.11).

Error-Prevention Tip 5.3
Provide a default case in switch statements. Cases not explicitly tested in a switch state-
ment without a default case are ignored. Including a default case focuses you on the
need to process exceptional conditions. There are situations in which no default process-
ing is needed. Although the case clauses and the default case clause in a switch state-
ment can occur in any order, it’s common practice to place the default clause last.

Good Programming Practice 5.6
The last case in a switch statement does not require a break statement. Some program-
mers include this break for clarity and for symmetry with other cases.

1 // Fig. 5.11: fig05_11.cpp
2 // Create GradeBook object, input grades and display grade report.
3 #include "GradeBook.h" // include definition of class GradeBook
4
5 int main()
6 {
7 // create GradeBook object
8 GradeBook myGradeBook("CS101 C++ Programming");
9

10 myGradeBook.displayMessage(); // display welcome message
11
12
13 } // end main

Fig. 5.11 | Creating a GradeBook object and calling its member functions. (Part 1 of 2.)

myGradeBook.inputGrades(); // read grades from user
myGradeBook.displayGradeReport(); // display report based on grades

5.6 switch Multiple-Selection Statement 171

switch Statement UML Activity Diagram
Figure 5.12 shows the UML activity diagram for the general switch multiple-selection
statement. Most switch statements use a break in each case to terminate the switch state-
ment after processing the case. Figure 5.12 emphasizes this by including break statements
in the activity diagram. Without the break statement, control would not transfer to the
first statement after the switch statement after a case is processed. Instead, control would
transfer to the next case’s actions.

The diagram makes it clear that the break statement at the end of a case causes con-
trol to exit the switch statement immediately. Again, note that (besides an initial state,
transition arrows, a final state and several notes) the diagram contains action states and
decisions. Also, the diagram uses merge symbols to merge the transitions from the break

statements to the final state.
When using the switch statement, remember that each case can be used to test only

a constant integral expression—any combination of character constants and integer con-
stants that evaluates to a constant integer value. A character constant is represented as the
specific character in single quotes, such as 'A'. An integer constant is simply an integer
value. Also, each case label can specify only one constant integral expression.

Welcome to the grade book for
CS101 C++ Programming!

Enter the letter grades.
Enter the EOF character to end input.
a
B
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Number of students who received each letter grade:
A: 3
B: 2
C: 3
D: 2
F: 1

Common Programming Error 5.8
Specifying a nonconstant integral expression in a switch’s case label is a syntax error.

Fig. 5.11 | Creating a GradeBook object and calling its member functions. (Part 2 of 2.)

172 Chapter 5 Control Statements: Part 2

In Chapter 13, we present a more elegant way to implement switch logic. We’ll use
a technique called polymorphism to create programs that are often clearer, more concise,
easier to maintain and easier to extend than programs that use switch logic.

Notes on Data Types
C++ has flexible data type sizes (see Appendix C, Fundamental Types). Different applica-
tions, for example, might need integers of different sizes. C++ provides several integer
types. The range of integer values for each type depends on the particular computer’s hard-
ware. In addition to the types int and char, C++ provides the types short (an abbrevia-
tion of short int) and long (an abbreviation of long int). The minimum range of values
for short integers is –32,768 to 32,767. For the vast majority of integer calculations, long
integers are sufficient. The minimum range of values for long integers is –2,147,483,648
to 2,147,483,647. On most computers, ints are equivalent either to short or to long.
The range of values for an int is at least the same as that for short integers and no larger
than that for long integers. The data type char can be used to represent any of the char-
acters in the computer’s character set. It also can be used to represent small integers.

Fig. 5.12 | switch multiple-selection statement UML activity diagram with break statements.

Common Programming Error 5.9
Providing case labels with identical values in a switch statement is a compilation error.

.
.
.

default actions(s)

case a actions(s)

case b actions(s)

case z actions(s) break

break

break

case b

case z

case a

[false]

[true]

[true]

[true]

[false]

[false]

5.7 break and continue Statements 173

5.7 break and continue Statements
C++ also provides statements break and continue to alter the flow of control. The pre-
ceding section showed how break can be used to terminate a switch statement’s execu-
tion. This section discusses how to use break in a repetition statement.

break Statement
The break statement, when executed in a while, for, do…while or switch statement,
causes immediate exit from that statement. Program execution continues with the next
statement. Common uses of the break statement are to escape early from a loop or to skip
the remainder of a switch statement. Figure 5.13 demonstrates the break statement (line
13) exiting a for repetition statement.

When the if statement detects that count is 5, the break statement executes. This ter-
minates the for statement, and the program proceeds to line 18 (immediately after the for
statement), which displays a message indicating the control variable value that terminated
the loop. The for statement fully executes its body only four times instead of 10. The con-
trol variable count is defined outside the for statement header, so that we can use the con-
trol variable both in the loop’s body and after the loop completes its execution.

continue Statement
The continue statement, when executed in a while, for or do…while statement, skips
the remaining statements in the body of that statement and proceeds with the next itera-
tion of the loop. In while and do…while statements, the loop-continuation test evaluates
immediately after the continue statement executes. In the for statement, the increment
expression executes, then the loop-continuation test evaluates.

1 // Fig. 5.13: fig05_13.cpp
2 // break statement exiting a for statement.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int count; // control variable also used after loop terminates
9

10 for (count = 1; count <= 10; ++count) // loop 10 times
11 {
12
13
14
15 cout << count << " ";
16 } // end for
17
18 cout << "\nBroke out of loop at count = " << count << endl;
19 } // end main

1 2 3 4
Broke out of loop at count = 5

Fig. 5.13 | break statement exiting a for statement.

if (count == 5)
break; // break loop only if count is 5

174 Chapter 5 Control Statements: Part 2

Figure 5.14 uses the continue statement (line 11) in a for statement to skip the
output statement (line 13) when the nested if (lines 10–11) determines that the value of
count is 5. When the continue statement executes, program control continues with the
increment of the control variable in the for header (line 8) and loops five more times.

In Section 5.3, we stated that the while statement could be used in most cases to rep-
resent the for statement. The one exception occurs when the increment expression in the
while statement follows the continue statement. In this case, the increment does not exe-
cute before the program tests the loop-continuation condition, and the while does not
execute in the same manner as the for.

5.8 Logical Operators
So far we’ve studied only simple conditions, such as counter <= 10, total > 1000 and num-

ber != sentinelValue. We expressed these conditions in terms of the relational operators

1 // Fig. 5.14: fig05_14.cpp
2 // continue statement terminating an iteration of a for statement.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 for (int count = 1; count <= 10; ++count) // loop 10 times
9 {

10 if (count == 5) // if count is 5,
11
12
13 cout << count << " ";
14 } // end for
15
16 cout << "\nUsed continue to skip printing 5" << endl;
17 } // end main

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Fig. 5.14 | continue statement terminating an iteration of a for statement.

Good Programming Practice 5.7
Some programmers feel that break and continue violate structured programming. The
effects of these statements can be achieved by structured programming techniques we soon
will learn, so these programmers do not use break and continue. Most programmers con-
sider the use of break in switch statements acceptable.

Software Engineering Observation 5.1
There’s a tension between achieving quality software engineering and achieving the best-
performing software. Often, one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following guidelines: First,
make your code simple and correct; then make it fast and small, but only if necessary.

continue; // skip remaining code in loop

5.8 Logical Operators 175

>, <, >= and <=, and the equality operators == and !=. Each decision tested precisely one
condition. To test multiple conditions while making a decision, we performed these tests
in separate statements or in nested if or if…else statements.

C++ provides logical operators that are used to form more complex conditions by
combining simple conditions. The logical operators are && (logical AND), || (logical OR)
and ! (logical NOT, also called logical negation).

Logical AND (&&) Operator
Suppose that we wish to ensure that two conditions are both true before we choose a cer-
tain path of execution. In this case, we can use the && (logical AND) operator, as follows:

This if statement contains two simple conditions. The condition gender == 1 is used here
to determine whether a person is a female. The condition age >= 65 determines whether a
person is a senior citizen. The simple condition to the left of the && operator evaluates first.
If necessary, the simple condition to the right of the && operator evaluates next. As we’ll
discuss shortly, the right side of a logical AND expression is evaluated only if the left side
is true. The if statement then considers the combined condition

This condition is true if and only if both of the simple conditions are true. Finally, if this
combined condition is indeed true, the statement in the if statement’s body increments
the count of seniorFemales. If either (or both) of the simple conditions are false, then
the program skips the incrementing and proceeds to the statement following the if. The pre-
ceding combined condition can be made more readable by adding redundant parentheses:

Figure 5.15 summarizes the && operator. The table shows all four possible combina-
tions of false and true values for expression1 and expression2. Such tables are often called
truth tables. C++ evaluates to false or true all expressions that include relational opera-
tors, equality operators and/or logical operators.

if (gender == 1 && age >= 65)
++seniorFemales;

gender == 1 && age >= 65

(gender == 1) && (age >= 65)

Common Programming Error 5.10
Although 3 < x < 7 is a mathematically correct condition, it does not evaluate as you might
expect in C++. Use (3 < x && x < 7) to get the proper evaluation in C++.

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 5.15 | && (logical AND) operator truth table.

176 Chapter 5 Control Statements: Part 2

Logical OR (||) Operator
Now let’s consider the || (logical OR) operator. Suppose we wish to ensure that either or
both of two conditions are true before we choose a certain path of execution. In this case,
we use the || operator, as in the following program segment:

This preceding condition contains two simple conditions. The simple condition
semesterAverage >= 90 evaluates to determine whether the student deserves an “A” in the
course because of a solid performance throughout the semester. The simple condition
finalExam >= 90 evaluates to determine whether the student deserves an “A” in the course
because of an outstanding performance on the final exam. The if statement then considers
the combined condition

and awards the student an “A” if either or both of the simple conditions are true. The mes-
sage “Student grade is A” prints unless both of the simple conditions are false.
Figure 5.16 is a truth table for the logical OR operator (||).

The && operator has a higher precedence than the || operator. Both operators asso-
ciate from left to right. An expression containing && or || operators evaluates only until
the truth or falsehood of the expression is known. Thus, evaluation of the expression

stops immediately if gender is not equal to 1 (i.e., the entire expression is false) and con-
tinues if gender is equal to 1 (i.e., the entire expression could still be true if the condition
age >= 65 is true). This performance feature for the evaluation of logical AND and logical
OR expressions is called short-circuit evaluation.

Logical Negation (!) Operator
C++ provides the ! (logical NOT, also called logical negation) operator to “reverse” a con-
dition’s meaning. The unary logical negation operator has only a single condition as an

if ((semesterAverage >= 90) || (finalExam >= 90))
cout << "Student grade is A" << endl;

(semesterAverage >= 90) || (finalExam >= 90)

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 5.16 | || (logical OR) operator truth table.

(gender == 1) && (age >= 65)

Performance Tip 5.3
In expressions using operator &&, if the separate conditions are independent of one another,
make the condition most likely to be false the leftmost condition. In expressions using op-
erator ||, make the condition most likely to be true the leftmost condition. This use of
short-circuit evaluation can reduce a program’s execution time.

5.8 Logical Operators 177

operand. The unary logical negation operator is placed before a condition when we are in-
terested in choosing a path of execution if the original condition (without the logical ne-
gation operator) is false, such as in the following program segment:

The parentheses around the condition grade == sentinelValue are needed because the
logical negation operator has a higher precedence than the equality operator.

You can often avoid the ! operator by using an appropriate relational or equality oper-
ator. For example, the preceding if statement also can be written as follows:

This flexibility often can help you express a condition in a more “natural” or convenient
manner. Figure 5.17 is a truth table for the logical negation operator (!).

Logical Operators Example
Figure 5.18 demonstrates the logical operators by producing their truth tables. The output
shows each expression that’s evaluated and its bool result. By default, bool values true and
false are displayed by cout and the stream insertion operator as 1 and 0, respectively. We
use stream manipulator boolalpha (a sticky manipulator) in line 9 to specify that the val-
ue of each bool expression should be displayed as either the word “true” or the word
“false.” For example, the result of the expression false && false in line 10 is false, so the
second line of output includes the word “false.” Lines 9–13 produce the truth table for &&.
Lines 16–20 produce the truth table for ||. Lines 23–25 produce the truth table for !.

if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;

if (grade != sentinelValue)
cout << "The next grade is " << grade << endl;

expression !expression

false true

true false

Fig. 5.17 | ! (logical negation)
operator truth table.

1 // Fig. 5.18: fig05_18.cpp
2 // Logical operators.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // create truth table for && (logical AND) operator
9 cout << << "Logical AND (&&)"

10 << "\nfalse && false: " <<
11 << "\nfalse && true: " <<
12 << "\ntrue && false: " <<
13 << "\ntrue && true: " << << "\n\n";

Fig. 5.18 | Logical operators. (Part 1 of 2.)

boolalpha
(false && false)
(false && true)
(true && false)
(true && true)

178 Chapter 5 Control Statements: Part 2

Summary of Operator Precedence and Associativity
Figure 5.19 adds the logical and comma operators to the operator precedence and associativ-
ity chart. The operators are shown from top to bottom, in decreasing order of precedence.

14
15 // create truth table for || (logical OR) operator
16 cout << "Logical OR (||)"
17 << "\nfalse || false: " <<
18 << "\nfalse || true: " <<
19 << "\ntrue || false: " <<
20 << "\ntrue || true: " << << "\n\n";
21
22 // create truth table for ! (logical negation) operator
23 cout << "Logical NOT (!)"
24 << "\n!false: " <<
25 << "\n!true: " << << endl;
26 } // end main

Logical AND (&&)
false && false: false
false && true: false
true && false: false
true && true: true

Logical OR (||)
false || false: false
false || true: true
true || false: true
true || true: true

Logical NOT (!)
!false: true
!true: false

Operators Associativity Type

:: left to right scope resolution

() [See caution in Fig. 2.10] grouping parentheses

++ -- static_cast< type >() left to right unary (postfix)

++ -- + - ! right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

Fig. 5.19 | Operator precedence and associativity. (Part 1 of 2.)

Fig. 5.18 | Logical operators. (Part 2 of 2.)

(false || false)
(false || true)
(true || false)
(true || true)

(!false)
(!true)

5.9 Confusing the Equality (==) and Assignment (=) Operators 179

5.9 Confusing the Equality (==) and Assignment (=)
Operators
There’s one error that C++ programmers, no matter how experienced, tend to make so fre-
quently that we feel it requires a separate section. That error is accidentally swapping the op-
erators == (equality) and = (assignment). What makes this so damaging is that it ordinarily
does not cause syntax errors—statements with these errors tend to compile correctly and the
programs run to completion, often generating incorrect results through runtime logic errors.
Some compilers issue a warning when = is used in a context where == is expected.

Two aspects of C++ contribute to these problems. One is that any expression that pro-
duces a value can be used in the decision portion of any control statement. If the value of the
expression is zero, it’s treated as false, and if the value is nonzero, it’s treated as true. The
second is that assignments produce a value—namely, the value assigned to the variable on
the left side of the assignment operator. For example, suppose we intend to write

but we accidentally write

The first if statement properly awards a bonus to the person whose payCode is equal to 4.
The second one—with the error—evaluates the assignment expression in the if condition
to the constant 4. Any nonzero value is interpreted as true, so this condition is always true
and the person always receives a bonus regardless of what the actual paycode is! Even
worse, the paycode has been modified when it was only supposed to be examined!

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

if (payCode == 4)
cout << "You get a bonus!" << endl;

if (payCode = 4)
cout << "You get a bonus!" << endl;

Common Programming Error 5.11
Using operator == for assignment and using operator = for equality are logic errors.

Error-Prevention Tip 5.4
Programmers normally write conditions such as x == 7 with the variable name on the left
and the constant on the right. By placing the constant on the left, as in 7 == x, you’ll be
protected by the compiler if you accidentally replace the == operator with = . The compiler
treats this as a compilation error, because you can’t change the value of a constant. This
will prevent the potential devastation of a runtime logic error.

Operators Associativity Type

Fig. 5.19 | Operator precedence and associativity. (Part 2 of 2.)

180 Chapter 5 Control Statements: Part 2

Variable names are said to be lvalues (for “left values”) because they can be used on
the left side of an assignment operator. Constants are said to be rvalues (for “right values”)
because they can be used on only the right side of an assignment operator. Lvalues can also
be used as rvalues, but not vice versa.

There’s another equally unpleasant situation. Suppose you want to assign a value to a
variable with a simple statement like

but instead write

Here, too, this is not a syntax error. Rather, the compiler simply evaluates the conditional
expression. If x is equal to 1, the condition is true and the expression evaluates to the value
true. If x is not equal to 1, the condition is false and the expression evaluates to the value
false. Regardless of the expression’s value, there’s no assignment operator, so the value
simply is lost. The value of x remains unaltered, probably causing an execution-time logic
error. Unfortunately, we do not have a handy trick available to help you with this problem!

5.10 Structured Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is sparser. We’ve learned that structured programming produces pro-
grams that are easier than unstructured programs to understand, test, debug, modify, and
even prove correct in a mathematical sense.

Figure 5.20 uses activity diagrams to summarize C++’s control statements. The initial
and final states indicate the single entry point and the single exit point of each control
statement. Arbitrarily connecting individual symbols in an activity diagram can lead to
unstructured programs. Therefore, the programming profession uses only a limited set of
control statements that can be combined in only two simple ways to build structured pro-
grams.

For simplicity, only single-entry/single-exit control statements are used—there’s only
one way to enter and only one way to exit each control statement. Connecting control
statements in sequence to form structured programs is simple—the final state of one con-
trol statement is connected to the initial state of the next—that is, they’re placed one after
another in a program. We’ve called this control-statement stacking. The rules for forming
structured programs also allow for control statements to be nested.

Figure 5.21 shows the rules for forming structured programs. The rules assume that
action states may be used to indicate any action. The rules also assume that we begin with
the so-called simplest activity diagram (Fig. 5.22), consisting of only an initial state, an
action state, a final state and transition arrows.

Applying the rules of Fig. 5.21 always results in an activity diagram with a neat,
building-block appearance. For example, repeatedly applying Rule 2 to the simplest

x = 1;

x == 1;

Error-Prevention Tip 5.5
Use your text editor to search for all occurrences of = in your program and check that you
have the correct assignment operator or logical operator in each place.

5.10 Structured Programming Summary 181

Fig. 5.20 | C++’s single-entry/single-exit sequence, selection and repetition statements.

breakbreak

[t][t][f][f]

if…else statement
(double selection)
if…else statement
(double selection)

if statement
(single selection)
if statement
(single selection)

[t][t]

[f][f]

[t][t]

[f][f]

breakbreak
[t][t]

breakbreak
[t][t]

[f][f]

[f][f]

switch statement with breaks
(multiple selection)
switch statement with breaks
(multiple selection)

Sequence Selection

Repetition

default processingdefault processing

initializationinitialization

incrementincrement

.
.
.

.
.
.

.
.
.

.
.
.

[t][t]

[f][f]

for statementfor statement

[t][t]

[f][f]

while statementwhile statement

[t][t]

[f][f]

do…while statementdo…while statement

bodybody

182 Chapter 5 Control Statements: Part 2

activity diagram results in an activity diagram containing many action states in sequence
(Fig. 5.23). Rule 2 generates a stack of control statements, so let’s call Rule 2 the stacking
rule. The vertical dashed lines in Fig. 5.23 are not part of the UML. We use them to sep-
arate the four activity diagrams that demonstrate Rule 2 of Fig. 5.21 being applied.

Rules for forming structured programs

1) Begin with the “simplest activity diagram” (Fig. 5.22).

2) Any action state can be replaced by two action states in sequence.

3) Any action state can be replaced by any control statement (sequence,
if, if…else, switch, while, do…while or for).

4) Rules 2 and 3 can be applied as often as you like and in any order.

Fig. 5.21 | Rules for forming structured programs.

Fig. 5.22 | Simplest activity diagram.

Fig. 5.23 | Repeatedly applying Rule 2 of Fig. 5.21 to the simplest activity diagram.

action state

action state action stateaction stateaction state

action state action state

action state
action state

.
.
.

apply
Rule 2

apply
Rule 2

apply
Rule 2

5.10 Structured Programming Summary 183

Rule 3 is the nesting rule. Repeatedly applying Rule 3 to the simplest activity diagram
results in one with neatly nested control statements. For example, in Fig. 5.24, the action
state in the simplest activity diagram is replaced with a double-selection (if…else) state-
ment. Then Rule 3 is applied again to the action states in the double-selection statement,
replacing each with a double-selection statement. The dashed action-state symbols around
each of the double-selection statements represent an action state that was replaced in the
preceding activity diagram. [Note: The dashed arrows and dashed action state symbols
shown in Fig. 5.24 are not part of the UML. They’re used here as pedagogic devices to
illustrate that any action state may be replaced with a control statement.]

Rule 4 generates larger, more involved and more deeply nested statements. The dia-
grams that emerge from applying the rules in Fig. 5.21 constitute the set of all possible

Fig. 5.24 | Applying Rule 3 of Fig. 5.21 to the simplest activity diagram several times.

action stateaction state

action state

action stateaction state action stateaction state

apply
Rule 3

apply
Rule 3

apply
Rule 3

184 Chapter 5 Control Statements: Part 2

activity diagrams and hence the set of all possible structured programs. The beauty of the
structured approach is that we use only seven simple single-entry/single-exit control state-
ments and assemble them in only two simple ways.

If the rules in Fig. 5.21 are followed, an activity diagram with illegal syntax (such as
that in Fig. 5.25) cannot be created. If you’re uncertain about whether a particular dia-
gram is legal, apply the rules of Fig. 5.21 in reverse to reduce the diagram to the simplest
activity diagram. If it’s reducible to the simplest activity diagram, the original diagram is
structured; otherwise, it isn’t.

Structured programming promotes simplicity. Böhm and Jacopini have given us the
result that only three forms of control are needed:

• Sequence

• Selection

• Repetition

The sequence structure is trivial. Simply list the statements to execute in the order in which
they should execute.

Selection is implemented in one of three ways:

• if statement (single selection)

• if…else statement (double selection)

• switch statement (multiple selection)

It’s straightforward to prove that the simple if statement is sufficient to provide any
form of selection—everything that can be done with the if…else statement and the
switch statement can be implemented (although perhaps not as clearly and efficiently) by
combining if statements.

Repetition is implemented in one of three ways:
• while statement

• do…while statement

• for statement

It’s straightforward to prove that the while statement is sufficient to provide any form of
repetition. Everything that can be done with the do…while statement and the for state-
ment can be done (although perhaps not as smoothly) with the while statement.

Fig. 5.25 | Activity diagram with illegal syntax.

action state

action state

action state action state

5.11 Wrap-Up 185

Combining these results illustrates that any form of control ever needed in a C++ pro-
gram can be expressed in terms of the following:

• sequence

• if statement (selection)

• while statement (repetition)

and that these control statements can be combined in only two ways—stacking and nest-
ing. Indeed, structured programming promotes simplicity.

5.11 Wrap-Up
We’ve now completed our introduction to control statements, which enable you to con-
trol the flow of execution in functions. Chapter 4 discussed the if, if…else and while

statements. This chapter demonstrated the for, do…while and switch statements. We
showed that any algorithm can be developed using combinations of the sequence struc-
ture, the three types of selection statements—if, if…else and switch—and the three
types of repetition statements—while, do…while and for. We discussed how you can
combine these building blocks to utilize proven program construction and problem-solv-
ing techniques. You used the break and continue statements to alter a repetition state-
ment’s flow of control. This chapter also introduced logical operators, which enable you
to use more complex conditional expressions in control statements. Finally, we examined
the common errors of confusing the equality and assignment operators and provided sug-
gestions for avoiding these errors. In Chapter 6, we examine functions in greater depth.

Summary
Section 5.2 Essentials of Counter-Controlled Repetition
• In C++, it’s more precise to call a declaration that also reserves memory a definition (p. 153).

Section 5.3 for Repetition Statement
• The for repetition statement (p. 155) handles all the details of counter-controlled repetition.

• The general format of the for statement is

for (initialization; loopContinuationCondition; increment)
statement

where initialization initializes the control variable, loopContinuationCondition determines
whether the loop should continue executing and increment increments or decrements the control
variable.

• Typically, for statements are used for counter-controlled repetition and while statements are
used for sentinel-controlled repetition.

• The scope of a variable (p. 156) specifies where it can be used in a program.

• The comma operator (p. 156) has the lowest precedence of all C++ operators. The value and type
of a comma-separated list of expressions is the value and type of the rightmost expression in the list.

• The initialization, loop-continuation condition and increment expressions of a for statement
can contain arithmetic expressions. Also, the increment of a for statement can be negative.

• If the loop-continuation condition in a for header is initially false, the body of the for state-
ment is not performed. Instead, execution proceeds with the statement following the for.

186 Chapter 5 Control Statements: Part 2

Section 5.4 Examples Using the for Statement
• Standard library function pow(x, y) (p. 160) calculates the value of x raised to the yth power.

Function pow takes two arguments of type double and returns a double value.

• Parameterized stream manipulator setw (p. 162) specifies the field width in which the next value
output should appear, right justified by default. If the value is larger than the field width, the field
width is extended to accommodate the entire value. Stream manipulator left (p. 162) causes a
value to be left justified and right can be used to restore right justification.

• Sticky settings are those output-formatting settings that remain in effect until they’re changed.

Section 5.5 do…while Repetition Statement
• The do…while repetition statement tests the loop-continuation condition at the end of the loop,

so the body of the loop will be executed at least once. The format for the do…while statement is

do
{

statement
} while (condition);

Section 5.6 switch Multiple-Selection Statement
• The switch multiple-selection statement (p. 164) performs different actions based on its control-

ling expression’s value.

• A switch statement consists of a series of case labels (p. 169) and an optional default case (p. 169).

• Function cin.get() reads one character from the keyboard. Characters normally are stored in
variables of type char (p. 168). A character can be treated either as an integer or as a character.

• The expression in the parentheses following switch is called the controlling expression (p. 169).
The switch statement compares the value of the controlling expression with each case label.

• Consecutive cases with no statements between the perform the same set of statements.

• Each case label can specify only one constant integral expression.

• Each case can have multiple statements. The switch selection statement differs from other con-
trol statements in that it does not require braces around multiple statements in each case.

• C++ provides several data types to represent integers—int, char, short and long. The range of
integer values for each type depends on the particular computer’s hardware.

Section 5.7 break and continue Statements
• The break statement (p. 173), when executed in one of the repetition statements (for, while and

do…while), causes immediate exit from the statement.

• The continue statement (p. 173), when executed in a repetition statement, skips any remaining
statements in the loop’s body and proceeds with the next iteration of the loop. In a while or
do…while statement, execution continues with the next evaluation of the condition. In a for

statement, execution continues with the increment expression in the for statement header.

Section 5.8 Logical Operators
• Logical operators (p. 175) enable you to form complex conditions by combining simple condi-

tions. The logical operators are && (logical AND), || (logical OR) and ! (logical negation).

• The && (logical AND, p. 175) operator ensures that two conditions are both true.

• The || (logical OR, p. 176) operator ensures that either or both of two conditions are true.

• An expression containing && or || operators evaluates only until the truth or falsehood of the ex-
pression is known. This performance feature for the evaluation of logical AND and logical OR
expressions is called short-circuit evaluation (p. 176).

Self-Review Exercises 187

• The ! (logical NOT, also called logical negation; p. 176) operator enables a programmer to “re-
verse” the meaning of a condition. The unary logical negation operator is placed before a condi-
tion to choose a path of execution if the original condition (without the logical negation
operator) is false. In most cases, you can avoid using logical negation by expressing the condi-
tion with an appropriate relational or equality operator.

• When used as a condition, any nonzero value implicitly converts to true; 0 (zero) implicitly con-
verts to false.

• By default, bool values true and false are displayed by cout as 1 and 0, respectively. Stream ma-
nipulator boolalpha (p. 177) specifies that the value of each bool expression should be displayed
as either the word “true” or the word “false.”

Section 5.9 Confusing the Equality (==) and Assignment (=) Operators
• Any expression that produces a value can be used in the decision portion of any control state-

ment. If the value of the expression is zero, it’s treated as false, and if the value is nonzero, it’s
treated as true.

• An assignment produces a value—namely, the value assigned to the variable on the left side of
the assignment operator.

Section 5.10 Structured Programming Summary
• Any form of control can be expressed in terms of sequence, selection and repetition statements,

and these can be combined in only two ways—stacking and nesting.

Self-Review Exercises
5.1 State whether the following are true or false. If the answer is false, explain why.

a) The default case is required in the switch selection statement.
b) The break statement is required in the default case of a switch selection statement to

exit the switch properly.
c) The expression (x > y && a < b) is true if either the expression x > y is true or the

expression a < b is true.
d) An expression containing the || operator is true if either or both of its operands are

true.

5.2 Write a C++ statement or a set of C++ statements to accomplish each of the following:
a) Sum the odd integers between 1 and 99 using a for statement. Assume the integer vari-

ables sum and count have been declared.
b) Print the value 333.546372 in a 15-character field with precisions of 1, 2 and 3. Print

each number on the same line. Left-justify each number in its field. What three values
print?

c) Calculate the value of 2.5 raised to the power 3 using function pow. Print the result with
a precision of 2 in a field width of 10 positions. What prints?

d) Print the integers from 1 to 20 using a while loop and the counter variable x. Assume
that the variable x has been declared, but not initialized. Print only 5 integers per line.
[Hint: When x % 5 is 0, print a newline character; otherwise, print a tab character.]

e) Repeat Exercise 5.2(d) using a for statement.

5.3 Find the errors in each of the following code segments and explain how to correct them.
a) x = 1;

while (x <= 10);

++x;

}

188 Chapter 5 Control Statements: Part 2

b) for (y = .1; y != 1.0; y += .1)

cout << y << endl;

c) switch (n)

{

case 1:

cout << "The number is 1" << endl;

case 2:

cout << "The number is 2" << endl;

break;

default:

cout << "The number is not 1 or 2" << endl;

break;

}

d) The following code should print the values 1 to 10.
n = 1;

while (n < 10)

cout << n++ << endl;

Answers to Self-Review Exercises
5.1 a) False. The default case is optional. Nevertheless, it’s considered good software engi-

neering to always provide a default case.
b) False. The break statement is used to exit the switch statement. The break statement is

not required when the default case is the last case. Nor will the break statement be re-
quired if having control proceed with the next case makes sense.

c) False. When using the && operator, both of the relational expressions must be true for
the entire expression to be true.

d) True.

5.2 a) sum = 0;

for (count = 1; count <= 99; count += 2)

sum += count;

b) cout << fixed << left

<< setprecision(1) << setw(15) << 333.546372

<< setprecision(2) << setw(15) << 333.546372

<< setprecision(3) << setw(15) << 333.546372

<< endl;

Output is:
333.5 333.55 333.546

c) cout << fixed << setprecision(2) << setw(10) << pow(2.5, 3) << endl;

Output is:
15.63

d) x = 1;

while (x <= 20)

{

if (x % 5 == 0)

cout << x << endl;

else

cout << x << '\t';

++x;

}

Exercises 189

e) for (x = 1; x <= 20; ++x)
{

if (x % 5 == 0)
cout << x << endl;

else
cout << x << '\t';

}

5.3 a) Error: The semicolon after the while header causes an infinite loop.
Correction: Replace the semicolon by a {, or remove both the ; and the }.

b) Error: Using a floating-point number to control a for repetition statement.
Correction: Use an int and perform the proper calculation to get the values you desire.

for (y = 1; y != 10; ++y)
cout << (static_cast< double >(y) / 10) << endl;

c) Error: Missing break statement in the first case.
Correction: Add a break statement at the end of the first case. This is not an error if you
want the statement of case 2: to execute every time the case 1: statement executes.

d) Error: Improper relational operator used in the loop-continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

Exercises
5.4 (Find the Code Errors) Find the error(s), if any, in each of the following:

a) For (x = 100, x >= 1, ++x)

cout << x << endl;

b) The following code should print whether integer value is odd or even:

switch (value % 2)
{

case 0:
cout << "Even integer" << endl;

case 1:
cout << "Odd integer" << endl;

}

c) The following code should output the odd integers from 19 to 1:

for (x = 19; x >= 1; x += 2)
cout << x << endl;

d) The following code should output the even integers from 2 to 100:

counter = 2;

do
{

cout << counter << endl;
counter += 2;

} While (counter < 100);

5.5 (Summing Integers) Write a program that uses a for statement to sum a sequence of inte-
gers. Assume that the first integer read specifies the number of values remaining to be entered. Your
program should read only one value per input statement. A typical input sequence might be

5 100 200 300 400 500

where the 5 indicates that the subsequent 5 values are to be summed.

5.6 (Averaging Integers) Write a program that uses a for statement to calculate the average of
several integers. Assume the last value read is the sentinel 9999. For example, the sequence 10 8 11 7

9 9999 indicates that the program should calculate the average of all the values preceding 9999.

190 Chapter 5 Control Statements: Part 2

5.7 (What Does This Program Do?) What does the following program do?

5.8 (Find the Smallest Integer) Write a program that uses a for statement to find the smallest
of several integers. Assume that the first value read specifies the number of values remaining.

5.9 (Product of Odd Integers) Write a program that uses a for statement to calculate and print
the product of the odd integers from 1 to 15.

5.10 (Factorials) The factorial function is used frequently in probability problems. Using the
definition of factorial in Exercise 4.34, write a program that uses a for statement to evaluate the fac-
torials of the integers from 1 to 5. Print the results in tabular format. What difficulty might prevent
you from calculating the factorial of 20?

5.11 (Compound Interest) Modify the compound interest program of Section 5.4 to repeat its steps
for the interest rates 5%, 6%, 7%, 8%, 9% and 10%. Use a for statement to vary the interest rate.

5.12 (Drawing Patterns with Nested for Loops) Write a program that uses for statements to
print the following patterns separately, one below the other. Use for loops to generate the patterns.
All asterisks (*) should be printed by a single statement of the form cout << '*'; (this causes the
asterisks to print side by side). [Hint: The last two patterns require that each line begin with an ap-
propriate number of blanks. Extra credit: Combine your code from the four separate problems into
a single program that prints all four patterns side by side by making clever use of nested for loops.]

(a) (b) (c) (d)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

5.13 (Bar Chart) One interesting application of computers is drawing graphs and bar charts.
Write a program that reads five numbers (each between 1 and 30). Assume that the user enters only

1 // Exercise 5.7: ex05_07.cpp
2 // What does this program print?
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x; // declare x
9 int y; // declare y

10
11 // prompt user for input
12 cout << "Enter two integers in the range 1-20: ";
13 cin >> x >> y; // read values for x and y
14
15 for (int i = 1; i <= y; ++i) // count from 1 to y
16 {
17 for (int j = 1; j <= x; ++j) // count from 1 to x
18 cout << '@'; // output @
19
20 cout << endl; // begin new line
21 } // end outer for
22 } // end main

Exercises 191

valid values. For each number that is read, your program should print a line containing that number
of adjacent asterisks. For example, if your program reads the number 7, it should print *******.

5.14 (Calculating Total Sales) A mail order house sells five different products whose retail prices
are: product 1 — $2.98, product 2—$4.50, product 3—$9.98, product 4—$4.49 and product 5—
$6.87. Write a program that reads a series of pairs of numbers as follows:

a) product number
b) quantity sold

Your program should use a switch statement to determine the retail price for each product. Your
program should calculate and display the total retail value of all products sold. Use a sentinel-con-
trolled loop to determine when the program should stop looping and display the final results.

5.15 (GradeBook Modification) Modify the GradeBook program of Fig. 5.9–Fig. 5.11 to calculate
the grade-point average. A grade of A is worth 4 points, B is worth 3 points, and so on.

5.16 (Compound Interest Calculation) Modify Fig. 5.6 so it uses only integers to calculate the com-
pound interest. [Hint: Treat all monetary amounts as numbers of pennies. Then “break” the result into
its dollar and cents portions by using the division and modulus operations. Insert a period.]

5.17 (What Prints?) Assume i = 1, j = 2, k = 3 and m = 2. What does each statement print?
a) cout << (i == 1) << endl;

b) cout << (j == 3) << endl;

c) cout << (i >= 1 && j < 4) << endl;

d) cout << (m <= 99 && k < m) << endl;

e) cout << (j >= i || k == m) << endl;

f) cout << (k + m < j || 3 - j >= k) << endl;

g) cout << (!m) << endl;

h) cout << (!(j - m)) << endl;

i) cout << (!(k > m)) << endl;

5.18 (Number Systems Table) Write a program that prints a table of the binary, octal and
hexadecimal equivalents of the decimal numbers in the range 1–256. If you are not familiar with
these number systems, read Appendix D, first. [Hint: You can use the stream manipulators dec, oct
and hex to display integers in decimal, octal and hexadecimal formats, respectively.]

5.19 (Calculating π) Calculate the value of π from the infinite series

Print a table that shows the approximate value of π after each of the first 1000 terms of this series.

5.20 (Pythagorean Triples) A right triangle can have sides that are all integers. A set of three in-
teger values for the sides of a right triangle is called a Pythagorean triple. These three sides must sat-
isfy the relationship that the sum of the squares of two of the sides is equal to the square of the
hypotenuse. Find all Pythagorean triples for side1, side2 and hypotenuse all no larger than 500.
Use a triple-nested for loop that tries all possibilities. This is an example of brute force computing.
You’ll learn in more advanced computer science courses that there are many interesting problems
for which there’s no known algorithmic approach other than sheer brute force.

5.21 (Calculating Salaries) A company pays its employees as managers (who receive a fixed weekly
salary), hourly workers (who receive a fixed hourly wage for up to the first 40 hours they work and
“time-and-a-half”—1.5 times their hourly wage—for overtime hours worked), commission workers
(who receive $250 plus 5.7 percent of their gross weekly sales), or pieceworkers (who receive a fixed
amount of money per item for each of the items they produce—each pieceworker in this company
works on only one type of item). Write a program to compute the weekly pay for each employee. You
do not know the number of employees in advance. Each type of employee has its own pay code: Man-

π 4
4
3
---–

4
5

4
7
---–

4
9

4
11
------– …+ + +=

192 Chapter 5 Control Statements: Part 2

agers have code 1, hourly workers have code 2, commission workers have code 3 and pieceworkers have
code 4. Use a switch to compute each employee’s pay according to that employee’s paycode. Within
the switch, prompt the user (i.e., the payroll clerk) to enter the appropriate facts your program needs
to calculate each employee’s pay according to that employee’s paycode.

5.22 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, || and !. De
Morgan’s laws can sometimes make it more convenient for us to express a logical expression. These
laws state that the expression !(condition1 && condition2) is logically equivalent to the expression
(!condition1 || !condition2). Also, the expression !(condition1 || condition2) is logically equiv-
alent to the expression (!condition1 && !condition2). Use De Morgan’s laws to write equivalent
expressions for each of the following, then write a program to show that the original expression and
the new expression in each case are equivalent:

a) !(x < 5) && !(y >= 7)

b) !(a == b) || !(g != 5)

c) !((x <= 8) && (y > 4))

d) !((i > 4) || (j <= 6))

5.23 (Diamond of Asterisks) Write a program that prints the following diamond shape. You may
use output statements that print a single asterisk (*), a single blank or a single newline. Maximize
your use of repetition (with nested for statements) and minimize the number of output statements.

5.24 (Diamond of Asterisks Modification) Modify Exercise 5.23 to read an odd number in the
range 1 to 19 to specify the number of rows in the diamond, then display a diamond of the appro-
priate size.

5.25 (Removing break and continue) A criticism of the break and continue statements is that
each is unstructured. These statements can always be replaced by structured statements. Describe in
general how you’d remove any break statement from a loop in a program and replace it with some
structured equivalent. [Hint: The break statement leaves a loop from within the body of the loop.
Another way to leave is by failing the loop-continuation test. Consider using in the loop-continua-
tion test a second test that indicates “early exit because of a ‘break’ condition.”] Use the technique
you developed here to remove the break statement from the program of Fig. 5.13.

5.26 What does the following program segment do?

*

*

1 for (int i = 1; i <= 5; ++i)
2 {
3 for (int j = 1; j <= 3; ++j)
4 {
5 for (int k = 1; k <= 4; ++k)
6 cout << '*';
7
8 cout << endl;
9 } // end inner for

10
11 cout << endl;
12 } // end outer for

Making a Difference 193

5.27 (Removing the continue Statement) Describe in general how you’d remove any continue

statement from a loop in a program and replace it with some structured equivalent. Use the tech-
nique you developed here to remove the continue statement from the program of Fig. 5.14.

5.28 (“The Twelve Days of Christmas” Song) Write a program that uses repetition and switch

statements to print the song “The Twelve Days of Christmas.” One switch statement should be
used to print the day (i.e., “first,” “second,” etc.). A separate switch statement should be used to
print the remainder of each verse. Visit the website www.12days.com/library/carols/

12daysofxmas.htm for the complete lyrics to the song.

5.29 (Peter Minuit Problem) Legend has it that, in 1626, Peter Minuit purchased Manhattan
Island for $24.00 in barter. Did he make a good investment? To answer this question, modify the
compound interest program of Fig. 5.6 to begin with a principal of $24.00 and to calculate the
amount of interest on deposit if that money had been kept on deposit until this year (e.g., 384 years
through 2010). Place the for loop that performs the compound interest calculation in an outer for
loop that varies the interest rate from 5% to 10% to observe the wonders of compound interest.

Making a Difference
5.30 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film An Inconvenient Truth, featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1–4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of the websites where you found your facts.

5.31 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www.fairtax.org/site/PageServer?pagename=calculator

Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most
other taxes in favor of a 23% consumption tax on all products and services that you buy. Some
FairTax opponents question the 23% figure and say that because of the way the tax is calculated, it
would be more accurate to say the rate is 30%—check this carefully. Write a program that prompts
the user to enter expenses in various expense categories they have (e.g., housing, food, clothing,
transportation, education, health care, vacations), then prints the estimated FairTax that person
would pay.

5.32 (Facebook User Base Growth) According to CNNMoney.com, Facebook hit 500 million
users in July of 2010 and its user base has been growing at a rate of 5% per month. Using the com-
pound-growth technique you learned in Fig. 5.6 and assuming this growth rate continues, how
many months will it take for Facebook to grow its user base to one billion users? How many months
will it take for Facebook to grow its user base to two billion users (which, at the time of this writing,
was the total number of people on the Internet)?

www.12days.com/library/carols/12daysofxmas.htm
www.12days.com/library/carols/12daysofxmas.htm
www.fairtax.org/site/PageServer?pagename=calculator

6 Functions and an
Introduction to Recursion

Form ever follows function.
—Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Answer me in one word.
—William Shakespeare

There is a point at which
methods devour themselves.
—Frantz Fanon

O b j e c t i v e s
In this chapter you’ll learn:

■ To construct programs
modularly from functions.

■ To use common math library
functions.

■ The mechanisms for passing
data to functions and
returning results.

■ How the function call/return
mechanism is supported by
the function call stack and
activation records.

■ To use random number
generation to implement
game-playing applications.

■ How the visibility of
identifiers is limited to
specific regions of programs.

■ To write and use recursive
functions.

6.1 Introduction 195

6.1 Introduction
Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters of this book. Experience has shown that the best
way to develop and maintain a large program is to construct it from small, simple pieces,
or components. This technique is called divide and conquer.

We’ll overview a portion of the C++ Standard Library’s math functions. Next, you’ll
learn how to declare a function with more than one parameter. We’ll also present addi-
tional information about function prototypes and how the compiler uses them to convert
the type of an argument in a function call to the type specified in a function’s parameter
list, if necessary.

Next, we’ll take a brief diversion into simulation techniques with random number
generation and develop a version of the casino dice game called craps that uses most of the
programming techniques you’ve learned.

We then present C++’s storage classes and scope rules. These determine the period
during which an object exists in memory and where its identifier can be referenced in a pro-
gram. You’ll learn how C++ keeps track of which function is currently executing, how
parameters and other local variables of functions are maintained in memory and how a func-
tion knows where to return after it completes execution. We discuss topics that help improve
program performance—inline functions that can eliminate the overhead of a function call
and reference parameters that can be used to pass large data items to functions efficiently.

Many of the applications you develop will have more than one function of the same
name. This technique, called function overloading, is used to implement functions that
perform similar tasks for arguments of different types or possibly for different numbers of
arguments. We consider function templates—a mechanism for defining a family of over-
loaded functions. The chapter concludes with a discussion of functions that call them-
selves, either directly, or indirectly (through another function)—a topic called recursion.

6.1 Introduction
6.2 Program Components in C++
6.3 Math Library Functions
6.4 Function Definitions with Multiple

Parameters
6.5 Function Prototypes and Argument

Coercion
6.6 C++ Standard Library Headers
6.7 Case Study: Random Number

Generation
6.8 Case Study: Game of Chance;

Introducing enum
6.9 Storage Classes

6.10 Scope Rules

6.11 Function Call Stack and Activation
Records

6.12 Functions with Empty Parameter Lists
6.13 Inline Functions
6.14 References and Reference Parameters
6.15 Default Arguments
6.16 Unary Scope Resolution Operator
6.17 Function Overloading
6.18 Function Templates
6.19 Recursion
6.20 Example Using Recursion: Fibonacci

Series
6.21 Recursion vs. Iteration
6.22 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

196 Chapter 6 Functions and an Introduction to Recursion

6.2 Program Components in C++
As you’ve seen, C++ programs are typically written by combining new functions and class-
es you write with “prepackaged” functions and classes available in the C++ Standard Li-
brary. The C++ Standard Library provides a rich collection of functions for common
mathematical calculations, string manipulations, character manipulations, input/output,
error checking and many other useful operations.

Functions allow you to modularize a program by separating its tasks into self-contained
units. You’ve used a combination of library functions and your own functions in every pro-
gram you’ve written. Functions you write are referred to as user-defined functions or pro-
grammer-defined functions. The statements in function bodies are written only once, are
reused from perhaps several locations in a program and are hidden from other functions.

There are several motivations for modularizing a program with functions. One is the
divide-and-conquer approach. Another is software reuse. For example, in earlier programs,
we did not have to define how to read a line of text from the keyboard—C++ provides this
capability via the getline function of the <string> header. A third motivation is to avoid
repeating code. Also, dividing a program into meaningful functions makes the program
easier to debug and maintain.

As you know, a function is invoked by a function call, and when the called function
completes its task, it either returns a result or simply returns control to the caller. An
analogy to this program structure is the hierarchical form of management (Figure 6.1). A
boss (similar to the calling function) asks a worker (similar to the called function) to per-
form a task and report back (i.e., return) the results after completing the task. The boss
function does not know how the worker function performs its designated tasks. The
worker may also call other worker functions, unbeknownst to the boss. This hiding of
implementation details promotes good software engineering. Figure 6.1 shows the boss

function communicating with several worker functions. The boss function divides the
responsibilities among the worker functions, and worker1 acts as a “boss function” to
worker4 and worker5.

Software Engineering Observation 6.1
To promote software reusability, every function should be limited to performing a single,
well-defined task, and the name of the function should express that task effectively.

Fig. 6.1 | Hierarchical boss function/worker function relationship.

boss

worker2 worker3worker1

worker5worker4

6.3 Math Library Functions 197

6.3 Math Library Functions
Sometimes functions, such as main, are not members of a class. Such functions are called
global functions. Like a class’s member functions, the function prototypes for global func-
tions are placed in headers, so that the global functions can be reused in any program that
includes the header and that can link to the function’s object code. For example, recall that
we used function pow of the <cmath> header to raise a value to a power in Figure 5.6. We
introduce various functions from the <cmath> header here to present the concept of global
functions that do not belong to a particular class.

The <cmath> header provides a collection of functions that enable you to perform
common mathematical calculations. For example, you can calculate the square root of
900.0 with the function call

The preceding expression evaluates to 30.0. Function sqrt takes an argument of type dou-
ble and returns a double result. There’s no need to create any objects before calling func-
tion sqrt. Also, all functions in the <cmath> header are global functions—therefore, each
is called simply by specifying the name of the function followed by parentheses containing
the function’s arguments.

Function arguments may be constants, variables or more complex expressions. If
c = 13.0, d = 3.0 and f = 4.0, then the statement

displays the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0. Some math library func-
tions are summarized in Fig. 6.2. In the figure, the variables x and y are of type double.

sqrt(900.0)

cout << sqrt(c + d * f) << endl;

Function Description Example

ceil(x) rounds x to the smallest inte-
ger not less than x

ceil(9.2) is 10.0

ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x
(x in radians)

cos(0.0) is 1.0

exp(x) exponential function ex exp(1.0) is 2.718282

exp(2.0) is 7.389056

fabs(x) absolute value of x fabs(5.1) is 5.1

fabs(0.0) is 0.0

fabs(-8.76) is 8.76

floor(x) rounds x to the largest integer
not greater than x

floor(9.2) is 9.0

floor(-9.8) is -10.0

fmod(x, y) remainder of x/y as a floating-
point number

fmod(2.6, 1.2) is 0.2

log(x) natural logarithm of x (base e) log(2.718282) is 1.0

log(7.389056) is 2.0

log10(x) logarithm of x (base 10) log10(10.0) is 1.0

log10(100.0) is 2.0

Fig. 6.2 | Math library functions. (Part 1 of 2.)

198 Chapter 6 Functions and an Introduction to Recursion

6.4 Function Definitions with Multiple Parameters
Let’s consider functions with multiple parameters. Figures 6.3–6.5 modify class GradeBook
by including a user-defined function called maximum that determines and returns the larg-
est of three int grades. When the application executes, the main function (lines 5–13 of
Fig. 6.5) creates one GradeBook object (line 8) and calls its inputGrades member function
(line 11) to read three integer grades from the user. In class GradeBook’s implementation
file (Fig. 6.4), lines 52–53 of member function inputGrades prompt the user to enter
three integer values and read them from the user. Line 56 calls member function maximum

(defined in lines 60–73). Function maximum determines the largest value, then the return

statement (line 72) returns that value to the point at which function inputGrades invoked
maximum (line 56). Member function inputGrades then stores maximum’s return value in
data member maximumGrade. This value is then output by calling function dis-

playGradeReport (line 12 of Fig. 6.5). [Note: We named this function displayGradeRe-

port because subsequent versions of class GradeBook will use this function to display a
complete grade report, including the maximum and minimum grades.] In Chapter 7, Ar-
rays and Vectors, we’ll enhance class GradeBook to process an arbitrary number of grades.

pow(x, y) x raised to power y (xy) pow(2, 7) is 128

pow(9, .5) is 3

sin(x) trigonometric sine of x
(x in radians)

sin(0.0) is 0

sqrt(x) square root of x (where x is a
nonnegative value)

sqrt(9.0) is 3.0

tan(x) trigonometric tangent of x
(x in radians)

tan(0.0) is 0

1 // Fig. 6.3: GradeBook.h
2 // Definition of class GradeBook that finds the maximum of three grades.
3 // Member functions are defined in GradeBook.cpp
4 #include <string> // program uses C++ standard string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 GradeBook(string); // constructor initializes course name
12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message
15 void inputGrades(); // input three grades from user

Fig. 6.3 | GradeBook header. (Part 1 of 2.)

Function Description Example

Fig. 6.2 | Math library functions. (Part 2 of 2.)

6.4 Function Definitions with Multiple Parameters 199

16 void displayGradeReport(); // display a report based on the grades
17
18 private:
19 string courseName; // course name for this GradeBook
20
21 }; // end class GradeBook

1 // Fig. 6.4: GradeBook.cpp
2 // Member-function definitions for class GradeBook that
3 // determines the maximum of three grades.
4 #include <iostream>
5 using namespace std;
6
7 #include "GradeBook.h" // include definition of class GradeBook
8
9 // constructor initializes courseName with string supplied as argument;

10 // initializes maximumGrade to 0
11 GradeBook::GradeBook(string name)
12 {
13 setCourseName(name); // validate and store courseName
14 maximumGrade = 0; // this value will be replaced by the maximum grade
15 } // end GradeBook constructor
16
17 // function to set the course name; limits name to 25 or fewer characters
18 void GradeBook::setCourseName(string name)
19 {
20 if (name.length() <= 25) // if name has 25 or fewer characters
21 courseName = name; // store the course name in the object
22 else // if name is longer than 25 characters
23 { // set courseName to first 25 characters of parameter name
24 courseName = name.substr(0, 25); // select first 25 characters
25 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
26 << "Limiting courseName to first 25 characters.\n" << endl;
27 } // end if...else
28 } // end function setCourseName
29
30 // function to retrieve the course name
31 string GradeBook::getCourseName()
32 {
33 return courseName;
34 } // end function getCourseName
35
36 // display a welcome message to the GradeBook user
37 void GradeBook::displayMessage()
38 {
39 // this statement calls getCourseName to get the
40 // name of the course this GradeBook represents
41 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
42 << endl;
43 } // end function displayMessage

Fig. 6.4 | GradeBook class defines function maximum. (Part 1 of 2.)

Fig. 6.3 | GradeBook header. (Part 2 of 2.)

int maximum(int, int, int); // determine max of 3 values

int maximumGrade; // maximum of three grades

200 Chapter 6 Functions and an Introduction to Recursion

44
45 // input three grades from user; determine maximum
46 void GradeBook::inputGrades()
47 {
48 int grade1; // first grade entered by user
49 int grade2; // second grade entered by user
50 int grade3; // third grade entered by user
51
52 cout << "Enter three integer grades: ";
53 cin >> grade1 >> grade2 >> grade3;
54
55 // store maximum in member maximumGrade
56
57 } // end function inputGrades
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 // display a report based on the grades entered by user
76 void GradeBook::displayGradeReport()
77 {
78 // output maximum of grades entered
79 cout << "Maximum of grades entered: " << << endl;
80 } // end function displayGradeReport

1 // Fig. 6.5: fig06_05.cpp
2 // Create GradeBook object, input grades and display grade report.
3 #include "GradeBook.h" // include definition of class GradeBook
4
5 int main()
6 {
7 // create GradeBook object
8 GradeBook myGradeBook("CS101 C++ Programming");
9

10 myGradeBook.displayMessage(); // display welcome message
11

Fig. 6.5 | Demonstrating function maximum. (Part 1 of 2.)

Fig. 6.4 | GradeBook class defines function maximum. (Part 2 of 2.)

maximumGrade = maximum(grade1, grade2, grade3);

// returns the maximum of its three integer parameters
int GradeBook::maximum(int x, int y, int z)
{

int maximumValue = x; // assume x is the largest to start

// determine whether y is greater than maximumValue
if (y > maximumValue)

maximumValue = y; // make y the new maximumValue

// determine whether z is greater than maximumValue
if (z > maximumValue)

maximumValue = z; // make z the new maximumValue

return maximumValue;
} // end function maximum

maximumGrade

myGradeBook.inputGrades(); // read grades from user

6.4 Function Definitions with Multiple Parameters 201

Member function maximum’s prototype (Fig. 6.3, line 17) indicates that the function
returns an integer value, has the name maximum and requires three integer parameters to per-
form its task. The function header (Fig. 6.4, line 60) matches the function prototype and
indicates that the parameter names are x, y and z. When maximum is called (Fig. 6.4, line
56), the parameter x is initialized with the value of the argument grade1, the parameter y
is initialized with the value of the argument grade2 and the parameter z is initialized with

12
13 } // end main

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 86 67 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 86 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 75 86
Maximum of grades entered: 86

Software Engineering Observation 6.2
The commas used in line 56 of Fig. 6.4 to separate the arguments to function maximum

are not comma operators as discussed in Section 5.3. The comma operator guarantees that
its operands are evaluated left to right. The order of evaluation of a function’s arguments,
however, is not specified by the C++ standard. Thus, different compilers can evaluate
function arguments in different orders. The C++ standard does guarantee that all
arguments in a function call are evaluated before the called function executes.

Portability Tip 6.1
Sometimes when a function’s arguments are expressions, such as those with calls to other
functions, the order in which the compiler evaluates the arguments could affect the values
of one or more of the arguments. If the evaluation order changes between compilers, the
argument values passed to the function could vary, causing subtle logic errors.

Error-Prevention Tip 6.1
If you have doubts about the order of evaluation of a function’s arguments and whether
the order would affect the values passed to the function, evaluate the arguments in sepa-
rate assignment statements before the function call, assign the result of each expression to
a local variable, then pass those variables as arguments to the function.

Fig. 6.5 | Demonstrating function maximum. (Part 2 of 2.)

myGradeBook.displayGradeReport(); // display report based on grades

202 Chapter 6 Functions and an Introduction to Recursion

the value of the argument grade3. There must be one argument in the function call for
each parameter (also called a formal parameter) in the function definition.

Notice that multiple parameters are specified in both the function prototype and the
function header as a comma-separated list. The compiler refers to the function prototype
to check that calls to maximum contain the correct number and types of arguments and that
the types of the arguments are in the correct order. In addition, the compiler uses the
prototype to ensure that the value returned by the function can be used correctly in the
expression that called the function (e.g., a function call that returns void cannot be used
as the right side of an assignment statement). Each argument must be consistent with the
type of the corresponding parameter. For example, a parameter of type double can receive
values like 7.35, 22 or –0.03456, but not a string like "hello". If the arguments passed to
a function do not match the types specified in the function’s prototype, the compiler
attempts to convert the arguments to those types. Section 6.5 discusses this conversion.

To determine the maximum value (lines 60–73 of Fig. 6.4), we begin with the assump-
tion that parameter x contains the largest value, so line 62 of function maximum declares local
variable maximumValue and initializes it with the value of parameter x. Of course, it’s possible
that parameter y or z contains the actual largest value, so we must compare each of these
values with maximumValue. The if statement in lines 65–66 determines whether y is greater
than maximumValue and, if so, assigns y to maximumValue. The if statement in lines 69–70
determines whether z is greater than maximumValue and, if so, assigns z to maximumValue. At
this point the largest of the three values is in maximumValue, so line 72 returns that value to
the call in line 56. When program control returns to the point in the program where maximum
was called, maximum’s parameters x, y and z are no longer accessible to the program.

There are three ways to return control to the point at which a function was invoked.
If the function does not return a result (i.e., it has a void return type), control returns when
the program reaches the function-ending right brace, or by execution of the statement

If the function does return a result, the statement

evaluates expression and returns the value of expression to the caller.

Common Programming Error 6.1
Declaring function parameters of the same type as double x, y instead of double x,

double y is a syntax error—a type is required for each parameter in the parameter list.

Common Programming Error 6.2
Compilation errors occur if the function prototype, header and calls do not all agree in the
number, type and order of arguments and parameters, and in the return type. Linker er-
rors and other types of errors can occur as well as you’ll see later in the book.

Software Engineering Observation 6.3
A function that has many parameters may be performing too many tasks. Consider
dividing the function into smaller functions that perform the separate tasks. Limit the
function header to one line if possible.

return;

return expression;

6.5 Function Prototypes and Argument Coercion 203

6.5 Function Prototypes and Argument Coercion
A function prototype (also called a function declaration) tells the compiler the name of a
function, the type of data it returns, the number of parameters it expects to receive, the
types of those parameters and the order in which the parameters of those types are expected.

Function Signatures
The portion of a function prototype that includes the name of the function and the types of
its arguments is called the function signature or simply the signature. The function signa-
ture does not specify the function’s return type. Functions in the same scope must have
unique signatures. The scope of a function is the region of a program in which the function
is known and accessible. We’ll say more about scope in Section 6.10.

In Fig. 6.3, if the function prototype in line 17 had been written

the compiler would report an error, because the void return type in the function prototype
would differ from the int return type in the function header. Similarly, such a prototype
would cause the statement

to generate a compilation error, because that statement depends on maximum to return a
value to be displayed.

Argument Coercion
An important feature of function prototypes is argument coercion—i.e., forcing argu-
ments to the appropriate types specified by the parameter declarations. For example, a pro-

Software Engineering Observation 6.4
Function prototypes are required. Use #include preprocessor directives to obtain function
prototypes for the C++ Standard Library functions from the headers of the appropriate
libraries (e.g., the prototype for sqrt is in header <cmath>; a partial list of C++ Standard
Library headers appears in Section 6.6). Also use #include to obtain headers containing
function prototypes written by you or other programmers.

Common Programming Error 6.3
If a function is defined before it’s invoked, then its definition also serves as the function’s
prototype, so a separate prototype is unnecessary. If a function is invoked before it’s de-
fined, and that function does not have a function prototype, a compilation error occurs.

Software Engineering Observation 6.5
Always provide function prototypes, even though it’s possible to omit them when functions
are defined before they’re used (in which case the function header acts as the function
prototype as well). Providing the prototypes avoids tying the code to the order in which
functions are defined (which can easily change as a program evolves).

Common Programming Error 6.4
It’s a compilation error if two functions in the same scope have the same signature but dif-
ferent return types.

void maximum(int, int, int);

cout << maximum(6, 7, 0);

204 Chapter 6 Functions and an Introduction to Recursion

gram can call a function with an integer argument, even though the function prototype
specifies a double argument—the function will still work correctly.

Argument Promotion Rules
Sometimes, argument values that do not correspond precisely to the parameter types in the
function prototype can be converted by the compiler to the proper type before the function
is called. These conversions occur as specified by C++’s promotion rules. The promotion
rules indicate the implicit conversions that the compiler can perform between fundamental
types. An int can be converted to a double. However, a double converted to an int trun-
cates the fractional part of the double value. Keep in mind that double variables can hold
numbers of much greater magnitude than int variables, so the loss of data may be consid-
erable. Values may also be modified when converting large integer types to small integer
types (e.g., long to short), signed to unsigned or unsigned to signed. Unsigned integers
range from 0 to approximately twice the positive range of the corresponding signed type.

The promotion rules apply to expressions containing values of two or more data types;
such expressions are also referred to as mixed-type expressions. The type of each value in
a mixed-type expression is promoted to the “highest” type in the expression (actually a
temporary version of each value is created and used for the expression—the original values
remain unchanged). Promotion also occurs when the type of a function argument does not
match the parameter type specified in the function definition or prototype. Figure 6.6 lists
the fundamental data types in order from “highest type” to “lowest type.”

Converting values to lower fundamental types can result in incorrect values. There-
fore, a value can be converted to a lower fundamental type only by explicitly assigning the
value to a variable of lower type (some compilers will issue a warning in this case) or by
using a cast operator (see Section 4.9). Function argument values are converted to the
parameter types in a function prototype as if they were being assigned directly to variables

Data types

long double

double

float

unsigned long long int (synonymous with unsigned long long; in the new standard)
long long int (synonymous with long long; in the new standard)
unsigned long int (synonymous with unsigned long)
long int (synonymous with long)
unsigned int (synonymous with unsigned)
int

unsigned short int (synonymous with unsigned short)
short int (synonymous with short)
unsigned char

char

bool

Fig. 6.6 | Promotion hierarchy for fundamental data types.

6.6 C++ Standard Library Headers 205

of those types. If a square function that uses an integer parameter is called with a floating-
point argument, the argument is converted to int (a lower type), and square could return
an incorrect value. For example, square(4.5) returns 16, not 20.25.

6.6 C++ Standard Library Headers
The C++ Standard Library is divided into many portions, each with its own header. The
headers contain the function prototypes for the related functions that form each portion
of the library. The headers also contain definitions of various class types and functions, as
well as constants needed by those functions. A header “instructs” the compiler on how to
interface with library and user-written components.

Figure 6.7 lists some common C++ Standard Library headers, most of which are dis-
cussed later in the book. The term “macro” that’s used several times in Fig. 6.7 is discussed
in detail in Appendix E, Preprocessor. Header names ending in.h are “old-style” headers
that have been superseded by the C++ Standard Library headers. We use only the C++
Standard Library versions of each header in this book to ensure that our examples will
work on most standard C++ compilers.

Common Programming Error 6.5
Converting from a higher data type in the promotion hierarchy to a lower type, or between
signed and unsigned, can corrupt the data value, causing a loss of information.

Common Programming Error 6.6
It’s a compilation error if the arguments in a function call do not match the number and
types of the parameters declared in the corresponding function prototype. It’s also an error
if the number of arguments in the call matches, but the arguments cannot be implicitly
converted to the expected types.

Standard Library
header Explanation

<iostream> Contains function prototypes for the C++ standard input and output
functions, introduced in Chapter 2, and is covered in more detail in
Chapter 15, Stream Input/Output.

<iomanip> Contains function prototypes for stream manipulators that format
streams of data. This header is first used in Section 4.9 and is discussed in
more detail in Chapter 15, Stream Input/Output.

<cmath> Contains function prototypes for math library functions (Section 6.3).

<cstdlib> Contains function prototypes for conversions of numbers to text, text to
numbers, memory allocation, random numbers and various other utility
functions. Portions of the header are covered in Section 6.7; Chapter 11,
Operator Overloading; Class string; Chapter 16, Exception Handling: A
Deeper Look; Chapter 21, Bits, Characters, C Strings and structs; and
Appendix F, C Legacy Code Topics.

<ctime> Contains function prototypes and types for manipulating the time and
date. This header is used in Section 6.7.

Fig. 6.7 | C++ Standard Library headers. (Part 1 of 3.)

206 Chapter 6 Functions and an Introduction to Recursion

<vector>, <list>,
<deque>, <queue>,
<stack>, <map>,
<set>, <bitset>

These headers contain classes that implement the C++ Standard Library
containers. Containers store data during a program’s execution. The
<vector> header is first introduced in Chapter 7, Arrays and Vectors. We
discuss all these headers in Chapter 22, Standard Template Library
(STL).

<cctype> Contains function prototypes for functions that test characters for certain
properties (such as whether the character is a digit or a punctuation), and
function prototypes for functions that can be used to convert lowercase
letters to uppercase letters and vice versa. These topics are discussed in
Chapter 21, Bits, Characters, C Strings and structs.

<cstring> Contains function prototypes for C-style string-processing functions. This
header is used in Chapter 11, Operator Overloading; Class string.

<typeinfo> Contains classes for runtime type identification (determining data types
at execution time). This header is discussed in Section 13.8.

<exception>,
<stdexcept>

These headers contain classes that are used for exception handling (dis-
cussed in Chapter 16, Exception Handling: A Deeper Look).

<memory> Contains classes and functions used by the C++ Standard Library to allo-
cate memory to the C++ Standard Library containers. This header is used
in Chapter 16, Exception Handling: A Deeper Look.

<fstream> Contains function prototypes for functions that perform input from and
output to files on disk (discussed in Chapter 17, File Processing).

<string> Contains the definition of class string from the C++ Standard Library
(discussed in Chapter 18, Class string and String Stream Processing).

<sstream> Contains function prototypes for functions that perform input from
strings in memory and output to strings in memory (discussed in
Chapter 18, Class string and String Stream Processing).

<functional> Contains classes and functions used by C++ Standard Library algorithms.
This header is used in Chapter 22.

<iterator> Contains classes for accessing data in the C++ Standard Library contain-
ers. This header is used in Chapter 22.

<algorithm> Contains functions for manipulating data in C++ Standard Library con-
tainers. This header is used in Chapter 22.

<cassert> Contains macros for adding diagnostics that aid program debugging.
This header is used in Appendix E, Preprocessor.

<cfloat> Contains the floating-point size limits of the system.

<climits> Contains the integral size limits of the system.

<cstdio> Contains function prototypes for the C-style standard input/output
library functions.

<locale> Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., monetary
formats, sorting strings, character presentation, etc.).

Standard Library
header Explanation

Fig. 6.7 | C++ Standard Library headers. (Part 2 of 3.)

6.7 Case Study: Random Number Generation 207

6.7 Case Study: Random Number Generation
We now take a brief and hopefully entertaining diversion into a popular programming ap-
plication, namely simulation and game playing. In this and the next section, we develop a
game-playing program that includes multiple functions.

The element of chance can be introduced into computer applications by using the
C++ Standard Library function rand. Consider the following statement:

The function rand generates an unsigned integer between 0 and RAND_MAX (a symbolic
constant defined in the <cstdlib> header). You can determine the value of RAND_MAX for
your system simply by displaying the constant. If rand truly produces integers at random,
every number between 0 and RAND_MAX has an equal chance (or probability) of being cho-
sen each time rand is called.

The range of values produced directly by the function rand often is different than
what a specific application requires. For example, a program that simulates coin tossing
might require only 0 for “heads” and 1 for “tails.” A program that simulates rolling a six-
sided die would require random integers in the range 1 to 6. A program that randomly
predicts the next type of spaceship (out of four possibilities) that will fly across the horizon
in a video game might require random integers in the range 1 through 4.

Rolling a Six-Sided Die
To demonstrate rand, Fig. 6.8 simulates 20 rolls of a six-sided die and displays the value
of each roll. The function prototype for the rand function is in <cstdlib>. To produce
integers in the range 0 to 5, we use the modulus operator (%) with rand as follows:

This is called scaling. The number 6 is called the scaling factor. We then shift the range
of numbers produced by adding 1 to our previous result. Figure 6.8 confirms that the re-
sults are in the range 1 to 6.

<limits> Contains classes for defining the numerical data type limits on each com-
puter platform.

<utility> Contains classes and functions that are used by many C++ Standard
Library headers.

i = rand();

rand() % 6

1 // Fig. 6.8: fig06_08.cpp
2 // Shifted and scaled random integers.
3 #include <iostream>
4 #include <iomanip>

Fig. 6.8 | Shifted, scaled integers produced by 1 + rand() % 6. (Part 1 of 2.)

Standard Library
header Explanation

Fig. 6.7 | C++ Standard Library headers. (Part 3 of 3.)

208 Chapter 6 Functions and an Introduction to Recursion

Rolling a Six-Sided Die 6,000,000 Times
To show that the numbers produced by rand occur with approximately equal likelihood,
Fig. 6.9 simulates 6,000,000 rolls of a die. Each integer in the range 1 to 6 should appear
approximately 1,000,000 times. This is confirmed by the program’s output.

5
6 using namespace std;
7
8 int main()
9 {

10 // loop 20 times
11 for (int counter = 1; counter <= 20; ++counter)
12 {
13
14
15
16 // if counter is divisible by 5, start a new line of output
17 if (counter % 5 == 0)
18 cout << endl;
19 } // end for
20 } // end main

6 6 5 5 6
5 1 1 5 3
6 6 2 4 2
6 2 3 4 1

1 // Fig. 6.9: fig06_09.cpp
2 // Rolling a six-sided die 6,000,000 times.
3 #include <iostream>
4 #include <iomanip>
5 #include <cstdlib> // contains function prototype for rand
6 using namespace std;
7
8 int main()
9 {

10 int frequency1 = 0; // count of 1s rolled
11 int frequency2 = 0; // count of 2s rolled
12 int frequency3 = 0; // count of 3s rolled
13 int frequency4 = 0; // count of 4s rolled
14 int frequency5 = 0; // count of 5s rolled
15 int frequency6 = 0; // count of 6s rolled
16
17 int face; // stores most recently rolled value
18
19 // summarize results of 6,000,000 rolls of a die
20 for (int roll = 1; roll <= 6000000; ++roll)
21 {

Fig. 6.9 | Rolling a six-sided die 6,000,000 times. (Part 1 of 2.)

Fig. 6.8 | Shifted, scaled integers produced by 1 + rand() % 6. (Part 2 of 2.)

#include <cstdlib> // contains function prototype for rand

// pick random number from 1 to 6 and output it
cout << setw(10) << (1 + rand() % 6);

6.7 Case Study: Random Number Generation 209

As the output shows, we can simulate the rolling of a six-sided die by scaling and
shifting the values produced by rand. The program should never get to the default case
(lines 45–46) in the switch structure, because the switch’s controlling expression (face)
always has values in the range 1–6; however, we provide the default case as a matter of
good practice. After we study arrays in Chapter 7, we show how to replace the entire
switch structure in Fig. 6.9 elegantly with a single-line statement.

22
23
24 // determine roll value 1-6 and increment appropriate counter
25 switch (face)
26 {
27 case 1:
28 ++frequency1; // increment the 1s counter
29 break;
30 case 2:
31 ++frequency2; // increment the 2s counter
32 break;
33 case 3:
34 ++frequency3; // increment the 3s counter
35 break;
36 case 4:
37 ++frequency4; // increment the 4s counter
38 break;
39 case 5:
40 ++frequency5; // increment the 5s counter
41 break;
42 case 6:
43 ++frequency6; // increment the 6s counter
44 break;
45 default: // invalid value
46 cout << "Program should never get here!";
47 } // end switch
48 } // end for
49
50 cout << "Face" << setw(13) << "Frequency" << endl; // output headers
51 cout << " 1" << setw(13) << frequency1
52 << "\n 2" << setw(13) << frequency2
53 << "\n 3" << setw(13) << frequency3
54 << "\n 4" << setw(13) << frequency4
55 << "\n 5" << setw(13) << frequency5
56 << "\n 6" << setw(13) << frequency6 << endl;
57 } // end main

Face Frequency
1 999702
2 1000823
3 999378
4 998898
5 1000777
6 1000422

Fig. 6.9 | Rolling a six-sided die 6,000,000 times. (Part 2 of 2.)

face = 1 + rand() % 6; // random number from 1 to 6

210 Chapter 6 Functions and an Introduction to Recursion

Randomizing the Random Number Generator
Executing the program of Fig. 6.8 again produces

The program prints exactly the same sequence of values shown in Fig. 6.8. How can these
be random numbers? When debugging a simulation program, this repeatability is essential for
proving that corrections to the program work properly.

Function rand actually generates pseudorandom numbers. Repeatedly calling rand

produces a sequence of numbers that appears to be random. However, the sequence repeats
itself each time the program executes. Once a program has been thoroughly debugged, it
can be conditioned to produce a different sequence of random numbers for each execution.
This is called randomizing and is accomplished with the C++ Standard Library function
srand. Function srand takes an unsigned integer argument and seeds the rand function to
produce a different sequence of random numbers for each execution. The new C++ stan-
dard provides additional random number capabilities that can produce nondeterministic
random numbers—a set of random numbers that can’t be predicted. Such random number
generators are used in simulations and security scenarios where predictability is undesirable.

Using Function srand
Figure 6.10 demonstrates function srand. The program uses the data type unsigned,
which is short for unsigned int. An int is stored in at least two bytes of memory (typically
four bytes on 32-bit systems and as much as eight bytes on 64-bit systems) and can have
positive and negative values. A variable of type unsigned int is also stored in at least two
bytes of memory. A two-byte unsigned int can have only nonnegative values in the range
0–65535. A four-byte unsigned int can have only nonnegative values in the range 0–
4294967295. Function srand takes an unsigned int value as an argument. The function
prototype for the srand function is in header <cstdlib>.

Error-Prevention Tip 6.2
Provide a default case in a switch to catch errors even if you are absolutely, positively
certain that you have no bugs!

6 6 5 5 6
5 1 1 5 3
6 6 2 4 2
6 2 3 4 1

1 // Fig. 6.10: fig06_10.cpp
2 // Randomizing the die-rolling program.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 int main()
9 {

10 unsigned seed; // stores the seed entered by the user

Fig. 6.10 | Randomizing the die-rolling program. (Part 1 of 2.)

#include <cstdlib> // contains prototypes for functions srand and rand

6.7 Case Study: Random Number Generation 211

Let’s run the program several times and observe the results. Notice that the program
produces a different sequence of random numbers each time it executes, provided that the
user enters a different seed. We used the same seed in the first and third sample outputs,
so the same series of 10 numbers is displayed in each of those outputs.

To randomize without having to enter a seed each time, we may use a statement like

This causes the computer to read its clock to obtain the value for the seed. Function time

(with the argument 0 as written in the preceding statement) typically returns the current
time as the number of seconds since January 1, 1970, at midnight Greenwich Mean Time
(GMT). This value is converted to an unsigned integer and used as the seed to the random
number generator. The function prototype for time is in <ctime>.

Generalized Scaling and Shifting of Random Numbers
Previously, we simulated the rolling of a six-sided die with the statement

which always assigns an integer (at random) to variable face in the range 1 ≤face ≤6.
The width of this range (i.e., the number of consecutive integers in the range) is 6 and the

11
12 cout << "Enter seed: ";
13 cin >> seed;
14
15
16 // loop 10 times
17 for (int counter = 1; counter <= 10; ++counter)
18 {
19 // pick random number from 1 to 6 and output it
20
21
22 // if counter is divisible by 5, start a new line of output
23 if (counter % 5 == 0)
24 cout << endl;
25 } // end for
26 } // end main

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

Enter seed: 432
4 6 3 1 6
3 1 5 4 2

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

srand(time(0));

face = 1 + rand() % 6;

Fig. 6.10 | Randomizing the die-rolling program. (Part 2 of 2.)

srand(seed); // seed random number generator

cout << setw(10) << (1 + rand() % 6);

212 Chapter 6 Functions and an Introduction to Recursion

starting number in the range is 1. Referring to the preceding statement, we see that the
width of the range is determined by the number used to scale rand with the modulus op-
erator (i.e., 6), and the starting number of the range is equal to the number (i.e., 1) that is
added to the expression rand % 6. We can generalize this result as

where shiftingValue is equal to the first number in the desired range of consecutive integers
and scalingFactor is equal to the width of the desired range of consecutive integers.

6.8 Case Study: Game of Chance; Introducing enum
One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys worldwide. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5 and 6
spots. After the dice have come to rest, the sum of the spots on the two upward faces is
calculated. If the sum is 7 or 11 on the first roll, the player wins. If the sum is 2, 3 or
12 on the first roll (called “craps”), the player loses (i.e., the “house” wins). If the sum
is 4, 5, 6, 8, 9 or 10 on the first roll, then that sum becomes the player’s “point.” To
win, you must continue rolling the dice until you “make your point.” The player loses
by rolling a 7 before making the point.

The program in Fig. 6.11 simulates the game. In the rules, notice that the player must
roll two dice on the first roll and on all subsequent rolls. We define function rollDice

(lines 63–75) to roll the dice and compute and print their sum. The function is defined
once, but called from lines 21 and 45. The function takes no arguments and returns the
sum of the two dice, so empty parentheses and the return type int are indicated in the
function prototype (line 8) and function header (line 63).

number = shiftingValue + rand() % scalingFactor;

1 // Fig. 6.11: fig06_11.cpp
2 // Craps simulation.
3 #include <iostream>
4 #include <cstdlib> // contains prototypes for functions srand and rand
5
6 using namespace std;
7
8
9

10 int main()
11 {
12
13
14
15 int myPoint; // point if no win or loss on first roll
16
17
18 // randomize random number generator using current time
19
20
21 int sumOfDice = ; // first roll of the dice
22

Fig. 6.11 | Craps simulation. (Part 1 of 3.)

#include <ctime> // contains prototype for function time

int rollDice(); // rolls dice, calculates and displays sum

// enumeration with constants that represent the game status
enum Status { CONTINUE, WON, LOST }; // all caps in constants

Status gameStatus; // can contain CONTINUE, WON or LOST

srand(time(0));

rollDice()

6.8 Case Study: Game of Chance; Introducing enum 213

23 // determine game status and point (if needed) based on first roll
24 switch (sumOfDice)
25 {
26 case 7: // win with 7 on first roll
27 case 11: // win with 11 on first roll
28
29 break;
30 case 2: // lose with 2 on first roll
31 case 3: // lose with 3 on first roll
32 case 12: // lose with 12 on first roll
33
34 break;
35 default: // did not win or lose, so remember point
36
37 myPoint = sumOfDice; // remember the point
38 cout << "Point is " << myPoint << endl;
39 break; // optional at end of switch
40 } // end switch
41
42 // while game is not complete
43 while () // not WON or LOST
44 {
45 sumOfDice = ; // roll dice again
46
47 // determine game status
48 if (sumOfDice == myPoint) // win by making point
49
50 else
51 if (sumOfDice == 7) // lose by rolling 7 before point
52
53 } // end while
54
55 // display won or lost message
56 if ()
57 cout << "Player wins" << endl;
58 else
59 cout << "Player loses" << endl;
60 } // end main
61
62 // roll dice, calculate sum and display results
63
64 {
65 // pick random die values
66 int die1 = 1 + rand() % 6; // first die roll
67 int die2 = 1 + rand() % 6; // second die roll
68
69 int sum = die1 + die2; // compute sum of die values
70
71 // display results of this roll
72 cout << "Player rolled " << die1 << " + " << die2
73 << " = " << sum << endl;
74 return sum; // end function rollDice
75 } // end function rollDice

Fig. 6.11 | Craps simulation. (Part 2 of 3.)

gameStatus = WON;

gameStatus = LOST;

gameStatus = CONTINUE; // game is not over

gameStatus == CONTINUE

rollDice()

gameStatus = WON;

gameStatus = LOST;

gameStatus == WON

int rollDice()

214 Chapter 6 Functions and an Introduction to Recursion

The game is reasonably involved. The player may win or lose on the first roll or on
any subsequent roll. The program uses variable gameStatus to keep track of this. Variable
gameStatus is declared to be of new type Status. Line 13 declares a user-defined type
called an enumeration. An enumeration, introduced by the keyword enum and followed
by a type name (in this case, Status), is a set of integer constants represented by identi-
fiers. The values of these enumeration constants start at 0, unless specified otherwise, and
increment by 1. In the preceding enumeration, the constant CONTINUE has the value 0, WON
has the value 1 and LOST has the value 2. The identifiers in an enum must be unique, but
separate enumeration constants can have the same integer value.

Variables of user-defined type Status can be assigned only one of the three values
declared in the enumeration. When the game is won, the program sets variable
gameStatus to WON (lines 28 and 49). When the game is lost, the program sets variable

Player rolled 2 + 5 = 7
Player wins

Player rolled 6 + 6 = 12
Player loses

Player rolled 1 + 3 = 4
Point is 4
Player rolled 4 + 6 = 10
Player rolled 2 + 4 = 6
Player rolled 6 + 4 = 10
Player rolled 2 + 3 = 5
Player rolled 2 + 4 = 6
Player rolled 1 + 1 = 2
Player rolled 4 + 4 = 8
Player rolled 4 + 3 = 7
Player loses

Player rolled 3 + 3 = 6
Point is 6
Player rolled 5 + 3 = 8
Player rolled 4 + 5 = 9
Player rolled 2 + 1 = 3
Player rolled 1 + 5 = 6
Player wins

Good Programming Practice 6.1
Capitalize the first letter of an identifier used as a user-defined type name.

Good Programming Practice 6.2
Use only uppercase letters in enumeration constant names. This makes these constants
stand out in a program and reminds you that enumeration constants are not variables.

Fig. 6.11 | Craps simulation. (Part 3 of 3.)

6.9 Storage Classes 215

gameStatus to LOST (lines 33 and 52). Otherwise, the program sets variable gameStatus

to CONTINUE (line 36) to indicate that the dice must be rolled again.
Another popular enumeration is

which creates user-defined type Months with enumeration constants representing the
months of the year. The first value in the preceding enumeration is explicitly set to 1, so
the remaining values increment from 1, resulting in the values 1 through 12. Any enumer-
ation constant can be assigned an integer value in the enumeration definition, and subse-
quent enumeration constants each have a value 1 higher than the preceding constant in
the list until the next explicit setting.

After the first roll, if the game is won or lost, the program skips the body of the while
statement (lines 43–53) because gameStatus is not equal to CONTINUE. The program pro-
ceeds to the if…else statement in lines 56–59, which prints "Player wins" if
gameStatus is equal to WON and "Player loses" if gameStatus is equal to LOST.

After the first roll, if the game is not over, the program saves the sum in myPoint (line
37). Execution proceeds with the while statement, because gameStatus is equal to CON-

TINUE. During each iteration of the while, the program calls rollDice to produce a new
sum. If sum matches myPoint, the program sets gameStatus to WON (line 49), the while-test
fails, the if…else statement prints "Player wins" and execution terminates. If sum is
equal to 7, the program sets gameStatus to LOST (line 52), the while-test fails, the
if…else statement prints "Player loses" and execution terminates.

The craps program uses two functions—main and rollDice—and the switch, while,
if…else, nested if…else and nested if statements. In the exercises, we further investi-
gate of the game of craps.

6.9 Storage Classes
The programs you’ve seen so far use identifiers for variable names. The attributes of vari-
ables include name, type, size and value. This chapter also uses identifiers as names for user-
defined functions. Actually, each identifier in a program has other attributes, including
storage class, scope and linkage.

C++ provides five storage-class specifiers: auto, register, extern, mutable and
static. This section discusses storage-class specifiers auto, register, extern and static;
mutable (discussed in Chapter 24, Other Topics) is used exclusively with classes.

Storage Class, Scope and Linkage
An identifier’s storage class determines the period during which that identifier exists in
memory. Some exist briefly, some are repeatedly created and destroyed and others exist for
the entire execution of a program. First we discuss the storage classes static and automatic.

An identifier’s scope is where the identifier can be referenced in a program. Some iden-
tifiers can be referenced throughout a program; others can be referenced from only limited
portions of a program. Section 6.10 discusses the scope of identifiers.

enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC };

Common Programming Error 6.7
Assigning the integer equivalent of an enumeration constant (rather than the enumera-
tion constant, itself) to a variable of the enumeration type is a compilation error.

216 Chapter 6 Functions and an Introduction to Recursion

An identifier’s linkage determines whether it’s known only in the source file where it’s
declared or across multiple files that are compiled, then linked together. An identifier’s
storage-class specifier helps determine its storage class and linkage.

Storage Class Categories
The storage-class specifiers can be split into two storage classes: automatic storage class and
static storage class. Keywords auto and register are used to declare variables of the auto-
matic storage class. Such variables are created when program execution enters the block in
which they’re defined, they exist while the block is active and they’re destroyed when the
program exits the block.

Local Variables
Only local variables of a function can be of automatic storage class. A function’s local vari-
ables and parameters normally are of automatic storage class. The storage class specifier
auto explicitly declares variables of automatic storage class. For example, the following
declaration indicates that double variable x is a local variable of automatic storage class—
it exists only in the nearest enclosing pair of curly braces within the body of the function in
which the definition appears:

Local variables are of automatic storage class by default, so keyword auto rarely is used.
For this reason, the new C++ standard gives auto a new meaning which we discuss in
Section 23.9. For the remainder of the text, we refer to variables of automatic storage class
simply as automatic variables.

Register Variables
Data in the machine-language version of a program is normally loaded into registers for
calculations and other processing.

The compiler might ignore register declarations. For example, there might not be a
sufficient number of registers available. The following definition suggests that the integer

auto double x;

Performance Tip 6.1
Automatic storage is a means of conserving memory, because automatic storage class vari-
ables exist in memory only when the block in which they’re defined is executing.

Software Engineering Observation 6.6
Automatic storage is an example of the principle of least privilege. In the context of an
application, the principle states that code should be granted only the amount of privilege
and access that it needs to accomplish its designated task, but no more. Why should we
have variables stored in memory and accessible when they’re not needed?

Performance Tip 6.2
The storage-class specifier register can be placed before an automatic variable declaration
to suggest that the compiler maintain the variable in one of the computer’s high-speed hard-
ware registers rather than in memory. If intensely used variables such as counters or totals are
kept in hardware registers, the overhead of repeatedly loading the variables from memory
into the registers and storing the results back into memory is eliminated.

6.9 Storage Classes 217

variable counter be placed in one of the computer’s registers; regardless of whether the
compiler does this, counter is initialized to 1:

The register keyword can be used only with local variables and function parameters.

Static Storage Class
Keywords extern and static declare identifiers for variables of the static storage class and
for functions. Static-storage-class variables exist in memory from the point at which the
program begins execution and last for the duration of the program. Such a variable is ini-
tialized once when its declaration is encountered. For functions, the name of the function
exists when the program begins execution, just as for all other functions. However, even
though the variables and the function names exist from the start of program execution, this
does not mean that these identifiers can be used throughout the program. Storage class and
scope (where a name can be used) are separate issues, as we’ll see in Section 6.10.

Identifiers with Static Storage Class
There are two types of identifiers with static storage class—external identifiers (such as glob-
al variables) and local variables declared with the storage-class specifier static. Global
variables are created by placing variable declarations outside any class or function defini-
tion. Global variables retain their values throughout the execution of the program. Global
variables and global functions can be referenced by any function that follows their decla-
rations or definitions in the source file.

Local variables declared static are still known only in the function in which they’re
declared, but, unlike automatic variables, static local variables retain their values when
the function returns to its caller. The next time the function is called, the static local vari-
ables contain the values they had when the function last completed execution. The fol-
lowing statement declares local variable count to be static and to be initialized to 1:

All numeric variables of the static storage class are initialized to zero by default, but it’s
nevertheless a good practice to explicitly initialize all variables.

register int counter = 1;

Performance Tip 6.3
Often, register is unnecessary. Optimizing compilers can recognize frequently used vari-
ables and may place them in registers without needing a register declaration.

Software Engineering Observation 6.7
Declaring a variable as global rather than local allows unintended side effects to occur
when a function that does not need access to the variable accidentally or maliciously
modifies it. This is another example of the principle of least privilege. In general, except
for truly global resources such as cin and cout, the use of global variables should be
avoided unless there are unique performance requirements.

Software Engineering Observation 6.8
Variables used only in a particular function should be declared as local variables in that
function rather than as global variables.

static int count = 1;

218 Chapter 6 Functions and an Introduction to Recursion

Storage-class specifiers extern and static have special meaning when they’re applied
explicitly to external identifiers such as global variables and global function names. In
Appendix F, C Legacy Code Topics, we discuss using extern and static with external
identifiers and multiple-source-file programs.

6.10 Scope Rules
The portion of the program where an identifier can be used is known as its scope. For ex-
ample, when we declare a local variable in a block, it can be referenced only in that block
and in blocks nested within that block. This section discusses four scopes for an identifi-
er—function scope, global namespace scope, local scope and function-prototype scope.
Later we’ll see two other scopes—class scope (Chapter 9) and namespace scope
(Chapter 24).

An identifier declared outside any function or class has global namespace scope. Such
an identifier is “known” in all functions from the point at which it’s declared until the end
of the file. Global variables, function definitions and function prototypes placed outside a
function all have global namespace scope.

Labels (identifiers followed by a colon such as start:) are the only identifiers with
function scope. Labels can be used anywhere in the function in which they appear, but
cannot be referenced outside the function body. Labels are used in goto statements
(Appendix F).

Identifiers declared inside a block have local scope. Local scope begins at the identi-
fier’s declaration and ends at the terminating right brace (}) of the block in which the iden-
tifier is declared. Local variables have local scope, as do function parameters, which are also
local variables of the function. Any block can contain variable declarations. When blocks
are nested and an identifier in an outer block has the same name as an identifier in an inner
block, the identifier in the outer block is “hidden” until the inner block terminates. The
inner block “sees” the value of its own local identifier and not the value of the identically
named identifier in the enclosing block. Local variables declared static still have local
scope, even though they exist from the time the program begins execution. Storage dura-
tion does not affect the scope of an identifier.

The only identifiers with function prototype scope are those used in the parameter list
of a function prototype. As mentioned previously, function prototypes do not require
names in the parameter list—only types are required. Names appearing in the parameter
list of a function prototype are ignored by the compiler. Identifiers used in a function pro-
totype can be reused elsewhere in the program without ambiguity. In a single prototype,
a particular identifier can be used only once.

Common Programming Error 6.8
Accidentally using the same name for an identifier in an inner block that is used for an
identifier in an outer block, when in fact you want the identifier in the outer block to be
active for the duration of the inner block, is typically a logic error.

Error-Prevention Tip 6.3
Avoid variable names that hide names in outer scopes.

6.10 Scope Rules 219

The program of Fig. 6.12 demonstrates scoping issues with global variables, auto-
matic local variables and static local variables. Line 10 declares and initializes global vari-
able x to 1. This global variable is hidden in any block (or function) that declares a variable
named x. In main, line 14 displays the value of global variable x. Line 16 declares a local
variable x and initializes it to 5. Line 19 outputs this variable to show that the global x is
hidden in main. Next, lines 20–24 define a new block in main in which another local vari-
able x is initialized to 7 (line 21). Line 23 outputs this variable to show that it hides x in
the outer block of main. When the block exits, the variable x with value 7 is destroyed auto-
matically. Next, line 26 outputs the local variable x in the outer block of main to show that
it’s no longer hidden.

1 // Fig. 6.12: fig06_12.cpp
2 // Scoping example.
3 #include <iostream>
4 using namespace std;
5
6 void useLocal(); // function prototype
7 void useStaticLocal(); // function prototype
8 void useGlobal(); // function prototype
9

10
11
12 int main()
13 {
14 cout << "global x in main is " << x << endl;
15
16
17
18 cout << "local x in main's outer scope is " << x << endl;
19
20
21
22
23
24
25
26 cout << "local x in main's outer scope is " << x << endl;
27
28 useLocal(); // useLocal has local x
29 useStaticLocal(); // useStaticLocal has static local x
30 useGlobal(); // useGlobal uses global x
31 useLocal(); // useLocal reinitializes its local x
32 useStaticLocal(); // static local x retains its prior value
33 useGlobal(); // global x also retains its prior value
34
35 cout << "\nlocal x in main is " << x << endl;
36 } // end main
37
38 // useLocal reinitializes local variable x during each call
39 void useLocal()
40 {

Fig. 6.12 | Scoping example. (Part 1 of 2.)

int x = 1; // global variable

int x = 5; // local variable to main

{ // start new scope
int x = 7; // hides both x in outer scope and global x

cout << "local x in main's inner scope is " << x << endl;
} // end new scope

220 Chapter 6 Functions and an Introduction to Recursion

41
42
43 cout << "\nlocal x is " << x << " on entering useLocal" << endl;
44 ++x;
45 cout << "local x is " << x << " on exiting useLocal" << endl;
46 } // end function useLocal
47
48 // useStaticLocal initializes static local variable x only the
49 // first time the function is called; value of x is saved
50 // between calls to this function
51 void useStaticLocal()
52 {
53
54
55 cout << "\nlocal static x is " << x << " on entering useStaticLocal"
56 << endl;
57 ++x;
58 cout << "local static x is " << x << " on exiting useStaticLocal"
59 << endl;
60 } // end function useStaticLocal
61
62 // useGlobal modifies global variable x during each call
63 void useGlobal()
64 {
65 cout << "\nglobal x is " << x << " on entering useGlobal" << endl;
66 x *= 10;
67 cout << "global x is " << x << " on exiting useGlobal" << endl;
68 } // end function useGlobal

global x in main is 1
local x in main's outer scope is 5
local x in main's inner scope is 7
local x in main's outer scope is 5

local x is 25 on entering useLocal
local x is 26 on exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x is 25 on entering useLocal
local x is 26 on exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 6.12 | Scoping example. (Part 2 of 2.)

int x = 25; // initialized each time useLocal is called

static int x = 50; // initialized first time useStaticLocal is called

6.11 Function Call Stack and Activation Records 221

To demonstrate other scopes, the program defines three functions, each of which
takes no arguments and returns nothing. Function useLocal (lines 39–46) declares auto-
matic variable x (line 41) and initializes it to 25. When the program calls useLocal, the
function prints the variable, increments it and prints it again before the function returns
program control to its caller. Each time the program calls this function, the function
recreates automatic variable x and reinitializes it to 25.

Function useStaticLocal (lines 51–60) declares static variable x and initializes it
to 50. Local variables declared as static retain their values even when they’re out of scope
(i.e., the function in which they’re declared is not executing). When the program calls
useStaticLocal, the function prints x, increments it and prints it again before the func-
tion returns program control to its caller. In the next call to this function, static local
variable x contains the value 51. The initialization in line 53 occurs only once—the first
time useStaticLocal is called.

Function useGlobal (lines 63–68) does not declare any variables. Therefore, when it
refers to variable x, the global x (line 10, preceding main) is used. When the program calls
useGlobal, the function prints the global variable x, multiplies it by 10 and prints it again
before the function returns program control to its caller. The next time the program calls
useGlobal, the global variable has its modified value, 10. After executing functions use-
Local, useStaticLocal and useGlobal twice each, the program prints the local variable
x in main again to show that none of the function calls modified the value of x in main,
because the functions all referred to variables in other scopes.

6.11 Function Call Stack and Activation Records
To understand how C++ performs function calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Think of a stack as analogous to a
pile of dishes. When a dish is placed on the pile, it’s normally placed at the top (referred
to as pushing the dish onto the stack). Similarly, when a dish is removed from the pile, it’s
normally removed from the top (referred to as popping the dish off the stack). Stacks are
known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on the
stack is the first item popped (removed) from the stack.

One of the most important mechanisms for computer science students to understand
is the function call stack (sometimes referred to as the program execution stack). This
data structure—working “behind the scenes”—supports the function call/return mecha-
nism. It also supports the creation, maintenance and destruction of each called function’s
automatic variables. We explained the last-in, first-out (LIFO) behavior of stacks with our
dish-stacking example. As we’ll see in Figs. 6.14–6.16, this LIFO behavior is exactly what
a function does when returning to the function that called it.

As each function is called, it may, in turn, call other functions, which may, in turn,
call other functions—all before any of the functions returns. Each function eventually must
return control to the function that called it. So, somehow, we must keep track of the return
addresses that each function needs to return control to the function that called it. The
function call stack is the perfect data structure for handling this information. Each time a
function calls another function, an entry is pushed onto the stack. This entry, called a stack
frame or an activation record, contains the return address that the called function needs
in order to return to the calling function. It also contains some additional information
we’ll soon discuss. If the called function returns, instead of calling another function before

222 Chapter 6 Functions and an Introduction to Recursion

returning, the stack frame for the function call is popped, and control transfers to the
return address in the popped stack frame.

The beauty of the call stack is that each called function always finds the information
it needs to return to its caller at the top of the call stack. And, if a function makes a call to
another function, a stack frame for the new function call is simply pushed onto the call
stack. Thus, the return address required by the newly called function to return to its caller
is now located at the top of the stack.

The stack frames have another important responsibility. Most functions have auto-
matic variables—parameters and any local variables the function declares. Automatic vari-
ables need to exist while a function is executing. They need to remain active if the function
makes calls to other functions. But when a called function returns to its caller, the called
function’s automatic variables need to “go away.” The called function’s stack frame is a
perfect place to reserve the memory for the called function’s automatic variables. That
stack frame exists as long as the called function is active. When that function returns—and
no longer needs its local automatic variables—its stack frame is popped from the stack, and
those local automatic variables are no longer known to the program.

Of course, the amount of memory in a computer is finite, so only a certain amount
of memory can be used to store activation records on the function call stack. If more func-
tion calls occur than can have their activation records stored on the function call stack, an
error known as stack overflow occurs.

Function Call Stack in Action
Now let’s consider how the call stack supports the operation of a square function called
by main (lines 9–14 of Fig. 6.13). First the operating system calls main—this pushes an
activation record onto the stack (shown in Fig. 6.14). The activation record tells main how
to return to the operating system (i.e., transfer to return address R1) and contains the space
for main’s automatic variable (i.e., a, which is initialized to 10).

1 // Fig. 6.13: fig06_13.cpp
2 // square function used to demonstrate the function
3 // call stack and activation records.
4 #include <iostream>
5 using namespace std;
6
7 int square(int); // prototype for function square
8
9 int main()

10 {
11 int a = 10; // value to square (local automatic variable in main)
12
13 cout << a << " squared: " << << endl; // display a squared
14 } // end main
15
16 // returns the square of an integer
17 int square(int x) // x is a local variable
18 {
19 return x * x; // calculate square and return result
20 } // end function square

Fig. 6.13 | Demonstrating the function call stack and activation records. (Part 1 of 2.)

square(a)

6.11 Function Call Stack and Activation Records 223

Function main—before returning to the operating system—now calls function
square in line 13 of Fig. 6.13. This causes a stack frame for square (lines 17–20) to be
pushed onto the function call stack (Fig. 6.15). This stack frame contains the return
address that square needs to return to main (i.e., R2) and the memory for square’s auto-
matic variable (i.e., x).

After square calculates the square of its argument, it needs to return to main—and no
longer needs the memory for its automatic variable x. So the stack is popped—giving
square the return location in main (i.e., R2) and losing square’s automatic variable.
Figure 6.16 shows the function call stack after square’s activation record has been popped.

10 squared: 100

Fig. 6.14 | Function call stack after the operating system invokes main to execute the program.

Fig. 6.15 | Function call stack after main invokes square to perform the calculation. (Part 1
of 2.)

Fig. 6.13 | Demonstrating the function call stack and activation records. (Part 2 of 2.)

Function call stack after Step 1

Activation record
for function main

Top of stack
Return location: R1

Automatic variables:

a 10

Lines that represent the operating
system executing instructions

Key

Step 1: Operating system invokes main to execute application

Operating system {
int a = 10;
cout << a << " squared: "

<< square(a) << endl;
return 0;

}
Return location R1

int main()

Return location R2

Step 2: main invokes function square to perform calculation

{
int a = 10;
cout << a << " squared: "

<< square(a) << endl;
return 0;

}

int main()

{
return x * x;

}

int square(int x)

224 Chapter 6 Functions and an Introduction to Recursion

Function main now displays the result of calling square (line 13). Reaching the
closing right brace of main causes its activation record to be popped from the stack, gives
main the address it needs to return to the operating system (i.e., R1 in Fig. 6.14) and causes
the memory for main’s automatic variable (i.e., a) to become unavailable.

Fig. 6.16 | Function call stack after function square returns to main.

Fig. 6.15 | Function call stack after main invokes square to perform the calculation. (Part 2
of 2.)

Activation record for
function square

Activation record
for function main

Return location: R1

Automatic variables:

a 10

Return location: R2

Automatic variables:

x 10

Top of stack

Function call stack after Step 2

Function call stack after Step 3

Return location R2

Activation record
for function main

Step 3: square returns its result to main

Return location: R1

Automatic variables:

a 10

Top of stack

{
int a = 10;
cout << a << " squared: "

<< square(a) << endl;
return 0;

}

int main()

{
return x * x;

}

int square(int x)

6.12 Functions with Empty Parameter Lists 225

You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. Data structures have many important applica-
tions in computer science. We discuss stacks, queues, lists, trees and other data structures
in Chapter 20, Custom Templatized Data Structures, and Chapter 22, Standard Tem-
plate Library (STL).

6.12 Functions with Empty Parameter Lists
In C++, an empty parameter list is specified by writing either void or nothing at all in pa-
rentheses. The prototype

specifies that function print does not take arguments and does not return a value.
Figure 6.17 shows both ways to declare and use functions with empty parameter lists.

6.13 Inline Functions
Implementing a program as a set of functions is good from a software engineering stand-
point, but function calls involve execution-time overhead. C++ provides inline functions

void print();

1 // Fig. 6.17: fig06_17.cpp
2 // Functions that take no arguments.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9 int main()

10 {
11
12
13 } // end main
14
15 // function1 uses an empty parameter list to specify that
16 // the function receives no arguments
17
18 {
19 cout << "function1 takes no arguments" << endl;
20 } // end function1
21
22 // function2 uses a void parameter list to specify that
23 // the function receives no arguments
24
25 {
26 cout << "function2 also takes no arguments" << endl;
27 } // end function2

function1 takes no arguments
function2 also takes no arguments

Fig. 6.17 | Functions that take no arguments.

void function1(); // function that takes no arguments
void function2(void); // function that takes no arguments

function1(); // call function1 with no arguments
function2(); // call function2 with no arguments

void function1()

void function2(void)

226 Chapter 6 Functions and an Introduction to Recursion

to help reduce function call overhead—especially for small functions. Placing the qualifier
inline before a function’s return type in the function definition “advises” the compiler to
generate a copy of the function’s body code in place (when appropriate) to avoid a func-
tion call. The trade-off is that multiple copies of the function code are inserted in the pro-
gram (often making the program larger) rather than there being a single copy of the
function to which control is passed each time the function is called. The compiler can ig-
nore the inline qualifier and typically does so for all but the smallest functions.

Figure 6.18 uses inline function cube (lines 9–12) to calculate the volume of a cube.
Keyword const in function cube’s parameter list (line 9) tells the compiler that the func-
tion does not modify variable side. This ensures that side’s value is not changed by the
function during the calculation. (Keyword const is discussed in detail in Chapters 7, 8
and 10.) Notice that the complete definition of function cube appears before it’s used in
the program. This is required so that the compiler knows how to expand a cube function
call into its inlined code. For this reason, reusable inline functions are typically placed in
headers, so that their definitions can be included in each source file that uses them.

Software Engineering Observation 6.9
Any change to an inline function requires all clients of the function to be recompiled.

Software Engineering Observation 6.10
The const qualifier should be used to enforce the principle of least privilege. Using the
principle of least privilege to properly design software can greatly reduce debugging time
and improper side effects and can make a program easier to modify and maintain.

1 // Fig. 6.18: fig06_18.cpp
2 // Using an inline function to calculate the volume of a cube.
3 #include <iostream>
4 using namespace std;
5
6 // Definition of inline function cube. Definition of function appears
7 // before function is called, so a function prototype is not required.
8 // First line of function definition acts as the prototype.
9

10
11
12
13
14 int main()
15 {
16 double sideValue; // stores value entered by user
17 cout << "Enter the side length of your cube: ";
18 cin >> sideValue; // read value from user
19
20 // calculate cube of sideValue and display result
21 cout << "Volume of cube with side "
22 << sideValue << " is " << << endl;
23 } // end main

Fig. 6.18 | inline function that calculates the volume of a cube. (Part 1 of 2.)

inline double cube(const double side)
{

return side * side * side; // calculate cube
} // end function cube

cube(sideValue)

6.14 References and Reference Parameters 227

6.14 References and Reference Parameters
Two ways to pass arguments to functions in many programming languages are pass-by-
value and pass-by-reference. When an argument is passed by value, a copy of the argu-
ment’s value is made and passed (on the function call stack) to the called function.
Changes to the copy do not affect the original variable’s value in the caller. This prevents
the accidental side effects that so greatly hinder the development of correct and reliable
software systems. Each argument in this chapter has been passed by value.

Reference Parameters
This section introduces reference parameters—the first of the two means C++ provides
for performing pass-by-reference. With pass-by-reference, the caller gives the called func-
tion the ability to access the caller’s data directly, and to modify that data.

Later, we’ll show how to achieve the performance advantage of pass-by-reference
while simultaneously achieving the software engineering advantage of protecting the caller’s
data from corruption.

A reference parameter is an alias for its corresponding argument in a function call. To
indicate that a function parameter is passed by reference, simply follow the parameter’s
type in the function prototype by an ampersand (&); use the same convention when listing
the parameter’s type in the function header. For example, the following declaration in a
function header

when read from right to left is pronounced “count is a reference to an int.” In the function
call, simply mention the variable by name to pass it by reference. Then, mentioning the
variable by its parameter name in the body of the called function actually refers to the orig-
inal variable in the calling function, and the original variable can be modified directly by
the called function. As always, the function prototype and header must agree.

Enter the side length of your cube: 3.5
Volume of cube with side 3.5 is 42.875

Performance Tip 6.4
One disadvantage of pass-by-value is that, if a large data item is being passed, copying that
data can take a considerable amount of execution time and memory space.

Performance Tip 6.5
Pass-by-reference is good for performance reasons, because it can eliminate the pass-by-val-
ue overhead of copying large amounts of data.

Software Engineering Observation 6.11
Pass-by-reference can weaken security; the called function can corrupt the caller’s data.

int &count

Fig. 6.18 | inline function that calculates the volume of a cube. (Part 2 of 2.)

228 Chapter 6 Functions and an Introduction to Recursion

Passing Arguments by Value and by Reference
Figure 6.19 compares pass-by-value and pass-by-reference with reference parameters. The
“styles” of the arguments in the calls to function squareByValue and function squareBy-

Reference are identical—both variables are simply mentioned by name in the function
calls. Without checking the function prototypes or function definitions, it isn’t possible to tell
from the calls alone whether either function can modify its arguments. Because function pro-
totypes are mandatory, the compiler has no trouble resolving the ambiguity.

Common Programming Error 6.9
Because reference parameters are mentioned only by name in the body of the called func-
tion, you might inadvertently treat reference parameters as pass-by-value parameters. This
can cause unexpected side effects if the original variables are changed by the function.

1 // Fig. 6.19: fig06_19.cpp
2 // Comparing pass-by-value and pass-by-reference with references.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9 int main()

10 {
11 int x = 2; // value to square using squareByValue
12 int z = 4; // value to square using squareByReference
13
14 // demonstrate squareByValue
15 cout << "x = " << x << " before squareByValue\n";
16 cout << "Value returned by squareByValue: "
17 << << endl;
18 cout << "x = " << x << " after squareByValue\n" << endl;
19
20 // demonstrate squareByReference
21 cout << "z = " << z << " before squareByReference" << endl;
22 ;
23 cout << "z = " << z << " after squareByReference" << endl;
24 } // end main
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Fig. 6.19 | Passing arguments by value and by reference. (Part 1 of 2.)

int squareByValue(int); // function prototype (value pass)
void squareByReference(int &); // function prototype (reference pass)

squareByValue(x)

squareByReference(z)

// squareByValue multiplies number by itself, stores the
// result in number and returns the new value of number
int squareByValue(int number)
{

return number *= number; // caller's argument not modified
} // end function squareByValue

// squareByReference multiplies numberRef by itself and stores the result
// in the variable to which numberRef refers in function main
void squareByReference(int &numberRef)
{

numberRef *= numberRef; // caller's argument modified
} // end function squareByReference

6.14 References and Reference Parameters 229

Chapter 8 discusses pointers; pointers enable an alternate form of pass-by-reference in
which the style of the call clearly indicates pass-by-reference (and the potential for modi-
fying the caller’s arguments).

To specify a reference to a constant, place the const qualifier before the type specifier
in the parameter declaration. Note the placement of & in function squareByReference’s
parameter list (line 35, Fig. 6.19). Some C++ programmers prefer to write the equivalent
form int& numberRef.

References as Aliases within a Function
References can also be used as aliases for other variables within a function (although they
typically are used with functions as shown in Fig. 6.19). For example, the code

increments variable count by using its alias cRef. Reference variables must be initialized in
their declarations (see Fig. 6.20 and Fig. 6.21) and cannot be reassigned as aliases to other
variables. Once a reference is declared as an alias for another variable, all operations sup-
posedly performed on the alias (i.e., the reference) are actually performed on the original
variable. The alias is simply another name for the original variable. Unless it’s a reference
to a constant, a reference argument must be an lvalue (e.g., a variable name), not a constant
or expression that returns an rvalue (e.g., the result of a calculation). See Section 5.9 for
definitions of the terms lvalue and rvalue.

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

Performance Tip 6.6
For passing large objects, use a constant reference parameter to simulate the appearance
and security of pass-by-value and avoid the overhead of passing a copy of the large object.

int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
++cRef; // increment count (using its alias cRef)

1 // Fig. 6.20: fig06_20.cpp
2 // Initializing and using a reference.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 3;
9

Fig. 6.20 | Initializing and using a reference. (Part 1 of 2.)

Fig. 6.19 | Passing arguments by value and by reference. (Part 2 of 2.)

int &y = x; // y refers to (is an alias for) x

230 Chapter 6 Functions and an Introduction to Recursion

Returning a Reference from a Function
Functions can return references, but this can be dangerous. When returning a reference to
a variable declared in the called function, unless that variable is declared static, the ref-
erence refers to an automatic variable that’s discarded when the function terminates. Such
a variable is said to be “undefined,” and the program’s behavior is unpredictable. Refer-
ences to undefined variables are called dangling references.

10
11 cout << "x = " << x << endl << "y = " << y << endl;
12 y = 7; // actually modifies x
13 cout << "x = " << x << endl << "y = " << y << endl;
14 } // end main

x = 3
y = 3
x = 7
y = 7

1 // Fig. 6.21: fig06_21.cpp
2 // References must be initialized.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 3;
9

10
11 cout << "x = " << x << endl << "y = " << y << endl;
12 y = 7;
13 cout << "x = " << x << endl << "y = " << y << endl;
14 } // end main

Microsoft Visual C++ compiler error message:

C:\cpphtp8_examples\ch06\Fig06_21\fig06_21.cpp(9) : error C2530: 'y' :
references must be initialized

GNU C++ compiler error message:

fig06_21.cpp:9: error: 'y' declared as a reference but not initialized

Fig. 6.21 | Uninitialized reference causes a syntax error.

Common Programming Error 6.10
Returning a reference to an automatic variable in a called function is a logic error. Some
compilers issue a warning when this occurs.

Fig. 6.20 | Initializing and using a reference. (Part 2 of 2.)

int &y; // Error: y must be initialized

6.15 Default Arguments 231

Error Messages for Uninitialized References
The C++ standard does not specify the error messages that compilers use to indicate par-
ticular errors. For this reason, Fig. 6.21 shows the error messages produced by the Micro-
soft Visual C++ 2008 compiler and GNU C++ compiler when a reference is not initialized.

6.15 Default Arguments
It’s common for a program to invoke a function repeatedly with the same argument value
for a particular parameter. In such cases, you can specify that such a parameter has a de-
fault argument, i.e., a default value to be passed to that parameter. When a program omits
an argument for a parameter with a default argument in a function call, the compiler re-
writes the function call and inserts the default value of that argument.

Default arguments must be the rightmost (trailing) arguments in a function’s
parameter list. When calling a function with two or more default arguments, if an omitted
argument is not the rightmost argument in the argument list, then all arguments to the
right of that argument also must be omitted. Default arguments must be specified with the
first occurrence of the function name—typically, in the function prototype. If the func-
tion prototype is omitted because the function definition also serves as the prototype, then
the default arguments should be specified in the function header. Default values can be
any expression, including constants, global variables or function calls. Default arguments
also can be used with inline functions.

Figure 6.22 demonstrates using default arguments to calculate a box’s volume. The
function prototype for boxVolume (line 7) specifies that all three parameters have been
given default values of 1. We provided variable names in the function prototype for read-
ability. As always, variable names are not required in function prototypes.

1 // Fig. 6.22: fig06_22.cpp
2 // Using default arguments.
3 #include <iostream>
4 using namespace std;
5
6 // function prototype that specifies default arguments
7
8
9 int main()

10 {
11 // no arguments--use default values for all dimensions
12 cout << "The default box volume is: " << ;
13
14 // specify length; default width and height
15 cout << "\n\nThe volume of a box with length 10,\n"
16 << "width 1 and height 1 is: " << ;
17
18 // specify length and width; default height
19 cout << "\n\nThe volume of a box with length 10,\n"
20 << "width 5 and height 1 is: " << ;
21

Fig. 6.22 | Default arguments to a function. (Part 1 of 2.)

int boxVolume(int length = 1, int width = 1, int height = 1);

boxVolume()

boxVolume(10)

boxVolume(10, 5)

232 Chapter 6 Functions and an Introduction to Recursion

The first call to boxVolume (line 12) specifies no arguments, thus using all three
default values of 1. The second call (line 16) passes only a length argument, thus using
default values of 1 for the width and height arguments. The third call (line 20) passes
arguments for only length and width, thus using a default value of 1 for the height argu-
ment. The last call (line 24) passes arguments for length, width and height, thus using
no default values. Any arguments passed to the function explicitly are assigned to the func-
tion’s parameters from left to right. Therefore, when boxVolume receives one argument,
the function assigns the value of that argument to its length parameter (i.e., the leftmost
parameter in the parameter list). When boxVolume receives two arguments, the function
assigns the values of those arguments to its length and width parameters in that order.
Finally, when boxVolume receives all three arguments, the function assigns the values of
those arguments to its length, width and height parameters, respectively.

6.16 Unary Scope Resolution Operator
It’s possible to declare local and global variables of the same name. C++ provides the unary
scope resolution operator (::) to access a global variable when a local variable of the same

22 // specify all arguments
23 cout << "\n\nThe volume of a box with length 10,\n"
24 << "width 5 and height 2 is: " <<
25 << endl;
26 } // end main
27
28
29
30
31
32

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

Good Programming Practice 6.3
Using default arguments can simplify writing function calls. However, some programmers
feel that explicitly specifying all arguments is clearer.

Software Engineering Observation 6.12
If the default values for a function change, all client code using the function must be
recompiled.

Fig. 6.22 | Default arguments to a function. (Part 2 of 2.)

boxVolume(10, 5, 2)

// function boxVolume calculates the volume of a box
int boxVolume(int length, int width, int height)
{

return length * width * height;
} // end function boxVolume

6.16 Unary Scope Resolution Operator 233

name is in scope. The unary scope resolution operator cannot be used to access a local vari-
able of the same name in an outer block. A global variable can be accessed directly without
the unary scope resolution operator if the name of the global variable is not the same as
that of a local variable in scope.

Figure 6.23 shows the unary scope resolution operator with local and global variables
of the same name (lines 6 and 10). To emphasize that the local and global versions of vari-
able number are distinct, the program declares one variable int and the other double.

Using the unary scope resolution operator (::) with a given variable name is optional
when the only variable with that name is a global variable.

1 // Fig. 6.23: fig06_23.cpp
2 // Using the unary scope resolution operator.
3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10
11
12 // display values of local and global variables
13 cout << "Local double value of number = " <<
14 << "\nGlobal int value of number = " << << endl;
15 } // end main

Local double value of number = 10.5
Global int value of number = 7

Fig. 6.23 | Unary scope resolution operator.

Good Programming Practice 6.4
Always using the unary scope resolution operator (::) to refer to global variables makes
programs easier to read and understand, because it makes it clear that you’re intending to
access a global variable rather than a nonglobal variable.

Software Engineering Observation 6.13
Always using the unary scope resolution operator (::) to refer to global variables makes
programs easier to modify by reducing the risk of name collisions with nonglobal variables.

Error-Prevention Tip 6.4
Always using the unary scope resolution operator (::) to refer to a global variable elimi-
nates logic errors that might occur if a nonglobal variable hides the global variable.

Error-Prevention Tip 6.5
Avoid using variables of the same name for different purposes in a program. Although this
is allowed in various circumstances, it can lead to errors.

int number = 7; // global variable named number

double number = 10.5; // local variable named number

number
::number

234 Chapter 6 Functions and an Introduction to Recursion

6.17 Function Overloading
C++ enables several functions of the same name to be defined, as long as they have differ-
ent signatures. This is called function overloading. The C++ compiler selects the proper
function to call by examining the number, types and order of the arguments in the call.
Function overloading is used to create several functions of the same name that perform
similar tasks, but on different data types. For example, many functions in the math library
are overloaded for different numeric types—the C++ standard requires float, double and
long double overloaded versions of the math library functions discussed in Section 6.3.

Overloaded square Functions
Figure 6.24 uses overloaded square functions to calculate the square of an int (lines 7–
11) and the square of a double (lines 14–18). Line 22 invokes the int version of function
square by passing the literal value 7. C++ treats whole number literal values as type int.
Similarly, line 24 invokes the double version of function square by passing the literal val-
ue 7.5, which C++ treats as a double value. In each case the compiler chooses the proper
function to call, based on the type of the argument. The last two lines of the output win-
dow confirm that the proper function was called in each case.

Good Programming Practice 6.5
Overloading functions that perform closely related tasks can make programs more read-
able and understandable.

1 // Fig. 6.24: fig06_24.cpp
2 // Overloaded functions.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 int main()
21 {
22 cout << ; // calls int version
23 cout << endl;
24 cout << ; // calls double version
25 cout << endl;
26 } // end main

Fig. 6.24 | Overloaded square functions. (Part 1 of 2.)

// function square for int values
int square(int x)
{

cout << "square of integer " << x << " is ";
return x * x;

} // end function square with int argument

// function square for double values
double square(double y)
{

cout << "square of double " << y << " is ";
return y * y;

} // end function square with double argument

square(7)

square(7.5)

6.17 Function Overloading 235

How the Compiler Differentiates Overloaded Functions
Overloaded functions are distinguished by their signatures. A signature is a combination
of a function’s name and its parameter types (in order). The compiler encodes each func-
tion identifier with the number and types of its parameters (sometimes referred to as name
mangling or name decoration) to enable type-safe linkage. Type-safe linkage ensures that
the proper overloaded function is called and that the types of the arguments conform to
the types of the parameters.

Figure 6.25 was compiled with GNU C++. Rather than showing the execution
output of the program (as we normally would), we show the mangled function names pro-
duced in assembly language by GNU C++. Each mangled name (other than main) begins
with two underscores (__) followed by the letter Z, a number and the function name. The
number that follows Z specifies how many characters are in the function’s name. For
example, function square has 6 characters in its name, so its mangled name is prefixed
with __Z6. The function name is then followed by an encoding of its parameter list. In the
parameter list for function nothing2 (line 25; see the fourth output line), c represents a
char, i represents an int, Rf represents a float & (i.e., a reference to a float) and Rd rep-
resents a double & (i.e., a reference to a double). In the parameter list for function noth-

ing1, i represents an int, f represents a float, c represents a char and Ri represents an
int &. The two square functions are distinguished by their parameter lists; one specifies d
for double and the other specifies i for int. The return types of the functions are not spec-
ified in the mangled names. Overloaded functions can have different return types, but if they
do, they must also have different parameter lists. Again, you cannot have two functions with
the same signature and different return types. Function-name mangling is compiler spe-
cific. Also, function main is not mangled, because it cannot be overloaded.

square of integer 7 is 49
square of double 7.5 is 56.25

Common Programming Error 6.11
Creating overloaded functions with identical parameter lists and different return types is
a compilation error.

1 // Fig. 6.25: fig06_25.cpp
2 // Name mangling.
3
4 // function square for int values
5
6 {
7 return x * x;
8 } // end function square
9

10 // function square for double values
11
12 {

Fig. 6.25 | Name mangling to enable type-safe linkage. (Part 1 of 2.)

Fig. 6.24 | Overloaded square functions. (Part 2 of 2.)

int square(int x)

double square(double y)

236 Chapter 6 Functions and an Introduction to Recursion

The compiler uses only the parameter lists to distinguish between overloaded func-
tions. Such functions need not have the same number of parameters. Use caution when
overloading functions with default parameters, because this may cause ambiguity.

Overloaded Operators
In Chapter 11, we discuss how to overload operators to define how they should operate
on objects of user-defined data types. (In fact, we’ve been using many overloaded operators
to this point, including the stream insertion << and the stream extraction >> operators,
which are overloaded for all the fundamental types. We say more about overloading <<

and >> to be able to handle objects of user-defined types in Chapter 11.)

6.18 Function Templates
Overloaded functions are normally used to perform similar operations that involve differ-
ent program logic on different data types. If the program logic and operations are identical

13 return y * y;
14 } // end function square
15
16 // function that receives arguments of types
17 // int, float, char and int &
18
19 {
20 // empty function body
21 } // end function nothing1
22
23 // function that receives arguments of types
24 // char, int, float & and double &
25
26 {
27 return 0;
28 } // end function nothing2
29
30 int main()
31 {
32 } // end main

__Z6squarei
__Z6squared
__Z8nothing1ifcRi
__Z8nothing2ciRfRd
_main

Common Programming Error 6.12
A function with default arguments omitted might be called identically to another over-
loaded function; this is a compilation error. For example, having a program that contains
both a function that explicitly takes no arguments and a function of the same name that
contains all default arguments results in a compilation error when an attempt is made to
use that function name in a call passing no arguments. The compiler cannot determine
which version of the function to choose.

Fig. 6.25 | Name mangling to enable type-safe linkage. (Part 2 of 2.)

void nothing1(int a, float b, char c, int &d)

int nothing2(char a, int b, float &c, double &d)

6.18 Function Templates 237

for each data type, overloading may be performed more compactly and conveniently by
using function templates. You write a single function template definition. Given the ar-
gument types provided in calls to this function, C++ automatically generates separate
function template specializations to handle each type of call appropriately. Thus, defining
a single function template essentially defines a whole family of overloaded functions.

Figure 6.26 defines a maximum function template (lines 3–17) that determines the largest
of three values. All function template definitions begin with the template keyword (line 3)
followed by a template parameter list to the function template enclosed in angle brackets (<
and >). Every parameter in the template parameter list (often referred to as a formal type
parameter) is preceded by keyword typename or keyword class (they are synonyms in this
context). The formal type parameters are placeholders for fundamental types or user-defined
types. These placeholders, in this case, T, are used to specify the types of the function’s
parameters (line 4), to specify the function’s return type (line 4) and to declare variables
within the body of the function definition (line 6). A function template is defined like any
other function, but uses the formal type parameters as placeholders for actual data types.

The function template declares a single formal type parameter T (line 3) as a placeholder
for the type of the data to be tested by function maximum. The name of a type parameter must
be unique in the template parameter list for a particular template definition. When the com-
piler detects a maximum invocation in the program source code, the type of the data passed to
maximum is substituted for T throughout the template definition, and C++ creates a complete
function for determining the maximum of three values of the specified data type—all three
must have the same type, since we use only one type parameter in this example. Then the
newly created function is compiled. Thus, templates are a means of code generation.

Figure 6.27 uses the maximum function template to determine the largest of three int

values, three double values and three char values, respectively (lines 17, 27 and 37). Sep-
arate functions are created as a result of the calls in lines 17, 27 and 37—expecting three
int values, three double values and three char values, respectively. The function template
specialization created for type int replaces each occurrence of T with int as follows:

1 // Fig. 6.26: maximum.h
2 // Definition of function template maximum.
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Fig. 6.26 | Function template maximum header.

template < typename T > // or template< typename T >
T maximum(T value1, T value2, T value3)
{

T maximumValue = value1; // assume value1 is maximum

// determine whether value2 is greater than maximumValue
if (value2 > maximumValue)

maximumValue = value2;

// determine whether value3 is greater than maximumValue
if (value3 > maximumValue)

maximumValue = value3;

return maximumValue;
} // end function template maximum

238 Chapter 6 Functions and an Introduction to Recursion

int maximum(int value1, int value2, int value3)
{

int maximumValue = value1; // assume value1 is maximum

// determine whether value2 is greater than maximumValue
if (value2 > maximumValue)

maximumValue = value2;

// determine whether value3 is greater than maximumValue
if (value3 > maximumValue)

maximumValue = value3;

return maximumValue;
} // end function template maximum

1 // Fig. 6.27: fig06_27.cpp
2 // Function template maximum test program.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 // demonstrate maximum with int values

10 int int1, int2, int3;
11
12 cout << "Input three integer values: ";
13 cin >> int1 >> int2 >> int3;
14
15 // invoke int version of maximum
16 cout << "The maximum integer value is: "
17 << ;
18
19 // demonstrate maximum with double values
20 double double1, double2, double3;
21
22 cout << "\n\nInput three double values: ";
23 cin >> double1 >> double2 >> double3;
24
25 // invoke double version of maximum
26 cout << "The maximum double value is: "
27 << ;
28
29 // demonstrate maximum with char values
30 char char1, char2, char3;
31
32 cout << "\n\nInput three characters: ";
33 cin >> char1 >> char2 >> char3;
34
35 // invoke char version of maximum
36 cout << "The maximum character value is: "
37 << << endl;
38 } // end main

Fig. 6.27 | Demonstrating function template maximum. (Part 1 of 2.)

#include "maximum.h" // include definition of function template maximum

maximum(int1, int2, int3)

maximum(double1, double2, double3)

maximum(char1, char2, char3)

6.19 Recursion 239

6.19 Recursion
For some problems, it’s useful to have functions call themselves. A recursive function is a
function that calls itself, either directly, or indirectly (through another function). [Note:
Although many compilers allow function main to call itself, Section 3.6.1, paragraph 3,
and Section 5.2.2, paragraph 9, of the C++ standard document indicate that main should
not be called within a program or recursively. Its sole purpose is to be the starting point
for program execution.] Recursion is an important topic discussed at length in upper-level
computer science courses. This section and the next present simple examples of recursion.
Figure 6.33 (at the end of Section 6.21) summarizes the extensive recursion examples and
exercises in the book.

We first consider recursion conceptually, then examine two programs containing
recursive functions. Recursive problem-solving approaches have a number of elements in
common. A recursive function is called to solve a problem. The function knows how to
solve only the simplest case(s), or so-called base case(s). If the function is called with a base
case, the function simply returns a result. If the function is called with a more complex
problem, it typically divides the problem into two conceptual pieces—a piece that the
function knows how to do and a piece that it does not know how to do. To make recursion
feasible, the latter piece must resemble the original problem, but be a slightly simpler or
smaller version. This new problem looks like the original, so the function calls a copy of
itself to work on the smaller problem—this is referred to as a recursive call and is also
called the recursion step. The recursion step often includes the keyword return, because
its result will be combined with the portion of the problem the function knew how to solve
to form the result passed back to the original caller, possibly main.

The recursion step executes while the original call to the function is still “open,” i.e.,
it has not yet finished executing. The recursion step can result in many more such recursive
calls, as the function keeps dividing each new subproblem with which the function is
called into two conceptual pieces. In order for the recursion to eventually terminate, each
time the function calls itself with a slightly simpler version of the original problem, this
sequence of smaller and smaller problems must eventually converge on the base case. At
that point, the function recognizes the base case and returns a result to the previous copy
of the function, and a sequence of returns ensues up the line until the original call eventu-
ally returns the final result to main. This sounds quite exotic compared to the kind of
problem solving we’ve been using to this point. As an example of these concepts at work,
let’s write a recursive program to perform a popular mathematical calculation.

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3

Input three characters: A C B
The maximum character value is: C

Fig. 6.27 | Demonstrating function template maximum. (Part 2 of 2.)

240 Chapter 6 Functions and an Introduction to Recursion

The factorial of a nonnegative integer n, written n! (and pronounced “n factorial”), is
the product

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0, can be calculated iter-
atively (nonrecursively) by using a for statement as follows:

A recursive definition of the factorial function is arrived at by observing the following
algebraic relationship:

For example, 5! is clearly equal to 5 * 4! as is shown by the following:

The evaluation of 5! would proceed as shown in Fig. 6.28, which illustrates how the
succession of recursive calls proceeds until 1! is evaluated to be 1, terminating the recur-
sion. Figure 6.28(b) shows the values returned from each recursive call to its caller until
the final value is calculated and returned.

n · (n – 1) · (n – 2) · … · 1

factorial = 1;

for (int counter = number; counter >= 1; --counter)
factorial *= counter;

n! = n · (n – 1)!

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

Fig. 6.28 | Recursive evaluation of 5!.

(a) Procession of recursive calls

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

6.19 Recursion 241

Figure 6.29 uses recursion to calculate and print the factorials of the integers 0–10.
(The choice of the data type unsigned long is explained momentarily.) The recursive
function factorial (lines 18–24) first determines whether the terminating condition
number <= 1 (line 20) is true. If number is less than or equal to 1, the factorial function
returns 1 (line 21), no further recursion is necessary and the function terminates. If number
is greater than 1, line 23 expresses the problem as the product of number and a recursive
call to factorial evaluating the factorial of number - 1, which is a slightly simpler
problem than the original calculation factorial(number).

Function factorial has been declared to receive a parameter of type unsigned long

and return a result of type unsigned long. This is shorthand notation for unsigned long

int. The C++ standard requires that a variable of type unsigned long int be at least as big
as an int. Typically, an unsigned long int is stored in at least four bytes (32 bits); such a

1 // Fig. 6.29: fig06_29.cpp
2 // Demonstrating the recursive function factorial.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7
8
9 int main()

10 {
11 // calculate the factorials of 0 through 10
12 for (int counter = 0; counter <= 10; ++counter)
13 cout << setw(2) << counter << "! = " <<
14 << endl;
15 } // end main
16
17
18
19
20
21
22
23
24

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Fig. 6.29 | Demonstrating the recursive function factorial.

unsigned long factorial(unsigned long); // function prototype

factorial(counter)

// recursive definition of function factorial
unsigned long factorial(unsigned long number)
{

if (number <= 1) // test for base case
return 1; // base cases: 0! = 1 and 1! = 1

else // recursion step
return number * factorial(number - 1);

} // end function factorial

242 Chapter 6 Functions and an Introduction to Recursion

variable can hold a value in the range 0 to at least 4294967295. (The data type long int

is also stored in at least four bytes and can hold a value at least in the range –2147483648
to 2147483647.) As can be seen in Fig. 6.29, factorial values become large quickly. We
chose the data type unsigned long so that the program can calculate factorials greater than
7! on computers with small (such as two-byte) integers. Unfortunately, the function fac-

torial produces large values so quickly that even unsigned long does not help us com-
pute many factorial values before even the size of an unsigned long variable is exceeded.

Variables of type double could be used to calculate factorials of larger numbers. This
points to a weakness in many programming languages, namely, that the languages are not
easily extended to handle the unique requirements of various applications. As we’ll see
when we discuss object-oriented programming in more depth, C++ is an extensible lan-
guage that allows us to create classes that can represent arbitrarily large integers if we wish.
Such classes already are available in popular class libraries,1 and we work on similar classes
of our own in Exercise 9.14 and Exercise 11.9.

6.20 Example Using Recursion: Fibonacci Series
The Fibonacci series

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the
sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges on a constant value of 1.618…. This number,
too, frequently occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden mean length/width ratio.

The Fibonacci series can be defined recursively as follows:

The program of Fig. 6.30 calculates the nth Fibonacci number recursively by using func-
tion fibonacci. Fibonacci numbers tend to become large quickly, although slower than
factorials do. Therefore, we chose the data type unsigned long for the parameter type and
the return type in function fibonacci. Figure 6.30 shows the execution of the program,
which displays the Fibonacci values for several numbers.

1. Such classes can be found at www.trumphurst.com/cpplibs/datapage.phtml?category='intro'.

Common Programming Error 6.13
Either omitting the base case, or writing the recursion step incorrectly so that it does not
converge on the base case, causes “infinite” recursion, eventually exhausting memory. This
is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

0, 1, 1, 2, 3, 5, 8, 13, 21, …

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

www.trumphurst.com/cpplibs/datapage.phtml?category='intro'

6.20 Example Using Recursion: Fibonacci Series 243

The application begins with a for statement that calculates and displays the Fibonacci
values for the integers 0–10 and is followed by three calls to calculate the Fibonacci values of
the integers 20, 30 and 35 (lines 16–18). The calls to fibonacci (lines 13 and 16–18) from
main are not recursive calls, but the calls from line 27 of fibonacci are recursive. Each time
the program invokes fibonacci (lines 22–28), the function immediately tests the base case
to determine whether number is equal to 0 or 1 (line 24). If this is true, line 25 returns number.
Interestingly, if number is greater than 1, the recursion step (line 27) generates two recursive
calls, each for a slightly smaller problem than the original call to fibonacci.

1 // Fig. 6.30: fig06_30.cpp
2 // Testing the recursive fibonacci function.
3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10 // calculate the fibonacci values of 0 through 10
11 for (int counter = 0; counter <= 10; ++counter)
12 cout << "fibonacci(" << counter << ") = "
13 << << endl;
14
15 // display higher fibonacci values
16 cout << "fibonacci(20) = " << << endl;
17 cout << "fibonacci(30) = " << << endl;
18 cout << "fibonacci(35) = " << << endl;
19 } // end main
20
21
22
23
24
25
26
27
28

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(2) = 1
fibonacci(3) = 2
fibonacci(4) = 3
fibonacci(5) = 5
fibonacci(6) = 8
fibonacci(7) = 13
fibonacci(8) = 21
fibonacci(9) = 34
fibonacci(10) = 55
fibonacci(20) = 6765
fibonacci(30) = 832040
fibonacci(35) = 9227465

Fig. 6.30 | Demonstrating function fibonacci.

unsigned long fibonacci(unsigned long); // function prototype

fibonacci(counter)

fibonacci(20)
fibonacci(30)
fibonacci(35)

// recursive function fibonacci
unsigned long fibonacci(unsigned long number)
{

if ((number == 0) || (number == 1)) // base cases
return number;

else // recursion step
return fibonacci(number - 1) + fibonacci(number - 2);

} // end function fibonacci

244 Chapter 6 Functions and an Introduction to Recursion

Figure 6.31 shows how function fibonacci would evaluate fibonacci(3). This
figure raises some interesting issues about the order in which C++ compilers evaluate the
operands of operators. This is a separate issue from the order in which operators are
applied to their operands, namely, the order dictated by the rules of operator precedence
and associativity. Figure 6.31 shows that evaluating fibonacci(3) causes two recursive
calls, namely, fibonacci(2) and fibonacci(1). In what order are these calls made?

Order of Evaluation of Operands
Most programmers simply assume that the operands are evaluated left to right. C++ does
not specify the order in which the operands of most operators (including +) are to be eval-
uated. Therefore, you must make no assumption about the order in which these calls ex-
ecute. The calls could in fact execute fibonacci(2) first, then fibonacci(1), or they
could execute in the reverse order: fibonacci(1), then fibonacci(2). In this program
and in most others, it turns out that the final result would be the same. However, in some
programs the evaluation of an operand can have side effects (changes to data values) that
could affect the final result of the expression.

C++ specifies the order of evaluation of the operands of only four operators—&&, ||,
comma (,) and ?:. The first three are binary operators whose two operands are guaranteed
to be evaluated left to right. The last operator is C++’s only ternary operator—its leftmost
operand is always evaluated first; if it evaluates to nonzero (true), the middle operand eval-
uates next and the last operand is ignored; if the leftmost operand evaluates to zero (false),
the third operand evaluates next and the middle operand is ignored.

Fig. 6.31 | Set of recursive calls to function fibonacci.

Portability Tip 6.2
Programs that depend on the order of evaluation of the operands of operators other than
&&, ||, ?: and the comma (,) operator can function differently with different compilers.

Common Programming Error 6.14
Writing programs that depend on the order of evaluation of the operands of operators oth-
er than &&, ||, ?: and the comma (,) operator can lead to logic errors.

fibonacci(3)

fibonacci(2) fibonacci(1)return +

fibonacci(1) fibonacci(0) return 1

return 0return 1

return +

6.21 Recursion vs. Iteration 245

A word of caution is in order about recursive programs like the one we use here to
generate Fibonacci numbers. Each level of recursion in function fibonacci has a doubling
effect on the number of function calls; i.e., the number of recursive calls that are required
to calculate the nth Fibonacci number is on the order of 2n. This rapidly gets out of hand.
Calculating only the 20th Fibonacci number would require on the order of 220 or about
a million calls, calculating the 30th Fibonacci number would require on the order of 230

or about a billion calls, and so on. Computer scientists refer to this as exponential com-
plexity. Problems of this nature humble even the world’s most powerful computers! Com-
plexity issues in general, and exponential complexity in particular, are discussed in detail
in the upper-level computer science course generally called “Algorithms.”

6.21 Recursion vs. Iteration
In the two previous sections, we studied two functions that easily can be implemented re-
cursively or iteratively. This section compares the two approaches and discusses why you
might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control statement: Iteration uses a repetition
structure; recursion uses a selection structure. Both iteration and recursion involve repeti-
tion: Iteration explicitly uses a repetition structure; recursion achieves repetition through
repeated function calls. Iteration and recursion both involve a termination test: Iteration ter-
minates when the loop-continuation condition fails; recursion terminates when a base case is
recognized. Iteration with counter-controlled repetition and recursion both gradually
approach termination: Iteration modifies a counter until the counter assumes a value that
makes the loop-continuation condition fail; recursion produces simpler versions of the orig-
inal problem until the base case is reached. Both iteration and recursion can occur infinitely:
An infinite loop occurs with iteration if the loop-continuation test never becomes false;
infinite recursion occurs if the recursion step does not reduce the problem during each
recursive call in a manner that converges on the base case.

To illustrate the differences between iteration and recursion, let’s examine an iterative
solution to the factorial problem (Fig. 6.32). A repetition statement is used (lines 23–24
of Fig. 6.32) rather than the selection statement of the recursive solution (lines 20–23 of
Fig. 6.29). Both solutions use a termination test. In the recursive solution, line 20 tests for
the base case. In the iterative solution, line 23 tests the loop-continuation condition—if
the test fails, the loop terminates. Finally, instead of producing simpler versions of the
original problem, the iterative solution uses a counter that is modified until the loop-con-
tinuation condition becomes false.

Performance Tip 6.7
Avoid Fibonacci-style recursive programs that result in an exponential “explosion” of calls.

1 // Fig. 6.32: fig06_32.cpp
2 // Testing the iterative factorial function.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;

Fig. 6.32 | Iterative factorial solution. (Part 1 of 2.)

246 Chapter 6 Functions and an Introduction to Recursion

Recursion has negatives. It repeatedly invokes the mechanism, and consequently the
overhead, of function calls. This can be expensive in both processor time and memory space.
Each recursive call causes another copy of the function (actually only the function’s variables)
to be created; this can consume considerable memory. Iteration normally occurs within a
function, so the overhead of repeated function calls and extra memory assignment is
omitted. So why choose recursion?

6
7 unsigned long factorial(unsigned long); // function prototype
8
9 int main()

10 {
11 // calculate the factorials of 0 through 10
12 for (int counter = 0; counter <= 10; ++counter)
13 cout << setw(2) << counter << "! = " << factorial(counter)
14 << endl;
15 } // end main
16
17 // iterative function factorial
18 unsigned long factorial(unsigned long number)
19 {
20 unsigned long result = 1;
21
22
23
24
25
26 return result;
27 } // end function factorial

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Software Engineering Observation 6.14
Any problem that can be solved recursively can also be solved iteratively (nonrecursively).
A recursive approach is normally chosen when the recursive approach more naturally
mirrors the problem and results in a program that’s easier to understand and debug.
Another reason to choose a recursive solution is that an iterative solution is not apparent.

Performance Tip 6.8
Avoid using recursion in performance situations. Recursive calls take time and consume
additional memory.

Fig. 6.32 | Iterative factorial solution. (Part 2 of 2.)

// iterative factorial calculation
for (unsigned long i = number; i >= 1; --i)

result *= i;

6.21 Recursion vs. Iteration 247

Figure 6.33 summarizes the recursion examples and exercises in the text.

Common Programming Error 6.15
Accidentally having a nonrecursive function call itself, either directly or indirectly
(through another function), is a logic error.

Location in text Recursion examples and exercises

Chapter 6

Section 6.19, Fig. 6.29 Factorial function

Section 6.20, Fig. 6.30 Fibonacci function

Exercise 6.36 Raising an integer to an integer power

Exercise 6.38 Towers of Hanoi

Exercise 6.40 Visualizing recursion

Exercise 6.41 Greatest common divisor

Exercise 6.45, Exercise 6.46 Mystery “What does this program do?” exercise

Chapter 7

Exercise 7.18 Mystery “What does this program do?” exercise

Exercise 7.21 Mystery “What does this program do?” exercise

Exercise 7.31 Selection sort

Exercise 7.32 Determine whether a string is a palindrome

Exercise 7.33 Linear search

Exercise 7.34 Eight Queens

Exercise 7.35 Print an array

Exercise 7.36 Print a string backward

Exercise 7.37 Minimum value in an array

Chapter 8

Exercise 8.15 Quicksort

Exercise 8.16 Maze traversal

Exercise 8.17 Generating mazes randomly

Chapter 19

Section 19.3.3, Figs. 19.5–19.7 Mergesort

Exercise 19.8 Linear search

Exercise 19.9 Binary search

Exercise 19.10 Quicksort

Chapter 20

Section 20.7, Figs. 20.20–20.22 Binary tree insert

Section 20.7, Figs. 20.20–20.22 Preorder traversal of a binary tree

Section 20.7, Figs. 20.20–20.22 Inorder traversal of a binary tree

Fig. 6.33 | Summary of recursion examples and exercises in the text. (Part 1 of 2.)

248 Chapter 6 Functions and an Introduction to Recursion

6.22 Wrap-Up
In this chapter, you learned more about function declarations, including function proto-
types, function signatures, function headers and function bodies. We overviewed the math
library functions. You learned about argument coercion, or the forcing of arguments to the
appropriate types specified by the parameter declarations of a function. We demonstrated
how to use functions rand and srand to generate sets of random numbers that can be used
for simulations. We showed how to define sets of constants with enums. You also learned
about the scope of variables and storage classes. Two different ways to pass arguments to
functions were covered—pass-by-value and pass-by-reference. For pass-by-reference, refer-
ences are used as an alias to a variable. We showed how to implement inline functions and
functions that receive default arguments. You learned that multiple functions in one class
can be overloaded by providing functions with the same name and different signatures.
Such functions can be used to perform the same or similar tasks, using different types or
different numbers of parameters. We demonstrated a simpler way of overloading functions
using function templates, where a function is defined once but can be used for several dif-
ferent types. You then studied recursion, where a function calls itself to solve a problem.

In Chapter 7, you’ll learn how to maintain lists and tables of data in arrays and object-
oriented vectors. You’ll see a more elegant array-based implementation of the dice-rolling
application and two enhanced versions of the GradeBook case study we presented in
Chapters 3–6 that will use arrays to store the actual grades entered.

Section 20.7, Figs. 20.20–20.22 Postorder traversal of a binary tree

Exercise 20.20 Print a linked list backward

Exercise 20.21 Search a linked list

Exercise 20.22 Binary tree delete

Exercise 20.23 Binary tree search

Exercise 20.24 Level order traversal of a binary tree

Exercise 20.25 Printing tree

Location in text Recursion examples and exercises

Fig. 6.33 | Summary of recursion examples and exercises in the text. (Part 2 of 2.)

Summary
Section 6.1 Introduction
• Experience has shown that the best way to develop and maintain a large program is to construct it

from small, simple pieces, or components. This technique is called divide and conquer (p. 195).

Section 6.2 Program Components in C++
• C++ programs are typically written by combining new functions and classes you write with “pre-

packaged” functions and classes available in the C++ Standard Library.

• Functions allow you to modularize a program by separating its tasks into self-contained units.

Summary 249

• The statements in the function bodies are written only once, are reused from perhaps several lo-
cations in a program and are hidden from other functions.

Section 6.3 Math Library Functions
• Sometimes functions are not members of a class. These are called global functions (p. 197).

• The prototypes for global functions are placed in headers, so that they can be reused in any pro-
gram that includes the header and that can link to the function’s object code.

Section 6.4 Function Definitions with Multiple Parameters
• The compiler refers to the function prototype to check that calls to a function contain the correct

number and types of arguments, that the types of the arguments are in the correct order and that
the value returned by the function can be used correctly in the expression that called the function.

• If a function does not return a result, control returns when the program reaches the function-
ending right brace, or by execution of the statement

return;

If a function does return a result, the statement

return expression;

evaluates expression and returns the value of expression to the caller.

Section 6.5 Function Prototypes and Argument Coercion
• The portion of a function prototype that includes the name of the function and the types of its

arguments is called the function signature (p. 203) or simply the signature.

• An important feature of function prototypes is argument coercion (p. 203)—i.e., forcing argu-
ments to the appropriate types specified by the parameter declarations.

• Arguments can be promoted by the compiler to the parameter types as specified by C++’s pro-
motion rules (p. 204). The promotion rules indicate the implicit conversions that the compiler
can perform between fundamental types.

Section 6.6 C++ Standard Library Headers
• The C++ Standard Library is divided into many portions, each with its own header. The headers

also contain definitions of various class types, functions and constants.

• A header “instructs” the compiler on how to interface with library components.

Section 6.7 Case Study: Random Number Generation
• Calling rand (p. 207) repeatedly produces a sequence of pseudorandom numbers (p. 210). The

sequence repeats itself each time the program executes.

• To randomize the numbers produced by rand pass an unsigned integer argument (typically from
function time; p. 211) to function srand (p. 210), which seeds the rand function.

• Random numbers in a range can be generated with

number = shiftingValue + rand() % scalingFactor;

where shiftingValue (p. 207) is equal to the first number in the desired range of consecutive inte-
gers and scalingFactor (p. 207) is equal to the width of the desired range of consecutive integers.

Section 6.8 Case Study: Game of Chance; Introducing enum
• An enumeration, introduced by the keyword enum and followed by a type name (p. 214), is a set

of named integer constants (p. 214) that start at 0, unless specified otherwise, and increment by 1.

250 Chapter 6 Functions and an Introduction to Recursion

Section 6.9 Storage Classes
• An identifier’s storage class (p. 215) determines the period during which it exists in memory.

• An identifier’s scope is where the identifier can be referenced in a program.

• An identifier’s linkage (p. 215) determines whether it’s known only in the source file where it’s
declared or across multiple files that are compiled, then linked together.

• Keywords auto (p. 215) and register (p. 215) declare variables of the automatic storage class
(p. 216). Such variables are created when program execution enters the block in which they’re
defined, exist while the block is active and are destroyed when the program exits the block.

• Only local variables of a function can be of automatic storage class.

• The storage-class specifier auto (p. 215) explicitly declares variables of automatic storage class.
Local variables are of automatic storage class by default, so keyword auto is rarely used.

• Keywords extern (p. 215) and static declare identifiers for variables of the static storage class
(p. 215) and for functions. Static-storage-class variables exist from the point at which the pro-
gram begins execution and last for the duration of the program.

• A static-storage-class variable’s storage is allocated when the program begins execution. Such a
variable is initialized once when its declaration is encountered. For functions, the name of the
function exists when the program begins execution as for all other functions.

• External identifiers (such as global variables) and local variables declared with the storage class-
specifier static have static storage class (p. 215).

• Global variables (p. 217) declarations are placed outside any class or function definition. Global
variables retain their values throughout the program’s execution. Global variables and functions
can be referenced by any function that follows their declarations or definitions.

Section 6.10 Scope Rules
• Unlike automatic variables, static local variables retain their values when the function in which

they’re declared returns to its caller.

• An identifier declared outside any function or class has global namespace scope (p. 218).

• Labels are the only identifiers with function scope (p. 218). Labels can be used anywhere in the
function in which they appear, but cannot be referenced outside the function body.

• Identifiers declared inside a block have local scope (p. 218), which begins at the identifier’s decla-
ration and ends at the terminating right brace (}) of the block in which the identifier is declared.

• Identifiers in the parameter list of a function prototype have function-prototype scope (p. 218).

Section 6.11 Function Call Stack and Activation Records
• Stacks (p. 221) are known as last-in, first-out (LIFO) data structures—the last item pushed (in-

serted; p. 221) on the stack is the first item popped (removed; p. 221) from the stack.

• The function call stack (p. 221) supports the function call/return mechanism and the creation,
maintenance and destruction of each called function’s automatic variables.

• Each time a function calls another function, a stack frame or an activation record (p. 221) is
pushed onto the stack containing the return address that the called function needs to return to
the calling function, and the function call’s automatic variables and parameters.

• The stack frame (p. 221) exists as long as the called function is active. When the called function
returns, its stack frame is popped from the stack, and its local automatic variables no longer exist.

Section 6.12 Functions with Empty Parameter Lists
• In C++, an empty parameter list is specified by writing either void or nothing in parentheses.

Summary 251

Section 6.13 Inline Functions
• C++ provides inline functions (p. 225) to help reduce function call overhead—especially for small

functions. Placing the qualifier inline before a function’s return type in the function definition
“advises” the compiler to generate a copy of the function’s code in place to avoid a function call.

Section 6.14 References and Reference Parameters
• When an argument is passed by value (p. 227), a copy of the argument’s value is made and passed

to the called function. Changes to the copy do not affect the original variable’s value in the caller.

• With pass-by-reference (p. 227), the caller gives the called function the ability to access the call-
er’s data directly and to modify it if the called function chooses to do so.

• A reference parameter (p. 227) is an alias for its corresponding argument in a function call.

• To indicate that a function parameter is passed by reference, follow the parameter’s type in the
function prototype and header by an ampersand (&).

• All operations performed on a reference are actually performed on the original variable.

Section 6.15 Default Arguments
• When a function is called repeatedly with the same argument for a particular parameter, you can

specify that such a parameter has a default argument (p. 231).

• When a program omits an argument for a parameter with a default argument, the compiler in-
serts the default value of that argument to be passed to the function call.

• Default arguments must be the rightmost (trailing) arguments in a function’s parameter list.

• Default arguments are specified in the function prototype.

Section 6.16 Unary Scope Resolution Operator
• C++ provides the unary scope resolution operator (p. 232), ::, to access a global variable when

a local variable of the same name is in scope.

Section 6.17 Function Overloading
• C++ enables several functions of the same name to be defined, as long as these functions have

different sets of parameters. This capability is called function overloading (p. 234).

• When an overloaded function is called, the C++ compiler selects the proper function by exam-
ining the number, types and order of the arguments in the call.

• Overloaded functions are distinguished by their signatures.

• The compiler encodes each function identifier with the number and types of its parameters to
enable type-safe linkage (p. 235). Type-safe linkage ensures that the proper overloaded function
is called and that the types of the arguments conform to the types of the parameters.

Section 6.18 Function Templates
• Overloaded functions typically perform similar operations that involve different program logic

on different data types. If the program logic and operations are identical for each data type, over-
loading may be performed more compactly and conveniently using function templates (p. 237).

• Given the argument types provided in calls to a function template, C++ automatically generates
separate function template specializations (p. 237) to handle each type of call appropriately.

• All function template definitions begin with the template keyword (p. 237) followed by a tem-
plate parameter list (p. 237) to the function template enclosed in angle brackets (< and >).

• The formal type parameters (p. 237) are preceded by keyword typename and are placeholders for
fundamental types or user-defined types. These placeholders are used to specify the types of the

252 Chapter 6 Functions and an Introduction to Recursion

function’s parameters, to specify the function’s return type and to declare variables within the
body of the function definition.

Section 6.19 Recursion
• A recursive function (p. 239) calls itself, either directly or indirectly.

• A recursive function knows how to solve only the simplest case(s), or so-called base case(s). If the
function is called with a base case (p. 239), the function simply returns a result.

• If the function is called with a more complex problem, the function typically divides the problem
into two conceptual pieces—a piece that the function knows how to do and a piece that it does
not know how to do. To make recursion feasible, the latter piece must resemble the original
problem, but be a slightly simpler or slightly smaller version of it.

• For recursion to terminate, the sequence of recursive calls (p. 239) must converge on the base case.

Section 6.20 Example Using Recursion: Fibonacci Series
• The ratio of successive Fibonacci numbers converges on a constant value of 1.618…. This num-

ber frequently occurs in nature and has been called the golden ratio or the golden mean (p. 242).

Section 6.21 Recursion vs. Iteration
• Iteration (p. 240) and recursion are similar: both are based on a control statement, involve rep-

etition, involve a termination test, gradually approach termination and can occur infinitely.

• Recursion repeatedly invokes the mechanism, and overhead, of function calls. This can be expen-
sive in both processor time and memory space. Each recursive call (p. 239) causes another copy
of the function’s variables to be created; this can consume considerable memory.

Self-Review Exercises
6.1 Answer each of the following:

a) Program components in C++ are called and .
b) A function is invoked with a(n) .
c) A variable known only within the function in which it’s defined is called a(n) .
d) The statement in a called function passes the value of an expression back to

the calling function.
e) The keyword is used in a function header to indicate that a function does not

return a value or to indicate that a function contains no parameters.
f) An identifier’s is the portion of the program in which the identifier can be used.
g) The three ways to return control from a called function to a caller are ,

and .
h) A(n) allows the compiler to check the number, types and order of the argu-

ments passed to a function.
i) Function is used to produce random numbers.
j) Function is used to set the random number seed to randomize the number

sequence generated by function rand.
k) The storage-class specifiers are mutable, , , and .
l) Variables declared in a block or in the parameter list of a function are assumed to be of

storage class unless specified otherwise.
m) Storage-class specifier is a recommendation to the compiler to store a variable

in one of the computer’s registers.
n) A variable declared outside any block or function is a(n) variable.
o) For a local variable in a function to retain its value between calls to the function, it must

be declared with the storage-class specifier.

Self-Review Exercises 253

p) The six possible scopes of an identifier are , , , ,
and .

q) A function that calls itself either directly or indirectly (i.e., through another function)
is a(n) function.

r) A recursive function typically has two components—one that provides a means for the
recursion to terminate by testing for a(n) case and one that expresses the prob-
lem as a recursive call for a slightly simpler problem than the original call.

s) It’s possible to have various functions with the same name that operate on different
types or numbers of arguments. This is called function .

t) The enables access to a global variable with the same name as a variable in the
current scope.

u) The qualifier is used to declare read-only variables.
v) A function enables a single function to be defined to perform a task on many

different data types.

6.2 For the program in Fig. 6.34, state the scope (either function scope, global namespace
scope, local scope or function-prototype scope) of each of the following elements:

a) The variable x in main.
b) The variable y in cube.
c) The function cube.
d) The function main.
e) The function prototype for cube.
f) The identifier y in the function prototype for cube.

6.3 Write a program that tests whether the examples of the math library function calls shown
in Fig. 6.2 actually produce the indicated results.

6.4 Give the function header for each of the following functions:
a) Function hypotenuse that takes two double-precision, floating-point arguments, side1

and side2, and returns a double-precision, floating-point result.
b) Function smallest that takes three integers, x, y and z, and returns an integer.
c) Function instructions that does not receive any arguments and does not return a val-

ue. [Note: Such functions are commonly used to display instructions to a user.]

1 // Exercise 6.2: Ex06_02.cpp
2 #include <iostream>
3 using namespace std;
4
5 int cube(int y); // function prototype
6
7 int main()
8 {
9 int x;

10
11 for (x = 1; x <= 10; x++) // loop 10 times
12 cout << cube(x) << endl; // calculate cube of x and output results
13 } // end main
14
15 // definition of function cube
16 int cube(int y)
17 {
18 return y * y * y;
19 } // end function cube

Fig. 6.34 | Program for Exercise 6.2.

254 Chapter 6 Functions and an Introduction to Recursion

d) Function intToDouble that takes an integer argument, number, and returns a double-
precision, floating-point result.

6.5 Give the function prototype (without parameter names) for each of the following:
a) The function described in Exercise 6.4(a).
b) The function described in Exercise 6.4(b).
c) The function described in Exercise 6.4(c).
d) The function described in Exercise 6.4(d).

6.6 Write a declaration for each of the following:
a) Integer count that should be maintained in a register. Initialize count to 0.
b) Double-precision, floating-point variable lastVal that is to retain its value between calls

to the function in which it’s defined.

6.7 Find the error(s) in each of the following program segments, and explain how the error(s)
can be corrected (see also Exercise 6.48):

a) int g()

{

cout << "Inside function g" << endl;

int h()

{

cout << "Inside function h" << endl;

}

}

b) int sum(int x, int y)

{

int result;

result = x + y;

}

c) int sum(int n)

{

if (n == 0)

return 0;

else

n + sum(n - 1);

}

d) void f(double a);

{

float a;

cout << a << endl;

}

e) void product()

{

int a;

int b;

int c;

int result;

cout << "Enter three integers: ";

cin >> a >> b >> c;

result = a * b * c;

cout << "Result is " << result;

return result;

}

Answers to Self-Review Exercises 255

6.8 Why would a function prototype contain a parameter type declaration such as double &?

6.9 (True/False) All arguments to function calls in C++ are passed by value.

6.10 Write a complete program that prompts the user for the radius of a sphere, and calculates
and prints the volume of that sphere. Use an inline function sphereVolume that returns the result
of the following expression: (4.0 / 3.0 * 3.14159 * pow(radius, 3)).

Answers to Self-Review Exercises
6.1 a) functions, classes. b) function call. c) local variable. d) return. e) void. f) scope.
g) return;, return expression; or encounter the closing right brace of a function. h) function pro-
totype. i) rand. j) srand. k) auto, register, extern, static. l) auto. m) register. n) global.
o) static. p) function scope, global namespace scope, local scope, function-prototype scope, class
scope, namespace scope. q) recursive. r) base. s) overloading. t) unary scope resolution operator
(::). u) const. v) template.

6.2 a) local scope. b) local scope. c) global namespace scope. d) global namespace scope.
e) global namespace scope. f) function-prototype scope.

6.3 See the following program:

1 // Exercise 6.3: Ex06_03.cpp
2 // Testing the math library functions.
3 #include <iostream>
4 #include <iomanip>
5 #include <cmath>
6 using namespace std;
7
8 int main()
9 {

10 cout << fixed << setprecision(1);
11
12 cout << "sqrt(" << 900.0 << ") = " << sqrt(900.0)
13 << "\nsqrt(" << 9.0 << ") = " << sqrt(9.0);
14 cout << "\nexp(" << 1.0 << ") = " << setprecision(6)
15 << exp(1.0) << "\nexp(" << setprecision(1) << 2.0
16 << ") = " << setprecision(6) << exp(2.0);
17 cout << "\nlog(" << 2.718282 << ") = " << setprecision(1)
18 << log(2.718282)
19 << "\nlog(" << setprecision(6) << 7.389056 << ") = "
20 << setprecision(1) << log(7.389056);
21 cout << "\nlog10(" << 1.0 << ") = " << log10(1.0)
22 << "\nlog10(" << 10.0 << ") = " << log10(10.0)
23 << "\nlog10(" << 100.0 << ") = " << log10(100.0) ;
24 cout << "\nfabs(" << 5.1 << ") = " << fabs(5.1)
25 << "\nfabs(" << 0.0 << ") = " << fabs(0.0)
26 << "\nfabs(" << -8.76 << ") = " << fabs(-8.76);
27 cout << "\nceil(" << 9.2 << ") = " << ceil(9.2)
28 << "\nceil(" << -9.8 << ") = " << ceil(-9.8);
29 cout << "\nfloor(" << 9.2 << ") = " << floor(9.2)
30 << "\nfloor(" << -9.8 << ") = " << floor(-9.8);
31 cout << "\npow(" << 2.0 << ", " << 7.0 << ") = "
32 << pow(2.0, 7.0) << "\npow(" << 9.0 << ", "
33 << 0.5 << ") = " << pow(9.0, 0.5);
34 cout << setprecision(3) << "\nfmod("
35 << 2.6 << ", " << 1.2 << ") = "
36 << fmod(2.6, 1.2) << setprecision(1);
37 cout << "\nsin(" << 0.0 << ") = " << sin(0.0);

256 Chapter 6 Functions and an Introduction to Recursion

6.4 a) double hypotenuse(double side1, double side2)

b) int smallest(int x, int y, int z)
c) void instructions()
d) double intToDouble(int number)

6.5 a) double hypotenuse(double, double);

b) int smallest(int, int, int);
c) void instructions();
d) double intToDouble(int);

6.6 a) register int count = 0;

b) static double lastVal;

6.7 a) Error: Function h is defined in function g.
Correction: Move the definition of h out of the definition of g.

b) Error: The function is supposed to return an integer, but does not.
Correction: Delete variable result and place the following statement in the function:

return x + y;

c) Error: The result of n + sum(n - 1) is not returned; sum returns an improper result.
Correction: Rewrite the statement in the else clause as

return n + sum(n - 1);

d) Errors: Semicolon after the right parenthesis that encloses the parameter list, and re-
defining the parameter a in the function definition.
Corrections: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a;.

e) Error: The function returns a value when it isn’t supposed to.
Correction: Eliminate the return statement or change the return type.

6.8 This creates a reference parameter of type “reference to double” that enables the function
to modify the original variable in the calling function.

38 cout << "\ncos(" << 0.0 << ") = " << cos(0.0);
39 cout << "\ntan(" << 0.0 << ") = " << tan(0.0) << endl;
40 } // end main

sqrt(900.0) = 30.0
sqrt(9.0) = 3.0
exp(1.0) = 2.718282
exp(2.0) = 7.389056
log(2.718282) = 1.0
log(7.389056) = 2.0
log10(1.0) = 0.0
log10(10.0) = 1.0
log10(100.0) = 2.0
fabs(5.1) = 5.1
fabs(0.0) = 0.0
fabs(-8.8) = 8.8
ceil(9.2) = 10.0
ceil(-9.8) = -9.0
floor(9.2) = 9.0
floor(-9.8) = -10.0
pow(2.0, 7.0) = 128.0
pow(9.0, 0.5) = 3.0
fmod(2.600, 1.200) = 0.200
sin(0.0) = 0.0
cos(0.0) = 1.0
tan(0.0) = 0.0

Exercises 257

6.9 False. C++ enables pass-by-reference using reference parameters (and pointers, as we discuss
in Chapter 8).

6.10 See the following program:

Exercises
6.11 Show the value of x after each of the following statements is performed:

a) x = fabs(7.5)

b) x = floor(7.5)

c) x = fabs(0.0)

d) x = ceil(0.0)

e) x = fabs(-6.4)

f) x = ceil(-6.4)

g) x = ceil(-fabs(-8 + floor(-5.5)))

6.12 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three
hours. The garage charges an additional $0.50 per hour for each hour or part thereof in excess of three
hours. The maximum charge for any given 24-hour period is $10.00. Assume that no car parks for
longer than 24 hours at a time. Write a program that calculates and prints the parking charges for each
of three customers who parked their cars in this garage yesterday. You should enter the hours parked
for each customer. Your program should print the results in a neat tabular format and should calculate
and print the total of yesterday’s receipts. The program should use the function calculateCharges to
determine the charge for each customer. Your outputs should appear in the following format:

1 // Exercise 6.10 Solution: Ex06_10.cpp
2 // Inline function that calculates the volume of a sphere.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 const double PI = 3.14159; // define global constant PI
8
9 // calculates volume of a sphere

10 inline double sphereVolume(const double radius)
11 {
12 return 4.0 / 3.0 * PI * pow(radius, 3);
13 } // end inline function sphereVolume
14
15 int main()
16 {
17 double radiusValue;
18
19 // prompt user for radius
20 cout << "Enter the length of the radius of your sphere: ";
21 cin >> radiusValue; // input radius
22
23 // use radiusValue to calculate volume of sphere and display result
24 cout << "Volume of sphere with radius " << radiusValue
25 << " is " << sphereVolume(radiusValue) << endl;
26 } // end main

Car Hours Charge
1 1.5 2.00
2 4.0 2.50
3 24.0 10.00
TOTAL 29.5 14.50

258 Chapter 6 Functions and an Introduction to Recursion

6.13 (Rounding Numbers) An application of function floor is rounding a value to the nearest
integer. The statement

y = floor(x + .5);

rounds the number x to the nearest integer and assigns the result to y. Write a program that reads
several numbers and uses the preceding statement to round each of these numbers to the nearest
integer. For each number processed, print both the original number and the rounded number.

6.14 (Rounding Numbers) Function floor can be used to round a number to a specific decimal
place. The statement

y = floor(x * 10 + .5) / 10;

rounds x to the tenths position (the first position to the right of the decimal point). The statement

y = floor(x * 100 + .5) / 100;

rounds x to the hundredths position (the second position to the right of the decimal point). Write
a program that defines four functions to round a number x in various ways:

a) roundToInteger(number)

b) roundToTenths(number)

c) roundToHundredths(number)

d) roundToThousandths(number)

For each value read, your program should print the original value, the number rounded to the
nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth and the number rounded to the nearest thousandth.

6.15 (Short Answer Questions) Answer each of the following questions:
a) What does it mean to choose numbers “at random?”
b) Why is the rand function useful for simulating games of chance?
c) Why would you randomize a program by using srand? Under what circumstances is it

desirable not to randomize?
d) Why is it often necessary to scale or shift the values produced by rand?
e) Why is computerized simulation of real-world situations a useful technique?

6.16 (Random Numbers) Write statements that assign random integers to the variable n in the
following ranges:

a) 1 ≤n ≤2
b) 1 ≤n ≤100
c) 0 ≤n ≤9
d) 1000 ≤n ≤1112
e) –1 ≤n ≤1
f) –3 ≤n ≤11

6.17 (Random Numbers) Write a single statement that prints a number at random from each of
the following sets:

a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

6.18 (Exponentiation) Write a function integerPower(base, exponent) that returns the value of

base exponent

For example, integerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive, nonzero
integer and that base is an integer. Do not use any math library functions.

6.19 (Hypotenuse Calculations) Define a function hypotenuse that calculates the hypotenuse of
a right triangle when the other two sides are given. The function should take two double arguments

Exercises 259

and return the hypotenuse as a double. Use this function in a program to determine the hypotenuse
for each of the triangles shown below.

6.20 (Multiples) Write a function multiple that determines for a pair of integers whether the sec-
ond is a multiple of the first. The function should take two integer arguments and return true if the
second is a multiple of the first, false otherwise. Use this function in a program that inputs a series
of pairs of integers.

6.21 (Even Numbers) Write a program that inputs a series of integers and passes them one at a
time to function isEven, which uses the modulus operator to determine whether an integer is even.
The function should take an integer argument and return true if the integer is even and false oth-
erwise.

6.22 (Square of Asterisks) Write a function that displays at the left margin of the screen a solid
square of asterisks whose side is specified in integer parameter side. For example, if side is 4, the
function displays the following:

6.23 (Square of Any Character) Modify the function created in Exercise 6.22 to form the square
out of whatever character is contained in character parameter fillCharacter. Thus, if side is 5 and
fillCharacter is #, then this function should print the following:

6.24 (Separating Digits) Write program segments that accomplish each of the following:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
c) Use the program pieces developed in (a) and (b) to write a function that inputs an in-

teger between 1 and 32767 and prints it as a series of digits, each pair of which is sepa-
rated by two spaces. For example, the integer 4562 should print as follows:

6.25 (Calculating Number of Seconds) Write a function that takes the time as three integer ar-
guments (hours, minutes and seconds) and returns the number of seconds since the last time the
clock “struck 12.” Use this function to calculate the amount of time in seconds between two times,
both of which are within one 12-hour cycle of the clock.

Triangle Side 1 Side 2

1 3.0 4.0

2 5.0 12.0

3 8.0 15.0

#####
#####
#####
#####
#####

4 5 6 2

260 Chapter 6 Functions and an Introduction to Recursion

6.26 (Celsius and Fahrenheit Temperatures) Implement the following integer functions:
a) Function celsius returns the Celsius equivalent of a Fahrenheit temperature.
b) Function fahrenheit returns the Fahrenheit equivalent of a Celsius temperature.
c) Use these functions to write a program that prints charts showing the Fahrenheit equiv-

alents of all Celsius temperatures from 0 to 100 degrees, and the Celsius equivalents of
all Fahrenheit temperatures from 32 to 212 degrees. Print the outputs in a neat tabular
format that minimizes the number of lines of output while remaining readable.

6.27 (Find the Minimum) Write a program that inputs three double-precision, floating-point
numbers and passes them to a function that returns the smallest number.

6.28 (Perfect Numbers) An integer is said to be a perfect number if the sum of its divisors, includ-
ing 1 (but not the number itself), is equal to the number. For example, 6 is a perfect number, be-
cause 6 = 1 + 2 + 3. Write a function isPerfect that determines whether parameter number is a
perfect number. Use this function in a program that determines and prints all the perfect numbers
between 1 and 1000. Print the divisors of each perfect number to confirm that the number is indeed
perfect. Challenge the power of your computer by testing numbers much larger than 1000.

6.29 (Prime Numbers) An integer is said to be prime if it’s divisible by only 1 and itself. For ex-
ample, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not.

a) Write a function that determines whether a number is prime.
b) Use this function in a program that determines and prints all the prime numbers be-

tween 2 and 10,000. How many of these numbers do you really have to test before be-
ing sure that you’ve found all the primes?

c) Initially, you might think that n/2 is the upper limit for which you must test to see
whether a number is prime, but you need only go as high as the square root of n. Why?
Rewrite the program, and run it both ways. Estimate the performance improvement.

6.30 (Reverse Digits) Write a function that takes an integer value and returns the number with
its digits reversed. For example, given the number 7631, the function should return 1367.

6.31 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers is the largest
integer that evenly divides each of the numbers. Write a function gcd that returns the greatest com-
mon divisor of two integers.

6.32 (Quality Points for Numeric Grades) Write a function qualityPoints that inputs a stu-
dent’s average and returns 4 if a student’s average is 90–100, 3 if the average is 80–89, 2 if the av-
erage is 70–79, 1 if the average is 60–69 and 0 if the average is lower than 60.

6.33 (Coin Tossing) Write a program that simulates coin tossing. For each toss of the coin, the
program should print Heads or Tails. Let the program toss the coin 100 times and count the num-
ber of times each side of the coin appears. Print the results. The program should call a separate func-
tion flip that takes no arguments and returns 0 for tails and 1 for heads. [Note: If the program
realistically simulates the coin tossing, then each side of the coin should appear approximately half
the time.]

6.34 (Guess-the-Number Game) Write a program that plays the game of “guess the number” as
follows: Your program chooses the number to be guessed by selecting an integer at random in the
range 1 to 1000. The program then displays the following:

The player then types a first guess. The program responds with one of the following:

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

Exercises 261

If the player’s guess is incorrect, your program should loop until the player finally gets the number
right. Your program should keep telling the player Too high or Too low to help the player “zero in”
on the correct answer.

6.35 (Guess-the-Number Game Modification) Modify the program of Exercise 6.34 to count the
number of guesses the player makes. If the number is 10 or fewer, print "Either you know the se-

cret or you got lucky!" If the player guesses the number in 10 tries, then print "Ahah! You know

the secret!" If the player makes more than 10 guesses, then print "You should be able to do

better!" Why should it take no more than 10 guesses? Well, with each “good guess” the player
should be able to eliminate half of the numbers. Now show why any number from 1 to 1000 can
be guessed in 10 or fewer tries.

6.36 (Recursive Exponentiation) Write a recursive function power(base, exponent) that, when
invoked, returns

base exponent

For example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal
to 1. Hint: The recursion step would use the relationship

base exponent = base · base exponent - 1

and the terminating condition occurs when exponent is equal to 1, because

base1 = base

6.37 (Fibonacci Series) The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with the terms 0 and 1 and has the property that each succeeding term is the sum of the two
preceding terms. (a) Write a nonrecursive function fibonacci(n) that uses type int to calculate the
nth Fibonacci number. (b) Determine the largest int Fibonacci number that can be printed on your
system. Modify the program of part (a) to use double instead of int to calculate and return Fibo-
nacci numbers, and use this modified program to repeat part (b).

6.38 (Towers of Hanoi) In this chapter, you studied functions that can be easily implemented
both recursively and iteratively. In this exercise, we present a problem whose recursive solution dem-
onstrates the elegance of recursion, and whose iterative solution may not be as apparent.

The Towers of Hanoi is one of the most famous classic problems every budding computer
scientist must grapple with. Legend has it that in a temple in the Far East, priests are attempting to
move a stack of golden disks from one diamond peg to another (Fig. 6.35). The initial stack has 64
disks threaded onto one peg and arranged from bottom to top by decreasing size. The priests are
attempting to move the stack from one peg to another under the constraints that exactly one disk is
moved at a time and at no time may a larger disk be placed above a smaller disk. Three pegs are
provided, one being used for temporarily holding disks. Supposedly, the world will end when the
priests complete their task, so there is little incentive for us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that prints the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we would rapidly find our-
selves hopelessly knotted up in managing the disks. Instead, attacking this problem with recursion
in mind allows the steps to be simple. Moving n disks can be viewed in terms of moving only n –
1 disks (hence, the recursion), as follows:

1. Excellent! You guessed the number!
Would you like to play again (y or n)?

2. Too low. Try again.
3. Too high. Try again.

262 Chapter 6 Functions and an Introduction to Recursion

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This task
is accomplished by simply moving the disk, without the need for a temporary holding area. Write a
program to solve the Towers of Hanoi problem. Use a recursive function with four parameters:

a) The number of disks to be moved
b) The peg on which these disks are initially threaded
c) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area

Display the precise instructions for moving the disks from the starting peg to the destination
peg. To move a stack of three disks from peg 1 to peg 3, the program displays the following moves:

1 → 3 (This means move one disk from peg 1 to peg 3.)
1 → 2
3 → 2
1 → 3
2 → 1
2 → 3
1 → 3

6.39 (Towers of Hanoi: Iterative Version) Any program that can be implemented recursively can
be implemented iteratively, although sometimes with more difficulty and less clarity. Try writing
an iterative version of the Towers of Hanoi. If you succeed, compare your iterative version with the
recursive version developed in Exercise 6.38. Investigate issues of performance, clarity and your abil-
ity to demonstrate the correctness of the programs.

6.40 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify the factorial
function of Fig. 6.29 to print its local variable and recursive call parameter. For each recursive call,
display the outputs on a separate line and add a level of indentation. Do your utmost to make the
outputs clear, interesting and meaningful. Your goal here is to design and implement an output for-
mat that helps a person understand recursion better. You may want to add such display capabilities
to the many other recursion examples and exercises throughout the text.

6.41 (Recursive Greatest Common Divisor) The greatest common divisor of integers x and y is
the largest integer that evenly divides both x and y. Write a recursive function gcd that returns the

Fig. 6.35 | Towers of Hanoi for the case with four disks.

peg 1 peg 2 peg 3

Exercises 263

greatest common divisor of x and y, defined recursively as follows: If y is equal to 0, then gcd(x, y)

is x; otherwise, gcd(x, y) is gcd(y, x % y), where % is the modulus operator. [Note: For this algo-
rithm, x must be larger than y.]

6.42 (Recursive main) Can main be called recursively on your system? Write a program contain-
ing a function main. Include static local variable count and initialize it to 1. Postincrement and
print the value of count each time main is called. Compile your program. What happens?

6.43 (Distance Between Points) Write function distance that calculates the distance between
two points (x1, y1) and (x2, y2). All numbers and return values should be of type double.

6.44 What’s wrong with the following program?

6.45 What does the following program do?

6.46 After you determine what the program of Exercise 6.45 does, modify the program to func-
tion properly after removing the restriction that the second argument be nonnegative.

1 // Exercise 6.44: ex06_44.cpp
2 // What is wrong with this program?
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int c;
9

10 if ((c = cin.get()) != EOF)
11 {
12 main();
13 cout << c;
14 } // end if
15 } // end main

1 // Exercise 6.45: ex06_45.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 int mystery(int, int); // function prototype
7
8 int main()
9 {

10 int x, y;
11
12 cout << "Enter two integers: ";
13 cin >> x >> y;
14 cout << "The result is " << mystery(x, y) << endl;
15 } // end main
16
17 // Parameter b must be a positive integer to prevent infinite recursion
18 int mystery(int a, int b)
19 {
20 if (b == 1) // base case
21 return a;
22 else // recursion step
23 return a + mystery(a, b - 1);
24 } // end function mystery

264 Chapter 6 Functions and an Introduction to Recursion

6.47 (Math Library Functions) Write a program that tests as many of the math library functions
in Fig. 6.2 as you can. Exercise each of these functions by having your program print out tables of
return values for a diversity of argument values.

6.48 (Find the Error) Find the error in each of the following program segments and explain how
to correct it:

a) float cube(float); // function prototype

cube(float number) // function definition

{

return number * number * number;

}

b) register auto int x = 7;

c) int randomNumber = srand();

d) float y = 123.45678;

int x;

x = y;

cout << static_cast< float >(x) << endl;

e) double square(double number)

{

double number;

return number * number;

}

f) int sum(int n)

{

if (n == 0)

return 0;

else

return n + sum(n);

}

6.49 (Craps Game Modification) Modify the craps program of Fig. 6.11 to allow wagering.
Package as a function the portion of the program that runs one game of craps. Initialize variable
bankBalance to 1000 dollars. Prompt the player to enter a wager. Use a while loop to check that
wager is less than or equal to bankBalance and, if not, prompt the user to reenter wager until a valid
wager is entered. After a correct wager is entered, run one game of craps. If the player wins, increase
bankBalance by wager and print the new bankBalance. If the player loses, decrease bankBalance by
wager, print the new bankBalance, check on whether bankBalance has become zero and, if so, print
the message "Sorry. You busted!" As the game progresses, print various messages to create some
“chatter” such as "Oh, you're going for broke, huh?", "Aw cmon, take a chance!" or "You're up

big. Now's the time to cash in your chips!".

6.50 (Circle Area) Write a C++ program that prompts the user for the radius of a circle, then calls
inline function circleArea to calculate the area of that circle.

6.51 (Pass-by-Value vs. Pass-by-Reference) Write a complete C++ program with the two alternate
functions specified below, each of which simply triples the variable count defined in main. Then
compare and contrast the two approaches. These two functions are

a) function tripleByValue that passes a copy of count by value, triples the copy and re-
turns the new value and

a) function tripleByReference that passes count by reference via a reference parameter
and triples the original value of count through its alias (i.e., the reference parameter).

Making a Difference 265

6.52 What’s the purpose of the unary scope resolution operator?

6.53 (Function Template minimum) Write a program that uses a function template called minimum

to determine the smaller of two arguments. Test the program using integer, character and floating-
point number arguments.

6.54 (Function Template maximum) Write a program that uses a function template called maximum

to determine the larger of two arguments. Test the program using integer, character and floating-
point number arguments.

6.55 (Find the Error) Determine whether the following program segments contain errors. For
each error, explain how it can be corrected. [Note: For a particular program segment, it’s possible
that no errors are present in the segment.]

a) template < class A >

int sum(int num1, int num2, int num3)

{

return num1 + num2 + num3;

}

b) void printResults(int x, int y)

{

cout << "The sum is " << x + y << '\n';

return x + y;

}

c) template < A >

A product(A num1, A num2, A num3)

{

return num1 * num2 * num3;

}

d) double cube(int);

int cube(int);

Making a Difference
As computer costs decline, it becomes feasible for every student, regardless of economic circum-
stance, to have a computer and use it in school. This creates exciting possibilities for improving the
educational experience of all students worldwide as suggested by the next five exercises. [Note:
Check out initiatives such as the One Laptop Per Child Project (www.laptop.org). Also, research
“green” laptops—and note the key “going green” characteristics of these devices? Look into the
Electronic Product Environmental Assessment Tool (www.epeat.net) which can help you assess the
“greenness” of desktops, notebooks and monitors to help you decide which products to purchase.]

6.56 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn
multiplication. Use the rand function to produce two positive one-digit integers. The program
should then prompt the user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student finally gets it right. A separate function should be used to generate each new ques-
tion. This function should be called once when the application begins execution and each time the
user answers the question correctly.

www.laptop.org
www.epeat.net

266 Chapter 6 Functions and an Introduction to Recursion

6.57 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise 6.56 so that various comments are displayed for
each answer as follows:

Possible responses to a correct answer:

Very good!
Excellent!
Nice work!
Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

6.58 (Computer-Assisted Instruction: Monitoring Student Performance) More sophisticated
computer-assisted instruction systems monitor the student’s performance over a period of time. The
decision to begin a new topic is often based on the student’s success with previous topics. Modify
the program of Exercise 6.57 to count the number of correct and incorrect responses typed by the
student. After the student types 10 answers, your program should calculate the percentage that are
correct. If the percentage is lower than 75%, display "Please ask your teacher for extra help.",
then reset the program so another student can try it. If the percentage is 75% or higher, display
"Congratulations, you are ready to go to the next level!", then reset the program so another
student can try it.

6.59 (Computer-Assisted Instruction: Difficulty Levels) Exercises 6.56–6.58 developed a com-
puter-assisted instruction program to help teach an elementary school student multiplication. Mod-
ify the program to allow the user to enter a difficulty level. At a difficulty level of 1, the program
should use only single-digit numbers in the problems; at a difficulty level of 2, numbers as large as
two digits, and so on.

6.60 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the program of
Exercise 6.59 to allow the user to pick a type of arithmetic problem to study. An option of 1 means
addition problems only, 2 means subtraction problems only, 3 means multiplication problems only,
4 means division problems only and 5 means a random mixture of all these types.

7Arrays and Vectors

Now go, write it
before them in a table,
and note it in a book.
—Isaiah 30:8

Begin at the beginning, … and
go on till you come to the end:
then stop.
—Lewis Carroll

To go beyond is as
wrong as to fall short.
—Confucius

O b j e c t i v e s
In this chapter you’ll learn:

■ To use the array data
structure to represent a set of
related data items.

■ To use arrays to store, sort
and search lists and tables of
values.

■ To declare arrays, initialize
arrays and refer to the
individual elements of arrays.

■ To pass arrays to functions.

■ Basic searching and sorting
techniques.

■ To declare and manipulate
multidimensional arrays.

■ To use C++ Standard Library
class template vector.

268 Chapter 7 Arrays and Vectors

7.1 Introduction
This chapter introduces the topic of data structures—collections of related data items. Ar-
rays are data structures consisting of related data items of the same type. You learned about
classes in Chapter 3. In Chapter 21 we discuss the notion of structures. Structures and
classes can each hold related data items of possibly different types. Arrays, structures and
classes are “static” entities in that they remain the same size throughout program execu-
tion. (They may, of course, be of automatic storage class and hence be created and de-
stroyed each time the blocks in which they’re defined are entered and exited.)

After discussing how arrays are declared, created and initialized, we present a series of
practical examples that demonstrate several common array manipulations. We present an
example of searching arrays to find particular elements. The chapter also introduces one
of the most important computing applications—sorting data (i.e., putting the data in
some particular order). Two sections of the chapter enhance the GradeBook class by using
arrays to enable the class to maintain a set of grades in memory and analyze student grades
from multiple exams in a semester.

The style of arrays we use throughout most of this chapter are C-style pointer-based
arrays. (We’ll study pointers in Chapter 8.) In Section 7.11, and in Chapter 22, Standard
Template Library (STL), we’ll cover arrays as full-fledged objects called vectors. We’ll dis-
cover that these object-based arrays are safer and more versatile than the C-style, pointer-
based arrays that we discuss in the early part of this chapter. As part of the vector example,
we introduce the exception-handling mechanism and use it to allow a program to continue
executing when the program attempts to access a vector element that does not exist.

7.1 Introduction

7.2 Arrays

7.3 Declaring Arrays

7.4 Examples Using Arrays
7.4.1 Declaring an Array and Using a Loop

to Initialize the Array’s Elements
7.4.2 Initializing an Array in a Declaration

with an Initializer List
7.4.3 Specifying an Array’s Size with a

Constant Variable and Setting Array
Elements with Calculations

7.4.4 Summing the Elements of an Array
7.4.5 Using Bar Charts to Display Array

Data Graphically
7.4.6 Using the Elements of an Array as

Counters
7.4.7 Using Arrays to Summarize Survey

Results

7.4.8 Static Local Arrays and Automatic
Local Arrays

7.5 Passing Arrays to Functions

7.6 Case Study: Class GradeBookUsing
an Array to Store Grades

7.7 Searching Arrays with Linear Search

7.8 Sorting Arrays with Insertion Sort

7.9 Multidimensional Arrays

7.10 Case Study: Class GradeBookUsing
a Two-Dimensional Array

7.11 Introduction to C++ Standard Library
Class Template vector

7.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Recursion Exercises | vector Exercises | Making a Difference

7.2 Arrays 269

7.2 Arrays
An array is a consecutive group of memory locations that all have the same type. To refer
to a particular location or element in the array, we specify the name of the array and the
position number of the particular element in the array.

Figure 7.1 shows an integer array called c that contains 12 elements. You refer to any
one of these elements by giving the array name followed by the particular element’s posi-
tion number in square brackets ([]). The position number is more formally called a sub-
script or index (this number specifies the number of elements from the beginning of the
array). The first element has subscript 0 (zero) and is sometimes called the zeroth element.
Thus, the elements of array c are c[0] (pronounced “c sub zero”), c[1], c[2] and so on.
The highest subscript in array c is 11, which is 1 less than the number of elements in the
array (12). Array names follow the same conventions as other variable names.

A subscript must be an integer or integer expression (using any integral type). If a pro-
gram uses an expression as a subscript, then the program evaluates the expression to deter-
mine the subscript. For example, if we assume that variable a is equal to 5 and that variable
b is equal to 6, then the statement

adds 2 to array element c[11]. A subscripted array name is an lvalue—it can be used on
the left side of an assignment, just as nonarray variable names can.

Let’s examine array c in Fig. 7.1 more closely. The name of the entire array is c. Its
12 elements are referred to as c[0] to c[11]. The value of c[0] is -45, the value of c[1]
is 6, the value of c[2] is 0, the value of c[7] is 62, and the value of c[11] is 78. To print
the sum of the values contained in the first three elements of array c, we’d write

To divide the value of c[6] by 2 and assign the result to the variable x, we would write

Fig. 7.1 | Array of 12 elements.

c[a + b] += 2;

cout << c[0] + c[1] + c[2] << endl;

x = c[6] / 2;

0

-45

62

-3

1

6453

78

0

-89

1543

72

6

c[0]

Name of the array is c

Position number of the

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

ValueName of an individual
array element

element within the array

270 Chapter 7 Arrays and Vectors

The brackets that enclose a subscript are actually an operator that has the same prece-
dence as parentheses. Figure 7.2 shows the precedence and associativity of the operators
introduced so far. The operators are shown top to bottom in decreasing order of prece-
dence with their associativity and type.

7.3 Declaring Arrays
Arrays occupy space in memory. To specify the type of the elements and the number of
elements required by an array use a declaration of the form:

The compiler reserves the appropriate amount of memory. (Recall that a declaration
which reserves memory is more properly known as a definition.) The arraySize must be an
integer constant greater than zero. For example, to tell the compiler to reserve 12 elements
for integer array c, use the declaration

Common Programming Error 7.1
Note the difference between the “seventh element of the array” and “array element 7.” Sub-
scripts begin at 0, so the “seventh element of the array” has a subscript of 6, while “array
element 7” has a subscript of 7 and is actually the eighth element of the array. This dis-
tinction is a frequent source of off-by-one errors. To avoid such errors, we refer to specific
array elements explicitly by their array name and subscript number (e.g., c[6] or c[7]).

Operators Associativity Type

:: () [See parentheses caution in
Fig. 2.10]

scope resolution

() [] left to right function call/array access

++ -- static_cast<type>(operand) left to right unary (postfix)

++ -- + - ! right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Fig. 7.2 | Operator precedence and associativity.

type arrayName[arraySize];

int c[12]; // c is an array of 12 integers

7.4 Examples Using Arrays 271

Arrays can be declared to contain values of any nonreference data type. For example,
an array of type string can be used to store character strings.

7.4 Examples Using Arrays
This section presents many examples that demonstrate how to declare, initialize and ma-
nipulate arrays.

7.4.1 Declaring an Array and Using a Loop to Initialize the Array’s
Elements
The program in Fig. 7.3 declares 10-element integer array n (line 9). Lines 12–13 use a
for statement to initialize the array elements to zeros. Like other automatic variables, au-
tomatic arrays are not implicitly initialized to zero although static arrays are. The first
output statement (line 15) displays the column headings for the columns printed in the
subsequent for statement (lines 18–19), which prints the array in tabular format. Re-
member that setw specifies the field width in which only the next value is to be output.

1 // Fig. 7.3: fig07_03.cpp
2 // Initializing an array's elements to zeros and printing the array.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9

10
11
12
13
14
15 cout << "Element" << setw(13) << "Value" << endl;
16
17
18
19
20 } // end main

Element Value
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Fig. 7.3 | Initializing an array’s elements to zeros and printing the array.

int n[10]; // n is an array of 10 integers

// initialize elements of array n to 0
for (int i = 0; i < 10; ++i)

n[i] = 0; // set element at location i to 0

// output each array element's value
for (int j = 0; j < 10; ++j)

cout << setw(7) << j << setw(13) << n[j] << endl;

272 Chapter 7 Arrays and Vectors

7.4.2 Initializing an Array in a Declaration with an Initializer List
The elements of an array also can be initialized in the array declaration by following the
array name with an equals sign and a brace-delimited comma-separated list of initializers.
The program in Fig. 7.4 uses an initializer list to initialize an integer array with 10 values
(line 10) and prints the array in tabular format (lines 12–16).

If there are fewer initializers than array elements, the remaining array elements are ini-
tialized to zero. For example, the elements of array n in Fig. 7.3 could have been initialized
to zero with the declaration

which initializes the elements to zero, because there are fewer initializers (none in this case)
than array elements. This technique can be used only in the array’s declaration, whereas
the initialization technique shown in Fig. 7.3 can be used repeatedly during program exe-
cution to “reinitialize” an array’s elements.

If the array size is omitted from a declaration with an initializer list, the compiler sizes
the array to the number of elements in the initializer list. For example,

creates a five-element array.

1 // Fig. 7.4: fig07_04.cpp
2 // Initializing an array in a declaration.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9

10
11
12 cout << "Element" << setw(13) << "Value" << endl;
13
14 // output each array element's value
15 for (int i = 0; i < 10; ++i)
16 cout << setw(7) << i << setw(13) << n[i] << endl;
17 } // end main

Element Value
0 32
1 27
2 64
3 18
4 95
5 14
6 90
7 70
8 60
9 37

Fig. 7.4 | Initializing an array in a declaration.

int n[10] = {}; // initialize elements of array n to 0

int n[] = { 1, 2, 3, 4, 5 };

// use initializer list to initialize array n
int n[10] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

7.4 Examples Using Arrays 273

If the array size and an initializer list are specified in an array declaration, the number
of initializers must be less than or equal to the array size. The array declaration

causes a compilation error, because there are six initializers and only five array elements.

7.4.3 Specifying an Array’s Size with a Constant Variable and Setting
Array Elements with Calculations
Figure 7.5 sets the elements of a 10-element array s to the even integers 2, 4, 6, …, 20
(lines 14–15) and prints the array in tabular format (lines 17–21). These numbers are gen-
erated (line 15) by multiplying each successive value of the loop counter by 2 and adding 2.

Line 10 uses the const qualifier to declare a so-called constant variable arraySize

with the value 10. Constant variables must be initialized with a constant expression when

int n[5] = { 32, 27, 64, 18, 95, 14 };

1 // Fig. 7.5: fig07_05.cpp
2 // Set array s to the even integers from 2 to 20.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 // constant variable can be used to specify array size

10
11
12
13
14
15
16
17 cout << "Element" << setw(13) << "Value" << endl;
18
19 // output contents of array s in tabular format
20 for (int j = 0; j < arraySize; ++j)
21 cout << setw(7) << j << setw(13) << s[j] << endl;
22 } // end main

Element Value
0 2
1 4
2 6
3 8
4 10
5 12
6 14
7 16
8 18
9 20

Fig. 7.5 | Generating values to be placed into elements of an array.

const int arraySize = 10;

int s[arraySize]; // array s has 10 elements

for (int i = 0; i < arraySize; ++i) // set the values
s[i] = 2 + 2 * i;

274 Chapter 7 Arrays and Vectors

they’re declared and cannot be modified thereafter (as shown in Fig. 7.6 and Fig. 7.7).
Constant variables are also called named constants or read-only variables.

Common Programming Error 7.2
Not initializing a constant variable when it’s declared is a compilation error.

Common Programming Error 7.3
Assigning a value to a constant variable in an executable statement is a compilation error.

1 // Fig. 7.6: fig07_06.cpp
2 // Using a properly initialized constant variable.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // initialized constant variable
9

10 cout << "The value of constant variable x is: " << x << endl;
11 } // end main

The value of constant variable x is: 7

Fig. 7.6 | Using a properly initialized constant variable.

1 // Fig. 7.7: fig07_07.cpp
2 // A const variable must be initialized.
3
4 int main()
5 {
6 // Error: x must be initialized
7
8 // Error: cannot modify a const variable
9 } // end main

Microsoft Visual C++ compiler error message:

C:\cpphtp8_examples\ch07\fig07_07.cpp(6) : error C2734: 'x' : const object
must be initialized if not extern

C:\cpphtp8_examples\ch07\fig07_07.cpp(8) : error C3892: 'x' : you cannot
assign to a variable that is const

GNU C++ compiler error message:

fig07_07.cpp:6: error: uninitialized const ’x'
fig07_07.cpp:8: error: assignment of read-only variable ’x'

Fig. 7.7 | A const variable must be initialized.

const int x = 7;

const int x;

x = 7;

7.4 Examples Using Arrays 275

In Fig. 7.7, the compilation error produced by Microsoft Visual C++ refers to the int
variable x as a “const object.” The ISO/IEC C++ standard defines an “object” as any
“region of storage.” Like objects of classes, fundamental-type variables also occupy space
in memory, so they’re often referred to as “objects.”

Constant variables can be placed anywhere a constant expression is expected. In
Fig. 7.5, constant variable arraySize specifies the size of array s in line 12.

Using constant variables to specify array sizes makes programs more scalable. In
Fig. 7.5, the first for statement could fill a 1000-element array by simply changing the
value of arraySize in its declaration from 10 to 1000. If the constant variable arraySize

had not been used, we would have to change lines 12, 14 and 20 of the program to scale
the program to handle 1000 array elements. As programs get larger, this technique
becomes more useful for writing clearer, easier-to-modify programs.

7.4.4 Summing the Elements of an Array
Often, the elements of an array represent a series of values to be used in a calculation. For
example, if the elements of an array represent exam grades, a professor may wish to total
the elements of the array and use that sum to calculate the class average for the exam.

The program in Fig. 7.8 sums the values contained in the 10-element integer array a.
The program declares, creates and initializes the array in line 9. The for statement (lines
13–14) performs the calculations. The values being supplied as initializers for array a also
could be read into the program from the user at the keyboard, or from a file on disk (see
Chapter 17, File Processing). For example, the for statement

reads one value at a time from the keyboard and stores the value in element a[j].

Common Programming Error 7.4
Only constants can be used to declare the size of automatic and static arrays. Not using a
constant for this purpose is a compilation error.

Software Engineering Observation 7.1
Defining the size of each array as a constant variable instead of a literal constant can make
programs more scalable.

Good Programming Practice 7.1
Defining the size of an array as a constant variable instead of a literal constant makes pro-
grams clearer. This technique eliminates so-called magic numbers. For example, repeat-
edly mentioning the size 10 in array-processing code for a 10-element array gives the
number 10 an artificial significance and can be confusing when the program includes oth-
er 10s that have nothing to do with the array size.

for (int j = 0; j < arraySize; ++j)
cin >> a[j];

1 // Fig. 7.8: fig07_08.cpp
2 // Compute the sum of the elements of the array.
3 #include <iostream>

Fig. 7.8 | Computing the sum of the elements of an array. (Part 1 of 2.)

276 Chapter 7 Arrays and Vectors

7.4.5 Using Bar Charts to Display Array Data Graphically
Many programs present data to users in a graphical manner. For example, numeric values
are often displayed as bars in a bar chart. In such a chart, longer bars represent proportion-
ally larger numeric values. One simple way to display numeric data graphically is with a
bar chart that shows each numeric value as a bar of asterisks (*).

Professors often like to examine the distribution of grades on an exam. A professor
might graph the number of grades in each of several categories to visualize the grade dis-
tribution. Suppose the grades were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87. There was
one grade of 100, two grades in the 90s, four grades in the 80s, two grades in the 70s, one
grade in the 60s and no grades below 60. Our next program (Fig. 7.9) stores this grade
distribution data in an array of 11 elements, each corresponding to a category of grades.
For example, n[0] indicates the number of grades in the range 0–9, n[7] indicates the
number of grades in the range 70–79 and n[10] indicates the number of grades of 100.
The two versions of class GradeBook later in the chapter (Figs. 7.15–7.16 and Figs. 7.22–
7.23) contain code that calculates these grade frequencies based on a set of grades. For
now, we manually create the array by looking at the set of grades.

4 using namespace std;
5
6 int main()
7 {
8 const int arraySize = 10; // constant variable indicating size of array
9 int a[arraySize] = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

10 int total = 0;
11
12
13
14
15
16 cout << "Total of array elements: " << total << endl;
17 } // end main

Total of array elements: 849

1 // Fig. 7.9: fig07_09.cpp
2 // Bar chart printing program.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int arraySize = 11;

10 int n[arraySize] = { 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1 };
11

Fig. 7.9 | Bar chart printing program. (Part 1 of 2.)

Fig. 7.8 | Computing the sum of the elements of an array. (Part 2 of 2.)

// sum contents of array a
for (int i = 0; i < arraySize; ++i)

total += a[i];

7.4 Examples Using Arrays 277

The program reads the numbers from the array and graphs the information as a bar
chart, displaying each grade range followed by a bar of asterisks indicating the number of
grades in that range. To label each bar, lines 18–23 output a grade range (e.g., "70-79: ")
based on the current value of counter variable i. The nested for statement (lines 26–27)
outputs the bars. Note the loop-continuation condition in line 26 (stars < n[i]). Each
time the program reaches the inner for, the loop counts from 0 up to n[i], thus using a
value in array n to determine the number of asterisks to display. In this example, n[0]–
n[5] contain zeros because no students received a grade below 60. Thus, the program dis-
plays no asterisks next to the first six grade ranges.

7.4.6 Using the Elements of an Array as Counters
Sometimes, programs use counter variables to summarize data, such as the results of a sur-
vey. In Fig. 6.9, we used separate counters in our die-rolling program to track the number
of occurrences of each side of a die as the program rolled the die 6,000,000 times. An array
version of this program is shown in Fig. 7.10.

12 cout << "Grade distribution:" << endl;
13
14 // for each element of array n, output a bar of the chart
15 for (int i = 0; i < arraySize; ++i)
16 {
17 // output bar labels ("0-9:", ..., "90-99:", "100:")
18 if (i == 0)
19 cout << " 0-9: ";
20 else if (i == 10)
21 cout << " 100: ";
22 else
23 cout << i * 10 << "-" << (i * 10) + 9 << ": ";
24
25 // print bar of asterisks
26 for (int stars = 0; stars < n[i]; ++stars)
27 cout << '*';
28
29 cout << endl; // start a new line of output
30 } // end outer for
31 } // end main

Grade distribution:
0-9:

10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **

100: *

Fig. 7.9 | Bar chart printing program. (Part 2 of 2.)

278 Chapter 7 Arrays and Vectors

Figure 7.10 uses the array frequency (line 12) to count the occurrences of each side of
the die. The single statement in line 18 of this program replaces the switch statement in lines
25–47 of Fig. 6.9. Line 18 uses a random value to determine which frequency element to
increment during each iteration of the loop. The calculation in line 18 produces a random
subscript from 1 to 6, so array frequency must be large enough to store six counters. How-
ever, we use a seven-element array in which we ignore frequency[0]—it’s more logical to
have the die face value 1 increment frequency[1] than frequency[0]. Thus, each face
value is used as a subscript for array frequency. We also replace lines 51–56 of Fig. 6.9 by
looping through array frequency to output the results (lines 23–25).

7.4.7 Using Arrays to Summarize Survey Results
Our next example uses arrays to summarize the results of data collected in a survey. Con-
sider the following problem statement:

1 // Fig. 7.10: fig07_10.cpp
2 // Roll a six-sided die 6,000,000 times.
3 #include <iostream>
4 #include <iomanip>
5 #include <cstdlib>
6 #include <ctime>
7 using namespace std;
8
9 int main()

10 {
11 const int arraySize = 7; // ignore element zero
12 int frequency[arraySize] = {}; // initialize elements to 0
13
14 srand(time(0)); // seed random number generator
15
16 // roll die 6,000,000 times; use die value as frequency index
17 for (int roll = 1; roll <= 6000000; ++roll)
18 ;
19
20 cout << "Face" << setw(13) << "Frequency" << endl;
21
22 // output each array element's value
23 for (int face = 1; face < arraySize; ++face)
24 cout << setw(4) << face << setw(13) << frequency[face]
25 << endl;
26 } // end main

Face Frequency
1 1000167
2 1000149
3 1000152
4 998748
5 999626
6 1001158

Fig. 7.10 | Die-rolling program using an array instead of switch.

++frequency[1 + rand() % 6]

7.4 Examples Using Arrays 279

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the
student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses
in an integer array and determine the frequency of each rating.

This is a typical array-processing application (Fig. 7.11). We wish to summarize the num-
ber of responses of each type (that is, 1–5). The array responses (lines 14–15) is a 20-
element integer array of the students’ responses to the survey. The array responses is de-
clared const, as its values do not (and should not) change. We use a six-element array fre-
quency (line 18) to count the number of occurrences of each response. Each element of
the array is used as a counter for one of the survey responses and is initialized to zero. As
in Fig. 7.10, we ignore frequency[0].

The first for statement (lines 22–23) takes the responses one at a time from the array
responses and increments one of the five counters in the frequency array (frequency[1]

1 // Fig. 7.11: fig07_11.cpp
2 // Poll analysis program.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 // define array sizes

10 const int responseSize = 20; // size of array responses
11 const int frequencySize = 6; // size of array frequency
12
13 // place survey responses in array responses
14 const int responses[responseSize] = { 1, 2, 5, 4, 3, 5, 2, 1, 3,
15 1, 4, 3, 3, 3, 2, 3, 3, 2, 2, 5 };
16
17 // initialize frequency counters to 0
18
19
20 // for each answer, select responses element and use that value
21 // as frequency subscript to determine element to increment
22 for (int answer = 0; answer < responseSize; ++answer)
23 ;
24
25 cout << "Rating" << setw(17) << "Frequency" << endl;
26
27 // output each array element's value
28 for (int rating = 1; rating < frequencySize; ++rating)
29 cout << setw(6) << rating << setw(17) << frequency[rating]
30 << endl;
31 } // end main

Rating Frequency
1 3
2 5
3 7
4 2
5 3

Fig. 7.11 | Poll analysis program.

int frequency[frequencySize] = {};

++frequency[responses[answer]]

280 Chapter 7 Arrays and Vectors

to frequency[5]). The key statement in the loop is line 23, which increments the appro-
priate frequency counter, depending on the value of responses[answer].

Let’s consider several iterations of the for loop. When control variable answer is 0,
the value of responses[answer] is the value of responses[0] (i.e., 1 in line 14), so the
program interprets ++frequency[responses[answer]] as

which increments the value in array element 1. To evaluate the expression, start with the
value in the innermost set of square brackets (answer). Once you know answer’s value
(which is the value of the loop control variable in line 23), plug it into the expression and
evaluate the next outer set of square brackets (i.e., responses[answer], which is a value
selected from the responses array in lines 14–17). Then use the resulting value as the sub-
script for the frequency array to specify which counter to increment.

When answer is 1, responses[answer] is the value of responses[1], which is 2, so
the program interprets ++frequency[responses[answer]] as

which increments array element 2.
When answer is 2, responses[answer] is the value of responses[2], which is 5, so

the program interprets ++frequency[responses[answer]] as

which increments array element 5, and so on. Regardless of the number of responses pro-
cessed in the survey, the program requires only an six-element array (ignoring element ze-
ro) to summarize the results, because all the response values are between 1 and 5 and the
subscript values for an six-element array are 0 through 5.

If the data in responses contained an invalid value, such as 13, the program would
have attempted to add 1 to frequency[13], which is outside the bounds of the array. C++
has no array bounds checking to prevent the computer from referring to an element that does
not exist. Thus, an executing program can “walk off” either end of an array without
warning. You should ensure that all array references remain within the bounds of the array.

C++ is an extensible language. Section 7.11 presents C++ Standard Library class tem-
plate vector, which enables you to perform many operations that are not available for
built-in arrays. For example, we’ll be able to compare vectors directly and assign one
vector to another. In Chapter 11, we extend C++ further by implementing an array as a
class of our own. This new array definition will enable us to input and output entire arrays
with cin and cout, initialize arrays when they’re created and prevent access to out-of-range
array elements. We’ll even be able to use noninteger subscripts.

++frequency[1]

++frequency[2]

++frequency[5]

Common Programming Error 7.5
Referring to an element outside the array bounds is an execution-time logic error. It isn’t
a syntax error.

Error-Prevention Tip 7.1
When looping through an array, the index should never go below 0 and should always be
less than the total number of array elements (one less than the size of the array). Make
sure that the loop-termination condition prevents accessing elements outside this range.

7.4 Examples Using Arrays 281

7.4.8 Static Local Arrays and Automatic Local Arrays
Chapter 6 discussed the storage-class specifier static. A static local variable in a func-
tion definition exists for the program’s duration but is visible only in the function’s body.

A program initializes static local arrays when their declarations are first encountered.
If a static array is not initialized explicitly by you, each element of that array is initialized
to zero by the compiler when the array is created. Recall that C++ does not perform such
default initialization for automatic variables.

Figure 7.12 demonstrates function staticArrayInit (lines 23–39) with a static

local array (line 26) and function automaticArrayInit (lines 42–58) with an automatic
local array (line 45).

Error-Prevention Tip 7.2
In Chapter 11, we’ll see how to develop a class representing a “smart array,” which checks
that all subscript references are in bounds at runtime. Using such smart data types helps
eliminate bugs.

Performance Tip 7.1
We can apply static to a local array declaration so that it not created and initialized
each time the program calls the function and is not destroyed each time the function ter-
minates. This can improve performance, especially when using large arrays.

1 // Fig. 7.12: fig07_12.cpp
2 // Static arrays are initialized to zero.
3 #include <iostream>
4 using namespace std;
5
6 void staticArrayInit(void); // function prototype
7 void automaticArrayInit(void); // function prototype
8 const int arraySize = 3;
9

10 int main()
11 {
12 cout << "First call to each function:\n";
13 staticArrayInit();
14 automaticArrayInit();
15
16 cout << "\n\nSecond call to each function:\n";
17 staticArrayInit();
18 automaticArrayInit();
19 cout << endl;
20 } // end main
21
22 // function to demonstrate a static local array
23 void staticArrayInit(void)
24 {
25
26
27

Fig. 7.12 | static array initialization and automatic array initialization. (Part 1 of 2.)

// initializes elements to 0 first time function is called
static int array1[arraySize]; // static local array

282 Chapter 7 Arrays and Vectors

28 cout << "\nValues on entering staticArrayInit:\n";
29
30 // output contents of array1
31 for (int i = 0; i < arraySize; ++i)
32 cout << "array1[" << i << "] = " << array1[i] << " ";
33
34 cout << "\nValues on exiting staticArrayInit:\n";
35
36 // modify and output contents of array1
37 for (int j = 0; j < arraySize; ++j)
38 cout << "array1[" << j << "] = " << (array1[j] += 5) << " ";
39 } // end function staticArrayInit
40
41 // function to demonstrate an automatic local array
42 void automaticArrayInit(void)
43 {
44
45
46
47 cout << "\n\nValues on entering automaticArrayInit:\n";
48
49 // output contents of array2
50 for (int i = 0; i < arraySize; ++i)
51 cout << "array2[" << i << "] = " << array2[i] << " ";
52
53 cout << "\nValues on exiting automaticArrayInit:\n";
54
55 // modify and output contents of array2
56 for (int j = 0; j < arraySize; ++j)
57 cout << "array2[" << j << "] = " << (array2[j] += 5) << " ";
58 } // end function automaticArrayInit

First call to each function:

Values on entering staticArrayInit:
array1[0] = 0 array1[1] = 0 array1[2] = 0
Values on exiting staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Second call to each function:

Values on entering staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5
Values on exiting staticArrayInit:
array1[0] = 10 array1[1] = 10 array1[2] = 10

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Fig. 7.12 | static array initialization and automatic array initialization. (Part 2 of 2.)

// initializes elements each time function is called
int array2[arraySize] = { 1, 2, 3 }; // automatic local array

7.5 Passing Arrays to Functions 283

Function staticArrayInit is called twice (lines 13 and 17). The static local array
is initialized to zero by the compiler the first time the function is called. The function
prints the array, adds 5 to each element and prints the array again. The second time the
function is called, the static array contains the modified values stored during the first
function call. Function automaticArrayInit also is called twice (lines 14 and 18). The
elements of the automatic local array are initialized (line 45) with the values 1, 2 and 3.
The function prints the array, adds 5 to each element and prints the array again. The
second time the function is called, the array elements are reinitialized to 1, 2 and 3. The
array has automatic storage class, so the array is recreated and reinitialized during each call
to automaticArrayInit.

7.5 Passing Arrays to Functions
To pass an array argument to a function, specify the name of the array without any brack-
ets. For example, if array hourlyTemperatures has been declared as

the function call

passes array hourlyTemperatures and its size to function modifyArray. When passing an
array to a function, the array size is normally passed as well, so the function can process
the specific number of elements in the array. Otherwise, we would need to build this
knowledge into the called function itself or, worse yet, place the array size in a global vari-
able. In Section 7.11, when we present C++ Standard Library class template vector to rep-
resent a more robust type of array, you’ll see that the size of a vector is built in—every
vector object “knows” its own size, which can be obtained by invoking the vector ob-
ject’s size member function. Thus, when we pass a vector object into a function, we
won’t have to pass the size of the vector as an argument.

C++ passes arrays to functions by reference—the called functions can modify the ele-
ment values in the callers’ original arrays. The value of the name of the array is the address in
the computer’s memory of the first element of the array. Because the starting address of the
array is passed, the called function knows precisely where the array is stored in memory.
Therefore, when the called function modifies array elements in its function body, it’s mod-
ifying the actual elements of the array in their original memory locations.

Common Programming Error 7.6
Assuming that elements of a function’s local static array are initialized every time the
function is called can lead to logic errors in a program.

int hourlyTemperatures[24];

modifyArray(hourlyTemperatures, 24);

Performance Tip 7.2
Passing arrays by reference makes sense for performance reasons. Passing by value would
require copying each element. For large, frequently passed arrays, this would be time con-
suming and would require considerable storage for the copies of the array elements.

Software Engineering Observation 7.2
It’s possible to pass an array by value by simply embedding it as a data member of a class
and passing an object of the class, which defaults to pass-by-value.

284 Chapter 7 Arrays and Vectors

Although entire arrays are passed by reference, individual array elements are passed by
value exactly as simple variables are. To pass an element of an array to a function, use the
subscripted name of the array element as an argument in the function call. In Chapter 6,
we showed how to pass individual variables and array elements by reference with refer-
ences—in Chapter 8, we show how to pass them by reference with pointers.

For a function to receive an array through a function call, the function’s parameter list
must specify that the function expects to receive an array. For example, the function
header for function modifyArray might be written as

indicating that modifyArray expects to receive the address of an array of integers in param-
eter b and the number of array elements in parameter arraySize. The array’s size is not
required in the array brackets. If it’s included, the compiler ignores it; thus, arrays of any
size can be passed to the function. C++ passes arrays to functions by reference—when the
called function uses the array name b, it refers to the actual array in the caller (i.e., array
hourlyTemperatures discussed at the beginning of this section).

Note the strange appearance of the function prototype for modifyArray

This prototype could have been written (for documentation purposes)

but, as we learned in Chapter 3, C++ compilers ignore variable names in prototypes. Re-
member, the prototype tells the compiler the number of arguments and the type of each
argument (in the order in which the arguments are expected to appear).

The program in Fig. 7.13 demonstrates the difference between passing an entire array
and passing an array element. Lines 19–20 print the five original elements of integer array
a. Line 25 passes a and its size to function modifyArray (lines 40–45), which multiplies
each of a’s elements by 2 (through parameter b). Then, lines 29–30 print array a again in
main. As the output shows, the elements of a are indeed modified by modifyArray. Next,
line 33 prints the value of a[3], then line 35 passes element a[3] to function modify-

Element (lines 49–53), which multiplies its parameter by 2 and prints the new value.
When line 36 prints a[3] again in main, the value has not been modified, because indi-
vidual array elements are passed by value.

void modifyArray(int b[], int arraySize)

void modifyArray(int [], int);

void modifyArray(int anyArrayName[], int anyVariableName);

1 // Fig. 7.13: fig07_13.cpp
2 // Passing arrays and individual array elements to functions.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7
8
9

10 int main()
11 {

Fig. 7.13 | Passing arrays and individual array elements to functions. (Part 1 of 2.)

void modifyArray(int [], int); // appears strange; array and size
void modifyElement(int); // receive array element value

7.5 Passing Arrays to Functions 285

12 const int arraySize = 5; // size of array a
13 int a[arraySize] = { 0, 1, 2, 3, 4 }; // initialize array a
14
15 cout << "Effects of passing entire array by reference:"
16 << "\nThe values of the original array are:\n";
17
18 // output original array elements
19 for (int i = 0; i < arraySize; ++i)
20 cout << setw(3) << a[i];
21
22 cout << endl;
23
24
25
26 cout << "The values of the modified array are:\n";
27
28 // output modified array elements
29 for (int j = 0; j < arraySize; ++j)
30 cout << setw(3) << a[j];
31
32 cout << "\n\nEffects of passing array element by value:"
33 << "\na[3] before modifyElement: " << a[3] << endl;
34
35
36 cout << "a[3] after modifyElement: " << a[3] << endl;
37 } // end main
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Effects of passing entire array by reference:
The values of the original array are:

0 1 2 3 4
The values of the modified array are:

0 2 4 6 8

Effects of passing array element by value:
a[3] before modifyElement: 6
Value of element in modifyElement: 12
a[3] after modifyElement: 6

Fig. 7.13 | Passing arrays and individual array elements to functions. (Part 2 of 2.)

// pass array a to modifyArray by reference
modifyArray(a, arraySize);

modifyElement(a[3]); // pass array element a[3] by value

// in function modifyArray, "b" points to the original array "a" in memory
void modifyArray(int b[], int sizeOfArray)
{

// multiply each array element by 2
for (int k = 0; k < sizeOfArray; ++k)

b[k] *= 2;
} // end function modifyArray

// in function modifyElement, "e" is a local copy of
// array element a[3] passed from main
void modifyElement(int e)
{

// multiply parameter by 2
cout << "Value of element in modifyElement: " << (e *= 2) << endl;

} // end function modifyElement

286 Chapter 7 Arrays and Vectors

There may be situations in your programs in which a function should not be allowed
to modify array elements. The type qualifier const can be used to prevent modification of
array values in the caller by code in a called function. When a function specifies an array
parameter that’s preceded by the const qualifier, the elements of the array become con-
stant in the function body, and any attempt to modify an element of the array in the func-
tion body results in a compilation error. This enables you to prevent accidental
modification of array elements in the function’s body.

Figure 7.14 demonstrates the const qualifier applied to an array parameter. Function
tryToModifyArray (lines 18–21) is defined with parameter const int b[], which specifies
that array b is constant and cannot be modified. The attempt by the function to modify array
b’s element 0 (line 20) results in a compilation error. Some compilers, for example, produce
an error like “Cannot modify a const object.” This message indicates that using a const

object (b[0]) as an lvalue is an error—you cannot assign a new value to a const object.

Software Engineering Observation 7.3
Applying the const type qualifier to an array parameter in a function definition to
prevent the original array from being modified in the function body is another example
of the principle of least privilege. Functions should not be given the capability to modify
an array unless it’s absolutely necessary.

1 // Fig. 7.14: fig07_14.cpp
2 // Demonstrating the const type qualifier.
3 #include <iostream>
4 using namespace std;
5
6 // function prototype
7
8 int main()
9 {

10 int a[] = { 10, 20, 30 };
11
12
13 cout << a[0] << ' ' << a[1] << ' ' << a[2] << '\n';
14 } // end main
15
16
17
18
19
20
21

Microsoft Visual C++ compiler error message:

c:\cpphtp8_examples\ch07\fig07_14\fig07_14.cpp(20) : error C3892: 'b' : you
cannot assign to a variable that is const

GNU C++ compiler error message:

fig07_14.cpp:20: error: assignment of read-only location

Fig. 7.14 | const type qualifier applied to an array parameter.

void tryToModifyArray(const int []);

tryToModifyArray(a);

// In function tryToModifyArray, "b" cannot be used
// to modify the original array "a" in main.
void tryToModifyArray(const int b[])
{

b[0] /= 2; // compilation error
} // end function tryToModifyArray

7.6 Case Study: Class GradeBook Using an Array to Store Grades 287

7.6 Case Study: Class GradeBook Using an Array to
Store Grades
This section further evolves class GradeBook, introduced in Chapter 3 and expanded in
Chapters 4–6. Recall that this class represents a grade book used by a professor to store and
analyze student grades. Previous versions of the class process grades entered by the user,
but do not maintain the individual grade values in the class’s data members. Thus, repeat
calculations require the user to reenter the grades. One way to solve this problem would
be to store each grade entered in an individual data member of the class. For example, we
could create data members grade1, grade2, …, grade10 in class GradeBook to store 10
student grades. However, the code to total the grades and determine the class average
would be cumbersome. In this section, we solve this problem by storing grades in an array.

Storing Student Grades in an Array in Class GradeBook
The version of class GradeBook (Figs. 7.15–7.16) presented here uses an array of integers
to store the grades of several students on a single exam. This eliminates the need to repeat-
edly input the same set of grades. Array grades is declared as a data member in line 28 of
Fig. 7.15—therefore, each GradeBook object maintains its own set of grades.

1 // Fig. 7.15: GradeBook.h
2 // Definition of class GradeBook that uses an array to store test grades.
3 // Member functions are defined in GradeBook.cpp
4 #include <string> // program uses C++ Standard Library string class
5 using namespace std;
6
7 // GradeBook class definition
8 class GradeBook
9 {

10 public:
11 // constant -- number of students who took the test
12 // note public data
13
14 // constructor initializes course name and array of grades
15 GradeBook(string,);
16
17 void setCourseName(string); // function to set the course name
18 string getCourseName(); // function to retrieve the course name
19 void displayMessage(); // display a welcome message
20 void processGrades(); // perform various operations on the grade data
21 int getMinimum(); // find the minimum grade for the test
22 int getMaximum(); // find the maximum grade for the test
23 double getAverage(); // determine the average grade for the test
24 void outputBarChart(); // output bar chart of grade distribution
25 void outputGrades(); // output the contents of the grades array
26 private:
27 string courseName; // course name for this grade book
28
29 }; // end class GradeBook

Fig. 7.15 | Definition of class GradeBook that uses an array to store test grades.

static const int students = 10;

const int []

int grades[students]; // array of student grades

288 Chapter 7 Arrays and Vectors

1 // Fig. 7.16: GradeBook.cpp
2 // Member-function definitions for class GradeBook that
3 // uses an array to store test grades.
4 #include <iostream>
5 #include <iomanip>
6 #include "GradeBook.h" // GradeBook class definition
7 using namespace std;
8
9 // constructor initializes courseName and grades array

10 GradeBook::GradeBook(string name,)
11 {
12 setCourseName(name); // initialize courseName
13
14
15
16
17 } // end GradeBook constructor
18
19 // function to set the course name
20 void GradeBook::setCourseName(string name)
21 {
22 courseName = name; // store the course name
23 } // end function setCourseName
24
25 // function to retrieve the course name
26 string GradeBook::getCourseName()
27 {
28 return courseName;
29 } // end function getCourseName
30
31 // display a welcome message to the GradeBook user
32 void GradeBook::displayMessage()
33 {
34 // this statement calls getCourseName to get the
35 // name of the course this GradeBook represents
36 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
37 << endl;
38 } // end function displayMessage
39
40 // perform various operations on the data
41 void GradeBook::processGrades()
42 {
43 outputGrades(); // output grades array
44
45 // display average of all grades and minimum and maximum grades
46 cout << "\nClass average is " << setprecision(2) << fixed <<
47 getAverage() << "\nLowest grade is " << getMinimum() <<
48 "\nHighest grade is " << getMaximum() << endl;
49
50 outputBarChart(); // print grade distribution chart
51 } // end function processGrades
52

Fig. 7.16 | GradeBook class member functions manipulating an array of grades. (Part 1 of 3.)

const int gradesArray[]

// copy grades from gradesArray to grades data member
for (int grade = 0; grade < students; ++grade)

grades[grade] = gradesArray[grade];

7.6 Case Study: Class GradeBook Using an Array to Store Grades 289

53 // find minimum grade
54 int GradeBook::getMinimum()
55 {
56
57
58 // loop through grades array
59 for (int grade = 0; grade < students; ++grade)
60 {
61
62
63
64 } // end for
65
66 return lowGrade; // return lowest grade
67 } // end function getMinimum
68
69 // find maximum grade
70 int GradeBook::getMaximum()
71 {
72
73
74 // loop through grades array
75 for (int grade = 0; grade < students; ++grade)
76 {
77
78
79
80 } // end for
81
82 return highGrade; // return highest grade
83 } // end function getMaximum
84
85 // determine average grade for test
86 double GradeBook::getAverage()
87 {
88 int total = 0; // initialize total
89
90 // sum grades in array
91 for (int grade = 0; grade < students; ++grade)
92 total += grades[grade];
93
94 // return average of grades
95 return static_cast< double >(total) / students;
96 } // end function getAverage
97
98 // output bar chart displaying grade distribution
99 void GradeBook::outputBarChart()
100 {
101 cout << "\nGrade distribution:" << endl;
102
103 // stores frequency of grades in each range of 10 grades
104 const int frequencySize = 11;
105 int frequency[frequencySize] = {}; // initialize elements to 0

Fig. 7.16 | GradeBook class member functions manipulating an array of grades. (Part 2 of 3.)

int lowGrade = 100; // assume lowest grade is 100

// if current grade lower than lowGrade, assign it to lowGrade
if (grades[grade] < lowGrade)

lowGrade = grades[grade]; // new lowest grade

int highGrade = 0; // assume highest grade is 0

// if current grade higher than highGrade, assign it to highGrade
if (grades[grade] > highGrade)

highGrade = grades[grade]; // new highest grade

290 Chapter 7 Arrays and Vectors

The size of the array in line 28 of Fig. 7.15 is specified by public static const data
member students (declared in line 12), which is public so that it’s accessible to the class’s
clients. We’ll soon see an example of a client program using this constant. Declaring stu-

dents with the const qualifier indicates that this data member is constant—its value cannot
be changed after being initialized. Keyword static in this variable declaration indicates that
the data member is shared by all objects of the class—all GradeBook objects store grades for
the same number of students. Recall from Section 3.4 that when each object of a class main-
tains its own copy of an attribute, the variable that represents the attribute is known as a data
member—each object (instance) of the class has a separate copy of the variable in memory.
There are variables for which each object of a class does not have a separate copy. That is the
case with static data members, which are also known as class variables. When objects of a
class containing static data members are created, all the objects share one copy of the class’s
static data members. A static data member can be accessed within the class definition and
the member-function definitions like any other data member. As you’ll soon see, a public

static data member can also be accessed outside of the class, even when no objects of the class

106
107 // for each grade, increment the appropriate frequency
108 for (int grade = 0; grade < students; ++grade)
109
110
111 // for each grade frequency, print bar in chart
112 for (int count = 0; count < frequencySize; ++count)
113 {
114 // output bar labels ("0-9:", ..., "90-99:", "100:")
115 if (count == 0)
116 cout << " 0-9: ";
117 else if (count == 10)
118 cout << " 100: ";
119 else
120 cout << count * 10 << "-" << (count * 10) + 9 << ": ";
121
122 // print bar of asterisks
123 for (int stars = 0; stars < frequency[count]; ++stars)
124 cout << '*';
125
126 cout << endl; // start a new line of output
127 } // end outer for
128 } // end function outputBarChart
129
130 // output the contents of the grades array
131 void GradeBook::outputGrades()
132 {
133 cout << "\nThe grades are:\n\n";
134
135 // output each student's grade
136 for (int student = 0; student < students; ++student)
137 cout << "Student " << setw(2) << student + 1 << ": " << setw(3)
138 << grades[student] << endl;
139 } // end function outputGrades

Fig. 7.16 | GradeBook class member functions manipulating an array of grades. (Part 3 of 3.)

++frequency[grades[grade] / students];

7.6 Case Study: Class GradeBook Using an Array to Store Grades 291

exist, using the class name followed by the scope resolution operator (::) and the name of
the data member. You’ll learn more about static data members in Chapter 10.

Constructor
The class’s constructor (declared in line 15 of Fig. 7.15 and defined in lines 10–17 of
Fig. 7.16) has two parameters—the course name and an array of grades. When a program
creates a GradeBook object (e.g., lines 12–13 of fig07_17.cpp), the program passes an ex-
isting int array to the constructor, which copies the array’s values into the data member
grades (lines 15–16 of Fig. 7.16). The grade values in the passed array could have been in-
put from a user or read from a file on disk (as we discuss in Chapter 17, File Processing).
In our test program, we simply initialize an array with a set of grade values (Fig. 7.17, lines
9–10). Once the grades are stored in data member grades of class GradeBook, all the class’s
member functions can access the grades array as needed to perform various calculations.

Member Function processGrades
Member function processGrades (declared in line 20 of Fig. 7.15 and defined in lines
41–51 of Fig. 7.16) contains a series of member function calls that output a report sum-
marizing the grades. Line 43 calls member function outputGrades to print the contents
of the array grades. Lines 136–138 in member function outputGrades use a for state-
ment to output each student’s grade. Although array indices start at 0, a professor would
typically number students starting at 1. Thus, lines 137–138 output student + 1 as the stu-
dent number to produce grade labels "Student 1: ", "Student 2: ", and so on.

Member Function getAverage
Member function processGrades next calls member function getAverage (line 47) to ob-
tain the average of the grades. Member function getAverage (declared in line 23 of
Fig. 7.15 and defined in lines 86–96 of Fig. 7.16) totals the values in array grades before
calculating the average. The averaging calculation in line 95 uses static const data mem-
ber students to determine the number of grades being averaged.

Member Functions getMinimum and getMaximum
Lines 47–48 in processGrades call member functions getMinimum and getMaximum to de-
termine the lowest and highest grades of any student on the exam, respectively. Let’s ex-
amine how member function getMinimum finds the lowest grade. Because the highest grade
allowed is 100, we begin by assuming that 100 is the lowest grade (line 56). Then, we com-
pare each of the elements in the array to the lowest grade, looking for smaller values. Lines
59–64 in member function getMinimum loop through the array, and line 62 compares each
grade to lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade. When
line 66 executes, lowGrade contains the lowest grade in the array. Member function get-

Maximum (lines 70–83) works similarly to member function getMinimum.

Member Function outputBarChart
Finally, line 50 in member function processGrades calls member function outputBarChart

to print a distribution chart of the grade data using a technique similar to that in Fig. 7.9. In
that example, we manually calculated the number of grades in each category (i.e., 0–9, 10–
19, …, 90–99 and 100) by simply looking at a set of grades. In this example, lines 108–109
use a technique similar to that in Fig. 7.10 and Fig. 7.11 to calculate the frequency of grades
in each category. Line 105 declares and creates array frequency of 11 ints to store the fre-

292 Chapter 7 Arrays and Vectors

quency of grades in each grade category. For each grade in array grades, lines 108–109 in-
crement the appropriate element of the frequency array. To determine which element to
increment, line 109 divides the current grade by 10 using integer division. For example, if
grade is 85, line 109 increments frequency[8] to update the count of grades in the range
80–89. Lines 112–127 next print the bar chart (see Fig. 7.17) based on the values in array
frequency. Like lines 26–27 of Fig. 7.9, lines 123–124 of Fig. 7.16 use a value in array fre-
quency to determine the number of asterisks to display in each bar.

Testing Class GradeBook
The program of Fig. 7.17 creates an object of class GradeBook (Figs. 7.15–7.16) using the
int array gradesArray (declared and initialized in lines 9–10). The scope resolution op-
erator (::) is used in the expression “GradeBook::students” (line 9) to access class Grade-
Book’s static constant students. We use this constant here to create an array that is the
same size as array grades stored as a data member in class GradeBook. Lines 12–13 pass a
course name and gradesArray to the GradeBook constructor. Line 14 displays a welcome
message, and line 15 invokes the GradeBook object’s processGrades member function.
The output reveals the summary of the 10 grades in myGradeBook.

1 // Fig. 7.17: fig07_17.cpp
2 // Creates GradeBook object using an array of grades.
3 #include "GradeBook.h" // GradeBook class definition
4
5 // function main begins program execution
6 int main()
7 {
8 // array of student grades
9 int gradesArray[] =

10 { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
11
12 GradeBook myGradeBook(
13 "CS101 Introduction to C++ Programming", gradesArray);
14 myGradeBook.displayMessage();
15 myGradeBook.processGrades();
16 } // end main

Welcome to the grade book for
CS101 Introduction to C++ Programming!

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Fig. 7.17 | Creates a GradeBook object using an array of grades, then invokes member function
processGrades to analyze them. (Part 1 of 2.)

GradeBook::students

7.7 Searching Arrays with Linear Search 293

7.7 Searching Arrays with Linear Search
Often it may be necessary to determine whether an array contains a value that matches a
certain key value. The process of finding a particular element of an array is called search-
ing. In this section we discuss the simple linear search. Exercise 7.33 at the end of this
chapter asks you to implement a recursive version of the linear search. In Chapter 19,
Searching and Sorting, we present the more complex, yet more efficient, binary search.

Linear Search
The linear search (Fig. 7.18, lines 33–40) compares each element of an array with a search
key (line 36). Because the array is not in any particular order, it’s just as likely that the val-
ue will be found in the first element as the last. On average, therefore, the program must
compare the search key with half the elements of the array. To determine that a value is
not in the array, the program must compare the search key to every element of the array.

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:
0-9:

10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **

100: *

1 // Fig. 7.18: fig07_18.cpp
2 // Linear search of an array.
3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10 const int arraySize = 100; // size of array a
11 int a[arraySize]; // create array a
12 int searchKey; // value to locate in array a
13
14 for (int i = 0; i < arraySize; ++i)
15 a[i] = 2 * i; // create some data

Fig. 7.18 | Linear search of an array. (Part 1 of 2.)

Fig. 7.17 | Creates a GradeBook object using an array of grades, then invokes member function
processGrades to analyze them. (Part 2 of 2.)

int linearSearch(const int [], int, int); // prototype

294 Chapter 7 Arrays and Vectors

The linear searching method works well for small arrays or for unsorted arrays (i.e.,
arrays whose elements are in no particular order). However, for large arrays, linear
searching is inefficient. If the array is sorted (e.g., its elements are in ascending order), you
can use the high-speed binary search technique that you’ll learn about in Chapter 19.

7.8 Sorting Arrays with Insertion Sort
Sorting data (i.e., placing the data into some particular order such as ascending or de-
scending) is one of the most important computing applications. A bank sorts all checks by
account number so that it can prepare individual bank statements at the end of each
month. Telephone companies sort their phone directories by last name and, within that,
by first name to make it easy to find phone numbers. Virtually every organization must
sort some data and, in many cases, massive amounts of it. Sorting data is an intriguing
problem that has attracted some of the most intense research efforts in the field of com-
puter science. In this chapter, we discuss a simple sorting scheme. In Chapter 19, we in-
vestigate more complex schemes that yield superior performance, and we introduce Big O

16
17 cout << "Enter integer search key: ";
18 cin >> searchKey;
19
20
21
22
23 // display results
24 if (element != -1)
25 cout << "Found value in element " << element << endl;
26 else
27 cout << "Value not found" << endl;
28 } // end main
29
30
31
32
33
34
35
36
37
38
39
40

Enter integer search key: 36
Found value in element 18

Enter integer search key: 37
Value not found

Fig. 7.18 | Linear search of an array. (Part 2 of 2.)

// attempt to locate searchKey in array a
int element = linearSearch(a, searchKey, arraySize);

// compare key to every element of array until location is
// found or until end of array is reached; return subscript of
// element if key is found or -1 if key not found
int linearSearch(const int array[], int key, int sizeOfArray)
{

for (int j = 0; j < sizeOfArray; ++j)
if (array[j] == key) // if found,

return j; // return location of key

return -1; // key not found
} // end function linearSearch

7.8 Sorting Arrays with Insertion Sort 295

(pronounced “Big Oh”) notation for characterizing how hard each scheme must work to
accomplish its task.

Insertion Sort
The program in Fig. 7.19 sorts the values of the 10-element array data into ascending or-
der. The technique we use is called insertion sort—a simple, but inefficient, sorting algo-
rithm. The first iteration of this algorithm takes the second element and, if it’s less than
the first element, swaps it with the first element (i.e., the program inserts the second ele-
ment in front of the first element). The second iteration looks at the third element and
inserts it into the correct position with respect to the first two elements, so all three ele-
ments are in order. At the ith iteration of this algorithm, the first i elements in the original
array will be sorted.

Line 10 of Fig. 7.19 declares and initializes array data with the following values:

The program first looks at data[0] and data[1], whose values are 34 and 56, respectively.
These two elements are already in order, so the program continues—if they were out of
order, the program would swap them.

34 56 4 10 77 51 93 30 5 52

1 // Fig. 7.19: fig07_19.cpp
2 // This program sorts an array's values into ascending order.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 const int arraySize = 10; // size of array a

10 int data[arraySize] = { 34, 56, 4, 10, 77, 51, 93, 30, 5, 52 };
11 int insert; // temporary variable to hold element to insert
12
13 cout << "Unsorted array:\n";
14
15 // output original array
16 for (int i = 0; i < arraySize; ++i)
17 cout << setw(4) << data[i];
18
19
20
21
22
23
24
25
26
27
28
29

Fig. 7.19 | Sorting an array with insertion sort. (Part 1 of 2.)

// insertion sort
// loop over the elements of the array
for (int next = 1; next < arraySize; ++next)
{

insert = data[next]; // store the value in the current element

int moveItem = next; // initialize location to place element

// search for the location in which to put the current element
while ((moveItem > 0) && (data[moveItem - 1] > insert))
{

296 Chapter 7 Arrays and Vectors

In the second iteration, the program looks at the value of data[2], 4. This value is less
than 56, so the program stores 4 in a temporary variable and moves 56 one element to the
right. The program then checks and determines that 4 is less than 34, so it moves 34 one
element to the right. The program has now reached the beginning of the array, so it places
4 in data[0]. The array now is

In the third iteration, the program stores the value of data[3], 10, in a temporary vari-
able. Then the program compares 10 to 56 and moves 56 one element to the right because
it’s larger than 10. The program then compares 10 to 34, moving 34 right one element.
When the program compares 10 to 4, it observes that 10 is larger than 4 and places 10 in
data[1]. The array now is

Using this algorithm, at the ith iteration, the first i elements of the original array are sorted.
They may not be in their final locations, however, because smaller values may be located
later in the array.

The sorting is performed by the for statement in lines 21–36 that loops over the ele-
ments of the array. In each iteration, line 23 temporarily stores in variable insert

(declared in line 11) the value of the element that will be inserted into the sorted portion
of the array. Line 25 declares and initializes the variable moveItem, which keeps track of
where to insert the element. Lines 28–33 loop to locate the correct position where the ele-
ment should be inserted. The loop terminates either when the program reaches the front
of the array or when it reaches an element that’s less than the value to be inserted. Line 31
moves an element to the right, and line 32 decrements the position at which to insert the

30
31
32
33
34
35
36
37
38 cout << "\nSorted array:\n";
39
40 // output sorted array
41 for (int i = 0; i < arraySize; ++i)
42 cout << setw(4) << data[i];
43
44 cout << endl;
45 } // end main

Unsorted array:
34 56 4 10 77 51 93 30 5 52

Sorted array:
4 5 10 30 34 51 52 56 77 93

4 34 56 10 77 51 93 30 5 52

4 10 34 56 77 51 93 30 5 52

Fig. 7.19 | Sorting an array with insertion sort. (Part 2 of 2.)

// shift element one slot to the right
data[moveItem] = data[moveItem - 1];
moveItem--;

} // end while

data[moveItem] = insert; // place inserted element into the array
} // end for

7.9 Multidimensional Arrays 297

next element. After the while loop ends, line 35 inserts the element into place. When the
for statement in lines 21–36 terminates, the elements of the array are sorted.

The chief virtue of the insertion sort is that it’s easy to program; however, it runs
slowly. This becomes apparent when sorting large arrays. In the exercises, we’ll investigate
some alternate algorithms for sorting an array. We investigate sorting and searching in
greater depth in Chapter 19.

7.9 Multidimensional Arrays
Arrays with two dimensions (i.e., subscripts) often represent tables of values consisting of
information arranged in rows and columns. To identify a particular table element, we
must specify two subscripts. By convention, the first identifies the element’s row and the
second identifies the element’s column. Arrays that require two subscripts to identify a
particular element are called two-dimensional arrays or 2-D arrays. Arrays with two or
more dimensions are known as multidimensional arrays and can have more than two di-
mensions. Figure 7.20 illustrates a two-dimensional array, a. The array contains three rows
and four columns, so it’s said to be a 3-by-4 array. In general, an array with m rows and n
columns is called an m-by-n array.

Every element in array a is identified in Fig. 7.20 by an element name of the form
a[i][j], where a is the name of the array, and i and j are the subscripts that uniquely
identify each element in a. Notice that the names of the elements in row 0 all have a first
subscript of 0; the names of the elements in column 3 all have a second subscript of 3.

A multidimensional array can be initialized in its declaration much like a one-dimen-
sional array. For example, a two-dimensional array b with values 1 and 2 in its row 0 ele-
ments and values 3 and 4 in its row 1 elements could be declared and initialized with

Fig. 7.20 | Two-dimensional array with three rows and four columns.

Common Programming Error 7.7
Referencing a two-dimensional array element a[x][y] incorrectly as a[x, y] is an error.
Actually, a[x, y] is treated as a[y], because C++ evaluates the expression x, y (contain-
ing a comma operator) simply as y (the last of the comma-separated expressions).

int b[2][2] = { { 1, 2 }, { 3, 4 } };

Row 0

Row 1

Row 2

Column subscript
Row subscript
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

298 Chapter 7 Arrays and Vectors

The values are grouped by row in braces. So, 1 and 2 initialize b[0][0] and b[0][1], re-
spectively, and 3 and 4 initialize b[1][0] and b[1][1], respectively. If there are not
enough initializers for a given row, the remaining elements of that row are initialized to 0.
Thus, the declaration

initializes b[0][0] to 1, b[0][1] to 0, b[1][0] to 3 and b[1][1] to 4.
Figure 7.21 demonstrates initializing two-dimensional arrays in declarations. Lines

12–14 declare three arrays, each with two rows and three columns. The declaration of
array1 (line 12) provides six initializers in two sublists. The first sublist initializes row 0
of the array to the values 1, 2 and 3; and the second sublist initializes row 1 of the array to

int b[2][2] = { { 1 }, { 3, 4 } };

1 // Fig. 7.21: fig07_21.cpp
2 // Initializing multidimensional arrays.
3 #include <iostream>
4 using namespace std;
5
6 void printArray(const int [][3]); // prototype
7 const int rows = 2;
8 const int columns = 3;
9

10 int main()
11 {
12
13
14
15
16 cout << "Values in array1 by row are:" << endl;
17 printArray(array1);
18
19 cout << "\nValues in array2 by row are:" << endl;
20 printArray(array2);
21
22 cout << "\nValues in array3 by row are:" << endl;
23 printArray(array3);
24 } // end main
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Fig. 7.21 | Initializing multidimensional arrays. (Part 1 of 2.)

int array1[rows][columns] = { { 1, 2, 3 }, { 4, 5, 6 } };
int array2[rows][columns] = { 1, 2, 3, 4, 5 };
int array3[rows][columns] = { { 1, 2 }, { 4 } };

// output array with two rows and three columns
void printArray(const int a[][columns])
{

// loop through array's rows
for (int i = 0; i < rows; ++i)
{

// loop through columns of current row
for (int j = 0; j < columns; ++j)

cout << a[i][j] << ' ';

cout << endl; // start new line of output
} // end outer for

} // end function printArray

7.9 Multidimensional Arrays 299

the values 4, 5 and 6. If the braces around each sublist are removed from the array1 ini-
tializer list, the compiler initializes the elements of row 0 followed by the elements of row
1, yielding the same result.

The declaration of array2 (line 13) provides only five initializers. The initializers are
assigned to row 0, then row 1. Any elements that do not have an explicit initializer are ini-
tialized to zero, so array2[1][2] is initialized to zero.

The declaration of array3 (line 14) provides three initializers in two sublists. The sub-
list for row 0 explicitly initializes the first two elements of row 0 to 1 and 2; the third ele-
ment is implicitly initialized to zero. The sublist for row 1 explicitly initializes the first
element to 4 and implicitly initializes the last two elements to zero.

The program calls function printArray to output each array’s elements. Notice that
the function prototype (line 6) and definition (lines 27–38) specify the parameter const
int a[][columns]. When a function receives a one-dimensional array as an argument, the
array brackets are empty in the function’s parameter list. The size of a two-dimensional
array’s first dimension (i.e., the number of rows) is not required either, but all subsequent
dimension sizes are required. The compiler uses these sizes to determine the locations in
memory of elements in multidimensional arrays. All array elements are stored consecu-
tively in memory, regardless of the number of dimensions. In a two-dimensional array,
row 0 is stored in memory followed by row 1. Each row is a one-dimensional array. To
locate an element in a particular row, the function must know exactly how many elements
are in each row so it can skip the proper number of memory locations when accessing the
array. Thus, when accessing a[1][2], the function knows to skip row 0’s three elements
in memory to get to row 1. Then, the function accesses element 2 of that row.

Many common array manipulations use for statements. For example, the following
for statement sets all the elements in row 2 of array a in Fig. 7.20 to zero:

The for statement varies only the second subscript (i.e., the column subscript). The pre-
ceding for statement is equivalent to the following assignment statements:

Values in array1 by row are:
1 2 3
4 5 6

Values in array2 by row are:
1 2 3
4 5 0

Values in array3 by row are:
1 2 0
4 0 0

for (int column = 0; column < 4; ++column)
a[2][column] = 0;

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

Fig. 7.21 | Initializing multidimensional arrays. (Part 2 of 2.)

300 Chapter 7 Arrays and Vectors

The following nested for statement determines the total of all the elements in array a:

The for statement totals the elements of the array one row at a time. The outer for state-
ment begins by setting row (i.e., the row subscript) to 0, so the elements of row 0 may be
totaled by the inner for statement. The outer for statement then increments row to 1, so
the elements of row 1 can be totaled. Then, the outer for statement increments row to 2,
so the elements of row 2 can be totaled. When the nested for statement terminates, total
contains the sum of all the array elements.

7.10 Case Study: Class GradeBook Using a Two-
Dimensional Array
In Section 7.6, we presented class GradeBook (Figs. 7.15–7.16), which used a one-dimen-
sional array to store student grades on a single exam. In most semesters, students take sev-
eral exams. Professors are likely to want to analyze grades across the entire semester, both
for a single student and for the class as a whole.

Storing Student Grades in a Two-Dimensional Array in Class GradeBook
Figures 7.22–7.23 contain a version of class GradeBook that uses a two-dimensional array
grades to store the grades of a number of students on multiple exams. Each row of the
array represents a single student’s grades for the entire course, and each column represents
all the grades the students earned for one particular exam. A client program, such as
Fig. 7.24, passes the array as an argument to the GradeBook constructor. In this example,
we use a ten-by-three array containing ten students’ grades on three exams.

total = 0;

for (int row = 0; row < 3; ++row)

for (int column = 0; column < 4; ++column)
total += a[row][column];

1 // Fig. 7.22: GradeBook.h
2 // Definition of class GradeBook that uses a
3 // two-dimensional array to store test grades.
4 // Member functions are defined in GradeBook.cpp
5 #include <string> // program uses C++ Standard Library string class
6 using namespace std;
7
8 // GradeBook class definition
9 class GradeBook

10 {
11 public:
12 // constants
13 static const int students = 10; // number of students
14 static const int tests = 3; // number of tests
15
16 // constructor initializes course name and array of grades
17

Fig. 7.22 | Definition of class GradeBook that uses a two-dimensional array to store test grades.
(Part 1 of 2.)

GradeBook(string, const int [][tests]);

7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 301

18
19 void setCourseName(string); // function to set the course name
20 string getCourseName(); // function to retrieve the course name
21 void displayMessage(); // display a welcome message
22 void processGrades(); // perform various operations on the grade data
23 int getMinimum(); // find the minimum grade in the grade book
24 int getMaximum(); // find the maximum grade in the grade book
25
26 void outputBarChart(); // output bar chart of grade distribution
27 void outputGrades(); // output the contents of the grades array
28 private:
29 string courseName; // course name for this grade book
30
31 }; // end class GradeBook

1 // Fig. 7.23: GradeBook.cpp
2 // Member-function definitions for class GradeBook that
3 // uses a two-dimensional array to store grades.
4 #include <iostream>
5 #include <iomanip> // parameterized stream manipulators
6 using namespace std;
7
8 // include definition of class GradeBook from GradeBook.h
9 #include "GradeBook.h"

10
11 // two-argument constructor initializes courseName and grades array
12 GradeBook::GradeBook(string name, const int gradesArray[][tests])
13 {
14 setCourseName(name); // initialize courseName
15
16
17
18
19
20
21 } // end two-argument GradeBook constructor
22
23 // function to set the course name
24 void GradeBook::setCourseName(string name)
25 {
26 courseName = name; // store the course name
27 } // end function setCourseName
28
29 // function to retrieve the course name
30 string GradeBook::getCourseName()
31 {

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional array
to store grades. (Part 1 of 4.)

Fig. 7.22 | Definition of class GradeBook that uses a two-dimensional array to store test grades.
(Part 2 of 2.)

double getAverage(const int [], const int); // get student’s average

int grades[students][tests]; // two-dimensional array of grades

// copy grades from gradeArray to grades
for (int student = 0; student < students; ++student)

for (int test = 0; test < tests; ++test)
grades[student][test] = gradesArray[student][test];

302 Chapter 7 Arrays and Vectors

32 return courseName;
33 } // end function getCourseName
34
35 // display a welcome message to the GradeBook user
36 void GradeBook::displayMessage()
37 {
38 // this statement calls getCourseName to get the
39 // name of the course this GradeBook represents
40 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
41 << endl;
42 } // end function displayMessage
43
44 // perform various operations on the data
45 void GradeBook::processGrades()
46 {
47 outputGrades(); // output grades array
48
49 // call functions getMinimum and getMaximum
50 cout << "\nLowest grade in the grade book is " << getMinimum()
51 << "\nHighest grade in the grade book is " << getMaximum() << endl;
52
53 outputBarChart(); // display distribution chart of grades on all tests
54 } // end function processGrades
55
56 // find minimum grade in the entire gradebook
57 int GradeBook::getMinimum()
58 {
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 return lowGrade; // return lowest grade
74 } // end function getMinimum
75
76 // find maximum grade in the entire gradebook
77 int GradeBook::getMaximum()
78 {
79
80
81
82
83

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional array
to store grades. (Part 2 of 4.)

int lowGrade = 100; // assume lowest grade is 100

// loop through rows of grades array
for (int student = 0; student < students; ++student)
{

// loop through columns of current row
for (int test = 0; test < tests; ++test)
{

// if current grade less than lowGrade, assign it to lowGrade
if (grades[student][test] < lowGrade)

lowGrade = grades[student][test]; // new lowest grade
} // end inner for

} // end outer for

int highGrade = 0; // assume highest grade is 0

// loop through rows of grades array
for (int student = 0; student < students; ++student)
{

7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 303

84
85
86
87
88
89
90
91
92
93 return highGrade; // return highest grade
94 } // end function getMaximum
95
96 // determine average grade for particular set of grades
97 double GradeBook::getAverage(const int setOfGrades[], const int grades)
98 {
99 int total = 0; // initialize total
100
101 // sum grades in array
102 for (int grade = 0; grade < grades; ++grade)
103 total += setOfGrades[grade];
104
105 // return average of grades
106 return static_cast< double >(total) / grades;
107 } // end function getAverage
108
109 // output bar chart displaying grade distribution
110 void GradeBook::outputBarChart()
111 {
112 cout << "\nOverall grade distribution:" << endl;
113
114 // stores frequency of grades in each range of 10 grades
115 const int frequencySize = 11;
116 int frequency[frequencySize] = {}; // initialize elements to 0
117
118
119
120
121
122
123
124 // for each grade frequency, print bar in chart
125 for (int count = 0; count < frequencySize; ++count)
126 {
127 // output bar label ("0-9:", ..., "90-99:", "100:")
128 if (count == 0)
129 cout << " 0-9: ";
130 else if (count == 10)
131 cout << " 100: ";
132 else
133 cout << count * 10 << "-" << (count * 10) + 9 << ": ";
134

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional array
to store grades. (Part 3 of 4.)

// loop through columns of current row
for (int test = 0; test < tests; ++test)
{

// if current grade greater than highGrade, assign to highGrade
if (grades[student][test] > highGrade)

highGrade = grades[student][test]; // new highest grade
} // end inner for

} // end outer for

// for each grade, increment the appropriate frequency
for (int student = 0; student < students; ++student)

for (int test = 0; test < tests; ++test)
++frequency[grades[student][test] / 10];

304 Chapter 7 Arrays and Vectors

Five member functions (declared in lines 23–27 of Fig. 7.22) perform array manipu-
lations to process the grades. Each of these member functions is similar to its counterpart
in the earlier one-dimensional array version of class GradeBook (Figs. 7.15–7.16). Member
function getMinimum (defined in lines 57–74 of Fig. 7.23) determines the lowest grade of
all students for the semester. Member function getMaximum (defined in lines 77–94 of
Fig. 7.23) determines the highest grade of all students for the semester. Member function
getAverage (lines 97–107 of Fig. 7.23) determines a particular student’s semester average.
Member function outputBarChart (lines 110–141 of Fig. 7.23) outputs a bar chart of the
distribution of all student grades for the semester. Member function outputGrades (lines
144–169 of Fig. 7.23) outputs the two-dimensional array in a tabular format, along with
each student’s semester average.

Member functions getMinimum, getMaximum, outputBarChart and outputGrades

each loop through array grades by using nested for statements. For example, consider the

135 // print bar of asterisks
136 for (int stars = 0; stars < frequency[count]; ++stars)
137 cout << '*';
138
139 cout << endl; // start a new line of output
140 } // end outer for
141 } // end function outputBarChart
142
143 // output the contents of the grades array
144 void GradeBook::outputGrades()
145 {
146 cout << "\nThe grades are:\n\n";
147 cout << " "; // align column heads
148
149 // create a column heading for each of the tests
150 for (int test = 0; test < tests; ++test)
151 cout << "Test " << test + 1 << " ";
152
153 cout << "Average" << endl; // student average column heading
154
155 // create rows/columns of text representing array grades
156 for (int student = 0; student < students; ++student)
157 {
158 cout << "Student " << setw(2) << student + 1;
159
160 // output student's grades
161 for (int test = 0; test < tests; ++test)
162 cout << setw(8) << grades[student][test];
163
164 // call member function getAverage to calculate student's average;
165 // pass row of grades and the value of tests as the arguments
166 double average = getAverage(grades[student], tests);
167 cout << setw(9) << setprecision(2) << fixed << average << endl;
168 } // end outer for
169 } // end function outputGrades

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional array
to store grades. (Part 4 of 4.)

7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 305

nested for statement in member function getMinimum (lines 62–71). The outer for state-
ment begins by setting student (i.e., the row subscript) to 0, so the elements of row 0 can
be compared with variable lowGrade in the body of the inner for statement. The inner
for statement loops through the grades of a particular row and compares each grade with
lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade. The outer for
statement then increments the row subscript to 1. The elements of row 1 are compared
with variable lowGrade. The outer for statement then increments the row subscript to 2,
and the elements of row 2 are compared with variable lowGrade. This repeats until all rows
of grades have been traversed. When execution of the nested statement is complete,
lowGrade contains the smallest grade in the two-dimensional array. Member function
getMaximum works similarly to member function getMinimum.

Member function outputBarChart in Fig. 7.23 is nearly identical to the one in
Fig. 7.16. However, to output the overall grade distribution for a whole semester, the
function uses a nested for statement (lines 119–122) to create the one-dimensional array
frequency based on all the grades in the two-dimensional array. The rest of the code in
each of the two outputBarChart member functions that displays the chart is identical.

Member function outputGrades (lines 144–169) also uses nested for statements to
output values of the array grades, in addition to each student’s semester average. The
output in Fig. 7.24 shows the result, which resembles the tabular format of a professor’s
physical grade book. Lines 150–151 print the column headings for each test. We use a
counter-controlled for statement so that we can identify each test with a number. Similarly,
the for statement in lines 156–168 first outputs a row label using a counter variable to iden-
tify each student (line 158). Although array indices start at 0, lines 151 and 158 output
test + 1 and student + 1, respectively, to produce test and student numbers starting at 1
(see Fig. 7.24). The inner for statement in lines 161–162 uses the outer for statement’s
counter variable student to loop through a specific row of array grades and output each
student’s test grade. Finally, line 166 obtains each student’s semester average by passing the
current row of grades (i.e., grades[student]) to member function getAverage.

Member function getAverage (lines 97–107) takes two arguments—a one-dimen-
sional array of test results for a particular student and the number of test results in the
array. When line 166 calls getAverage, the first argument is grades[student], which
specifies that a particular row of the two-dimensional array grades should be passed to
getAverage. For example, based on the array created in Fig. 7.24, the argument
grades[1] represents the three values (a one-dimensional array of grades) stored in row 1

of the two-dimensional array grades. A two-dimensional array can be considered an array
whose elements are one-dimensional arrays. Member function getAverage calculates the
sum of the array elements, divides the total by the number of test results and returns the
floating-point result as a double value (line 106).

Testing Class GradeBook
The program in Fig. 7.24 creates an object of class GradeBook (Figs. 7.22–7.23) using the
two-dimensional array of ints named gradesArray (declared and initialized in lines 10–
20). Line 10 accesses class GradeBook’s static constants students and tests to indicate
the size of each dimension of array gradesArray. Lines 22–23 pass a course name and
gradesArray to the GradeBook constructor. Lines 24–25 then invoke myGradeBook’s dis-
playMessage and processGrades member functions to display a welcome message and
obtain a report summarizing the students’ grades for the semester, respectively.

306 Chapter 7 Arrays and Vectors

1 // Fig. 7.24: fig07_24.cpp
2 // Creates GradeBook object using a two-dimensional array of grades.
3
4 #include "GradeBook.h" // GradeBook class definition
5
6 // function main begins program execution
7 int main()
8 {
9 // two-dimensional array of student grades

10 int gradesArray[GradeBook::students][GradeBook::tests] =
11 { { 87, 96, 70 },
12 { 68, 87, 90 },
13 { 94, 100, 90 },
14 { 100, 81, 82 },
15 { 83, 65, 85 },
16 { 78, 87, 65 },
17 { 85, 75, 83 },
18 { 91, 94, 100 },
19 { 76, 72, 84 },
20 { 87, 93, 73 } };
21
22 GradeBook myGradeBook(
23 "CS101 Introduction to C++ Programming", gradesArray);
24 myGradeBook.displayMessage();
25
26 } // end main

Welcome to the grade book for
CS101 Introduction to C++ Programming!

The grades are:

Test 1 Test 2 Test 3 Average
Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
0-9:

10-19:
20-29:
30-39:

Fig. 7.24 | Creates a GradeBook object using a two-dimensional array of grades, then invokes
member function processGrades to analyze them. (Part 1 of 2.)

myGradeBook.processGrades();

7.11 Introduction to C++ Standard Library Class Template vector 307

7.11 Introduction to C++ Standard Library Class
Template vector
We now introduce C++ Standard Library class template vector, which represents a more
robust type of array featuring many additional capabilities. As you’ll see in later chapters,
C-style pointer-based arrays (i.e., the type of arrays presented thus far) have great potential
for errors. For example, as mentioned earlier, a program can easily “walk off” either end of
an array, because C++ does not check whether subscripts fall outside the range of an array.
Two arrays cannot be meaningfully compared with equality operators or relational opera-
tors. As you’ll learn in Chapter 8, pointer variables (known more commonly as pointers)
contain memory addresses as their values. Array names are simply pointers to where the ar-
rays begin in memory, and, of course, two arrays will always be at different memory loca-
tions. When an array is passed to a general-purpose function designed to handle arrays of
any size, the size of the array must be passed as an additional argument. Furthermore, one
array cannot be assigned to another with the assignment operator(s)—array names are
const pointers, and, as you’ll learn in Chapter 8, a constant pointer cannot be used on the
left side of an assignment operator. These and other capabilities certainly seem like “nat-
urals” for dealing with arrays, but C++ does not provide such capabilities. However, the
C++ Standard Library provides class template vector to allow you to create a more pow-
erful and less error-prone alternative to arrays. In Chapter 11, we present the means to im-
plement such array capabilities as those provided by vector. You’ll learn how to customize
operators for use with your own classes (a technique known as operator overloading).

The vector class template is available to anyone building applications with C++. The
notations that the vector example uses might be unfamiliar to you, because vectors use
template notation. Recall that Section 6.18 discussed function templates. In Chapter 14,
we discuss class templates. For now, you should feel comfortable using class template
vector by mimicking the syntax in the example we show in this section. You’ll deepen
your understanding as we study class templates in Chapter 14. Chapter 22 presents class
template vector (and several other standard C++ container classes) in detail.

The program of Fig. 7.25 demonstrates capabilities provided by C++ Standard
Library class template vector that are not available for C-style pointer-based arrays. Stan-
dard class template vector provides many of the same features as the Array class that we
construct in Chapter 11. Standard class template vector is defined in header <vector>

(line 5) and belongs to namespace std. Chapter 22 discusses the full functionality of
vector. At the end of this section, we’ll demonstrate class vector’s bounds checking capa-

40-49:
50-59:
60-69: ***
70-79: ******
80-89: ***********
90-99: *******

100: ***

Fig. 7.24 | Creates a GradeBook object using a two-dimensional array of grades, then invokes
member function processGrades to analyze them. (Part 2 of 2.)

308 Chapter 7 Arrays and Vectors

bilities and introduce C++’s exception-handling mechanism, which can be used to detect
and handle an out-of-bounds vector index.

1 // Fig. 7.25: fig07_25.cpp
2 // Demonstrating C++ Standard Library class template vector.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 void outputVector(); // display the vector
9 void inputVector(); // input values into the vector

10
11 int main()
12 {
13
14
15
16 // print integers1 size and contents
17 cout << "Size of vector integers1 is " <<
18 << "\nvector after initialization:" << endl;
19 outputVector(integers1);
20
21 // print integers2 size and contents
22 cout << "\nSize of vector integers2 is " <<
23 << "\nvector after initialization:" << endl;
24 outputVector(integers2);
25
26 // input and print integers1 and integers2
27 cout << "\nEnter 17 integers:" << endl;
28 inputVector(integers1);
29 inputVector(integers2);
30
31 cout << "\nAfter input, the vectors contain:\n"
32 << "integers1:" << endl;
33 outputVector(integers1);
34 cout << "integers2:" << endl;
35 outputVector(integers2);
36
37 // use inequality (!=) operator with vector objects
38 cout << "\nEvaluating: integers1 != integers2" << endl;
39
40 if ()
41 cout << "integers1 and integers2 are not equal" << endl;
42
43
44
45
46
47 cout << "\nSize of vector integers3 is " <<
48 << "\nvector after initialization:" << endl;
49 outputVector(integers3);

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 1 of 4.)

#include <vector>

const vector< int > &
vector< int > &

vector< int > integers1(7); // 7-element vector< int >
vector< int > integers2(10); // 10-element vector< int >

integers1.size()

integers2.size()

integers1 != integers2

// create vector integers3 using integers1 as an
// initializer; print size and contents
vector< int > integers3(integers1); // copy constructor

integers3.size()

7.11 Introduction to C++ Standard Library Class Template vector 309

50
51
52
53
54
55 cout << "integers1:" << endl;
56 outputVector(integers1);
57 cout << "integers2:" << endl;
58 outputVector(integers2);
59
60 // use equality (==) operator with vector objects
61 cout << "\nEvaluating: integers1 == integers2" << endl;
62
63 if ()
64 cout << "integers1 and integers2 are equal" << endl;
65
66 // use square brackets to create rvalue
67 cout << "\nintegers1[5] is " << integers1[5];
68
69 // use square brackets to create lvalue
70 cout << "\n\nAssigning 1000 to integers1[5]" << endl;
71
72 cout << "integers1:" << endl;
73 outputVector(integers1);
74
75
76
77
78
79
80
81
82
83
84
85 } // end main
86
87 // output vector contents
88 void outputVector()
89 {
90
91
92 for (i = 0; i < ; ++i)
93 {
94 cout << setw(12) << ;
95
96 if ((i + 1) % 4 == 0) // 4 numbers per row of output
97 cout << endl;
98 } // end for
99
100 if (i % 4 != 0)
101 cout << endl;
102 } // end function outputVector

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 2 of 4.)

// use overloaded assignment (=) operator
cout << "\nAssigning integers2 to integers1:" << endl;
integers1 = integers2; // assign integers2 to integers1

integers1 == integers2

integers1[5] = 1000;

// attempt to use out-of-range subscript
try
{

cout << "\nAttempt to display integers1.at(15)" << endl;
cout << integers1.at(15) << endl; // ERROR: out of range

} // end try
catch (out_of_range &ex)
{

cout << "An exception occurred: " << ex.what() << endl;
} // end catch

const vector< int > &array

size_t i; // declare control variable

array.size()

array[i]

310 Chapter 7 Arrays and Vectors

103
104 // input vector contents
105 void inputVector()
106 {
107 for (size_t i = 0; i < ; ++i)
108 cin >> ;
109 } // end function inputVector

Size of vector integers1 is 7
vector after initialization:

0 0 0 0
0 0 0

Size of vector integers2 is 10
vector after initialization:

0 0 0 0
0 0 0 0
0 0

Enter 17 integers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

After input, the vectors contain:
integers1:

1 2 3 4
5 6 7

integers2:
8 9 10 11

12 13 14 15
16 17

Evaluating: integers1 != integers2
integers1 and integers2 are not equal

Size of vector integers3 is 7
vector after initialization:

1 2 3 4
5 6 7

Assigning integers2 to integers1:
integers1:

8 9 10 11
12 13 14 15
16 17

integers2:
8 9 10 11

12 13 14 15
16 17

Evaluating: integers1 == integers2
integers1 and integers2 are equal

integers1[5] is 13

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 3 of 4.)

vector< int > &array

array.size()
array[i]

7.11 Introduction to C++ Standard Library Class Template vector 311

Creating vector Objects
Lines 13–14 create two vector objects that store values of type int—integers1 contains
seven elements, and integers2 contains 10 elements. By default, all the elements of each
vector object are set to 0. Note that vectors can be defined to store any data type, by re-
placing int in vector<int> with the appropriate data type. This notation, which specifies
the type stored in the vector, is similar to the template notation that Section 6.18 intro-
duced with function templates.

vector Member Function size; Function outputVector
Line 17 uses vector member function size to obtain the size (i.e., the number of ele-
ments) of integers1. Line 19 passes integers1 to function outputVector (lines 88–102),
which uses square brackets, [] (line 94), to obtain the value in each element of the vector
for output. Note the resemblance of this notation to that used to access the value of an
array element. Lines 22 and 24 perform the same tasks for integers2.

Member function size of class template vector returns the number of elements in a
vector as a value of type size_t (which represents the type unsigned int on many sys-
tems). As a result, line 90 declares the control variable i to be of type size_t, too. On
some compilers, declaring i as an int causes the compiler to issue a warning message, since
the loop-continuation condition (line 92) would compare a signed value (i.e., int i) and
an unsigned value (i.e., a value of type size_t returned by function size).

Function inputVector
Lines 28–29 pass integers1 and integers2 to function inputVector (lines 105–109) to
read values for each vector’s elements from the user. The function uses square brackets
([]) to form lvalues that are used to store the input values in each vector element.

Comparing vector Objects for Inequality
Line 40 demonstrates that vector objects can be compared with one another using the !=
operator. If the contents of two vectors are not equal, the operator returns true; other-
wise, it returns false.

Initializing One vector with the Contents of Another
The C++ Standard Library class template vector allows you to create a new vector object
that is initialized with the contents of an existing vector. Line 45 creates a vector object
integers3 and initializes it with a copy of integers1. This invokes vector’s so-called
copy constructor to perform the copy operation. You’ll learn about copy constructors in
detail in Chapter 11. Lines 47–49 output the size and contents of integers3 to demon-
strate that it was initialized correctly.

Assigning 1000 to integers1[5]
integers1:

8 9 10 11
12 1000 14 15
16 17

Attempt to display integers1.at(15)
An exception occurred: invalid vector<T> subscript

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 4 of 4.)

312 Chapter 7 Arrays and Vectors

Assigning vectors and Comparing vectors for Equality
Line 53 assigns integers2 to integers1, demonstrating that the assignment (=) operator
can be used with vector objects. Lines 55–58 output the contents of both objects to show
that they now contain identical values. Line 63 then compares integers1 to integers2

with the equality (==) operator to determine whether the contents of the two objects are
equal after the assignment in line 53 (which they are).

Using the [] Operator to Access and Modify vector Elements
Lines 67 and 71 use square brackets ([]) to obtain a vector element as an rvalue and as
an lvalue, respectively. Recall from Section 5.9 that an rvalue cannot be modified, but an
lvalue can. As is the case with C-style pointer-based arrays, C++ does not perform any
bounds checking when vector elements are accessed with square brackets. Therefore, you must
ensure that operations using [] do not accidentally attempt to manipulate elements out-
side the bounds of the vector. Standard class template vector does, however, provide
bounds checking in its member function at, which we use at line 79 and discuss shortly.

Exception Handling: Processing an Out-of-Range Subscript
An exception indicates a problem that occurs while a program executes. The name “excep-
tion” suggests that the problem occurs infrequently—if the “rule” is that a statement nor-
mally executes correctly, then the problem represents the “exception to the rule.”
Exception handling enables you to create fault-tolerant programs that can resolve (or
handle) exceptions. In many cases, this allows a program to continue executing as if no
problems were encountered. For example, Fig. 7.25 still runs to completion, even though
an attempt was made to access an out-of-range subscript. More severe problems might pre-
vent a program from continuing normal execution, instead requiring the program to no-
tify the user of the problem, then terminate. When a function detects a problem, such as
an invalid array subscript or an invalid argument, it throws an exception—that is, an ex-
ception occurs. Here we introduce exception handling briefly. We’ll discuss it in detail in
Chapter 16, Exception Handling: A Deeper Look.

The try Statement
To handle an exception, place any code that might throw an exception in a try statement
(lines 76–84). The try block (lines 76–80) contains the code that might throw an exception,
and the catch block (lines 81–84) contains the code that handles the exception if one occurs.
You can have many catch blocks to handle different types of exceptions that might be
thrown in the corresponding try block. If the code in the try block executes successfully,
lines 81–84 are ignored. The braces that delimit try and catch blocks’ bodies are required.

The vector member function at provides bounds checking and throws an exception
if its argument is an invalid subscript. By default, this causes a C++ program to terminate.
If the subscript is valid, function at returns the element at the specified location as a mod-
ifiable lvalue or an unmodifiable lvalue, depending on the context in which the call
appears. An unmodifiable lvalue is an expression that identifies an object in memory (such
as an element in a vector), but cannot be used to modify that object.

Executing the catch Block
When the program calls vector member function at with the argument 15 (line 79), the
function attempts to access the element at location 15, which is outside the vector’s
bounds—integers1 has only 10 elements at this point. Because bounds checking is per-

7.12 Wrap-Up 313

formed at execution time, vector member function at generates an exception—specifically
line 79 throws an out_of_range exception (from header <stdexcept>) to notify the pro-
gram of this problem. At this point, the try block terminates immediately and the catch

block begins executing—if you declared any variables in the try block, they’re now out of
scope and are not accessible in the catch block. [Note: To avoid compilation errors with
GNU C++, you may need to include header <stdexcept> to use class out_of_range.]

The catch block declares a type (out_of_range) and an exception parameter (ex) that
it receives as a reference. The catch block can handle exceptions of the specified type. Inside
the block, you can use the parameter’s identifier to interact with a caught exception object.

what Member Function of the Exception Parameter
When lines 81–84 catch the exception, the program displays a message indicating the
problem that occurred. Line 83 calls the exception object’s what member function to get
the error message that is stored in the exception object and display it. Once the message is
displayed in this example, the exception is considered handled and the program continues
with the next statement after the catch block’s closing brace. In this example, the end of
the program is reached, so the program terminates. We use exception handling again in
Chapters 9–13 and Chapter 16 presents a deeper look at exception handling.

Summary of This Example
In this section, we demonstrated the C++ Standard Library class template vector, a ro-
bust, reusable class that can replace C-style pointer-based arrays. In Chapter 11, you’ll see
that vector achieves many of its capabilities by “overloading” C++’s built-in operators,
and you’ll learn how to customize operators for use with your own classes in similar ways.
For example, we create an Array class that, like class template vector, improves upon basic
array capabilities. Our Array class also provides additional features, such as the ability to
input and output entire arrays with operators >> and <<, respectively.

7.12 Wrap-Up
This chapter began our introduction to data structures, exploring the use of arrays and
vectors to store data in and retrieve data from lists and tables of values. The chapter ex-
amples demonstrated how to declare an array, initialize an array and refer to individual el-
ements of an array. We also illustrated how to pass arrays to functions and how to use the
const qualifier to enforce the principle of least privilege. Chapter examples also presented
basic searching and sorting techniques. You learned how to declare and manipulate mul-
tidimensional arrays. Finally, we demonstrated the capabilities of C++ Standard Library
class template vector, which provides a more robust alternative to arrays. In that example,
we also discussed basic exception-handling concepts.

We continue our coverage of data structures in Chapter 14, Templates, where we
build a stack class template and in Chapter 20, Custom Templatized Data Structures,
which introduces other dynamic data structures, such as lists, queues, stacks and trees, that
can grow and shrink as programs execute. Chapter 22 introduces several of the C++ Stan-
dard Library’s predefined data structures, which you can use instead of building their own.
Chapter 22 presents the full functionality of class template vector and discusses many
additional data structure classes, including list and deque, which are array-like data struc-
tures that can grow and shrink in response to a program’s changing storage requirements.

314 Chapter 7 Arrays and Vectors

We’ve now introduced the basic concepts of classes, objects, control statements, func-
tions and arrays. In Chapter 8, we present one of C++’s most powerful features—the
pointer. Pointers keep track of where data and functions are stored in memory, which
allows us to manipulate those items in interesting ways. After introducing basic pointer
concepts, we examine in detail the close relationship among arrays, pointers and strings.

Summary
Section 7.1 Introduction
• Data structures (p. 268) are collections of related data items. Arrays (p. 268) are data structures con-

sisting of related data items of the same type. Arrays are “static” entities in that they remain the same
size throughout program execution. (They may, of course, be of automatic storage class and hence
be created and destroyed each time the blocks in which they’re defined are entered and exited.)

Section 7.2 Arrays
• An array is a consecutive group of memory locations that share the same type.

• To refer to a particular location or element in an array, we specify the name of the array (p. 269)
and the position number of the particular element in the array.

• A program refers to any one of an array’s elements by giving the name of the array followed by
the index (p. 269) of the particular element in square brackets ([]).

• The first element in every array has index zero (p. 269) and is sometimes called the zeroth element.

• An index must be an integer or integer expression (using any integral type).

• The brackets used to enclose the index are an operator with the same precedence as parentheses.

Section 7.3 Declaring Arrays
• Arrays occupy space in memory. You specify the type of each element and the number of ele-

ments required by an array as follows:

type arrayName[arraySize];

and the compiler reserves the appropriate amount of memory.

• Arrays can be declared to contain any data type. For example, an array of type char can be used
to store a character string.

Section 7.4 Examples Using Arrays
• The elements of an array can be initialized in the array declaration by following the array name

with an equals sign and an initializer list (p. 272)—a comma-separated list (enclosed in braces)
of constant initializers (p. 272). When initializing an array with an initializer list, if there are few-
er initializers than elements in the array, the remaining elements are initialized to zero.

• If the array size is omitted from a declaration with an initializer list, the compiler determines the
number of elements in the array by counting the number of elements in the initializer list.

• If the array size and an initializer list are specified in an array declaration, the number of initial-
izers must be less than or equal to the array size.

• Constants must be initialized with a constant expression when they’re declared and cannot be
modified thereafter. Constants can be placed anywhere a constant expression is expected.

• C++ has no array bounds checking (p. 280). You should ensure that all array references remain
within the bounds of the array.

Summary 315

• A static local variable in a function definition exists for the duration of the program but is vis-
ible only in the function body.

• A program initializes static local arrays when their declarations are first encountered. If a static
array is not initialized explicitly by you, each element of that array is initialized to zero by the
compiler when the array is created.

Section 7.5 Passing Arrays to Functions
• To pass an array argument to a function, specify the name of the array without any brackets. To

pass an element of an array to a function, use the subscripted name of the array element as an
argument in the function call.

• Arrays are passed to functions by reference—the called functions can modify the element values
in the callers’ original arrays. The value of the name of the array is the address in the computer’s
memory of the first element of the array. Because the starting address of the array is passed, the
called function knows precisely where the array is stored in memory.

• Individual array elements are passed by value exactly as simple variables are.

• To receive an array argument, a function’s parameter list must specify that the function expects
to receive an array. The size of the array is not required between the array brackets.

• The type qualifier const (p. 273) can be used to prevent modification of array values in the caller
by code in a called function. When an array parameter is preceded by the const qualifier, the
elements of the array become constant in the function body, and any attempt to modify an ele-
ment of the array in the function body results in a compilation error.

Section 7.6 Case Study: Class GradeBook Using an Array to Store Grades
• Class variables (static data members; p. 290) are shared by all objects of the class in which the

variables are declared.

• A static data member can be accessed within the class definition and the member-function def-
initions like any other data member.

• A public static data member can also be accessed outside of the class, even when no objects of
the class exist, using the class name followed by the scope resolution operator (::) and the name
of the data member.

Section 7.7 Searching Arrays with Linear Search
• The linear search (p. 293) compares each array element with a search key (p. 293). Because the

array is not in any particular order, it’s just as likely that the value will be found in the first ele-
ment as the last. On average, a program must compare the search key with half the array ele-
ments. To determine that a value is not in the array, the program must compare the search key
to every element in the array.

Section 7.8 Sorting Arrays with Insertion Sort
• An array can be sorted using insertion sort (p. 295). The first iteration of this algorithm takes the

second element and, if it’s less than the first element, swaps it with the first element (i.e., the pro-
gram inserts the second element in front of the first element). The second iteration looks at the
third element and inserts it into the correct position with respect to the first two elements, so all
three elements are in order. At the ith iteration of this algorithm, the first i elements in the orig-
inal array will be sorted. For small arrays, the insertion sort is acceptable, but for larger arrays it’s
inefficient compared to other more sophisticated sorting algorithms.

Section 7.9 Multidimensional Arrays
• Multidimensional arrays (p. 297) with two dimensions are often used to represent tables of val-

ues (p. 297) consisting of information arranged in rows and columns.

316 Chapter 7 Arrays and Vectors

• Arrays that require two subscripts to identify a particular element are called two-dimensional ar-
rays (p. 297). An array with m rows and n columns is called an m-by-n array (p. 297).

Section 7.11 Introduction to C++ Standard Library Class Template vector
• C++ Standard Library class template vector (p. 307) represents a more robust alternative to ar-

rays featuring many capabilities that are not provided for C-style pointer-based arrays.

• By default, all the elements of an integer vector object are set to 0.

• A vector can be defined to store any data type using a declaration of the form

vector< type > name(size);

• Member function size (p. 311) of class template vector returns the number of elements in the
vector on which it’s invoked.

• The value of an element of a vector can be accessed or modified using square brackets ([]).

• Objects of standard class template vector can be compared directly with the equality (==) and
inequality (!=) operators. The assignment (=) operator can also be used with vector objects.

• An unmodifiable lvalue is an expression that identifies an object in memory (such as an element
in a vector), but cannot be used to modify that object. A modifiable lvalue also identifies an ob-
ject in memory, but can be used to modify the object.

• An exception (p. 312) indicates a problem that occurs while a program executes. The name “ex-
ception” suggests that the problem occurs infrequently—if the “rule” is that a statement normally
executes correctly, then the problem represents the “exception to the rule.”

• Exception handling (p. 312) enables you to create fault-tolerant programs (p. 312) that can re-
solve exceptions.

• To handle an exception, place any code that might throw an exception (p. 312) in a try statement.

• The try block (p. 312) contains the code that might throw an exception, and the catch block
(p. 312) contains the code that handles the exception if one occurs.

• When a try block terminates any variables declared in the try block go out of scope.

• A catch block (p. 312) declares a type and an exception parameter. Inside the catch block, you
can use the parameter’s identifier to interact with a caught exception object.

• An exception object’s what method (p. 313) returns the exception’s error message.

Self-Review Exercises
7.1 (Fill in the Blanks) Answer each of the following:

a) Lists and tables of values can be stored in or .
b) The elements of an array are related by the fact that they have the same and

.
c) The number used to refer to a particular element of an array is called its .
d) A(n) should be used to declare the size of an array, because it makes the pro-

gram more scalable.
e) The process of placing the elements of an array in order is called the array.
f) The process of determining if an array contains a particular key value is called

the array.
g) An array that uses two subscripts is referred to as a(n) array.

7.2 (True or False) State whether the following are true or false. If the answer is false, explain why.
a) An array can store many different types of values.
b) An array subscript should normally be of data type float.

Answers to Self-Review Exercises 317

c) If there are fewer initializers in an initializer list than the number of elements in the ar-
ray, the remaining elements are initialized to the last value in the initializer list.

d) It’s an error if an initializer list has more initializers than there are elements in the array.
e) An individual array element that is passed to a function and modified in that function

will contain the modified value when the called function completes execution.

7.3 (Write C++ Statements) Write one or more statements that perform the following tasks for
an array called fractions:

a) Define a constant integer variable arraySize initialized to 10.
b) Declare an array with arraySize elements of type double, and initialize the elements to 0.
c) Name the fourth element of the array.
d) Refer to array element 4.
e) Assign the value 1.667 to array element 9.
f) Assign the value 3.333 to the seventh element of the array.
g) Print array elements 6 and 9 with two digits of precision to the right of the decimal

point, and show the output that is actually displayed on the screen.
h) Print all the array elements using a for statement. Define the integer variable i as a con-

trol variable for the loop. Show the output.

7.4 (Double Array Questions) Answer the following questions regarding an array called table:
a) Declare the array to be an integer array and to have 3 rows and 3 columns. Assume that

the constant variable arraySize has been defined to be 3.
b) How many elements does the array contain?
c) Use a for statement to initialize each element of the array to the sum of its subscripts.

Assume that the integer variables i and j are declared as control variables.
d) Write a program segment to print the values of each element of array table in tabular

format with 3 rows and 3 columns. Assume that the array was initialized with the
declaration

int table[arraySize][arraySize] = { { 1, 8 }, { 2, 4, 6 }, { 5 } };

and the integer variables i and j are declared as control variables. Show the output.

7.5 (Find the Error) Find the error in each of the following program segments and correct the
error:

a) #include <iostream>;

b) arraySize = 10; // arraySize was declared const

c) Assume that int b[10] = {};

for (int i = 0; i <= 10; ++i)

b[i] = 1;

d) Assume that int a[2][2] = { { 1, 2 }, { 3, 4 } };

a[1, 1] = 5;

Answers to Self-Review Exercises
7.1 a) arrays, vectors. b) array name, type. c) subscript or index. d) constant variable.
e) sorting. f) searching. g) two-dimensional.

7.2 a) False. An array can store only values of the same type.
b) False. An array subscript should be an integer or an integer expression.
c) False. The remaining elements are initialized to zero.
d) True.
e) False. Individual elements of an array are passed by value. If the entire array is passed to

a function, then any modifications to the elements will be reflected in the original.

318 Chapter 7 Arrays and Vectors

7.3 a) const int arraySize = 10;

b) double fractions[arraySize] = { 0.0 };

c) fractions[3]

d) fractions[4]

e) fractions[9] = 1.667;

f) fractions[6] = 3.333;

g) cout << fixed << setprecision(2);

cout << fractions[6] << ' ' << fractions[9] << endl;

Output: 3.33 1.67.

h) for (int i = 0; i < arraySize; ++i)

cout << "fractions[" << i << "] = " << fractions[i] << endl;

Output:
fractions[0] = 0.0

fractions[1] = 0.0

fractions[2] = 0.0

fractions[3] = 0.0

fractions[4] = 0.0

fractions[5] = 0.0

fractions[6] = 3.333

fractions[7] = 0.0

fractions[8] = 0.0

fractions[9] = 1.667

7.4 a) int table[arraySize][arraySize];

b) Nine.
c) for (i = 0; i < arraySize; ++i)

for (j = 0; j < arraySize; ++j)

table[i][j] = i + j;

d) cout << " [0] [1] [2]" << endl;

for (int i = 0; i < arraySize; ++i) {

cout << '[' << i << "] ";

for (int j = 0; j < arraySize; ++j)

cout << setw(3) << table[i][j] << " ";

cout << endl;

}

Output:
[0] [1] [2]

[0] 1 8 0

[1] 2 4 6

[2] 5 0 0

7.5 a) Error: Semicolon at end of #include preprocessor directive.
Correction: Eliminate semicolon.

b) Error: Assigning a value to a constant variable using an assignment statement.
Correction: Initialize the constant variable in a const int arraySize declaration.

c) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the final value of the control variable to 9 or change <= to <.

d) Error: Array subscripting done incorrectly.
Correction: Change the statement to a[1][1] = 5;

Exercises 319

Exercises
7.6 (Fill in the Blanks) Fill in the blanks in each of the following:

a) The names of the four elements of array p (int p[4];) are , ,
and .

b) Naming an array, stating its type and specifying the number of elements in the array is
called the array.

c) By convention, the first subscript in a two-dimensional array identifies an element’s
and the second subscript identifies an element’s .

d) An m-by-n array contains rows, columns and elements.
e) The name of the element in row 3 and column 5 of array d is .

7.7 (True or False) Determine whether each of the following is true or false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.
b) An array definition reserves space for an array.
c) To indicate reserve 100 locations for integer array p, you write the declaration

p[100];

d) A for statement must be used to initialize the elements of a 15-element array to zero.
e) Nested for statements must be used to total the elements of a two-dimensional array.

7.8 (Write C++ Statements) Write C++ statements to accomplish each of the following:
a) Display the value of element 6 of character array f.
b) Input a value into element 4 of one-dimensional floating-point array b.
c) Initialize each of the 5 elements of one-dimensional integer array g to 8.
d) Total and print the elements of floating-point array c of 100 elements.
e) Copy array a into the first portion of array b. Assume double a[11], b[34];

f) Determine and print the smallest and largest values contained in 99-element floating-
point array w.

7.9 (Double Array Questions) Consider a 2-by-3 integer array t.
a) Write a declaration for t.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write the names of all the elements in row 1 of t.
f) Write the names of all the elements in column 2 of t.
g) Write a statement that sets the element of t in the first row and second column to zero.
h) Write a series of statements that initialize each element of t to zero. Do not use a loop.
i) Write a nested for statement that initializes each element of t to zero.
j) Write a statement that inputs the values for the elements of t from the keyboard.
k) Write a series of statements that determine and print the smallest value in array t.
l) Write a statement that displays the elements in row 0 of t.
m) Write a statement that totals the elements in column 3 of t.
n) Write a series of statements that prints the array t in neat, tabular format. List the column

subscripts as headings across the top and list the row subscripts at the left of each row.

7.10 (Salesperson Salary Ranges) Use a one-dimensional array to solve the following problem. A
company pays its salespeople on a commission basis. The salespeople each receive $200 per week
plus 9 percent of their gross sales for that week. For example, a salesperson who grosses $5000 in
sales in a week receives $200 plus 9 percent of $5000, or a total of $650. Write a program (using an
array of counters) that determines how many of the salespeople earned salaries in each of the follow-
ing ranges (assume that each salesperson’s salary is truncated to an integer amount):

320 Chapter 7 Arrays and Vectors

a) $200–299
b) $300–399
c) $400–499
d) $500–599
e) $600–699
f) $700–799
g) $800–899
h) $900–999
i) $1000 and over

7.11 (Bubble Sort) In the bubble sort algorithm, smaller values gradually “bubble” their way up-
ward to the top of the array like air bubbles rising in water, while the larger values sink to the bot-
tom. The bubble sort makes several passes through the array. On each pass, successive pairs of
elements are compared. If a pair is in increasing order (or the values are identical), we leave the values
as they are. If a pair is in decreasing order, their values are swapped in the array. The comparisons
on each pass proceed as follows—the 0th element value is compared to the 1st, the 1st is compared
to the 2nd, the 2nd is compared to the third, ..., the second-to-last element is compared to the last
element. Write a program that sorts an array of 10 integers using bubble sort.

7.12 (Bubble Sort Enhancements) The bubble sort described in Exercise 7.11 is inefficient for large
arrays. Make the following simple modifications to improve the performance of the bubble sort:

a) After the first pass, the largest number is guaranteed to be in the highest-numbered el-
ement of the array; after the second pass, the two highest numbers are “in place,” and
so on. Instead of making nine comparisons on every pass, modify the bubble sort to
make eight comparisons on the second pass, seven on the third pass, and so on.

b) The data in the array may already be in the proper order or near-proper order, so why
make nine passes if fewer will suffice? Modify the sort to check at the end of each pass
if any swaps have been made. If none have been made, then the data must already be in
the proper order, so the program should terminate. If swaps have been made, then at
least one more pass is needed.

7.13 (Single Array Questions) Write single statements that perform the following one-dimen-
sional array operations:

a) Initialize the 10 elements of integer array counts to zero.
b) Add 1 to each of the 15 elements of integer array bonus.
c) Read 12 values for double array monthlyTemperatures from the keyboard.
d) Print the 5 values of integer array bestScores in column format.

7.14 (Find the Errors) Find the error(s) in each of the following statements:
a) Assume that: int a[3];

cout << a[1] << " " << a[2] << " " << a[3] << endl;

b) double f[3] = { 1.1, 10.01, 100.001, 1000.0001 };

c) Assume that: double d[2][10];

d[1, 9] = 2.345;

7.15 (Duplicate Elimination) Use a one-dimensional array to solve the following problem. Read
in 20 numbers, each of which is between 10 and 100, inclusive. As each number is read, validate it
and store it in the array only if it isn’t a duplicate of a number already read. After reading all the
values, display only the unique values that the user entered. Provide for the “worst case” in which
all 20 numbers are different. Use the smallest possible array to solve this problem.

7.16 (Double Array Initialization) Label the elements of a 3-by-5 two-dimensional array sales

to indicate the order in which they’re set to zero by the following program segment:

Exercises 321

for (row = 0; row < 3; ++row)

for (column = 0; column < 5; ++column)
sales[row][column] = 0;

7.17 (Dice Rolling) Write a program that simulates the rolling of two dice. The program should
use rand to roll the first die and should use rand again to roll the second die. The sum of the two
values should then be calculated. [Note: Each die can show an integer value from 1 to 6, so the sum
of the two values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 being
the least frequent sums.] Figure 7.26 shows the 36 possible combinations of the two dice. Your pro-
gram should roll the two dice 36,000 times. Use a one-dimensional array to tally the numbers of
times each possible sum appears. Print the results in a tabular format. Also, determine if the totals
are reasonable (i.e., there are six ways to roll a 7, so approximately one-sixth of all the rolls should
be 7).

7.18 (What Does This Code Do?) What does the following program do?

Fig. 7.26 | The 36 possible outcomes of rolling two dice.

1 // Ex. 7.18: Ex07_18.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 int whatIsThis(int [], int); // function prototype
7
8 int main()
9 {

10 const int arraySize = 10;
11 int a[arraySize] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
12
13 int result = whatIsThis(a, arraySize);
14
15 cout << "Result is " << result << endl;
16 } // end main
17
18 // What does this function do?
19 int whatIsThis(int b[], int size)
20 {
21 if (size == 1) // base case
22 return b[0];
23 else // recursive step
24 return b[size - 1] + whatIsThis(b, size - 1);
25 } // end function whatIsThis

2

1

3

4

5

6

3

2

4

5

6

7

4

3

5

6

7

8

5

4

6

7

8

9

6

5

7

8

9

10

7

6

8

9

10

11

8

7

9

10

11

12

321 654

322 Chapter 7 Arrays and Vectors

7.19 (Craps Game Modification) Modify the program of Fig. 6.11 to play 1000 games of craps.
The program should keep track of the statistics and answer the following questions:

a) How many games are won on the 1st roll, 2nd roll, …, 20th roll, and after the 20th roll?
b) How many games are lost on the 1st roll, 2nd roll, …, 20th roll, and after the 20th roll?
c) What are the chances of winning at craps? [Note: You should discover that craps is one

of the fairest casino games. What do you suppose this means?]
d) What’s the average length of a game of craps?
e) Do the chances of winning improve with the length of the game?

7.20 (Airline Reservations System) A small airline has just purchased a computer for its new au-
tomated reservations system. You’ve been asked to program the new system. You are to write a pro-
gram to assign seats on each flight of the airline’s only plane (capacity: 10 seats).

Your program should display the following menu of alternatives—Please type 1 for "First

Class" and Please type 2 for "Economy". If the person types 1, your program should assign a seat
in the first class section (seats 1–5). If the person types 2, your program should assign a seat in the
economy section (seats 6–10). Your program should print a boarding pass indicating the person’s
seat number and whether it’s in the first class or economy section of the plane.

Use a one-dimensional array to represent the seating chart of the plane. Initialize all the ele-
ments of the array to false to indicate that all seats are empty. As each seat is assigned, set the cor-
responding elements of the array to true to indicate that the seat is no longer available.

Your program should, of course, never assign a seat that has already been assigned. When the
first class section is full, your program should ask the person if it’s acceptable to be placed in the
economy section (and vice versa). If yes, then make the appropriate seat assignment. If no, then
print the message "Next flight leaves in 3 hours."

7.21 (What Does This Code Do?) What does the following program do?

1 // Ex. 7.21: Ex07_21.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 void someFunction(int [], int, int); // function prototype
7
8 int main()
9 {

10 const int arraySize = 10;
11 int a[arraySize] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
12
13 cout << "The values in the array are:" << endl;
14 someFunction(a, 0, arraySize);
15 cout << endl;
16 } // end main
17
18 // What does this function do?
19 void someFunction(int b[], int current, int size)
20 {
21 if (current < size)
22 {
23 someFunction(b, current + 1, size);
24 cout << b[current] << " ";
25 } // end if
26 } // end function someFunction

Exercises 323

7.22 (Sales Summary) Use a two-dimensional array to solve the following problem. A company
has four salespeople (1 to 4) who sell five different products (1 to 5). Once a day, each salesperson
passes in a slip for each different type of product sold. Each slip contains the following:

a) The salesperson number
b) The product number
c) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from all of the slips for last month is available. Write a program that will read all this information
for last month’s sales (one salesperson’s data at a time) and summarize the total sales by salesperson
by product. All totals should be stored in the two-dimensional array sales. After processing all the
information for last month, print the results in tabular format with each of the columns represent-
ing a particular salesperson and each of the rows representing a particular product. Cross total each
row to get the total sales of each product for last month; cross total each column to get the total
sales by salesperson for last month. Your tabular printout should include these cross totals to the
right of the totaled rows and to the bottom of the totaled columns.

7.23 (Turtle Graphics) The Logo language, which is popular among elementary school children,
made the concept of turtle graphics famous. Imagine a mechanical turtle that walks around the room
under the control of a C++ program. The turtle holds a pen in one of two positions, up or down.
While the pen is down, the turtle traces out shapes as it moves; while the pen is up, the turtle moves
about freely without writing anything. In this problem, you’ll simulate the operation of the turtle
and create a computerized sketchpad as well.

Use a 20-by-20 array floor that is initialized to false. Read commands from an array that
contains them. Keep track of the current position of the turtle at all times and whether the pen is
currently up or down. Assume that the turtle always starts at position (0, 0) of the floor with its
pen up. The set of turtle commands your program must process are shown in Fig. 7.27.

Suppose that the turtle is somewhere near the center of the floor. The following “program”
would draw and print a 12-by-12 square and end with the pen in the up position:

2
5,12
3
5,12
3
5,12
3

Command Meaning

1 Pen up

2 Pen down

3 Turn right

4 Turn left

5,10 Move forward 10 spaces
(or a number other than 10)

6 Print the 20-by-20 array

9 End of data (sentinel)

Fig. 7.27 | Turtle graphics commands.

324 Chapter 7 Arrays and Vectors

5,12
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array floor to true. When
the 6 command (print) is given, wherever there is a true in the array, display an asterisk or some
other character you choose. Wherever there is a zero, display a blank. Write a program to imple-
ment the turtle graphics capabilities discussed here. Write several turtle graphics programs to draw
interesting shapes. Add other commands to increase the power of your turtle graphics language.

7.24 (Knight’s Tour) One of the more interesting puzzlers for chess buffs is the Knight’s Tour
problem. The question is this: Can the chess piece called the knight move around an empty chess-
board and touch each of the 64 squares once and only once? We study this intriguing problem in
depth in this exercise.

The knight makes L-shaped moves (over two in one direction then over one in a perpendicu-
lar direction). Thus, from a square in the middle of an empty chessboard, the knight can make
eight different moves (numbered 0 through 7) as shown in Fig. 7.28.

a) Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight’s Tour by hand.
Put a 1 in the first square you move to, a 2 in the second square, a 3 in the third, etc.
Before starting the tour, estimate how far you think you’ll get, remembering that a full
tour consists of 64 moves. How far did you get? Was this close to your estimate?

b) Now let’s develop a program that will move the knight around a chessboard. The board
is represented by an 8-by-8 two-dimensional array board. Each of the squares is initial-
ized to zero. We describe each of the eight possible moves in terms of both their hori-
zontal and vertical components. For example, a move of type 0, as shown in Fig. 7.28,
consists of moving two squares horizontally to the right and one square vertically up-
ward. Move 2 consists of moving one square horizontally to the left and two squares
vertically upward. Horizontal moves to the left and vertical moves upward are indicated
with negative numbers. The eight moves may be described by two one-dimensional ar-
rays, horizontal and vertical, as follows:

horizontal[0] = 2 vertical[0] = -1
horizontal[1] = 1 vertical[1] = -2
horizontal[2] = -1 vertical[2] = -2
horizontal[3] = -2 vertical[3] = -1
horizontal[4] = -2 vertical[4] = 1
horizontal[5] = -1 vertical[5] = 2
horizontal[6] = 1 vertical[6] = 2
horizontal[7] = 2 vertical[7] = 1

Fig. 7.28 | The eight possible moves of the knight.

0 54321

K

2 1

3

4

0

7

5 6

1

2

0

3

4

5

6

7

6 7

Exercises 325

Let the variables currentRow and currentColumn indicate the row and column of
the knight’s current position. To make a move of type moveNumber, where moveNumber is
between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber];
currentColumn += horizontal[moveNumber];

Keep a counter that varies from 1 to 64. Record the latest count in each square the
knight moves to. Remember to test each potential move to see if the knight has already
visited that square, and, of course, test every potential move to make sure that the
knight does not land off the chessboard. Now write a program to move the knight
around the chessboard. Run the program. How many moves did the knight make?

c) After attempting to write and run a Knight’s Tour program, you’ve probably developed
some valuable insights. We’ll use these to develop a heuristic (or strategy) for moving
the knight. Heuristics do not guarantee success, but a carefully developed heuristic
greatly improves the chance of success. You may have observed that the outer squares
are more troublesome than the squares nearer the center of the board. In fact, the most
troublesome, or inaccessible, squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most
troublesome squares first and leave open those that are easiest to get to, so when the
board gets congested near the end of the tour, there will be a greater chance of success.

We may develop an “accessibility heuristic” by classifying each square according to
how accessible it’s then always moving the knight to the square (within the knight’s L-
shaped moves, of course) that is most inaccessible. We label a two-dimensional array
accessibility with numbers indicating from how many squares each particular square
is accessible. On a blank chessboard, each center square is rated as 8, each corner square is
rated as 2 and the other squares have accessibility numbers of 3, 4 or 6 as follows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Now write a version of the Knight’s Tour program using the accessibility heuristic.
At any time, the knight should move to the square with the lowest accessibility num-
ber. In case of a tie, the knight may move to any of the tied squares. Therefore, the tour
may begin in any of the four corners. [Note: As the knight moves around the chess-
board, your program should reduce the accessibility numbers as more and more
squares become occupied. In this way, at any given time during the tour, each available
square’s accessibility number will remain equal to precisely the number of squares from
which that square may be reached.] Run this version of your program. Did you get a
full tour? Now modify the program to run 64 tours, one starting from each square of
the chessboard. How many full tours did you get?

d) Write a version of the Knight’s Tour program which, when encountering a tie between
two or more squares, decides what square to choose by looking ahead to those squares
reachable from the “tied” squares. Your program should move to the square for which
the next move would arrive at a square with the lowest accessibility number.

7.25 (Knight’s Tour: Brute Force Approaches) In Exercise 7.24, we developed a solution to the
Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates many so-
lutions and executes efficiently.

326 Chapter 7 Arrays and Vectors

As computers continue increasing in power, we’ll be able to solve more problems with sheer
computer power and relatively unsophisticated algorithms. This is the “brute force” approach to
problem solving.

a) Use random number generation to enable the knight to walk around the chessboard (in
its legitimate L-shaped moves, of course) at random. Your program should run one tour
and print the final chessboard. How far did the knight get?

b) Most likely, the preceding program produced a relatively short tour. Now modify your
program to attempt 1000 tours. Use a one-dimensional array to keep track of the num-
ber of tours of each length. When your program finishes attempting the 1000 tours, it
should print this information in neat tabular format. What was the best result?

c) Most likely, the preceding program gave you some “respectable” tours, but no full tours.
Now “pull all the stops out” and simply let your program run until it produces a full
tour. [Caution: This version of the program could run for hours on a powerful comput-
er.] Once again, keep a table of the number of tours of each length, and print this table
when the first full tour is found. How many tours did your program attempt before pro-
ducing a full tour? How much time did it take?

d) Compare the brute force version of the Knight’s Tour with the accessibility heuristic
version. Which required a more careful study of the problem? Which algorithm was
more difficult to develop? Which required more computer power? Could we be certain
(in advance) of obtaining a full tour with the accessibility heuristic approach? Could we
be certain (in advance) of obtaining a full tour with the brute force approach? Argue the
pros and cons of brute force problem solving in general.

7.26 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem. Simply stated:
Is it possible to place eight queens on an empty chessboard so that no queen is “attacking” any other,
i.e., no two queens are in the same row, the same column, or along the same diagonal? Use the think-
ing developed in Exercise 7.24 to formulate a heuristic for solving the Eight Queens problem. Run
your program. [Hint: It’s possible to assign a value to each square of the chessboard indicating how
many squares of an empty chessboard are “eliminated” if a queen is placed in that square. Each of
the corners would be assigned the value 22, as in Fig. 7.29. Once these “elimination numbers” are
placed in all 64 squares, an appropriate heuristic might be: Place the next queen in the square with
the smallest elimination number. Why is this strategy intuitively appealing?]

7.27 (Eight Queens: Brute Force Approaches) In this exercise, you’ll develop several brute-force
approaches to solving the Eight Queens problem introduced in Exercise 7.26.

a) Solve the Eight Queens exercise, using the random brute force technique developed in
Exercise 7.25.

Fig. 7.29 | The 22 squares eliminated by placing a queen in the upper-left corner.

* *****

* *

* *

* *

* *

* *

*

*

*

*

*

*

Exercises 327

b) Use an exhaustive technique, i.e., try all possible combinations of eight queens on the
chessboard.

c) Why do you suppose the exhaustive brute force approach may not be appropriate for
solving the Knight’s Tour problem?

d) Compare and contrast the random brute force and exhaustive brute force approaches in
general.

7.28 (Knight’s Tour: Closed-Tour Test) In the Knight’s Tour, a full tour occurs when the knight
makes 64 moves touching each square of the chess board once and only once. A closed tour occurs
when the 64th move is one move away from the location in which the knight started the tour. Mod-
ify the Knight’s Tour program you wrote in Exercise 7.24 to test for a closed tour if a full tour has
occurred.

7.29 (The Sieve of Eratosthenes) A prime integer is any integer that is evenly divisible only by
itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It operates as follows:

a) Create an array with all elements initialized to 1 (true). Array elements with prime sub-
scripts will remain 1. All other array elements will eventually be set to zero. You’ll ignore
elements 0 and 1 in this exercise.

b) Starting with array subscript 2, every time an array element is found whose value is 1,
loop through the remainder of the array and set to zero every element whose subscript
is a multiple of the subscript for the element with value 1. For array subscript 2, all el-
ements beyond 2 in the array that are multiples of 2 will be set to zero (subscripts 4, 6,
8, 10, etc.); for array subscript 3, all elements beyond 3 in the array that are multiples
of 3 will be set to zero (subscripts 6, 9, 12, 15, etc.); and so on.

When this process is complete, the array elements that are still set to one indicate that the subscript
is a prime number. These subscripts can then be printed. Write a program that uses an array of
1000 elements to determine and print the prime numbers between 2 and 999. Ignore element 0 of
the array.

7.30 (Bucket Sort) A bucket sort begins with a one-dimensional array of positive integers to be
sorted and a two-dimensional array of integers with rows subscripted from 0 to 9 and columns sub-
scripted from 0 to n – 1, where n is the number of values in the array to be sorted. Each row of the
two-dimensional array is referred to as a bucket. Write a function bucketSort that takes an integer
array and the array size as arguments and performs as follows:

a) Place each value of the one-dimensional array into a row of the bucket array based on
the value’s ones digit. For example, 97 is placed in row 7, 3 is placed in row 3 and 100
is placed in row 0. This is called a “distribution pass.”

b) Loop through the bucket array row by row, and copy the values back to the original ar-
ray. This is called a “gathering pass.” The new order of the preceding values in the one-
dimensional array is 100, 3 and 97.

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).

On the second pass, 100 is placed in row 0, 3 is placed in row 0 (because 3 has no tens digit) and
97 is placed in row 9. After the gathering pass, the order of the values in the one-dimensional array
is 100, 3 and 97. On the third pass, 100 is placed in row 1, 3 is placed in row zero and 97 is placed
in row zero (after the 3). After the last gathering pass, the original array is now in sorted order.

Note that the two-dimensional array of buckets is 10 times the size of the integer array being
sorted. This sorting technique provides better performance than an insertion sort, but requires
much more memory. The insertion sort requires space for only one additional element of data.
This is an example of the space-time trade-off: The bucket sort uses more memory than the inser-
tion sort, but performs better. This version of the bucket sort requires copying all the data back to
the original array on each pass. Another possibility is to create a second two-dimensional bucket
array and repeatedly swap the data between the two bucket arrays.

328 Chapter 7 Arrays and Vectors

Recursion Exercises
7.31 (Selection Sort) A selection sort searches an array looking for the smallest element. Then,
the smallest element is swapped with the first element of the array. The process is repeated for the
subarray beginning with the second element of the array. Each pass of the array results in one ele-
ment being placed in its proper location. This sort performs comparably to the insertion sort—for
an array of n elements, n – 1 passes must be made, and for each subarray, n – 1 comparisons must
be made to find the smallest value. When the subarray being processed contains one element, the
array is sorted. Write recursive function selectionSort to perform this algorithm.

7.32 (Palindromes) A palindrome is a string that is spelled the same way forward and backward.
Examples of palindromes include “radar” and “able was i ere i saw elba.” Write a recursive function
testPalindrome that returns true if a string is a palindrome, and false otherwise. Note that like
an array, the square brackets ([]) operator can be used to iterate through the characters in a string.

7.33 (Linear Search) Modify the program in Fig. 7.18 to use recursive function linearSearch to
perform a linear search of the array. The function should receive an integer array and the size of the
array as arguments. If the search key is found, return the array subscript; otherwise, return –1.

7.34 (Eight Queens) Modify the Eight Queens program you created in Exercise 7.26 to solve the
problem recursively.

7.35 (Print an Array) Write a recursive function printArray that takes an array, a starting sub-
script and an ending subscript as arguments, returns nothing and prints the array. The function
should stop processing and return when the starting subscript equals the ending subscript.

7.36 (Print a String Backward) Write a recursive function stringReverse that takes a string

and a starting subscript as arguments, prints the string backward and returns nothing. The function
should stop processing and return when the end of the string is encountered. Note that like an array
the square brackets ([]) operator can be used to iterate through the characters in a string.

7.37 (Find the Minimum Value in an Array) Write a recursive function recursiveMinimum that
takes an integer array, a starting subscript and an ending subscript as arguments, and returns the
smallest element of the array. The function should stop processing and return when the starting sub-
script equals the ending subscript.

vector Exercises
7.38 (Salesperson Salary Ranges with vector) Use a vector of integers to solve the problem de-
scribed in Exercise 7.10.

7.39 (Dice Rolling with vector) Modify the dice-rolling program you created in Exercise 7.17
to use a vector to store the numbers of times each possible sum of the two dice appears.

7.40 (Find the Minimum Value in a vector) Modify your solution to Exercise 7.37 to find the
minimum value in a vector instead of an array.

Making a Difference
7.41 (Polling) The Internet and the web are enabling more people to network, join a cause, voice
opinions, and so on. The presidential candidates in 2008 used the Internet intensively to get out
their messages and raise money for their campaigns. In this exercise, you’ll write a simple polling
program that allows users to rate five social-consciousness issues from 1 (least important) to 10
(most important). Pick five causes that are important to you (e.g., political issues, global environ-
mental issues). Use a one-dimensional array topics (of type string) to store the five causes. To sum-
marize the survey responses, use a 5-row, 10-column two-dimensional array responses (of type
int), each row corresponding to an element in the topics array. When the program runs, it should

Making a Difference 329

ask the user to rate each issue. Have your friends and family respond to the survey. Then have the
program display a summary of the results, including:

a) A tabular report with the five topics down the left side and the 10 ratings across the top,
listing in each column the number of ratings received for each topic.

b) To the right of each row, show the average of the ratings for that issue.
c) Which issue received the highest point total? Display both the issue and the point total.
d) Which issue received the lowest point total? Display both the issue and the point total.

8 Pointers

Addresses are given to us to
conceal our whereabouts.
—Saki (H. H. Munro)

By indirection find direction
out.
—William Shakespeare

Many things, having full
reference
To one consent, may work
contrariously.
—William Shakespeare

You will find it a very good
practice always to verify your
references, sir!
—Dr. Routh

O b j e c t i v e s
In this chapter you’ll learn:

■ What pointers are.

■ The similarities and
differences between pointers
and references, and when to
use each.

■ To use pointers to pass
arguments to functions by
reference.

■ The close relationships
between pointers and arrays.

■ To use arrays of pointers.

■ Basic pointer-based string
processing.

■ To use pointers to functions.

8.1 Introduction 331

8.1 Introduction
This chapter discusses one of the most powerful features of the C++ programming lan-
guage, the pointer. In Chapter 6, we saw that references can be used to perform pass-by-
reference. Pointers also enable pass-by-reference and can be used to create and manipulate
dynamic data structures that can grow and shrink, such as linked lists, queues, stacks and
trees. This chapter explains basic pointer concepts and reinforces the intimate relationship
among arrays and pointers. The view of arrays as pointers derives from the C programming
language. As we saw in Chapter 7, the C++ Standard Library class vector provides an im-
plementation of arrays as full-fledged objects.

Similarly, C++ actually offers two types of strings—string class objects (which we’ve
been using since Chapter 3) and C-style, pointer-based strings. This chapter on pointers
briefly introduces C strings to deepen your knowledge of pointers. C strings are widely
used in legacy C and C++ systems. We discuss C strings in depth in Chapter 21. In new
software development projects, you should favor string class objects.

We’ll examine the use of pointers with classes in Chapter 13, Object-Oriented Pro-
gramming: Polymorphism, where we’ll see that the so-called “polymorphic processing”
associated with object-oriented programming is performed with pointers and references.
Chapter 20, Custom Templatized Data Structures, presents examples of creating and
using dynamic data structures that are implemented with pointers.

8.2 Pointer Variable Declarations and Initialization
Pointer variables contain memory addresses as their values. Normally, a variable directly
contains a specific value. A pointer contains the memory address of a variable that, in turn,
contains a specific value. In this sense, a variable name directly references a value, and a
pointer indirectly references a value (Fig. 8.1). Referencing a value through a pointer is
called indirection. Diagrams typically represent a pointer as an arrow from the variable
that contains an address to the variable located at that address in memory.

Pointers, like any other variables, must be declared before they can be used. For
example, for the pointer in Fig. 8.1, the declaration

8.1 Introduction
8.2 Pointer Variable Declarations and

Initialization
8.3 Pointer Operators
8.4 Pass-by-Reference with Pointers
8.5 Using const with Pointers
8.6 Selection Sort Using Pass-by-

Reference
8.7 sizeof Operator

8.8 Pointer Expressions and Pointer
Arithmetic

8.9 Relationship Between Pointers and
Arrays

8.10 Pointer-Based String Processing
8.11 Arrays of Pointers
8.12 Function Pointers
8.13 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Building Your Own Computer

int *countPtr, count;

332 Chapter 8 Pointers

declares the variable countPtr to be of type int * (i.e., a pointer to an int value) and is
read (right to left), “countPtr is a pointer to int.” Also, variable count in the preceding
declaration is declared to be an int, not a pointer to an int. The * in the declaration ap-
plies only to countPtr. Each variable being declared as a pointer must be preceded by an
asterisk (*). For example, the declaration

indicates that both xPtr and yPtr are pointers to double values. When * appears in a dec-
laration, it isn’t an operator; rather, it indicates that the variable being declared is a pointer.
Pointers can be declared to point to objects of any data type.

Pointers should be initialized to 0, NULL or an address of the corresponding type either
when they’re declared or in an assignment. A pointer with the value 0 or NULL “points to
nothing” and is known as a null pointer. Symbolic constant NULL is defined in several stan-
dard library headers to represent the value 0. Initializing a pointer to NULL is equivalent to
initializing a pointer to 0, but in C++, 0 is used by convention. When 0 is assigned, it’s
converted to a pointer of the appropriate type. The value 0 is the only integer value that
can be assigned directly to a pointer variable without first casting the integer to a pointer
type. [Note: In the new standard, you should use the constant nullptr to initialize a
pointer instead of 0 or NULL. Several C++ compilers already implement this constant.]

8.3 Pointer Operators
The address operator (&) is a unary operator that obtains the memory address of its operand.
For example, assuming the declarations

Fig. 8.1 | Directly and indirectly referencing a variable.

double *xPtr, *yPtr;

Common Programming Error 8.1
Assuming that the * used to declare a pointer distributes to all names in a declaration’s
comma-separated list of variables can lead to errors. Each pointer must be declared with
the * prefixed to the name (with or without spaces in between). Declaring only one vari-
able per declaration helps avoid these types of errors and improves program readability.

Good Programming Practice 8.1
Although it isn’t a requirement, including the letters Ptr in a pointer variable name
makes it clear that the variable is a pointer and that it must be handled accordingly.

Error-Prevention Tip 8.1
Initialize pointers to prevent pointing to unknown or uninitialized areas of memory.

7
Pointer countPtr indirectly
references a variable that
contains the value 7

countcountPtr

7
count directly references a
variable that contains the value 7

count

8.3 Pointer Operators 333

the statement

assigns the address of the variable y to pointer variable yPtr. Then variable yPtr is said to
“point to” y. Now, yPtr indirectly references variable y’s value. The use of the & in the pre-
ceding statement is not the same as the use of the & in a reference variable declaration,
which is always preceded by a data-type name. When declaring a reference, the & is part of
the type. In an expression like &y, the & is the address operator.

Figure 8.2 shows a schematic representation of memory after the preceding assign-
ment. The “pointing relationship” is indicated by drawing an arrow from the box that rep-
resents the pointer yPtr in memory to the box that represents the variable y in memory.

Figure 8.3 shows another pointer representation in memory with integer variable y

stored at memory location 600000 and pointer variable yPtr stored at memory location
500000. The operand of the address operator must be an lvalue; the address operator
cannot be applied to constants or to expressions that do not result in references.

The * operator, commonly referred to as the indirection operator or dereferencing
operator, returns a synonym (i.e., an alias or a nickname) for the object to which its pointer
operand points. For example (referring again to Fig. 8.2), the statement

prints the value of variable y, namely, 5, just as the statement

would. Using * in this manner is called dereferencing a pointer. A dereferenced pointer
may also be used on the left side of an assignment statement, as in

which would assign 9 to y in Fig. 8.3. The dereferenced pointer may also be used to receive
an input value as in

which places the input value in y. The dereferenced pointer is an lvalue.

int y = 5; // declare variable y
int *yPtr; // declare pointer variable yPtr

yPtr = &y; // assign address of y to yPtr

Fig. 8.2 | Graphical representation of a pointer pointing to a variable in memory.

Fig. 8.3 | Representation of y and yPtr in memory.

cout << *yPtr << endl;

cout << y << endl;

*yPtr = 9;

cin >> *yPtr;

5

yyPtr

5

y

600000
location
500000

yPtr

location
600000

334 Chapter 8 Pointers

The program in Fig. 8.4 demonstrates the & and * pointer operators. Memory loca-
tions are output by << in this example as hexadecimal (i.e., base-16) integers. (See
Appendix D, Number Systems, for more information on hexadecimal integers.) The hexa-
decimal memory addresses output by this program are compiler and operating-system
dependent, so you may get different results when you run the program.

Common Programming Error 8.2
Dereferencing an uninitialized pointer could cause a fatal execution-time error, or it
could accidentally modify important data and allow the program to run to completion,
possibly with incorrect results.

Common Programming Error 8.3
An attempt to dereference a variable that is not a pointer is a compilation error.

Common Programming Error 8.4
Dereferencing a null pointer is often a fatal execution-time error.

1 // Fig. 8.4: fig08_04.cpp
2 // Pointer operators & and *.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int a; // a is an integer
9

10
11 a = 7; // assigned 7 to a
12
13
14 cout << "The address of a is " <<
15 << "\nThe value of aPtr is " << ;
16 cout << "\n\nThe value of a is " << a
17 << "\nThe value of *aPtr is " << ;
18 cout << "\n\nShowing that * and & are inverses of "
19 << "each other.\n&*aPtr = " <<
20 << "\n*&aPtr = " << << endl;
21 } // end main

The address of a is 0012F580
The value of aPtr is 0012F580

The value of a is 7
The value of *aPtr is 7

Showing that * and & are inverses of each other.
&*aPtr = 0012F580
*&aPtr = 0012F580

Fig. 8.4 | Pointer operators & and *.

int *aPtr; // aPtr is an int * which is a pointer to an integer

aPtr = &a; // assign the address of a to aPtr

&a
aPtr

*aPtr

&*aPtr
*&aPtr

8.4 Pass-by-Reference with Pointers 335

The address of a (line 14) and the value of aPtr (line 15) are identical in the output,
confirming that the address of a is indeed assigned to the pointer variable aPtr. The & and
* operators are inverses of one another—when they’re applied consecutively to aPtr in
either order, they “cancel one another out” yielding the same result (the value in aPtr).

Figure 8.5 lists the precedence and associativity of the operators introduced to this
point. The address (&) and dereferencing operator (*) are unary operators on the third level.

8.4 Pass-by-Reference with Pointers
There are three ways in C++ to pass arguments to a function—pass-by-value, pass-by-ref-
erence with reference arguments and pass-by-reference with pointer arguments.
Chapter 6 compared and contrasted pass-by-value and pass-by-reference with reference ar-
guments. In this section, we explain pass-by-reference with pointer arguments.

As we saw in Chapter 6, return can be used to return one value from a called function
to a caller (or to simply return control). We also saw that arguments can be passed to a
function using reference arguments. Such arguments enable the called function to modify
the original values of the arguments in the caller. Reference arguments also enable programs
to pass large data objects to a function and avoid the overhead of passing the objects by
value (which, of course, requires making a copy of the object). Pointers, like references,
also can be used to modify one or more variables in the caller or to pass pointers to large
data objects to avoid the overhead of passing the objects by value.

You can use pointers and the indirection operator (*) to accomplish pass-by-reference
(exactly as pass-by-reference is done in C programs—C does not have references). When
calling a function with an argument that should be modified, the address of the argument

Operators Associativity Type

:: () [See caution in Fig. 2.10] highest

() [] left to right function call/array access

++ -- static_cast<type>(operand) left to right unary (postfix)

++ -- + - ! & * right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Fig. 8.5 | Operator precedence and associativity.

336 Chapter 8 Pointers

is passed. This is normally accomplished by applying the address operator (&) to the name
of the variable whose value will be modified.

As we saw in Chapter 7, arrays are not passed using operator &, because the name of
the array is the starting location in memory of the array (i.e., an array name is already a
pointer). The name of the array arrayName is equivalent to &arrayName[0]. When the
address of a variable is passed to a function, the indirection operator (*) can be used in the
function to form a synonym for the name of the variable (i.e., an lvalue)—this in turn can
be used to modify the variable’s value at that location in the caller’s memory.

Figure 8.6 and Fig. 8.7 present two versions of a function that cubes an integer—
cubeByValue and cubeByReference. Figure 8.6 passes variable number by value to func-
tion cubeByValue (line 14). Function cubeByValue (lines 19–22) cubes its argument and
passes the new value back to main using a return statement (line 21). The new value is
assigned to number (line 14) in main. The calling function has the opportunity to examine
the function call’s result before modifying variable number’s value. For example, we could
have stored the result of cubeByValue in another variable, examined its value and assigned
the result to number only after determining that the returned value was reasonable.

Figure 8.7 passes the variable number to function cubeByReference using pass-by-ref-
erence with a pointer argument (line 15)—the address of number is passed to the function.
Function cubeByReference (lines 21–24) specifies parameter nPtr (a pointer to int) to
receive its argument. The function dereferences the pointer and cubes the value to which
nPtr points (line 23). This directly changes the value of number in main.

1 // Fig. 8.6: fig08_06.cpp
2 // Pass-by-value used to cube a variable’s value.
3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10 int number = 5;
11
12 cout << "The original value of number is " << number;
13
14
15 cout << "\nThe new value of number is " << number << endl;
16 } // end main
17
18
19
20
21
22

The original value of number is 5
The new value of number is 125

Fig. 8.6 | Pass-by-value used to cube a variable’s value.

int cubeByValue(int); // prototype

number = cubeByValue(number); // pass number by value to cubeByValue

// calculate and return cube of integer argument
int cubeByValue(int n)
{

return n * n * n; // cube local variable n and return result
} // end function cubeByValue

8.4 Pass-by-Reference with Pointers 337

A function receiving an address as an argument must define a pointer parameter to
receive the address. For example, the header for function cubeByReference (line 21) spec-
ifies that cubeByReference receives the address of an int variable (i.e., a pointer to an int)
as an argument, stores the address locally in nPtr and does not return a value.

The function prototype for cubeByReference (line 7) contains int * in parentheses.
As with other variable types, it isn’t necessary to include the names of pointer parameters
in function prototypes. Parameter names included for documentation purposes are
ignored by the compiler.

Figures 8.8–8.9 analyze graphically the execution of the programs in Fig. 8.6 and
Fig. 8.7, respectively.

Common Programming Error 8.5
Not dereferencing a pointer when it’s necessary to do so to obtain the value to which the
pointer points is an error.

1 // Fig. 8.7: fig08_07.cpp
2 // Pass-by-reference with a pointer argument used to cube a
3 // variable’s value.
4 #include <iostream>
5 using namespace std;
6
7
8
9 int main()

10 {
11 int number = 5;
12
13 cout << "The original value of number is " << number;
14
15
16
17 cout << "\nThe new value of number is " << number << endl;
18 } // end main
19
20
21
22
23
24

The original value of number is 5
The new value of number is 125

Fig. 8.7 | Pass-by-reference with a pointer argument used to cube a variable’s value.

Software Engineering Observation 8.1
Use pass-by-value to pass arguments to a function unless the caller explicitly requires that
the called function directly modify the value of the argument variable in the caller. This
is another example of the principle of least privilege.

void cubeByReference(int *); // prototype

cubeByReference(&number); // pass number address to cubeByReference

// calculate cube of *nPtr; modifies variable number in main
void cubeByReference(int *nPtr)
{

*nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
} // end function cubeByReference

338 Chapter 8 Pointers

Fig. 8.8 | Pass-by-value analysis of the program of Fig. 8.6.

Step 1: Before main calls cubeByValue:

int main()
{

int number = 5;

number = cubeByValue(number);
}

125

125

125125

5

number

5

number

5

number

125

number

5

number

int cubeByValue(int n)
{

return n * n * n;
}

undefined

n

undefined

n

undefined

n

Step 2: After cubeByValue receives the call:

int main()
{

int number = 5;

number = cubeByValue(number);
}

int cubeByValue(int n)
{

return n * n * n;
}

5

n

5

n

Step 3: After cubeByValue cubes parameter n and before cubeByValue returns to main:

int main()
{

int number = 5;

number = cubeByValue(number);
}

int cubeByValue(int n)
{

return n * n * n;
}

Step 4: After cubeByValue returns to main and before assigning the result to number:

int main()
{

int number = 5;

number = cubeByValue(number);
}

int cubeByValue(int n)
{

return n * n * n;
}

Step 5: After main completes the assignment to number:

int main()
{

int number = 5;

number = cubeByValue(number);
}

int cubeByValue(int n)
{

return n * n * n;
}

8.5 Using const with Pointers 339

In the function header and in the prototype for a function that expects a one-dimen-
sional array as an argument, the pointer notation in the parameter list of cubeByReference
may be used. The compiler does not differentiate between a function that receives a pointer and
a function that receives a one-dimensional array. This, of course, means that the function
must “know” when it’s receiving an array or simply a single variable which is being passed
by reference. When the compiler encounters a function parameter for a one-dimensional
array of the form int b[], the compiler converts the parameter to the pointer notation
int *b (that is, “b is a pointer to an integer”). Both forms of declaring a function parameter
as a one-dimensional array are interchangeable.

8.5 Using const with Pointers
Recall that const enables you to inform the compiler that the value of a particular variable
should not be modified. Many possibilities exist for using (or not using) const with func-
tion parameters. How do you choose the most appropriate of these possibilities? Let the
principle of least privilege be your guide. Always give a function enough access to the data
in its parameters to accomplish its specified task, but no more. This section discusses how
to combine const with pointer declarations to enforce the principle of least privilege.

Fig. 8.9 | Pass-by-reference analysis (with a pointer argument) of the program of Fig. 8.7.

Step 1: Before main calls cubeByReference:

int main()
{

int number = 5;

cubeByReference(&number);
}

125

5

number

125

number

5

number

void cubeByReference(int *nPtr)
{

*nPtr = *nPtr * *nPtr * *nPtr;
}

undefined

nPtr

nPtr

nPtr

Step 2: After cubeByReference receives the call and before *nPtr is cubed:

int main()
{

int number = 5;

cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{

*nPtr = *nPtr * *nPtr * *nPtr;
}

Step 3: After *nPtr is cubed and before program control returns to main:

int main()
{

int number = 5;

cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{

*nPtr = *nPtr * *nPtr * *nPtr;
}

called function modifies caller’s
variable

call establishes this pointer

340 Chapter 8 Pointers

Chapter 6 explained that when an argument is passed by value, a copy of the argument
in the function call is made and passed to the function. If the copy is modified in the func-
tion, the original value in the caller does not change. In many cases, a value passed to a func-
tion is modified in that function. However, in some instances, the value should not be
altered in the called function, even though the called function manipulates only a copy of
the original value.

Consider a function that takes a one-dimensional array and its size as arguments and
subsequently prints the array. Such a function should loop through the array and output
each element individually. The size of the array is used in the function body to determine
the array’s highest subscript so the loop can terminate when the printing completes. The
array’s size does not need to change in the function body, so it should be declared const

to ensure that it will not change. Because the array is only being printed, it, too, should be
declared const. This is especially important because arrays are always passed by reference
and could easily be changed in the called function. If an attempt is made to modify a const
value, an error occurs.

There are four ways to pass a pointer to a function: a nonconstant pointer to noncon-
stant data, a nonconstant pointer to constant data (Fig. 8.10), a constant pointer to non-
constant data (Fig. 8.11) and a constant pointer to constant data (Fig. 8.12). Each
combination provides a different level of access privilege.

Nonconstant Pointer to Nonconstant Data
The highest access is granted by a nonconstant pointer to nonconstant data—the data can
be modified through the dereferenced pointer, and the pointer can be modified to point
to other data. Such a pointer’s declaration (e.g., int *countPtr) does not include const.

Nonconstant Pointer to Constant Data
A nonconstant pointer to constant data is a pointer that can be modified to point to any
data item of the appropriate type, but the data to which it points cannot be modified
through that pointer. Such a pointer might be used to receive an array argument to a func-
tion that will process each array element, but should not be allowed to modify the data.
Any attempt to modify the data in the function results in a compilation error. The decla-
ration for such a pointer places const to the left of the pointer’s type, as in

The declaration is read from right to left as “countPtr is a pointer to an integer constant.”
Figure 8.10 demonstrates the compilation error messages produced when attempting

to compile a function that receives a nonconstant pointer to constant data, then tries to
use that pointer to modify the data.

Software Engineering Observation 8.2
If a value does not (or should not) change in the body of a function to which it’s passed,
the parameter should be declared const.

Error-Prevention Tip 8.2
Before using a function, check its function prototype to determine the parameters that it
can and cannot modify.

const int *countPtr;

8.5 Using const with Pointers 341

As you know, arrays are aggregate data types that store related data items of the same
type under one name. When a function is called with an array as an argument, the array
is passed to the function by reference. However, by default, objects are passed by value—a
copy of the entire object is passed. This requires the execution-time overhead of making a
copy of each data item in the object and storing it on the function call stack. When a
pointer to an object is passed, only a copy of the address of the object must be made—the
object itself is not copied.

Constant Pointer to Nonconstant Data
A constant pointer to nonconstant data is a pointer that always points to the same mem-
ory location; the data at that location can be modified through the pointer. An example of

1 // Fig. 8.10: fig08_10.cpp
2 // Attempting to modify data through a
3 // nonconstant pointer to constant data.
4
5 void f(const int *); // prototype
6
7 int main()
8 {
9 int y;

10
11
12 } // end main
13
14 // xPtr cannot modify the value of constant variable to which it points
15 void f()
16 {
17
18 } // end function f

Microsoft Visual C++ compiler error message:

c:\cpphtp8_examples\ch08\Fig08_10\fig08_10.cpp(17) :
error C3892: 'xPtr' : you cannot assign to a variable that is const

GNU C++ compiler error message:

fig08_10.cpp: In function `void f(const int*)':
fig08_10.cpp:17: error: assignment of read-only location

Fig. 8.10 | Attempting to modify data through a nonconstant pointer to constant data.

Performance Tip 8.1
If they do not need to be modified by the called function, pass large objects using pointers
to constant data or references to constant data, to obtain the performance benefits of pass-
by-reference.

Software Engineering Observation 8.3
Pass large objects using pointers to constant data, or references to constant data, to obtain
the security of pass-by-value.

f(&y); // f attempts illegal modification

const int *xPtr

*xPtr = 100; // error: cannot modify a const object

342 Chapter 8 Pointers

such a pointer is an array name, which is a constant pointer to the beginning of the array.
All data in the array can be accessed and changed by using the array name and array sub-
scripting. A constant pointer to nonconstant data can be used to receive an array as an ar-
gument to a function that accesses array elements using array subscript notation. Pointers
that are declared const must be initialized when they’re declared, but if the pointer is a
function parameter, it’s initialized with the pointer that’s passed to the function.

The program of Fig. 8.11 attempts to modify a constant pointer. Line 11 declares
pointer ptr to be of type int * const. The declaration is read from right to left as “ptr is
a constant pointer to a nonconstant integer.” The pointer is initialized with the address of
integer variable x. Line 14 attempts to assign the address of y to ptr, but the compiler gen-
erates an error message. No error occurs when line 13 assigns the value 7 to *ptr—the
nonconstant value to which ptr points can be modified using the dereferenced ptr, even
though ptr itself has been declared const.

Constant Pointer to Constant Data
The minimum access privilege is granted by a constant pointer to constant data. Such a
pointer always points to the same memory location, and the data at that location cannot be

Common Programming Error 8.6
Not initializing a pointer that’s declared const is a compilation error.

1 // Fig. 8.11: fig08_11.cpp
2 // Attempting to modify a constant pointer to nonconstant data.
3
4 int main()
5 {
6 int x, y;
7
8
9

10
11
12
13 *ptr = 7; // allowed: *ptr is not const
14
15 } // end main

Microsoft Visual C++ compiler error message:

c:\cpphtp8_examples\ch08\Fig08_11\fig08_11.cpp(14) : error C3892: 'ptr' :
you cannot assign to a variable that is const

GNU C++ compiler error message:

fig08_11.cpp: In function `int main()':
fig08_11.cpp:14: error: assignment of read-only variable `ptr'

Fig. 8.11 | Attempting to modify a constant pointer to nonconstant data.

// ptr is a constant pointer to an integer that can
// be modified through ptr, but ptr always points to the
// same memory location.
int * const ptr = &x; // const pointer must be initialized

ptr = &y; // error: ptr is const; cannot assign to it a new address

8.6 Selection Sort Using Pass-by-Reference 343

modified via the pointer. This is how an array should be passed to a function that only reads
the array, using array subscript notation, and does not modify the array. The program of
Fig. 8.12 declares pointer variable ptr to be of type const int * const (line 13). This dec-
laration is read from right to left as “ptr is a constant pointer to an integer constant.” The
figure shows the error messages generated when an attempt is made to modify the data to
which ptr points (line 17) and when an attempt is made to modify the address stored in
the pointer variable (line 18). No errors occur when the program attempts to dereference
ptr (line 15), or when the program attempts to output the value to which ptr points, be-
cause neither the pointer nor the data it points to is being modified in this statement.

8.6 Selection Sort Using Pass-by-Reference
In this section, we define a sorting program to demonstrate passing arrays and individual
array elements by reference. We use the selection sort algorithm, which is an easy-to-pro-
gram, but unfortunately inefficient, sorting algorithm. The first iteration of the algorithm

1 // Fig. 8.12: fig08_12.cpp
2 // Attempting to modify a constant pointer to constant data.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 5, y;
9

10 // ptr is a constant pointer to a constant integer.
11 // ptr always points to the same location; the integer
12 // at that location cannot be modified.
13
14
15 cout << *ptr << endl;
16
17
18
19 } // end main

Microsoft Visual C++ compiler error message:

c:\cpphtp8_examples\ch08\Fig08_12\fig08_12.cpp(17) : error C3892: 'ptr' :
you cannot assign to a variable that is const

c:\cpphtp8_examples\ch08\Fig08_12\fig08_12.cpp(18) : error C3892: 'ptr' :
you cannot assign to a variable that is const

GNU C++ compiler error message:

fig08_12.cpp: In function `int main()':
fig08_12.cpp:17: error: assignment of read-only location
fig08_12.cpp:18: error: assignment of read-only variable `ptr'

Fig. 8.12 | Attempting to modify a constant pointer to constant data.

const int *const ptr = &x;

*ptr = 7; // error: *ptr is const; cannot assign new value
ptr = &y; // error: ptr is const; cannot assign new address

344 Chapter 8 Pointers

selects the smallest element in the array and swaps it with the first element. The second
iteration selects the second-smallest element (which is the smallest element of the remain-
ing elements) and swaps it with the second element. The algorithm continues until the last
iteration selects the second-largest element and swaps it with the second-to-last index,
leaving the largest element in the last index. After the ith iteration, the smallest i items of
the array will be sorted into increasing order in the first i elements of the array.

As an example, consider the array

A program that implements the selection sort first determines the smallest value (4) in the
array, which is contained in element 2. The program swaps the 4 with the value in element
0 (34), resulting in

The program then determines the smallest value of the remaining elements (all elements
except 4), which is 5, contained in element 8. The program swaps the 5 with the 56 in
element 1, resulting in

On the third iteration, the program determines the next smallest value, 10, and swaps it
with the value in element 2 (34).

The process continues until the array is fully sorted.

After the first iteration, the smallest element is in the first position. After the second iter-
ation, the two smallest elements are in order in the first two positions. After the third it-
eration, the three smallest elements are in order in the first three positions.

Figure 8.13 implements selection sort using functions selectionSort and swap.
Function selectionSort (lines 32–49) sorts the array. Line 34 declares the variable
smallest, which will store the index of the smallest element in the remaining array. Lines
37–48 loop size - 1 times. Line 39 sets the smallest element’s index to the current index.
Lines 42–45 loop over the remaining array elements. For each element, line 44 compares
its value to the value of the smallest element. If the current element is smaller than the
smallest element, line 45 assigns the current element’s index to smallest. When this loop
finishes, smallest will contain the index of the smallest element in the remaining array.
Line 47 calls function swap (lines 53–58) to place the smallest remaining element in the
next spot in the array (i.e., exchange the array elements array[i] and array[smallest]).

34 56 4 10 77 51 93 30 5 52

4 56 34 10 77 51 93 30 5 52

4 5 34 10 77 51 93 30 56 52

4 5 10 34 77 51 93 30 56 52

4 5 10 30 34 51 52 56 77 93

1 // Fig. 8.13: fig08_13.cpp
2 // Selection sort with pass-by-reference. This program puts values into an
3 // array, sorts them into ascending order and prints the resulting array.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;

Fig. 8.13 | Selection sort with pass-by-reference. (Part 1 of 3.)

8.6 Selection Sort Using Pass-by-Reference 345

7
8 void selectionSort(int * const, const int); // prototype
9 void swap(int * const, int * const); // prototype

10
11 int main()
12 {
13 const int arraySize = 10;
14 int a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
15
16 cout << "Data items in original order\n";
17
18 for (int i = 0; i < arraySize; ++i)
19 cout << setw(4) << a[i];
20
21 selectionSort(a, arraySize); // sort the array
22
23 cout << "\nData items in ascending order\n";
24
25 for (int j = 0; j < arraySize; ++j)
26 cout << setw(4) << a[j];
27
28 cout << endl;
29 } // end main
30
31 // function to sort an array
32 void selectionSort(int * const array, const int size)
33 {
34 int smallest; // index of smallest element
35
36 // loop over size - 1 elements
37 for (int i = 0; i < size - 1; ++i)
38 {
39 smallest = i; // first index of remaining array
40
41 // loop to find index of smallest element
42 for (int index = i + 1; index < size; ++index)
43
44 if (array[index] < array[smallest])
45 smallest = index;
46
47 swap(&array[i], &array[smallest]);
48 } // end if
49 } // end function selectionSort
50
51
52
53
54
55
56
57
58

Fig. 8.13 | Selection sort with pass-by-reference. (Part 2 of 3.)

// swap values at memory locations to which
// element1Ptr and element2Ptr point
void swap(int * const element1Ptr, int * const element2Ptr)
{

int hold = *element1Ptr;
*element1Ptr = *element2Ptr;
*element2Ptr = hold;

} // end function swap

346 Chapter 8 Pointers

Let’s now look more closely at function swap. Remember that information hiding is
enforced between functions, so swap does not have access to individual array elements in
selectionSort. Because selectionSort wants swap to have access to the array elements to
be swapped, selectionSort passes each of these elements to swap by reference—the
address of each array element is passed explicitly. Although entire arrays are passed by ref-
erence, individual array elements are ordinarily passed by value. Therefore, selectionSort
uses the address operator (&) on each array element in the swap call (line 47) to effect pass-
by-reference. Function swap (lines 53–58) receives &array[i] in pointer variable
element1Ptr. Information hiding prevents swap from “knowing” the name array[i], but
swap can use *element1Ptr as a synonym for array[i]. Thus, when swap references
*element1Ptr, it’s actually referencing array[i] in selectionSort. Similarly, when swap

references *element2Ptr, it’s actually referencing array[smallest] in selectionSort.
Even though swap is not allowed to use the statements

precisely the same effect is achieved by

in the swap function of Fig. 8.13.
Several features of function selectionSort should be noted. The function header

(line 32) declares array as int * const array, rather than int array[], to indicate that
the function receives a one-dimensional array as an argument. Both parameter array’s
pointer and the parameter size are declared const to enforce the principle of least privi-
lege. Although parameter size receives a copy of a value in main and modifying the copy
cannot change the value in main, selectionSort does not need to alter size to accomplish
its task—the array size remains fixed during the execution of selectionSort. Therefore,
size is declared const to ensure that it isn’t modified. If the size of the array were to be
modified during the sorting process, the sorting algorithm would not run correctly.

Function selectionSort receives the size of the array as a parameter, because the
function must have that information to sort the array. When an array is passed to a func-
tion, only the memory address of the first element of the array is received by the function;
the array size must be passed separately to the function.

By defining function selectionSort to receive the array size as a parameter, we
enable the function to be used by any program that sorts one-dimensional int arrays of
arbitrary size. The size of the array could have been programmed directly into the function,
but this would restrict the function to processing an array of a specific size and reduce the

Data items in original order
2 6 4 8 10 12 89 68 45 37

Data items in ascending order
2 4 6 8 10 12 37 45 68 89

hold = array[i];
array[i] = array[smallest];
array[smallest] = hold;

int hold = *element1Ptr;
*element1Ptr = *element2Ptr;
*element2Ptr = hold;

Fig. 8.13 | Selection sort with pass-by-reference. (Part 3 of 3.)

8.7 sizeof Operator 347

function’s reusability—only programs processing one-dimensional int arrays of the spe-
cific size “hard coded” into the function could use the function.

8.7 sizeof Operator
The compile time unary operator sizeof determines the size of an array (or of any other
data type, variable or constant) in bytes during program compilation. When applied to the
name of an array, as in Fig. 8.14 (line 13), the sizeof operator returns the total number of
bytes in the array as a value of type size_t (an unsigned integer type that is at least as big
as unsigned int). This is different from the size of a vector<int>, for example, which is
the number of integer elements in the vector. The computer we used to compile this pro-
gram stores variables of type double in 8 bytes of memory, and array is declared to have
20 elements (line 11), so array uses 160 bytes in memory. When applied to a pointer pa-
rameter (line 22) in a function that receives an array as an argument, the sizeof operator
returns the size of the pointer in bytes (4 on the system we used)—not the size of the array.

Software Engineering Observation 8.4
When passing an array to a function, also pass the size of the array (rather than building
into the function knowledge of the array size)—this makes the function more reusable.

Common Programming Error 8.7
Using the sizeof operator in a function to find the size in bytes of an array parameter
results in the size in bytes of a pointer, not the size in bytes of the array.

1 // Fig. 8.14: fig08_14.cpp
2 // Sizeof operator when used on an array name
3 // returns the number of bytes in the array.
4 #include <iostream>
5 using namespace std;
6
7 size_t getSize(); // prototype
8
9 int main()

10 {
11
12
13 cout <<
14
15 cout << "\nThe number of bytes returned by getSize is "
16 << << endl;
17 } // end main
18
19
20
21
22
23

Fig. 8.14 | sizeof operator when applied to an array name returns the number of bytes in the
array. (Part 1 of 2.)

double *

double array[20]; // 20 doubles; occupies 160 bytes on our system

"The number of bytes in the array is " << sizeof(array);

getSize(array)

// return size of ptr
size_t getSize(double *ptr)
{

return sizeof(ptr);
} // end function getSize

348 Chapter 8 Pointers

The number of elements in an array also can be determined using the results of two
sizeof operations. For example, consider the following array declaration:

If variables of data type double are stored in eight bytes of memory, array realArray con-
tains a total of 176 bytes. To determine the number of elements in the array, the following
expression (which is evaluated at compile time) can be used:

The expression determines the number of bytes in array realArray (176) and divides that
value by the number of bytes used in memory to store the array’s first element (typically 8
for a double value)—the result is the number of elements in realArray (22).

Determining the Sizes of the Fundamental Types, an Array and a Pointer
Figure 8.15 uses sizeof to calculate the number of bytes used to store most of the stan-
dard data types. The output shows that the types double and long double have the same
size. Types may have different sizes based on the platform running the program. On an-
other system, for example, double and long double may be of different sizes.

The number of bytes in the array is 160
The number of bytes returned by getSize is 4

double realArray[22];

sizeof realArray / sizeof(realArray[0])

1 // Fig. 8.15: fig08_15.cpp
2 // Demonstrating the sizeof operator.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char c; // variable of type char
9 short s; // variable of type short

10 int i; // variable of type int
11 long l; // variable of type long
12 float f; // variable of type float
13 double d; // variable of type double
14 long double ld; // variable of type long double
15 int array[20]; // array of int
16 int *ptr = array; // variable of type int *
17
18 cout << "sizeof c = " <<
19 << "\tsizeof(char) = " <<
20 << "\nsizeof s = " <<
21 << "\tsizeof(short) = " <<
22 << "\nsizeof i = " <<

Fig. 8.15 | sizeof operator used to determine standard data type sizes. (Part 1 of 2.)

Fig. 8.14 | sizeof operator when applied to an array name returns the number of bytes in the
array. (Part 2 of 2.)

sizeof c
sizeof(char)

sizeof s
sizeof(short)

sizeof i

8.8 Pointer Expressions and Pointer Arithmetic 349

Operator sizeof can be applied to any expression or type name. When sizeof is
applied to a variable name (which is not an array name) or other expression, the number
of bytes used to store the specific type of the expression’s value is returned. The parentheses
used with sizeof are required only if a type name (e.g., int) is supplied as its operand. The
parentheses used with sizeof are not required when sizeof’s operand is an expression.
Remember that sizeof is an operator, not a function, and that it has its effect at compile
time, not execution time.

8.8 Pointer Expressions and Pointer Arithmetic
This section describes the operators that can have pointers as operands and how these op-
erators are used with pointers. C++ enables pointer arithmetic—certain arithmetic oper-
ations may be performed on pointers. A pointer may be incremented (++) or decremented
(--), an integer may be added to a pointer (+ or +=), an integer may be subtracted from a
pointer (- or -=), or one pointer may be subtracted from another of the same type.

Assume that array int v[5] has been declared and that its first element is at memory
location 3000. Assume that pointer vPtr has been initialized to point to v[0] (i.e., the
value of vPtr is 3000). Figure 8.16 diagrams this situation for a machine with four-byte
integers. Variable vPtr can be initialized to point to array v with either of the following
statements (because the name of an array is equivalent to the address of its first element):

23 << "\tsizeof(int) = " <<
24 << "\nsizeof l = " <<
25 << "\tsizeof(long) = " <<
26 << "\nsizeof f = " <<
27 << "\tsizeof(float) = " <<
28 << "\nsizeof d = " <<
29 << "\tsizeof(double) = " <<
30 << "\nsizeof ld = " <<
31 << "\tsizeof(long double) = " <<
32 << "\nsizeof array = " <<
33 << "\nsizeof ptr = " << << endl;
34 } // end main

sizeof c = 1 sizeof(char) = 1
sizeof s = 2 sizeof(short) = 2
sizeof i = 4 sizeof(int) = 4
sizeof l = 4 sizeof(long) = 4
sizeof f = 4 sizeof(float) = 4
sizeof d = 8 sizeof(double) = 8
sizeof ld = 8 sizeof(long double) = 8
sizeof array = 80
sizeof ptr = 4

Portability Tip 8.1
The number of bytes used to store a particular data type may vary among systems. When
writing programs that depend on data type sizes, and that will run on several computer
systems, use sizeof to determine the number of bytes used to store the data types.

Fig. 8.15 | sizeof operator used to determine standard data type sizes. (Part 2 of 2.)

sizeof(int)
sizeof l

sizeof(long)
sizeof f

sizeof(float)
sizeof d

sizeof(double)
sizeof ld

sizeof(long double)
sizeof array

sizeof ptr

350 Chapter 8 Pointers

In conventional arithmetic, the addition 3000 + 2 yields the value 3002. This is nor-
mally not the case with pointer arithmetic. When an integer is added to, or subtracted
from, a pointer, the pointer is not simply incremented or decremented by that integer, but
by that integer times the size of the object to which the pointer refers. The number of bytes
depends on the object’s data type. For example, the statement

would produce 3008 (from the calculation 3000 + 2 * 4), assuming that an int is stored in
four bytes of memory. In the array v, vPtr would now point to v[2] (Fig. 8.17). If an in-
teger is stored in two bytes of memory, then the preceding calculation would result in
memory location 3004 (3000 + 2 * 2). If the array elements were of a different data type,
the preceding statement would increment the pointer by twice the number of bytes it takes
to store an object of that data type.

int *vPtr = v;
int *vPtr = &v[0];

Portability Tip 8.2
Most computers today have two-byte or four-byte integers. Some of the newer machines
use eight-byte integers. Because the results of pointer arithmetic depend on the size of the
objects a pointer points to, pointer arithmetic is machine dependent.

Fig. 8.16 | Array v and a pointer variable int *vPtr that points to v.

vPtr += 2;

Fig. 8.17 | Pointer vPtr after pointer arithmetic.

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

8.8 Pointer Expressions and Pointer Arithmetic 351

If vPtr had been incremented to 3016, which points to v[4], the statement

would set vPtr back to 3000—the beginning of the array. If a pointer is being incremented
or decremented by one, the increment (++) and decrement (--) operators can be used.
Each of the statements

increments the pointer to point to the next element of the array. Each of the statements

decrements the pointer to point to the previous element of the array.
Pointer variables pointing to the same array may be subtracted from one another. For

example, if vPtr contains the address 3000 and v2Ptr contains the address 3008, the state-
ment

would assign to x the number of array elements from vPtr to v2Ptr—in this case, 2. Pointer
arithmetic is meaningless unless performed on a pointer that points to an array. We cannot
assume that two variables of the same type are stored contiguously in memory unless
they’re adjacent elements of an array.

A pointer can be assigned to another pointer if both pointers are of the same type.
Otherwise, a cast operator (normally a reinterpret_cast; discussed in Section 17.7)
must be used to convert the value of the pointer on the right of the assignment to the
pointer type on the left of the assignment. The exception to this rule is the pointer to void

(i.e., void *), which is a generic pointer capable of representing any pointer type. All
pointer types can be assigned to a pointer of type void * without casting. However, a
pointer of type void * cannot be assigned directly to a pointer of another type—the pointer
of type void * must first be cast to the proper pointer type.

A void * pointer cannot be dereferenced. For example, the compiler “knows” that a
pointer to int refers to four bytes of memory on a machine with four-byte integers, but a
pointer to void simply contains a memory address for an unknown data type—the precise
number of bytes to which the pointer refers and the type of the data are not known by the
compiler. The compiler must know the data type to determine the number of bytes to be
dereferenced for a particular pointer—for a pointer to void, this number of bytes cannot
be determined.

vPtr -= 4;

++vPtr;
vPtr++;

--vPtr;
vPtr--;

x = v2Ptr - vPtr;

Common Programming Error 8.8
Subtracting or comparing two pointers that do not refer to elements of the same array is a
logic error.

Software Engineering Observation 8.5
Nonconstant pointer arguments can be passed to constant pointer parameters.

352 Chapter 8 Pointers

Pointers can be compared using equality and relational operators. Comparisons using
relational operators are meaningless unless the pointers point to members of the same
array. Pointer comparisons compare the addresses stored in the pointers. A comparison of
two pointers pointing to the same array could show, for example, that one pointer points
to a higher numbered element of the array than the other pointer does. A common use of
pointer comparison is determining whether a pointer is 0 (i.e., the pointer is a null
pointer—it does not point to anything).

8.9 Relationship Between Pointers and Arrays
Arrays and pointers are intimately related in C++ and may be used almost interchangeably.
An array name can be thought of as a constant pointer. Pointers can be used to do any
operation involving array subscripting.

Assume the following declarations:

Because the array name (without a subscript) is a (constant) pointer to the first element of
the array, we can set bPtr to the address of the first element in array b with the statement

This is equivalent to assigning the address of the first element of the array as follows:

Array element b[3] can alternatively be referenced with the pointer expression

The 3 in the preceding expression is the offset to the pointer. When the pointer points to
the beginning of an array, the offset indicates which array element should be referenced,
and the offset value is identical to the subscript. This notation is referred to as pointer/
offset notation. The parentheses are necessary, because the precedence of * is higher than
that of +. Without the parentheses, the preceding expression would add 3 to a copy *bPtr’s
value (i.e., 3 would be added to b[0], assuming that bPtr points to the beginning of the
array). Just as the array element can be referenced with a pointer expression, the address

can be written with the pointer expression

Common Programming Error 8.9
Assigning a pointer of one type to a pointer of another (other than void *) without using
a cast (normally a reinterpret_cast) is a compilation error.

Common Programming Error 8.10
All operations on a void * pointer are compilation errors, except comparing void * point-
ers with other pointers, casting void * pointers to valid pointer types and assigning ad-
dresses to void * pointers.

int b[5]; // create 5-element int array b
int *bPtr; // create int pointer bPtr

bPtr = b; // assign address of array b to bPtr

bPtr = &b[0]; // also assigns address of array b to bPtr

*(bPtr + 3)

&b[3]

bPtr + 3

8.9 Relationship Between Pointers and Arrays 353

The array name (which is implicitly const) can be treated as a pointer and used in
pointer arithmetic. For example, the expression

also refers to the array element b[3]. In general, all subscripted array expressions can be
written with a pointer and an offset. In this case, pointer/offset notation was used with the
name of the array as a pointer. The preceding expression does not modify the array name
in any way; b still points to the first element in the array.

Pointers can be subscripted exactly as arrays can. For example, the expression

refers to the array element b[1]; this expression uses pointer/subscript notation.
Remember that an array name is a constant pointer; it always points to the beginning

of the array. Thus, the expression

causes a compilation error, because it attempts to modify the value of the array name (a
constant) with pointer arithmetic.

Figure 8.18 uses the four notations discussed in this section for referring to array ele-
ments—array subscript notation, pointer/offset notation with the array name as a pointer,
pointer subscript notation and pointer/offset notation with a pointer—to accomplish the
same task, namely printing the four elements of the integer array b.

*(b + 3)

bPtr[1]

b += 3

Common Programming Error 8.11
Although array names are pointers to the beginning of the array, array names cannot be
modified in arithmetic expressions, because array names are constant pointers.

Good Programming Practice 8.2
For clarity, use array notation instead of pointer notation when manipulating arrays.

1 // Fig. 8.18: fig08_18.cpp
2 // Using subscripting and pointer notations with arrays.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int b[] = { 10, 20, 30, 40 }; // create 4-element array b
9 int *bPtr = b; // set bPtr to point to array b

10
11 // output array b using array subscript notation
12 cout << "Array b printed with:\n\nArray subscript notation\n";
13
14 for (int i = 0; i < 4; ++i)
15 cout << "b[" << i << "] = " << << '\n';
16

Fig. 8.18 | Referencing array elements with the array name and with pointers. (Part 1 of 2.)

b[i]

354 Chapter 8 Pointers

8.10 Pointer-Based String Processing
We’ve already used the C++ Standard Library string class to represent strings as full-
fledged objects. For example, the GradeBook class case study in Chapters 3–7 represents a
course name using a string object. Chapter 18 presents class string in detail. This sec-
tion introduces C-style, pointer-based strings. C++’s string class is preferred for use in new
programs, because it eliminates many of the security problems and bugs that can be caused by

17 // output array b using the array name and pointer/offset notation
18 cout << "\nPointer/offset notation where "
19 << "the pointer is the array name\n";
20
21 for (int offset1 = 0; offset1 < 4; ++offset1)
22 cout << "*(b + " << offset1 << ") = " << << '\n';
23
24 // output array b using bPtr and array subscript notation
25 cout << "\nPointer subscript notation\n";
26
27 for (int j = 0; j < 4; ++j)
28 cout << "bPtr[" << j << "] = " << << '\n';
29
30 cout << "\nPointer/offset notation\n";
31
32 // output array b using bPtr and pointer/offset notation
33 for (int offset2 = 0; offset2 < 4; ++offset2)
34 cout << "*(bPtr + " << offset2 << ") = "
35 << << '\n';
36 } // end main

Array b printed with:

Array subscript notation
b[0] = 10
b[1] = 20
b[2] = 30
b[3] = 40

Pointer/offset notation where the pointer is the array name
*(b + 0) = 10
*(b + 1) = 20
*(b + 2) = 30
*(b + 3) = 40

Pointer subscript notation
bPtr[0] = 10
bPtr[1] = 20
bPtr[2] = 30
bPtr[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10
*(bPtr + 1) = 20
*(bPtr + 2) = 30
*(bPtr + 3) = 40

Fig. 8.18 | Referencing array elements with the array name and with pointers. (Part 2 of 2.)

*(b + offset1)

bPtr[j]

*(bPtr + offset2)

8.10 Pointer-Based String Processing 355

manipulating C strings. We cover C strings here for a deeper understanding of arrays. Also,
if you work with legacy C and C++ programs, you’re likely to encounter these pointer-
based strings. We cover C-style, pointer-based strings in detail in Chapter 21.

Characters and Character Constants
Characters are the fundamental building blocks of C++ source programs. Every program
is composed of a sequence of characters that—when grouped together meaningfully—is
interpreted by the compiler as a series of instructions used to accomplish a task. A program
may contain character constants. A character constant is an integer value represented as a
character in single quotes. The value of a character constant is the integer value of the char-
acter in the machine’s character set. For example, 'z' represents the integer value of z (122
in the ASCII character set; see Appendix B), and '\n' represents the integer value of new-
line (10 in the ASCII character set).

Strings
A string is a series of characters treated as a single unit. A string may include letters, digits
and various special characters such as +, -, *, /and $. String literals, or string constants,
in C++ are written in double quotation marks as follows:

Pointer-Based Strings
A pointer-based string is an array of characters ending with a null character ('\0'), which
marks where the string terminates in memory. A string is accessed via a pointer to its first
character. The value of a string literal is the address of its first character, but the sizeof a
string literal is the length of the string including the terminating null character. Pointer-
based strings are like arrays—an array name is also a pointer to its first element.

String Literals as Initializers
A string literal may be used as an initializer in the declaration of either a character array or
a variable of type char *. The declarations

each initialize a variable to the string "blue". The first declaration creates a five-element
array color containing the characters 'b', 'l', 'u', 'e' and '\0'. The second declaration
creates pointer variable colorPtr that points to the letter b in the string "blue" (which
ends in '\0') somewhere in memory. String literals have static storage class (they exist
for the duration of the program) and may or may not be shared if the same string literal is
referenced from multiple locations in a program. The effect of modifying a string literal is
undefined; thus, you should always declare a pointer to a string literal as const char *.

Character Constants as Initializers
The declaration char color[] = "blue"; could also be written

"John Q. Doe" (a name)
"9999 Main Street" (a street address)
"Maynard, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

char color[] = "blue";
const char *colorPtr = "blue";

char color[] = { 'b', 'l', 'u', 'e', '\0' };

356 Chapter 8 Pointers

which uses character constants in single quotes (') as initializers for each element of the ar-
ray. When declaring a character array to contain a string, the array must be large enough to
store the string and its terminating null character. The compiler determines the size of the
array in the preceding declaration, based on the number of initializers in the initializer list.

Accessing Characters in a C-String
Because a C-style string is an array of characters, we can access individual characters in a
string directly with array subscript notation. For example, in the preceding declaration,
color[0] is the character 'b', color[2] is 'u' and color[4] is the null character.

Reading Strings into char Arrays with cin
A string can be read into a character array using stream extraction with cin. For example,
the following statement reads a string into character array word[20]:

The string entered by the user is stored in word. The preceding statement reads characters
until a white-space character or end-of-file indicator is encountered. The string should be
no longer than 19 characters to leave room for the terminating null character. The setw

stream manipulator can be used to ensure that the string read into word does not exceed the
size of the array. For example, the statement

specifies that cin should read a maximum of 19 characters into array word and save the
20th location in the array to store the terminating null character for the string. The setw

stream manipulator applies only to the next value being input. If more than 19 characters
are entered, the remaining characters are not saved in word, but they will be in the input
stream and can be read by the next input operation.

Reading Lines of Text into char Arrays with cin.getline
In some cases, it’s desirable to input an entire line of text into a character array. For this
purpose, the cin object provides the member function getline, which takes three argu-
ments—a character array in which the line of text will be stored, a length and a delimiter
character. For example, the statements

Common Programming Error 8.12
Not allocating sufficient space in a character array to store the null character that termi-
nates a string is a logic error.

Common Programming Error 8.13
Creating or using a C-style string that does not contain a terminating null character can
lead to logic errors.

Error-Prevention Tip 8.3
When storing a string of characters in a character array, be sure that the array is large
enough to hold the largest string that will be stored. C++ allows strings of any length. If
a string is longer than the character array in which it’s to be stored, characters beyond the
end of the array will overwrite data in memory following the array, leading to logic errors
and potential security breaches.

cin >> word;

cin >> setw(20) >> word;

8.11 Arrays of Pointers 357

declare array sentence of 80 characters and read a line of text from the keyboard into the
array. The function stops reading characters when the delimiter character '\n' is encoun-
tered, when the end-of-file indicator is entered or when the number of characters read so
far is one less than the length specified in the second argument. The last character in the
array is reserved for the terminating null character. If the delimiter character is encoun-
tered, it’s read and discarded. The third argument to cin.getline has '\n' as a default
value, so the preceding function call could have been written as:

Chapter 15, Stream Input/Output, provides a detailed discussion of cin.getline and
other input/output functions.

Displaying C-Style Strings
A character array representing a null-terminated string can be output with cout and <<.
The statement

prints the array sentence. Note that cout <<, like cin >>, does not care how large the char-
acter array is. The characters of the string are output until a terminating null character is
encountered; the null character is not printed. [Note: cin and cout assume that character
arrays should be processed as strings terminated by null characters; cin and cout do not
provide similar input and output processing capabilities for other array types.]

8.11 Arrays of Pointers
Arrays may contain pointers. A common use of such a data structure is to form an array of
pointer-based strings, referred to simply as a string array. Each entry in the array is a string,
but in C++ a string is essentially a pointer to its first character, so each entry in an array of
strings is simply a pointer to the first character of a string. Consider the declaration of
string array suit that might be useful in representing a deck of cards:

The suit[4] portion of the declaration indicates an array of four elements. The const

char * portion of the declaration indicates that each element of array suit is of type
“pointer to char constant data.” The four values to be placed in the array are "Hearts",
"Diamonds", "Clubs" and "Spades". Each is stored in memory as a null-terminated char-
acter string that is one character longer than the number of characters between quotes. The
four strings are seven, nine, six and seven characters long (including their terminating null
characters), respectively. Although it appears as though these strings are being placed in
the suit array, only pointers are actually stored in the array, as shown in Fig. 8.19. Each
pointer points to the first character of its corresponding string. Thus, even though the
suit array is fixed in size, it provides access to character strings of any length. This flexi-
bility is one example of C++’s powerful data-structuring capabilities.

char sentence[80];
cin.getline(sentence, 80, '\n');

cin.getline(sentence, 80);

cout << sentence;

const char * const suit[4] =
{ "Hearts", "Diamonds", "Clubs", "Spades" };

358 Chapter 8 Pointers

The suit strings could be placed into a two-dimensional array, in which each row rep-
resents one suit and each column represents one of the letters of a suit name. Such a data
structure must have a fixed number of columns per row, and that number must be as large
as the largest string. Therefore, considerable memory is wasted when we store a large
number of strings, of which most are shorter than the longest string. We use arrays of
strings to help represent a deck of cards in the next section.

String arrays are commonly used with command-line arguments that are passed to
function main when a program begins execution. Such arguments follow the program
name when a program is executed from the command line. A typical use of command-line
arguments is to pass options to a program. For example, from the command line on a Win-
dows computer, the user can type

to list the contents of the current directory and pause after each screen of information.
When the dir command executes, the option /p is passed to dir as a command-line argu-
ment. Such arguments are placed in a string array that main receives as an argument. We
discuss command-line arguments in Appendix F, C Legacy Code Topics.

8.12 Function Pointers
A pointer to a function contains the function’s address in memory. We know that an ar-
ray’s name is actually the address in memory of the first element. Similarly, a function’s
name is actually the starting address in memory of the code that performs the function’s
task. Pointers to functions can be passed to functions, returned from functions, stored in
arrays, assigned to other function pointers and used to call the underlying function.

Multipurpose Selection Sort Using Function Pointers
To illustrate the use of pointers to functions, Fig. 8.20 modifies the selection sort program
of Fig. 8.13. Figure 8.20 consists of main (lines 13–50) and the functions selectionSort
(lines 54–71), swap (lines 75–80), ascending (lines 84–87) and descending (lines 91–
94). Function selectionSort receives a pointer to a function—either function ascending

or function descending—as an argument in addition to the integer array to sort and the
size of the array. Functions ascending and descending determine the sorting order. The
program prompts the user to choose whether the array should be sorted in ascending order
or in descending order (lines 20–22). If the user enters 1, a pointer to function ascending

is passed to function selectionSort (line 33), causing the array to be sorted into increas-

Fig. 8.19 | Graphical representation of the suit array.

dir /p

'S'suit[3]

suit[2]

suit[1]

suit[0]

'p' 'a' 'd' 'e' 's' '\0'

'C' 'l' 'u' 'b' 's' '\0'

'D' 'i' 'a' 'm' 'o' 'n' 'd' 's' '\0'

'H' 'e' 'a' 'r' 't' 's' '\0'

8.12 Function Pointers 359

ing order. If the user enters 2, a pointer to function descending is passed to function se-

lectionSort (line 41), causing the array to be sorted into decreasing order.

1 // Fig. 8.20: fig08_20.cpp
2 // Multipurpose sorting program using function pointers.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 // prototypes
8 void selectionSort(int [], const int,);
9 void swap(int * const, int * const);

10 bool ascending(int, int); // implements ascending order
11 bool descending(int, int); // implements descending order
12
13 int main()
14 {
15 const int arraySize = 10;
16 int order; // 1 = ascending, 2 = descending
17 int counter; // array index
18 int a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
19
20 cout << "Enter 1 to sort in ascending order,\n"
21 << "Enter 2 to sort in descending order: ";
22 cin >> order;
23 cout << "\nData items in original order\n";
24
25 // output original array
26 for (counter = 0; counter < arraySize; ++counter)
27 cout << setw(4) << a[counter];
28
29 // sort array in ascending order; pass function ascending
30 // as an argument to specify ascending sorting order
31 if (order == 1)
32 {
33
34 cout << "\nData items in ascending order\n";
35 } // end if
36
37 // sort array in descending order; pass function descending
38 // as an argument to specify descending sorting order
39 else
40 {
41
42 cout << "\nData items in descending order\n";
43 } // end else part of if...else
44
45 // output sorted array
46 for (counter = 0; counter < arraySize; ++counter)
47 cout << setw(4) << a[counter];
48
49 cout << endl;
50 } // end main

Fig. 8.20 | Multipurpose sorting program using function pointers. (Part 1 of 3.)

bool (*)(int, int)

selectionSort(a, arraySize, ascending);

selectionSort(a, arraySize, descending);

360 Chapter 8 Pointers

51
52 // multipurpose selection sort; the parameter compare is a pointer to
53 // the comparison function that determines the sorting order
54 void selectionSort(int work[], const int size,
55)
56 {
57 int smallestOrLargest; // index of smallest (or largest) element
58
59 // loop over size - 1 elements
60 for (int i = 0; i < size - 1; ++i)
61 {
62 smallestOrLargest = i; // first index of remaining vector
63
64 // loop to find index of smallest (or largest) element
65 for (int index = i + 1; index < size; ++index)
66 if (!)
67 smallestOrLargest = index;
68
69 swap(&work[smallestOrLargest], &work[i]);
70 } // end if
71 } // end function selectionSort
72
73 // swap values at memory locations to which
74 // element1Ptr and element2Ptr point
75 void swap(int * const element1Ptr, int * const element2Ptr)
76 {
77 int hold = *element1Ptr;
78 *element1Ptr = *element2Ptr;
79 *element2Ptr = hold;
80 } // end function swap
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
2 6 4 8 10 12 89 68 45 37

Data items in ascending order
2 4 6 8 10 12 37 45 68 89

Fig. 8.20 | Multipurpose sorting program using function pointers. (Part 2 of 3.)

bool (*compare)(int, int)

(*compare)(work[smallestOrLargest], work[index])

// determine whether element a is less than
// element b for an ascending order sort
bool ascending(int a, int b)
{

return a < b; // returns true if a is less than b
} // end function ascending

// determine whether element a is greater than
// element b for a descending order sort
bool descending(int a, int b)
{

return a > b; // returns true if a is greater than b
} // end function descending

8.13 Wrap-Up 361

The following parameter appears in line 55 of selectionSort’s function header:

This parameter specifies a pointer to a function. The keyword bool indicates that the func-
tion being pointed to returns a bool value. The text (*compare) indicates the name of the
pointer to the function (the * indicates that parameter compare is a pointer). The text
(int, int) indicates that the function pointed to by compare takes two integer arguments.
Parentheses are needed around *compare to indicate that compare is a pointer to a func-
tion. If we had not included the parentheses, the declaration would have been

which declares a function that receives two ints and returns a pointer to a bool value.
The corresponding parameter in the function prototype of selectionSort (line 8) is

Only types have been included. As always, for documentation purposes, you can include
names that the compiler will ignore.

The function passed to selectionSort is called in line 66 as follows:

Just as a pointer to a variable is dereferenced to access the value of the variable, a pointer
to a function is dereferenced to execute the function. The parentheses around *compare

are necessary—if they were left out, the * operator would attempt to dereference the value
returned from the function call. The call to the function could have been made without
dereferencing the pointer, as in

which uses the pointer directly as the function name. We prefer the first method of calling
a function through a pointer, because it explicitly illustrates that compare is a pointer to a
function that is dereferenced to call the function. The second method of calling a function
through a pointer makes it appear as though compare is the name of an actual function in
the program. This may be confusing to a user of the program who would like to see the
definition of function compare and finds that it isn’t defined in the file. Chapter 22, Stan-
dard Template Library (STL), presents many common uses of function pointers.

8.13 Wrap-Up
In this chapter we provided a detailed introduction to pointers—variables that contain
memory addresses as their values. We began by demonstrating how to declare and initial-

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2

Data items in original order
2 6 4 8 10 12 89 68 45 37

Data items in descending order
89 68 45 37 12 10 8 6 4 2

bool (*compare)(int, int)

bool *compare(int, int)

bool (*)(int, int)

(*compare)(work[smallestOrLargest], work[index])

compare(work[smallestOrLargest], work[index])

Fig. 8.20 | Multipurpose sorting program using function pointers. (Part 3 of 3.)

362 Chapter 8 Pointers

ize pointers. You saw how to use the address operator (&) to assign the address of a variable
to a pointer and the indirection operator (*) to access the data stored in the variable indi-
rectly referenced by a pointer. We discussed passing arguments by reference using both
pointer arguments and reference arguments.

You learned how to use const with pointers to enforce the principle of least privilege.
We demonstrated using nonconstant pointers to nonconstant data, nonconstant pointers
to constant data, constant pointers to nonconstant data, and constant pointers to constant
data. We then used selection sort to demonstrate passing arrays and individual array ele-
ments by reference. We discussed the compile-time sizeof operator, which can be used
to determine the sizes of data types and variables in bytes during program compilation.

We demonstrated how to use pointers in arithmetic and comparison expressions. You
saw that pointer arithmetic can be used to jump from one element of an array to another.
You learned how to use arrays of pointers, and more specifically string arrays (arrays of
strings). We discussed function pointers, which enable you to pass functions as parame-
ters. We briefly introduced pointer-based strings.

In the next chapter, we begin our deeper treatment of classes. You’ll learn about the
scope of a class’s members, and how to keep objects in a consistent state. You’ll also learn
about using special member functions called constructors and destructors, which execute
when an object is created and destroyed, respectively, and we’ll discuss when constructors
and destructors are called. In addition, we’ll demonstrate using default arguments with
constructors and using default memberwise assignment to assign one object of a class to
another object of the same class. We’ll also discuss the danger of returning a reference to
a private data member of a class.

Summary
Section 8.2 Pointer Variable Declarations and Initialization
• Pointers are variables that contain as their values memory addresses of other variables.

• The declaration

int *ptr;

declares ptr to be a pointer to a variable of type int and is read, “ptr is a pointer to int.” The *

as used here in a declaration indicates that the variable is a pointer.

• There are three values that can be used to initialize a pointer: 0, NULL or an address of an object
of the same type. The new C++ standard also provides the nullptr constant, which is preferred.

• The only integer that can be assigned to a pointer without casting is zero.

Section 8.3 Pointer Operators
• The & (address) operator (p. 332) obtains the memory address of its operand.

• The operand of the address operator must be a variable name (or another lvalue); the address op-
erator cannot be applied to constants or to expressions that do not return a reference.

• The * indirection (or dereferencing) operator (p. 333) returns a synonym for the name of the
object that its operand points to in memory. This is called dereferencing the pointer (p. 333).

Section 8.4 Pass-by-Reference with Pointers
• When calling a function with an argument that the caller wants the called function to modify,

the address of the argument may be passed. The called function then uses the indirection oper-
ator (*) to dereference the pointer and modify the value of the argument in the calling function.

Summary 363

• A function receiving an address as an argument must have a pointer as its corresponding parameter.

Section 8.5 Using const with Pointers
• The const qualifier enables you to inform the compiler that the value of a particular variable can-

not be modified through the specified identifier.

• There are four ways to pass a pointer to a function—a nonconstant pointer to nonconstant data
(p. 340), a nonconstant pointer to constant data (p. 340), a constant pointer to nonconstant data
(p. 341), and a constant pointer to constant data (p. 341).

• The value of the array name is the address of the array’s first element.

• To pass a single array element by reference using pointers, pass the element’s address.

Section 8.6 Selection Sort Using Pass-by-Reference
• The selection sort algorithm (p. 343) is an easy-to-program, but inefficient, sorting algorithm.

The first iteration of the algorithm selects the smallest element in the array and swaps it with the
first element. The second iteration selects the second-smallest element (which is the smallest el-
ement of the remaining elements) and swaps it with the second element. The algorithm contin-
ues until the last iteration selects the second-largest element and swaps it with the second-to-last
index, leaving the largest element in the last index. After the ith iteration, the smallest i items of
the array will be sorted into increasing order in the first i elements of the array.

Section 8.7 sizeof Operator
• sizeof (p. 347) determines the size in bytes of a type, variable or constant at compile time.

• When applied to an array name, sizeof returns the total number of bytes in the array.

Section 8.8 Pointer Expressions and Pointer Arithmetic
• The arithmetic operations that may be performed on pointers are incrementing (++) a pointer,

decrementing (--) a pointer, adding (+ or +=) an integer to a pointer, subtracting (- or -=) an
integer from a pointer and subtracting one pointer from another.

• When an integer is added or subtracted from a pointer, the pointer is incremented or decrement-
ed by that integer times the size of the object to which the pointer refers.

• Pointers can be assigned to one another if they are of the same type. Otherwise, a cast must be
used. The exception to this is a void * pointer, which is a generic pointer type that can hold
pointer values of any type.

• The only valid operations on a void * pointer are comparing void * pointers with other pointers,
assigning addresses to void * pointers and casting void * pointers to valid pointer types.

• Pointers can be compared using the equality and relational operators. Comparisons using rela-
tional operators are meaningful only if the pointers point to members of the same array.

Section 8.9 Relationship Between Pointers and Arrays
• Pointers that point to arrays can be subscripted exactly as array names can (p. 353).

• In pointer/offset notation (p. 352), if the pointer points to the first element of the array, the off-
set is the same as an array subscript.

• All subscripted array expressions can be written with a pointer and an offset (p. 352), using either
the name of the array as a pointer or using a separate pointer that points to the array.

Section 8.10 Pointer-Based String Processing
• A character constant (p. 355) is an integer value represented as a character in single quotes. The

value of a character constant is the integer value of the character in the machine’s character set.

364 Chapter 8 Pointers

• A string is a series of characters treated as a single unit. A string may include letters, digits and
various special characters such as +, -, *, /and $.

• String literals, or string constants, in C++ are written in double quotation marks (p. 355).

• A pointer-based string is an array of characters ending with a null character ('\0'; p. 355),
which marks where the string terminates in memory. A string is accessed via a pointer to its first
character.

• The value of a string literal is the address of its first character, but the sizeof a string literal is the
length of the string including the terminating null character.

• A string literal may be used as an initializer for a character array or a variable of type char *.

• String literals have static storage class and may or may not be shared if the same string literal is
referenced from multiple locations in a program.

• The effect modifying a string literal is undefined; thus, you should always declare a pointer to a
string literal as const char *.

• When declaring a character array to contain a string, the array must be large enough to store the
string and its terminating null character.

• If a string is longer than the character array in which it’s to be stored, characters beyond the end
of the array will overwrite data in memory following the array, leading to logic errors.

• You can access individual characters in a string directly with array subscript notation.

• A string can be read into a character array using stream extraction with cin.

• The setw stream manipulator can be used to ensure that the string read into a character array
does not exceed the size of the array.

• The cin object provides the member function getline (p. 356) to input an entire line of text into
a character array. The function takes three arguments—a character array in which the line of text
will be stored, a length and a delimiter character. The third argument has '\n' as a default value.

• A character array representing a null-terminated string can be output with cout and <<. The char-
acters of the string are output until a terminating null character is encountered.

Section 8.11 Arrays of Pointers
• Arrays may contain pointers.

• Such a data structure can be used to form an array of pointer-based strings, referred to as a string
array (p. 357). Each entry in the array is a string, but in C++ a string is essentially a pointer to its
first character, so each entry in an array of strings is simply a pointer to the first character of a string.

• String arrays are commonly used with command-line arguments (p. 358) that are passed to main

when a program begins execution.

Section 8.12 Function Pointers
• A pointer to a function (p. 358) is the address where the code for the function resides.

• Pointers to functions can be used to call the functions they point to, passed to functions, returned
from functions, stored in arrays, assigned to other pointers.

Self-Review Exercises
8.1 Answer each of the following:

a) A pointer is a variable that contains as its value the of another variable.
b) The three values that can be used to initialize a pointer are , and

.
c) The only integer that can be assigned directly to a pointer is .

Self-Review Exercises 365

8.2 State whether the following are true or false. If the answer is false, explain why.
a) The address operator & can be applied only to constants and to expressions.
b) A pointer that is declared to be of type void * can be dereferenced.
c) A pointer of one type can’t be assigned to one of another type without a cast operation.

8.3 For each of the following, write C++ statements that perform the specified task. Assume
that double-precision, floating-point numbers are stored in eight bytes and that the starting address
of the array is at location 1002500 in memory. Each part of the exercise should use the results of
previous parts where appropriate.

a) Declare an array of type double called numbers with 10 elements, and initialize the ele-
ments to the values 0.0, 1.1, 2.2, …, 9.9. Assume that the symbolic constant SIZE has
been defined as 10.

b) Declare a pointer nPtr that points to a variable of type double.
c) Use a for statement to print the elements of array numbers using array subscript nota-

tion. Print each number with one position of precision to the right of the decimal point.
d) Write two separate statements that each assign the starting address of array numbers to

the pointer variable nPtr.
e) Use a for statement to print the elements of array numbers using pointer/offset notation

with pointer nPtr.
f) Use a for statement to print the elements of array numbers using pointer/offset notation

with the array name as the pointer.
g) Use a for statement to print the elements of array numbers using pointer/subscript no-

tation with pointer nPtr.
h) Refer to the fourth element of array numbers using array subscript notation, pointer/off-

set notation with the array name as the pointer, pointer subscript notation with nPtr

and pointer/offset notation with nPtr.
i) Assuming that nPtr points to the beginning of array numbers, what address is referenced

by nPtr + 8? What value is stored at that location?
j) Assuming that nPtr points to numbers[5], what address is referenced by nPtr after nPtr

-= 4 is executed? What’s the value stored at that location?

8.4 For each of the following, write a single statement that performs the specified task. Assume
that floating-point variables number1 and number2 have been declared and that number1 has been ini-
tialized to 7.3. Assume that variable ptr is of type char *. Assume that arrays s1 and s2 are each
100-element char arrays that are initialized with string literals.

a) Declare the variable fPtr to be a pointer to an object of type double.
b) Assign the address of variable number1 to pointer variable fPtr.
c) Print the value of the object pointed to by fPtr.
d) Assign the value of the object pointed to by fPtr to variable number2.
e) Print the value of number2.
f) Print the address of number1.
g) Print the address stored in fPtr. Is the value printed the same as the address of number1?

8.5 Perform the task specified by each of the following statements:
a) Write the function header for a function called exchange that takes two pointers to dou-

ble-precision, floating-point numbers x and y as parameters and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for a function called evaluate that returns an integer and

that takes as parameters integer x and a pointer to function poly. Function poly takes
an integer parameter and returns an integer.

d) Write the function prototype for the function in part (c).
e) Write two statements that each initialize character array vowel with the string of vowels,

"AEIOU".

366 Chapter 8 Pointers

8.6 Find the error in each of the following program segments. Assume the following declara-
tions and statements:

int *zPtr; // zPtr will reference array z
void *sPtr = 0;
int number;
int z[5] = { 1, 2, 3, 4, 5 };

a) ++zPtr;

b) // use pointer to get first value of array

number = zPtr;

c) // assign array element 2 (the value 3) to number

number = *zPtr[2];

d) // print entire array z

for (int i = 0; i <= 5; ++i)

cout << zPtr[i] << endl;

e) // assign the value pointed to by sPtr to number

number = *sPtr;

f) ++z;

Answers to Self-Review Exercises
8.1 a) address. b) 0, NULL, an address. c) 0.

8.2 a) False. The operand of the address operator must be an lvalue; the address operator can-
not be applied to constants or to expressions that do not result in references.

b) False. A pointer to void cannot be dereferenced. Such a pointer does not have a type
that enables the compiler to determine the number of bytes of memory to dereference
and the type of the data to which the pointer points.

c) False. Pointers of any type can be assigned to void pointers. Pointers of type void can
be assigned to pointers of other types only with an explicit type cast.

8.3 a) double numbers[SIZE] = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9 };

b) double *nPtr;

c) cout << fixed << showpoint << setprecision(1);

for (int i = 0; i < SIZE; ++i)

cout << numbers[i] << ' ';

d) nPtr = numbers;

nPtr = &numbers[0];

e) cout << fixed << showpoint << setprecision(1);

for (int j = 0; j < SIZE; ++j)

cout << *(nPtr + j) << ' ';

f) cout << fixed << showpoint << setprecision(1);

for (int k = 0; k < SIZE; ++k)

cout << *(numbers + k) << ' ';
g) cout << fixed << showpoint << setprecision(1);

for (int m = 0; m < SIZE; ++m)

cout << nPtr[m] << ' ';
h) numbers[3]

*(numbers + 3)

nPtr[3]

*(nPtr + 3)

i) The address is 1002500 + 8 * 8 = 1002564. The value is 8.8.

Exercises 367

j) The address of numbers[5] is 1002500 + 5 * 8 = 1002540.
The address of nPtr -= 4 is 1002540 - 4 * 8 = 1002508.
The value at that location is 1.1.

8.4 a) double *fPtr;

b) fPtr = &number1;

c) cout << "The value of *fPtr is " << *fPtr << endl;

d) number2 = *fPtr;

e) cout << "The value of number2 is " << number2 << endl;

f) cout << "The address of number1 is " << &number1 << endl;

g) cout << "The address stored in fPtr is " << fPtr << endl;

Yes, the value is the same.

8.5 a) void exchange(double *x, double *y)

b) void exchange(double *, double *);

c) int evaluate(int x, int (*poly)(int))

d) int evaluate(int, int (*)(int));

e) char vowel[] = "AEIOU";

char vowel[] = { 'A', 'E', 'I', 'O', 'U', '\0' };

8.6 a) Error: zPtr has not been initialized.
Correction: Initialize zPtr with zPtr = z;

b) Error: The pointer is not dereferenced.
Correction: Change the statement to number = *zPtr;

c) Error: zPtr[2] is not a pointer and should not be dereferenced.
Correction: Change *zPtr[2] to zPtr[2].

d) Error: Referring to an array element outside the array bounds with pointer subscripting.
Correction: To prevent this, change the relational operator in the for statement to < or
change the 5 to a 4.

e) Error: Dereferencing a void pointer.
Correction: To dereference the void pointer, it must first be cast to an integer pointer.
Change the statement to number = *static_cast< int * >(sPtr);

f) Error: Trying to modify an array name with pointer arithmetic.
Correction: Use a pointer variable instead of the array name to accomplish pointer arith-
metic, or subscript the array name to refer to a specific element.

Exercises
8.7 (True or False) State whether the following are true or false. If false, explain why.

a) Two pointers that point to different arrays cannot be compared meaningfully.
b) Because the name of an array is a pointer to the first element of the array, array names

can be manipulated in precisely the same manner as pointers.

8.8 (Write C++ Statements) For each of the following, write C++ statements that perform the
specified task. Assume that unsigned integers are stored in two bytes and that the starting address of
the array is at location 1002500 in memory.

a) Declare an array of type unsigned int called values with five elements, and initialize
the elements to the even integers from 2 to 10. Assume that the symbolic constant SIZE
has been defined as 5.

b) Declare a pointer vPtr that points to an object of type unsigned int.
c) Use a for statement to print the elements of array values using array subscript notation.
d) Write two separate statements that assign the starting address of array values to pointer

variable vPtr.
e) Use a for statement to print the elements of array values using pointer/offset notation.

368 Chapter 8 Pointers

f) Use a for statement to print the elements of array values using pointer/offset notation
with the array name as the pointer.

g) Use a for statement to print the elements of array values by subscripting the pointer to
the array.

h) Refer to the fifth element of values using array subscript notation, pointer/offset nota-
tion with the array name as the pointer, pointer subscript notation and pointer/offset
notation.

i) What address is referenced by vPtr + 3? What value is stored at that location?
j) Assuming that vPtr points to values[4], what address is referenced by vPtr -= 4?

What value is stored at that location?

8.9 (Write C++ Statements) For each of the following, write a single statement that performs
the specified task. Assume that long variables value1 and value2 have been declared and value1 has
been initialized to 200000.

a) Declare the variable longPtr to be a pointer to an object of type long.
b) Assign the address of variable value1 to pointer variable longPtr.
c) Print the value of the object pointed to by longPtr.
d) Assign the value of the object pointed to by longPtr to variable value2.
e) Print the value of value2.
f) Print the address of value1.
g) Print the address stored in longPtr. Is the value printed the same as value1’s address?

8.10 (Function Headers and Prototypes) Perform the task specified by each of the following
statements:

a) Write the function header for function zero that takes a long integer array parameter
bigIntegers and does not return a value.

b) Write the function prototype for the function in part (a).
c) Write the function header for function add1AndSum that takes an integer array parameter

oneTooSmall and returns an integer.
d) Write the function prototype for the function described in part (c).

8.11 (Find the Code Errors) Find the error in each of the following segments. If the error can be
corrected, explain how.

a) int *number;

cout << number << endl;

b) double *realPtr;

long *integerPtr;

integerPtr = realPtr;

c) int * x, y;
x = y;

d) char s[] = "this is a character array";

for (; *s != '\0'; ++s)

cout << *s << ' ';

e) short *numPtr, result;

void *genericPtr = numPtr;

result = *genericPtr + 7;

f) double x = 19.34;
double xPtr = &x;

cout << xPtr << endl;

8.12 (Simulation: The Tortoise and the Hare) In this exercise, you’ll re-create the classic race of
the tortoise and the hare. You’ll use random number generation to develop a simulation of this
memorable event.

Exercises 369

Our contenders begin the race at “square 1” of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

There is a clock that ticks once per second. With each tick of the clock, your program should
use function moveTortoise and moveHare to adjust the position of the animals according to the
rules in Fig. 8.21. These functions should use pointer-based pass-by-reference to modify the posi-
tion of the tortoise and the hare.

Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1,
move the animal back to square 1.

Generate the percentages in the preceding table by producing a random integer i in the range
1 ≤i ≤10. For the tortoise, perform a “fast plod” when 1 ≤i ≤5, a “slip” when 6 ≤i ≤7 or a “slow
plod” when 8 ≤i ≤10. Use a similar technique to move the hare.

Begin the race by printing

BANG !!!!!
AND THEY'RE OFF !!!!!

For each tick of the clock (i.e., each repetition of a loop), print a 70-position line showing the
letter T in the tortoise’s position and the letter H in the hare’s position. Occasionally, the contenders
land on the same square. In this case, the tortoise bites the hare and your program should print
OUCH!!! beginning at that position. All print positions other than the T, the H or the OUCH!!! (in
case of a tie) should be blank.

After printing each line, test whether either animal has reached or passed square 70. If so,
print the winner and terminate the simulation. If the tortoise wins, print TORTOISE WINS!!!

YAY!!! If the hare wins, print Hare wins. Yuch. If both animals win on the same clock tick, you
may want to favor the tortoise (the “underdog”), or you may want to print It's a tie. If neither
animal wins, perform the loop again to simulate the next tick of the clock.

8.13 (What Does This Code Do?) What does this program do?

Animal Move type
Percentage of
the time Actual move

Tortoise Fast plod 50% 3 squares to the right

Slip 20% 6 squares to the left

Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all

Big hop 20% 9 squares to the right

Big slip 10% 12 squares to the left

Small hop 30% 1 square to the right

Small slip 20% 2 squares to the left

Fig. 8.21 | Rules for moving the tortoise and the hare.

1 // Ex. 8.13: ex08_13.cpp
2 // What does this program do?
3 #include <iostream>

370 Chapter 8 Pointers

8.14 (What Does This Code Do?) What does this program do?

8.15 (Quicksort) You’ve previously seen the sorting techniques of the bucket sort and selection
sort. We now present the recursive sorting technique called Quicksort. The basic algorithm for a
single-subscripted array of values is as follows:

4 using namespace std;
5
6 void mystery1(char *, const char *); // prototype
7
8 int main()
9 {

10 char string1[80];
11 char string2[80];
12
13 cout << "Enter two strings: ";
14 cin >> string1 >> string2;
15 mystery1(string1, string2);
16 cout << string1 << endl;
17 } // end main
18
19 // What does this function do?
20 void mystery1(char *s1, const char *s2)
21 {
22 while (*s1 != '\0')
23 ++s1;
24
25 for (; *s1 = *s2; ++s1, ++s2)
26 ; // empty statement
27 } // end function mystery1

1 // Ex. 8.14: ex08_14.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 int mystery2(const char *); // prototype
7
8 int main()
9 {

10 char string1[80];
11
12 cout << "Enter a string: ";
13 cin >> string1;
14 cout << mystery2(string1) << endl;
15 } // end main
16
17 // What does this function do?
18 int mystery2(const char *s)
19 {
20 int x;
21
22 for (x = 0; *s != '\0'; ++s)
23 ++x;
24
25 return x;
26 } // end function mystery2

Exercises 371

a) Partitioning Step: Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less
than the element, and all values to the right of the element in the array are greater than
the element). We now have one element in its proper location and two unsorted subar-
rays.

b) Recursive Step: Perform Step 1 on each unsorted subarray.

Each time Step 1 is performed on a subarray, another element is placed in its final location of the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, that
subarray must be sorted; therefore, that element is in its final location.

The basic algorithm seems simple enough, but how do we determine the final position of the
first element of each subarray? As an example, consider the following set of values (the element in
bold is the partitioning element—it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

a) Starting from the rightmost element of the array, compare each element with 37 until
an element less than 37 is found. Then swap 37 and that element. The first element less
than 37 is 12, so 37 and 12 are swapped. The values now reside in the array as follows:

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare

each element with 37 until an element greater than 37 is found. Then swap 37 and that
element. The first element greater than 37 is 89, so 37 and 89 are swapped. The values
now reside in the array as follows:

12 2 6 4 37 8 10 89 68 45

c) Starting from the right, but beginning with the element before 89, compare each ele-
ment with 37 until an element less than 37 is found. Then swap 37 and that element.
The first element less than 37 is 10, so 37 and 10 are swapped. The values now reside
in the array as follows:

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare each element
with 37 until an element greater than 37 is found. Then swap 37 and that element.
There are no more elements greater than 37, so when we compare 37 with itself, we
know that 37 has been placed in its final location of the sorted array.

Once the partition has been applied to the array, there are two unsorted subarrays. The subarray
with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37
contains 89, 68 and 45. The sort continues with both subarrays being partitioned in the same
manner as the original array.

Based on the preceding discussion, write recursive function quickSort to sort a single-sub-
scripted integer array. The function should receive as arguments an integer array, a starting sub-
script and an ending subscript. Function partition should be called by quickSort to perform the
partitioning step.

8.16 (Maze Traversal) The grid of hashes (#) and dots (.) in Fig. 8.22 is a two-dimensional array
representation of a maze. In the two-dimensional array, the hashes represent the walls of the maze
and the dots represent squares in the possible paths through the maze. Moves can be made only to
a location in the array that contains a dot.

There is a simple algorithm for walking through a maze that guarantees finding the exit
(assuming that there is an exit). If there is not an exit, you’ll arrive at the starting location again.
Place your right hand on the wall to your right and begin walking forward. Never remove your

372 Chapter 8 Pointers

hand from the wall. If the maze turns to the right, you follow the wall to the right. As long as you
do not remove your hand from the wall, eventually you’ll arrive at the exit of the maze. There may
be a shorter path than the one you’ve taken, but you are guaranteed to get out of the maze if you
follow the algorithm.

Write recursive function mazeTraverse to walk through the maze. The function should
receive arguments that include a 12-by-12 character array representing the maze and the starting
location of the maze. As mazeTraverse attempts to locate the exit from the maze, it should place
the character X in each square in the path. The function should display the maze after each move,
so the user can watch as the maze is solved.

8.17 (Generating Mazes Randomly) Write a function mazeGenerator that randomly produces a
maze. The function should take as arguments a two-dimensional 12-by-12 character array and
pointers to the int variables that represent the row and column of the maze’s entry point. Try your
function mazeTraverse from Exercise 8.16, using several randomly generated mazes.

Special Section: Building Your Own Computer
In the next several problems, we take a temporary diversion away from the world of high-level-lan-
guage programming. We “peel open” a computer and look at its internal structure. We introduce
machine-language programming and write several machine-language programs. To make this an
especially valuable experience, we then build a computer (using software-based simulation) on
which you can execute your machine-language programs!

8.18 (Machine-Language Programming) Let’s create a computer we’ll call the Simpletron. As its
name implies, it’s a simple machine, but, as we’ll soon see, it’s a powerful one as well. The Sim-
pletron runs programs written in the only language it directly understands, that is, Simpletron Ma-
chine Language, or SML for short.

The Simpletron contains an accumulator—a “special register” in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All
information in the Simpletron is handled in terms of words. A word is a signed four-digit decimal
number, such as +3364, -1293, +0007, -0001, etc. The Simpletron is equipped with a 100-word
memory, and these words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load, or place, the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00. The simulator
will start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory; thus,
instructions are signed four-digit decimal numbers. Assume that the sign of an SML instruction is
always plus, but the sign of a data word may be either plus or minus. Each location in the Sim-

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

Fig. 8.22 | Two-dimensional array representation of a maze.

Special Section: Building Your Own Computer 373

pletron’s memory may contain an instruction, a data value used by a program or an unused (and
hence undefined) area of memory. The first two digits of each SML instruction are the operation
code that specifies the operation to be performed. SML operation codes are shown in Fig. 8.23.

The last two digits of an SML instruction are the operand—the address of the memory loca-
tion containing the word to which the operation applies.

Now let’s consider two simple SML programs. The first (Fig. 8.24) reads two numbers from
the keyboard and computes and prints their sum. The instruction +1007 reads the first number
from the keyboard and places it into location 07 (which has been initialized to zero). Instruction
+1008 reads the next number into location 08. The load instruction, +2007, places (copies) the first

Operation code Meaning

Input/output operations

const int READ = 10; Read a word from the keyboard into a specific location in
memory.

const int WRITE = 11; Write a word from a specific location in memory to the
screen.

Load and store operations

const int LOAD = 20; Load a word from a specific location in memory into the
accumulator.

const int STORE = 21; Store a word from the accumulator into a specific loca-
tion in memory.

Arithmetic operations

const int ADD = 30; Add a word from a specific location in memory to the
word in the accumulator (leave result in accumulator).

const int SUBTRACT = 31; Subtract a word from a specific location in memory from
the word in the accumulator (leave result in accumula-
tor).

const int DIVIDE = 32; Divide a word from a specific location in memory into
the word in the accumulator (leave result in accumula-
tor).

const int MULTIPLY = 33; Multiply a word from a specific location in memory by
the word in the accumulator (leave result in accumula-
tor).

Transfer-of-control operations

const int BRANCH = 40; Branch to a specific location in memory.

const int BRANCHNEG = 41; Branch to a specific location in memory if the accumula-
tor is negative.

const int BRANCHZERO = 42; Branch to a specific location in memory if the accumula-
tor is zero.

const int HALT = 43; Halt—the program has completed its task.

Fig. 8.23 | Simpletron Machine Language (SML) operation codes.

374 Chapter 8 Pointers

number into the accumulator, and the add instruction, +3008, adds the second number to the
number in the accumulator. All SML arithmetic instructions leave their results in the accumulator.
The store instruction, +2109, places (copies) the result back into memory location 09. Then the
write instruction, +1109, takes the number and prints it (as a signed four-digit decimal number).
The halt instruction, +4300, terminates execution.

The SML program in Fig. 8.25 reads two numbers from the keyboard, then determines and
prints the larger value. Note the use of the instruction +4107 as a conditional transfer of control,
much the same as C++’s if statement.

Now write SML programs to accomplish each of the following tasks:

Location Number Instruction

00 +1007 (Read A)

01 +1008 (Read B)

02 +2007 (Load A)

03 +3008 (Add B)

04 +2109 (Store C)

05 +1109 (Write C)

06 +4300 (Halt)

07 +0000 (Variable A)

08 +0000 (Variable B)

09 +0000 (Result C)

Fig. 8.24 | SML Example 1.

Location Number Instruction

00 +1009 (Read A)

01 +1010 (Read B)

02 +2009 (Load A)

03 +3110 (Subtract B)

04 +4107 (Branch negative to
07)

05 +1109 (Write A)

06 +4300 (Halt)

07 +1110 (Write B)

08 +4300 (Halt)

09 +0000 (Variable A)

10 +0000 (Variable B)

Fig. 8.25 | SML Example 2.

Special Section: Building Your Own Computer 375

a) Use a sentinel-controlled loop to read positive numbers and compute and print their
sum. Terminate input when a negative number is entered.

b) Use a counter-controlled loop to read seven numbers, some positive and some negative,
and compute and print their average.

c) Read a series of numbers, and determine and print the largest number. The first number
read indicates how many numbers should be processed.

8.19 (Computer Simulator) It may at first seem outrageous, but in this problem you are going
to build your own computer. No, you won’t be soldering components together. Rather, you’ll use
the powerful technique of software-based simulation to create a software model of the Simpletron.
Your Simpletron simulator will turn the computer you are using into a Simpletron, and you actually
will be able to run, test and debug the SML programs you wrote in Exercise 8.18.

When you run your Simpletron simulator, it should begin by printing

*** Welcome to Simpletron! ***

*** Please enter your program one instruction ***
*** (or data word) at a time. I will type the ***
*** location number and a question mark (?). ***
*** You then type the word for that location. ***
*** Type the sentinel -99999 to stop entering ***
*** your program. ***

Your program should simulate the Simpletron’s memory with a single-subscripted, 100-ele-
ment array memory. Now assume that the simulator is running, and let’s examine the dialog as we
enter the program of the second example of Exercise 8.18:

00 ? +1009
01 ? +1010
02 ? +2009
03 ? +3110
04 ? +4107
05 ? +1109
06 ? +4300
07 ? +1110
08 ? +4300
09 ? +0000
10 ? +0000
11 ? -99999

*** Program loading completed ***
*** Program execution begins ***

The numbers to the right of each ? in the preceding dialog represent the SML program instruc-
tions input by the user.

The SML program has now been placed (or loaded) into array memory. Now the Simpletron
executes your SML program. Execution begins with the instruction in location 00 and, like C++,
continues sequentially, unless directed to some other part of the program by a transfer of control.

Use variable accumulator to represent the accumulator register. Use variable instructionCoun-

ter to keep track of the location in memory that contains the instruction being performed. Use vari-
able operationCode to indicate the operation currently being performed (i.e., the left two digits of
the instruction word). Use variable operand to indicate the memory location on which the current
instruction operates. Thus, operand is the rightmost two digits of the instruction currently being
performed. Do not execute instructions directly from memory. Rather, transfer the next instruction
to be performed from memory to a variable called instructionRegister. Then “pick off” the left
two digits and place them in operationCode, and “pick off” the right two digits and place them in
operand. When Simpletron begins execution, the special registers are all initialized to zero.

376 Chapter 8 Pointers

Now let’s “walk through” the execution of the first SML instruction, +1009 in memory loca-
tion 00. This is called an instruction execution cycle.

The instructionCounter tells us the location of the next instruction to be performed. We
fetch the contents of that location from memory by using the C++ statement

instructionRegister = memory[instructionCounter];

The operation code and operand are extracted from the instruction register by the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now, the Simpletron must determine that the operation code is actually a read (versus a write, a
load, etc.). A switch differentiates among the 12 operations of SML. In the switch statement, the
behavior of various SML instructions is simulated as shown in Fig. 8.26 (we leave the others to you).

The halt instruction also causes the Simpletron to print the name and contents of each register,
as well as the complete contents of memory. Such a printout is often called a register and memory
dump. To help you program your dump function, a sample dump format is shown in Fig. 8.27. Note
that a dump after executing a Simpletron program would show the actual values of instructions and
data values at the moment execution terminated. To format numbers with their sign as shown in the
dump, use stream manipulator showpos. To disable the display of the sign, use stream manipulator
noshowpos. For numbers that have fewer than four digits, you can format numbers with leading zeros
between the sign and the value by using the following statement before outputting the value:

cout << setfill('0') << internal;

read: cin >> memory[operand];

load: accumulator = memory[operand];

add: accumulator += memory[operand];

branch: We’ll discuss the branch instructions shortly.

halt: This instruction prints the message
*** Simpletron execution terminated ***

Fig. 8.26 | Behavior of SML instructions.

REGISTERS:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
0 1 2 3 4 5 6 7 8 9

0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 8.27 | A sample register and memory dump.

Special Section: Building Your Own Computer 377

Parameterized stream manipulator setfill (from header <iomanip>) specifies the fill character
that will appear between the sign and the value when a number is displayed with a field width of
five characters but does not have four digits. (One position in the field width is reserved for the
sign.) Stream manipulator internal indicates that the fill characters should appear between the
sign and the numeric value .

Let’s proceed with the execution of our program’s first instruction—+1009 in location 00. As
we’ve indicated, the switch statement simulates this by performing the C++ statement

cin >> memory[operand];

A question mark (?) should be displayed on the screen before the cin statement executes to
prompt the user for input. The Simpletron waits for the user to type a value and press the Enter
key. The value is then read into location 09.

At this point, simulation of the first instruction is complete. All that remains is to prepare the
Simpletron to execute the next instruction. The instruction just performed was not a transfer of
control, so we need merely increment the instruction counter register as follows:

++instructionCounter;

This completes the simulated execution of the first instruction. The entire process (i.e., the
instruction execution cycle) begins anew with the fetch of the next instruction to execute.

Now let’s consider how to simulate the branching instructions (i.e., the transfers of control).
All we need to do is adjust the value in the instructionCounter appropriately. Therefore, the
unconditional branch instruction (40) is simulated in the switch as

instructionCounter = operand;

The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0)
instructionCounter = operand;

At this point, you should implement your Simpletron simulator and run each of the SML
programs you wrote in Exercise 8.18. The variables that represent the Simpletron simulator’s mem-
ory and registers should be defined in main and passed to other functions by value or by reference
as appropriate.

Your simulator should check for various types of errors. During the program loading phase,
for example, each number the user types into the Simpletron’s memory must be in the range -9999

to +9999. Your simulator should use a while loop to test that each number entered is in this range
and, if not, keep prompting the user to reenter the number until the user enters a correct number.

During the execution phase, your simulator should check for various serious errors, such as
attempts to divide by zero, attempts to execute invalid operation codes, accumulator overflows
(i.e., arithmetic operations resulting in values larger than +9999 or smaller than -9999) and the like.
Such serious errors are called fatal errors. When a fatal error is detected, your simulator should
print an error message such as

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

and should print a full register and memory dump in the format we’ve discussed previously. This
will help the user locate the error in the program.

8.20 (Project: Modifications to the Simpletron Simulator) In Exercise 8.19, you wrote a software
simulation of a computer that executes programs written in Simpletron Machine Language (SML).
In this exercise, we propose several modifications and enhancements to the Simpletron Simulator.
In Exercises 20.31–20.35, we propose building a compiler that converts programs written in a high-
level programming language (a variation of BASIC) to SML. Some of the following modifications

378 Chapter 8 Pointers

and enhancements may be required to execute the programs produced by the compiler. [Note: Some
modifications may conflict with others and therefore must be done separately.]

a) Extend the Simpletron Simulator’s memory to contain 1000 memory locations to en-
able the Simpletron to handle larger programs.

b) Allow the simulator to perform modulus calculations. This requires an additional Sim-
pletron Machine Language instruction.

c) Allow the simulator to perform exponentiation calculations. This requires an additional
Simpletron Machine Language instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to represent
Simpletron Machine Language instructions.

e) Modify the simulator to allow output of a newline. This requires an additional Sim-
pletron Machine Language instruction.

f) Modify the simulator to process floating-point values in addition to integer values.
g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be di-

vided into two groups, each holding a two-digit integer. Each two-digit integer repre-
sents the ASCII decimal equivalent of a character. Add a machine-language instruction
that inputs a string and store the string beginning at a specific Simpletron memory lo-
cation. The first half of the word at that location will be a count of the number of char-
acters in the string (i.e., the length of the string). Each succeeding half-word contains
one ASCII character expressed as two decimal digits. The machine-language instruction
converts each character into its ASCII equivalent and assigns it to a half-word.]

h) Modify the simulator to handle output of strings stored in the format of part (g). [Hint:
Add a machine-language instruction that will print a string beginning at a certain Sim-
pletron memory location. The first half of the word at that location is a count of the
number of characters in the string (i.e., the length of the string). Each succeeding half-
word contains one ASCII character expressed as two decimal digits. The machine-lan-
guage instruction checks the length and prints the string by translating each two-digit
number into its equivalent character.]

i) Modify the simulator to include instruction SML_DEBUG that prints a memory dump af-
ter each instruction executes. Give SML_DEBUG an operation code of 44. The word +4401

turns on debug mode, and +4400 turns off debug mode.

9Classes: A Deeper Look,
Part 1

My object all sublime
I shall achieve in time.
—W. S. Gilbert

Is it a world to hide virtues in?
—William Shakespeare

Don’t be “consistent,” but be
simply true.
—Oliver Wendell Holmes, Jr.

O b j e c t i v e s
In this chapter you’ll learn:

■ How to use a preprocessor
wrapper to prevent multiple
definition errors.

■ To understand class scope
and accessing class members
via the name of an object, a
reference to an object or a
pointer to an object.

■ To define constructors with
default arguments.

■ How destructors are used to
perform “termination
housekeeping” on an object
before it’s destroyed.

■ When constructors and
destructors are called and the
order in which they’re called.

■ The logic errors that may
occur when a public
member function returns a
reference to private data.

■ To assign the data members
of one object to those of
another object by default
memberwise assignment.

380 Chapter 9 Classes: A Deeper Look, Part 1

9.1 Introduction
In the preceding chapters, we introduced many basic terms and concepts of C++ object-
oriented programming. We also discussed our program development methodology: We
selected appropriate attributes and behaviors for each class and specified the manner in
which objects of our classes collaborated with objects of C++ Standard Library classes to
accomplish each program’s overall goals.

In this chapter, we take a deeper look at classes. We use an integrated Time class case
study in both this chapter and Chapter 10, Classes: A Deeper Look, Part 2 to demonstrate
several class construction capabilities. We begin with a Time class that reviews several of
the features presented in the preceding chapters. The example also demonstrates an impor-
tant C++ software engineering concept—using a “preprocessor wrapper” in headers to pre-
vent the code in the header from being included into the same source code file more than
once. Since a class can be defined only once, using such preprocessor directives prevents
multiple definition errors.

Next, we discuss class scope and the relationships among class members. We demon-
strate how client code can access a class’s public members via three types of “handles”—
the name of an object, a reference to an object or a pointer to an object. As you’ll see, object
names and references can be used with the dot (.) member selection operator to access a
public member, and pointers can be used with the arrow (->) member selection operator.

We discuss access functions that can read or display data in an object. A common use
of access functions is to test the truth or falsity of conditions—such functions are known
as predicate functions. We also demonstrate the notion of a utility function (also called a
helper function)—a private member function that supports the operation of the class’s
public member functions, but is not intended for use by clients of the class.

In the second Time class case study example, we demonstrate how to pass arguments
to constructors and show how default arguments can be used in a constructor to enable
client code to initialize objects using a variety of arguments. Next, we discuss a special
member function called a destructor that’s part of every class and is used to perform “ter-
mination housekeeping” on an object before the object is destroyed. We then demonstrate
the order in which constructors and destructors are called, because your programs’ correct-
ness depends on using properly initialized objects that have not yet been destroyed.

9.1 Introduction
9.2 Time Class Case Study
9.3 Class Scope and Accessing Class

Members
9.4 Separating Interface from

Implementation
9.5 Access Functions and Utility

Functions
9.6 TimeClass Case Study: Constructors

with Default Arguments

9.7 Destructors
9.8 When Constructors and Destructors

Are Called
9.9 Time Class Case Study: A Subtle

Trap—Returning a Reference to a
private Data Member

9.10 Default Memberwise Assignment
9.11 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

9.2 Time Class Case Study 381

Our last example of the Time class case study in this chapter shows a dangerous pro-
gramming practice in which a member function returns a reference to private data. We
discuss how this breaks the encapsulation of a class and allows client code to directly access
an object’s data. This last example shows that objects of the same class can be assigned to
one another using default memberwise assignment, which copies the data members in the
object on the right side of the assignment into the corresponding data members of the
object on the left side of the assignment. The chapter concludes with a discussion of soft-
ware reusability.

9.2 Time Class Case Study
Our first example (Figs. 9.1–9.3) creates class Time and a driver program that tests the class.
We demonstrate an important C++ software engineering concept—using a “preprocessor
wrapper” in headers to prevent the code in the header from being included into the same
source code file more than once. Since a class can be defined only once, using such prepro-
cessor directives prevents multiple-definition errors.

Time Class Definition
The class definition (Fig. 9.1) contains prototypes (lines 13–16) for member functions
Time, setTime, printUniversal and printStandard, and includes private integer mem-
bers hour, minute and second (lines 18–20). Class Time’s private data members can be
accessed only by its four public member functions. Chapter 12 introduces a third access
specifier, protected, as we study inheritance and the part it plays in object-oriented pro-
gramming.

1 // Fig. 9.1:
2
3
4
5 // prevent multiple inclusions of header
6
7
8
9 // Time class definition

10 class Time
11 {
12 public:
13 Time(); // constructor
14 void setTime(int, int, int); // set hour, minute and second
15 void printUniversal(); // print time in universal-time format
16 void printStandard(); // print time in standard-time format
17 private:
18 int hour; // 0 - 23 (24-hour clock format)
19 int minute; // 0 - 59
20 int second; // 0 - 59
21 }; // end class Time
22
23

Fig. 9.1 | Time class definition.

Time.h
// Time class definition.
// Member functions are defined in Time.cpp

#ifndef TIME_H
#define TIME_H

#endif

382 Chapter 9 Classes: A Deeper Look, Part 1

In Fig. 9.1, the class definition is enclosed in the following preprocessor wrapper
(lines 6, 7 and 23):

When we build larger programs, other definitions and declarations will also be placed in
headers. The preceding preprocessor wrapper prevents the code between #ifndef (which
means “if not defined”) and #endif from being included if the name TIME_H has been de-
fined. If the header has not been included previously in a file, the name TIME_H is defined
by the #define directive and the header statements are included. If the header has been
included previously, TIME_H is defined already and the header is not included again. At-
tempts to include a header multiple times (inadvertently) typically occur in large programs
with many headers that may themselves include other headers.

Time Class Member Functions
In Fig. 9.2, the Time constructor (lines 11–14) initializes the data members to 0—the uni-
versal-time equivalent of 12 AM. Invalid values cannot be stored in the data members of
a Time object, because the constructor is called when the Time object is created, and all sub-
sequent attempts by a client to modify the data members are scrutinized by function set-

Time (discussed shortly). Finally, it’s important to note that you can define several
overloaded constructors for a class.

Good Programming Practice 9.1
For clarity and readability, use each access specifier only once in a class definition. Place
public members first, where they’re easy to locate.

Software Engineering Observation 9.1
Each element of a class should have private visibility unless it can be proven that the
element needs public visibility. This is another example of the principle of least privilege.

// prevent multiple inclusions of header
#ifndef TIME_H
#define TIME_H

...
#endif

Error-Prevention Tip 9.1
Use #ifndef, #define and #endif preprocessor directives to form a preprocessor wrapper
that prevents headers from being included more than once in a program.

Good Programming Practice 9.2
By convention, use the name of the header in upper case with the period replaced by an
underscore in the #ifndef and #define preprocessor directives of a header.

1 // Fig. 9.2:
2
3 #include <iostream>
4 #include <iomanip>
5

Fig. 9.2 | Time class member-function definitions. (Part 1 of 2.)

Time.cpp
// Member-function definitions for class Time.

#include <stdexcept> // for invalid_argument exception class

9.2 Time Class Case Study 383

With the exception of static const int data members (which you saw in Chapter 7), a
class’s data members cannot be initialized where they’re declared in the class body—though this
will be allowed in the next version of the C++ standard. It’s strongly recommended that
these data members be initialized by the class’s constructor as there is no default initializa-
tion for fundamental-type data members. Data members can also be assigned values by
Time’s set functions.

6
7
8 using namespace std;
9

10 // Time constructor initializes each data member to zero.
11 Time::Time()
12 {
13 hour = minute = second = 0;
14 } // end Time constructor
15
16 // set new Time value using universal time
17 void Time::setTime(int h, int m, int s)
18 {
19 // validate hour, minute and second
20 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
21 (s >= 0 && s < 60))
22 {
23 hour = h;
24 minute = m;
25 second = s;
26 } // end if
27 else
28
29
30 } // end function setTime
31
32 // print Time in universal-time format (HH:MM:SS)
33 void Time::printUniversal()
34 {
35 cout << << setw(2) << << ":"
36 << setw(2) << << ":" << setw(2) << ;
37 } // end function printUniversal
38
39 // print Time in standard-time format (HH:MM:SS AM or PM)
40 void Time::printStandard()
41 {
42 cout << ((== 0 || == 12) ? 12 : % 12) << ":"
43 << << setw(2) << << ":" << setw(2)
44 << << (< 12 ? " AM" : " PM");
45 } // end function printStandard

Common Programming Error 9.1
Attempting to initialize a non-static data member of a class explicitly in the class defi-
nition is a syntax error.

Fig. 9.2 | Time class member-function definitions. (Part 2 of 2.)

#include "Time.h" // include definition of class Time from Time.h

throw invalid_argument(
"hour, minute and/or second was out of range");

setfill('0') hour
minute second

hour hour hour
setfill('0') minute
second hour

384 Chapter 9 Classes: A Deeper Look, Part 1

Time Class Member Function setTime and Throwing Exceptions
Function setTime (lines 17–30) is a public function that declares three int parameters and
uses them to set the time. Lines 20–21 test each argument to determine whether the value is
in range, and, if so, lines 23–25 assign the values to the hour, minute and second data mem-
bers. The hour value must be greater than or equal to 0 and less than 24, because universal-
time format represents hours as integers from 0 to 23 (e.g., 1 PM is hour 13 and 11 PM is
hour 23; midnight is hour 0 and noon is hour 12). Similarly, both minute and second must
be greater than or equal to 0 and less than 60. For values outside these ranges, setTime
throws an exception of type invalid_argument (lines 28–29), which notifies the client code
that an invalid argument was received. As you learned in Section 7.11, you can use
try...catch to catch exceptions and attempt to recover from them, which we’ll do in
Fig. 9.3. The throw statement (lines 28–29) creates a new object of type invalid_argument.
The parentheses following the class name indicate a call to the invalid_argument construc-
tor that allows us to specify a custom error message string. After the exception object is cre-
ated, the throw statement immediately terminates function setTime and the exception is
returned to the code that attempted to set the time. [Note: To avoid compilation errors with
GNU C++, you may need to include header <stdexcept> to use class invalid_argument.]

Time Class Member Function printUniversal
Function printUniversal (lines 33–37 of Fig. 9.2) takes no arguments and outputs the
time in universal-time format, consisting of three colon-separated pairs of digits for the
hour, minute and second. For example, if the time were 1:30:07 PM, function printUni-

versal would return 13:30:07. Line 35 uses parameterized stream manipulator setfill
to specify the fill character that’s displayed when an integer is output in a field wider than
the number of digits in the value. By default, the fill characters appear to the left of the
digits in the number. In this example, if the minute value is 2, it will be displayed as 02,
because the fill character is set to zero ('0'). If the number being output fills the specified
field, the fill character will not be displayed. Once the fill character is specified with set-

fill, it applies for all subsequent values that are displayed in fields wider than the value
being displayed (i.e., setfill is a “sticky” setting). This is in contrast to setw, which ap-
plies only to the next value displayed (setw is a “nonsticky” setting).

Time Class Member Function printStandard
Function printStandard (lines 40–45) takes no arguments and outputs the date in stan-
dard-time format, consisting of the hour, minute and second values separated by colons
and followed by an AM or PM indicator (e.g., 1:27:06 PM). Like function printUniver-

sal, function printStandard uses setfill('0') to format the minute and second as two
digit values with leading zeros if necessary. Line 42 uses the conditional operator (?:) to
determine the value of hour to be displayed—if the hour is 0 or 12 (AM or PM), it appears
as 12; otherwise, the hour appears as a value from 1 to 11. The conditional operator in line
44 determines whether AM or PM will be displayed.

Error-Prevention Tip 9.2
Each sticky setting (such as a fill character or floating-point precision) should be restored
to its previous setting when it’s no longer needed. Failure to do so may result in incorrectly
formatted output later in a program. Chapter 15, Stream Input/Output, discusses how to
reset the fill character and precision.

9.2 Time Class Case Study 385

Defining Member Functions Outside the Class Definitiogn; Class Scope
Even though a member function declared in a class definition may be defined outside that
class definition (and “tied” to the class via the scope resolution operator), that member func-
tion is still within that class’s scope—that is, its name is known to other members of the
class unless. We’ll say more about class scope shortly.

If a member function is defined in the body of a class definition, the member function
is implicitly declared inline. Remember that the compiler reserves the right not to inline
any function.

Member Functions vs. Global Functions
The printUniversal and printStandard member functions take no arguments, because
these member functions implicitly know that they’re to print the data members of the par-
ticular Time object for which they’re invoked. This can make member function calls more
concise than conventional function calls in procedural programming.

Performance Tip 9.1
Defining a member function inside the class definition inlines the member function (if
the compiler chooses to do so). This can improve performance.

Software Engineering Observation 9.2
Defining a small member function inside the class definition does not promote the best
software engineering, because clients of the class will be able to see the implementation of
the function, and the client code must be recompiled if the function definition changes.

Software Engineering Observation 9.3
Only the simplest and most stable member functions (i.e., whose implementations are
unlikely to change) should be defined in the class header.

Software Engineering Observation 9.4
Using an object-oriented programming approach often simplifies function calls by
reducing the number of parameters. This benefit of object-oriented programming derives
from the fact that encapsulating data members and member functions within an object
gives the member functions the right to access the data members.

Software Engineering Observation 9.5
Member functions are usually shorter than functions in non-object-oriented programs,
because the data stored in data members have ideally been validated by a constructor or
by member functions that store new data. Because the data is already in the object, the
member-function calls often have no arguments or fewer arguments than function calls in
non-object-oriented languages. Thus, the calls, the function definitions and the function
prototypes are shorter. This improves many aspects of program development.

Error-Prevention Tip 9.3
The fact that member function calls generally take either no arguments or substantially
fewer arguments than conventional function calls in non-object-oriented languages re-
duces the likelihood of passing the wrong arguments, the wrong types of arguments or the
wrong number of arguments.

386 Chapter 9 Classes: A Deeper Look, Part 1

Using Class Time
Once defined, Time can be used as a type in declarations as follows:

Figure 9.3 uses class Time. Line 10 instantiates a single object of class Time called t.
When the object is instantiated, the Time constructor is called to initialize each private data
member to 0. Then, lines 14 and 16 print the time in universal and standard formats, respec-
tively, to confirm that the members were initialized properly. Line 18 sets a new time by
calling member function setTime, and lines 22 and 24 print the time again in both formats.

Time sunset; // object of type Time
Time arrayOfTimes[5]; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object
Time *timePtr = &dinnerTime; // pointer to a Time object

1 // Fig. 9.3: fig09_03.cpp
2
3
4 #include <iostream>
5
6 using namespace std;
7
8 int main()
9 {

10 Time t; // instantiate object t of class Time
11
12 // output Time object t's initial values
13 cout << "The initial universal time is ";
14 t.printUniversal(); // 00:00:00
15 cout << "\nThe initial standard time is ";
16 t.printStandard(); // 12:00:00 AM
17
18 t.setTime(13, 27, 6); // change time
19
20 // output Time object t's new values
21 cout << "\n\nUniversal time after setTime is ";
22 t.printUniversal(); // 13:27:06
23 cout << "\nStandard time after setTime is ";
24 t.printStandard(); // 1:27:06 PM
25
26 // attempt to set the time with invalid values
27 try
28 {
29 t.setTime(99, 99, 99); // all values out of range
30 } // end try
31 catch (invalid_argument &e)
32 {
33 cout << "Exception: " << e.what() << endl << endl;
34 } // end catch
35
36 // output t's values after specifying invalid values
37 cout << "\n\nAfter attempting invalid settings:"
38 << "\nUniversal time: ";

Fig. 9.3 | Program to test class Time. (Part 1 of 2.)

// Program to test class Time.
// NOTE: This file must be compiled with Time.cpp.

#include "Time.h" // include definition of class Time from Time.h

9.2 Time Class Case Study 387

Calling setTime with Invalid Values
To illustrate that method setTime validates its arguments, line 29 calls setTime with in-
valid arguments of 99 for the hour, minute and second. This statement is placed in a try

block (lines 27–30) in case setTime throws an invalid_argument exception, which it will
do since the arguments are all invalid. When this occurs, the exception is caught at lines
31–34 and line 33 displays the exception’s error message by calling its what member func-
tion. Lines 37–41 output the time again in both formats to confirm that setTime did not
change the time when invalid arguments were supplied.

Looking Ahead to Composition and Inheritance
Often, classes do not have to be created “from scratch.” Rather, they can include objects
of other classes as members or they may be derived from other classes that provide attri-
butes and behaviors the new classes can use. Such software reuse can greatly enhance pro-
ductivity and simplify code maintenance. Including class objects as members of other
classes is called composition (or aggregation) and is discussed in Chapter 10. Deriving
new classes from existing classes is called inheritance and is discussed in Chapter 12.

Object Size
People new to object-oriented programming often suppose that objects must be quite large
because they contain data members and member functions. Logically, this is true—you
may think of objects as containing data and functions (and our discussion has certainly
encouraged this view); physically, however, this is not true.

39 t.printUniversal(); // 00:00:00
40 cout << "\nStandard time: ";
41 t.printStandard(); // 12:00:00 AM
42 cout << endl;
43 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

Exception: hour, minute and/or second was out of range

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Performance Tip 9.2
Objects contain only data, so objects are much smaller than if they also contained member
functions. Applying operator sizeof to a class name or to an object of that class will report
only the size of the class’s data members. The compiler creates one copy (only) of the mem-
ber functions separate from all objects of the class. All objects of the class share this one copy.
Each object, of course, needs its own copy of the class’s data, because the data can vary
among the objects. The function code is nonmodifiable and, hence, can be shared among
all objects of one class.

Fig. 9.3 | Program to test class Time. (Part 2 of 2.)

388 Chapter 9 Classes: A Deeper Look, Part 1

9.3 Class Scope and Accessing Class Members
A class’s data members (variables declared in the class definition) and member functions
(functions declared in the class definition) belong to that class’s scope. Nonmember func-
tions are defined at global namespace scope.

Within a class’s scope, class members are immediately accessible by all of that class’s
member functions and can be referenced by name. Outside a class’s scope, public class
members are referenced through one of the handles on an object—an object name, a ref-
erence to an object or a pointer to an object. The type of the object, reference or pointer
specifies the interface (i.e., the member functions) accessible to the client. [We’ll see in
Chapter 10 that an implicit handle is inserted by the compiler on every reference to a data
member or member function from within an object.]

Member functions of a class can be overloaded, but only by other member functions of that
class. To overload a member function, simply provide in the class definition a prototype
for each version of the overloaded function, and provide a separate function definition for
each version of the function. This also applies to the class’s constructors.

Variables declared in a member function have local scope and are known only to that
function. If a member function defines a variable with the same name as a variable with
class scope, the class-scope variable is hidden by the block-scope variable in the local scope.
Such a hidden variable can be accessed by preceding the variable name with the class name
followed by the scope resolution operator (::). Hidden global variables can be accessed
with the scope resolution operator (see Chapter 6).

The dot member selection operator (.) is preceded by an object’s name or with a ref-
erence to an object to access the object’s members. The arrow member selection operator
(->) is preceded by a pointer to an object to access the object’s members.

Figure 9.4 uses a simple class called Count (lines 7–24) with private data member x
of type int (line 23), public member function setX (lines 11–14) and public member
function print (lines 17–20) to illustrate accessing class members with the member-selec-
tion operators. For simplicity, we’ve included this small class in the same file as main. Lines
28–30 create three variables related to type Count—counter (a Count object), counterPtr
(a pointer to a Count object) and counterRef (a reference to a Count object). Variable
counterRef refers to counter, and variable counterPtr points to counter. In lines 33–34
and 37–38, note that the program invokes member functions setX and print by using the
dot (.) member selection operator preceded by either the name of the object (counter) or
a reference to the object (counterRef, which is an alias for counter). Similarly, lines 41–
42 demonstrate that the program can invoke member functions setX and print by using
a pointer (countPtr) and the arrow (->) member-selection operator.

1 // Fig. 9.4: fig09_04.cpp
2 // Demonstrating the class member access operators . and ->
3 #include <iostream>
4 using namespace std;
5

Fig. 9.4 | Accessing an object’s member functions through each type of object handle—the
object’s name, a reference to the object and a pointer to the object. (Part 1 of 2.)

9.4 Separating Interface from Implementation 389

9.4 Separating Interface from Implementation
In Chapter 3, we began by including a class’s definition and member-function definitions in
one file. We then demonstrated separating this code into two files—a header for the class def-
inition (i.e., the class’s interface) and a source code file for the class’s member-function defi-
nitions (i.e., the class’s implementation). Recall that this makes it easier to modify programs—

6 // class Count definition
7 class Count
8 {
9 public: // public data is dangerous

10 // sets the value of private data member x
11 void setX(int value)
12 {
13 x = value;
14 } // end function setX
15
16 // prints the value of private data member x
17 void print()
18 {
19 cout << x << endl;
20 } // end function print
21
22 private:
23 int x;
24 }; // end class Count
25
26 int main()
27 {
28
29
30
31
32 cout << "Set x to 1 and print using the object's name: ";
33
34
35
36 cout << "Set x to 2 and print using a reference to an object: ";
37
38
39
40 cout << "Set x to 3 and print using a pointer to an object: ";
41
42
43 } // end main

Set x to 1 and print using the object's name: 1
Set x to 2 and print using a reference to an object: 2
Set x to 3 and print using a pointer to an object: 3

Fig. 9.4 | Accessing an object’s member functions through each type of object handle—the
object’s name, a reference to the object and a pointer to the object. (Part 2 of 2.)

Count counter; // create counter object
Count *counterPtr = &counter; // create pointer to counter
Count &counterRef = counter; // create reference to counter

counter.setX(1); // set data member x to 1
counter.print(); // call member function print

counterRef.setX(2); // set data member x to 2
counterRef.print(); // call member function print

counterPtr->setX(3); // set data member x to 3
counterPtr->print(); // call member function print

390 Chapter 9 Classes: A Deeper Look, Part 1

as far as clients of a class are concerned, changes in the class’s implementation do not affect
the client as long as the class’s interface originally provided to the client remains unchanged.

Actually, things are not quite this rosy. Headers do contain some portions of the
implementation and hints about others. Inline member functions, for example, should be
in a header, so that when the compiler compiles a client, the client can include the inline
function definition in place. A class’s private members are listed in the class definition in
the header, so these members are visible to clients even though the clients may not access
the private members. In Chapter 10, we show how to use a proxy class to hide even the
private data of a class from clients of the class.

9.5 Access Functions and Utility Functions
Access functions can read or display data. Another common use for access functions is to
test the truth or falsity of conditions—such functions are often called predicate functions.
An example of a predicate function would be an isEmpty function for any container
class—a class capable of holding many objects, like a vector. A program might test isEmp-
ty before attempting to read another item from the container object. An isFull predicate
function might test a container-class object to determine whether it has no additional
room. Useful predicate functions for our Time class might be isAM and isPM.

The program of Figs. 9.5–9.7 demonstrates the notion of a utility function (also
called a helper function). A utility function is not part of a class’s public interface; rather,
it’s a private member function that supports the operation of the class’s other member
functions. Utility functions are not intended to be used by clients of a class (but can be
used by friends of a class, as we’ll see in Chapter 10).

Class SalesPerson (Fig. 9.5) declares an array of 12 monthly sales figures (line 17) and
the prototypes for the class’s constructor and member functions that manipulate the array.

Software Engineering Observation 9.6
Clients of a class do not need access to the class’s source code in order to use the class. The
clients do, however, need to be able to link to the class’s object code (i.e., the compiled
version of the class). This encourages independent software vendors (ISVs) to provide class
libraries for sale or license. The ISVs provide in their products only the headers and the
object modules. No proprietary information is revealed—as would be the case if source
code were provided. The C++ user community benefits by having more ISV-produced
class libraries available.

Software Engineering Observation 9.7
Information important to the interface of a class should be included in the header.
Information that will be used only internally in the class and will not be needed by clients
of the class should be included in the unpublished source file. This is yet another example
of the principle of least privilege.

1 // Fig. 9.5: SalesPerson.h
2 // SalesPerson class definition.
3 // Member functions defined in SalesPerson.cpp.

Fig. 9.5 | SalesPerson class definition. (Part 1 of 2.)

9.5 Access Functions and Utility Functions 391

In Fig. 9.6, the SalesPerson constructor (lines 9–13) initializes array sales to zero.
The public member function setSales (lines 30–37) sets the sales figure for one month
in array sales. The public member function printAnnualSales (lines 40–45) prints the
total sales for the last 12 months. The private utility function totalAnnualSales (lines
48–56) totals the 12 monthly sales figures for the benefit of printAnnualSales. Member
function printAnnualSales edits the sales figures into monetary format.

4 #ifndef SALESPERSON_H
5 #define SALESPERSON_H
6
7 class SalesPerson
8 {
9 public:

10 static const int monthsPerYear = 12; // months in one year
11 SalesPerson(); // constructor
12 void getSalesFromUser(); // input sales from keyboard
13 void setSales(int, double); // set sales for a specific month
14 void printAnnualSales(); // summarize and print sales
15
16
17 double sales[monthsPerYear]; // 12 monthly sales figures
18 }; // end class SalesPerson
19
20 #endif

1 // Fig. 9.6: SalesPerson.cpp
2 // SalesPerson class member-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include "SalesPerson.h" // include SalesPerson class definition
6 using namespace std;
7
8 // initialize elements of array sales to 0.0
9 SalesPerson::SalesPerson()

10 {
11 for (int i = 0; i < monthsPerYear; ++i)
12 sales[i] = 0.0;
13 } // end SalesPerson constructor
14
15 // get 12 sales figures from the user at the keyboard
16 void SalesPerson::getSalesFromUser()
17 {
18 double salesFigure;
19
20 for (int i = 1; i <= monthsPerYear; ++i)
21 {
22 cout << "Enter sales amount for month " << i << ": ";
23 cin >> salesFigure;

Fig. 9.6 | SalesPerson class member-function definitions. (Part 1 of 2.)

Fig. 9.5 | SalesPerson class definition. (Part 2 of 2.)

private:
double totalAnnualSales(); // prototype for utility function

392 Chapter 9 Classes: A Deeper Look, Part 1

In Fig. 9.7, notice that the application’s main function includes only a simple sequence
of member-function calls—there are no control statements. The logic of manipulating the
sales array is completely encapsulated in class SalesPerson’s member functions.

24 setSales(i, salesFigure);
25 } // end for
26 } // end function getSalesFromUser
27
28 // set one of the 12 monthly sales figures; function subtracts
29 // one from month value for proper subscript in sales array
30 void SalesPerson::setSales(int month, double amount)
31 {
32 // test for valid month and amount values
33 if (month >= 1 && month <= monthsPerYear && amount > 0)
34 sales[month - 1] = amount; // adjust for subscripts 0-11
35 else // invalid month or amount value
36 cout << "Invalid month or sales figure" << endl;
37 } // end function setSales
38
39 // print total annual sales (with the help of utility function)
40 void SalesPerson::printAnnualSales()
41 {
42 cout << setprecision(2) << fixed
43 << "\nThe total annual sales are: $"
44 << << endl; // call utility function
45 } // end function printAnnualSales
46
47
48
49
50
51
52
53
54
55
56

Software Engineering Observation 9.8
A phenomenon of object-oriented programming is that once a class is defined, creating and
manipulating objects of that class often involve issuing only a simple sequence of member-
function calls—few, if any, control statements are needed. By contrast, it’s common to
have control statements in the implementation of a class’s member functions.

1 // Fig. 9.7: fig09_07.cpp
2 // Utility function demonstration.
3 // Compile this program with SalesPerson.cpp
4

Fig. 9.7 | Utility function demonstration. (Part 1 of 2.)

Fig. 9.6 | SalesPerson class member-function definitions. (Part 2 of 2.)

totalAnnualSales()

// private utility function to total annual sales
double SalesPerson::totalAnnualSales()
{

double total = 0.0; // initialize total

for (int i = 0; i < monthsPerYear; ++i) // summarize sales results
total += sales[i]; // add month i sales to total

return total;
} // end function totalAnnualSales

9.6 Time Class Case Study: Constructors with Default Arguments 393

9.6 Time Class Case Study: Constructors with Default
Arguments
The program of Figs. 9.8–9.10 enhances class Time to demonstrate how arguments are im-
plicitly passed to a constructor. The constructor defined in Fig. 9.2 initialized hour, min-
ute and second to 0 (i.e., midnight in universal time). Like other functions, constructors
can specify default arguments. Line 13 of Fig. 9.8 declares the Time constructor to include
default arguments, specifying a default value of zero for each argument passed to the con-
structor. In Fig. 9.9, lines 10–13 define the new version of the Time constructor that re-
ceives values for parameters hour, minute and second that will be used to initialize
private data members hour, minute and second, respectively. Class Time provides set and
get functions for each data member. The Time constructor now calls setTime, which calls
the setHour, setMinute and setSecond functions to validate and assign values to the data
members. The default arguments to the constructor ensure that, even if no values are pro-
vided in a constructor call, the constructor still initializes the data members. A constructor
that defaults all its arguments is also a default constructor—that is, a constructor that can be
invoked with no arguments. There can be at most one default constructor per class.

5 // include SalesPerson class definition from SalesPerson.h
6 #include "SalesPerson.h"
7
8 int main()
9 {

10 SalesPerson s; // create SalesPerson object s
11
12 s.getSalesFromUser(); // note simple sequential code; there are
13 s.printAnnualSales(); // no control statements in main
14 } // end main

Enter sales amount for month 1: 5314.76
Enter sales amount for month 2: 4292.38
Enter sales amount for month 3: 4589.83
Enter sales amount for month 4: 5534.03
Enter sales amount for month 5: 4376.34
Enter sales amount for month 6: 5698.45
Enter sales amount for month 7: 4439.22
Enter sales amount for month 8: 5893.57
Enter sales amount for month 9: 4909.67
Enter sales amount for month 10: 5123.45
Enter sales amount for month 11: 4024.97
Enter sales amount for month 12: 5923.92

The total annual sales are: $60120.59

Software Engineering Observation 9.9
Any change to the default argument values of a function requires the client code to be
recompiled (to ensure that the program still functions correctly).

Fig. 9.7 | Utility function demonstration. (Part 2 of 2.)

394 Chapter 9 Classes: A Deeper Look, Part 1

In Fig. 9.9, line 12 of the constructor calls member function setTime with the values
passed to the constructor (or the default values). Function setTime calls setHour to ensure
that the value supplied for hour is in the range 0–23, then calls setMinute and setSecond

to ensure that the values for minute and second are each in the range 0–59. Functions
setHour (lines 24–30), setMinute (lines 33–39) and setSecond (lines 42–48) each throw
an exception if an out-of-range argument is received.

1 // Fig. 9.8: Time.h
2 // Time class containing a constructor with default arguments.
3 // Member functions defined in Time.cpp.
4
5 // prevent multiple inclusions of header
6 #ifndef TIME_H
7 #define TIME_H
8
9 // Time abstract data type definition

10 class Time
11 {
12 public:
13
14
15 // set functions
16 void setTime(int, int, int); // set hour, minute, second
17 void setHour(int); // set hour (after validation)
18 void setMinute(int); // set minute (after validation)
19 void setSecond(int); // set second (after validation)
20
21 // get functions
22 int getHour(); // return hour
23 int getMinute(); // return minute
24 int getSecond(); // return second
25
26 void printUniversal(); // output time in universal-time format
27 void printStandard(); // output time in standard-time format
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59
31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif

Fig. 9.8 | Time class containing a constructor with default arguments.

1 // Fig. 9.9: Time.cpp
2 // Member-function definitions for class Time.
3 #include <iostream>
4 #include <iomanip>

Fig. 9.9 | Time class member-function definitions including a constructor that takes arguments.
(Part 1 of 3.)

Time(int = 0, int = 0, int = 0); // default constructor

9.6 Time Class Case Study: Constructors with Default Arguments 395

5 #include <stdexcept>
6 #include "Time.h" // include definition of class Time from Time.h
7 using namespace std;
8
9

10
11
12
13
14
15 // set new Time value using universal time
16 void Time::setTime(int h, int m, int s)
17 {
18 setHour(h); // set private field hour
19 setMinute(m); // set private field minute
20 setSecond(s); // set private field second
21 } // end function setTime
22
23 // set hour value
24 void Time::setHour(int h)
25 {
26 if (h >= 0 && h < 24)
27 hour = h;
28 else
29 throw invalid_argument("hour must be 0-23");
30 } // end function setHour
31
32 // set minute value
33 void Time::setMinute(int m)
34 {
35 if (m >= 0 && m < 60)
36 minute = m;
37 else
38 throw invalid_argument("minute must be 0-59");
39 } // end function setMinute
40
41 // set second value
42 void Time::setSecond(int s)
43 {
44 if (s >= 0 && s < 60)
45 second = s;
46 else
47 throw invalid_argument("second must be 0-59");
48 } // end function setSecond
49
50 // return hour value
51 int Time::getHour()
52 {
53 return hour;
54 } // end function getHour
55

Fig. 9.9 | Time class member-function definitions including a constructor that takes arguments.
(Part 2 of 3.)

// Time constructor initializes each data member to zero
Time::Time(int hour, int minute, int second)
{

setTime(hour, minute, second); // validate and set time
} // end Time constructor

396 Chapter 9 Classes: A Deeper Look, Part 1

Function main in Fig. 9.10 initializes five Time objects—one with all three arguments
defaulted in the implicit constructor call (line 10), one with one argument specified (line
11), one with two arguments specified (line 12), one with three arguments specified (line
13) and one with three invalid arguments specified (line 38). The program displays each
object in universal-time and standard-time formats. For Time object t5 (line 38), the pro-
gram displays an error message because the constructor arguments are out of range.

56 // return minute value
57 int Time::getMinute()
58 {
59 return minute;
60 } // end function getMinute
61
62 // return second value
63 int Time::getSecond()
64 {
65 return second;
66 } // end function getSecond
67
68 // print Time in universal-time format (HH:MM:SS)
69 void Time::printUniversal()
70 {
71 cout << setfill('0') << setw(2) << getHour() << ":"
72 << setw(2) << getMinute() << ":" << setw(2) << getSecond();
73 } // end function printUniversal
74
75 // print Time in standard-time format (HH:MM:SS AM or PM)
76 void Time::printStandard()
77 {
78 cout << ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12)
79 << ":" << setfill('0') << setw(2) << getMinute()
80 << ":" << setw(2) << getSecond() << (hour < 12 ? " AM" : " PM");
81 } // end function printStandard

1 // Fig. 9.10: fig09_10.cpp
2 // Demonstrating a default constructor for class Time.
3 #include <iostream>
4 #include <stdexcept>
5 #include "Time.h" // include definition of class Time from Time.h
6 using namespace std;
7
8 int main()
9 {

10
11
12
13

Fig. 9.10 | Constructor with default arguments. (Part 1 of 2.)

Fig. 9.9 | Time class member-function definitions including a constructor that takes arguments.
(Part 3 of 3.)

Time t1; // all arguments defaulted
Time t2(2); // hour specified; minute and second defaulted
Time t3(21, 34); // hour and minute specified; second defaulted
Time t4(12, 25, 42); // hour, minute and second specified

9.6 Time Class Case Study: Constructors with Default Arguments 397

14
15 cout << "Constructed with:\n\nt1: all arguments defaulted\n ";
16 t1.printUniversal(); // 00:00:00
17 cout << "\n ";
18 t1.printStandard(); // 12:00:00 AM
19
20 cout << "\n\nt2: hour specified; minute and second defaulted\n ";
21 t2.printUniversal(); // 02:00:00
22 cout << "\n ";
23 t2.printStandard(); // 2:00:00 AM
24
25 cout << "\n\nt3: hour and minute specified; second defaulted\n ";
26 t3.printUniversal(); // 21:34:00
27 cout << "\n ";
28 t3.printStandard(); // 9:34:00 PM
29
30 cout << "\n\nt4: hour, minute and second specified\n ";
31 t4.printUniversal(); // 12:25:42
32 cout << "\n ";
33 t4.printStandard(); // 12:25:42 PM
34
35 // attempt to initialize t6 with invalid values
36 try
37 {
38
39 } // end try
40 catch (invalid_argument &e)
41 {
42 cout << "\n\nException while initializing t5: " << e.what() << endl;
43 } // end catch
44 } // end main

Constructed with:

t1: all arguments defaulted
00:00:00
12:00:00 AM

t2: hour specified; minute and second defaulted
02:00:00
2:00:00 AM

t3: hour and minute specified; second defaulted
21:34:00
9:34:00 PM

t4: hour, minute and second specified
12:25:42
12:25:42 PM

Exception while initializing t5: hour must be 0-23

Fig. 9.10 | Constructor with default arguments. (Part 2 of 2.)

Time t5(27, 74, 99); // all bad values specified

398 Chapter 9 Classes: A Deeper Look, Part 1

Notes Regarding Class Time’s Set and Get Functions and Constructor
Time’s set and get functions are called throughout the class’s body. In particular, function
setTime (lines 17–22 of Fig. 9.9) calls functions setHour, setMinute and setSecond, and
functions printUniversal and printStandard call functions getHour, getMinute and
getSecond in line 72–73 and lines 79–81, respectively. In each case, these functions could
have accessed the class’s private data directly. However, consider changing the represen-
tation of the time from three int values (requiring 12 bytes of memory) to a single int

value representing the total number of seconds that have elapsed since midnight (requiring
only four bytes of memory). If we made such a change, only the bodies of the functions
that access the private data directly would need to change—in particular, the individual
set and get functions for the hour, minute and second. There would be no need to modify
the bodies of functions setTime, printUniversal or printStandard, because they do not
access the data directly. Designing the class in this manner reduces the likelihood of pro-
gramming errors when altering the class’s implementation.

Similarly, the Time constructor could be written to include a copy of the appropriate
statements from function setTime. Doing so may be slightly more efficient, because the
extra constructor call and call to setTime are eliminated. However, duplicating statements
in multiple functions or constructors makes changing the class’s internal data representa-
tion more difficult. Having the Time constructor call setTime and having setTime call
setHour, setMinute and setSecond enables us to limit the changes to code that validates
the hour, minute or second to the corresponding set function. This reduces the likelihood
of errors when altering the class’s implementation. Also, the performance of the Time con-
structor and setTime can (possibly) be enhanced by explicitly declaring them inline or
by defining them in the class definition (which implicitly inlines the function definition).

9.7 Destructors
A destructor is another type of special member function. The name of the destructor for
a class is the tilde character (~) followed by the class name. This naming convention has
intuitive appeal, because as we’ll see in a later chapter, the tilde operator is the bitwise com-
plement operator, and, in a sense, the destructor is the complement of the constructor.

A class’s destructor is called implicitly when an object is destroyed. This occurs, for
example, as an automatic object is destroyed when program execution leaves the scope in
which that object was instantiated. The destructor itself does not actually release the object’s

Software Engineering Observation 9.10
If a member function of a class already provides all or part of the functionality required
by a constructor (or other member function) of the class, call that member function from
the constructor (or other member function). This simplifies the maintenance of the code
and reduces the likelihood of an error if the implementation of the code is modified. As a
general rule: Avoid repeating code.

Common Programming Error 9.2
A constructor can call other member functions of the class, such as set or get functions, but
because the constructor is initializing the object, the data members may not yet be initial-
ized. Using data members before they have been properly initialized can cause logic errors.

9.8 When Constructors and Destructors Are Called 399

memory—it performs termination housekeeping before the object’s memory is reclaimed,
so the memory may be reused to hold new objects.

Even though destructors have not been provided for the classes presented so far, every
class has a destructor. If you do not explicitly provide a destructor, the compiler creates an
“empty” destructor. [Note: We’ll see that such an implicitly created destructor does, in
fact, perform important operations on objects that are created through composition
(Chapter 10) and inheritance (Chapter 12).] In Chapter 11, we’ll build destructors appro-
priate for classes whose objects contain dynamically allocated memory (e.g., for arrays and
strings) or use other system resources (e.g., files on disk, which we study in Chapter 17).
We discuss how to dynamically allocate and deallocate memory in Chapter 10.

9.8 When Constructors and Destructors Are Called
Constructors and destructors are called implicitly by the compiler. The order in which
these function calls occur depends on the order in which execution enters and leaves the
scopes where the objects are instantiated. Generally, destructor calls are made in the reverse
order of the corresponding constructor calls, but as we’ll see in Figs. 9.11–9.13, the storage
classes of objects can alter the order in which destructors are called.

Constructors and Destructors for Objects in Global Scope
Constructors are called for objects defined in global scope before any other function (in-
cluding main) in that file begins execution (although the order of execution of global object
constructors between files is not guaranteed). The corresponding destructors are called
when main terminates. Function exit forces a program to terminate immediately and does
not execute the destructors of automatic objects. The function often is used to terminate
a program when an error is detected in the input or if a file to be processed by the program
cannot be opened. Function abort performs similarly to function exit but forces the pro-
gram to terminate immediately, without allowing the destructors of any objects to be
called. Function abort is usually used to indicate an abnormal termination of the pro-
gram. (See Appendix F for more information on functions exit and abort.)

Constructors and Destructors for Local Automatic Objects
The constructor for an automatic local object is called when execution reaches the point
where that object is defined—the corresponding destructor is called when execution leaves
the object’s scope (i.e., the block in which that object is defined has finished executing).
Constructors and destructors for automatic objects are called each time execution enters
and leaves the scope of the object. Destructors are not called for automatic objects if the
program terminates with a call to function exit or function abort.

Constructors and Destructors for static Local Objects
The constructor for a static local object is called only once, when execution first reaches
the point where the object is defined—the corresponding destructor is called when main

Common Programming Error 9.3
It’s a syntax error to attempt to pass arguments to a destructor, to specify a return type for
a destructor (even void cannot be specified), to return values from a destructor or to over-
load a destructor.

400 Chapter 9 Classes: A Deeper Look, Part 1

terminates or the program calls function exit. Global and static objects are destroyed in
the reverse order of their creation. Destructors are not called for static objects if the pro-
gram terminates with a call to function abort.

Demonstrating When Constructors and Destructors Are Called
The program of Figs. 9.11–9.13 demonstrates the order in which constructors and de-
structors are called for objects of class CreateAndDestroy (Fig. 9.11 and Fig. 9.12) of var-
ious storage classes in several scopes. Each object of class CreateAndDestroy contains an
integer (objectID) and a string (message) that are used in the program’s output to iden-
tify the object (Fig. 9.11 lines 16–17). This mechanical example is purely for pedagogic
purposes. For this reason, line 21 of the destructor in Fig. 9.12 determines whether the
object being destroyed has an objectID value 1 or 6 and, if so, outputs a newline character.
This line makes the program’s output easier to follow.

1 // Fig. 9.11: CreateAndDestroy.h
2 // CreateAndDestroy class definition.
3 // Member functions defined in CreateAndDestroy.cpp.
4 #include <string>
5 using namespace std;
6
7 #ifndef CREATE_H
8 #define CREATE_H
9

10 class CreateAndDestroy
11 {
12 public:
13
14
15 private:
16 int objectID; // ID number for object
17 string message; // message describing object
18 }; // end class CreateAndDestroy
19
20 #endif

Fig. 9.11 | CreateAndDestroy class definition.

1 // Fig. 9.12: CreateAndDestroy.cpp
2 // CreateAndDestroy class member-function definitions.
3 #include <iostream>
4 #include "CreateAndDestroy.h"// include CreateAndDestroy class definition
5 using namespace std;
6
7
8
9

10
11
12

Fig. 9.12 | CreateAndDestroy class member-function definitions. (Part 1 of 2.)

CreateAndDestroy(int, string); // constructor
~CreateAndDestroy(); // destructor

// constructor
CreateAndDestroy::CreateAndDestroy(int ID, string messageString)
{

objectID = ID; // set object's ID number
message = messageString; // set object's descriptive message

9.8 When Constructors and Destructors Are Called 401

Figure 9.13 defines object first (line 10) in global scope. Its constructor is actually
called before any statements in main execute and its destructor is called at program termi-
nation after the destructors for all other objects have run.

Function main (lines 12–23) declares three objects. Objects second (line 15) and
fourth (line 21) are local automatic objects, and object third (line 16) is a static local
object. The constructor for each of these objects is called when execution reaches the point
where that object is declared. The destructors for objects fourth then second are called
(i.e., the reverse of the order in which their constructors were called) when execution
reaches the end of main. Because object third is static, it exists until program termina-
tion. The destructor for object third is called before the destructor for global object first,
but after all other objects are destroyed.

Function create (lines 26–33) declares three objects—fifth (line 29) and seventh

(line 31) as local automatic objects, and sixth (line 30) as a static local object. The
destructors for objects seventh then fifth are called (i.e., the reverse of the order in which
their constructors were called) when create terminates. Because sixth is static, it exists
until program termination. The destructor for sixth is called before the destructors for
third and first, but after all other objects are destroyed.

13
14
15
16
17
18
19
20
21
22
23
24
25

1 // Fig. 9.13: fig09_13.cpp
2 // Demonstrating the order in which constructors and
3 // destructors are called.
4 #include <iostream>
5 #include "CreateAndDestroy.h" // include CreateAndDestroy class definition
6 using namespace std;
7
8 void create(void); // prototype
9

10
11
12 int main()
13 {
14 cout << "\nMAIN FUNCTION: EXECUTION BEGINS" << endl;

Fig. 9.13 | Order in which constructors and destructors are called. (Part 1 of 2.)

Fig. 9.12 | CreateAndDestroy class member-function definitions. (Part 2 of 2.)

cout << "Object " << objectID << " constructor runs "
<< message << endl;

} // end CreateAndDestroy constructor

// destructor
CreateAndDestroy::~CreateAndDestroy()
{

// output newline for certain objects; helps readability
cout << (objectID == 1 || objectID == 6 ? "\n" : "");

cout << "Object " << objectID << " destructor runs "
<< message << endl;

} // end ~CreateAndDestroy destructor

CreateAndDestroy first(1, "(global before main)"); // global object

402 Chapter 9 Classes: A Deeper Look, Part 1

9.9 Time Class Case Study: A Subtle Trap—Returning a
Reference to a private Data Member
A reference to an object is an alias for the name of the object and, hence, may be used on
the left side of an assignment statement. In this context, the reference makes a perfectly
acceptable lvalue that can receive a value. One way to use this capability (unfortunately!)

15
16
17
18
19
20 cout << "\nMAIN FUNCTION: EXECUTION RESUMES" << endl;
21
22 cout << "\nMAIN FUNCTION: EXECUTION ENDS" << endl;
23 } // end main
24
25 // function to create objects
26 void create(void)
27 {
28 cout << "\nCREATE FUNCTION: EXECUTION BEGINS" << endl;
29
30
31
32 cout << "\nCREATE FUNCTION: EXECUTION ENDS" << endl;
33 } // end function create

Object 1 constructor runs (global before main)

MAIN FUNCTION: EXECUTION BEGINS
Object 2 constructor runs (local automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION: EXECUTION BEGINS
Object 5 constructor runs (local automatic in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (local automatic in create)

CREATE FUNCTION: EXECUTION ENDS
Object 7 destructor runs (local automatic in create)
Object 5 destructor runs (local automatic in create)

MAIN FUNCTION: EXECUTION RESUMES
Object 4 constructor runs (local automatic in main)

MAIN FUNCTION: EXECUTION ENDS
Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (local automatic in main)

Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)

Object 1 destructor runs (global before main)

Fig. 9.13 | Order in which constructors and destructors are called. (Part 2 of 2.)

CreateAndDestroy second(2, "(local automatic in main)");
static CreateAndDestroy third(3, "(local static in main)");

create(); // call function to create objects

CreateAndDestroy fourth(4, "(local automatic in main)");

CreateAndDestroy fifth(5, "(local automatic in create)");
static CreateAndDestroy sixth(6, "(local static in create)");
CreateAndDestroy seventh(7, "(local automatic in create)");

9.9 A Subtle Trap—Returning a Reference to a private Data Member 403

is to have a public member function of a class return a reference to a private data mem-
ber of that class. If a function returns a const reference, that reference cannot be used as a
modifiable lvalue.

The program of Figs. 9.14–9.16 uses a simplified Time class (Fig. 9.14 and Fig. 9.15)
to demonstrate returning a reference to a private data member with member function
badSetHour (declared in Fig. 9.14 in line 15 and defined in Fig. 9.15 in lines 37–45).
Such a reference return actually makes a call to member function badSetHour an alias for
private data member hour! The function call can be used in any way that the private

data member can be used, including as an lvalue in an assignment statement, thus enabling
clients of the class to clobber the class’s private data at will! The same problem would occur
if a pointer to the private data were to be returned by the function.

1 // Fig. 9.14: Time.h
2 // Time class declaration.
3 // Member functions defined in Time.cpp
4
5 // prevent multiple inclusions of header
6 #ifndef TIME_H
7 #define TIME_H
8
9 class Time

10 {
11 public:
12 Time(int = 0, int = 0, int = 0);
13 void setTime(int, int, int);
14 int getHour();
15
16 private:
17 int hour;
18 int minute;
19 int second;
20 }; // end class Time
21
22 #endif

Fig. 9.14 | Time class declaration.

1 // Fig. 9.15: Time.cpp
2 // Time class member-function definitions.
3 #include <stdexcept>
4 #include "Time.h" // include definition of class Time
5 using namespace std;
6
7 // constructor function to initialize private data; calls member function
8 // setTime to set variables; default values are 0 (see class definition)
9 Time::Time(int hr, int min, int sec)

10 {
11 setTime(hr, min, sec);
12 } // end Time constructor

Fig. 9.15 | Time class member-function definitions. (Part 1 of 2.)

int &badSetHour(int); // DANGEROUS reference return

404 Chapter 9 Classes: A Deeper Look, Part 1

Figure 9.16 declares Time object t (line 10) and reference hourRef (line 13), which is
initialized with the reference returned by the call t.badSetHour(20). Line 15 displays the
value of the alias hourRef. This shows how hourRef breaks the encapsulation of the class—
statements in main should not have access to the private data of the class. Next, line 16 uses
the alias to set the value of hour to 30 (an invalid value) and line 17 displays the value
returned by function getHour to show that assigning a value to hourRef actually modifies
the private data in the Time object t. Finally, line 21 uses the badSetHour function call itself
as an lvalue and assigns 74 (another invalid value) to the reference returned by the function.
Line 26 again displays the value returned by function getHour to show that assigning a value
to the result of the function call in line 21 modifies the private data in the Time object t.

13
14 // set values of hour, minute and second
15 void Time::setTime(int h, int m, int s)
16 {
17 // validate hour, minute and second
18 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
19 (s >= 0 && s < 60))
20 {
21 hour = h;
22 minute = m;
23 second = s;
24 } // end if
25 else
26 throw invalid_argument(
27 "hour, minute and/or second was out of range");
28 } // end function setTime
29
30 // return hour value
31 int Time::getHour()
32 {
33 return hour;
34 } // end function getHour
35
36
37
38 {
39 if (hh >= 0 && hh < 24)
40 hour = hh;
41 else
42 throw invalid_argument("hour must be 0-23");
43
44 return hour; // DANGEROUS reference return
45 } // end function badSetHour

Error-Prevention Tip 9.4
Returning a reference or a pointer to a private data member breaks the encapsulation of
the class and makes the client code dependent on the representation of the class’s data; this
is a dangerous practice that should be avoided.

Fig. 9.15 | Time class member-function definitions. (Part 2 of 2.)

// POOR PRACTICE: Returning a reference to a private data member.
int &Time::badSetHour(int hh)

9.10 Default Memberwise Assignment 405

9.10 Default Memberwise Assignment
The assignment operator (=) can be used to assign an object to another object of the
same type. By default, such assignment is performed by memberwise assignment—each
data member of the object on the right of the assignment operator is assigned individu-
ally to the same data member in the object on the left of the assignment operator.
Figures 9.17–9.18 define class Date for use in this example. Line 18 of Fig. 9.19 uses
default memberwise assignment to assign the data members of Date object date1 to the
corresponding data members of Date object date2. In this case, the month member of
date1 is assigned to the month member of date2, the day member of date1 is assigned
to the day member of date2 and the year member of date1 is assigned to the year mem-
ber of date2. [Caution: Memberwise assignment can cause serious problems when used
with a class whose data members contain pointers to dynamically allocated memory; we

1 // Fig. 9.16: fig09_16.cpp
2 // Demonstrating a public member function that
3 // returns a reference to a private data member.
4 #include <iostream>
5 #include "Time.h" // include definition of class Time
6 using namespace std;
7
8 int main()
9 {

10 Time t; // create Time object
11
12
13
14
15
16
17 cout << "\nInvalid hour after modification: " << t.getHour();
18
19
20
21
22
23 cout << "\n\n***\n"
24 << "POOR PROGRAMMING PRACTICE!!!!!!!!\n"
25 << "t.badSetHour(12) as an lvalue, invalid hour: "
26 << t.getHour()
27 << "\n***" << endl;
28 } // end main

Valid hour before modification: 20
Invalid hour after modification: 30

POOR PROGRAMMING PRACTICE!!!!!!!!
t.badSetHour(12) as an lvalue, invalid hour: 74

Fig. 9.16 | Returning a reference to a private data member.

// initialize hourRef with the reference returned by badSetHour
int &hourRef = t.badSetHour(20); // 20 is a valid hour

cout << "Valid hour before modification: " << hourRef;
hourRef = 30; // use hourRef to set invalid value in Time object t

// Dangerous: Function call that returns
// a reference can be used as an lvalue!
t.badSetHour(12) = 74; // assign another invalid value to hour

406 Chapter 9 Classes: A Deeper Look, Part 1

discuss these problems in Chapter 11 and show how to deal with them.] The Date con-
structor does not contain any error checking; we leave this to the exercises.

Objects may be passed as function arguments and may be returned from functions.
Such passing and returning is performed using pass-by-value by default—a copy of the
object is passed or returned. In such cases, C++ creates a new object and uses a copy con-
structor to copy the original object’s values into the new object. For each class, the com-
piler provides a default copy constructor that copies each member of the original object

1 // Fig. 9.17: Date.h
2 // Date class declaration. Member functions are defined in Date.cpp.
3
4 // prevent multiple inclusions of header
5 #ifndef DATE_H
6 #define DATE_H
7
8 // class Date definition
9 class Date

10 {
11 public:
12 Date(int = 1, int = 1, int = 2000); // default constructor
13 void print();
14 private:
15 int month;
16 int day;
17 int year;
18 }; // end class Date
19
20 #endif

Fig. 9.17 | Date class declaration.

1 // Fig. 9.18: Date.cpp
2 // Date class member-function definitions.
3 #include <iostream>
4 #include "Date.h" // include definition of class Date from Date.h
5 using namespace std;
6
7 // Date constructor (should do range checking)
8 Date::Date(int m, int d, int y)
9 {

10 month = m;
11 day = d;
12 year = y;
13 } // end constructor Date
14
15 // print Date in the format mm/dd/yyyy
16 void Date::print()
17 {
18 cout << month << '/' << day << '/' << year;
19 } // end function print

Fig. 9.18 | Date class member-function definitions.

9.11 Wrap-Up 407

into the corresponding member of the new object. Like memberwise assignment, copy
constructors can cause serious problems when used with a class whose data members con-
tain pointers to dynamically allocated memory. Chapter 11 discusses how to define cus-
tomized copy constructors that properly copy objects containing pointers to dynamically
allocated memory.

9.11 Wrap-Up
This chapter deepened our coverage of classes, using a rich Time class case study to intro-
duce several new features. You saw that member functions are usually shorter than global
functions because member functions can directly access an object’s data members, so the
member functions can receive fewer arguments than functions in procedural program-

1 // Fig. 9.19: fig09_19.cpp
2 // Demonstrating that class objects can be assigned
3 // to each other using default memberwise assignment.
4 #include <iostream>
5 #include "Date.h" // include definition of class Date from Date.h
6 using namespace std;
7
8 int main()
9 {

10 Date date1(7, 4, 2004);
11 Date date2; // date2 defaults to 1/1/2000
12
13 cout << "date1 = ";
14 date1.print();
15 cout << "\ndate2 = ";
16 date2.print();
17
18
19
20 cout << "\n\nAfter default memberwise assignment, date2 = ";
21 date2.print();
22 cout << endl;
23 } // end main

date1 = 7/4/2004
date2 = 1/1/2000

After default memberwise assignment, date2 = 7/4/2004

Fig. 9.19 | Default memberwise assignment.

Performance Tip 9.3
Passing an object by value is good from a security standpoint, because the called function
has no access to the original object in the caller, but pass-by-value can degrade performance
when making a copy of a large object. An object can be passed by reference by passing either
a pointer or a reference to the object. Pass-by-reference offers good performance but is
weaker from a security standpoint, because the called function is given access to the origi-
nal object. Pass-by-const-reference is a safe, good-performing alternative (this can be im-
plemented with a const reference parameter or with a pointer-to-const-data parameter).

date2 = date1; // default memberwise assignment

408 Chapter 9 Classes: A Deeper Look, Part 1

ming languages. You learned how to use the arrow operator to access an object’s members
via a pointer of the object’s class type.

You learned that member functions have class scope—the member function’s name
is known only to the class’s other members unless referred to via an object of the class, a
reference to an object of the class, a pointer to an object of the class or the scope resolution
operator. We also discussed access functions (commonly used to retrieve the values of data
members or to test the truth or falsity of conditions) and utility functions (private
member functions that support the operation of the class’s public member functions).

You learned that a constructor can specify default arguments that enable it to be called
in a variety of ways. You also learned that any constructor that can be called with no argu-
ments is a default constructor and that there can be at most one default constructor per
class. We discussed destructors and their purpose of performing termination housekeeping
on an object of a class before that object is destroyed. We also demonstrated the order in
which an object’s constructors and destructors are called.

We demonstrated the problems that can occur when a member function returns a ref-
erence to a private data member, which breaks the encapsulation of the class. We also
showed that objects of the same type can be assigned to one another using default mem-
berwise assignment. We also discussed the benefits of using class libraries to enhance the
speed with which code can be created and to increase the quality of software.

Chapter 10 presents additional class features. We’ll demonstrate how const can be
used to indicate that a member function does not modify an object of a class. You’ll build
classes with composition, which allows a class to contain objects of other classes as mem-
bers. We’ll show how a class can allow so-called “friend” functions to access the class’s non-
public members. We’ll also show how a class’s non-static member functions can use a
special pointer named this to access an object’s members.

Summary
Section 9.2 Time Class Case Study
• Preprocessor directives #ifndef (which means “if not defined”; p. 382) and #endif (p. 382) are

used to prevent multiple inclusions of a header. If the code between these directives has not pre-
viously been included in an application, #define (p. 382) defines a name that can be used to pre-
vent future inclusions, and the code is included in the source code file.

• Data members cannot be initialized where they’re declared in the class body (except for a class’s
static const data members of integral or enum types). Initialize these data members in the class’s
constructor (as there is no default initialization for data members of fundamental types).

• A class’s functions can throw (p. 384) exceptions (such as invalid_argument; p. 384) to indicate
invalid data.

• Stream manipulator setfill (p. 384) specifies the fill character (p. 384) that’s displayed when
an integer is output in a field that’s wider than the number of digits in the value.

• By default, the fill characters appear before the digits in the number.

• Stream manipulator setfill is a “sticky” setting, meaning that once the fill character is set, it
applies for all subsequent fields being printed.

• Even though a member function declared in a class definition may be defined outside that class
definition (and “tied” to the class via the scope resolution operator), that member function is still
within that class’s scope.

Summary 409

• If a member function is defined in the body of a class definition, the member function is implic-
itly declared inline.

• Classes can include objects of other classes as members or they may be derived (p. 387) from oth-
er classes that provide attributes and behaviors the new classes can use.

Section 9.3 Class Scope and Accessing Class Members
• A class’s data members and member functions belong to that class’s scope.

• Nonmember functions are defined at global namespace scope.

• Within a class’s scope, class members are immediately accessible by all of that class’s member
functions and can be referenced by name.

• Outside a class’s scope, class members are referenced through one of the handles on an object—
an object name, a reference to an object or a pointer to an object.

• Member functions of a class can be overloaded, but only by other member functions of that class.

• To overload a member function, provide in the class definition a prototype for each version of
the overloaded function, and provide a separate definition for each version of the function.

• Variables declared in a member function have local scope and are known only to that function.

• If a member function defines a variable with the same name as a variable with class scope
(p. 385), the class-scope variable is hidden by the block-scope variable in the local scope.

• The dot member selection operator (.) is preceded by an object’s name or by a reference to an
object to access the object’s public members.

• The arrow member selection operator (->; p. 388) is preceded by a pointer to an object to access
that object’s public members.

Section 9.4 Separating Interface from Implementation
• Headers contain some portions of a class’s implementation and hints about others. Inline mem-

ber functions, for example, should be in a header, so that when the compiler compiles a client,
the client can include the inline function definition in place.

• A class’s private members that are listed in the class definition in the header are visible to clients,
even though the clients may not access the private members.

Section 9.5 Access Functions and Utility Functions
• A utility function is a private member function that supports the operation of the class’s public

member functions. Utility functions are not intended to be used by clients of a class.

Section 9.6 Time Class Case Study: Constructors with Default Arguments
• Like other functions, constructors can specify default arguments.

Section 9.7 Destructors
• A class’s destructor (p. 398) is called implicitly when an object of the class is destroyed.

• The name of the destructor for a class is the tilde (~) character followed by the class name.

• A destructor does not release an object’s storage—it performs termination housekeeping (p. 399)
before the system reclaims an object’s memory, so the memory may be reused to hold new ob-
jects.

• A destructor receives no parameters and returns no value. A class may have only one destructor.

• If you do not explicitly provide a destructor, the compiler creates an “empty” destructor, so every
class has exactly one destructor.

410 Chapter 9 Classes: A Deeper Look, Part 1

Section 9.8 When Constructors and Destructors Are Called
• The order in which constructors and destructors are called depends on the order in which exe-

cution enters and leaves the scopes where the objects are instantiated.

• Generally, destructor calls are made in the reverse order of the corresponding constructor calls,
but the storage classes of objects can alter the order in which destructors are called.

Section 9.9 Time Class Case Study: A Subtle Trap—Returning a Reference to a
private Data Member
• A reference to an object is an alias for the name of the object and, hence, may be used on the left

side of an assignment statement. In this context, the reference makes a perfectly acceptable lvalue
that can receive a value.

• If the function returns a const reference, then the reference cannot be used as a modifiable lvalue.

Section 9.10 Default Memberwise Assignment
• The assignment operator (=) can be used to assign an object to another object of the same type.

By default, such assignment is performed by memberwise assignment (p. 405).

• Objects may be passed by value to or returned by value from functions. C++ creates a new object
and uses a copy constructor (p. 406) to copy the original object’s values into the new object.

• For each class, the compiler provides a default copy constructor that copies each member of the
original object into the corresponding member of the new object.

Self-Review Exercises
9.1 Fill in the blanks in each of the following:

a) Class members are accessed via the operator in conjunction with the name of
an object (or reference to an object) of the class or via the operator in conjunc-
tion with a pointer to an object of the class.

b) Class members specified as are accessible only to member functions of the
class and friends of the class.

c) Class members specified as are accessible anywhere an object of the class is in
scope.

d) can be used to assign an object of a class to another object of the same class.

9.2 Find the error(s) in each of the following and explain how to correct it (them):
a) Assume the following prototype is declared in class Time:

void ~Time(int);

b) The following is a partial definition of class Time:

class Time
{
public:

// function prototypes

private:
int hour = 0;
int minute = 0;
int second = 0;

}; // end class Time

c) Assume the following prototype is declared in class Employee:

int Employee(string, string);

Answers to Self-Review Exercises 411

Answers to Self-Review Exercises
9.1 a) dot (.), arrow (->). b) private. c) public. d) Default memberwise assignment (per-
formed by the assignment operator).

9.2 a) Error: Destructors are not allowed to return values (or even specify a return type) or take
arguments.
Correction: Remove the return type void and the parameter int from the declaration.

b) Error: Members cannot be explicitly initialized in the class definition.
Correction: Remove the explicit initialization from the class definition and initialize the
data members in a constructor.

c) Error: Constructors are not allowed to return values.
Correction: Remove the return type int from the declaration.

Exercises
9.3 (Scope Resolution Operator) What’s the purpose of the scope resolution operator?

9.4 (Enhancing Class Time) Provide a constructor that’s capable of using the current time from
the time and localtime functions—declared in the C++ Standard Library header <ctime>—to ini-
tialize an object of the Time class.

9.5 (Complex Class) Create a class called Complex for performing arithmetic with complex num-
bers. Write a program to test your class. Complex numbers have the form

realPart + imaginaryPart * i

where i is

Use double variables to represent the private data of the class. Provide a constructor that enables
an object of this class to be initialized when it’s declared. The constructor should contain default
values in case no initializers are provided. Provide public member functions that perform the fol-
lowing tasks:

a) Adding two Complex numbers: The real parts are added together and the imaginary
parts are added together.

b) Subtracting two Complex numbers: The real part of the right operand is subtracted from
the real part of the left operand, and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Printing Complex numbers in the form (a, b), where a is the real part and b is the imag-
inary part.

9.6 (Rational Class) Create a class called Rational for performing arithmetic with fractions.
Write a program to test your class.

Use integer variables to represent the private data of the class—the numerator and the denom-

inator. Provide a constructor that enables an object of this class to be initialized when it’s declared.
The constructor should contain default values in case no initializers are provided and should store
the fraction in reduced form. For example, the fraction

would be stored in the object as 1 in the numerator and 2 in the denominator. Provide public

member functions that perform each of the following tasks:
a) Adding two Rational numbers. The result should be stored in reduced form.
b) Subtracting two Rational numbers. The result should be stored in reduced form.
c) Multiplying two Rational numbers. The result should be stored in reduced form.

–1

2
4

412 Chapter 9 Classes: A Deeper Look, Part 1

d) Dividing two Rational numbers. The result should be stored in reduced form.
e) Printing Rational numbers in the form a/b, where a is the numerator and b is the de-

nominator.
f) Printing Rational numbers in floating-point format.

9.7 (Enhancing Class Time) Modify the Time class of Figs. 9.8–9.9 to include a tick member
function that increments the time stored in a Time object by one second. Write a program that tests
the tick member function in a loop that prints the time in standard format during each iteration
of the loop to illustrate that the tick member function works correctly. Be sure to test the following
cases:

a) Incrementing into the next minute.
b) Incrementing into the next hour.
c) Incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

9.8 (Enhancing Class Date) Modify the Date class of Figs. 9.17–9.18 to perform error checking
on the initializer values for data members month, day and year. Also, provide a member function
nextDay to increment the day by one. Write a program that tests function nextDay in a loop that
prints the date during each iteration to illustrate that nextDay works correctly. Be sure to test the
following cases:

a) Incrementing into the next month.
b) Incrementing into the next year.

9.9 (Combining Class Time and Class Date) Combine the modified Time class of Exercise 9.7
and the modified Date class of Exercise 9.8 into one class called DateAndTime. (In Chapter 12, we’ll
discuss inheritance, which will enable us to accomplish this task quickly without modifying the ex-
isting class definitions.) Modify the tick function to call the nextDay function if the time incre-
ments into the next day. Modify functions printStandard and printUniversal to output the date
and time. Write a program to test the new class DateAndTime. Specifically, test incrementing the
time into the next day.

9.10 (Returning Error Indicators from Class Time’s set Functions) Modify the set functions in the
Time class of Figs. 9.8–9.9 to return appropriate error values if an attempt is made to set a data mem-
ber of an object of class Time to an invalid value. Write a program that tests your new version of class
Time. Display error messages when set functions return error values.

9.11 (Rectangle Class) Create a class Rectangle with attributes length and width, each of which
defaults to 1. Provide member functions that calculate the perimeter and the area of the rectangle.
Also, provide set and get functions for the length and width attributes. The set functions should ver-
ify that length and width are each floating-point numbers larger than 0.0 and less than 20.0.

9.12 (Enhancing Class Rectangle) Create a more sophisticated Rectangle class than the one you
created in Exercise 9.11. This class stores only the Cartesian coordinates of the four corners of the
rectangle. The constructor calls a set function that accepts four sets of coordinates and verifies that
each of these is in the first quadrant with no single x- or y-coordinate larger than 20.0. The set func-
tion also verifies that the supplied coordinates do, in fact, specify a rectangle. Provide member func-
tions that calculate the length, width, perimeter and area. The length is the larger of the two
dimensions. Include a predicate function square that determines whether the rectangle is a square.

9.13 (Enhancing Class Rectangle) Modify class Rectangle from Exercise 9.12 to include a draw

function that displays the rectangle inside a 25-by-25 box enclosing the portion of the first quadrant
in which the rectangle resides. Include a setFillCharacter function to specify the character out of
which the body of the rectangle will be drawn. Include a setPerimeterCharacter function to specify
the character that will be used to draw the border of the rectangle. If you feel ambitious, you might
include functions to scale the size of the rectangle, rotate it, and move it around within the desig-
nated portion of the first quadrant.

Exercises 413

9.14 (HugeInteger Class) Create a class HugeInteger that uses a 40-element array of digits to
store integers as large as 40 digits each. Provide member functions input, output, add and subtract.
For comparing HugeInteger objects, provide functions isEqualTo, isNotEqualTo, isGreaterThan,
isLessThan, isGreaterThanOrEqualTo and isLessThanOrEqualTo—each of these is a “predicate”
function that simply returns true if the relationship holds between the two HugeIntegers and re-
turns false if the relationship does not hold. Also, provide a predicate function isZero. If you feel
ambitious, provide member functions multiply, divide and modulus.

9.15 (TicTacToe Class) Create a class TicTacToe that will enable you to write a complete program
to play the game of tic-tac-toe. The class contains as private data a 3-by-3 two-dimensional array
of integers. The constructor should initialize the empty board to all zeros. Allow two human players.
Wherever the first player moves, place a 1 in the specified square. Place a 2 wherever the second play-
er moves. Each move must be to an empty square. After each move, determine whether the game
has been won or is a draw. If you feel ambitious, modify your program so that the computer makes
the moves for one of the players. Also, allow the player to specify whether he or she wants to go first
or second. If you feel exceptionally ambitious, develop a program that will play three-dimensional
tic-tac-toe on a 4-by-4-by-4 board. [Caution: This is an extremely challenging project that could
take many weeks of effort!]

10 Classes: A Deeper Look,
Part 2

But what, to serve our private
ends,
Forbids the cheating of our
friends?
—Charles Churchill

Instead of this absurd division
into sexes they ought to class
people as static and dynamic.
—Evelyn Waugh

Have no friends not equal to
yourself.
—Confucius

O b j e c t i v e s
In this chapter you’ll learn:

■ To specify const (constant)
objects and const member
functions.

■ To create objects composed
of other objects.

■ To use friend functions
and friend classes.

■ To use the this pointer.

■ To use static data
members and member
functions.

■ The concept of a container
class.

■ To use proxy classes to hide
implementation details from
a class’s clients.

10.1 Introduction 415

10.1 Introduction
In this chapter, we continue our study of classes with several more advanced topics. We
use const objects and const member functions to prevent modifications of objects and
enforce the principle of least privilege. We discuss composition—a form of reuse in which
a class can have objects of other classes as members. Next, we introduce friendship, which
enables a class designer to specify nonmember functions that can access a class’s non-pub-
lic members—a technique that is often used in operator overloading (Chapter 11) for
performance reasons. We discuss a special pointer (called this), which is an implicit argu-
ment to each of a class’s non-static member functions. It allows those member functions
to access the correct object’s data members and non-static member functions. We mo-
tivate the need for static class members and show how to use static data members and
member functions in your own classes. Finally, we show how to create a proxy class to hide
a class’s implementation details (including its private data) from its clients.

10.2 const (Constant) Objects and const Member
Functions
Let’s see how the principle of least privilege applies to objects. Some objects need to be
modifiable and some do not. You may use keyword const to specify that an object is not
modifiable and that any attempt to modify the object should result in a compilation error.
The statement

declares a const object noon of class Time and initializes it to 12 noon.

C++ disallows member function calls for const objects unless the member functions them-
selves are also declared const. This is true even for get member functions that do not modify
the object.

10.1 Introduction
10.2 const (Constant) Objects and const

Member Functions
10.3 Composition: Objects as Members of

Classes
10.4 friend Functions and friend Classes

10.5 Using the this Pointer
10.6 static Class Members
10.7 Proxy Classes
10.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

const Time noon(12, 0, 0);

Software Engineering Observation 10.1
Attempts to modify a const object are caught at compile time rather than causing
execution-time errors.

Performance Tip 10.1
Declaring variables and objects const when appropriate can improve performance—com-
pilers can perform optimizations on constants that cannot be performed on variables.

416 Chapter 10 Classes: A Deeper Look, Part 2

A member function is specified as const both in its prototype by inserting the keyword
const after the function’s parameter list and, in the case of the function definition, before
the left brace that begins the function body.

An interesting problem arises for constructors and destructors, each of which typically
modifies objects. A constructor must be allowed to modify an object so that the object can
be initialized properly. A destructor must be able to perform its termination housekeeping
chores before an object’s memory is reclaimed by the system.

Defining and Using const Member Functions
The program of Figs. 10.1–10.3 modifies class Time of Figs. 9.8–9.9 by making its get
functions and printUniversal function const. In the header Time.h (Fig. 10.1), lines
19–21 and 24 now include keyword const after each function prototype’s parameter list.
The corresponding definition of each function in Fig. 10.2 (lines 53, 59, 65 and 71, re-
spectively) also specifies keyword const after each function’s parameter list.

Common Programming Error 10.1
Defining as const a member function that modifies a data member of the object is a com-
pilation error.

Common Programming Error 10.2
Defining as const a member function that calls a non-const member function of the class
on the same object is a compilation error.

Common Programming Error 10.3
Invoking a non-const member function on a const object is a compilation error.

Software Engineering Observation 10.2
A const member function can be overloaded with a non-const version. The compiler
chooses which overloaded member function to use based on the object on which the
function is invoked. If the object is const, the compiler uses the const version. If the object
is not const, the compiler uses the non-const version.

Common Programming Error 10.4
Attempting to declare a constructor or destructor const is a compilation error.

1 // Fig. 10.1: Time.h
2 // Time class definition with const member functions.
3 // Member functions defined in Time.cpp.
4 #ifndef TIME_H
5 #define TIME_H
6
7 class Time
8 {

Fig. 10.1 | Time class definition with const member functions. (Part 1 of 2.)

10.2 const (Constant) Objects and const Member Functions 417

9 public:
10 Time(int = 0, int = 0, int = 0); // default constructor
11
12 // set functions
13 void setTime(int, int, int); // set time
14 void setHour(int); // set hour
15 void setMinute(int); // set minute
16 void setSecond(int); // set second
17
18
19
20
21
22
23
24
25 void printStandard(); // print standard time (should be const)
26 private:
27 int hour; // 0 - 23 (24-hour clock format)
28 int minute; // 0 - 59
29 int second; // 0 - 59
30 }; // end class Time
31
32 #endif

1 // Fig. 10.2: Time.cpp
2 // Time class member-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include <stdexcept>
6 #include "Time.h" // include definition of class Time
7 using namespace std;
8
9 // constructor function to initialize private data;

10 // calls member function setTime to set variables;
11 // default values are 0 (see class definition)
12 Time::Time(int hour, int minute, int second)
13 {
14 setTime(hour, minute, second);
15 } // end Time constructor
16
17 // set hour, minute and second values
18 void Time::setTime(int hour, int minute, int second)
19 {
20 setHour(hour);
21 setMinute(minute);
22 setSecond(second);
23 } // end function setTime
24

Fig. 10.2 | Time class member-function definitions. (Part 1 of 3.)

Fig. 10.1 | Time class definition with const member functions. (Part 2 of 2.)

// get functions (normally declared const)
int getHour() const; // return hour
int getMinute() const; // return minute
int getSecond() const; // return second

// print functions (normally declared const)
void printUniversal() const; // print universal time

418 Chapter 10 Classes: A Deeper Look, Part 2

25 // set hour value
26 void Time::setHour(int h)
27 {
28 if (h >= 0 && h < 24)
29 hour = h;
30 else
31 throw invalid_argument("hour must be 0-23");
32 } // end function setHour
33
34 // set minute value
35 void Time::setMinute(int m)
36 {
37 if (m >= 0 && m < 60)
38 minute = m;
39 else
40 throw invalid_argument("minute must be 0-59");
41 } // end function setMinute
42
43 // set second value
44 void Time::setSecond(int s)
45 {
46 if (s >= 0 && s < 60)
47 second = s;
48 else
49 throw invalid_argument("second must be 0-59");
50 } // end function setSecond
51
52 // return hour value
53
54 {
55 return hour;
56 } // end function getHour
57
58 // return minute value
59
60 {
61 return minute;
62 } // end function getMinute
63
64 // return second value
65
66 {
67 return second;
68 } // end function getSecond
69
70 // print Time in universal-time format (HH:MM:SS)
71
72 {
73 cout << setfill('0') << setw(2) << hour << ":"
74 << setw(2) << minute << ":" << setw(2) << second;
75 } // end function printUniversal
76

Fig. 10.2 | Time class member-function definitions. (Part 2 of 3.)

int Time::getHour() const // get functions should be const

int Time::getMinute() const

int Time::getSecond() const

void Time::printUniversal() const

10.2 const (Constant) Objects and const Member Functions 419

Figure 10.3 instantiates two Time objects—non-const object wakeUp (line 7) and
const object noon (line 8). The program attempts to invoke non-const member functions
setHour (line 13) and printStandard (line 20) on the const object noon. In each case, the
compiler generates an error message. The program also illustrates the three other member-
function-call combinations on objects—a non-const member function on a non-const
object (line 11), a const member function on a non-const object (line 15) and a const

member function on a const object (lines 17–18). The error messages generated for non-
const member functions called on a const object are shown in the output window.

77 // print Time in standard-time format (HH:MM:SS AM or PM)
78 void Time::printStandard() // note lack of const declaration
79 {
80 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
81 << ":" << setfill('0') << setw(2) << minute
82 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
83 } // end function printStandard

1 // Fig. 10.3: fig10_03.cpp
2 // Attempting to access a const object with non-const member functions.
3 #include "Time.h" // include Time class definition
4
5 int main()
6 {
7 Time wakeUp(6, 45, 0); // non-constant object
8 const Time noon(12, 0, 0); // constant object
9

10 // OBJECT MEMBER FUNCTION
11 wakeUp.setHour(18); // non-const non-const
12
13
14
15 wakeUp.getHour(); // non-const const
16
17 noon.getMinute(); // const const
18 noon.printUniversal(); // const const
19
20
21 } // end main

Microsoft Visual C++ compiler error messages:

C:\cpphtp8_examples\ch10\Fig10_01_03\fig10_03.cpp(13) : error C2662:
'Time::setHour' : cannot convert 'this' pointer from 'const Time' to 'Time &'

Conversion loses qualifiers
C:\cpphtp8_examples\ch10\Fig10_01_03\fig10_03.cpp(20) : error C2662:

'Time::printStandard' : cannot convert 'this' pointer from 'const Time' to
'Time &'

Conversion loses qualifiers

Fig. 10.3 | const objects and const member functions.

Fig. 10.2 | Time class member-function definitions. (Part 3 of 3.)

noon.setHour(12); // const non-const

noon.printStandard(); // const non-const

420 Chapter 10 Classes: A Deeper Look, Part 2

A constructor must be a non-const member function (Fig. 10.2, lines 11–14), but it can
still be used to initialize a const object (Fig. 10.3, line 8). The Time constructor’s defini-
tion (Fig. 10.2, lines 11–14) shows that it calls another non-const member function—
setTime (lines 17–22)—to perform the initialization of a Time object. Invoking a non-
const member function from the constructor call as part of the initialization of a const

object is allowed. The “constness” of a const object is enforced from the time the con-
structor completes initialization of the object until that object’s destructor is called.

Line 20 in Fig. 10.3 generates a compilation error even though member function
printStandard of class Time does not modify the object on which it’s invoked. The fact
that a member function does not modify an object is not sufficient to indicate that the
function is a constant function—the function must explicitly be declared const.

Initializing a const Data Member with a Member Initializer
The program of Figs. 10.4–10.6 introduces using member initializer syntax. All data
members can be initialized using member initializer syntax, but const data members and
data members that are references must be initialized using member initializers. Later in this
chapter, we’ll see that member objects must be initialized this way as well.

1 // Fig. 10.4: Increment.h
2 // Definition of class Increment.
3 #ifndef INCREMENT_H
4 #define INCREMENT_H
5
6 class Increment
7 {
8 public:
9 Increment(int c = 0, int i = 1); // default constructor

10
11 // function addIncrement definition
12 void addIncrement()
13 {
14 count += increment;
15 } // end function addIncrement
16
17 void print() const; // prints count and increment
18 private:
19 int count;
20
21 }; // end class Increment
22
23 #endif

Fig. 10.4 | Increment class definition containing non-const data member count and const

data member increment.

1 // Fig. 10.5: Increment.cpp
2 // Member-function definitions for class Increment demonstrate using a
3 // member initializer to initialize a constant of a built-in data type.

Fig. 10.5 | Member initializer used to initialize a constant of a built-in data type. (Part 1 of 2.)

const int increment; // const data member

10.2 const (Constant) Objects and const Member Functions 421

The constructor definition (Fig. 10.5, lines 9–14) uses a member initializer list to ini-
tialize class Increment’s data members—non-const integer count and const integer
increment (declared in lines 19–20 of Fig. 10.4). Member initializers appear between a
constructor’s parameter list and the left brace that begins the constructor’s body. The

4 #include <iostream>
5 #include "Increment.h" // include definition of class Increment
6 using namespace std;
7
8 // constructor
9 Increment::Increment(int c, int i)

10
11
12 {
13 // empty body
14 } // end constructor Increment
15
16 // print count and increment values
17 void Increment::print() const
18 {
19 cout << "count = " << count << ", increment = " << increment << endl;
20 } // end function print

1 // Fig. 10.6: fig10_06.cpp
2 // Program to test class Increment.
3 #include <iostream>
4 #include "Increment.h" // include definition of class Increment
5 using namespace std;
6
7 int main()
8 {
9 Increment value(10, 5);

10
11 cout << "Before incrementing: ";
12 value.print();
13
14 for (int j = 1; j <= 3; ++j)
15 {
16 value.addIncrement();
17 cout << "After increment " << j << ": ";
18 value.print();
19 } // end for
20 } // end main

Before incrementing: count = 10, increment = 5
After increment 1: count = 15, increment = 5
After increment 2: count = 20, increment = 5
After increment 3: count = 25, increment = 5

Fig. 10.6 | Invoking an Increment object’s print and addIncrement member functions.

Fig. 10.5 | Member initializer used to initialize a constant of a built-in data type. (Part 2 of 2.)

: count(c), // initializer for non-const member
increment(i) // required initializer for const member

422 Chapter 10 Classes: A Deeper Look, Part 2

member initializer list (Fig. 10.5, lines 10–11) is separated from the parameter list with a
colon (:). Each member initializer consists of the data member name followed by paren-
theses containing the member’s initial value. In this example, count is initialized with the
value of constructor parameter c and increment is initialized with the value of constructor
parameter i. Multiple member initializers are separated by commas. Also, the member ini-
tializer list executes before the body of the constructor executes.

Why Is Function print Declared const?
Function print (Fig. 10.5, lines 17–20) is declared const. It might seem strange to label
this function const, because a program probably will never have a const Increment ob-
ject. However, it’s possible that a program will have a const reference to an Increment

object or a pointer to const that points to an Increment object. Typically, this occurs
when objects of class Increment are passed to functions or returned from functions. In
these cases, only class Increment’s const member functions can be called through the ref-
erence or pointer. Thus, it’s reasonable to declare function print as const—doing so pre-
vents errors in these situations where an Increment object is treated as a const object.

Erroneously Attempting to Initialize a const Data Member with an Assignment
Figure 10.7 shows the compilation errors caused by attempting to initialize const data
member increment with an assignment statement in the Increment constructor’s body
rather than with a member initializer.

Software Engineering Observation 10.3
A const object cannot be modified by assignment, so it must be initialized. When a data
member of a class is declared const, a member initializer must be used to provide the
constructor with the initial value of the data member for an object of the class. The same
is true for references.

Error-Prevention Tip 10.1
Declare as const all of a class’s member functions that do not modify the object in which
they operate. Occasionally this may seem inappropriate, because you’ll have no intention
of creating const objects of that class or accessing objects of that class through const ref-
erences or pointers to const. Declaring such member functions const does offer a benefit,
though. If the member function is inadvertently written to modify the object, the compiler
will issue an error message.

Microsoft Visual C++ compiler error messages:

C:\cpphtp8_examples\ch10\consterror\Increment.cpp(10) : error C2758:
'Increment::increment' : must be initialized in constructor base/member
initializer list

C:\cpphtp8_examples\ch10\consterror\increment.h(20) : see
declaration of 'Increment::increment'

C:\cpphtp8_examples\ch10\consterror\Increment.cpp(12) : error C2166:
l-value specifies const object

Fig. 10.7 | Compilation errors generated by attempting to initialize a const data member in the
constructor’s body rather than in the member initializer list. (Part 1 of 2.)

10.3 Composition: Objects as Members of Classes 423

10.3 Composition: Objects as Members of Classes
An AlarmClock object needs to know when it’s supposed to sound its alarm, so why not
include a Time object as a member of the AlarmClock class? Such a capability is called com-
position and is sometimes referred to as a has-a relationship—a class can have objects of
other classes as members.

Previously, we saw how to pass arguments to the constructor of an object we created
in main. Now we show how an object’s constructor can pass arguments to member-object con-
structors via member initializers.

The next program uses classes Date (Figs. 10.8–10.9) and Employee (Figs. 10.10–
10.11) to demonstrate composition. Class Employee’s definition (Fig. 10.10) contains
private data members firstName, lastName, birthDate and hireDate. Members birth-
Date and hireDate are const objects of class Date, which contains private data members
month, day and year. The Employee constructor’s header (Fig. 10.11, lines 10–11) speci-
fies that the constructor has four parameters (first, last, dateOfBirth and dateOfHire).
The first two parameters are passed via member initializers to the string class constructor.
The last two are passed via member initializers to the Date class constructor.

GNU C++ compiler error messages:

Increment.cpp:9: error: uninitialized member 'Increment::increment' with
'const' type 'const int'

Increment.cpp:12: error: assignment of read-only data-member
'Increment::increment'

Common Programming Error 10.5
Not providing a member initializer for a const data member is a compilation error.

Software Engineering Observation 10.4
A common form of software reusability is composition, in which a class has objects of other
classes as members.

Software Engineering Observation 10.5
Member objects are constructed in the order in which they’re declared in the class
definition (not in the order they’re listed in the constructor’s member initializer list) and
before their enclosing class objects (sometimes called host objects) are constructed.

1 // Fig. 10.8: Date.h
2 // Date class definition; Member functions defined in Date.cpp
3 #ifndef DATE_H

Fig. 10.8 | Date class definition. (Part 1 of 2.)

Fig. 10.7 | Compilation errors generated by attempting to initialize a const data member in the
constructor’s body rather than in the member initializer list. (Part 2 of 2.)

424 Chapter 10 Classes: A Deeper Look, Part 2

4 #define DATE_H
5
6 class Date
7 {
8 public:
9 static const int monthsPerYear = 12; // number of months in a year

10
11 void print() const; // print date in month/day/year format
12
13 private:
14 int month; // 1-12 (January-December)
15 int day; // 1-31 based on month
16 int year; // any year
17
18 // utility function to check if day is proper for month and year
19 int checkDay(int) const;
20 }; // end class Date
21
22 #endif

1 // Fig. 10.9: Date.cpp
2 // Date class member-function definitions.
3 #include <iostream>
4 #include <stdexcept>
5 #include "Date.h" // include Date class definition
6 using namespace std;
7
8 // constructor confirms proper value for month; calls
9 // utility function checkDay to confirm proper value for day

10 Date::Date(int mn, int dy, int yr)
11 {
12 if (mn > 0 && mn <= monthsPerYear) // validate the month
13 month = mn;
14 else
15 throw invalid_argument("month must be 1-12");
16
17 year = yr; // could validate yr
18 day = checkDay(dy); // validate the day
19
20 // output Date object to show when its constructor is called
21 cout << "Date object constructor for date ";
22 print();
23 cout << endl;
24 } // end Date constructor
25
26 // print Date object in form month/day/year
27 void Date::print() const
28 {
29 cout << month << '/' << day << '/' << year;
30 } // end function print

Fig. 10.9 | Date class member-function definitions. (Part 1 of 2.)

Fig. 10.8 | Date class definition. (Part 2 of 2.)

Date(int = 1, int = 1, int = 1900); // default constructor

~Date(); // provided to confirm destruction order

10.3 Composition: Objects as Members of Classes 425

31
32 // output Date object to show when its destructor is called
33 Date::~Date()
34 {
35 cout << "Date object destructor for date ";
36 print();
37 cout << endl;
38 } // end ~Date destructor
39
40 // utility function to confirm proper day value based on
41 // month and year; handles leap years, too
42 int Date::checkDay(int testDay) const
43 {
44 static const int daysPerMonth[monthsPerYear + 1] =
45 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
46
47 // determine whether testDay is valid for specified month
48 if (testDay > 0 && testDay <= daysPerMonth[month])
49 return testDay;
50
51 // February 29 check for leap year
52 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
53 (year % 4 == 0 && year % 100 != 0)))
54 return testDay;
55
56 throw invalid_argument("Invalid day for current month and year");
57 } // end function checkDay

1 // Fig. 10.10: Employee.h
2 // Employee class definition showing composition.
3 // Member functions defined in Employee.cpp.
4 #ifndef EMPLOYEE_H
5 #define EMPLOYEE_H
6
7 #include <string>
8 #include "Date.h" // include Date class definition
9 using namespace std;

10
11 class Employee
12 {
13 public:
14 Employee(const string &, const string &,
15 const Date &, const Date &);
16 void print() const;
17 ~Employee(); // provided to confirm destruction order
18 private:
19 string firstName; // composition: member object
20 string lastName; // composition: member object
21 const Date birthDate; // composition: member object

Fig. 10.10 | Employee class definition showing composition. (Part 1 of 2.)

Fig. 10.9 | Date class member-function definitions. (Part 2 of 2.)

426 Chapter 10 Classes: A Deeper Look, Part 2

Employee Constructor’s Member Initializer List
The colon (:) following the constructor’s header (Fig. 10.11, line 12) begins the member
initializer list. The member initializers specify the Employee constructor parameters being
passed to the constructors of the string and Date data members. Parameters first, last,

22 const Date hireDate; // composition: member object
23 }; // end class Employee
24
25 #endif

1 // Fig. 10.11: Employee.cpp
2 // Employee class member-function definitions.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 #include "Date.h" // Date class definition
6 using namespace std;
7
8 // constructor uses member initializer list to pass initializer
9 // values to constructors of member objects

10 Employee::Employee(const string &first, const string &last,
11 const Date &dateOfBirth, const Date &dateOfHire)
12
13
14
15
16 {
17 // output Employee object to show when constructor is called
18 cout << "Employee object constructor: "
19 << firstName << ' ' << lastName << endl;
20 } // end Employee constructor
21
22 // print Employee object
23 void Employee::print() const
24 {
25 cout << lastName << ", " << firstName << " Hired: ";
26 hireDate.print();
27 cout << " Birthday: ";
28 birthDate.print();
29 cout << endl;
30 } // end function print
31
32 // output Employee object to show when its destructor is called
33 Employee::~Employee()
34 {
35 cout << "Employee object destructor: "
36 << lastName << ", " << firstName << endl;
37 } // end ~Employee destructor

Fig. 10.11 | Employee class member-function definitions, including constructor with a member
initializer list.

Fig. 10.10 | Employee class definition showing composition. (Part 2 of 2.)

: firstName(first), // initialize firstName
lastName(last), // initialize lastName
birthDate(dateOfBirth), // initialize birthDate
hireDate(dateOfHire) // initialize hireDate

10.3 Composition: Objects as Members of Classes 427

dateOfBirth and dateOfHire are passed to the constructors for objects firstName’s
(Fig. 10.11, line 12), lastName (Fig. 10.11, line 13), birthDate (Fig. 10.11, line 14) and
hireDate (Fig. 10.11, line 15), respectively. Again, member initializers are separated by
commas.

Date Class’s Default Copy Constructor
As you study class Date (Fig. 10.8), notice that the class does not provide a constructor
that receives a parameter of type Date. So, why can the Employee constructor’s member
initializer list initialize the birthDate and hireDate objects by passing Date object’s to
their Date constructors? As we mentioned in Chapter 9, the compiler provides each class
with a default copy constructor that copies each data member of the constructor’s argument
object into the corresponding member of the object being initialized. Chapter 11 discusses
how you can define customized copy constructors.

Testing Classes Date and Employee
Figure 10.12 creates two Date objects (lines 9–10) and passes them as arguments to the
constructor of the Employee object created in line 11. Line 14 outputs the Employee ob-
ject’s data. When each Date object is created in lines 9–10, the Date constructor defined
in lines 9–26 of Fig. 10.9 displays a line of output to show that the constructor was called
(see the first two lines of the sample output). [Note: Line 11 of Fig. 10.12 causes two ad-
ditional Date constructor calls that do not appear in the program’s output. When each of

1 // Fig. 10.12: fig10_12.cpp
2 // Demonstrating composition--an object with member objects.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6
7 int main()
8 {
9 Date birth(7, 24, 1949);

10 Date hire(3, 12, 1988);
11 Employee manager("Bob", "Blue", birth, hire);
12
13 cout << endl;
14 manager.print();
15 } // end main

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Employee object constructor: Bob Blue

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949
Employee object destructor: Blue, Bob
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949

Fig. 10.12 | Demonstrating composition—an object with member objects.

There are actually five constructor
calls when an Employee is
constructed—two calls to the
string class’s constructor (lines
12–13 of Fig. 10.11), two calls to the
Date class’s default copy
constructor (lines 14–15 of
Fig. 10.11) and the call to the
Employee class’s constructor.

428 Chapter 10 Classes: A Deeper Look, Part 2

the Employee’s Date member object’s is initialized in the Employee constructor’s member
initializer list (Fig. 10.11, lines 14–15), the default copy constructor for class Date is
called. Since this constructor is defined implicitly by the compiler, it does not contain
any output statements to demonstrate when it’s called.]

Class Date and class Employee each include a destructor (lines 33–38 of Fig. 10.9 and
lines 33–37 of Fig. 10.11, respectively) that prints a message when an object of its class is
destructed. This enables us to confirm in the program output that objects are constructed
from the inside out and destroyed in the reverse order, from the outside in (i.e., the Date

member objects are destroyed after the Employee object that contains them). Notice the
last four lines in the output of Fig. 10.12. The last two lines are the outputs of the Date

destructor running on Date objects hire (line 10) and birth (line 9), respectively. These
outputs confirm that the three objects created in main are destructed in the reverse of the
order in which they were constructed. The Employee destructor output is five lines from
the bottom. The fourth and third lines from the bottom of the output window show the
destructors running for the Employee’s member objects hireDate (Fig. 10.10, line 22) and
birthDate (Fig. 10.10, line 21). These outputs confirm that the Employee object is
destructed from the outside in—i.e., the Employee destructor runs first (output shown five
lines from the bottom of the output window), then the member objects are destructed in
the reverse order from which they were constructed. Class string’s destructor does not
contain output statements, so we do not see the firstName and lastName objects being
destructed. Again, Fig. 10.12’s output did not show the constructors running for member
objects birthDate and hireDate, because these objects were initialized with the default
Date class copy constructors provided by the compiler.

What Happens When I Do Not Use the Member Initializer List?
If a member object is not initialized through a member initializer, the member object’s de-
fault constructor will be called implicitly. Values, if any, established by the default con-
structor can be overridden by set functions. However, for complex initialization, this
approach may require significant additional work and time.

Common Programming Error 10.6
A compilation error occurs if a member object is not initialized with a member initializer
and the member object’s class does not provide a default constructor (i.e., the member ob-
ject’s class defines one or more constructors, but none is a default constructor).

Performance Tip 10.2
Initialize member objects explicitly through member initializers. This eliminates the over-
head of “doubly initializing” member objects—once when the member object’s default
constructor is called and again when set functions are called in the constructor body (or
later) to initialize the member object.

Software Engineering Observation 10.6
If a class member is an object of another class, making that member object public does
not violate the encapsulation and hiding of that member object’s private members. But,
it does violate the encapsulation and hiding of the containing class’s implementation, so
member objects of class types should still be private, like all other data members.

10.4 friend Functions and friend Classes 429

10.4 friend Functions and friend Classes
A friend function of a class is defined outside that class’s scope, yet has the right to access
the non-public (and public) members of the class. Standalone functions, entire classes or
member functions of other classes may be declared to be friends of another class.

Using friend functions can enhance performance. This section presents a mechanical
example of how a friend function works. Later in the book, friend functions are used to
overload operators for use with class objects (Chapter 11) and to create iterator classes
(Chapter 20, Custom Templatized Data Structures). Objects of an iterator class can suc-
cessively select items or perform an operation on items in a container class object. Objects
of container classes can store items. Using friends is often appropriate when a member
function cannot be used for certain operations, as we’ll see in Chapter 11.

To declare a function as a friend of a class, precede the function prototype in the class
definition with keyword friend. To declare all member functions of class ClassTwo as
friends of class ClassOne, place a declaration of the form

in the definition of class ClassOne.

Friendship is granted, not taken—i.e., for class B to be a friend of class A, class A
must explicitly declare that class B is its friend. Also, the friendship relation is neither
symmetric nor transitive; i.e., if class A is a friend of class B, and class B is a friend of
class C, you cannot infer that class B is a friend of class A (again, friendship is not sym-
metric), that class C is a friend of class B (also because friendship is not symmetric), or
that class A is a friend of class C (friendship is not transitive).

Modifying a Class’s private Data with a Friend Function
Figure 10.13 is a mechanical example in which we define friend function setX to set the
private data member x of class Count. The friend declaration (line 9) appears first (by
convention) in the class definition, even before public member functions are declared.
Again, this friend declaration can appear anywhere in the class.

friend class ClassTwo;

Software Engineering Observation 10.7
Even though the prototypes for friend functions appear in the class definition, friends are
not member functions.

Software Engineering Observation 10.8
Member access notions of private, protected and public are not relevant to friend

declarations, so friend declarations can be placed anywhere in a class definition.

Good Programming Practice 10.1
Place all friendship declarations first inside the class definition’s body and do not precede
them with any access specifier.

Software Engineering Observation 10.9
Some people in the OOP community feel that “friendship” corrupts information hiding
and weakens the value of the object-oriented design approach. We will provide several
examples of responsible friendship use.

430 Chapter 10 Classes: A Deeper Look, Part 2

Function setX (lines 29–32) is a C-style, stand-alone function—it isn’t a member
function of class Count. For this reason, when setX is invoked for object counter, line 41

1 // Fig. 10.13: fig10_13.cpp
2 // Friends can access private members of a class.
3 #include <iostream>
4 using namespace std;
5
6 // Count class definition
7 class Count
8 {
9

10 public:
11 // constructor
12 Count()
13 : x(0) // initialize x to 0
14 {
15 // empty body
16 } // end constructor Count
17
18 // output x
19 void print() const
20 {
21 cout << x << endl;
22 } // end function print
23 private:
24 int x; // data member
25 }; // end class Count
26
27
28
29
30
31
32
33
34 int main()
35 {
36 Count counter; // create Count object
37
38 cout << "counter.x after instantiation: ";
39 counter.print();
40
41
42 cout << "counter.x after call to setX friend function: ";
43 counter.print();
44 } // end main

counter.x after instantiation: 0
counter.x after call to setX friend function: 8

Fig. 10.13 | Friends can access private members of a class.

friend void setX(Count &, int); // friend declaration

// function setX can modify private data of Count
// because setX is declared as a friend of Count (line 9)
void setX(Count &c, int val)
{

c.x = val; // allowed because setX is a friend of Count
} // end function setX

setX(counter, 8); // set x using a friend function

10.5 Using the this Pointer 431

passes counter as an argument to setX rather than using a handle (such as the name of the
object) to call the function, as in

If you remove the friend declaration in line 9, you’ll receive error messages indicating that
function setX cannot modify class Count’s private data member x.

As we mentioned, Fig. 10.13 is a mechanical example of using the friend construct. It
would normally be appropriate to define function setX as a member function of class Count.
It would also normally be appropriate to separate the program of Fig. 10.13 into three files:

1. A header (e.g., Count.h) containing the Count class definition, which in turn con-
tains the prototype of friend function setX

2. An implementation file (e.g., Count.cpp) containing the definitions of class
Count’s member functions and the definition of friend function setX

3. A test program (e.g., fig10_15.cpp) with main.

Overloaded friend Functions
It’s possible to specify overloaded functions as friends of a class. Each function intended
to be a friend must be explicitly declared in the class definition as a friend of the class.

10.5 Using the this Pointer
We’ve seen that an object’s member functions can manipulate the object’s data. How do
member functions know which object’s data members to manipulate? Every object has ac-
cess to its own address through a pointer called this (a C++ keyword). The this pointer
is not part of the object itself—i.e., the memory occupied by the this pointer is not re-
flected in the result of a sizeof operation on the object. Rather, the this pointer is passed
(by the compiler) as an implicit argument to each of the object’s non-static member
functions. Section 10.6 introduces static class members and explains why the this

pointer is not implicitly passed to static member functions.
Objects use the this pointer implicitly (as we’ve done to this point) or explicitly to ref-

erence their data members and member functions. The type of the this pointer depends
on the type of the object and whether the member function in which this is used is
declared const. For example, in a nonconstant member function of class Employee, the
this pointer has type Employee * const (a constant pointer to a nonconstant Employee
object). In a constant member function of the class Employee, the this pointer has the
data type const Employee * const (a constant pointer to a constant Employee object).

The next example shows implicit and explicit use of the this pointer; later in this
chapter and in Chapter 11, we show some substantial and subtle examples of using this.

Implicitly and Explicitly Using the this Pointer to Access an Object’s Data Members
Figure 10.14 demonstrates the implicit and explicit use of the this pointer to enable a
member function of class Test to print the private data x of a Test object.

For illustration purposes, member function print (lines 24–36) first prints x by using
the this pointer implicitly (line 27)—only the name of the data member is specified. Then
print uses two different notations to access x through the this pointer—the arrow oper-
ator (->) off the this pointer (line 31) and the dot operator (.) off the dereferenced this

counter.setX(8);

432 Chapter 10 Classes: A Deeper Look, Part 2

pointer (line 35). Note the parentheses around *this (line 35) when used with the dot
member selection operator (.). The parentheses are required because the dot operator has
higher precedence than the * operator. Without the parentheses, the expression *this.x

1 // Fig. 10.14: fig10_14.cpp
2 // Using the this pointer to refer to object members.
3 #include <iostream>
4 using namespace std;
5
6 class Test
7 {
8 public:
9 Test(int = 0); // default constructor

10 void print() const;
11 private:
12 int x;
13 }; // end class Test
14
15 // constructor
16 Test::Test(int value)
17 : x(value) // initialize x to value
18 {
19 // empty body
20 } // end constructor Test
21
22 // print x using implicit and explicit this pointers;
23 // the parentheses around *this are required
24 void Test::print() const
25 {
26
27
28
29
30
31
32
33
34
35
36 } // end function print
37
38 int main()
39 {
40 Test testObject(12); // instantiate and initialize testObject
41
42 testObject.print();
43 } // end main

x = 12
this->x = 12

(*this).x = 12

Fig. 10.14 | using the this pointer to refer to object members.

// implicitly use the this pointer to access the member x
cout << " x = " << x;

// explicitly use the this pointer and the arrow operator
// to access the member x
cout << "\n this->x = " << this->x;

// explicitly use the dereferenced this pointer and
// the dot operator to access the member x
cout << "\n(*this).x = " << (*this).x << endl;

10.5 Using the this Pointer 433

would be evaluated as if it were parenthesized as *(this.x), which is a compilation error,
because the dot operator cannot be used with a pointer.

One interesting use of the this pointer is to prevent an object from being assigned to
itself. As we’ll see in Chapter 11, self-assignment can cause serious errors when the object
contains pointers to dynamically allocated storage.

Using the this Pointer to Enable Cascaded Function Calls
Another use of the this pointer is to enable cascaded member-function calls—that is, in-
voking multiple functions in the same statement (as in line 12 of Fig. 10.17). The program
of Figs. 10.15–10.17 modifies class Time’s set functions setTime, setHour, setMinute and
setSecond such that each returns a reference to a Time object to enable cascaded member-
function calls. Notice in Fig. 10.16 that the last statement in the body of each of these
member functions returns *this (lines 22, 33, 44 and 55) into a return type of Time &.

Common Programming Error 10.7
Attempting to use the member selection operator (.) with a pointer to an object is a com-
pilation error—the dot member selection operator may be used only with an lvalue such
as an object’s name, a reference to an object or a dereferenced pointer to an object.

1 // Fig. 10.15: Time.h
2 // Cascading member function calls.
3
4 // Time class definition.
5 // Member functions defined in Time.cpp.
6 #ifndef TIME_H
7 #define TIME_H
8
9 class Time

10 {
11 public:
12 Time(int = 0, int = 0, int = 0); // default constructor
13
14
15
16
17
18
19
20 // get functions (normally declared const)
21 int getHour() const; // return hour
22 int getMinute() const; // return minute
23 int getSecond() const; // return second
24
25 // print functions (normally declared const)
26 void printUniversal() const; // print universal time
27 void printStandard() const; // print standard time
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59

Fig. 10.15 | Time class modified to enable cascaded member-function calls. (Part 1 of 2.)

// set functions (the Time & return types enable cascading)
Time &setTime(int, int, int); // set hour, minute, second
Time &setHour(int); // set hour
Time &setMinute(int); // set minute
Time &setSecond(int); // set second

434 Chapter 10 Classes: A Deeper Look, Part 2

31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif

1 // Fig. 10.16: Time.cpp
2 // Time class member-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include "Time.h" // Time class definition
6 using namespace std;
7
8 // constructor function to initialize private data;
9 // calls member function setTime to set variables;

10 // default values are 0 (see class definition)
11 Time::Time(int hr, int min, int sec)
12 {
13 setTime(hr, min, sec);
14 } // end Time constructor
15
16 // set values of hour, minute, and second
17
18 {
19 setHour(h);
20 setMinute(m);
21 setSecond(s);
22
23 } // end function setTime
24
25 // set hour value
26
27 {
28 if (h >= 0 && h < 24)
29 hour = h;
30 else
31 throw invalid_argument("hour must be 0-23");
32
33
34 } // end function setHour
35
36 // set minute value
37
38 {
39 if (m >= 0 && m < 60)
40 minute = m;
41 else
42 throw invalid_argument("minute must be 0-59");
43

Fig. 10.16 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 1 of 2.)

Fig. 10.15 | Time class modified to enable cascaded member-function calls. (Part 2 of 2.)

Time &Time::setTime(int h, int m, int s) // note Time & return

return *this; // enables cascading

Time &Time::setHour(int h) // note Time & return

return *this; // enables cascading

Time &Time::setMinute(int m) // note Time & return

10.5 Using the this Pointer 435

The program of Fig. 10.17 creates Time object t (line 9), then uses it in cascaded
member-function calls (lines 12 and 24). Why does the technique of returning *this as a
reference work? The dot operator (.) associates from left to right, so line 12 first evaluates

44
45 } // end function setMinute
46
47 // set second value
48
49 {
50 if (s >= 0 && s < 60)
51 second = s;
52 else
53 throw invalid_argument("second must be 0-59");
54
55
56 } // end function setSecond
57
58 // get hour value
59 int Time::getHour() const
60 {
61 return hour;
62 } // end function getHour
63
64 // get minute value
65 int Time::getMinute() const
66 {
67 return minute;
68 } // end function getMinute
69
70 // get second value
71 int Time::getSecond() const
72 {
73 return second;
74 } // end function getSecond
75
76 // print Time in universal-time format (HH:MM:SS)
77 void Time::printUniversal() const
78 {
79 cout << setfill('0') << setw(2) << hour << ":"
80 << setw(2) << minute << ":" << setw(2) << second;
81 } // end function printUniversal
82
83 // print Time in standard-time format (HH:MM:SS AM or PM)
84 void Time::printStandard() const
85 {
86 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
87 << ":" << setfill('0') << setw(2) << minute
88 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
89 } // end function printStandard

Fig. 10.16 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 2 of 2.)

return *this; // enables cascading

Time &Time::setSecond(int s) // note Time & return

return *this; // enables cascading

436 Chapter 10 Classes: A Deeper Look, Part 2

t.setHour(18), then returns a reference to object t as the value of this function call. The
remaining expression is then interpreted as

The t.setMinute(30) call executes and returns a reference to the object t. The remain-
ing expression is interpreted as

Line 24 also uses cascading. The calls must appear in the order shown in line 24, because
printStandard as defined in the class does not return a reference to t. Placing the call to
printStandard before the call to setTime in line 24 results in a compilation error.
Chapter 11 presents several practical examples of using cascaded function calls. One such
example uses multiple << operators with cout to output multiple values in a single statement.

10.6 static Class Members
There is an important exception to the rule that each object of a class has its own copy of
all the data members of the class. In certain cases, only one copy of a variable should be

1 // Fig. 10.17: fig10_17.cpp
2 // Cascading member-function calls with the this pointer.
3 #include <iostream>
4 #include "Time.h" // Time class definition
5 using namespace std;
6
7 int main()
8 {
9 Time t; // create Time object

10
11
12
13
14 // output time in universal and standard formats
15 cout << "Universal time: ";
16 t.printUniversal();
17
18 cout << "\nStandard time: ";
19 t.printStandard();
20
21 cout << "\n\nNew standard time: ";
22
23
24
25 cout << endl;
26 } // end main

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

Fig. 10.17 | Cascading member-function calls with the this pointer.

t.setMinute(30).setSecond(22);

t.setSecond(22);

// cascaded function calls
t.setHour(18).setMinute(30).setSecond(22);

// cascaded function calls
t.setTime(20, 20, 20).printStandard();

10.6 static Class Members 437

shared by all objects of a class. A static data member is used for these and other reasons.
Such a variable represents “class-wide” information (i.e., a property that is shared by all
instances and is not specific to any one object of the class). Recall that the versions of class
GradeBook in Chapter 7 use static data members to store constants representing the
number of grades that all GradeBook objects can hold.

Motivating Class-Wide Data
Let’s further motivate the need for static class-wide data with an example. Suppose that
we have a video game with Martians and other space creatures. Each Martian tends to be
brave and willing to attack other space creatures when the Martian is aware that there are
at least five Martians present. If fewer than five are present, each Martian becomes cow-
ardly. So each Martian needs to know the martianCount. We could endow each instance
of class Martian with martianCount as a data member. If we do, every Martian will have
a separate copy of the data member. Every time we create a new Martian, we’ll have to up-
date the data member martianCount in all Martian objects. Doing this would require ev-
ery Martian object to have, or have access to, handles to all other Martian objects in
memory. This wastes space with the redundant copies and wastes time in updating the sep-
arate copies. Instead, we declare martianCount to be static. This makes martianCount
class-wide data. Every Martian can access martianCount as if it were a data member of the
Martian, but only one copy of the static variable martianCount is maintained by C++.
This saves space. We save time by having the Martian constructor increment static vari-
able martianCount and having the Martian destructor decrement martianCount. Because
there’s only one copy, we do not have to increment or decrement separate copies of mar-
tianCount for each Martian object.

Scope and Initialization of static Data Members
Although they may seem like global variables, a class’s static data members have class
scope. Also, static members can be declared public, private or protected. A funda-
mental-type static data member is initialized by default to 0. If you want a different ini-
tial value, a static data member can be initialized once. A static const data member of
int or enum type can be initialized in its declaration in the class definition. However, all
other static data members must be defined at global namespace scope (i.e., outside the
body of the class definition) and can be initialized only in those definitions—again, the
next version of the C++ standard will allow initialization where these variables are declared
in the class definition. If a static data member is an object of a class that provides a de-
fault constructor, the static data member need not be initialized because its default con-
structor will be called.

Accessing static Data Members
A class’s private and protected static members are normally accessed through the
class’s public member functions or friends. A class’s static members exist even when no
objects of that class exist. To access a public static class member when no objects of the
class exist, simply prefix the class name and the scope resolution operator (::) to the name

Performance Tip 10.3
Use static data members to save storage when a single copy of the data for all objects of
a class will suffice.

438 Chapter 10 Classes: A Deeper Look, Part 2

of the data member. For example, if our preceding variable martianCount is public, it can
be accessed with the expression Martian::martianCount when there are no Martian ob-
jects. (Of course, using public data is discouraged.)

To access a private or protected static class member when no objects of the class
exist, provide a public static member function and call the function by prefixing its
name with the class name and scope resolution operator. A static member function is a
service of the class, not of a specific object of the class.

Demonstrating static Data Members
The program of Figs. 10.18–10.20 demonstrates a private static data member called
count (Fig. 10.18, line 25) and a public static member function called getCount

(Fig. 10.18, line 19). In Fig. 10.19, line 8 defines and initializes the data member count
to zero at global namespace scope and lines 12–15 define static member function get-

Count. Notice that neither line 8 nor line 12 includes keyword static, yet both lines refer
to static class members. When static is applied to an item at global namespace scope,
that item becomes known only in that file. The static class members need to be available
to any client code that uses the class, so we declare them static only in the .h file. Data
member count maintains a count of the number of objects of class Employee that have
been instantiated. When objects of class Employee exist, member count can be referenced
through any member function of an Employee object—in Fig. 10.19, count is referenced
by both line 22 in the constructor and line 32 in the destructor.

Software Engineering Observation 10.10
A class’s static data members and static member functions exist and can be used even
if no objects of that class have been instantiated.

Common Programming Error 10.8
It’s a compilation error to include keyword static in the definition of a static data
member at global namespace scope.

1 // Fig. 10.18: Employee.h
2 // Employee class definition with a static data member to
3 // track the number of Employee objects in memory
4 #ifndef EMPLOYEE_H
5 #define EMPLOYEE_H
6
7 #include <string>
8 using namespace std;
9

10 class Employee
11 {
12 public:
13 Employee(const string &, const string &); // constructor
14 ~Employee(); // destructor
15 string getFirstName() const; // return first name
16 string getLastName() const; // return last name

Fig. 10.18 | Employee class definition with a static data member to track the number of
Employee objects in memory. (Part 1 of 2.)

10.6 static Class Members 439

17
18
19
20 private:
21 string firstName;
22 string lastName;
23
24
25
26 }; // end class Employee
27
28 #endif

1 // Fig. 10.19: Employee.cpp
2 // Employee class member-function definitions.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17 // constructor initializes non-static data members and
18 // increments static data member count
19 Employee::Employee(const string &first, const string &last)
20 : firstName(first), lastName(last)
21 {
22
23 cout << "Employee constructor for " << firstName
24 << ' ' << lastName << " called." << endl;
25 } // end Employee constructor
26
27 // destructor deallocates dynamically allocated memory
28 Employee::~Employee()
29 {
30 cout << "~Employee() called for " << firstName
31 << ' ' << lastName << endl;
32
33 } // end ~Employee destructor
34

Fig. 10.19 | Employee class member-function definitions. (Part 1 of 2.)

Fig. 10.18 | Employee class definition with a static data member to track the number of
Employee objects in memory. (Part 2 of 2.)

// static member function
static int getCount(); // return number of objects instantiated

// static data
static int count; // number of objects instantiated

// define and initialize static data member at global namespace scope
int Employee::count = 0; // cannot include keyword static

// define static member function that returns number of
// Employee objects instantiated (declared static in Employee.h)
int Employee::getCount()
{

return count;
} // end static function getCount

++count; // increment static count of employees

--count; // decrement static count of employees

440 Chapter 10 Classes: A Deeper Look, Part 2

Figure 10.20 uses static member function getCount to determine the number of
Employee objects in memory at various points in the program. The program calls
Employee::getCount() before any Employee objects have been created (line 12), after two
Employee objects have been created (line 23) and after those Employee objects have been
destroyed (line 34). Lines 16–29 in main define a nested scope. Recall that local variables
exist until the scope in which they’re defined terminates. In this example, we create two
Employee objects in lines 17–18 inside the nested scope. As each constructor executes, it
increments class Employee’s static data member count. These Employee objects are
destroyed when the program reaches line 29. At that point, each object’s destructor exe-
cutes and decrements class Employee’s static data member count.

35 // return first name of employee
36 string Employee::getFirstName() const
37 {
38 return firstName; // return copy of first name
39 } // end function getFirstName
40
41 // return last name of employee
42 string Employee::getLastName() const
43 {
44 return lastName; // return copy of last name
45 } // end function getLastName

1 // Fig. 10.20: fig10_20.cpp
2 // static data member tracking the number of objects of a class.
3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6
7 int main()
8 {
9 // no objects exist; use class name and binary scope resolution

10 // operator to access static member function getCount
11 cout << "Number of employees before instantiation of any objects is "
12 << << endl; // use class name
13
14 // the following scope creates and destroys
15 // Employee objects before main terminates
16 {
17 Employee e1("Susan", "Baker");
18 Employee e2("Robert", "Jones");
19
20 // two objects exist; call static member function getCount again
21 // using the class name and the scope resolution operator
22 cout << "Number of employees after objects are instantiated is "
23 << ;
24

Fig. 10.20 | static data member tracking the number of objects of a class. (Part 1 of 2.)

Fig. 10.19 | Employee class member-function definitions. (Part 2 of 2.)

Employee::getCount()

Employee::getCount()

10.7 Proxy Classes 441

A member function should be declared static if it does not access non-static data
members or non-static member functions of the class. Unlike non-static member func-
tions, a static member function does not have a this pointer, because static data members
and static member functions exist independently of any objects of a class. The this pointer
must refer to a specific object of the class, and when a static member function is called,
there might not be any objects of its class in memory.

10.7 Proxy Classes
Two of the fundamental principles of good software engineering are separating interface
from implementation and hiding implementation details. We strive to achieve these goals by
defining a class in a header and implementing its member functions in a separate imple-
mentation file. As we pointed out in Chapter 9, however, headers do contain a portion of a
class’s implementation and hints about others. For example, a class’s private members are
listed in the class definition in a header, so these members are visible to clients, even

25 cout << "\n\nEmployee 1: "
26 << e1.getFirstName() << " " << e1.getLastName()
27 << "\nEmployee 2: "
28 << e2.getFirstName() << " " << e2.getLastName() << "\n\n";
29 } // end nested scope in main
30
31 // no objects exist, so call static member function getCount again
32 // using the class name and the scope resolution operator
33 cout << "\nNumber of employees after objects are deleted is "
34 << << endl;
35 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after objects are instantiated is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Robert Jones
~Employee() called for Susan Baker

Number of employees after objects are deleted is 0

Common Programming Error 10.9
Using the this pointer in a static member function is a compilation error.

Common Programming Error 10.10
Declaring a static member function const is a compilation error. The const qualifier
indicates that a function cannot modify the contents of the object in which it operates, but
static member functions exist and operate independently of any objects of the class.

Fig. 10.20 | static data member tracking the number of objects of a class. (Part 2 of 2.)

Employee::getCount()

442 Chapter 10 Classes: A Deeper Look, Part 2

though the clients may not access the private members. Revealing a class’s private data
in this manner potentially exposes proprietary information to clients of the class. We now in-
troduce the notion of a proxy class that allows you to hide even the private data of a class
from clients of the class. Providing clients of your class with a proxy class that knows only
the public interface to your class enables the clients to use your class’s services without
giving the clients access to your class’s implementation details.

Implementing a proxy class requires several steps, which we demonstrate in
Figs. 10.21–10.24. First, we create the class definition for the class that contains the pro-
prietary implementation we would like to hide. Our example class, called Implementa-

tion, is shown in Fig. 10.21. The proxy class Interface is shown in Figs. 10.22–10.23.
The test program and sample output are shown in Fig. 10.24.

Class Implementation (Fig. 10.21) provides a single private data member called
value (the data we would like to hide from the client), a constructor to initialize value

and functions setValue and getValue.

We define a proxy class called Interface (Fig. 10.22) with an identical public inter-
face (except for the constructor and destructor names) to that of class Implementation.
The proxy class’s only private member is a pointer to an Implementation object. Using
a pointer in this manner allows us to hide class Implementation’s implementation details
from the client. Notice that the only mentions in class Interface of the proprietary
Implementation class are in the pointer declaration (line 17) and in line 6, a forward class

1 // Fig. 10.21: Implementation.h
2 // Implementation class definition.
3
4 class Implementation
5 {
6 public:
7 // constructor
8 Implementation(int v)
9 : value(v) // initialize value with v

10 {
11 // empty body
12 } // end constructor Implementation
13
14 // set value to v
15
16 {
17 value = v; // should validate v
18 } // end function setValue
19
20 // return value
21
22 {
23 return value;
24 } // end function getValue
25 private:
26
27 }; // end class Implementation

Fig. 10.21 | Implementation class definition.

void setValue(int v)

int getValue() const

int value; // data that we would like to hide from the client

10.7 Proxy Classes 443

declaration. When a class definition uses only a pointer or reference to an object of
another class (as in this case), the class header for that other class (which would ordinarily
reveal the private data of that class) is not required to be included with #include. This is
because the compiler doesn’t need to reserve space for an object of the class. The compiler
does need to reserve space for the pointer or reference. The sizes of pointers and references
are characteristics of the hardware platform on which the compiler runs, so the compiler
already knows those sizes. You can simply declare that other class as a data type with a for-
ward class declaration (line 6) before the type is used in the file.

The member-function implementation file for proxy class Interface (Fig. 10.23) is
the only file that includes the header Implementation.h (line 5) containing class Imple-
mentation. The file Interface.cpp (Fig. 10.23) is provided to the client as a precompiled
object code file along with the header Interface.h that includes the function prototypes
of the services provided by the proxy class. Because file Interface.cpp is made available
to the client only as object code, the client is not able to see the interactions between the
proxy class and the proprietary class (lines 9, 17, 23 and 29). The proxy class imposes an
extra “layer” of function calls as the “price to pay” for hiding the private data of class
Implementation. Given the speed of today’s computers and the fact that many compilers
can inline simple function calls automatically, the effect of these extra function calls on
performance is often negligible.

1 // Fig. 10.22: Interface.h
2 // Proxy class Interface definition.
3 // Client sees this source code, but the source code does not reveal
4 // the data layout of class Implementation.
5
6
7
8 class Interface
9 {

10 public:
11 Interface(int); // constructor
12
13
14 ~Interface(); // destructor
15 private:
16
17
18 }; // end class Interface

Fig. 10.22 | Proxy class Interface definition.

1 // Fig. 10.23: Interface.cpp
2 // Implementation of class Interface--client receives this file only
3 // as precompiled object code, keeping the implementation hidden.
4 #include "Interface.h" // Interface class definition
5
6

Fig. 10.23 | Interface class member-function definitions. (Part 1 of 2.)

class Implementation; // forward class declaration required by line 17

void setValue(int); // same public interface as
int getValue() const; // class Implementation has

// requires previous forward declaration (line 6)
Implementation *ptr;

#include "Implementation.h" // Implementation class definition

444 Chapter 10 Classes: A Deeper Look, Part 2

Figure 10.24 tests class Interface. Notice that only the header for Interface is
included in the client code (line 4)—there is no mention of the existence of a separate class
called Implementation. Thus, the client never sees the private data of class Implementa-
tion, nor can the client code become dependent on the Implementation code.

7 // constructor
8 Interface::Interface(int v)
9 : ptr () // initialize ptr to point to

10 { // a new Implementation object
11 // empty body
12 } // end Interface constructor
13
14 // call Implementation's setValue function
15 void Interface::setValue(int v)
16 {
17
18 } // end function setValue
19
20 // call Implementation's getValue function
21 int Interface::getValue() const
22 {
23
24 } // end function getValue
25
26 // destructor
27 Interface::~Interface()
28 {
29
30 } // end ~Interface destructor

Software Engineering Observation 10.11
A proxy class insulates client code from implementation changes.

1 // Fig. 10.24: fig10_24.cpp
2 // Hiding a class’s private data with a proxy class.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "Interface contains: " <<
12 << " before setValue" << endl;
13
14

Fig. 10.24 | Hiding a class’s private data with a proxy class. (Part 1 of 2.)

Fig. 10.23 | Interface class member-function definitions. (Part 2 of 2.)

new Implementation(v)

ptr->setValue(v);

return ptr->getValue();

delete ptr;

#include "Interface.h" // Interface class definition

Interface i(5); // create Interface object

i.getValue()

i.setValue(10);

10.8 Wrap-Up 445

10.8 Wrap-Up
This chapter introduced several advanced topics related to classes and data abstraction.
You learned how to specify const objects and const member functions to prevent modi-
fications to objects, thus enforcing the principle of least privilege. You also learned that,
through composition, a class can have objects of other classes as members. We introduced
the topic of friendship and demonstrated how to use friend functions.

You learned that the this pointer is passed as an implicit argument to each of a class’s
non-static member functions, allowing the functions to access the correct object’s data
members and other non-static member functions. You also saw explicit use of the this

pointer to access the class’s members and to enable cascaded member-function calls. We
motivated the need for static data members and demonstrated how to declare and use
static data members and static member functions in your own classes. Finally, we
showed how to create a proxy class to hide the implementation details of a class from the
class’s clients.

In Chapter 11, we continue our study of classes and objects by showing how to enable
C++’s operators to work with objects—a process called operator overloading. For example,
you’ll see how to overload the << operator so it can be used to output a complete array
without explicitly using a repetition statement.

15
16 cout << "Interface contains: " <<
17 << " after setValue" << endl;
18 } // end main

Interface contains: 5 before setValue
Interface contains: 10 after setValue

Fig. 10.24 | Hiding a class’s private data with a proxy class. (Part 2 of 2.)

i.getValue()

Summary
Section 10.2 const (Constant) Objects and const Member Functions
• The keyword const can be used to specify that an object is not modifiable and that any attempt

to modify the object should result in a compilation error.

• C++ compilers disallow non-const member function calls on const objects.

• An attempt by a const member function to modify an object of its class is a compilation error.

• A member function is specified as const both in its prototype and in its definition.

• A const object must be initialized.

• Constructors and destructors cannot be declared const.

• const data member and reference data members must be initialized using member initializers
(p. 420).

Section 10.3 Composition: Objects as Members of Classes
• A class can have objects of other classes as members—this concept is called composition.

446 Chapter 10 Classes: A Deeper Look, Part 2

• Member objects (p. 423) are constructed in the order in which they’re declared in the class def-
inition and before their enclosing class objects are constructed.

• If a member initializer is not provided for a member object, the member object’s default con-
structor (p. 423) will be called implicitly.

Section 10.4 friend Functions and friend Classes
• A friend function (p. 429) of a class is defined outside that class’s scope, yet has the right to ac-

cess all of the class’s members. Stand-alone functions or entire classes may be declared to be
friends.

• A friend declaration can appear anywhere in the class.

• The friendship relation is neither symmetric nor transitive.

Section 10.5 Using the this Pointer
• Every object has access to its own address through the this pointer (p. 431).

• An object’s this pointer is not part of the object itself—i.e., the size of the memory occupied by
the this pointer is not reflected in the result of a sizeof operation on the object.

• The this pointer is passed as an implicit argument to each non-static member function.

• Objects use the this pointer implicitly (as we’ve done to this point) or explicitly to reference their
data members and member functions.

• The this pointer enables cascaded member-function calls (p. 433) in which multiple functions
are invoked in the same statement.

Section 10.6 static Class Members
• A static data member (p. 437) represents “class-wide” information (i.e., a property of the class

shared by all instances, not a property of a specific object of the class).

• static data members have class scope and can be declared public, private or protected.

• A class’s static members exist even when no objects of that class exist.

• To access a public static class member when no objects of the class exist, simply prefix the class
name and the scope resolution operator (::) to the name of the data member.

• A member function should be declared static (p. 438) if it does not access non-static data
members or non-static member functions of the class. Unlike non-static member functions,
a static member function does not have a this pointer, because static data members and
static member functions exist independently of any objects of a class.

Section 10.7 Proxy Classes
• Providing clients of your class with a proxy class (p. 442) that knows only the public interface

to your class enables the clients to use your class’s services without giving the clients access to your
class’s implementation details, such as its private data.

• When a class definition uses only a pointer or reference to an object of another class, the class
header for that other class (which would ordinarily reveal the private data of that class) is not
required to be included with #include. You can simply declare that other class as a data type with
a forward class declaration (p. 443) before the type is used in the file.

• The implementation file containing the member functions for a proxy class is the only file that
includes the header for the class whose private data we would like to hide.

• The implementation file containing the member functions for the proxy class is provided to the
client as a precompiled object code file along with the header that includes the function proto-
types of the services provided by the proxy class.

Self-Review Exercises 447

Self-Review Exercises
10.1 Fill in the blanks in each of the following:

a) must be used to initialize constant members of a class.
b) A nonmember function must be declared as a(n) of a class to have access to

that class’s private data members.
c) A constant object must be ; it cannot be modified after it’s created.
d) A(n) data member represents class-wide information.
e) An object’s non-static member functions have access to a “self pointer” to the object

called the pointer.
f) Keyword specifies that an object or variable is not modifiable.
g) If a member initializer is not provided for a member object of a class, the object's

is called.
h) A member function should be static if it does not access class members.
i) Member objects are constructed their enclosing class object.

10.2 Find the errors in the following class and explain how to correct them:

class Example
{
public:

Example(int y = 10)
: data(y)

{
// empty body

} // end Example constructor

int getIncrementedData() const
{

return ++data;
} // end function getIncrementedData

static int getCount()
{

cout << "Data is " << data << endl;
return count;

} // end function getCount
private:

int data;
static int count;

}; // end class Example

Answers to Self-Review Exercises
10.1 a) member initializers. b) friend. c) initialized. d) static. e) this. f) const. g) default
constructor. h) non-static. i) before.

10.2 Error: The class definition for Example has two errors. The first occurs in function get

IncrementedData. The function is declared const, but it modifies the object.
Correction: To correct the first error, remove the const keyword from the definition of get

IncrementedData.
Error: The second error occurs in function getCount. This function is declared static, so
it isn’t allowed to access any non-static member (i.e., data) of the class.
Correction: To correct the second error, remove the output line from the getCount definition.

Exercises
10.3 (Friendship) Explain the notion of friendship. Explain the negative aspects of friendship as
described in the text.

448 Chapter 10 Classes: A Deeper Look, Part 2

10.4 (Constructor Overloading) Can a correct Time class definition include both of the following
constructors? If not, explain why not.

Time(int h = 0, int m = 0, int s = 0);
Time();

10.5 (Constructors and Destructors) What happens when a return type, even void, is specified
for a constructor or destructor?

10.6 (Date Class Modification) Modify class Date in Fig. 10.8 to have the following capabilities:
a) Output the date in multiple formats such as

DDD YYYY
MM/DD/YY
June 14, 1992

b) Use overloaded constructors to create Date objects initialized with dates of the formats
in part (a).

c) Create a Date constructor that reads the system date using the standard library functions
of the <ctime> header and sets the Date members. (See your compiler’s reference docu-
mentation or www.cplusplus.com/ref/ctime/index.html for information on the func-
tions in header <ctime>.)

In Chapter 11, we’ll be able to create operators for testing the equality of two dates and for com-
paring dates to determine whether one date is prior to, or after, another.

10.7 (SavingsAccount Class) Create a SavingsAccount class. Use a static data member annual-
InterestRate to store the annual interest rate for each of the savers. Each member of the class con-
tains a private data member savingsBalance indicating the amount the saver currently has on
deposit. Provide member function calculateMonthlyInterest that calculates the monthly interest
by multiplying the balance by annualInterestRate divided by 12; this interest should be added to
savingsBalance. Provide a static member function modifyInterestRate that sets the static an-

nualInterestRate to a new value. Write a driver program to test class SavingsAccount. Instantiate
two different objects of class SavingsAccount, saver1 and saver2, with balances of $2000.00 and
$3000.00, respectively. Set the annualInterestRate to 3 percent. Then calculate the monthly in-
terest and print the new balances for each of the savers. Then set the annualInterestRate to 4 per-
cent, calculate the next month’s interest and print the new balances for each of the savers.

10.8 (IntegerSet Class) Create class IntegerSet for which each object can hold integers in the
range 0 through 100. Represent the set internally as a vector of bool values. Element a[i] is true
if integer i is in the set. Element a[j] is false if integer j is not in the set. The default constructor
initializes a set to the so-called “empty set,” i.e., a set for which all elements contain false.

Provide member functions for the common set operations. For example, provide a unionOf-

Sets member function that creates a third set that is the set-theoretic union of two existing sets
(i.e., an element of the result is set to true if that element is true in either or both of the existing
sets, and an element of the result is set to false if that element is false in each of the existing sets).

Provide an intersectionOfSets member function which creates a third set which is the set-
theoretic intersection of two existing sets (i.e., an element of the result is set to false if that ele-
ment is false in either or both of the existing sets, and an element of the result is set to true if that
element is true in each of the existing sets).

Provide an insertElement member function that places a new integer k into a set by setting
a[k] to true. Provide a deleteElement member function that deletes integer m by setting a[m] to
false.

Provide a printSet member function that prints a set as a list of numbers separated by spaces.
Print only those elements that are present in the set (i.e., their position in the vector has a value of
true). Print --- for an empty set.

www.cplusplus.com/ref/ctime/index.html

Exercises 449

Provide an isEqualTo member function that determines whether two sets are equal.
Provide an additional constructor that receives an array of integers and the size of that array

and uses the array to initialize a set object.
Now write a driver program to test your IntegerSet class. Instantiate several IntegerSet

objects. Test that all your member functions work properly.

10.9 (Time Class Modification) It would be perfectly reasonable for the Time class of Figs. 10.15–
10.16 to represent the time internally as the number of seconds since midnight rather than the three
integer values hour, minute and second. Clients could use the same public methods and get the
same results. Modify the Time class of Fig. 10.15 to implement the time as the number of seconds
since midnight and show that there is no visible change in functionality to the clients of the class.
[Note: This exercise nicely demonstrates the virtues of implementation hiding.]

10.10 (Card Shuffling and Dealing) Create a program to shuffle and deal a deck of cards. The
program should consist of class Card, class DeckOfCards and a driver program. Class Card should
provide:

a) Data members face and suit of type int.
b) A constructor that receives two ints representing the face and suit and uses them to ini-

tialize the data members.
c) Two static arrays of strings representing the faces and suits.
d) A toString function that returns the Card as a string in the form “face of suit.” You

can use the + operator to concatenate strings.

Class DeckOfCards should contain:
a) A vector of Cards named deck to store the Cards.
b) An integer currentCard representing the next card to deal.
c) A default constructor that initializes the Cards in the deck. The constructor should use

vector function push_back to add each Card to the end of the vector after the Card is
created and initialized. This should be done for each of the 52 Cards in the deck.

d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should
iterate through the vector of Cards. For each Card, randomly select another Card in the
deck and swap the two Cards.

e) A dealCard function that returns the next Card object from the deck.
f) A moreCards function that returns a bool value indicating whether there are more Cards

to deal.

The driver program should create a DeckOfCards object, shuffle the cards, then deal the 52 cards.

10.11 (Card Shuffling and Dealing) Modify the program you developed in Exercise 10.10 so that
it deals a five-card poker hand. Then write functions to accomplish each of the following:

a) Determine whether the hand contains a pair.
b) Determine whether the hand contains two pairs.
c) Determine whether the hand contains three of a kind (e.g., three jacks).
d) Determine whether the hand contains four of a kind (e.g., four aces).
e) Determine whether the hand contains a flush (i.e., all five cards of the same suit).
f) Determine whether the hand contains a straight (i.e., five cards of consecutive face

values).

Card Shuffling and Dealing Projects
10.12 (Card Shuffling and Dealing) Use the functions from Exercise 10.11 to write a program
that deals two five-card poker hands, evaluates each hand and determines which is the better hand.

10.13 (Card Shuffling and Dealing) Modify the program you developed in Exercise 10.12 so that
it can simulate the dealer. The dealer’s five-card hand is dealt “face down” so the player cannot see

450 Chapter 10 Classes: A Deeper Look, Part 2

it. The program should then evaluate the dealer’s hand, and, based on the quality of the hand, the
dealer should draw one, two or three more cards to replace the corresponding number of unneeded
cards in the original hand. The program should then reevaluate the dealer’s hand.

10.14 (Card Shuffling and Dealing) Modify the program you developed in Exercise 10.13 so that
it handles the dealer’s hand, but the player is allowed to decide which cards of the player’s hand to
replace. The program should then evaluate both hands and determine who wins. Now use this new
program to play 20 games against the computer. Who wins more games, you or the computer? Have
one of your friends play 20 games against the computer. Who wins more games? Based on the results
of these games, make appropriate modifications to refine your poker-playing program. Play 20 more
games. Does your modified program play a better game?

Making a Difference
10.15 (Project: Emergency Response Class) The North American emergency response service, 9-1-1,
connects callers to a local Public Service Answering Point (PSAP). Traditionally, the PSAP would
ask the caller for identification information—including the caller’s address, phone number and the
nature of the emergency, then dispatch the appropriate emergency responders (such as the police,
an ambulance or the fire department). Enhanced 9-1-1 (or E9-1-1) uses computers and databases to
determine the caller’s physical address, directs the call to the nearest PSAP, and displays the caller’s
phone number and address to the call taker. Wireless Enhanced 9-1-1 provides call takers with iden-
tification information for wireless calls. Rolled out in two phases, the first phase required carriers to
provide the wireless phone number and the location of the cell site or base station transmitting the
call. The second phase required carriers to provide the location of the caller (using technologies such
as GPS). To learn more about 9-1-1, visit www.fcc.gov/pshs/services/911-services/Wel-

come.html and people.howstuffworks.com/9-1-1.htm.
An important part of creating a class is determining the class’s attributes (instance variables).

For this class design exercise, research 9-1-1 services on the Internet. Then, design a class called
Emergency that might be used in an object-oriented 9-1-1 emergency response system. List the
attributes that an object of this class might use to represent the emergency. For example, the class
might include information on who reported the emergency (including their phone number), the
location of the emergency, the time of the report, the nature of the emergency, the type of response
and the status of the response. The class attributes should completely describe the nature of the
problem and what’s happening to resolve that problem.

www.fcc.gov/pshs/services/911-services/Wel-come.html
www.fcc.gov/pshs/services/911-services/Wel-come.html

11Operator Overloading; Class
string

There are two men inside
the artist, the poet and the
craftsman. One is born a poet.
One becomes a craftsman.
—Emile Zola

A thing of beauty is a joy forever.
—John Keats

O b j e c t i v e s
In this chapter you’ll learn:

■ How operator overloading
can help you craft valuable
classes.

■ To overload unary and binary
operators.

■ To convert objects from one
class to another class.

■ To use overloaded operators
and additional features of
C++’s string class.

■ To create PhoneNumber,
Date andArray classes that
provide overloaded operators.

■ To use keyword explicit
to indicate that a constructor
cannot be used for implicit
conversions.

■ To experience a “light-bulb
moment” when you’ll truly
appreciate the value of the
class concept.

452 Chapter 11 Operator Overloading; Class string

11.1 Introduction
This chapter shows how to enable C++’s operators to work with class objects—a process
called operator overloading. One example of an overloaded operator built into C++ is <<,
which is used both as the stream insertion operator and as the bitwise left-shift operator
(which is discussed in Chapter 21). Similarly, >> also is overloaded; it’s used both as the
stream extraction operator and the bitwise right-shift operator. Both of these operators are
overloaded in the C++ Standard Library. You’ve been using overloaded operators since
early in the book. The overloads are built into the base C++ language itself. For example,
C++ overloads the addition operator (+) and the subtraction operator (-) to perform dif-
ferently, depending on their context in integer, floating-point and pointer arithmetic with
data of fundamental types.

You can overload most operators to be used with class objects—the compiler generates
the appropriate code based on the types of the operands. The jobs performed by overloaded
operators also can be performed by explicit function calls, but operator notation is often
more natural.

Our examples start by demonstrating the C++ Standard Library’s class string, which
has lots of overloaded operators. This enables you to see overloaded operators in use before
implementing your own overloaded operators. Next, we create a PhoneNumber class that
enables us to use overloaded operators << and >> to conveniently output and input fully
formatted, 10-digit phone numbers. We then present a Date class that overloads the prefix
and postfix increment (++) operators to add one day to the value of a Date. The class also
overloads the += operator to allow a program to increment a Date by the number of days
specified on the right side of the operator.

Next, we present a capstone case study—an Array class that uses overloaded operators
and other capabilities to solve various problems with pointer-based arrays. This is one of
the most important case studies in the book. Many of our students have indicated that the
Array case study is their “light bulb moment” in truly understanding what classes and
object technology are all about. As part of this class, we’ll overload stream insertion, stream
extraction, assignment, equality, relational and subscript operators. Once you master this

11.1 Introduction
11.2 Using the Overloaded Operators of

Standard Library Class string
11.3 Fundamentals of Operator

Overloading
11.4 Overloading Binary Operators
11.5 Overloading the Binary Stream

Insertion and Stream Extraction
Operators

11.6 Overloading Unary Operators
11.7 Overloading the Unary Prefix and

Postfix ++ and -- Operators

11.8 Case Study: A Date Class
11.9 Dynamic Memory Management

11.10 Case Study: Array Class
11.10.1 Using the Array Class
11.10.2 Array Class Definition

11.11 Operators as Member Functions vs.
Non-Member Functions

11.12 Converting between Types
11.13 explicit Constructors
11.14 Building a String Class
11.15 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

11.2 Using the Overloaded Operators of Standard Library Class string 453

Array class, you’ll indeed understand the essence of object technology—crafting, using
and reusing valuable classes.

The chapter concludes with discussions of how you can convert between types
(incuding class types), problems with certain implicit conversions and how to prevent
those problems.

11.2 Using the Overloaded Operators of Standard
Library Class string
Figure 11.1 demonstrates many of class string’s overloaded operators and several other
useful member functions, including empty, substr and at. Function empty determines
whether a string is empty, function substr returns a string that represents a portion of
an existing string and function at returns the character at a specific index in a string

(after checking that the index is in range). Chapter 18 presents class string in detail.

1 // Fig. 11.1: fig11_01.cpp
2 // Standard Library string class test program.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9

10
11
12
13 // test overloaded equality and relational operators
14 cout << "s1 is \"" << "\"; s2 is \""
15 << "\"; s3 is \"" << '\"'
16 << "\n\nThe results of comparing s2 and s1:"
17 << "\ns2 == s1 yields " << (? "true" : "false")
18 << "\ns2 != s1 yields " << (? "true" : "false")
19 << "\ns2 > s1 yields " << (? "true" : "false")
20 << "\ns2 < s1 yields " << (? "true" : "false")
21 << "\ns2 >= s1 yields " << (? "true" : "false")
22 << "\ns2 <= s1 yields " << (? "true" : "false");
23
24 // test string member-function empty
25 cout << "\n\nTesting s3.empty():" << endl;
26
27 if ()
28 {
29 cout << "s3 is empty; assigning s1 to s3;" << endl;
30 ; // assign s1 to s3
31 cout << "s3 is \"" << "\"";
32 } // end if
33
34 // test overloaded string concatenation operator
35 cout << "\n\ns1 += s2 yields s1 = ";

Fig. 11.1 | Standard Library string class test program. (Part 1 of 3.)

string s1("happy");
string s2(" birthday");
string s3;

<< s1 << s2
<< s3

s2 == s1
s2 != s1
s2 > s1
s2 < s1
s2 >= s1
s2 <= s1

s3.empty()

s3 = s1
<< s3

454 Chapter 11 Operator Overloading; Class string

36
37 cout << s1;
38
39 // test overloaded string concatenation operator with a char * string
40 cout << "\n\ns1 += \" to you\" yields" << endl;
41
42 cout << "s1 = " << s1 << "\n\n";
43
44 // test string member function substr
45 cout << "The substring of s1 starting at location 0 for\n"
46 << "14 characters, s1.substr(0, 14), is:\n"
47 << << "\n\n";
48
49 // test substr "to-end-of-string" option
50 cout << "The substring of s1 starting at\n"
51 << "location 15, s1.substr(15), is:\n"
52 << << endl;
53
54 // test copy constructor
55
56 cout << "\ns4 = " << s4 << "\n\n";
57
58 // test overloaded assignment (=) operator with self-assignment
59 cout << "assigning s4 to s4" << endl;
60
61 cout << "s4 = " << s4 << endl;
62
63 // test using overloaded subscript operator to create lvalue
64
65
66 cout << "\ns1 after s1[0] = 'H' and s1[6] = 'B' is: "
67 << s1 << "\n\n";
68
69 // test subscript out of range with string member function "at"
70 try
71 {
72 cout << "Attempt to assign 'd' to s1.at(30) yields:" << endl;
73 s1.at(30) = 'd'; // ERROR: subscript out of range
74 } // end try
75 catch (out_of_range &ex)
76 {
77 cout << "An exception occurred: " << ex.what() << endl;
78 } // end catch
79 } // end main

s1 is "happy"; s2 is " birthday"; s3 is ""

The results of comparing s2 and s1:
s2 == s1 yields false
s2 != s1 yields true
s2 > s1 yields false
s2 < s1 yields true

Fig. 11.1 | Standard Library string class test program. (Part 2 of 3.)

s1 += s2; // test overloaded concatenation

s1 += " to you";

s1.substr(0, 14)

s1.substr(15)

string s4(s1);

s4 = s4;

s1[0] = 'H';
s1[6] = 'B';

11.2 Using the Overloaded Operators of Standard Library Class string 455

Lines 9–11 create three string objects—s1 is initialized with the literal "happy", s2
is initialized with the literal " birthday" and s3 uses the default string constructor to
create an empty string. Lines 14–15 output these three objects, using cout and operator
<<, which the string class designers overloaded to handle string objects. Then lines 16–
22 show the results of comparing s2 to s1 by using class string’s overloaded equality and
relational operators, which perform lexicographical comparisons using the numerical
values of the characters (see Appendix B, ASCII Character Set) in each string.

Class string provides member function empty to determine whether a string is
empty, which we demonstrate in line 27. Member function empty returns true if the
string is empty; otherwise, it returns false.

Line 30 demonstrates class string’s overloaded assignment operator by assigning s1

to s3. Line 31 outputs s3 to demonstrate that the assignment worked correctly.
Line 36 demonstrates class string’s overloaded += operator for string concatenation.

In this case, the contents of s2 are appended to s1. Then line 37 outputs the resulting
string that’s stored in s1. Line 41 demonstrates that a string literal can be appended to a
string object by using operator +=. Line 42 displays the result.

Class string provides member function substr (lines 47 and 52) to return a portion
of a string as a string object. The call to substr in line 47 obtains a 14-character substring
(specified by the second argument) of s1 starting at position 0 (specified by the first argu-
ment).The call to substr in line 52 obtains a substring starting from position 15 of s1.

s2 >= s1 yields false
s2 <= s1 yields true

Testing s3.empty():
s3 is empty; assigning s1 to s3;
s3 is "happy"

s1 += s2 yields s1 = happy birthday

s1 += " to you" yields
s1 = happy birthday to you

The substring of s1 starting at location 0 for
14 characters, s1.substr(0, 14), is:
happy birthday

The substring of s1 starting at
location 15, s1.substr(15), is:
to you

s4 = happy birthday to you

assigning s4 to s4
s4 = happy birthday to you

s1 after s1[0] = 'H' and s1[6] = 'B' is: Happy Birthday to you

Attempt to assign 'd' to s1.at(30) yields:
An exception occurred: invalid string position

Fig. 11.1 | Standard Library string class test program. (Part 3 of 3.)

456 Chapter 11 Operator Overloading; Class string

When the second argument is not specified, substr returns the remainder of the string

on which it’s called.
Line 55 creates string object s4 and initializes it with a copy of s1. This results in a

call to class string’s copy constructor. Line 60 uses class string’s overloaded = operator
to demonstrate that it handles self-assignment properly—we’ll see when we build class
Array later in the chapter that self-assignment can be dangerous and we’ll show how to
deal with the issues.

Lines 64–65 used class string’s overloaded [] operator to create lvalues that enable
new characters to replace existing characters in s1. Line 67 outputs the new value of s1.
Class string’s overloaded [] operator does not perform any bounds checking. Therefore, you
must ensure that operations using standard class string’s overloaded [] operator do not acci-
dentally manipulate elements outside the bounds of the string. Class string does provide
bounds checking in its member function at, which throws an exception if its argument is
an invalid subscript. By default, this causes a C++ program to terminate and display a
system-specific error message. If the subscript is valid, function at returns the character at
the specified location as a modifiable lvalue or an unmodifiable lvalue (i.e., a const refer-
ence), depending on the context in which the call appears. Line 73 demonstrates a call to
function at with an invalid subscript; this throws an out_of_range exception.

11.3 Fundamentals of Operator Overloading
As you saw in Fig. 11.1, operators provide a concise notation for manipulating string ob-
jects. You can use operators with your own user-defined types as well. Although C++ does
not allow new operators to be created, it does allow most existing operators to be overloaded
so that, when they’re used with objects, they have meaning appropriate to those objects.

Operator overloading is not automatic—you must write operator-overloading func-
tions to perform the desired operations. An operator is overloaded by writing a non-
static member function definition or non-member function definition as you normally
would, except that the function name starts with the keyword operator followed by the
symbol for the operator being overloaded. For example, the function name operator+

would be used to overload the addition operator (+) for use with objects of a particular
class. When operators are overloaded as member functions, they must be non-static,
because they must be called on an object of the class and operate on that object.

To use an operator on an object of a class, the operator must be overloaded for that
class—with three exceptions:

• The assignment operator (=) may be used with every class to perform memberwise
assignment of the class’s data members—each data member is assigned from the
assignment’s “source” object (on the right) to the “target” object (on the left).
Memberwise assignment is dangerous for classes with pointer members, so we’ll ex-
plicitly overload the assignment operator for such classes.

• The address (&) operator returns a pointer to the object; this operator also can be
overloaded.

• The comma operator evaluates the expression to its left then the expression to its
right, and returns the value of the latter expression. This operator also can be
overloaded.

11.4 Overloading Binary Operators 457

Operators That Cannot Be Overloaded
Most of C++’s operators can be overloaded. Figure 11.2 shows the operators that cannot
be overloaded.

Rules and Restrictions on Operator Overloading
As you prepare to overload operator with your own classes, there are several rules and re-
strictions you should keep in mind:

• The precedence of an operator cannot be changed by overloading. However, paren-
theses can be used to force the order of evaluation of overloaded operators in an
expression.

• The associativity of an operator cannot be changed by overloading—if an operator
normally associates from left to right, then so do all of its overloaded versions.

• You cannot change the “arity” of an operator (that is, the number of operands an op-
erator takes)—overloaded unary operators remain unary operators; overloaded bi-
nary operators remain binary operators. Operators &, *, + and - all have both unary
and binary versions; these unary and binary versions can be separately overloaded.

• You cannot create new operators; only existing operators can be overloaded.

• The meaning of how an operator works on values of fundamental types cannot be
changed by operator overloading. For example, you cannot make the + operator
subtract two ints. Operator overloading works only with objects of user-defined
types or with a mixture of an object of a user-defined type and an object of a funda-
mental type.

• Related operators, like + and +=, must be overloaded separately.

• When overloading (), [], -> or any of the assignment operators, the operator
overloading function must be declared as a class member. For all other overload-
able operators, the operator overloading functions can be member functions or
non-member functions.

11.4 Overloading Binary Operators
A binary operator can be overloaded as a non-static member function with one parameter or
as a non-member function with two parameters (one of those parameters must be either a class
object or a reference to a class object). A non-member operator function is often declared as
friend of a class for performance reasons.

Binary Overloaded Operators as Member Functions
Consider using < to compare two objects of a String class that you define. When over-
loading binary operator < as a non-static member function of a String class, if y and z

Operators that cannot be overloaded

. .* :: ?:

Fig. 11.2 | Operators that cannot be overloaded.

458 Chapter 11 Operator Overloading; Class string

are String-class objects, then y < z is treated as if y.operator<(z) had been written, in-
voking the operator< member function with one argument declared below:

Overloaded operator functions for binary operators can be member functions only when
the left operand is an object of the class in which the function is a member.

Binary Overloaded Operators as Non-Member Functions
As a non-member function, binary operator < must take two arguments—one of which must be
an object (or a reference to an object) of the class. If y and z are String-class objects or refer-
ences to String-class objects, then y < z is treated as if the call operator<(y, z) had been
written in the program, invoking function operator< which is declared as follows:

11.5 Overloading the Binary Stream Insertion and
Stream Extraction Operators
You can input and output fundamental-type data using the stream extraction operator >>
and the stream insertion operator <<. The C++ class libraries overload these binary opera-
tors for each fundamental type, including pointers and char * strings. You can also over-
load these operators to perform input and output for your own types. The program of
Figs. 11.3–11.5 overloads these operators to input and output PhoneNumber objects in the
format “(000) 000-0000.” The program assumes telephone numbers are input correctly.

class String
{
public:

bool operator<(const String &) const;
...

}; // end class String

bool operator<(const String &, const String &);

Performance Tip 11.1
It’s possible to overload an operator as a non-member, non-friend function, but such a func-
tion requiring access to a class’s private or protected data would need to use set or get
functions provided in that class’s public interface. The overhead of calling these functions
could cause poor performance, so these functions can be inlined to improve performance.

1 // Fig. 11.3: PhoneNumber.h
2 // PhoneNumber class definition
3 #ifndef PHONENUMBER_H
4 #define PHONENUMBER_H
5
6 #include <iostream>
7 #include <string>
8 using namespace std;
9

10 class PhoneNumber
11 {

Fig. 11.3 | PhoneNumber class with overloaded stream insertion and stream extraction
operators as friend functions. (Part 1 of 2.)

11.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 459

12
13
14 private:
15 string areaCode; // 3-digit area code
16 string exchange; // 3-digit exchange
17 string line; // 4-digit line
18 }; // end class PhoneNumber
19
20 #endif

1 // Fig. 11.4: PhoneNumber.cpp
2 // Overloaded stream insertion and stream extraction operators
3 // for class PhoneNumber.
4 #include <iomanip>
5 #include "PhoneNumber.h"
6 using namespace std;
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Fig. 11.4 | Overloaded stream insertion and stream extraction operators for class
PhoneNumber.

1 // Fig. 11.5: fig11_05.cpp
2 // Demonstrating class PhoneNumber's overloaded stream insertion
3 // and stream extraction operators.

Fig. 11.5 | Overloaded stream insertion and stream extraction operators. (Part 1 of 2.)

Fig. 11.3 | PhoneNumber class with overloaded stream insertion and stream extraction
operators as friend functions. (Part 2 of 2.)

friend ostream &operator<<(ostream &, const PhoneNumber &);
friend istream &operator>>(istream &, PhoneNumber &);

// overloaded stream insertion operator; cannot be
// a member function if we would like to invoke it with
// cout << somePhoneNumber;
ostream &operator<<(ostream &output, const PhoneNumber &number)
{

output << "(" << number.areaCode << ") "
<< number.exchange << "-" << number.line;

return output; // enables cout << a << b << c;
} // end function operator<<

// overloaded stream extraction operator; cannot be
// a member function if we would like to invoke it with
// cin >> somePhoneNumber;
istream &operator>>(istream &input, PhoneNumber &number)
{

input.ignore(); // skip (
input >> setw(3) >> number.areaCode; // input area code
input.ignore(2); // skip) and space
input >> setw(3) >> number.exchange; // input exchange
input.ignore(); // skip dash (-)
input >> setw(4) >> number.line; // input line
return input; // enables cin >> a >> b >> c;

} // end function operator>>

460 Chapter 11 Operator Overloading; Class string

Overloading the Stream Extraction (>>) Operator
The stream extraction operator function operator>> (Fig. 11.4, lines 21–30) takes the
istream reference input and the PhoneNumber reference number as arguments and returns
an istream reference. Operator function operator>> inputs phone numbers of the form

into objects of class PhoneNumber. When the compiler sees the expression

in line 16 of Fig. 11.5, the compiler generates the non-member function call

When this call executes, reference parameter input (Fig. 11.4, line 21) becomes an alias
for cin and reference parameter number becomes an alias for phone. The operator function
reads as strings the three parts of the telephone number into the areaCode (line 24), ex-
change (line 26) and line (line 28) members of the PhoneNumber object referenced by pa-
rameter number. Stream manipulator setw limits the number of characters read into each
string. When used with cin and strings, setw restricts the number of characters read to the
number of characters specified by its argument (i.e., setw(3) allows three characters to be
read). The parentheses, space and dash characters are skipped by calling istream member
function ignore (Fig. 11.4, lines 23, 25 and 27), which discards the specified number of
characters in the input stream (one character by default). Function operator>> returns
istream reference input (i.e., cin). This enables input operations on PhoneNumber objects

4 #include <iostream>
5 #include "PhoneNumber.h"
6 using namespace std;
7
8 int main()
9 {

10 PhoneNumber phone; // create object phone
11
12 cout << "Enter phone number in the form (123) 456-7890:" << endl;
13
14
15
16
17
18 cout << "The phone number entered was: ";
19
20
21
22
23 } // end main

Enter phone number in the form (123) 456-7890:
(800) 555-1212
The phone number entered was: (800) 555-1212

(800) 555-1212

cin >> phone

operator>>(cin, phone);

Fig. 11.5 | Overloaded stream insertion and stream extraction operators. (Part 2 of 2.)

// cin >> phone invokes operator>> by implicitly issuing
// the non-member function call operator>>(cin, phone)
cin >> phone;

// cout << phone invokes operator<< by implicitly issuing
// the non-member function call operator<<(cout, phone)
cout << phone << endl;

11.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 461

to be cascaded with input operations on other PhoneNumber objects or other data types.
For example, a program can input two PhoneNumber objects in one statement as follows:

First, the expression cin >> phone1 executes by making the non-member function call

This call then returns a reference to cin as the value of cin >> phone1, so the remaining
portion of the expression is interpreted simply as cin >> phone2. This executes by making
the non-member function call

Overloading the Stream Insertion (<<) Operator
The stream insertion operator function (Fig. 11.4, lines 11–16) takes an ostream reference
(output) and a const PhoneNumber reference (number) as arguments and returns an os-

tream reference. Function operator<< displays objects of type PhoneNumber. When the
compiler sees the expression

in line 22 of Fig. 11.5, the compiler generates the non-member function call

Function operator<< displays the parts of the telephone number as strings, because
they’re stored as string objects.

Overloaded Operators as Non-Member friend Functions
The functions operator>> and operator<< are declared in PhoneNumber as non-member,
friend functions (Fig. 11.3, lines 12–13). They’re non-member functions because the ob-
ject of class PhoneNumber must be the operator’s right operand. If these were to be
PhoneNumber member functions, the following awkward statements would have to be used
to output and input an Array:

Such statements would be confusing to most C++ programmers, who are familiar with
cout and cin appearing as the left operands of << and >>, respectively.

cin >> phone1 >> phone2;

operator>>(cin, phone1);

operator>>(cin, phone2);

Good Programming Practice 11.1
Overloaded operators should mimic the functionality of their built-in counterparts—for
example, the + operator should be overloaded to perform addition, not subtraction. Avoid
excessive or inconsistent use of operator overloading, as this can make a program cryptic
and difficult to read.

cout << phone

operator<<(cout, phone);

Error-Prevention Tip 11.1
Returning a reference from an overloaded << or >> operator function is typically successful
because cout, cin and most stream objects are global, or at least long-lived. Returning a
reference to an automatic variable or other temporary object is dangerous—this can create
“dangling references” to nonexisting objects.

phone << cout;
phone >> cin;

462 Chapter 11 Operator Overloading; Class string

Overloaded operator functions for binary operators can be member functions only
when the left operand is an object of the class in which the function is a member. Overloaded
input and output operators are declared as friends if they need to access non-public class mem-
bers directly for performance reasons or because the class may not offer appropriate get functions.
Also, the PhoneNumber reference in function operator<<’s parameter list (Fig. 11.4, line
11) is const, because the PhoneNumber will simply be output, and the PhoneNumber refer-
ence in function operator>>’s parameter list (line 21) is non-const, because the
PhoneNumber object must be modified to store the input telephone number in the object.

Why Overloaded Stream Insertion and Stream Extraction Operators Are Overloaded
as Non-Member Functions
The overloaded stream insertion operator (<<) is used in an expression in which the left op-
erand has type ostream &, as in cout << classObject. To use the operator in this manner
where the right operand is an object of a user-defined class, it must be overloaded as a non-
member function. To be a member function, operator << would have to be a member of the
ostream class. This is not possible for user-defined classes, since we are not allowed to modify
C++ Standard Library classes. Similarly, the overloaded stream extraction operator (>>) is
used in an expression in which the left operand has the type istream &, as in the expression
cin >> classObject, and the right operand is an object of a user-defined class, so it, too, must
be a non-member function. Also, each of these overloaded operator functions may require
access to the private data members of the class object being output or input, so these over-
loaded operator functions can be made friend functions of the class for performance reasons.

11.6 Overloading Unary Operators
A unary operator for a class can be overloaded as a non-static member function with no ar-
guments or as a non-member function with one argument that must be an object (or a reference
to an object) of the class. Member functions that implement overloaded operators must be
non-static so that they can access the non-static data in each object of the class.

Unary Overloaded Operators as Member Functions
Consider overloading unary operator ! to test whether an object of your own String class
is empty. Such a function would return a bool result. When a unary operator such as ! is
overloaded as a member function with no arguments and the compiler sees the expression
!s (in which s is an object of class String), the compiler generates the function call s.op-
erator!(). The operand s is the String object for which the String class member func-
tion operator! is being invoked. The function is declared as follows:

Software Engineering Observation 11.1
New input/output capabilities for user-defined types are added to C++ without modifying
standard input/output library classes. This is another example of C++’s extensibility.

class String
{
public:

bool operator!() const;
...

}; // end class String

11.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 463

Unary Overloaded Operators as Non-Member Functions
A unary operator such as ! may be overloaded as a non-member function with one param-
eter in two different ways—either with a parameter that’s an object (this requires a copy of
the object, so the side effects of the function are not applied to the original object), or with
a parameter that’s a reference to an object (no copy of the original object is made, so all side
effects of this function are applied to the original object). If s is a String class object (or a
reference to a String class object), then !s is treated as if the call operator!(s) had been
written, invoking the non-member operator! function that’s declared as follows:

11.7 Overloading the Unary Prefix and Postfix ++ and --
Operators
The prefix and postfix versions of the increment and decrement operators can all be over-
loaded. We’ll see how the compiler distinguishes between the prefix version and the post-
fix version of an increment or decrement operator.

To overload the prefix and postfix increment operators, each overloaded operator function
must have a distinct signature, so that the compiler will be able to determine which version of
++ is intended. The prefix versions are overloaded exactly as any other prefix unary operator
would be. Everything stated in this section for overloading prefix and postfix increment
operators applies to overloading predecrement and postdecrement operators. In the next
section, we examine a Date class with overloaded prefix and postfix increment operators.

Overloading the Prefix Increment Operator
Suppose, that we want to add 1 to the day in Date object d1. When the compiler sees the
preincrementing expression ++d1, the compiler generates the member-function call

The prototype for this operator member function would be

If the prefix increment operator is implemented as a non-member function, then, when
the compiler sees the expression ++d1, the compiler generates the function call

The prototype for this non-member operator function would be declared as

Overloading the Postfix Increment Operator
Overloading the postfix increment operator presents a challenge, because the compiler
must be able to distinguish between the signatures of the overloaded prefix and postfix in-
crement operator functions. The convention that has been adopted is that, when the com-
piler sees the postincrementing expression d1++, it generates the member-function call

The prototype for this operator member function is

bool operator!(const String &);

d1.operator++()

Date &operator++();

operator++(d1)

Date &operator++(Date &);

d1.operator++(0)

Date operator++(int)

464 Chapter 11 Operator Overloading; Class string

The argument 0 is strictly a “dummy value” that enables the compiler to distinguish be-
tween the prefix and postfix increment operator functions. The same syntax is used to dif-
ferentiate between the prefix and postfix decrement operator functions.

If the postfix increment is implemented as a non-member function, then, when the
compiler sees the expression d1++, the compiler generates the function call

The prototype for this function would be

Once again, the 0 argument is used by the compiler to distinguish between the prefix and
postfix increment operators implemented as non-member functions. Note that the postfix
increment operator returns Date objects by value, whereas the prefix increment operator re-
turns Date objects by reference—the postfix increment operator typically returns a tempo-
rary object that contains the original value of the object before the increment occurred.
C++ treats such objects as rvalues, which cannot be used on the left side of an assignment. The
prefix increment operator returns the actual incremented object with its new value. Such
an object can be used as an lvalue in a continuing expression.

11.8 Case Study: A Date Class
The program of Figs. 11.6–11.8 demonstrates a Date class, which uses overloaded prefix
and postfix increment operators to add 1 to the day in a Date object, while causing appro-
priate increments to the month and year if necessary. The Date header (Fig. 11.6) specifies
that Date’s public interface includes an overloaded stream insertion operator (line 11), a
default constructor (line 13), a setDate function (line 14), an overloaded prefix increment
operator (line 15), an overloaded postfix increment operator (line 16), an overloaded +=

addition assignment operator (line 17), a function to test for leap years (line 18) and a
function to determine whether a day is the last day of the month (line 19).

operator++(d1, 0)

Date operator++(Date &, int);

Performance Tip 11.2
The extra object that’s created by the postfix increment (or decrement) operator can result
in a performance problem—especially when the operator is used in a loop. For this reason,
you should prefer the overloaded prefix increment and decrement operators.

1 // Fig. 11.6: Date.h
2 // Date class definition with overloaded increment operators.
3 #ifndef DATE_H
4 #define DATE_H
5
6 #include <iostream>
7 using namespace std;
8
9 class Date

10 {
11 friend ostream &operator<<(ostream &, const Date &);

Fig. 11.6 | Date class definition with overloaded increment operators. (Part 1 of 2.)

11.8 Case Study: A Date Class 465

12 public:
13 Date(int m = 1, int d = 1, int y = 1900); // default constructor
14 void setDate(int, int, int); // set month, day, year
15
16
17 const Date &operator+=(int); // add days, modify object
18 static bool leapYear(int); // is date in a leap year?
19 bool endOfMonth(int) const; // is date at the end of month?
20 private:
21 int month;
22 int day;
23 int year;
24
25 static const int days[]; // array of days per month
26 void helpIncrement(); // utility function for incrementing date
27 }; // end class Date
28
29 #endif

1 // Fig. 11.7: Date.cpp
2 // Date class member- and friend-function definitions.
3 #include <iostream>
4 #include <string>
5 #include "Date.h"
6 using namespace std;
7
8 // initialize static member; one classwide copy
9 const int Date::days[] =

10 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
11
12 // Date constructor
13 Date::Date(int month, int day, int year)
14 {
15 setDate(month, day, year);
16 } // end Date constructor
17
18 // set month, day and year
19 void Date::setDate(int mm, int dd, int yy)
20 {
21 if (mm >= 1 && mm <= 12)
22 month = mm;
23 else
24 throw invalid_argument("Month must be 1-12");
25
26 if (yy >= 1900 && yy <= 2100)
27 year = yy;
28 else
29 throw invalid_argument("Year must be >= 1900 and <= 2100");

Fig. 11.7 | Date class member- and friend-function definitions. (Part 1 of 3.)

Fig. 11.6 | Date class definition with overloaded increment operators. (Part 2 of 2.)

Date &operator++(); // prefix increment operator
Date operator++(int); // postfix increment operator

466 Chapter 11 Operator Overloading; Class string

30
31 // test for a leap year
32 if ((month == 2 && leapYear(year) && dd >= 1 && dd <= 29) ||
33 (dd >= 1 && dd <= days[month]))
34 day = dd;
35 else
36 throw invalid_argument(
37 "Day is out of range for current month and year");
38 } // end function setDate
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 // if the year is a leap year, return true; otherwise, return false
68 bool Date::leapYear(int testYear)
69 {
70 if (testYear % 400 == 0 ||
71 (testYear % 100 != 0 && testYear % 4 == 0))
72 return true; // a leap year
73 else
74 return false; // not a leap year
75 } // end function leapYear
76
77 // determine whether the day is the last day of the month
78 bool Date::endOfMonth(int testDay) const
79 {
80 if (month == 2 && leapYear(year))
81 return testDay == 29; // last day of Feb. in leap year

Fig. 11.7 | Date class member- and friend-function definitions. (Part 2 of 3.)

// overloaded prefix increment operator
Date &Date::operator++()
{

helpIncrement(); // increment date
return *this; // reference return to create an lvalue

} // end function operator++

// overloaded postfix increment operator; note that the
// dummy integer parameter does not have a parameter name
Date Date::operator++(int)
{

Date temp = *this; // hold current state of object
helpIncrement();

// return unincremented, saved, temporary object
return temp; // value return; not a reference return

} // end function operator++

// add specified number of days to date
const Date &Date::operator+=(int additionalDays)
{

for (int i = 0; i < additionalDays; ++i)
helpIncrement();

return *this; // enables cascading
} // end function operator+=

11.8 Case Study: A Date Class 467

82 else
83 return testDay == days[month];
84 } // end function endOfMonth
85
86 // function to help increment the date
87 void Date::helpIncrement()
88 {
89 // day is not end of month
90 if (!endOfMonth(day))
91 ++day; // increment day
92 else
93 if (month < 12) // day is end of month and month < 12
94 {
95 ++month; // increment month
96 day = 1; // first day of new month
97 } // end if
98 else // last day of year
99 {
100 ++year; // increment year
101 month = 1; // first month of new year
102 day = 1; // first day of new month
103 } // end else
104 } // end function helpIncrement
105
106 // overloaded output operator
107 ostream &operator<<(ostream &output, const Date &d)
108 {
109 static string monthName[13] = { "", "January", "February",
110 "March", "April", "May", "June", "July", "August",
111 "September", "October", "November", "December" };
112 output << monthName[d.month] << ' ' << d.day << ", " << d.year;
113 return output; // enables cascading
114 } // end function operator<<

1 // Fig. 11.08: fig11_11.cpp
2 // Date class test program.
3 #include <iostream>
4 #include "Date.h" // Date class definition
5 using namespace std;
6
7 int main()
8 {
9 Date d1(12, 27, 2010); // December 27, 2010

10 Date d2; // defaults to January 1, 1900
11
12 cout << "d1 is " << d1 << "\nd2 is " << d2;
13 cout << "\n\nd1 += 7 is " << (d1 += 7);
14
15 d2.setDate(2, 28, 2008);
16 cout << "\n\n d2 is " << d2;

Fig. 11.8 | Date class test program. (Part 1 of 2.)

Fig. 11.7 | Date class member- and friend-function definitions. (Part 3 of 3.)

468 Chapter 11 Operator Overloading; Class string

Function main (Fig. 11.8) creates two Date objects (lines 9–10)—d1 is initialized to
December 27, 2010 and d2 is initialized by default to January 1, 1900. The Date con-
structor (defined in Fig. 11.7, lines 13–16) calls setDate (defined in Fig. 11.7, lines 19–
38) to validate the month, day and year specified. Invalid values for the month, day or year
result in invalid_argument exceptions.

Line 12 of main outputs each of the Date objects, using the overloaded stream inser-
tion operator (defined in Fig. 11.7, lines 107–114). Line 13 of main uses the overloaded
operator += (defined in Fig. 11.7, lines 59–65) to add seven days to d1. Line 15 uses func-
tion setDate to set d2 to February 28, 2008, which is a leap year. Then, line 17 preincre-
ments d2 to show that the date increments properly to February 29. Next, line 19 creates
a Date object, d3, which is initialized with the date July 13, 2010. Then line 23 increments
d3 by 1 with the overloaded prefix increment operator. Lines 21–24 output d3 before and
after the preincrement operation to confirm that it worked correctly. Finally, line 28
increments d3 with the overloaded postfix increment operator. Lines 26–29 output d3

before and after the postincrement operation to confirm that it worked correctly.

Date Class Prefix Increment Operator
Overloading the prefix increment operator is straightforward. The prefix increment oper-
ator (defined in Fig. 11.7, lines 41–45) calls utility function helpIncrement (defined in

17
18
19 Date d3(7, 13, 2010);
20
21
22
23
24
25
26
27
28
29
30 } // end main

d1 is December 27, 2010
d2 is January 1, 1900

d1 += 7 is January 3, 2011

d2 is February 28, 2008
++d2 is February 29, 2008 (leap year allows 29th)

Testing the prefix increment operator:
d3 is July 13, 2010

++d3 is July 14, 2010
d3 is July 14, 2010

Testing the postfix increment operator:
d3 is July 14, 2010

d3++ is July 14, 2010
d3 is July 15, 2010

Fig. 11.8 | Date class test program. (Part 2 of 2.)

cout << "\n++d2 is " << ++d2 << " (leap year allows 29th)";

cout << "\n\nTesting the prefix increment operator:\n"
<< " d3 is " << d3 << endl;

cout << "++d3 is " << ++d3 << endl;
cout << " d3 is " << d3;

cout << "\n\nTesting the postfix increment operator:\n"
<< " d3 is " << d3 << endl;

cout << "d3++ is " << d3++ << endl;
cout << " d3 is " << d3 << endl;

11.9 Dynamic Memory Management 469

Fig. 11.7, lines 87–104) to increment the date. This function deals with “wraparounds”
or “carries” that occur when we increment the last day of the month. These carries require
incrementing the month. If the month is already 12, then the year must also be increment-
ed and the month must be set to 1. Function helpIncrement uses function endOfMonth

to increment the day correctly.
The overloaded prefix increment operator returns a reference to the current Date

object (i.e., the one that was just incremented). This occurs because the current object,
*this, is returned as a Date &. This enables a preincremented Date object to be used as an
lvalue, which is how the built-in prefix increment operator works for fundamental types.

Date Class Postfix Increment Operator
Overloading the postfix increment operator (defined in Fig. 11.7, lines 49–56) is trickier.
To emulate the effect of the postincrement, we must return an unincremented copy of the
Date object. For example, if int variable x has the value 7, the statement

outputs the original value of variable x. So we’d like our postfix increment operator to op-
erate the same way on a Date object. On entry to operator++, we save the current object
(*this) in temp (line 51). Next, we call helpIncrement to increment the current Date ob-
ject. Then, line 55 returns the unincremented copy of the object previously stored in temp.
This function cannot return a reference to the local Date object temp, because a local vari-
able is destroyed when the function in which it’s declared exits. Thus, declaring the return
type to this function as Date & would return a reference to an object that no longer exists.
Returning a reference (or a pointer) to a local variable is a common error for which most com-
pilers will issue a warning.

11.9 Dynamic Memory Management
A standard C++ array data structure is fixed in size once it’s created. The size is specified
with a constant at compile time. Sometimes it’s useful to determine the size of an array
dynamically at execution time and then create the array. C++ enables you to control the
allocation and deallocation of memory in a program for objects and for arrays of any built-
in or user-defined type. This is known as dynamic memory management and is performed
with the operators new and delete. We’ll use these capabilities to implement our Array
class in the next section.

You can use the new operator to dynamically allocate (i.e., reserve) the exact amount
of memory required to hold an object or array at execution time. The object or array is
created in the free store (also called the heap)—a region of memory assigned to each program
for storing dynamically allocated objects. Once memory is allocated in the free store, you can
access it via the pointer that operator new returns. When you no longer need the memory,
you can return it to the free store by using the delete operator to deallocate (i.e., release)
the memory, which can then be reused by future new operations.

Obtaining Dynamic Memory with new
Consider the following statement:

cout << x++ << endl;

Time *timePtr = new Time;

470 Chapter 11 Operator Overloading; Class string

The new operator allocates storage of the proper size for an object of type Time, calls the
default constructor to initialize the object and returns a pointer to the type specified to the
right of the new operator (i.e., a Time *). If new is unable to find sufficient space in memory
for the object, it indicates that an error occurred by throwing an exception.

Releasing Dynamic Memory with delete
To destroy a dynamically allocated object and free the space for the object, use the delete
operator as follows:

This statement first calls the destructor for the object to which timePtr points, then deallocates
the memory associated with the object, returning the memory to the free store.

Initializing Dynamic Memory
You can provide an initializer for a newly created fundamental-type variable, as in

which initializes a newly created double to 3.14159 and assigns the resulting pointer to
ptr. The same syntax can be used to specify a comma-separated list of arguments to the
constructor of an object. For example,

initializes a new Time object to 12:45 PM and assigns the resulting pointer to timePtr.

Dynamically Allocating Arrays with new []
You can also use the new operator to allocate arrays dynamically. For example, a 10-ele-
ment integer array can be allocated and assigned to gradesArray as follows:

which declares int pointer gradesArray and assigns to it a pointer to the first element of a
dynamically allocated 10-element array of ints. The size of an array created at compile time
must be specified using a constant integral expression; however, a dynamically allocated ar-
ray’s size can be specified using any non-negative integral expression that can be evaluated at
execution time. Also, when allocating an array of objects dynamically, you cannot pass argu-
ments to each object’s constructor—each object is initialized by its default constructor. For
fundamental types, the elements are initialized to 0 or the equivalent of 0 (e.g., chars are ini-
tialized to the null character, '\0'). Since an array name is a constant pointer to the array’s
first element, the following is not allowed for dynamically allocated memory:

Releasing Dynamically Allocated Arrays with delete []
To deallocate the memory to which gradesArray points, use the statement

delete timePtr;

Common Programming Error 11.1
Not releasing dynamically allocated memory when it’s no longer needed can cause the sys-
tem to run out of memory prematurely. This is sometimes called a “memory leak.”

double *ptr = new double(3.14159);

Time *timePtr = new Time(12, 45, 0);

int *gradesArray = new int[10];

int gradesArray[] = new int[10];

delete [] gradesArray;

11.10 Case Study: Array Class 471

If the pointer points to an array of objects, the statement first calls the destructor for every object
in the array, then deallocates the memory. If the preceding statement did not include the
square brackets ([]) and gradesArray pointed to an array of objects, the result is unde-
fined. Some compilers call the destructor only for the first object in the array. Using delete on
a null pointer (i.e., a pointer with the value 0) has no effect.

11.10 Case Study: Array Class
We discussed arrays in Chapter 7. An array is not much more than a pointer to some space
in memory. Pointer-based arrays have many problems, including:

• A program can easily “walk off” either end of an array, because C++ does not check
whether subscripts fall outside the range of an array (though you can still do this ex-
plicitly).

• Arrays of size n must number their elements 0, …, n – 1; alternate subscript
ranges are not allowed.

• An entire array cannot be input or output at once; each array element must be
read or written individually (unless the array is a null-terminated char * string).

• Two arrays cannot be meaningfully compared with equality or relational opera-
tors (because the array names are simply pointers to where the arrays begin in
memory and two arrays will always be at different memory locations).

• When an array is passed to a general-purpose function designed to handle arrays
of any size, the array’s size must be passed as an additional argument.

• One array cannot be assigned to another with the assignment operator(s) (be-
cause array names are const pointers and a constant pointer cannot be used on
the left side of an assignment operator).

Class development is an interesting, creative and intellectually challenging activity—
always with the goal of “crafting valuable classes.” With C++, you can implement more
robust array capabilities via classes and operator overloading. You can develop an array
class that’s preferable to “raw” arrays.

In this example, we create a powerful Array class that performs range checking to
ensure that subscripts remain within the bounds of the Array. The class allows one array
object to be assigned to another with the assignment operator. Array objects know their
size, so the size does not need to be passed separately to functions that receive Array

parameters. Entire Arrays can be input or output with the stream extraction and stream
insertion operators, respectively. You can compare Arrays with the equality operators ==
and !=. Recall that C++ Standard Library class template vector provides many of these
capabilities as well. Chapter 22 explains class template vector in detail.

Common Programming Error 11.2
Using delete instead of delete [] for arrays of objects can lead to runtime logic errors.
To ensure that every object in the array receives a destructor call, always delete memory
allocated as an array with operator delete []. Similarly, always delete memory allocated
as an individual element with operator delete—the result of deleting a single object with
operator delete [] is undefined.

472 Chapter 11 Operator Overloading; Class string

11.10.1 Using the Array Class
The program of Figs. 11.9–11.11 demonstrates class Array and its overloaded operators.
First we walk through main (Fig. 11.9) and the program’s output, then we consider the
class definition (Fig. 11.10) and each of its member-function definitions (Fig. 11.11).

1 // Fig. 11.9: fig11_09.cpp
2 // Array class test program.
3 #include <iostream>
4 #include "Array.h"
5 using namespace std;
6
7 int main()
8 {
9

10
11
12 // print integers1 size and contents
13 cout << "Size of Array integers1 is "
14 <<
15 << "\nArray after initialization:\n" << integers1;
16
17 // print integers2 size and contents
18 cout << "\nSize of Array integers2 is "
19 <<
20 << "\nArray after initialization:\n" << integers2;
21
22 // input and print integers1 and integers2
23 cout << "\nEnter 17 integers:" << endl;
24
25
26 cout << "\nAfter input, the Arrays contain:\n"
27 << "integers1:\n"
28 << "integers2:\n" ;
29
30 // use overloaded inequality (!=) operator
31 cout << "\nEvaluating: integers1 != integers2" << endl;
32
33 if ()
34 cout << "integers1 and integers2 are not equal" << endl;
35
36
37
38
39
40 cout << "\nSize of Array integers3 is "
41 <<
42 << "\nArray after initialization:\n" << integers3;
43
44 // use overloaded assignment (=) operator
45 cout << "\nAssigning integers2 to integers1:" << endl;
46

Fig. 11.9 | Array class test program. (Part 1 of 3.)

Array integers1(7); // seven-element Array
Array integers2; // 10-element Array by default

integers1.getSize()

integers2.getSize()

cin >> integers1 >> integers2;

<< integers1
<< integers2

integers1 != integers2

// create Array integers3 using integers1 as an
// initializer; print size and contents
Array integers3(integers1); // invokes copy constructor

integers3.getSize()

integers1 = integers2; // note target Array is smaller

11.10 Case Study: Array Class 473

47
48 cout << "integers1:\n"
49 << "integers2:\n" ;
50
51 // use overloaded equality (==) operator
52 cout << "\nEvaluating: integers1 == integers2" << endl;
53
54 if ()
55 cout << "integers1 and integers2 are equal" << endl;
56
57 // use overloaded subscript operator to create rvalue
58 cout << "\nintegers1[5] is " << ;
59
60 // use overloaded subscript operator to create lvalue
61 cout << "\n\nAssigning 1000 to integers1[5]" << endl;
62
63 cout << "integers1:\n" ;
64
65 // attempt to use out-of-range subscript
66 try
67 {
68 cout << "\nAttempt to assign 1000 to integers1[15]" << endl;
69
70 } // end try
71 catch (out_of_range &ex)
72 {
73 cout << "An exception occurred: " << ex.what() << endl;
74 } // end catch
75 } // end main

Size of Array integers1 is 7
Array after initialization:

0 0 0 0
0 0 0

Size of Array integers2 is 10
Array after initialization:

0 0 0 0
0 0 0 0
0 0

Enter 17 integers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

After input, the Arrays contain:
integers1:

1 2 3 4
5 6 7

integers2:
8 9 10 11

12 13 14 15
16 17

Fig. 11.9 | Array class test program. (Part 2 of 3.)

<< integers1
<< integers2

integers1 == integers2

integers1[5]

integers1[5] = 1000;
<< integers1

integers1[15] = 1000; // ERROR: subscript out of range

474 Chapter 11 Operator Overloading; Class string

Creating Arrays, Outputting Their Size and Displaying Their Contents
The program begins by instantiating two objects of class Array—integers1 (Fig. 11.9,
line 9) with seven elements, and integers2 (line 10) with the default Array size—10 ele-
ments (specified by the Array default constructor’s prototype in Fig. 11.10, line 14). Lines
13–15 use member function getSize to determine the size of integers1 then output
integers1’s contents, using the Array overloaded stream insertion operator. The sample
output confirms that the Array elements were set correctly to zeros by the constructor.
Next, lines 18–20 output the size of Array integers2 then output integers2’s contents,
using the Array overloaded stream insertion operator.

Using the Overloaded Stream Insertion Operator to Fill an Array
Line 23 prompts the user to input 17 integers. Line 24 uses the Array overloaded stream
extraction operator to read the first seven values into integers1 and the remaining 10 val-
ues into integers2. Lines 26–28 output the two arrays with the overloaded Array stream
insertion operator to confirm that the input was performed correctly.

Using the Overloaded Inequality Operator
Line 33 tests the overloaded inequality operator by evaluating the condition

The program output shows that the Arrays are not equal.

Evaluating: integers1 != integers2
integers1 and integers2 are not equal

Size of Array integers3 is 7
Array after initialization:

1 2 3 4
5 6 7

Assigning integers2 to integers1:
integers1:

8 9 10 11
12 13 14 15
16 17

integers2:
8 9 10 11

12 13 14 15
16 17

Evaluating: integers1 == integers2
integers1 and integers2 are equal

integers1[5] is 13

Assigning 1000 to integers1[5]
integers1:

8 9 10 11
12 1000 14 15
16 17

Attempt to assign 1000 to integers1[15]
An exception occurred: Subscript out of range

integers1 != integers2

Fig. 11.9 | Array class test program. (Part 3 of 3.)

11.10 Case Study: Array Class 475

Initializing a New Array with a Copy of an Existing Array’s Contents
Line 38 instantiates a third Array called integers3 and initializes it with a copy of Array
integers1. This invokes class Array’s copy constructor to copy the elements of
integers1 into integers3. We discuss the details of the copy constructor shortly. The
copy constructor can also be invoked by writing line 38 as follows:

The equal sign in the preceding statement is not the assignment operator. When an equal
sign appears in the declaration of an object, it invokes a constructor for that object. This
form can be used to pass only a single argument to a constructor—specifically, the value
on the right side of the = symbol.

Lines 40–42 output the size of integers3 then output integers3’s contents, using
the Array overloaded stream insertion operator to confirm that integers3’s elements were
set correctly by the copy constructor.

Using the Overloaded Assignment Operator
Line 46 tests the overloaded assignment operator (=) by assigning integers2 to
integers1. Lines 48–49 display both Array objects’ contents to confirm that the assign-
ment was successful. Array integers1 originally held 7 integers, but was resized to hold a
copy of the 10 elements in integers2. As we’ll see, the overloaded assignment operator
performs this resizing operation in a manner that’s transparent to the client code.

Using the Overloaded Equality Operator
Line 54 uses the overloaded equality operator (==) to confirm that objects integers1 and
integers2 are indeed identical after the assignment in line 46.

Using the Overloaded Subscript Operator
Line 58 uses the overloaded subscript operator to refer to integers1[5]—an in-range el-
ement of integers1. This subscripted name is used as an rvalue to print the value stored
in integers1[5]. Line 62 uses integers1[5] as a modifiable lvalue on the left side of an
assignment statement to assign a new value, 1000, to element 5 of integers1. We’ll see
that operator[] returns a reference to use as the modifiable lvalue after the operator con-
firms that 5 is a valid subscript for integers1.

Line 69 attempts to assign the value 1000 to integers1[15]—an out-of-range ele-
ment. In this example, operator[] determines that the subscript is out of range and
throws an out_of_range exception.

Interestingly, the array subscript operator [] is not restricted for use only with arrays; it
also can be used, for example, to select elements from other kinds of container classes, such
as linked lists, strings and dictionaries. Also, when overloaded operator[] functions are
defined, subscripts no longer have to be integers—characters, strings or even objects of user-
defined classes also could be used. In Chapter 22, we discuss the STL map class that allows
string subscripts.

11.10.2 Array Class Definition
Now that we’ve seen how this program operates, let’s walk through the class header
(Fig. 11.10). As we refer to each member function in the header, we discuss that function’s
implementation in Fig. 11.11. In Fig. 11.10, lines 34–35 represent the private data

Array integers3 = integers1;

476 Chapter 11 Operator Overloading; Class string

members of class Array. Each Array object consists of a size member indicating the num-
ber of elements in the Array and an int pointer—ptr—that points to the dynamically al-
located pointer-based array of integers managed by the Array object.

1 // Fig. 11.10: Array.h
2 // Array class definition with overloaded operators.
3 #ifndef ARRAY_H
4 #define ARRAY_H
5
6 #include <iostream>
7 using namespace std;
8
9 class Array

10 {
11
12
13 public:
14 Array(int = 10); // default constructor
15
16
17 int getSize() const; // return size
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 private:
34 int size; // pointer-based array size
35 int *ptr; // pointer to first element of pointer-based array
36 }; // end class Array
37
38 #endif

Fig. 11.10 | Array class definition with overloaded operators.

1 // Fig 11.11: Array.cpp
2 // Array class member- and friend-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include <cstdlib> // exit function prototype
6 #include "Array.h" // Array class definition

Fig. 11.11 | Array class member- and friend-function definitions. (Part 1 of 4.)

friend ostream &operator<<(ostream &, const Array &);
friend istream &operator>>(istream &, Array &);

Array(const Array &); // copy constructor
~Array(); // destructor

const Array &operator=(const Array &); // assignment operator
bool operator==(const Array &) const; // equality operator

// inequality operator; returns opposite of == operator
bool operator!=(const Array &right) const
{

return ! (*this == right); // invokes Array::operator==
} // end function operator!=

// subscript operator for non-const objects returns modifiable lvalue
int &operator[](int);

// subscript operator for const objects returns rvalue
int operator[](int) const;

11.10 Case Study: Array Class 477

7 using namespace std;
8
9 // default constructor for class Array (default size 10)

10 Array::Array(int arraySize)
11 {
12 // validate arraySize
13 if (arraySize > 0)
14 size = arraySize;
15 else
16 throw invalid_argument("Array size must be greater than 0");
17
18 ptr = new int[size]; // create space for pointer-based array
19
20 for (int i = 0; i < size; ++i)
21 ptr[i] = 0; // set pointer-based array element
22 } // end Array default constructor
23
24 // copy constructor for class Array;
25
26 Array::Array(const Array &arrayToCopy)
27 : size(arrayToCopy.size)
28 {
29 ptr = new int[size]; // create space for pointer-based array
30
31 for (int i = 0; i < size; ++i)
32 ptr[i] = arrayToCopy.ptr[i]; // copy into object
33 } // end Array copy constructor
34
35 // destructor for class Array
36 Array::~Array()
37 {
38 delete [] ptr; // release pointer-based array space
39 } // end destructor
40
41 // return number of elements of Array
42 int Array::getSize() const
43 {
44 return size; // number of elements in Array
45 } // end function getSize
46
47 // overloaded assignment operator;
48
49 const Array &Array::operator=(const Array &right)
50 {
51 if (&right != this)
52 {
53 // for Arrays of different sizes, deallocate original
54 // left-side array, then allocate new left-side array
55 if (size != right.size)
56 {
57 delete [] ptr; // release space
58 size = right.size; // resize this object

Fig. 11.11 | Array class member- and friend-function definitions. (Part 2 of 4.)

// must receive a reference to prevent infinite recursion

// const return avoids: (a1 = a2) = a3

// avoid self-assignment

478 Chapter 11 Operator Overloading; Class string

59 ptr = new int[size]; // create space for array copy
60 } // end inner if
61
62 for (int i = 0; i < size; ++i)
63 ptr[i] = right.ptr[i]; // copy array into object
64 } // end outer if
65
66 return *this; // enables x = y = z, for example
67 } // end function operator=
68
69 // determine if two Arrays are equal and
70 // return true, otherwise return false
71 bool Array::operator==(const Array &right) const
72 {
73 if (size != right.size)
74 return false; // arrays of different number of elements
75
76 for (int i = 0; i < size; ++i)
77 if (ptr[i] != right.ptr[i])
78 return false; // Array contents are not equal
79
80 return true; // Arrays are equal
81 } // end function operator==
82
83 // overloaded subscript operator for non-const Arrays;
84 // reference return creates a modifiable lvalue
85 int &Array::operator[](int subscript)
86 {
87 // check for subscript out-of-range error
88 if (subscript < 0 || subscript >= size)
89 throw out_of_range("Subscript out of range");
90
91 return ptr[subscript]; // reference return
92 } // end function operator[]
93
94 // overloaded subscript operator for const Arrays
95 // const reference return creates an rvalue
96 int Array::operator[](int subscript) const
97 {
98 // check for subscript out-of-range error
99 if (subscript < 0 || subscript >= size)
100 throw out_of_range("Subscript out of range");
101
102 return ptr[subscript]; // returns copy of this element
103 } // end function operator[]
104
105 // overloaded input operator for class Array;
106 // inputs values for entire Array
107 istream &operator>>(istream &input, Array &a)
108 {
109 for (int i = 0; i < a.size; ++i)
110 input >> a.ptr[i];
111

Fig. 11.11 | Array class member- and friend-function definitions. (Part 3 of 4.)

11.10 Case Study: Array Class 479

Overloading the Stream Insertion and Stream Extraction Operators as friends
Lines 11–12 of Fig. 11.10 declare the overloaded stream insertion operator and the overload-
ed stream extraction operator as friends of class Array. When the compiler sees an expres-
sion like cout << arrayObject, it invokes non-member function operator<< with the call

When the compiler sees an expression like cin >> arrayObject, it invokes non-member
function operator>> with the call

Again, these stream insertion and stream extraction operator functions cannot be members
of class Array, because the Array object is always mentioned on the right side of the stream
insertion or stream extraction operator.

Function operator<< (defined in Fig. 11.11, lines 116–133) prints the number of
elements indicated by size from the integer array to which ptr points. Function oper-

ator>> (defined in Fig. 11.11, lines 107–113) inputs directly into the array to which ptr

points. Each of these operator functions returns an appropriate reference to enable cas-
caded output or input statements, respectively. These functions have access to an Array’s
private data because they’re declared as friends of class Array. We could have used class
Array’s getSize and operator[] functions in the bodies of operator<< and operator>>,
in which case these operator functions would not need to be friends of class Array. How-
ever, the additional function calls might degrade performance.

Array Default Constructor
Line 14 of Fig. 11.10 declares the default constructor for the class and specifies a default size
of 10 elements. When the compiler sees a declaration like line 10 in Fig. 11.9, it invokes

112 return input; // enables cin >> x >> y;
113 } // end function
114
115 // overloaded output operator for class Array
116 ostream &operator<<(ostream &output, const Array &a)
117 {
118 int i;
119
120 // output private ptr-based array
121 for (i = 0; i < a.size; ++i)
122 {
123 output << setw(12) << a.ptr[i];
124
125 if ((i + 1) % 4 == 0) // 4 numbers per row of output
126 output << endl;
127 } // end for
128
129 if (i % 4 != 0) // end last line of output
130 output << endl;
131
132 return output; // enables cout << x << y;
133 } // end function operator<<

operator<<(cout, arrayObject)

operator>>(cin, arrayObject)

Fig. 11.11 | Array class member- and friend-function definitions. (Part 4 of 4.)

480 Chapter 11 Operator Overloading; Class string

class Array’s default constructor to set the size of the Array to 10 elements. The default
constructor (defined in Fig. 11.11, lines 10–22) validates and assigns the argument to data
member size, uses new to obtain the memory for the internal pointer-based representation
of this array and assigns the pointer returned by new to data member ptr. Then the con-
structor uses a for statement to set all the elements of the array to zero. It’s possible to have
an Array class that does not initialize its members if, for example, these members are to be
read at some later time; but this is considered to be a poor programming practice. Arrays,
and objects in general, should be properly initialized as they’re created.

Array Copy Constructor
Line 15 of Fig. 11.10 declares a copy constructor (defined in Fig. 11.11, lines 26–33) that
initializes an Array by making a copy of an existing Array object. Such copying must be done
carefully to avoid the pitfall of leaving both Array objects pointing to the same dynamically al-
located memory. This is exactly the problem that would occur with default memberwise
copying, if the compiler is allowed to define a default copy constructor for this class. Copy
constructors are invoked whenever a copy of an object is needed, such as in

• passing an object by value to a function,

• returning an object by value from a function or

• initializing an object with a copy of another object of the same class.

The copy constructor is called in a declaration when an object of class Array is instantiated
and initialized with another object of class Array, as in the declaration in line 38 of
Fig. 11.9.

The copy constructor for Array uses a member initializer (Fig. 11.11, line 27) to copy
the size of the initializer Array into data member size, uses new (line 29) to obtain the
memory for the internal pointer-based representation of this Array and assigns the pointer
returned by new to data member ptr.1 Then the copy constructor uses a for statement to
copy all the elements of the initializer Array into the new Array object. An object of a class
can look at the private data of any other object of that class (using a handle that indicates
which object to access).

1. Operator new could fail to obtain the needed memory, in which case a bad_alloc exception will oc-
cur. We deal with new failures in Chapter 16.

Software Engineering Observation 11.2
The argument to a copy constructor should be a const reference to allow a const object
to be copied.

Common Programming Error 11.3
A copy constructor must receive its argument by reference, not by value. Otherwise, the
copy constructor call results in infinite recursion (a fatal logic error) because receiving an
object by value requires the copy constructor to make a copy of the argument object. Recall
that any time a copy of an object is required, the class’s copy constructor is called. If the
copy constructor received its argument by value, the copy constructor would call itself re-
cursively to make a copy of its argument!

11.10 Case Study: Array Class 481

Array Destructor
Line 16 of Fig. 11.10 declares the class’s destructor (defined in Fig. 11.11, lines 36–39).
The destructor is invoked when an object of class Array goes out of scope. The destructor
uses delete [] to release the memory allocated dynamically by new in the constructor.

getSize Member Function
Line 17 of Fig. 11.10 declares function getSize (defined in Fig. 11.11, lines 42–45) that
returns the number of elements in the Array.

Overloaded Assignment Operator
Line 19 of Fig. 11.10 declares the overloaded assignment operator function for the class.
When the compiler sees the expression integers1 = integers2 in line 46 of Fig. 11.9, the
compiler invokes member function operator= with the call

Member function operator=’s implementation (Fig. 11.11, lines 49–67) tests for self-as-
signment (line 51) in which an Array object is being assigned to itself. When this is equal
to the right operand’s address, a self-assignment is being attempted, so the assignment is
skipped (i.e., the object already is itself; in a moment we’ll see why self-assignment is dan-
gerous). If it isn’t a self-assignment, then the function determines whether the sizes of the
two arrays are identical (line 55); in that case, the original array of integers in the left-side
Array object is not reallocated. Otherwise, operator= uses delete (line 57) to release the
memory originally allocated to the target array, copies the size of the source array to the
size of the target array (line 58), uses new to allocate the memory for the target array and
places the pointer returned by new into the array’s ptr member. Then the for statement
in lines 62–63 copies the array elements from the source array to the target array. Regard-
less of whether this is a self-assignment, the member function returns the current object
(i.e., *this in line 66) as a constant reference; this enables cascaded Array assignments
such as x = y = z, but prevents ones like (x = y) = z because z cannot be assigned to the
const Array reference that’s returned by (x = y). If self-assignment occurs, and function
operator= did not test for this case, operator= would unnecessarily copy the elements of
the Array into itself.

Common Programming Error 11.4
If the copy constructor simply copied the pointer in the source object to the target object’s
pointer, then both would point to the same dynamically allocated memory. The first destruc-
tor to execute would delete the dynamically allocated memory, and the other object’s ptr
would be undefined, a situation called a dangling pointer—this would likely result in a
serious runtime error (such as early program termination) when the pointer was used.

Error-Prevention Tip 11.2
If after deleting dynamically allocated memory, the pointer will continue to exist in mem-
ory, set the pointer’s value to 0 to indicate that the pointer no longer points to memory in
the free store. By setting the pointer to 0, the program loses access to that free-store space,
which could be reallocated for a different purpose. If you do not set the pointer to 0, your
code could inadvertently access the reallocated memory, causing subtle, nonrepeat-
able logic errors.

integers1.operator=(integers2)

482 Chapter 11 Operator Overloading; Class string

Overloaded Equality and Inequality Operators
Line 20 of Fig. 11.10 declares the overloaded equality operator (==) for the class. When
the compiler sees the expression integers1 == integers2 in line 54 of Fig. 11.9, the com-
piler invokes member function operator== with the call

Member function operator== (defined in Fig. 11.11, lines 71–81) immediately returns
false if the size members of the arrays are not equal. Otherwise, operator== compares
each pair of elements. If they’re all equal, the function returns true. The first pair of ele-
ments to differ causes the function to return false immediately.

Lines 23–26 of the header define the overloaded inequality operator (!=) for the class.
Member function operator!= uses the overloaded operator== function to determine
whether one Array is equal to another, then returns the opposite of that result. Writing
operator!= in this manner enables you to reuse operator==, which reduces the amount of
code that must be written in the class. Also, the full function definition for operator!= is in
the Array header. This allows the compiler to inline the definition of operator!= to elim-
inate the overhead of the extra function call.

Overloaded Subscript Operators
Lines 29 and 32 of Fig. 11.10 declare two overloaded subscript operators (defined in
Fig. 11.11 in lines 85–92 and 95–103, respectively). When the compiler sees the expres-
sion integers1[5] (Fig. 11.9, line 58), it invokes the appropriate overloaded operator[]

member function by generating the call

The compiler creates a call to the const version of operator[] (Fig. 11.11, lines 95–103)
when the subscript operator is used on a const Array object. For example, if const object
z is instantiated with the statement

Software Engineering Observation 11.3
A copy constructor, a destructor and an overloaded assignment operator are usually
provided as a group for any class that uses dynamically allocated memory.

Common Programming Error 11.5
Not providing an overloaded assignment operator and a copy constructor for a class when
objects of that class contain pointers to dynamically allocated memory is a logic error.

Software Engineering Observation 11.4
It’s possible to prevent one object of a class from being assigned to another. This is done by
declaring the assignment operator as a private member of the class.

Software Engineering Observation 11.5
It’s possible to prevent class objects from being copied; to do this, simply make both the
overloaded assignment operator and the copy constructor of that class private.

integers1.operator==(integers2)

integers1.operator[](5)

const Array z(5);

11.11 Operators as Member Functions vs. Non-Member Functions 483

then the const version of operator[] is required to execute a statement such as

Remember, a program can invoke only the const member functions of a const object.
Each definition of operator[] determines whether the subscript it receives as an argu-

ment is in range and—if not, each throws an out_of_range exception. If the subscript is
in range, the non-const version of operator[] returns the appropriate array element as a
reference so that it may be used as a modifiable lvalue (e.g., on the left side of an assign-
ment statement). If the subscript is in range, the const version of operator[] returns a
copy of the appropriate element of the array. The returned character is an rvalue.

11.11 Operators as Member Functions vs. Non-Member
Functions
Whether an operator function is implemented as a member function or as a non-member
function, the operator is still used the same way in expressions. So which is best?

When an operator function is implemented as a member function, the leftmost (or
only) operand must be an object (or a reference to an object) of the operator’s class. If the
left operand must be an object of a different class or a fundamental type, this operator func-
tion must be implemented as a non-member function (as we did in Section 11.5 when
overloading << and >> as the stream insertion and stream extraction operators, respec-
tively). A non-member operator function can be made a friend of a class if that function
must access private or protected members of that class directly.

Operator member functions of a specific class are called (implicitly by the compiler)
only when the left operand of a binary operator is specifically an object of that class, or
when the single operand of a unary operator is an object of that class.

Commutative Operators
Another reason why you might choose a non-member function to overload an operator is to
enable the operator to be commutative. For example, suppose we have a fundamental type
variable, number, of type long int, and an object bigInteger1, of class HugeInteger (a class
in which integers may be arbitrarily large rather than being limited by the machine word size
of the underlying hardware; class HugeInteger is developed in the chapter exercises). The
addition operator (+) produces a temporary HugeInteger object as the sum of a HugeInteger
and a long int (as in the expression bigInteger1 + number), or as the sum of a long int and
a HugeInteger (as in the expression number + bigInteger1). Thus, we require the addition
operator to be commutative (exactly as it is with two fundamental-type operands). The prob-
lem is that the class object must appear on the left of the addition operator if that operator is
to be overloaded as a member function. So, we also overload the operator as a non-member
function to allow the HugeInteger to appear on the right of the addition. The operator+

function that deals with the HugeInteger on the left can still be a member function. The
non-member function can simply swap its arguments and call the member function.

11.12 Converting between Types
Most programs process information of many types. Sometimes all the operations “stay
within a type.” For example, adding an int to an int produces an int. It’s often necessary,

cout << z[3] << endl;

484 Chapter 11 Operator Overloading; Class string

however, to convert data of one type to data of another type. This can happen in assign-
ments, in calculations, in passing values to functions and in returning values from func-
tions. The compiler knows how to perform certain conversions among fundamental types.
You can use cast operators to force conversions among fundamental types.

But what about user-defined types? The compiler cannot know in advance how to
convert among user-defined types, and between user-defined types and fundamental
types, so you must specify how to do this. Such conversions can be performed with con-
version constructors—single-argument constructors that turn objects of other types
(including fundamental types) into objects of a particular class.

A conversion operator (also called a cast operator) can be used to convert an object of
one class into an object of another class or into an object of a fundamental type. Such a
conversion operator must be a non-static member function. The function prototype

declares an overloaded cast operator function for converting an object of user-defined type
A into a temporary char * object. The operator function is declared const because it does
not modify the original object. An overloaded cast operator function does not specify a
return type—the return type is the type to which the object is being converted. If s is a
class object, when the compiler sees the expression static_cast< char * >(s), the com-
piler generates the call

The operand s is the class object s for which the member function operator char * is be-
ing invoked.

Overloaded cast operator functions can be defined to convert objects of user-defined
types into fundamental types or into objects of other user-defined types. The prototypes

declare overloaded cast operator functions that can convert an object of user-defined type A

into an integer or into an object of user-defined type OtherClass, respectively.
One of the nice features of cast operators and conversion constructors is that, when

necessary, the compiler can call these functions implicitly to create temporary objects. For
example, if an object s of a user-defined String class appears in a program at a location
where an ordinary char * is expected, such as

the compiler can call the overloaded cast-operator function operator char * to convert
the object into a char * and use the resulting char * in the expression. With this cast op-
erator provided for a String class, the stream insertion operator does not have to be over-
loaded to output a String using cout.

A::operator char *() const;

s.operator char *()

A::operator int() const;
A::operator OtherClass() const;

cout << s;

Software Engineering Observation 11.6
When a conversion constructor is used to perform an implicit conversion, C++ can apply
only one implicit constructor call (i.e., a single user-defined conversion) to try to match
the needs of another overloaded operator. The compiler will not satisfy an overloaded
operator’s needs by performing a series of implicit, user-defined conversions.

11.13 explicit Constructors 485

11.13 explicit Constructors
Any single-argument constructor—except a copy constructor—can be used by the com-
piler to perform an implicit conversion. The constructor’s argument is converted to an ob-
ject of the class in which the constructor is defined. The conversion is automatic and you
need not use a cast operator. In some situations, implicit conversions are undesirable or error-
prone. For example, our Array class in Fig. 11.10 defines a constructor that takes a single
int argument. The intent of this constructor is to create an Array object containing the
number of elements specified by the int argument. However, this constructor can be mis-
used by the compiler to perform an implicit conversion.

Accidentally Using a Single-Argument Constructor as a Conversion Constructor
The program (Fig. 11.12) uses the Array class of Figs. 11.10–11.11 to demonstrate an im-
proper implicit conversion.

Common Programming Error 11.6
Unfortunately, the compiler might use implicit conversions in cases that you do not expect,
resulting in ambiguous expressions that generate compilation errors or result in execution-
time logic errors.

1 // Fig. 11.12: Fig11_12.cpp
2 // Driver for simple class Array.
3 #include <iostream>
4 #include "Array.h"
5 using namespace std;
6
7 void outputArray(const Array &); // prototype
8
9 int main()

10 {
11 Array integers1(7); // 7-element array
12 outputArray(integers1); // output Array integers1
13
14 } // end main
15
16 // print Array contents
17 void outputArray(const Array &arrayToOutput)
18 {
19 cout << "The Array received has " << arrayToOutput.getSize()
20 << " elements. The contents are:\n" << arrayToOutput << endl;
21 } // end outputArray

The Array received has 7 elements. The contents are:
0 0 0 0
0 0 0

The Array received has 3 elements. The contents are:
0 0 0

Fig. 11.12 | Single-argument constructors and implicit conversions.

outputArray(3); // convert 3 to an Array and output Array’s contents

486 Chapter 11 Operator Overloading; Class string

Line 11 in main instantiates Array object integers1 and calls the single argument
constructor with the int value 7 to specify the number of elements in the Array. Recall
from Fig. 11.11 that the Array constructor that receives an int argument initializes all the
array elements to 0. Line 12 calls function outputArray (defined in lines 17–21), which
receives as its argument a const Array & to an Array. The function outputs the number
of elements in its Array argument and the contents of the Array. In this case, the size of
the Array is 7, so seven 0s are output.

Line 13 calls function outputArray with the int value 3 as an argument. However,
this program does not contain a function called outputArray that takes an int argument.
So, the compiler determines whether class Array provides a conversion constructor that can
convert an int into an Array. Since the Array constructor receives one int argument, the
compiler assumes that the constructor is a conversion constructor that can be used to con-
vert the argument 3 into a temporary Array object containing three elements. Then, the
compiler passes the temporary Array object to function outputArray to output the
Array’s contents. Thus, even though we do not explicitly provide an outputArray func-
tion that receives an int argument, the compiler is able to compile line 13. The output
shows the contents of the three-element Array containing 0s.

Preventing Implicit Conversions with Single-Argument Constructors
C++ provides the keyword explicit to suppress implicit conversions via conversion construc-
tors when such conversions should not be allowed. A constructor that’s declared explicit

cannot be used in an implicit conversion. In the example of Figure 11.13, the only modi-
fication to Array.h from Fig. 11.10 was the addition of the keyword explicit to the dec-
laration of the single-argument constructor in line 14, as in

No modifications are required to the source-code file containing class Array’s member-
function definitions.

Figure 11.13 presents a slightly modified version of the program in Fig. 11.12. When
this program is compiled, the compiler produces an error message indicating that the
integer value passed to outputArray in line 13 cannot be converted to a const Array &.
The compiler error message (from Visual C++) is shown in the output window. Line 14
demonstrates how the explicit constructor can be used to create a temporary Array of 3
elements and pass it to function outputArray.

explicit Array(int = 10); // default constructor

Error-Prevention Tip 11.3
Use the explicit keyword on single-argument constructors that should not be used by the
compiler to perform implicit conversions.

1 // Fig. 11.13: Fig11_13.cpp
2 // Driver for simple class Array.
3 #include <iostream>
4 #include "Array.h"
5 using namespace std;
6

Fig. 11.13 | Demonstrating an explicit constructor. (Part 1 of 2.)

11.14 Building a String Class 487

11.14 Building a String Class
In Section 8.10, we introduced C-style, pointer-based string processing with character ar-
rays. Our discussion of char * strings continues in Section 21.10. As part of our coverage
of crafting valuable classes, we implement our own String class that encapsulates a
dynamically allocated char * string and provides many capabilities that are similar to those
we introduced in the Array class. To implement this class, we use several of the capabilities
introduced in Sections 8.10 and 21.10. Because classes Array and String are so similar, we
placed our String class’s code and discussion online at www.deitel.com/books/cpphtp8/
under Downloads and Resources for Registered Users. The C++ standard library includes
the similar, more robust class string, which we demonstrated in Section 11.2 and study in
detail in Chapter 18. In this section, we discuss one key feature of our String class.

Overloaded Function Call Operator
Overloading the function call operator () is powerful, because functions can take an ar-
bitrary number of parameters. In our String class, we overload this operator to select a
substring from a String. The operator’s two integer parameters specify the start location
and the length of the substring to be selected. If the start location is out of range or the
substring length is negative, the operator simply returns an empty String. If the substring
length is 0, then the substring is selected to the end of the String object. Suppose string1
is a String object containing the string "AEIOU". When the compiler encounters the ex-
pression string1(2, 2), it generates the member-function call

which returns a String containing "IO".

7 void outputArray(const Array &); // prototype
8
9 int main()

10 {
11 Array integers1(7); // 7-element array
12 outputArray(integers1); // output Array integers1
13
14 outputArray(Array(3)); // explicit single-argument constructor call
15 } // end main
16
17 // print array contents
18 void outputArray(const Array &arrayToOutput)
19 {
20 cout << "The Array received has " << arrayToOutput.getSize()
21 << " elements. The contents are:\n" << arrayToOutput << endl;
22 } // end outputArray

c:\cpphtp8_examples\ch11\fig11_13\fig11_13.cpp(13) : error C2664:
'outputArray' : cannot convert parameter 1 from 'int' to 'const Array &'

Reason: cannot convert from 'int' to 'const Array'
Constructor for class 'Array' is declared 'explicit'

string1.operator()(2, 2)

Fig. 11.13 | Demonstrating an explicit constructor. (Part 2 of 2.)

outputArray(3); // convert 3 to an Array and output Array’s contents

www.deitel.com/books/cpphtp8/

488 Chapter 11 Operator Overloading; Class string

11.15 Wrap-Up
In this chapter, you learned how to overload operators to work with class objects. We dem-
onstrated standard C++ class string, which makes extensive use of overloaded operators
to create a robust, reusable class that can replace C-style, pointer-based strings. Next, we
discussed several restrictions that the C++ standard places on overloaded operators. We
then presented a PhoneNumber class that overloaded operators << and >> to conveniently
output and input phone numbers. You also saw a Date class that overloaded the prefix and
postfix increment (++) operators and we showed a special syntax that’s required to differ-
entiate between the prefix and postfix versions of the increment (++) operator.

Next, we introduced the concept of dynamic memory management. You learned that
you can create and destroy objects dynamically with the new and delete operators, respec-
tively. Then, we presented a capstone Array class case study that used overloaded operators
and other capabilities to solve various problems with pointer-based arrays. This case study
helped you truly understand what classes and object technology are all about—crafting,
using and reusing valuable classes. As part of this class, you saw overloaded stream inser-
tion, stream extraction, assignment, equality, relational and subscript operators.

You learned reasons for implementing overloaded operators as member functions or as
non-member functions. The chapter concluded with discussions of converting between
types (incuding class types), problems with certain implicit conversions defined by single-
argument constructors and how to prevent those problems by using explicit constructors.

In the next chapter, we continue our discussion of classes by introducing a form of
software reuse called inheritance. We’ll see that when classes share common attributes and
behaviors, it’s possible to define those attributes and behaviors in a common “base” class
and “inherit” those capabilities into new class definitions, enabling you to create the new
classes with a minimal amount of code.

Summary
Section 11.1 Introduction
• C++ enables you to overload most operators to be sensitive to the context in which they’re used—

the compiler generates the appropriate code based on the types of the operands.

• One example of an overloaded operator built into C++ is operator <<, which is used both as the
stream insertion operator and as the bitwise left-shift operator. Similarly, >> is also overloaded;
it’s used both as the stream extraction operator and as the bitwise right-shift operator. Both of
these operators are overloaded in the C++ Standard Library.

• C++ overloads + and - to perform differently, depending on their context in integer arithmetic,
floating-point arithmetic and pointer arithmetic.

• The jobs performed by overloaded operators can also be performed by explicit function calls, but
operator notation is often more natural.

Section 11.2 Using the Overloaded Operators of Standard Library Class string
• Standard class string is defined in header <string> and belongs to namespace std.

• Class string provides many overloaded operators, including equality, relational, assignment, ad-
dition assignment (for concatenation) and subscript operators.

• Class string provides member function empty (p. 455), which returns true if the string is emp-
ty; otherwise, it returns false.

Summary 489

• Standard class string member function substr (p. 455) obtains a substring of a length specified
by the second argument, starting at the position specified by the first argument. When the second
argument is not specified, substr returns the remainder of the string on which it’s called.

• Class string’s overloaded [] operator does not perform any bounds checking. Therefore, you
must ensure that operations using standard class string’s overloaded [] operator do not acciden-
tally manipulate elements outside the bounds of the string.

• Standard class string provides bounds checking with member function at (p. 456), which
“throws an exception” if its argument is an invalid subscript. By default, this causes the program
to terminate. If the subscript is valid, function at returns a reference or a const reference to the
character at the specified location depending on the context.

Section 11.3 Fundamentals of Operator Overloading
• An operator is overloaded by writing a non-static member-function definition or non-member

function definition in which the function name is the keyword operator followed by the symbol
for the operator being overloaded.

• When operators are overloaded as member functions, they must be non-static, because they
must be called on an object of the class and operate on that object.

• To use an operator on class objects, that operator must be overloaded, with three exceptions—
the assignment operator (=), the address operator (&) and the comma operator (,).

• You cannot change the precedence and associativity of an operator by overloading.

• You cannot change the “arity” of an operator (i.e., the number of operands an operator takes).

• You cannot create new operators—only existing operators can be overloaded.

• You cannot change the meaning of how an operator works on objects of fundamental types.

• Overloading an assignment operator and an addition operator for a class does not imply that the
+= operator is also overloaded. Such behavior can be achieved only by explicitly overloading op-
erator += for that class.

• Overloaded (), [], -> and assignment operators must be declared as class members. For the other
operators, the operator overloading functions can be class members or non-member functions.

Section 11.4 Overloading Binary Operators
• A binary operator can be overloaded as a non-static member function with one argument or as

a non-member function with two arguments (one of those arguments must be either a class ob-
ject or a reference to a class object).

Section 11.5 Overloading the Binary Stream Insertion and Stream Extraction Oper-
ators
• The overloaded stream insertion operator (<<) is used in an expression in which the left operand

has type ostream &. For this reason, it must be overloaded as a non-member function. To be a
member function, operator << would have to be a member of the ostream class, but this is not
possible, since we are not allowed to modify C++ Standard Library classes. Similarly, the over-
loaded stream extraction operator (>>) must be a non-member function.

• Another reason to choose a non-member function to overload an operator is to enable the oper-
ator to be commutative.

• When used with cin, setw restricts the number of characters read to the number of characters
specified by its argument.

• istream member function ignore discards the specified number of characters in the input stream
(one character by default).

490 Chapter 11 Operator Overloading; Class string

• Overloaded input and output operators are declared as friends if they need to access non-public
class members directly for performance reasons.

Section 11.6 Overloading Unary Operators
• A unary operator for a class can be overloaded as a non-static member function with no argu-

ments or as a non-member function with one argument; that argument must be either an object
of the class or a reference to an object of the class.

• Member functions that implement overloaded operators must be non-static so that they can
access the non-static data in each object of the class.

Section 11.7 Overloading the Unary Prefix and Postfix ++ and -- Operators
• The prefix and postfix increment and decrement operators can all be overloaded.

• To overload the pre- and post-increment operators, each overloaded operator function must have
a distinct signature. The prefix versions are overloaded like any other unary operator. The postfix
increment operator’s unique signature is accomplished by providing a second argument, which
must be of type int. This argument is not supplied in the client code. It’s used implicitly by the
compiler to distinguish between the prefix and postfix versions of the increment operator. The
same syntax is used to differentiate between the prefix and postfix decrement operator functions.

Section 11.9 Dynamic Memory Management
• Dynamic memory management (p. 469) enables you to control the allocation and deallocation

of memory in a program for any built-in or user-defined type.

• The free store (sometimes called the heap; p. 469) is a region of memory assigned to each pro-
gram for storing objects dynamically allocated at execution time.

• The new operator (p. 469) allocates storage of the proper size for an object, runs the object’s con-
structor and returns a pointer of the correct type. The new operator can be used to dynamically
allocate (p. 469) any fundamental type (such as int or double) or class type. If new is unable to
find space in memory for the object, it indicates that an error occurred by “throwing” an “excep-
tion.” This usually causes the program to terminate immediately, unless the exception is handled.

• To destroy a dynamically allocated object and free its space, use the delete operator (p. 469).

• An array of objects can be allocated dynamically with new as in

int *ptr = new int[100];

which allocates an array of 100 integers and assigns the starting location of the array to ptr. The
preceding array of integers is deleted (p. 469) with the statement

delete [] ptr;

Section 11.10 Case Study: Array Class
• A copy constructor initializes a new object of a class by copying the members of an existing one.

Classes that contain dynamically allocated memory typically provide a copy constructor, a de-
structor and an overloaded assignment operator.

• The implementation of member function operator= should test for self-assignment (p. 481), in
which an object is being assigned to itself.

• The compiler calls the const version of operator[] when the subscript operator is used on a
const object and calls the non-const version of the operator when it’s used on a non-const ob-
ject.

• The array subscript operator ([]) can be used to select elements from other types of containers.
Also, with overloading, the index values no longer need to be integers.

Self-Review Exercises 491

Section 11.11 Operators as Member Functions vs. Non-Member Functions
• Operator functions can be member functions or non-member functions—non-member functions

are often made friends for performance reasons. Member functions use the this pointer implicitly
to obtain one of their class object arguments (the left operand for binary operators). Arguments for
both operands of a binary operator must be explicitly listed in a non-member function call.

• When an operator function is implemented as a member function, the leftmost (or only) operand
must be an object (or a reference to an object) of the operator’s class.

• If the left operand must be an object of a different class or a fundamental type, this operator func-
tion must be implemented as a non-member function.

• A non-member operator function can be made a friend of a class if that function must access
private or protected members of that class directly.

Section 11.12 Converting between Types
• The compiler cannot know in advance how to convert among user-defined types, and between

user-defined types and fundamental types, so you must specify how to do this. Such conversions
can be performed with conversion constructors (p. 484)—single-argument constructors (p. 484)
that turn objects of other types (including fundamental types) into objects of a particular class.

• Any single-argument constructor can be thought of as a conversion constructor.

• A conversion operator (p. 484) must be a non-static member function. Overloaded cast-oper-
ator functions (p. 484) can be defined for converting objects of user-defined types into funda-
mental types or into objects of other user-defined types.

• An overloaded cast operator function does not specify a return type—the return type is the type
to which the object is being converted.

• When necessary, the compiler can call cast operators and conversion constructors implicitly to
create temporary objects.

Section 11.13 explicit Constructors
• C++ provides the keyword explicit (p. 486) to suppress implicit conversions via conversion

constructors when such conversions should not be allowed. A constructor that’s declared explic-

it cannot be used in an implicit conversion.

Section 11.14 Building a String Class
• Overloading the function call operator () (p. 487)is powerful, because functions can take an ar-

bitrary number of parameters.

Self-Review Exercises
11.1 Fill in the blanks in each of the following:

a) Suppose a and b are integer variables and we form the sum a + b. Now suppose c and
d are floating-point variables and we form the sum c + d. The two + operators here are
clearly being used for different purposes. This is an example of .

b) Keyword introduces an overloaded-operator function definition.
c) To use operators on class objects, they must be overloaded, with the exception of oper-

ators , and .
d) The , and of an operator cannot be changed by overload-

ing the operator.
e) The operators that cannot be overloaded are , , and

.
f) The operator reclaims memory previously allocated by new.

492 Chapter 11 Operator Overloading; Class string

g) The operator dynamically allocates memory for an object of a specified type
and returns a(n) to that type.

11.2 Explain the multiple meanings of the operators << and >>.

11.3 In what context might the name operator/ be used?

11.4 (True/False) Only existing operators can be overloaded.

11.5 How does the precedence of an overloaded operator compare with the precedence of the
original operator?

Answers to Self-Review Exercises
11.1 a) operator overloading. b) operator. c) assignment (=), address (&), comma (,).
d) precedence, associativity, “arity.” e) ., ?:, .*, and ::. f) delete. g) new, pointer.

11.2 Operator >> is both the right-shift operator and the stream extraction operator, depending
on its context. Operator << is both the left-shift operator and the stream insertion operator, depend-
ing on its context.

11.3 For operator overloading: It would be the name of a function that would provide an over-
loaded version of the / operator for a specific class.

11.4 True.

11.5 The precedence is identical.

Exercises
11.6 (Memory Allocation and Deallocation Operators) Compare and contrast dynamic memory
allocation and deallocation operators new, new [], delete and delete [].

11.7 (Overloading the Parentheses Operator) One nice example of overloading the function call
operator () is to allow another form of double-array subscripting popular in some programming
languages. Instead of saying

chessBoard[row][column]

for an array of objects, overload the function call operator to allow the alternate form

chessBoard(row, column)

Create a class DoubleSubscriptedArray that has similar features to class Array in Figs. 11.10–
11.11. At construction time, the class should be able to create an array of any number of rows and
any number of columns. The class should supply operator() to perform double-subscripting oper-
ations. For example, in a 3-by-5 DoubleSubscriptedArray called a, the user could write a(1, 3) to
access the element at row 1 and column 3. Remember that operator() can receive any number of
arguments. The underlying representation of the double-subscripted array should be a single-sub-
scripted array of integers with rows * columns number of elements. Function operator() should
perform the proper pointer arithmetic to access each element of the array. There should be two ver-
sions of operator()—one that returns int & (so that an element of a DoubleSubscriptedArray can
be used as an lvalue) and one that returns const int & . The class should also provide the following
operators: ==, !=, =, << (for outputting the array in row and column format) and >> (for inputting
the entire array contents).

11.8 (Complex Class) Consider class Complex shown in Figs. 11.14–11.16. The class enables op-
erations on so-called complex numbers. These are numbers of the form realPart + imaginaryPart

* i, where i has the value

1–

Exercises 493

a) Modify the class to enable input and output of complex numbers via overloaded >> and
<< operators, respectively (you should remove the print function from the class).

b) Overload the multiplication operator to enable multiplication of two complex numbers
as in algebra.

c) Overload the == and != operators to allow comparisons of complex numbers.

1 // Fig. 11.14: Complex.h
2 // Complex class definition.
3 #ifndef COMPLEX_H
4 #define COMPLEX_H
5
6 class Complex
7 {
8 public:
9 Complex(double = 0.0, double = 0.0); // constructor

10 Complex operator+(const Complex &) const; // addition
11 Complex operator-(const Complex &) const; // subtraction
12 void print() const; // output
13 private:
14 double real; // real part
15 double imaginary; // imaginary part
16 }; // end class Complex
17
18 #endif

Fig. 11.14 | Complex class definition.

1 // Fig. 11.15: Complex.cpp
2 // Complex class member-function definitions.
3 #include <iostream>
4 #include "Complex.h" // Complex class definition
5 using namespace std;
6
7 // Constructor
8 Complex::Complex(double realPart, double imaginaryPart)
9 : real(realPart),

10 imaginary(imaginaryPart)
11 {
12 // empty body
13 } // end Complex constructor
14
15 // addition operator
16 Complex Complex::operator+(const Complex &operand2) const
17 {
18 return Complex(real + operand2.real,
19 imaginary + operand2.imaginary);
20 } // end function operator+
21
22 // subtraction operator
23 Complex Complex::operator-(const Complex &operand2) const
24 {
25 return Complex(real - operand2.real,
26 imaginary - operand2.imaginary);
27 } // end function operator-
28

Fig. 11.15 | Complex class member-function definitions. (Part 1 of 2.)

494 Chapter 11 Operator Overloading; Class string

11.9 (HugeInt Class) A machine with 32-bit integers can represent integers in the range of ap-
proximately –2 billion to +2 billion. This fixed-size restriction is rarely troublesome, but there are
applications in which we would like to be able to use a much wider range of integers. This is what

29 // display a Complex object in the form: (a, b)
30 void Complex::print() const
31 {
32 cout << '(' << real << ", " << imaginary << ')';
33 } // end function print

1 // Fig. 11.16: fig11_16.cpp
2 // Complex class test program.
3 #include <iostream>
4 #include "Complex.h"
5 using namespace std;
6
7 int main()
8 {
9 Complex x;

10 Complex y(4.3, 8.2);
11 Complex z(3.3, 1.1);
12
13 cout << "x: ";
14 x.print();
15 cout << "\ny: ";
16 y.print();
17 cout << "\nz: ";
18 z.print();
19
20 x = y + z;
21 cout << "\n\nx = y + z:" << endl;
22 x.print();
23 cout << " = ";
24 y.print();
25 cout << " + ";
26 z.print();
27
28 x = y - z;
29 cout << "\n\nx = y - z:" << endl;
30 x.print();
31 cout << " = ";
32 y.print();
33 cout << " - ";
34 z.print();
35 cout << endl;
36 } // end main

x: (0, 0)
y: (4.3, 8.2)
z: (3.3, 1.1)

x = y + z:
(7.6, 9.3) = (4.3, 8.2) + (3.3, 1.1)

x = y - z:
(1, 7.1) = (4.3, 8.2) - (3.3, 1.1)

Fig. 11.16 | Complex class test program.

Fig. 11.15 | Complex class member-function definitions. (Part 2 of 2.)

Exercises 495

C++ was built to do, namely, create powerful new data types. Consider class HugeInt of Figs. 11.17–
11.19. Study the class carefully, then answer the following:

a) Describe precisely how it operates.
b) What restrictions does the class have?
c) Overload the * multiplication operator.
d) Overload the / division operator.
e) Overload all the relational and equality operators.

[Note: We do not show an assignment operator or copy constructor for class HugeInteger, because
the assignment operator and copy constructor provided by the compiler are capable of copying the
entire array data member properly.]

1 // Fig. 11.17: Hugeint.h
2 // HugeInt class definition.
3 #ifndef HUGEINT_H
4 #define HUGEINT_H
5
6 #include <iostream>
7 #include <string>
8 using namespace std;
9

10 class HugeInt
11 {
12 friend ostream &operator<<(ostream &, const HugeInt &);
13 public:
14 static const int digits = 30; // maximum digits in a HugeInt
15
16 HugeInt(long = 0); // conversion/default constructor
17 HugeInt(const string &); // conversion constructor
18
19 // addition operator; HugeInt + HugeInt
20 HugeInt operator+(const HugeInt &) const;
21
22 // addition operator; HugeInt + int
23 HugeInt operator+(int) const;
24
25 // addition operator;
26 // HugeInt + string that represents large integer value
27 HugeInt operator+(const string &) const;
28 private:
29 short integer[digits];
30 }; // end class HugetInt
31
32 #endif

Fig. 11.17 | HugeInt class definition.

1 // Fig. 11.18: Hugeint.cpp
2 // HugeInt member-function and friend-function definitions.
3 #include <cctype> // isdigit function prototype
4 #include "Hugeint.h" // HugeInt class definition
5 using namespace std;
6
7 // default constructor; conversion constructor that converts
8 // a long integer into a HugeInt object
9 HugeInt::HugeInt(long value)

10 {

Fig. 11.18 | HugeInt member-function and friend-function definitions. (Part 1 of 3.)

496 Chapter 11 Operator Overloading; Class string

11 // initialize array to zero
12 for (int i = 0; i < digits; ++i)
13 integer[i] = 0;
14
15 // place digits of argument into array
16 for (int j = digits - 1; value != 0 && j >= 0; j--)
17 {
18 integer[j] = value % 10;
19 value /= 10;
20 } // end for
21 } // end HugeInt default/conversion constructor
22
23 // conversion constructor that converts a character string
24 // representing a large integer into a HugeInt object
25 HugeInt::HugeInt(const string &number)
26 {
27 // initialize array to zero
28 for (int i = 0; i < digits; ++i)
29 integer[i] = 0;
30
31 // place digits of argument into array
32 int length = number.size();
33
34 for (int j = digits - length, k = 0; j < digits; ++j, ++k)
35 if (isdigit(number[k])) // ensure that character is a digit
36 integer[j] = number[k] - '0';
37 } // end HugeInt conversion constructor
38
39 // addition operator; HugeInt + HugeInt
40 HugeInt HugeInt::operator+(const HugeInt &op2) const
41 {
42 HugeInt temp; // temporary result
43 int carry = 0;
44
45 for (int i = digits - 1; i >= 0; i--)
46 {
47 temp.integer[i] = integer[i] + op2.integer[i] + carry;
48
49 // determine whether to carry a 1
50 if (temp.integer[i] > 9)
51 {
52 temp.integer[i] %= 10; // reduce to 0-9
53 carry = 1;
54 } // end if
55 else // no carry
56 carry = 0;
57 } // end for
58
59 return temp; // return copy of temporary object
60 } // end function operator+
61
62 // addition operator; HugeInt + int
63 HugeInt HugeInt::operator+(int op2) const
64 {
65 // convert op2 to a HugeInt, then invoke
66 // operator+ for two HugeInt objects
67 return *this + HugeInt(op2);
68 } // end function operator+
69

Fig. 11.18 | HugeInt member-function and friend-function definitions. (Part 2 of 3.)

Exercises 497

70 // addition operator;
71 // HugeInt + string that represents large integer value
72 HugeInt HugeInt::operator+(const string &op2) const
73 {
74 // convert op2 to a HugeInt, then invoke
75 // operator+ for two HugeInt objects
76 return *this + HugeInt(op2);
77 } // end operator+
78
79 // overloaded output operator
80 ostream& operator<<(ostream &output, const HugeInt &num)
81 {
82 int i;
83
84 for (i = 0; (num.integer[i] == 0) && (i <= HugeInt::digits); ++i)
85 ; // skip leading zeros
86
87 if (i == HugeInt::digits)
88 output << 0;
89 else
90 for (; i < HugeInt::digits; ++i)
91 output << num.integer[i];
92
93 return output;
94 } // end function operator<<

1 // Fig. 11.19: fig11_19.cpp
2 // HugeInt test program.
3 #include <iostream>
4 #include "Hugeint.h"
5 using namespace std;
6
7 int main()
8 {
9 HugeInt n1(7654321);

10 HugeInt n2(7891234);
11 HugeInt n3("99999999999999999999999999999");
12 HugeInt n4("1");
13 HugeInt n5;
14
15 cout << "n1 is " << n1 << "\nn2 is " << n2
16 << "\nn3 is " << n3 << "\nn4 is " << n4
17 << "\nn5 is " << n5 << "\n\n";
18
19 n5 = n1 + n2;
20 cout << n1 << " + " << n2 << " = " << n5 << "\n\n";
21
22 cout << n3 << " + " << n4 << "\n= " << (n3 + n4) << "\n\n";
23
24 n5 = n1 + 9;
25 cout << n1 << " + " << 9 << " = " << n5 << "\n\n";
26
27 n5 = n2 + "10000";
28 cout << n2 << " + " << "10000" << " = " << n5 << endl;
29 } // end main

Fig. 11.19 | HugeInt test program. (Part 1 of 2.)

Fig. 11.18 | HugeInt member-function and friend-function definitions. (Part 3 of 3.)

498 Chapter 11 Operator Overloading; Class string

11.10 (RationalNumber Class) Create a class RationalNumber (fractions) with the following capa-
bilities:

a) Create a constructor that prevents a 0 denominator in a fraction, reduces or simplifies
fractions that are not in reduced form and avoids negative denominators.

b) Overload the addition, subtraction, multiplication and division operators for this class.
c) Overload the relational and equality operators for this class.

11.11 (Polynomial Class) Develop class Polynomial. The internal representation of a Polynomial

is an array of terms. Each term contains a coefficient and an exponent, e.g., the term

2x4

has the coefficient 2 and the exponent 4. Develop a complete class containing proper constructor
and destructor functions as well as set and get functions. The class should also provide the following
overloaded operator capabilities:

a) Overload the addition operator (+) to add two Polynomials.
b) Overload the subtraction operator (-) to subtract two Polynomials.
c) Overload the assignment operator to assign one Polynomial to another.
d) Overload the multiplication operator (*) to multiply two Polynomials.
e) Overload the addition assignment operator (+=), subtraction assignment operator (-=),

and multiplication assignment operator (*=).

n1 is 7654321
n2 is 7891234
n3 is 99999999999999999999999999999
n4 is 1
n5 is 0

7654321 + 7891234 = 15545555

99999999999999999999999999999 + 1
= 100000000000000000000000000000

7654321 + 9 = 7654330

7891234 + 10000 = 7901234

Fig. 11.19 | HugeInt test program. (Part 2 of 2.)

12Object-Oriented
Programming: Inheritance

Say not you know another
entirely, till you have divided an
inheritance with him.
—Johann Kasper Lavater

This method is to define as the
number of a class the class of all
classes similar to the given class.
—Bertrand Russell

Good as it is to inherit a library,
it is better to collect one.
—Augustine Birrell

Save base authority from others’
books.
—William Shakespeare

O b j e c t i v e s
In this chapter you’ll learn:

■ What inheritance is and how
it promotes software reuse.

■ The notions of base classes
and derived classes and the
relationships between them.

■ The protected member
access specifier.

■ The use of constructors and
destructors in inheritance
hierarchies.

■ The order in which
constructors and destructors
are called in inheritance
hierarchies.

■ The differences between
public, protected and
private inheritance.

■ To use inheritance to
customize existing software.

500 Chapter 12 Object-Oriented Programming: Inheritance

12.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing inheritance—a form of software reuse in which you create a class that absorbs an
existing class’s capabilities, then customizes or enhances them. Software reuse saves time
during program development by taking advantage of proven, high-quality software.

When creating a class, instead of writing completely new data members and member
functions, you can specify that the new class should inherit the members of an existing
class. This existing class is called the base class, and the new class is called the derived class.
Other programming languages, such as Java and C#, refer to the base class as the super-
class and the derived class as the subclass. A derived class represents a more specialized
group of objects.

C++ offers public, protected and private inheritance. In this chapter, we concen-
trate on public inheritance and briefly explain the other two. With public inheritance,
every object of a derived class is also an object of that derived class’s base class. However, base-
class objects are not objects of their derived classes. For example, if we have Vehicle as a
base class and Car as a derived class, then all Cars are Vehicles, but not all Vehicles are
Cars—for example, a Vehicle could also be a Truck or a Boat.

We distinguish between the is-a relationship and the has-a relationship. The is-a rela-
tionship represents inheritance. In an is-a relationship, an object of a derived class also can
be treated as an object of its base class—for example, a Car is a Vehicle, so any attributes and
behaviors of a Vehicle are also attributes and behaviors of a Car. By contrast, the has-a rela-
tionship represents composition, which was discussed in Chapter 10. In a has-a relationship,
an object contains one or more objects of other classes as members. For example, a Car has
many components—it has a steering wheel, has a brake pedal, has a transmission, etc.

12.2 Base Classes and Derived Classes
Figure 12.1 lists several simple examples of base classes and derived classes. Base classes
tend to be more general and derived classes tend to be more specific.

12.1 Introduction
12.2 Base Classes and Derived Classes
12.3 protected Members
12.4 Relationship between Base Classes

and Derived Classes
12.4.1 Creating and Using a

CommissionEmployee Class
12.4.2 Creating a

BasePlusCommissionEmployee
Class Without Using Inheritance

12.4.3 Creating a
CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy

12.4.4 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
protected Data

12.4.5 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
private Data

12.5 Constructors and Destructors in
Derived Classes

12.6 public, protected and private
Inheritance

12.7 Software Engineering with
Inheritance

12.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

12.2 Base Classes and Derived Classes 501

Because every derived-class object is an object of its base class, and one base class can
have many derived classes, the set of objects represented by a base class typically is larger
than the set of objects represented by any of its derived classes. For example, the base class
Vehicle represents all vehicles, including cars, trucks, boats, airplanes, bicycles and so on.
By contrast, derived class Car represents a smaller, more specific subset of all vehicles.

Inheritance relationships form class hierarchies. A base class exists in a hierarchical
relationship with its derived classes. Although classes can exist independently, once they’re
employed in inheritance relationships, they become affiliated with other classes. A class
becomes either a base class—supplying members to other classes, a derived class—inher-
iting its members from other classes, or both.

CommunityMember Class Hierarchy
Let’s develop a simple inheritance hierarchy with five levels (represented by the UML class
diagram in Fig. 12.2). A university community has thousands of CommunityMembers.

These CommunityMembers consist of Employees, Students and alumni (each of class
Alumnus). Employees are either Faculty or Staff. Faculty are either Administrators or

Base class Derived classes

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan

Employee Faculty, Staff

Account CheckingAccount, SavingsAccount

Fig. 12.1 | Inheritance examples.

Fig. 12.2 | Inheritance hierarchy for university CommunityMembers.

Student

CommunityMember

Administrator

AdministratorTeacher

AlumnusEmployee

StaffFaculty

Teacher

Single
inheritance

Single
inheritance

Single
inheritance

Multiple
inheritance

502 Chapter 12 Object-Oriented Programming: Inheritance

Teachers. Some Administrators, however, are also Teachers. We’ve used multiple inheri-
tance to form class AdministratorTeacher. With single inheritance, a class is derived from
one base class. With multiple inheritance, a derived class inherits from two or more (possibly
unrelated) base classes. We discuss multiple inheritance in Chapter 24, Other Topics.

Each arrow in the hierarchy (Fig. 12.2) represents an is-a relationship. For example,
as we follow the arrows in this class hierarchy, we can state “an Employee is a Community-

Member” and “a Teacher is a Faculty member.” CommunityMember is the direct base class
of Employee, Student and Alumnus. In addition, CommunityMember is an indirect base
class of all the other classes in the diagram. An indirect base class is inherited from two or
more levels up the class hierarchy.

Starting from the bottom of the diagram, you can follow the arrows upwards and apply
the is-a relationship to the topmost base class. For example, an AdministratorTeacher is an
Administrator, is a Faculty member, is an Employee and is a CommunityMember.

Shape Class Hierarchy
Now consider the Shape inheritance hierarchy in Fig. 12.3. This hierarchy begins with
base class Shape. Classes TwoDimensionalShape and ThreeDimensionalShape derive from
base class Shape—a Shape is a TwoDimensionalShape or is a ThreeDimensionalShape.
The third level of this hierarchy contains more specific types of TwoDimensionalShapes and
ThreeDimensionalShapes. As in Fig. 12.2, we can follow the arrows from the bottom of
the diagram upwards to the topmost base class in this hierarchy to identify several is-a re-
lationships. For instance, a Triangle is a TwoDimensionalShape and is a Shape, while a
Sphere is a ThreeDimensionalShape and is a Shape.

To specify that class TwoDimensionalShape (Fig. 12.3) is derived from (or inherits
from) class Shape, class TwoDimensionalShape’s definition could begin as follows:

This is an example of public inheritance, the most commonly used form. We’ll also
discuss private inheritance and protected inheritance (Section 12.6). With all forms of
inheritance, private members of a base class are not accessible directly from that class’s
derived classes, but these private base-class members are still inherited (i.e., they’re still
considered parts of the derived classes). With public inheritance, all other base-class mem-

Fig. 12.3 | Inheritance hierarchy for Shapes.

class TwoDimensionalShape : public Shape

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

12.3 protected Members 503

bers retain their original member access when they become members of the derived class
(e.g., public members of the base class become public members of the derived class, and,
as we’ll soon see, protected members of the base class become protected members of the
derived class). Through these inherited base-class members, the derived class can manipu-
late private members of the base class (if these inherited members provide such function-
ality in the base class). Note that friend functions are not inherited.

Inheritance is not appropriate for every class relationship. In Chapter 10, we discussed
the has-a relationship, in which classes have members that are objects of other classes. Such
relationships create classes by composition of existing classes. For example, given the classes
Employee, BirthDate and TelephoneNumber, it’s improper to say that an Employee is a
BirthDate or that an Employee is a TelephoneNumber. However, it is appropriate to say
that an Employee has a BirthDate and that an Employee has a TelephoneNumber.

It’s possible to treat base-class objects and derived-class objects similarly; their com-
monalities are expressed in the members of the base class. Objects of all classes derived
from a common base class can be treated as objects of that base class (i.e., such objects have
an is-a relationship with the base class). In Chapter 13, we consider many examples that
take advantage of this relationship.

12.3 protected Members
Chapter 3 introduced access specifiers public and private. A base class’s public mem-
bers are accessible within its body and anywhere that the program has a handle (i.e., a
name, reference or pointer) to an object of that class or one of its derived classes. A base
class’s private members are accessible only within its body and to the friends of that base
class. In this section, we introduce the access specifier protected.

Using protected access offers an intermediate level of protection between public and
private access. A base class’s protected members can be accessed within the body of that
base class, by members and friends of that base class, and by members and friends of any
classes derived from that base class.

Derived-class member functions can refer to public and protected members of the
base class simply by using the member names. When a derived-class member function
redefines a base-class member function, the base-class member can still be accessed from
the derived class by preceding the base-class member name with the base-class name and
the scope resolution operator (::). We discuss accessing redefined members of the base
class in Section 12.4.5 and using protected data in Section 12.4.4.

12.4 Relationship between Base Classes and Derived
Classes
In this section, we use an inheritance hierarchy containing types of employees in a com-
pany’s payroll application to discuss the relationship between a base class and a derived
class. Commission employees (who will be represented as objects of a base class) are paid
a percentage of their sales, while base-salaried commission employees (who will be repre-
sented as objects of a derived class) receive a base salary plus a percentage of their sales. We
divide our discussion of the relationship between commission employees and base-salaried
commission employees into a carefully paced series of five examples.

504 Chapter 12 Object-Oriented Programming: Inheritance

12.4.1 Creating and Using a CommissionEmployee Class
Let’s examine CommissionEmployee’s class definition (Figs. 12.4–12.5). The Commission-
Employee header (Fig. 12.4) specifies class CommissionEmployee’s public services, which
include a constructor (lines 12–13) and member functions earnings (line 30) and print

(line 31). Lines 15–28 declare public get and set functions that manipulate the class’s data
members (declared in lines 33–37) firstName, lastName, socialSecurityNumber,
grossSales and commissionRate. Member functions setGrossSales (defined in lines
56–62 of Fig. 12.5) and setCommissionRate (defined in lines 71–77 of Fig. 12.5), for ex-
ample, validate their arguments before assigning the values to data members grossSales
and commissionRate, respectively.

1 // Fig. 12.4: CommissionEmployee.h
2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12
13
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate (percentage)
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31 void print() const; // print CommissionEmployee object
32 private:
33
34
35
36
37
38 }; // end class CommissionEmployee
39
40 #endif

Fig. 12.4 | CommissionEmployee class header.

CommissionEmployee(const string &, const string &, const string &,
double = 0.0, double = 0.0);

string firstName;
string lastName;
string socialSecurityNumber;
double grossSales; // gross weekly sales
double commissionRate; // commission percentage

12.4 Relationship between Base Classes and Derived Classes 505

1 // Fig. 12.5: CommissionEmployee.cpp
2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17
18
19 // set first name
20 void CommissionEmployee::setFirstName(const string &first)
21 {
22 firstName = first; // should validate
23 } // end function setFirstName
24
25 // return first name
26 string CommissionEmployee::getFirstName() const
27 {
28 return firstName;
29 } // end function getFirstName
30
31 // set last name
32 void CommissionEmployee::setLastName(const string &last)
33 {
34 lastName = last; // should validate
35 } // end function setLastName
36
37 // return last name
38 string CommissionEmployee::getLastName() const
39 {
40 return lastName;
41 } // end function getLastName
42
43 // set social security number
44 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
45 {
46 socialSecurityNumber = ssn; // should validate
47 } // end function setSocialSecurityNumber
48
49 // return social security number
50 string CommissionEmployee::getSocialSecurityNumber() const
51 {

Fig. 12.5 | Implementation file for CommissionEmployee class that represents an employee
who is paid a percentage of gross sales. (Part 1 of 2.)

// constructor
CommissionEmployee::CommissionEmployee(

const string &first, const string &last, const string &ssn,
double sales, double rate)

{
firstName = first; // should validate
lastName = last; // should validate
socialSecurityNumber = ssn; // should validate
setGrossSales(sales); // validate and store gross sales
setCommissionRate(rate); // validate and store commission rate

} // end CommissionEmployee constructor

506 Chapter 12 Object-Oriented Programming: Inheritance

CommissionEmployee Constructor
The CommissionEmployee constructor definition purposely does not use member-initial-
izer syntax in the first several examples of this section, so that we can demonstrate how

52 return socialSecurityNumber;
53 } // end function getSocialSecurityNumber
54
55 // set gross sales amount
56 void CommissionEmployee::setGrossSales(double sales)
57 {
58 if (sales >= 0.0)
59 grossSales = sales;
60 else
61 throw invalid_argument("Gross sales must be >= 0.0");
62 } // end function setGrossSales
63
64 // return gross sales amount
65 double CommissionEmployee::getGrossSales() const
66 {
67 return grossSales;
68 } // end function getGrossSales
69
70 // set commission rate
71 void CommissionEmployee::setCommissionRate(double rate)
72 {
73 if (rate > 0.0 && rate < 1.0)
74 commissionRate = rate;
75 else
76 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
77 } // end function setCommissionRate
78
79 // return commission rate
80 double CommissionEmployee::getCommissionRate() const
81 {
82 return commissionRate;
83 } // end function getCommissionRate
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Fig. 12.5 | Implementation file for CommissionEmployee class that represents an employee
who is paid a percentage of gross sales. (Part 2 of 2.)

// calculate earnings
double CommissionEmployee::earnings() const
{

return commissionRate * grossSales;
} // end function earnings

// print CommissionEmployee object
void CommissionEmployee::print() const
{

cout << "commission employee: " << firstName << ' ' << lastName
<< "\nsocial security number: " << socialSecurityNumber
<< "\ngross sales: " << grossSales
<< "\ncommission rate: " << commissionRate;

} // end function print

12.4 Relationship between Base Classes and Derived Classes 507

private and protected specifiers affect member access in derived classes. As shown in
Fig. 12.5, lines 12–14, we assign values to data members firstName, lastName and so-

cialSecurityNumber in the constructor body. Later in this section, we’ll return to using
member-initializer lists in the constructors.

We do not validate the values of the constructor’s arguments first, last and ssn

before assigning them to the corresponding data members. We certainly could validate the
first and last names—perhaps by ensuring that they’re of a reasonable length. Similarly, a
social security number could be validated to ensure that it contains nine digits, with or
without dashes (e.g., 123-45-6789 or 123456789).

CommissionEmployee Member Functions earnings and print
Member function earnings (lines 86–89) calculates a CommissionEmployee’s earnings.
Line 88 multiplies the commissionRate by the grossSales and returns the result. Member
function print (lines 92–98) displays the values of a CommissionEmployee object’s data
members.

Testing Class CommissionEmployee
Figure 12.6 tests class CommissionEmployee. Lines 11–12 instantiate object employee of
class CommissionEmployee and invoke CommissionEmployee’s constructor to initialize the
object with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the social
security number, 10000 as the gross sales amount and .06 as the commission rate. Lines 19–
24 use employee’s get functions to display the values of its data members. Lines 26–27 in-
voke the object’s member functions setGrossSales and setCommissionRate to change
the values of data members grossSales and commissionRate, respectively. Line 31 then
calls employee’s print member function to output the updated CommissionEmployee in-
formation. Finally, line 34 displays the CommissionEmployee’s earnings, calculated by the
object’s earnings member function using the updated values of data members gross-

Sales and commissionRate.

1 // Fig. 12.6: fig12_06.cpp
2 // Testing class CommissionEmployee.
3 #include <iostream>
4 #include <iomanip>
5 #include "CommissionEmployee.h" // CommissionEmployee class definition
6 using namespace std;
7
8 int main()
9 {

10
11
12
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " <<

Fig. 12.6 | CommissionEmployee class test program. (Part 1 of 2.)

// instantiate a CommissionEmployee object
CommissionEmployee employee(

"Sue", "Jones", "222-22-2222", 10000, .06);

employee.getFirstName()

508 Chapter 12 Object-Oriented Programming: Inheritance

12.4.2 Creating a BasePlusCommissionEmployee Class Without
Using Inheritance
We now discuss the second part of our introduction to inheritance by creating and testing
(a completely new and independent) class BasePlusCommissionEmployee (Figs. 12.7–
12.8), which contains a first name, last name, social security number, gross sales amount,
commission rate and base salary.

20 << "\nLast name is " <<
21 << "\nSocial security number is "
22 <<
23 << "\nGross sales is " <<
24 << "\nCommission rate is " << << endl;
25
26
27
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << << endl;
35 } // end main

Employee information obtained by get functions:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information output by print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 8000.00
commission rate: 0.10

Employee's earnings: $800.00

1 // Fig. 12.7: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class definition represents an employee
3 // that receives a base salary in addition to commission.
4 #ifndef BASEPLUS_H
5 #define BASEPLUS_H
6
7 #include <string> // C++ standard string class
8 using namespace std;
9

Fig. 12.7 | BasePlusCommissionEmployee class header. (Part 1 of 2.)

Fig. 12.6 | CommissionEmployee class test program. (Part 2 of 2.)

employee.getLastName()

employee.getSocialSecurityNumber()
employee.getGrossSales()

employee.getCommissionRate()

employee.setGrossSales(8000); // set gross sales
employee.setCommissionRate(.1); // set commission rate

employee.print(); // display the new employee information

employee.earnings()

12.4 Relationship between Base Classes and Derived Classes 509

10 class BasePlusCommissionEmployee
11 {
12 public:
13 BasePlusCommissionEmployee(const string &, const string &,
14 const string &, double = 0.0, double = 0.0,);
15
16 void setFirstName(const string &); // set first name
17 string getFirstName() const; // return first name
18
19 void setLastName(const string &); // set last name
20 string getLastName() const; // return last name
21
22 void setSocialSecurityNumber(const string &); // set SSN
23 string getSocialSecurityNumber() const; // return SSN
24
25 void setGrossSales(double); // set gross sales amount
26 double getGrossSales() const; // return gross sales amount
27
28 void setCommissionRate(double); // set commission rate
29 double getCommissionRate() const; // return commission rate
30
31
32
33
34 double earnings() const; // calculate earnings
35 void print() const; // print BasePlusCommissionEmployee object
36 private:
37 string firstName;
38 string lastName;
39 string socialSecurityNumber;
40 double grossSales; // gross weekly sales
41 double commissionRate; // commission percentage
42
43 }; // end class BasePlusCommissionEmployee
44
45 #endif

1 // Fig. 12.8: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"
5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate,)
11 {

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 1 of 4.)

Fig. 12.7 | BasePlusCommissionEmployee class header. (Part 2 of 2.)

double = 0.0

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

double baseSalary; // base salary

double salary

510 Chapter 12 Object-Oriented Programming: Inheritance

12 firstName = first; // should validate
13 lastName = last; // should validate
14 socialSecurityNumber = ssn; // should validate
15 setGrossSales(sales); // validate and store gross sales
16 setCommissionRate(rate); // validate and store commission rate
17
18 } // end BasePlusCommissionEmployee constructor
19
20 // set first name
21 void BasePlusCommissionEmployee::setFirstName(const string &first)
22 {
23 firstName = first; // should validate
24 } // end function setFirstName
25
26 // return first name
27 string BasePlusCommissionEmployee::getFirstName() const
28 {
29 return firstName;
30 } // end function getFirstName
31
32 // set last name
33 void BasePlusCommissionEmployee::setLastName(const string &last)
34 {
35 lastName = last; // should validate
36 } // end function setLastName
37
38 // return last name
39 string BasePlusCommissionEmployee::getLastName() const
40 {
41 return lastName;
42 } // end function getLastName
43
44 // set social security number
45 void BasePlusCommissionEmployee::setSocialSecurityNumber(
46 const string &ssn)
47 {
48 socialSecurityNumber = ssn; // should validate
49 } // end function setSocialSecurityNumber
50
51 // return social security number
52 string BasePlusCommissionEmployee::getSocialSecurityNumber() const
53 {
54 return socialSecurityNumber;
55 } // end function getSocialSecurityNumber
56
57 // set gross sales amount
58 void BasePlusCommissionEmployee::setGrossSales(double sales)
59 {
60 if (sales >= 0.0)
61 grossSales = sales;

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 2 of 4.)

setBaseSalary(salary); // validate and store base salary

12.4 Relationship between Base Classes and Derived Classes 511

62 else
63 throw invalid_argument("Gross sales must be >= 0.0");
64 } // end function setGrossSales
65
66 // return gross sales amount
67 double BasePlusCommissionEmployee::getGrossSales() const
68 {
69 return grossSales;
70 } // end function getGrossSales
71
72 // set commission rate
73 void BasePlusCommissionEmployee::setCommissionRate(double rate)
74 {
75 if (rate > 0.0 && rate < 1.0)
76 commissionRate = rate;
77 else
78 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
79 } // end function setCommissionRate
80
81 // return commission rate
82 double BasePlusCommissionEmployee::getCommissionRate() const
83 {
84 return commissionRate;
85 } // end function getCommissionRate
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108 // print BasePlusCommissionEmployee object
109 void BasePlusCommissionEmployee::print() const
110 {
111 cout << "base-salaried commission employee: " << firstName << ' '
112 << lastName << "\nsocial security number: " << socialSecurityNumber

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 3 of 4.)

// set base salary
void BasePlusCommissionEmployee::setBaseSalary(double salary)
{

if (salary >= 0.0)
baseSalary = salary;

else
throw invalid_argument("Salary must be >= 0.0");

} // end function setBaseSalary

// return base salary
double BasePlusCommissionEmployee::getBaseSalary() const
{

return baseSalary;
} // end function getBaseSalary

// calculate earnings
double BasePlusCommissionEmployee::earnings() const
{

return baseSalary + (commissionRate * grossSales);
} // end function earnings

512 Chapter 12 Object-Oriented Programming: Inheritance

Defining Class BasePlusCommissionEmployee
The BasePlusCommissionEmployee header (Fig. 12.7) specifies class BasePlusCommis-

sionEmployee’s public services, which include the BasePlusCommissionEmployee con-
structor (lines 13–14) and member functions earnings (line 34) and print (line 35).
Lines 16–32 declare public get and set functions for the class’s private data members (de-
clared in lines 37–42) firstName, lastName, socialSecurityNumber, grossSales, com-
missionRate and baseSalary. These variables and member functions encapsulate all the
necessary features of a base-salaried commission employee. Note the similarity between
this class and class CommissionEmployee (Figs. 12.4–12.5)—in this example, we do not
yet exploit that similarity.

Class BasePlusCommissionEmployee’s earnings member function (defined in lines
100–103 of Fig. 12.8) computes the earnings of a base-salaried commission employee.
Line 102 returns the result of adding the employee’s base salary to the product of the com-
mission rate and the employee’s gross sales.

Testing Class BasePlusCommissionEmployee
Figure 12.9 tests class BasePlusCommissionEmployee. Lines 11–12 instantiate object em-
ployee of class BasePlusCommissionEmployee, passing "Bob", "Lewis", "333-33-3333",
5000, .04 and 300 to the constructor as the first name, last name, social security number,
gross sales, commission rate and base salary, respectively. Lines 19–25 use BasePlus-

CommissionEmployee’s get functions to retrieve the values of the object’s data members for
output. Line 27 invokes the object’s setBaseSalary member function to change the base
salary. Member function setBaseSalary (Fig. 12.8, lines 88–94) ensures that data mem-
ber baseSalary is not assigned a negative value, because an employee’s base salary cannot
be negative. Line 31 of Fig. 12.9 invokes the object’s print member function to output
the updated BasePlusCommissionEmployee’s information, and line 34 calls member func-
tion earnings to display the BasePlusCommissionEmployee’s earnings.

113 << "\ngross sales: " << grossSales
114 << "\ncommission rate: " << commissionRate
115
116 } // end function print

1 // Fig. 12.9: fig12_09.cpp
2 // Testing class BasePlusCommissionEmployee.
3 #include <iostream>
4 #include <iomanip>
5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7
8 int main()
9 {

Fig. 12.9 | BasePlusCommissionEmployee class test program. (Part 1 of 2.)

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 4 of 4.)

<< "\nbase salary: " << baseSalary;

12.4 Relationship between Base Classes and Derived Classes 513

Exploring the Similarities Between Class BasePlusCommissionEmployee and Class
CommissionEmployee
Most of the code for class BasePlusCommissionEmployee (Figs. 12.7–12.8) is similar, if
not identical, to the code for class CommissionEmployee (Figs. 12.4–12.5). For example,
in class BasePlusCommissionEmployee, private data members firstName and lastName

10
11
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04,);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nGross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate()
25
26
27
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31
32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << << endl;
35 } // end main

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Fig. 12.9 | BasePlusCommissionEmployee class test program. (Part 2 of 2.)

// instantiate BasePlusCommissionEmployee object
BasePlusCommissionEmployee

300

<< "\nBase salary is " << employee.getBaseSalary() << endl;

employee.setBaseSalary(1000); // set base salary

employee.print(); // display the new employee information

employee.earnings()

514 Chapter 12 Object-Oriented Programming: Inheritance

and member functions setFirstName, getFirstName, setLastName and getLastName are
identical to those of class CommissionEmployee. Classes CommissionEmployee and Base-

PlusCommissionEmployee also both contain private data members socialSecurity-

Number, commissionRate and grossSales, as well as get and set functions to manipulate
these members. In addition, the BasePlusCommissionEmployee constructor is almost iden-
tical to that of class CommissionEmployee, except that BasePlusCommissionEmployee’s
constructor also sets the baseSalary. The other additions to class BasePlusCommission-
Employee are private data member baseSalary and member functions setBaseSalary
and getBaseSalary. Class BasePlusCommissionEmployee’s print member function is
nearly identical to that of class CommissionEmployee, except that BasePlusCommissionEm-
ployee’s print also outputs the value of data member baseSalary.

We literally copied code from class CommissionEmployee and pasted it into class Base-
PlusCommissionEmployee, then modified class BasePlusCommissionEmployee to include
a base salary and member functions that manipulate the base salary. This copy-and-paste
approach is error prone and time consuming.

12.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we create and test a new BasePlusCommissionEmployee class (Figs. 12.10–12.11)
that derives from class CommissionEmployee (Figs. 12.4–12.5). In this example, a
BasePlusCommissionEmployee object is a CommissionEmployee (because inheritance passes
on the capabilities of class CommissionEmployee), but class BasePlusCommissionEmployee
also has data member baseSalary (Fig. 12.10, line 23). The colon (:) in line 11 of the class
definition indicates inheritance. Keyword public indicates the type of inheritance. As a de-
rived class (formed with public inheritance), BasePlusCommissionEmployee inherits all
the members of class CommissionEmployee, except for the constructor—each class provides
its own constructors that are specific to the class. (Destructors, too, are not inherited.) Thus,
the public services of BasePlusCommissionEmployee include its constructor (lines 14–15)
and the public member functions inherited from class CommissionEmployee—although we
cannot see these inherited member functions in BasePlusCommissionEmployee’s source code,
they’re nevertheless a part of derived class BasePlusCommissionEmployee. The derived
class’s public services also include member functions setBaseSalary, getBaseSalary,
earnings and print (lines 17–21).

Software Engineering Observation 12.1
Copying and pasting code from one class to another can spread many physical copies of
the same code and can spread errors throughout a system, creating a code-maintenance
nightmare. To avoid duplicating code (and possibly errors), use inheritance, rather than
the “copy-and-paste” approach, in situations where you want one class to “absorb” the
data members and member functions of another class.

Software Engineering Observation 12.2
With inheritance, the common data members and member functions of all the classes in
the hierarchy are declared in a base class. When changes are required for these common
features, you need to make the changes only in the base class—derived classes then inherit
the changes. Without inheritance, changes would need to be made to all the source code
files that contain a copy of the code in question.

12.4 Relationship between Base Classes and Derived Classes 515

1 // Fig. 12.10: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H
5 #define BASEPLUS_H
6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10
11
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);
16
17 void setBaseSalary(double); // set base salary
18 double getBaseSalary() const; // return base salary
19
20 double earnings() const; // calculate earnings
21 void print() const; // print BasePlusCommissionEmployee object
22 private:
23 double baseSalary; // base salary
24 }; // end class BasePlusCommissionEmployee
25
26 #endif

Fig. 12.10 | BasePlusCommissionEmployee class definition indicating inheritance
relationship with class CommissionEmployee.

1 // Fig. 12.11: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"
5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11
12
13 {
14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor
16
17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {

Fig. 12.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 1 of 3.)

class BasePlusCommissionEmployee : public CommissionEmployee

// explicitly call base-class constructor
: CommissionEmployee(first, last, ssn, sales, rate)

516 Chapter 12 Object-Oriented Programming: Inheritance

20 if (salary >= 0.0)
21 baseSalary = salary;
22 else
23 throw invalid_argument("Salary must be >= 0.0");
24 } // end function setBaseSalary
25
26 // return base salary
27 double BasePlusCommissionEmployee::getBaseSalary() const
28 {
29 return baseSalary;
30 } // end function getBaseSalary
31
32 // calculate earnings
33 double BasePlusCommissionEmployee::earnings() const
34 {
35
36
37 } // end function earnings
38
39 // print BasePlusCommissionEmployee object
40 void BasePlusCommissionEmployee::print() const
41 {
42
43
44
45
46
47
48 } // end function print

C:\chhhtp8_examples\ch12\Fig12_10_11\BasePlusCommissionEmployee.cpp(36) :
error C2248: 'CommissionEmployee::commissionRate' :
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_examples\ch12\Fig12_10_11\BasePlusCommissionEmployee.cpp(36) :
error C2248: 'CommissionEmployee::grossSales' :
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_examples\ch12\Fig12_10_11\BasePlusCommissionEmployee.cpp(43) :
error C2248: 'CommissionEmployee::firstName' :
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_examples\ch12\Fig12_10_11\BasePlusCommissionEmployee.cpp(44) :
error C2248: 'CommissionEmployee::lastName' :
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_examples\ch12\Fig12_10_11\BasePlusCommissionEmployee.cpp(44) :
error C2248: 'CommissionEmployee::socialSecurityNumber' :
cannot access private member declared in class 'CommissionEmployee'

C:\chhhtp8_examples\ch12\Fig12_10_11\BasePlusCommissionEmployee.cpp(45) :
error C2248: 'CommissionEmployee::grossSales' :
cannot access private member declared in class 'CommissionEmployee'

Fig. 12.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 2 of 3.)

// derived class cannot access the base class’s private data
return baseSalary + (commissionRate * grossSales);

// derived class cannot access the base class’s private data
cout << "base-salaried commission employee: " << firstName << ' '

<< lastName << "\nsocial security number: " << socialSecurityNumber
<< "\ngross sales: " << grossSales
<< "\ncommission rate: " << commissionRate
<< "\nbase salary: " << baseSalary;

12.4 Relationship between Base Classes and Derived Classes 517

Figure 12.11 shows BasePlusCommissionEmployee’s member-function implementa-
tions. The constructor (lines 8–15) introduces base-class initializer syntax (line 12),
which uses a member initializer to pass arguments to the base-class (CommissionEmployee)
constructor. C++ requires that a derived-class constructor call its base-class constructor to
initialize the base-class data members that are inherited into the derived class. Line 12 does
this by explicitly invoking the CommissionEmployee constructor by name, passing the con-
structor’s parameters first, last, ssn, sales and rate as arguments to initialize the base-
class data members firstName, lastName, socialSecurityNumber, grossSales and com-

missionRate. If BasePlusCommissionEmployee’s constructor did not invoke class Commis-
sionEmployee’s constructor explicitly, C++ would attempt to invoke class
CommissionEmployee’s default constructor implicitly—but the class does not have such a
constructor, so the compiler would issue an error. Recall from Chapter 3 that the compiler
provides a default constructor with no parameters in any class that does not explicitly
include a constructor. However, CommissionEmployee does explicitly include a con-
structor, so a default constructor is not provided

Compilation Errors from Accessing Base-Class private Members
The compiler generates errors for line 36 of Fig. 12.11 because base class CommissionEm-
ployee’s data members commissionRate and grossSales are private—derived class
BasePlusCommissionEmployee’s member functions are not allowed to access base class Com-
missionEmployee’s private data. The compiler issues additional errors in lines 43–46 of
BasePlusCommissionEmployee’s print member function for the same reason. As you can
see, C++ rigidly enforces restrictions on accessing private data members, so that even a de-
rived class (which is intimately related to its base class) cannot access the base class’s private data.

Preventing the Errors in BasePlusCommissionEmployee
We purposely included the erroneous code in Fig. 12.11 to emphasize that a derived class’s
member functions cannot access its base class’s private data. The errors in BasePlusCom-

C:\chhhtp8_examples\ch12\Fig12_10_11\BasePlusCommissionEmployee.cpp(46) :
error C2248: 'CommissionEmployee::commissionRate' :
cannot access private member declared in class 'CommissionEmployee'

Common Programming Error 12.1
When a derived-class constructor calls a base-class constructor, the arguments passed to the
base-class constructor must be consistent with the number and types of parameters specified
in one of the base-class constructors; otherwise, a compilation error occurs.

Performance Tip 12.1
In a derived-class constructor, invoking base-class constructors and initializing member
object explicitly in the member initializer list prevents duplicate initialization in which a
default constructor is called, then data members are modified again in the derived-class
constructor’s body.

Fig. 12.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 3 of 3.)

518 Chapter 12 Object-Oriented Programming: Inheritance

missionEmployee could have been prevented by using the get member functions inherited
from class CommissionEmployee. For example, line 36 could have invoked getCommis-

sionRate and getGrossSales to access CommissionEmployee’s private data members
commissionRate and grossSales, respectively. Similarly, lines 43–46 could have used ap-
propriate get member functions to retrieve the values of the base class’s data members. In
the next example, we show how using protected data also allows us to avoid the errors
encountered in this example.

Including the Base-Class Header in the Derived-Class Header with #include
Notice that we #include the base class’s header in the derived class’s header (line 8 of
Fig. 12.10). This is necessary for three reasons. First, for the derived class to use the base
class’s name in line 11, we must tell the compiler that the base class exists—the class def-
inition in CommissionEmployee.h does exactly that.

The second reason is that the compiler uses a class definition to determine the size of
an object of that class (as we discussed in Section 3.6). A client program that creates an
object of a class must #include the class definition to enable the compiler to reserve the
proper amount of memory for the object. When using inheritance, a derived-class object’s
size depends on the data members declared explicitly in its class definition and the data
members inherited from its direct and indirect base classes. Including the base class’s def-
inition in line 8 allows the compiler to determine the memory requirements for the base
class’s data members that become part of a derived-class object and thus contribute to the
total size of the derived-class object.

The last reason for line 8 is to allow the compiler to determine whether the derived
class uses the base class’s inherited members properly. For example, in the program of
Figs. 12.10–12.11, the compiler uses the base-class header to determine that the data
members being accessed by the derived class are private in the base class. Since these are
inaccessible to the derived class, the compiler generates errors. The compiler also uses the
base class’s function prototypes to validate function calls made by the derived class to the
inherited base-class functions.

Linking Process in an Inheritance Hierarchy
In Section 3.7, we discussed the linking process for creating an executable GradeBook ap-
plication. In that example, you saw that the client’s object code was linked with the object
code for class GradeBook, as well as the object code for any C++ Standard Library classes
used in either the client code or in class GradeBook.

The linking process is similar for a program that uses classes in an inheritance hier-
archy. The process requires the object code for all classes used in the program and the
object code for the direct and indirect base classes of any derived classes used by the pro-
gram. Suppose a client wants to create an application that uses class BasePlusCommission-
Employee, which is a derived class of CommissionEmployee (we’ll see an example of this in
Section 12.4.4). When compiling the client application, the client’s object code must be
linked with the object code for classes BasePlusCommissionEmployee and Commission-

Employee, because BasePlusCommissionEmployee inherits member functions from its
base class CommissionEmployee. The code is also linked with the object code for any C++
Standard Library classes used in class CommissionEmployee, class BasePlusCommission-
Employee or the client code. This provides the program with access to the implementa-
tions of all of the functionality that the program may use.

12.4 Relationship between Base Classes and Derived Classes 519

12.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Data
To enable class BasePlusCommissionEmployee to directly access CommissionEmployee data
members firstName, lastName, socialSecurityNumber, grossSales and commission-

Rate, we can declare those members as protected in the base class. As we discussed in
Section 12.3, a base class’s protected members can be accessed by members and friends of
the base class and by members and friends of any classes derived from that base class.

Defining Base Class CommissionEmployee with protected Data
Class CommissionEmployee (Fig. 12.12) now declares data members firstName, last-
Name, socialSecurityNumber, grossSales and commissionRate as protected (lines 32–
37) rather than private. The member-function implementations are identical to those in
Fig. 12.5, so CommissionEmployee.cpp is not shown here.

1 // Fig. 12.12: CommissionEmployee.h
2 // CommissionEmployee class definition with protected data.
3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31 void print() const; // print CommissionEmployee object
32
33
34
35

Fig. 12.12 | CommissionEmployee class definition that declares protected data to allow
access by derived classes. (Part 1 of 2.)

protected:
string firstName;
string lastName;
string socialSecurityNumber;

520 Chapter 12 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee
The definition of class BasePlusCommissionEmployee from Figs. 12.10–12.11 remains un-
changed, so we do not show it again here. Now that BasePlusCommissionEmployee inherits
from the updated class CommissionEmployee Fig. 12.12, BasePlusCommissionEmployee ob-
jects can access inherited data members that are declared protected in class CommissionEm-
ployee (i.e., data members firstName, lastName, socialSecurityNumber, grossSales and
commissionRate). As a result, the compiler does not generate errors when compiling the
BasePlusCommissionEmployee earnings and print member-function definitions in
Fig. 12.11 (lines 33–37 and 40–48, respectively). This shows the special privileges that a de-
rived class is granted to access protected base-class data members. Objects of a derived class
also can access protected members in any of that derived class’s indirect base classes.

Class BasePlusCommissionEmployee does not inherit class CommissionEmployee’s
constructor. However, class BasePlusCommissionEmployee’s constructor (Fig. 12.11,
lines 8–15) calls class CommissionEmployee’s constructor explicitly with member initial-
izer syntax (line 12). Recall that BasePlusCommissionEmployee’s constructor must explic-
itly call the constructor of class CommissionEmployee, because CommissionEmployee does
not contain a default constructor that could be invoked implicitly.

Testing the Modified BasePlusCommissionEmployee Class
To test the updated class hierarchy, we reused the test program from Fig. 12.9. As shown in
Fig. 12.13, the output is identical to that of Fig. 12.9. We created the first class Base-

PlusCommissionEmployee without using inheritance and created this version of Base-

PlusCommissionEmployee using inheritance; however, both classes provide the same
functionality. The code for class BasePlusCommissionEmployee (i.e., the header and imple-
mentation files), which is 74 lines, is considerably shorter than the code for the noninherited
version of the class, which is 161 lines, because the inherited version absorbs part of its func-
tionality from CommissionEmployee, whereas the noninherited version does not absorb any
functionality. Also, there is now only one copy of the CommissionEmployee functionality de-
clared and defined in class CommissionEmployee. This makes the source code easier to main-
tain, modify and debug, because the source code related to a CommissionEmployee exists
only in the files CommissionEmployee.h and CommissionEmployee.cpp.

36
37
38 }; // end class CommissionEmployee
39
40 #endif

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333

Fig. 12.13 | protected base-class data can be accessed from derived class. (Part 1 of 2.)

Fig. 12.12 | CommissionEmployee class definition that declares protected data to allow
access by derived classes. (Part 2 of 2.)

double grossSales; // gross weekly sales
double commissionRate; // commission percentage

12.4 Relationship between Base Classes and Derived Classes 521

Notes on Using protected Data
In this example, we declared base-class data members as protected, so derived classes can
modify the data directly. Inheriting protected data members slightly improves perfor-
mance, because we can directly access the members without incurring the overhead of calls
to set or get member functions.

Using protected data members creates two serious problems. First, the derived-class
object does not have to use a member function to set the value of the base class’s protected
data member. An invalid value can easily be assigned to the protected data member, thus
leaving the object in an inconsistent state—e.g., with CommissionEmployee’s data member
grossSales declared as protected, a derived-class object can assign a negative value to
grossSales. The second problem with using protected data members is that derived-
class member functions are more likely to be written so that they depend on the base-class
implementation. Derived classes should depend only on the base-class services (i.e., non-
private member functions) and not on the base-class implementation. With protected

data members in the base class, if the base-class implementation changes, we may need to
modify all derived classes of that base class. For example, if for some reason we were to
change the names of data members firstName and lastName to first and last, then we’d
have to do so for all occurrences in which a derived class references these base-class data
members directly. Such software is said to be fragile or brittle, because a small change in
the base class can “break” derived-class implementation. You should be able to change the
base-class implementation while still providing the same services to derived classes. Of
course, if the base-class services change, we must reimplement our derived classes—good
object-oriented design attempts to prevent this.

Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Software Engineering Observation 12.3
In most cases, it’s better to use private data members to encourage proper software
engineering, and leave code optimization issues to the compiler. Your code will be easier
to maintain, modify and debug.

Software Engineering Observation 12.4
It’s appropriate to use the protected access specifier when a base class should provide a
service (i.e., a member function) only to its derived classes and friends.

Fig. 12.13 | protected base-class data can be accessed from derived class. (Part 2 of 2.)

522 Chapter 12 Object-Oriented Programming: Inheritance

12.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Data
We now reexamine our hierarchy once more, this time using the best software engineering
practices. Class CommissionEmployee now declares data members firstName, lastName,
socialSecurityNumber, grossSales and commissionRate as private as shown previous-
ly in lines 32–37 of Fig. 12.4.

Changes to Class CommissionEmployee’s Member Function Definitions
In the CommissionEmployee constructor implementation (Fig. 12.14, lines 8–15), we use
member initializers (line 11) to set the values of the members firstName, lastName and
socialSecurityNumber. We show how the derived-class BasePlusCommissionEmployee
(Fig. 12.15) can invoke non-private base-class member functions (setFirstName, get-
FirstName, setLastName, getLastName, setSocialSecurityNumber and getSocialSecu-

rityNumber) to manipulate these data members.
In the body of the constructor and in the bodies of member function’s earnings (lines

84–87) and print (lines 90–97), we call the class’s set and get member functions to access
the class’s private data members. If we decide to change the data member names, the earn-
ings and print definitions will not require modification—only the definitions of the get
and set member functions that directly manipulate the data members will need to change.
These changes occur solely within the base class—no changes to the derived class are
needed. Localizing the effects of changes like this is a good software engineering practice.

Software Engineering Observation 12.5
Declaring base-class data members private (as opposed to declaring them protected)
enables you to change the base-class implementation without having to change derived-
class implementations.

Performance Tip 12.2
Using a member function to access a data member’s value can be slightly slower than ac-
cessing the data directly. However, today’s optimizing compilers are carefully designed to
perform many optimizations implicitly (such as inlining set and get member-function
calls). You should write code that adheres to proper software engineering principles, and
leave optimization to the compiler. A good rule is, “Do not second-guess the compiler.”

1 // Fig. 12.14: CommissionEmployee.cpp
2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7 // constructor
8 CommissionEmployee::CommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate)

Fig. 12.14 | CommissionEmployee class implementation file: CommissionEmployee class
uses member functions to manipulate its private data. (Part 1 of 3.)

12.4 Relationship between Base Classes and Derived Classes 523

11 :
12 {
13 setGrossSales(sales); // validate and store gross sales
14 setCommissionRate(rate); // validate and store commission rate
15 } // end CommissionEmployee constructor
16
17 // set first name
18 void CommissionEmployee::setFirstName(const string &first)
19 {
20 firstName = first; // should validate
21 } // end function setFirstName
22
23 // return first name
24 string CommissionEmployee::getFirstName() const
25 {
26 return firstName;
27 } // end function getFirstName
28
29 // set last name
30 void CommissionEmployee::setLastName(const string &last)
31 {
32 lastName = last; // should validate
33 } // end function setLastName
34
35 // return last name
36 string CommissionEmployee::getLastName() const
37 {
38 return lastName;
39 } // end function getLastName
40
41 // set social security number
42 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
43 {
44 socialSecurityNumber = ssn; // should validate
45 } // end function setSocialSecurityNumber
46
47 // return social security number
48 string CommissionEmployee::getSocialSecurityNumber() const
49 {
50 return socialSecurityNumber;
51 } // end function getSocialSecurityNumber
52
53 // set gross sales amount
54 void CommissionEmployee::setGrossSales(double sales)
55 {
56 if (sales >= 0.0)
57 grossSales = sales;
58 else
59 throw invalid_argument("Gross sales must be >= 0.0");
60 } // end function setGrossSales
61

Fig. 12.14 | CommissionEmployee class implementation file: CommissionEmployee class
uses member functions to manipulate its private data. (Part 2 of 3.)

firstName(first), lastName(last), socialSecurityNumber(ssn)

524 Chapter 12 Object-Oriented Programming: Inheritance

Changes to Class BasePlusCommissionEmployee’s Member Function Definitions
Class BasePlusCommissionEmployee inherits CommissionEmployee’s public member
functions and can access the private base-class members via the inherited member func-
tions. Class BasePlusCommissionEmployee’s header remains unchanged from Fig. 12.10.
The class has several changes to its member-function implementations (Fig. 12.15) that dis-
tinguish it from the previous version of the class (Figs. 12.10–12.11). Member functions
earnings (Fig. 12.15, lines 33–36) and print (lines 39–47) each invoke member function
getBaseSalary to obtain the base salary value, rather than accessing baseSalary directly.
This insulates earnings and print from potential changes to the implementation of data
member baseSalary. For example, if we decide to rename data member baseSalary or
change its type, only member functions setBaseSalary and getBaseSalary will need to
change.

62 // return gross sales amount
63 double CommissionEmployee::getGrossSales() const
64 {
65 return grossSales;
66 } // end function getGrossSales
67
68 // set commission rate
69 void CommissionEmployee::setCommissionRate(double rate)
70 {
71 if (rate > 0.0 && rate < 1.0)
72 commissionRate = rate;
73 else
74 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
75 } // end function setCommissionRate
76
77 // return commission rate
78 double CommissionEmployee::getCommissionRate() const
79 {
80 return commissionRate;
81 } // end function getCommissionRate
82
83 // calculate earnings
84 double CommissionEmployee::earnings() const
85 {
86 return * ;
87 } // end function earnings
88
89 // print CommissionEmployee object
90 void CommissionEmployee::print() const
91 {
92 cout << "commission employee: "
93 << << ' ' <<
94 << "\nsocial security number: " <<
95 << "\ngross sales: " <<
96 << "\ncommission rate: " << ;
97 } // end function print

Fig. 12.14 | CommissionEmployee class implementation file: CommissionEmployee class
uses member functions to manipulate its private data. (Part 3 of 3.)

getCommissionRate() getGrossSales()

getFirstName() getLastName()
getSocialSecurityNumber()

getGrossSales()
getCommissionRate()

12.4 Relationship between Base Classes and Derived Classes 525

BasePlusCommissionEmployee Member Function earnings
Class BasePlusCommissionEmployee’s earnings function (Fig. 12.15, lines 33–36) rede-
fines class CommissionEmployee’s earnings member function (Fig. 12.14, lines 84–87) to

1 // Fig. 12.15: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"
5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11 // explicitly call base-class constructor
12 : CommissionEmployee(first, last, ssn, sales, rate)
13 {
14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor
16
17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {
20 if (salary >= 0.0)
21 baseSalary = salary;
22 else
23 throw invalid_argument("Salary must be >= 0.0");
24 } // end function setBaseSalary
25
26 // return base salary
27 double BasePlusCommissionEmployee::getBaseSalary() const
28 {
29 return baseSalary;
30 } // end function getBaseSalary
31
32 // calculate earnings
33 double BasePlusCommissionEmployee::earnings() const
34 {

36 } // end function earnings
37
38 // print BasePlusCommissionEmployee object
39 void BasePlusCommissionEmployee::print() const
40 {
41
42
43
44
45
46 cout << "\nbase salary: " << getBaseSalary();
47 } // end function print

Fig. 12.15 | BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private data.

CommissionEmployee::earnings()

cout << "base-salaried ";

// invoke CommissionEmployee's print function
CommissionEmployee::print();

526 Chapter 12 Object-Oriented Programming: Inheritance

calculate the earnings of a base-salaried commission employee. Class BasePlusCommis-

sionEmployee’s version of earnings obtains the portion of the employee’s earnings based
on commission alone by calling base-class CommissionEmployee’s earnings function with
the expression CommissionEmployee::earnings() (Fig. 12.15, line 35). BasePlus-

CommissionEmployee’s earnings function then adds the base salary to this value to calcu-
late the total earnings of the employee. Note the syntax used to invoke a redefined base-
class member function from a derived class—place the base-class name and the scope reso-
lution operator (::) before the base-class member-function name. This member-function
invocation is a good software engineering practice: Recall from Chapter 9 that, if an object’s
member function performs the actions needed by another object, we should call that mem-
ber function rather than duplicating its code body. By having BasePlusCommissionEm-

ployee’s earnings function invoke CommissionEmployee’s earnings function to calculate
part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the code
and reduce code-maintenance problems.

BasePlusCommissionEmployee Member Function print
Similarly, BasePlusCommissionEmployee’s print function (Fig. 12.15, lines 39–47) rede-
fines class CommissionEmployee’s print function (Fig. 12.14, lines 90–97) to output the
appropriate base-salaried commission employee information. The new version displays
part of a BasePlusCommissionEmployee object’s information (i.e., the string "commission

employee" and the values of class CommissionEmployee’s private data members) by call-
ing CommissionEmployee’s print member function with the qualified name Commission-
Employee::print() (Fig. 12.15, line 44). BasePlusCommissionEmployee’s print

function then outputs the remainder of a BasePlusCommissionEmployee object’s informa-
tion (i.e., the value of class BasePlusCommissionEmployee’s base salary).

Testing the Modified Class Hierarchy
Once again, this example uses the BasePlusCommissionEmployee test program from
Fig. 12.9 and produces the same output. Although each “base-salaried commission em-
ployee” class behaves identically, the version in this example is the best engineered. By us-
ing inheritance and by calling member functions that hide the data and ensure consistency, we’ve
efficiently and effectively constructed a well-engineered class.

Summary of the CommissionEmployee–BasePlusCommissionEmployee Examples
In this section, you saw an evolutionary set of examples that was carefully designed to teach
key capabilities for good software engineering with inheritance. You learned how to create
a derived class using inheritance, how to use protected base-class members to enable a de-
rived class to access inherited base-class data members and how to redefine base-class func-
tions to provide versions that are more appropriate for derived-class objects. In addition,
you learned how to apply software engineering techniques from Chapters 9–10 and this
chapter to create classes that are easy to maintain, modify and debug.

Common Programming Error 12.2
When a base-class member function is redefined in a derived class, the derived-class version
often calls the base-class version to do additional work. Failure to use the :: operator prefixed
with the name of the base class when referencing the base class’s member function causes in-
finite recursion, because the derived-class member function would then call itself.

12.5 Constructors and Destructors in Derived Classes 527

12.5 Constructors and Destructors in Derived Classes
As we explained in the preceding section, instantiating a derived-class object begins a chain
of constructor calls in which the derived-class constructor, before performing its own tasks,
invokes its direct base class’s constructor either explicitly (via a base-class member initializer)
or implicitly (calling the base class’s default constructor). Similarly, if the base class is derived
from another class, the base-class constructor is required to invoke the constructor of the next
class up in the hierarchy, and so on. The last constructor called in this chain is the one of the
class at the base of the hierarchy, whose body actually finishes executing first. The original
derived-class constructor’s body finishes executing last. Each base-class constructor initializes
the base-class data members that the derived-class object inherits. In the Commission-

Employee/BasePlusCommissionEmployee hierarchy that we’ve been studying, when a pro-
gram creates an object of class BasePlusCommissionEmployee, the CommissionEmployee

constructor is called. Since class CommissionEmployee is at the base of the hierarchy, its con-
structor executes, initializing the private data members of CommissionEmployee that are
part of the BasePlusCommissionEmployee object. When CommissionEmployee’s constructor
completes execution, it returns control to BasePlusCommissionEmployee’s constructor,
which initializes the BasePlusCommissionEmployee object’s baseSalary.

When a derived-class object is destroyed, the program calls that object’s destructor.
This begins a chain (or cascade) of destructor calls in which the derived-class destructor
and the destructors of the direct and indirect base classes and the classes’ members execute
in reverse of the order in which the constructors executed. When a derived-class object’s
destructor is called, the destructor performs its task, then invokes the destructor of the next
base class up the hierarchy. This process repeats until the destructor of the final base class
at the top of the hierarchy is called. Then the object is removed from memory.

Base-class constructors, destructors and overloaded assignment operators (Chapter 11)
are not inherited by derived classes. Derived-class constructors, destructors and overloaded
assignment operators, however, can call base-class versions.

12.6 public, protected and private Inheritance
When deriving a class from a base class, the base class may be inherited through public,
protected or private inheritance. We normally use public inheritance in this book. Use

Software Engineering Observation 12.6
When a program creates a derived-class object, the derived-class constructor immediately
calls the base-class constructor, the base-class constructor’s body executes, then the derived
class’s member initializers execute and finally the derived-class constructor’s body
executes. This process cascades up the hierarchy if it contains more than two levels.

Software Engineering Observation 12.7
Suppose that we create an object of a derived class where both the base class and the derived
class contain (via composition) objects of other classes. When an object of that derived class
is created, first the constructors for the base class’s member objects execute, then the base-class
constructor body executes, then the constructors for the derived class’s member objects execute,
then the derived class’s constructor body executes. Destructors for derived-class objects are
called in the reverse of the order in which their corresponding constructors are called.

528 Chapter 12 Object-Oriented Programming: Inheritance

of protected inheritance is rare. Chapter 20 demonstrates private inheritance as an al-
ternative to composition. Figure 12.16 summarizes for each type of inheritance the acces-
sibility of base-class members in a derived class. The first column contains the base-class
access specifiers.

When deriving a class from a public base class, public members of the base class
become public members of the derived class, and protected members of the base class
become protected members of the derived class. A base class’s private members are never
accessible directly from a derived class, but can be accessed through calls to the public and
protected members of the base class.

When deriving from a protected base class, public and protected members of the
base class become protected members of the derived class. When deriving from a private
base class, public and protected members of the base class become private members
(e.g., the functions become utility functions) of the derived class. Private and protected

inheritance are not is-a relationships.

12.7 Software Engineering with Inheritance
Sometimes it’s difficult for students to appreciate the scope of problems faced by designers
who work on large-scale software projects in industry. People experienced with such proj-

Fig. 12.16 | Summary of base-class member accessibility in a derived class.

Type of inheritance

public
inheritance

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

public in derived class.

Can be accessed directly
by member functions,
friend functions and
nonmember functions.

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

private in derived class.

Can be accessed directly
by member functions and
friend functions.

private in derived class.

Can be accessed directly
by member functions and
friend functions.

protected
inheritance

private
inheritance

p
r
i
v
a
t
e

p
r
o
t
e
c
t
e
d

p
u
b
l
i
c

Base-class
member-
access
specifier

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

12.8 Wrap-Up 529

ects say that effective software reuse improves the software development process. Object-
oriented programming facilitates software reuse, thus shortening development times and
enhancing software quality.

When we use inheritance to create a new class from an existing one, the new class
inherits the data members and member functions of the existing class, as described in
Fig. 12.16. We can customize the new class to meet our needs by redefining base-class
members and by including additional members. The derived-class programmer does this
in C++ without accessing the base class’s source code (the derived class must be able to link
to the base class’s object code). This powerful capability is attractive to software devel-
opers. They can develop proprietary classes for sale or license and make these classes avail-
able to users in object-code format. Users then can derive new classes from these library
classes rapidly and without accessing the proprietary source code. The software developers
need to supply the headers along with the object code

The availability of substantial and useful class libraries delivers the maximum benefits
of software reuse through inheritance. Interest in creating and selling class libraries is
growing exponentially. The standard C++ libraries tend to be general purpose and limited
in scope. There is a worldwide commitment to the development of class libraries for a huge
variety of application arenas.

12.8 Wrap-Up
This chapter introduced inheritance—the ability to create a class by absorbing an existing
class’s data members and member functions and embellishing them with new capabilities.
Through a series of examples using an employee inheritance hierarchy, you learned the no-
tions of base classes and derived classes and used public inheritance to create a derived class
that inherits members from a base class. The chapter introduced the access specifier pro-

tected—derived-class member functions can access protected base-class members. You
learned how to access redefined base-class members by qualifying their names with the base-
class name and scope resolution operator (::). You also saw the order in which constructors
and destructors are called for objects of classes that are part of an inheritance hierarchy. Fi-
nally, we explained the three types of inheritance—public, protected and private—and
the accessibility of base-class members in a derived class when using each type.

In Chapter 13, Object-Oriented Programming: Polymorphism, we build on our dis-
cussion of inheritance by introducing polymorphism—an object-oriented concept that
enables us to write programs that handle, in a more general manner, objects of a wide
variety of classes related by inheritance. After studying Chapter 13, you’ll be familiar with
classes, objects, encapsulation, inheritance and polymorphism—the essential concepts of
object-oriented programming.

Software Engineering Observation 12.8
At the design stage in an object-oriented system, the designer often determines that certain
classes are closely related. The designer should “factor out” common attributes and
behaviors and place these in a base class, then use inheritance to form derived classes.

Software Engineering Observation 12.9
Creating a derived class does not affect its base class’s source code. Inheritance preserves the
integrity of a base class.

530 Chapter 12 Object-Oriented Programming: Inheritance

Summary
Section 12.1 Introduction
• Software reuse reduces program development time and cost.

• Inheritance (p. 500) is a form of software reuse in which you create a class that absorbs an existing
class’s capabilities, then customizes or enhances them. The existing class is called the base class
(p. 500), and the new class is referred to as the derived class (p. 500).

• Every object of a derived class is also an object of that class’s base class. However, a base-class
object is not an object of that class’s derived classes.

• The is-a relationship (p. 500) represents inheritance. In an is-a relationship, an object of a de-
rived class also can be treated as an object of its base class.

• The has-a relationship (p. 500) represents composition—an object contains one or more objects
of other classes as members, but does not disclose their behavior directly in its interface.

Section 12.2 Base Classes and Derived Classes
• A direct base class (p. 502) is the one from which a derived class explicitly inherits. An indirect

base class (p. 502) is inherited from two or more levels up the class hierarchy (p. 501).

• With single inheritance (p. 502), a class is derived from one base class. With multiple inheritance
(p. 502), a class inherits from multiple (possibly unrelated) base classes.

• A derived class represents a more specialized group of objects.

• Inheritance relationships form class hierarchies.

• It’s possible to treat base-class objects and derived-class objects similarly; the commonality shared
between the object types is expressed in the base class’s data members and member functions.

Section 12.3 protected Members
• A base class’s public members are accessible anywhere that the program has a handle to an object

of that base class or to an object of one of that base class’s derived classes—or, when using the
scope resolution operator, whenever the class’s name is in scope.

• A base class’s private members are accessible only within the base class or from its friends.

• A base class’s protected members can be accessed by members and friends of that base class and
by members and friends of any classes derived from that base class.

• When a derived-class member function redefines a base-class member function, the base-class
member function can still be accessed from the derived class by qualifying the base-class member
function name with the base-class name and the scope resolution operator (::).

Section 12.5 Constructors and Destructors in Derived Classes
• When an object of a derived class is instantiated, the base class’s constructor is called immediately

to initialize the base-class data members in the derived-class object, then the derived-class con-
structor initializes the additional derived-class data members.

• When a derived-class object is destroyed, the destructors are called in the reverse order of the con-
structors—first the derived-class destructor is called, then the base-class destructor is called.

Section 12.6 public, protected and private Inheritance
• Declaring data members private, while providing non-private member functions to manipu-

late and perform validity checking on this data, enforces good software engineering.

• When deriving a class, the base class may be declared as either public, protected or private.

Self-Review Exercises 531

• When deriving a class from a public base class (p. 502), public members of the base class be-
come public members of the derived class, and protected members of the base class become
protected members of the derived class.

• When deriving a class from a protected base class (p. 502), public and protected members of
the base class become protected members of the derived class.

• When deriving a class from a private base class (p. 502), public and protected members of the
base class become private members of the derived class.

Self-Review Exercises
12.1 Fill in the blanks in each of the following statements:

a) is a form of software reuse in which new classes absorb the data and behaviors
of existing classes and embellish these classes with new capabilities.

b) A base class’s members can be accessed in the base-class definition, in derived-
class definitions and in friends of the base class its derived classes.

c) In a(n) relationship, an object of a derived class also can be treated as an object
of its base class.

d) In a(n) relationship, a class object has one or more objects of other classes as
members.

e) In single inheritance, a class exists in a(n) relationship with its derived classes.
f) A base class’s members are accessible within that base class and anywhere that

the program has a handle to an object of that class or one of its derived classes.
g) A base class’s protected access members have a level of protection between those of pub-

lic and access.
h) C++ provides for , which allows a derived class to inherit from many base class-

es, even if the base classes are unrelated.
i) When an object of a derived class is instantiated, the base class’s is called im-

plicitly or explicitly to do any necessary initialization of the base-class data members in
the derived-class object.

j) When deriving a class from a base class with public inheritance, public members of the
base class become members of the derived class, and protected members of
the base class become members of the derived class.

k) When deriving a class from a base class with protected inheritance, public members of
the base class become members of the derived class, and protected members
of the base class become members of the derived class.

12.2 State whether each of the following is true or false. If false, explain why.
a) Base-class constructors are not inherited by derived classes.
b) A has-a relationship is implemented via inheritance.
c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
d) Inheritance encourages the reuse of proven high-quality software.
e) When a derived-class object is destroyed, the destructors are called in the reverse order

of the constructors.

Answers to Self-Review Exercises
12.1 a) Inheritance. b) protected. c) is-a or inheritance (for public inheritance). d) has-a or
composition or aggregation. e) hierarchical. f) public. g) private. h) multiple inheritance.
i) constructor. j) public, protected. k) protected, protected.

12.2 a) True. b) False. A has-a relationship is implemented via composition. An is-a relationship
is implemented via inheritance. c) False. This is an example of a has-a relationship. Class Car has
an is-a relationship with class Vehicle. d) True. e) True.

532 Chapter 12 Object-Oriented Programming: Inheritance

Exercises
12.3 (Composition as an Alternative to Inheritance) Many programs written with inheritance
could be written with composition instead, and vice versa. Rewrite class BasePlusCommissionEm-

ployee of the CommissionEmployee–BasePlusCommissionEmployee hierarchy to use composition
rather than inheritance. After you do this, assess the relative merits of the two approaches for de-
signing classes CommissionEmployee and BasePlusCommissionEmployee, as well as for object-orient-
ed programs in general. Which approach is more natural? Why?

12.4 (Inheritance Advantage) Discuss the ways in which inheritance promotes software reuse,
saves time during program development and helps prevent errors.

12.5 (Protected vs. Private Base Classes) Some programmers prefer not to use protected access
because they believe it breaks the encapsulation of the base class. Discuss the relative merits of using
protected access vs. using private access in base classes.

12.6 (Student Inheritance Hierarchy) Draw an inheritance hierarchy for students at a university
similar to the hierarchy shown in Fig. 12.2. Use Student as the base class of the hierarchy, then in-
clude classes UndergraduateStudent and GraduateStudent that derive from Student. Continue to
extend the hierarchy as deep (i.e., as many levels) as possible. For example, Freshman, Sophomore,
Junior and Senior might derive from UndergraduateStudent, and DoctoralStudent and Mas-

tersStudent might derive from GraduateStudent. After drawing the hierarchy, discuss the relation-
ships that exist between the classes. [Note: You do not need to write any code for this exercise.]

12.7 (Richer Shape Hierarchy) The world of shapes is much richer than the shapes included in
the inheritance hierarchy of Fig. 12.3. Write down all the shapes you can think of—both two-di-
mensional and three-dimensional—and form them into a more complete Shape hierarchy with as
many levels as possible. Your hierarchy should have the base class Shape from which class TwoDimen-
sionalShape and class ThreeDimensionalShape are derived. [Note: You do not need to write any code
for this exercise.] We’ll use this hierarchy in the exercises of Chapter 13 to process a set of distinct
shapes as objects of base-class Shape. (This technique, called polymorphism, is the subject of
Chapter 13.)

12.8 (Quadrilateral Inheritance Hierarchy) Draw an inheritance hierarchy for classes Quadri-

lateral, Trapezoid, Parallelogram, Rectangle and Square. Use Quadrilateral as the base class of
the hierarchy. Make the hierarchy as deep as possible.

12.9 (Package Inheritance Hierarchy) Package-delivery services, such as FedEx®, DHL® and
UPS®, offer a number of different shipping options, each with specific costs associated. Create an
inheritance hierarchy to represent various types of packages. Use class Package as the base class of
the hierarchy, then include classes TwoDayPackage and OvernightPackage that derive from Package.
Base class Package should include data members representing the name, address, city, state and ZIP
code for both the sender and the recipient of the package, in addition to data members that store
the weight (in ounces) and cost per ounce to ship the package. Package’s constructor should initial-
ize these data members. Ensure that the weight and cost per ounce contain positive values. Package
should provide a public member function calculateCost that returns a double indicating the cost
associated with shipping the package. Package’s calculateCost function should determine the cost
by multiplying the weight by the cost per ounce. Derived class TwoDayPackage should inherit the
functionality of base class Package, but also include a data member that represents a flat fee that the
shipping company charges for two-day-delivery service. TwoDayPackage’s constructor should receive
a value to initialize this data member. TwoDayPackage should redefine member function calculate-

Cost so that it computes the shipping cost by adding the flat fee to the weight-based cost calculated
by base class Package’s calculateCost function. Class OvernightPackage should inherit directly
from class Package and contain an additional data member representing an additional fee per ounce
charged for overnight-delivery service. OvernightPackage should redefine member function calcu-

Exercises 533

lateCost so that it adds the additional fee per ounce to the standard cost per ounce before calculat-
ing the shipping cost. Write a test program that creates objects of each type of Package and tests
member function calculateCost.

12.10 (Account Inheritance Hierarchy) Create an inheritance hierarchy that a bank might use to
represent customers’ bank accounts. All customers at this bank can deposit (i.e., credit) money into
their accounts and withdraw (i.e., debit) money from their accounts. More specific types of accounts
also exist. Savings accounts, for instance, earn interest on the money they hold. Checking accounts,
on the other hand, charge a fee per transaction (i.e., credit or debit).

Create an inheritance hierarchy containing base class Account and derived classes Savings-

Account and CheckingAccount that inherit from class Account. Base class Account should include
one data member of type double to represent the account balance. The class should provide a con-
structor that receives an initial balance and uses it to initialize the data member. The constructor
should validate the initial balance to ensure that it’s greater than or equal to 0.0. If not, the balance
should be set to 0.0 and the constructor should display an error message, indicating that the initial
balance was invalid. The class should provide three member functions. Member function credit

should add an amount to the current balance. Member function debit should withdraw money
from the Account and ensure that the debit amount does not exceed the Account’s balance. If it
does, the balance should be left unchanged and the function should print the message "Debit

amount exceeded account balance." Member function getBalance should return the current
balance.

Derived class SavingsAccount should inherit the functionality of an Account, but also include
a data member of type double indicating the interest rate (percentage) assigned to the Account.
SavingsAccount’s constructor should receive the initial balance, as well as an initial value for the
SavingsAccount’s interest rate. SavingsAccount should provide a public member function
calculateInterest that returns a double indicating the amount of interest earned by an account.
Member function calculateInterest should determine this amount by multiplying the interest
rate by the account balance. [Note: SavingsAccount should inherit member functions credit and
debit as is without redefining them.]

Derived class CheckingAccount should inherit from base class Account and include an addi-
tional data member of type double that represents the fee charged per transaction. Checking-

Account’s constructor should receive the initial balance, as well as a parameter indicating a fee
amount. Class CheckingAccount should redefine member functions credit and debit so that they
subtract the fee from the account balance whenever either transaction is performed successfully.
CheckingAccount’s versions of these functions should invoke the base-class Account version to per-
form the updates to an account balance. CheckingAccount’s debit function should charge a fee
only if money is actually withdrawn (i.e., the debit amount does not exceed the account balance).
[Hint: Define Account’s debit function so that it returns a bool indicating whether money was
withdrawn. Then use the return value to determine whether a fee should be charged.]

After defining the classes in this hierarchy, write a program that creates objects of each class
and tests their member functions. Add interest to the SavingsAccount object by first invoking its
calculateInterest function, then passing the returned interest amount to the object’s credit

function.

13 Object-Oriented
Programming:
Polymorphism

One Ring to rule them all,
One Ring to find them,
One Ring to bring them all
and in the darkness bind them.
—John Ronald Reuel Tolkien

The silence often of pure
innocence
Persuades when speaking fails.
—William Shakespeare

General propositions do not
decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing
stature doesn’t think in a
vacuum. Even his most abstract
ideas are, to some extent,
conditioned by what is or is not
known in the time when he lives.
—Alfred North Whitehead

O b j e c t i v e s
In this chapter you’ll learn:
■ How polymorphism makes

programming more
convenient and systems
more extensible.

■ The distinction between
abstract and concrete classes
and how to create abstract
classes.

■ To use runtime type
information (RTTI).

■ How C++ implements
virtual functions and
dynamic binding.

■ How virtual destructors
ensure that all appropriate
destructors run on an object.

13.1 Introduction 535

13.1 Introduction
We now continue our study of OOP by explaining and demonstrating polymorphism
with inheritance hierarchies. Polymorphism enables you to “program in the general” rath-
er than “program in the specific.” In particular, polymorphism enables you to write pro-
grams that process objects of classes that are part of the same class hierarchy as if they were
all objects of the hierarchy’s base class. As we’ll soon see, polymorphism works off base-
class pointer handles and base-class reference handles, but not off name handles.

Implementing for Extensibility
With polymorphism, you can design and implement systems that are easily extensible—
new classes can be added with little or no modification to the general portions of the pro-
gram, as long as the new classes are part of the inheritance hierarchy that the program pro-
cesses generically. The only parts of a program that must be altered to accommodate new
classes are those that require direct knowledge of the new classes that you add to the hier-
archy. For example, if we create class Tortoise that inherits from class Animal (which
might respond to a move message by crawling one inch), we need to write only the Tor-

toise class and the part of the simulation that instantiates a Tortoise object. The portions
of the simulation that process each Animal generically can remain the same.

Optional Discussion of Polymorphism “Under the Hood”
A key feature of this chapter is its (optional) detailed discussion of polymorphism, virtual
functions and dynamic binding “under the hood,” which uses a detailed diagram to ex-
plain how polymorphism can be implemented in C++.

13.1 Introduction
13.2 Introduction to Polymorphism:

Polymorphic Video Game
13.3 Relationships Among Objects in an

Inheritance Hierarchy
13.3.1 Invoking Base-Class Functions from

Derived-Class Objects
13.3.2 Aiming Derived-Class Pointers at

Base-Class Objects
13.3.3 Derived-Class Member-Function Calls

via Base-Class Pointers
13.3.4 Virtual Functions

13.4 Type Fields and switch Statements
13.5 Abstract Classes and Pure virtual

Functions
13.6 Case Study: Payroll System Using

Polymorphism
13.6.1 Creating Abstract Base Class

Employee

13.6.2 Creating Concrete Derived Class
SalariedEmployee

13.6.4 Creating Concrete Derived Class
CommissionEmployee

13.6.5 Creating Indirect Concrete Derived
Class BasePlusCommission-
Employee

13.6.5 Demonstrating Polymorphic
Processing

13.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding
“Under the Hood”

13.8 Case Study: Payroll System Using
Polymorphism and Runtime Type
Information with Downcasting,
dynamic_cast, typeid and
type_info

13.9 Virtual Destructors
13.10 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

536 Chapter 13 Object-Oriented Programming: Polymorphism

13.2 Introduction to Polymorphism: Polymorphic Video
Game
Suppose that we design a video game that manipulates objects of many different types, in-
cluding objects of classes Martian, Venutian, Plutonian, SpaceShip and LaserBeam.
Imagine that each of these classes inherits from the common base class SpaceObject,
which contains member function draw. Each derived class implements this function in a
manner appropriate for that class. A screen-manager program maintains a container (e.g.,
a vector) that holds SpaceObject pointers to objects of the various classes. To refresh the
screen, the screen manager periodically sends each object the same message—namely,
draw. Each type of object responds in a unique way. For example, a Martian object might
draw itself in red with the appropriate number of antennae, a SpaceShip object might
draw itself as a silver flying saucer, and a LaserBeam object might draw itself as a bright red
beam across the screen. The same message (in this case, draw) sent to a variety of objects
has many forms of results—hence the term polymorphism.

A polymorphic screen manager facilitates adding new classes to a system with minimal
modifications to its code. Suppose that we want to add objects of class Mercurian to our
video game. To do so, we must build a class Mercurian that inherits from SpaceObject,
but provides its own definition of member function draw. Then, when pointers to objects
of class Mercurian appear in the container, you do not need to modify the code for the
screen manager. The screen manager invokes member function draw on every object in the
container, regardless of the object’s type, so the new Mercurian objects simply “plug right
in.” Thus, without modifying the system (other than to build and include the classes
themselves), you can use polymorphism to accommodate additional classes, including
ones that were not even envisioned when the system was created.

13.3 Relationships Among Objects in an Inheritance
Hierarchy
Section 12.4 created an employee class hierarchy, in which class BasePlusCommission-

Employee inherited from class CommissionEmployee. The Chapter 12 examples manipu-
lated CommissionEmployee and BasePlusCommissionEmployee objects by using the

Software Engineering Observation 13.1
Polymorphism enables you to deal in generalities and let the execution-time environment
concern itself with the specifics. You can direct a variety of objects to behave in manners
appropriate to those objects without even knowing their types—as long as those objects
belong to the same inheritance hierarchy and are being accessed off a common base-class
pointer or a common base-class reference.

Software Engineering Observation 13.2
Polymorphism promotes extensibility: Software written to invoke polymorphic behavior is
written independently of the types of the objects to which messages are sent. Thus, new
types of objects that can respond to existing messages can be incorporated into such a system
without modifying the base system. Only client code that instantiates new objects must be
modified to accommodate new types.

13.3 Relationships Among Objects in an Inheritance Hierarchy 537

objects’ names to invoke their member functions. We now examine the relationships
among classes in a hierarchy more closely. The next several sections present a series of ex-
amples that demonstrate how base-class and derived-class pointers can be aimed at base-
class and derived-class objects, and how those pointers can be used to invoke member
functions that manipulate those objects.

• In Section 13.3.1, we assign the address of a derived-class object to a base-class
pointer, then show that invoking a function via the base-class pointer invokes the
base-class functionality in the derived-class object—i.e., the type of the handle de-
termines which function is called.

• In Section 13.3.2, we assign the address of a base-class object to a derived-class
pointer, which results in a compilation error. We discuss the error message and
investigate why the compiler does not allow such an assignment.

• In Section 13.3.3, we assign the address of a derived-class object to a base-class
pointer, then examine how the base-class pointer can be used to invoke only the
base-class functionality—when we attempt to invoke derived-class member functions
through the base-class pointer, compilation errors occur.

• Finally, in Section 13.3.4, we demonstrate how to get polymorphic behavior
from base-class pointers aimed at derived-class objects. We introduce virtual

functions and polymorphism by declaring a base-class function as virtual. We
then assign the address of a derived-class object to the base-class pointer and use
that pointer to invoke derived-class functionality—precisely the capability we need
to achieve polymorphic behavior.

A key concept in these examples is to demonstrate that with public inheritance an
object of a derived class can be treated as an object of its base class. This enables various inter-
esting manipulations. For example, a program can create an array of base-class pointers
that point to objects of many derived-class types. Despite the fact that the derived-class
objects are of different types, the compiler allows this because each derived-class object is an
object of its base class. However, we cannot treat a base-class object as an object of any of its
derived classes. For example, a CommissionEmployee is not a BasePlusCommissionEm-

ployee in the hierarchy defined in Chapter 12—a CommissionEmployee does not have a
baseSalary data member and does not have member functions setBaseSalary and get-

BaseSalary. The is-a relationship applies only from a derived class to its direct and indi-
rect base classes.

13.3.1 Invoking Base-Class Functions from Derived-Class Objects
The example in Fig. 13.1 reuses the final versions of classes CommissionEmployee and
BasePlusCommissionEmployee from Section 12.4.5. The example demonstrates three
ways to aim base and derived-class pointers at base and derived-class objects. The first two
are straightforward—we aim a base-class pointer at a base-class object and invoke base-
class functionality, and we aim a derived-class pointer at a derived-class object and invoke
derived-class functionality. Then, we demonstrate the relationship between derived classes
and base classes (i.e., the is-a relationship of inheritance) by aiming a base-class pointer at
a derived-class object and showing that the base-class functionality is indeed available in
the derived-class object.

538 Chapter 13 Object-Oriented Programming: Polymorphism

1 // Fig. 13.1: fig13_01.cpp
2 // Aiming base-class and derived-class pointers at base-class
3 // and derived-class objects, respectively.
4 #include <iostream>
5 #include <iomanip>
6 #include "CommissionEmployee.h"
7 #include "BasePlusCommissionEmployee.h"
8 using namespace std;
9

10 int main()
11 {
12 // create base-class object
13 CommissionEmployee commissionEmployee(
14 "Sue", "Jones", "222-22-2222", 10000, .06);
15
16 // create base-class pointer
17 CommissionEmployee *commissionEmployeePtr = 0;
18
19 // create derived-class object
20 BasePlusCommissionEmployee basePlusCommissionEmployee(
21 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
22
23 // create derived-class pointer
24 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
25
26 // set floating-point output formatting
27 cout << fixed << setprecision(2);
28
29 // output objects commissionEmployee and basePlusCommissionEmployee
30 cout << "Print base-class and derived-class objects:\n\n";
31 commissionEmployee.print(); // invokes base-class print
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // invokes derived-class print
34
35
36
37 cout << "\n\n\nCalling print with base-class pointer to "
38 << "\nbase-class object invokes base-class print function:\n\n";
39
40
41
42
43 cout << "\n\n\nCalling print with derived-class pointer to "
44 << "\nderived-class object invokes derived-class "
45 << "print function:\n\n";
46
47
48
49
50 cout << "\n\n\nCalling print with base-class pointer to "
51 << "derived-class object\ninvokes base-class print "

Fig. 13.1 | Assigning addresses of base-class and derived-class objects to base-class and
derived-class pointers. (Part 1 of 2.)

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmployee; // perfectly natural

commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural

basePlusCommissionEmployeePtr->print(); // invokes derived-class print

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;

13.3 Relationships Among Objects in an Inheritance Hierarchy 539

Recall that each BasePlusCommissionEmployee object is a CommissionEmployee that
also has a base salary. Class BasePlusCommissionEmployee’s earnings member function
(lines 33–36 of Fig. 12.15) redefines class CommissionEmployee’s earnings member func-
tion (lines 84–87 of Fig. 12.14) to include the object’s base salary. Class BasePlusCommis-
sionEmployee’s print member function (lines 39–47 of Fig. 12.15) redefines class
CommissionEmployee’s version (lines 90–97 of Fig. 12.14) to display the same informa-
tion plus the employee’s base salary.

52 << "function on that derived-class object:\n\n";
53
54 cout << endl;
55 } // end main

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

Fig. 13.1 | Assigning addresses of base-class and derived-class objects to base-class and
derived-class pointers. (Part 2 of 2.)

commissionEmployeePtr->print(); // invokes base-class print

540 Chapter 13 Object-Oriented Programming: Polymorphism

Creating Objects and Displaying Their Contents
In Fig. 13.1, lines 13–14 create a CommissionEmployee object and line 17 creates a pointer
to a CommissionEmployee object; lines 20–21 create a BasePlusCommissionEmployee ob-
ject and line 24 creates a pointer to a BasePlusCommissionEmployee object. Lines 31 and
33 use each object’s name to invoke its print member function.

Aiming a Base-Class Pointer at a Base-Class Object
Line 36 assigns the address of base-class object commissionEmployee to base-class pointer
commissionEmployeePtr, which line 39 uses to invoke member function print on that
CommissionEmployee object. This invokes the version of print defined in base class Com-
missionEmployee.

Aiming a Derived-Class Pointer at a Derived-Class Object
Similarly, line 42 assigns the address of derived-class object basePlusCommissionEmploy-
ee to derived-class pointer basePlusCommissionEmployeePtr, which line 46 uses to in-
voke member function print on that BasePlusCommissionEmployee object. This invokes
the version of print defined in derived class BasePlusCommissionEmployee.

Aiming a Base-Class Pointer at a Derived-Class Object
Line 49 then assigns the address of derived-class object basePlusCommissionEmployee to
base-class pointer commissionEmployeePtr, which line 53 uses to invoke member function
print. This “crossover” is allowed because an object of a derived class is an object of its base
class. Despite the fact that the base class CommissionEmployee pointer points to a derived
class BasePlusCommissionEmployee object, the base class CommissionEmployee’s print

member function is invoked (rather than BasePlusCommissionEmployee’s print function).
The output of each print member-function invocation in this program reveals that the in-
voked functionality depends on the type of the pointer (or reference) used to invoke the function,
not the type of the object for which the member function is called. In Section 13.3.4, when we
introduce virtual functions, we demonstrate that it’s possible to invoke the object type’s
functionality, rather than invoke the handle type’s functionality. We’ll see that this is crucial
to implementing polymorphic behavior—the key topic of this chapter.

13.3.2 Aiming Derived-Class Pointers at Base-Class Objects
In Section 13.3.1, we assigned the address of a derived-class object to a base-class pointer
and explained that the C++ compiler allows this assignment, because a derived-class object
is a base-class object. We take the opposite approach in Fig. 13.2, as we aim a derived-class
pointer at a base-class object. [Note: This program reuses the final versions of classes Com-
missionEmployee and BasePlusCommissionEmployee from Section 12.4.5.] Lines 8–9 of
Fig. 13.2 create a CommissionEmployee object, and line 10 creates a BasePlusCommis-

sionEmployee pointer. Line 14 attempts to assign the address of base-class object commis-
sionEmployee to derived-class pointer basePlusCommissionEmployeePtr, but the
compiler generates an error. The compiler prevents this assignment, because a Commis-

sionEmployee is not a BasePlusCommissionEmployee. Consider the consequences if the
compiler were to allow this assignment. Through a BasePlusCommissionEmployee point-
er, we can invoke every BasePlusCommissionEmployee member function, including set-

BaseSalary, for the object to which the pointer points (i.e., the base-class object
commissionEmployee). However, the CommissionEmployee object does not provide a set-

13.3 Relationships Among Objects in an Inheritance Hierarchy 541

BaseSalary member function, nor does it provide a baseSalary data member to set. This
could lead to problems, because member function setBaseSalary would assume that
there is a baseSalary data member to set at its “usual location” in a BasePlusCommission-
Employee object. This memory does not belong to the CommissionEmployee object, so
member function setBaseSalary might overwrite other important data in memory, pos-
sibly data that belongs to a different object.

13.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
Off a base-class pointer, the compiler allows us to invoke only base-class member func-
tions. Thus, if a base-class pointer is aimed at a derived-class object, and an attempt is
made to access a derived-class-only member function, a compilation error will occur.

Figure 13.3 shows the consequences of attempting to invoke a derived-class member
function off a base-class pointer. [Note: We’re again reusing the versions of classes Commis-
sionEmployee and BasePlusCommissionEmployee from Section 12.4.5.] Line 9 creates
commissionEmployeePtr—a pointer to a CommissionEmployee object—and lines 10–11
create a BasePlusCommissionEmployee object. Line 14 aims commissionEmployeePtr at
derived-class object basePlusCommissionEmployee. Recall from Section 13.3.1 that this is
allowed, because a BasePlusCommissionEmployee is a CommissionEmployee (in the sense
that a BasePlusCommissionEmployee object contains all the functionality of a Commission-
Employee object). Lines 18–22 invoke base-class member functions getFirstName, get-
LastName, getSocialSecurityNumber, getGrossSales and getCommissionRate off the
base-class pointer. All of these calls are legitimate, because BasePlusCommissionEmployee

inherits these member functions from CommissionEmployee. We know that commission-
EmployeePtr is aimed at a BasePlusCommissionEmployee object, so in lines 26–27 we
attempt to invoke BasePlusCommissionEmployee member functions getBaseSalary and

1 // Fig. 13.2: fig13_02.cpp
2 // Aiming a derived-class pointer at a base-class object.
3 #include "CommissionEmployee.h"
4 #include "BasePlusCommissionEmployee.h"
5
6 int main()
7 {
8 CommissionEmployee commissionEmployee(
9 "Sue", "Jones", "222-22-2222", 10000, .06);

10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
11
12
13
14
15 } // end main

Microsoft Visual C++ compiler error message:

C:\cpphtp8_examples\ch13\Fig13_02\fig13_02.cpp(14) : error C2440: '=' :
cannot convert from 'CommissionEmployee *' to 'BasePlusCommissionEmployee *'

Cast from base to derived requires dynamic_cast or static_cast

Fig. 13.2 | Aiming a derived-class pointer at a base-class object.

// aim derived-class pointer at base-class object
// Error: a CommissionEmployee is not a BasePlusCommissionEmployee
basePlusCommissionEmployeePtr = &commissionEmployee;

542 Chapter 13 Object-Oriented Programming: Polymorphism

setBaseSalary. The compiler generates errors on both of these calls, because they’re not
made to member functions of base-class CommissionEmployee. The handle can be used to
invoke only those functions that are members of that handle’s associated class type. (In this
case, off a CommissionEmployee *, we can invoke only CommissionEmployee member
functions setFirstName, getFirstName, setLastName, getLastName, setSocialSecuri-
tyNumber, getSocialSecurityNumber, setGrossSales, getGrossSales, setCommission-
Rate, getCommissionRate, earnings and print.)

1 // Fig. 13.3: fig13_03 .cpp
2 // Attempting to invoke derived-class-only member functions
3 // through a base-class pointer.
4 #include "CommissionEmployee.h"
5 #include "BasePlusCommissionEmployee.h"
6
7 int main()
8 {
9 CommissionEmployee *commissionEmployeePtr = 0; // base class

10 BasePlusCommissionEmployee basePlusCommissionEmployee(
11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300); // derived class
12
13 // aim base-class pointer at derived-class object
14 commissionEmployeePtr = &basePlusCommissionEmployee;
15
16 // invoke base-class member functions on derived-class
17 // object through base-class pointer (allowed)
18 string firstName = commissionEmployeePtr->getFirstName();
19 string lastName = commissionEmployeePtr->getLastName();
20 string ssn = commissionEmployeePtr->getSocialSecurityNumber();
21 double grossSales = commissionEmployeePtr->getGrossSales();
22 double commissionRate = commissionEmployeePtr->getCommissionRate();
23
24
25
26
27
28 } // end main

Microsoft Visual C++ compiler error messages:

C:\cpphtp8_examples\ch13\Fig13_03\fig13_03.cpp(26) : error C2039:
'getBaseSalary' : is not a member of 'CommissionEmployee'

C:\cpphtp8_examples\ch13\Fig13_03\CommissionEmployee.h(10) :
see declaration of 'CommissionEmployee'

C:\cpphtp8_examples\ch13\Fig13_03\fig13_03.cpp(27) : error C2039:
'setBaseSalary' : is not a member of 'CommissionEmployee'

C:\cpphtp8_examples\ch13\Fig13_03\CommissionEmployee.h(10) :
see declaration of 'CommissionEmployee'

GNU C++ compiler error messages:

fig13_03.cpp:26: error: 'getBaseSalary' undeclared (first use this function)
fig13_03.cpp:27: error: 'setBaseSalary' undeclared (first use this function)

Fig. 13.3 | Attempting to invoke derived-class-only functions via a base-class pointer.

// attempt to invoke derived-class-only member functions
// on derived-class object through base-class pointer (disallowed)
double baseSalary = commissionEmployeePtr->getBaseSalary();
commissionEmployeePtr->setBaseSalary(500);

13.3 Relationships Among Objects in an Inheritance Hierarchy 543

The compiler will allow access to derived-class-only members from a base-class
pointer that’s aimed at a derived-class object if we explicitly cast the base-class pointer to
a derived-class pointer—this is known as downcasting. As you know, it’s possible to aim
a base-class pointer at a derived-class object. However, as we demonstrated in Fig. 13.3, a
base-class pointer can be used to invoke only the functions declared in the base class.
Downcasting allows a derived-class-specific operation on a derived-class object pointed to
by a base-class pointer. After a downcast, the program can invoke derived-class functions
that are not in the base class. Downcasting is a potentially dangerous operation.
Section 13.8 demonstrates how to safely use downcasting.

13.3.4 Virtual Functions
In Section 13.3.1, we aimed a base-class CommissionEmployee pointer at a derived-class
BasePlusCommissionEmployee object, then invoked member function print through that
pointer. Recall that the type of the handle determined which class’s functionality to invoke.
In that case, the CommissionEmployee pointer invoked the CommissionEmployee member
function print on the BasePlusCommissionEmployee object, even though the pointer was
aimed at a BasePlusCommissionEmployee object that has its own custom print function.

First, we consider why virtual functions are useful. Suppose that shape classes such
as Circle, Triangle, Rectangle and Square are all derived from base class Shape. Each of
these classes might be endowed with the ability to draw itself via a member function draw.
Although each class has its own draw function, the function for each shape is quite dif-
ferent. In a program that draws a set of shapes, it would be useful to be able to treat all the
shapes generically as objects of the base class Shape. Then, to draw any shape, we could
simply use a base-class Shape pointer to invoke function draw and let the program deter-
mine dynamically (i.e., at runtime) which derived-class draw function to use, based on the
type of the object to which the base-class Shape pointer points at any given time.

To enable this behavior, we declare draw in the base class as a virtual function, and
we override draw in each of the derived classes to draw the appropriate shape. From an
implementation perspective, overriding a function is no different than redefining one
(which is the approach we’ve been using until now). An overridden function in a derived
class has the same signature and return type (i.e., prototype) as the function it overrides in its
base class. If we do not declare the base-class function as virtual, we can redefine that
function. By contrast, if we declare the base-class function as virtual, we can override that
function to enable polymorphic behavior. We declare a virtual function by preceding the
function’s prototype with the keyword virtual in the base class. For example,

Software Engineering Observation 13.3
If the address of a derived-class object has been assigned to a pointer of one of its direct or
indirect base classes, it’s acceptable to cast that base-class pointer back to a pointer of the
derived-class type. In fact, this must be done to send that derived-class object messages that
do not appear in the base class.

Software Engineering Observation 13.4
With virtual functions, the type of the object, not the type of the handle used to invoke
the member function, determines which version of a virtual function to invoke.

virtual void draw() const;

544 Chapter 13 Object-Oriented Programming: Polymorphism

would appear in base class Shape. The preceding prototype declares that function draw is
a virtual function that takes no arguments and returns nothing. This function is declared
const because a draw function typically would not make changes to the Shape object on
which it’s invoked—virtual functions do not have to be const functions.

If a program invokes a virtual function through a base-class pointer to a derived-
class object (e.g., shapePtr->draw()) or a base-class reference to a derived-class object
(e.g., shapeRef.draw()), the program will choose the correct derived-class draw function
dynamically (i.e., at execution time) based on the object type—not the pointer or reference
type. Choosing the appropriate function to call at execution time (rather than at compile
time) is known as dynamic binding or late binding.

When a virtual function is called by referencing a specific object by name and using
the dot member-selection operator (e.g., squareObject.draw()), the function invocation
is resolved at compile time (this is called static binding) and the virtual function that’s
called is the one defined for (or inherited by) the class of that particular object—this is not
polymorphic behavior. Thus, dynamic binding with virtual functions occurs only off
pointer (and, as we’ll soon see, reference) handles.

Now let’s see how virtual functions can enable polymorphic behavior in our
employee hierarchy. Figures 13.4–13.5 are the headers for classes CommissionEmployee

and BasePlusCommissionEmployee, respectively. The only new features in these files is
that we specify each class’s earnings and print member functions as virtual (lines 30–
31 of Fig. 13.4 and lines 20–21 of Fig. 13.5). Because functions earnings and print are
virtual in class CommissionEmployee, class BasePlusCommissionEmployee’s earnings

and print functions override class CommissionEmployee’s. Now, if we aim a base-class
CommissionEmployee pointer at a derived-class BasePlusCommissionEmployee object, and
the program uses that pointer to call either function earnings or print, the BasePlusCom-
missionEmployee object’s corresponding function will be invoked. There were no changes

Software Engineering Observation 13.5
Once a function is declared virtual, it remains virtual all the way down the
inheritance hierarchy from that point, even if that function is not explicitly declared
virtual when a derived class overrides it.

Good Programming Practice 13.1
Even though certain functions are implicitly virtual because of a declaration made high-
er in the class hierarchy, explicitly declare these functions virtual at every level of the class
hierarchy to promote program clarity.

Error-Prevention Tip 13.1
When you browse a class hierarchy to locate a class to reuse, it’s possible that a function in
that class will exhibit virtual function behavior even though it isn’t explicitly declared
virtual. This happens when the class inherits a virtual function from its base class, and
it can lead to subtle logic errors. Such errors can be avoided by explicitly declaring all vir-
tual functions virtual throughout the inheritance hierarchy.

Software Engineering Observation 13.6
When a derived class chooses not to override a virtual function from its base class, the
derived class simply inherits its base class’s virtual function implementation.

13.3 Relationships Among Objects in an Inheritance Hierarchy 545

to the member-function implementations of classes CommissionEmployee and Base-

PlusCommissionEmployee, so we reuse the versions of Figs. 12.14 and 12.15.

1 // Fig. 13.4: CommissionEmployee.h
2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount
26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30
31
32 private:
33 string firstName;
34 string lastName;
35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales
37 double commissionRate; // commission percentage
38 }; // end class CommissionEmployee
39
40 #endif

Fig. 13.4 | CommissionEmployee class header declares earnings and print as virtual.

1 // Fig. 13.5: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.
4 #ifndef BASEPLUS_H
5 #define BASEPLUS_H

Fig. 13.5 | BasePlusCommissionEmployee class header declares earnings and print
functions as virtual. (Part 1 of 2.)

virtual double earnings() const; // calculate earnings
virtual void print() const; // print CommissionEmployee object

546 Chapter 13 Object-Oriented Programming: Polymorphism

We modified Fig. 13.1 to create the program of Fig. 13.6. Lines 40–51 demonstrate
again that a CommissionEmployee pointer aimed at a CommissionEmployee object can be
used to invoke CommissionEmployee functionality, and a BasePlusCommissionEmployee

pointer aimed at a BasePlusCommissionEmployee object can be used to invoke Base-

PlusCommissionEmployee functionality. Line 54 aims the base-class pointer commission-
EmployeePtr at derived-class object basePlusCommissionEmployee. Note that when line
61 invokes member function print off the base-class pointer, the derived-class Base-

PlusCommissionEmployee’s print member function is invoked, so line 61 outputs dif-
ferent text than line 53 does in Fig. 13.1 (when member function print was not declared
virtual). We see that declaring a member function virtual causes the program to
dynamically determine which function to invoke based on the type of object to which the
handle points, rather than on the type of the handle. Note again that when commissionEm-

ployeePtr points to a CommissionEmployee object (line 40), class CommissionEmployee’s
print function is invoked, and when CommissionEmployeePtr points to a BasePlusCom-

missionEmployee object, class BasePlusCommissionEmployee’s print function is
invoked. Thus, the same message—print, in this case—sent (off a base-class pointer) to a
variety of objects related by inheritance to that base class, takes on many forms—this is
polymorphic behavior.

6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10
11 class BasePlusCommissionEmployee : public CommissionEmployee
12 {
13 public:
14 BasePlusCommissionEmployee(const string &, const string &,
15 const string &, double = 0.0, double = 0.0, double = 0.0);
16
17 void setBaseSalary(double); // set base salary
18 double getBaseSalary() const; // return base salary
19
20
21
22 private:
23 double baseSalary; // base salary
24 }; // end class BasePlusCommissionEmployee
25
26 #endif

1 // Fig. 13.6: fig13_06.cpp
2 // Introducing polymorphism, virtual functions and dynamic binding.
3 #include <iostream>

Fig. 13.6 | Demonstrating polymorphism by invoking a derived-class virtual function via a
base-class pointer to a derived-class object. (Part 1 of 3.)

Fig. 13.5 | BasePlusCommissionEmployee class header declares earnings and print
functions as virtual. (Part 2 of 2.)

virtual double earnings() const; // calculate earnings
virtual void print() const; // print BasePlusCommissionEmployee object

13.3 Relationships Among Objects in an Inheritance Hierarchy 547

4 #include <iomanip>
5 #include "CommissionEmployee.h"
6 #include "BasePlusCommissionEmployee.h"
7 using namespace std;
8
9 int main()

10 {
11 // create base-class object
12 CommissionEmployee commissionEmployee(
13 "Sue", "Jones", "222-22-2222", 10000, .06);
14
15 // create base-class pointer
16 CommissionEmployee *commissionEmployeePtr = 0;
17
18 // create derived-class object
19 BasePlusCommissionEmployee basePlusCommissionEmployee(
20 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
21
22 // create derived-class pointer
23 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
24
25 // set floating-point output formatting
26 cout << fixed << setprecision(2);
27
28 // output objects using static binding
29 cout << "Invoking print function on base-class and derived-class "
30 << "\nobjects with static binding\n\n";
31 commissionEmployee.print(); // static binding
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // static binding
34
35 // output objects using dynamic binding
36 cout << "\n\n\nInvoking print function on base-class and "
37 << "derived-class \nobjects with dynamic binding";
38
39
40
41 cout << "\n\nCalling virtual function print with base-class pointer"
42 << "\nto base-class object invokes base-class "
43 << "print function:\n\n";
44
45
46
47
48 cout << "\n\nCalling virtual function print with derived-class "
49 << "pointer\nto derived-class object invokes derived-class "
50 << "print function:\n\n";
51
52
53
54

Fig. 13.6 | Demonstrating polymorphism by invoking a derived-class virtual function via a
base-class pointer to a derived-class object. (Part 2 of 3.)

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmployee;

commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;

basePlusCommissionEmployeePtr->print(); // invokes derived-class print

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;

548 Chapter 13 Object-Oriented Programming: Polymorphism

55 cout << "\n\nCalling virtual function print with base-class pointer"
56 << "\nto derived-class object invokes derived-class "
57 << "print function:\n\n";
58
59
60
61
62 cout << endl;
63 } // end main

Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Calling virtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling virtual function print with base-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 13.6 | Demonstrating polymorphism by invoking a derived-class virtual function via a
base-class pointer to a derived-class object. (Part 3 of 3.)

// polymorphism; invokes BasePlusCommissionEmployee's print;
// base-class pointer to derived-class object
commissionEmployeePtr->print();

13.4 Type Fields and switch Statements 549

13.4 Type Fields and switch Statements
One way to determine the type of an object is to use a switch statement to check the value
of a field in the object. This allows us to distinguish among object types, then invoke an
appropriate action for a particular object. For example, in a hierarchy of shapes in which
each shape object has a shapeType attribute, a switch statement could check the object’s
shapeType to determine which print function to call.

Using switch logic exposes programs to a variety of potential problems. For example,
you might forget to include a type test when one is warranted, or might forget to test all
possible cases in a switch statement. When modifying a switch-based system by adding
new types, you might forget to insert the new cases in all relevant switch statements. Every
addition or deletion of a class requires the modification of every switch statement in the
system; tracking these statements down can be time consuming and error prone.

13.5 Abstract Classes and Pure virtual Functions
When we think of a class as a type, we assume that programs will create objects of that
type. However, there are cases in which it’s useful to define classes from which you never
intend to instantiate any objects. Such classes are called abstract classes. Because these classes
normally are used as base classes in inheritance hierarchies, we refer to them as abstract
base classes. These classes cannot be used to instantiate objects, because, as we’ll soon see,
abstract classes are incomplete—derived classes must define the “missing pieces” before
objects of these classes can be instantiated. We build programs with abstract classes in
Section 13.6.

An abstract class provides a base class from which other classes can inherit. Classes that
can be used to instantiate objects are called concrete classes. Such classes define or inherit
implementations for every member function they declare. We could have an abstract base
class TwoDimensionalShape and derive such concrete classes as Square, Circle and Tri-

angle. We could also have an abstract base class ThreeDimensionalShape and derive such
concrete classes as Cube, Sphere and Cylinder. Abstract base classes are too generic to define
real objects; we need to be more specific before we can think of instantiating objects. For
example, if someone tells you to “draw the two-dimensional shape,” what shape would you
draw? Concrete classes provide the specifics that make it reasonable to instantiate objects.

An inheritance hierarchy does not need to contain any abstract classes, but many
object-oriented systems have class hierarchies headed by abstract base classes. In some
cases, abstract classes constitute the top few levels of the hierarchy. A good example of this
is the shape hierarchy in Fig. 12.3, which begins with abstract base class Shape. On the

Software Engineering Observation 13.7
Polymorphic programming can eliminate the need for switch logic. By using the
polymorphism mechanism to perform the equivalent logic, you can avoid the kinds of
errors typically associated with switch logic.

Software Engineering Observation 13.8
An interesting consequence of using polymorphism is that programs take on a simplified
appearance. They contain less branching logic and simpler sequential code. This
simplification facilitates testing, debugging and program maintenance.

550 Chapter 13 Object-Oriented Programming: Polymorphism

next level of the hierarchy we have two more abstract base classes—TwoDimensionalShape

and ThreeDimensionalShape. The next level of the hierarchy defines concrete classes for
two-dimensional shapes (namely, Circle, Square and Triangle) and for three-dimen-
sional shapes (namely, Sphere, Cube and Tetrahedron).

Pure Virtual Functions
A class is made abstract by declaring one or more of its virtual functions to be “pure.” A
pure virtual function is specified by placing “= 0” in its declaration, as in

The “= 0” is a pure specifier. Pure virtual functions do not provide implementations. Ev-
ery concrete derived class must override all base-class pure virtual functions with concrete
implementations of those functions. The difference between a virtual function and a
pure virtual function is that a virtual function has an implementation and gives the de-
rived class the option of overriding the function; by contrast, a pure virtual function does
not provide an implementation and requires the derived class to override the function for
that derived class to be concrete; otherwise the derived class remains abstract.

Pure virtual functions are used when it does not make sense for the base class to have
an implementation of a function, but you want all concrete derived classes to implement
the function. Returning to our earlier example of space objects, it does not make sense for
the base class SpaceObject to have an implementation for function draw (as there is no
way to draw a generic space object without having more information about what type of
space object is being drawn). An example of a function that would be defined as virtual
(and not pure virtual) would be one that returns a name for the object. We can name a
generic SpaceObject (for instance, as "space object"), so a default implementation for
this function can be provided, and the function does not need to be pure virtual. The
function is still declared virtual, however, because it’s expected that derived classes will
override this function to provide more specific names for the derived-class objects.

Although we cannot instantiate objects of an abstract base class, we can use the abstract
base class to declare pointers and references that can refer to objects of any concrete classes
derived from the abstract class. Programs typically use such pointers and references to
manipulate derived-class objects polymorphically.

virtual void draw() const = 0; // pure virtual function

Software Engineering Observation 13.9
An abstract class defines a common public interface for the various classes in a class
hierarchy. An abstract class contains one or more pure virtual functions that concrete
derived classes must override.

Common Programming Error 13.1
Failure to override a pure virtual function in a derived classmakes that class abstract.
Attempting to instantiate an object of an abstract class causes a compilation error.

Software Engineering Observation 13.10
An abstract class has at least one pure virtual function. An abstract class also can have
data members and concrete functions (including constructors and destructors), which are
subject to the normal rules of inheritance by derived classes.

13.6 Case Study: Payroll System Using Polymorphism 551

Device Drivers and Polymorphism
Polymorphism is particularly effective for implementing layered software systems. In oper-
ating systems, for example, each type of physical device could operate quite differently from
the others. Even so, commands to read or write data from and to devices may have a certain
uniformity. The write message sent to a device-driver object needs to be interpreted specifi-
cally in the context of that device driver and how that device driver manipulates devices of a
specific type. However, the write call itself really is no different from the write to any other
device in the system—place some number of bytes from memory onto that device. An ob-
ject-oriented operating system might use an abstract base class to provide an interface appro-
priate for all device drivers. Then, through inheritance from that abstract base class, derived
classes are formed that all operate similarly. The capabilities (i.e., the public functions) of-
fered by the device drivers are provided as pure virtual functions in the abstract base class.
The implementations of these pure virtual functions are provided in the derived classes that
correspond to the specific types of device drivers. This architecture also allows new devices
to be added to a system easily, even after the operating system has been defined. The user can
just plug in the device and install its new device driver. The operating system “talks” to this
new device through its device driver, which has the same public member functions as all
other device drivers—those defined in the device driver abstract base class.

Iterators and Polymorphism
It’s common in object-oriented programming to define an iterator class that can traverse all
the objects in a container (such as an array). For example, a program can print a list of objects
in a vector by creating an iterator object, then using the iterator to obtain the next element
of the list each time the iterator is called. Iterators often are used in polymorphic program-
ming to traverse an array or a linked list of pointers to objects from various levels of a hierar-
chy. The pointers in such a list are all base-class pointers. (Chapter 22, Standard Template
Library (STL), presents a thorough treatment of iterators.) A list of pointers to objects of the-
base class TwoDimensionalShape could contain pointers to objects of the classes Square,
Circle, Triangle and so on. Using polymorphism to send a draw message, off a TwoDimen-
sionalShape * pointer, to each object in the list would draw them correctly on the screen.

13.6 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee-BasePlusCommissionEmployee hierar-
chy that we explored throughout Section 12.4. In this example, we use an abstract class
and polymorphism to perform payroll calculations based on the type of employee. We cre-
ate an enhanced employee hierarchy to solve the following problem:

A company pays its employees weekly. The employees are of three types: Salaried
employees are paid a fixed weekly salary regardless of the number of hours worked,
commission employees are paid a percentage of their sales and base-salary-plus-com-
mission employees receive a base salary plus a percentage of their sales. For the current
pay period, the company has decided to reward base-salary-plus-commission employees
by adding 10 percent to their base salaries. The company wants to implement a C++
program that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that derive directly from Employee are SalariedEmployee and CommissionEm-

ployee. Class BasePlusCommissionEmployee—derived from CommissionEmployee—rep-

552 Chapter 13 Object-Oriented Programming: Polymorphism

resents the last employee type. The UML class diagram in Fig. 13.7 shows the inheritance
hierarchy for our polymorphic employee payroll application. The abstract class name
Employee is italicized, as per the convention of the UML.

Abstract base class Employee declares the “interface” to the hierarchy—that is, the set
of member functions that a program can invoke on all Employee objects. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so private data members firstName, lastName and socialSecu-

rityNumber appear in abstract base class Employee.

The following sections implement the Employee class hierarchy. The first five each
implement one of the abstract or concrete classes. The last section implements a test pro-
gram that builds objects of all these classes and processes the objects polymorphically.

13.6.1 Creating Abstract Base Class Employee
Class Employee (Figs. 13.9–13.10, discussed in further detail shortly) provides functions
earnings and print, in addition to various get and set functions that manipulate Employ-
ee’s data members. An earnings function certainly applies generically to all employees,
but each earnings calculation depends on the employee’s class. So we declare earnings as
pure virtual in base class Employee because a default implementation does not make sense
for that function—there is not enough information to determine what amount earnings
should return. Each derived class overrides earnings with an appropriate implementation.
To calculate an employee’s earnings, the program assigns the address of an employee’s ob-

Fig. 13.7 | Employee hierarchy UML class diagram.

Software Engineering Observation 13.11
A derived class can inherit interface and/or implementation from a base class. Hierarchies
designed for implementation inheritance tend to have their functionality high in the
hierarchy—each new derived class inherits one or more member functions that were
defined in a base class, and the derived class uses the base-class definitions. Hierarchies
designed for interface inheritance tend to have their functionality lower in the
hierarchy—a base class specifies one or more functions that should be defined for each class
in the hierarchy (i.e., they have the same prototype), but the individual derived classes
provide their own implementations of the function(s).

Employee

CommissionEmployeeSalariedEmployee

BasePlusCommissionEmployee

Employee class is abstract;
displayed in italics

13.6 Case Study: Payroll System Using Polymorphism 553

ject to a base class Employee pointer, then invokes the earnings function on that object.
We maintain a vector of Employee pointers, each of which points to an Employee object.
Of course, there cannot be Employee objects, because Employee is an abstract class—because of
inheritance, however, all objects of all derived classes of Employee may nevertheless be thought
of as Employee objects. The program iterates through the vector and calls function earn-

ings for each Employee object. C++ processes these function calls polymorphically. Includ-
ing earnings as a pure virtual function in Employee forces every direct derived class of
Employee that wishes to be a concrete class to override earnings.

Function print in class Employee displays the first name, last name and social security
number of the employee. As we’ll see, each derived class of Employee overrides function
print to output the employee’s type (e.g., "salaried employee:") followed by the rest of
the employee’s information. Function print in the derived classes could also call earn-
ings, even though earnings is a pure-virtual function in base class Employee.

The diagram in Fig. 13.8 shows each of the four classes in the hierarchy down the left
side and functions earnings and print across the top. For each class, the diagram shows
the desired results of each function. Class Employee specifies “= 0” for function earnings

to indicate that this is a pure virtual function and hence has no implementation. Each
derived class overrides this function to provide an appropriate implementation. We do not
list base class Employee’s get and set functions because they’re not overridden in any of the
derived classes—each of these functions is inherited and used “as is” by each of the derived
classes.

Employee Class Header
Let’s consider class Employee’s header (Fig. 13.9). The public member functions include
a constructor that takes the first name, last name and social security number as arguments

Fig. 13.8 | Polymorphic interface for the Employee hierarchy classes.

weeklySalary

= 0

Commission-
Employee

BasePlus-
Commission-
Employee

Salaried-
Employee

Employee

printearnings

commissionRate * grossSales

(commissionRate *
grossSales) + baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base-salaried commission employee:
firstName lastName

social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

554 Chapter 13 Object-Oriented Programming: Polymorphism

(line 12); set functions that set the first name, last name and social security number (lines
14, 17 and 20, respectively); get functions that return the first name, last name and social
security number (lines 15, 18 and 21, respectively); pure virtual function earnings (line
24) and virtual function print (line 25).

Recall that we declared earnings as a pure virtual function because first we must
know the specific Employee type to determine the appropriate earnings calculations.
Declaring this function as pure virtual indicates that each concrete derived class must
provide an earnings implementation and that a program can use base-class Employee

pointers to invoke function earnings polymorphically for any type of Employee.

Employee Class Member-Function Definitions
Figure 13.10 contains the member-function implementations for class Employee. No im-
plementation is provided for virtual function earnings. The Employee constructor (lines
9–14) does not validate the social security number. Normally, such validation should be
provided.

1 // Fig. 13.9: Employee.h
2 // Employee abstract base class.
3 #ifndef EMPLOYEE_H
4 #define EMPLOYEE_H
5
6 #include <string> // C++ standard string class
7 using namespace std;
8
9 class Employee

10 {
11 public:
12 Employee(const string &, const string &, const string &);
13
14 void setFirstName(const string &); // set first name
15 string getFirstName() const; // return first name
16
17 void setLastName(const string &); // set last name
18 string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const string &); // set SSN
21 string getSocialSecurityNumber() const; // return SSN
22
23
24
25
26 private:
27 string firstName;
28 string lastName;
29 string socialSecurityNumber;
30 }; // end class Employee
31
32 #endif // EMPLOYEE_H

Fig. 13.9 | Employee class header.

// pure virtual function makes Employee an abstract base class
virtual double earnings() const = 0; // pure virtual
virtual void print() const; // virtual

13.6 Case Study: Payroll System Using Polymorphism 555

1 // Fig. 13.10: Employee.cpp
2 // Abstract-base-class Employee member-function definitions.
3 // Note: No definitions are given for pure virtual functions.
4 #include <iostream>
5 #include "Employee.h" // Employee class definition
6 using namespace std;
7
8 // constructor
9 Employee::Employee(const string &first, const string &last,

10 const string &ssn)
11 : firstName(first), lastName(last), socialSecurityNumber(ssn)
12 {
13 // empty body
14 } // end Employee constructor
15
16 // set first name
17 void Employee::setFirstName(const string &first)
18 {
19 firstName = first;
20 } // end function setFirstName
21
22 // return first name
23 string Employee::getFirstName() const
24 {
25 return firstName;
26 } // end function getFirstName
27
28 // set last name
29 void Employee::setLastName(const string &last)
30 {
31 lastName = last;
32 } // end function setLastName
33
34 // return last name
35 string Employee::getLastName() const
36 {
37 return lastName;
38 } // end function getLastName
39
40 // set social security number
41 void Employee::setSocialSecurityNumber(const string &ssn)
42 {
43 socialSecurityNumber = ssn; // should validate
44 } // end function setSocialSecurityNumber
45
46 // return social security number
47 string Employee::getSocialSecurityNumber() const
48 {
49 return socialSecurityNumber;
50 } // end function getSocialSecurityNumber
51

Fig. 13.10 | Employee class implementation file. (Part 1 of 2.)

556 Chapter 13 Object-Oriented Programming: Polymorphism

The virtual function print (Fig. 13.10, lines 53–57) provides an implementation
that will be overridden in each of the derived classes. Each of these functions will, however,
use the abstract class’s version of print to print information common to all classes in the
Employee hierarchy.

13.6.2 Creating Concrete Derived Class SalariedEmployee
Class SalariedEmployee (Figs. 13.11–13.12) derives from class Employee (line 8 of
Fig. 13.11). The public member functions include a constructor that takes a first name,
a last name, a social security number and a weekly salary as arguments (lines 11–12); a set
function to assign a new nonnegative value to data member weeklySalary (line 14); a get
function to return weeklySalary’s value (line 15); a virtual function earnings that cal-
culates a SalariedEmployee’s earnings (line 18) and a virtual function print (line 19)
that outputs the employee’s type, namely, "salaried employee: " followed by employee-
specific information produced by base class Employee’s print function and SalariedEm-

ployee’s getWeeklySalary function.

52 // print Employee's information (virtual, but not pure virtual)
53 void Employee::print() const
54 {
55 cout << getFirstName() << ' ' << getLastName()
56 << "\nsocial security number: " << getSocialSecurityNumber();
57 } // end function print

1 // Fig. 13.11: SalariedEmployee.h
2 // SalariedEmployee class derived from Employee.
3 #ifndef SALARIED_H
4 #define SALARIED_H
5
6 #include "Employee.h" // Employee class definition
7
8
9 {

10 public:
11 SalariedEmployee(const string &, const string &,
12 const string &, double = 0.0);
13
14 void setWeeklySalary(double); // set weekly salary
15 double getWeeklySalary() const; // return weekly salary
16
17
18
19
20 private:
21 double weeklySalary; // salary per week
22 }; // end class SalariedEmployee
23
24 #endif // SALARIED_H

Fig. 13.11 | SalariedEmployee class header.

Fig. 13.10 | Employee class implementation file. (Part 2 of 2.)

class SalariedEmployee : public Employee

// keyword virtual signals intent to override
virtual double earnings() const; // calculate earnings
virtual void print() const; // print SalariedEmployee object

13.6 Case Study: Payroll System Using Polymorphism 557

SalariedEmployee Class Member-Function Definitions
Figure 13.12 contains the member-function implementations for SalariedEmployee.
The class’s constructor passes the first name, last name and social security number to the
Employee constructor (line 10) to initialize the private data members that are inherited
from the base class, but not directly accessible in the derived class. Function earnings

(lines 32–35) overrides pure virtual function earnings in Employee to provide a concrete
implementation that returns the SalariedEmployee’s weekly salary. If we did not imple-
ment earnings, class SalariedEmployee would be an abstract class, and any attempt to
instantiate an object of the class would result in a compilation error (and, of course, we
want SalariedEmployee here to be a concrete class). In class SalariedEmployee’s header,
we declared member functions earnings and print as virtual (lines 18–19 of
Fig. 13.11)—actually, placing the virtual keyword before these member functions is re-
dundant. We defined them as virtual in base class Employee, so they remain virtual

functions throughout the class hierarchy. Explicitly declaring such functions virtual at
every level of the hierarchy can promote program clarity. Not declaring earnings as pure
virtual signals our intent to provide an implementation in this concrete class.

1 // Fig. 13.12: SalariedEmployee.cpp
2 // SalariedEmployee class member-function definitions.
3 #include <iostream>
4 #include "SalariedEmployee.h" // SalariedEmployee class definition
5 using namespace std;
6
7 // constructor
8 SalariedEmployee::SalariedEmployee(const string &first,
9 const string &last, const string &ssn, double salary)

10
11 {
12 setWeeklySalary(salary);
13 } // end SalariedEmployee constructor
14
15 // set salary
16 void SalariedEmployee::setWeeklySalary(double salary)
17 {
18 if (salary >= 0.0)
19 weeklySalary = salary;
20 else
21 throw invalid_argument("Weekly salary must be >= 0.0");
22 } // end function setWeeklySalary
23
24 // return salary
25 double SalariedEmployee::getWeeklySalary() const
26 {
27 return weeklySalary;
28 } // end function getWeeklySalary
29
30 // calculate earnings;
31 // override pure virtual function earnings in Employee
32 double SalariedEmployee::earnings() const
33 {

Fig. 13.12 | SalariedEmployee class implementation file. (Part 1 of 2.)

: Employee(first, last, ssn)

558 Chapter 13 Object-Oriented Programming: Polymorphism

Function print of class SalariedEmployee (lines 38–43 of Fig. 13.12) overrides
Employee function print. If class SalariedEmployee did not override print, Salaried-
Employee would inherit the Employee version of print. In that case, SalariedEmployee’s
print function would simply return the employee’s full name and social security number,
which does not adequately represent a SalariedEmployee. To print a SalariedEmployee’s
complete information, the derived class’s print function outputs "salaried employee: "

followed by the base-class Employee-specific information (i.e., first name, last name and
social security number) printed by invoking the base class’s print function using the scope
resolution operator (line 41)—this is a nice example of code reuse. Without the scope res-
olution operator, the print call would cause infinite recursion. The output produced by
SalariedEmployee’s print function contains the employee’s weekly salary obtained by
invoking the class’s getWeeklySalary function.

13.6.3 Creating Concrete Derived Class CommissionEmployee
Class CommissionEmployee (Figs. 13.13–13.14) derives from Employee (Fig. 13.13, line
8). The member-function implementations (Fig. 13.14) include a constructor (lines 8–
14) that takes a first name, last name, social security number, sales amount and commis-
sion rate; set functions (lines 17–23 and 32–38) to assign new values to data members com-
missionRate and grossSales, respectively; get functions (lines 26–29 and 41–44) that
retrieve their values; function earnings (lines 47–50) to calculate a CommissionEmployee’s
earnings; and function print (lines 53–59) to output the employee’s type, namely,
"commission employee: " and employee-specific information. The constructor passes the
first name, last name and social security number to the Employee constructor (line 10) to
initialize Employee’s private data members. Function print calls base-class function
print (line 56) to display the Employee-specific information.

34 return getWeeklySalary();
35 } // end function earnings
36
37 // print SalariedEmployee's information
38 void SalariedEmployee::print() const
39 {
40 cout << "salaried employee: ";
41
42 cout << "\nweekly salary: " << getWeeklySalary();
43 } // end function print

1 // Fig. 13.13: CommissionEmployee.h
2 // CommissionEmployee class derived from Employee.
3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5
6 #include "Employee.h" // Employee class definition
7

Fig. 13.13 | CommissionEmployee class header. (Part 1 of 2.)

Fig. 13.12 | SalariedEmployee class implementation file. (Part 2 of 2.)

Employee::print(); // reuse abstract base-class print function

13.6 Case Study: Payroll System Using Polymorphism 559

8
9 {

10 public:
11 CommissionEmployee(const string &, const string &,
12 const string &, double = 0.0, double = 0.0);
13
14 void setCommissionRate(double); // set commission rate
15 double getCommissionRate() const; // return commission rate
16
17 void setGrossSales(double); // set gross sales amount
18 double getGrossSales() const; // return gross sales amount
19
20
21
22
23 private:
24 double grossSales; // gross weekly sales
25 double commissionRate; // commission percentage
26 }; // end class CommissionEmployee
27
28 #endif // COMMISSION_H

1 // Fig. 13.14: CommissionEmployee.cpp
2 // CommissionEmployee class member-function definitions.
3 #include <iostream>
4 #include "CommissionEmployee.h" // CommissionEmployee class definition
5 using namespace std;
6
7 // constructor
8 CommissionEmployee::CommissionEmployee(const string &first,
9 const string &last, const string &ssn, double sales, double rate)

10
11 {
12 setGrossSales(sales);
13 setCommissionRate(rate);
14 } // end CommissionEmployee constructor
15
16 // set gross sales amount
17 void CommissionEmployee::setGrossSales(double sales)
18 {
19 if (sales >= 0.0)
20 grossSales = sales;
21 else
22 throw invalid_argument("Gross sales must be >= 0.0");
23 } // end function setGrossSales
24
25 // return gross sales amount
26 double CommissionEmployee::getGrossSales() const
27 {

Fig. 13.14 | CommissionEmployee class implementation file. (Part 1 of 2.)

Fig. 13.13 | CommissionEmployee class header. (Part 2 of 2.)

class CommissionEmployee : public Employee

// keyword virtual signals intent to override
virtual double earnings() const; // calculate earnings
virtual void print() const; // print CommissionEmployee object

: Employee(first, last, ssn)

560 Chapter 13 Object-Oriented Programming: Polymorphism

13.6.4 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Figs. 13.15–13.16) directly inherits from class
CommissionEmployee (line 8 of Fig. 13.15) and therefore is an indirect derived class of class
Employee. Class BasePlusCommissionEmployee’s member-function implementations in-
clude a constructor (lines 8–14 of Fig. 13.16) that takes as arguments a first name, a last
name, a social security number, a sales amount, a commission rate and a base salary. It then
passes the first name, last name, social security number, sales amount and commission rate
to the CommissionEmployee constructor (line 11) to initialize the inherited members.
BasePlusCommissionEmployee also contains a set function (lines 17–23) to assign a new
value to data member baseSalary and a get function (lines 26–29) to return baseSalary’s
value. Function earnings (lines 33–36) calculates a BasePlusCommissionEmployee’s earn-
ings. Line 35 in function earnings calls base-class CommissionEmployee’s earnings func-
tion to calculate the commission-based portion of the employee’s earnings. This is another
nice example of code reuse. BasePlusCommissionEmployee’s print function (lines 39–44)
outputs "base-salaried", followed by the output of base-class CommissionEmployee’s

28 return grossSales;
29 } // end function getGrossSales
30
31 // set commission rate
32 void CommissionEmployee::setCommissionRate(double rate)
33 {
34 if (rate > 0.0 && rate < 1.0)
35 commissionRate = rate;
36 else
37 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
38 } // end function setCommissionRate
39
40 // return commission rate
41 double CommissionEmployee::getCommissionRate() const
42 {
43 return commissionRate;
44 } // end function getCommissionRate
45
46 // calculate earnings; override pure virtual function earnings in Employee
47 double CommissionEmployee::earnings() const
48 {
49 return getCommissionRate() * getGrossSales();
50 } // end function earnings
51
52 // print CommissionEmployee's information
53 void CommissionEmployee::print() const
54 {
55 cout << "commission employee: ";
56
57 cout << "\ngross sales: " << getGrossSales()
58 << "; commission rate: " << getCommissionRate();
59 } // end function print

Fig. 13.14 | CommissionEmployee class implementation file. (Part 2 of 2.)

Employee::print(); // code reuse

13.6 Case Study: Payroll System Using Polymorphism 561

print function (another example of code reuse), then the base salary. The resulting output
begins with "base-salaried commission employee: " followed by the rest of the Base-

PlusCommissionEmployee’s information. Recall that CommissionEmployee’s print dis-
plays the employee’s first name, last name and social security number by invoking the
print function of its base class (i.e., Employee)—yet another example of code reuse. Base-
PlusCommissionEmployee’s print initiates a chain of functions calls that spans all three
levels of the Employee hierarchy.

1 // Fig. 13.15: BasePlusCommissionEmployee.h
2 // BasePlusCommissionEmployee class derived from CommissionEmployee.
3 #ifndef BASEPLUS_H
4 #define BASEPLUS_H
5
6 #include "CommissionEmployee.h" // CommissionEmployee class definition
7
8
9 {

10 public:
11 BasePlusCommissionEmployee(const string &, const string &,
12 const string &, double = 0.0, double = 0.0, double = 0.0);
13
14 void setBaseSalary(double); // set base salary
15 double getBaseSalary() const; // return base salary
16
17
18
19
20 private:
21 double baseSalary; // base salary per week
22 }; // end class BasePlusCommissionEmployee
23
24 #endif // BASEPLUS_H

Fig. 13.15 | BasePlusCommissionEmployee class header.

1 // Fig. 13.16: BasePlusCommissionEmployee.cpp
2 // BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include "BasePlusCommissionEmployee.h"
5 using namespace std;
6
7 // constructor
8 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
9 const string &first, const string &last, const string &ssn,

10 double sales, double rate, double salary)
11
12 {
13 setBaseSalary(salary); // validate and store base salary
14 } // end BasePlusCommissionEmployee constructor
15

Fig. 13.16 | BasePlusCommissionEmployee class implementation file. (Part 1 of 2.)

class BasePlusCommissionEmployee : public CommissionEmployee

// keyword virtual signals intent to override
virtual double earnings() const; // calculate earnings
virtual void print() const; // print BasePlusCommissionEmployee object

: CommissionEmployee(first, last, ssn, sales, rate)

562 Chapter 13 Object-Oriented Programming: Polymorphism

13.6.5 Demonstrating Polymorphic Processing
To test our Employee hierarchy, the program in Fig. 13.17 creates an object of each of the
three concrete classes SalariedEmployee, CommissionEmployee and BasePlusCommis-

sionEmployee. The program manipulates these objects, first with static binding, then poly-
morphically, using a vector of Employee pointers. Lines 22–27 create objects of each of
the three concrete Employee derived classes. Lines 32–38 output each Employee’s informa-
tion and earnings. Each member-function invocation in lines 32–37 is an example of static
binding—at compile time, because we are using name handles (not pointers or references that
could be set at execution time), the compiler can identify each object’s type to determine
which print and earnings functions are called.

16 // set base salary
17 void BasePlusCommissionEmployee::setBaseSalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else
22 throw invalid_argument("Salary must be >= 0.0");
23 } // end function setBaseSalary
24
25 // return base salary
26 double BasePlusCommissionEmployee::getBaseSalary() const
27 {
28 return baseSalary;
29 } // end function getBaseSalary
30
31 // calculate earnings;
32 // override virtual function earnings in CommissionEmployee
33 double BasePlusCommissionEmployee::earnings() const
34 {
35 return getBaseSalary() + ;
36 } // end function earnings
37
38 // print BasePlusCommissionEmployee's information
39 void BasePlusCommissionEmployee::print() const
40 {
41 cout << "base-salaried ";
42
43 cout << "; base salary: " << getBaseSalary();
44 } // end function print

1 // Fig. 13.17: fig13_17.cpp
2 // Processing Employee derived-class objects individually
3 // and polymorphically using dynamic binding.
4 #include <iostream>
5 #include <iomanip>
6 #include <vector>

Fig. 13.17 | Employee class hierarchy driver program. (Part 1 of 4.)

Fig. 13.16 | BasePlusCommissionEmployee class implementation file. (Part 2 of 2.)

CommissionEmployee::earnings()

CommissionEmployee::print(); // code reuse

13.6 Case Study: Payroll System Using Polymorphism 563

7 #include "Employee.h"
8 #include "SalariedEmployee.h"
9 #include "CommissionEmployee.h"

10 #include "BasePlusCommissionEmployee.h"
11 using namespace std;
12
13 void virtualViaPointer(const Employee * const); // prototype
14 void virtualViaReference(const Employee &); // prototype
15
16 int main()
17 {
18 // set floating-point output formatting
19 cout << fixed << setprecision(2);
20
21 // create derived-class objects
22 SalariedEmployee salariedEmployee(
23 "John", "Smith", "111-11-1111", 800);
24 CommissionEmployee commissionEmployee(
25 "Sue", "Jones", "333-33-3333", 10000, .06);
26 BasePlusCommissionEmployee basePlusCommissionEmployee(
27 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
28
29 cout << "Employees processed individually using static binding:\n\n";
30
31 // output each Employee’s information and earnings using static binding
32
33 cout << "\nearned $" << << "\n\n";
34
35 cout << "\nearned $" << << "\n\n";
36
37 cout << "\nearned $" <<
38 << "\n\n";
39
40
41
42
43
44
45
46
47
48 cout << "Employees processed polymorphically via dynamic binding:\n\n";
49
50 // call virtualViaPointer to print each Employee's information
51 // and earnings using dynamic binding
52 cout << "Virtual function calls made off base-class pointers:\n\n";
53
54
55
56
57 // call virtualViaReference to print each Employee's information
58 // and earnings using dynamic binding
59 cout << "Virtual function calls made off base-class references:\n\n";

Fig. 13.17 | Employee class hierarchy driver program. (Part 2 of 4.)

salariedEmployee.print();
salariedEmployee.earnings()

commissionEmployee.print();
commissionEmployee.earnings()

basePlusCommissionEmployee.print();
basePlusCommissionEmployee.earnings()

// create vector of three base-class pointers
vector < Employee * > employees(3);

// initialize vector with Employees
employees[0] = &salariedEmployee;
employees[1] = &commissionEmployee;
employees[2] = &basePlusCommissionEmployee;

for (size_t i = 0; i < employees.size(); ++i)
virtualViaPointer(employees[i]);

564 Chapter 13 Object-Oriented Programming: Polymorphism

60
61
62
63 } // end main
64
65
66
67
68
69
70
71
72
73
74
75
76
77 ‘
78
79

Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 13.17 | Employee class hierarchy driver program. (Part 3 of 4.)

for (size_t i = 0; i < employees.size(); ++i)
virtualViaReference(*employees[i]); // note dereferencing

// call Employee virtual functions print and earnings off a
// base-class pointer using dynamic binding
void virtualViaPointer(const Employee * const baseClassPtr)
{

baseClassPtr->print();
cout << "\nearned $" << baseClassPtr->earnings() << "\n\n";

} // end function virtualViaPointer

// call Employee virtual functions print and earnings off a
// base-class reference using dynamic binding
void virtualViaReference(const Employee &baseClassRef)
{

baseClassRef.print();
cout << "\nearned $" << baseClassRef.earnings() << "\n\n";

} // end function virtualViaReference

13.6 Case Study: Payroll System Using Polymorphism 565

Line 41 allocates vector employees, which contains three Employee pointers. Line 44
aims employees[0] at object salariedEmployee. Line 45 aims employees[1] at object
commissionEmployee. Line 46 aims employee[2] at object basePlusCommissionEm-

ployee. The compiler allows these assignments, because a SalariedEmployee is an
Employee, a CommissionEmployee is an Employee and a BasePlusCommissionEmployee is
an Employee. Therefore, we can assign the addresses of SalariedEmployee, Commission-
Employee and BasePlusCommissionEmployee objects to base-class Employee pointers, even
though Employee is an abstract class.

The loop in lines 54–55 traverses vector employees and invokes function virtual-

ViaPointer (lines 67–71) for each element in employees. Function virtualViaPointer

receives in parameter baseClassPtr the address stored in an employees element. Each call
to virtualViaPointer uses baseClassPtr to invoke virtual functions print (line 69)
and earnings (line 70). Function virtualViaPointer does not contain any SalariedEm-

ployee, CommissionEmployee or BasePlusCommissionEmployee type information. The
function knows only about base-class type Employee. Therefore, the compiler cannot know
which concrete class’s functions to call through baseClassPtr. Yet at execution time, each
virtual-function invocation calls the function on the object to which baseClassPtr points
at that moment. The output illustrates that the appropriate functions for each class are indeed
invoked and that each object’s proper information is displayed. For instance, the weekly
salary is displayed for the SalariedEmployee, and the gross sales are displayed for the Com-
missionEmployee and BasePlusCommissionEmployee. Also, obtaining the earnings of
each Employee polymorphically in line 70 produces the same results as obtaining these
employees’ earnings via static binding in lines 33, 35 and 37. All virtual function calls to
print and earnings are resolved at runtime with dynamic binding.

Finally, another for statement (lines 61–62) traverses employees and invokes func-
tion virtualViaReference (lines 75–79) for each element in the vector. Function
virtualViaReference receives in its parameter baseClassRef (of type const Employee &)
a reference to the object obtained by dereferencing the pointer stored in each employees ele-
ment (line 62). Each call to virtualViaReference invokes virtual functions print (line
77) and earnings (line 78) via reference baseClassRef to demonstrate that polymorphic

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 13.17 | Employee class hierarchy driver program. (Part 4 of 4.)

566 Chapter 13 Object-Oriented Programming: Polymorphism

processing occurs with base-class references as well. Each virtual-function invocation calls
the function on the object to which baseClassRef refers at runtime. This is another
example of dynamic binding. The output produced using base-class references is identical
to the output produced using base-class pointers.

13.7 (Optional) Polymorphism, Virtual Functions and
Dynamic Binding “Under the Hood”
C++ makes polymorphism easy to program. It’s certainly possible to program for polymor-
phism in non-object-oriented languages such as C, but doing so requires complex and po-
tentially dangerous pointer manipulations. This section discusses how C++ can implement
polymorphism, virtual functions and dynamic binding internally. This will give you a
solid understanding of how these capabilities really work. More importantly, it will help
you appreciate the overhead of polymorphism—in terms of additional memory consump-
tion and processor time. This will help you determine when to use polymorphism and
when to avoid it. As you’ll see in Chapter 22, the STL components were implemented
without polymorphism and virtual functions—this was done to avoid the associated ex-
ecution-time overhead and achieve optimal performance to meet the unique requirements
of the STL.

First, we’ll explain the data structures that the compiler builds at compile time to sup-
port polymorphism at execution time. You’ll see that polymorphism is accomplished
through three levels of pointers, i.e., triple indirection. Then we’ll show how an executing
program uses these data structures to execute virtual functions and achieve the dynamic
binding associated with polymorphism. Our discussion explains one possible implemen-
tation; this is not a language requirement.

When C++ compiles a class that has one or more virtual functions, it builds a virtual
function table (vtable) for that class. An executing program uses the vtable to select the
proper function implementation each time a virtual function of that class is called. The
leftmost column of Fig. 13.18 illustrates the vtables for the classes Employee, SalariedEm-
ployee, CommissionEmployee and BasePlusCommissionEmployee.

Employee Class vtable
In the vtable for class Employee, the first function pointer is set to 0 (i.e., the null pointer).
This is done because function earnings is a pure virtual function and therefore lacks an
implementation. The second function pointer points to function print, which displays the
employee’s full name and social security number. [Note: We’ve abbreviated the output of
each print function in this figure to conserve space.] Any class that has one or more null
pointers in its vtable is an abstract class. Classes without any null vtable pointers (such as
SalariedEmployee, CommissionEmployee and BasePlusCommissionEmployee) are con-
crete classes.

SalariedEmployee Class vtable
Class SalariedEmployee overrides function earnings to return the employee’s weekly sal-
ary, so the function pointer points to the earnings function of class SalariedEmployee.
SalariedEmployee also overrides print, so the corresponding function pointer points to
the SalariedEmployee member function that prints "salaried employee: " followed by
the employee’s name, social security number and weekly salary.

13.7 Dynamic Binding “Under the Hood” 567

CommissionEmployee Class vtable
The earnings function pointer in the vtable for class CommissionEmployee points to Com-

missionEmployee’s earnings function that returns the employee’s gross sales multiplied
by the commission rate. The print function pointer points to the CommissionEmployee

version of the function, which prints the employee’s type, name, social security number,
commission rate and gross sales. As in class HourlyEmployee, both functions override the
functions in class Employee.

Fig. 13.18 | How virtual function calls work.

&basePlus-
Commission-
Employee

&commission-
Employee

&salaried-
Employee

vector < Employee * >

employees(4);

[0]

[2]

[1]

Employee vtable

earnings

print

BasePlusCommissionEmployee
vtable

earnings

print

CommissionEmployee
vtable

earnings

print

SalariedEmployee
vtable

earnings

print

basePlusCommissionEmployee

Bob Lewis
444-44-4444
$5,000.00

.04
$300.00

commissionEmployee

Sue Jones
333-33-3333
$10,000.00

.06

salariedEmployee

John Smith
111-11-1111

$800.00

baseClassPtr

1

2

3

4

5

0

(abstract class)

weeklySalary

grossSales
* commissionRate

baseSalary +
(grossSales
* commissionRate)

base-
salaried
commission
employee: ...

commission
employee: ...

salaried
employee: ...

first last
ssn: ...

4

Flow of Virtual Function Call baseClassPtr->print()
When baseClassPtr Points to Object hourlyEmployee

pass &commissionEmployee
to baseClassPtr

get to commissionEmployee
object

get to commissionEmployee
vtable

get to print pointer
in vtable

execute print for
commissionEmployee

1

2

3 5

(0 indicates pure virtual function)

568 Chapter 13 Object-Oriented Programming: Polymorphism

BasePlusCommissionEmployee Class vtable
The earnings function pointer in the vtable for class BasePlusCommissionEmployee

points to the BasePlusCommissionEmployee’s earnings function, which returns the em-
ployee’s base salary plus gross sales multiplied by commission rate. The print function
pointer points to the BasePlusCommissionEmployee version of the function, which prints
the employee’s base salary plus the type, name, social security number, commission rate
and gross sales. Both functions override the functions in class CommissionEmployee.

Inheriting Concrete virtual Functions
In our Employee case study, each concrete class provides its own implementation for vir-
tual functions earnings and print. You’ve learned that each class which inherits directly
from abstract base class Employee must implement earnings in order to be a concrete class,
because earnings is a pure virtual function. These classes do not need to implement
function print, however, to be considered concrete—print is not a pure virtual func-
tion and derived classes can inherit class Employee’s implementation of print. Further-
more, class BasePlusCommissionEmployee does not have to implement either function
print or earnings—both function implementations can be inherited from class Commis-
sionEmployee. If a class in our hierarchy were to inherit function implementations in this
manner, the vtable pointers for these functions would simply point to the function imple-
mentation that was being inherited. For example, if BasePlusCommissionEmployee did
not override earnings, the earnings function pointer in the vtable for class BasePlusCom-
missionEmployee would point to the same earnings function as the vtable for class Com-
missionEmployee points to.

Three Levels of Pointers to Implement Polymorphism
Polymorphism is accomplished through an elegant data structure involving three levels of
pointers. We’ve discussed one level—the function pointers in the vtable. These point to the
actual functions that execute when a virtual function is invoked.

Now we consider the second level of pointers. Whenever an object of a class with one or
more virtual functions is instantiated, the compiler attaches to the object a pointer to the
vtable for that class. This pointer is normally at the front of the object, but it isn’t required
to be implemented that way. In Fig. 13.18, these pointers are associated with the objects
created in Fig. 13.17 (one object for each of the types SalariedEmployee, CommissionEm-
ployee and BasePlusCommissionEmployee). The diagram displays each of the object’s
data member values. For example, the salariedEmployee object contains a pointer to the
SalariedEmployee vtable; the object also contains the values John Smith, 111-11-1111
and $800.00.

The third level of pointers simply contains the handles to the objects that receive the
virtual function calls. The handles in this level may also be references. Fig. 13.18 depicts
the vector employees that contains Employee pointers.

Now let’s see how a typical virtual function call executes. Consider the call
baseClassPtr->print() in function virtualViaPointer (line 69 of Fig. 13.17). Assume
that baseClassPtr contains employees[1] (i.e., the address of object commissionEm-

ployee in employees). When the compiler compiles this statement, it determines that the
call is indeed being made via a base-class pointer and that print is a virtual function.

The compiler determines that print is the second entry in each of the vtables. To locate
this entry, the compiler notes that it will need to skip the first entry. Thus, the compiler

13.8 Downcasting, dynamic_cast, typeid and type_info 569

compiles an offset or displacement into the table of machine-language object-code
pointers to find the code that will execute the virtual function call. The size in bytes of
the offset depends on the number of bytes used to represent a pointer on an individual
platform. For example, on a 32-bit platform, a pointer is typically stored in 4 bytes,
whereas on a 64-bit platform, a pointer could be stored in 8 bytes.

The compiler generates code that performs the following operations [Note: The num-
bers in the list correspond to the circled numbers in Fig. 13.18]:

1. Select the ith entry of employees (in this case, the address of object commission-
Employee), and pass it as an argument to function virtualViaPointer. This sets
parameter baseClassPtr to point to commissionEmployee.

2. Dereference that pointer to get to the commissionEmployee object—which, as you
recall, begins with a pointer to the CommissionEmployee vtable.

3. Dereference commissionEmployee’s vtable pointer to get to the CommissionEm-

ployee vtable.

4. Skip the offset of four bytes to select the print function pointer.

5. Dereference the print function pointer to form the “name” of the actual function
to execute, and use the function call operator () to execute the appropriate print
function, which in this case prints the employee’s type, name, social security
number, gross sales and commission rate.

Fig. 13.18’s data structures may appear to be complex, but this complexity is managed
by the compiler and hidden from you, making polymorphic programming straightfor-
ward. The pointer dereferencing operations and memory accesses that occur on every vir-

tual function call require some additional execution time. The vtables and the vtable
pointers added to the objects require some additional memory. You now have enough
information to determine whether virtual functions are appropriate for your programs.

13.8 Case Study: Payroll System Using Polymorphism
and Runtime Type Information with Downcasting,
dynamic_cast, typeid and type_info
Recall from the problem statement at the beginning of Section 13.6 that, for the current
pay period, our fictitious company has decided to reward BasePlusCommissionEmployees
by adding 10 percent to their base salaries. When processing Employee objects polymor-
phically in Section 13.6.5, we did not need to worry about the “specifics.” Now, however,

Performance Tip 13.1
Polymorphism, as typically implemented with virtual functions and dynamic binding in
C++, is efficient. You can use these capabilities with nominal impact on performance.

Performance Tip 13.2
Virtual functions and dynamic binding enable polymorphic programming as an alterna-
tive to switch logic programming. Optimizing compilers normally generate polymorphic
code that runs as efficiently as hand-coded switch-based logic. Polymorphism’s overhead
is acceptable for most applications. But in some situations—such as real-time applications
with stringent performance requirements—polymorphism’s overhead may be too high.

570 Chapter 13 Object-Oriented Programming: Polymorphism

to adjust the base salaries of BasePlusCommissionEmployees, we have to determine the
specific type of each Employee object at execution time, then act appropriately. This sec-
tion demonstrates the powerful capabilities of runtime type information (RTTI) and dy-
namic casting, which enable a program to determine the type of an object at execution
time and act on that object accordingly.

[Note: Some compilers require that RTTI be enabled before it can be used in a pro-
gram. In Visual C++ 2010, this option is enabled by default.]

Figure 13.19 uses the Employee hierarchy developed in Section 13.6 and increases by
10 percent the base salary of each BasePlusCommissionEmployee. Line 21 declares three-
element vector employees that stores pointers to Employee objects. Lines 24–29 populate
the vector with the addresses of dynamically allocated objects of classes SalariedEm-

ployee (Figs. 13.11–13.12), CommissionEmployee (Figs. 13.13–13.14) and Base-

PlusCommissionEmployee (Figs. 13.15–13.16).

1 // Fig. 13.19: fig13_19.cpp
2 // Demonstrating downcasting and runtime type information.
3 // NOTE: You may need to enable RTTI on your compiler
4 // before you can execute this application.
5 #include <iostream>
6 #include <iomanip>
7 #include <vector>
8
9 #include "Employee.h"

10 #include "SalariedEmployee.h"
11 #include "CommissionEmployee.h"
12 #include "BasePlusCommissionEmployee.h"
13 using namespace std;
14
15 int main()
16 {
17 // set floating-point output formatting
18 cout << fixed << setprecision(2);
19
20 // create vector of three base-class pointers
21 vector < Employee * > employees(3);
22
23
24
25
26
27
28
29
30
31 // polymorphically process each element in vector employees
32 for (size_t i = 0; i < employees.size(); ++i)
33 {
34 employees[i]->print(); // output employee information
35 cout << endl;
36

Fig. 13.19 | Demonstrating downcasting and runtime type information. (Part 1 of 2.)

#include <typeinfo>

// initialize vector with various kinds of Employees
employees[0] = new SalariedEmployee(

"John", "Smith", "111-11-1111", 800);
employees[1] = new CommissionEmployee(

"Sue", "Jones", "333-33-3333", 10000, .06);
employees[2] = new BasePlusCommissionEmployee(

"Bob", "Lewis", "444-44-4444", 5000, .04, 300);

13.8 Downcasting, dynamic_cast, typeid and type_info 571

The for statement in lines 32–54 iterates through the employees vector and displays
each Employee’s information by invoking member function print (line 34). Recall that

37
38
39
40
41
42 // determine whether element points to base-salaried
43 // commission employee
44 if () // 0 if not a BasePlusCommissionEmployee
45 {
46 double oldBaseSalary = ;
47 cout << "old base salary: $" << oldBaseSalary << endl;
48
49 cout << "new base salary with 10% increase is: $"
50 << << endl;
51 } // end if
52
53 cout << "earned $" << employees[i]->earnings() << "\n\n";
54 } // end for
55
56 // release objects pointed to by vector’s elements
57 for (size_t j = 0; j < employees.size(); ++j)
58 {
59
60
61
62
63 delete employees[j];
64 } // end for
65 } // end main

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

deleting object of class SalariedEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

Fig. 13.19 | Demonstrating downcasting and runtime type information. (Part 2 of 2.)

// downcast pointer
BasePlusCommissionEmployee *derivedPtr =

dynamic_cast < BasePlusCommissionEmployee * >
(employees[i]);

derivedPtr != 0

derivedPtr->getBaseSalary()

derivedPtr->setBaseSalary(1.10 * oldBaseSalary);

derivedPtr->getBaseSalary()

// output class name
cout << "deleting object of "

<< typeid(*employees[j]).name() << endl;

572 Chapter 13 Object-Oriented Programming: Polymorphism

because print is declared virtual in base class Employee, the system invokes the appro-
priate derived-class object’s print function.

In this example, as we encounter BasePlusCommissionEmployee objects, we wish to
increase their base salary by 10 percent. Since we process the employees generically (i.e., poly-
morphically), we cannot (with the techniques we’ve learned) be certain as to which type of
Employee is being manipulated at any given time. This creates a problem, because Base-

PlusCommissionEmployee employees must be identified when we encounter them so they
can receive the 10 percent salary increase. To accomplish this, we use operator dynamic_cast
(line 39) to determine whether the type of each object is BasePlusCommissionEmployee.
This is the downcast operation we referred to in Section 13.3.3. Lines 38–40 dynamically
downcast employees[i] from type Employee * to type BasePlusCommissionEmployee *. If
the vector element points to an object that is a BasePlusCommissionEmployee object, then
that object’s address is assigned to commissionPtr; otherwise, 0 is assigned to derived-class
pointer derivedPtr.

If the value returned by the dynamic_cast operator in lines 38–40 is not 0, the object
is the correct type, and the if statement (lines 44–51) performs the special processing
required for the BasePlusCommissionEmployee object. Lines 46, 48 and 50 invoke Base-
PlusCommissionEmployee functions getBaseSalary and setBaseSalary to retrieve and
update the employee’s salary.

Line 53 invokes member function earnings on the object to which employees[i]

points. Recall that earnings is declared virtual in the base class, so the program invokes
the derived-class object’s earnings function—another example of dynamic binding.

Lines 57–64 display each employee’s object type and uses the delete operator to deal-
locate the dynamic memory to which each vector element points. Operator typeid (line
61) returns a reference to an object of class type_info that contains the information about
the type of its operand, including the name of that type. When invoked, type_info

member function name (line 51) returns a pointer-based string that contains the type name
(e.g., "class BasePlusCommissionEmployee") of the argument passed to typeid. To use
typeid, the program must include header <typeinfo> (line 8).

We avoid several compilation errors in this example by downcasting an Employee

pointer to a BasePlusCommissionEmployee pointer (lines 38–40). If we remove the
dynamic_cast from line 39 and attempt to assign the current Employee pointer directly to
BasePlusCommissionEmployee pointer derivedPtr, we’ll receive a compilation error.
C++ does not allow a program to assign a base-class pointer to a derived-class pointer
because the is-a relationship does not apply—a CommissionEmployee is not a
BasePlusCommissionEmployee. The is-a relationship applies only between the derived
class and its base classes, not vice versa.

Similarly, if lines 46, 48 and 50 used the current base-class pointer from employees,
rather than derived-class pointer derivedPtr, to invoke derived-class-only functions get-
BaseSalary and setBaseSalary, we would receive a compilation error at each of these
lines. As you learned in Section 13.3.3, attempting to invoke derived-class-only functions
through a base-class pointer is not allowed. Although lines 46, 48 and 50 execute only if

Portability Tip 13.1
The string returned by type_info member function name may vary by compiler.

13.9 Virtual Destructors 573

commissionPtr is not 0 (i.e., if the cast can be performed), we cannot attempt to invoke
derived-class BasePlusCommissionEmployee functions getBaseSalary and setBase-

Salary on the base-class Employee pointer. Recall that, using a base class Employee

pointer, we can invoke only functions found in base class Employee—earnings, print
and Employee’s get and set functions.

13.9 Virtual Destructors
A problem can occur when using polymorphism to process dynamically allocated objects
of a class hierarchy. So far you’ve seen nonvirtual destructors—destructors that are not
declared with keyword virtual. If a derived-class object with a nonvirtual destructor is
destroyed explicitly by applying the delete operator to a base-class pointer to the object,
the C++ standard specifies that the behavior is undefined.

The simple solution to this problem is to create a virtual destructor (i.e., a
destructor that is declared with keyword virtual) in the base class. This makes all derived-
class destructors virtual even though they do not have the same name as the base-class
destructor. Now, if an object in the hierarchy is destroyed explicitly by applying the delete
operator to a base-class pointer, the destructor for the appropriate class is called based on
the object to which the base-class pointer points. Remember, when a derived-class object
is destroyed, the base-class part of the derived-class object is also destroyed, so it’s impor-
tant for the destructors of both the derived class and base class to execute. The base-class
destructor automatically executes after the derived-class destructor.

13.10 Wrap-Up
In this chapter we discussed polymorphism, which enables us to “program in the general”
rather than “program in the specific,” and we showed how this makes programs more ex-
tensible. We began with an example of how polymorphism would allow a screen manager
to display several “space” objects. We then demonstrated how base-class and derived-class
pointers can be aimed at base-class and derived-class objects. We said that aiming base-
class pointers at base-class objects is natural, as is aiming derived-class pointers at derived-
class objects. Aiming base-class pointers at derived-class objects is also natural because a
derived-class object is an object of its base class. You learned why aiming derived-class
pointers at base-class objects is dangerous and why the compiler disallows such assign-
ments. We introduced virtual functions, which enable the proper functions to be called
when objects at various levels of an inheritance hierarchy are referenced (at execution time)
via base-class pointers or references. This is known as dynamic or late binding. We then
discussed pure virtual functions and abstract classes (classes with one or more pure vir-

Error-Prevention Tip 13.2
If a class has virtual functions, provide a virtual destructor, even if one is not required
for the class. This ensures that a custom derived-class destructor (if there is one) will be
invoked when a derived-class object is deleted via a base class pointer.

Common Programming Error 13.2
Constructors cannot be virtual. Declaring a constructor virtual is a compilation error.

574 Chapter 13 Object-Oriented Programming: Polymorphism

tual functions). You learned that abstract classes cannot be used to instantiate objects,
while concrete classes can. We then demonstrated using abstract classes in an inheritance
hierarchy. You learned how polymorphism works “under the hood” with vtables that are
created by the compiler. We used runtime type information (RTTI) and dynamic casting
to determine the type of an object at execution time and act on that object accordingly.
The chapter concluded with a discussion of virtual destructors, and how they ensure that
all appropriate destructors in an inheritance hierarchy run on a derived-class object when
that object is deleted via a base-class pointer or reference.

In the next chapter, we discuss templates, a sophisticated feature of C++ that enables
you to define a family of related classes or functions with a single code segment.

Summary
Section 13.1 Introduction
• Polymorphism (p. 535) enables us to “program in the general” rather than “program in the spe-

cific.”

• Polymorphism enables us to write programs that process objects of classes that are part of the
same class hierarchy as if they were all objects of the hierarchy’s base class.

• With polymorphism, we can design and implement systems that are easily extensible—new class-
es can be added with little or no modification to the general portions of the program. The only
parts of a program that must be altered to accommodate new classes are those that require direct
knowledge of the new classes that you add to the hierarchy.

Section 13.2 Introduction to Polymorphism: Polymorphic Video Game
• With polymorphism, one function can cause different actions to occur, depending on the type

of the object on which the function is invoked.

• This makes it possible to design and implement more extensible systems. Programs can be writ-
ten to process objects of types that may not exist when the program is under development.

Section 13.3 Relationships Among Objects in an Inheritance Hierarchy
• C++ enables polymorphism—the ability for objects of different classes related by inheritance to

respond differently to the same member-function call.

• Polymorphism is implemented via virtual functions (p. 543) and dynamic binding (p. 544).

• When a base-class pointer or reference is used to call a virtual function, C++ chooses the correct
overridden function in the appropriate derived class associated with the object.

• If a virtual function is called by referencing a specific object by name and using the dot member-
selection operator, the reference is resolved at compile time (this is called static binding; p. 544);
the virtual function that is called is the one defined for the class of that particular object.

• Derived classes can provide their own implementations of a base-class virtual function if nec-
essary, but if they do not, the base class’s implementation is used.

Section 13.4 Type Fields and switch Statements
• Polymorphic programming with virtual functions can eliminate the need for switch logic. You

can use the virtual function mechanism to perform the equivalent logic automatically, thus
avoiding the kinds of errors typically associated with switch logic.

Summary 575

Section 13.5 Abstract Classes and Pure virtual Functions
• Abstract classes (p. 550) are typically used as base classes, so we refer to them as abstract base

classes (p. 550). No objects of an abstract class may be instantiated.

• Classes from which objects can be instantiated are concrete classes (p. 550).

• You create an abstract class by declaring one or more pure virtual functions (p. 551) with pure
specifiers (= 0) in their declarations.

• If a class is derived from a class with a pure virtual function and that derived class does not sup-
ply a definition for that pure virtual function, then that virtual function remains pure in the
derived class. Consequently, the derived class is also an abstract class.

• Although we cannot instantiate objects of abstract base classes, we can declare pointers and ref-
erences to objects of abstract base classes. Such pointers and references can be used to enable poly-
morphic manipulations of derived-class objects instantiated from concrete derived classes.

Section 13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood”
• Dynamic binding requires that at runtime, the call to a virtual member function be routed to the

virtual function version appropriate for the class. A virtual function table called the vtable
(p. 567) is implemented as an array containing function pointers. Each class with virtual func-
tions has a vtable. For each virtual function in the class, the vtable has an entry containing a func-
tion pointer to the version of the virtual function to use for an object of that class. The virtual

function to use for a particular class could be the function defined in that class, or it could be a
function inherited either directly or indirectly from a base class higher in the hierarchy.

• When a base class provides a virtual member function, derived classes can override the virtual

function, but they do not have to override it.

• Each object of a class with virtual functions contains a pointer to the vtable for that class. When
a function call is made from a base-class pointer to a derived-class object, the appropriate func-
tion pointer in the vtable is obtained and dereferenced to complete the call at execution time.

• Any class that has one or more 0 pointers in its vtable is an abstract class. Classes without any 0
vtable pointers are concrete classes.

• New kinds of classes are regularly added to systems and accommodated by dynamic binding.

Section 13.8 Case Study: Payroll System Using Polymorphism and Runtime Type In-
formation with Downcasting, dynamic_cast, typeid and type_info
• Operator dynamic_cast (p. 571) checks the type of the object to which a pointer points, then

determines whether the type has an is-a relationship with the type to which the pointer is being
converted. If so, dynamic_cast returns the object’s address. If not, dynamic_cast returns 0.

• Operator typeid (p. 573) returns a reference to a type_info object (p. 573) that contains infor-
mation about the operand’s type, including the type name. To use typeid, the program must
include header <typeinfo> (p. 573).

• When invoked, type_info member function name (p. 573) returns a pointer-based string that
contains the name of the type that the type_info object represents.

• Operators dynamic_cast and typeid are part of C++’s runtime type information (RTTI; p. 571)
feature, which allows a program to determine an object’s type at runtime.

Section 13.9 Virtual Destructors
• Declare the base-class destructor virtual (p. 574) if the class contains virtual functions. This

makes all derived-class destructors virtual, even though they do not have the same name as the

576 Chapter 13 Object-Oriented Programming: Polymorphism

base-class destructor. If an object in the hierarchy is destroyed explicitly by applying the delete

operator to a base-class pointer to a derived-class object, the destructor for the appropriate class
is called. After a derived-class destructor runs, the destructors for all of that class’s base classes run
all the way up the hierarchy.

Self-Review Exercises
13.1 Fill in the blanks in each of the following statements:

a) Treating a base-class object as a(n) can cause errors.
b) Polymorphism helps eliminate logic.
c) If a class contains at least one pure virtual function, it’s a(n) class.
d) Classes from which objects can be instantiated are called classes.
e) Operator can be used to downcast base-class pointers safely.
f) Operator typeid returns a reference to a(n) object.
g) involves using a base-class pointer or reference to invoke virtual functions

on base-class and derived-class objects.
h) Overridable functions are declared using keyword .
i) Casting a base-class pointer to a derived-class pointer is called .

13.2 State whether each of the following is true or false. If false, explain why.
a) All virtual functions in an abstract base class must be declared as pure virtual func-

tions.
b) Referring to a derived-class object with a base-class handle is dangerous.
c) A class is made abstract by declaring that class virtual.
d) If a base class declares a pure virtual function, a derived class must implement that

function to become a concrete class.
e) Polymorphic programming can eliminate the need for switch logic.

Answers to Self-Review Exercises
13.1 a) derived-class object. b) switch. c) abstract. d) concrete. e) dynamic_cast. f) type_info.
g) Polymorphism. h) virtual. i) downcasting.

13.2 a) False. An abstract base class can include virtual functions with implementations. b) False.
Referring to a base-class object with a derived-class handle is dangerous. c) False. Classes are never
declared virtual. Rather, a class is made abstract by including at least one pure virtual function in
the class. d) True. e) True.

Exercises
13.3 (Programming in the General) How is it that polymorphism enables you to program “in
the general” rather than “in the specific”? Discuss the key advantages of programming “in the gen-
eral.”

13.4 (Polymorphism vs. switch logic) Discuss the problems of programming with switch logic.
Explain why polymorphism can be an effective alternative to using switch logic.

13.5 (Inheriting Interface vs. Implementation) Distinguish between inheriting interface and in-
heriting implementation. How do inheritance hierarchies designed for inheriting interface differ
from those designed for inheriting implementation?

13.6 (Virtual Functions) What are virtual functions? Describe a circumstance in which virtu-

al functions would be appropriate.

13.7 (Dynamic Binding vs. Static Binding) Distinguish between static binding and dynamic
binding. Explain the use of virtual functions and the vtable in dynamic binding.

Exercises 577

13.8 (Virtual Functions) Distinguish between virtual functions and pure virtual functions.

13.9 (Abstract Base Classes) Suggest one or more levels of abstract base classes for the Shape hi-
erarchy discussed in this chapter and shown in Fig. 12.3. (The first level is Shape, and the second
level consists of the classes TwoDimensionalShape and ThreeDimensionalShape.)

13.10 (Polymorphism and Extensibility) How does polymorphism promote extensibility?

13.11 (Polymorphic Application) You’ve been asked to develop a flight simulator that will have
elaborate graphical outputs. Explain why polymorphic programming could be especially effective
for a problem of this nature.

13.12 (Payroll System Modification) Modify the payroll system of Figs. 13.9–13.17 to include
private data member birthDate in class Employee. Use class Date from Figs. 11.6–11.7 to represent
an employee’s birthday. Assume that payroll is processed once per month. Create a vector of Em-
ployee references to store the various employee objects. In a loop, calculate the payroll for each Em-

ployee (polymorphically), and add a $100.00 bonus to the person’s payroll amount if the current
month is the month in which the Employee’s birthday occurs.

13.13 (Shape Hierarchy) Implement the Shape hierarchy designed in Exercise 12.7 (which is
based on the hierarchy in Fig. 12.3). Each TwoDimensionalShape should contain function getArea

to calculate the area of the two-dimensional shape. Each ThreeDimensionalShape should have mem-
ber functions getArea and getVolume to calculate the surface area and volume, respectively, of the
three-dimensional shape. Create a program that uses a vector of Shape pointers to objects of each
concrete class in the hierarchy. The program should print the object to which each vector element
points. Also, in the loop that processes all the shapes in the vector, determine whether each shape
is a TwoDimensionalShape or a ThreeDimensionalShape. If a shape is a TwoDimensionalShape, dis-
play its area. If a shape is a ThreeDimensionalShape, display its area and volume.

13.14 (Project: Polymorphic Screen Manager Using Shape Hierarchy) Develop a basic graphics
package. Use the Shape hierarchy implemented in Exercise 13.13. Limit yourself to two-dimension-
al shapes such as squares, rectangles, triangles and circles. Interact with the user. Let the user specify
the position, size, shape and fill characters to be used in drawing each shape. The user can specify
more than one of the same shape. As you create each shape, place a Shape * pointer to each new
Shape object into an array. Each Shape class should now have its own draw member function. Write
a polymorphic screen manager that walks through the array, sending draw messages to each object
in the array to form a screen image. Redraw the screen image each time the user specifies an addi-
tional shape.

13.15 (Package Inheritance Hierarchy) Use the Package inheritance hierarchy created in
Exercise 12.9 to create a program that displays the address information and calculates the shipping
costs for several Packages. The program should contain a vector of Package pointers to objects of
classes TwoDayPackage and OvernightPackage. Loop through the vector to process the Packages
polymorphically. For each Package, invoke get functions to obtain the address information of the
sender and the recipient, then print the two addresses as they would appear on mailing labels. Also,
call each Package’s calculateCost member function and print the result. Keep track of the total
shipping cost for all Packages in the vector, and display this total when the loop terminates.

13.16 (Polymorphic Banking Program Using Account Hierarchy) Develop a polymorphic bank-
ing program using the Account hierarchy created in Exercise 12.10. Create a vector of Account

pointers to SavingsAccount and CheckingAccount objects. For each Account in the vector, allow
the user to specify an amount of money to withdraw from the Account using member function deb-

it and an amount of money to deposit into the Account using member function credit. As you
process each Account, determine its type. If an Account is a SavingsAccount, calculate the amount
of interest owed to the Account using member function calculateInterest, then add the interest

578 Chapter 13 Object-Oriented Programming: Polymorphism

to the account balance using member function credit. After processing an Account, print the up-
dated account balance obtained by invoking base-class member function getBalance.

13.17 (Payroll System Modification) Modify the payroll system of Figs. 13.9–13.17 to include an
additional Employee subclasses PieceWorker and HourlyWorker. A PieceWorker represents an em-
ployee whose pay is based on the number of pieces of merchandise produced. An HourlyWorker rep-
resents an employee whose pay is based on an hourly wage and the number of hours worked. Hourly
workers receive overtime pay (1.5 times the hourly wage) for all hours worked in excess of 40 hours.

Class PieceWorker should contain private instance variables wage (to store the employee’s
wage per piece) and pieces (to store the number of pieces produced). Class HourlyWorker should
contain private instance variables wage (to store the employee’s wage per hour) and hours (to store
the hours worked). In class PieceWorker, provide a concrete implementation of method earnings

that calculates the employee’s earnings by multiplying the number of pieces produced by the wage
per piece. In class HourlyWorker, provide a concrete implementation of method earnings that cal-
culates the employee’s earnings by multiplying the number of hours worked by the wage per hour.
If the number of hours worked is over 40, be sure to pay the HourlyWorker for the overtime hours.
Add a pointer to an object of each new class into the vector of Employee pointers in main. For each
Employee, display its string representation and earnings.

Making a Difference
13.18 (CarbonFootprint Abstract Class: Polymorphism) Using an abstract class with only pure vir-
tual functions, you can specify similar behaviors for possibly disparate classes. Governments and
companies worldwide are becoming increasingly concerned with carbon footprints (annual releases
of carbon dioxide into the atmosphere) from buildings burning various types of fuels for heat, vehi-
cles burning fuels for power, and the like. Many scientists blame these greenhouse gases for the phe-
nomenon called global warming. Create three small classes unrelated by inheritance—classes
Building, Car and Bicycle. Give each class some unique appropriate attributes and behaviors that
it does not have in common with other classes. Write an abstract class CarbonFootprint with only
a pure virtual getCarbonFootprint method. Have each of your classes inherit from that abstract class
and implement the getCarbonFootprint method to calculate an appropriate carbon footprint for
that class (check out a few websites that explain how to calculate carbon footprints). Write an ap-
plication that creates objects of each of the three classes, places pointers to those objects in a vector

of CarbonFootprint pointers, then iterates through the vector, polymorphically invoking each ob-
ject’s getCarbonFootprint method. For each object, print some identifying information and the ob-
ject’s carbon footprint.

14Templates

Behind that outside
pattern the dim shapes
get clearer every day.
It is always the same shape,
only very numerous.
—Charlotte Perkins Gilman

Every man of genius sees the
world at a different angle from
his fellows.
—Havelock Ellis

…our special individuality, as
distinguished from our generic
humanity.
—Oliver Wendell Holmes, Sr.

O b j e c t i v e s
In this chapter you’ll learn:

■ To use function templates to
conveniently create a group
of related (overloaded)
functions.

■ To distinguish between
function templates and
function-template
specializations.

■ To use class templates to
create groups of related types.

■ To distinguish between class
templates and class-template
specializations.

■ To overload function
templates.

580 Chapter 14 Templates

14.1 Introduction
In this chapter, we discuss one of C++’s more powerful software reuse features, namely
templates. Function templates and class templates enable you to specify, with a single
code segment, an entire range of related (overloaded) functions—called function-tem-
plate specializations—or an entire range of related classes—called class-template special-
izations. This technique is called generic programming.

We might write a single function template for an array-sort function, then have C++
generate separate function-template specializations that will sort int arrays, float arrays,
string arrays and so on. We introduced function templates in Chapter 6. We present an
additional discussion and example in this chapter.

We might write a single class template for a stack class, then have C++ generate sepa-
rate class-template specializations, such as a stack-of-int class, a stack-of-float class, a
stack-of-string class and so on.

Note the distinction between templates and template specializations: Function tem-
plates and class templates are like stencils out of which we trace shapes; function-template
specializations and class-template specializations are like the separate tracings that all have
the same shape, but could, for example, be drawn in different colors.

In this chapter, we present a function template and a class template. This chapter is
only an introduction to templates. Chapter 22, Standard Template Library (STL), pres-
ents a rich treatment of the template container classes, iterators and algorithms of the STL.
Chapter 22 contains dozens of complete template-based examples illustrating more
sophisticated template-programming techniques than those used here.

14.2 Function Templates
Overloaded functions normally perform similar or identical operations on different types
of data. If the operations are identical for each type, they can be expressed more compactly
and conveniently using function templates. Initially, you write a single function-template
definition. Based on the argument types provided explicitly or inferred from calls to this
function, the compiler generates separate source-code functions (i.e., function-template spe-
cializations) to handle each function call appropriately. In the C programming language,

14.1 Introduction
14.2 Function Templates
14.3 Overloading Function Templates
14.4 Class Templates

14.5 Nontype Parameters and Default
Types for Class Templates

14.6 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 14.1
Most C++ compilers require the complete definition of a template to appear in the client
source-code file that uses the template. For this reason and for reusability, templates are
often defined in headers, which are then #included in the appropriate client source-code
files. For class templates, this means that the member functions are also defined in the
header.

14.2 Function Templates 581

this task can be performed using macros created with the preprocessor directive #define

(see Appendix E, Preprocessor). However, macros can have serious side effects and do not
enable the compiler to perform type checking.

All function-template definitions begin with keyword template followed by a list of
template parameters to the function template enclosed in angle brackets (< and >); each
template parameter that represents a type must be preceded by either of the interchange-
able keywords class or typename, as in

or

or

The type template parameters of a function-template definition are used to specify the
types of the function’s parameters, to specify the return type of the function and to declare
variables within the function. The function definition follows and appears like any other
function definition. Keywords typename and class used to specify function-template pa-
rameters actually mean “any fundamental type or user-defined type.”

Example: Function Template printArray
Let’s examine function template printArray in Fig. 14.1, lines 7–14. Function template
printArray declares (line 7) a single template parameter T (T can be any valid identifier) for
the type of the array to be printed by function printArray; T is referred to as a type template
parameter, or type parameter. You’ll see nontype template parameters in Section 14.5.

Error-Prevention Tip 14.1
Function templates, like macros, enable software reuse. Unlike macros, function templates
help eliminate many types of errors through the scrutiny of full C++ type checking.

template< typename T >

template< class ElementType >

template< typename BorderType, typename FillType >

Common Programming Error 14.1
Not placing keyword class or keyword typename before each type template parameter of
a function template is a syntax error.

1 // Fig. 14.1: fig14_01.cpp
2 // Using function-template specializations.
3 #include <iostream>
4 using namespace std;
5
6 // function template printArray definition
7 template< typename T >
8 void printArray(const T * const array, int count)
9 {

10 for (int i = 0; i < count; ++i)
11 << " ";

Fig. 14.1 | Function-template specializations of function template printArray. (Part 1 of 2.)

cout << array[i]

582 Chapter 14 Templates

When the compiler detects a printArray function invocation in the client program
(e.g., lines 29 and 34), the compiler uses its overload resolution capabilities to find a def-
inition of function printArray that best matches the function call. In this case, the only
printArray function with the appropriate number of parameters is the printArray func-
tion template (lines 7–14). Consider the function call at line 29. The compiler compares
the type of printArray’s first argument (int * at line 29) to the printArray function tem-
plate’s first parameter (const T * const at line 8) and deduces that replacing the type
parameter T with int would make the argument consistent with the parameter. Then, the
compiler substitutes int for T throughout the template definition and compiles a print-

Array specialization that can display an array of int values. In Fig. 14.1, the compiler cre-
ates two printArray specializations—one that expects an int array and one that expects
a double array. For example, the function-template specialization for type int is

12
13 cout << endl;
14 } // end function template printArray
15
16 int main()
17 {
18 const int aCount = 5; // size of array a
19 const int bCount = 7; // size of array b
20 const int cCount = 6; // size of array c
21
22 int a[aCount] = { 1, 2, 3, 4, 5 };
23 double b[bCount] = { 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7 };
24 char c[cCount] = "HELLO"; // 6th position for null
25
26 cout << "Array a contains:" << endl;
27
28
29
30
31 cout << "Array b contains:" << endl;
32
33
34
35
36 cout << "Array c contains:" << endl;
37
38
39
40 } // end main

Array a contains:
1 2 3 4 5
Array b contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7
Array c contains:
H E L L O

Fig. 14.1 | Function-template specializations of function template printArray. (Part 2 of 2.)

// call integer function-template specialization
printArray(a, aCount);

// call double function-template specialization
printArray(b, bCount);

// call character function-template specialization
printArray(c, cCount);

14.3 Overloading Function Templates 583

As with function parameters, the names of template parameters must be unique inside
a template definition. Template parameter names need not be unique across different func-
tion templates.

Figure 14.1 demonstrates function template printArray (lines 7–14). The program
begins by declaring five-element int array a and seven-element double array b (lines 22–
23). Then, the program outputs each array by calling printArray—once with a first argu-
ment a of type int * (line 29) and once with a first argument b of type double * (line 34).
The call in line 29, for example, causes the compiler to infer that T is int and to instantiate
a printArray function-template specialization, for which type parameter T is int. The call
in line 34 causes the compiler to infer that T is double and to instantiate a second print-

Array function-template specialization, for which type parameter T is double. It’s impor-
tant to note that if T (line 7) represents a user-defined type (which it does not in Fig. 14.1),
there must be an overloaded stream insertion operator for that type; otherwise, the first
stream insertion operator in line 11 will not compile.

In this example, the template mechanism saves you from having to write two separate
overloaded functions with prototypes

that all use the same code, except for type T (as used in line 8).

14.3 Overloading Function Templates
Function templates and overloading are intimately related. The function-template special-
izations generated from a function template all have the same name, so the compiler uses
overload resolution to invoke the proper function.

void printArray(const int * const array, int count)
{

for (int i = 0; i < count; ++i)
cout << array[i] << " ";

cout << endl;
} // end function printArray

Common Programming Error 14.2
If a template is invoked with a user-defined type, and if that template uses functions or
operators (e.g., ==, +, <=) with objects of that class type, then those functions and operators
must be overloaded for the user-defined type. Forgetting to overload such operators causes
compilation errors.

void printArray(const int * const, int);
void printArray(const double * const, int);
void printArray(const char * const, int);

Performance Tip 14.1
Although templates offer software-reusability benefits, remember that multiple function-
template specializations and class-template specializations are instantiated in a program
(at compile time), despite the fact that the templates are written only once. These copies
can consume considerable memory. This is not normally an issue, though, because the code
generated by the template is the same size as the code you’d have written to produce the
separate overloaded functions.

584 Chapter 14 Templates

A function template may be overloaded in several ways. We can provide other func-
tion templates that specify the same function name but different function parameters. For
example, function template printArray of Fig. 14.1 could be overloaded with another
printArray function template with additional parameters lowSubscript and highSub-

script to specify the portion of the array to output (see Exercise 14.4).
A function template also can be overloaded by providing nontemplate functions with

the same function name but different function arguments. For example, function template
printArray of Fig. 14.1 could be overloaded with a nontemplate version that specifically
prints an array of character strings in neat, tabular format (see Exercise 14.5).

The compiler performs a matching process to determine what function to call when
a function is invoked. First, the compiler tries to find and use a precise match in which the
function names and argument types are consistent with those of the function call. If this
fails, the compiler determines whether a function template is available that can be used to
generate a function-template specialization with a precise match of function name and
argument types that are consistent with those of the function call. If such a template is
found, the compiler generates and uses the appropriate function-template specialization.
If not, the compiler generates an error message. Also, if there are multiple matches for the
function call, the compiler attempts to determine the best match. If there is more than one
best match, the call is ambiguous and the compiler generates an error message.

14.4 Class Templates
It’s possible to understand the concept of a “stack” (a data structure into which we insert
items at the top and retrieve those items in last-in, first-out order) independent of the type of
the items being placed in the stack. However, to instantiate a stack, a data type must be spec-
ified. This creates a wonderful opportunity for software reusability. We need the means for
describing the notion of a stack generically and instantiating classes that are type-specific ver-
sions of this generic stack class. C++ provides this capability through class templates.

Class templates are called parameterized types, because they require one or more type
parameters to specify how to customize a “generic class” template to form a class-template
specialization. To produce many specializations you write only one class-template defini-
tion. When an additional specialization is needed, you use a concise, simple notation, and
the compiler writes the source code for that specialization. One Stack class template, for
example, could thus become the basis for creating many Stack classes (such as “Stack of
double,” “Stack of int,” “Stack of char,” “Stack of Employee,” etc.) used in a program.

Creating Class Template Stack< T >
Note the Stack class-template definition in Fig. 14.2. It looks like a conventional class def-
inition, except that it’s preceded by the header (line 6)

Common Programming Error 14.3
A compilation error occurs if no matching function definition can be found for a partic-
ular function call or if there are multiple matches that the compiler considers ambiguous.

Software Engineering Observation 14.2
Class templates encourage software reusability by enabling type-specific versions of generic
classes to be instantiated.

14.4 Class Templates 585

to specify a class-template definition with type parameter T which acts as a placeholder for
the type of the Stack class to be created. You need not specifically use identifier T—any
valid identifier can be used. The type of element to be stored on this Stack is mentioned
generically as T throughout the Stack class header and member-function definitions. We’ll
show how T becomes associated with a specific type, such as double or int. Due to the
way this class template is designed, there are two constraints for class types used with this
Stack—they must have a default constructor (for use in line 44 to create the array that
stores the stack elements), and their assignment operators must properly copy objects into
the Stack (lines 56 and 70).

template< typename T >

1 // Fig. 14.2: Stack.h
2 // Stack class template.
3 #ifndef STACK_H
4 #define STACK_H
5
6
7
8 {
9 public:

10 explicit Stack(int = 10); // default constructor (Stack size 10)
11
12 // destructor
13 ~Stack()
14 {
15 delete [] stackPtr; // deallocate internal space for Stack
16 } // end ~Stack destructor
17
18 bool push(); // push an element onto the Stack
19 bool pop(); // pop an element off the Stack
20
21 // determine whether Stack is empty
22 bool isEmpty() const
23 {
24 return top == -1;
25 } // end function isEmpty
26
27 // determine whether Stack is full
28 bool isFull() const
29 {
30 return top == size - 1;
31 } // end function isFull
32
33 private:
34 int size; // # of elements in the Stack
35 int top; // location of the top element (-1 means empty)
36
37 }; // end class template Stack
38

Fig. 14.2 | Stack class template. (Part 1 of 2.)

template< typename T >
class Stack

const T &
T &

T *stackPtr; // pointer to internal representation of the Stack

586 Chapter 14 Templates

The member-function definitions of a class template are function templates. The member-
function definitions that appear outside the class template definition each begin with the
header

(lines 40, 51 and 65). Thus, each definition resembles a conventional function definition,
except that the Stack element type always is listed generically as type parameter T. The
scope resolution operator is used with the class-template name Stack<T> (lines 41, 52 and
66) to tie each member-function definition to the class template’s scope. In this case, the
generic class name is Stack<T>. When doubleStack is instantiated as type Stack<double>,

39 // constructor template
40
41
42 : size(s > 0 ? s : 10), // validate size
43 top(-1), // Stack initially empty
44
45 {
46 // empty body
47 } // end Stack constructor template
48
49 // push element onto Stack;
50 // if successful, return true; otherwise, return false
51
52
53 {
54 if (!isFull())
55 {
56 stackPtr[++top] = pushValue; // place item on Stack
57 return true; // push successful
58 } // end if
59
60 return false; // push unsuccessful
61 } // end function template push
62
63 // pop element off Stack;
64 // if successful, return true; otherwise, return false
65
66
67 {
68 if (!isEmpty())
69 {
70 popValue = stackPtr[top--]; // remove item from Stack
71 return true; // pop successful
72 } // end if
73
74 return false; // pop unsuccessful
75 } // end function template pop
76
77 #endif

template< typename T >

Fig. 14.2 | Stack class template. (Part 2 of 2.)

template< typename T >
Stack< T >::Stack(int s)

stackPtr(new T[size]) // allocate memory for elements

template< typename T >
bool Stack< T >::push(const T &pushValue)

template< typename T >
bool Stack< T >::pop(T &popValue)

14.4 Class Templates 587

the Stack constructor function-template specialization uses new to create an array of ele-
ments of type double to represent the stack (line 44). The statement

in the Stack class-template definition is generated by the compiler in the class-template
specialization Stack<double> as

Driver to Test Class Template Stack< T >
Now, let’s consider the driver (Fig. 14.3) that exercises the Stack class template. The driv-
er begins by instantiating object doubleStack of size 5 (line 9). This object is declared to
be of class Stack< double > (pronounced “Stack of double”). The compiler associates type
double with type parameter T in the class template to produce the source code for a Stack
class of type double. Although templates offer software-reusability benefits, remember
that multiple class-template specializations are instantiated in a program (at compile time),
even though the template is written only once.

stackPtr(new T[size]);

stackPtr(new double[size]);

1 // Fig. 14.3: fig14_03.cpp
2 // Stack class template test program.
3 #include <iostream>
4 #include "Stack.h" // Stack class template definition
5 using namespace std;
6
7 int main()
8 {
9

10 double doubleValue = 1.1;
11
12 cout << "Pushing elements onto doubleStack\n";
13
14 // push 5 doubles onto doubleStack
15 while ()
16 {
17 cout << doubleValue << ' ';
18 doubleValue += 1.1;
19 } // end while
20
21 cout << "\nStack is full. Cannot push " << doubleValue
22 << "\n\nPopping elements from doubleStack\n";
23
24 // pop elements from doubleStack
25 while ()
26 cout << doubleValue << ' ';
27
28 cout << "\nStack is empty. Cannot pop\n";
29
30
31 int intValue = 1;
32 cout << "\nPushing elements onto intStack\n";

Fig. 14.3 | Stack class template test program. (Part 1 of 2.)

Stack< double > doubleStack(5); // size 5

doubleStack.push(doubleValue)

doubleStack.pop(doubleValue)

Stack< int > intStack; // default size 10

588 Chapter 14 Templates

Lines 15–19 invoke push to place the double values 1.1, 2.2, 3.3, 4.4 and 5.5 onto
doubleStack. The while loop terminates when the driver attempts to push a sixth value
onto doubleStack (which is full, because it holds a maximum of five elements). Function
push returns false when it’s unable to push a value onto the stack.1

Lines 25–26 invoke pop in a while loop to remove the five values from the stack (note,
in the output of Fig. 14.3, that the values do pop off in last-in, first-out order). When the
driver attempts to pop a sixth value, the doubleStack is empty, so the pop loop terminates.

Line 30 instantiates integer stack intStack with the declaration

33
34 // push 10 integers onto intStack
35 while ()
36 {
37 cout << intValue++ << ' ';
38 } // end while
39
40 cout << "\nStack is full. Cannot push " << intValue
41 << "\n\nPopping elements from intStack\n";
42
43 // pop elements from intStack
44 while ()
45 cout << intValue << ' ';
46
47 cout << "\nStack is empty. Cannot pop" << endl;
48 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Stack is full. Cannot push 6.6

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty. Cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10
Stack is full. Cannot push 11

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty. Cannot pop

1. Class Stack (Fig. 14.2) provides the function isFull, which you can use to determine whether the
stack is full before attempting a push operation. This avoids the potential error of pushing onto a full
stack. We could also have function push throw an exception. You could catch that exception, then
decide how to handle it appropriately for the application. The same technique can be used with func-
tion pop when an attempt is made to pop an element from an empty stack.

Stack< int > intStack;

Fig. 14.3 | Stack class template test program. (Part 2 of 2.)

intStack.push(intValue)

intStack.pop(intValue)

14.4 Class Templates 589

(pronounced “intStack is a Stack of int”). Because no size is specified, the size defaults
to 10 as specified in the default constructor (Fig. 14.2, line 10). Lines 35–38 loop and in-
voke push to place values onto intStack until it’s full, then lines 44–45 loop and invoke
pop to remove values from intStack until it’s empty. Once again, notice in the output
that the values pop off in last-in, first-out order.

Creating Function Templates to Test Class Template Stack< T >
Notice that the code in function main of Fig. 14.3 is almost identical for both the double-
Stack manipulations in lines 9–28 and the intStack manipulations in lines 30–47. This
presents another opportunity to use a function template. Figure 14.4 defines function
template testStack (lines 10–34) to perform the same tasks as main in Fig. 14.3—push a
series of values onto a Stack< T > and pop the values off a Stack< T >. Function template
testStack uses template parameter T (specified at line 10) to represent the data type stored
in the Stack< T >. The function template takes four arguments (lines 12–15)—a reference
to an object of type Stack< T >, a value of type T that will be the first value pushed onto
the Stack< T >, a value of type T used to increment the values pushed onto the Stack< T >

and a string that represents the name of the Stack< T > object for output purposes. Func-
tion main (lines 36–43) instantiates an object of type Stack< double > called doubleStack

(line 38) and an object of type Stack< int > called intStack (line 39) and uses these ob-
jects in lines 41 and 42. The compiler infers the type of T for testStack from the type
used to instantiate the function’s first argument (i.e., the type used to instantiate double-

Stack or intStack). The output of Fig. 14.4 precisely matches the output of Fig. 14.3.

1 // Fig. 14.4: fig14_04.cpp
2 // Stack class template test program. Function main uses a
3 // function template to manipulate objects of type Stack< T >.
4 #include <iostream>
5 #include <string>
6 #include "Stack.h" // Stack class template definition
7 using namespace std;
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Fig. 14.4 | Passing a Stack template object to a function template. (Part 1 of 2.)

// function template to manipulate Stack< T >
template< typename T >
void testStack(

Stack< T > &theStack, // reference to Stack< T >
T value, // initial value to push
T increment, // increment for subsequent values
const string stackName) // name of the Stack< T > object

{
cout << "\nPushing elements onto " << stackName << '\n';

// push element onto Stack
while (theStack.push(value))
{

cout << value << ' ';
value += increment;

} // end while

590 Chapter 14 Templates

14.5 Nontype Parameters and Default Types for Class
Templates
Class template Stack of Section 14.4 used only a type parameter in the template header
(Fig. 14.2, line 6). It’s also possible to use non-type template parameters, which can have
default arguments and are treated as consts. For example, the template header could be
modified to take an int elements parameter as follows:

Then, a declaration such as

could be used to instantiate (at compile time) a 100-element Stack class-template special-
ization of double values named mostRecentSalesFigures; this class-template specializa-
tion would be of type Stack<double, 100>. The class definition then might contain a
private data member with an array declaration such as

26
27
28
29
30
31
32
33
34
35
36 int main()
37 {
38 Stack< double > doubleStack(5); // size 5
39 Stack< int > intStack; // default size 10
40
41
42
43 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Stack is full. Cannot push 6.6

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty. Cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10
Stack is full. Cannot push 11

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty. Cannot pop

template< typename T, int elements > // nontype parameter elements

Stack< double, 100 > mostRecentSalesFigures;

Fig. 14.4 | Passing a Stack template object to a function template. (Part 2 of 2.)

cout << "\nStack is full. Cannot push " << value
<< "\n\nPopping elements from " << stackName << '\n';

// pop elements from Stack
while (theStack.pop(value))

cout << value << ' ';

cout << "\nStack is empty. Cannot pop" << endl;
} // end function template testStack

testStack(doubleStack, 1.1, 1.1, "doubleStack");
testStack(intStack, 1, 1, "intStack");

14.6 Wrap-Up 591

In addition, a type parameter can specify a default type. For example,

might specify that a Stack contains string objects by default. Then, a declaration such as

could be used to instantiate a Stack class-template specialization of strings named job-

Descriptions; this class-template specialization would be of type Stack<string>. Default
type parameters must be the rightmost (trailing) parameters in a template’s type-parameter
list. When one is instantiating a class with two or more default types, if an omitted type is
not the rightmost type parameter in the type-parameter list, then all type parameters to the
right of that type also must be omitted.

In the exercises, you’ll be asked to use a nontype parameter to create a template for
our class Array from Chapter 11. This template will enable Array objects to be instanti-
ated with a specified number of elements of a specified type at compile time, rather than
creating space for the Array objects at execution time.

In some cases, it may not be possible to use a particular type with a class template. For
example, our Stack template (Fig. 14.2) requires that class types that will be stored in a
Stack must provide a default constructor and an assignment operator that properly copies
objects. If a particular user-defined type will not work with our Stack template or requires
customized processing, you can define an explicit specialization of the class template for
a particular type. Let’s assume we want to create an explicit specialization Stack for
Employee objects. To do this, form a new class with the name Stack<Employee> as follows:

The Stack<Employee> explicit specialization is a complete replacement for the Stack class
template that is specific to type Employee—it does not use anything from the original class
template and can even have different members.

14.6 Wrap-Up
This chapter presented one of C++’s most powerful features—templates. You learned how
to use function templates to enable the compiler to produce a set of function-template spe-

T stackHolder[elements]; // array to hold Stack contents

template< typename T = string > // defaults to type string

Stack<> jobDescriptions;

Performance Tip 14.2
When appropriate, specify the size of a container class (such as an array class or a stack
class) at compile time (possibly through a nontype template parameter). This eliminates
the execution-time overhead of using new to create the space dynamically.

Software Engineering Observation 14.3
Specifying the size of a container at compile time avoids the potentially fatal execution-
time error if new is unable to obtain the needed memory.

template<>
class Stack< Employee >
{

// body of class definition
};

592 Chapter 14 Templates

cializations that represent a group of related overloaded functions. We also discussed how
to overload a function template to create a specialized version of a function that handles a
particular data type’s processing in a manner that differs from the other function-template
specializations. Next, you learned about class templates and class-template specializations.
You saw examples of how to use a class template to create a group of related types that each
perform identical processing on different data types. In the next chapter, we discuss many
of C++’s I/O capabilities and demonstrate several stream manipulators that perform vari-
ous formatting tasks.

Summary
Section 14.1 Introduction
• Templates (p. 580) enable us to specify a range of related (overloaded) functions—called func-

tion-template specializations—or a range of related classes—called class-template specializations.

Section 14.2 Function Templates
• To use function-template specializations (p. 580), you write a single function-template defini-

tion (p. 581). Based on the argument types provided in calls to this function, C++ generates sep-
arate specializations to handle each type of call appropriately.

• All function-template definitions begin with the keyword template (p. 581) followed by template
parameters (p. 581) enclosed in angle brackets (< and >); each template parameter that represents a
type must be preceded by keyword class or typename (p. 581). Keywords typename and class used
to specify function-template parameters mean “any fundamental type or user-defined type.”

• Template-definition template parameters are used to specify the kinds of arguments to the func-
tion, the return type of the function and to declare variables in the function.

• As with function parameters, the names of template parameters must be unique inside a template
definition. Template parameter names need not be unique across different function templates.

Section 14.3 Overloading Function Templates
• A function template may be overloaded (p. 583) in several ways. We can provide other function

templates that specify the same function name but different function parameters. A function
template can also be overloaded by providing other nontemplate functions with the same func-
tion name, but different function parameters. If both the template and non-template versions
match a call, the non-template version will be used.

Section 14.4 Class Templates
• Class templates provide the means for describing a class generically and for instantiating classes

that are type-specific versions of this generic class.

• Class templates are called parameterized types (p. 584); they require type parameters to specify how
to customize a generic class template to form a specific class-template specialization.

• To use class-template specializations you write one class template. When you need a new type-
specific class, the compiler writes the source code for the class-template specialization.

• A class-template definition (p. 584) looks like a conventional class definition, but it’s preceded
by template<typename T> (or template<class T>) to indicate this is a class-template definition.
Type parameter T acts as a placeholder for the type of the class to create. The type T is mentioned
throughout the class definition and member-function definitions as a generic type name.

Self-Review Exercises 593

• Member-function definitions outside a class template each begin with template<typename T> (or
template<class T>). Then, each function definition resembles a conventional function defini-
tion, except that the generic data in the class always is listed generically as type parameter T. The
binary scope-resolution operator is used with the class-template name to tie each member-func-
tion definition to the class template’s scope.

Section 14.5 Nontype Parameters and Default Types for Class Templates
• It’s possible to use nontype parameters (p. 590) in the header of a class or function template.

• You can specify a default type (p. 591) for a type parameter in the type-parameter list.

• An explicit specialization (p. 591) of a class template overrides a class template for a specific type.

Self-Review Exercises
14.1 State which of the following are true and which are false. If false, explain why.

a) The template parameters of a function-template definition are used to specify the types
of the arguments to the function, to specify the return type of the function and to de-
clare variables within the function.

b) Keywords typename and class as used with a template type parameter specifically mean
“any user-defined class type.”

c) A function template can be overloaded by another function template with the same
function name.

d) Template parameter names among template definitions must be unique.
e) Each member-function definition outside a class template must begin with a template

header.

14.2 Fill in the blanks in each of the following:
a) Templates enable us to specify, with a single code segment, an entire range of related

functions called , or an entire range of related classes called .
b) All function-template definitions begin with the keyword , followed by a list

of template parameters to the function template enclosed in .
c) The related functions generated from a function template all have the same name, so

the compiler uses resolution to invoke the proper function.
d) Class templates also are called types.
e) The operator is used with a class-template name to tie each member-function

definition to the class template’s scope.

Answers to Self-Review Exercises
14.1 a) True. b) False. Keywords typename and class in this context also allow for a type pa-
rameter of a fundamental type. c) True. d) False. Template parameter names among function tem-
plates need not be unique. e) True.

14.2 a) function-template specializations, class-template specializations. b) template, angle
brackets (< and >). c) overload. d) parameterized. e) scope resolution.

Exercises
14.3 (Selection Sort Function Template) Write a function template selectionSort based on
Fig. 8.13. Write a driver program that inputs, sorts and outputs an int array and a float array.

14.4 (Print Array Range) Overload function template printArray of Fig. 14.1 so that it takes
two additional integer arguments, namely int lowSubscript and int highSubscript. A call to this
function will print only the designated portion of the array. Validate lowSubscript and highSub-

594 Chapter 14 Templates

script; if either is out of range or if highSubscript is less than or equal to lowSubscript, the over-
loaded printArray function should return 0; otherwise, printArray should return the number of
elements printed. Then modify main to exercise both versions of printArray on arrays a, b and c

(lines 22–24 of Fig. 14.1). Be sure to test all capabilities of both versions of printArray.

14.5 (Function Template Overloading) Overload function template printArray of Fig. 14.1
with a nontemplate version that prints an array of character strings in neat, tabular, column format.

14.6 (Operator Overloads in Templates) Write a simple function template for predicate function
isEqualTo that compares its two arguments of the same type with the equality operator (==) and
returns true if they are equal and false otherwise. Use this function template in a program that
calls isEqualTo only with a variety of fundamental types. Now write a separate version of the pro-
gram that calls isEqualTo with a user-defined class type, but does not overload the equality operator.
What happens when you attempt to run this program? Now overload the equality operator (with
the operator function) operator==. Now what happens when you attempt to run this program?

14.7 (Array Class Template) Reimplement class Array from Figs. 11.10–11.11 as a class tem-
plate. Demonstrate the new Array class template in a program.

14.8 Distinguish between the terms “function template” and “function-template specialization.”

14.9 Explain which is more like a stencil—a class template or a class-template specialization?

14.10 What’s the relationship between function templates and overloading?

14.11 Why might you choose to use a function template instead of a macro?

14.12 What performance problem can result from using function templates and class templates?

14.13 The compiler performs a matching process to determine which function-template special-
ization to call when a function is invoked. Under what circumstances does an attempt to make a
match result in a compile error?

14.14 Why is it appropriate to refer to a class template as a parameterized type?

14.15 Explain why a C++ program would use the statement

Array< Employee > workerList(100);

14.16 Review your answer to Exercise 14.15. Explain why a C++ program might use the state-
ment

Array< Employee > workerList;

14.17 Explain the use of the following notation in a C++ program:

template< typename T > Array< T >::Array(int s)

14.18 Why might you use a nontype parameter with a class template for a container such as an
array or stack?

15Stream Input/Output

Consciousness … does not
appear to itself chopped up in
bits … A “river” or a “stream”
are the metaphors by which it is
most naturally described.
—William James

O b j e c t i v e s
In this chapter you’ll learn:

■ To use C++ object-oriented
stream input/output.

■ To format input and output.

■ The stream-I/O class
hierarchy.

■ To use stream manipulators.

■ To control justification and
padding.

■ To determine the success or
failure of input/output
operations.

■ To tie output streams to input
streams.

596 Chapter 15 Stream Input/Output

15.1 Introduction
The C++ standard libraries provide an extensive set of input/output capabilities. This
chapter discusses a range of capabilities sufficient for performing most common I/O op-
erations and overviews the remaining capabilities. We discussed some of these features ear-
lier in the text; now we provide a more complete treatment. Many of the I/O features that
we’ll discuss are object oriented. This style of I/O makes use of other C++ features, such
as references, function overloading and operator overloading.

C++ uses type-safe I/O. Each I/O operation is executed in a manner sensitive to the
data type. If an I/O function has been defined to handle a particular data type, then that
member function is called to handle that data type. If there is no match between the type
of the actual data and a function for handling that data type, the compiler generates an
error. Thus, improper data cannot “sneak” through the system (as can occur in C, allowing
for some subtle and bizarre errors).

Users can specify how to perform I/O for objects of user-defined types by overloading
the stream insertion operator (<<) and the stream extraction operator (>>). This extensi-
bility is one of C++’s most valuable features.

15.1 Introduction
15.2 Streams

15.2.1 Classic Streams vs. Standard Streams
15.2.2 iostream Library Headers
15.2.3 Stream Input/Output Classes and

Objects
15.3 Stream Output

15.3.1 Output of char * Variables
15.3.2 Character Output Using Member

Function put

15.4 Stream Input
15.4.1 get and getlineMember Functions
15.4.2 istream Member Functions peek,

putback and ignore
15.4.3 Type-Safe I/O

15.5 Unformatted I/O Usingread, write
and gcount

15.6 Introduction to Stream Manipulators
15.6.1 Integral Stream Base: dec, oct, hex

and setbase
15.6.2 Floating-Point Precision (precision,

setprecision)
15.6.3 Field Width (width, setw)

15.6.4 User-Defined Output Stream
Manipulators

15.7 Stream Format States and Stream
Manipulators

15.7.1 Trailing Zeros and Decimal Points
(showpoint)

15.7.2 Justification (left, right and
internal)

15.7.3 Padding (fill, setfill)
15.7.4 Integral Stream Base (dec, oct, hex,

showbase)
15.7.5 Floating-Point Numbers; Scientific

and Fixed Notation (scientific,
fixed)

15.7.6 Uppercase/Lowercase Control
(uppercase)

15.7.7 Specifying Boolean Format
(boolalpha)

15.7.8 Setting and Resetting the Format State
via Member Function flags

15.8 Stream Error States
15.9 Tying an Output Stream to an Input

Stream
15.10 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 15.1
Use the C++-style I/O exclusively in C++ programs, even though C-style I/O is available
to C++ programmers.

15.2 Streams 597

15.2 Streams
C++ I/O occurs in streams, which are sequences of bytes. In input operations, the bytes
flow from a device (e.g., a keyboard, a disk drive, a network connection, etc.) to main
memory. In output operations, bytes flow from main memory to a device (e.g., a display
screen, a printer, a disk drive, a network connection, etc.).

An application associates meaning with bytes. The bytes could represent characters,
raw data, graphics images, digital speech, digital video or any other information an appli-
cation may require. The system I/O mechanisms should transfer bytes from devices to
memory (and vice versa) consistently and reliably. Such transfers often involve some
mechanical motion, such as the rotation of a disk or a tape, or the typing of keystrokes at
a keyboard. The time these transfers take typically is much greater than the time the pro-
cessor requires to manipulate data internally. Thus, I/O operations require careful plan-
ning and tuning to ensure optimal performance.

C++ provides both “low-level” and “high-level” I/O capabilities. Low-level I/O
capabilities (i.e., unformatted I/O) specify that some number of bytes should be trans-
ferred device-to-memory or memory-to-device. In such transfers, the individual byte is the
item of interest. Such low-level capabilities provide high-speed, high-volume transfers but
are not particularly convenient.

Programmers generally prefer a higher-level view of I/O (i.e., formatted I/O), in
which bytes are grouped into meaningful units, such as integers, floating-point numbers,
characters, strings and user-defined types. These type-oriented capabilities are satisfactory
for most I/O other than high-volume file processing.

15.2.1 Classic Streams vs. Standard Streams
In the past, the C++ classic stream libraries enabled input and output of chars. Because a
char normally occupies one byte, it can represent only a limited set of characters (such as
those in the ASCII character set used by most readers of this book, or other popular char-
acter sets). However, many languages use alphabets that contain more characters than a
single-byte char can represent. The ASCII character set does not provide these characters;
the Unicode® character set does. Unicode is an extensive international character set that

Error-Prevention Tip 15.1
C++ I/O is type safe.

Software Engineering Observation 15.2
C++ enables a common treatment of I/O for predefined types and user-defined types. This
commonality facilitates software development and reuse.

Performance Tip 15.1
Use unformatted I/O for the best performance in high-volume file processing.

Portability Tip 15.1
Using unformatted I/O can lead to portability problems, because unformatted data is not
portable across all platforms.

598 Chapter 15 Stream Input/Output

represents the majority of the world’s “commercially viable” languages, mathematical sym-
bols and much more. For more information on Unicode, visit www.unicode.org.

C++ includes the standard stream libraries, which enable developers to build systems
capable of performing I/O operations with Unicode characters. For this purpose, C++
includes an additional character type called wchar_t, which among other uses can store
Unicode characters. The C++ standard also redesigned the classic C++ stream classes,
which processed only chars, as class templates with separate specializations for processing
characters of types char and wchar_t, respectively. We use the char type of class templates
throughout this book.

15.2.2 iostream Library Headers
The C++ iostream library provides hundreds of I/O capabilities. Several headers contain
portions of the library interface.

Most C++ programs include the <iostream> header, which declares basic services
required for all stream-I/O operations. The <iostream> header defines the cin, cout, cerr
and clog objects, which correspond to the standard input stream, the standard output
stream, the unbuffered standard error stream and the buffered standard error stream,
respectively. (cerr and clog are discussed in Section 15.2.3.) Both unformatted- and for-
matted-I/O services are provided.

The <iomanip> header declares services useful for performing formatted I/O with so-
called parameterized stream manipulators, such as setw and setprecision.

The <fstream> header declares services for file processing. We use this header in the
file-processing programs of Chapter 17.

C++ implementations generally contain other I/O-related libraries that provide
system-specific capabilities, such as the controlling of special-purpose devices for audio
and video I/O.

15.2.3 Stream Input/Output Classes and Objects
The iostream library provides many templates for handling common I/O operations. For
example, class template basic_istream supports stream-input operations, class template
basic_ostream supports stream-output operations, and class template basic_iostream

supports both stream-input and stream-output operations. Each template has a predefined
template specialization that enables char I/O. In addition, the iostream library provides
a set of typedefs that provide aliases for these template specializations. The typedef spec-
ifier declares synonyms (aliases) for data types. You’ll sometimes use typedef to create
shorter or more readable type names. For example, the statement

defines an additional type name, CardPtr, as a synonym for type Card *. Creating a name
using typedef does not create a data type; typedef creates only a type name. Section 21.5
discusses typedef in detail. The typedef istream represents a specialization of
basic_istream that enables char input. Similarly, the typedef ostream represents a spe-
cialization of basic_ostream that enables char output. Also, the typedef iostream rep-
resents a specialization of basic_iostream that enables both char input and output. We
use these typedefs throughout this chapter.

typedef Card *CardPtr;

www.unicode.org

15.2 Streams 599

Stream-I/O Template Hierarchy and Operator Overloading
Templates basic_istream and basic_ostream both derive through single inheritance
from base template basic_ios.1 Template basic_iostream derives through multiple in-
heritance2 from templates basic_istream and basic_ostream. The UML class diagram
of Fig. 15.1 summarizes these inheritance relationships.

Operator overloading provides a convenient notation for performing input/output.
The left-shift operator (<<) is overloaded to designate stream output and is referred to as
the stream insertion operator. The right-shift operator (>>) is overloaded to designate
stream input and is referred to as the stream extraction operator. These operators are used
with the standard stream objects cin, cout, cerr and clog and, commonly, with user-
defined stream objects.

Standard Stream Objects cin, cout, cerr and clog
Predefined object cin is an istream instance and is said to be “connected to” (or attached
to) the standard input device, which usually is the keyboard. The stream extraction oper-
ator (>>) as used in the following statement causes a value for integer variable grade (as-
suming that grade has been declared as an int variable) to be input from cin to memory:

The compiler determines the data type of grade and selects the appropriate overloaded
stream extraction operator. Assuming that grade has been declared properly, the stream
extraction operator does not require additional type information (as is the case, for exam-
ple, in C-style I/O). The >> operator is overloaded to input data items of fundamental
types, strings and pointer values.

The predefined object cout is an ostream instance and is said to be “connected to”
the standard output device, which usually is the display screen. The stream insertion oper-
ator (<<), as used in the following statement, causes the value of variable grade to be
output from memory to the standard output device:

1. This chapter discusses templates only in the context of the template specializations for char I/O.
2. Multiple inheritance is discussed in Chapter 24, Other Topics.

Fig. 15.1 | Stream-I/O template hierarchy portion.

cin >> grade; // data "flows" in the direction of the arrows

cout << grade; // data "flows" in the direction of the arrows

basic_ios

basic_ostreambasic_istream

basic_iostream

600 Chapter 15 Stream Input/Output

The compiler determines the data type of grade (assuming grade has been declared prop-
erly) and selects the appropriate stream insertion operator. The << operator is overloaded
to output data items of fundamental types, strings and pointer values.

The predefined object cerr is an ostream instance and is said to be “connected to”
the standard error device, normally the screen. Outputs to object cerr are unbuffered,
implying that each stream insertion to cerr causes its output to appear immediately—this
is appropriate for notifying a user promptly about errors.

The predefined object clog is an instance of the ostream class and is said to be “con-
nected to” the standard error device. Outputs to clog are buffered. This means that each
insertion to clog could cause its output to be held in a buffer (that is, an area in memory)
until the buffer is filled or until the buffer is flushed. Buffering is an I/O performance-
enhancement technique discussed in operating-systems courses.

File-Processing Templates
C++ file processing uses class templates basic_ifstream (for file input), basic_ofstream
(for file output) and basic_fstream (for file input and output). Each class template has a
predefined template specialization that enables char I/O. C++ provides a set of typedefs
that provide aliases for these template specializations. For example, the typedef ifstream
represents a specialization of basic_ifstream that enables char input from a file. Similar-
ly, typedef ofstream represents a specialization of basic_ofstream that enables char out-
put to a file. Also, typedef fstream represents a specialization of basic_fstream that
enables char input from, and output to, a file. Template basic_ifstream inherits from
basic_istream, basic_ofstream inherits from basic_ostream and basic_fstream in-
herits from basic_iostream. The UML class diagram of Fig. 15.2 summarizes the various
inheritance relationships of the I/O-related classes. The full stream-I/O class hierarchy
provides most of the capabilities that you need. Consult the class-library reference for your
C++ system for additional file-processing information.

Fig. 15.2 | Stream-I/O template hierarchy portion showing the main file-processing
templates.

basic_ios

basic_ostreambasic_istream

basic_iostream basic_ofstreambasic_ifstream

basic_fstream

15.3 Stream Output 601

15.3 Stream Output
Formatted and unformatted output capabilities are provided by ostream. Capabilities in-
clude output of standard data types with the stream insertion operator (<<); output of
characters via the put member function; unformatted output via the write member func-
tion (Section 15.5); output of integers in decimal, octal and hexadecimal formats
(Section 15.6.1); output of floating-point values with various precision (Section 15.6.2),
with forced decimal points (Section 15.7.1), in scientific notation and in fixed notation
(Section 15.7.5); output of data justified in fields of designated widths (Section 15.7.2);
output of data in fields padded with specified characters (Section 15.7.3); and output of
uppercase letters in scientific notation and hexadecimal notation (Section 15.7.6).

15.3.1 Output of char * Variables
C++ determines data types automatically—an improvement over C. This feature some-
times “gets in the way.” For example, suppose we want to print the address stored in a
char * pointer. The << operator has been overloaded to output a char * as a null-termi-
nated string. To output the address, you can cast the char * to a void * (this can be done
to any pointer variable). Figure 15.3 demonstrates printing a char * variable in both string
and address formats. The address prints here as a hexadecimal (base-16) number—in gen-
eral, the way addresses print is implementation dependent. To learn more about hexadec-
imal numbers, read Appendix D. We say more about controlling the bases of numbers in
Section 15.6.1 and Section 15.7.4.

15.3.2 Character Output Using Member Function put
We can use the put member function to output characters. For example, the statement

1 // Fig. 15.3: Fig15_03.cpp
2 // Printing the address stored in a char * variable.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10 // display value of char *, then display value of char *
11 // static_cast to void *
12 cout << "Value of word is: " << << endl
13 << "Value of static_cast< void * >(word) is: "
14 << << endl;
15 } // end main

Value of word is: again
Value of static_cast< void * >(word) is: 00428300

Fig. 15.3 | Printing the address stored in a char * variable.

cout.put('A');

const char *const word = "again";

word

static_cast< void * >(word)

602 Chapter 15 Stream Input/Output

displays a single character A. Calls to put may be cascaded, as in the statement

which outputs the letter A followed by a newline character. As with <<, the preceding state-
ment executes in this manner, because the dot operator (.) associates from left to right,
and the put member function returns a reference to the ostream object (cout) that re-
ceived the put call. The put function also may be called with a numeric expression that
represents an ASCII value, as in the following statement, which also outputs A:

15.4 Stream Input
Now let’s consider stream input. Formatted and unformatted input capabilities are pro-
vided by istream. The stream extraction operator (>>) normally skips white-space char-
acters (such as blanks, tabs and newlines) in the input stream; later we’ll see how to change
this behavior. After each input, the stream extraction operator returns a reference to the
stream object that received the extraction message (e.g., cin in the expression
cin >> grade). If that reference is used as a condition (e.g., in a while statement’s loop-
continuation condition), the stream’s overloaded void * cast operator function is implic-
itly invoked to convert the reference into a non-null pointer value or the null pointer based
on the success or failure of the last input operation. A non-null pointer converts to the
bool value true to indicate success and the null pointer converts to the bool value false

to indicate failure. When an attempt is made to read past the end of a stream, the stream’s
overloaded void * cast operator returns the null pointer to indicate end-of-file.

Each stream object contains a set of state bits used to control the stream’s state (i.e.,
formatting, setting error states, etc.). These bits are used by the stream’s overloaded void *

cast operator to determine whether to return a non-null pointer or the null pointer. Stream
extraction causes the stream’s failbit to be set if data of the wrong type is input and
causes the stream’s badbit to be set if the operation fails. Section 15.7 and Section 15.8
discuss stream state bits in detail, then show how to test these bits after an I/O operation.

15.4.1 get and getline Member Functions
The get member function with no arguments inputs one character from the designated
stream (including white-space characters and other nongraphic characters, such as the key
sequence that represents end-of-file) and returns it as the value of the function call. This
version of get returns EOF when end-of-file is encountered on the stream.

Using Member Functions eof, get and put
Figure 15.4 demonstrates the use of member functions eof and get on input stream cin

and member function put on output stream cout. The program first prints the value of
cin.eof()—i.e., false (0 on the output)—to show that end-of-file has not occurred on
cin. The user enters a line of text and presses Enter followed by end-of-file (<Ctrl>-z on
Microsoft Windows systems, <Ctrl>-d on UNIX and Macintosh systems). Line 15 reads
each character, which line 16 outputs to cout using member function put. When end-of-
file is encountered, the while statement ends, and line 20 displays the value of cin.eof(),
which is now true (1 on the output), to show that end-of-file has been set on cin. This
program uses the version of istream member function get that takes no arguments and

cout.put('A').put('\n');

cout.put(65);

15.4 Stream Input 603

returns the character being input (line 15). Function eof returns true only after the pro-
gram attempts to read past the last character in the stream.

The get member function with a character-reference argument inputs the next char-
acter from the input stream (even if this is a white-space character) and stores it in the char-
acter argument. This version of get returns a reference to the istream object for which
the get member function is being invoked.

A third version of get takes three arguments—a character array, a size limit and a
delimiter (with default value '\n'). This version reads characters from the input stream.
It either reads one fewer than the specified maximum number of characters and terminates
or terminates as soon as the delimiter is read. A null character is inserted to terminate the
input string in the character array used as a buffer by the program. The delimiter is not
placed in the character array but does remain in the input stream (the delimiter will be the
next character read). Thus, the result of a second consecutive get is an empty line, unless
the delimiter character is removed from the input stream (possibly with cin.ignore()).

Comparing cin and cin.get
Figure 15.5 compares input using stream extraction with cin (which reads characters until
a white-space character is encountered) and input using cin.get. The call to cin.get (line
22) does not specify a delimiter, so the default '\n' character is used.

1 // Fig. 15.4: Fig15_04.cpp
2 // Using member functions get, put and eof.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int character; // use int, because char cannot represent EOF
9

10 // prompt user to enter line of text
11 cout << "Before input, cin.eof() is " << << endl
12 << "Enter a sentence followed by end-of-file:" << endl;
13
14 // use get to read each character; use put to display it
15 while ()
16
17
18 // display end-of-file character
19 cout << "\nEOF in this system is: " << character << endl;
20 cout << "After input of EOF, cin.eof() is " << << endl;
21 } // end main

Before input, cin.eof() is 0
Enter a sentence followed by end-of-file:
Testing the get and put member functions
Testing the get and put member functions
^Z

EOF in this system is: -1
After input of EOF, cin.eof() is 1

Fig. 15.4 | get, put and eof member functions.

cin.eof()

(character = cin.get()) != EOF
cout.put(character);

cin.eof()

604 Chapter 15 Stream Input/Output

Using Member Function getline
Member function getline operates similarly to the third version of the get member func-
tion and inserts a null character after the line in the character array. The getline function
removes the delimiter from the stream (i.e., reads the character and discards it), but does
not store it in the character array. The program of Fig. 15.6 demonstrates the use of the
getline member function to input a line of text (line 13).

1 // Fig. 15.5: Fig15_05.cpp
2 // Contrasting input of a string via cin and cin.get.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 // create two char arrays, each with 80 elements
9 const int SIZE = 80;

10 char buffer1[SIZE];
11 char buffer2[SIZE];
12
13 // use cin to input characters into buffer1
14 cout << "Enter a sentence:" << endl;
15
16
17 // display buffer1 contents
18 cout << "\nThe string read with cin was:" << endl
19 << buffer1 << endl << endl;
20
21
22
23
24 // display buffer2 contents
25 cout << "The string read with cin.get was:" << endl
26 << buffer2 << endl;
27 } // end main

Enter a sentence:
Contrasting string input with cin and cin.get

The string read with cin was:
Contrasting

The string read with cin.get was:
string input with cin and cin.get

Fig. 15.5 | Contrasting input of a string via cin and cin.get.

1 // Fig. 15.6: Fig15_06.cpp
2 // Inputting characters using cin member function getline.
3 #include <iostream>
4 using namespace std;
5

Fig. 15.6 | Inputting characters with cin member function getline. (Part 1 of 2.)

cin >> buffer1;

// use cin.get to input characters into buffer2
cin.get(buffer2, SIZE);

15.5 Unformatted I/O Using read, write and gcount 605

15.4.2 istream Member Functions peek, putback and ignore
The ignore member function of istream reads and discards a designated number of char-
acters (the default is one) or terminates upon encountering a designated delimiter (the de-
fault is EOF, which causes ignore to skip to the end of the file when reading from a file).

The putback member function places the previous character obtained by a get from
an input stream back into that stream. This function is useful for applications that scan an
input stream looking for a field beginning with a specific character. When that character
is input, the application returns the character to the stream, so the character can be
included in the input data.

The peek member function returns the next character from an input stream but does
not remove the character from the stream.

15.4.3 Type-Safe I/O
C++ offers type-safe I/O. The << and >> operators are overloaded to accept data items of
specific types. If unexpected data is processed, various error bits are set, which the user may
test to determine whether an I/O operation succeeded or failed. If operators << and >>
have not been overloaded for a user-defined type and you attempt to input into or output
the contents of an object of that user-defined type, the compiler reports an error. This en-
ables the program to “stay in control.” We discuss these error states in Section 15.8.

15.5 Unformatted I/O Using read, write and gcount
Unformatted input/output is performed using the read and write member functions of
istream and ostream, respectively. Member function read inputs bytes to a character ar-
ray in memory; member function write outputs bytes from a character array. These bytes
are not formatted in any way. They’re input or output as raw bytes. For example, the call

6 int main()
7 {
8 const int SIZE = 80;
9

10
11 // input characters in buffer via cin function getline
12 cout << "Enter a sentence:" << endl;
13
14
15 // display buffer contents
16 cout << "\nThe sentence entered is:" << endl << buffer << endl;
17 } // end main

Enter a sentence:
Using the getline member function

The sentence entered is:
Using the getline member function

char buffer[] = "HAPPY BIRTHDAY";
cout.write(buffer, 10);

Fig. 15.6 | Inputting characters with cin member function getline. (Part 2 of 2.)

char buffer[SIZE]; // create array of 80 characters

cin.getline(buffer, SIZE);

606 Chapter 15 Stream Input/Output

outputs the first 10 bytes of buffer (including null characters, if any, that would cause
output with cout and << to terminate). The call

displays the first 10 characters of the alphabet.
The read member function inputs a designated number of characters into a character

array. If fewer than the designated number of characters are read, failbit is set.
Section 15.8 shows how to determine whether failbit has been set. Member function
gcount reports the number of characters read by the last input operation.

Figure 15.7 demonstrates istream member functions read and gcount, and ostream

member function write. The program inputs 20 characters (from a longer input
sequence) into the array buffer with read (line 13), determines the number of characters
input with gcount (line 17) and outputs the characters in buffer with write (line 17).

15.6 Introduction to Stream Manipulators
C++ provides various stream manipulators that perform formatting tasks. The stream ma-
nipulators provide capabilities such as setting field widths, setting precision, setting and
unsetting format state, setting the fill character in fields, flushing streams, inserting a new-
line into the output stream (and flushing the stream), inserting a null character into the
output stream and skipping white space in the input stream. These features are described
in the following sections.

cout.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 10);

1 // Fig. 15.7: Fig15_07.cpp
2 // Unformatted I/O using read, gcount and write.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 80;
9

10
11 // use function read to input characters into buffer
12 cout << "Enter a sentence:" << endl;
13
14
15 // use functions write and gcount to display buffer characters
16 cout << endl << "The sentence entered was:" << endl;
17
18 cout << endl;
19 } // end main

Enter a sentence:
Using the read, write, and gcount member functions
The sentence entered was:
Using the read, writ

Fig. 15.7 | Unformatted I/O using the read, gcount and write member functions.

char buffer[SIZE]; // create array of 80 characters

cin.read(buffer, 20);

cout.write(buffer, cin.gcount());

15.6 Introduction to Stream Manipulators 607

15.6.1 Integral Stream Base: dec, oct, hex and setbase
Integers are interpreted normally as decimal (base-10) values. To change the base in which
integers are interpreted on a stream, insert the hex manipulator to set the base to hexadec-
imal (base 16) or insert the oct manipulator to set the base to octal (base 8). Insert the dec
manipulator to reset the stream base to decimal. These are all sticky manipulators.

A stream’s base also may be changed by the setbase stream manipulator, which takes
an int argument of 10, 8, or 16 to set the base to decimal, octal or hexadecimal, respectively.
Because setbase takes an argument, it’s called a parameterized stream manipulator. Using
setbase (or any other parameterized manipulator) requires the inclusion of the <iomanip>

header. The stream base value remains the same until changed explicitly; setbase settings
are “sticky.” Figure 15.8 demonstrates stream manipulators hex, oct, dec and setbase.

15.6.2 Floating-Point Precision (precision, setprecision)
We can control the precision of floating-point numbers (i.e., the number of digits to the
right of the decimal point) by using either the setprecision stream manipulator or the
precision member function of ios_base. A call to either of these sets the precision for all
subsequent output operations until the next precision-setting call. A call to member func-

1 // Fig. 15.8: Fig15_08.cpp
2 // Using stream manipulators hex, oct, dec and setbase.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 int number;

10
11 cout << "Enter a decimal number: ";
12 cin >> number; // input number
13
14 // use hex stream manipulator to show hexadecimal number
15 cout << number << " in hexadecimal is: " <<
16 << number << endl;
17
18 // use oct stream manipulator to show octal number
19 cout << << number << " in octal is: "
20 << << number << endl;
21
22 // use setbase stream manipulator to show decimal number
23 cout << << number << " in decimal is: "
24 << number << endl;
25 } // end main

Enter a decimal number: 20
20 in hexadecimal is: 14
20 in octal is: 24
20 in decimal is: 20

Fig. 15.8 | Stream manipulators hex, oct, dec and setbase.

#include <iomanip>

hex

dec
oct

setbase(10)

608 Chapter 15 Stream Input/Output

tion precision with no argument returns the current precision setting (this is what you
need to use so that you can restore the original precision eventually after a “sticky” setting
is no longer needed). The program of Fig. 15.9 uses both member function precision

(line 22) and the setprecision manipulator (line 31) to print a table that shows the
square root of 2, with precision varying from 0 to 9.

1 // Fig. 15.9: Fig15_09.cpp
2 // Controlling precision of floating-point values.
3 #include <iostream>
4
5 #include <cmath>
6 using namespace std;
7
8 int main()
9 {

10 double root2 = sqrt(2.0); // calculate square root of 2
11 int places; // precision, vary from 0-9
12
13 cout << "Square root of 2 with precisions 0-9." << endl
14 << "Precision set by ios_base member function "
15 << "precision:" << endl;
16
17
18
19 // display square root using ios_base function precision
20 for (places = 0; places <= 9; ++places)
21 {
22
23 cout << root2 << endl;
24 } // end for
25
26 cout << "\nPrecision set by stream manipulator "
27 << "setprecision:" << endl;
28
29 // set precision for each digit, then display square root
30 for (places = 0; places <= 9; ++places)
31 cout << << root2 << endl;
32 } // end main

Square root of 2 with precisions 0-9.
Precision set by ios_base member function precision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Fig. 15.9 | Precision of floating-point values. (Part 1 of 2.)

#include <iomanip>

cout << fixed; // use fixed-point notation

cout.precision(places);

setprecision(places)

15.6 Introduction to Stream Manipulators 609

15.6.3 Field Width (width, setw)
The width member function (of base class ios_base) sets the field width (i.e., the number
of character positions in which a value should be output or the maximum number of char-
acters that should be input) and returns the previous width. If values output are narrower
than the field width, fill characters are inserted as padding. A value wider than the desig-
nated width will not be truncated—the full number will be printed. The width function
with no argument returns the current setting.

Figure 15.10 demonstrates the use of the width member function on both input and
output. On input into a char array, a maximum of one fewer characters than the width will
be read, because provision is made for the null character to be placed in the input string.
Remember that stream extraction terminates when nonleading white space is encountered.
The setw stream manipulator also may be used to set the field width. [Note: When
prompted for input in Fig. 15.10, the user should enter a line of text and press Enter fol-
lowed by end-of-file (<Ctrl>-z on Microsoft Windows systems and <Ctrl>-d on UNIX
and Macintosh systems).]

Precision set by stream manipulator setprecision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Common Programming Error 15.1
The width setting applies only for the next insertion or extraction (i.e., the width setting
is not “sticky”); afterward, the width is set implicitly to 0 (that is, input and output will
be performed with default settings). Assuming that the width setting applies to all sub-
sequent outputs is a logic error.

Common Programming Error 15.2
When a field is not sufficiently wide to handle outputs, the outputs print as wide as nec-
essary, which can yield confusing outputs.

1 // Fig. 15.10: Fig15_10.cpp
2 // Demonstrating member function width.
3 #include <iostream>
4 using namespace std;

Fig. 15.10 | width member function of class ios_base. (Part 1 of 2.)

Fig. 15.9 | Precision of floating-point values. (Part 2 of 2.)

610 Chapter 15 Stream Input/Output

15.6.4 User-Defined Output Stream Manipulators
You can create your own stream manipulators.3 Figure 15.11 shows the creation and use
of new nonparameterized stream manipulators bell (lines 8–11), carriageReturn (lines
14–17), tab (lines 20–23) and endLine (lines 27–30). For output stream manipulators,
the return type and parameter must be of type ostream &. When line 35 inserts the
endLine manipulator in the output stream, function endLine is called and line 29 outputs
the escape sequence \n and the flush manipulator to the standard output stream cout.
Similarly, when lines 35–44 insert the manipulators tab, bell and carriageReturn in the
output stream, their corresponding functions—tab (line 20), bell (line 8) and carriage-

Return (line 14) are called, which in turn output various escape sequences.

5
6 int main()
7 {
8 int widthValue = 4;
9 char sentence[10];

10
11 cout << "Enter a sentence:" << endl;
12
13
14 // set field width, then display characters based on that width
15 while (cin >> sentence)
16 {
17
18 cout << sentence << endl;
19
20 } // end while
21 } // end main

Enter a sentence:
This is a test of the width member function
This

is
a

test
of
the
widt

h
memb

er
func
tion

3. You can also create your own parameterized stream manipulators. This capability is beyond the scope
of this book.

Fig. 15.10 | width member function of class ios_base. (Part 2 of 2.)

cin.width(5); // input only 5 characters from sentence

cout.width(widthValue++);

cin.width(5); // input 5 more characters from sentence

15.6 Introduction to Stream Manipulators 611

1 // Fig. 15.11: Fig15_11.cpp
2 // Creating and testing user-defined, nonparameterized
3 // stream manipulators.
4 #include <iostream>
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 int main()
33 {
34 // use tab and endLine manipulators
35 cout << "Testing the tab manipulator:" <<
36 << 'a' << << 'b' << << 'c' << ;
37
38 cout << "Testing the carriageReturn and bell manipulators:"
39 << << "..........";
40
41 cout << ; // use bell manipulator
42
43 // use carriageReturn and endLine manipulators
44 cout << << "-----" << ;
45 } // end main

Testing the tab manipulator:
a b c
Testing the carriageReturn and bell manipulators:
-----.....

Fig. 15.11 | User-defined, nonparameterized stream manipulators.

// bell manipulator (using escape sequence \a)
ostream& bell(ostream& output)
{

return output << '\a'; // issue system beep
} // end bell manipulator

// carriageReturn manipulator (using escape sequence \r)
ostream& carriageReturn(ostream& output)
{

return output << '\r'; // issue carriage return
} // end carriageReturn manipulator

// tab manipulator (using escape sequence \t)
ostream& tab(ostream& output)
{

return output << '\t'; // issue tab
} // end tab manipulator

// endLine manipulator (using escape sequence \n and member
// function flush)
ostream& endLine(ostream& output)
{

return output << '\n' << flush; // issue endl-like end of line
} // end endLine manipulator

endLine
tab tab endLine

endLine

bell

carriageReturn endLine

612 Chapter 15 Stream Input/Output

15.7 Stream Format States and Stream Manipulators
Various stream manipulators can be used to specify the kinds of formatting to be per-
formed during stream-I/O operations. Stream manipulators control the output’s format
settings. Figure 15.12 lists each stream manipulator that controls a given stream’s format
state. All these manipulators belong to class ios_base. We show examples of most of these
stream manipulators in the next several sections.

15.7.1 Trailing Zeros and Decimal Points (showpoint)
Stream manipulator showpoint forces a floating-point number to be output with its dec-
imal point and trailing zeros. For example, the floating-point value 79.0 prints as 79 with-

Manipulator Description

skipws Skip white-space characters on an input stream. This setting is reset with
stream manipulator noskipws.

left Left justify output in a field. Padding characters appear to the right if necessary.

right Right justify output in a field. Padding characters appear to the left if necessary.

internal Indicate that a number’s sign should be left justified in a field and a number’s
magnitude should be right justified in that same field (i.e., padding characters
appear between the sign and the number).

boolalpha Specify that bool values should be displayed as the word true or false. The
manipulator noboolalpha sets the stream back to displaying bool values as 1
(true) and 0 (false).

dec Specify that integers should be treated as decimal (base 10) values.

oct Specify that integers should be treated as octal (base 8) values.

hex Specify that integers should be treated as hexadecimal (base 16) values.

showbase Specify that the base of a number is to be output ahead of the number (a lead-
ing 0 for octals; a leading 0x or 0X for hexadecimals). This setting is reset with
stream manipulator noshowbase.

showpoint Specify that floating-point numbers should be output with a decimal point.
This is used normally with fixed to guarantee a certain number of digits to
the right of the decimal point, even if they’re zeros. This setting is reset with
stream manipulator noshowpoint.

uppercase Specify that uppercase letters (i.e., X and A through F) should be used in a
hexadecimal integer and that uppercase E should be used when representing a
floating-point value in scientific notation. This setting is reset with stream
manipulator nouppercase.

showpos Specify that positive numbers should be preceded by a plus sign (+). This set-
ting is reset with stream manipulator noshowpos.

scientific Specify output of a floating-point value in scientific notation.

fixed Specify output of a floating-point value in fixed-point notation with a specific
number of digits to the right of the decimal point.

Fig. 15.12 | Format state stream manipulators from <iostream>.

15.7 Stream Format States and Stream Manipulators 613

out using showpoint and prints as 79.000000 (or as many trailing zeros as are specified
by the current precision) using showpoint. To reset the showpoint setting, output the
stream manipulator noshowpoint. The program in Fig. 15.13 shows how to use stream
manipulator showpoint to control the printing of trailing zeros and decimal points for
floating-point values. Recall that the default precision of a floating-point number is 6.
When neither the fixed nor the scientific stream manipulator is used, the precision
represents the number of significant digits to display (i.e., the total number of digits to dis-
play), not the number of digits to display after decimal point.

15.7.2 Justification (left, right and internal)
Stream manipulators left and right enable fields to be left justified with padding char-
acters to the right or right justified with padding characters to the left, respectively. The
padding character is specified by the fill member function or the setfill parameterized
stream manipulator (which we discuss in Section 15.7.3). Figure 15.14 uses the setw,
left and right manipulators to left justify and right justify integer data in a field.

1 // Fig. 15.13: Fig15_13.cpp
2 // Controlling the printing of trailing zeros and
3 // decimal points in floating-point values.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // display double values with default stream format

10 cout << "Before using showpoint" << endl
11 << "9.9900 prints as: " << 9.9900 << endl
12 << "9.9000 prints as: " << 9.9000 << endl
13 << "9.0000 prints as: " << 9.0000 << endl << endl;
14
15 // display double value after showpoint
16 cout <<
17 << "After using showpoint" << endl
18 << "9.9900 prints as: " << 9.9900 << endl
19 << "9.9000 prints as: " << 9.9000 << endl
20 << "9.0000 prints as: " << 9.0000 << endl;
21 } // end main

Before using showpoint
9.9900 prints as: 9.99
9.9000 prints as: 9.9
9.0000 prints as: 9

After using showpoint
9.9900 prints as: 9.99000
9.9000 prints as: 9.90000
9.0000 prints as: 9.00000

Fig. 15.13 | Controlling the printing of trailing zeros and decimal points in floating-point
values.

showpoint

614 Chapter 15 Stream Input/Output

Stream manipulator internal indicates that a number’s sign (or base when using
stream manipulator showbase) should be left justified within a field, that the number’s
magnitude should be right justified and that intervening spaces should be padded with the
fill character. Figure 15.15 shows the internal stream manipulator specifying internal
spacing (line 10). Note that showpos forces the plus sign to print (line 10). To reset the
showpos setting, output the stream manipulator noshowpos.

1 // Fig. 15.14: Fig15_14.cpp
2 // Left and right justification with stream manipulators left and right.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int x = 12345;

10
11 // display x right justified (default)
12 cout << "Default is right justified:" << endl
13 << << x;
14
15 // use left manipulator to display x left justified
16 cout << "\n\nUse std::left to left justify x:\n"
17 << << << x;
18
19 // use right manipulator to display x right justified
20 cout << "\n\nUse std::right to right justify x:\n"
21 << << << x << endl;
22 } // end main

Default is right justified:
12345

Use std::left to left justify x:
12345

Use std::right to right justify x:
12345

Fig. 15.14 | Left justification and right justification with stream manipulators left and right.

1 // Fig. 15.15: Fig15_15.cpp
2 // Printing an integer with internal spacing and plus sign.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 // display value with internal spacing and plus sign

10 cout << << << setw(10) << 123 << endl;
11 } // end main

Fig. 15.15 | Printing an integer with internal spacing and plus sign. (Part 1 of 2.)

setw(10)

left setw(10)

right setw(10)

internal showpos

15.7 Stream Format States and Stream Manipulators 615

15.7.3 Padding (fill, setfill)
The fill member function specifies the fill character to be used with justified fields; spaces
are used for padding by default. The function returns the prior padding character. The set-
fill manipulator also sets the padding character. Figure 15.16 demonstrates function
fill (line 30) and stream manipulator setfill (lines 34 and 37) to set the fill character.

+ 123

1 // Fig. 15.16: Fig15_16.cpp
2 // Using member function fill and stream manipulator setfill to change
3 // the padding character for fields larger than the printed value.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {

10 int x = 10000;
11
12 // display x
13 cout << x << " printed as int right and left justified\n"
14 << "and as hex with internal justification.\n"
15 << "Using the default pad character (space):" << endl;
16
17 // display x with base
18 cout << showbase << setw(10) << x << endl;
19
20 // display x with left justification
21 cout << left << setw(10) << x << endl;
22
23 // display x as hex with internal justification
24 cout << << setw(10) << hex << x << endl << endl;
25
26 cout << "Using various padding characters:" << endl;
27
28 // display x using padded characters (right justification)
29 cout << right;
30
31 cout << setw(10) << dec << x << endl;
32
33 // display x using padded characters (left justification)
34 cout << left << setw(10) << << x << endl;
35
36 // display x using padded characters (internal justification)
37 cout << << setw(10) << << hex
38 << x << endl;
39 } // end main

Fig. 15.16 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the values being printed. (Part 1 of 2.)

Fig. 15.15 | Printing an integer with internal spacing and plus sign. (Part 2 of 2.)

internal

cout.fill('*');

setfill('%')

internal setfill('^')

616 Chapter 15 Stream Input/Output

15.7.4 Integral Stream Base (dec, oct, hex, showbase)
C++ provides stream manipulators dec, hex and oct to specify that integers are to be dis-
played as decimal, hexadecimal and octal values, respectively. Stream insertions default to
decimal if none of these manipulators is used. With stream extraction, integers prefixed
with 0 (zero) are treated as octal values, integers prefixed with 0x or 0X are treated as hexa-
decimal values, and all other integers are treated as decimal values. Once a particular base
is specified for a stream, all integers on that stream are processed using that base until a
different base is specified or until the program terminates.

Stream manipulator showbase forces the base of an integral value to be output. Dec-
imal numbers are output by default, octal numbers are output with a leading 0, and hexa-
decimal numbers are output with either a leading 0x or a leading 0X (as we discuss in
Section 15.7.6, stream manipulator uppercase determines which option is chosen).
Figure 15.17 demonstrates the use of stream manipulator showbase to force an integer to
print in decimal, octal and hexadecimal formats. To reset the showbase setting, output the
stream manipulator noshowbase.

10000 printed as int right and left justified
and as hex with internal justification.
Using the default pad character (space):

10000
10000
0x 2710

Using various padding characters:
*****10000
10000%%%%%
0x^^^^2710

1 // Fig. 15.17: Fig15_17.cpp
2 // Using stream manipulator showbase.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 100;
9

10 // use showbase to show number base
11 cout << "Printing integers preceded by their base:" << endl
12 << ;
13
14 cout << x << endl; // print decimal value
15 cout << oct << x << endl; // print octal value
16 cout << hex << x << endl; // print hexadecimal value
17 } // end main

Fig. 15.17 | Stream manipulator showbase. (Part 1 of 2.)

Fig. 15.16 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the values being printed. (Part 2 of 2.)

showbase

15.7 Stream Format States and Stream Manipulators 617

15.7.5 Floating-Point Numbers; Scientific and Fixed Notation
(scientific, fixed)
Stream manipulators scientific and fixed control the output format of floating-point
numbers. Stream manipulator scientific forces the output of a floating-point number
to display in scientific format. Stream manipulator fixed forces a floating-point number
to display a specific number of digits (as specified by member function precision or
stream manipulator setprecision) to the right of the decimal point. Without using an-
other manipulator, the floating-point-number value determines the output format.

Figure 15.18 demonstrates displaying floating-point numbers in fixed and scientific for-
mats using stream manipulators scientific (line 18) and fixed (line 22). The exponent
format in scientific notation might differ across different compilers.

Printing integers preceded by their base:
100
0144
0x64

1 // Fig. 15.18: Fig15_18.cpp
2 // Displaying floating-point values in system default,
3 // scientific and fixed formats.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 double x = 0.001234567;

10 double y = 1.946e9;
11
12 // display x and y in default format
13 cout << "Displayed in default format:" << endl
14 << x << '\t' << y << endl;
15
16 // display x and y in scientific format
17 cout << "\nDisplayed in scientific format:" << endl
18 << << x << '\t' << y << endl;
19
20 // display x and y in fixed format
21 cout << "\nDisplayed in fixed format:" << endl
22 << << x << '\t' << y << endl;
23 } // end main

Displayed in default format:
0.00123457 1.946e+009

Displayed in scientific format:
1.234567e-003 1.946000e+009

Fig. 15.18 | Floating-point values displayed in default, scientific and fixed formats. (Part 1 of 2.)

Fig. 15.17 | Stream manipulator showbase. (Part 2 of 2.)

scientific

fixed

618 Chapter 15 Stream Input/Output

15.7.6 Uppercase/Lowercase Control (uppercase)
Stream manipulator uppercase outputs an uppercase X or E with hexadecimal-integer val-
ues or with scientific notation floating-point values, respectively (Fig. 15.19). Using
stream manipulator uppercase also causes all letters in a hexadecimal value to be upper-
case. By default, the letters for hexadecimal values and the exponents in scientific notation
floating-point values appear in lowercase. To reset the uppercase setting, output the
stream manipulator nouppercase.

15.7.7 Specifying Boolean Format (boolalpha)
C++ provides data type bool, whose values may be false or true, as a preferred alternative
to the old style of using 0 to indicate false and nonzero to indicate true. A bool variable
outputs as 0 or 1 by default. However, we can use stream manipulator boolalpha to set
the output stream to display bool values as the strings "true" and "false". Use stream
manipulator noboolalpha to set the output stream to display bool values as integers (i.e.,
the default setting). The program of Fig. 15.20 demonstrates these stream manipulators.
Line 11 displays the bool value, which line 8 sets to true, as an integer. Line 15 uses ma-
nipulator boolalpha to display the bool value as a string. Lines 18–19 then change the
bool’s value and use manipulator noboolalpha, so line 22 can display the bool value as an
integer. Line 26 uses manipulator boolalpha to display the bool value as a string. Both
boolalpha and noboolalpha are “sticky” settings.

Displayed in fixed format:
0.001235 1946000000.000000

1 // Fig. 15.19: Fig15_19.cpp
2 // Stream manipulator uppercase.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 cout << "Printing uppercase letters in scientific" << endl
9 << "notation exponents and hexadecimal values:" << endl;

10
11 // use std:uppercase to display uppercase letters; use std::hex and
12 // std::showbase to display hexadecimal value and its base
13 cout << uppercase << 4.345e10 << endl
14 << hex << showbase << 123456789 << endl;
15 } // end main

Printing uppercase letters in scientific
notation exponents and hexadecimal values:
4.345E+010
0X75BCD15

Fig. 15.19 | Stream manipulator uppercase.

Fig. 15.18 | Floating-point values displayed in default, scientific and fixed formats. (Part 2 of 2.)

15.7 Stream Format States and Stream Manipulators 619

15.7.8 Setting and Resetting the Format State via Member Function
flags
Throughout Section 15.7, we’ve been using stream manipulators to change output format
characteristics. We now discuss how to return an output stream’s format to its default state
after having applied several manipulations. Member function flags without an argument
returns the current format settings as a fmtflags data type (of class ios_base), which rep-
resents the format state. Member function flags with a fmtflags argument sets the for-
mat state as specified by the argument and returns the prior state settings. The initial
settings of the value that flags returns might differ across several systems. The program

Good Programming Practice 15.1
Displaying bool values as true or false, rather than nonzero or 0, respectively, makes
program outputs clearer.

1 // Fig. 15.20: Fig15_20.cpp
2 // Demonstrating stream manipulators boolalpha and noboolalpha.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 bool booleanValue = true;
9

10 // display default true booleanValue
11 cout << "booleanValue is " << booleanValue << endl;
12
13 // display booleanValue after using boolalpha
14 cout << "booleanValue (after using boolalpha) is "
15 << << booleanValue << endl << endl;
16
17 cout << "switch booleanValue and use noboolalpha" << endl;
18 booleanValue = false; // change booleanValue
19 cout << << endl; // use noboolalpha
20
21 // display default false booleanValue after using noboolalpha
22 cout << "booleanValue is " << booleanValue << endl;
23
24 // display booleanValue after using boolalpha again
25 cout << "booleanValue (after using boolalpha) is "
26 << << booleanValue << endl;
27 } // end main

booleanValue is 1
booleanValue (after using boolalpha) is true

switch booleanValue and use noboolalpha

booleanValue is 0
booleanValue (after using boolalpha) is false

Fig. 15.20 | Stream manipulators boolalpha and noboolalpha.

boolalpha

noboolalpha

boolalpha

620 Chapter 15 Stream Input/Output

of Fig. 15.21 uses member function flags to save the stream’s original format state (line
17), then restore the original format settings (line 25).

15.8 Stream Error States
The state of a stream may be tested through bits in class ios_base. In a moment, we show
how to test these bits, in the example of Fig. 15.22.

1 // Fig. 15.21: Fig15_21.cpp
2 // Demonstrating the flags member function.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int integerValue = 1000;
9 double doubleValue = 0.0947628;

10
11 // display flags value, int and double values (original format)
12 cout << "The value of the flags variable is: " << cout.flags()
13 << "\nPrint int and double in original format:\n"
14 << integerValue << '\t' << doubleValue << endl << endl;
15
16
17
18
19
20 // display flags value, int and double values (new format)
21 cout << "The value of the flags variable is: " <<
22 << "\nPrint int and double in a new format:\n"
23 << integerValue << '\t' << doubleValue << endl << endl;
24
25
26
27 // display flags value, int and double values (original format)
28 cout << "The restored value of the flags variable is: "
29 <<
30 << "\nPrint values in original format again:\n"
31 << integerValue << '\t' << doubleValue << endl;
32 } // end main

The value of the flags variable is: 513
Print int and double in original format:
1000 0.0947628

The value of the flags variable is: 012011
Print int and double in a new format:
01750 9.476280e-002

The restored value of the flags variable is: 513
Print values in original format again:
1000 0.0947628

Fig. 15.21 | flags member function.

// use cout flags function to save original format
ios_base::fmtflags originalFormat = cout.flags();
cout << showbase << oct << scientific; // change format

cout.flags()

cout.flags(originalFormat); // restore format

cout.flags()

15.8 Stream Error States 621

1 // Fig. 15.22: Fig15_22.cpp
2 // Testing error states.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int integerValue;
9

10 // display results of cin functions
11 cout << "Before a bad input operation:"
12 << "\ncin.rdstate(): " <<
13 << "\n cin.eof(): " <<
14 << "\n cin.fail(): " <<
15 << "\n cin.bad(): " <<
16 << "\n cin.good(): " <<
17 << "\n\nExpects an integer, but enter a character: ";
18
19
20 cout << endl;
21
22 // display results of cin functions after bad input
23 cout << "After a bad input operation:"
24 << "\ncin.rdstate(): " <<
25 << "\n cin.eof(): " <<
26 << "\n cin.fail(): " <<
27 << "\n cin.bad(): " <<
28 << "\n cin.good(): " << << endl << endl;
29
30
31
32 // display results of cin functions after clearing cin
33 cout << "After cin.clear()" << "\ncin.fail(): " <<
34 << "\ncin.good(): " << << endl;
35 } // end main

Before a bad input operation:
cin.rdstate(): 0

cin.eof(): 0
cin.fail(): 0
cin.bad(): 0
cin.good(): 1

Expects an integer, but enter a character: A

After a bad input operation:
cin.rdstate(): 2

cin.eof(): 0
cin.fail(): 1
cin.bad(): 0
cin.good(): 0

After cin.clear()
cin.fail(): 0
cin.good(): 1

Fig. 15.22 | Testing error states.

cin.rdstate()
cin.eof()
cin.fail()
cin.bad()
cin.good()

cin >> integerValue; // enter character value

cin.rdstate()
cin.eof()
cin.fail()
cin.bad()
cin.good()

cin.clear(); // clear stream

cin.fail()
cin.good()

622 Chapter 15 Stream Input/Output

The eofbit is set for an input stream after end-of-file is encountered. A program can
use member function eof to determine whether end-of-file has been encountered on a
stream after an attempt to extract data beyond the end of the stream. The call

returns true if end-of-file has been encountered on cin and false otherwise.
The failbit is set for a stream when a format error occurs on the stream and no char-

acters are input (e.g., when you attempt to read a number and the user enters a string).
When such an error occurs, the characters are not lost. The fail member function reports
whether a stream operation has failed. Usually, recovering from such errors is possible.

The badbit is set for a stream when an error occurs that results in the loss of data. The
bad member function reports whether a stream operation failed. Generally, such serious
failures are nonrecoverable.

The goodbit is set for a stream if none of the bits eofbit, failbit or badbit is set
for the stream.

The good member function returns true if the bad, fail and eof functions would all
return false. I/O operations should be performed only on “good” streams.

The rdstate member function returns the stream’s error state. Calling
cout.rdstate, for example, would return the stream’s state, which then could be tested
by a switch statement that examines eofbit, badbit, failbit and goodbit. The pre-
ferred means of testing the state of a stream is to use member functions eof, bad, fail and
good—using these functions does not require you to be familiar with particular status bits.

The clear member function is used to restore a stream’s state to “good,” so that I/O
may proceed on that stream. The default argument for clear is goodbit, so the statement

clears cin and sets goodbit for the stream. The statement

sets the failbit. You might want to do this when performing input on cin with a user-
defined type and encountering a problem. The name clear might seem inappropriate in
this context, but it’s correct.

The program of Fig. 15.22 demonstrates member functions rdstate, eof, fail, bad,
good and clear. The actual values output may differ across different compilers.

The operator! member function of basic_ios returns true if the badbit is set, the
failbit is set or both are set. The operator void * member function returns false (0) if
the badbit is set, the failbit is set or both are set. These functions are useful in file pro-
cessing when a true/false condition is being tested under the control of a selection state-
ment or repetition statement.

15.9 Tying an Output Stream to an Input Stream
Interactive applications generally involve an istream for input and an ostream for output.
When a prompting message appears on the screen, the user responds by entering the ap-
propriate data. Obviously, the prompt needs to appear before the input operation pro-
ceeds. With output buffering, outputs appear only when the buffer fills, when outputs are
flushed explicitly by the program or automatically at the end of the program. C++ provides

cin.eof()

cin.clear();

cin.clear(ios::failbit)

15.10 Wrap-Up 623

member function tie to synchronize (i.e., “tie together”) the operation of an istream and
an ostream to ensure that outputs appear before their subsequent inputs. The call

ties cout (an ostream) to cin (an istream). Actually, this particular call is redundant, be-
cause C++ performs this operation automatically to create a user’s standard input/output
environment. However, the user would tie other istream/ostream pairs explicitly. To un-
tie an input stream, inputStream, from an output stream, use the call

15.10 Wrap-Up
This chapter summarized how C++ performs input/output using streams. You learned
about the stream-I/O classes and objects, as well as the stream I/O template class hierarchy.
We discussed ostream’s formatted and unformatted output capabilities performed by the
put and write functions. You saw examples using istream’s formatted and unformatted
input capabilities performed by the eof, get, getline, peek, putback, ignore and read

functions. We discussed stream manipulators and member functions that perform format-
ting tasks—dec, oct, hex and setbase for displaying integers; precision and setpreci-

sion for controlling floating-point precision; and width and setw for setting field width.
You also learned additional formatting iostream manipulators and member functions—
showpoint for displaying decimal point and trailing zeros; left, right and internal for
justification; fill and setfill for padding; scientific and fixed for displaying float-
ing-point numbers in scientific and fixed notation; uppercase for uppercase/lowercase
control; boolalpha for specifying boolean format; and flags and fmtflags for resetting
the format state.

We introduced exception handling earlier in the book in our discussion of arrays. In the
next chapter, we take a deeper look at C++’s rich set of exception handling capabilities.

cin.tie(&cout);

inputStream.tie(0);

Summary
Section 15.1 Introduction
• I/O operations are performed in a manner sensitive to the type of the data.

Section 15.2 Streams
• C++ I/O occurs in streams (p. 597). A stream is a sequence of bytes.

• Low-level I/O-capabilities specify that bytes should be transferred device-to-memory or mem-
ory-to-device. High-level I/O is performed with bytes grouped into meaningful units such as in-
tegers, strings and user-defined types.

• C++ provides both unformatted-I/O and formatted-I/O operations. Unformatted-I/O (p. 597)
transfers are fast, but process raw data that is difficult for people to use. Formatted I/O processes
data in meaningful units, but requires extra processing time that can degrade the performance.

• The <iostream> header declares all stream-I/O operations (p. 598).

• The <iomanip> header declares the parameterized stream manipulators (p. 598).

• The <fstream> header declares file-processing operations (p. 600).

• The basic_istream template (p. 598) supports stream-input operations.

624 Chapter 15 Stream Input/Output

• The basic_ostream template (p. 598) supports stream-output operations.

• The basic_iostream template supports both stream-input and stream-output operations.

• Templates basic_istream and the basic_ostream each derive from the basic_ios (p. 599) tem-
plate.

• Template basic_iostream derives from both the basic_istream and basic_ostream templates.

• The istream object cin is tied to the standard input device, normally the keyboard.

• The ostream object cout is tied to the standard output device, normally the screen.

• The ostream object cerr is tied to the standard error device, normally the screen. Outputs to
cerr are unbuffered (p. 600)—each insertion to cerr appears immediately.

• The ostream object clog is tied to the standard error device, normally the screen. Outputs to
clog are buffered (p. 600).

• The C++ compiler determines data types automatically for input and output.

Section 15.3 Stream Output
• Addresses are displayed in hexadecimal format by default.

• To print the address in a pointer variable, cast the pointer to void *.

• Member function put outputs one character. Calls to put may be cascaded.

Section 15.4 Stream Input
• Stream input is performed with the stream extraction operator >>, which automatically skips white-

space characters (p. 602) in the input stream and returns false after end-of-file is encountered.

• Stream extraction causes failbit (p. 602) to be set for improper input and badbit (p. 602) to
be set if the operation fails.

• A series of values can be input using the stream extraction operation in a while loop header. The
extraction returns 0 when end-of-file is encountered or an error occurs.

• The get member function (p. 602) with no arguments inputs one character and returns the char-
acter; EOF is returned if end-of-file is encountered on the stream.

• Member function get with a character-reference argument inputs the next character from the in-
put stream and stores it in the character argument. This version of get returns a reference to the
istream object (p. 598) for which the get member function is being invoked.

• Member function get with three arguments—a character array, a size limit and a delimiter (with
default value newline)—reads characters from the input stream up to a maximum of limit – 1
characters, or until the delimiter is read. The input string is terminated with a null character. The
delimiter is not placed in the character array but remains in the input stream.

• Member function getline (p. 604) operates like the three-argument get member function. The
getline function removes the delimiter from the input stream but does not store it in the string.

• Member function ignore (p. 605) skips the specified number of characters (the default is 1) in the
input stream; it terminates if the specified delimiter is encountered (the default delimiter is EOF).

• The putback member function (p. 605) places the previous character obtained by a get on a
stream back into that stream.

• The peek member function (p. 605) returns the next character from an input stream but does
not extract (remove) the character from the stream.

• C++ offers type-safe I/O (p. 596). If unexpected data is processed by the << and >> operators, vari-
ous error bits are set, which can be tested to determine whether an I/O operation succeeded or
failed. If operator << has not been overloaded for a user-defined type, a compiler error is reported.

Summary 625

Section 15.5 Unformatted I/O Using read, write and gcount
• Unformatted I/O is performed with member functions read and write (p. 605). These input or

output bytes to or from memory, beginning at a designated memory address.

• The gcount member function (p. 606) returns the number of characters input by the previous
read operation on that stream.

• Member function read inputs a specified number of characters into a character array. failbit is
set if fewer than the specified number of characters are read.

Section 15.6 Introduction to Stream Manipulators
• To change the base in which integers output, use the manipulator hex (p. 607) to set the base to

hexadecimal (base 16) or oct (p. 607) to set the base to octal (base 8). Use manipulator dec

(p. 607) to reset the base to decimal. The base remains the same until changed explicitly.

• The parameterized stream manipulator setbase (p. 607) also sets the base for integer output.
setbase takes one integer argument of 10, 8 or 16 to set the base.

• Floating-point precision can be controlled with the setprecision stream manipulator or the
precision member function (p. 607). Both set the precision for all subsequent output operations
until the next precision-setting call. The precision member function with no argument returns
the current precision value.

• Parameterized manipulators require the inclusion of the <iomanip> header.

• Member function width sets the field width and returns the previous width. Values narrower
than the field are padded with fill characters (p. 609). The field-width setting applies only for the
next insertion or extraction; the field width is set to 0 implicitly (subsequent values will be output
as large as necessary). Values wider than a field are printed in their entirety. Function width with
no argument returns the current width setting. Manipulator setw also sets the width.

• For input, the setw stream manipulator establishes a maximum string size; if a larger string is en-
tered, the larger line is broken into pieces no larger than the designated size.

• You can create your own stream manipulators.

Section 15.7 Stream Format States and Stream Manipulators
• Stream manipulator showpoint (p. 612) forces a floating-point number to be output with a deci-

mal point and with the number of significant digits specified by the precision.

• Stream manipulators left and right (p. 613) cause fields to be left justified with padding char-
acters to the right or right justified with padding characters to the left.

• Stream manipulator internal (p. 614) indicates that a number’s sign (or base when using stream
manipulator showbase; p. 616) should be left justified within a field, its magnitude should be
right justified and intervening spaces should be padded with the fill character.

• Member function fill (p. 615) specifies the fill character to be used with stream manipulators
left, right and internal (space is the default); the prior padding character is returned. Stream
manipulator setfill (p. 615) also sets the fill character.

• Stream manipulators oct, hex and dec specify that integers are to be treated as octal, hexadecimal
or decimal values, respectively. Integer output defaults to decimal if none of these bits is set;
stream extractions process the data in the form the data is supplied.

• Stream manipulator showbase forces the base of an integral value to be output.

• Stream manipulator scientific (p. 617) is used to output a floating-point number in scientific
format. Stream manipulator fixed (p. 617) is used to output a floating-point number with the
precision specified by the precision member function.

626 Chapter 15 Stream Input/Output

• Stream manipulator uppercase (p. 612) outputs an uppercase X or E for hexadecimal integers and
scientific notation floating-point values, respectively. Hexadecimal values appear in all uppercase.

• Member function flags (p. 619) with no argument returns the current format state (p. 619) as a
long value. Function flags with a long argument sets the format state specified by the argument.

Section 15.8 Stream Error States
• The state of a stream may be tested through bits in class ios_base.

• The eofbit (p. 622) is set for an input stream after end-of-file is encountered during an input
operation. The eof member function (p. 622) reports whether the eofbit has been set.

• A stream’s failbit is set when a format error occurs. The fail member function (p. 622) reports
whether a stream operation has failed; it’s normally possible to recover from such errors.

• A stream’s badbit is set when an error occurs that results in data loss. Member function bad reports
whether a stream operation failed. Such serious failures are normally nonrecoverable.

• The good member function (p. 622) returns true if the bad, fail and eof functions would all
return false. I/O operations should be performed only on “good” streams.

• The rdstate member function (p. 622) returns the error state of the stream.

• Member function clear (p. 622) restores a stream’s state to “good,” so that I/O may proceed.

Section 15.9 Tying an Output Stream to an Input Stream
• C++ provides the tie member function (p. 623) to synchronize istream and ostream operations

to ensure that outputs appear before subsequent inputs.

Self-Review Exercises
15.1 (Fill in the Blanks) Answer each of the following:

a) Input/output in C++ occurs as of bytes.
b) The stream manipulators for justification are , and .
c) Member function can be used to set and reset format state.
d) Most C++ programs that do I/O should include the header that contains the

declarations required for all stream-I/O operations.
e) When using parameterized manipulators, the header must be included.
f) Header contains the declarations required for file processing.
g) The ostream member function is used to perform unformatted output.
h) Input operations are supported by class .
i) Standard error stream outputs are directed to the stream objects or .
j) Output operations are supported by class .
k) The symbol for the stream insertion operator is .
l) The four objects that correspond to the standard devices on the system include

, , and .
m) The symbol for the stream extraction operator is .
n) The stream manipulators , and specify that integers should

be displayed in octal, hexadecimal and decimal formats, respectively.
o) The stream manipulator causes positive numbers to display with a plus sign.

15.2 (True or False) State whether the following are true or false. If the answer is false, explain why.
a) The stream member function flags with a long argument sets the flags state variable

to its argument and returns its previous value.
b) The stream insertion operator << and the stream extraction operator >> are overloaded

to handle all standard data types—including strings and memory addresses (stream in-
sertion only)—and all user-defined data types.

Self-Review Exercises 627

c) The stream member function flags with no arguments resets the stream’s format state.
d) The stream extraction operator >> can be overloaded with an operator function that

takes an istream reference and a reference to a user-defined type as arguments and re-
turns an istream reference.

e) The stream insertion operator << can be overloaded with an operator function that takes
an istream reference and a reference to a user-defined type as arguments and returns an
istream reference.

f) Input with the stream extraction operator >> always skips leading white-space characters
in the input stream, by default.

g) The stream member function rdstate returns the current state of the stream.
h) The cout stream normally is connected to the display screen.
i) The stream member function good returns true if the bad, fail and eof member func-

tions all return false.
j) The cin stream normally is connected to the display screen.
k) If a nonrecoverable error occurs during a stream operation, the bad member function

will return true.
l) Output to cerr is unbuffered and output to clog is buffered.
m) Stream manipulator showpoint forces floating-point values to print with the default six

digits of precision unless the precision value has been changed, in which case floating-
point values print with the specified precision.

n) The ostream member function put outputs the specified number of characters.
o) The stream manipulators dec, oct and hex affect only the next integer output operation.

15.3 (Write a C++ Statement) For each of the following, write a single statement that performs
the indicated task.

a) Output the string "Enter your name: ".
b) Use a stream manipulator that causes the exponent in scientific notation and the letters

in hexadecimal values to print in capital letters.
c) Output the address of the variable myString of type char *.
d) Use a stream manipulator to ensure that floating-point values print in scientific nota-

tion.
e) Output the address in variable integerPtr of type int *.
f) Use a stream manipulator such that, when integer values are output, the integer base for

octal and hexadecimal values is displayed.
g) Output the value pointed to by floatPtr of type float *.
h) Use a stream member function to set the fill character to '*' for printing in field widths

larger than the values being output. Repeat this statement with a stream manipulator.
i) Output the characters 'O' and 'K' in one statement with ostream function put.
j) Get the value of the next character to input without extracting it from the stream.
k) Input a single character into variable charValue of type char, using the istream member

function get in two different ways.
l) Input and discard the next six characters in the input stream.
m) Use istream member function read to input 50 characters into char array line.
n) Read 10 characters into character array name. Stop reading characters if the '.' delimiter

is encountered. Do not remove the delimiter from the input stream. Write another
statement that performs this task and removes the delimiter from the input.

o) Use the istream member function gcount to determine the number of characters input
into character array line by the last call to istream member function read, and output
that number of characters, using ostream member function write.

p) Output 124, 18.376, 'Z', 1000000 and "String", separated by spaces.
q) Print the current precision setting, using a member function of object cout.

628 Chapter 15 Stream Input/Output

r) Input an integer value into int variable months and a floating-point value into float

variable percentageRate.
s) Print 1.92, 1.925 and 1.9258 separated by tabs and with 3 digits of precision, using a

stream manipulator.
t) Print integer 100 in octal, hexadecimal and decimal, using stream manipulators and sep-

arated by tabs.
u) Print integer 100 in decimal, octal and hexadecimal separated by tabs, using a stream

manipulator to change the base.
v) Print 1234 right justified in a 10-digit field.
w) Read characters into character array line until the character 'z' is encountered, up to

a limit of 20 characters (including a terminating null character). Do not extract the de-
limiter character from the stream.

x) Use integer variables x and y to specify the field width and precision used to display the
double value 87.4573, and display the value.

15.4 (Find and Correct Code Errors) Identify the error in each of the following statements and
explain how to correct it.

a) cout << "Value of x <= y is: " << x <= y;

b) The following statement should print the integer value of 'c'.
cout << 'c';

c) cout << ""A string in quotes"";

15.5 (Show Outputs) For each of the following, show the output.
a) cout << "12345" << endl;

cout.width(5);

cout.fill('*');

cout << 123 << endl << 123;

b) cout << setw(10) << setfill('$') << 10000;

c) cout << setw(8) << setprecision(3) << 1024.987654;

d) cout << showbase << oct << 99 << endl << hex << 99;

e) cout << 100000 << endl << showpos << 100000;

f) cout << setw(10) << setprecision(2) << scientific << 444.93738;

Answers to Self-Review Exercises
15.1 a) streams. b) left, right and internal. c) flags. d) <iostream>. e) <iomanip>.
f) <fstream>. g) write. h) istream. i) cerr or clog. j) ostream. k) <<. l) cin, cout, cerr and clog.
m) >>. n) oct, hex and dec. o) showpos.

15.2 a) False. The stream member function flags with a fmtflags argument sets the flags state
variable to its argument and returns the prior state settings. b) False. The stream insertion and
stream extraction operators are not overloaded for all user-defined types. You must specifically pro-
vide the overloaded operator functions to overload the stream operators for use with each user-de-
fined type you create. c) False. The stream member function flags with no arguments returns the
current format settings as a fmtflags data type, which represents the format state. d) True. e) False.
To overload the stream insertion operator <<, the overloaded operator function must take an
ostream reference and a reference to a user-defined type as arguments and return an ostream refer-
ence. f) True. g) True. h) True. i) True. j) False. The cin stream is connected to the standard input
of the computer, which normally is the keyboard. k) True. l) True. m) True. n) False. The ostream
member function put outputs its single-character argument. o) False. The stream manipulators dec,
oct and hex set the output format state for integers to the specified base until the base is changed

Answers to Self-Review Exercises 629

again or the program terminates. p) False. Memory addresses are displayed in hexadecimal format
by default. To display addresses as long integers, the address must be cast to a long value.

15.3 a) cout << "Enter your name: ";

b) cout << uppercase;

c) cout << static_cast< void * >(myString);

d) cout << scientific;

e) cout << integerPtr;

f) cout << showbase;

g) cout << *floatPtr;

h) cout.fill('*');

cout << setfill('*');

i) cout.put('O').put('K');

j) cin.peek();

k) charValue = cin.get();

cin.get(charValue);

l) cin.ignore(6);

m) cin.read(line, 50);

n) cin.get(name, 10, '.');

cin.getline(name, 10, '.');

o) cout.write(line, cin.gcount());

p) cout << 124 << ' ' << 18.376 << ' ' << "Z " << 1000000 << " String";

q) cout << cout.precision();

r) cin >> months >> percentageRate;

s) cout << setprecision(3) << 1.92 << '\t' << 1.925 << '\t' << 1.9258;
t) cout << oct << 100 << '\t' << hex << 100 << '\t' << dec << 100;
u) cout << 100 << '\t' << setbase(8) << 100 << '\t' << setbase(16) << 100;

v) cout << setw(10) << 1234;

w) cin.get(line, 20, 'z');

x) cout << setw(x) << setprecision(y) << 87.4573;

15.4 a) Error: The precedence of the << operator is higher than that of <=, which causes the
statement to be evaluated improperly and also causes a compiler error.
Correction: Place parentheses around the expression x <= y.

b) Error: In C++, characters are not treated as small integers, as they are in C.
Correction: To print the numerical value for a character in the computer’s character set,
the character must be cast to an integer value, as in the following:

cout << static_cast< int >('c');

c) Error: Quote characters cannot be printed in a string unless an escape sequence is used.
Correction: Print the string in one of the following ways:

cout << "\"A string in quotes\"";

15.5 a) 12345

**123

123

b) $$$$$10000

c) 1024.988

d) 0143

0x63

e) 100000

+100000

f) 4.45e+002

630 Chapter 15 Stream Input/Output

Exercises
15.6 (Write C++ Statements) Write a statement for each of the following:

a) Print integer 40000 left justified in a 15-digit field.
b) Read a string into character array variable state.
c) Print 200 with and without a sign.
d) Print the decimal value 100 in hexadecimal form preceded by 0x.
e) Read characters into array charArray until the character 'p' is encountered, up to a lim-

it of 10 characters (including the terminating null character). Extract the delimiter from
the input stream, and discard it.

f) Print 1.234 in a 9-digit field with preceding zeros.

15.7 (Inputting Decimal, Octal and Hexadecimal Values) Write a program to test the inputting
of integer values in decimal, octal and hexadecimal formats. Output each integer read by the pro-
gram in all three formats. Test the program with the following input data: 10, 010, 0x10.

15.8 (Printing Pointer Values as Integers) Write a program that prints pointer values, using casts
to all the integer data types. Which ones print strange values? Which ones cause errors?

15.9 (Printing with Field Widths) Write a program to test the results of printing the integer val-
ue 12345 and the floating-point value 1.2345 in various-sized fields. What happens when the values
are printed in fields containing fewer digits than the values?

15.10 (Rounding) Write a program that prints the value 100.453627 rounded to the nearest digit,
tenth, hundredth, thousandth and ten-thousandth.

15.11 (Length of a String) Write a program that inputs a string from the keyboard and determines
the length of the string. Print the string in a field width that is twice the length of the string.

15.12 (Converting Fahrenheit to Celsius) Write a program that converts integer Fahrenheit tem-
peratures from 0 to 212 degrees to floating-point Celsius temperatures with 3 digits of precision. Use
the formula

celsius = 5.0 / 9.0 * (fahrenheit - 32);

to perform the calculation. The output should be printed in two right-justified columns and the
Celsius temperatures should be preceded by a sign for both positive and negative values.

15.13 In some programming languages, strings are entered surrounded by either single or double
quotation marks. Write a program that reads the three strings suzy, "suzy" and 'suzy'. Are the sin-
gle and double quotes ignored or read as part of the string?

15.14 (Reading Phone Numbers with and Overloaded Stream Extraction Operator) In Fig. 11.5,
the stream extraction and stream insertion operators were overloaded for input and output of objects
of the PhoneNumber class. Rewrite the stream extraction operator to perform the following error
checking on input. The operator>> function will need to be reimplemented.

a) Input the entire phone number into an array. Test that the proper number of characters
has been entered. There should be a total of 14 characters read for a phone number of
the form (800) 555-1212. Use ios_base-member-function clear to set failbit for im-
proper input.

b) The area code and exchange do not begin with 0 or 1. Test the first digit of the area-
code and exchange portions of the phone number to be sure that neither begins with 0

or 1. Use ios_base-member-function clear to set failbit for improper input.
c) The middle digit of an area code used to be limited to 0 or 1 (though this has changed).

Test the middle digit for a value of 0 or 1. Use the ios_base-member-function clear to
set failbit for improper input. If none of the above operations results in failbit being
set for improper input, copy the parts of the telephone number into the PhoneNumber

Exercises 631

object’s areaCode, exchange and line members. If failbit has been set on the input,
have the program print an error message and end, rather than print the phone number.

15.15 (Point Class) Write a program that accomplishes each of the following:
a) Create a user-defined class Point that contains the private integer data members

xCoordinate and yCoordinate and declares stream insertion and stream extraction over-
loaded operator functions as friends of the class.

b) Define the stream insertion and stream extraction operator functions. The stream ex-
traction operator function should determine whether the data entered is valid, and, if
not, it should set the failbit to indicate improper input. The stream insertion operator
should not be able to display the point after an input error occurred.

c) Write a main function that tests input and output of user-defined class Point, using the
overloaded stream extraction and stream insertion operators.

15.16 (Complex Class) Write a program that accomplishes each of the following:
a) Create a user-defined class Complex that contains the private integer data members real

and imaginary and declares stream insertion and stream extraction overloaded operator
functions as friends of the class.

b) Define the stream insertion and stream extraction operator functions. The stream ex-
traction operator function should determine whether the data entered is valid, and, if
not, it should set failbit to indicate improper input. The input should be of the form

3 + 8i

c) The values can be negative or positive, and it’s possible that one of the two values is not
provided, in which case the appropriate data member should be set to 0. The stream
insertion operator should not be able to display the point if an input error occurred. For
negative imaginary values, a minus sign should be printed rather than a plus sign.

d) Write a main function that tests input and output of user-defined class Complex, using
the overloaded stream extraction and stream insertion operators.

15.17 (Printing a Table of ASCII Values) Write a program that uses a for statement to print a
table of ASCII values for the characters in the ASCII character set from 33 to 126. The program
should print the decimal value, octal value, hexadecimal value and character value for each character.
Use the stream manipulators dec, oct and hex to print the integer values.

15.18 (String-Terminating Null Character) Write a program to show that the getline and three-
argument get istream member functions both end the input string with a string-terminating null
character. Also, show that get leaves the delimiter character on the input stream, whereas getline
extracts the delimiter character and discards it. What happens to the unread characters in the
stream?

16 Exception Handling: A
Deeper Look

It is common sense to take a
method and try it. If it fails,
admit it frankly and try
another. But above all, try
something.
—Franklin Delano Roosevelt

If they’re running and they don’t
look where they’re going
I have to come out from
somewhere and catch them.
—Jerome David Salinger

I never forget a face, but in your
case I’ll make an exception.
—Groucho Marx

O b j e c t i v e s
In this chapter you’ll learn:

■ To use try, catch and
throw to detect, handle and
indicate exceptions,
respectively.

■ To process uncaught and
unexpected exceptions.

■ To declare new exception
classes.

■ How stack unwinding
enables exceptions not
caught in one scope to be
caught in another.

■ To handle new failures.

■ To use unique_ptr to
prevent memory leaks.

■ To understand the standard
exception hierarchy.

16.1 Introduction 633

16.1 Introduction
As you know, an exception is an indication of a problem that occurs during a program’s
execution. Exception handling enables you to create applications that can resolve (or han-
dle) exceptions. In many cases, handling an exception allows a program to continue exe-
cuting as if no problem had been encountered. The features presented in this chapter
enable you to write robust and fault-tolerant programs that can deal with problems con-
tinue executing or terminate gracefully.

We begin with a review of exception-handling concepts via an example that demon-
strates handling an exception that occurs when a function attempts to divide by zero. We
show how to handle exceptions that occur in a constructor or destructor and exceptions
that occur if operator new fails to allocate memory for an object. We introduce several C++
Standard Library exception handling classes.

16.2 Example: Handling an Attempt to Divide by Zero
Let’s consider a simple example of exception handling (Figs. 16.1–16.2). We show how to
deal with a common arithmetic problem—division by zero. In C++, division by zero using
integer arithmetic typically causes a program to terminate prematurely. In floating-point
arithmetic, some C++ implementations allow division by zero, in which case a result of
positive or negative infinity is displayed as INF or -INF, respectively.

In this example, we define a function named quotient that receives two integers input
by the user and divides its first int parameter by its second int parameter. Before per-
forming the division, the function casts the first int parameter’s value to type double.
Then, the second int parameter’s value is (implicitly) promoted to type double for the
calculation. So function quotient actually performs the division using two double values
and returns a double result.

16.1 Introduction
16.2 Example: Handling an Attempt to

Divide by Zero
16.3 When to Use Exception Handling
16.4 Rethrowing an Exception
16.5 Exception Specifications
16.6 Processing Unexpected Exceptions
16.7 Stack Unwinding

16.8 Constructors, Destructors and
Exception Handling

16.9 Exceptions and Inheritance
16.11 Processing new Failures
16.12 Class unique_ptr and Dynamic

Memory Allocation
16.12 Standard Library Exception Hierarchy
16.13 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 16.1
Exception handling provides a standard mechanism for processing errors. This is especially
important when working on a project with a large team of programmers.

Software Engineering Observation 16.2
Incorporate your exception-handling strategy into your system from inception. Including
effective exception handling after a system has been implemented can be difficult.

634 Chapter 16 Exception Handling: A Deeper Look

Although division by zero is often allowed in floating-point arithmetic, for the pur-
pose of this example we treat any attempt to divide by zero as an error. Thus, function
quotient tests its second parameter to ensure that it isn’t zero before allowing the division
to proceed. If the second parameter is zero, the function throws an exception to indicate
to the caller that a problem occurred. The caller (main in this example) can then process
the exception and allow the user to type two new values before calling function quotient

again. In this way, the program can continue executing even after an improper value is
entered, thus making the program more robust.

The example consists of two files. DivideByZeroException.h (Fig. 16.1) defines an
exception class that represents the type of the problem that might occur in the example, and
fig16_02.cpp (Fig. 16.2) defines the quotient function and the main function that calls
it. Function main contains the code that demonstrates exception handling.

Defining an Exception Class to Represent the Type of Problem That Might Occur
Figure 16.1 defines class DivideByZeroException as a derived class of Standard Library class
runtime_error (defined in header <stdexcept>). Class runtime_error—a derived class of
Standard Library class exception (defined in header <exception>)—is the C++ standard
base class for representing runtime errors. Class exception is the standard C++ base class for
all exceptions. (Section 16.12 discusses class exception and its derived classes in detail.) A
typical exception class that derives from the runtime_error class defines only a constructor
(e.g., lines 12–13) that passes an error-message string to the base-class runtime_error con-
structor. Every exception class that derives directly or indirectly from exception contains the
virtual function what, which returns an exception object’s error message. You’re not re-
quired to derive a custom exception class, such as DivideByZeroException, from the stan-
dard exception classes provided by C++. However, doing so allows you to use the virtual

function what to obtain an appropriate error message. We use an object of this DivideBy-
ZeroException class in Fig. 16.2 to indicate when an attempt is made to divide by zero.

Demonstrating Exception Handling
Figure 16.2 uses exception handling to wrap code that might throw a “divide-by-zero” ex-
ception and to handle that exception, should one occur. The user enters two integers, which
are passed as arguments to function quotient (lines 10–18). This function divides its first

1 // Fig. 16.1: DivideByZeroException.h
2 // Class DivideByZeroException definition.
3
4 using namespace std;
5
6 // DivideByZeroException objects should be thrown by functions
7 // upon detecting division-by-zero exceptions
8 class DivideByZeroException :
9 {

10 public:
11 // constructor specifies default error message
12 DivideByZeroException()

14 }; // end class DivideByZeroException

Fig. 16.1 | Class DivideByZeroException definition.

#include <stdexcept> // stdexcept header contains runtime_error

public runtime_error

runtime_error("attempted to divide by zero")

16.2 Example: Handling an Attempt to Divide by Zero 635

parameter (numerator) by its second parameter (denominator). Assuming that the user does
not specify 0 as the denominator for the division, function quotient returns the division re-
sult. If the user inputs 0 for the denominator, quotient throws an exception. In the sample
output, the first two lines show a successful calculation, and the next two show a failure due
to an attempt to divide by zero. When the exception occurs, the program informs the user
of the mistake and prompts the user to input two new integers. After we discuss the code,
we’ll consider the user inputs and flow of program control that yield these outputs.

1 // Fig. 16.2: Fig16_02.cpp
2 // A simple exception-handling example that checks for
3 // divide-by-zero exceptions.
4 #include <iostream>
5
6 using namespace std;
7
8 // perform division and throw DivideByZeroException object if
9 // divide-by-zero exception occurs

10 double quotient(int numerator, int denominator)
11 {
12 // throw DivideByZeroException if trying to divide by zero
13 if (denominator == 0)
14
15
16 // return division result
17 return static_cast< double >(numerator) / denominator;
18 } // end function quotient
19
20 int main()
21 {
22 int number1; // user-specified numerator
23 int number2; // user-specified denominator
24 double result; // result of division
25
26 cout << "Enter two integers (end-of-file to end): ";
27
28 // enable user to enter two integers to divide
29 while (cin >> number1 >> number2)
30 {
31
32
33
34
35
36
37
38
39
40
41
42

Fig. 16.2 | Exception-handling example that throws exceptions on attempts to divide by zero.
(Part 1 of 2.)

#include "DivideByZeroException.h" // DivideByZeroException class

throw DivideByZeroException(); // terminate function

// try block contains code that might throw exception
// and code that will not execute if an exception occurs
try
{

result = quotient(number1, number2);
cout << "The quotient is: " << result << endl;

} // end try
catch (DivideByZeroException ÷ByZeroException)
{

cout << "Exception occurred: "
<< divideByZeroException.what() << endl;

} // end catch

636 Chapter 16 Exception Handling: A Deeper Look

Enclosing Code in a try Block
The program begins by prompting the user to enter two integers. The integers are input in
the condition of the while loop (line 29). Line 35 passes the values to function quotient

(lines 10–18), which either divides the integers and returns a result, or throws an exception
(i.e., indicates that an error occurred) on an attempt to divide by zero. Exception handling
is geared to situations in which the function that detects an error is unable to handle it.

As you learned in Section 7.11, try blocks enable exception handling. A try block
encloses statements that might cause exceptions and statements that should be skipped if
an exception occurs. The try block in lines 33–37 encloses the invocation of function quo-

tient and the statement that displays the division result. In this example, because the
invocation of function quotient (line 35) can throw an exception, we enclose this function
invocation in a try block. Enclosing the output statement (line 36) in the try block
ensures that the output will occur only if function quotient returns a result.

Defining a catch Handler to Process a DivideByZeroException
You saw in Section 7.11 that exceptions are processed by catch handlers. At least one
catch handler (lines 38–42) must immediately follow each try block. The exception pa-
rameter is declared as a reference to the type of exception the catch handler can process
(DivideByZeroException in this case). When an exception occurs in a try block, the
catch handler that executes is the one whose type matches the type of the exception that
occurred (i.e., the type in the catch block matches the thrown exception type exactly or is
a base class of it). If an exception parameter includes an optional parameter name, the
catch handler can use that parameter name to interact with the caught exception in the
body of the catch handler, which is delimited by braces ({ and }). A catch handler typi-
cally reports the error to the user, logs it to a file, terminates the program gracefully or tries
an alternate strategy to accomplish the failed task. In this example, the catch handler sim-

43
44 cout << "\nEnter two integers (end-of-file to end): ";
45 } // end while
46
47 cout << endl;
48 } // end main

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): ^Z

Software Engineering Observation 16.3
Exceptions may surface through explicitly mentioned code in a try block, through calls to
other functions and through deeply nested function calls initiated by code in a try block.

Fig. 16.2 | Exception-handling example that throws exceptions on attempts to divide by zero.
(Part 2 of 2.)

16.2 Example: Handling an Attempt to Divide by Zero 637

ply reports that the user attempted to divide by zero. Then the program prompts the user
to enter two new integer values.

Termination Model of Exception Handling
If an exception occurs as the result of a statement in a try block, the try block expires (i.e.,
terminates immediately). Next, the program searches for the first catch handler that can
process the type of exception that occurred. The program locates the matching catch by
comparing the thrown exception’s type to each catch’s exception-parameter type until the
program finds a match. A match occurs if the types are identical or if the thrown excep-
tion’s type is a derived class of the exception-parameter type. When a match occurs, the
code contained in the matching catch handler executes. When a catch handler finishes
processing by reaching its closing right brace (}), the exception is considered handled and
the local variables defined within the catch handler (including the catch parameter) go
out of scope. Program control does not return to the point at which the exception occurred
(known as the throw point), because the try block has expired. Rather, control resumes
with the first statement (line 44) after the last catch handler following the try block. This
is known as the termination model of exception handling. Some languages use the re-
sumption model of exception handling, in which, after an exception is handled, control
resumes just after the throw point. As with any other block of code, when a try block ter-
minates, local variables defined in the block go out of scope.

If the try block completes its execution successfully (i.e., no exceptions occur in the
try block), then the program ignores the catch handlers and program control continues
with the first statement after the last catch following that try block.

If an exception that occurs in a try block has no matching catch handler, or if an
exception occurs in a statement that is not in a try block, the function that contains the

Common Programming Error 16.1
It’s a syntax error to place code between a try block and its corresponding catch handlers
or between its catch handlers.

Common Programming Error 16.2
Each catch handler can have only a single parameter—specifying a comma-separated list
of exception parameters is a syntax error.

Common Programming Error 16.3
It’s a logic error to catch the same type in two different catch handlers following a single
try block.

Common Programming Error 16.4
Logic errors can occur if you assume that after an exception is handled, control will return
to the first statement after the throw point.

Error-Prevention Tip 16.1
With exception handling, a program can continue executing (rather than terminating)
after dealing with a problem. This helps ensure the kind of robust applications that con-
tribute to what’s called mission-critical computing or business-critical computing.

638 Chapter 16 Exception Handling: A Deeper Look

statement terminates immediately, and the program attempts to locate an enclosing try

block in the calling function. This process is called stack unwinding and is discussed in
Section 16.7.

Flow of Program Control When the User Enters a Nonzero Denominator
Consider the flow of control when the user inputs the numerator 100 and the denominator
7. In line 13, function quotient determines that the denominator does not equal zero, so
line 17 performs the division and returns the result (14.2857) to line 35 as a double. Pro-
gram control then continues sequentially from line 35, so line 36 displays the division re-
sult—line 37 ends the try block. Because the try block completed successfully and did
not throw an exception, the program does not execute the statements contained in the
catch handler (lines 38–42), and control continues to line 44 (the first line of code after
the catch handler), which prompts the user to enter two more integers.

Flow of Program Control When the User Enters a Denominator of Zero
Now consider the case in which the user inputs the numerator 100 and the denominator
0. In line 13, quotient determines that the denominator equals zero, which indicates an
attempt to divide by zero. Line 14 throws an exception, which we represent as an object
of class DivideByZeroException (Fig. 16.1).

To throw an exception, line 14 uses keyword throw followed by an operand that rep-
resents the type of exception to throw. Normally, a throw statement specifies one operand.
(In Section 16.4, we discuss how to use a throw statement with no operand.) The operand
of a throw can be of any type. If the operand is an object, we call it an exception object—
in this example, the exception object is an object of type DivideByZeroException. How-
ever, a throw operand also can assume other values, such as the value of an expression that
does not result in an object of a class (e.g., throw x > 5) or the value of an int (e.g., throw
5). The examples in this chapter focus exclusively on throwing objects of exception classes.

As part of throwing an exception, the throw operand is created and used to initialize
the parameter in the catch handler, which we discuss momentarily. The throw statement
in line 14 creates a DivideByZeroException object. When line 14 throws the exception,
function quotient exits immediately. So, line 14 throws the exception before function
quotient can perform the division in line 17. This is a central characteristic of exception
handling: A function should throw an exception before the error has an opportunity to occur.

Because we enclosed the call to quotient (line 35) in a try block, program control
enters the catch handler (lines 38–42) that immediately follows the try block. This catch
handler serves as the exception handler for the divide-by-zero exception. In general, when
an exception is thrown within a try block, the exception is caught by a catch handler that
specifies the type matching the thrown exception. In this program, the catch handler spec-
ifies that it catches DivideByZeroException objects—this type matches the object type

Common Programming Error 16.5
Use caution when throwing the result of a conditional expression (?:)—promotion rules
could cause the value to be of a type different from the one expected. For example, when
throwing an int or a double from the same conditional expression, the int is promoted
to a double. So, a catch handler that catches an int would never execute based on such
a conditional expression.

16.3 When to Use Exception Handling 639

thrown in function quotient. Actually, the catch handler catches a reference to the
DivideByZeroException object created by function quotient’s throw statement (line 14),
so that the catch handler does not make a copy of the exception object.

The catch’s body (lines 40–41) prints the error message returned by function what of
base-class runtime_error—i.e., the string that the DivideByZeroException constructor
(lines 12–13 in Fig. 16.1) passed to the runtime_error base-class constructor.

16.3 When to Use Exception Handling
Exception handling is designed to process synchronous errors, which occur when a state-
ment executes, such as out-of-range array subscripts, arithmetic overflow (i.e., a value outside
the representable range of values), division by zero, invalid function parameters and unsuc-
cessful memory allocation (due to lack of memory). Exception handling is not designed to
process errors associated with asynchronous events (e.g., disk I/O completions, network
message arrivals, mouse clicks and keystrokes), which occur in parallel with, and indepen-
dent of, the program’s flow of control.

Exception handling also is useful for processing problems that occur when a program
interacts with software elements, such as member functions, constructors, destructors and
classes. Such software elements often use exceptions to notify programs when problems
occur. This enables you to implement customized error handling for each application.

Performance Tip 16.1
Catching an exception object by reference eliminates the overhead of copying the object
that represents the thrown exception.

Good Programming Practice 16.1
Associating each type of runtime error with an appropriately named exception object im-
proves program clarity.

Software Engineering Observation 16.4
Exception handling provides a single, uniform technique for processing problems. This
helps programmers on large projects understand each other’s error-processing code.

Software Engineering Observation 16.5
Avoid using exception handling as an alternate form of flow of control. These “additional”
exceptions can “get in the way” of genuine error-type exceptions.

Software Engineering Observation 16.6
Exception handling enables predefined software components to communicate problems to
application-specific components, which can then process the problems in an application-
specific manner.

Performance Tip 16.2
When no exceptions occur, exception-handling code incurs little or no performance penal-
ty. Thus, programs that implement exception handling operate more efficiently than do
programs that intermix error-handling code with program logic.

640 Chapter 16 Exception Handling: A Deeper Look

Complex applications normally consist of predefined software components and appli-
cation-specific components that use the predefined components. When a predefined com-
ponent encounters a problem, that component needs a mechanism to communicate the
problem to the application-specific component—the predefined component cannot know in
advance how each application processes a problem that occurs.

16.4 Rethrowing an Exception
It’s possible that an exception handler, upon receiving an exception, might decide either
that it cannot process that exception or that it can process the exception only partially. In
such cases, the exception handler can defer the exception handling (or perhaps a portion of it)
to another exception handler. In either case, you achieve this by rethrowing the exception
via the statement

Regardless of whether a handler can process an exception, the handler can rethrow the
exception for further processing outside the handler. The next enclosing try block detects
the rethrown exception, which a catch handler listed after that enclosing try block
attempts to handle.

The program of Fig. 16.3 demonstrates rethrowing an exception. In main’s try block
(lines 29–34), line 32 calls function throwException (lines 8–24). The throwException

function also contains a try block (lines 11–15), from which the throw statement in line
14 throws an instance of standard-library-class exception. Function throwException’s
catch handler (lines 16–21) catches this exception, prints an error message (lines 18–19)
and rethrows the exception (line 20). This terminates function throwException and
returns control to line 32 in the try…catch block in main. The try block terminates (so
line 33 does not execute), and the catch handler in main (lines 35–38) catches this excep-
tion and prints an error message (line 37). Since we do not use the exception parameters
in the catch handlers of this example, we omit the exception parameter names and specify
only the type of exception to catch (lines 16 and 35).

Software Engineering Observation 16.7
Functions with common error conditions should return 0 or NULL (or other appropriate
values, such as bools) rather than throw exceptions. A program calling such a function
can check the return value to determine success or failure of the function call.

throw;

Common Programming Error 16.6
Executing an empty throw statement outside a catch handler calls function terminate,
which abandons exception processing and terminates the program immediately.

1 // Fig. 16.3: Fig16_03.cpp
2 // Demonstrating exception rethrowing.
3 #include <iostream>
4 #include <exception>
5 using namespace std;

Fig. 16.3 | Rethrowing an exception. (Part 1 of 2.)

16.5 Exception Specifications 641

16.5 Exception Specifications1

An optional exception specification (also called a throw list) enumerates a list of exceptions
that a function can throw. For example, placing

6
7 // throw, catch and rethrow exception
8 void throwException()
9 {

10 // throw exception and catch it immediately
11 try
12 {
13 cout << " Function throwException throws an exception\n";
14
15 } // end try
16
17 {
18 cout << " Exception handled in function throwException"
19 << "\n Function throwException rethrows exception";
20
21 } // end catch
22
23 cout << "This also should not print\n";
24 } // end function throwException
25
26 int main()
27 {
28 // throw exception
29 try
30 {
31 cout << "\nmain invokes function throwException\n";
32 throwException();
33 cout << "This should not print\n";
34 } // end try
35 catch (exception &) // handle exception
36 {
37 cout << "\n\nException handled in main\n";
38 } // end catch
39
40 cout << "Program control continues after catch in main\n";
41 } // end main

main invokes function throwException
Function throwException throws an exception
Exception handled in function throwException
Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

1. Exception specifications are deprecated in the new C++ standard. We discuss exception-handling fea-
tures of the new C++ standard in Chapter 23. Most current compilers ignore exception specifications.

Fig. 16.3 | Rethrowing an exception. (Part 2 of 2.)

throw exception(); // generate exception

catch (exception &) // handle exception

throw; // rethrow exception for further processing

642 Chapter 16 Exception Handling: A Deeper Look

immediately following the closing parenthesis of the function’s parameter list, indicates
that the function can throw exceptions of types ExceptionA, ExceptionB and ExceptionC,
or their derived types. If the function throws any other exception type, the exception-han-
dling mechanism calls function unexpected, which terminates the program by default.

A function that does not provide an exception specification can throw any exception.
Placing throw()—an empty exception specification—after a function’s parameter list
states that the function does not throw exceptions. If the function attempts to throw an
exception, function unexpected is invoked.

16.6 Processing Unexpected Exceptions
Function unexpected calls the function registered with function set_unexpected (de-
fined in header <exception>). If no function has been registered in this manner, function
terminate is called by default. Cases in which function terminate is called include:

1. the exception mechanism cannot find a matching catch for a thrown exception

2. a destructor attempts to throw an exception during stack unwinding

3. an attempt is made to rethrow an exception when there’s no exception currently
being handled

4. a call to function unexpected defaults to calling function terminate

(Section 15.5.1 of the C++ Standard Document discusses several additional cases.) Func-
tion set_terminate can specify the function to invoke when terminate is called. Other-
wise, terminate calls abort, which terminates the program without calling the destructors of
any remaining objects of automatic or static storage class. This could lead to resource leaks
when a program terminates prematurely.

Function set_terminate and function set_unexpected each return a pointer to the
last function called by terminate and unexpected, respectively (0, the first time each is
called). This enables you to save the function pointer so it can be restored later. Functions
set_terminate and set_unexpected take as arguments pointers to functions with void

return types and no arguments.
If the last action of a programmer-defined termination function is not to exit a pro-

gram, function abort will be called to end program execution.

16.7 Stack Unwinding
When an exception is thrown but not caught in a particular scope, the function call stack
is “unwound,” and an attempt is made to catch the exception in the next outer
try…catch block. Unwinding the function call stack means that the function in which

throw (ExceptionA, ExceptionB, ExceptionC)

Common Programming Error 16.7
Aborting a program component due to an uncaught exception could leave a resource—
such as a file stream or an I/O device—in a state in which other programs are unable to
acquire the resource. This is known as a resource leak.

16.7 Stack Unwinding 643

the exception was not caught terminates, all local variables in that function are destroyed
and control returns to the statement that originally invoked that function. If a try block
encloses that statement, an attempt is made to catch the exception. If a try block does not
enclose that statement, stack unwinding occurs again. If no catch handler ever catches this
exception, function terminate is called to terminate the program. The program of
Fig. 16.4 demonstrates stack unwinding.

1 // Fig. 16.4: Fig16_04.cpp
2 // Demonstrating stack unwinding.
3 #include <iostream>
4 #include <stdexcept>
5 using namespace std;
6
7 // function3 throws runtime error
8 void function3()
9 {

10 cout << "In function 3" << endl;
11
12 // no try block, stack unwinding occurs, return control to function2
13 throw runtime_error("runtime_error in function3"); // no print
14 } // end function3
15
16 // function2 invokes function3
17 void function2()
18 {
19 cout << "function3 is called inside function2" << endl;
20 function3(); // stack unwinding occurs, return control to function1
21 } // end function2
22
23 // function1 invokes function2
24 void function1()
25 {
26 cout << "function2 is called inside function1" << endl;
27 function2(); // stack unwinding occurs, return control to main
28 } // end function1
29
30 // demonstrate stack unwinding
31 int main()
32 {
33 // invoke function1
34 try
35 {
36 cout << "function1 is called inside main" << endl;
37 function1(); // call function1 which throws runtime_error
38 } // end try
39 catch (runtime_error &error) // handle runtime error
40 {
41 cout << "Exception occurred: " << << endl;
42 cout << "Exception handled in main" << endl;
43 } // end catch
44 } // end main

Fig. 16.4 | Stack unwinding. (Part 1 of 2.)

throw (runtime_error)

throw (runtime_error)

throw (runtime_error)

error.what()

644 Chapter 16 Exception Handling: A Deeper Look

In main, the try block (lines 34–38) calls function1 (lines 24–28). Next, function1
calls function2 (lines 17–21), which in turn calls function3 (lines 8–14). Line 13 of
function3 throws a runtime_error object. However, because no try block encloses the
throw statement in line 13, stack unwinding occurs—function3 terminates at line 13,
then returns control to the statement in function2 that invoked function3 (i.e., line 20).
Because no try block encloses line 20, stack unwinding occurs again—function2 termi-
nates at line 20 and returns control to the statement in function1 that invoked function2

(i.e., line 27). Because no try block encloses line 27, stack unwinding occurs one more
time—function1 terminates at line 27 and returns control to the statement in main that
invoked function1 (i.e., line 37). The try block of lines 34–38 encloses this statement,
so the first matching catch handler located after this try block (line 39–43) catches and
processes the exception. Line 41 uses function what to display the exception message.
Recall that function what is a virtual function of class exception that can be overridden
by a derived class to return an appropriate error message.

16.8 Constructors, Destructors and Exception Handling
First, let’s discuss an issue that we’ve mentioned but not yet resolved satisfactorily: What
happens when an error is detected in a constructor? For example, how should an object’s
constructor respond when new fails because it was unable to allocate required memory for
storing that object’s internal representation? Because the constructor cannot return a value
to indicate an error, we must choose an alternative means of indicating that the object has
not been constructed properly. One scheme is to return the improperly constructed object
and hope that anyone using it would make appropriate tests to determine that it’s in an
inconsistent state. Another scheme is to set some variable outside the constructor. The pre-
ferred alternative is to require the constructor to throw an exception that contains the error
information, thus offering an opportunity for the program to handle the failure.

Before an exception is thrown by a constructor, destructors are called for any member
objects built as part of the object being constructed. Destructors are called for every auto-
matic object constructed in a try block before an exception is thrown. Stack unwinding
is guaranteed to have been completed at the point that an exception handler begins exe-
cuting. If a destructor invoked as a result of stack unwinding throws an exception, termi-
nate is called.

If an object has member objects, and if an exception is thrown before the outer object
is fully constructed, then destructors will be executed for the member objects that have
been constructed prior to the occurrence of the exception. If an array of objects has been
partially constructed when an exception occurs, only the destructors for the constructed
objects in the array will be called.

function1 is called inside main
function2 is called inside function1
function3 is called inside function2
In function 3
Exception occurred: runtime_error in function3
Exception handled in main

Fig. 16.4 | Stack unwinding. (Part 2 of 2.)

16.9 Exceptions and Inheritance 645

An exception could preclude the operation of code that would normally release a
resource (such as memory or a file), thus causing a resource leak. One technique to resolve
this problem is to initialize a local object to acquire the resource. When an exception
occurs, the destructor for that object will be invoked and can free the resource.

16.9 Exceptions and Inheritance
Various exception classes can be derived from a common base class, as we discussed in
Section 16.2, when we created class DivideByZeroException as a derived class of class
exception. If a catch handler catches a pointer or reference to an exception object of a
base-class type, it also can catch a pointer or reference to all objects of classes publicly de-
rived from that base class—this allows for polymorphic processing of related errors.

16.10 Processing new Failures
The C++ standard specifies that, when operator new fails, it throws a bad_alloc exception
(defined in header <new>).In this section, we present two examples of new failing. The first
uses the version of new that throws a bad_alloc exception when new fails. The second uses
function set_new_handler to handle new failures. [Note: The examples in Figs. 16.5–16.6
allocate large amounts of dynamic memory, which could cause your computer to become
sluggish.]

new Throwing bad_alloc on Failure
Figure 16.5 demonstrates new throwing bad_alloc on failure to allocate the requested
memory. The for statement (lines 16–20) inside the try block should loop 50 times and,
on each pass, allocate an array of 50,000,000 double values. If new fails and throws a
bad_alloc exception, the loop terminates, and the program continues in line 22, where
the catch handler catches and processes the exception. Lines 24–25 print the message
"Exception occurred:" followed by the message returned from the base-class-exception
version of function what (i.e., an implementation-defined exception-specific message,
such as "Allocation Failure" in Microsoft Visual C++). The output shows that the pro-
gram performed only four iterations of the loop before new failed and threw the bad_alloc
exception. Your output might differ based on the physical memory, disk space available
for virtual memory on your system and the compiler you’re using.

Error-Prevention Tip 16.2
When an exception is thrown from the constructor for an object that’s created in a new

expression, the dynamically allocated memory for that object is released.

Error-Prevention Tip 16.3
Using inheritance with exceptions enables an exception handler to catch related errors
with concise notation. One approach is to catch each type of pointer or reference to a de-
rived-class exception object individually, but a more concise approach is to catch pointers
or references to base-class exception objects instead. Also, catching pointers or references to
derived-class exception objects individually is error prone, especially if you forget to test
explicitly for one or more of the derived-class pointer or reference types.

646 Chapter 16 Exception Handling: A Deeper Look

new Returning 0 on Failure
The C++ standard specifies that compilers can use an older version of new that returns 0
upon failure. For this purpose, header <new> defines object nothrow (of type nothrow_t),
which is used as follows:

The preceding statement uses the version of new that does not throw bad_alloc exceptions
(i.e., nothrow) to allocate an array of 50,000,000 doubles.

Handling new Failures Using Function set_new_handler
An additional feature for handling new failures is function set_new_handler (prototyped
in standard header <new>). This function takes as its argument a pointer to a function that

1 // Fig. 16.5: Fig16_05.cpp
2 // Demonstrating standard new throwing bad_alloc when memory
3 // cannot be allocated.
4 #include <iostream>
5
6 using namespace std;
7
8 int main()
9 {

10 double *ptr[50];
11
12 // aim each ptr[i] at a big block of memory
13 try
14 {
15 // allocate memory for ptr[i]; new throws bad_alloc on failure
16 for (int i = 0; i < 50; ++i)
17 {
18
19 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
20 } // end for
21 } // end try
22 catch ()
23 {
24 cerr << "Exception occurred: "
25 << << endl;
26 } // end catch
27 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
Exception occurred: bad allocation

Fig. 16.5 | new throwing bad_alloc on failure.

double *ptr = new(nothrow) double[50000000];

Software Engineering Observation 16.8
To make programs more robust, use the version of new that throws bad_alloc exceptions
on failure.

#include <new> // bad_alloc class is defined here

ptr[i] = new double[50000000]; // may throw exception

bad_alloc &memoryAllocationException

memoryAllocationException.what()

16.10 Processing new Failures 647

takes no arguments and returns void. This pointer points to the function that will be
called if new fails. This provides you with a uniform approach to handling all new failures,
regardless of where a failure occurs in the program. Once set_new_handler registers a new
handler in the program, operator new does not throw bad_alloc on failure; rather, it de-
fers the error handling to the new-handler function.

If new allocates memory successfully, it returns a pointer to that memory. If new fails
to allocate memory and set_new_handler did not register a new-handler function, new
throws a bad_alloc exception. If new fails to allocate memory and a new-handler function
has been registered, the new-handler function is called. The C++ standard specifies that the
new-handler function should perform one of the following tasks:

1. Make more memory available by deleting other dynamically allocated memory
(or telling the user to close other applications) and return to operator new to at-
tempt to allocate memory again.

2. Throw an exception of type bad_alloc.

3. Call function abort or exit (both found in header <cstdlib>) to terminate the
program.

Figure 16.6 demonstrates set_new_handler. Function customNewHandler (lines 9–
13) prints an error message (line 11), then calls abort (line 12) to terminate the program.
The output shows that the loop iterated four times before new failed and invoked function
customNewHandler. Your output might differ based on the physical memory, disk space
available for virtual memory on your system and your compiler.

1 // Fig. 16.6: Fig16_06.cpp
2 // Demonstrating set_new_handler.
3 #include <iostream>
4
5 #include <cstdlib> // abort function prototype
6 using namespace std;
7
8
9

10
11
12
13
14
15 // using set_new_handler to handle failed memory allocation
16 int main()
17 {
18 double *ptr[50];
19
20
21
22
23

Fig. 16.6 | set_new_handler specifying the function to call when new fails. (Part 1 of 2.)

#include <new> // set_new_handler function prototype

// handle memory allocation failure
void customNewHandler()
{

cerr << "customNewHandler was called";
abort();

} // end function customNewHandler

// specify that customNewHandler should be called on
// memory allocation failure
set_new_handler(customNewHandler);

648 Chapter 16 Exception Handling: A Deeper Look

16.11 Class unique_ptr and Dynamic Memory
Allocation2

A common programming practice is to allocate dynamic memory, assign the address of
that memory to a pointer, use the pointer to manipulate the memory and deallocate the
memory with delete when the memory is no longer needed. If an exception occurs after
successful memory allocation but before the delete statement executes, a memory leak
could occur. The C++ standard provides class template unique_ptr in header <memory> to
deal with this situation.

An object of class unique_ptr maintains a pointer to dynamically allocated memory.
When a unique_ptr object destructor is called (for example, when a unique_ptr object
goes out of scope), it performs a delete operation on its pointer data member. Class tem-
plate unique_ptr provides overloaded operators * and -> so that a unique_ptr object can
be used just as a regular pointer variable is. Figure 16.9 demonstrates a unique_ptr object
that points to a dynamically allocated object of class Integer (Figs. 16.7–16.8).

24 // aim each ptr[i] at a big block of memory; customNewHandler will be
25 // called on failed memory allocation
26 for (int i = 0; i < 50; ++i)
27 {
28 ptr[i] = new double[50000000]; // may throw exception
29 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
30 } // end for
31 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
customNewHandler was called
This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

2. Class unique_ptr is a part of the new C++ standard that’s already implemented in Visual C++ 2010
and GNU C++. This class replaces the deprecated auto_ptr class. To compile this program in GNU
C++, use the -std=C++0x compiler flag.

1 // Fig. 16.7: Integer.h
2 // Integer class definition.
3
4 class Integer
5 {
6 public:
7 Integer(int i = 0); // Integer default constructor
8 ~Integer(); // Integer destructor
9 void setInteger(int i); // functions to set Integer

10 int getInteger() const; // function to return Integer

Fig. 16.7 | Integer class definition. (Part 1 of 2.)

Fig. 16.6 | set_new_handler specifying the function to call when new fails. (Part 2 of 2.)

16.11 Class unique_ptr and Dynamic Memory Allocation 649

Line 15 of Fig. 16.9 creates unique_ptr object ptrToInteger and initializes it with a
pointer to a dynamically allocated Integer object that contains the value 7. Line 18 uses
the unique_ptr overloaded -> operator to invoke function setInteger on the Integer

object that ptrToInteger manages. Line 21 uses the unique_ptr overloaded * operator to
dereference ptrToInteger, then uses the dot (.) operator to invoke function getInteger

on the Integer object. Like a regular pointer, a unique_ptr’s -> and * overloaded opera-
tors can be used to access the object to which the unique_ptr points.

Because ptrToInteger is a local automatic variable in main, ptrToInteger is
destroyed when main terminates. The unique_ptr destructor forces a delete of the
Integer object pointed to by ptrToInteger, which in turn calls the Integer class
destructor. The memory that Integer occupies is released, regardless of how control leaves
the block (e.g., by a return statement or by an exception). Most importantly, using this

11 private:
12 int value;
13 }; // end class Integer

1 // Fig. 16.8: Integer.cpp
2 // Integer member function definitions.
3 #include <iostream>
4 #include "Integer.h"
5 using namespace std;
6
7 // Integer default constructor
8 Integer::Integer(int i)
9 : value(i)

10 {
11 cout << "Constructor for Integer " << value << endl;
12 } // end Integer constructor
13
14 // Integer destructor
15 Integer::~Integer()
16 {
17 cout << "Destructor for Integer " << value << endl;
18 } // end Integer destructor
19
20 // set Integer value
21 void Integer::setInteger(int i)
22 {
23 value = i;
24 } // end function setInteger
25
26 // return Integer value
27 int Integer::getInteger() const
28 {
29 return value;
30 } // end function getInteger

Fig. 16.8 | Member function definitions of class Integer.

Fig. 16.7 | Integer class definition. (Part 2 of 2.)

650 Chapter 16 Exception Handling: A Deeper Look

technique can prevent memory leaks. For example, suppose a function returns a pointer
aimed at some object. Unfortunately, the function caller that receives this pointer might
not delete the object, thus resulting in a memory leak. However, if the function returns a
unique_ptr to the object, the object will be deleted automatically when the unique_ptr

object’s destructor gets called.
Only one unique_ptr at a time can own a dynamically allocated object and the object

cannot be an array. By using its overloaded assignment operator or copy constructor, a
unique_ptr can transfer ownership of the dynamic memory it manages. The last
unique_ptr object that maintains the pointer to the dynamic memory will delete the
memory. This makes unique_ptr an ideal mechanism for returning dynamically allocated
memory to client code. When the unique_ptr goes out of scope in the client code, the
unique_ptr’s destructor deletes the dynamic memory.

16.12 Standard Library Exception Hierarchy
Experience has shown that exceptions fall nicely into a number of categories. The C++
Standard Library includes a hierarchy of exception classes, some of which are shown in
Fig. 16.10. As we first discussed in Section 16.2, this hierarchy is headed by base-class ex-

1 // Fig. 16.9: Fig16_09.cpp
2 // Demonstrating unique_ptr.
3 #include <iostream>
4
5 using namespace std;
6
7 #include "Integer.h"
8
9 // use unique_ptr to manipulate Integer object

10 int main()
11 {
12 cout << "Creating a unique_ptr object that points to an Integer\n";
13
14
15
16
17 cout << "\nUsing the unique_ptr to manipulate the Integer\n";
18
19
20 // use unique_ptr to get Integer value
21 cout << "Integer after setInteger: " <<
22 } // end main

Creating a unique_ptr object that points to an Integer
Constructor for Integer 7

Using the unique_ptr to manipulate the Integer
Integer after setInteger: 99

Destructor for Integer 99

Fig. 16.9 | unique_ptr object manages dynamically allocated memory.

#include <memory>

// "aim" unique_ptr at Integer object
unique_ptr< Integer > ptrToInteger(new Integer(7));

ptrToInteger->setInteger(99); // use unique_ptr to set Integer value

(*ptrToInteger).getInteger()

16.12 Standard Library Exception Hierarchy 651

ception (defined in header <exception>), which contains virtual function what, which
derived classes can override to issue appropriate error messages.

Immediate derived classes of base-class exception include runtime_error and
logic_error (both defined in header <stdexcept>), each of which has several derived
classes. Also derived from exception are the exceptions thrown by C++ operators—for
example, bad_alloc is thrown by new (Section 16.10), bad_cast is thrown by
dynamic_cast (Chapter 13) and bad_typeid is thrown by typeid (Chapter 13).
Including bad_exception in the throw list of a function means that, if an unexpected
exception occurs, function unexpected can throw bad_exception rather than terminating
the program’s execution (by default) or calling another function specified by
set_unexpected.

Class logic_error is the base class of several standard exception classes that indicate
errors in program logic. For example, class invalid_argument indicates that an invalid
argument was passed to a function. (Proper coding can, of course, prevent invalid argu-
ments from reaching a function.) Class length_error indicates that a length larger than
the maximum size allowed for the object being manipulated was used for that object. Class
out_of_range indicates that a value, such as a subscript into an array, exceeded its allowed
range of values.

Class runtime_error, which we used briefly in Section 16.7, is the base class of several
other standard exception classes that indicate execution-time errors. For example, class
overflow_error describes an arithmetic overflow error (i.e., the result of an arithmetic
operation is larger than the largest number that can be stored in the computer) and class

Fig. 16.10 | Some of the Standard Library exception classes.

Common Programming Error 16.8
Placing a catch handler that catches a base-class object before a catch that catches an
object of a class derived from that base class is a logic error. The base-class catch catches
all objects of classes derived from that base class, so the derived-class catch will never ex-
ecute.

exception

logic_errorruntime_error

bad_type_idbad_alloc bad_cast bad_exception

underflow_erroroverflow_error invalid_argument length_error out_of_range

652 Chapter 16 Exception Handling: A Deeper Look

underflow_error describes an arithmetic underflow error (i.e., the result of an arithmetic
operation is smaller than the smallest number that can be stored in the computer).

16.13 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors in a pro-
gram. You learned that exception handling enables you to remove error-handling code
from the “main line” of the program’s execution. We demonstrated exception handling in
the context of a divide-by-zero example. We reviewed how to use try blocks to enclose
code that may throw an exception, and how to use catch handlers to deal with exceptions
that may arise. You learned how to throw and rethrow exceptions, and how to handle the
exceptions that occur in constructors. The chapter continued with discussions of process-
ing new failures, dynamic memory allocation with class unique_ptr and the standard li-
brary exception hierarchy. In the next chapter, you’ll learn about file processing, including
how persistent data is stored and how to manipulate it.

Common Programming Error 16.9
Exception classes need not be derived from class exception, so catching type exception is
not guaranteed to catch all exceptions a program could encounter.

Error-Prevention Tip 16.4
To catch all exceptions potentially thrown in a try block, use catch(...). One weakness
with catching exceptions in this way is that the type of the caught exception is unknown
at compile time. Another weakness is that, without a named parameter, there’s no way to
refer to the exception object inside the exception handler.

Software Engineering Observation 16.9
The standard exception hierarchy is a good starting point for creating exceptions. You
can build programs that can throw standard exceptions, throw exceptions derived from
the standard exceptions or throw your own exceptions not derived from the standard
exceptions.

Software Engineering Observation 16.10
Use catch(...) to perform recovery that does not depend on the exception type (e.g.,
releasing common resources). The exception can be rethrown to alert more specific
enclosing catch handlers.

Summary
Section 16.1 Introduction
• An exception (p. 633) is an indication of a problem that occurs during a program’s execution.

• Exception handling enables you to create programs that can resolve problems that occur at exe-
cution time—often allowing programs to continue executing as if no problems had been encoun-
tered. More severe problems may require a program to notify the user of the problem before
terminating in a controlled manner.

Summary 653

Section 16.2 Example: Handling an Attempt to Divide by Zero
• Class exception is the standard base class for exceptions classes (p. 634). It provides virtual function

what (p. 634) that returns an appropriate error message and can be overridden in derived classes.

• Class runtime_error (p. 634), which is defined in header <stdexcept> (p. 634), is the C++ stan-
dard base class for representing runtime errors.

• C++ uses the termination model (p. 637) of exception handling.

• A try block consists of keyword try followed by braces ({}) that define a block of code in which
exceptions might occur. The try block encloses statements that might cause exceptions and state-
ments that should not execute if exceptions occur.

• At least one catch handler must immediately follow a try block. Each catch handler specifies an
exception parameter that represents the type of exception the catch handler can process.

• If an exception parameter includes an optional parameter name, the catch handler can use that
parameter name to interact with a caught exception object (p. 638).

• The point in the program at which an exception occurs is called the throw point (p. 637).

• If an exception occurs in a try block, the try block expires and program control transfers to the
first catch in which the exception parameter’s type matches that of the thrown exception.

• When a try block terminates, local variables defined in the block go out of scope.

• When a try block terminates due to an exception, the program searches for the first catch han-
dler that matches the type of exception that occurred. A match occurs if the types are identical
or if the thrown exception’s type is a derived class of the exception-parameter type. When a
match occurs, the code contained within the matching catch handler executes.

• When a catch handler finishes processing, the catch parameter and local variables defined within
the catch handler go out of scope. Any remaining catch handlers that correspond to the try

block are ignored, and execution resumes at the first line of code after the try…catch sequence.

• If no exceptions occur in a try block, the program ignores the catch handler(s) for that block.
Program execution resumes with the next statement after the try…catch sequence.

• If an exception that occurs in a try block has no matching catch handler, or if an exception oc-
curs in a statement that is not in a try block, the function that contains the statement terminates
immediately, and the program attempts to locate an enclosing try block in the calling function.
This process is called stack unwinding (p. 638).

• To throw an exception, use keyword throw followed by an operand that represents the type of
exception to throw. The operand of a throw can be of any type.

Section 16.3 When to Use Exception Handling
• Exception handling is for synchronous errors (p. 639), which occur when a statement executes.

• Exception handling is not designed to process errors associated with asynchronous events
(p. 639), which occur in parallel with, and independent of, the program’s flow of control.

Section 16.4 Rethrowing an Exception
• The exception handler can defer the exception handling (or perhaps a portion of it) to another

exception handler. In either case, the handler achieves this by rethrowing the exception (p. 640).

• Common examples of exceptions are out-of-range array subscripts, arithmetic overflow, division
by zero, invalid function parameters and unsuccessful memory allocations.

Section 16.5 Exception Specifications
• An optional exception specification enumerates a list of exceptions that a function can throw. A

function can throw only exceptions of the types indicated by the exception specification or ex-

654 Chapter 16 Exception Handling: A Deeper Look

ceptions of any type derived from these types. If the function throws any other type of exception,
function unexpected (p. 642) is called and the program terminates.

• A function with no exception specification can throw any exception. The empty exception spec-
ification throw() indicates that a function does not throw exceptions. If a function with an empty
exception specification attempts to throw an exception, function unexpected is invoked.

Section 16.6 Processing Unexpected Exceptions
• Function unexpected calls the function registered with function set_unexpected (p. 642). If no

function has been registered in this manner, function terminate (p. 640) is called by default.

• Function set_terminate (p. 642) can specify the function to invoke when terminate is called.
Otherwise, terminate calls abort (p. 642), which terminates the program without calling the de-
structors of objects that are declared static and auto.

• Functions set_terminate and set_unexpected each return a pointer to the last function called
by terminate and unexpected, respectively (0, the first time each is called). This enables you to
save the function pointer so it can be restored later.

• Functions set_terminate and set_unexpected take as arguments pointers to functions with void

return types and no arguments.

• If a programmer-defined termination function does not exit a program, function abort will be
called after the programmer-defined termination function completes execution.

Section 16.7 Stack Unwinding
• Unwinding the function call stack means that the function in which the exception was not

caught terminates, all local variables in that function are destroyed and control returns to the
statement that originally invoked that function.

Section 16.8 Constructors, Destructors and Exception Handling
• Exceptions thrown by a constructor cause destructors to be called for any objects built as part of

the object being constructed before the exception is thrown.

• Each automatic object constructed in a try block is destructed before an exception is thrown.

• Stack unwinding completes before an exception handler begins executing.

• If a destructor invoked as a result of stack unwinding throws an exception, terminate is called.

• If an object has member objects, and if an exception is thrown before the outer object is fully
constructed, then destructors will be executed for the member objects that have been constructed
before the exception occurs.

• If an array of objects has been partially constructed when an exception occurs, only the destruc-
tors for the constructed array element objects will be called.

• When an exception is thrown from the constructor for an object that is created in a new expres-
sion, the dynamically allocated memory for that object is released.

Section 16.9 Exceptions and Inheritance
• If a catch handler catches a pointer or reference to an exception object of a base-class type, it also

can catch a pointer or reference to all objects of classes derived publicly from that base class—
this allows for polymorphic processing of related errors.

Section 16.10 Processing new Failures
• The C++ standard document specifies that, when operator new fails, it throws a bad_alloc excep-

tion (p. 645), which is defined in header <new>.

Self-Review Exercises 655

• Function set_new_handler (p. 645) takes as its argument a pointer to a function that takes no
arguments and returns void. This pointer points to the function that will be called if new fails.

• Once set_new_handler registers a new handler (p. 647) in the program, operator new does not
throw bad_alloc on failure; rather, it defers the error handling to the new-handler function.

• If new allocates memory successfully, it returns a pointer to that memory.

• If an exception occurs after successful memory allocation but before the delete statement exe-
cutes, a memory leak could occur.

Section 16.11 Class unique_ptr and Dynamic Memory Allocation
• The C++ Standard Library provides class template unique_ptr (p. 648) to deal with memory leaks.

• An object of class unique_ptr maintains a pointer to dynamically allocated memory. A
unique_ptr’s destructor performs a delete operation on the unique_ptr’s pointer data member.

• Class template unique_ptr provides overloaded operators * and -> so that a unique_ptr object
can be used just as a regular pointer variable is. A unique_ptr also transfers ownership of the dy-
namic memory it manages via its copy constructor and overloaded assignment operator.

Section 16.12 Standard Library Exception Hierarchy
• The C++ Standard Library includes a hierarchy of exception classes. This hierarchy is headed by

base-class exception.

• Immediate derived classes of base class exception include runtime_error and logic_error (both
defined in header <stdexcept>), each of which has several derived classes.

• Several operators throw standard exceptions—operator new throws bad_alloc, operator
dynamic_cast throws bad_cast (p. 651) and operator typeid throws bad_typeid (p. 651).

• Including bad_exception (p. 651) in the throw list of a function means that, if an unexpected
exception occurs, function unexpected can throw bad_exception rather than terminating the
program’s execution or calling another function specified by set_unexpected.

Self-Review Exercises
16.1 List five common examples of exceptions.

16.2 Give several reasons why exception-handling techniques should not be used for conven-
tional program control.

16.3 Why are exceptions appropriate for dealing with errors produced by library functions?

16.4 What’s a “resource leak”?

16.5 If no exceptions are thrown in a try block, where does control proceed to after the try block
completes execution?

16.6 What happens if an exception is thrown outside a try block?

16.7 Give a key advantage and a key disadvantage of using catch(...).

16.8 What happens if no catch handler matches the type of a thrown object?

16.9 What happens if several handlers match the type of the thrown object?

16.10 Why would you specify a base-class type as the type of a catch handler, then throw objects
of derived-class types?

16.11 Suppose a catch handler with a precise match to an exception object type is available. Un-
der what circumstances might a different handler be executed for exception objects of that type?

16.12 Must throwing an exception cause program termination?

656 Chapter 16 Exception Handling: A Deeper Look

16.13 What happens when a catch handler throws an exception?

16.14 What does the statement throw; do?

Answers to Self-Review Exercises
16.1 Insufficient memory to satisfy a new request, array subscript out of bounds, arithmetic over-
flow, division by zero, invalid function parameters.

16.2 (a) Exception handling is designed to handle infrequently occurring situations that often
result in program termination, so compiler writers are not required to implement exception han-
dling to perform optimally. (b) Flow of control with conventional control structures generally is
clearer and more efficient than with exceptions. (c) Problems can occur because the stack is un-
wound when an exception occurs and resources allocated prior to the exception might not be freed.
(d) The “additional” exceptions make it more difficult for you to handle the larger number of ex-
ception cases.

16.3 It’s unlikely that a library function will perform error processing that will meet the unique
needs of all users.

16.4 A program that terminates abruptly could leave a resource in a state in which other pro-
grams would not be able to acquire the resource, or the program itself might not be able to reacquire
a “leaked” resource.

16.5 The exception handlers (in the catch handlers) for that try block are skipped, and the pro-
gram resumes execution after the last catch handler.

16.6 An exception thrown outside a try block causes a call to terminate.

16.7 The form catch(...) catches any type of exception thrown in a try block. An advantage
is that all possible exceptions will be caught. A disadvantage is that the catch has no parameter, so
it cannot reference information in the thrown object and cannot know the cause of the exception.

16.8 This causes the search for a match to continue in the next enclosing try block if there is
one. As this process continues, it might eventually be determined that there is no handler in the pro-
gram that matches the type of the thrown object; in this case, terminate is called, which by default
calls abort. An alternative terminate function can be provided as an argument to set_terminate.

16.9 The first matching exception handler after the try block is executed.

16.10 This is a nice way to catch related types of exceptions.

16.11 A base-class handler would catch objects of all derived-class types.

16.12 No, but it does terminate the block in which the exception is thrown.

16.13 The exception will be processed by a catch handler (if one exists) associated with the try

block (if one exists) enclosing the catch handler that caused the exception.

16.14 It rethrows the exception if it appears in a catch handler; otherwise, function unexpected

is called.

Exercises
16.15 (Exceptional Conditions) List various exceptional conditions that have occurred through-
out this text. List as many additional exceptional conditions as you can. For each of these exceptions,
describe briefly how a program typically would handle the exception, using the exception-handling
techniques discussed in this chapter. Some typical exceptions are division by zero, arithmetic over-
flow, array subscript out of bounds, exhaustion of the free store, etc.

16.16 (Catch Parameter) Under what circumstances would you not provide a parameter name
when defining the type of the object that will be caught by a handler?

Exercises 657

16.17 (throw Statement) A program contains the statement

throw;

Where would you normally expect to find such a statement? What if that statement appeared in a
different part of the program?

16.18 (Exception Handling vs. Other Schemes) Compare and contrast exception handling with
the various other error-processing schemes discussed in the text.

16.19 (Exception Handling and Program Control) Why should exceptions not be used as an al-
ternate form of program control?

16.20 (Handling Related Exceptions) Describe a technique for handling related exceptions.

16.21 (Throwing Exceptions from a catch) Suppose a program throws an exception and the ap-
propriate exception handler begins executing. Now suppose that the exception handler itself throws
the same exception. Does this create infinite recursion? Write a program to check your observation.

16.22 (Catching Derived-Class Exceptions) Use inheritance to create various derived classes of
runtime_error. Then show that a catch handler specifying the base class can catch derived-class
exceptions.

16.23 (Throwing the Result of a Conditional Expression) Throw the result of a conditional ex-
pression that returns either a double or an int. Provide an int catch handler and a double catch

handler. Show that only the double catch handler executes, regardless of whether the int or the
double is returned.

16.24 (Local Variable Destructors) Write a program illustrating that all destructors for objects
constructed in a block are called before an exception is thrown from that block.

16.25 (Member Object Destructors) Write a program illustrating that member object destructors
are called for only those member objects that were constructed before an exception occurred.

16.26 (Cathing All Exceptions) Write a program that demonstrates several exception types being
caught with the catch(...) exception handler.

16.27 (Order of Exception Handlers) Write a program illustrating that the order of exception han-
dlers is important. The first matching handler is the one that executes. Attempt to compile and run
your program two different ways to show that two different handlers execute with two different ef-
fects.

16.28 (Constructors Throwing Exceptions) Write a program that shows a constructor passing in-
formation about constructor failure to an exception handler after a try block.

16.29 (Rethrowing Exceptions) Write a program that illustrates rethrowing an exception.

16.30 (Uncaught Exceptions) Write a program that illustrates that a function with its own try

block does not have to catch every possible error generated within the try. Some exceptions can slip
through to, and be handled in, outer scopes.

16.31 (Stack Unwinding) Write a program that throws an exception from a deeply nested func-
tion and still has the catch handler following the try block enclosing the initial call in main catch
the exception.

17 File Processing

I read part of it all the way
through.
—Samuel Goldwyn

A great memory does not make a
philosopher,
any more than a dictionary can
be called grammar.
—John Henry, Cardinal Newman

I can only assume that a “Do
Not File” document is filed in a
“Do Not File” file.
—Senator Frank Church
Senate Intelligence Subcommittee
Hearing, 1975

O b j e c t i v e s
In this chapter you’ll learn:

■ To create, read, write and
update files.

■ Sequential file processing.

■ Random-access file
processing.

■ To use high-performance
unformatted I/O operations.

■ The differences between
formatted-data and raw-data
file processing.

■ To build a transaction-
processing program using
random-access file
processing.

■ To understand the concept of
object serialization.

17.1 Introduction 659

17.1 Introduction
Storage of data in memory is temporary. Files are used for data persistence—permanent
retention of data. Computers store files on secondary storage devices, such as hard disks,
CDs, DVDs, flash drives and tapes. In this chapter, we explain how to build C++ pro-
grams that create, update and process data files. We consider both sequential files and ran-
dom-access files. We compare formatted-data file processing and raw-data file processing.
We examine techniques for input of data from, and output of data to, string streams rath-
er than files in Chapter 18, Class string and String Stream Processing.

17.2 Files and Streams
C++ views each file simply as a sequence of bytes (Fig. 17.1). Each file ends either with an
end-of-file marker or at a specific byte number recorded in an operating-system-main-
tained, administrative data structure. When a file is opened, an object is created, and a
stream is associated with the object. In Chapter 15, we saw that objects cin, cout, cerr
and clog are created when <iostream> is included. The streams associated with these ob-
jects provide communication channels between a program and a particular file or device.
For example, the cin object (standard input stream object) enables a program to input
data from the keyboard or from other devices, the cout object (standard output stream ob-
ject) enables a program to output data to the screen or other devices, and the cerr and
clog objects (standard error stream objects) enable a program to output error messages to
the screen or other devices.

To perform file processing in C++, headers <iostream> and <fstream> must be
included. Header <fstream> includes the definitions for the stream class templates
basic_ifstream (for file input), basic_ofstream (for file output) and basic_fstream

17.1 Introduction
17.2 Files and Streams
17.3 Creating a Sequential File
17.4 Reading Data from a Sequential File
17.5 Updating Sequential Files
17.6 Random-Access Files
17.7 Creating a Random-Access File

17.8 Writing Data Randomly to a
Random-Access File

17.9 Reading from a Random-Access File
Sequentially

17.10 Case Study: A Transaction-
Processing Program

17.11 Object Serialization
17.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

Fig. 17.1 | C++’s simple view of a file of n bytes.

0 1 2 3 4 5 6 7 8 9 ...

...

n-1

end-of-file marker

660 Chapter 17 File Processing

(for file input and output). Each class template has a predefined template specialization
that enables char I/O. In addition, the <fstream> library provides typedef aliases for
these template specializations. For example, the typedef ifstream represents a specializa-
tion of basic_ifstream that enables char input from a file. Similarly, typedef ofstream

represents a specialization of basic_ofstream that enables char output to files. Also,
typedef fstream represents a specialization of basic_fstream that enables char input
from, and output to, files.

Files are opened by creating objects of these stream template specializations. These
templates derive from the class templates basic_istream, basic_ostream and
basic_iostream, respectively. Thus, all member functions, operators and manipulators
that belong to these templates (which we described in Chapter 15) also can be applied to
file streams. Figure 17.2 summarizes the inheritance relationships of the I/O classes that
we’ve discussed to this point.

17.3 Creating a Sequential File
C++ imposes no structure on a file. Thus, a concept like that of a “record” does not exist
in a C++ file. You must structure files to meet the application’s requirements. The follow-
ing example shows how you can impose a simple record structure on a file.

Figure 17.3 creates a sequential file that might be used in an accounts-receivable
system to help manage the money owed to a company by its credit clients. For each client,
the program obtains the client’s account number, name and balance (i.e., the amount the
client owes the company for goods and services received in the past). The data obtained
for each client constitutes a record for that client. The account number serves as the record
key; that is, the program creates and maintains the records of the file in account number
order. This program assumes the user enters the records in account number order. In a
comprehensive accounts receivable system, a sorting capability would be provided for the
user to enter records in any order—the records then would be sorted and written to the file.

Fig. 17.2 | Portion of stream I/O template hierarchy.

basic_ios

basic_ostreambasic_istream

basic_iostream basic_ofstreambasic_ifstream

basic_fstream

17.3 Creating a Sequential File 661

Let’s examine this program. As stated previously, files are opened by creating
ifstream, ofstream or fstream objects. In Fig. 17.3, the file is to be opened for output,
so an ofstream object is created. Two arguments are passed to the object’s constructor—
the filename and the file-open mode (line 12). For an ofstream object, the file-open
mode can be either ios::out to output data to a file or ios::app to append data to the end
of a file (without modifying any data already in the file). Existing files opened with mode

1 // Fig. 17.3: Fig17_03.cpp
2 // Create a sequential file.
3 #include <iostream>
4 #include <string>
5
6 #include <cstdlib>
7 using namespace std;
8
9 int main()

10 {
11
12
13
14 // exit program if unable to create file
15 if () // overloaded ! operator
16 {
17 cerr << "File could not be opened" << endl;
18 exit(1);
19 } // end if
20
21 cout << "Enter the account, name, and balance." << endl
22 << "Enter end-of-file to end input.\n? ";
23
24 int account;
25 string name;
26 double balance;
27
28 // read account, name and balance from cin, then place in file
29 while ()
30 {
31
32 cout << "? ";
33 } // end while
34 } // end main

Enter the account, name, and balance.
Enter end-of-file to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

Fig. 17.3 | Creating a sequential file.

#include <fstream> // file stream

// ofstream constructor opens file
ofstream outClientFile("clients.txt", ios::out);

!outClientFile

cin >> account >> name >> balance

outClientFile << account << ' ' << name << ' ' << balance << endl;

662 Chapter 17 File Processing

ios::out are truncated—all data in the file is discarded. If the specified file does not yet
exist, then the ofstream object creates the file, using that filename.

Line 12 creates an ofstream object named outClientFile associated with the file
clients.dat that’s opened for output. The arguments "clients.dat" and ios::out are
passed to the ofstream constructor, which opens the file—this establishes a “line of com-
munication” with the file. By default, ofstream objects are opened for output, so line 12
could have used the alternate statement

to open clients.dat for output. Figure 17.4 lists the file-open modes. These modes can
also be combined, as we discuss in Section 17.8.

An ofstream object can be created without opening a specific file—a file can be
attached to the object later. For example, the statement

creates an ofstream object named outClientFile. The ofstream member function open

opens a file and attaches it to an existing ofstream object as follows:

After creating an ofstream object and attempting to open it, the program tests whether
the open operation was successful. The if statement in lines 15–19 uses the overloaded ios

member function operator! to determine whether the open operation succeeded. The con-
dition returns a true value if either the failbit or the badbit is set for the stream on the
open operation. Some possible errors are attempting to open a nonexistent file for reading,
attempting to open a file for reading or writing from a directory that you don’t have permis-
sion to access, and opening a file for writing when no disk space is available.

If the condition indicates an unsuccessful attempt to open the file, line 17 outputs the
error message "File could not be opened", and line 18 invokes function exit to termi-
nate the program. The argument to exit is returned to the environment from which the

ofstream outClientFile("clients.dat");

Common Programming Error 17.1
Use caution when opening an existing file for output (ios::out), especially when you
want to preserve the file’s contents, which will be discarded without warning.

Mode Description

ios::app Append all output to the end of the file.

ios::ate Open a file for output and move to the end of the file (normally used to
append data to a file). Data can be written anywhere in the file.

ios::in Open a file for input.

ios::out Open a file for output.

ios::trunc Discard the file’s contents (this also is the default action for ios::out).

ios::binary Open a file for binary, i.e., nontext, input or output.

Fig. 17.4 | File open modes.

ofstream outClientFile;

outClientFile.open("clients.dat", ios::out);

17.3 Creating a Sequential File 663

program was invoked. Argument 0 indicates that the program terminated normally; any
other value indicates that the program terminated due to an error. The calling environ-
ment (most likely the operating system) uses the value returned by exit to respond appro-
priately to the error.

Another overloaded ios member function—operator void *—converts the stream
to a pointer, so it can be tested as 0 (i.e., the null pointer) or nonzero (i.e., any other
pointer value). When a pointer value is used as a condition, C++ interprets a null pointer
in a condition as the bool value false and interprets a non-null pointer as the bool value
true. If the failbit or badbit (see Chapter 15) has been set for the stream, 0 (false) is
returned. The condition in the while statement of lines 29–33 invokes the operator void
* member function on cin implicitly. The condition remains true as long as neither the
failbit nor the badbit has been set for cin. Entering the end-of-file indicator sets the
failbit for cin. The operator void * function can be used to test an input object for
end-of-file instead of calling the eof member function explicitly on the input object.

If line 12 opens the file successfully, the program begins processing data. Lines 21–22
prompt the user to enter either the various fields for each record or the end-of-file indicator
when data entry is complete. Figure 17.5 lists the keyboard combinations for entering
end-of-file for various computer systems.

Line 29 extracts each set of data and determines whether end-of-file has been entered.
When end-of-file is encountered or bad data is entered, operator void * returns the null
pointer (which converts to the bool value false) and the while statement terminates. The
user enters end-of-file to inform the program to process no additional data. The end-of-
file indicator is set when the user enters the end-of-file key combination. The while state-
ment loops until the end-of-file indicator is set.

Line 31 writes a set of data to the file clients.txt, using the stream insertion oper-
ator << and the outClientFile object associated with the file at the beginning of the pro-
gram. The data may be retrieved by a program designed to read the file (see Section 17.4).
The file created in Fig. 17.3 is simply a text file, so it can be viewed by any text editor.

Once the user enters the end-of-file indicator, main terminates. This implicitly
invokes outClientFile’s destructor, which closes the clients.txt file. You also can close
the ofstream object explicitly, using member function close in the statement

In the sample execution for the program of Fig. 17.3, the user enters information for
five accounts, then signals that data entry is complete by entering end-of-file (^Z is dis-
played for Microsoft Windows). This dialog window does not show how the data records
appear in the file. To verify that the program created the file successfully, the next section
shows how to create a program that reads this file and prints its contents.

Computer system Keyboard combination

UNIX/Linux/Mac OS X <Ctrl-d> (on a line by itself)

Microsoft Windows <Ctrl-z> (sometimes followed by pressing Enter)

Fig. 17.5 | End-of-file key combinations for various popular computer systems.

outClientFile.close();

664 Chapter 17 File Processing

17.4 Reading Data from a Sequential File
Files store data so it may be retrieved for processing when needed. The previous section
demonstrated how to create a file for sequential access. We now discuss how to read data
sequentially from a file. Figure 17.6 reads and displays the records from the clients.txt

file that we created using the program of Fig. 17.3. Creating an ifstream object opens a
file for input. The ifstream constructor can receive the filename and the file open mode
as arguments. Line 15 creates an ifstream object called inClientFile and associates it
with the clients.txt file. The arguments in parentheses are passed to the ifstream con-
structor, which opens the file and establishes a “line of communication” with the file.

Good Programming Practice 17.1
Open a file for input only (using ios::in) if the file’s contents should not be modified.
This prevents unintentional modification of the file’s contents and is another example of
the principle of least privilege.

1 // Fig. 17.6: Fig17_06.cpp
2 // Reading and printing a sequential file.
3 #include <iostream>
4
5 #include <iomanip>
6 #include <string>
7 #include <cstdlib>
8 using namespace std;
9

10 void outputLine(int, const string, double); // prototype
11
12 int main()
13 {
14
15
16
17 // exit program if ifstream could not open file
18 if ()
19 {
20 cerr << "File could not be opened" << endl;
21 exit(1);
22 } // end if
23
24 int account;
25 string name;
26 double balance;
27
28 cout << left << setw(10) << "Account" << setw(13)
29 << "Name" << "Balance" << endl << fixed << showpoint;
30
31 // display each record in file

33 outputLine(account, name, balance);
34 } // end main

Fig. 17.6 | Reading and printing a sequential file. (Part 1 of 2.)

#include <fstream> // file stream

// ifstream constructor opens the file
ifstream inClientFile("clients.txt", ios::in);

!inClientFile

inClientFile >> account >> name >> balance

17.4 Reading Data from a Sequential File 665

Objects of class ifstream are opened for input by default, so the statement

opens clients.txt for input. Just as with an ofstream object, an ifstream object can be
created without opening a specific file, because a file can be attached to it later.

Before attempting to retrieve data from the file, the program uses the condition
!inClientFile to determine whether the file was opened successfully. Line 32 reads a set
of data (i.e., a record) from the file. After line 32 executes the first time, account has the
value 100, name has the value "Jones" and balance has the value 24.98. Each time line 32
executes, it reads another record from the file into the variables account, name and bal-

ance. Line 33 displays the records, using function outputLine (lines 37–41), which uses
parameterized stream manipulators to format the data for display. When the end of file
has been reached, the implicit call to operator void * in the while condition returns the
null pointer (which converts to the bool value false), the ifstream destructor closes the
file and the program terminates.

To retrieve data sequentially from a file, programs normally start reading from the
beginning of the file and read all the data consecutively until the desired data is found. It
might be necessary to process the file sequentially several times (from the beginning of the
file) during the execution of a program. Both istream and ostream provide member func-
tions for repositioning the file-position pointer (the byte number of the next byte in the file
to be read or written). These member functions are seekg (“seek get”) for istream and
seekp (“seek put”) for ostream. Each istream object has a get pointer, which indicates the
byte number in the file from which the next input is to occur, and each ostream object
has a put pointer, which indicates the byte number in the file at which the next output
should be placed. The statement

repositions the file-position pointer to the beginning of the file (location 0) attached to in-

ClientFile. The argument to seekg is a long integer. A second argument can be specified
to indicate the seek direction, which can be ios::beg (the default) for positioning relative
to the beginning of a stream, ios::cur for positioning relative to the current position in a

35
36 // display single record from file
37 void outputLine(int account, const string name, double balance)
38 {
39 cout << left << setw(10) << account << setw(13) << name
40 << setw(7) << setprecision(2) << right << balance << endl;
41 } // end function outputLine

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

ifstream inClientFile("clients.txt");

inClientFile.seekg(0);

Fig. 17.6 | Reading and printing a sequential file. (Part 2 of 2.)

666 Chapter 17 File Processing

stream or ios::end for positioning relative to the end of a stream. The file-position point-
er is an integer value that specifies the location in the file as a number of bytes from the
file’s starting location (this is also referred to as the offset from the beginning of the file).
Some examples of positioning the get file-position pointer are

The same operations can be performed using ostream member function seekp.
Member functions tellg and tellp are provided to return the current locations of the get
and put pointers, respectively. The following statement assigns the get file-position pointer
value to variable location of type long:

Figure 17.7 enables a credit manager to display the account information for those cus-
tomers with zero balances (i.e., customers who do not owe the company any money), credit
(negative) balances (i.e., customers to whom the company owes money), and debit (posi-
tive) balances (i.e., customers who owe the company money for goods and services received
in the past). The program displays a menu and allows the credit manager to enter one of
three options to obtain credit information. Option 1 produces a list of accounts with zero
balances. Option 2 produces a list of accounts with credit balances. Option 3 produces a
list of accounts with debit balances. Option 4 terminates program execution. Entering an
invalid option displays the prompt to enter another choice. Lines 65–66 enable the pro-
gram to read from the beginning of the file after the EOF marker has been read.

// position to the nth byte of fileObject (assumes ios::beg)
fileObject.seekg(n);

// position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);

// position at end of fileObject
fileObject.seekg(0, ios::end);

location = fileObject.tellg();

1 // Fig. 17.7: Fig17_07.cpp
2 // Credit inquiry program.
3 #include <iostream>
4
5 #include <iomanip>
6 #include <string>
7 #include <cstdlib>
8 using namespace std;
9

10 enum RequestType { ZERO_BALANCE = 1, CREDIT_BALANCE, DEBIT_BALANCE, END };
11 int getRequest();
12 bool shouldDisplay(int, double);
13 void outputLine(int, const string, double);
14
15 int main()
16 {
17
18

Fig. 17.7 | Credit inquiry program. (Part 1 of 4.)

#include <fstream>

// ifstream constructor opens the file
ifstream inClientFile("clients.txt", ios::in);

17.4 Reading Data from a Sequential File 667

19
20 // exit program if ifstream could not open file
21 if ()
22 {
23 cerr << "File could not be opened" << endl;
24 exit(1);
25 } // end if
26
27 int request;
28 int account;
29 string name;
30 double balance;
31
32 // get user's request (e.g., zero, credit or debit balance)
33 request = getRequest();
34
35 // process user's request
36 while (request != END)
37 {
38 switch (request)
39 {
40 case ZERO_BALANCE:
41 cout << "\nAccounts with zero balances:\n";
42 break;
43 case CREDIT_BALANCE:
44 cout << "\nAccounts with credit balances:\n";
45 break;
46 case DEBIT_BALANCE:
47 cout << "\nAccounts with debit balances:\n";
48 break;
49 } // end switch
50
51
52
53
54 // display file contents (until eof)
55 while ()
56 {
57 // display record
58 if (shouldDisplay(request, balance))
59 outputLine(account, name, balance);
60
61
62
63 } // end inner while
64
65
66
67 request = getRequest(); // get additional request from user
68 } // end outer while
69
70 cout << "End of run." << endl;
71 } // end main

Fig. 17.7 | Credit inquiry program. (Part 2 of 4.)

!inClientFile

// read account, name and balance from file
inClientFile >> account >> name >> balance;

!inClientFile.eof()

// read account, name and balance from file
inClientFile >> account >> name >> balance;

inClientFile.clear(); // reset eof for next input
inClientFile.seekg(0); // reposition to beginning of file

668 Chapter 17 File Processing

72
73 // obtain request from user
74 int getRequest()
75 {
76 int request; // request from user
77
78 // display request options
79 cout << "\nEnter request" << endl
80 << " 1 - List accounts with zero balances" << endl
81 << " 2 - List accounts with credit balances" << endl
82 << " 3 - List accounts with debit balances" << endl
83 << " 4 - End of run" << fixed << showpoint;
84
85 do // input user request
86 {
87 cout << "\n? ";
88 cin >> request;
89 } while (request < ZERO_BALANCE && request > END);
90
91 return request;
92 } // end function getRequest
93
94 // determine whether to display given record
95 bool shouldDisplay(int type, double balance)
96 {
97 // determine whether to display zero balances
98 if (type == ZERO_BALANCE && balance == 0)
99 return true;
100
101 // determine whether to display credit balances
102 if (type == CREDIT_BALANCE && balance < 0)
103 return true;
104
105 // determine whether to display debit balances
106 if (type == DEBIT_BALANCE && balance > 0)
107 return true;
108
109 return false;
110 } // end function shouldDisplay
111
112 // display single record from file
113 void outputLine(int account, const string name, double balance)
114 {
115 cout << left << setw(10) << account << setw(13) << name
116 << setw(7) << setprecision(2) << right << balance << endl;
117 } // end function outputLine

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run
? 1

Fig. 17.7 | Credit inquiry program. (Part 3 of 4.)

17.5 Updating Sequential Files 669

17.5 Updating Sequential Files
Data that is formatted and written to a sequential file as shown in Section 17.3 cannot be
modified without the risk of destroying other data in the file. For example, if the name
“White” needs to be changed to “Worthington,” the old name cannot be overwritten with-
out corrupting the file. The record for White was written to the file as

If this record were rewritten beginning at the same location in the file using the longer
name, the record would be

The new record contains six more characters than the original record. Therefore, the char-
acters beyond the second “o” in “Worthington” would overwrite the beginning of the next
sequential record in the file. The problem is that, in the formatted input/output model
using the stream insertion operator << and the stream extraction operator >>, fields—and
hence records—can vary in size. For example, values 7, 14, –117, 2074, and 27383 are all
ints, which store the same number of “raw data” bytes internally (typically four bytes on

Accounts with zero balances:
300 White 0.00

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run
? 2

Accounts with credit balances:
400 Stone -42.16

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run
? 3

Accounts with debit balances:
100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run
? 4
End of run.

300 White 0.00

300 Worthington 0.00

Fig. 17.7 | Credit inquiry program. (Part 4 of 4.)

670 Chapter 17 File Processing

today’s popular 32-bit machines). However, these integers become different-sized fields
when output as formatted text (character sequences). Therefore, the formatted input/out-
put model usually is not used to update records in place.

Such updating can be done awkwardly. For example, to make the preceding name
change, the records before 300 White 0.00 in a sequential file could be copied to a new
file, the updated record then written to the new file, and the records after 300 White 0.00

copied to the new file. This requires processing every record in the file to update one
record. If many records are being updated in one pass of the file, though, this technique
can be acceptable.

17.6 Random-Access Files
So far, we’ve seen how to create sequential files and search them to locate information. Se-
quential files are inappropriate for instant-access applications, in which a particular record
must be located immediately. Common instant-access applications are airline reservation
systems, banking systems, point-of-sale systems, automated teller machines and other
kinds of transaction-processing systems that require rapid access to specific data. A bank
might have hundreds of thousands (or even millions) of other customers, yet, when a cus-
tomer uses an automated teller machine, the program checks that customer’s account in a
few seconds or less for sufficient funds. This kind of instant access is made possible with
random-access files. Individual records of a random-access file can be accessed directly
(and quickly) without having to search other records.

As we’ve said, C++ does not impose structure on a file. So the application that wants
to use random-access files must create them. A variety of techniques can be used. Perhaps
the easiest method is to require that all records in a file be of the same fixed length. Using
same-size, fixed-length records makes it easy for a program to calculate (as a function of
the record size and the record key) the exact location of any record relative to the begin-
ning of the file. We’ll soon see how this facilitates immediate access to specific records,
even in large files.

Figure 17.8 illustrates C++’s view of a random-access file composed of fixed-length
records (each record, in this case, is 100 bytes long). A random-access file is like a railroad
train with many same-size cars—some empty and some with contents.

Data can be inserted into a random-access file without destroying other data in the file.
Data stored previously also can be updated or deleted without rewriting the entire file. In the

Fig. 17.8 | C++ view of a random-access file.

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

byte
offsets

0 100 200 300 400 500

17.7 Creating a Random-Access File 671

following sections, we explain how to create a random-access file, enter data into the file,
read the data both sequentially and randomly, update the data and delete data that is no
longer needed.

17.7 Creating a Random-Access File
The ostream member function write outputs a fixed number of bytes, beginning at a spe-
cific location in memory, to the specified stream. When the stream is associated with a file,
function write writes the data at the location in the file specified by the put file-position point-
er. The istream member function read inputs a fixed number of bytes from the specified
stream to an area in memory beginning at a specified address. If the stream is associated
with a file, function read inputs bytes at the location in the file specified by the “get” file-
position pointer.

Writing Bytes with ostream Member Function write
When writing the integer number to a file, instead of using the statement

which for a four-byte integer could print as few digits as one or as many as 11 (10 digits
plus a sign, each requiring a single byte of storage), we can use the statement

which always writes the binary version of the integer number’s four bytes (on a machine
with four-byte integers). Function write treats its first argument as a group of bytes by
viewing the object in memory as a const char *, which is a pointer to a byte. Starting from
that location, function write outputs the number of bytes specified by its second argu-
ment—an integer of type size_t. As we’ll see, istream function read can subsequently
be used to read the four bytes back into integer variable number.

Converting Between Pointer Types with the reinterpret_cast Operator
Unfortunately, most pointers that we pass to function write as the first argument are not
of type const char *. To output objects of other types, we must convert the pointers to
those objects to type const char *; otherwise, the compiler will not compile calls to func-
tion write. C++ provides the reinterpret_cast operator for cases like this in which a
pointer of one type must be cast to an unrelated pointer type. Without a
reinterpret_cast, the write statement that outputs the integer number will not compile
because the compiler does not allow a pointer of type int * (the type returned by the ex-
pression &number) to be passed to a function that expects an argument of type
const char *—as far as the compiler is concerned, these types are inconsistent.

A reinterpret_cast is performed at compile time and does not change the value of
the object to which its operand points. Instead, it requests that the compiler reinterpret
the operand as the target type (specified in the angle brackets following the keyword
reinterpret_cast). In Fig. 17.11, we use reinterpret_cast to convert a ClientData

pointer to a const char *, which reinterprets a ClientData object as bytes to be output to
a file. Random-access file-processing programs rarely write a single field to a file. Typically,
they write one object of a class at a time, as we show in the following examples.

outFile << number;

outFile.write(reinterpret_cast< const char * >(&number),
sizeof(number));

672 Chapter 17 File Processing

Credit Processing Program
Consider the following problem statement:

Create a credit-processing program capable of storing at most 100 fixed-length records
for a company that can have up to 100 customers. Each record should consist of an
account number that acts as the record key, a last name, a first name and a balance.
The program should be able to update an account, insert a new account, delete an
account and insert all the account records into a formatted text file for printing.

The next several sections introduce the techniques for creating this credit-processing pro-
gram. Figure 17.11 illustrates opening a random-access file, defining the record format us-
ing an object of class ClientData (Figs. 17.9–17.10) and writing data to the disk in binary
format. This program initializes all 100 records of the file credit.dat with empty objects,
using function write. Each empty object contains 0 for the account number, the null
string (represented by empty quotation marks) for the last and first name and 0.0 for the
balance. Each record is initialized with the amount of empty space in which the account
data will be stored.

Error-Prevention Tip 17.1
It’s easy to use reinterpret_cast to perform dangerous manipulations that could lead to
serious execution-time errors.

Portability Tip 17.1
Using reinterpret_cast is compiler dependent and can cause programs to behave dif-
ferently on different platforms. The reinterpret_cast operator should not be used unless
absolutely necessary.

Portability Tip 17.2
A program that reads unformatted data (written by write) must be compiled and execut-
ed on a system compatible with the program that wrote the data, because different systems
may represent internal data differently.

1 // Fig. 17.9: ClientData.h
2 // Class ClientData definition used in Fig. 17.11–Fig. 17.14.
3 #ifndef CLIENTDATA_H
4 #define CLIENTDATA_H
5
6 #include <string>
7 using namespace std;
8
9 class ClientData

10 {
11 public:
12 // default ClientData constructor
13 ClientData(int = 0, string = "", string = "", double = 0.0);
14
15 // accessor functions for accountNumber
16 void setAccountNumber(int);

Fig. 17.9 | ClientData class header. (Part 1 of 2.)

17.7 Creating a Random-Access File 673

17 int getAccountNumber() const;
18
19 // accessor functions for lastName
20 void setLastName(string);
21 string getLastName() const;
22
23 // accessor functions for firstName
24 void setFirstName(string);
25 string getFirstName() const;
26
27 // accessor functions for balance
28 void setBalance(double);
29 double getBalance() const;
30 private:
31 int accountNumber;
32 char lastName[15];
33 char firstName[10];
34 double balance;
35 }; // end class ClientData
36
37 #endif

1 // Fig. 17.10: ClientData.cpp
2 // Class ClientData stores customer's credit information.
3 #include <string>
4 #include "ClientData.h"
5 using namespace std;
6
7 // default ClientData constructor
8 ClientData::ClientData(int accountNumberValue,
9 string lastNameValue, string firstNameValue, double balanceValue)

10 {
11 setAccountNumber(accountNumberValue);
12 setLastName(lastNameValue);
13 setFirstName(firstNameValue);
14 setBalance(balanceValue);
15 } // end ClientData constructor
16
17 // get account-number value
18 int ClientData::getAccountNumber() const
19 {
20 return accountNumber;
21 } // end function getAccountNumber
22
23 // set account-number value
24 void ClientData::setAccountNumber(int accountNumberValue)
25 {
26 accountNumber = accountNumberValue; // should validate
27 } // end function setAccountNumber

Fig. 17.10 | ClientData class represents a customer’s credit information. (Part 1 of 2.)

Fig. 17.9 | ClientData class header. (Part 2 of 2.)

674 Chapter 17 File Processing

Objects of class string do not have uniform size, rather they use dynamically allocated
memory to accommodate strings of various lengths. We must maintain fixed-length
records, so class ClientData stores the client’s first and last name in fixed-length char

arrays (declared in Fig. 17.9, lines 32–33). Member functions setLastName (Fig. 17.10,
lines 36–43) and setFirstName (Fig. 17.10, lines 52–59) each copy the characters of a
string object into the corresponding char array. Consider function setLastName. Line

28
29 // get last-name value
30 string ClientData::getLastName() const
31 {
32 return lastName;
33 } // end function getLastName
34
35 // set last-name value
36 void ClientData::setLastName(string lastNameString)
37 {
38 // copy at most 15 characters from string to lastName
39
40 length = (length < 15 ? length : 14);
41
42 lastName[length] = '\0'; // append null character to lastName
43 } // end function setLastName
44
45 // get first-name value
46 string ClientData::getFirstName() const
47 {
48 return firstName;
49 } // end function getFirstName
50
51 // set first-name value
52 void ClientData::setFirstName(string firstNameString)
53 {
54 // copy at most 10 characters from string to firstName
55
56 length = (length < 10 ? length : 9);
57
58 firstName[length] = '\0'; // append null character to firstName
59 } // end function setFirstName
60
61 // get balance value
62 double ClientData::getBalance() const
63 {
64 return balance;
65 } // end function getBalance
66
67 // set balance value
68 void ClientData::setBalance(double balanceValue)
69 {
70 balance = balanceValue;
71 } // end function setBalance

Fig. 17.10 | ClientData class represents a customer’s credit information. (Part 2 of 2.)

int length = lastNameString.size();

lastNameString.copy(lastName, length);

int length = firstNameString.size();

firstNameString.copy(firstName, length);

17.8 Writing Data Randomly to a Random-Access File 675

39 invokes string member function size to get the length of lastNameString. Line 40
ensures that length is fewer than 15 characters, then line 41 copies length characters from
lastNameString into the char array lastName using string member function copy.
Member function setFirstName performs the same steps for the first name.

In Fig. 17.11, line 11 creates an ofstream object for the file credit.dat. The second
argument to the constructor—ios::out | ios::binary—indicates that we are opening
the file for output in binary mode, which is required if we are to write fixed-length records.
Lines 24–25 cause the blankClient to be written to the credit.dat file associated with
ofstream object outCredit. Remember that operator sizeof returns the size in bytes of
the object contained in parentheses (see Chapter 8). The first argument to function write

at line 24 must be of type const char *. However, the data type of &blankClient is
ClientData *. To convert &blankClient to const char *, line 24 uses the cast operator
reinterpret_cast, so the call to write compiles without issuing a compilation error.

17.8 Writing Data Randomly to a Random-Access File
Figure 17.12 writes data to the file credit.dat and uses the combination of fstream func-
tions seekp and write to store data at exact locations in the file. Function seekp sets the
put file-position pointer to a specific position in the file, then function write outputs the
data. Line 6 includes the header ClientData.h defined in Fig. 17.9, so the program can
use ClientData objects.

1 // Fig. 17.11: Fig17_11.cpp
2 // Creating a randomly accessed file.
3 #include <iostream>
4
5 #include <cstdlib>
6 #include "ClientData.h" // ClientData class definition
7 using namespace std;
8
9 int main()

10 {
11
12
13 // exit program if ofstream could not open file
14 if ()
15 {
16 cerr << "File could not be opened." << endl;
17 exit(1);
18 } // end if
19
20 ClientData blankClient; // constructor zeros out each data member
21
22 // output 100 blank records to file
23 for (int i = 0; i < 100; ++i)
24
25
26 } // end main

Fig. 17.11 | Creating a random-access file with 100 blank records sequentially.

#include <fstream>

ofstream outCredit("credit.dat", ios::out | ios::binary);

!outCredit

outCredit.write(reinterpret_cast< const char * >(&blankClient),
sizeof(ClientData));

676 Chapter 17 File Processing

1 // Fig. 17.12: Fig17_12.cpp
2 // Writing to a random-access file.
3 #include <iostream>
4 #include <fstream>
5 #include <cstdlib>
6 #include "ClientData.h" // ClientData class definition
7 using namespace std;
8
9 int main()

10 {
11 int accountNumber;
12 string lastName;
13 string firstName;
14 double balance;
15
16 fstream outCredit("credit.dat", ios::in | ios::out | ios::binary);
17
18 // exit program if fstream cannot open file
19 if ()
20 {
21 cerr << "File could not be opened." << endl;
22 exit(1);
23 } // end if
24
25 cout << "Enter account number (1 to 100, 0 to end input)\n? ";
26
27 // require user to specify account number
28 ClientData client;
29 cin >> accountNumber;
30
31 // user enters information, which is copied into file
32 while (accountNumber > 0 && accountNumber <= 100)
33 {
34 // user enters last name, first name and balance
35 cout << "Enter lastname, firstname, balance\n? ";
36 cin >> lastName;
37 cin >> firstName;
38 cin >> balance;
39
40 // set record accountNumber, lastName, firstName and balance values
41 client.setAccountNumber(accountNumber);
42 client.setLastName(lastName);
43 client.setFirstName(firstName);
44 client.setBalance(balance);
45
46
47
48
49
50
51
52
53

Fig. 17.12 | Writing to a random-access file. (Part 1 of 2.)

!outCredit

// seek position in file of user-specified record
outCredit.seekp((client.getAccountNumber() - 1) *

sizeof(ClientData));

// write user-specified information in file
outCredit.write(reinterpret_cast< const char * >(&client),

sizeof(ClientData));

17.9 Reading from a Random-Access File Sequentially 677

Lines 47–48 position the put file-position pointer for object outCredit to the byte
location calculated by

Because the account number is between 1 and 100, 1 is subtracted from the account num-
ber when calculating the byte location of the record. Thus, for record 1, the file-position
pointer is set to byte 0 of the file. Line 16 uses the fstream object outCredit to open the
existing credit.dat file. The file is opened for input and output in binary mode by com-
bining the file-open modes ios::in, ios::out and ios::binary. Multiple file-open
modes are combined by separating each open mode from the next with the bitwise inclu-
sive OR operator (|). Opening the existing credit.dat file in this manner ensures that
this program can manipulate the records written to the file by the program of Fig. 17.11,
rather than creating the file from scratch. Chapter 21, Bits, Characters, C Strings and
structs, discusses the bitwise inclusive OR operator in detail.

17.9 Reading from a Random-Access File Sequentially
In the previous sections, we created a random-access file and wrote data to that file. In this
section, we develop a program that reads the file sequentially and prints only those records
that contain data. These programs produce an additional benefit. See if you can determine
what it is; we’ll reveal it at the end of this section.

54 // enable user to enter another account
55 cout << "Enter account number\n? ";
56 cin >> accountNumber;
57 } // end while
58 } // end main

Enter account number (1 to 100, 0 to end input)
? 37
Enter lastname, firstname, balance
? Barker Doug 0.00
Enter account number
? 29
Enter lastname, firstname, balance
? Brown Nancy -24.54
Enter account number
? 96
Enter lastname, firstname, balance
? Stone Sam 34.98
Enter account number
? 88
Enter lastname, firstname, balance
? Smith Dave 258.34
Enter account number
? 33
Enter lastname, firstname, balance
? Dunn Stacey 314.33
Enter account number
? 0

(client.getAccountNumber() - 1) * sizeof(ClientData)

Fig. 17.12 | Writing to a random-access file. (Part 2 of 2.)

678 Chapter 17 File Processing

The istream function read inputs a specified number of bytes from the current posi-
tion in the specified stream into an object. For example, lines 30–31 from Fig. 17.13 read
the number of bytes specified by sizeof(ClientData) from the file associated with
ifstream object inCredit and store the data in the client record. Function read requires
a first argument of type char *. Since &client is of type ClientData *, &client must be
cast to char * using the cast operator reinterpret_cast.

1 // Fig. 17.13: Fig17_13.cpp
2 // Reading a random-access file sequentially.
3 #include <iostream>
4 #include <iomanip>
5
6 #include <cstdlib>
7 #include "ClientData.h" // ClientData class definition
8 using namespace std;
9

10 void outputLine(ostream&, const ClientData &); // prototype
11
12 int main()
13 {
14
15
16 // exit program if ifstream cannot open file
17 if ()
18 {
19 cerr << "File could not be opened." << endl;
20 exit(1);
21 } // end if
22
23 cout << left << setw(10) << "Account" << setw(16)
24 << "Last Name" << setw(11) << "First Name" << left
25 << setw(10) << right << "Balance" << endl;
26
27 ClientData client; // create record
28
29
30
31
32
33 // read all records from file
34 while ()
35 {
36 // display record
37 if (client.getAccountNumber() != 0)
38 outputLine(cout, client);
39
40
41
42
43 } // end while
44 } // end main

Fig. 17.13 | Reading a random-access file sequentially. (Part 1 of 2.)

#include <fstream>

ifstream inCredit("credit.dat", ios::in | ios::binary);

!inCredit

// read first record from file
inCredit.read(reinterpret_cast< char * >(&client),

sizeof(ClientData));

inCredit && !inCredit.eof()

// read next from file
inCredit.read(reinterpret_cast< char * >(&client),

sizeof(ClientData));

17.10 Case Study: A Transaction-Processing Program 679

Figure 17.13 reads every record in the credit.dat file sequentially, checks each record
to determine whether it contains data, and displays formatted outputs for records containing
data. The condition in line 34 uses the ios member function eof to determine when the end
of file is reached and causes execution of the while statement to terminate. Also, if an error
occurs when reading from the file, the loop terminates, because inCredit evaluates to false.
The data input from the file is output by function outputLine (lines 47–54), which takes
two arguments—an ostream object and a clientData structure to be output. The ostream
parameter type is interesting, because any ostream object (such as cout) or any object of a
derived class of ostream (such as an object of type ofstream) can be supplied as the argu-
ment. This means that the same function can be used, for example, to perform output to the
standard-output stream and to a file stream without writing separate functions.

What about that additional benefit we promised? If you examine the output window,
you’ll notice that the records are listed in sorted order (by account number). This is a con-
sequence of how we stored these records in the file, using direct-access techniques. Com-
pared to the insertion sort we used in Chapter 7, sorting using direct-access techniques is
relatively fast. The speed is achieved by making the file large enough to hold every possible record
that might be created. This, of course, means that the file could be occupied sparsely most
of the time, resulting in a waste of storage. This is an example of the space-time trade-off:
By using large amounts of space, we can develop a much faster sorting algorithm. Fortunately,
the continuous reduction in price of storage units has made this less of an issue.

17.10 Case Study: A Transaction-Processing Program
We now present a substantial transaction-processing program (Fig. 17.14) using a ran-
dom-access file to achieve instant-access processing. The program maintains a bank’s ac-
count information. It updates existing accounts, adds new accounts, deletes accounts and
stores a formatted listing of all current accounts in a text file. We assume that the program
of Fig. 17.11 has been executed to create the file credit.dat and that the program of
Fig. 17.12 has been executed to insert the initial data.

45
46 // display single record
47 void outputLine(ostream &output, const ClientData &record)
48 {
49 output << left << setw(10) << record.getAccountNumber()
50 << setw(16) << record.getLastName()
51 << setw(11) << record.getFirstName()
52 << setw(10) << setprecision(2) << right << fixed
53 << showpoint << record.getBalance() << endl;
54 } // end function outputLine

Account Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Fig. 17.13 | Reading a random-access file sequentially. (Part 2 of 2.)

680 Chapter 17 File Processing

1 // Fig. 17.14: Fig17_14.cpp
2 // This program reads a random-access file sequentially, updates
3 // data previously written to the file, creates data to be placed
4 // in the file, and deletes data previously stored in the file.
5 #include <iostream>
6
7 #include <iomanip>
8 #include <cstdlib>
9 #include "ClientData.h" // ClientData class definition

10 using namespace std;
11
12 int enterChoice();
13 void createTextFile(fstream&);
14 void updateRecord(fstream&);
15 void newRecord(fstream&);
16 void deleteRecord(fstream&);
17 void outputLine(ostream&, const ClientData &);
18 int getAccount(const char * const);
19
20 enum Choices { PRINT = 1, UPDATE, NEW, DELETE, END };
21
22 int main()
23 {
24
25
26
27 // exit program if fstream cannot open file
28 if ()
29 {
30 cerr << "File could not be opened." << endl;
31 exit (1);
32 } // end if
33
34 int choice; // store user choice
35
36 // enable user to specify action
37 while ((choice = enterChoice()) != END)
38 {
39 switch (choice)
40 {
41 case PRINT: // create text file from record file
42 createTextFile(inOutCredit);
43 break;
44 case UPDATE: // update record
45 updateRecord(inOutCredit);
46 break;
47 case NEW: // create record
48 newRecord(inOutCredit);
49 break;
50 case DELETE: // delete existing record
51 deleteRecord(inOutCredit);
52 break;

Fig. 17.14 | Bank account program. (Part 1 of 5.)

#include <fstream>

// open file for reading and writing
fstream inOutCredit("credit.dat", ios::in | ios::out | ios::binary);

!inOutCredit

17.10 Case Study: A Transaction-Processing Program 681

53 default: // display error if user does not select valid choice
54 cerr << "Incorrect choice" << endl;
55 break;
56 } // end switch
57
58 inOutCredit.clear(); // reset end-of-file indicator
59 } // end while
60 } // end main
61
62 // enable user to input menu choice
63 int enterChoice()
64 {
65 // display available options
66 cout << "\nEnter your choice" << endl
67 << "1 - store a formatted text file of accounts" << endl
68 << " called \"print.txt\" for printing" << endl
69 << "2 - update an account" << endl
70 << "3 - add a new account" << endl
71 << "4 - delete an account" << endl
72 << "5 - end program\n? ";
73
74 int menuChoice;
75 cin >> menuChoice; // input menu selection from user
76 return menuChoice;
77 } // end function enterChoice
78
79 // create formatted text file for printing
80 void createTextFile()
81 {
82
83
84
85 // exit program if ofstream cannot create file
86 if ()
87 {
88 cerr << "File could not be created." << endl;
89 exit(1);
90 } // end if
91
92
93
94
95
96
97
98
99 // read first record from record file
100 ClientData client;
101
102
103

Fig. 17.14 | Bank account program. (Part 2 of 5.)

fstream &readFromFile

// create text file
ofstream outPrintFile("print.txt", ios::out);

!outPrintFile

outPrintFile << left << setw(10) << "Account" << setw(16)
<< "Last Name" << setw(11) << "First Name" << right
<< setw(10) << "Balance" << endl;

// set file-position pointer to beginning of readFromFile
readFromFile.seekg(0);

readFromFile.read(reinterpret_cast< char * >(&client),
sizeof(ClientData));

682 Chapter 17 File Processing

104 // copy all records from record file into text file
105 while ()
106 {
107 // write single record to text file
108 if (client.getAccountNumber() != 0) // skip empty records
109 outputLine(outPrintFile, client);
110
111
112
113
114 } // end while
115 } // end function createTextFile
116
117 // update balance in record
118 void updateRecord(fstream &updateFile)
119 {
120 // obtain number of account to update
121 int accountNumber = getAccount("Enter account to update");
122
123
124
125
126 // read first record from file
127 ClientData client;
128
129
130
131 // update record
132 if (client.getAccountNumber() != 0)
133 {
134 outputLine(cout, client); // display the record
135
136 // request user to specify transaction
137 cout << "\nEnter charge (+) or payment (-): ";
138 double transaction; // charge or payment
139 cin >> transaction;
140
141 // update record balance
142 double oldBalance = client.getBalance();
143 client.setBalance(oldBalance + transaction);
144 outputLine(cout, client); // display the record
145
146
147
148
149
150
151
152 } // end if
153 else // display error if account does not exist
154 cerr << "Account #" << accountNumber
155 << " has no information." << endl;
156 } // end function updateRecord

Fig. 17.14 | Bank account program. (Part 3 of 5.)

!readFromFile.eof()

// read next record from record file
readFromFile.read(reinterpret_cast< char * >(&client),

sizeof(ClientData));

// move file-position pointer to correct record in file
updateFile.seekg((accountNumber - 1) * sizeof(ClientData));

updateFile.read(reinterpret_cast< char * >(&client),
sizeof(ClientData));

// move file-position pointer to correct record in file
updateFile.seekp((accountNumber - 1) * sizeof(ClientData));

// write updated record over old record in file
updateFile.write(reinterpret_cast< const char * >(&client),

sizeof(ClientData));

17.10 Case Study: A Transaction-Processing Program 683

157
158 // create and insert record
159 void newRecord(fstream &insertInFile)
160 {
161 // obtain number of account to create
162 int accountNumber = getAccount("Enter new account number");
163
164 // move file-position pointer to correct record in file
165 insertInFile.seekg((accountNumber - 1) * sizeof(ClientData));
166
167 // read record from file
168 ClientData client;
169
170
171
172 // create record, if record does not previously exist
173 if (client.getAccountNumber() == 0)
174 {
175 string lastName;
176 string firstName;
177 double balance;
178
179 // user enters last name, first name and balance
180 cout << "Enter lastname, firstname, balance\n? ";
181 cin >> setw(15) >> lastName;
182 cin >> setw(10) >> firstName;
183 cin >> balance;
184
185 // use values to populate account values
186 client.setLastName(lastName);
187 client.setFirstName(firstName);
188 client.setBalance(balance);
189 client.setAccountNumber(accountNumber);
190
191
192
193
194
195
196
197 } // end if
198 else // display error if account already exists
199 cerr << "Account #" << accountNumber
200 << " already contains information." << endl;
201 } // end function newRecord
202
203 // delete an existing record
204 void deleteRecord(fstream &deleteFromFile)
205 {
206 // obtain number of account to delete
207 int accountNumber = getAccount("Enter account to delete");
208

Fig. 17.14 | Bank account program. (Part 4 of 5.)

insertInFile.read(reinterpret_cast< char * >(&client),
sizeof(ClientData));

// move file-position pointer to correct record in file
insertInFile.seekp((accountNumber - 1) * sizeof(ClientData));

// insert record in file
insertInFile.write(reinterpret_cast< const char * >(&client),

sizeof(ClientData));

684 Chapter 17 File Processing

209
210
211
212 // read record from file
213 ClientData client;
214
215
216
217 // delete record, if record exists in file
218 if (client.getAccountNumber() != 0)
219 {
220 ClientData blankClient; // create blank record
221
222
223
224
225
226
227
228
229
230
231 cout << "Account #" << accountNumber << " deleted.\n";
232 } // end if
233 else // display error if record does not exist
234 cerr << "Account #" << accountNumber << " is empty.\n";
235 } // end deleteRecord
236
237 // display single record
238 void outputLine(ostream &output, const ClientData &record)
239 {
240 output << left << setw(10) << record.getAccountNumber()
241 << setw(16) << record.getLastName()
242 << setw(11) << record.getFirstName()
243 << setw(10) << setprecision(2) << right << fixed
244 << showpoint << record.getBalance() << endl;
245 } // end function outputLine
246
247 // obtain account-number value from user
248 int getAccount(const char * const prompt)
249 {
250 int accountNumber;
251
252 // obtain account-number value
253 do
254 {
255 cout << prompt << " (1 - 100): ";
256 cin >> accountNumber;
257 } while (accountNumber < 1 || accountNumber > 100);
258
259 return accountNumber;
260 } // end function getAccount

Fig. 17.14 | Bank account program. (Part 5 of 5.)

// move file-position pointer to correct record in file
deleteFromFile.seekg((accountNumber - 1) * sizeof(ClientData));

deleteFromFile.read(reinterpret_cast< char * >(&client),
sizeof(ClientData));

// move file-position pointer to correct record in file
deleteFromFile.seekp((accountNumber - 1) *

sizeof(ClientData));

// replace existing record with blank record
deleteFromFile.write(

reinterpret_cast< const char * >(&blankClient),
sizeof(ClientData));

17.10 Case Study: A Transaction-Processing Program 685

The program has five options (Option 5 is for terminating the program). Option 1 calls
function createTextFile to store a formatted list of all the account information in a text file
called print.txt that may be printed. Function createTextFile (lines 80–115) takes an
fstream object as an argument to be used to input data from the credit.dat file. Function
createTextFile invokes istream member function read (lines 101–102) and uses the
sequential-file-access techniques of Fig. 17.13 to input data from credit.dat. Function
outputLine, discussed in Section 17.9, outputs the data to file print.txt. Note that crea-
teTextFile uses istream member function seekg (line 97) to ensure that the file-position
pointer is at the beginning of the file. After choosing Option 1, the print.txt file contains

Option 2 calls updateRecord (lines 118–156) to update an account. This function
updates only an existing record, so the function first determines whether the specified
record is empty. Lines 128–129 read data into object client, using istream member
function read. Then line 132 compares the value returned by getAccountNumber of the
client object to zero to determine whether the record contains information. If this value
is zero, lines 154–155 print an error message indicating that the record is empty. If the
record contains information, line 134 displays the record, using function outputLine, line
139 inputs the transaction amount and lines 142–151 calculate the new balance and
rewrite the record to the file. A typical output for Option 2 is

Option 3 calls function newRecord (lines 159–201) to add a new account to the file.
If the user enters an account number for an existing account, newRecord displays an error
message indicating that the account exists (lines 199–200). This function adds a new
account in the same manner as the program of Fig. 17.11. A typical output for Option 3 is

Option 4 calls function deleteRecord (lines 204–235) to delete a record from the
file. Line 207 prompts the user to enter the account number. Only an existing record may
be deleted, so, if the specified account is empty, line 234 displays an error message. If the
account exists, lines 227–229 reinitialize that account by copying an empty record (blank-

Account Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Enter account to update (1 - 100): 37
37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99
37 Barker Doug 87.99

Enter new account number (1 - 100): 22
Enter lastname, firstname, balance
? Johnston Sarah 247.45

686 Chapter 17 File Processing

Client) to the file. Line 231 displays a message to inform the user that the record has been
deleted. A typical output for Option 4 is

Line 25 opens the credit.dat file by creating an fstream object for both reading and
writing, using modes ios::in and ios::out “or-ed” together.

17.11 Object Serialization
This chapter and Chapter 15 introduced the object-oriented style of input/output. How-
ever, our examples concentrated on I/O of fundamental types rather than objects of user-
defined types. In Chapter 11, we showed how to input and output objects using operator
overloading. We accomplished object input by overloading the stream extraction operator,
>>, for the appropriate istream. We accomplished object output by overloading the
stream insertion operator, <<, for the appropriate ostream. In both cases, only an object’s
data members were input or output, and, in each case, they were in a format meaningful
only for objects of that particular type. An object’s member functions are not input or out-
put with the object’s data; rather, one copy of the class’s member functions remains available
internally and is shared by all objects of the class.

When object data members are output to a disk file, we lose the object’s type infor-
mation. We store only the values of the object’s attributes, not type information, on the
disk. If the program that reads this data knows the object type to which the data corre-
sponds, the program can read the data into an object of that type as we did in our random-
access file examples.

An interesting problem occurs when we store objects of different types in the same
file. How can we distinguish them (or their collections of data members) as we read them
into a program? The problem is that objects typically do not have type fields (we discussed
this issue in Chapter 13).

One approach used by several programming languages is called object serialization.
A so-called serialized object is an object represented as a sequence of bytes that includes
the object’s data as well as information about the object’s type and the types of data stored
in the object. After a serialized object has been written to a file, it can be read from the file
and deserialized—that is, the type information and bytes that represent the object and its
data can be used to recreate the object in memory. C++ does not provide a built-in serial-
ization mechanism; however, there are third party and open source C++ libraries that sup-
port object serialization. The open source Boost C++ Libraries (www.boost.org) provide
support for serializing objects in text, binary and extensible markup language (XML) for-
mats (www.boost.org/libs/serialization/doc/index.html). We overview the Boost
C++ Libraries in Chapter 23.

17.12 Wrap-Up
In this chapter, we presented various file-processing techniques to manipulate persistent
data. You were introduced to the differences between character-based and byte-based

Enter account to delete (1 - 100): 29
Account #29 deleted.

www.boost.org
www.boost.org/libs/serialization/doc/index.html

Summary 687

streams, and to several file-processing class templates in header <fstream>. Then, you
learned how to use sequential file processing to manipulate records stored in order, by a
record-key field. You also learned how to use random-access files to “instantly” retrieve
and manipulate fixed-length records. We presented a substantial transaction-processing
program using a random-access file to achieve “instant-access” processing. Finally, we dis-
cussed the basic concepts of object serialization. In the next chapter, we discuss typical
string-manipulation operations provided by class template basic_string. We also intro-
duce string stream-processing capabilities that allow strings to be input from and output
to memory.

Summary
Section 17.1 Introduction
• Files are used for data persistence (p. 659)—permanent retention of data.

• Computers store files on secondary storage devices (p. 659), such as hard disks, CDs, DVDs,
flash memory and tapes.

Section 17.2 Files and Streams
• C++ views each file simply as a sequence of bytes.

• Each file ends either with an end-of-file marker (p. 659) or at a specific byte number recorded in
a system-maintained, administrative data structure.

• When a file is opened, an object is created, and a stream is associated with the object.

• To perform file processing in C++, headers <iostream> and <fstream> must be included.

• Header <fstream> (p. 659) includes the definitions for the stream class templates basic_ifstream
(for file input), basic_ofstream (for file output) and basic_fstream (for file input and output).

• Each class template has a predefined template specialization that enables char I/O. The
<fstream> library provides typedef aliases for these template specializations. The typedef

ifstream represents a specialization of basic_ifstream that enables char input from a file. The
typedef ofstream represents a specialization of basic_ofstream that enables char output to files.
The typedef fstream (p. 659) represents a specialization of basic_fstream that enables char in-
put from, and output to, files.

• The file-processing templates derive from class templates basic_istream, basic_ostream and
basic_iostream, respectively. Thus, all member functions, operators and manipulators that be-
long to these templates also can be applied to file streams.

Section 17.3 Creating a Sequential File
• C++ imposes no structure on a file; you must structure files to meet the application’s requirements.

• A file can be opened for output when an ofstream object is created. Two arguments are passed
to the object’s constructor—the filename (p. 661) and the file-open mode (p. 661).

• For an ofstream (p. 661) object, the file-open mode can be either ios::out (p. 661) to output
data to a file or ios::app (p. 661) to append data to the end of a file. Existing files opened with
mode ios::out are truncated (p. 661). If the specified file does not exist, the ofstream object
creates the file using that filename.

• By default, ofstream objects are opened for output.

688 Chapter 17 File Processing

• An ofstream object can be created without opening a specific file—a file can be attached to the
object later with member function open (p. 662).

• The ios member function operator! determines whether a stream was opened correctly. This
operator can be used in a condition that returns a true value if either the failbit or the badbit

is set for the stream on the open operation.

• The ios member function operator void * converts a stream to a pointer, so it can be compared
to 0. When a pointer value is used as a condition, a null pointer represents false and a non-null
pointer represents true. If the failbit or badbit has been set for a stream, 0 (false) is returned.

• Entering the end-of-file indicator sets the failbit for cin.

• The operator void * function can be used to test an input object for end-of-file instead of calling
the eof member function explicitly on the input object.

• When a stream object’s destructor is called, the corresponding stream is closed. You also can close
the stream object explicitly, using the stream’s close member function.

Section 17.4 Reading Data from a Sequential File
• Files store data so it may be retrieved for processing when needed.

• Creating an ifstream object opens a file for input. The ifstream constructor can receive the file-
name and the file open mode as arguments.

• Open a file for input only if the file’s contents should not be modified.

• Objects of class ifstream are opened for input by default.

• An ifstream object can be created without opening a specific file; a file can be attached to it later.

• To retrieve data sequentially from a file, programs normally start reading from the beginning of
the file and read all the data consecutively until the desired data is found.

• The member functions for repositioning the file-position pointer (p. 665) are seekg (“seek get”;
p. 665) for istream and seekp (“seek put”; p. 665) for ostream. Each istream has a “get pointer,”
which indicates the byte number in the file from which the next input is to occur, and each os-

tream has a “put pointer,” which indicates the byte number in the file at which the next output
should be placed.

• The argument to seekg (p. 665) is a long integer. A second argument can be specified to indicate
the seek direction (p. 665), which can be ios::beg (the default; p. 665) for positioning relative
to the beginning of a stream, ios::cur (p. 665) for positioning relative to the current position
in a stream or ios::end (p. 666) for positioning relative to the end of a stream.

• The file-position pointer (p. 665) is an integer value that specifies the location in the file as a num-
ber of bytes from the file’s starting location (i.e., the offset (p. 666) from the beginning of the file).

• Member functions tellg (p. 666) and tellp (p. 666) are provided to return the current locations
of the “get” and “put” pointers, respectively.

Section 17.5 Updating Sequential Files
• Data that is formatted and written to a sequential file cannot be modified without the risk of de-

stroying other data in the file. The problem is that records can vary in size.

Section 17.6 Random-Access Files
• Sequential files are inappropriate for instant-access applications (p. 670), in which a particular

record must be located immediately.

• Instant access is made possible with random-access files (p. 670). Individual records of a random-
access file can be accessed directly (and quickly) without having to search other records.

Summary 689

• The easiest method to format files for random access is to require that all records in a file be of
the same fixed length. Using same-size, fixed-length records makes it easy for a program to cal-
culate (as a function of the record size and the record key) the exact location of any record relative
to the beginning of the file.

• Data can be inserted into a random-access file without destroying other data in the file.

• Data stored previously can be updated or deleted without rewriting the entire file.

Section 17.7 Creating a Random-Access File
• The ostream member function write outputs a fixed number of bytes, beginning at a specific

location in memory, to the specified stream. Function write writes the data at the location in the
file specified by the “put” file-position pointer.

• The istream member function read (p. 671) inputs a fixed number of bytes from the specified
stream to an area in memory beginning at a specified address. If the stream is associated with a file,
function read inputs bytes at the location in the file specified by the “get” file-position pointer.

• Function write treats its first argument as a group of bytes by viewing the object in memory as
a const char *, which is a pointer to a byte (remember that a char is one byte). Starting from
that location, function write outputs the number of bytes specified by its second argument. The
istream function read can subsequently be used to read the bytes back into memory.

• The reinterpret_cast operator (p. 671) converts a pointer of one type to an unrelated pointer
type.

• A reinterpret_cast is performed at compile time and does not change the value of the object
to which its operand points.

• A program that reads unformatted data must be compiled and executed on a system compatible
with the program that wrote the data—different systems may represent internal data differently.

• Objects of class string do not have uniform size, rather they use dynamically allocated memory
to accommodate strings of various lengths.

• The string member function data returns an array containing the characters of the string. This
array is not guaranteed to be null terminated.

Section 17.8 Writing Data Randomly to a Random-Access File
• Multiple file-open modes are combined by separating each open mode from the next with the

bitwise inclusive OR operator (|).

• The string member function size (p. 675) gets the length of a string.

• The file open mode ios::binary (p. 675) indicates that a file should be opened in binary mode.

Section 17.9 Reading from a Random-Access File Sequentially
• The istream function read inputs a specified number of bytes from the current position in the

specified stream into an object.

• A function that receives an ostream parameter can receive any ostream object (such as cout) or
any object of a derived class of ostream (such as an object of type ofstream) as an argument. This
means that the same function can be used, for example, to perform output to the standard-out-
put stream and to a file stream without writing separate functions.

Section 17.11 Object Serialization
• When object data members are output to a disk file, we lose the object’s type information. We

store only the values of the object’s attributes, not type information, on the disk. If the program
that reads this data knows the object type to which the data corresponds, the program can read
the data into an object of that type.

690 Chapter 17 File Processing

• A so-called serialized object (p. 686) is an object represented as a sequence of bytes that includes
the object’s data as well as information about the object’s type and the types of data stored in the
object. A serialized object can be read from the file and deserialized (p. 686).

• The open source Boost Libraries provide support for serializing objects (p. 686) in text, binary
and extensible markup language (XML) formats.

Self-Review Exercises
17.1 (Fill in the Blanks) Fill in the blanks in each of the following:

a) Member function of the file streams fstream, ifstream and ofstream closes
a file.

b) The istream member function reads a character from the specified stream.
c) Member function of the file streams fstream, ifstream and ofstream opens

a file.
d) The istream member function is normally used when reading data from a file

in random-access applications.
e) Member functions and of istream and ostream set the file-position

pointer to a specific location in an input or output stream, respectively.

17.2 (True or False) State which of the following are true and which are false. If false, explain why.
a) Member function read cannot be used to read data from the input object cin.
b) You must create the cin, cout, cerr and clog objects explicitly.
c) A program must call function close explicitly to close a file associated with an ifstream,

ofstream or fstream object.
d) If the file-position pointer points to a location in a sequential file other than the begin-

ning of the file, the file must be closed and reopened to read from the beginning of the
file.

e) The ostream member function write can write to standard-output stream cout.
f) Data in sequential files always is updated without overwriting nearby data.
g) Searching all records in a random-access file to find a specific record is unnecessary.
h) Records in random-access files must be of uniform length.
i) Member functions seekp and seekg must seek relative to the beginning of a file.

17.3 Assume that each of the following statements applies to the same program.
a) Write a statement that opens file oldmast.dat for input; use an ifstream object called

inOldMaster.
b) Write a statement that opens file trans.dat for input; use an ifstream object called

inTransaction.
c) Write a statement that opens file newmast.dat for output (and creation); use ofstream

object outNewMaster.
d) Write a statement that reads a record from the file oldmast.dat. The record consists of

integer accountNumber, string name and floating-point currentBalance; use ifstream

object inOldMaster.
e) Write a statement that reads a record from the file trans.dat. The record consists of in-

teger accountNum and floating-point dollarAmount; use ifstream object inTransaction.
f) Write a statement that writes a record to the file newmast.dat. The record consists of

integer accountNum, string name, and floating-point currentBalance; use ofstream ob-
ject outNewMaster.

17.4 Find the error(s) and show how to correct it (them) in each of the following.
a) File payables.dat referred to by ofstream object outPayable has not been opened.

outPayable << account << company << amount << endl;

Answers to Self-Review Exercises 691

b) The following statement should read a record from the file payables.dat. The if-

stream object inPayable refers to this file, and istream object inReceivable refers to
the file receivables.dat.

inReceivable >> account >> company >> amount;

c) The file tools.dat should be opened to add data to the file without discarding the cur-
rent data.

ofstream outTools("tools.dat", ios::out);

Answers to Self-Review Exercises
17.1 a) close. b) get. c) open. d) read. e) seekg, seekp.

17.2 a) False. Function read can read from any input stream object derived from istream.
b) False. These four streams are created automatically for you. The <iostream> header must

be included in a file to use them. This header includes declarations for each stream object.
c) False. The files will be closed when destructors for ifstream, ofstream or fstream ob-

jects execute when the stream objects go out of scope or before program execution ter-
minates, but it’s a good programming practice to close all files explicitly with close once
they’re no longer needed.

d) False. Member function seekp or seekg can be used to reposition the “put” or “get” file-
position pointer to the beginning of the file.

e) True.
f) False. In most cases, sequential file records are not of uniform length. Therefore, it’s

possible that updating a record will cause other data to be overwritten.
g) True.
h) False. Records in a random-access file normally are of uniform length.
i) False. It’s possible to seek from the beginning of the file, from the end of the file and

from the current position in the file.

17.3 a) ifstream inOldMaster("oldmast.dat", ios::in);

b) ifstream inTransaction("trans.dat", ios::in);

c) ofstream outNewMaster("newmast.dat", ios::out);

d) inOldMaster >> accountNumber >> name >> currentBalance;

e) inTransaction >> accountNum >> dollarAmount;

f) outNewMaster << accountNum << " " << name << " " << currentBalance;

17.4 a) Error: The file payables.dat has not been opened before the attempt is made to output
data to the stream.
Correction: Use ostream function open to open payables.dat for output.

b) Error: The incorrect istream object is being used to read a record from the file named
payables.dat.
Correction: Use istream object inPayable to refer to payables.dat.

c) Error: The file’s contents are discarded because the file is opened for output (ios::out).
Correction: To add data to the file, open the file either for updating (ios::ate) or for
appending (ios::app).

Exercises
17.5 (Fill in the Blanks) Fill in the blanks in each of the following:

a) Computers store large amounts of data on secondary storage devices as .

692 Chapter 17 File Processing

b) The standard stream objects declared by header <iostream> are , ,
and .

c) ostream member function outputs a character to the specified stream.
d) ostream member function is generally used to write data to a randomly ac-

cessed file.
e) istream member function repositions the file-position pointer in a file.

17.6 (File Matching) Exercise 17.3 asked you to write a series of single statements. Actually,
these statements form the core of an important type of file-processing program, namely, a file-
matching program. In commercial data processing, it’s common to have several files in each appli-
cation system. In an accounts receivable system, for example, there is generally a master file contain-
ing detailed information about each customer, such as the customer’s name, address, telephone
number, outstanding balance, credit limit, discount terms, contract arrangements and, possibly, a
condensed history of recent purchases and cash payments.

As transactions occur (e.g., sales are made and cash payments arrive), they’re entered into a
file. At the end of each business period (a month for some companies, a week for others and a day
in some cases), the file of transactions (called trans.dat in Exercise 17.3) is applied to the master
file (called oldmast.dat in Exercise 17.3), thus updating each account's record of purchases and
payments. During an updating run, the master file is rewritten as a new file (newmast.dat), which
is then used at the end of the next business period to begin the updating process again.

File-matching programs must deal with certain problems that do not exist in single-file pro-
grams. For example, a match does not always occur. A customer on the master file might not have
made any purchases or cash payments in the current business period, and therefore no record for
this customer will appear on the transaction file. Similarly, a customer who did make some pur-
chases or cash payments may have just moved to this community, and the company may not have
had a chance to create a master record for this customer.

Use the statements from Exercise 17.3 as a basis for writing a complete file-matching accounts
receivable program. Use the account number on each file as the record key for matching purposes.
Assume that each file is a sequential file with records stored in increasing order by account number.

When a match occurs (i.e., records with the same account number appear on both the master
and transaction files), add the dollar amount on the transaction file to the current balance on the
master file, and write the newmast.dat record. (Assume purchases are indicated by positive
amounts on the transaction file and payments are indicated by negative amounts.) When there is a
master record for a particular account but no corresponding transaction record, merely write the
master record to newmast.dat. When there is a transaction record but no corresponding master
record, print the error message "Unmatched transaction record for account number ..." (fill in
the account number from the transaction record).

17.7 (File Matching Test Data) After writing the program of Exercise 17.6, write a simple pro-
gram to create some test data for checking out the program. Use the following sample account data:

Master file
Account number Name Balance

100 Alan Jones 348.17

300 Mary Smith 27.19

500 Sam Sharp 0.00

700 Suzy Green –14.22

Exercises 693

17.8 (File Matching Test) Run the program of Exercise 17.6, using the files of test data created
in Exercise 17.7. Print the new master file. Check that the accounts have been updated correctly.

17.9 (File Matching Enhancement) It’s common to have several transaction records with the
same record key, because a particular customer might make several purchases and cash payments
during a business period. Rewrite your accounts receivable file-matching program of Exercise 17.6
to provide for the possibility of handling several transaction records with the same record key. Mod-
ify the test data of Exercise 17.7 to include the following additional transaction records:

17.10 Write a series of statements that accomplish each of the following. Assume that we’ve de-
fined class Person that contains the private data members

char lastName[15];
char firstName[10];
int age;
int id;

and public member functions

// accessor functions for id
void setId(int);
int getId() const;

// accessor functions for lastName
void setLastName(string);
string getLastName() const;

// accessor functions for firstName
void setFirstName(string);
string getFirstName() const;

// accessor functions for age
void setAge(int);
int getAge() const;

Also assume that any random-access files have been opened properly.
a) Initialize nameage.dat with 100 records that store values lastName ="unassigned",

firstName = "" and age = 0.
b) Input 10 last names, first names and ages, and write them to the file.

Transaction file
Account number Transaction amount

100 27.14

300 62.11

400 100.56

900 82.17

Account number Dollar amount

300 83.89

700 80.78

700 1.53

694 Chapter 17 File Processing

c) Update a record that already contains information. If the record does not contain infor-
mation, inform the user "No info".

d) Delete a record that contains information by reinitializing that particular record.

17.11 (Hardware Inventory) You are the owner of a hardware store and need to keep an inventory
that can tell you what different tools you have, how many of each you have on hand and the cost of
each one. Write a program that initializes the random-access file hardware.dat to 100 empty records,
lets you input the data concerning each tool, enables you to list all your tools, lets you delete a record
for a tool that you no longer have and lets you update any information in the file. The tool identifica-
tion number should be the record number. Use the following information to start your file:

17.12 (Telephone Number Word Generator) Standard telephone keypads contain the digits 0
through 9. The numbers 2 through 9 each have three letters associated with them, as is indicated by
the following table:

Many people find it difficult to memorize phone numbers, so they use the correspondence
between digits and letters to develop seven-letter words that correspond to their phone numbers.
For example, a person whose telephone number is 686-2377 might use the correspondence indi-
cated in the above table to develop the seven-letter word “NUMBERS.”

Businesses frequently attempt to get telephone numbers that are easy for their clients to
remember. If a business can advertise a simple word for its customers to dial, then no doubt the
business will receive a few more calls. Each seven-letter word corresponds to exactly one seven-digit
telephone number. The restaurant wishing to increase its take-home business could surely do so
with the number 825-3688 (i.e., “TAKEOUT”). Each seven-digit phone number corresponds to
many separate seven-letter words. Unfortunately, most of these represent unrecognizable juxtaposi-
tions of letters. It’s possible, however, that the owner of a barber shop would be pleased to know
that the shop’s telephone number, 424-7288, corresponds to “HAIRCUT.” A veterinarian with the
phone number 738-2273 would be pleased to know that the number corresponds to “PETCARE.”

Record # Tool name Quantity Cost

3 Electric sander 7 57.98

17 Hammer 76 11.99

24 Jig saw 21 11.00

39 Lawn mower 3 79.50

56 Power saw 18 99.99

68 Screwdriver 106 6.99

77 Sledge hammer 11 21.50

83 Wrench 34 7.50

Digit Letter Digit Letter

2 A B C 6 M N O

3 D E F 7 P Q R S

4 G H I 8 T U V

5 J K L 9 W X Y Z

Making a Difference 695

Write a program that, given a seven-digit number, writes to a file every possible seven-letter
word corresponding to that number. There are 2187 (3 to the seventh power) such words. Avoid
phone numbers with the digits 0 and 1.

17.13 (sizeof Operator) Write a program that uses the sizeof operator to determine the sizes
in bytes of the various data types on your computer system. Write the results to the file data-

size.dat, so that you may print the results later. The results should be displayed in two-column
format with the type name in the left column and the size of the type in right column, as in:

[Note: The sizes of the built-in data types on your computer might differ from those listed above.]

Making a Difference
17.14 (Phishing Scanner) Phishing is a form of identity theft in which, in an e-mail, a sender pos-
ing as a trustworthy source attempts to acquire private information, such as your user names, pass-
words, credit-card numbers and social security number. Phishing e-mails claiming to be from
popular banks, credit-card companies, auction sites, social networks and online payment services
may look quite legitimate. These fraudulent messages often provide links to spoofed (fake) websites
where you’re asked to enter sensitive information.

Visit McAfee® (www.mcafee.com/us/threat_center/anti_phishing/phishing_top10.html),
Security Extra (www.securityextra.com/), www.snopes.com and other websites to find lists of the
top phishing scams. Also check out the Anti-Phishing Working Group (www.antiphishing.org/),
and the FBI’s Cyber Investigations website (www.fbi.gov/cyberinvest/cyberhome.htm), where
you’ll find information about the latest scams and how to protect yourself.

Create a list of 30 words, phrases and company names commonly found in phishing messages.
Assign a point value to each based on your estimate of its likeliness to be in a phishing message
(e.g., one point if it’s somewhat likely, two points if moderately likely, or three points if highly
likely). Write a program that scans a file of text for these terms and phrases. For each occurrence of
a keyword or phrase within the text file, add the assigned point value to the total points for that
word or phrase. For each keyword or phrase found, output one line with the word or phrase, the
number of occurrences and the point total. Then show the point total for the entire message. Does
your program assign a high point total to some actual phishing e-mails you’ve received? Does it
assign a high point total to some legitimate e-mails you’ve received.

char 1
unsigned char 1
short int 2
unsigned short int 2
int 4
unsigned int 4
long int 4
unsigned long int 4
float 4
double 8
long double 10

www.mcafee.com/us/threat_center/anti_phishing/phishing_top10.html
www.securityextra.com/
www.snopes.com
www.antiphishing.org/
www.fbi.gov/cyberinvest/cyberhome.htm

18 Class string and String
Stream Processing

Suit the action to the word, the
word to the action; with this
special observance, that you
o’erstep not the modesty of
nature.
—William Shakespeare

The difference between the
almost-right word and the right
word is really a large matter —
it’s the difference between the
lightning bug and the lightning.
—Mark Twain

Mum’s the word.
—Miguel de Cervantes

I have made this letter longer
than usual, because I lack the
time to make it short.
—Blaise Pascal

O b j e c t i v e s
In this chapter you’ll learn:

■ To assign, concatenate,
compare, search and swap
strings.

■ To determine string
characteristics.

■ To find, replace and insert
characters in strings.

■ To convert strings to
C-style strings and vice versa.

■ To use string iterators.

■ To perform input from and
output to strings in
memory.

18.1 Introduction 697

18.1 Introduction
The class template basic_string provides typical string-manipulation operations such as
copying, searching, etc. The template definition and all support facilities are defined in
namespace std; these include the typedef statement

that creates the alias type string for basic_string<char>. A typedef is also provided for
the wchar_t type (wstring). Type wchar_t1 stores characters (e.g., two-byte characters,
four-byte characters, etc.) for supporting other character sets. We use string exclusively
throughout this chapter. To use strings, include header <string>.

A string object can be initialized with a constructor argument as in

which creates a string containing the characters in "Hello", or with two constructor ar-
guments as in

which creates a string containing eight 'x' characters. Class string also provides a de-
fault constructor (which creates an empty string) and a copy constructor. A string also can
be initialized in its definition as in

Remember that = in the preceding declaration is not an assignment; rather it’s an implicit
call to the string class constructor, which does the conversion.

Class string provides no conversions from int or char to string in a string defini-
tion. For example, the definitions

18.1 Introduction
18.2 string Assignment and

Concatenation
18.3 Comparing strings
18.4 Substrings
18.5 Swapping strings
18.6 string Characteristics
18.7 Finding Substrings and Characters in

a string

18.8 Replacing Characters in a string
18.9 Inserting Characters into a string

18.10 Conversion to C-Style Pointer-Based
char * Strings

18.11 Iterators
18.12 String Stream Processing
18.13 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

typedef basic_string< char > string;

1. Type wchar_t commonly is used to represent Unicode®. The Unicode Standard outlines a specifica-
tion to produce consistent encoding of the world’s characters and symbols. To learn more about the
Unicode Standard, visit www.unicode.org.

string text("Hello"); // creates a string from a const char *

string name(8, 'x'); // string of 8 'x' characters

string month = "March"; // same as: string month("March");

string error1 = 'c';
string error2('u');
string error3 = 22;
string error4(8);

www.unicode.org

698 Chapter 18 Class string and String Stream Processing

result in syntax errors. Assigning a single character to a string object is permitted in an
assignment statement as in

Unlike C-style char * strings, strings are not necessarily null terminated. [Note: The
C++ standard document provides only a description of the interface for class string—
implementation is platform dependent.] The length of a string can be retrieved with
member function length and with member function size. The subscript operator, [], can
be used with strings to access and modify individual characters. Like C-style strings,
strings have a first subscript of 0 and a last subscript of length() – 1.

Most string member functions take as arguments a starting subscript location and
the number of characters on which to operate.

The stream extraction operator (>>) is overloaded to support strings. The statements

declare a string object and read a string from cin. Input is delimited by white-space
characters. When a delimiter is encountered, the input operation is terminated. Function
getline also is overloaded for strings. Assuming string1 is a string, the statement

reads a string from the keyboard into string1. Input is delimited by a newline ('\n'),
so getLine can read a line of text into a string object. You can specify an alternate delim-
iter as the optional third argument to getline.

18.2 string Assignment and Concatenation
Figure 18.1 demonstrates string assignment and concatenation. Line 4 includes header
<string> for class string. The strings string1, string2 and string3 are created in lines
9–11. Line 13 assigns the value of string1 to string2. After the assignment takes place,
string2 is a copy of string1. Line 14 uses member function assign to copy string1 into
string3. A separate copy is made (i.e., string1 and string3 are independent objects).
Class string also provides an overloaded version of member function assign that copies
a specified number of characters, as in

where sourceString is the string to be copied, start is the starting subscript and num-

berOfCharacters is the number of characters to copy.

string1 = 'n';

string stringObject;
cin >> stringObject;

getline(cin, string1);

targetString.assign(sourceString, start, numberOfCharacters);

1 // Fig. 18.1: Fig18_01.cpp
2 // Demonstrating string assignment and concatenation.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {

Fig. 18.1 | Demonstrating string assignment and concatenation. (Part 1 of 2.)

#include <string>

18.2 string Assignment and Concatenation 699

Line 19 uses the subscript operator to assign 'r' to string3[2] (forming "car") and
to assign 'r' to string2[0] (forming "rat"). The strings are then output.

9
10
11
12
13
14
15 cout << "string1: " << string1 << "\nstring2: " << string2
16 << "\nstring3: " << string3 << "\n\n";
17
18
19
20
21 cout << "After modification of string2 and string3:\n" << "string1: "
22 << string1 << "\nstring2: " << string2 << "\nstring3: ";
23
24 // demonstrating member function at
25 for (int i = 0; i < ; ++i)
26 cout << ;
27
28 // declare string4 and string5
29
30 string string5; // initialized to the empty string
31
32
33
34
35
36
37
38
39
40 cout << "\n\nAfter concatenation:\nstring1: " << string1
41 << "\nstring2: " << string2 << "\nstring3: " << string3
42 << "\nstring4: " << string4 << "\nstring5: " << string5 << endl;
43 } // end main

string1: cat
string2: cat
string3: cat

After modification of string2 and string3:
string1: cat
string2: rat
string3: car

After concatenation:
string1: catacomb
string2: rat
string3: carpet
string4: catapult
string5: comb

Fig. 18.1 | Demonstrating string assignment and concatenation. (Part 2 of 2.)

string string1("cat");
string string2; // initialized to the empty string
string string3; // initialized to the empty string

string2 = string1; // assign string1 to string2
string3.assign(string1); // assign string1 to string3

// modify string2 and string3
string2[0] = string3[2] = 'r';

string3.length()
string3.at(i)

string string4(string1 + "apult"); // concatenation

// overloaded +=
string3 += "pet"; // create "carpet"
string1.append("acomb"); // create "catacomb"

// append subscript locations 4 through end of string1 to
// create string "comb" (string5 was initially empty)
string5.append(string1, 4, string1.length() - 4);

700 Chapter 18 Class string and String Stream Processing

Lines 25–26 output the contents of string3 one character at a time using member
function at. Member function at provides checked access (or range checking); i.e., going
past the end of the string throws an out_of_range exception. The subscript operator, [],
does not provide checked access. This is consistent with its use on arrays.

String string4 is declared (line 29) and initialized to the result of concatenating
string1 and "apult" using the overloaded + operator, which for class string denotes
concatenation. Line 33 uses the addition assignment operator, +=, to concatenate string3
and "pet". Line 34 uses member function append to concatenate string1 and "acomb".

Line 38 appends the string "comb" to empty string string5. This member function
is passed the string (string1) to retrieve characters from, the starting subscript in the
string (4) and the number of characters to append (the value returned by
string1.length() - 4).

18.3 Comparing strings
Class string provides member functions for comparing strings. Figure 18.2 demon-
strates class string’s comparison capabilities.

Common Programming Error 18.1
Accessing an element beyond the size of the string using the subscript operator is an un-
reported logic error.

1 // Fig. 18.2: Fig18_02.cpp
2 // Demonstrating string comparison capabilities.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("Testing the comparison functions.");

10 string string2("Hello");
11 string string3("stinger");
12 string string4(string2);
13
14 cout << "string1: " << string1 << "\nstring2: " << string2
15 << "\nstring3: " << string3 << "\nstring4: " << string4 << "\n\n";
16
17 // comparing string1 and string4
18 if ()
19 cout << "string1 == string4\n";
20 else // string1 != string4
21 {
22 if ()
23 cout << "string1 > string4\n";
24 else // string1 < string4
25 cout << "string1 < string4\n";
26 } // end else

Fig. 18.2 | Comparing strings. (Part 1 of 3.)

string1 == string4

string1 > string4

18.3 Comparing strings 701

27
28 // comparing string1 and string2
29 int result = ;
30
31 if (result == 0)
32 cout << "string1.compare(string2) == 0\n";
33 else // result != 0
34 {
35 if (result > 0)
36 cout << "string1.compare(string2) > 0\n";
37 else // result < 0
38 cout << "string1.compare(string2) < 0\n";
39 } // end else
40
41 // comparing string1 (elements 2-5) and string3 (elements 0-5)
42 result =
43
44 if (result == 0)
45 cout << "string1.compare(2, 5, string3, 0, 5) == 0\n";
46 else // result != 0
47 {
48 if (result > 0)
49 cout << "string1.compare(2, 5, string3, 0, 5) > 0\n";
50 else // result < 0
51 cout << "string1.compare(2, 5, string3, 0, 5) < 0\n";
52 } // end else
53
54 // comparing string2 and string4
55 result =
56
57 if (result == 0)
58 cout << "string4.compare(0, string2.length(), "
59 << "string2) == 0" << endl;
60 else // result != 0
61 {
62 if (result > 0)
63 cout << "string4.compare(0, string2.length(), "
64 << "string2) > 0" << endl;
65 else // result < 0
66 cout << "string4.compare(0, string2.length(), "
67 << "string2) < 0" << endl;
68 } // end else
69
70 // comparing string2 and string4
71 result =
72
73 if (result == 0)
74 cout << "string2.compare(0, 3, string4) == 0" << endl;
75 else // result != 0
76 {
77 if (result > 0)
78 cout << "string2.compare(0, 3, string4) > 0" << endl;

Fig. 18.2 | Comparing strings. (Part 2 of 3.)

string1.compare(string2)

string1.compare(2, 5, string3, 0, 5);

string4.compare(0, string2.length(), string2);

string2.compare(0, 3, string4);

702 Chapter 18 Class string and String Stream Processing

The program declares four strings (lines 9–12) and outputs each (lines 14–15). Line
18 tests string1 against string4 for equality using the overloaded equality operator. If
the condition is true, "string1 == string4" is output. If the condition is false, the con-
dition in line 22 is tested. All the string class overloaded relational and equality operator
functions return bool values.

Line 29 uses string member function compare to compare string1 to string2. Vari-
able result is assigned 0 if the strings are equivalent, a positive number if string1 is lex-
icographically greater than string2 or a negative number if string1 is lexicographically
less than string2. When we say that a string is lexicographically less than another, we
mean that the compare method uses the numerical values of the characters (see
Appendix B, ASCII Character Set) in each string to determine that the first string is less
than the second. Because a string starting with 'T' is considered lexicographically greater
than a string starting with 'H', result is assigned a value greater than 0, as confirmed by
the output. A lexicon is a dictionary.

Line 42 compares portions of string1 and string3 using an overloaded version of
member function compare. The first two arguments (2 and 5) specify the starting subscript
and length of the portion of string1 ("sting") to compare with string3. The third argu-
ment is the comparison string. The last two arguments (0 and 5) are the starting subscript
and length of the portion of the comparison string being compared (also "sting"). The
value assigned to result is 0 for equality, a positive number if string1 is lexicographically
greater than string3 or a negative number if string1 is lexicographically less than
string3. The two pieces being compared here are identical, so result is assigned 0.

Line 55 uses another overloaded version of function compare to compare string4 and
string2. The first two arguments are the same—the starting subscript and length. The
last argument is the comparison string. The value returned is also the same—0 for
equality, a positive number if string4 is lexicographically greater than string2 or a neg-
ative number if string4 is lexicographically less than string2. Because the two pieces of
strings being compared here are identical, result is assigned 0.

Line 71 calls member function compare to compare the first 3 characters in string2

to string4. Because "Hel" is less than "Hello", a value less than zero is returned.

79 else // result < 0
80 cout << "string2.compare(0, 3, string4) < 0" << endl;
81 } // end else
82 } // end main

string1: Testing the comparison functions.
string2: Hello
string3: stinger
string4: Hello

string1 > string4
string1.compare(string2) > 0
string1.compare(2, 5, string3, 0, 5) == 0
string4.compare(0, string2.length(), string2) == 0
string2.compare(0, 3, string4) < 0

Fig. 18.2 | Comparing strings. (Part 3 of 3.)

18.4 Substrings 703

18.4 Substrings
Class string provides member function substr for retrieving a substring from a string.
The result is a new string object that’s copied from the source string. Figure 18.3 dem-
onstrates substr. The program declares and initializes a string at line 9. Line 13 uses
member function substr to retrieve a substring from string1. The first argument speci-
fies the beginning subscript of the desired substring; the second argument specifies the
substring’s length.

18.5 Swapping strings
Class string provides member function swap for swapping strings. Figure 18.4 swaps
two strings. Lines 9–10 declare and initialize strings first and second. Each string is
then output. Line 15 uses string member function swap to swap the values of first and
second. The two strings are printed again to confirm that they were indeed swapped. The
string member function swap is useful for implementing programs that sort strings.

1 // Fig. 18.3: Fig18_03.cpp
2 // Demonstrating string member function substr.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("The airplane landed on time.");

10
11 // retrieve substring "plane" which
12 // begins at subscript 7 and consists of 5 characters
13 cout << << endl;
14 } // end main

plane

Fig. 18.3 | Demonstrating string member function substr.

1 // Fig. 18.4: Fig18_04.cpp
2 // Using the swap function to swap two strings.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string first("one");

10 string second("two");
11
12 // output strings
13 cout << "Before swap:\n first: " << first << "\nsecond: " << second;

Fig. 18.4 | Using function swap to swap two strings. (Part 1 of 2.)

string1.substr(7, 5)

704 Chapter 18 Class string and String Stream Processing

18.6 string Characteristics
Class string provides member functions for gathering information about a string’s size,
length, capacity, maximum length and other characteristics. A string’s size or length is
the number of characters currently stored in the string. A string’s capacity is the num-
ber of characters that can be stored in the string without allocating more memory. The
capacity of a string must be at least equal to the current size of the string, though it can
be greater. The exact capacity of a string depends on the implementation. The maximum
size is the largest possible size a string can have. If this value is exceeded, a length_error
exception is thrown. Figure 18.5 demonstrates string class member functions for deter-
mining various characteristics of strings.

14
15
16
17 cout << "\n\nAfter swap:\n first: " << first
18 << "\nsecond: " << second << endl;
19 } // end main

Before swap:
first: one
second: two

After swap:
first: two
second: one

1 // Fig. 18.5: Fig18_05.cpp
2 // Demonstrating member functions related to size and capacity.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 void printStatistics(const string &);
8
9 int main()

10 {
11 string string1; // empty string
12
13 cout << "Statistics before input:\n" << boolalpha;
14 printStatistics(string1);
15
16 // read in only "tomato" from "tomato soup"
17 cout << "\n\nEnter a string: ";
18 cin >> string1; // delimited by whitespace
19 cout << "The string entered was: " << string1;
20

Fig. 18.5 | Printing string characteristics. (Part 1 of 3.)

Fig. 18.4 | Using function swap to swap two strings. (Part 2 of 2.)

first.swap(second); // swap strings

18.6 string Characteristics 705

21 cout << "\nStatistics after input:\n";
22 printStatistics(string1);
23
24 // read in "soup"
25 cin >> string1; // delimited by whitespace
26 cout << "\n\nThe remaining string is: " << string1 << endl;
27 printStatistics(string1);
28
29 // append 46 characters to string1
30
31 cout << "\n\nstring1 is now: " << string1 << endl;
32 printStatistics(string1);
33
34 // add 10 elements to string1
35
36 cout << "\n\nStats after resizing by (length + 10):\n";
37 printStatistics(string1);
38 cout << endl;
39 } // end main
40
41 // display string statistics
42 void printStatistics(const string &stringRef)
43 {
44 cout << "capacity: " << stringRef.capacity() << "\nmax size: "
45 << stringRef.max_size() << "\nsize: " << stringRef.size()
46 << "\nlength: " << stringRef.length()
47 << "\nempty: " << stringRef.empty();
48 } // end printStatistics

Statistics before input:
capacity: 0
max size: 4294967293
size: 0
length: 0
empty: true

Enter a string: tomato soup
The string entered was: tomato
Statistics after input:
capacity: 15

max size: 4294967293
size: 6
length: 6
empty: false

The remaining string is: soup
capacity: 15
max size: 4294967293
size: 4
length: 4
empty: false

Fig. 18.5 | Printing string characteristics. (Part 2 of 3.)

string1 += "1234567890abcdefghijklmnopqrstuvwxyz1234567890";

string1.resize(string1.length() + 10);

706 Chapter 18 Class string and String Stream Processing

The program declares empty string string1 (line 11) and passes it to function
printStatistics (line 14). Function printStatistics (lines 42–48) takes a reference to
a const string as an argument and outputs the capacity (using member function
capacity), maximum size (using member function max_size), size (using member func-
tion size), length (using member function length) and whether the string is empty
(using member function empty). The initial call to printStatistics indicates that the ini-
tial values for the capacity, size and length of string1 are 0.

The size and length of 0 indicate that there are no characters stored in string. Because
the initial capacity is 0, when characters are placed in string1, memory is allocated to
accommodate the new characters. Recall that the size and length are always identical. In
this implementation, the maximum size is 4294967293. Object string1 is an empty
string, so function empty returns true.

Line 18 inputs a string. In this example, "tomato soup" is input. Because a space char-
acter is a delimiter, only "tomato" is stored in string1; however, "soup" remains in the
input buffer. Line 22 calls function printStatistics to output statistics for string1.
Notice in the output that the length is 6 and the capacity is 15.

Line 25 reads "soup" from the input buffer and stores it in string1, thereby replacing
"tomato". Line 27 passes string1 to printStatistics.

Line 30 uses the overloaded += operator to concatenate a 46-character-long string to
string1. Line 32 passes string1 to printStatistics. The capacity has increased to 63

elements and the length is now 50.
Line 35 uses member function resize to increase the length of string1 by 10 char-

acters. The additional elements are set to null characters. The output shows that the
capacity has not changed and the length is now 60.

18.7 Finding Substrings and Characters in a string
Class string provides const member functions for finding substrings and characters in a
string. Figure 18.6 demonstrates the find functions.

String string1 is declared and initialized in line 9. Line 14 attempts to find "is" in
string1 using function find. If "is" is found, the subscript of the starting location of that
string is returned. If the string is not found, the value string::npos (a public static

string1 is now: soup1234567890abcdefghijklmnopqrstuvwxyz1234567890
capacity: 63
max size: 4294967293
size: 50
length: 50
empty: false

Stats after resizing by (length + 10):
capacity: 63
max size: 4294967293
size: 60
length: 60
empty: false

Fig. 18.5 | Printing string characteristics. (Part 3 of 3.)

18.7 Finding Substrings and Characters in a string 707

constant defined in class string) is returned. This value is returned by the string find-
related functions to indicate that a substring or character was not found in the string.

1 // Fig. 18.6: Fig18_06.cpp
2 // Demonstrating the string find member functions.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("noon is 12 pm; midnight is not.");

10 int location;
11
12 // find "is" at location 5 and 24
13 cout << "Original string:\n" << string1
14 << "\n\n(find) \"is\" was found at: " <<
15 << "\n(rfind) \"is\" was found at: " <<
16
17 // find 'o' at location 1
18 location =
19 cout << "\n\n(find_first_of) found '" << string1[location]
20 << "' from the group \"misop\" at: " << location;
21
22 // find 'o' at location 29
23 location =
24 cout << "\n\n(find_last_of) found '" << string1[location]
25 << "' from the group \"misop\" at: " << location;
26
27 // find '1' at location 8
28 location =
29 cout << "\n\n(find_first_not_of) '" << string1[location]
30 << "' is not contained in \"noi spm\" and was found at: "
31 << location;
32
33 // find '.' at location 12
34 location =
35 cout << "\n\n(find_first_not_of) '" << string1[location]
36 << "' is not contained in \"12noi spm\" and was "
37 << "found at: " << location << endl;
38
39 // search for characters not in string1
40 location =
41
42 cout << "\nfind_first_not_of(\"noon is 12 pm; midnight is not.\")"
43 << " returned: " << location << endl;
44 } // end main

Original string:
noon is 12 pm; midnight is not.

(find) "is" was found at: 5
(rfind) "is" was found at: 24

Fig. 18.6 | Demonstrating the string find functions. (Part 1 of 2.)

string1.find("is")
string1.rfind("is");

string1.find_first_of("misop");

string1.find_last_of("misop");

string1.find_first_not_of("noi spm");

string1.find_first_not_of("12noi spm");

string1.find_first_not_of(
"noon is 12 pm; midnight is not.");

708 Chapter 18 Class string and String Stream Processing

Line 15 uses member function rfind to search string1 backward (i.e., right-to-left).
If "is" is found, the subscript location is returned. If the string is not found,
string::npos is returned. [Note: The rest of the find functions presented in this section
return the same type unless otherwise noted.]

Line 18 uses member function find_first_of to locate the first occurrence in
string1 of any character in "misop". The searching is done from the beginning of
string1. The character 'o' is found in element 1.

Line 23 uses member function find_last_of to find the last occurrence in string1

of any character in "misop". The searching is done from the end of string1. The character
'o' is found in element 29.

Line 28 uses member function find_first_not_of to find the first character in
string1 not contained in "noi spm". The character '1' is found in element 8. Searching
is done from the beginning of string1.

Line 34 uses member function find_first_not_of to find the first character not con-
tained in "12noi spm". The character '.' is found in element 12. Searching is done from
the beginning of string1.

Lines 40–41 use member function find_first_not_of to find the first character not
contained in "noon is 12 pm; midnight is not.". In this case, the string being
searched contains every character specified in the string argument. Because a character was
not found, string::npos (which has the value –1 in this case) is returned.

18.8 Replacing Characters in a string
Figure 18.7 demonstrates string member functions for replacing and erasing characters.
Lines 10–14 declare and initialize string string1. Line 20 uses string member function
erase to erase everything from (and including) the character in position 62 to the end of
string1. [Note: Each newline character occupies one character in the string.]

(find_first_of) found 'o' from the group "misop" at: 1

(find_last_of) found 'o' from the group "misop" at: 29

(find_first_not_of) '1' is not contained in "noi spm" and was found at: 8

(find_first_not_of) '.' is not contained in "12noi spm" and was found at: 12

find_first_not_of("noon is 12 pm; midnight is not.") returned: -1

1 // Fig. 18.7: Fig18_07.cpp
2 // Demonstrating string member functions erase and replace.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {

Fig. 18.7 | Demonstrating functions erase and replace. (Part 1 of 3.)

Fig. 18.6 | Demonstrating the string find functions. (Part 2 of 2.)

18.8 Replacing Characters in a string 709

9 // compiler concatenates all parts into one string
10 string string1("The values in any left subtree"
11 "\nare less than the value in the"
12 "\nparent node and the values in"
13 "\nany right subtree are greater"
14 "\nthan the value in the parent node");
15
16 cout << "Original string:\n" << string1 << endl << endl;
17
18
19
20
21
22 // output new string
23 cout << "Original string after erase:\n" << string1
24 << "\n\nAfter first replacement:\n";
25
26 int position = string1.find(" "); // find first space
27
28 // replace all spaces with period
29 while (position != string::npos)
30 {
31
32 position = string1.find(" ", position + 1);
33 } // end while
34
35 cout << string1 << "\n\nAfter second replacement:\n";
36
37 position = string1.find("."); // find first period
38
39 // replace all periods with two semicolons
40 // NOTE: this will overwrite characters
41 while (position != string::npos)
42 {
43
44 position = string1.find(".", position + 1);
45 } // end while
46
47 cout << string1 << endl;
48 } // end main

Original string:
The values in any left subtree
are less than the value in the
parent node and the values in
any right subtree are greater
than the value in the parent node

Original string after erase:
The values in any left subtree
are less than the value in the

Fig. 18.7 | Demonstrating functions erase and replace. (Part 2 of 3.)

// remove all characters from (and including) location 62
// through the end of string1
string1.erase(62);

string1.replace(position, 1, ".");

string1.replace(position, 2, "xxxxx;;yyy", 5, 2);

710 Chapter 18 Class string and String Stream Processing

Lines 26–33 use find to locate each occurrence of the space character. Each space is
then replaced with a period by a call to string member function replace. Function
replace takes three arguments: the subscript of the character in the string at which
replacement should begin, the number of characters to replace and the replacement string.
Member function find returns string::npos when the search character is not found. In
line 32, 1 is added to position to continue searching at the location of the next character.

Lines 37–45 use function find to find every period and another overloaded function
replace to replace every period and its following character with two semicolons. The
arguments passed to this version of replace are the subscript of the element where the
replace operation begins, the number of characters to replace, a replacement character
string from which a substring is selected to use as replacement characters, the element in
the character string where the replacement substring begins and the number of characters
in the replacement character string to use.

18.9 Inserting Characters into a string
Class string provides member functions for inserting characters into a string.
Figure 18.8 demonstrates the string insert capabilities.

The program declares, initializes then outputs strings string1, string2, string3
and string4. Line 19 uses string member function insert to insert string2’s content
before element 10 of string1.

Line 22 uses insert to insert string4 before string3’s element 3. The last two argu-
ments specify the starting and last element of string4 that should be inserted. Using
string::npos causes the entire string to be inserted.

After first replacement:
The.values.in.any.left.subtree
are.less.than.the.value.in.the

After second replacement:
The;;alues;;n;;ny;;eft;;ubtree
are;;ess;;han;;he;;alue;;n;;he

1 // Fig. 18.8: Fig18_08.cpp
2 // Demonstrating class string insert member functions.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("beginning end");

10 string string2("middle ");
11 string string3("12345678");
12 string string4("xx");

Fig. 18.8 | Demonstrating the string insert member functions. (Part 1 of 2.)

Fig. 18.7 | Demonstrating functions erase and replace. (Part 3 of 3.)

18.10 Conversion to C-Style Pointer-Based char * Strings 711

18.10 Conversion to C-Style Pointer-Based char *
Strings
Class string provides member functions for converting string class objects to C-style
pointer-based strings. As mentioned earlier, unlike pointer-based strings, strings are not
necessarily null terminated. These conversion functions are useful when a given function
takes a pointer-based string as an argument. Figure 18.9 demonstrates conversion of
strings to pointer-based strings.

13
14 cout << "Initial strings:\nstring1: " << string1
15 << "\nstring2: " << string2 << "\nstring3: " << string3
16 << "\nstring4: " << string4 << "\n\n";
17
18
19
20
21
22
23
24 cout << "Strings after insert:\nstring1: " << string1
25 << "\nstring2: " << string2 << "\nstring3: " << string3
26 << "\nstring4: " << string4 << endl;
27 } // end main

Initial strings:
string1: beginning end
string2: middle
string3: 12345678
string4: xx

Strings after insert:
string1: beginning middle end
string2: middle
string3: 123xx45678
string4: xx

1 // Fig. 18.9: Fig18_09.cpp
2 // Converting to C-style strings.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("STRINGS"); // string constructor with char* arg

10 const char *ptr1 = 0; // initialize *ptr1
11 int length = string1.length();

Fig. 18.9 | Converting strings to C-style strings and character arrays. (Part 1 of 2.)

Fig. 18.8 | Demonstrating the string insert member functions. (Part 2 of 2.)

// insert "middle" at location 10 in string1
string1.insert(10, string2);

// insert "xx" at location 3 in string3
string3.insert(3, string4, 0, string::npos);

712 Chapter 18 Class string and String Stream Processing

The program declares a string, an int and two char pointers (lines 9–12). The
string string1 is initialized to "STRINGS", ptr1 is initialized to 0 and length is initialized
to the length of string1. Memory of sufficient size to hold a pointer-based string equiva-
lent of string string1 is allocated dynamically and attached to char pointer ptr2.

Line 15 uses string member function copy to copy object string1 into the char

array pointed to by ptr2. Line 16 manually places a terminating null character in the array
pointed to by ptr2.

Line 20 uses function c_str to obtain a const char * that points to a null terminated
C-style string with the same content as string1. The pointer is passed to the stream inser-
tion operator for output.

Line 26 assigns the const char * ptr1 a pointer returned by class string member
function data. This member function returns a non-null-terminated C-style character
array. We do not modify string string1 in this example. If string1 were to be modified
(e.g., the string’s dynamic memory changes its address due to a member function call
such as string1.insert(0, "abcd");), ptr1 could become invalid—which could lead
to unpredictable results.

Lines 29–30 use pointer arithmetic to output the character array pointed to by ptr1.
In lines 32–33, the C-style string pointed to by ptr2 is output and the memory allocated
for ptr2 is deleted to avoid a memory leak.

12 char *ptr2 = new char[length + 1]; // including null
13
14 // copy characters from string1 into allocated memory
15 string1.copy(ptr2, length, 0); // copy string1 to ptr2 char*
16 ptr2[length] = '\0'; // add null terminator
17
18 cout << "string string1 is " << string1
19 << "\nstring1 converted to a C-Style string is "
20 << << "\nptr1 is ";
21
22
23
24
25
26
27
28 // output each character using pointer
29 for (int i = 0; i < length; ++i)
30 cout << *(ptr1 + i); // use pointer arithmetic
31
32 cout << "\nptr2 is " << ptr2 << endl;
33 delete [] ptr2; // reclaim dynamically allocated memory
34 } // end main

string string1 is STRINGS
string1 converted to a C-Style string is STRINGS
ptr1 is STRINGS
ptr2 is STRINGS

Fig. 18.9 | Converting strings to C-style strings and character arrays. (Part 2 of 2.)

string1.c_str()

// Assign to pointer ptr1 the const char * returned by
// function data(). NOTE: this is a potentially dangerous
// assignment. If string1 is modified, pointer ptr1 can
// become invalid.
ptr1 = string1.data();

18.11 Iterators 713

18.11 Iterators
Class string provides iterators for forward and backward traversal of strings. Iterators
provide access to individual characters with syntax that’s similar to pointer operations. It-
erators are not range checked. In this section we provide “mechanical examples” to demon-
strate the use of iterators. We discuss more robust uses of iterators in Chapter 22, Standard
Template Library (STL). Figure 18.10 demonstrates iterators.

Lines 9–10 declare string string1 and string::const_iterator iterator1. A
const_iterator is an iterator that cannot modify the string—in this case the string

through which it’s iterating. Iterator iterator1 is initialized to the beginning of string1
with the string class member function begin. Two versions of begin exist—one that

Common Programming Error 18.2
Not terminating the character array returned by data with a null character can lead to
execution-time errors.

Good Programming Practice 18.1
Whenever possible, use the more robust string class objects rather than C-style pointer-
based strings.

1 // Fig. 18.10: Fig18_10.cpp
2 // Using an iterator to output a string.
3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {
9 string string1("Testing iterators");

10
11
12 cout << "string1 = " << string1
13 << "\n(Using iterator iterator1) string1 is: ";
14
15
16
17
18
19
20
21
22 cout << endl;
23 } // end main

string1 = Testing iterators
(Using iterator iterator1) string1 is: Testing iterators

Fig. 18.10 | Using an iterator to output a string.

string::const_iterator iterator1 = string1.begin();

// iterate through string
while (iterator1 != string1.end())
{

cout << *iterator1; // dereference iterator to get char
++iterator1; // advance iterator to next char

} // end while

714 Chapter 18 Class string and String Stream Processing

returns an iterator for iterating through a non-const string and a const version that
returns a const_iterator for iterating through a const string. Line 12 outputs string1.

Lines 16–20 use iterator iterator1 to “walk through” string1. Class string

member function end returns an iterator (or a const_iterator) for the position past the
last element of string1. Each element is printed by dereferencing the iterator much as
you’d dereference a pointer, and the iterator is advanced one position using operator ++.

Class string provides member functions rend and rbegin for accessing individual
string characters in reverse from the end of a string toward the beginning. Member
functions rend and rbegin return reverse_iterators or const_reverse_iterators
(based on whether the string is non-const or const). Exercise 18.8 asks you to write a
program that demonstrates these capabilities.

18.12 String Stream Processing
In addition to standard stream I/O and file stream I/O, C++ stream I/O includes capabili-
ties for inputting from, and outputting to, strings in memory. These capabilities often
are referred to as in-memory I/O or string stream processing.

Input from a string is supported by class istringstream. Output to a string is sup-
ported by class ostringstream. The class names istringstream and ostringstream are
actually aliases defined by the typedefs

Class templates basic_istringstream and basic_ostringstream provide the same func-
tionality as classes istream and ostream plus other member functions specific to in-mem-
ory formatting. Programs that use in-memory formatting must include the <sstream> and
<iostream> headers.

One application of these techniques is data validation. A program can read an entire
line at a time from the input stream into a string. Next, a validation routine can scrutinize
the contents of the string and correct (or repair) the data, if necessary. Then the program
can proceed to input from the string, knowing that the input data is in the proper format.

Outputting to a string is a nice way to take advantage of the powerful output for-
matting capabilities of C++ streams. Data can be prepared in a string to mimic the edited
screen format. That string could be written to a disk file to preserve the screen image.

An ostringstream object uses a string object to store the output data. The str

member function of class ostringstream returns a copy of that string.
Figure 18.11 demonstrates an ostringstream object. The program creates ostring-

stream object outputString (line 10) and uses the stream insertion operator to output a
series of strings and numerical values to the object.

Lines 22–23 output string string1, string string2, string string3, double

double1, string string4, int integer, string string5 and the address of int

integer—all to outputString in memory. Line 26 uses the stream insertion operator and
the call outputString.str() to display a copy of the string created in lines 22–23. Line

Good Programming Practice 18.2
When the operations involving the iterator should not modify the data being processed, use
a const_iterator. This is another example of employing the principle of least privilege.

typedef basic_istringstream< char > istringstream;
typedef basic_ostringstream< char > ostringstream;

18.12 String Stream Processing 715

29 demonstrates that more data can be appended to the string in memory by simply
issuing another stream insertion operation to outputString. Lines 30–31 display string

outputString after appending additional characters.
An istringstream object inputs data from a string in memory to program variables.

Data is stored in an istringstream object as characters. Input from the istringstream

1 // Fig. 18.11: Fig18_11.cpp
2 // Using an ostringstream object.
3 #include <iostream>
4 #include <string>
5
6 using namespace std;
7
8 int main()
9 {

10
11
12 string string1("Output of several data types ");
13 string string2("to an ostringstream object:");
14 string string3("\n double: ");
15 string string4("\n int: ");
16 string string5("\naddress of int: ");
17
18 double double1 = 123.4567;
19 int integer = 22;
20
21
22
23
24
25
26
27
28
29
30 cout << "\n\nafter additional stream insertions,\n"
31 << "outputString contains:\n" << << endl;
32 } // end main

outputString contains:
Output of several data types to an ostringstream object:

double: 123.457
int: 22

address of int: 0012F540

after additional stream insertions,
outputString contains:
Output of several data types to an ostringstream object:

double: 123.457
int: 22

address of int: 0012F540
more characters added

Fig. 18.11 | Using an ostringstream object.

#include <sstream> // header for string stream processing

ostringstream outputString; // create ostringstream instance

// output strings, double and int to ostringstream outputString
outputString << string1 << string2 << string3 << double1

<< string4 << integer << string5 << &integer;

// call str to obtain string contents of the ostringstream
cout << "outputString contains:\n" << outputString.str();

// add additional characters and call str to output string
outputString << "\nmore characters added";

outputString.str()

716 Chapter 18 Class string and String Stream Processing

object works identically to input from any file. The end of the string is interpreted by the
istringstream object as end-of-file.

Figure 18.12 demonstrates input from an istringstream object. Lines 10–11 create
string input containing the data and istringstream object inputString constructed to
contain the data in string input. The string input contains the data

which, when read as input to the program, consist of two strings ("Input" and "test"),
an int (123), a double (4.7) and a char ('A'). These characters are extracted to variables
string1, string2, integer, double1 and character in line 18.

The data is then output in lines 20–23. The program attempts to read from input-

String again in line 27. The if condition in line 30 uses function good (Section 15.8) to
test if any data remains. Because no data remains, the function returns false and the else
part of the if…else statement is executed.

Input test 123 4.7 A

1 // Fig. 18.12: Fig18_12.cpp
2 // Demonstrating input from an istringstream object.
3 #include <iostream>
4 #include <string>
5
6 using namespace std;
7
8 int main()
9 {

10 string input("Input test 123 4.7 A");
11
12 string string1;
13 string string2;
14 int integer;
15 double double1;
16 char character;
17
18 inputString >> string1 >> string2 >> integer >> double1 >> character;
19
20 cout << "The following items were extracted\n"
21 << "from the istringstream object:" << "\nstring: " << string1
22 << "\nstring: " << string2 << "\n int: " << integer
23 << "\ndouble: " << double1 << "\n char: " << character;
24
25 // attempt to read from empty stream
26 long value;
27
28
29 // test stream results
30 if ()
31 cout << "\n\nlong value is: " << value << endl;
32 else
33 cout << "\n\ninputString is empty" << endl;
34 } // end main

Fig. 18.12 | Demonstrating input from an istringstream object. (Part 1 of 2.)

#include <sstream>

istringstream inputString(input);

inputString >> value;

inputString.good()

18.13 Wrap-Up 717

18.13 Wrap-Up
This chapter discussed the details of C++ Standard Library class string. We discussed as-
signing, concatenating, comparing, searching and swapping strings. We also introduced a
number of methods to determine string characteristics, to find, replace and insert charac-
ters in a string, and to convert strings to C-style strings and vice versa. You also learned
about string iterators and performing input from and output to strings in memory. In
Chapter 19, Searching and Sorting, we discuss the binary search algorithm and the merge
sort algorithm. We also use Big O notation to analyze and compare the efficiency of vari-
ous searching and sorting algorithms.

The following items were extracted
from the istringstream object:
string: Input
string: test

int: 123
double: 4.7

char: A

inputString is empty

Fig. 18.12 | Demonstrating input from an istringstream object. (Part 2 of 2.)

Summary
Section 18.1 Introduction
• Class template basic_string provides typical string-manipulation operations.

• The typedef statement

typedef basic_string< char > string;

creates the alias type string for basic_string<char> (p. 697). A typedef also is provided for the
wchar_t type (wstring). Type wchar_t (p. 697) normally stores two-byte (16-bit) characters for
supporting other character sets. The size of wchar_t is not fixed by the standard.

• To use strings, include C++ Standard Library header <string>.

• Assigning a single character to a string object is permitted in an assignment statement.

• strings are not necessarily null terminated.

• Most string member functions take as arguments a starting subscript location and the number
of characters on which to operate.

Section 18.2 string Assignment and Concatenation
• Class string provides overloaded operator= and member function assign (p. 698) for assign-

ments.

• The subscript operator, [], provides read/write access to any element of a string.

• string member function at (p. 700) provides checked access—going past either end of the string
throws an out_of_range exception. The subscript operator, [], does not provide checked access.

• The overloaded + and += operators and member function append (p. 700) perform string con-
catenation.

718 Chapter 18 Class string and String Stream Processing

Section 18.3 Comparing strings
• Class string provides overloaded ==, !=, <, >, <= and >= operators for string comparisons.

• string member function compare (p. 702) compares two strings (or substrings) and returns 0
if the strings are equal, a positive number if the first string is lexicographically (p. 702) greater
than the second or a negative number if the first string is lexicographically less than the second.

Section 18.4 Substrings
• string member function substr (p. 703) retrieves a substring from a string.

Section 18.5 Swapping strings
• string member function swap (p. 703) swaps the contents of two strings.

Section 18.6 string Characteristics
• string member functions size and length (p. 698) return the number of characters currently

stored in a string.

• string member function capacity (p. 706) returns the total number of characters that can be
stored in a string without increasing the amount of memory allocated to the string.

• string member function max_size (p. 706) returns the maximum size a string can have.

• string member function resize (p. 706) changes the length of a string.

• string member function empty returns true if a string is empty.

Section 18.7 Finding Substrings and Characters in a string
• Class string find functions (p. 706) find, rfind, find_first_of, find_last_of and

find_first_not_of locate substrings or characters in a string.

Section 18.8 Replacing Characters in a string
• string member function erase (p. 708) deletes elements of a string.x

• string member function replace (p. 710) replaces characters in a string.

Section 18.9 Inserting Characters into a string
• string member function insert (p. 710) inserts characters in a string.

Section 18.10 Conversion to C-Style Pointer-Based char * Strings
• string member function c_str (p. 712) returns a const char * pointing to a null-terminated

C-style character string that contains all the characters in a string.

• string member function data (p. 712) returns a const char * pointing to a non-null-terminat-
ed C-style character array that contains all the characters in a string.

Section 18.11 Iterators
• Class string provides member functions begin and end (p. 713) to iterate through individual

elements.

• Class string provides member functions rend and rbegin (p. 714) for accessing individual
string characters in reverse from the end of a string toward the beginning.

Section 18.12 String Stream Processing
• Input from a string is supported by type istringstream (p. 714). Output to a string is sup-

ported by type ostringstream (p. 714).

• ostringstream member function str (p. 714) returns the string from the stream.

Self-Review Exercises 719

Self-Review Exercises
18.1 Fill in the blanks in each of the following:

a) Header must be included for class string.
b) Class string belongs to the namespace.
c) Function deletes characters from a string.
d) Function finds the first occurrence of one of a specified set of characters from

a string.

18.2 State which of the following statements are true and which are false. If a statement is false,
explain why.

a) Concatenation of string objects can be performed with the addition assignment oper-
ator, +=.

b) Characters within a string begin at index 0.
c) The assignment operator, =, copies a string.
d) A C-style string is a string object.

18.3 Find the error(s) in each of the following, and explain how to correct it (them):
a) string string1(28); // construct string1

string string2('z'); // construct string2

b) // assume std namespace is known

const char *ptr = name.data(); // name is "joe bob"

ptr[3] = '-';

cout << ptr << endl;

Answers to Self-Review Exercises
18.1 a) <string>. b) std. c) erase. d) find_first_of.

18.2 a) True.
b) True.
c) True.
d) False. A string is an object that provides many different services. A C-style string does

not provide any services. C-style strings are null terminated; strings are not necessarily
null terminated. C-style strings are pointers and strings are objects.

18.3 a) Constructors for class string do not exist for integer and character arguments. Other
valid constructors should be used—converting the arguments to strings if need be.

b) Function data does not add a null terminator. Also, the code attempts to modify a
const char. Replace all of the lines with the code:
cout << name.substr(0, 3) + "-" + name.substr(4) << endl;

Exercises
18.4 (Fill in the Blanks) Fill in the blanks in each of the following:

a) Class string member function converts a string to a C-style string.
b) Class string member function is used for assignment.
c) is the return type of function rbegin.
d) Class string member function is used to retrieve a substring.

18.5 (True or False) State which of the following statements are true and which are false. If a
statement is false, explain why.

a) strings are always null terminated.
b) Class string member function max_size returns the maximum size for a string.
c) Class string member function at can throw an out_of_range exception.
d) Class string member function begin returns an iterator.

720 Chapter 18 Class string and String Stream Processing

18.6 (Find Code Errors) Find any errors in the following and explain how to correct them:
a) std::cout << s.data() << std::endl; // s is "hello"

b) erase(s.rfind("x"), 1); // s is "xenon"

c) string& foo()

{
string s("Hello");

... // other statements

return;

} // end function foo

18.7 (Simple Encryption) Some information on the Internet may be encrypted with a simple al-
gorithm known as “rot13,” which rotates each character by 13 positions in the alphabet. Thus, 'a'
corresponds to 'n', and 'x' corresponds to 'k'. rot13 is an example of symmetric key encryption.
With symmetric key encryption, both the encrypter and decrypter use the same key.

a) Write a program that encrypts a message using rot13.
b) Write a program that decrypts the scrambled message using 13 as the key.
c) After writing the programs of part (a) and part (b), briefly answer the following ques-

tion: If you did not know the key for part (b), how difficult do you think it would be
to break the code? What if you had access to substantial computing power (e.g., super-
computers)? In Exercise 18.25 we ask you to write a program to accomplish this.

18.8 (Using string Iterators) Write a program using iterators that demonstrates the use of func-
tions rbegin and rend.

18.9 (Words Ending in “r” or “ay”) Write a program that reads in several strings and prints only
those ending in “r” or “ay”. Only lowercase letters should be considered.

18.10 (string Concatenation) Write a program that separately inputs a first name and a last name
and concatenates the two into a new string. Show two techniques for accomplishing this task.

18.11 (Hangman Game) Write a program that plays the game of Hangman. The program should
pick a word (which is either coded directly into the program or read from a text file) and display the
following:

Guess the word: XXXXXX

Each X represents a letter. The user tries to guess the letters in the word. The appropriate response
yes or no should be displayed after each guess. After each incorrect guess, display the diagram with
another body part filled. After seven incorrect guesses, the user should be hanged. The display
should look as follows:

O
/|\
|

/ \

After each guess, display all user guesses. If the user guesses the word correctly, display

Congratulations!!! You guessed my word. Play again? yes/no

18.12 (Printing a string Backward) Write a program that inputs a string and prints the string

backward. Convert all uppercase characters to lowercase and all lowercase characters to uppercase.

18.13 (Alphabetizing Animal Names) Write a program that uses the comparison capabilities in-
troduced in this chapter to alphabetize a series of animal names. Only uppercase letters should be
used for the comparisons.

18.14 (Cryptograms) Write a program that creates a cryptogram out of a string. A cryptogram is
a message or word in which each letter is replaced with another letter. For example the string

The bird was named squawk

Exercises 721

might be scrambled to form

cin vrjs otz ethns zxqtop

Spaces are not scrambled. In this particular case, 'T' was replaced with 'x', each 'a' was replaced
with 'h', etc. Uppercase letters become lowercase letters in the cryptogram. Use techniques similar
to those in Exercise 18.7.

18.15 (Solving Cryptograms) Modify Exercise 18.14 to allow the user to solve the cryptogram.
The user should input two characters at a time: The first character specifies a letter in the crypto-
gram, and the second letter specifies the replacement letter. If the replacement letter is correct, re-
place the letter in the cryptogram with the replacement letter in uppercase.

18.16 (Counting Palindromes) Write a program that inputs a sentence and counts the number of
palindromes in it. A palindrome is a word that reads the same backward and forward. For example,
"tree" is not a palindrome, but "noon" is.

18.17 (Counting Vowels) Write a program that counts the total number of vowels in a sentence.
Output the frequency of each vowel.

18.18 (String Insertion) Write a program that inserts the characters "******" in the exact middle
of a string.

18.19 (Erasing Characters from a string) Write a program that erases the sequences "by" and
"BY" from a string.

18.20 (Replacing Punctuation and Tokenizing strings) Write a program that inputs a line of text,
replaces all punctuation marks with spaces and uses the C-string library function strtok to tokenize
the string into individual words.

18.21 (Reversing a string with Iterators) Write a program that inputs a line of text and prints the
text backward. Use iterators in your solution.

18.22 (Reversing a string with Iterators using Recursion) Write a recursive version of
Exercise 18.21.

18.23 (Using the erase Functions with Iterator Arguments) Write a program that demonstrates
the use of the erase functions that take iterator arguments.

18.24 (Letter Pyramid) Write a program that generates the following from the string "abcdef-

ghijklmnopqrstuvwxyz":

a
bcb

cdedc
defgfed

efghihgfe
fghijkjihgf

ghijklmlkjihg
hijklmnonmlkjih

ijklmnopqponmlkji
jklmnopqrsrqponmlkj

klmnopqrstutsrqponmlk
lmnopqrstuvwvutsrqponml

mnopqrstuvwxyxwvutsrqponm
nopqrstuvwxyz{zyxwvutsrqpon

18.25 (Simple Decryption) In Exercise 18.7, we asked you to write a simple encryption algorithm.
Write a program that will attempt to decrypt a “rot13” message using simple frequency substitution.
(Assume that you do not know the key.) The most frequent letters in the encrypted phrase should
be replaced with the most commonly used English letters (a, e, i, o, u, s, t, r, etc.). Write the possi-
bilities to a file. What made the code breaking easy? How can the encryption mechanism be improved?

722 Chapter 18 Class string and String Stream Processing

18.26 (Sorting strings) Write a version of the selection sort routine (Fig. 8.20) that sorts strings.
Use function swap in your solution.

18.27 (Enhanced Employee Class) Modify class Employee in Figs. 13.2–13.3 by adding a private

utility function called isValidSocialSecurityNumber. This member function should validate the
format of a social security number (e.g., ###-##-####, where # is a digit). If the format is valid, re-
turn true; otherwise return false.

Making a Difference
18.28 (Cooking with Healthier Ingredients) Obesity in the United States is increasing at an alarm-
ing rate. Check the map from the Centers for Disease Control and Prevention (CDC) at
www.cdc.gov/nccdphp/dnpa/Obesity/trend/maps/index.htm, which shows obesity trends in the
United States over the last 20 years. As obesity increases, so do occurrences of related problems (e.g.,
heart disease, high blood pressure, high cholesterol, type 2 diabetes). Write a program that helps
users choose healthier ingredients when cooking, and helps those allergic to certain foods (e.g., nuts,
gluten) find substitutes. The program should read a recipe from the user and suggest healthier re-
placements for some of the ingredients. For simplicity, your program should assume the recipe has
no abbreviations for measures such as teaspoons, cups, and tablespoons, and uses numerical digits
for quantities (e.g., 1 egg, 2 cups) rather than spelling them out (one egg, two cups). Some common
substitutions are shown in Fig. 18.13. Your program should display a warning such as, “Always con-
sult your physician before making significant changes to your diet.”

Your program should take into consideration that replacements are not always one-for-one.
For example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead.
Conversion data for measurements and substitutes can be obtained at websites such as:

chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

Ingredient Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses
or 1/4 cup agave nectar

1 cup butter 1 cup margarine or yogurt

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese
or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour
or potato starch or 2 egg whites
or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk

1/4 cup oil 1/4 cup applesauce

white bread whole-grain bread

Fig. 18.13 | Common ingredient substitutions.

www.cdc.gov/nccdphp/dnpa/Obesity/trend/maps/index.htm
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

Making a Difference 723

Your program should consider the user’s health concerns, such as high cholesterol, high blood pres-
sure, weight loss, gluten allergy, and so on. For high cholesterol, the program should suggest substi-
tutes for eggs and dairy products; if the user wishes to lose weight, low-calorie substitutes for
ingredients such as sugar should be suggested.

18.29 (Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dollars a year in
spam-prevention software, equipment, network resources, bandwidth, and lost productivity.
Research online some of the most common spam e-mail messages and words, and check your own
junk e-mail folder. Create a list of 30 words and phrases commonly found in spam messages. Write
an application in which the user enters an e-mail message. Then, scan the message for each of the
30 keywords or phrases. For each occurrence of one of these within the message, add a point to the
message’s “spam score.” Next, rate the likelihood that the message is spam, based on the number of
points it received.

18.30 (SMS Language) Short Message Service (SMS) is a communications service that allows
sending text messages of 160 or fewer characters between mobile phones. With the proliferation of
mobile phone use worldwide, SMS is being used in many developing nations for political purposes
(e.g., voicing opinions and opposition), reporting news about natural disasters, and so on. For ex-
ample, check out comunica.org/radio2.0/archives/87. Since the length of SMS messages is lim-
ited, SMS Language—abbreviations of common words and phrases in mobile text messages, e-
mails, instant messages, etc.—is often used. For example, “in my opinion” is “IMO” in SMS Lan-
guage. Research SMS Language online. Write a program in which the user can enter a message using
SMS Language; the program should translate it into English (or your own language). Also provide
a mechanism to translate text written in English (or your own language) into SMS Language. One
potential problem is that one SMS abbreviation could expand into a variety of phrases. For example,
IMO (as used above) could also stand for “International Maritime Organization,” “in memory of,”
“in my opinion,” etc.

19 Searching and Sorting

With sobs and tears
he sorted out
Those of the largest size …
—Lewis Carroll

Attempt the end, and never
stand to doubt;
Nothing’s so hard, but search
will find it out.
—Robert Herrick

‘Tis in my memory lock’d,
And you yourself shall keep the
key of it.
—William Shakespeare

It is an immutable law in
business that words are words,
explanations are explanations,
promises are promises — but
only performance is reality.
—Harold S. Green

O b j e c t i v e s
In this chapter you’ll learn:

■ To search for a given value in
a vector using binary search.

■ To use Big O notation to
express the efficiency of
searching and sorting
algorithms and to compare
their performance.

■ To sort a vector using the
recursive merge sort
algorithm.

■ To understand the nature of
algorithms of constant, linear
and quadratic runtime.

19.1 Introduction 725

19.1 Introduction
Searching data involves determining whether a value (referred to as the search key) is pres-
ent in the data and, if so, finding the value’s location. Two popular search algorithms are
the simple linear search (introduced in Section 7.7) and the faster but more complex bi-
nary search, which is introduced in this chapter.

Sorting places data in ascending or descending order, based on one or more sort keys.
A list of names could be sorted alphabetically, bank accounts could be sorted by account
number, employee payroll records could be sorted by social security number, and so on.
Previously, you learned about insertion sort (Section 7.8) and selection sort (Section 8.6).
Here we introduce the more efficient, but more complex merge sort. Figure 19.1 summa-
rizes the searching and sorting algorithms discussed in the book’s examples and exercises.
This chapter also introduces Big O notation, which is used to characterize an algorithm’s
worst-case runtime—that is, how hard an algorithm may have to work to solve a problem.

19.2 Searching Algorithms
Looking up a phone number, accessing a website and checking a word’s definition in a dic-
tionary all involve searching through large amounts of data. A searching algorithm finds
an element that matches a given search key, if such an element does, in fact, exist. There
are, however, a number of things that differentiate search algorithms from one another.

19.1 Introduction
19.2 Searching Algorithms

19.2.1 Efficiency of Linear Search
19.2.2 Binary Search

19.3 Sorting Algorithms

19.3.1 Efficiency of Selection Sort
19.3.2 Efficiency of Insertion Sort
19.3.3 Merge Sort (A Recursive

Implementation)
19.4 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Algorithm Location Algorithm Location

Searching Algorithms Sorting Algorithms

Linear search Section 7.7 Insertion sort Section 7.8

Binary search Section 19.2.2 Selection sort Section 8.6

Recursive linear search Exercise 19.8 Recursive merge sort Section 19.3.3

Recursive binary search Exercise 19.9 Bubble sort Exercises 19.5–19.6

Binary tree search Section 20.7 Bucket sort Exercise 19.7

Linear search (linked list) Exercise 20.21 Recursive quicksort Exercise 19.10

binary_search standard
library function

Section 22.8.6 Binary tree sort Section 20.7

sort standard
library function

Section 22.8.6

Heap sort Section 22.8.12

Fig. 19.1 | Searching and sorting algorithms in this text.

726 Chapter 19 Searching and Sorting

The major difference is the amount of effort they require to complete the search. One way
to describe this effort is with Big O notation. For searching and sorting algorithms, this is
particularly dependent on the number of data elements.

In Chapter 7, we discussed the simple linear search algorithm. We’ll now discuss the
efficiency of the linear search algorithm as measured by Big O notation. Then, we’ll intro-
duce a searching algorithm that’s relatively efficient but more complex to implement.

19.2.1 Efficiency of Linear Search
Suppose an algorithm simply tests whether the first element of a vector is equal to the sec-
ond element. If the vector has 10 elements, this algorithm requires only one comparison.
If the vector has 1000 elements, the algorithm still requires only one comparison. In fact,
the algorithm is independent of the number of vector elements. This algorithm is said to
have a constant runtime, which is represented in Big O notation as O(1). An algorithm
that’s O(1) does not necessarily require only one comparison. O(1) just means that the
number of comparisons is constant—it does not grow as the size of the vector increases. An
algorithm that tests whether the first element of a vector is equal to any of the next three
elements will always require three comparisons, but in Big O notation it’s still considered
O(1). O(1) is often pronounced “on the order of 1” or more simply “order 1.”

An algorithm that tests whether the first element of a vector is equal to any of the other
elements of the vector requires at most n – 1 comparisons, where n is the number of ele-
ments in the vector. If the vector has 10 elements, the algorithm requires up to nine com-
parisons. If the vector has 1000 elements, the algorithm requires up to 999 comparisons.
As n grows larger, the n part of the expression “dominates,” and subtracting one becomes
inconsequential. Big O is designed to highlight these dominant terms and ignore terms
that become unimportant as n grows. For this reason, an algorithm that requires a total of
n – 1 comparisons (such as the one we described in this paragraph) is said to be O(n). An
O(n) algorithm is referred to as having a linear runtime. O(n) is often pronounced “on the
order of n” or more simply “order n.”

Now suppose you have an algorithm that tests whether any element of a vector is
duplicated elsewhere in the vector. The first element must be compared with all the other
elements. The second element must be compared with all the other elements except the first
(it was already compared to the first). The third element must be compared with all the
other elements except the first two. In the end, this algorithm will end up making (n – 1)
+ (n – 2) + … + 2 + 1 or n2/2 – n/2 comparisons. As n increases, the n2 term dominates
and the n term becomes inconsequential. Again, Big O notation highlights the n2 term,
leaving n2/2. As we’ll soon see, even constant factors are omitted in Big O notation.

Big O is concerned with how an algorithm’s runtime grows in relation to the number
of items processed. Suppose an algorithm requires n2 comparisons. With four elements,
the algorithm will require 16 comparisons; with eight elements, 64 comparisons. With this
algorithm, doubling the number of elements quadruples the number of comparisons. Con-
sider a similar algorithm requiring n2/2 comparisons. With four elements, the algorithm
will require eight comparisons; with eight elements, 32 comparisons. Again, doubling the
number of elements quadruples the number of comparisons. Both of these algorithms
grow as the square of n, so Big O ignores the constant, and both algorithms are considered
to be O(n2), which is referred to as quadratic runtime and pronounced “on the order of
n-squared” or more simply “order n-squared.”

19.2 Searching Algorithms 727

When n is small, O(n2) algorithms (running on today’s billion-operation-per-second
personal computers) will not noticeably affect performance. But as n grows, you’ll start to
notice the performance degradation. An O(n2) algorithm running on a million-element
vector would require a trillion “operations” (where each could actually require several
machine instructions to execute). This could require a few hours to execute. A billion-ele-
ment vector would require a quintillion operations, a number so large that the algorithm
could take decades! Unfortunately, O(n2) algorithms tend to be easy to write. In this
chapter, you’ll see algorithms with more favorable Big O measures. Such efficient algo-
rithms often take a bit more cleverness and effort to create, but their superior performance
can be worth the extra effort, especially as n gets large.

The linear search algorithm runs in O(n) time. The worst case in this algorithm is that
every element must be checked to determine whether the search key exists in the vector. If
the size of the vector is doubled, the number of comparisons that the algorithm must per-
form is also doubled. Linear search can provide outstanding performance if the element
matching the search key happens to be at or near the front of the vector. But we seek algo-
rithms that perform well, on average, across all searches, including those where the element
matching the search key is near the end of the vector. If a program needs to perform many
searches on large vectors, it may be better to implement a different, more efficient algo-
rithm, such as the binary search which we consider in the next section.

19.2.2 Binary Search
The binary search algorithm is more efficient than the linear search algorithm, but it re-
quires that the vector first be sorted. This is only worthwhile when the vector, once sorted,
will be searched a great many times—or when the searching application has stringent per-
formance requirements. The first iteration of this algorithm tests the middle element in
the vector. If this matches the search key, the algorithm ends. Assuming the vector is sorted
in ascending order, then if the search key is less than the middle element, the search key
cannot match any element in the second half of the vector so the algorithm continues with
only the first half of the vector (i.e., the first element up to, but not including, the middle
element). If the search key is greater than the middle element, the search key cannot match
any element in the first half of the vector so the algorithm continues with only the second
half of the vector (i.e., the element after the middle element through the last element).
Each iteration tests the middle value of the remaining portion of the vector. If the element
does not match the search key, the algorithm eliminates half of the remaining elements.
The algorithm ends either by finding an element that matches the search key or by reduc-
ing the subvector to zero size.

As an example, consider the sorted 15-element vector

and the search key 65. A binary search would first check whether 51 is the search key (be-
cause 51 is the middle element of the vector). The search key (65) is larger than 51, so 51

Performance Tip 19.1
Sometimes the simplest algorithms perform poorly. Their virtue is that they’re easy to pro-
gram, test and debug. Sometimes more complex algorithms are required to realize maxi-
mum performance.

2 3 5 10 27 30 34 51 56 65 77 81 82 93 99

728 Chapter 19 Searching and Sorting

is eliminated from consideration along with the first half of the vector (all elements smaller
than 51.) Next, the algorithm checks whether 81 (the middle element of the remainder of
the vector) matches the search key. The search key (65) is smaller than 81, so 81 is elimi-
nated from consideration along with the elements larger than 81. After just two tests, the
algorithm has narrowed the number of elements to check to three (56, 65 and 77). The
algorithm then checks 65 (which matches the search key), and returns the index (9) of the
vector element containing 65. In this case, the algorithm required just three comparisons
to determine whether a vector element matched the search key. Using a linear search algo-
rithm would have required 10 comparisons. [Note: In this example, we’ve chosen to use a
vector with 15 elements, so that there will always be an obvious middle element in the vec-
tor. With an even number of elements, the middle of the vector lies between two elements.
We implement the algorithm to choose the larger of those two elements.]

Figures 19.2–19.3 define class BinarySearch and its member functions, respectively.
Class BinarySearch is similar to LinearSearch (Section 7.7)—it has a constructor, a
search function (binarySearch), a displayElements function, two private data mem-
bers and a private utility function (displaySubElements). Lines 11–21 of Fig. 19.3
define the constructor. After initializing the vector with random ints from 10–99 (lines
17–18), line 20 calls the Standard Library function sort on the vector data. Recall that
the binary search algorithm will work only on a sorted vector. Function sort requires two
arguments that specify the range of elements to sort. These arguments are specified with
iterators (discussed in detail in Chapter 22, Standard Template Library (STL)). The
vector member functions begin and end return iterators that can be used with function
sort to indicate that all the elements from the beginning to the end should be sorted.

1 // Fig 19.2: BinarySearch.h
2 // Class that contains a vector of random integers and a function
3 // that uses binary search to find an integer.
4 #include <vector>
5 using namespace std;
6
7 class BinarySearch
8 {
9 public:

10 BinarySearch(int); // constructor initializes vector
11
12 void displayElements() const; // display vector elements
13 private:
14 int size; // vector size
15 vector< int > data; // vector of ints
16 void displaySubElements(int, int) const; // display range of values
17 }; // end class BinarySearch

Fig. 19.2 | BinarySearch class definition.

1 // Fig 19.3: BinarySearch.cpp
2 // BinarySearch class member-function definition.
3 #include <iostream>

Fig. 19.3 | BinarySearch class member-function definition. (Part 1 of 3.)

int binarySearch(int) const; // perform a binary search on vector

19.2 Searching Algorithms 729

4 #include <cstdlib> // prototypes for functions srand and rand
5 #include <ctime> // prototype for function time
6 #include <algorithm> // prototype for sort function
7 #include "BinarySearch.h" // class BinarySearch definition
8 using namespace std;
9

10 // constructor initializes vector with random ints and sorts the vector
11 BinarySearch::BinarySearch(int vectorSize)
12 {
13 size = (vectorSize > 0 ? vectorSize : 10); // validate vectorSize
14 srand(time(0)); // seed using current time
15
16 // fill vector with random ints in range 10-99
17 for (int i = 0; i < size; ++i)
18 data.push_back(10 + rand() % 90); // 10-99
19
20 sort(data.begin(), data.end()); // sort the data
21 } // end BinarySearch constructor
22
23
24
25 {
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 return location; // return location of search key
54 } // end function binarySearch
55

Fig. 19.3 | BinarySearch class member-function definition. (Part 2 of 3.)

// perform a binary search on the data
int BinarySearch::binarySearch(int searchElement) const

int low = 0; // low end of the search area
int high = size - 1; // high end of the search area
int middle = (low + high + 1) / 2; // middle element
int location = -1; // return value; -1 if not found

do // loop to search for element
{

// print remaining elements of vector to be searched
displaySubElements(low, high);

// output spaces for alignment
for (int i = 0; i < middle; ++i)
cout << " ";

cout << " * " << endl; // indicate current middle

// if the element is found at the middle
if (searchElement == data[middle])

location = middle; // location is the current middle
else if (searchElement < data[middle]) // middle is too high

high = middle - 1; // eliminate the higher half
else // middle element is too low

low = middle + 1; // eliminate the lower half

middle = (low + high + 1) / 2; // recalculate the middle
} while ((low <= high) && (location == -1));

730 Chapter 19 Searching and Sorting

Lines 24–54 define function binarySearch. The search key is passed into parameter
searchElement (line 24). Lines 26–28 calculate the low end index, high end index and
middle index of the portion of the vector that the program is currently searching. At the
beginning of the function, the low end is 0, the high end is the size of the vector minus 1
and the middle is the average of these two values. Line 29 initializes the location of the
found element to -1—the value that will be returned if the search key is not found. Lines
31–51 loop until low is greater than high (this occurs when the element is not found) or
location does not equal -1 (indicating that the search key was found). Line 43 tests
whether the value in the middle element is equal to searchElement. If this is true, line 44
assigns middle to location. Then the loop terminates and location is returned to the
caller. Each iteration of the loop tests a single value (line 43) and eliminates half of the
remaining values in the vector (line 46 or 48).

Lines 22–38 of Fig. 19.4 loop until the user enters the value -1. For each other
number the user enters, the program performs a binary search on the data to determine
whether it matches an element in the vector. The first line of output from this program is
the vector of ints, in increasing order. When the user instructs the program to search for
38, the program first tests the middle element, which is 67 (as indicated by *). The search
key is less than 67, so the program eliminates the second half of the vector and tests the
middle element from the first half of the vector. The search key equals 38, so the program
returns the index 3.

56 // display values in vector
57 void BinarySearch::displayElements() const
58 {
59 displaySubElements(0, size - 1);
60 } // end function displayElements
61
62 // display certain values in vector
63 void BinarySearch::displaySubElements(int low, int high) const
64 {
65 for (int i = 0; i < low; ++i) // output spaces for alignment
66 cout << " ";
67
68 for (int i = low; i <= high; ++i) // output elements left in vector
69 cout << data[i] << " ";
70
71 cout << endl;
72 } // end function displaySubElements

1 // Fig 19.4: Fig19_04.cpp
2 // BinarySearch test program.
3 #include <iostream>
4 #include "BinarySearch.h" // class BinarySearch definition
5 using namespace std;
6

Fig. 19.4 | BinarySearch test program. (Part 1 of 3.)

Fig. 19.3 | BinarySearch class member-function definition. (Part 3 of 3.)

19.2 Searching Algorithms 731

7 int main()
8 {
9 int searchInt; // search key

10 int position; // location of search key in vector
11
12 // create vector and output it
13 BinarySearch searchVector (15);
14 searchVector.displayElements();
15
16 // get input from user
17 cout << "\nPlease enter an integer value (-1 to quit): ";
18 cin >> searchInt; // read an int from user
19 cout << endl;
20
21 // repeatedly input an integer; -1 terminates the program
22 while (searchInt != -1)
23 {
24
25
26
27 // return value of -1 indicates integer was not found
28 if (position == -1)
29 cout << "The integer " << searchInt << " was not found.\n";
30 else
31 cout << "The integer " << searchInt
32 << " was found in position " << position << ".\n";
33
34 // get input from user
35 cout << "\n\nPlease enter an integer value (-1 to quit): ";
36 cin >> searchInt; // read an int from user
37 cout << endl;
38 } // end while
39 } // end main

26 31 33 38 47 49 49 67 73 74 82 89 90 91 95

Please enter an integer value (-1 to quit): 38

26 31 33 38 47 49 49 67 73 74 82 89 90 91 95
*

26 31 33 38 47 49 49
*

The integer 38 was found in position 3.

Please enter an integer value (-1 to quit): 91

26 31 33 38 47 49 49 67 73 74 82 89 90 91 95
*

73 74 82 89 90 91 95
*
90 91 95

*
The integer 91 was found in position 13.

Fig. 19.4 | BinarySearch test program. (Part 2 of 3.)

// use binary search to try to find integer
position = searchVector.binarySearch(searchInt);

732 Chapter 19 Searching and Sorting

Efficiency of Binary Search
In the worst-case scenario, searching a sorted vector of 1023 elements will take only 10 com-
parisons when using a binary search. Repeatedly dividing 1023 by 2 (because, after each
comparison, we can eliminate from consideration half of the remaining vector) and rounding
down (because we also remove the middle element) yields the values 511, 255, 127, 63, 31,
15, 7, 3, 1 and 0. The number 1023 (210 – 1) is divided by 2 only 10 times to get the value
0, which indicates that there are no more elements to test. Dividing by 2 is equivalent to one
comparison in the binary search algorithm. Thus, a vector of 1,048,575 (220 – 1) elements
takes a maximum of 20 comparisons to find the key, and a vector of about one billion ele-
ments takes a maximum of 30 comparisons to find the key. This is a tremendous improve-
ment in performance over the linear search. For a one-billion-element vector, this is a
difference between an average of 500 million comparisons for the linear search and a maxi-
mum of only 30 comparisons for the binary search! The maximum number of comparisons
needed for the binary search of any sorted vector is the exponent of the first power of 2 great-
er than the number of elements in the vector, which is represented as log2 n. All logarithms
grow at roughly the same rate, so in Big O notation the base can be omitted. This results in
a Big O of O(log n) for a binary search, which is also known as logarithmic runtime and
pronounced “on the order of log n” or more simply “order log n.”

19.3 Sorting Algorithms
Sorting data (i.e., placing the data into some particular order, such as ascending or de-
scending) is one of the most important computing applications. A bank sorts all of its
checks by account number so that it can prepare individual bank statements at the end of
each month. Telephone companies sort their lists of accounts by last name and, further,
by first name to make it easy to find phone numbers. Virtually every organization must
sort some data, and often, massive amounts of it. Sorting data is an intriguing, computer-
intensive problem that has attracted intense research efforts.

An important point to understand about sorting is that the end result—the sorted vector—
will be the same no matter which algorithm you use to sort the vector. The choice of algorithm
affects only the runtime and memory use of the program. In previous chapters, we introduced
the selection sort and insertion sort—simple algorithms to implement, but inefficient. The
next section examines the efficiency of these two algorithms using Big O notation. The

Please enter an integer value (-1 to quit): 25

26 31 33 38 47 49 49 67 73 74 82 89 90 91 95
*

26 31 33 38 47 49 49
*

26 31 33
*

26
*
The integer 25 was not found.

Please enter an integer value (-1 to quit): -1

Fig. 19.4 | BinarySearch test program. (Part 3 of 3.)

19.3 Sorting Algorithms 733

last algorithm—merge sort, which we introduce in this chapter—is much faster but is
more difficult to implement.

19.3.1 Efficiency of Selection Sort
Selection sort is an easy-to-implement, but inefficient, sorting algorithm. Its first iteration
selects the smallest element in the vector and swaps it with the first element. The second
iteration selects the second-smallest element (which is the smallest element of the remain-
ing elements) and swaps it with the second element. The algorithm continues until the last
iteration selects the second-largest element and swaps it with the second-to-last element,
leaving the largest element in the last index. After the ith iteration, the smallest i elements
of the vector will be sorted into increasing order in the first i elements of the vector.

The selection sort algorithm iterates n – 1 times, each time swapping the smallest
remaining element into its sorted position. Locating the smallest remaining element
requires n – 1 comparisons during the first iteration, n – 2 during the second iteration,
then n – 3, … , 3, 2, 1. This results in a total of n(n – 1)/2 or (n2 – n)/2 comparisons. In
Big O notation, smaller terms drop out and constants are ignored, leaving a final Big O of
O(n2).

19.3.2 Efficiency of Insertion Sort
Insertion sort is another simple, but inefficient, sorting algorithm. The algorithm’s first iter-
ation takes the second element in the vector and, if it’s less than the first element, swaps it
with the first element. The second iteration looks at the third element and inserts it into the
correct position with respect to the first two elements, so all three elements are in order. At
the ith iteration of this algorithm, the first i elements in the original vector will be sorted.

Insertion sort iterates n – 1 times, inserting an element into the appropriate position
in the elements sorted so far. For each iteration, determining where to insert the element
can require comparing the element to each of the preceding elements—n – 1 comparisons
in the worst case. Each individual repetition statement runs in O(n) time. For determining
Big O notation, nested statements mean that you must multiply the number of compari-
sons. For each iteration of an outer loop, there will be a certain number of iterations of the
inner loop. In this algorithm, for each O(n) iteration of the outer loop, there will be O(n)
iterations of the inner loop, resulting in a Big O of O(n * n) or O(n2).

19.3.3 Merge Sort (A Recursive Implementation)
Merge sort is an efficient sorting algorithm but is conceptually more complex than selec-
tion sort and insertion sort. The merge sort algorithm sorts a vector by splitting it into two
equal-sized subvectors, sorting each subvector then merging them into one larger vector.
With an odd number of elements, the algorithm creates the two subvectors such that one
has one more element than the other.

Merge sort performs the merge by looking at the first element in each vector, which
is also the smallest element in the vector. Merge sort takes the smallest of these and places
it in the first element of the larger, sorted vector. If there are still elements in the subvector,
merge sort looks at the second element in that subvector (which is now the smallest ele-
ment remaining) and compares it to the first element in the other subvector. Merge sort
continues this process until the larger vector is filled.

734 Chapter 19 Searching and Sorting

The implementation of merge sort in this example is recursive. The base case is a vector
with one element. A one-element vector is, of course, sorted, so merge sort immediately
returns when it’s called with a one-element vector. The recursion step splits a vector of two
or more elements into two equal-sized subvectors, recursively sorts each subvector, then
merges them into one larger, sorted vector. [Again, if there is an odd number of elements,
one subvector is one element larger than the other.]

Suppose the algorithm has already merged smaller vectors to create sorted vectors A:

and B:

Merge sort combines these two vectors into one larger, sorted vector. The smallest value
in A is 4 (located in the zeroth element of A). The smallest value in B is 5 (located in the
zeroth element of B). In order to determine the smallest element in the larger vector, the
algorithm compares 4 and 5. The value from A is smaller, so 4 becomes the value of the
first element in the merged vector. The algorithm continues by comparing 10 (the value
of the second element in A) to 5 (the value of the first element in B). The value from B is
smaller, so 5 becomes the value of the second element in the larger vector. The algorithm
continues by comparing 10 to 30, with 10 becoming the value of the third element in the
vector, and so on.

Figure 19.5 defines class MergeSort, and lines 22–25 of Fig. 19.6 define the sort func-
tion. Line 24 calls function sortSubVector with 0 and size – 1 as the arguments. These
arguments correspond to the beginning and ending indices of the vector to be sorted, causing
sortSubVector to operate on the entire vector. Function sortSubVector is defined in lines
28–52. Line 31 tests the base case. If the size of the vector is 0, the vector is already sorted,
so the function simply returns immediately. If the size of the vector is greater than or equal
to 1, the function splits the vector in two, recursively calls function sortSubVector to sort
the two subvectors, then merges them. Line 46 recursively calls function sortSubVector on
the first half of the vector, and line 47 recursively calls function sortSubVector on the
second half of the vector. When these two function calls return, each half of the vector has
been sorted. Line 50 calls function merge (lines 55–99) on the two halves of the vector to
combine the two sorted vectors into one larger sorted vector.

4 10 34 56 77

5 30 51 52 93

1 // Fig 19.5: MergeSort.h
2 // Class that creates a vector filled with random integers.
3 // Provides a function to sort the vector with merge sort.
4 #include <vector>
5 using namespace std;
6
7 // MergeSort class definition
8 class MergeSort
9 {

10 public:
11 MergeSort(int); // constructor initializes vector
12 void sort(); // sort vector using merge sort
13 void displayElements() const; // display vector elements

Fig. 19.5 | MergeSort class definition. (Part 1 of 2.)

19.3 Sorting Algorithms 735

14 private:
15 int size; // vector size
16 vector< int > data; // vector of ints
17 void sortSubVector(int, int); // sort subvector
18 void merge(int, int, int, int); // merge two sorted vectors
19 void displaySubVector(int, int) const; // display subvector
20 }; // end class SelectionSort

1 // Fig 19.6: MergeSort.cpp
2 // Class MergeSort member-function definition.
3 #include <iostream>
4 #include <vector>
5 #include <cstdlib> // prototypes for functions srand and rand
6 #include <ctime> // prototype for function time
7 #include "MergeSort.h" // class MergeSort definition
8 using namespace std;
9

10 // constructor fill vector with random integers
11 MergeSort::MergeSort(int vectorSize)
12 {
13 size = (vectorSize > 0 ? vectorSize : 10); // validate vectorSize
14 srand(time(0)); // seed random number generator using current time
15
16 // fill vector with random ints in range 10-99
17 for (int i = 0; i < size; ++i)
18 data.push_back(10 + rand() % 90);
19 } // end MergeSort constructor
20
21 // split vector, sort subvectors and merge subvectors into sorted vector
22 void MergeSort::sort()
23 {
24
25 } // end function sort
26
27
28
29
30 // test base case; size of vector equals 1
31 if () // if not base case
32 {
33
34
35
36 // output split step
37 cout << "split: ";
38
39 cout << endl << " ";
40
41 cout << endl << " ";

Fig. 19.6 | MergeSort class member-function definition. (Part 1 of 3.)

Fig. 19.5 | MergeSort class definition. (Part 2 of 2.)

sortSubVector(0, size - 1); // recursively sort entire vector

// recursive function to sort subvectors
void MergeSort::sortSubVector(int low, int high)
{

(high - low) >= 1

int middle1 = (low + high) / 2; // calculate middle of vector
int middle2 = middle1 + 1; // calculate next element over

displaySubVector(low, high);

displaySubVector(low, middle1);

736 Chapter 19 Searching and Sorting

42
43 cout << endl << endl;
44
45
46
47
48
49
50
51 } // end if
52 } // end function sortSubVector
53
54
55
56 {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Fig. 19.6 | MergeSort class member-function definition. (Part 2 of 3.)

displaySubVector(middle2, high);

// split vector in half; sort each half (recursive calls)
sortSubVector(low, middle1); // first half of vector
sortSubVector(middle2, high); // second half of vector

// merge two sorted vectors after split calls return
merge(low, middle1, middle2, high);

// merge two sorted subvectors into one sorted subvector
void MergeSort::merge(int left, int middle1, int middle2, int right)

int leftIndex = left; // index into left subvector
int rightIndex = middle2; // index into right subvector
int combinedIndex = left; // index into temporary working vector
vector< int > combined(size); // working vector

// output two subvectors before merging
cout << "merge: ";
displaySubVector(left, middle1);
cout << endl << " ";
displaySubVector(middle2, right);
cout << endl;

// merge vectors until reaching end of either
while (leftIndex <= middle1 && rightIndex <= right)
{

// place smaller of two current elements into result
// and move to next space in vector
if (data[leftIndex] <= data[rightIndex])

combined[combinedIndex++] = data[leftIndex++];
else

combined[combinedIndex++] = data[rightIndex++];
} // end while

if (leftIndex == middle2) // if at end of left vector
{

while (rightIndex <= right) // copy in rest of right vector
combined[combinedIndex++] = data[rightIndex++];

} // end if
else // at end of right vector
{

while (leftIndex <= middle1) // copy in rest of left vector
combined[combinedIndex++] = data[leftIndex++];

} // end else

// copy values back into original vector
for (int i = left; i <= right; ++i)

data[i] = combined[i];

19.3 Sorting Algorithms 737

Lines 70–78 in function merge loop until the program reaches the end of either sub-
vector. Line 74 tests which element at the beginning of the vectors is smaller. If the ele-
ment in the left vector is smaller, line 75 places it in position in the combined vector. If
the element in the right vector is smaller, line 77 places it in position in the combined
vector. When the while loop has completed (line 78), one entire subvector is placed in the
combined vector, but the other subvector still contains data. Line 80 tests whether the left
vector has reached the end. If so, lines 82–83 fill the combined vector with the elements
of the right vector. If the left vector has not reached the end, then the right vector must
have reached the end, and lines 87–88 fill the combined vector with the elements of the
left vector. Finally, lines 92–93 copy the combined vector into the original vector.
Figure 19.7 creates and uses a MergeSort object. The output from this program displays
the splits and merges performed by merge sort, showing the progress of the sort at each
step of the algorithm.

94
95
96
97
98
99 } // end function merge
100
101 // display elements in vector
102 void MergeSort::displayElements() const
103 {
104 displaySubVector(0, size - 1);
105 } // end function displayElements
106
107 // display certain values in vector
108 void MergeSort::displaySubVector(int low, int high) const
109 {
110 // output spaces for alignment
111 for (int i = 0; i < low; ++i)
112 cout << " ";
113
114 // output elements left in vector
115 for (int i = low; i <= high; ++i)
116 cout << " " << data[i];
117 } // end function displaySubVector

1 // Fig 19.7: Fig19_07.cpp
2 // MergeSort test program.
3 #include <iostream>
4 #include "MergeSort.h" // class MergeSort definition
5 using namespace std;
6
7 int main()
8 {

Fig. 19.7 | MergeSort test program. (Part 1 of 3.)

Fig. 19.6 | MergeSort class member-function definition. (Part 3 of 3.)

// output merged vector
cout << " ";
displaySubVector(left, right);
cout << endl << endl;

738 Chapter 19 Searching and Sorting

9 // create object to perform merge sort
10 MergeSort sortVector(10);
11
12 cout << "Unsorted vector:" << endl;
13 sortVector.displayElements(); // print unsorted vector
14 cout << endl << endl;
15
16 sortVector.sort(); // sort vector
17
18 cout << "Sorted vector:" << endl;
19 sortVector.displayElements(); // print sorted vector
20 cout << endl;
21 } // end main

Unsorted vector:
30 47 22 67 79 18 60 78 26 54

split: 30 47 22 67 79 18 60 78 26 54
30 47 22 67 79

18 60 78 26 54

split: 30 47 22 67 79
30 47 22

67 79

split: 30 47 22
30 47

22

split: 30 47
30

47

merge: 30
47

30 47

merge: 30 47
22

22 30 47

split: 67 79
67

79

merge: 67
79

67 79

merge: 22 30 47
67 79

22 30 47 67 79

split: 18 60 78 26 54
18 60 78

26 54

Fig. 19.7 | MergeSort test program. (Part 2 of 3.)

19.3 Sorting Algorithms 739

Efficiency of Merge Sort
Merge sort is a far more efficient algorithm than either insertion sort or selection sort (al-
though that may be difficult to believe when looking at the rather busy output in
Fig. 19.7). Consider the first (nonrecursive) call to function sortSubVector (line 24).
This results in two recursive calls to function sortSubVector with subvectors each approx-
imately half the size of the original vector, and a single call to function merge. This call to
function merge requires, at worst, n – 1 comparisons to fill the original vector, which is
O(n). (Recall that each vector element is chosen by comparing one element from each of
the subvectors.) The two calls to function sortSubVector result in four more recursive
calls to function sortSubVector—each with a subvector approximately one-quarter the
size of the original vector—and two calls to function merge. These two calls to function
merge each require, at worst, n/2 – 1 comparisons, for a total number of comparisons of
O(n). This process continues, each call to sortSubVector generating two additional calls
to sortSubVector and a call to merge, until the algorithm has split the vector into one-
element subvectors. At each level, O(n) comparisons are required to merge the subvectors.
Each level splits the size of the vectors in half, so doubling the size of the vector requires

split: 18 60 78
18 60

78

split: 18 60
18

60

merge: 18
60

18 60

merge: 18 60
78

18 60 78

split: 26 54
26

54

merge: 26
54

26 54

merge: 18 60 78
26 54

18 26 54 60 78

merge: 22 30 47 67 79
18 26 54 60 78

18 22 26 30 47 54 60 67 78 79

Sorted vector:
18 22 26 30 47 54 60 67 78 79

Fig. 19.7 | MergeSort test program. (Part 3 of 3.)

740 Chapter 19 Searching and Sorting

one more level. Quadrupling the size of the vector requires two more levels. This pattern
is logarithmic and results in log2 n levels. This results in a total efficiency of O(n log n).

Figure 19.8 summarizes the searching and sorting algorithms we cover in this book
and lists the Big O for each. Figure 19.9 lists the Big O categories we’ve covered in this
chapter along with a number of values for n to highlight the differences in the growth rates.

19.4 Wrap-Up
This chapter discussed searching and sorting data. We discussed the binary search algorithm,
which is faster but more complex than linear search (Section 7.7). The binary search algo-
rithm will work only on a sorted array; each iteration of binary search eliminates from con-
sideration half of the elements in the array. You learned the merge sort algorithm, which is
more efficient than either the insertion sort (Section 7.8) or the selection sort (Section 8.6).
We also introduced Big O notation, which helps you express the efficiency of an algorithm.
Big O notation measures the worst-case runtime for an algorithm. The Big O value is useful
for comparing algorithms in order to choose the most efficient one. In the next chapter,
you’ll learn about dynamic data structures that can grow or shrink at execution time.

Algorithm Location Big O

Searching Algorithms

Linear search Section 7.7 O(n)

Binary search Section 19.2.2 O(log n)

Recursive linear search Exercise 19.8 O(n)

Recursive binary search Exercise 19.9 O(log n)

Sorting Algorithms

Insertion sort Section 7.8 O(n2)

Selection sort Section 8.6 O(n2)

Merge sort Section 19.3.3 O(n log n)

Bubble sort Exercises 19.5 and 19.6 O(n2)

Quicksort Exercise 19.10 Worst case: O(n2)
Average case: O(n log n)

Fig. 19.8 | Searching and sorting algorithms with Big O values.

n
Approximate
decimal value O(log n) O(n) O(n log n) O(n2)

210 1000 10 210 210 ⋅ 10 220

220 1,000,000 20 220 220 ⋅ 20 240

230 1,000,000,000 30 230 230 ⋅ 30 260

Fig. 19.9 | Approximate number of comparisons for common Big O notations.

Summary 741

Summary
Section 19.1 Introduction
• Searching data involves determining whether a search key (p. 725) is present in the data and, if

so, finding its location.

• Sorting (p. 725) involves arranging data into order.

• One way to describe the efficiency of an algorithm is with Big O notation (p. 725), which indi-
cates how hard an algorithm may have to work to solve a problem.

Section 19.2 Searching Algorithms
• A key difference among searching algorithms is the amount of effort they require to return a result.

Section 19.2.1 Efficiency of Linear Search
• For searching and sorting algorithms, Big O describes how the amount of effort of a particular

algorithm varies depending on how many elements are in the data.

• An algorithm that’s O(1) has a constant runtime (p. 726)—the number of comparisons does not
grow as the size of the vector increases.

• An O(n) algorithm is referred to as having a linear runtime (p. 726).

• Big O highlights dominant factors and ignores terms that are unimportant with high values of n.

• Big O notation represents the growth rate of algorithm runtimes, so constants are ignored.

• The linear search algorithm runs in O(n) time.

• In the worst case for linear search every element must be checked to determine whether the search
element exists. This occurs if the search key is the last element in the vector or is not present.

Section 19.2.2 Binary Search
• Binary search (p. 727) is more efficient than linear search, but it requires that the vector first be

sorted. This is worthwhile only when the vector, once sorted, will be searched many times.

• The first iteration of binary search tests the middle element. If this is the search key, the algorithm
returns its location. If the search key is less than the middle element, binary search continues with
the first half of the vector. If the search key is greater than the middle element, binary search con-
tinues with the second half. Each iteration tests the middle value of the remaining vector and, if the
element is not found, eliminates from consideration half of the remaining elements.

• Binary search is more efficient than linear search, because with each comparison it eliminates
from consideration half of the elements in the vector.

• Binary search runs in O(log n) (p. 732) time.

• If the size of the vector is doubled, binary search requires only one extra comparison to complete.

Section 19.3.1 Efficiency of Selection Sort
• Selection sort is a simple, but inefficient, sorting algorithm.

• The first iteration of selection sort selects the smallest element and swaps it with the first element.
The second iteration selects the second-smallest element (which is the smallest remaining ele-
ment) and swaps it with the second element. This continues until the last iteration selects the
second-largest element and swaps it with the second-to-last index, leaving the largest element in
the last index. At the ith iteration, the smallest i elements are sorted into the first i elements.

Section 19.3.2 Efficiency of Insertion Sort
• The selection sort algorithm runs in O(n2) time (p. 726).

742 Chapter 19 Searching and Sorting

• The first iteration of insertion sort takes the second element value and, if it’s less than the first,
swaps it with the first. The second iteration looks at the third element value and inserts it in the
correct position with respect to the first two element values. After the ith iteration of insertion
sort, the first i element values in the original vector are sorted. Only n – 1 iterations are required.

• The insertion sort algorithm runs in O(n2) time.

Section 19.3.3 Merge Sort (A Recursive Implementation)
• Merge sort (p. 733) is faster, but more complex to implement, than selection sort and insertion

sort.

• The merge sort algorithm sorts a vector by splitting the vector into two equal-sized subvectors,
sorting each subvector and merging the subvectors into one larger vector.

• Merge sort’s base case is a vector with one element. A one-element vector is already sorted, so
merge sort immediately returns when it’s called with a one-element vector. The merge part of
merge sort takes two sorted vectors (these could be one-element vectors) and combines them into
one larger sorted vector.

• Merge sort performs the merge by looking at the first element in each vector, which is also the
smallest element in the vector. Merge sort takes the smallest of these and places it in the first el-
ement of the larger, sorted vector. If there are still elements in the subvector, merge sort looks at
the second element in that subvector (which is now the smallest element remaining) and com-
pares it to the first element in the other subvector. Merge sort continues this process until the
larger vector is filled.

• In the worst case, the first call to merge sort has to make O(n) comparisons to fill the n slots in
the final vector.

• The merging portion of the merge sort algorithm is performed on two subvectors, each of ap-
proximately size n/2. Creating each of these subvectors requires n/2 – 1 comparisons for each
subvector, or O(n) comparisons total. This pattern continues, as each level works on twice as
many vectors, but each is half the size of the previous vector.

• Similar to binary search, this halving results in log n levels, each level requiring O(n) compari-
sons, for a total efficiency of O(n log n) (p. 740).

Self-Review Exercises
19.1 Fill in the blanks in each of the following statements:

a) A selection sort application would take approximately times as long to run
on a 128-element vector as on a 32-element vector.

b) The efficiency of merge sort is .

19.2 What key aspect of both the binary search and the merge sort accounts for the logarithmic
portion of their respective Big Os?

19.3 In what sense is the insertion sort superior to the merge sort? In what sense is the merge sort
superior to the insertion sort?

19.4 In the text, we say that after the merge sort splits the vector into two subvectors, it then sorts
these two subvectors and merges them. Why might someone be puzzled by our statement that “it
then sorts these two subvectors”?

Answers to Self-Review Exercises
19.1 a) 16, because an O(n2) algorithm takes 16 times as long to sort four times as much infor-
mation. b) O(n log n).

Exercises 743

19.2 Both of these algorithms incorporate “halving”—somehow reducing something by half.
The binary search eliminates from consideration half of the vector after each comparison. The
merge sort splits the vector in half each time it’s called.

19.3 The insertion sort is easier to understand and to implement than the merge sort. The merge
sort is far more efficient (O(n log n)) than the insertion sort (O(n2)).

19.4 In a sense, it does not really sort these two subvectors. It simply keeps splitting the original
vector in half until it provides a one-element subvector, which is, of course, sorted. It then builds
up the original two subvectors by merging these one-element vectors to form larger subvectors,
which are then merged, and so on.

Exercises
[Note: Most of the exercises shown here are duplicates of exercises from Chapters 7–8. We include
the exercises again here as a convenience for readers studying searching and sorting in this chapter.]

19.5 (Bubble Sort) Implement bubble sort—another simple yet inefficient sorting technique. It’s
called bubble sort or sinking sort because smaller values gradually “bubble” their way to the top of
the vector (i.e., toward the first element) like air bubbles rising in water, while the larger values sink
to the bottom (end) of the vector. The technique uses nested loops to make several passes through
the vector. Each pass compares successive pairs of elements. If a pair is in increasing order (or the
values are equal), the bubble sort leaves the values as they are. If a pair is in decreasing order, the
bubble sort swaps their values in the vector.

The first pass compares the first two element values of the vector and swaps them if necessary.
It then compares the second and third element values in the vector. The end of this pass compares
the last two element values in the vector and swaps them if necessary. After one pass, the largest
value will be in the last element. After two passes, the largest two values will be in the last two ele-
ments. Explain why bubble sort is an O(n2) algorithm.

19.6 (Enhanced Bubble Sort) Make the following simple modifications to improve the perfor-
mance of the bubble sort you developed in Exercise 19.5:

a) After the first pass, the largest value is guaranteed to be in the highest-numbered ele-
ment of the vector; after the second pass, the two highest values are “in place”; and so
on. Instead of making nine comparisons (for a 10-element vector) on every pass, modify
the bubble sort to make only the eight necessary comparisons on the second pass, seven
on the third pass, and so on.

b) The data in the vector may already be in the proper order or near-proper order, so why
make nine passes (of a 10-element vector) if fewer will suffice? Modify the sort to check
at the end of each pass whether any swaps have been made. If none have been made, the
data must already be in the proper order, so the program should terminate. If swaps
have been made, at least one more pass is needed.

19.7 (Bucket Sort) A bucket sort begins with a one-dimensional vector of positive integers to be
sorted and a two-dimensional vector of integers with rows indexed from 0 to 9 and columns indexed
from 0 to n – 1, where n is the number of values to be sorted. Each row of the two-dimensional
vector is referred to as a bucket. Write a class named BucketSort containing a function called sort

that operates as follows:
a) Place each value of the one-dimensional vector into a row of the bucket vector, based

on the value’s “ones” (rightmost) digit. For example, 97 is placed in row 7, 3 is placed
in row 3 and 100 is placed in row 0. This procedure is called a distribution pass.

b) Loop through the bucket vector row by row, and copy the values back to the original
vector. This procedure is called a gathering pass. The new order of the preceding values
in the one-dimensional vector is 100, 3 and 97.

744 Chapter 19 Searching and Sorting

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).
On the second (tens digit) pass, 100 is placed in row 0, 3 is placed in row 0

(because 3 has no tens digit) and 97 is placed in row 9. After the gathering pass, the
order of the values in the one-dimensional vector is 100, 3 and 97. On the third (hun-
dreds digit) pass, 100 is placed in row 1, 3 is placed in row 0 and 97 is placed in row 0
(after the 3). After this last gathering pass, the original vector is in sorted order.

Note that the two-dimensional vector of buckets is 10 times the length of the inte-
ger vector being sorted. This sorting technique provides better performance than a
bubble sort, but requires much more memory—the bubble sort requires space for only
one additional element of data. This comparison is an example of the space–time
trade-off: The bucket sort uses more memory than the bubble sort, but performs bet-
ter. This version of the bucket sort requires copying all the data back to the original
vector on each pass. Another possibility is to create a second two-dimensional bucket
vector and repeatedly swap the data between the two bucket vectors.

19.8 (Recursive Linear Search) Modify Exercise 7.33 to use recursive function recursiveLin-

earSearch to perform a linear search of the vector. The function should receive the search key and
starting index as arguments. If the search key is found, return its index in the vector; otherwise, re-
turn –1. Each call to the recursive function should check one element value in the vector.

19.9 (Recursive Binary Search) Modify Fig. 19.3 to use recursive function recursiveBinary-

Search to perform a binary search of the vector. The function should receive the search key, starting
index and ending index as arguments. If the search key is found, return its index in the vector. If the
search key is not found, return –1.

19.10 (Quicksort) The recursive sorting technique called quicksort uses the following basic algo-
rithm for a one-dimensional vector of values:

a) Partitioning Step: Take the first element of the unsorted vector and determine its final
location in the sorted vector (i.e., all values to the left of the element in the vector are
less than the element’s value, and all values to the right of the element in the vector are
greater than the element’s value—we show how to do this below). We now have one
value in its proper location and two unsorted subvectors.

b) Recursion Step: Perform the Partitioning Step on each unsorted subvector. Each time the
Partitioning Step is performed on a subvector, another value is placed in its final location
of the sorted vector, and two unsorted subvectors are created. When a subvector consists
of one element, that element’s value is in its final location (because a one-element vector
is already sorted).

The basic algorithm seems simple enough, but how do we determine the final posi-
tion of the first element value of each subvector? As an example, consider the following
set of values (the value in bold is for the partitioning element—it will be placed in its
final location in the sorted vector):

37 2 6 4 89 8 10 12 68 45

Starting from the rightmost element of the vector, compare each element value with 37
until an element value less than 37 is found; then swap 37 and that element’s value.
The first element value less than 37 is 12, so 37 and 12 are swapped. The new vector is

12 2 6 4 89 8 10 37 68 45

Element value 12 is in italics to indicate that it was just swapped with 37.
Starting from the left of the vector, but beginning with the element value after 12,

compare each element value with 37 until an element value greater than 37 is found—
then swap 37 and that element value. The first element value greater than 37 is 89, so
37 and 89 are swapped. The new vector is

12 2 6 4 37 8 10 89 68 45

Exercises 745

Starting from the right, but beginning with the element value before 89, compare each
element value with 37 until an element value less than 37 is found—then swap 37 and
that element value. The first element value less than 37 is 10, so 37 and 10 are
swapped. The new vector is

12 2 6 4 10 8 37 89 68 45

Starting from the left, but beginning with the element value after 10, compare each
element value with 37 until an element value greater than 37 is found—then swap 37
and that element value. There are no more element values greater than 37, so when we
compare 37 with itself, we know that 37 has been placed in its final location of the
sorted vector. Every value to the left of 37 is smaller than it, and every value to the
right of 37 is larger than it.

Once the partition has been applied on the previous vector, there are two unsorted
subvectors. The subvector with values less than 37 contains 12, 2, 6, 4, 10 and 8. The
subvector with values greater than 37 contains 89, 68 and 45. The sort continues
recursively, with both subvectors being partitioned in the same manner as the original
vector.

Based on the preceding discussion, write recursive function quickSortHelper to
sort a one-dimensional integer vector. The function should receive as arguments a
starting index and an ending index on the original vector being sorted.

20 Custom Templatized
Data Structures

Much that I bound,
I could not free;
Much that I freed
returned to me.
—Lee Wilson Dodd

‘Will you walk a little faster?’
said a whiting to a snail,
‘There’s a porpoise close behind
us, and he’s treading on my tail.’
—Lewis Carroll

There is always room at the top.
—Daniel Webster

Push on—keep moving.
—Thomas Morton

I’ll turn over a new leaf.
—Miguel de Cervantes

O b j e c t i v e s
In this chapter you’ll learn:
■ To form linked data structures

using pointers, self-referential
classes and recursion.

■ To create and manipulate
dynamic data structures such
as linked lists, queues, stacks
and binary trees.

■ To use binary search trees for
high-speed searching and
sorting.

■ To understand important
applications of linked data
structures.

■ To understand how to create
reusable data structures with
class templates, inheritance
and composition.

20.1 Introduction 747

20.1 Introduction
We’ve studied fixed-size data structures such as one-dimensional arrays and two-dimen-
sional arrays. This chapter introduces dynamic data structures that grow and shrink dur-
ing execution. Linked lists are collections of data items logically “lined up in a row”—
insertions and removals are made anywhere in a linked list. Stacks are important in com-
pilers and operating systems: Insertions and removals are made only at one end of a stack—
its top. Queues represent waiting lines; insertions are made at the back (also referred to as
the tail) of a queue and removals are made from the front (also referred to as the head) of
a queue. Binary trees facilitate high-speed searching and sorting of data, efficient elimina-
tion of duplicate data items, representation of file-system directories and compilation of ex-
pressions into machine language. These data structures have many other interesting
applications.

We discuss several popular and important data structures and implement programs
that create and manipulate them. We use classes, class templates, inheritance and compo-
sition to create and package these data structures for reusability and maintainability.

This chapter is solid preparation for Chapter 22, Standard Template Library (STL).
The STL is a major portion of the C++ Standard Library. The STL provides containers,
iterators for traversing those containers and algorithms for processing the containers’ ele-
ments. You’ll see that the STL has taken each of the data structures we discuss in this
chapter and packaged them into templatized classes. The STL code is carefully written to
be portable, efficient and extensible. Once you understand the principles and construction
of data structures, you’ll be able to make the best use of the prepackaged data structures,
iterators and algorithms in the STL, a world-class set of reusable components.

The chapter examples are practical programs that you’ll be able to use in more
advanced courses and in industry applications. The programs employ extensive pointer
manipulation. The exercises include a rich collection of useful applications.

We encourage you to attempt the optional major project described in the Special Sec-
tion: Building Your Own Compiler. You’ve been using a C++ compiler to translate your
programs to machine language so that you could execute these programs on your com-
puter. In this project, you’ll actually build your own compiler. It will read a file of state-
ments written in a simple, yet powerful, high-level language similar to early versions of the
popular language BASIC. Your compiler will translate these statements into a file of Sim-
pletron Machine Language (SML) instructions—SML is the language you learned in the
Chapter 8 Special Section, Building: Your Own Computer. Your Simpletron Simulator
program will then execute the SML program produced by your compiler! The special sec-

20.1 Introduction
20.2 Self-Referential Classes
20.3 Dynamic Memory Allocation and

Data Structures
20.4 Linked Lists

20.5 Stacks
20.6 Queues
20.7 Trees
20.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Compiler

748 Chapter 20 Custom Templatized Data Structures

tion carefully walks you through the specifications of the high-level language and describes
the algorithms you’ll need to convert each type of high-level language statement into
machine-language instructions. This chapter’s exercises suggest many enhancements to
both the compiler and the Simpletron Simulator.

20.2 Self-Referential Classes
A self-referential class contains a member that points to a class object of the same class
type. For example, the definition

defines a type, Node. Type Node has two private data members—integer member data
and pointer member nextPtr. Member nextPtr points to an object of type Node—anoth-
er object of the same type as the one being declared here, hence the term “self-referential
class.” Member nextPtr is referred to as a link—i.e., nextPtr can “tie” an object of type
Node to another object of the same type. Type Node also has five member functions—a con-
structor that receives an integer to initialize member data, a setData function to set the
value of member data, a getData function to return the value of member data, a set-

NextPtr function to set the value of member nextPtr and a getNextPtr function to return
the value of member nextPtr.

Self-referential class objects can be linked together to form useful data structures such
as lists, queues, stacks and trees. Figure 20.1 illustrates two self-referential class objects
linked together to form a list. Note that a slash—representing a null (0) pointer—is placed
in the link member of the second self-referential class object to indicate that the link does
not point to another object. The slash is only for illustration purposes; it does not corre-
spond to the backslash character in C++. A null pointer normally indicates the end of a
data structure just as the null character ('\0') indicates the end of a string.

class Node
{
public:

Node(int); // constructor
void setData(int); // set data member
int getData() const; // get data member
void setNextPtr(Node *); // set pointer to next Node
Node *getNextPtr() const; // get pointer to next Node

private:
int data; // data stored in this Node
Node *nextPtr; // pointer to another object of same type

}; // end class Node

Common Programming Error 20.1
Not setting the link in the last node of a linked data structure to null (0) is a (possibly
fatal) logic error.

Fig. 20.1 | Two self-referential class objects linked together.

15 10

20.3 Dynamic Memory Allocation and Data Structures 749

20.3 Dynamic Memory Allocation and Data Structures
Creating and maintaining dynamic data structures requires dynamic memory allocation,
which enables a program to obtain more memory at execution time to hold new nodes.
When that memory is no longer needed by the program, the memory can be released so
that it can be reused to allocate other objects in the future. The limit for dynamic memory
allocation can be as large as the amount of available physical memory in the computer or
the amount of available virtual memory in a virtual memory system. Often, the limits are
much smaller, because available memory must be shared among many programs.

The new operator takes as an argument the type of the object being dynamically allo-
cated and returns a pointer to an object of that type. For example, the statement

allocates sizeof(Node) bytes, runs the Node constructor and assigns the new Node’s ad-
dress to newPtr. If no memory is available, new throws a bad_alloc exception. The value
10 is passed to the Node constructor which initializes the Node’s data member to 10.

The delete operator runs the Node destructor and deallocates memory allocated with
new—the memory is returned to the system so that the memory can be reallocated in the
future. To free memory dynamically allocated by the preceding new, use the statement

Note that newPtr itself is not deleted; rather the destructor of the Node object that newPtr
points to is called and the object’s memory is freed. If pointer newPtr has the null pointer
value 0, the preceding statement has no effect. It is not an error to delete a null pointer.

The following sections discuss lists, stacks, queues and trees. The data structures pre-
sented in this chapter are created and maintained with dynamic memory allocation, self-
referential classes, class templates and function templates.

20.4 Linked Lists
A linked list is a linear collection of self-referential class objects, called nodes, connected
by pointer links—hence, the term “linked” list. A linked list is accessed via a pointer to
the list’s first node. Each subsequent node is accessed via the link-pointer member stored
in the previous node. By convention, the link pointer in the last node of a list is set to null
(0) to mark the end of the list. Data is stored in a linked list dynamically—each node is
created as necessary. A node can contain data of any type, including objects of other class-
es. If nodes contain base-class pointers to base-class and derived-class objects related by in-
heritance, we can have a linked list of such nodes and process them polymorphically using
virtual function calls. Stacks and queues are also linear data structures and, as we’ll see,
can be viewed as constrained versions of linked lists. Trees are nonlinear data structures.

Lists of data can be stored in arrays, but linked lists provide several advantages. A
linked list is appropriate when the number of data elements to be represented at one time
is unpredictable. Linked lists are dynamic, so the length of a list can increase or decrease as
necessary. The size of a “conventional” C++ array, however, cannot be altered, because the
array size is fixed at compile time. “Conventional” arrays can become full. Linked lists
become full only when the system has insufficient memory to satisfy additional dynamic
storage allocation requests.

Node *newPtr = new Node(10); // create Node with data 10

delete newPtr;

750 Chapter 20 Custom Templatized Data Structures

Linked lists can be maintained in sorted order by inserting each new element at the
proper point in the list. Existing list elements do not need to be moved. Pointers merely
need to be updated to point to the correct node.

Linked-list nodes are not stored contiguously in memory, but logically they appear to
be contiguous. Figure 20.2 illustrates a linked list with several nodes.

Linked List Implementation
The program of Figs. 20.3–20.5 uses a List class template (see Chapter 14 for informa-
tion on class templates) to manipulate a list of integer values and a list of floating-point
values. The driver program (Fig. 20.5) provides five options: 1) Insert a value at the begin-

Performance Tip 20.1
An array can be declared to contain more elements than the number of items expected, but
this can waste memory. Linked lists can provide better memory utilization in these sit-
uations. Linked lists allow the program to adapt at runtime. Class template vector

(Section 7.11) implements a dynamically resizable array-based data structure.

Performance Tip 20.2
Insertion and deletion in a sorted array can be time consuming—all the elements follow-
ing the inserted or deleted element must be shifted appropriately. A linked list allows effi-
cient insertion operations anywhere in the list.

Performance Tip 20.3
The elements of an array are stored contiguously in memory. This allows immediate ac-
cess to any element, because an element’s address can be calculated directly based on its
position relative to the beginning of the array. Linked lists do not afford such immediate
direct access to their elements. So accessing individual elements in a linked list can be con-
siderably more expensive than accessing individual elements in an array. The selection of
a data structure is typically based on the performance of specific operations used by a pro-
gram and the order in which the data items are maintained in the data structure. For
example, it’s typically more efficient to insert an item in a sorted linked list than a sorted
array.

Performance Tip 20.4
Using dynamic memory allocation (instead of fixed-size arrays) for data structures that
grow and shrink at execution time can save memory. Keep in mind, however, that pointers
occupy space and that dynamic memory allocation incurs the overhead of function calls.

Fig. 20.2 | A graphical representation of a list.

H D Q

firstPtr lastPtr

...

20.4 Linked Lists 751

ning of the list, 2) insert a value at the end of the list, 3) delete a value from the beginning
of the list, 4) delete a value from the end of the list and 5) end the list processing. A detailed
discussion of the program follows. Exercise 20.20 asks you to implement a recursive func-
tion that prints a linked list backward, and Exercise 20.21 asks you to implement a recur-
sive function that searches a linked list for a particular data item.

The program uses class templates ListNode (Fig. 20.3) and List (Fig. 20.4). Encap-
sulated in each List object is a linked list of ListNode objects. Class template ListNode

(Fig. 20.3) contains private members data and nextPtr (lines 19–20), a constructor to
initialize these members and function getData to return the data in a node. Member data
stores a value of type NODETYPE, the type parameter passed to the class template. Member
nextPtr stores a pointer to the next ListNode object in the linked list. Line 13 of the List-
Node class template definition declares class List< NODETYPE > as a friend. This makes all
member functions of a given specialization of class template List friends of the corre-
sponding specialization of class template ListNode, so they can access the private mem-
bers of ListNode objects of that type. Because the ListNode template parameter NODETYPE
is used as the template argument for List in the friend declaration, ListNodes specialized
with a particular type can be processed only by a List specialized with the same type (e.g.,
a List of int values manages ListNode objects that store int values).

1 // Fig. 20.3: ListNode.h
2 // Template ListNode class definition.
3 #ifndef LISTNODE_H
4 #define LISTNODE_H
5
6
7
8
9

10 template< typename NODETYPE >
11 class ListNode
12 {
13
14
15 public:
16 ListNode(const NODETYPE &); // constructor
17 NODETYPE getData() const; // return data in node
18 private:
19 NODETYPE data; // data
20
21 }; // end class ListNode
22
23 // constructor
24 template< typename NODETYPE>
25 ListNode< NODETYPE >::ListNode(const NODETYPE &info)
26 : data(info), nextPtr(0)
27 {
28 // empty body
29 } // end ListNode constructor
30

Fig. 20.3 | ListNode class-template definition. (Part 1 of 2.)

// forward declaration of class List required to announce that class
// List exists so it can be used in the friend declaration at line 13
template< typename NODETYPE > class List;

friend class List< NODETYPE >; // make List a friend

ListNode< NODETYPE > *nextPtr; // next node in list

752 Chapter 20 Custom Templatized Data Structures

Lines 23–24 of the List class template (Fig. 20.4) declare private data members
firstPtr (a pointer to the first ListNode in a List) and lastPtr (a pointer to the last
ListNode in a List). The default constructor (lines 31–36) initializes both pointers to 0

(null). The destructor (lines 39–59) ensures that all ListNode objects in a List object are
destroyed when that List object is destroyed. The primary List functions are insertAt-

Front (lines 62–74), insertAtBack (lines 77–89), removeFromFront (lines 92–110) and
removeFromBack (lines 113–140).

Function isEmpty (lines 143–147) is called a predicate function—it does not alter the
List; rather, it determines whether the List is empty (i.e., the pointer to the first node of
the List is null). If the List is empty, true is returned; otherwise, false is returned.
Function print (lines 158–178) displays the List’s contents. Utility function getNewNode

(lines 150–155) returns a dynamically allocated ListNode object. This function is called
from functions insertAtFront and insertAtBack.

31 // return copy of data in node
32 template< typename NODETYPE >
33 NODETYPE ListNode< NODETYPE >::getData() const
34 {
35 return data;
36 } // end function getData
37
38 #endif

Error-Prevention Tip 20.1
Assign null (0) to the link member of a new node. Pointers must be initialized before
they’re used.

1 // Fig. 20.4: List.h
2 // Template List class definition.
3 #ifndef LIST_H
4 #define LIST_H
5
6 #include <iostream>
7 #include "ListNode.h" // ListNode class definition
8 using namespace std;
9

10 template< typename NODETYPE >
11 class List
12 {
13 public:
14 List(); // constructor
15 ~List(); // destructor
16
17
18
19

Fig. 20.4 | List class-template definition. (Part 1 of 5.)

Fig. 20.3 | ListNode class-template definition. (Part 2 of 2.)

void insertAtFront(const NODETYPE &);
void insertAtBack(const NODETYPE &);
bool removeFromFront(NODETYPE &);
bool removeFromBack(NODETYPE &);

20.4 Linked Lists 753

20
21
22 private:
23
24
25
26 // utility function to allocate new node
27 ListNode< NODETYPE > *getNewNode(const NODETYPE &);
28 }; // end class List
29
30 // default constructor
31 template< typename NODETYPE >
32 List< NODETYPE >::List()
33 : firstPtr(0), lastPtr(0)
34 {
35 // empty body
36 } // end List constructor
37
38 // destructor
39 template< typename NODETYPE >
40 List< NODETYPE >::~List()
41 {
42 if (!isEmpty()) // List is not empty
43 {
44 cout << "Destroying nodes ...\n";
45
46 ListNode< NODETYPE > *currentPtr = firstPtr;
47 ListNode< NODETYPE > *tempPtr;
48
49 while (currentPtr != 0) // delete remaining nodes
50 {
51 tempPtr = currentPtr;
52 cout << tempPtr->data << '\n';
53 currentPtr = currentPtr->nextPtr;
54 delete tempPtr;
55 } // end while
56 } // end if
57
58 cout << "All nodes destroyed\n\n";
59 } // end List destructor
60
61 // insert node at front of list
62 template< typename NODETYPE >
63 void List< NODETYPE >::insertAtFront(const NODETYPE &value)
64 {
65 ListNode< NODETYPE > *newPtr = getNewNode(value); // new node
66
67 if (isEmpty()) // List is empty
68 firstPtr = lastPtr = newPtr; // new list has only one node
69 else // List is not empty
70 {
71 newPtr->nextPtr = firstPtr; // point new node to previous 1st node

Fig. 20.4 | List class-template definition. (Part 2 of 5.)

bool isEmpty() const;
void print() const;

ListNode< NODETYPE > *firstPtr; // pointer to first node
ListNode< NODETYPE > *lastPtr; // pointer to last node

754 Chapter 20 Custom Templatized Data Structures

72 firstPtr = newPtr; // aim firstPtr at new node
73 } // end else
74 } // end function insertAtFront
75
76 // insert node at back of list
77 template< typename NODETYPE >
78 void List< NODETYPE >::insertAtBack(const NODETYPE &value)
79 {
80 ListNode< NODETYPE > *newPtr = getNewNode(value); // new node
81
82 if (isEmpty()) // List is empty
83 firstPtr = lastPtr = newPtr; // new list has only one node
84 else // List is not empty
85 {
86 lastPtr->nextPtr = newPtr; // update previous last node
87 lastPtr = newPtr; // new last node
88 } // end else
89 } // end function insertAtBack
90
91 // delete node from front of list
92 template< typename NODETYPE >
93 bool List< NODETYPE >::removeFromFront(NODETYPE &value)
94 {
95 if (isEmpty()) // List is empty
96 return false; // delete unsuccessful
97 else
98 {
99 ListNode< NODETYPE > *tempPtr = firstPtr; // hold tempPtr to delete
100
101 if (firstPtr == lastPtr)
102 firstPtr = lastPtr = 0; // no nodes remain after removal
103 else
104 firstPtr = firstPtr->nextPtr; // point to previous 2nd node
105
106 value = tempPtr->data; // return data being removed
107 delete tempPtr; // reclaim previous front node
108 return true; // delete successful
109 } // end else
110 } // end function removeFromFront
111
112 // delete node from back of list
113 template< typename NODETYPE >
114 bool List< NODETYPE >::removeFromBack(NODETYPE &value)
115 {
116 if (isEmpty()) // List is empty
117 return false; // delete unsuccessful
118 else
119 {
120 ListNode< NODETYPE > *tempPtr = lastPtr; // hold tempPtr to delete
121
122 if (firstPtr == lastPtr) // List has one element
123 firstPtr = lastPtr = 0; // no nodes remain after removal

Fig. 20.4 | List class-template definition. (Part 3 of 5.)

20.4 Linked Lists 755

124 else
125 {
126 ListNode< NODETYPE > *currentPtr = firstPtr;
127
128 // locate second-to-last element
129 while (currentPtr->nextPtr != lastPtr)
130 currentPtr = currentPtr->nextPtr; // move to next node
131
132 lastPtr = currentPtr; // remove last node
133 currentPtr->nextPtr = 0; // this is now the last node
134 } // end else
135
136 value = tempPtr->data; // return value from old last node
137 delete tempPtr; // reclaim former last node
138 return true; // delete successful
139 } // end else
140 } // end function removeFromBack
141
142 // is List empty?
143 template< typename NODETYPE >
144 bool List< NODETYPE >::isEmpty() const
145 {
146 return firstPtr == 0;
147 } // end function isEmpty
148
149 // return pointer to newly allocated node
150 template< typename NODETYPE >
151 ListNode< NODETYPE > *List< NODETYPE >::getNewNode(
152 const NODETYPE &value)
153 {
154 return new ListNode< NODETYPE >(value);
155 } // end function getNewNode
156
157 // display contents of List
158 template< typename NODETYPE >
159 void List< NODETYPE >::print() const
160 {
161 if (isEmpty()) // List is empty
162 {
163 cout << "The list is empty\n\n";
164 return;
165 } // end if
166
167 ListNode< NODETYPE > *currentPtr = firstPtr;
168
169 cout << "The list is: ";
170
171 while (currentPtr != 0) // get element data
172 {
173 cout << currentPtr->data << ' ';
174 currentPtr = currentPtr->nextPtr;
175 } // end while
176

Fig. 20.4 | List class-template definition. (Part 4 of 5.)

756 Chapter 20 Custom Templatized Data Structures

In Fig. 20.5, Lines 69 and 73 create List objects for types int and double, respec-
tively. Lines 70 and 74 invoke the testList function template to manipulate objects.

177 cout << "\n\n";
178 } // end function print
179
180 #endif

1 // Fig. 20.5: Fig20_05.cpp
2 // List class test program.
3 #include <iostream>
4 #include <string>
5 #include "List.h" // List class definition
6 using namespace std;
7
8 // display program instructions to user
9 void instructions()

10 {
11 cout << "Enter one of the following:\n"
12 << " 1 to insert at beginning of list\n"
13 << " 2 to insert at end of list\n"
14 << " 3 to delete from beginning of list\n"
15 << " 4 to delete from end of list\n"
16 << " 5 to end list processing\n";
17 } // end function instructions
18
19 // function to test a List
20 template< typename T >
21 void testList(, const string &typeName)
22 {
23 cout << "Testing a List of " << typeName << " values\n";
24 instructions(); // display instructions
25
26 int choice; // store user choice
27 T value; // store input value
28
29 do // perform user-selected actions
30 {
31 cout << "? ";
32 cin >> choice;
33
34 switch (choice)
35 {
36 case 1: // insert at beginning
37 cout << "Enter " << typeName << ": ";
38 cin >> value;
39
40
41 break;

Fig. 20.5 | Manipulating a linked list. (Part 1 of 4.)

Fig. 20.4 | List class-template definition. (Part 5 of 5.)

List< T > &listObject

listObject.insertAtFront(value);
listObject.print();

20.4 Linked Lists 757

42 case 2: // insert at end
43 cout << "Enter " << typeName << ": ";
44 cin >> value;
45
46
47 break;
48 case 3: // remove from beginning
49 if ()
50 cout << value << " removed from list\n";
51
52
53 break;
54 case 4: // remove from end
55 if ()
56 cout << value << " removed from list\n";
57
58
59 break;
60 } // end switch
61 } while (choice < 5); // end do...while
62
63 cout << "End list test\n\n";
64 } // end function testList
65
66 int main()
67 {
68 // test List of int values
69
70 testList(integerList, "integer");
71
72 // test List of double values
73
74 testList(doubleList, "double");
75 } // end main

Testing a List of integer values
Enter one of the following:

1 to insert at beginning of list
2 to insert at end of list
3 to delete from beginning of list
4 to delete from end of list
5 to end list processing

? 1
Enter integer: 1
The list is: 1

? 1
Enter integer: 2
The list is: 2 1

? 2
Enter integer: 3
The list is: 2 1 3

Fig. 20.5 | Manipulating a linked list. (Part 2 of 4.)

listObject.insertAtBack(value);
listObject.print();

listObject.removeFromFront(value)

listObject.print();

listObject.removeFromBack(value)

listObject.print();

List< int > integerList;

List< double > doubleList;

758 Chapter 20 Custom Templatized Data Structures

? 2
Enter integer: 4
The list is: 2 1 3 4

? 3
2 removed from list
The list is: 1 3 4

? 3
1 removed from list
The list is: 3 4

? 4
4 removed from list
The list is: 3

? 4
3 removed from list
The list is empty

? 5
End list test

Testing a List of double values
Enter one of the following:

1 to insert at beginning of list
2 to insert at end of list
3 to delete from beginning of list
4 to delete from end of list
5 to end list processing

? 1
Enter double: 1.1
The list is: 1.1

? 1
Enter double: 2.2
The list is: 2.2 1.1

? 2
Enter double: 3.3
The list is: 2.2 1.1 3.3

? 2
Enter double: 4.4
The list is: 2.2 1.1 3.3 4.4

? 3
2.2 removed from list
The list is: 1.1 3.3 4.4

? 3
1.1 removed from list
The list is: 3.3 4.4

? 4
4.4 removed from list
The list is: 3.3

Fig. 20.5 | Manipulating a linked list. (Part 3 of 4.)

20.4 Linked Lists 759

Member Function insertAtFront
Over the next several pages, we discuss each of the member functions of class List in de-
tail. Function insertAtFront (Fig. 20.4, lines 62–74) places a new node at the front of
the list. The function consists of several steps:

1. Call function getNewNode (line 65), passing it value, which is a constant refer-
ence to the node value to be inserted.

2. Function getNewNode (lines 150–155) uses operator new to create a new list node
and return a pointer to this newly allocated node, which is assigned to newPtr in
insertAtFront (line 65).

3. If the list is empty (line 67), firstPtr and lastPtr are set to newPtr (line 68)—
i.e., the first and last node are the same node.

4. If the list is not empty (line 69), then the node pointed to by newPtr is threaded
into the list by copying firstPtr to newPtr->nextPtr (line 71), so that the new
node points to what used to be the first node of the list, and copying newPtr to
firstPtr (line 72), so that firstPtr now points to the new first node of the list.

Figure 20.6 illustrates function insertAtFront. Part (a) shows the list and the new node
before calling insertAtFront. The dashed arrows in part (b) illustrate Step 4 of the insert-
AtFront operation that enables the node containing 12 to become the new list front.

? 4
3.3 removed from list
The list is empty

? 5
End list test

All nodes destroyed

All nodes destroyed

Fig. 20.6 | Operation insertAtFront represented graphically.

Fig. 20.5 | Manipulating a linked list. (Part 4 of 4.)

7 11

firstPtr(a)

(b)

12

newPtr

7 11

firstPtr

12

newPtr

760 Chapter 20 Custom Templatized Data Structures

Member Function insertAtBack
Function insertAtBack (Fig. 20.4, lines 77–89) places a new node at the back of the list.
The function consists of several steps:

1. Call function getNewNode (line 80), passing it value, which is a constant refer-
ence to the node value to be inserted.

2. Function getNewNode (lines 150–155) uses operator new to create a new list node
and return a pointer to this newly allocated node, which is assigned to newPtr in
insertAtBack (line 80).

3. If the list is empty (line 82), then both firstPtr and lastPtr are set to newPtr

(line 83).

4. If the list is not empty (line 84), then the node pointed to by newPtr is threaded
into the list by copying newPtr into lastPtr->nextPtr (line 86), so that the new
node is pointed to by what used to be the last node of the list, and copying newPtr

to lastPtr (line 87), so that lastPtr now points to the new last node of the list.

Figure 20.7 illustrates an insertAtBack operation. Part (a) of the figure shows the list
and the new node before the operation. The dashed arrows in part (b) illustrate Step 4 of
function insertAtBack that enables a new node to be added to the end of a list that’s not
empty.

Member Function removeFromFront
Function removeFromFront (Fig. 20.4, lines 92–110) removes the front node of the list
and copies the node value to the reference parameter. The function returns false if an at-
tempt is made to remove a node from an empty list (lines 95–96) and returns true if the
removal is successful. The function consists of several steps:

1. Assign tempPtr the address to which firstPtr points (line 99). Eventually,
tempPtr will be used to delete the node being removed.

Fig. 20.7 | Operation insertAtBack represented graphically.

12 7 11 5

lastPtr newPtr

12 7 11 5

lastPtr newPtr

(a) firstNode

(b) firstNode

20.4 Linked Lists 761

2. If firstPtr is equal to lastPtr (line 101), i.e., if the list has only one element
prior to the removal attempt, then set firstPtr and lastPtr to zero (line 102)
to dethread that node from the list (leaving the list empty).

3. If the list has more than one node prior to removal, then leave lastPtr as is and
set firstPtr to firstPtr->nextPtr (line 104); i.e., modify firstPtr to point to
what was the second node prior to removal (and is now the new first node).

4. After all these pointer manipulations are complete, copy to reference parameter
value the data member of the node being removed (line 106).

5. Now delete the node pointed to by tempPtr (line 107).

6. Return true, indicating successful removal (line 108).

Figure 20.8 illustrates function removeFromFront. Part (a) illustrates the list before
the removal operation. Part (b) shows the actual pointer manipulations for removing the
front node from a nonempty list.

Member Function removeFromBack
Function removeFromBack (Fig. 20.4, lines 113–140) removes the back node of the list
and copies the node value to the reference parameter. The function returns false if an at-
tempt is made to remove a node from an empty list (lines 116–117) and returns true if
the removal is successful. The function consists of several steps:

1. Assign to tempPtr the address to which lastPtr points (line 120). Eventually,
tempPtr will be used to delete the node being removed.

2. If firstPtr is equal to lastPtr (line 122), i.e., if the list has only one element
prior to the removal attempt, then set firstPtr and lastPtr to zero (line 123)
to dethread that node from the list (leaving the list empty).

Fig. 20.8 | Operation removeFromFront represented graphically.

12 7 11 5

(a) firstPtr lastPtr

12 7 11 5

(b) firstPtr

tempPtr

lastPtr

762 Chapter 20 Custom Templatized Data Structures

3. If the list has more than one node prior to removal, then assign currentPtr the
address to which firstPtr points (line 126) to prepare to “walk the list.”

4. Now “walk the list” with currentPtr until it points to the node before the last
node. This node will become the last node after the remove operation completes.
This is done with a while loop (lines 129–130) that keeps replacing currentPtr

by currentPtr->nextPtr, while currentPtr->nextPtr is not lastPtr.

5. Assign lastPtr to the address to which currentPtr points (line 132) to dethread
the back node from the list.

6. Set currentPtr->nextPtr to zero (line 133) in the new last node of the list.

7. After all the pointer manipulations are complete, copy to reference parameter
value the data member of the node being removed (line 136).

8. Now delete the node pointed to by tempPtr (line 137).

9. Return true (line 138), indicating successful removal.

Figure 20.9 illustrates removeFromBack. Part (a) of the figure illustrates the list before
the removal operation. Part (b) of the figure shows the actual pointer manipulations.

Member Function print
Function print (lines 158–178) first determines whether the list is empty (line 161). If so,
it prints "The list is empty" and returns (lines 163–164). Otherwise, it iterates through
the list and outputs the value in each node. The function initializes currentPtr as a copy
of firstPtr (line 167), then prints the string "The list is: " (line 169). While current-
Ptr is not null (line 171), currentPtr->data is printed (line 173) and currentPtr is as-
signed the value of currentPtr->nextPtr (line 174). Note that if the link in the last node

Fig. 20.9 | Operation removeFromBack represented graphically.

currentPtr

12 7 11 5

lastPtr

12 7 11 5

tempPtr

currentPtr lastPtr

(a) firstNode

(b) firstNode

20.4 Linked Lists 763

of the list is not null, the printing algorithm will erroneously attempt to print past the end
of the list. The printing algorithm is identical for linked lists, stacks and queues (because
we base each of these data structures on the same linked list infrastructure).

Circular Linked Lists and Double Linked Lists
The kind of linked list we’ve been discussing is a singly linked list—the list begins with a
pointer to the first node, and each node contains a pointer to the next node “in sequence.”
This list terminates with a node whose pointer member has the value 0. A singly linked list
may be traversed in only one direction.

A circular, singly linked list (Fig. 20.10) begins with a pointer to the first node, and
each node contains a pointer to the next node. The “last node” does not contain a 0 pointer;
rather, the pointer in the last node points back to the first node, thus closing the “circle.”

A doubly linked list (Fig. 20.11) allows traversals both forward and backward. Such a
list is often implemented with two “start pointers”—one that points to the first element
of the list to allow front-to-back traversal of the list and one that points to the last element
to allow back-to-front traversal. Each node has both a forward pointer to the next node in
the list in the forward direction and a backward pointer to the next node in the list in the
backward direction. If your list contains an alphabetized telephone directory, for example,
a search for someone whose name begins with a letter near the front of the alphabet might
begin from the front of the list. Searching for someone whose name begins with a letter
near the end of the alphabet might begin from the back of the list.

In a circular, doubly linked list (Fig. 20.12), the forward pointer of the last node
points to the first node, and the backward pointer of the first node points to the last node,
thus closing the “circle.”

Fig. 20.10 | Circular, singly linked list.

Fig. 20.11 | Doubly linked list.

12 7 11 5

firstPtr

12 7 11 5

firstPtr lastPtr

764 Chapter 20 Custom Templatized Data Structures

20.5 Stacks
Chapter 14, Templates, explained the notion of a stack class template with an underlying
array implementation. In this section, we use an underlying pointer-based linked-list im-
plementation. We also discuss stacks in Chapter 22.

A stack data structure allows nodes to be added to the stack and removed from the
stack only at the top. For this reason, a stack is referred to as a last-in, first-out (LIFO) data
structure. One way to implement a stack is as a constrained version of a linked list. In such
an implementation, the link member in the last node of the stack is set to null (zero) to
indicate the bottom of the stack.

The primary member functions used to manipulate a stack are push and pop. Func-
tion push inserts a new node at the top of the stack. Function pop removes a node from the
top of the stack, stores the popped value in a reference variable that’s passed to the calling
function and returns true if the pop operation was successful (false otherwise).

Stacks have many interesting applications. For example, when a function call is made,
the called function must know how to return to its caller, so the return address is pushed
onto a stack. If a series of function calls occurs, the successive return values are pushed onto
the stack in last-in, first-out order, so that each function can return to its caller. Stacks sup-
port recursive function calls in the same manner as conventional nonrecursive calls.
Section 6.11 discusses the function call stack in detail.

Stacks provide the memory for, and store the values of, automatic variables on each
invocation of a function. When the function returns to its caller or throws an exception,
the destructor (if any) for each local object is called, the space for that function’s automatic
variables is popped off the stack and those variables are no longer known to the program.

Stacks are used by compilers in the process of evaluating expressions and generating
machine-language code. The exercises explore several applications of stacks, including
using them to develop your own complete working compiler.

We’ll take advantage of the close relationship between lists and stacks to implement a
stack class primarily by reusing a list class. First, we implement the stack class through pri-

vate inheritance of the list class. Then we implement an identically performing stack class
through composition by including a list object as a private member of a stack class. Of
course, all of the data structures in this chapter, including these two stack classes, are
implemented as templates to encourage further reusability.

The program of Figs. 20.13–20.14 creates a Stack class template (Fig. 20.13) pri-
marily through private inheritance (line 9) of the List class template of Fig. 20.4. We

Fig. 20.12 | Circular, doubly linked list.

12 7 11 5

firstPtr lastPtr

20.5 Stacks 765

want the Stack to have member functions push (lines 13–16), pop (lines 19–22),
isStackEmpty (lines 25–28) and printStack (lines 31–34). Note that these are essentially
the insertAtFront, removeFromFront, isEmpty and print functions of the List class
template. Of course, the List class template contains other member functions (i.e.,
insertAtBack and removeFromBack) that we would not want to make accessible through
the public interface to the Stack class. So when we indicate that the Stack class template
is to inherit from the List class template, we specify private inheritance. This makes all
the List class template’s member functions private in the Stack class template. When
we implement the Stack’s member functions, we then have each of these call the appro-
priate member function of the List class—push calls insertAtFront (line 15), pop calls
removeFromFront (line 21), isStackEmpty calls isEmpty (line 27) and printStack calls
print (line 33)—this is referred to as delegation.

1 // Fig. 20.13: Stack.h
2 // Template Stack class definition derived from class List.
3 #ifndef STACK_H
4 #define STACK_H
5
6
7
8 template< typename STACKTYPE >
9 class Stack :

10 {
11 public:
12 // push calls the List function insertAtFront
13 void push(const STACKTYPE &data)
14 {
15
16 } // end function push
17
18 // pop calls the List function removeFromFront
19 bool pop(STACKTYPE &data)
20 {
21
22 } // end function pop
23
24 // isStackEmpty calls the List function isEmpty
25 bool isStackEmpty() const
26 {
27
28 } // end function isStackEmpty
29
30 // printStack calls the List function print
31 void printStack() const
32 {
33
34 } // end function print
35 }; // end class Stack
36
37 #endif

Fig. 20.13 | Stack class-template definition.

#include "List.h" // List class definition

private List< STACKTYPE >

insertAtFront(data);

return removeFromFront(data);

return this->isEmpty();

this->print();

766 Chapter 20 Custom Templatized Data Structures

The explicit use of this on lines 27 and 33 is required so the compiler can properly
resolve identifiers in template definitions. A dependent name is an identifier that depends
on a template parameter. For example, the call to removeFromFront (line 21) depends on
the argument data which has a type that’s dependent on the template parameter STACK-
TYPE. Resolution of dependent names occurs when the template is instantiated. In con-
trast, the identifier for a function that takes no arguments like isEmpty or print in the
List superclass is a non-dependent name. Such identifiers are normally resolved at the
point where the template is defined. If the template has not yet been instantiated, then the
code for the function with the non-dependent name does not yet exist and some compilers
will generate compilation errors. Adding the explicit use of this-> in lines 27 and 33
makes the calls to the base class’s member functions dependent on the template parameter
and ensures that the code will compile properly.

The stack class template is used in main (Fig. 20.14) to instantiate integer stack int-

Stack of type Stack< int > (line 9). Integers 0 through 2 are pushed onto intStack (lines
14–18), then popped off intStack (lines 23–28). The program uses the Stack class tem-
plate to create doubleStack of type Stack< double > (line 30). Values 1.1, 2.2 and 3.3 are
pushed onto doubleStack (lines 36–41), then popped off doubleStack (lines 46–51).

1 // Fig. 20.14: Fig20_14.cpp
2 // Template Stack class test program.
3 #include <iostream>
4 #include "Stack.h" // Stack class definition
5 using namespace std;
6
7 int main()
8 {
9 Stack< int > intStack; // create Stack of ints

10
11 cout << "processing an integer Stack" << endl;
12
13 // push integers onto intStack
14 for (int i = 0; i < 3; ++i)
15 {
16
17
18 } // end for
19
20 int popInteger; // store int popped from stack
21
22 // pop integers from intStack
23 while ()
24 {
25
26 cout << popInteger << " popped from stack" << endl;
27
28 } // end while
29
30
31 double value = 1.1;
32

Fig. 20.14 | A simple stack program. (Part 1 of 2.)

intStack.push(i);
intStack.printStack();

!intStack.isStackEmpty()

intStack.pop(popInteger);

intStack.printStack();

Stack< double > doubleStack; // create Stack of doubles

20.5 Stacks 767

Another way to implement a Stack class template is by reusing the List class template
through composition. Figure 20.15 is a new implementation of the Stack class template

33 cout << "processing a double Stack" << endl;
34
35 // push floating-point values onto doubleStack
36 for (int j = 0; j < 3; ++j)
37 {
38
39
40 value += 1.1;
41 } // end for
42
43 double popDouble; // store double popped from stack
44
45 // pop floating-point values from doubleStack
46 while ()
47 {
48
49 cout << popDouble << " popped from stack" << endl;
50
51 } // end while
52 } // end main

processing an integer Stack
The list is: 0

The list is: 1 0

The list is: 2 1 0

2 popped from stack
The list is: 1 0

1 popped from stack
The list is: 0

0 popped from stack
The list is empty

processing a double Stack
The list is: 1.1

The list is: 2.2 1.1

The list is: 3.3 2.2 1.1

3.3 popped from stack
The list is: 2.2 1.1

2.2 popped from stack
The list is: 1.1

1.1 popped from stack
The list is empty

All nodes destroyed

All nodes destroyed

Fig. 20.14 | A simple stack program. (Part 2 of 2.)

doubleStack.push(value);
doubleStack.printStack();

!doubleStack.isStackEmpty()

doubleStack.pop(popDouble);

doubleStack.printStack();

768 Chapter 20 Custom Templatized Data Structures

that contains a List< STACKTYPE > object called stackList (line 38). This version of the
Stack class template uses class List from Fig. 20.4. To test this class, use the driver pro-
gram in Fig. 20.14, but include the new header—Stackcomposition.h in line 6 of that
file. The output of the program is identical for both versions of class Stack.

20.6 Queues
A queue is similar to a supermarket checkout line—the first person in line is serviced first,
and other customers enter the line at the end and wait to be serviced. Queue nodes are re-

1 // Fig. 20.15: Stackcomposition.h
2 // Template Stack class definition with composed List object.
3 #ifndef STACKCOMPOSITION_H
4 #define STACKCOMPOSITION_H
5
6 #include "List.h" // List class definition
7
8 template< typename STACKTYPE >
9 class Stack

10 {
11 public:
12 // no constructor; List constructor does initialization
13
14 // push calls stackList object's insertAtFront member function
15 void push(const STACKTYPE &data)
16 {
17
18 } // end function push
19
20 // pop calls stackList object's removeFromFront member function
21 bool pop(STACKTYPE &data)
22 {
23
24 } // end function pop
25
26 // isStackEmpty calls stackList object's isEmpty member function
27 bool isStackEmpty() const
28 {
29
30 } // end function isStackEmpty
31
32 // printStack calls stackList object's print member function
33 void printStack() const
34 {
35
36 } // end function printStack
37 private:
38
39 }; // end class Stack
40
41 #endif

Fig. 20.15 | Stack class template with a composed List object.

stackList.insertAtFront(data);

return stackList.removeFromFront(data);

return stackList.isEmpty();

stackList.print();

List< STACKTYPE > stackList; // composed List object

20.6 Queues 769

moved only from the head of the queue and are inserted only at the tail of the queue. For
this reason, a queue is referred to as a first-in, first-out (FIFO) data structure. The insert
and remove operations are known as enqueue and dequeue.

Queues have many applications in computer systems. Computers that have a single
processor can service only one user at a time. Entries for the other users are placed in a
queue. Each entry gradually advances to the front of the queue as users receive service. The
entry at the front of the queue is the next to receive service.

Queues are also used to support print spooling. For example, a single printer might
be shared by all users of a network. Many users can send print jobs to the printer, even
when the printer is already busy. These print jobs are placed in a queue until the printer
becomes available. A program called a spooler manages the queue to ensure that, as each
print job completes, the next print job is sent to the printer.

Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, it must be routed to the next node on the network along the
path to the packet’s final destination. The routing node routes one packet at a time, so
additional packets are enqueued until the router can route them.

A file server in a computer network handles file access requests from many clients
throughout the network. Servers have a limited capacity to service requests from clients.
When that capacity is exceeded, client requests wait in queues.

The program of Figs. 20.16–20.17 creates a Queue class template (Fig. 20.16)
through private inheritance (line 9) of the List class template (Fig. 20.4). The Queue has
member functions enqueue (lines 13–16), dequeue (lines 19–22), isQueueEmpty (lines
25–28) and printQueue (lines 31–34). These are essentially the insertAtBack, remove-
FromFront, isEmpty and print functions of the List class template. Of course, the List

class template contains other member functions that we do not want to make accessible
through the public interface to the Queue class. So when we indicate that the Queue class
template is to inherit the List class template, we specify private inheritance. This makes
all the List class template’s member functions private in the Queue class template. When
we implement the Queue’s member functions, we have each of these call the appropriate
member function of the list class—enqueue calls insertAtBack (line 15), dequeue calls
removeFromFront (line 21), isQueueEmpty calls isEmpty (line 27) and printQueue calls
print (line 33). As with the Stack example in Fig. 20.13, this delegation requires explicit
use of the this pointer in isQueueEmpty and printQueue to avoid compilation errors.

1 // Fig. 20.16: Queue.h
2 // Template Queue class definition derived from class List.
3 #ifndef QUEUE_H
4 #define QUEUE_H
5
6
7
8 template< typename QUEUETYPE >
9 class Queue :

10 {
11 public:

Fig. 20.16 | Queue class-template definition. (Part 1 of 2.)

#include "List.h" // List class definition

private List< QUEUETYPE >

770 Chapter 20 Custom Templatized Data Structures

Figure 20.17 uses the Queue class template to instantiate integer queue intQueue of
type Queue< int > (line 9). Integers 0 through 2 are enqueued to intQueue (lines 14–18),
then dequeued from intQueue in first-in, first-out order (lines 23–28). Next, the program
instantiates queue doubleQueue of type Queue< double > (line 30). Values 1.1, 2.2 and 3.3
are enqueued to doubleQueue (lines 36–41), then dequeued from doubleQueue in first-in,
first-out order (lines 46–51).

12 // enqueue calls List member function insertAtBack
13 void enqueue(const QUEUETYPE &data)
14 {
15
16 } // end function enqueue
17
18 // dequeue calls List member function removeFromFront
19 bool dequeue(QUEUETYPE &data)
20 {
21
22 } // end function dequeue
23
24 // isQueueEmpty calls List member function isEmpty
25 bool isQueueEmpty() const
26 {
27
28 } // end function isQueueEmpty
29
30 // printQueue calls List member function print
31 void printQueue() const
32 {
33
34 } // end function printQueue
35 }; // end class Queue
36
37 #endif

1 // Fig. 20.17: Fig20_17.cpp
2 // Template Queue class test program.
3 #include <iostream>
4 #include "Queue.h" // Queue class definition
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "processing an integer Queue" << endl;
12
13 // enqueue integers onto intQueue
14 for (int i = 0; i < 3; ++i)
15 {

Fig. 20.17 | Queue-processing program. (Part 1 of 3.)

Fig. 20.16 | Queue class-template definition. (Part 2 of 2.)

insertAtBack(data);

return removeFromFront(data);

return this->isEmpty();

this->print();

Queue< int > intQueue; // create Queue of integers

20.6 Queues 771

16
17
18 } // end for
19
20 int dequeueInteger; // store dequeued integer
21
22 // dequeue integers from intQueue
23 while ()
24 {
25
26 cout << dequeueInteger << " dequeued" << endl;
27
28 } // end while
29
30
31 double value = 1.1;
32
33 cout << "processing a double Queue" << endl;
34
35 // enqueue floating-point values onto doubleQueue
36 for (int j = 0; j < 3; ++j)
37 {
38
39
40 value += 1.1;
41 } // end for
42
43 double dequeueDouble; // store dequeued double
44
45 // dequeue floating-point values from doubleQueue
46 while ()
47 {
48
49 cout << dequeueDouble << " dequeued" << endl;
50
51 } // end while
52 } // end main

processing an integer Queue
The list is: 0

The list is: 0 1

The list is: 0 1 2

0 dequeued
The list is: 1 2

1 dequeued
The list is: 2

2 dequeued
The list is empty

processing a double Queue
The list is: 1.1

Fig. 20.17 | Queue-processing program. (Part 2 of 3.)

intQueue.enqueue(i);
intQueue.printQueue();

!intQueue.isQueueEmpty()

intQueue.dequeue(dequeueInteger);

intQueue.printQueue();

Queue< double > doubleQueue; // create Queue of doubles

doubleQueue.enqueue(value);
doubleQueue.printQueue();

!doubleQueue.isQueueEmpty()

doubleQueue.dequeue(dequeueDouble);

doubleQueue.printQueue();

772 Chapter 20 Custom Templatized Data Structures

20.7 Trees
Linked lists, stacks and queues are linear data structures. A tree is a nonlinear, two-dimen-
sional data structure. Tree nodes contain two or more links. This section discusses binary
trees (Fig. 20.18)—trees whose nodes all contain two links (none, one or both of which
may be null).

Basic Terminology
For this discussion, refer to nodes A, B, C and D in Fig. 20.18. The root node (node B) is
the first node in a tree. Each link in the root node refers to a child (nodes A and D). The
left child (node A) is the root node of the left subtree (which contains only node A), and
the right child (node D) is the root node of the right subtree (which contains nodes D and
C). The children of a given node are called siblings (e.g., nodes A and D are siblings). A node
with no children is a leaf node (e.g., nodes A and C are leaf nodes). Computer scientists
normally draw trees from the root node down—the opposite of how trees grow in nature.

The list is: 1.1 2.2

The list is: 1.1 2.2 3.3

1.1 dequeued
The list is: 2.2 3.3

2.2 dequeued
The list is: 3.3

3.3 dequeued
The list is empty

All nodes destroyed

All nodes destroyed

Fig. 20.18 | A graphical representation of a binary tree.

Fig. 20.17 | Queue-processing program. (Part 3 of 3.)

root node pointer

left subtree
of node

containing B

right subtree
of node
containing B

B

A D

C

20.7 Trees 773

Binary Search Trees
A binary search tree (with no duplicate node values) has the characteristic that the values
in any left subtree are less than the value in its parent node, and the values in any right
subtree are greater than the value in its parent node. Figure 20.19 illustrates a binary search
tree with 9 values. Note that the shape of the binary search tree that corresponds to a set
of data can vary, depending on the order in which the values are inserted into the tree.

Implementing the Binary Search Tree Program
The program of Figs. 20.20–20.22 creates a binary search tree and traverses it (i.e., walks
through all its nodes) three ways—using recursive inorder, preorder and postorder travers-
als. We explain these traversal algorithms shortly.

Fig. 20.19 | A binary search tree.

1 // Fig. 20.20: TreeNode.h
2 // Template TreeNode class definition.
3 #ifndef TREENODE_H
4 #define TREENODE_H
5
6 // forward declaration of class Tree
7 template< typename NODETYPE > class Tree;
8
9 // TreeNode class-template definition

10 template< typename NODETYPE >
11 class TreeNode
12 {
13
14 public:
15 // constructor
16 TreeNode(const NODETYPE &d)
17 : leftPtr(0), // pointer to left subtree
18 data(d), // tree node data
19 rightPtr(0) // pointer to right substree
20 {
21 // empty body
22 } // end TreeNode constructor
23
24 // return copy of node's data
25 NODETYPE getData() const
26 {

Fig. 20.20 | TreeNode class-template definition. (Part 1 of 2.)

47

25

11 43 65

77

31 44 68

friend class Tree< NODETYPE >;

774 Chapter 20 Custom Templatized Data Structures

27 return data;
28 } // end getData function
29 private:
30
31 NODETYPE data;
32
33 }; // end class TreeNode
34
35 #endif

1 // Fig. 20.21: Tree.h
2 // Template Tree class definition.
3 #ifndef TREE_H
4 #define TREE_H
5
6 #include <iostream>
7 #include "TreeNode.h"
8 using namespace std;
9

10 // Tree class-template definition
11 template< typename NODETYPE > class Tree
12 {
13 public:
14 Tree(); // constructor
15
16
17
18
19 private:
20
21
22
23
24
25
26
27 }; // end class Tree
28
29 // constructor
30 template< typename NODETYPE >
31 Tree< NODETYPE >::Tree()
32 {
33 rootPtr = 0; // indicate tree is initially empty
34 } // end Tree constructor
35
36 // insert node in Tree
37 template< typename NODETYPE >
38 void Tree< NODETYPE >::insertNode(const NODETYPE &value)
39 {

Fig. 20.21 | Tree class-template definition. (Part 1 of 3.)

Fig. 20.20 | TreeNode class-template definition. (Part 2 of 2.)

TreeNode< NODETYPE > *leftPtr; // pointer to left subtree

TreeNode< NODETYPE > *rightPtr; // pointer to right subtree

void insertNode(const NODETYPE &);
void preOrderTraversal() const;
void inOrderTraversal() const;
void postOrderTraversal() const;

TreeNode< NODETYPE > *rootPtr;

// utility functions
void insertNodeHelper(TreeNode< NODETYPE > **, const NODETYPE &);
void preOrderHelper(TreeNode< NODETYPE > *) const;
void inOrderHelper(TreeNode< NODETYPE > *) const;
void postOrderHelper(TreeNode< NODETYPE > *) const;

20.7 Trees 775

40 insertNodeHelper(, value);
41 } // end function insertNode
42
43 // utility function called by insertNode; receives a pointer
44 // to a pointer so that the function can modify pointer's value
45 template< typename NODETYPE >
46 void Tree< NODETYPE >::insertNodeHelper(
47 , const NODETYPE &value)
48 {
49 // subtree is empty; create new TreeNode containing value
50 if (== 0)
51 = new TreeNode< NODETYPE >(value);
52 else // subtree is not empty
53 {
54 // data to insert is less than data in current node
55 if (value < ()->data)
56 insertNodeHelper(&(()->leftPtr), value);
57 else
58 {
59 // data to insert is greater than data in current node
60 if (value > ()->data)
61 insertNodeHelper(&(()->rightPtr), value);
62 else // duplicate data value ignored
63 cout << value << " dup" << endl;
64 } // end else
65 } // end else
66 } // end function insertNodeHelper
67
68 // begin preorder traversal of Tree
69 template< typename NODETYPE >
70 void Tree< NODETYPE >::preOrderTraversal() const
71 {
72 preOrderHelper(rootPtr);
73 } // end function preOrderTraversal
74
75 // utility function to perform preorder traversal of Tree
76 template< typename NODETYPE >
77 void Tree< NODETYPE >:: (TreeNode< NODETYPE > *ptr) const
78 {
79 if (ptr != 0)
80 {
81
82
83
84 } // end if
85 } // end function preOrderHelper
86
87 // begin inorder traversal of Tree
88 template< typename NODETYPE >
89 void Tree< NODETYPE >::inOrderTraversal() const
90 {
91 inOrderHelper(rootPtr);
92 } // end function inOrderTraversal

Fig. 20.21 | Tree class-template definition. (Part 2 of 3.)

&rootPtr

TreeNode< NODETYPE > **ptr

*ptr
*ptr

*ptr
*ptr

*ptr
*ptr

preOrderHelper

cout << ptr->data << ' '; // process node
preOrderHelper(ptr->leftPtr); // traverse left subtree
preOrderHelper(ptr->rightPtr); // traverse right subtree

776 Chapter 20 Custom Templatized Data Structures

93
94 // utility function to perform inorder traversal of Tree
95 template< typename NODETYPE >
96 void Tree< NODETYPE >:: (TreeNode< NODETYPE > *ptr) const
97 {
98 if (ptr != 0)
99 {
100
101
102
103 } // end if
104 } // end function inOrderHelper
105
106 // begin postorder traversal of Tree
107 template< typename NODETYPE >
108 void Tree< NODETYPE >::postOrderTraversal() const
109 {
110 postOrderHelper(rootPtr);
111 } // end function postOrderTraversal
112
113 // utility function to perform postorder traversal of Tree
114 template< typename NODETYPE >
115 void Tree< NODETYPE >:: (
116 TreeNode< NODETYPE > *ptr) const
117 {
118 if (ptr != 0)
119 {
120
121
122
123 } // end if
124 } // end function postOrderHelper
125
126 #endif

1 // Fig. 20.22: Fig20_22.cpp
2 // Tree class test program.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 int main()
9 {

10
11 int intValue;
12
13 cout << "Enter 10 integer values:\n";
14

Fig. 20.22 | Creating and traversing a binary tree. (Part 1 of 3.)

Fig. 20.21 | Tree class-template definition. (Part 3 of 3.)

inOrderHelper

inOrderHelper(ptr->leftPtr); // traverse left subtree
cout << ptr->data << ' '; // process node
inOrderHelper(ptr->rightPtr); // traverse right subtree

postOrderHelper

postOrderHelper(ptr->leftPtr); // traverse left subtree
postOrderHelper(ptr->rightPtr); // traverse right subtree
cout << ptr->data << ' '; // process node

#include "Tree.h" // Tree class definition

Tree< int > intTree; // create Tree of int values

20.7 Trees 777

15 // insert 10 integers to intTree
16 for (int i = 0; i < 10; ++i)
17 {
18 cin >> intValue;
19
20 } // end for
21
22 cout << "\nPreorder traversal\n";
23
24
25 cout << "\nInorder traversal\n";
26
27
28 cout << "\nPostorder traversal\n";
29
30
31
32 double doubleValue;
33
34 cout << fixed << setprecision(1)
35 << "\n\n\nEnter 10 double values:\n";
36
37 // insert 10 doubles to doubleTree
38 for (int j = 0; j < 10; ++j)
39 {
40 cin >> doubleValue;
41
42 } // end for
43
44 cout << "\nPreorder traversal\n";
45
46
47 cout << "\nInorder traversal\n";
48
49
50 cout << "\nPostorder traversal\n";
51
52 cout << endl;
53 } // end main

Enter 10 integer values:
50 25 75 12 33 67 88 6 13 68

Preorder traversal
50 25 12 6 13 33 75 67 68 88
Inorder traversal
6 12 13 25 33 50 67 68 75 88
Postorder traversal
6 13 12 33 25 68 67 88 75 50

Enter 10 double values:
39.2 16.5 82.7 3.3 65.2 90.8 1.1 4.4 89.5 92.5

Fig. 20.22 | Creating and traversing a binary tree. (Part 2 of 3.)

intTree.insertNode(intValue);

intTree.preOrderTraversal();

intTree.inOrderTraversal();

intTree.postOrderTraversal();

Tree< double > doubleTree; // create Tree of double values

doubleTree.insertNode(doubleValue);

doubleTree.preOrderTraversal();

doubleTree.inOrderTraversal();

doubleTree.postOrderTraversal();

778 Chapter 20 Custom Templatized Data Structures

We begin our discussion with the driver program (Fig. 20.22), then continue with the
implementations of classes TreeNode (Fig. 20.20) and Tree (Fig. 20.21). Function main

(Fig. 20.22) begins by instantiating integer tree intTree of type Tree< int > (line 10).
The program prompts for 10 integers, each of which is inserted in the binary tree by calling
insertNode (line 19). The program then performs preorder, inorder and postorder tra-
versals (these are explained shortly) of intTree (lines 23, 26 and 29, respectively). The
program then instantiates floating-point tree doubleTree of type Tree< double > (line
31). The program prompts for 10 double values, each of which is inserted in the binary
tree by calling insertNode (line 41). The program then performs preorder, inorder and
postorder traversals of doubleTree (lines 45, 48 and 51, respectively).

The TreeNode class template (Fig. 20.20) definition declares Tree<NODETYPE> as its
friend (line 13). This makes all member functions of a given specialization of class tem-
plate Tree (Fig. 20.21) friends of the corresponding specialization of class template
TreeNode, so they can access the private members of TreeNode objects of that type.
Because the TreeNode template parameter NODETYPE is used as the template argument for
Tree in the friend declaration, TreeNodes specialized with a particular type can be pro-
cessed only by a Tree specialized with the same type (e.g., a Tree of int values manages
TreeNode objects that store int values).

Lines 30–32 declare a TreeNode’s private data—the node’s data value, and pointers
leftPtr (to the node’s left subtree) and rightPtr (to the node’s right subtree). The con-
structor (lines 16–22) sets data to the value supplied as a constructor argument and sets
pointers leftPtr and rightPtr to zero (thus initializing this node to be a leaf node).
Member function getData (lines 25–28) returns the data value.

Class template Tree (Fig. 20.21) has as private data rootPtr (line 20), a pointer to
the tree’s root node. Lines 15–18 declare the public member functions insertNode (that
inserts a new node in the tree) and preOrderTraversal, inOrderTraversal and post-

OrderTraversal, each of which walks the tree in the designated manner. Each of these
member functions calls its own recursive utility function to perform the appropriate oper-
ations on the internal representation of the tree, so the program is not required to access
the underlying private data to perform these functions. Remember that the recursion
requires us to pass in a pointer that represents the next subtree to process. The Tree con-
structor initializes rootPtr to zero to indicate that the tree is initially empty.

The Tree class’s utility function insertNodeHelper (lines 45–66) is called by insert-
Node (lines 37–41) to recursively insert a node into the tree. A node can only be inserted as
a leaf node in a binary search tree. If the tree is empty, a new TreeNode is created, initialized
and inserted in the tree (lines 51–52).

If the tree is not empty, the program compares the value to be inserted with the data
value in the root node. If the insert value is smaller (line 55), the program recursively calls

Preorder traversal
39.2 16.5 3.3 1.1 4.4 82.7 65.2 90.8 89.5 92.5
Inorder traversal
1.1 3.3 4.4 16.5 39.2 65.2 82.7 89.5 90.8 92.5
Postorder traversal
1.1 4.4 3.3 16.5 65.2 89.5 92.5 90.8 82.7 39.2

Fig. 20.22 | Creating and traversing a binary tree. (Part 3 of 3.)

20.7 Trees 779

insertNodeHelper (line 56) to insert the value in the left subtree. If the insert value is
larger (line 60), the program recursively calls insertNodeHelper (line 61) to insert the
value in the right subtree. If the value to be inserted is identical to the data value in the
root node, the program prints the message " dup" (line 63) and returns without inserting
the duplicate value into the tree. Note that insertNode passes the address of rootPtr to
insertNodeHelper (line 40) so it can modify the value stored in rootPtr (i.e., the address
of the root node). To receive a pointer to rootPtr (which is also a pointer), insertNode-
Helper’s first argument is declared as a pointer to a pointer to a TreeNode.

Member functions inOrderTraversal (lines 88–92), preOrderTraversal (lines 69–
73) and postOrderTraversal (lines 107–111) traverse the tree and print the node values.
For the purpose of the following discussion, we use the binary search tree in Fig. 20.23.

Inorder Traversal Algorithm
Function inOrderTraversal invokes utility function inOrderHelper to perform the inor-
der traversal of the binary tree. The steps for an inorder traversal are:

1. Traverse the left subtree with an inorder traversal. (This is performed by the call
to inOrderHelper at line 100.)

2. Process the value in the node—i.e., print the node value (line 101).

3. Traverse the right subtree with an inorder traversal. (This is performed by the call
to inOrderHelper at line 102.)

The value in a node is not processed until the values in its left subtree are processed, be-
cause each call to inOrderHelper immediately calls inOrderHelper again with the pointer
to the left subtree. The inorder traversal of the tree in Fig. 20.23 is

Note that the inorder traversal of a binary search tree prints the node values in
ascending order. The process of creating a binary search tree actually sorts the data—thus,
this process is called the binary tree sort.

Preorder Traversal Algorithm
Function preOrderTraversal invokes utility function preOrderHelper to perform the
preorder traversal of the binary tree. The steps for an preorder traversal are:

1. Process the value in the node (line 81).

2. Traverse the left subtree with a preorder traversal. (This is performed by the call
to preOrderHelper at line 82.)

3. Traverse the right subtree with a preorder traversal. (This is performed by the call
to preOrderHelper at line 83.)

Fig. 20.23 | A binary search tree.

6 13 17 27 33 42 48

27

13

6 17 33 48

42

780 Chapter 20 Custom Templatized Data Structures

The value in each node is processed as the node is visited. After the value in a given node
is processed, the values in the left subtree are processed. Then the values in the right sub-
tree are processed. The preorder traversal of the tree in Fig. 20.23 is

Postorder Traversal Algorithm
Function postOrderTraversal invokes utility function postOrderHelper to perform the
postorder traversal of the binary tree. The steps for a postorder traversal are:

1. Traverse the left subtree with a postorder traversal. (This is performed by the call
to postOrderHelper at line 120.)

2. Traverse the right subtree with a postorder traversal. (This is performed by the
call to postOrderHelper at line 121.)

3. Process the value in the node (line 122).

The value in each node is not printed until the values of its children are printed. The post-
OrderTraversal of the tree in Fig. 20.23 is

Duplicate Elimination
The binary search tree facilitates duplicate elimination. As the tree is being created, an at-
tempt to insert a duplicate value will be recognized, because a duplicate will follow the
same “go left” or “go right” decisions on each comparison as the original value did when
it was inserted in the tree. Thus, the duplicate will eventually be compared with a node
containing the same value. The duplicate value may be discarded at this point.

Searching a binary tree for a value that matches a key value is also fast. If the tree is
balanced, then each branch contains about half the number of nodes in the tree. Each
comparison of a node to the search key eliminates half the nodes.This is called an O(log n)
algorithm (Big O notation is discussed in Chapter 19). So a binary search tree with n ele-
ments would require a maximum of log2n comparisons either to find a match or to deter-
mine that no match exists. This means, for example, that when searching a (balanced)
1000-element binary search tree, no more than 10 comparisons need to be made, because
210 > 1000. When searching a (balanced) 1,000,000-element binary search tree, no more
than 20 comparisons need to be made, because 220 > 1,000,000.

Overview of the Binary Tree Exercises
In the exercises, algorithms are presented for several other binary tree operations such as
deleting an item from a binary tree, printing a binary tree in a two-dimensional tree format
and performing a level-order traversal of a binary tree. The level-order traversal of a binary
tree visits the nodes of the tree row by row, starting at the root node level. On each level
of the tree, the nodes are visited from left to right. Other binary tree exercises include al-
lowing a binary search tree to contain duplicate values, inserting string values in a binary
tree and determining how many levels are contained in a binary tree.

20.8 Wrap-Up
In this chapter, you learned that linked lists are collections of data items that are “linked
up in a chain.” You also learned that a program can perform insertions and deletions any-

27 13 6 17 42 33 48

6 17 13 33 48 42 27

Summary 781

where in a linked list (though our implementation only performed insertions and deletions
at the ends of the list). We demonstrated that the stack and queue data structures are con-
strained versions of lists. For stacks, you saw that insertions and deletions are made only
at the top. For queues, you saw that insertions are made at the tail and deletions are made
from the head. We also presented the binary tree data structure. You saw a binary search
tree that facilitated high-speed searching and sorting of data and efficient duplicate elimi-
nation. You learned how to create these data structures for reusability (as templates) and
maintainability. In the next chapter, we introduce structs, which are similar to classes,
and discuss the manipulation of bits, characters and C-style strings.

Summary
Section 20.1 Introduction
• Dynamic data structures (p. 747) grow and shrink during execution.

• Linked lists (p. 747) are collections of data items “lined up in a row”—insertions and removals
are made anywhere in a linked list.

• Stacks (p. 747) are important in compilers and operating systems: Insertions and removals are
made only at one end of a stack—its top (p. 747).

• Queues (p. 747) represent waiting lines; insertions are made at the back (also referred to as the tail;
p. 747) of a queue and removals are made from the front (also referred to as the head; p. 747).

• Binary trees (p. 747) facilitate high-speed searching and sorting of data, efficient duplicate elimina-
tion, representation of file-system directories and compilation of expressions into machine language.

Section 20.2 Self-Referential Classes
• A self-referential class (p. 748) contains a pointer that points to an object of the same class type.

• Self-referential class objects can be linked together to form useful data structures such as lists,
queues, stacks and trees.

Section 20.3 Dynamic Memory Allocation and Data Structures
• The limit for dynamic memory allocation can be as large as the amount of available physical

memory in the computer or the amount of available virtual memory in a virtual memory system.

Section 20.4 Linked Lists
• A linked list is a linear collection of self-referential class objects, called nodes, connected by point-

er links (p. 749)—hence, the term “linked” list.

• A linked list is accessed via a pointer to the first node of the list. Each subsequent node is accessed
via the link-pointer member stored in the previous node.

• Linked lists, stacks and queues are linear data structures (p. 749). Trees are nonlinear data struc-
tures (p. 749).

• A linked list is appropriate when the number of data elements to be represented is unpredictable.

• Linked lists are dynamic, so the length of a list can increase or decrease as necessary.

• A singly linked list () begins with a pointer to the first node, and each node contains a pointer to
the next node “in sequence.”

• A circular, singly linked list (p. 763) begins with a pointer to the first node, and each node con-
tains a pointer to the next node. The “last node” does not contain a null pointer; rather, the
pointer in the last node points back to the first node, thus closing the “circle.”

782 Chapter 20 Custom Templatized Data Structures

• A doubly linked list (p. 763) allows traversals both forward and backward.

• A doubly linked list is often implemented with two “start pointers”—one that points to the first
element to allow front-to-back traversal of the list and one that points to the last element to allow
back-to-front traversal. Each node has a pointer to both the next and previous nodes.

• In a circular, doubly linked list (p. 763), the forward pointer of the last node points to the first
node, and the backward pointer of the first node points to the last node, thus closing the “circle.”

Section 20.5 Stacks
• A stack data structure allows nodes to be added to and removed from the stack only at the top.

• A stack is referred to as a last-in, first-out (LIFO) data structure.

• Function push (p. 764) inserts a new node at the top of the stack. Function pop removes a node
from the top of the stack.

• A dependent name (p. 766) is an identifier that depends on the value of a template parameter.
Resolution of dependent names occurs when the template is instantiated.

• Non-dependent names (p. 766) are resolved at the point where the template is defined.

Section 20.6 Queues
• A queue is similar to a supermarket checkout line—the first person in line is serviced first, and

other customers enter the line at the end and wait to be serviced.

• Queue nodes are removed only from a queue’s head and are inserted only at its tail (p. 769).

• A queue is referred to as a first-in, first-out (FIFO) data structure. The insert and remove oper-
ations are known as enqueue and dequeue (p. 769).

Section 20.7 Trees
• Binary trees are trees whose nodes all contain two links (none, one or both of which may be null).

• The root node (p. 772) is the first node in a tree.

• Each link in the root node refers to a child. The left child is the root node of the left subtree, and
the right child is the root node of the right subtree.

• The children of a single node are called siblings (p. 772). A node with no children is called a leaf
node (p. 772).

• A binary search tree (p. 773) (with no duplicate node values) has the characteristic that the values
in any left subtree are less than the value in its parent node (p. 773), and the values in any right
subtree are greater than the value in its parent node.

• A node can only be inserted as a leaf node in a binary search tree.

• An inorder traversal (p. 779) of a binary tree traverses the left subtree, processes the value in the
root node then traverses the right subtree. The value in a node is not processed until the values
in its left subtree are processed.

• A preorder traversal (p. 773) processes the value in the root node, traverses the left subtree, then
traverses the right subtree. The value in each node is processed as the node is encountered.

• A postorder traversal (p. 773) traverses the left subtree, traverses the right subtree, then processes
the root node’s value. The value in each node is not processed until the values in both subtrees
are processed.

• The binary search tree helps eliminate duplicate data (p. 780). As the tree is being created, an
attempt to insert a duplicate value will be recognized and the duplicate value may be discarded.

• The level-order traversal (p. 780) of a binary tree visits the nodes of the tree row by row, starting
at the root node level. On each level of the tree, the nodes are visited from left to right.

Self-Review Exercises 783

Self-Review Exercises
20.1 Fill in the blanks in each of the following:

a) A self- class is used to form dynamic data structures that can grow and shrink
at execution time

b) The operator is used to dynamically allocate memory and construct an object;
this operator returns a pointer to the object.

c) A(n) is a constrained version of a linked list in which nodes can be inserted
and deleted only from the start of the list and node values are returned in last-in, first-
out order.

d) A function that does not alter a linked list, but looks at the list to determine whether it’s
empty, is an example of a(n) function.

e) A queue is referred to as a(n) data structure, because the first nodes inserted
are the first nodes removed.

f) The pointer to the next node in a linked list is referred to as a(n) .
g) The operator is used to destroy an object and release dynamically allocated

memory.
h) A(n) is a constrained version of a linked list in which nodes can be inserted

only at the end of the list and deleted only from the start of the list.
i) A(n) is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
j) A stack is referred to as a(n) data structure, because the last node inserted is

the first node removed.
k) The nodes of a(n) tree contain two link members.
l) The first node of a tree is the node.
m) Each link in a tree node points to a(n) or of that node.
n) A tree node that has no children is called a(n) node.
o) The four traversal algorithms we mentioned in the text for binary search trees are

, , and .

20.2 What are the differences between a linked list and a stack?

20.3 What are the differences between a stack and a queue?

20.4 Perhaps a more appropriate title for this chapter would have been “Reusable Data Struc-
tures.” Comment on how each of the following entities or concepts contributes to the reusability of
data structures:

a) classes
b) class templates
c) inheritance
d) private inheritance
e) composition

20.5 Provide the inorder, preorder and postorder traversals of the binary search tree of Fig. 20.24.

Fig. 20.24 | A 15-node binary search tree.

49

28

18 40 71 97

83

11 19 32 44 69 72 92 99

784 Chapter 20 Custom Templatized Data Structures

Answers to Self-Review Exercises
20.1 a) referential. b) new. c) stack. d) predicate. e) first-in, first-out (FIFO). f) link.
g) delete. h) queue. i) tree. j) last-in, first-out (LIFO). k) binary. l) root. m) child or subtree.
n) leaf. o) inorder, preorder, postorder and level order.

20.2 It’s possible to insert a node anywhere in a linked list and remove a node from anywhere in
a linked list. Nodes in a stack may only be inserted at the top of the stack and removed from the top
of a stack.

20.3 A queue data structure allows nodes to be removed only from the head of the queue and
inserted only at the tail of the queue. A queue is referred to as a first-in, first-out (FIFO) data struc-
ture. A stack data structure allows nodes to be added to the stack and removed from the stack only
at the top. A stack is referred to as a last-in, first-out (LIFO) data structure.

20.4 a) Classes allow us to instantiate as many data structure objects of a certain type (i.e., class)
as we wish.

b) Class templates enable us to instantiate related classes, each based on different type pa-
rameters—we can then generate as many objects of each template class as we like.

c) Inheritance enables us to reuse code from a base class in a derived class, so that the derived-
class data structure is also a base-class data structure (with public inheritance, that is).

d) Private inheritance enables us to reuse portions of the code from a base class to form a
derived-class data structure; because the inheritance is private, all public base-class
member functions become private in the derived class. This enables us to prevent cli-
ents of the derived-class data structure from accessing base-class member functions that
do not apply to the derived class.

e) Composition enables us to reuse code by making a class object data structure a member
of a composed class; if we make the class object a private member of the composed
class, then the class object’s public member functions are not available through the
composed object’s interface.

20.5 The inorder traversal is

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Exercises
20.6 (Concatenating Lists) Write a program that concatenates two linked list objects of charac-
ters. The program should include function concatenate, which takes references to both list objects
as arguments and concatenates the second list to the first list.

20.7 (Merging Ordered Lists) Write a program that merges two ordered list objects of integers
into a single ordered list object of integers. Function merge should receive references to each of the
list objects to be merged and reference to a list object into which the merged elements will be placed.

20.8 (Summing and Averaging Elements in a List) Write a program that inserts 25 random in-
tegers from 0 to 100 in order in a linked list object. The program should calculate the sum of the
elements and the floating-point average of the elements.

20.9 (Copying a List in Reverse Order) Write a program that creates a linked list object of 10
characters and creates a second list object containing a copy of the first list, but in reverse order.

Exercises 785

20.10 (Printing a Sentence in Reverse Order with a Stack) Write a program that inputs a line of
text and uses a stack object to print the line reversed.

20.11 (Palindrome Testing with Stacks) Write a program that uses a stack object to determine if
a string is a palindrome (i.e., the string is spelled identically backward and forward). The program
should ignore spaces and punctuation.

20.12 (Infix-to-Postfix Conversion) Stacks are used by compilers to help in the process of evaluating
expressions and generating machine language code. In this and the next exercise, we investigate how
compilers evaluate arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9 in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation in
which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to post-
fix notation and evaluate the postfix version of the expression. Each of these algorithms requires
only a single left-to-right pass of the expression. Each algorithm uses a stack object in support of its
operation, and in each algorithm the stack is used for a different purpose.

In this exercise, you’ll write a C++ version of the infix-to-postfix conversion algorithm. In the
next exercise, you’ll write a C++ version of the postfix expression evaluation algorithm. Later in the
chapter, you’ll discover that code you write in this exercise can help you implement a complete
working compiler.

Write a program that converts an ordinary infix arithmetic expression (assume a valid
expression is entered) with single-digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is

6 2 + 5 * 8 4 / -

The program should read the expression into string infix and use modified versions of the stack
functions implemented in this chapter to help create the postfix expression in string postfix. The
algorithm for creating a postfix expression is as follows:

1) Push a left parenthesis '(' onto the stack.
2) Append a right parenthesis ')' to the end of infix.
3) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,

Pop operators (if there are any) at the top of the stack while they have equal or
higher precedence than the current operator, and insert the popped
operators in postfix.

Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis

Pop operators from the top of the stack and insert them in postfix until a left
parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.
The following arithmetic operations are allowed in an expression:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

786 Chapter 20 Custom Templatized Data Structures

[Note: We assume left-to-right associativity for all operators for the purpose of this exercise.] The
stack should be maintained with stack nodes, each containing a data member and a pointer to the
next stack node.

Some of the functional capabilities you may want to provide are:
a) function convertToPostfix that converts the infix expression to postfix notation
b) function isOperator that determines whether c is an operator
c) function precedence that determines whether the precedence of operator1 is greater

than or equal to the precedence of operator2, and, if so, returns true.
d) function push that pushes a value onto the stack
e) function pop that pops a value off the stack
f) function stackTop that returns the top value of the stack without popping the stack
g) function isEmpty that determines if the stack is empty
h) function printStack that prints the stack

20.13 (Postfix Evaluation) Write a program that evaluates a postfix expression (assume it’s valid)
such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a string.
Using modified versions of the stack functions implemented earlier in this chapter, the program
should scan the expression and evaluate it. The algorithm is as follows:

1) While you have not reached the end of the string, read the expression from left to right.
If the current character is a digit,

Push its integer value onto the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in the
computer’s character set).

Otherwise, if the current character is an operator,
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

2) When you reach the end of the string, pop the top value of the stack. This is the result
of the postfix expression.

[Note: In Step 2 above, if the operator is '/', the top of the stack is 2 and the next element in the
stack is 8, then pop 2 into x, pop 8 into y, evaluate 8 / 2 and push the result, 4, back onto the stack.
This note also applies to operator '–'.] The arithmetic operations allowed in an expression are

+ addition
– subtraction
* multiplication
/ division
^ exponentiation
% modulus

[Note: We assume left-to-right associativity for all operators for the purpose of this exercise.] The
stack should be maintained with stack nodes that contain an int data member and a pointer to the
next stack node. You may want to provide the following functional capabilities:

a) function evaluatePostfixExpression that evaluates the postfix expression
b) function calculate that evaluates the expression op1 operator op2

c) function push that pushes a value onto the stack
d) function pop that pops a value off the stack
e) function isEmpty that determines if the stack is empty
f) function printStack that prints the stack

Exercises 787

20.14 (Postfix Evaluation Enhanced) Modify the postfix evaluator program of Exercise 20.13 so
that it can process integer operands larger than 9.

20.15 (Supermarket Simulation) Write a program that simulates a checkout line at a supermarket.
The line is a queue object. Customers (i.e., customer objects) arrive in random integer intervals of
1–4 minutes. Also, each customer is served in random integer intervals of 1–4 minutes. Obviously,
the rates need to be balanced. If the average arrival rate is larger than the average service rate, the
queue will grow infinitely. Even with “balanced” rates, randomness can still cause long lines. Run
the supermarket simulation for a 12-hour day (720 minutes) using the following algorithm:

1) Choose a random integer from 1 to 4 to determine the minute at which the first cus-
tomer arrives.

2) At the first customer’s arrival time:
Determine customer’s service time (random integer from 1 to 4);
Begin servicing the customer;
Schedule arrival time of next customer (random integer 1 to 4 added to the current time).

3) For each minute of the day:
If the next customer arrives,

Say so, enqueue the customer, and schedule the arrival time of the next
customer;

If service was completed for the last customer;
Say so, dequeue next customer to be serviced and determine customer’s

service completion time (random integer from 1 to 4 added to the
current time).

Now run your simulation for 720 minutes, and answer each of the following:
a) What’s the maximum number of customers in the queue at any time?
b) What’s the longest wait any one customer experiences?
c) What happens if the arrival interval is changed from 1–4 minutes to 1–3 minutes?

20.16 (Allowing Duplicates in Binary Trees) Modify the program of Figs. 20.20–20.22 to allow
the binary tree object to contain duplicates.

20.17 (Binary Tree of Strings) Write a program based on Figs. 20.20–20.22 that inputs a line of
text, tokenizes the sentence into separate words (you may want to use the istringstream library
class), inserts the words in a binary search tree and prints the inorder, preorder and postorder tra-
versals of the tree. Use an OOP approach.

20.18 (Duplicate Elimination) In this chapter, we saw that duplicate elimination is straightfor-
ward when creating a binary search tree. Describe how you’d perform duplicate elimination using
only a one-dimensional array. Compare the performance of array-based duplicate elimination with
the performance of binary-search-tree-based duplicate elimination.

20.19 (Depth of a Binary Tree) Write a function depth that receives a binary tree and determines
how many levels it has.

20.20 (Recursively Print a List Backward) Write a member function printListBackward that re-
cursively outputs the items in a linked list object in reverse order. Write a test program that creates
a sorted list of integers and prints the list in reverse order.

20.21 (Recursively Search a List) Write a member function searchList that recursively searches a
linked list object for a specified value. The function should return a pointer to the value if it’s found;
otherwise, null should be returned. Use your function in a test program that creates a list of integers.
The program should prompt the user for a value to locate in the list.

20.22 (Binary Tree Delete) Deleting items from binary search trees is not as straightforward as the
insertion algorithm. There are three cases that are encountered when deleting an item—the item is

788 Chapter 20 Custom Templatized Data Structures

contained in a leaf node (i.e., it has no children), the item is contained in a node that has one child
or the item is contained in a node that has two children.

If the item to be deleted is contained in a leaf node, the node is deleted and the pointer in the
parent node is set to null.

If the item to be deleted is contained in a node with one child, the pointer in the parent node
is set to point to the child node and the node containing the data item is deleted. This causes the
child node to take the place of the deleted node in the tree.

The last case is the most difficult. When a node with two children is deleted, another node in
the tree must take its place. However, the pointer in the parent node cannot be assigned to point to
one of the children of the node to be deleted. In most cases, the resulting binary search tree would
not adhere to the following characteristic of binary search trees (with no duplicate values): The val-
ues in any left subtree are less than the value in the parent node, and the values in any right subtree are
greater than the value in the parent node.

Which node is used as a replacement node to maintain this characteristic? Either the node con-
taining the largest value in the tree less than the value in the node being deleted, or the node con-
taining the smallest value in the tree greater than the value in the node being deleted. Let’s consider
the node with the smaller value. In a binary search tree, the largest value less than a parent’s value is
located in the left subtree of the parent node and is guaranteed to be contained in the rightmost
node of the subtree. This node is located by walking down the left subtree to the right until the
pointer to the right child of the current node is null. We are now pointing to the replacement
node, which is either a leaf node or a node with one child to its left. If the replacement node is a
leaf node, the steps to perform the deletion are as follows:

1) Store the pointer to the node to be deleted in a temporary pointer variable (this pointer
is used to delete the dynamically allocated memory).

2) Set the pointer in the parent of the node being deleted to point to the replacement node.
3) Set the pointer in the parent of the replacement node to null.
4) Set the pointer to the right subtree in the replacement node to point to the right subtree

of the node to be deleted.
5) Delete the node to which the temporary pointer variable points.

The deletion steps for a replacement node with a left child are similar to those for a replacement
node with no children, but the algorithm also must move the child into the replacement node’s
position in the tree. If the replacement node is a node with a left child, the steps to perform the
deletion are as follows:

1) Store the pointer to the node to be deleted in a temporary pointer variable.
2) Set the pointer in the parent of the node being deleted to point to the replacement node.
3) Set the pointer in the parent of the replacement node to point to the left child of the

replacement node.
4) Set the pointer to the right subtree in the replacement node to point to the right subtree

of the node to be deleted.
5) Delete the node to which the temporary pointer variable points.

Write member function deleteNode, which takes as its arguments a pointer to the root node
of the tree object and the value to be deleted. The function should locate in the tree the node con-
taining the value to be deleted and use the algorithms discussed here to delete the node. The func-
tion should print a message that indicates whether the value is deleted. Modify the program of
Figs. 20.20–20.22 to use this function. After deleting an item, call the inOrder, preOrder and
postOrder traversal functions to confirm that the delete operation was performed correctly.

20.23 (Binary Tree Search) Write member function binaryTreeSearch, which attempts to locate a
specified value in a binary search tree object. The function should take as arguments a pointer to the
binary tree’s root node and a search key to locate. If the node containing the search key is found, the
function should return a pointer to that node; otherwise, the function should return a null pointer.

Exercises 789

20.24 (Level-Order Binary Tree Traversal) The program of Figs. 20.20–20.22 illustrated three re-
cursive methods of traversing a binary tree—inorder, preorder and postorder traversals. This exer-
cise presents the level-order traversal of a binary tree, in which the node values are printed level by
level, starting at the root node level. The nodes on each level are printed from left to right. The level-
order traversal is not a recursive algorithm. It uses a queue object to control the output of the nodes.
The algorithm is as follows:

1) Insert the root node in the queue
2) While there are nodes left in the queue,

Get the next node in the queue
Print the node’s value
If the pointer to the left child of the node is not null

Insert the left child node in the queue
If the pointer to the right child of the node is not null

Insert the right child node in the queue.
Write member function levelOrder to perform a level-order traversal of a binary tree object.

Modify the program of Figs. 20.20–20.22 to use this function. [Note: You’ll also need to modify
and incorporate the queue-processing functions of Fig. 20.16 in this program.]

20.25 (Printing Trees) Write a recursive member function outputTree to display a binary tree ob-
ject on the screen. The function should output the tree row by row, with the top of the tree at the
left of the screen and the bottom of the tree toward the right of the screen. Each row is output verti-
cally. For example, the binary tree illustrated in Fig. 20.24 is output as shown in Fig. 20.25. Note
that the rightmost leaf node appears at the top of the output in the rightmost column and the root
node appears at the left of the output. Each column of output starts five spaces to the right of the
previous column. Function outputTree should receive an argument totalSpaces representing the
number of spaces preceding the value to be output (this variable should start at zero, so the root
node is output at the left of the screen). The function uses a modified inorder traversal to output
the tree—it starts at the rightmost node in the tree and works back to the left. The algorithm is as
follows:

While the pointer to the current node is not null
Recursively call outputTree with the current node’s right subtree and totalSpaces + 5
Use a for structure to count from 1 to totalSpaces and output spaces
Output the value in the current node
Set the pointer to the current node to point to the left subtree of the current node
Increment totalSpaces by 5.

99
97

92
83

72
71

69
49

44
40

32
28

19
18

11

Fig. 20.25 | Displaying a binary tree

790 Chapter 20 Custom Templatized Data Structures

20.26 (Insert/Delete Anywhere in a Linked List) Our linked list class template allowed insertions
and deletions at only the front and the back of the linked list. These capabilities were convenient
for us when we used private inheritance and composition to produce a stack class template and a
queue class template with a minimal amount of code by reusing the list class template. Actually,
linked lists are more general than those we provided. Modify the linked list class template we devel-
oped in this chapter to handle insertions and deletions anywhere in the list.

20.27 (List and Queues without Tail Pointers) Our implementation of a linked list (Figs. 20.3–
20.5) used both a firstPtr and a lastPtr. The lastPtr was useful for the insertAtBack and re-

moveFromBack member functions of the List class. The insertAtBack function corresponds to the
enqueue member function of the Queue class. Rewrite the List class so that it does not use a lastPtr.
Thus, any operations on the tail of a list must begin searching the list from the front. Does this affect
our implementation of the Queue class (Fig. 20.16)?

20.28 Use the composition version of the stack program (Fig. 20.15) to form a complete working
stack program. Modify this program to inline the member functions. Compare the two approach-
es. Summarize the advantages and disadvantages of inlining member functions.

20.29 (Performance of Binary Tree Sorting and Searching) One problem with the binary tree sort
is that the order in which the data is inserted affects the shape of the tree—for the same collection
of data, different orderings can yield binary trees of dramatically different shapes. The performance
of the binary tree sorting and searching algorithms is sensitive to the shape of the binary tree. What
shape would a binary tree have if its data were inserted in increasing order? in decreasing order?
What shape should the tree have to achieve maximal searching performance?

20.30 (Indexed Lists) As presented in the text, linked lists must be searched sequentially. For large
lists, this can result in poor performance. A common technique for improving list searching perfor-
mance is to create and maintain an index to the list. An index is a set of pointers to various key places
in the list. For example, an application that searches a large list of names could improve performance
by creating an index with 26 entries—one for each letter of the alphabet. A search operation for a
last name beginning with "Y" would first search the index to determine where the "Y" entries begin
and “jump into” the list at that point and search linearly until the desired name was found. This
would be much faster than searching the linked list from the beginning. Use the List class of
Figs. 20.3–20.5 as the basis of an IndexedList class. Write a program that demonstrates the opera-
tion of indexed lists. Be sure to include member functions insertInIndexedList, searchIn-

dexedList and deleteFromIndexedList.

Special Section: Building Your Own Compiler
In Exercises 8.18–8.19 and 8.20, we introduced Simpletron Machine Language (SML), and you
implemented a Simpletron computer simulator to execute SML programs. In Exercises 20.31––
20.35, we build a compiler that converts programs written in a high-level programming language
to SML. This section “ties” together the entire programming process. You’ll write programs in this
new high-level language, compile them on the compiler you build and run them on the simulator
you built in Exercise 8.19. You should make every effort to implement your compiler in an object-
oriented manner. [Note: Due to the size of the descriptions for Exercises 20.31––20.35, we’ve
posted them in a PDF document located at www.deitel.com/books/cpphtp8/.]

www.deitel.com/books/cpphtp8/

21Bits, Characters, C Strings
and structs

The same old charitable lie
Repeated as the years scoot by
Perpetually makes a hit—
“You really haven’t changed a
bit!”
—Margaret Fishback

The chief defect of Henry King
Was chewing little bits of string.
—Hilaire Belloc

Vigorous writing is concise. A
sentence should contain no
unnecessary words, a paragraph
no unnecessary sentences.
—William Strunk, Jr.

O b j e c t i v e s
In this chapter you’ll learn:

■ To create and use structs
and to understand their near
equivalence with classes.

■ To use typedef to create
aliases for data types.

■ To manipulate data with the
bitwise operators and to
create bit fields for storing
data compactly.

■ To use the functions of the
character-handling library
<cctype>.

■ To use the string-conversion
functions of the general-
utilities library <cstdlib>.

■ To use the string-processing
functions of the string-
handling library <cstring>.

792 Chapter 21 Bits, Characters, C Strings and structs

21.1 Introduction
We now discuss structures, their near equivalence with classes, and the manipulation of
bits, characters and C-style strings. Many of the techniques we present here are included
for the benefit of those who will work with legacy C and C++ code.

C++’s designers evolved structures into the notion of a class. Like classes, C++ struc-
tures may contain access specifiers, member functions, constructors and destructors. In
fact, the only differences between structures and classes in C++ is that structure members default
to public access and class members default to private access when no access specifiers are used,
and that structures default to public inheritance, whereas classes default to private inheri-
tance. Classes have been covered thoroughly in the book, so there is really no need for us
to discuss structures in detail. Our presentation of structures in this chapter focuses on
their use in a C-like manner, where they contain only public data members. This use of
structures is typical of the legacy C code and early C++ code you’ll see in industry.

We present a high-performance card shuffling and dealing simulation in which we use
structure objects containing C++ string objects to represent the cards. We discuss the bit-
wise operators that allow you to access and manipulate the individual bits in bytes of data.
We also present bitfields—special structures that can be used to specify the exact number
of bits a variable occupies in memory. These bit manipulation techniques are common in
C and C++ programs that interact directly with hardware devices that have limited
memory. The chapter finishes with examples of many character and C string manipulation
functions—some of which are designed to process blocks of memory as arrays of bytes.
The detailed C string treatment in this chapter is mostly for reasons of legacy code support
and because there are still remnants of C string use in C++, such as command-line argu-
ments (Appendix F). New development should use C++ string objects rather than C strings.

21.2 Structure Definitions
Consider the following structure definition:

21.1 Introduction
21.2 Structure Definitions
21.3 typedef

21.4 Example: Card Shuffling and Dealing
Simulation

21.5 Bitwise Operators
21.6 Bit Fields
21.7 Character-Handling Library

21.8 Pointer-Based String Manipulation
Functions

21.9 Pointer-Based String-Conversion
Functions

21.10 Search Functions of the Pointer-
Based String-Handling Library

21.11 Memory Functions of the Pointer-
Based String-Handling Library

21.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Advanced String-Manipulation Exercises | Challenging String-Manipulation Projects

struct Card
{

string face;
string suit;

}; // end struct Card

21.2 Structure Definitions 793

Keyword struct introduces the definition for structure Card. The identifier Card is the
structure name and is used in C++ to declare variables of the structure type (in C, the type
name of the preceding structure is struct Card). Data (and possibly functions—just as
with classes) declared within the braces of the structure definition are the structure’s mem-
bers. Card’s definition contains two string members—face and suit.

The following declarations

declare oneCard to be a structure variable of type Card, deck to be an array with 52 ele-
ments of type Card and cardPtr to be a pointer to a Card structure. Variables of a given
structure type can also be declared by placing a comma-separated list of the variable names
between the closing brace of the structure definition and the semicolon that ends the struc-
ture definition. For example, the preceding declarations could have been incorporated into
the Card structure definition as follows:

As with classes, structure members are not necessarily stored in consecutive bytes of
memory. Sometimes there are “holes” in a structure, because some computers store spe-
cific data types only on certain memory boundaries for performance reasons, such as half-
word, word or double-word boundaries. A word is a standard memory unit used to store
data in a computer—usually two bytes or four bytes and typically four bytes on 32-bit sys-
tems. Consider the following structure definition in which structure objects sample1 and
sample2 of type Example are declared:

A computer with two-byte words might require that each of the members of Example be
aligned on a word boundary (i.e., at the beginning of a word—this is machine dependent).
Figure 21.1 shows a sample storage alignment for an object of type Example that’s been
assigned the character 'a' and the integer 97 (the bit representations of the values are
shown). If the members are stored beginning at word boundaries, there is a one-byte hole
(byte 1 in the figure) in the storage for objects of type Example. The value in the one-byte
hole is undefined. If the member values of sample1 and sample2 are in fact equal, the
structure objects are not necessarily equal, because the undefined one-byte holes are not
likely to contain identical values.

Card oneCard;
Card deck[52];
Card *cardPtr;

struct Card
{

string face;
string suit;

} oneCard, deck[52], *cardPtr;

struct Example
{

char c;
int i;

} sample1, sample2;

Common Programming Error 21.1
Comparing variables of structure types is a compilation error.

794 Chapter 21 Bits, Characters, C Strings and structs

21.3 typedef
Keyword typedef provides a mechanism for creating synonyms (or aliases) for previously
defined data types. Names for structure types are often defined with typedef to create
shorter, simpler or more readable type names. For example, the statement

defines the new type name CardPtr as a synonym for type Card *.
Creating a new name with typedef does not create a new type; typedef simply creates

a new type name that can then be used in the program as an alias for an existing type name.

21.4 Example: Card Shuffling and Dealing Simulation
The card shuffling and dealing program in Figs. 21.2–21.4 is similar to the one described
in Exercise 10.10. This program represents the deck of cards as a vector of structures and
uses high-performance shuffling and dealing algorithms.

Fig. 21.1 | Possible storage alignment for a variable of type Example, showing an undefined
area in memory.

Portability Tip 21.1
Because the size of data items of a particular type is machine dependent, and because storage
alignment considerations are machine dependent, so too is the representation of a structure.

typedef Card *CardPtr;

Portability Tip 21.2
Synonyms for built-in data types can be created with typedef to make programs more
portable. For example, a program can use typedef to create alias Integer for four-byte
integers. Integer can then be aliased to int on systems with four-byte integers and can be
aliased to long int on systems with two-byte integers where long int values occupy four
bytes. Then, you simply declare all four-byte integer variables to be of type Integer.

1 // Fig. 21.2: DeckOfCards.h
2 // Definition of class DeckOfCards that
3 // represents a deck of playing cards.
4 #include <string>
5 #include <vector>
6 using namespace std;
7
8
9

10

Fig. 21.2 | Header for DeckOfCards class. (Part 1 of 2.)

01100001 00000000 01100001

0Byte 1 2 3

// Card structure definition
struct Card
{

21.4 Example: Card Shuffling and Dealing Simulation 795

The constructor (lines 12–32 of Fig. 21.3) initializes the vector in order with char-
acter strings representing Ace through King of each suit. Function shuffle implements
the high-performance shuffling algorithm. The function loops through all 52 cards (sub-
scripts 0 to 51). For each card, a number between 0 and 51 is picked randomly. Next, the
current Card and the randomly selected Card are swapped in the vector. A total of 52
swaps are made in a single pass of the entire vector, and the vector is shuffled. Because
the Card structures were swapped in place in the vector, the dealing algorithm imple-
mented in function deal requires only one pass of the vector to deal the shuffled cards.

11
12
13
14
15 // DeckOfCards class definition
16 class DeckOfCards
17 {
18 public:
19 static const int numberOfCards = 52;
20 static const int faces = 13;
21 static const int suits = 4;
22
23 DeckOfCards(); // constructor initializes deck
24 void shuffle(); // shuffles cards in deck
25 void deal() const; // deals cards in deck
26
27 private:
28 vector< Card > deck; // represents deck of cards
29 }; // end class DeckOfCards

1 // Fig. 21.3: DeckOfCards.cpp
2 // Member-function definitions for class DeckOfCards that simulates
3 // the shuffling and dealing of a deck of playing cards.
4 #include <iostream>
5 #include <iomanip>
6 #include <cstdlib> // prototypes for rand and srand
7 #include <ctime> // prototype for time
8 #include "DeckOfCards.h" // DeckOfCards class definition
9 using namespace std;

10
11 // no-argument DeckOfCards constructor intializes deck
12 DeckOfCards::DeckOfCards()
13 : deck(numberOfCards)
14 {
15 // initialize suit array
16 static string suit[suits] =
17 { "Hearts", "Diamonds", "Clubs", "Spades" };
18

Fig. 21.3 | Class file for DeckOfCards. (Part 1 of 2.)

Fig. 21.2 | Header for DeckOfCards class. (Part 2 of 2.)

string face;
string suit;

}; // end structure Card

796 Chapter 21 Bits, Characters, C Strings and structs

19 // initialize face array
20 static string face[faces] =
21 { "Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",
22 "Eight", "Nine", "Ten", "Jack", "Queen", "King" };
23
24 // set values for deck of 52 Cards
25 for (int i = 0; i < numberOfCards; ++i)
26 {
27
28
29 } // end for
30
31 srand(time(0)); // seed random number generator
32 } // end no-argument DeckOfCards constructor
33
34 // shuffle cards in deck
35 void DeckOfCards::shuffle()
36 {
37 // shuffle cards randomly
38 for (int i = 0; i < numberOfCards; ++i)
39 {
40 int j = rand() % numberOfCards;
41
42
43
44 } // end for
45 } // end function shuffle
46
47 // deal cards in deck
48 void DeckOfCards::deal() const
49 {
50 // display each card’s face and suit
51 for (int i = 0; i < numberOfCards; ++i)
52 cout << right << setw(5) << << " of "
53 << left << setw(8) <<
54 << ((i + 1) % 2 ? '\t' : '\n');
55 } // end function deal

1 // Fig. 21.4: fig21_04.cpp
2 // Card shuffling and dealing program.
3 #include "DeckOfCards.h" // DeckOfCards class definition
4
5 int main()
6 {
7 DeckOfCards deckOfCards; // create DeckOfCards object
8 deckOfCards.shuffle(); // shuffle the cards in the deck
9 deckOfCards.deal(); // deal the cards in the deck

10 } // end main

Fig. 21.4 | High-performance card shuffling and dealing simulation. (Part 1 of 2.)

Fig. 21.3 | Class file for DeckOfCards. (Part 2 of 2.)

deck[i].face = face[i % faces];
deck[i].suit = suit[i / faces];

Card temp = deck[i];
deck[i] = deck[j];
deck[j] = temp;

deck[i].face
deck[i].suit

21.5 Bitwise Operators 797

21.5 Bitwise Operators
C++ provides extensive bit-manipulation capabilities for getting down to the so-called
“bits-and-bytes” level. Operating systems, test-equipment software, networking software
and many other kinds of software require that you communicate “directly with the hard-
ware.” This and the next several sections discuss bit manipulation. We introduce each of
C++’s many bitwise operators, and we discuss how to save memory by using bit fields.

All data is represented internally by computers as sequences of bits. Each bit can
assume the value 0 or the value 1. On most systems, a sequence of eight bits forms a byte—
the standard storage unit for a variable of type char. Other data types are stored in larger
numbers of bytes. Bitwise operators are used to manipulate the bits of integral operands
(char, short, int and long; both signed and unsigned). Unsigned integers are normally
used with the bitwise operators.

The bitwise operator discussions in this section show the binary representations of the
integer operands. For a detailed explanation of the binary (also called base-2) number system,
see Appendix D. Because of the machine-dependent nature of bitwise manipulations, some
of these programs might not work on your system without modification.

The bitwise operators are: bitwise AND (&), bitwise inclusive OR (|), bitwise exclu-
sive OR (^), left shift (<<), right shift (>>) and bitwise complement (~)—also known as

King of Clubs Ten of Diamonds
Five of Diamonds Jack of Clubs
Seven of Spades Five of Clubs
Three of Spades King of Hearts

Ten of Clubs Eight of Spades
Eight of Hearts Six of Hearts
Nine of Diamonds Nine of Clubs
Three of Diamonds Queen of Hearts

Six of Clubs Seven of Hearts
Seven of Diamonds Jack of Diamonds
Jack of Spades King of Diamonds
Deuce of Diamonds Four of Clubs
Three of Clubs Five of Hearts
Eight of Clubs Ace of Hearts
Deuce of Spades Ace of Clubs

Ten of Spades Eight of Diamonds
Ten of Hearts Six of Spades

Queen of Diamonds Nine of Hearts
Seven of Clubs Queen of Clubs
Deuce of Clubs Queen of Spades
Three of Hearts Five of Spades
Deuce of Hearts Jack of Hearts
Four of Hearts Ace of Diamonds
Nine of Spades Four of Diamonds
Ace of Spades Six of Diamonds

Four of Spades King of Spades

Portability Tip 21.3
Bitwise data manipulations are machine dependent.

Fig. 21.4 | High-performance card shuffling and dealing simulation. (Part 2 of 2.)

798 Chapter 21 Bits, Characters, C Strings and structs

the one’s complement. (Note that we’ve been using &, << and >> for other purposes. This
is a classic example of operator overloading.) The bitwise AND, bitwise inclusive OR and
bitwise exclusive OR operators compare their two operands bit by bit. The bitwise AND
operator sets each bit in the result to 1 if the corresponding bit in both operands is 1. The
bitwise inclusive OR operator sets each bit in the result to 1 if the corresponding bit in either
(or both) operand(s) is 1. The bitwise exclusive OR operator sets each bit in the result to 1
if the corresponding bit in either operand—but not both—is 1. The left-shift operator shifts
the bits of its left operand to the left by the number of bits specified in its right operand.
The right-shift operator shifts the bits in its left operand to the right by the number of bits
specified in its right operand. The bitwise complement operator sets all 0 bits in its operand
to 1 in the result and sets all 1 bits in its operand to 0 in the result. Detailed discussions of
each bitwise operator appear in the following examples. The bitwise operators are summa-
rized in Fig. 21.5.

Printing a Binary Representation of an Integral Value
When using the bitwise operators, it’s useful to illustrate their precise effects by printing
values in their binary representation. The program of Fig. 21.6 prints an unsigned integer
in its binary representation in groups of eight bits each.

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding
bits in the two operands are both 1.

| bitwise inclusive OR The bits in the result are set to 1 if one or both of the
corresponding bits in the two operands is 1.

^ bitwise exclusive OR The bits in the result are set to 1 if exactly one of the
corresponding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of
bits specified by the second operand; fill from right with
0 bits.

>> right shift with sign
extension

Shifts the bits of the first operand right by the number
of bits specified by the second operand; the method of
filling from the left is machine dependent.

~ bitwise complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 21.5 | Bitwise operators.

1 // Fig. 21.6: fig21_06.cpp
2 // Printing an unsigned integer in bits.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 void displayBits(unsigned); // prototype
8

Fig. 21.6 | Printing an unsigned integer in bits. (Part 1 of 2.)

21.5 Bitwise Operators 799

Function displayBits (lines 19–37) uses the bitwise AND operator to combine vari-
able value with constant MASK. Often, the bitwise AND operator is used with an operand
called a mask—an integer value with specific bits set to 1. Masks are used to hide some bits
in a value while selecting other bits. In displayBits, line 22 assigns constant MASK the value
1 << SHIFT. The value of constant SHIFT was calculated in line 21 with the expression

which multiplies the number of bytes an unsigned object requires in memory by 8 (the
number of bits in a byte) to get the total number of bits required to store an unsigned ob-
ject, then subtracts 1. The bit representation of 1 << SHIFT on a computer that represents
unsigned objects in four bytes of memory is

9 int main()
10 {
11 unsigned inputValue; // integral value to print in binary
12
13 cout << "Enter an unsigned integer: ";
14 cin >> inputValue;
15 displayBits(inputValue);
16 } // end main
17
18 // display bits of an unsigned integer value
19 void displayBits(unsigned value)
20 {
21
22
23
24 cout << setw(10) << value << " = ";
25
26 // display bits
27 for (unsigned i = 1; i <= SHIFT + 1; ++i)
28 {
29
30
31
32 if (i % 8 == 0) // output a space after 8 bits
33 cout << ' ';
34 } // end for
35
36 cout << endl;
37 } // end function displayBits

Enter an unsigned integer: 65000
65000 = 00000000 00000000 11111101 11101000

Enter an unsigned integer: 29
29 = 00000000 00000000 00000000 00011101

8 * sizeof(unsigned) - 1

10000000 00000000 00000000 00000000

Fig. 21.6 | Printing an unsigned integer in bits. (Part 2 of 2.)

const int SHIFT = 8 * sizeof(unsigned) - 1;
const unsigned MASK = 1 << SHIFT;

cout << (value & MASK ? '1' : '0');
value <<= 1; // shift value left by 1

800 Chapter 21 Bits, Characters, C Strings and structs

The left-shift operator shifts the value 1 from the low-order (rightmost) bit to the high-
order (leftmost) bit in MASK, and fills in 0 bits from the right. Line 29 prints a 1 or a 0 for
the current leftmost bit of variable value. Assume that variable value contains 65000

(00000000 00000000 11111101 11101000). When value and MASK are combined using &,
all the bits except the high-order bit in variable value are “masked off” (hidden), because
any bit “ANDed” with 0 yields 0. If the leftmost bit is 1, value & MASK evaluates to

which is interpreted as false, and 0 is printed. Then line 30 shifts variable value left by
one bit with the expression value <<= 1 (i.e., value = value << 1). These steps are repeated
for each bit variable value. Eventually, a bit with a value of 1 is shifted into the leftmost
bit position, and the bit manipulation is as follows:

Because both left bits are 1s, the expression’s result is nonzero (true) and 1 is printed.
Figure 21.7 summarizes the results of combining two bits with the bitwise AND operator.

The program of Fig. 21.8 demonstrates the bitwise AND operator, the bitwise inclu-
sive OR operator, the bitwise exclusive OR operator and the bitwise complement oper-
ator. Function displayBits (lines 53–71) prints the unsigned integer values.

00000000 00000000 11111101 11101000 (value)
10000000 00000000 00000000 00000000 (MASK)

00000000 00000000 00000000 00000000 (value & MASK)

11111101 11101000 00000000 00000000 (value)
10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value & MASK)

Common Programming Error 21.2
Using the logical AND operator (&&) for the bitwise AND operator (&) and vice versa is
a logic error.

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

Fig. 21.7 | Results of combining two
bits with the bitwise AND operator (&).

1 // Fig. 21.8: fig21_08.cpp
2 // Bitwise AND, inclusive OR,
3 // exclusive OR and complement operators.
4 #include <iostream>

Fig. 21.8 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 1 of 3.)

21.5 Bitwise Operators 801

5 #include <iomanip>
6 using namespace std;
7
8 void displayBits(unsigned); // prototype
9

10 int main()
11 {
12 unsigned number1;
13 unsigned number2;
14 unsigned mask;
15 unsigned setBits;
16
17 // demonstrate bitwise &
18 number1 = 2179876355;
19 mask = 1;
20 cout << "The result of combining the following\n";
21 displayBits(number1);
22 displayBits(mask);
23 cout << "using the bitwise AND operator & is\n";
24 displayBits();
25
26 // demonstrate bitwise |
27 number1 = 15;
28 setBits = 241;
29 cout << "\nThe result of combining the following\n";
30 displayBits(number1);
31 displayBits(setBits);
32 cout << "using the bitwise inclusive OR operator | is\n";
33 displayBits();
34
35 // demonstrate bitwise exclusive OR
36 number1 = 139;
37 number2 = 199;
38 cout << "\nThe result of combining the following\n";
39 displayBits(number1);
40 displayBits(number2);
41 cout << "using the bitwise exclusive OR operator ^ is\n";
42 displayBits();
43
44 // demonstrate bitwise complement
45 number1 = 21845;
46 cout << "\nThe one's complement of\n";
47 displayBits(number1);
48 cout << "is" << endl;
49 displayBits();
50 } // end main
51
52 // display bits of an unsigned integer value
53 void displayBits(unsigned value)
54 {
55 const int SHIFT = 8 * sizeof(unsigned) - 1;
56 const unsigned MASK = 1 << SHIFT;
57

Fig. 21.8 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 2 of 3.)

number1 & mask

number1 | setBits

number1 ^ number2

~number1

802 Chapter 21 Bits, Characters, C Strings and structs

Bitwise AND Operator (&)
In Fig. 21.8, line 18 assigns 2179876355 (10000001 11101110 01000110 00000011) to vari-
able number1, and line 19 assigns 1 (00000000 00000000 00000000 00000001) to variable
mask. When mask and number1 are combined using the bitwise AND operator (&) in the
expression number1 & mask (line 24), the result is 00000000 00000000 00000000 00000001.
All the bits except the low-order bit in variable number1 are “masked off” (hidden) by
“ANDing” with constant MASK.

Bitwise Inclusive OR Operator (|)
The bitwise inclusive OR operator is used to set specific bits to 1 in an operand. In Fig. 21.8,
line 27 assigns 15 (00000000 00000000 00000000 00001111) to variable number1, and line 28
assigns 241 (00000000 00000000 00000000 11110001) to variable setBits. When number1

and setBits are combined using the bitwise OR operator in the expression number1 | set-

58 cout << setw(10) << value << " = ";
59
60 // display bits
61 for (unsigned i = 1; i <= SHIFT + 1; ++i)
62 {
63 cout << (value & MASK ? '1' : '0');
64 value <<= 1; // shift value left by 1
65
66 if (i % 8 == 0) // output a space after 8 bits
67 cout << ' ';
68 } // end for
69
70 cout << endl;
71 } // end function displayBits

The result of combining the following
2179876355 = 10000001 11101110 01000110 00000011

1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is

1 = 00000000 00000000 00000000 00000001

The result of combining the following
15 = 00000000 00000000 00000000 00001111
241 = 00000000 00000000 00000000 11110001

using the bitwise inclusive OR operator | is
255 = 00000000 00000000 00000000 11111111

The result of combining the following
139 = 00000000 00000000 00000000 10001011
199 = 00000000 00000000 00000000 11000111

using the bitwise exclusive OR operator ^ is
76 = 00000000 00000000 00000000 01001100

The one's complement of
21845 = 00000000 00000000 01010101 01010101

is
4294945450 = 11111111 11111111 10101010 10101010

Fig. 21.8 | Bitwise AND, inclusive OR, exclusive OR and complement operators. (Part 3 of 3.)

21.5 Bitwise Operators 803

Bits (line 33), the result is 255 (00000000 00000000 00000000 11111111). Figure 21.9 sum-
marizes the results of combining two bits with the bitwise inclusive-OR operator.

Bitwise Exclusive OR (^)
The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of the
corresponding bits in its two operands is 1. In Fig. 21.8, lines 36–37 assign variables
number1 and number2 the values 139 (00000000 00000000 00000000 10001011) and 199

(00000000 00000000 00000000 11000111), respectively. When these variables are com-
bined with the exclusive OR operator in the expression number1 ^ number2 (line 42), the
result is 00000000 00000000 00000000 01001100. Figure 21.10 summarizes the results of
combining two bits with the bitwise exclusive OR operator.

Bitwise Complement (~)
The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result and sets
all 0 bits to 1 in the result—otherwise referred to as “taking the one’s complement of the val-
ue.” In Fig. 21.8, line 45 assigns variable number1 the value 21845 (00000000 00000000

01010101 01010101). When the expression ~number1 evaluates, the result is (11111111
11111111 10101010 10101010).

Figure 21.11 demonstrates the left-shift operator (<<) and the right-shift operator
(>>). Function displayBits (lines 27–45) prints the unsigned integer values.

Common Programming Error 21.3
Using the logical OR operator (||) for the bitwise OR operator (|) and vice versa is a
logic error.

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. 21.9 | Combining two bits
with the bitwise inclusive-OR operator (|).

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Fig. 21.10 | Combining two bits with
the bitwise exclusive OR operator (^).

804 Chapter 21 Bits, Characters, C Strings and structs

1 // Fig. 21.11: fig21_11.cpp
2 // Using the bitwise shift operators.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 void displayBits(unsigned); // prototype
8
9 int main()

10 {
11 unsigned number1 = 960;
12
13 // demonstrate bitwise left shift
14 cout << "The result of left shifting\n";
15 displayBits(number1);
16 cout << "8 bit positions using the left-shift operator is\n";
17 displayBits();
18
19 // demonstrate bitwise right shift
20 cout << "\nThe result of right shifting\n";
21 displayBits(number1);
22 cout << "8 bit positions using the right-shift operator is\n";
23 displayBits();
24 } // end main
25
26 // display bits of an unsigned integer value
27 void displayBits(unsigned value)
28 {
29 const int SHIFT = 8 * sizeof(unsigned) - 1;
30 const unsigned MASK = 1 << SHIFT;
31
32 cout << setw(10) << value << " = ";
33
34 // display bits
35 for (unsigned i = 1; i <= SHIFT + 1; ++i)
36 {
37 cout << (value & MASK ? '1' : '0');
38 value <<= 1; // shift value left by 1
39
40 if (i % 8 == 0) // output a space after 8 bits
41 cout << ' ';
42 } // end for
43
44 cout << endl;
45 } // end function displayBits

The result of left shifting
960 = 00000000 00000000 00000011 11000000

8 bit positions using the left-shift operator is
245760 = 00000000 00000011 11000000 00000000

Fig. 21.11 | Bitwise shift operators. (Part 1 of 2.)

number1 << 8

number1 >> 8

21.5 Bitwise Operators 805

Left-Shift Operator
The left-shift operator (<<) shifts the bits of its left operand to the left by the number of bits
specified in its right operand. Bits vacated to the right are replaced with 0s; bits shifted off
the left are lost. In Fig. 21.11, line 11 assigns variable number1 the value 960 (00000000
00000000 00000011 11000000). The result of left-shifting variable number1 eight bits in the
expression number1 << 8 (line 17) is 245760 (00000000 00000011 11000000 00000000).

Right-Shift Operator
The right-shift operator (>>) shifts the bits of its left operand to the right by the number
of bits specified in its right operand. Performing a right shift on an unsigned integer causes
the vacated bits at the left to be replaced by 0s; bits shifted off the right are lost. In the
program of Fig. 21.11, the result of right-shifting number1 in the expression number1 >> 8

(line 23) is 3 (00000000 00000000 00000000 00000011).

Bitwise Assignment Operators
Each bitwise operator (except the bitwise complement operator) has a corresponding as-
signment operator. These bitwise assignment operators are shown in Fig. 21.12; they’re
used in a similar manner to the arithmetic assignment operators introduced in Chapter 2.

Figure 21.13 shows the precedence and associativity of the operators introduced up
to this point in the text. They’re shown top to bottom in decreasing order of precedence.

The result of right shifting
960 = 00000000 00000000 00000011 11000000

8 bit positions using the right-shift operator is
3 = 00000000 00000000 00000000 00000011

Common Programming Error 21.4
The result of shifting a value is undefined if the right operand is negative or if the right
operand is greater than or equal to the number of bits in which the left operand is stored.

Portability Tip 21.4
The result of right-shifting a signed value is machine dependent. Some machines fill with
zeros and others use the sign bit.

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.

^= Bitwise exclusive OR assignment operator.

<<= Left-shift assignment operator.

>>= Right-shift with sign extension assignment operator.

Fig. 21.12 | Bitwise assignment operators.

Fig. 21.11 | Bitwise shift operators. (Part 2 of 2.)

806 Chapter 21 Bits, Characters, C Strings and structs

21.6 Bit Fields
C++ provides the ability to specify the number of bits in which an integral type or enum
type member of a class or a structure is stored. Such a member is referred to as a bit field.
Bit fields enable better memory utilization by storing data in the minimum number of bits
required. Bit field members must be declared as an integral or enum type.

Consider the following structure definition:

The definition contains three unsigned bit fields—face, suit and color—used to repre-
sent a card from a deck of 52 cards. A bit field is declared by following an integral type or
enum type member with a colon (:) and an integer constant representing the width of the
bit field (i.e., the number of bits in which the member is stored). The width must be an
integer constant.

Operators Associativity Type

:: (unary; right to left) :: (binary; left to right)
() (grouping parentheses)

[See parentheses cau-
tion in Fig. 2.10]

highest

() [] . -> ++ -- static_cast< type >() left to right postfix

++ -- + - ! delete sizeof

* ~ & new

right to left prefix

* / % left to right multiplicative

+ - left to right additive

<< >> left to right shifting

< <= > >= left to right relational

== != left to right equality

& left to right bitwise AND

^ left to right bitwise XOR

| left to right bitwise OR

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= &= |= ^= <<= >>= right to left assignment

, left to right comma

Fig. 21.13 | Operator precedence and associativity.

Performance Tip 21.1
Bit fields help conserve storage.

struct BitCard
{

unsigned face : 4;
unsigned suit : 2;
unsigned color : 1;

}; // end struct BitCard

21.6 Bit Fields 807

The preceding structure definition indicates that member face is stored in four bits,
member suit in 2 bits and member color in one bit. The number of bits is based on the
desired range of values for each structure member. Member face stores values between 0

(Ace) and 12 (King)—four bits can store a value between 0 and 15. Member suit stores
values between 0 and 3 (0 = Diamonds, 1 = Hearts, 2 = Clubs, 3 = Spades)—two bits can
store a value between 0 and 3. Finally, member color stores either 0 (Red) or 1 (Black)—
one bit can store either 0 or 1.

The program in Figs. 21.14–21.16 creates vector deck containing BitCard struc-
tures (line 27 of Fig. 21.14). The constructor inserts the 52 cards in the deck vector, and
function deal prints the 52 cards. Notice that bit fields are accessed exactly as any other
structure member is (lines 15–17 and 26–31 of Fig. 21.15). The member color is
included as a means of indicating the card color.

1 // Fig. 21.14: DeckOfCards.h
2 // Definition of class DeckOfCards that
3 // represents a deck of playing cards.
4 #include <vector>
5 using namespace std;
6
7
8
9

10
11
12
13
14
15 // DeckOfCards class definition
16 class DeckOfCards
17 {
18 public:
19 static const int faces = 13;
20 static const int colors = 2; // black and red
21 static const int numberOfCards = 52;
22
23 DeckOfCards(); // constructor initializes deck
24 void deal(); // deals cards in deck
25
26 private:
27
28 }; // end class DeckOfCards

Fig. 21.14 | Header for class DeckOfCards.

1 // Fig. 21.15: DeckOfCards.cpp
2 // Member-function definitions for class DeckOfCards that simulates
3 // the shuffling and dealing of a deck of playing cards.
4 #include <iostream>
5 #include <iomanip>

Fig. 21.15 | Class file for DeckOfCards. (Part 1 of 2.)

// BitCard structure definition with bit fields
struct BitCard
{

unsigned face : 4; // 4 bits; 0-15
unsigned suit : 2; // 2 bits; 0-3
unsigned color : 1; // 1 bit; 0-1

}; // end struct BitCard

vector< BitCard > deck; // represents deck of cards

808 Chapter 21 Bits, Characters, C Strings and structs

6 #include "DeckOfCards.h" // DeckOfCards class definition
7 using namespace std;
8
9 // no-argument DeckOfCards constructor intializes deck

10 DeckOfCards::DeckOfCards()
11
12 {
13 for (int i = 0; i < numberOfCards; ++i)
14 {
15
16
17
18 } // end for
19 } // end no-argument DeckOfCards constructor
20
21 // deal cards in deck
22 void DeckOfCards::deal()
23 {
24 for (int k1 = 0, k2 = k1 + numberOfCards / 2;
25 k1 < numberOfCards / 2 - 1; ++k1, ++k2)
26 cout << "Card:" << setw(3) <<
27 << " Suit:" << setw(2) <<
28 << " Color:" << setw(2) <<
29 << " " << "Card:" << setw(3) <<
30 << " Suit:" << setw(2) <<
31 << " Color:" << setw(2) << << endl;
32 } // end function deal

1 // Fig. 21.16: fig21_16.cpp
2 // Card shuffling and dealing program.
3 #include "DeckOfCards.h" // DeckOfCards class definition
4
5 int main()
6 {
7 DeckOfCards deckOfCards; // create DeckOfCards object
8 deckOfCards.deal(); // deal the cards in the deck
9 } // end main

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1

Fig. 21.16 | Bit fields used to store a deck of cards. (Part 1 of 2.)

Fig. 21.15 | Class file for DeckOfCards. (Part 2 of 2.)

deck[i].face = i % faces; // faces in order
deck[i].suit = i / faces; // suits in order
deck[i].color = i / (faces * colors); // colors in order

deck[k1].face
deck[k1].suit
deck[k1].color

deck[k2].face
deck[k2].suit
deck[k2].color

21.6 Bit Fields 809

It’s possible to specify an unnamed bit field, in which case the field is used as padding
in the structure. For example, the structure definition uses an unnamed three-bit field as pad-
ding—nothing can be stored in those three bits. Member b is stored in another storage unit.

An unnamed bit field with a zero width is used to align the next bit field on a new
storage-unit boundary. For example, the structure definition

uses an unnamed 0-bit field to skip the remaining bits (as many as there are) of the storage
unit in which a is stored and align b on the next storage-unit boundary.

Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

struct Example
{

unsigned a : 13;
unsigned : 3; // align to next storage-unit boundary
unsigned b : 4;

}; // end struct Example

struct Example
{

unsigned a : 13;
unsigned : 0; // align to next storage-unit boundary
unsigned b : 4;

}; // end struct Example

Portability Tip 21.5
Bit-field manipulations are machine dependent. For example, some computers allow bit
fields to cross word boundaries, whereas others do not.

Common Programming Error 21.5
Attempting to access individual bits of a bit field with subscripting as if they were elements
of an array is a compilation error. Bit fields are not “arrays of bits.”

Common Programming Error 21.6
Attempting to take the address of a bit field (the & operator may not be used with bit fields
because a pointer can designate only a particular byte in memory and bit fields can start
in the middle of a byte) is a compilation error.

Fig. 21.16 | Bit fields used to store a deck of cards. (Part 2 of 2.)

810 Chapter 21 Bits, Characters, C Strings and structs

21.7 Character-Handling Library
Most data is entered into computers as characters—including letters, digits and various
special symbols. In this section, we discuss C++’s capabilities for examining and manipu-
lating individual characters. In the remainder of the chapter, we continue the discussion
of character-string manipulation that we began in Chapter 8.

The character-handling library includes several functions that perform useful tests and
manipulations of character data. Each function receives a character—represented as an
int—or EOF as an argument. Characters are often manipulated as integers. Remember that
EOF normally has the value –1 and that some hardware architectures do not allow negative
values to be stored in char variables. Therefore, the character-handling functions manip-
ulate characters as integers. Figure 21.17 summarizes the functions of the character-han-
dling library. When using functions from the character-handling library, include the
<cctype> header.

Performance Tip 21.2
Although bit fields save space, using them can cause the compiler to generate slower-exe-
cuting machine-language code. This occurs because it takes extra machine-language oper-
ations to access only portions of an addressable storage unit. This is one of many examples
of the space–time trade-offs that occur in computer science.

Prototype Description

int isdigit(int c) Returns 1 if c is a digit and 0 otherwise.

int isalpha(int c) Returns 1 if c is a letter and 0 otherwise.

int isalnum(int c) Returns 1 if c is a digit or a letter and 0 otherwise.

int isxdigit(int c) Returns 1 if c is a hexadecimal digit character and 0 otherwise.
(See Appendix D, Number Systems, for a detailed explanation of
binary, octal, decimal and hexadecimal numbers.)

int islower(int c) Returns 1 if c is a lowercase letter and 0 otherwise.

int isupper(int c) Returns 1 if c is an uppercase letter; 0 otherwise.

int tolower(int c) If c is an uppercase letter, tolower returns c as a lowercase letter.
Otherwise, tolower returns the argument unchanged.

int toupper(int c) If c is a lowercase letter, toupper returns c as an uppercase letter.
Otherwise, toupper returns the argument unchanged.

int isspace(int c) Returns 1 if c is a white-space character—newline ('\n'), space
(' '), form feed ('\f'), carriage return ('\r'), horizontal tab
('\t'), or vertical tab ('\v')—and 0 otherwise.

int iscntrl(int c) Returns 1 if c is a control character, such as newline ('\n'), form
feed ('\f'), carriage return ('\r'), horizontal tab ('\t'), vertical
tab ('\v'), alert ('\a'), or backspace ('\b')—and 0 otherwise.

int ispunct(int c) Returns 1 if c is a printing character other than a space, a digit, or
a letter and 0 otherwise.

Fig. 21.17 | Character-handling library functions. (Part 1 of 2.)

21.7 Character-Handling Library 811

Figure 21.18 demonstrates functions isdigit, isalpha, isalnum and isxdigit.
Function isdigit determines whether its argument is a digit (0–9). Function isalpha

determines whether its argument is an uppercase letter (A-Z) or a lowercase letter (a–z).
Function isalnum determines whether its argument is an uppercase letter, a lowercase
letter or a digit. Function isxdigit determines whether its argument is a hexadecimal
digit (A–F, a–f, 0–9).

int isprint(int c) Returns 1 if c is a printing character including space (' ') and 0

otherwise.

int isgraph(int c) Returns 1 if c is a printing character other than space (' ') and 0

otherwise.

1 // Fig. 21.18: fig21_18.cpp
2 // Character-handling functions isdigit, isalpha, isalnum and isxdigit.
3 #include <iostream>
4 #include <cctype> // character-handling function prototypes
5 using namespace std;
6
7 int main()
8 {
9 cout << "According to isdigit:\n"

10 << (? "8 is a" : "8 is not a") << " digit\n"
11 << (? "# is a" : "# is not a") << " digit\n";
12
13 cout << "\nAccording to isalpha:\n"
14 << (? "A is a" : "A is not a") << " letter\n"
15 << (? "b is a" : "b is not a") << " letter\n"
16 << (? "& is a" : "& is not a") << " letter\n"
17 << (? "4 is a" : "4 is not a") << " letter\n";
18
19 cout << "\nAccording to isalnum:\n"
20 << (? "A is a" : "A is not a")
21 << " digit or a letter\n"
22 << (? "8 is a" : "8 is not a")
23 << " digit or a letter\n"
24 << (? "# is a" : "# is not a")
25 << " digit or a letter\n";
26
27 cout << "\nAccording to isxdigit:\n"
28 << (? "F is a" : "F is not a")
29 << " hexadecimal digit\n"
30 << (? "J is a" : "J is not a")
31 << " hexadecimal digit\n"
32 << (? "7 is a" : "7 is not a")

Fig. 21.18 | Character-handling functions isdigit, isalpha, isalnum and isxdigit. (Part 1
of 2.)

Prototype Description

Fig. 21.17 | Character-handling library functions. (Part 2 of 2.)

isdigit('8')
isdigit('#')

isalpha('A')
isalpha('b')
isalpha('&')
isalpha('4')

isalnum('A')

isalnum('8')

isalnum('#')

isxdigit('F')

isxdigit('J')

isxdigit('7')

812 Chapter 21 Bits, Characters, C Strings and structs

Figure 21.18 uses the conditional operator (?:) with each function to determine
whether the string " is a " or the string " is not a " should be printed in the output for
each character tested. For example, line 10 indicates that if '8' is a digit—i.e., if isdigit
returns a true (nonzero) value—the string "8 is a " is printed. If '8' is not a digit (i.e., if
isdigit returns 0), the string "8 is not a " is printed.

Figure 21.19 demonstrates functions islower, isupper, tolower and toupper. Func-
tion islower determines whether its argument is a lowercase letter (a–z). Function
isupper determines whether its argument is an uppercase letter (A–Z). Function tolower

converts an uppercase letter to lowercase and returns the lowercase letter—if the argument
is not an uppercase letter, tolower returns the argument value unchanged. Function
toupper converts a lowercase letter to uppercase and returns the uppercase letter—if the
argument is not a lowercase letter, toupper returns the argument value unchanged.

33 << " hexadecimal digit\n"
34 << (? "$ is a" : "$ is not a")
35 << " hexadecimal digit\n"
36 << (? "f is a" : "f is not a")
37 << " hexadecimal digit" << endl;
38 } // end main

According to isdigit:
8 is a digit
is not a digi

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

1 // Fig. 21.19: fig21_19.cpp
2 // Character-handling functions islower, isupper, tolower and toupper.
3 #include <iostream>
4 #include <cctype> // character-handling function prototypes
5 using namespace std;

Fig. 21.19 | Character-handling functions islower, isupper, tolower and toupper. (Part 1
of 2.)

Fig. 21.18 | Character-handling functions isdigit, isalpha, isalnum and isxdigit. (Part 2
of 2.)

isxdigit('$')

isxdigit('f')

21.7 Character-Handling Library 813

Figure 21.20 demonstrates functions isspace, iscntrl, ispunct, isprint and
isgraph. Function isspace determines whether its argument is a white-space character,

6
7 int main()
8 {
9 cout << "According to islower:\n"

10 << (? "p is a" : "p is not a")
11 << " lowercase letter\n"
12 << (? "P is a" : "P is not a")
13 << " lowercase letter\n"
14 << (? "5 is a" : "5 is not a")
15 << " lowercase letter\n"
16 << (? "! is a" : "! is not a")
17 << " lowercase letter\n";
18
19 cout << "\nAccording to isupper:\n"
20 << (? "D is an" : "D is not an")
21 << " uppercase letter\n"
22 << (? "d is an" : "d is not an")
23 << " uppercase letter\n"
24 << (? "8 is an" : "8 is not an")
25 << " uppercase letter\n"
26 << (? "$ is an" : "$ is not an")
27 << " uppercase letter\n";
28
29 cout << "\nu converted to uppercase is "
30 <<
31 << "\n7 converted to uppercase is "
32 <<
33 << "\n$ converted to uppercase is "
34 <<
35 << "\nL converted to lowercase is "
36 << << endl;
37 } // end main

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

Fig. 21.19 | Character-handling functions islower, isupper, tolower and toupper. (Part 2
of 2.)

islower('p')

islower('P')

islower('5')

islower('!')

isupper('D')

isupper('d')

isupper('8')

isupper('$')

static_cast< char >(toupper('u'))

static_cast< char >(toupper('7'))

static_cast< char >(toupper('$'))

static_cast< char >(tolower('L'))

814 Chapter 21 Bits, Characters, C Strings and structs

such as space (' '), form feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab
('\t') or vertical tab ('\v'). Function iscntrl determines whether its argument is a con-
trol character such as horizontal tab ('\t'), vertical tab ('\v'), form feed ('\f'), alert
('\a'), backspace ('\b'), carriage return ('\r') or newline ('\n'). Function ispunct

determines whether its argument is a printing character other than a space, digit or letter,
such as $, #, (,), [,], {, }, ;, : or %. Function isprint determines whether its argument
is a character that can be displayed on the screen (including the space character). Function
isgraph tests for the same characters as isprint, but the space character is not included.

1 // Fig. 21.20: fig21_20.cpp
2 // Using functions isspace, iscntrl, ispunct, isprint and isgraph.
3 #include <iostream>
4 #include <cctype> // character-handling function prototypes
5 using namespace std;
6
7 int main()
8 {
9 cout << "According to isspace:\nNewline "

10 << (? "is a" : "is not a")
11 << " whitespace character\nHorizontal tab "
12 << (? "is a" : "is not a")
13 << " whitespace character\n"
14 << (? "% is a" : "% is not a")
15 << " whitespace character\n";
16
17 cout << "\nAccording to iscntrl:\nNewline "
18 << (? "is a" : "is not a")
19 << " control character\n"
20 << (? "$ is a" : "$ is not a")
21 << " control character\n";
22
23 cout << "\nAccording to ispunct:\n"
24 << (? "; is a" : "; is not a")
25 << " punctuation character\n"
26 << (? "Y is a" : "Y is not a")
27 << " punctuation character\n"
28 << (? "# is a" : "# is not a")
29 << " punctuation character\n";
30
31 cout << "\nAccording to isprint:\n"
32 << (? "$ is a" : "$ is not a")
33 << " printing character\nAlert "
34 << (? "is a" : "is not a")
35 << " printing character\nSpace "
36 << (? "is a" : "is not a")
37 << " printing character\n";
38
39 cout << "\nAccording to isgraph:\n"
40 << (? "Q is a" : "Q is not a")
41 << " printing character other than a space\nSpace "

Fig. 21.20 | Character-handling functions isspace, iscntrl, ispunct, isprint and
isgraph. (Part 1 of 2.)

isspace('\n')

isspace('\t')

isspace('%')

iscntrl('\n')

iscntrl('$')

ispunct(';')

ispunct('Y')

ispunct('#')

isprint('$')

isprint('\a')

isprint(' ')

isgraph('Q')

21.8 Pointer-Based String Manipulation Functions 815

21.8 Pointer-Based String Manipulation Functions
The string-handling library provides many useful functions for manipulating string data,
comparing strings, searching strings for characters and other strings, tokenizing strings
(separating strings into logical pieces such as the separate words in a sentence) and deter-
mining the length of strings. This section presents some common string-manipulation
functions of the string-handling library (from the C++ standard library). The functions are
summarized in Fig. 21.21; then each is used in a live-code example. The prototypes for
these functions are located in header <cstring>.

42 << (? "is a" : "is not a")
43 << " printing character other than a space" << endl;
44 } // end main

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character
Space is a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Function prototype Function description

char *strcpy(char *s1, const char *s2);

Copies the string s2 into the character array s1. The value of s1 is
returned.

char *strncpy(char *s1, const char *s2, size_t n);

Copies at most n characters of the string s2 into the character array
s1. The value of s1 is returned.

Fig. 21.21 | String-manipulation functions of the string-handling library. (Part 1 of 2.)

Fig. 21.20 | Character-handling functions isspace, iscntrl, ispunct, isprint and
isgraph. (Part 2 of 2.)

isgraph(' ')

816 Chapter 21 Bits, Characters, C Strings and structs

Several functions in Fig. 21.21 contain parameters with data type size_t. This type
is defined in the header <cstring> to be an unsigned integral type such as unsigned int

or unsigned long.

Copying Strings with strcpy and strncpy
Function strcpy copies its second argument—a string—into its first argument—a char-
acter array that must be large enough to store the string and its terminating null character,

char *strcat(char *s1, const char *s2);

Appends the string s2 to s1. The first character of s2 overwrites the
terminating null character of s1. The value of s1 is returned.

char *strncat(char *s1, const char *s2, size_t n);

Appends at most n characters of string s2 to string s1. The first char-
acter of s2 overwrites the terminating null character of s1. The value
of s1 is returned.

int strcmp(const char *s1, const char *s2);

Compares the string s1 with the string s2. The function returns a
value of zero, less than zero or greater than zero if s1 is equal to, less
than or greater than s2, respectively.

int strncmp(const char *s1, const char *s2, size_t n);

Compares up to n characters of the string s1 with the string s2. The
function returns zero, less than zero or greater than zero if the n-
character portion of s1 is equal to, less than or greater than the cor-
responding n-character portion of s2, respectively.

char *strtok(char *s1, const char *s2);

A sequence of calls to strtok breaks string s1 into “tokens”—logical
pieces such as words in a line of text. The string is broken up based on
the characters contained in string s2. For instance, if we were to break
the string "this:is:a:string" into tokens based on the character ':',
the resulting tokens would be "this", "is", "a" and "string". Func-
tion strtok returns only one token at a time—the first call contains s1
as the first argument, and subsequent calls to continue tokenizing the
same string contain NULL as the first argument. A pointer to the cur-
rent token is returned by each call. If there are no more tokens when
the function is called, NULL is returned.

size_t strlen(const char *s);

Determines the length of string s. The number of characters preced-
ing the terminating null character is returned.

Common Programming Error 21.7
Forgetting to include the <cstring> header when using functions from the string-han-
dling library causes compilation errors.

Function prototype Function description

Fig. 21.21 | String-manipulation functions of the string-handling library. (Part 2 of 2.)

21.8 Pointer-Based String Manipulation Functions 817

(which is also copied). Function strncpy is much like strcpy, except that strncpy speci-
fies the number of characters to be copied from the string into the array. Function strncpy

does not necessarily copy the terminating null character of its second argument—a termi-
nating null character is written only if the number of characters to be copied is at least one
more than the length of the string. For example, if "test" is the second argument, a ter-
minating null character is written only if the third argument to strncpy is at least 5 (four
characters in "test" plus one terminating null character). If the third argument is larger
than 5, null characters are appended to the array until the total number of characters spec-
ified by the third argument is written.

Figure 21.22 uses strcpy (line 13) to copy the entire string in array x into array y and
uses strncpy (line 19) to copy the first 14 characters of array x into array z. Line 20
appends a null character ('\0') to array z, because the call to strncpy in the program does
not write a terminating null character. (The third argument is less than the string length
of the second argument plus one.)

Common Programming Error 21.8
When using strncpy, the terminating null character of the second argument (a char *

string) will not be copied if the number of characters specified by strncpy’s third argu-
ment is not greater than the second argument’s length. In that case, a fatal error may occur
if you do not manually terminate the resulting char * string with a null character.

1 // Fig. 21.22: fig21_22.cpp
2 // Using strcpy and strncpy.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 char x[] = "Happy Birthday to You"; // string length 21

10 char y[25];
11 char z[15];
12
13
14
15 cout << "The string in array x is: " << x
16 << "\nThe string in array y is: " << y << '\n';
17
18
19
20
21
22 cout << "The string in array z is: " << z << endl;
23 } // end main

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

Fig. 21.22 | strcpy and strncpy.

#include <cstring> // prototypes for strcpy and strncpy

strcpy(y, x); // copy contents of x into y

// copy first 14 characters of x into z
strncpy(z, x, 14); // does not copy null character
z[14] = '\0'; // append '\0' to z's contents

818 Chapter 21 Bits, Characters, C Strings and structs

Concatenating Strings with strcat and strncat
Function strcat appends its second argument (a string) to its first argument (a character
array containing a string). The first character of the second argument replaces the null
character ('\0') that terminates the string in the first argument. You must ensure that the
array used to store the first string is large enough to store the combination of the first string,
the second string and the terminating null character (copied from the second string).
Function strncat appends a specified number of characters from the second string to the
first string and appends a terminating null character to the result. The program of
Fig. 21.23 demonstrates function strcat (lines 15 and 25) and function strncat (line
20).

1 // Fig. 21.23: fig23_23.cpp
2 // Using strcat and strncat.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 char s1[20] = "Happy "; // length 6

10 char s2[] = "New Year "; // length 9
11 char s3[40] = "";
12
13 cout << "s1 = " << s1 << "\ns2 = " << s2;
14
15
16
17 cout << "\n\nAfter strcat(s1, s2):\ns1 = " << s1 << "\ns2 = " << s2;
18
19
20
21
22 cout << "\n\nAfter strncat(s3, s1, 6):\ns1 = " << s1
23 << "\ns3 = " << s3;
24
25
26 cout << "\n\nAfter strcat(s3, s1):\ns1 = " << s1
27 << "\ns3 = " << s3 << endl;
28 } // end main

s1 = Happy
s2 = New Year

After strcat(s1, s2):
s1 = Happy New Year
s2 = New Year

After strncat(s3, s1, 6):
s1 = Happy New Year
s3 = Happy

Fig. 21.23 | strcat and strncat. (Part 1 of 2.)

#include <cstring> // prototypes for strcat and strncat

strcat(s1, s2); // concatenate s2 to s1 (length 15)

// concatenate first 6 characters of s1 to s3
strncat(s3, s1, 6); // places '\0' after last character

strcat(s3, s1); // concatenate s1 to s3

21.8 Pointer-Based String Manipulation Functions 819

Comparing Strings with strcmp and strncmp
Figure 21.24 compares three strings using strcmp (lines 15–17) and strncmp (lines 20–
22). Function strcmp compares its first string argument with its second string argument
character by character. The function returns zero if the strings are equal, a negative value
if the first string is less than the second string and a positive value if the first string is greater
than the second string. Function strncmp is equivalent to strcmp, except that strncmp

compares up to a specified number of characters. Function strncmp stops comparing char-
acters if it reaches the null character in one of its string arguments. The program prints the
integer value returned by each function call.

After strcat(s3, s1):
s1 = Happy New Year
s3 = Happy Happy New Year

Common Programming Error 21.9
Assuming that strcmp and strncmp return one (a true value) when their arguments are
equal is a logic error. Both functions return zero (C++'s false value) for equality. There-
fore, when testing two strings for equality, the result of the strcmp or strncmp function
should be compared with zero to determine whether the strings are equal.

1 // Fig. 21.24: fig21_24.cpp
2 // Using strcmp and strncmp.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 int main()
9 {

10 char *s1 = "Happy New Year";
11 char *s2 = "Happy New Year";
12 char *s3 = "Happy Holidays";
13
14 cout << "s1 = " << s1 << "\ns2 = " << s2 << "\ns3 = " << s3
15 << "\n\nstrcmp(s1, s2) = " << setw(2) <<
16 << "\nstrcmp(s1, s3) = " << setw(2) <<
17 << "\nstrcmp(s3, s1) = " << setw(2) << ;
18
19 cout << "\n\nstrncmp(s1, s3, 6) = " << setw(2)
20 << << "\nstrncmp(s1, s3, 7) = " << setw(2)
21 << << "\nstrncmp(s3, s1, 7) = " << setw(2)
22 << << endl;
23 } // end main

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

Fig. 21.24 | strcmp and strncmp. (Part 1 of 2.)

Fig. 21.23 | strcat and strncat. (Part 2 of 2.)

#include <cstring> // prototypes for strcmp and strncmp

strcmp(s1, s2)
strcmp(s1, s3)
strcmp(s3, s1)

strncmp(s1, s3, 6)
strncmp(s1, s3, 7)
strncmp(s3, s1, 7)

820 Chapter 21 Bits, Characters, C Strings and structs

To understand what it means for one string to be “greater than” or “less than”
another, consider the process of alphabetizing last names. You’d, no doubt, place “Jones”
before “Smith,” because the first letter of “Jones” comes before the first letter of “Smith”
in the alphabet. But the alphabet is more than just a list of 26 letters—it’s an ordered list
of characters. Each letter occurs in a specific position within the list. “Z” is more than just
a letter of the alphabet; “Z” is specifically the 26th letter of the alphabet.

How does the computer know that one letter comes before another? All characters are
represented inside the computer as numeric codes; when the computer compares two
strings, it actually compares the numeric codes of the characters in the strings.

[Note: With some compilers, functions strcmp and strncmp always return -1, 0 or 1,
as in the sample output of Fig. 21.24. With other compilers, these functions return 0 or
the difference between the numeric codes of the first characters that differ in the strings
being compared. For example, when s1 and s3 are compared, the first characters that
differ between them are the first character of the second word in each string—N (numeric
code 78) in s1 and H (numeric code 72) in s3, respectively. In this case, the return value
will be 6 (or -6 if s3 is compared to s1).]

Tokenizing a String with strtok
Function strtok breaks a string into a series of tokens. A token is a sequence of characters
separated by delimiting characters (usually spaces or punctuation marks). For example, in
a line of text, each word can be considered a token, and the spaces separating the words
can be considered delimiters.

Multiple calls to strtok are required to break a string into tokens (assuming that the
string contains more than one token). The first call to strtok contains two arguments, a
string to be tokenized and a string containing characters that separate the tokens (i.e.,
delimiters). Line 16 in Fig. 21.25 assigns to tokenPtr a pointer to the first token in sen-

tence. The second argument, " ", indicates that tokens in sentence are separated by
spaces. Function strtok searches for the first character in sentence that’s not a delimiting
character (space). This begins the first token. The function then finds the next delimiting
character in the string and replaces it with a null ('\0') character. This terminates the cur-
rent token. Function strtok saves (in a static variable) a pointer to the next character
following the token in sentence and returns a pointer to the current token.

Subsequent calls to strtok to continue tokenizing sentence contain NULL as the first
argument (line 22). The NULL argument indicates that the call to strtok should continue
tokenizing from the location in sentence saved by the last call to strtok. Function strtok

maintains this saved information in a manner that’s not visible to you. If no tokens remain
when strtok is called, strtok returns NULL. The program of Fig. 21.25 uses strtok to

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 1
strncmp(s3, s1, 7) = -1

Fig. 21.24 | strcmp and strncmp. (Part 2 of 2.)

21.8 Pointer-Based String Manipulation Functions 821

tokenize the string "This is a sentence with 7 tokens". The program prints each token
on a separate line. Line 25 outputs sentence after tokenization. Note that strtok modifies
the input string; therefore, a copy of the string should be made if the program requires the
original after the calls to strtok. When sentence is output after tokenization, only the
word “This” prints, because strtok replaced each blank in sentence with a null character
('\0') during the tokenization process.

1 // Fig. 21.25: fig21_25.cpp
2 // Using strtok to tokenize a string.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 char sentence[] = "This is a sentence with 7 tokens";

10 char *tokenPtr;
11
12 cout << "The string to be tokenized is:\n" << sentence
13 << "\n\nThe tokens are:\n\n";
14
15 // begin tokenization of sentence
16
17
18 // continue tokenizing sentence until tokenPtr becomes NULL
19 while (tokenPtr != NULL)
20 {
21 cout << tokenPtr << '\n';
22 // get next token
23 } // end while
24
25 cout << "\nAfter strtok, sentence = " << sentence << endl;
26 } // end main

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:

This
is
a
sentence
with
7
tokens

After strtok, sentence = This

Fig. 21.25 | Using strtok to tokenize a string.

Common Programming Error 21.10
Not realizing that strtok modifies the string being tokenized, then attempting to use
that string as if it were the original unmodified string is a logic error.

#include <cstring> // prototype for strtok

tokenPtr = strtok(sentence, " ");

tokenPtr = strtok(NULL, " ");

822 Chapter 21 Bits, Characters, C Strings and structs

Determining String Lengths
Function strlen takes a string as an argument and returns the number of characters in the
string—the terminating null character is not included in the length. The length is also the
index of the null character. The program of Fig. 21.26 demonstrates function strlen.

21.9 Pointer-Based String-Conversion Functions
In Section 21.8, we discussed several of C++’s most popular pointer-based string-manip-
ulation functions. In the next several sections, we cover the remaining functions, including
functions for converting strings to numeric values, functions for searching strings and
functions for manipulating, comparing and searching blocks of memory.

This section presents the pointer-based string-conversion functions from the general-
utilities library <cstdlib>. These functions convert pointer-based strings of characters to
integer and floating-point values. In new code, C++ programmers typically use the string
stream processing capabilities (Chapter 18) to perform such conversions. Figure 21.27
summarizes the pointer-based string-conversion functions. When using functions from the
general-utilities library, include the <cstdlib> header.

1 // Fig. 21.26: fig21_26.cpp
2 // Using strlen.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 char *string1 = "abcdefghijklmnopqrstuvwxyz";

10 char *string2 = "four";
11 char *string3 = "Boston";
12
13 cout << "The length of \"" << string1 << "\" is " <<
14 << "\nThe length of \"" << string2 << "\" is " <<
15 << "\nThe length of \"" << string3 << "\" is " <<
16 << endl;
17 } // end main

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Fig. 21.26 | strlen returns the length of a char * string.

Prototype Description

double atof(const char *nPtr) Converts the string nPtr to double. If the string cannot
be converted, 0 is returned.

Fig. 21.27 | Pointer-based string-conversion functions of the general-utilities library. (Part 1
of 2.)

#include <cstring> // prototype for strlen

strlen(string1)
strlen(string2)
strlen(string3)

21.9 Pointer-Based String-Conversion Functions 823

Function atof (Fig. 21.28, line 9) converts its argument—a string that represents a
floating-point number—to a double value. The function returns the double value. If the
string cannot be converted—for example, if the first character of the string is not a digit—
function atof returns zero.

int atoi(const char *nPtr) Converts the string nPtr to int. If the string cannot be
converted, 0 is returned.

long atol(const char *nPtr) Converts the string nPtr to long int. If the string can-
not be converted, 0 is returned.

double strtod(const char *nPtr, char **endPtr)

Converts the string nPtr to double. endPtr is the
address of a pointer to the rest of the string after the
double. If the string cannot be converted, 0 is returned.

long strtol(const char *nPtr, char **endPtr, int base)

Converts the string nPtr to long. endPtr is the address
of a pointer to the rest of the string after the long. If the
string cannot be converted, 0 is returned. The base

parameter indicates the base of the number to convert
(e.g., 8 for octal, 10 for decimal or 16 for hexadecimal).
The default is decimal.

unsigned long strtoul(const char *nPtr, char **endPtr, int base)

Converts the string nPtr to unsigned long. endPtr is
the address of a pointer to the rest of the string after the
unsigned long. If the string cannot be converted, 0 is
returned. The base parameter indicates the base of the
number to convert (e.g., 8 for octal, 10 for decimal or
16 for hexadecimal). The default is decimal.

1 // Fig. 21.28: fig21_28.cpp
2 // Using atof.
3 #include <iostream>
4 #include <cstdlib> // atof prototype
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "The string \"99.0\" converted to double is " << d
12 << "\nThe converted value divided by 2 is " << d / 2.0 << endl;
13 } // end main

Fig. 21.28 | String-conversion function atof. (Part 1 of 2.)

Prototype Description

Fig. 21.27 | Pointer-based string-conversion functions of the general-utilities library. (Part 2
of 2.)

double d = atof("99.0"); // convert string to double

824 Chapter 21 Bits, Characters, C Strings and structs

Function atoi (Fig. 21.29, line 9) converts its argument—a string of digits that rep-
resents an integer—to an int value. The function returns the int value. If the string
cannot be converted, function atoi returns zero.

Function atol (Fig. 21.30, line 9) converts its argument—a string of digits repre-
senting a long integer—to a long value. The function returns the long value. If the string
cannot be converted, function atol returns zero. If int and long are both stored in four
bytes, function atoi and function atol work identically.

The string "99.0" converted to double is 99
The converted value divided by 2 is 49.5

1 // Fig. 21.29: Fig21_29.cpp
2 // Using atoi.
3 #include <iostream>
4 #include <cstdlib> // atoi prototype
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "The string \"2593\" converted to int is " << i
12 << "\nThe converted value minus 593 is " << i - 593 << endl;
13 } // end main

The string "2593" converted to int is 2593
The converted value minus 593 is 2000

Fig. 21.29 | String-conversion function atoi.

1 // Fig. 21.30: fig21_30.cpp
2 // Using atol.
3 #include <iostream>
4 #include <cstdlib> // atol prototype
5 using namespace std;
6
7 int main()
8 {
9

10
11 cout << "The string \"1000000\" converted to long is " << x
12 << "\nThe converted value divided by 2 is " << x / 2 << endl;
13 } // end main

Fig. 21.30 | String-conversion function atol. (Part 1 of 2.)

Fig. 21.28 | String-conversion function atof. (Part 2 of 2.)

int i = atoi("2593"); // convert string to int

long x = atol("1000000"); // convert string to long

21.9 Pointer-Based String-Conversion Functions 825

Function strtod (Fig. 21.31) converts a sequence of characters representing a
floating-point value to double. Function strtod receives two arguments—a string (char
*) and the address of a char * pointer (i.e., a char **). The string contains the character
sequence to be converted to double. The second argument enables strtod to modify a
char * pointer in the calling function, such that the pointer points to the location of the
first character after the converted portion of the string. Line 13 indicates that d is assigned
the double value converted from string and that stringPtr is assigned the location of
the first character after the converted value (51.2) in string.

Function strtol (Fig. 21.32) converts to long a sequence of characters representing an
integer. The function receives a string (char *), the address of a char * pointer and an
integer. The string contains the character sequence to convert. The second argument is
assigned the location of the first character after the converted portion of the string. The
integer specifies the base of the value being converted. Line 13 indicates that x is assigned the
long value converted from string and that remainderPtr is assigned the location of the first
character after the converted value (-1234567) in string1. Using a null pointer for the
second argument causes the remainder of the string to be ignored. The third argument, 0,
indicates that the value to be converted can be in octal (base 8), decimal (base 10) or hexa-
decimal (base 16). This is determined by the initial characters in the string—0 indicates an
octal number, 0x indicates hexadecimal and a number from 1 to 9 indicates decimal.

The string "1000000" converted to long int is 1000000
The converted value divided by 2 is 500000

1 // Fig. 21.31: fig21_31.cpp
2 // Using strtod.
3 #include <iostream>
4 #include <cstdlib> // strtod prototype
5 using namespace std;
6
7 int main()
8 {
9 double d;

10 const char *string1 = "51.2% are admitted";
11 char *stringPtr;
12
13
14
15 cout << "The string \"" << string1
16 << "\" is converted to the\ndouble value " << d
17 << " and the string \"" << stringPtr << "\"" << endl;
18 } // end main

The string "51.2% are admitted" is converted to the
double value 51.2 and the string "% are admitted"

Fig. 21.31 | String-conversion function strtod.

Fig. 21.30 | String-conversion function atol. (Part 2 of 2.)

d = strtod(string1, &stringPtr); // convert characters to double

826 Chapter 21 Bits, Characters, C Strings and structs

In a call to function strtol, the base can be specified as zero or as any value between
2 and 36. (See Appendix D for a detailed explanation of the octal, decimal, hexadecimal
and binary number systems.) Numeric representations of integers from base 11 to base 36
use the characters A–Z to represent the values 10 to 35. For example, hexadecimal values
can consist of the digits 0–9 and the characters A–F. A base-11 integer can consist of the
digits 0–9 and the character A. A base-24 integer can consist of the digits 0–9 and the char-
acters A–N. A base-36 integer can consist of the digits 0–9 and the characters A–Z. [Note:
The case of the letter used is ignored.]

Function strtoul (Fig. 21.33) converts to unsigned long a sequence of characters
representing an unsigned long integer. The function works identically to strtol. Line 14
indicates that x is assigned the unsigned long value converted from string and that
remainderPtr is assigned the location of the first character after the converted value
(1234567) in string1. The third argument, 0, indicates that the value to be converted can
be in octal, decimal or hexadecimal format, depending on the initial characters.

1 // Fig. 21.32: fig21_32.cpp
2 // Using strtol.
3 #include <iostream>
4 #include <cstdlib> // strtol prototype
5 using namespace std;
6
7 int main()
8 {
9 long x;

10 const char *string1 = "-1234567abc";
11 char *remainderPtr;
12
13
14
15 cout << "The original string is \"" << string1
16 << "\"\nThe converted value is " << x
17 << "\nThe remainder of the original string is \"" << remainderPtr
18 << "\"\nThe converted value plus 567 is " << x + 567 << endl;
19 } // end main

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

Fig. 21.32 | String-conversion function strtol.

1 // Fig. 21.33: fig21_33.cpp
2 // Using strtoul.
3 #include <iostream>
4 #include <cstdlib> // strtoul prototype
5 using namespace std;
6

Fig. 21.33 | String-conversion function strtoul. (Part 1 of 2.)

x = strtol(string1, &remainderPtr, 0); // convert characters to long

21.10 Search Functions of the Pointer-Based String-Handling Library 827

21.10 Search Functions of the Pointer-Based String-
Handling Library
This section presents the functions of the string-handling library used to search strings for
characters and other strings. The functions are summarized in Fig. 21.34. Functions
strcspn and strspn specify return type size_t. Type size_t is a type defined by the stan-
dard as the integral type of the value returned by operator sizeof.

Function strchr searches for the first occurrence of a character in a string. If the char-
acter is found, strchr returns a pointer to the character in the string; otherwise, strchr
returns a null pointer. The program of Fig. 21.35 uses strchr (lines 14 and 22) to search
for the first occurrences of 'a' and 'z' in the string "This is a test".

7 int main()
8 {
9 unsigned long x;

10 const char *string1 = "1234567abc";
11 char *remainderPtr;
12
13
14
15
16 cout << "The original string is \"" << string1
17 << "\"\nThe converted value is " << x
18 << "\nThe remainder of the original string is \"" << remainderPtr
19 << "\"\nThe converted value minus 567 is " << x - 567 << endl;
20 } // end main

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Prototype Description

char *strchr(const char *s, int c)

Locates the first occurrence of character c in string s. If c is found, a pointer
to c in s is returned. Otherwise, a null pointer is returned.

char *strrchr(const char *s, int c)

Searches from the end of string s and locates the last occurrence of character c
in string s. If c is found, a pointer to c in string s is returned. Otherwise, a
null pointer is returned.

size_t strspn(const char *s1, const char *s2)

Determines and returns the length of the initial segment of string s1 consist-
ing only of characters contained in string s2.

Fig. 21.34 | Search functions of the pointer-based string-handling library. (Part 1 of 2.)

Fig. 21.33 | String-conversion function strtoul. (Part 2 of 2.)

// convert a sequence of characters to unsigned long
x = strtoul(string1, &remainderPtr, 0);

828 Chapter 21 Bits, Characters, C Strings and structs

char *strpbrk(const char *s1, const char *s2)

Locates the first occurrence in string s1 of any character in string s2. If a char-
acter from string s2 is found, a pointer to the character in string s1 is
returned. Otherwise, a null pointer is returned.

size_t strcspn(const char *s1, const char *s2)

Determines and returns the length of the initial segment of string s1 consist-
ing of characters not contained in string s2.

char *strstr(const char *s1, const char *s2)

Locates the first occurrence in string s1 of string s2. If the string is found, a
pointer to the string in s1 is returned. Otherwise, a null pointer is returned.

1 // Fig. 21.35: fig21_35.cpp
2 // Using strchr.
3 #include <iostream>
4 #include <cstring> // strchr prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "This is a test";

10 char character1 = 'a';
11 char character2 = 'z';
12
13 // search for character1 in string1
14 if ()
15 cout << '\'' << character1 << "' was found in \""
16 << string1 << "\".\n";
17 else
18 cout << '\'' << character1 << "' was not found in \""
19 << string1 << "\".\n";
20
21 // search for character2 in string1
22 if ()
23 cout << '\'' << character2 << "' was found in \""
24 << string1 << "\".\n";
25 else
26 cout << '\'' << character2 << "' was not found in \""
27 << string1 << "\"." << endl;
28 } // end main

'a' was found in "This is a test".
'z' was not found in "This is a test".

Fig. 21.35 | String-search function strchr.

Prototype Description

Fig. 21.34 | Search functions of the pointer-based string-handling library. (Part 2 of 2.)

strchr(string1, character1) != NULL

strchr(string1, character2) != NULL

21.10 Search Functions of the Pointer-Based String-Handling Library 829

Function strcspn (Fig. 21.36, line 15) determines the length of the initial part of the
string in its first argument that does not contain any characters from the string in its
second argument. The function returns the length of the segment.

Function strpbrk searches for the first occurrence in its first string argument of any
character in its second string argument. If a character from the second argument is found,
strpbrk returns a pointer to the character in the first argument; otherwise, strpbrk

returns a null pointer. Line 13 of Fig. 21.37 locates the first occurrence in string1 of any
character from string2.

1 // Fig. 21.36: fig21_36.cpp
2 // Using strcspn.
3 #include <iostream>
4 #include <cstring> // strcspn prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "1234567890";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe length of the initial segment of string1"
14 << "\ncontaining no characters from string2 = "
15 << << endl;
16 } // end main

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

Fig. 21.36 | String-search function strcspn.

1 // Fig. 21.37: fig21_37.cpp
2 // Using strpbrk.
3 #include <iostream>
4 #include <cstring> // strpbrk prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "This is a test";

10 const char *string2 = "beware";
11
12 cout << "Of the characters in \"" << string2 << "\"\n'"
13 << << "\' is the first character "
14 << "to appear in\n\"" << string1 << '\"' << endl;
15 } // end main

Fig. 21.37 | String-search function strpbrk. (Part 1 of 2.)

strcspn(string1, string2)

*strpbrk(string1, string2)

830 Chapter 21 Bits, Characters, C Strings and structs

Function strrchr searches for the last occurrence of the specified character in a string.
If the character is found, strrchr returns a pointer to the character in the string; other-
wise, strrchr returns 0. Line 15 of Fig. 21.38 searches for the last occurrence of the char-
acter 'z' in the string "A zoo has many animals including zebras".

Function strspn (Fig. 21.39, line 15) determines the length of the initial part of the
string in its first argument that contains only characters from the string in its second argu-
ment. The function returns the length of the segment.

Of the characters in "beware"
'a' is the first character to appear in
"This is a test"

1 // Fig. 21.38: fig21_38.cpp
2 // Using strrchr.
3 #include <iostream>
4 #include <cstring> // strrchr prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "A zoo has many animals including zebras";

10 char c = 'z';
11
12 cout << "string1 = " << string1 << "\n" << endl;
13 cout << "The remainder of string1 beginning with the\n"
14 << "last occurrence of character '"
15 << c << "' is: \"" << << '\"' << endl;
16 } // end main

string1 = A zoo has many animals including zebras

The remainder of string1 beginning with the
last occurrence of character 'z' is: "zebras"

Fig. 21.38 | String-search function strrchr.

1 // Fig. 21.39: fig21_39.cpp
2 // Using strspn.
3 #include <iostream>
4 #include <cstring> // strspn prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "The value is 3.14159";

Fig. 21.39 | String-search function strspn. (Part 1 of 2.)

Fig. 21.37 | String-search function strpbrk. (Part 2 of 2.)

strrchr(string1, c)

21.11 Memory Functions of the Pointer-Based String-Handling Library 831

Function strstr searches for the first occurrence of its second string argument in its
first string argument. If the second string is found in the first string, a pointer to the location
of the string in the first argument is returned; otherwise, it returns 0. Line 15 of Fig. 21.40
uses strstr to find the string "def" in the string "abcdefabcdef".

21.11 Memory Functions of the Pointer-Based String-
Handling Library
The string-handling library functions presented in this section facilitate manipulating, com-
paring and searching blocks of memory. The functions treat blocks of memory as arrays of

10 const char *string2 = "aehils Tuv";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe length of the initial segment of string1\n"
14 << "containing only characters from string2 = "
15 << << endl;
16 } // end main

string1 = The value is 3.14159
string2 = aehils Tuv

The length of the initial segment of string1
containing only characters from string2 = 13

1 // Fig. 21.40: fig21_40.cpp
2 // Using strstr.
3 #include <iostream>
4 #include <cstring> // strstr prototype
5 using namespace std;
6
7 int main()
8 {
9 const char *string1 = "abcdefabcdef";

10 const char *string2 = "def";
11
12 cout << "string1 = " << string1 << "\nstring2 = " << string2
13 << "\n\nThe remainder of string1 beginning with the\n"
14 << "first occurrence of string2 is: "
15 << << endl;
16 } // end main

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

Fig. 21.40 | String-search function strstr.

Fig. 21.39 | String-search function strspn. (Part 2 of 2.)

strspn(string1, string2)

strstr(string1, string2)

832 Chapter 21 Bits, Characters, C Strings and structs

bytes. These functions can manipulate any block of data. Figure 21.41 summarizes the
memory functions of the string-handling library. In the function discussions, “object” refers
to a block of data. [Note: The string-processing functions in prior sections operate on null-
terminated strings. The ones in this section operate on arrays of bytes. The null-character val-
ue (i.e., a byte containing 0) has no significance with the functions in this section.]

The pointer parameters to these functions are declared void *. In Chapter 8, we saw
that a pointer to any data type can be assigned directly to a pointer of type void *. For this
reason, these functions can receive pointers to any data type. Remember that a pointer of
type void * cannot be assigned directly to a pointer of any other data type. Because a void *

pointer cannot be dereferenced, each function receives a size argument that specifies the
number of characters (bytes) the function will process. For simplicity, the examples in this
section manipulate character arrays (blocks of characters).

Function memcpy copies a specified number of characters (bytes) from the object
pointed to by its second argument into the object pointed to by its first argument. The
function can receive a pointer to any type of object. The result of this function is unde-
fined if the two objects overlap in memory (i.e., are parts of the same object). The program
of Fig. 21.42 uses memcpy (line 14) to copy the string in array s2 to array s1.

Prototype Description

void *memcpy(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed
to by s1. A pointer to the resulting object is returned. The area from which
characters are copied is not allowed to overlap the area to which characters are
copied.

void *memmove(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed
to by s1. The copy is performed as if the characters were first copied from the
object pointed to by s2 into a temporary array, then copied from the tempo-
rary array into the object pointed to by s1. A pointer to the resulting object is
returned. The area from which characters are copied is allowed to overlap the
area to which characters are copied.

int memcmp(const void *s1, const void *s2, size_t n)

Compares the first n characters of the objects pointed to by s1 and s2. The
function returns 0, less than 0, or greater than 0 if s1 is equal to, less than or
greater than s2, respectively.

void *memchr(const void *s, int c, size_t n)

Locates the first occurrence of c (converted to unsigned char) in the first n
characters of the object pointed to by s. If c is found, a pointer to c in the
object is returned. Otherwise, 0 is returned.

void *memset(void *s, int c, size_t n)

Copies c (converted to unsigned char) into the first n characters of the object
pointed to by s. A pointer to the result is returned.

Fig. 21.41 | Memory functions of the string-handling library.

21.11 Memory Functions of the Pointer-Based String-Handling Library 833

Function memmove, like memcpy, copies a specified number of bytes from the object
pointed to by its second argument into the object pointed to by its first argument.
Copying is performed as if the bytes were copied from the second argument to a temporary
array of characters, then copied from the temporary array to the first argument. This allows
characters from one part of a string to be copied into another part of the same string.

The program in Fig. 21.43 uses memmove (line 13) to copy the last 10 bytes of array x

into the first 10 bytes of array x.

1 // Fig. 21.42: fig21_42.cpp
2 // Using memcpy.
3 #include <iostream>
4 #include <cstring> // memcpy prototype
5 using namespace std;
6
7 int main()
8 {
9 char s1[17];

10
11 // 17 total characters (includes terminating null)
12 char s2[] = "Copy this string";
13
14
15
16 cout << "After s2 is copied into s1 with memcpy,\n"
17 << "s1 contains \"" << s1 << '\"' << endl;
18 } // end main

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

Fig. 21.42 | Memory-handling function memcpy.

Common Programming Error 21.11
String-manipulation functions other than memmove that copy characters have undefined
results when copying takes place between parts of the same string.

1 // Fig. 21.43: fig21_43.cpp
2 // Using memmove.
3 #include <iostream>
4 #include <cstring> // memmove prototype
5 using namespace std;
6
7 int main()
8 {
9 char x[] = "Home Sweet Home";

10
11 cout << "The string in array x before memmove is: " << x;
12 cout << "\nThe string in array x after memmove is: "

Fig. 21.43 | Memory-handling function memmove. (Part 1 of 2.)

memcpy(s1, s2, 17); // copy 17 characters from s2 to s1

834 Chapter 21 Bits, Characters, C Strings and structs

Function memcmp (Fig. 21.44, lines 14–16) compares the specified number of characters
of its first argument with the corresponding characters of its second argument. The function
returns a value greater than zero if the first argument is greater than the second argument,
zero if the arguments are equal, and a value less than zero if the first argument is less than the
second argument. [Note: With some compilers, function memcmp returns -1, 0 or 1, as in the
sample output of Fig. 21.44. With other compilers, this function returns 0 or the difference
between the numeric codes of the first characters that differ in the strings being compared.
For example, when s1 and s2 are compared, the first character that differs between them is
the fifth character of each string—E (numeric code 69) for s1 and X (numeric code 72) for
s2. In this case, the return value will be 19 (or -19 when s2 is compared to s1).]

Function memchr searches for the first occurrence of a byte, represented as unsigned
char, in the specified number of bytes of an object. If the byte is found in the object, a
pointer to it is returned; otherwise, the function returns a null pointer. Line 13 of
Fig. 21.45 searches for the character (byte) 'r' in the string "This is a string".

13 << << endl;
14 } // end main

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

1 // Fig. 21.44: fig21_44.cpp
2 // Using memcmp.
3 #include <iostream>
4 #include <iomanip>
5 #include <cstring> // memcmp prototype
6 using namespace std;
7
8 int main()
9 {

10 char s1[] = "ABCDEFG";
11 char s2[] = "ABCDXYZ";
12
13 cout << "s1 = " << s1 << "\ns2 = " << s2 << endl
14 << "\nmemcmp(s1, s2, 4) = " << setw(3) <<
15 << "\nmemcmp(s1, s2, 7) = " << setw(3) <<
16 << "\nmemcmp(s2, s1, 7) = " << setw(3) <<
17 << endl;
18 } // end main

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -1
memcmp(s2, s1, 7) = 1

Fig. 21.44 | Memory-handling function memcmp.

Fig. 21.43 | Memory-handling function memmove. (Part 2 of 2.)

static_cast< char * >(memmove(x, &x[5], 10))

memcmp(s1, s2, 4)
memcmp(s1, s2, 7)
memcmp(s2, s1, 7)

21.12 Wrap-Up 835

Function memset copies the value of the byte in its second argument into a specified
number of bytes of the object pointed to by its first argument. Line 13 in Fig. 21.46 uses
memset to copy 'b' into the first 7 bytes of string1.

21.12 Wrap-Up
This chapter introduced struct definitions, initializing structs and using them with
functions. We discussed typedef, using it to create aliases to help promote portability. We
also introduced bitwise operators to manipulate data and bit fields for storing data com-
pactly. You learned about the string-conversion functions in <cstlib> and the string-pro-

1 // Fig. 21.45: fig21_45.cpp
2 // Using memchr.
3 #include <iostream>
4 #include <cstring> // memchr prototype
5 using namespace std;
6
7 int main()
8 {
9 char s[] = "This is a string";

10
11 cout << "s = " << s << "\n" << endl;
12 cout << "The remainder of s after character 'r' is found is \""
13 << << '\"' << endl;
14 } // end main

s = This is a string

The remainder of s after character 'r' is found is "ring"

Fig. 21.45 | Memory-handling function memchr.

1 // Fig. 21.46: fig21_46.cpp
2 // Using memset.
3 #include <iostream>
4 #include <cstring> // memset prototype
5 using namespace std;
6
7 int main()
8 {
9 char string1[15] = "BBBBBBBBBBBBBB";

10
11 cout << "string1 = " << string1 << endl;
12 cout << "string1 after memset = "
13 << << endl;
14 } // end main

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Fig. 21.46 | Memory-handling function memset.

static_cast< char * >(memchr(s, 'r', 16))

static_cast< char * >(memset(string1, 'b', 7))

836 Chapter 21 Bits, Characters, C Strings and structs

cessing functions in <cstring>. In the next chapter, we continue our discussion of data
structures by discussing containers—data structures defined in the C++ Standard Template
Library. We also present the many algorithms defined in the STL as well.

Summary
Section 21.2 Structure Definitions
• Keyword struct (p. 793) begins every structure definition. Between the braces of the structure

definition are the structure member declarations.

• A structure definition creates a new data type (p. 793) that can be used to declare variables.

Section 21.3 typedef
• Creating a new type name with typedef (p. 794) does not create a new type; it creates a name

that’s synonymous with a type defined previously.

Section 21.5 Bitwise Operators
• The bitwise AND operator (&; p. 797) takes two integral operands. A bit in the result is set to

one if the corresponding bits in each of the operands are one.

• Masks (p. 799) are used with bitwise AND to hide some bits while preserving others.

• The bitwise inclusive OR operator (|; p. 797) takes two operands. A bit in the result is set to one
if the corresponding bit in either operand is set to one.

• Each of the bitwise operators (except complement) has a corresponding assignment operator.

• The bitwise exclusive OR operator (^; p. 797) takes two operands. A bit in the result is set to one
if exactly one of the corresponding bits in the two operands is set to one.

• The left-shift operator (<<) shifts the bits of its left operand left by the number of bits specified
by its right operand. Bits vacated to the right are replaced with zeros.

• The right-shift operator (>>) shifts the bits of its left operand right by the number of bits specified
in its right operand. Right shifting an unsigned integer causes bits vacated at the left to be re-
placed by zeros. Vacated bits in signed integers can be replaced with zeros or ones.

• The bitwise complement operator (~; p. 797) takes one operand and inverts its bits—this pro-
duces the one’s complement of the operand.

Section 21.6 Bit Fields
• Bit fields (p. 806) reduce storage use by storing data in the minimum number of bits required.

Bit-field members must be declared as int or unsigned.

• A bit field is declared by following an unsigned or int member name with a colon and the width
of the bit field.

• The bit-field width must be an integer constant.

• If a bit field is specified without a name, the field is used as padding (p. 809) in the structure.

• An unnamed bit field (p. 809) with width 0 aligns the next bit field on a new machine-word
boundary.

Section 21.7 Character-Handling Library
• Function islower (p. 812) determines if its argument is a lowercase letter (a–z). Function isup-

per (p. 812) determines whether its argument is an uppercase letter (A–Z).

• Function isdigit (p. 811) determines if its argument is a digit (0–9).

Summary 837

• Function isalpha (p. 811) determines if its argument is an uppercase (A–Z) or lowercase letter
(a–z).

• Function isalnum (p. 811) determines if its argument is an uppercase letter (A–Z), a lowercase
letter (a–z), or a digit (0–9).

• Function isxdigit (p. 811) determines if its argument is a hexadecimal digit (A–F, a–f, 0–9).

• Function toupper (p. 812) converts a lowercase letter to an uppercase letter. Function tolower

(p. 812) converts an uppercase letter to a lowercase letter.

• Function isspace (p. 813) determines if its argument is one of the following white-space char-
acters: ' ' (space), '\f', '\n', '\r', '\t' or '\v'.

• Function iscntrl (p. 813) determines if its argument is a control character, such as '\t', '\v',
'\f', '\a', '\b', '\r' or '\n'.

• Function ispunct (p. 813) determines if its argument is a printing character other than a space,
a digit or a letter.

• Function isprint (p. 813) determines if its argument is any printing character, including space.

• Function isgraph (p. 813) determines if its argument is a printing character other than space.

Section 21.8 Pointer-Based String Manipulation Functions
• Function strcpy (p. 816) copies its second argument into its first argument. You must ensure

that the target array is large enough to store the string and its terminating null character.

• Function strncpy (p. 817) is equivalent to strcpy, but it specifies the number of characters to
be copied from the string into the array. The terminating null character will be copied only if the
number of characters to be copied is at least one more than the length of the string.

• Function strcat (p. 818) appends its second string argument—including the terminating null
character—to its first string argument. The first character of the second string replaces the null
('\0') character of the first string. You must ensure that the target array used to store the first
string is large enough to store both the first string and the second string.

• Function strncat (p. 818) is equivalent to strcat, but it appends a specified number of characters
from the second string to the first string. A terminating null character is appended to the result.

• Function strcmp compares its first string argument with its second string argument character by
character. The function returns zero if the strings are equal, a negative value if the first string is
less than the second string and a positive value if the first string is greater than the second string.

• Function strncmp is equivalent to strcmp, but it compares a specified number of characters. If
the number of characters in one of the strings is less than the number of characters specified,
strncmp compares characters until the null character in the shorter string is encountered.

• A sequence of calls to strtok (p. 820) breaks a string into tokens that are separated by characters
contained in a second string argument. The first call specifies the string to be tokenized as the
first argument, and subsequent calls to continue tokenizing the same string specify NULL as the
first argument. The function returns a pointer to the current token from each call. If there are
no more tokens when strtok is called, NULL is returned.

• Function strlen (p. 822) takes a string as an argument and returns the number of characters in
the string—the terminating null character is not included in the length of the string.

Section 21.9 Pointer-Based String-Conversion Functions
• Function atof (p. 823) converts its argument—a string beginning with a series of digits that rep-

resents a floating-point number—to a double value.

• Function atoi (p. 824) converts its argument—a string beginning with a series of digits that rep-
resents an integer—to an int value.

838 Chapter 21 Bits, Characters, C Strings and structs

• Function atol (p. 824) converts its argument—a string beginning with a series of digits that rep-
resents a long integer—to a long value.

• Function strtod (p. 825) converts a sequence of characters representing a floating-point value to
double. The function receives two arguments—a string (char *) and the address of a char *

pointer. The string contains the character sequence to be converted, and the pointer to char * is
assigned the remainder of the string after the conversion.

• Function strtol (p. 825) converts a sequence of characters representing an integer to long. It
receives a string (char *), the address of a char * pointer and an integer. The string contains the
character sequence to be converted, the pointer to char * is assigned the location of the first char-
acter after the converted value and the integer specifies the base of the value being converted.

• Function strtoul (p. 826) converts a sequence of characters representing an integer to unsigned

long. It receives a string (char *), the address of a char * pointer and an integer. The string contains
the character sequence to be converted, the pointer to char * is assigned the location of the first
character after the converted value and the integer specifies the base of the value being converted.

Section 21.10 Search Functions of the Pointer-Based String-Handling Library
• Function strchr (p. 827) searches for the first occurrence of a character in a string. If found,

strchr returns a pointer to the character in the string; otherwise, strchr returns a null pointer.

• Function strcspn (p. 829) determines the length of the initial part of the string in its first argu-
ment that does not contain any characters from the string in its second argument. The function
returns the length of the segment.

• Function strpbrk (p. 829) searches for the first occurrence in its first argument of any character
that appears in its second argument. If a character from the second argument is found, strpbrk
returns a pointer to the character; otherwise, strpbrk returns a null pointer.

• Function strrchr (p. 830) searches for the last occurrence of a character in a string. If the character
is found, strrchr returns a pointer to the character in the string; otherwise, it returns a null pointer.

• Function strspn (p. 830) determines the length of the initial part of its first argument that contains
only characters from the string in its second argument and returns the length of the segment.

• Function strstr (p. 831) searches for the first occurrence of its second string argument in its first
string argument. If the second string is found in the first string, a pointer to the location of the
string in the first argument is returned; otherwise it returns 0.

Section 21.11 Memory Functions of the Pointer-Based String-Handling Library
• Function memcpy (p. 832) copies a specified number of characters from the object to which its sec-

ond argument points into the object to which its first argument points. The function can receive a
pointer to any object. The pointers are received as void pointers and converted to char pointers for
use in the function. Function memcpy manipulates the bytes of its argument as characters.

• Function memmove (p. 833) copies a specified number of bytes from the object pointed to by its
second argument to the object pointed to by its first argument. Copying is accomplished as if the
bytes were copied from the second argument to a temporary character array, then copied from
the temporary array to the first argument.

• Function memcmp (p. 834) compares the specified number of characters of its first and second ar-
guments.

• Function memchr (p. 834) searches for the first occurrence of a byte, represented as unsigned

char, in the specified number of bytes of an object. If the byte is found, a pointer to it is returned;
otherwise, a null pointer is returned.

Self-Review Exercises 839

• Function memset (p. 835) copies its second argument, treated as an unsigned char, to a specified
number of bytes of the object pointed to by the first argument.

Self-Review Exercises
21.1 Fill in the blanks in each of the following:

a) The bits in the result of an expression using the operator are set to one if the
corresponding bits in each operand are set to one. Otherwise, the bits are set to zero.

b) The bits in the result of an expression using the operator are set to one if at
least one of the corresponding bits in either operand is set to one. Otherwise, the bits
are set to zero.

c) Keyword introduces a structure declaration.
d) Keyword is used to create a synonym for a previously defined data type.
e) Each bit in the result of an expression using the operator is set to one if exactly

one of the corresponding bits in either operand is set to one.
f) The bitwise AND operator & is often used to bits (i.e., to select certain bits

from a bit string while zeroing others).
g) The and operators are used to shift the bits of a value to the left or

to the right, respectively.

21.2 Write a single statement or a set of statements to accomplish each of the following:
a) Define a structure called Part containing int variable partNumber and char array part-

Name, whose values may be as long as 25 characters.
b) Define PartPtr to be a synonym for the type Part *.
c) Use separate statements to declare variable a to be of type Part, array b[10] to be of

type Part and variable ptr to be of type pointer to Part.
d) Read a part number and a part name from the keyboard into the members of variable a.
e) Assign the member values of variable a to element three of array b.
f) Assign the address of array b to the pointer variable ptr.
g) Print the member values of element three of array b, using the variable ptr and the struc-

ture pointer operator to refer to the members.

21.3 Write a single statement to accomplish each of the following. Assume that variables c

(which stores a character), x, y and z are of type int; variables d, e and f are of type double; variable
ptr is of type char * and arrays s1[100] and s2[100] are of type char.

a) Convert the character stored in variable c to an uppercase letter. Assign the result to
variable c.

b) Determine if the value of variable c is a digit. Use the conditional operator as shown in
Figs. 21.18–21.20 to print " is a " or " is not a " when the result is displayed.

c) Convert the string "1234567" to long, and print the value.
d) Determine whether the value of variable c is a control character. Use the conditional

operator to print " is a " or " is not a " when the result is displayed.
e) Assign to ptr the location of the last occurrence of c in s1.
f) Convert the string "8.63582" to double, and print the value.
g) Determine whether the value of c is a letter. Use the conditional operator to print " is

a " or " is not a " when the result is displayed.
h) Assign to ptr the location of the first occurrence of s2 in s1.
i) Determine whether the value of variable c is a printing character. Use the conditional

operator to print " is a " or " is not a " when the result is displayed.
j) Assign to ptr the location of the first occurrence in s1 of any character from s2.
k) Assign to ptr the location of the first occurrence of c in s1.
l) Convert the string "-21" to int, and print the value.

840 Chapter 21 Bits, Characters, C Strings and structs

Answers to Self-Review Exercises
21.1 a) bitwise AND (&). b) bitwise inclusive OR (|). c) struct. d) typedef. e) bitwise exclu-
sive OR (^). f) mask. g) left-shift operator (<<), right-shift operator (>>).

21.2 a) struct Part

{

int partNumber;

char partName[26];

};

b) typedef Part * PartPtr;

c) Part a;

Part b[10];

Part *ptr;

d) cin >> a.partNumber >> a.partName;

e) b[3] = a;

f) ptr = b;

g) cout << (ptr + 3)->partNumber << ' '

<< (ptr + 3)->partName << endl;

21.3 a) c = toupper(c);

b) cout << '\'' << c << "\' "

<< (isdigit(c) ? "is a" : "is not a")

<< " digit" << endl;

c) cout << atol("1234567") << endl;

d) cout << '\'' << c << "\' "

<< (iscntrl(c) ? "is a" : "is not a")
<< " control character" << endl;

e) ptr = strrchr(s1, c);

f) out << atof("8.63582") << endl;

g) cout << '\'' << c << "\' "

<< (isalpha(c) ? "is a" : "is not a")
<< " letter" << endl;

h) ptr = strstr(s1, s2);

i) cout << '\'' << c << "\' "

<< (isprint(c) ? "is a" : "is not a")
<< " printing character" << endl;

j) ptr = strpbrk(s1, s2);

k) ptr = strchr(s1, c);

l) cout << atoi("-21") << endl;

Exercises
21.4 (Defining Structures) Provide the definition for each of the following structures:

a) Structure Inventory, containing character array partName[30], integer partNumber,
floating-point price, integer stock and integer reorder.

b) A structure called Address that contains character arrays streetAddress[25], city[20],
state[3] and zipCode[6].

c) Structure Student, containing arrays firstName[15] and lastName[15] and variable
homeAddress of type struct Address from part (b).

d) Structure Test, containing 16 bit fields with widths of 1 bit. The names of the bit fields
are the letters a to p.

Exercises 841

21.5 (Card Shufflling and Dealing) Modify Fig. 21.14 to shuffle the cards using a high-perfor-
mance shuffle, as shown in Fig. 21.3. Print the resulting deck in two-column format. Precede each
card with its color.

21.6 (Shifting and Printing an Integer) Write a program that right-shifts an integer variable four
bits. The program should print the integer in bits before and after the shift operation. Does your
system place zeros or ones in the vacated bits?

21.7 (Multiplication Via Bit Shifting) Left-shifting an unsigned integer by one bit is equivalent
to multiplying the value by 2. Write function power2 that takes two integer arguments, number and
pow, and calculates

number * 2pow

Use a shift operator to calculate the result. The program should print the values as integers and as
bits.

21.8 (Packing Characters into Unsigned Integers) The left-shift operator can be used to pack two
character values into a two-byte unsigned integer variable. Write a program that inputs two charac-
ters from the keyboard and passes them to function packCharacters. To pack two characters into
an unsigned integer variable, assign the first character to the unsigned variable, shift the unsigned

variable left by eight bit positions and combine the unsigned variable with the second character us-
ing the bitwise inclusive-OR operator. The program should output the characters in their bit format
before and after they’re packed into the unsigned integer to prove that they’re in fact packed cor-
rectly in the unsigned variable.

21.9 (Unpacking Characters from Unsigned Integers) Using the right-shift operator, the bitwise
AND operator and a mask, write function unpackCharacters that takes the unsigned integer from
Exercise 21.8 and unpacks it into two characters. To unpack two characters from an unsigned two-
byte integer, combine the unsigned integer with the mask 65280 (11111111 00000000) and right-shift
the result eight bits. Assign the resulting value to a char variable. Then, combine the unsigned in-
teger with the mask 255 (00000000 11111111). Assign the result to another char variable. The pro-
gram should print the unsigned integer in bits before it’s unpacked, then print the characters in bits
to confirm that they were unpacked correctly.

21.10 (Packing Characters into Unsigned Integers) If your system uses four-byte integers, rewrite
the program of Exercise 21.8 to pack four characters.

21.11 (Unpacking Characters from Unsigned Integers) If your system uses four-byte integers, re-
write the function unpackCharacters of Exercise 21.9 to unpack four characters. Create the masks
you need to unpack the four characters by left-shifting the value 255 in the mask variable by eight
bits 0, 1, 2 or 3 times (depending on the byte you are unpacking).

21.12 (Reversing Bits) Write a program that reverses the order of the bits in an unsigned integer
value. The program should input the value from the user and call function reverseBits to print the
bits in reverse order. Print the value in bits both before and after the bits are reversed to confirm that
the bits are reversed properly.

21.13 (Testing Characters with the <cctype> Functions) Write a program that inputs a character
from the keyboard and tests the character with each function in the character-handling library. Print
the value returned by each function.

21.14 The following program uses function multiple to determine whether the integer entered
from the keyboard is a multiple of some integer X. Examine function multiple, then determine the
value of X.

842 Chapter 21 Bits, Characters, C Strings and structs

21.15 What does the following program do?

1 // Exercise 21.14: ex21_14.cpp
2 // This program determines if a value is a multiple of X.
3 #include <iostream>
4 using namespace std;
5
6 bool multiple(int);
7
8 int main()
9 {

10 int y;
11
12 cout << "Enter an integer between 1 and 32000: ";
13 cin >> y;
14
15 if (multiple(y))
16 cout << y << " is a multiple of X" << endl;
17 else
18 cout << y << " is not a multiple of X" << endl;
19 } // end main
20
21 // determine if num is a multiple of X
22 bool multiple(int num)
23 {
24 bool mult = true;
25
26 for (int i = 0, mask = 1; i < 10; ++i, mask <<= 1)
27 if ((num & mask) != 0)
28 {
29 mult = false;
30 break;
31 } // end if
32
33 return mult;
34 } // end function multiple

1 // Exercise 21.15: ex21_15.cpp
2 #include <iostream>
3 using namespace std;
4
5 bool mystery(unsigned);
6
7 int main()
8 {
9 unsigned x;

10
11 cout << "Enter an integer: ";
12 cin >> x;
13 cout << boolalpha
14 << "The result is " << mystery(x) << endl;
15 } // end main
16
17 // What does this function do?
18 bool mystery(unsigned bits)
19 {
20 const int SHIFT = 8 * sizeof(unsigned) - 1;
21 const unsigned MASK = 1 << SHIFT;

Exercises 843

21.16 Write a program that inputs a line of text with istream member function getline (as in
Chapter 15) into character array s[100]. Output the line in uppercase letters and lowercase letters.

21.17 (Converting Strings to Integers) Write a program that inputs four strings that represent in-
tegers, converts the strings to integers, sums the values and prints the total of the four values. Use
only the C-style string-processing techniques shown in this chapter.

21.18 (Converting Strings to Floating-Point Numbers) Write a program that inputs four strings
that represent floating-point values, converts the strings to double values, sums the values and prints
the total of the four values. Use only the C-style string-processing techniques shown in this chapter.

21.19 (Searching for Substrings) Write a program that inputs a line of text and a search string from
the keyboard. Using function strstr, locate the first occurrence of the search string in the line of
text, and assign the location to variable searchPtr of type char *. If the search string is found, print
the remainder of the line of text beginning with the search string. Then use strstr again to locate
the next occurrence of the search string in the line of text. If a second occurrence is found, print the
remainder of the line of text beginning with the second occurrence. [Hint: The second call to strstr

should contain the expression searchPtr + 1 as its first argument.]

21.20 (Searching for Substrings) Write a program based on the program of Exercise 21.19 that in-
puts several lines of text and a search string, then uses function strstr to determine the total num-
ber of occurrences of the string in the lines of text. Print the result.

21.21 (Searching for Characters) Write a program that inputs several lines of text and a search
character and uses function strchr to determine the total number of occurrences of the character
in the lines of text.

21.22 (Searching for Characters) Write a program based on the program of Exercise 21.21 that
inputs several lines of text and uses function strchr to determine the total number of occurrences
of each letter of the alphabet in the text. Uppercase and lowercase letters should be counted together.
Store the totals for each letter in an array, and print the values in tabular format after the totals have
been determined.

21.23 (ASCII Character Set) The chart in Appendix B shows the numeric code representations
for the characters in the ASCII character set. Study this chart, then state whether each of the follow-
ing is true or false:

a) The letter “A” comes before the letter “B.”
b) The digit “9” comes before the digit “0.”
c) The commonly used symbols for addition, subtraction, multiplication and division all

come before any of the digits.
d) The digits come before the letters.
e) If a sort program sorts strings into ascending sequence, then the program will place the

symbol for a right parenthesis before the symbol for a left parenthesis.

21.24 (Strings Beginning with b) Write a program that reads a series of strings and prints only
those strings beginning with the letter “b.”

22 unsigned total = 0;
23
24 for (int i = 0; i < SHIFT + 1; ++i, bits <<= 1)
25 if ((bits & MASK) == MASK)
26 ++total;
27
28 return !(total % 2);
29 } // end function mystery

844 Chapter 21 Bits, Characters, C Strings and structs

21.25 (Strings Ending with ED) Write a program that reads a series of strings and prints only those
strings that end with the letters “ED.”

21.26 (Displaying Characters for Given ASCII Codes) Write a program that inputs an ASCII code
and prints the corresponding character. Modify this program so that it generates all possible three-
digit codes in the range 000–255 and attempts to print the corresponding characters. What happens
when this program is run?

21.27 (Write Your Own Character Handling Functions) Using the ASCII character chart in
Appendix B as a guide, write your own versions of the character-handling functions in Fig. 21.17.

21.28 (Write Your Own String Conversion Functions) Write your own versions of the functions
in Fig. 21.27 for converting strings to numbers.

21.29 (Write Your Own String Searching Functions) Write your own versions of the functions in
Fig. 21.34 for searching strings.

21.30 (Write Your Own Memory Handling Functions) Write your own versions of the functions
in Fig. 21.41 for manipulating blocks of memory.

21.31 (What Does the Program Do?) What does this program do?

21.32 (Comparing Strings) Write a program that uses function strcmp to compare two strings in-
put by the user. The program should state whether the first string is less than, equal to or greater
than the second string.

21.33 (Comparing Strings) Write a program that uses function strncmp to compare two strings
input by the user. The program should input the number of characters to compare. The program
should state whether the first string is less than, equal to or greater than the second string.

21.34 (Randomly Creating Sentences) Write a program that uses random number generation to
create sentences. The program should use four arrays of pointers to char called article, noun, verb

1 // Ex. 21.31: ex21_31.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 bool mystery3(const char *, const char *); // prototype
7
8 int main()
9 {

10 char string1[80], string2[80];
11
12 cout << "Enter two strings: ";
13 cin >> string1 >> string2;
14 cout << "The result is " << mystery3(string1, string2) << endl;
15 } // end main
16
17 // What does this function do?
18 bool mystery3(const char *s1, const char *s2)
19 {
20 for (; *s1 != '\0' && *s2 != '\0'; ++s1, ++s2)
21
22 if (*s1 != *s2)
23 return false;
24
25 return true;
26 } // end function mystery3

Exercises 845

and preposition. The program should create a sentence by selecting a word at random from each
array in the following order: article, noun, verb, preposition, article and noun. As each word is
picked, it should be concatenated to the previous words in a character array that’s large enough to
hold the entire sentence. The words should be separated by spaces. When the final sentence is out-
put, it should start with a capital letter and end with a period. The program should generate 20 such
sentences.

The arrays should be filled as follows: The article array should contain the articles "the",
"a", "one", "some" and "any"; the noun array should contain the nouns "boy", "girl", "dog",
"town" and "car"; the verb array should contain the verbs "drove", "jumped", "ran", "walked"
and "skipped"; the preposition array should contain the prepositions "to", "from", "over",
"under" and "on".

After completing the program, modify it to produce a short story consisting of several of these
sentences. (How about a random term-paper writer!)

21.35 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those
developed in Exercise 21.34, write a C++ program that produces random limericks. Polishing this
program to produce good limericks is a challenging problem, but the result will be worth the effort!

21.36 (Pig Latin) Write a program that encodes English language phrases into pig Latin. Pig Latin
is a form of coded language often used for amusement. Many variations exist in the methods used
to form pig Latin phrases. For simplicity, use the following algorithm: To form a pig-Latin phrase
from an English-language phrase, tokenize the phrase into words with function strtok. To translate
each English word into a pig-Latin word, place the first letter of the English word at the end of the
English word and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the word “the”
becomes “hetay” and the word “computer” becomes “omputercay.” Blanks between words remain
as blanks. Assume that the English phrase consists of words separated by blanks, there are no punc-
tuation marks and all words have two or more letters. Function printLatinWord should display each
word. [Hint: Each time a token is found in a call to strtok, pass the token pointer to function
printLatinWord and print the pig-Latin word.]

21.37 (Tokenizing Phone Numbers) Write a program that inputs a telephone number as a string
in the form (555) 555-5555. The program should use function strtok to extract the area code as a
token, the first three digits of the phone number as a token, and the last four digits of the phone
number as a token. The seven digits of the phone number should be concatenated into one string.
Both the area code and the phone number should be printed.

21.38 (Tokenizing and Reversing a Sentence) Write a program that inputs a line of text, tokenizes
the line with function strtok and outputs the tokens in reverse order.

21.39 (Alphabetizing Strings) Use the string-comparison functions discussed in Section 21.8 and
the techniques for sorting arrays developed in Chapter 7 to write a program that alphabetizes a list
of strings. Use the names of 10 towns in your area as data for your program.

21.40 (Write Your Own String Copy and Concatenation Functions) Write two versions of each
string-copy and string-concatenation function in Fig. 21.21. The first version should use array sub-
scripting, and the second should use pointers and pointer arithmetic.

21.41 (Write Your Own String Comparison Functions) Write two versions of each string-compar-
ison function in Fig. 21.21. The first version should use array subscripting, and the second should
use pointers and pointer arithmetic.

21.42 (Write Your Own String Length Function) Write two versions of function strlen in
Fig. 21.21. The first version should use array subscripting, and the second should use pointers and
pointer arithmetic.

846 Chapter 21 Bits, Characters, C Strings and structs

Special Section: Advanced String-Manipulation Exercises
The preceding exercises are keyed to the text and designed to test your understanding of fun-
damental string-manipulation concepts. This section includes a collection of intermediate and
advanced string-manipulation exercises. You should find these problems challenging, yet enjoyable.
The problems vary considerably in difficulty. Some require an hour or two of program writing and
implementation. Others are useful for lab assignments that might require two or three weeks of
study and implementation. Some are challenging term projects.

21.43 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much atten-
tion has been focused on whether William Shakespeare ever lived. Some scholars believe there is
substantial evidence that Francis Bacon, Christopher Marlowe or other authors actually penned the
masterpieces attributed to Shakespeare. Researchers have used computers to find similarities in the
writings of these authors. This exercise examines three methods for analyzing texts with a computer.
Thousands of texts, including Shakespeare, are available online at www.gutenberg.org.

a) Write a program that reads several lines of text from the keyboard and prints a table in-
dicating the number of occurrences of each letter of the alphabet in the text. For exam-
ple, the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” etc.
b) Write a program that reads several lines of text and prints a table indicating the number

of one-letter words, two-letter words, three-letter words, etc., appearing in the text. For
example, the phrase

Whether 'tis nobler in the mind to suffer

contains the following word lengths and occurrences:

c) Write a program that reads several lines of text and prints a table indicating the number
of occurrences of each different word in the text. The first version of your program
should include the words in the table in the same order in which they appear in the text.
For example, the lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the word “to” three times, the word “be” two times, the word “or” once, etc. A
more interesting (and useful) printout should then be attempted in which the words
are sorted alphabetically.

Wordlength Occurrences

1 0

2 2

3 1

4 2 (including 'tis)

5 0

6 2

7 1

www.gutenberg.org

Special Section: Advanced String-Manipulation Exercises 847

21.44 (Word Processing) One important function in word-processing systems is type justifica-
tion—the alignment of words to both the left and right margins of a page. This generates a profes-
sional-looking document that gives the appearance of being set in type rather than prepared on a
typewriter. Type justification can be accomplished on computer systems by inserting blank charac-
ters between the words in a line so that the rightmost word aligns with the right margin.

Write a program that reads several lines of text and prints this text in type-justified format.
Assume that the text is to be printed on paper 8-1/2 inches wide and that one-inch margins are to be
allowed on both the left and right sides. Assume that the computer prints 10 characters to the hori-
zontal inch. Therefore, your program should print 6-1/2 inches of text, or 65 characters per line.

21.45 (Printing Dates in Various Formats) Dates are commonly printed in several different for-
mats in business correspondence. Two of the more common formats are

07/21/1955
July 21, 1955

Write a program that reads a date in the first format and prints that date in the second format.

21.46 (Check Protection) Computers are frequently employed in check-writing systems such as
payroll and accounts-payable applications. Many strange stories circulate regarding weekly pay-
checks being printed (by mistake) for amounts in excess of $1 million. Weird amounts are printed
by computerized check-writing systems, because of human error or machine failure. Systems design-
ers build controls into their systems to prevent such erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash a check fraudulently. To prevent a dollar amount from being altered, most
computerized check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose that a paycheck contains eight blank spaces in which the
computer is supposed to print the amount of a weekly paycheck. If the amount is large, then all
eight of those spaces will be filled, for example,

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces would ordi-
narily be left blank. For example,

99.87

12345678

contains three blank spaces. If a check is printed with blank spaces, it’s easier for someone to alter
the amount of the check. To prevent a check from being altered, many check-writing systems insert
leading asterisks to protect the amount as follows:

***99.87

12345678

Write a program that inputs a dollar amount to be printed on a check then prints the amount
in check-protected format with leading asterisks if necessary. Assume that nine spaces are available
for printing an amount.

21.47 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previ-
ous example, we reiterate the importance of designing check-writing systems to prevent alteration
of check amounts. One common security method requires that the check amount be both written
in numbers and “spelled out” in words. Even if someone is able to alter the numerical amount of
the check, it’s extremely difficult to change the amount in words.

848 Chapter 21 Bits, Characters, C Strings and structs

Write a program that inputs a numeric check amount and writes the word equivalent of the
amount. Your program should be able to handle check amounts as large as $99.99. For example,
the amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

21.48 (Morse Code) Perhaps the most famous of all coding schemes is the Morse code, developed
by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a series of dots
and dashes to each letter of the alphabet, each digit and a few special characters (such as period, com-
ma, colon and semicolon). In sound-oriented systems, the dot represents a short sound, and the
dash represents a long sound. Other representations of dots and dashes are used with light-oriented
systems and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, the absence of a dot or
dash. In a sound-oriented system, a space is indicated by a short period of time during which no
sound is transmitted. The international version of the Morse code appears in Fig. 21.47.

Write a program that reads an English-language phrase and encodes it in Morse code. Also write
a program that reads a phrase in Morse code and converts it into the English-language equivalent. Use
one blank between each Morse-coded letter and three blanks between each Morse-coded word.

21.49 (Metric Conversion Program) Write a program that will assist the user with metric con-
versions. Your program should allow the user to specify the names of the units as strings (i.e., cen-
timeters, liters, grams, etc., for the metric system and inches, quarts, pounds, etc., for the English
system) and should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For example, the question

"How many feet are in 5 kilograms?"

is not meaningful, because "feet" are units of length, while "kilograms" are units of weight.

Character Code Character Code Character Code

A .- N -. Digits

B -... O --- 1 .----

C -.-. P .--. 2 ..---

D -.. Q --.- 3 ...--

E . R .-. 4-

F ..-. S ... 5

G --. T - 6 -....

H U ..- 7 --...

I .. V ...- 8 ---..

J .--- W .-- 9 ----.

K -.- X -..- 0 -----

L .-.. Y -.--

M -- Z --..

Fig. 21.47 | Letters and digits as expressed in international Morse code.

Challenging String-Manipulation Projects 849

Challenging String-Manipulation Projects
21.50 (Crossword Puzzle Generator) Most people have worked a crossword puzzle, but few have
ever attempted to generate one. Generating a crossword puzzle is a difficult problem. It’s suggested
here as a string-manipulation project requiring substantial sophistication and effort. There are many
issues that you must resolve to get even the simplest crossword puzzle generator program working.
For example, how does one represent the grid of a crossword puzzle inside the computer? Should
one use a series of strings, or should two-dimensional arrays be used? You need a source of words
(i.e., a computerized dictionary) that can be directly referenced by the program. In what form
should these words be stored to facilitate the complex manipulations required by the program? The
really ambitious reader will want to generate the “clues” portion of the puzzle, in which the brief
hints for each “across” word and each “down” word are printed for the puzzle worker. Merely print-
ing a version of the blank puzzle itself is not a simple problem.

21.51 (Spelling Checker) Many popular word-processing software packages have built-in spell
checkers. We used spell-checking capabilities in preparing this book and discovered that, no matter
how careful we thought we were in writing a chapter, the software was always able to find a few more
spelling errors than we were able to catch manually.

In this project, you are asked to develop your own spell-checker utility. We make suggestions
to help get you started. You should then consider adding more capabilities. You might find it help-
ful to use a computerized dictionary as a source of words.

Why do we type so many words with incorrect spellings? In some cases, it’s because we simply
do not know the correct spelling, so we make a “best guess.” In some cases, it’s because we trans-
pose two letters (e.g., “defualt” instead of “default”). Sometimes we double-type a letter acciden-
tally (e.g., “hanndy” instead of “handy”). Sometimes we type a nearby key instead of the one we
intended (e.g., “biryhday” instead of “birthday”). And so on.

Design and implement a spell-checker program. Your program maintains an array wordList of
character strings. You can either enter these strings or obtain them from a computerized dictionary.

Your program asks a user to enter a word. The program then looks up that word in the
wordList array. If the word is present in the array, your program should print “Word is spelled

correctly.”
If the word is not present in the array, your program should print “Word is not spelled cor-

rectly.” Then your program should try to locate other words in wordList that might be the word
the user intended to type. For example, you can try all possible single transpositions of adjacent let-
ters to discover that the word “default” is a direct match to a word in wordList. Of course, this
implies that your program will check all other single transpositions, such as “edfault,” “dfeault,”
“deafult,” “defalut” and “defautl.” When you find a new word that matches one in wordList, print
that word in a message such as “Did you mean "default?".”

Implement other tests, such as the replacing of each double letter with a single letter and any
other tests you can develop to improve the value of your spell checker.

22 Standard Template Library
(STL)

The shapes a bright container
can contain!
—Theodore Roethke

Journey over all the universe in
a map.
—Miguel de Cervantes

The historian is a prophet in
reverse.
—Friedrich von Schlegel

Attempt the end, and never
stand to doubt; Nothing’s so
hard but search will find it out.
—Robert Herrick

O b j e c t i v e s
In this chapter you’ll learn:

■ To use the STL containers,
container adapters and “near
containers.”

■ To program with many
dozens of the STL
algorithms.

■ To use iterators to access the
elements of STL containers.

22.1 Introduction to the Standard Template Library (STL) 851

22.1 Introduction to the Standard Template Library (STL)
The Standard Template Library (STL) defines powerful, template-based, reusable com-
ponents that implement many common data structures and algorithms used to process
those data structures. The STL offers proof of concept for generic programming with tem-
plates—introduced in Chapter 14, Templates, and used extensively in Chapter 20, Cus-
tom Templatized Data Structures. In industry, the features presented in this chapter are
often referred to as the Standard Template Library or STL. However, these terms are not
used in the C++ standard document, because these features are simply considered to be
part of the C++ Standard Library.

The STL was developed by Alexander Stepanov and Meng Lee at Hewlett-Packard
and is based on their generic programming research, with significant contributions from
David Musser. The STL was conceived and designed for performance and flexibility.

This chapter introduces the STL and discusses its three key components—containers
(popular templatized data structures), iterators and algorithms. The STL containers are
data structures capable of storing objects of almost any data type (there are some restric-
tions). We’ll see that there are three styles of container classes—first-class containers,
adapters and near containers.

22.1 Introduction to the Standard
Template Library (STL)

22.2 Introduction to Containers
22.3 Introduction to Iterators
22.4 Introduction to Algorithms
22.5 Sequence Containers

22.5.1 vector Sequence Container
22.5.2 list Sequence Container
22.5.3 deque Sequence Container

22.6 Associative Containers
22.6.1 multiset Associative Container
22.6.2 set Associative Container
22.6.3 multimap Associative Container
22.6.4 map Associative Container

22.7 Container Adapters
22.7.1 stack Adapter
22.7.2 queue Adapter
22.7.3 priority_queue Adapter

22.8 Algorithms
22.8.1 fill, fill_n, generate and

generate_n
22.8.2 equal, mismatch and

lexicographical_compare
22.8.3 remove, remove_if,

remove_copy and
remove_copy_if

22.8.4 replace, replace_if,
replace_copy and
replace_copy_if

22.8.5 Mathematical Algorithms
22.8.6 Basic Searching and Sorting

Algorithms
22.8.7 swap, iter_swap and

swap_ranges
22.8.8 copy_backward, merge,

unique and reverse
22.8.9 inplace_merge, unique_copy

and reverse_copy
22.8.10 Set Operations
22.8.11 lower_bound, upper_bound

and equal_range
22.8.12 Heapsort
22.8.13 min and max
22.8.14 STL Algorithms Not Covered in This

Chapter
22.6 9 Class bitset
22.10 Function Objects
22.11 Wrap-Up

Summary| Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Recommended Reading

852 Chapter 22 Standard Template Library (STL)

Each STL container has associated member functions. A subset of these member func-
tions is defined in all STL containers. We illustrate most of this common functionality in
our examples of STL containers vector (a dynamically resizable array which we intro-
duced in Chapter 7), list (a doubly linked list) and deque (a double-ended queue, pro-
nounced “deck”).

STL iterators, which have properties similar to those of pointers, are used by programs
to manipulate the STL-container elements. Standard arrays also can be manipulated by
STL algorithms, using standard pointers as iterators. We’ll see that manipulating con-
tainers with iterators is convenient and provides tremendous expressive power when com-
bined with STL algorithms—in some cases, reducing many lines of code to a single
statement. There are five categories of iterators, each of which we discuss in Section 22.3
and use throughout this chapter.

STL algorithms are functions that perform such common data manipulations as
searching, sorting and comparing elements or entire containers. The STL provides scores of
algorithms. Most of them use iterators to access container elements. Each algorithm has
minimum requirements for the types of iterators that can be used with it. We’ll see that
each first-class container supports specific iterator types, some more powerful than others.
A container’s supported iterator type determines whether the container can be used with
a specific algorithm. Iterators encapsulate the mechanism used to access container ele-
ments. This encapsulation enables many of the STL algorithms to be applied to various
containers without regard for the underlying container implementation. As long as a con-
tainer’s iterators support the minimum requirements of the algorithm, then the algorithm
can process that container’s elements. This also enables you to create new algorithms that
can process the elements of multiple container types.

In Chapter 20, we studied data structures. We built linked lists, queues, stacks and
trees. We carefully wove linked objects together with pointers. Pointer-based code is com-
plex, and the slightest omission or oversight can lead to serious memory-access violations
and memory-leak errors with no compiler complaints. Implementing additional data struc-
tures, such as deques, priority queues, sets and maps, requires substantial extra work. In
addition, if many programmers on a large project implement similar containers and algo-
rithms for different tasks, the code becomes difficult to modify, maintain and debug. An
advantage of the STL is that you can reuse the STL containers, iterators and algorithms to
implement common data structures and manipulations project-wide. This reuse can save
substantial development time, money and effort.

Software Engineering Observation 22.1
The STL approach allows programs to be written so that the code does not depend on the
underlying container. Such a programming style is called generic programming.

Software Engineering Observation 22.2
Avoid reinventing the wheel; program with the reusable components of the C++ Standard
Library.

Error-Prevention Tip 22.1
The prepackaged, templatized containers of the STL are sufficient for most applications.
Using the STL helps you reduce testing and debugging time.

22.2 Introduction to Containers 853

22.2 Introduction to Containers
The STL container types are shown in Fig. 22.1. The containers are divided into three ma-
jor categories—sequence containers, associative containers and container adapters.

STL Containers Overview
The sequence containers represent linear data structures, such as vectors and linked lists. Asso-
ciative containers are nonlinear containers that typically can locate elements stored in the con-
tainers quickly. Such containers can store sets of values or key/value pairs. The sequence
containers and associative containers are collectively referred to as the first-class containers. As
we saw in Chapter 20, stacks and queues actually are constrained versions of sequential con-
tainers. For this reason, STL implements stacks and queues as container adapters that enable
a program to view a sequential container in a constrained manner. There are other container
types that are considered “near containers”—C-like pointer-based arrays (discussed in
Chapter 7), bitsets for maintaining sets of flag values and valarrays for performing high-
speed mathematical vector operations (this last class is optimized for computation perfor-
mance and is not as flexible as the first-class containers). These types are considered “near
containers” because they exhibit capabilities similar to those of the first-class containers, but
do not support all the first-class-container capabilities. Type string supports the same func-
tionality as a sequence container, but stores only character data.

STL Container Common Functions
Most STL containers provide similar functionality. Many generic operations, such as
member function size, apply to all containers, and other operations apply to subsets of

Standard Library
container class Description

Sequence containers

vector Rapid insertions and deletions at back. Direct access to any element.

deque Rapid insertions and deletions at front or back. Direct access to any
element.

list Doubly linked list, rapid insertion and deletion anywhere.

Associative containers

set Rapid lookup, no duplicates allowed.

multiset Rapid lookup, duplicates allowed.

map One-to-one mapping, no duplicates allowed, rapid key-based
lookup.

multimap One-to-many mapping, duplicates allowed, rapid key-based lookup.

Container adapters

stack Last-in, first-out (LIFO).

queue First-in, first-out (FIFO).

priority_queue Highest-priority element is always the first element out.

Fig. 22.1 | Standard Library container classes.

854 Chapter 22 Standard Template Library (STL)

similar containers. This encourages extensibility of the STL with new classes. Figure 22.2
describes the many functions common to all Standard Library containers. [Note: Over-
loaded operators <, <=, >, >=, == and != are not provided for priority_queues.]

Member function Description

default constructor A constructor that initializes an empty container. Normally, each con-
tainer has several constructors that provide different initialization
methods for the container.

copy constructor A constructor that initializes the container to be a copy of an existing
container of the same type.

destructor Destructor function for cleanup after a container is no longer needed.

empty Returns true if there are no elements in the container; otherwise,
returns false.

insert Inserts an item in the container.

size Returns the number of elements currently in the container.

operator= Assigns one container to another.

operator< Returns true if the contents of the first container is less than the sec-
ond; otherwise, returns false.

operator<= Returns true if the contents of the first container is less than or equal
to the second; otherwise, returns false.

operator> Returns true if the contents of the first container is greater than the
second; otherwise, returns false.

operator>= Returns true if the contents of the first container is greater than or
equal to the second; otherwise, returns false.

operator== Returns true if the contents of the first container is equal to the sec-
ond; otherwise, returns false.

operator!= Returns true if the contents of the first container is not equal to the
second; otherwise, returns false.

swap Swaps the elements of two containers.

Functions found only in first-class containers

max_size Returns the maximum number of elements for a container.

begin The two versions of this function return either an iterator or a
const_iterator that refers to the first element of the container.

end The two versions of this function return either an iterator or a
const_iterator that refers to the next position after the end of the
container.

rbegin The two versions of this function return either a reverse_iterator or a
const_reverse_iterator that refers to the last element of the con-
tainer.

rend The two versions of this function return either a reverse_iterator or a
const_reverse_iterator that refers to next position after the last ele-
ment of the container.

Fig. 22.2 | Common member functions for most STL containers. (Part 1 of 2.)

22.2 Introduction to Containers 855

STL Container Headers
The headers for each of the Standard Library containers are shown in Fig. 22.3. The con-
tents of these headers are all in namespace std.

First-Class Container Common typedefs
Figure 22.4 shows the common typedefs (to create synonyms or aliases for lengthy type
names) found in first-class containers. These typedefs are used in generic declarations of
variables, parameters to functions and return values from functions. For example,
value_type in each container is always a typedef that represents the type of elements
stored in the container.

erase Erases one or more elements from the container.

clear Erases all elements from the container.

Standard Library container headers

<vector>

<list>

<deque>

<queue> Contains both queue and priority_queue.

<stack>

<map> Contains both map and multimap.

<set> Contains both set and multiset.

<valarray>

<bitset>

Fig. 22.3 | Standard Library container headers.

typedef Description

allocator_type The type of the object used to allocate the container’s memory.

value_type The type of element stored in the container.

reference A reference for the container’s element type.

const_reference A constant reference for the container’s element type. Such a ref-
erence can be used only for reading elements in the container and
for performing const operations.

pointer A pointer for the container’s element type.

Fig. 22.4 | typedefs found in first-class containers. (Part 1 of 2.)

Member function Description

Fig. 22.2 | Common member functions for most STL containers. (Part 2 of 2.)

856 Chapter 22 Standard Template Library (STL)

When preparing to use an STL container, it’s important to ensure that the type of ele-
ment being stored in the container supports a minimum set of functionality. When an ele-
ment is inserted into a container, a copy of that element is made. For this reason, the
element type should provide its own copy constructor and assignment operator. [Note: This
is required only if default memberwise copy and default memberwise assignment do not per-
form proper copy and assignment operations for the element type.] Also, the associative
containers and many algorithms require elements to be compared. For this reason, the ele-
ment type should provide an equality operator (==) and a less-than operator (<).

22.3 Introduction to Iterators
Iterators have many similarities to pointers and are used to point to first-class container
elements. Iterators hold state information sensitive to the particular containers on which
they operate; thus, iterators are implemented appropriately for each type of container. Cer-
tain iterator operations are uniform across containers. For example, the dereferencing oper-
ator (*) dereferences an iterator so that you can use the element to which it points. The ++
operation on an iterator moves it to the container’s next element (much as incrementing a
pointer into an array aims the pointer at the next array element).

STL first-class containers provide member functions begin and end. Function begin

returns an iterator pointing to the first element of the container. Function end returns an
iterator pointing to the first element past the end of the container (an element that doesn’t
exist). If iterator i points to a particular element, then ++i points to the “next” element
and *i refers to the element pointed to by i. The iterator resulting from end is typically
used in an equality or inequality comparison to determine whether the “moving iterator”
(i in this case) has reached the end of the container.

const_pointer A pointer for a constant of the container’s element type.

iterator An iterator that points to an element of the container’s element
type.

const_iterator A constant iterator that points to an element of the container’s
element type and can be used only to read elements.

reverse_iterator A reverse iterator that points to an element of the container’s ele-
ment type. This type of iterator is for iterating through a con-
tainer in reverse.

const_reverse_iterator A constant reverse iterator that points to an element of the con-
tainer’s element type and can be used only to read elements. This
type of iterator is for iterating through a container in reverse.

difference_type The type of the result of subtracting two iterators that refer to the
same container (operator - is not defined for iterators of lists
and associative containers).

size_type The type used to count items in a container and index through a
sequence container (cannot index through a list).

typedef Description

Fig. 22.4 | typedefs found in first-class containers. (Part 2 of 2.)

22.3 Introduction to Iterators 857

An object of type iterator refers to a container element that can be modified. An
object of type const_iterator refers to a container element that cannot be modified.

Using istream_iterator for Input and ostream_iterator for Output
We use iterators with sequences (also called ranges). These sequences can be in containers,
or they can be input sequences or output sequences. The program of Fig. 22.5 demon-
strates input from the standard input (a sequence of data for input into a program), using
an istream_iterator, and output to the standard output (a sequence of data for output
from a program), using an ostream_iterator. The program inputs two integers from the
user at the keyboard and displays the sum of the integers. As you’ll see later in this chapter,
the istream_iterator and ostream_iterator can be used with the STL algorithms to
create powerful statements. For example, you can use an ostream_iterator with the copy
algorithm to copy a container’s contents to the standard output stream with a single state-
ment.

Line 12 creates an istream_iterator that’s capable of extracting (inputting) int

values in a type-safe manner from the standard input object cin. Line 14 dereferences iter-
ator inputInt to read the first integer from cin and assigns that integer to number1. The
dereferencing operator * applied to iterator inputInt gets the value from the stream asso-
ciated with inputInt; this is similar to dereferencing a pointer. Line 15 positions iterator

1 // Fig. 22.5: Fig22_05.cpp
2 // Demonstrating input and output with iterators.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 cout << "Enter two integers: ";

10
11
12
13
14
15
16
17
18
19
20
21 cout << "The sum is: ";
22
23 cout << endl;
24 } // end main

Enter two integers: 12 25
The sum is: 37

Fig. 22.5 | Input and output stream iterators.

#include <iterator> // ostream_iterator and istream_iterator

// create istream_iterator for reading int values from cin
istream_iterator< int > inputInt(cin);

int number1 = *inputInt; // read int from standard input
++inputInt; // move iterator to next input value
int number2 = *inputInt; // read int from standard input

// create ostream_iterator for writing int values to cout
ostream_iterator< int > outputInt(cout);

*outputInt = number1 + number2; // output result to cout

858 Chapter 22 Standard Template Library (STL)

inputInt to the next value in the input stream. Line 16 inputs the next integer from
inputInt and assigns it to number2.

Line 19 creates an ostream_iterator that’s capable of inserting (outputting) int

values in the standard output object cout. Line 22 outputs an integer to cout by assigning
to *outputInt the sum of number1 and number2. Notice the use of the dereferencing oper-
ator * to use *outputInt as an lvalue in the assignment statement. If you want to output
another value using outputInt, the iterator must be incremented with ++ (both the prefix
and postfix increment can be used, but the prefix form should be preferred for perfor-
mance reasons because it does not create a temporary object).

Iterator Categories and Iterator Category Hierarchy
Figure 22.6 shows the categories of STL iterators. Each category provides a specific set of
functionality. Figure 22.7 illustrates the hierarchy of iterator categories. As you follow the
hierarchy from top to bottom, each iterator category supports all the functionality of the
categories above it in the figure. Thus the “weakest” iterator types are at the top and the
most powerful one is at the bottom. Note that this is not an inheritance hierarchy.

Error-Prevention Tip 22.2
The * (dereferencing) operator of any const iterator returns a const reference to the con-
tainer element, disallowing the use of non-const member functions.

Common Programming Error 22.1
Attempting to create a non-const iterator for a const container results in a compilation
error.

Category Description

input Used to read an element from a container. An input iterator can move
only in the forward direction (i.e., from the beginning of the container
to the end) one element at a time. Input iterators support only one-pass
algorithms—the same input iterator cannot be used to pass through a
sequence twice.

output Used to write an element to a container. An output iterator can move
only in the forward direction one element at a time. Output iterators
support only one-pass algorithms—the same output iterator cannot be
used to pass through a sequence twice.

forward Combines the capabilities of input and output iterators and retains their
position in the container (as state information).

bidirectional Combines the capabilities of a forward iterator with the ability to move
in the backward direction (i.e., from the end of the container toward the
beginning). Bidirectional iterators support multipass algorithms.

random access Combines the capabilities of a bidirectional iterator with the ability to
directly access any element of the container, i.e., to jump forward or
backward by an arbitrary number of elements.

Fig. 22.6 | Iterator categories.

22.3 Introduction to Iterators 859

The iterator category that each container supports determines whether that container
can be used with specific algorithms in the STL. Containers that support random-access iter-
ators can be used with all algorithms in the STL. As we’ll see, pointers into arrays can be used
in place of iterators in most STL algorithms, including those that require random-access
iterators. Figure 22.8 shows the iterator category of each of the STL containers. The first-
class containers (vectors, deques, lists, sets, multisets, maps and multimaps), strings
and arrays are all traversable with iterators.

Software Engineering Observation 22.3
Using the “weakest iterator” that yields acceptable performance helps produce maximally
reusable components. For example, if an algorithm requires only forward iterators, it can
be used with any container that supports forward iterators, bidirectional iterators or
random-access iterators. However, an algorithm that requires random-access iterators can
be used only with containers that have random-access iterators.

Fig. 22.7 | Iterator category hierarchy.

Container Type of iterator supported

Sequence containers (first class)

vector random access

deque random access

list bidirectional

Associative containers (first class)

set bidirectional

multiset bidirectional

map bidirectional

multimap bidirectional

Container adapters

stack no iterators supported

queue no iterators supported

priority_queue no iterators supported

Fig. 22.8 | Iterator types supported by each container.

forward

bidirectional

outputinput

random access

860 Chapter 22 Standard Template Library (STL)

Predefined Iterator typedefs
Figure 22.9 shows the predefined iterator typedefs that are found in the class definitions
of the STL containers. Not every typedef is defined for every container. We use const

versions of the iterators for traversing read-only containers. We use reverse iterators to tra-
verse containers in the reverse direction.

Iterator Operations
Figure 22.10 shows some operations that can be performed on each iterator type. The op-
erations for each iterator type include all operations preceding that type in the figure. For
input iterators and output iterators, it’s not possible to save the iterator then use the saved
value later.

Predefined typedefs for iterator types Direction of ++ Capability

iterator forward read/write

const_iterator forward read

reverse_iterator backward read/write

const_reverse_iterator backward read

Fig. 22.9 | Iterator typedefs.

Error-Prevention Tip 22.3
Operations performed on a const_iterator return const references to prevent modifi-
cation to elements of the container being manipulated. Using const_iterators where
appropriate is another example of the principle of least privilege.

Iterator operation Description

All iterators

++p Preincrement an iterator.

p++ Postincrement an iterator.

Input iterators

*p Dereference an iterator.

p = p1 Assign one iterator to another.

p == p1 Compare iterators for equality.

p != p1 Compare iterators for inequality.

Output iterators

*p Dereference an iterator.

p = p1 Assign one iterator to another.

Forward iterators Forward iterators provide all the functionality of both input iterators and
output iterators.

Fig. 22.10 | Iterator operations for each type of iterator. (Part 1 of 2.)

22.4 Introduction to Algorithms 861

22.4 Introduction to Algorithms
STL algorithms can be used generically across a variety of containers. STL provides many
algorithms you’ll use frequently to manipulate containers. Inserting, deleting, searching,
sorting and others are appropriate for some or all of the STL containers.

The STL includes scores of standard algorithms. We show many of these. The algo-
rithms operate on container elements only indirectly through iterators. Many algorithms
operate on sequences of elements defined by pairs of iterators—one pointing to the first
element of the sequence and one pointing to one element past the last element. Also, it’s
possible to create your own new algorithms that operate in a similar fashion so they can be
used with the STL containers and iterators.

Algorithms often return iterators that indicate the results of the algorithms. Algorithm
find, for example, locates an element and returns an iterator to that element. If the ele-
ment is not found, find returns the “one past the end” iterator that was passed in to define
the end of the range to be searched, which can be tested to determine whether an element
was not found. The find algorithm can be used with any first-class STL container. STL
algorithms create yet another opportunity for reuse—using the rich collection of popular
algorithms can save you much time and effort.

Bidirectional iterators

--p Predecrement an iterator.

p-- Postdecrement an iterator.

Random-access iterators

p += i Increment the iterator p by i positions.

p -= i Decrement the iterator p by i positions.

p + i or i + p Expression value is an iterator positioned at p incremented by i positions.

p - i Expression value is an iterator positioned at p decremented by i positions.

p - p1 Expression value is an integer representing the distance between two ele-
ments in the same container.

p[i] Return a reference to the element offset from p by i positions

p < p1 Return true if iterator p is less than iterator p1 (i.e., iterator p is before
iterator p1 in the container); otherwise, return false.

p <= p1 Return true if iterator p is less than or equal to iterator p1 (i.e., iterator p
is before iterator p1 or at the same location as iterator p1 in the container);
otherwise, return false.

p > p1 Return true if iterator p is greater than iterator p1 (i.e., iterator p is after
iterator p1 in the container); otherwise, return false.

p >= p1 Return true if iterator p is greater than or equal to iterator p1 (i.e., itera-
tor p is after iterator p1 or at the same location as iterator p1 in the con-
tainer); otherwise, return false.

Iterator operation Description

Fig. 22.10 | Iterator operations for each type of iterator. (Part 2 of 2.)

862 Chapter 22 Standard Template Library (STL)

An algorithm can be used with containers that support at least the algorithm’s min-
imum iterator requirements. Some algorithms demand powerful iterators; for example,
sort demands random-access iterators.

Figure 22.11 shows many of the mutating-sequence algorithms—i.e., the algorithms
that result in modifications of the containers to which the algorithms are applied.

Figure 22.12 shows many of the nonmodifying sequence algorithms—i.e., the algo-
rithms that do not result in modifications of the containers to which they’re applied.
Figure 22.13 shows the numerical algorithms of the header <numeric>.

Software Engineering Observation 22.4
The STL is extensible. It’s straightforward to add new algorithms and to do so without
changes to STL containers.

Software Engineering Observation 22.5
The STL is implemented concisely. The algorithms are separated from the containers and
operate on elements of the containers only indirectly through iterators. This separation
makes it easier to write generic algorithms applicable to many container classes.

Software Engineering Observation 22.6
STL algorithms can operate on STL containers and on pointer-based, C-like arrays.

Portability Tip 22.1
Because STL algorithms process containers only indirectly through iterators, one algo-
rithm can often be used with many different containers.

Mutating-sequence algorithms

copy partition replace_copy stable_partition

copy_backward random_shuffle replace_copy_if swap

fill remove replace_if swap_ranges

fill_n remove_copy reverse transform

generate remove_copy_if reverse_copy unique

generate_n remove_if rotate unique_copy

iter_swap replace rotate_copy

Fig. 22.11 | Mutating-sequence algorithms.

Nonmodifying sequence algorithms

adjacent_find equal find_end mismatch

count find find_first_of search

count_if find_each find_if search_n

Fig. 22.12 | Nonmodifying sequence algorithms.

22.5 Sequence Containers 863

22.5 Sequence Containers
The C++ Standard Template Library provides three sequence containers—vector, list
and deque. Class template vector and class template deque both are based on arrays. Class
template list implements a linked-list data structure similar to our List class presented
in Chapter 20, but more robust.

One of the most popular containers in the STL is vector. Recall that we introduced
class template vector in Chapter 7 as a more robust type of array. A vector changes size
dynamically. Unlike C and C++ “raw” arrays (see Chapter 7), vectors can be assigned to
one another. This is not possible with pointer-based, C-like arrays, because those array
names are constant pointers and thus cannot be the targets of assignments. Just as with C
arrays, vector subscripting does not perform automatic range checking, but class template
vector does provide this capability via member function at (also discussed in Chapter 7).

Figure 22.2 presented the operations common to all the STL containers. Beyond
these operations, each container typically provides a variety of other capabilities. Many of
these capabilities are common to several containers, but they’re not always equally efficient
for each container. You must choose the container most appropriate for the application.

In addition to the common operations described in Fig. 22.2, the sequence containers
have several other common operations—front to return a reference to the first element in
a non-empty container, back to return a reference to the last element in a non-empty con-

Numerical algorithms from header <numeric>

accumulate partial_sum

inner_product adjacent_difference

Fig. 22.13 | Numerical algorithms from header <numeric>.

Performance Tip 22.1
Insertion at the back of a vector is efficient. The vector simply grows, if necessary, to
accommodate the new item. It’s expensive to insert (or delete) an element in the middle of
a vector—the entire portion of the vector after the insertion (or deletion) point must be
moved, because vector elements occupy contiguous cells in memory just as C or C++
“raw” arrays do.

Performance Tip 22.2
Applications that require frequent insertions and deletions at both ends of a container nor-
mally use a deque rather than a vector. Although we can insert and delete elements at
the front and back of both a vector and a deque, class deque is more efficient than vec-

tor for doing insertions and deletions at the front.

Performance Tip 22.3
Applications with frequent insertions and deletions in the middle and/or at the extremes
of a container normally use a list, due to its efficient implementation of insertion and
deletion anywhere in the data structure.

864 Chapter 22 Standard Template Library (STL)

tainer, push_back to insert a new element at the end of the container and pop_back to
remove the last element of the container.

22.5.1 vector Sequence Container
Class template vector provides a data structure with contiguous memory locations. This
enables efficient, direct access to any element of a vector via the subscript operator [], ex-
actly as with a C or C++ “raw” array. Class template vector is most commonly used when
the data in the container must be easily accessible via a subscript or will be sorted. When
a vector’s memory is exhausted, the vector allocates a larger contiguous area of memory,
copies the original elements into the new memory and deallocates the old memory.

An important part of every container is the type of iterator it supports. This deter-
mines which algorithms can be applied to the container. A vector supports random-access
iterators—i.e., all iterator operations shown in Fig. 22.10 can be applied to a vector iter-
ator. All STL algorithms can operate on a vector. The iterators for a vector are sometimes
implemented as pointers to elements of the vector. Each STL algorithm that takes iterator
arguments requires those iterators to provide a minimum level of functionality. If an algo-
rithm requires a forward iterator, for example, that algorithm can operate on any container
that provides forward iterators, bidirectional iterators or random-access iterators. As long
as the container supports the algorithm’s minimum iterator functionality, the algorithm
can operate on the container.

Using Vector and Iterators
Figure 22.14 illustrates several functions of the vector class template. Many of these func-
tions are available in every first-class container. You must include header <vector> to use
class template vector.

Line 14 defines an instance called integers of class template vector that stores int
values. When this object is instantiated, an empty vector is created with size 0 (i.e., the
number of elements stored in the vector) and capacity 0 (i.e., the number of elements that
can be stored without allocating more memory to the vector).

Lines 16 and 17 demonstrate the size and capacity functions; each initially returns
0 for vector v in this example. Function size—available in every container—returns the
number of elements currently stored in the container. Function capacity returns the
number of elements that can be stored in the vector before the vector needs to dynami-
cally resize itself to accommodate more elements.

Performance Tip 22.4
Choose the vector container for the best random-access performance.

Performance Tip 22.5
Objects of class template vector provide rapid indexed access with the overloaded subscript
operator [] because they’re stored in contiguous memory like a C or C++ raw array.

Performance Tip 22.6
It’s faster to insert many elements into a container at once than one at a time.

22.5 Sequence Containers 865

1 // Fig. 22.14: Fig22_14.cpp
2 // Demonstrating Standard Library vector class template.
3 #include <iostream>
4
5 using namespace std;
6
7 // prototype for function template printVector
8 template < typename T > void printVector(const vector< T > &integers2);
9

10 int main()
11 {
12 const int SIZE = 6; // define array size
13 int array[SIZE] = { 1, 2, 3, 4, 5, 6 }; // initialize array
14
15
16 cout << "The initial size of integers is: " <<
17 << "\nThe initial capacity of integers is: " << ;
18
19
20
21
22
23
24 cout << "\nThe size of integers is: " <<
25 << "\nThe capacity of integers is: " << ;
26 cout << "\n\nOutput array using pointer notation: ";
27
28 // display array using pointer notation
29 for (int *ptr = array; ptr != array + SIZE; ++ptr)
30 cout << *ptr << ' ';
31
32 cout << "\nOutput vector using iterator notation: ";
33 printVector(integers);
34 cout << "\nReversed contents of vector integers: ";
35
36 // two const reverse iterators
37 vector< int >::const_reverse_iterator reverseIterator;
38 vector< int >::const_reverse_iterator tempIterator = integers.rend();
39
40
41
42
43
44
45 cout << endl;
46 } // end main
47
48 // function template for outputting vector elements
49 template < typename T > void printVector(const vector< T > &integers2)
50 {
51
52

Fig. 22.14 | Standard Library vector class template. (Part 1 of 2.)

#include <vector> // vector class-template definition

vector< int > integers; // create vector of ints

integers.size()
integers.capacity()

// function push_back is in every sequence container
integers.push_back(2);
integers.push_back(3);
integers.push_back(4);

integers.size()
integers.capacity()

// display vector in reverse order using reverse_iterator
for (reverseIterator = integers.rbegin();

reverseIterator!= tempIterator; ++reverseIterator)
cout << *reverseIterator << ' ';

typename vector< T >::const_iterator constIterator; // const_iterator

866 Chapter 22 Standard Template Library (STL)

Lines 20–22 use function push_back—available in all sequence containers—to add
an element to the end of the vector. If an element is added to a full vector, the vector

increases its size—some STL implementations have the vector double its capacity.

Lines 24 and 25 use size and capacity to illustrate the new size and capacity of the
vector after the three push_back operations. Function size returns 3—the number of ele-
ments added to the vector. Function capacity returns 4, indicating that we can add one
more element before the vector needs to add more memory. When we added the first ele-
ment, the vector allocated space for one element, and the size became 1 to indicate that the
vector contained only one element. When we added the second element, the capacity dou-
bled to 2 and the size became 2 as well. When we added the third element, the capacity dou-
bled again to 4. So we can actually add another element before the vector needs to allocate
more space. When the vector eventually fills its allocated capacity and the program attempts
to add one more element to the vector, the vector will double its capacity to 8 elements.

The manner in which a vector grows to accommodate more elements—a time con-
suming operation—is not specified by the C++ Standard Document. C++ library imple-
mentors use various clever schemes to minimize the overhead of resizing a vector. Hence,
the output of this program may vary, depending on the version of vector that comes with
your compiler. Some library implementors allocate a large initial capacity. If a vector

stores a small number of elements, such capacity may be a waste of space. However, it can
greatly improve performance if a program adds many elements to a vector and does not
have to reallocate memory to accommodate those elements. This is a classic space–time
trade-off. Library implementors must balance the amount of memory used against the
amount of time required to perform various vector operations.

Lines 29–30 demonstrate how to output the contents of an array using pointers and
pointer arithmetic. Line 33 calls function printVector (defined in lines 49–57) to output
the contents of a vector using iterators. Function template printVector receives a const

53
54
55
56
57 } // end function printVector

The initial size of integers is: 0
The initial capacity of integers is: 0
The size of integers is: 3
The capacity of integers is: 4

Output array using pointer notation: 1 2 3 4 5 6
Output vector using iterator notation: 2 3 4
Reversed contents of vector integers: 4 3 2

Performance Tip 22.7
It can be wasteful to double a vector’s size when more space is needed. For example, a
full vector of 1,000,000 elements resizes to accommodate 2,000,000 elements when a
new element is added. This leaves 999,999 unused elements. You can use resize and re-

serve to control space usage better.

Fig. 22.14 | Standard Library vector class template. (Part 2 of 2.)

// display vector elements using const_iterator
for (constIterator = integers2.begin();

constIterator != integers2.end(); ++constIterator)
cout << *constIterator << ' ';

22.5 Sequence Containers 867

reference to a vector (integers2) as its argument. Line 51 defines a const_iterator

called constIterator that iterates through the vector and outputs its contents. Notice
that the declaration in line 51 is prefixed with the keyword typename. Because print-

Vector is a function template and vector<T> will be specialized differently for each func-
tion-template specialization, the compiler cannot tell at compile time whether or not
vector<T>::const_iterator is a type. In a particular specialization, const_iterator

could be a static variable. The compiler needs this information to compile the program
correctly. Therefore, you must tell the compiler that a qualified name, when the qualifier
is a dependent type, is expected to be a type in every specialization.

A const_iterator enables the program to read the elements of the vector, but does
not allow the program to modify the elements. The for statement in lines 54–56 initializes
constIterator using vector member function begin, which returns a const_iterator

to the first element in the vector—there’s another version of begin that returns an iter-

ator that can be used for non-const containers. A const_iterator is returned because
the identifier integers2 was declared const in the parameter list of function print-

Vector. The loop continues as long as constIterator has not reached the end of the
vector. This is determined by comparing constIterator to the result of
integers2.end(), which returns an iterator indicating the location past the last element
of the vector. If constIterator is equal to this value, the end of the vector has been
reached. Functions begin and end are available for all first-class containers. The body of
the loop dereferences iterator constIterator to get the value in the current element of the
vector. Remember that the iterator acts like a pointer to the element and that operator *
is overloaded to return a reference to the element. The expression ++constIterator (line
55) positions the iterator to the next element of the vector.

Line 37 declares a const_reverse_iterator that can be used to iterate through a
vector backward. Line 38 declares a const_reverse_iterator variable tempIterator

and initializes it to the iterator returned by function rend (i.e., the iterator for the ending
point when iterating through the container in reverse). All first-class containers support
this type of iterator. Lines 41–43 use a for statement similar to that in function print-

Vector to iterate through the vector. In this loop, function rbegin (i.e., the iterator for
the starting point when iterating through the container in reverse) and tempIterator

delineate the range of elements to output. As with functions begin and end, rbegin and
rend can return a const_reverse_iterator or a reverse_iterator, based on whether or
not the container is constant.

Performance Tip 22.8
Use prefix increment when applied to STL iterators because the prefix increment operator
does not have the overhead of returning a value that must be stored in a temporary object.

Error-Prevention Tip 22.4
Only random-access iterators support <. It’s better to use != and end to test for the end of
a container.

Common Programming Error 22.2
Attempting to dereference an iterator positioned outside its container is a runtime logic error.
In particular, the iterator returned by end cannot be dereferenced or incremented.

868 Chapter 22 Standard Template Library (STL)

Vector Element-Manipulation Functions
Figure 22.15 illustrates functions that enable retrieval and manipulation of the elements
of a vector. Line 15 uses an overloaded vector constructor that takes two iterators as ar-
guments to initialize integers. Remember that pointers into an array can be used as iter-
ators. Line 15 initializes integers with the contents of array from location array up to—
but not including—location array + SIZE.

Performance Tip 22.9
For performance reasons, capture the loop ending value before the loop and compare
against that, rather than having a (potentially expensive) function call for each iteration.

1 // Fig. 22.15: Fig22_15.cpp
2 // Testing Standard Library vector class template
3 // element-manipulation functions.
4 #include <iostream>
5 #include <vector> // vector class-template definition
6 #include <algorithm> // copy algorithm
7 #include <iterator> // ostream_iterator iterator
8 #include <stdexcept> // out_of_range exception
9 using namespace std;

10
11 int main()
12 {
13 const int SIZE = 6;
14 int array[SIZE] = { 1, 2, 3, 4, 5, 6 };
15
16 ostream_iterator< int > output(cout, " ");
17
18 cout << "Vector integers contains: ";
19
20
21 cout << "\nFirst element of integers: " <<
22 << "\nLast element of integers: " << ;
23
24
25
26
27
28
29
30 cout << "\n\nContents of vector integers after changes: ";
31 copy(integers.begin(), integers.end(), output);
32
33 // access out-of-range element
34 try
35 {
36
37 } // end try

Fig. 22.15 | vector class template element-manipulation functions. (Part 1 of 2.)

vector< int > integers(array, array + SIZE);

copy(integers.begin(), integers.end(), output);

integers.front()
integers.back()

integers[0] = 7; // set first element to 7
integers.at(2) = 10; // set element at position 2 to 10

// insert 22 as 2nd element
integers.insert(integers.begin() + 1, 22);

integers.at(100) = 777;

22.5 Sequence Containers 869

Line 16 defines an ostream_iterator called output that can be used to output inte-
gers separated by single spaces via cout. An ostream_iterator< int > is a type-safe output
mechanism that outputs only values of type int or a compatible type. The first argument
to the constructor specifies the output stream, and the second argument is a string speci-
fying the separator for the values output—in this case, the string contains a space char-
acter. We use the ostream_iterator (defined in header <iterator>) to output the
contents of the vector in this example.

Line 19 uses algorithm copy from the Standard Library to output the entire contents
of vector integers to the standard output. Algorithm copy copies each element in the
container starting with the location specified by the iterator in its first argument and con-
tinuing up to—but not including—the location specified by the iterator in its second argu-

38 catch () // out_of_range exception
39 {
40 cout << "\n\nException: " << outOfRange.what();
41 } // end catch
42
43
44
45 cout << "\n\nVector integers after erasing first element: ";
46 copy(integers.begin(), integers.end(), output);
47
48
49
50 cout << "\nAfter erasing all elements, vector integers "
51 << (? "is" : "is not") << " empty";
52
53 // insert elements from array
54
55 cout << "\n\nContents of vector integers before clear: ";
56 copy(integers.begin(), integers.end(), output);
57
58 // empty integers; clear calls erase to empty a collection
59
60 cout << "\nAfter clear, vector integers "
61 << (? "is" : "is not") << " empty" << endl;
62 } // end main

Vector integers contains: 1 2 3 4 5 6
First element of integers: 1
Last element of integers: 6

Contents of vector integers after changes: 7 22 2 10 4 5 6

Exception: invalid vector<T> subscript

Vector integers after erasing first element: 22 2 10 4 5 6
After erasing all elements, vector integers is empty

Contents of vector integers before clear: 1 2 3 4 5 6
After clear, vector integers is empty

Fig. 22.15 | vector class template element-manipulation functions. (Part 2 of 2.)

out_of_range &outOfRange

// erase first element
integers.erase(integers.begin());

// erase remaining elements
integers.erase(integers.begin(), integers.end());

integers.empty()

integers.insert(integers.begin(), array, array + SIZE);

integers.clear();

integers.empty()

870 Chapter 22 Standard Template Library (STL)

ment. The first and second arguments must satisfy input iterator requirements—they
must be iterators through which values can be read from a container. Also, applying ++ to
the first iterator must eventually cause it to reach the second iterator argument in the con-
tainer. The elements are copied to the location specified by the output iterator (i.e., an iter-
ator through which a value can be stored or output) specified as the last argument. In this
case, the output iterator is an ostream_iterator (output) that’s attached to cout, so the
elements are copied to the standard output. To use the algorithms of the Standard Library,
you must include the header <algorithm>.

Lines 21–22 use functions front and back (available for all sequence containers) to
determine the vector’s first and last elements, respectively. Notice the difference between
functions front and begin. Function front returns a reference to the first element in the
vector, while function begin returns a random access iterator pointing to the first element
in the vector. Also notice the difference between functions back and end. Function back

returns a reference to the last element in the vector, while function end returns a random
access iterator pointing to the end of the vector (the location after the last element).

Lines 24–25 illustrate two ways to subscript through a vector (which also can be used
with the deque containers). Line 26 uses the subscript operator that’s overloaded to return
either a reference to the value at the specified location or a constant reference to that value,
depending on whether the container is constant. Function at (line 25) performs the same
operation, but with bounds checking. Function at first checks the value supplied as an argu-
ment and determines whether it’s in the bounds of the vector. If not, function at throws
an out_of_range exception defined in header <stdexcept> (as demonstrated in lines 34–
41). Figure 22.16 shows some of the STL exception types. (The Standard Library excep-
tion types are discussed in Chapter 16.)

Line 28 uses one of the three overloaded insert functions provided by each sequence
container. Line 28 inserts the value 22 before the element at the location specified by the
iterator in the first argument. In this example, the iterator is pointing to the second ele-
ment of the vector, so 22 is inserted as the second element and the original second ele-
ment becomes the third element of the vector. Other versions of insert allow inserting

Common Programming Error 22.3
The vector must not be empty; otherwise, results of the front and back functions are un-
defined.

STL exception types Description

out_of_range Indicates when subscript is out of range—e.g., when an invalid
subscript is specified to vector member function at.

invalid_argument Indicates an invalid argument was passed to a function.

length_error Indicates an attempt to create too long a container, string, etc.

bad_alloc Indicates that an attempt to allocate memory with new (or with
an allocator) failed because not enough memory was available.

Fig. 22.16 | Some STL exception types.

22.5 Sequence Containers 871

multiple copies of the same value starting at a particular position in the container, or
inserting a range of values from another container (or array), starting at a particular posi-
tion in the original container.

Lines 44 and 49 use the two erase functions that are available in all first-class con-
tainers. Line 44 indicates that the element at the location specified by the iterator argu-
ment should be removed from the container (in this example, the element at the beginning
of the vector). Line 49 specifies that all elements in the range starting with the location
of the first argument up to—but not including—the location of the second argument
should be erased from the container. In this example, all the elements are erased from the
vector. Line 51 uses function empty (available for all containers and adapters) to confirm
that the vector is empty.

Line 54 demonstrates the version of function insert that uses the second and third
arguments to specify the starting location and ending location in a sequence of values (pos-
sibly from another container; in this case, from array of integers array) that should be
inserted into the vector. Remember that the ending location specifies the position in the
sequence after the last element to be inserted; copying is performed up to—but not
including—this location.

Finally, line 59 uses function clear (found in all first-class containers) to empty the
vector. This function calls the version of erase used in line 51 to empty the vector.

[Note: Other functions that are common to all containers and common to all sequence
containers have not yet been covered. We’ll cover most of these in the next few sections.
We’ll also cover many functions that are specific to each container.]

22.5.2 list Sequence Container
The list sequence container provides an efficient implementation for insertion and dele-
tion operations at any location in the container. If most of the insertions and deletions oc-
cur at the ends of the container, the deque data structure (Section 22.5.3) provides a more
efficient implementation. Class template list is implemented as a doubly linked list—ev-
ery node in the list contains a pointer to the previous node in the list and to the next
node in the list. This enables class template list to support bidirectional iterators that
allow the container to be traversed both forward and backward. Any algorithm that re-
quires input, output, forward or bidirectional iterators can operate on a list. Many list

member functions manipulate the elements of the container as an ordered set of elements.
In addition to the member functions of all STL containers in Fig. 22.2 and the

common member functions of all sequence containers discussed in Section 22.5, class
template list provides nine other member functions—splice, push_front, pop_front,
remove, remove_if, unique, merge, reverse and sort. Several of these member functions
are list-optimized implementations of the STL algorithms presented in Section 22.8.
Figure 22.17 demonstrates several features of class list. Remember that many of the
functions presented in Figs. 22.14–22.15 can be used with class list. Header <list>

must be included to use class list.

Common Programming Error 22.4
Erasing an element that contains a pointer to a dynamically allocated object does not de-
lete that object; this can lead to a memory leak.

872 Chapter 22 Standard Template Library (STL)

1 // Fig. 22.17: Fig22_17.cpp
2 // Standard library list class template test program.
3 #include <iostream>
4
5 #include <algorithm> // copy algorithm
6 #include <iterator> // ostream_iterator
7 using namespace std;
8
9 // prototype for function template printList

10 template < typename T > void printList(const list< T > &listRef);
11
12 int main()
13 {
14 const int SIZE = 4;
15 int array[SIZE] = { 2, 6, 4, 8 };
16 list< int > values; // create list of ints
17 list< int > otherValues; // create list of ints
18
19
20
21
22
23
24
25 cout << "values contains: ";
26 printList(values);
27
28
29 cout << "\nvalues after sorting contains: ";
30 printList(values);
31
32
33
34 cout << "\nAfter insert, otherValues contains: ";
35 printList(otherValues);
36
37
38
39 cout << "\nAfter splice, values contains: ";
40 printList(values);
41
42
43 cout << "\nAfter sort, values contains: ";
44 printList(values);
45
46
47
48
49 cout << "\nAfter insert and sort, otherValues contains: ";
50 printList(otherValues);
51
52
53

Fig. 22.17 | Standard Library list class template. (Part 1 of 3.)

#include <list> // list class-template definition

// insert items in values
values.push_front(1);
values.push_front(2);
values.push_back(4);
values.push_back(3);

values.sort(); // sort values

// insert elements of array into otherValues
otherValues.insert(otherValues.begin(), array, array + SIZE);

// remove otherValues elements and insert at end of values
values.splice(values.end(), otherValues);

values.sort(); // sort values

// insert elements of array into otherValues
otherValues.insert(otherValues.begin(), array, array + SIZE);
otherValues.sort();

// remove otherValues elements and insert into values in sorted order
values.merge(otherValues);

22.5 Sequence Containers 873

54 cout << "\nAfter merge:\n values contains: ";
55 printList(values);
56 cout << "\n otherValues contains: ";
57 printList(otherValues);
58
59
60
61 cout << "\nAfter pop_front and pop_back:\n values contains: "
62 printList(values);
63
64
65 cout << "\nAfter unique, values contains: ";
66 printList(values);
67
68
69
70 cout << "\nAfter swap:\n values contains: ";
71 printList(values);
72 cout << "\n otherValues contains: ";
73 printList(otherValues);
74
75
76
77 cout << "\nAfter assign, values contains: ";
78 printList(values);
79
80
81
82 cout << "\nAfter merge, values contains: ";
83 printList(values);
84
85
86 cout << "\nAfter remove(4), values contains: ";
87 printList(values);
88 cout << endl;
89 } // end main
90
91 // printList function template definition; uses
92 // ostream_iterator and copy algorithm to output list elements
93 template < typename T > void printList(const list< T > &listRef)
94 {
95 if (listRef.empty()) // list is empty
96 cout << "List is empty";
97 else
98 {
99 ostream_iterator< T > output(cout, " ");
100 copy(listRef.begin(), listRef.end(), output);
101 } // end else
102 } // end function printList

values contains: 2 1 4 3
values after sorting contains: 1 2 3 4
After insert, otherValues contains: 2 6 4 8

Fig. 22.17 | Standard Library list class template. (Part 2 of 3.)

values.pop_front(); // remove element from front
values.pop_back(); // remove element from back

values.unique(); // remove duplicate elements

// swap elements of values and otherValues
values.swap(otherValues);

// replace contents of values with elements of otherValues
values.assign(otherValues.begin(), otherValues.end());

// remove otherValues elements and insert into values in sorted order
values.merge(otherValues);

values.remove(4); // remove all 4s

874 Chapter 22 Standard Template Library (STL)

Lines 16–17 instantiate two list objects capable of storing integers. Lines 20–21 use
function push_front to insert integers at the beginning of values. Function push_front

is specific to classes list and deque (not to vector). Lines 22–23 use function push_back

to insert integers at the end of values. Remember that function push_back is common to
all sequence containers.

Line 28 uses list member function sort to arrange the elements in the list in
ascending order. [Note: This is different from the sort in the STL algorithms.] A second
version of function sort allows you to supply a binary predicate function that takes two
arguments (values in the list), performs a comparison and returns a bool value indicating
the result. This function determines the order in which the elements of the list are sorted.
This version could be particularly useful for a list that stores pointers rather than values.
[Note: We demonstrate a unary predicate function in Fig. 22.28. A unary predicate func-
tion takes a single argument, performs a comparison using that argument and returns a
bool value indicating the result.]

Line 38 uses list function splice to remove the elements in otherValues and insert
them into values before the iterator position specified as the first argument. There are two
other versions of this function. Function splice with three arguments allows one element
to be removed from the container specified as the second argument from the location spec-
ified by the iterator in the third argument. Function splice with four arguments uses the
last two arguments to specify a range of locations that should be removed from the con-
tainer in the second argument and placed at the location specified in the first argument.

After inserting more elements in otherValues and sorting both values and other-

Values, line 53 uses list member function merge to remove all elements of otherValues
and insert them in sorted order into values. Both lists must be sorted in the same order
before this operation is performed. A second version of merge enables you to supply a pred-
icate function that takes two arguments (values in the list) and returns a bool value. The
predicate function specifies the sorting order used by merge.

Line 59 uses list function pop_front to remove the first element in the list. Line
60 uses function pop_back (available for all sequence containers) to remove the last ele-
ment in the list.

After splice, values contains: 1 2 3 4 2 6 4 8
After sort, values contains: 1 2 2 3 4 4 6 8
After insert and sort, otherValues contains: 2 4 6 8
After merge:

values contains: 1 2 2 2 3 4 4 4 6 6 8 8
otherValues contains: List is empty

After pop_front and pop_back:
values contains: 2 2 2 3 4 4 4 6 6 8r

After unique, values contains: 2 3 4 6 8
After swap:

values contains: List is empty
otherValues contains: 2 3 4 6 8

After assign, values contains: 2 3 4 6 8
After merge, values contains: 2 2 3 3 4 4 6 6 8 8
After remove(4), values contains: 2 2 3 3 6 6 8 8

Fig. 22.17 | Standard Library list class template. (Part 3 of 3.)

22.5 Sequence Containers 875

Line 64 uses list function unique to remove duplicate elements in the list. The list
should be in sorted order (so that all duplicates are side by side) before this operation is
performed, to guarantee that all duplicates are eliminated. A second version of unique

enables you to supply a predicate function that takes two arguments (values in the list) and
returns a bool value specifying whether two elements are equal.

Line 69 uses function swap (available to all first-class containers) to exchange the con-
tents of values with the contents of otherValues.

Line 76 uses list function assign (available to all sequence containers) to replace the
contents of values with the contents of otherValues in the range specified by the two
iterator arguments. A second version of assign replaces the original contents with copies
of the value specified in the second argument. The first argument of the function specifies
the number of copies. Line 85 uses list function remove to delete all copies of the value
4 from the list.

22.5.3 deque Sequence Container
Class deque provides many of the benefits of a vector and a list in one container. The
term deque is short for “double-ended queue.” Class deque is implemented to provide ef-
ficient indexed access (using subscripting) for reading and modifying its elements, much
like a vector. Class deque is also implemented for efficient insertion and deletion operations
at its front and back, much like a list (although a list is also capable of efficient insertions
and deletions in the middle of the list). Class deque provides support for random-access
iterators, so deques can be used with all STL algorithms. One of the most common uses
of a deque is to maintain a first-in, first-out queue of elements. In fact, a deque is the de-
fault underlying implementation for the queue adaptor (Section 22.7.2).

Additional storage for a deque can be allocated at either end of the deque in blocks of
memory that are typically maintained as an array of pointers to those blocks.1 Due to the
noncontiguous memory layout of a deque, a deque iterator must be more intelligent than the
pointers that are used to iterate through vectors or pointer-based arrays.

Class deque provides the same basic operations as class vector, but like list adds
member functions push_front and pop_front to allow insertion and deletion at the
beginning of the deque, respectively.

Figure 22.18 demonstrates features of class deque. Remember that many of the func-
tions presented in Fig. 22.14, Fig. 22.15 and Fig. 22.17 also can be used with class deque.
Header <deque> must be included to use class deque.

Line 11 instantiates a deque that can store double values. Lines 15–17 use functions
push_front and push_back to insert elements at the beginning and end of the deque.

1. This is an implementation-specific detail, not a requirement of the C++ standard.

Performance Tip 22.10
In general, deque has higher overhead than vector.

Performance Tip 22.11
Insertions and deletions in the middle of a deque are optimized to minimize the number
of elements copied, so it’s more efficient than a vector but less efficient than a list for
this kind of modification.

876 Chapter 22 Standard Template Library (STL)

Remember that push_back is available for all sequence containers, but push_front is avail-
able only for class list and class deque.

The for statement in lines 22–23 uses the subscript operator to retrieve the value in
each element of the deque for output. The condition uses function size to ensure that we
do not attempt to access an element outside the bounds of the deque.

Line 25 uses function pop_front to demonstrate removing the first element of the
deque. Remember that pop_front is available only for class list and class deque (not for
class vector).

Line 30 uses the subscript operator to create an lvalue. This enables values to be
assigned directly to any element of the deque.

1 // Fig. 22.18: Fig22_18.cpp
2 // Standard Library class deque test program.
3 #include <iostream>
4
5 #include <algorithm> // copy algorithm
6 #include <iterator> // ostream_iterator
7 using namespace std;
8
9 int main()

10 {
11
12 ostream_iterator< double > output(cout, " ");
13
14
15
16
17
18
19 cout << "values contains: ";
20
21 // use subscript operator to obtain elements of values
22 for (unsigned int i = 0; i < ; ++i)
23 cout << << ' ';
24
25
26 cout << "\nAfter pop_front, values contains: ";
27 copy(values.begin(), values.end(), output);
28
29
30
31 cout << "\nAfter values[1] = 5.4, values contains: ";
32 copy(values.begin(), values.end(), output);
33 cout << endl;
34 } // end main

values contains: 3.5 2.2 1.1
After pop_front, values contains: 2.2 1.1
After values[1] = 5.4, values contains: 2.2 5.4

Fig. 22.18 | Standard Library deque class template.

#include <deque> // deque class-template definition

deque< double > values; // create deque of doubles

// insert elements in values
values.push_front(2.2);
values.push_front(3.5);
values.push_back(1.1);

values.size()
values[i]

values.pop_front(); // remove first element

// use subscript operator to modify element at location 1
values[1] = 5.4;

22.6 Associative Containers 877

22.6 Associative Containers
The STL’s associative containers provide direct access to store and retrieve elements via keys
(often called search keys). The four associative containers are multiset, set, multimap
and map. Each associative container maintains its keys in sorted order. Iterating through an
associative container traverses it in the sort order for that container. Classes multiset and
set provide operations for manipulating sets of values where the values are the keys—there
is not a separate value associated with each key. The primary difference between a multi-

set and a set is that a multiset allows duplicate keys and a set does not. Classes multi-
map and map provide operations for manipulating values associated with keys (these values
are sometimes referred to as mapped values). The primary difference between a multimap
and a map is that a multimap allows duplicate keys with associated values to be stored and
a map allows only unique keys with associated values. In addition to the common member
functions of all containers presented in Fig. 22.2, all associative containers also support
several other member functions, including find, lower_bound, upper_bound and count.
Examples of each of the associative containers and the common associative container
member functions are presented in the next several subsections.

22.6.1 multiset Associative Container
The multiset associative container provides fast storage and retrieval of keys and allows du-
plicate keys. The ordering of the elements is determined by a comparator function object.
For example, in an integer multiset, elements can be sorted in ascending order by ordering
the keys with comparator function object less<int>. We discuss function objects in detail
in Section 22.10. The data type of the keys in all associative containers must support com-
parison properly based on the comparator function object specified—keys sorted with
less<T> must support comparison with operator<. If the keys used in the associative con-
tainers are of user-defined data types, those types must supply the appropriate comparison
operators. A multiset supports bidirectional iterators (but not random-access iterators).

Figure 22.19 demonstrates the multiset associative container for a multiset of inte-
gers sorted in ascending order. Header <set> must be included to use class multiset.
Containers multiset and set provide the same basic functionality.

Line 10 uses a typedef to create a new type name (alias) for a multiset of integers
ordered in ascending order, using the function object less<int>. Ascending order is the
default for a multiset, so less<int> can be omitted in line 10. This new type (Ims) is
then used to instantiate an integer multiset object, intMultiset (line 16).

Good Programming Practice 22.1
Use typedefs to make code with long type names (such as multisets) easier to read.

1 // Fig. 22.19: Fig22_19.cpp
2 // Testing Standard Library class multiset
3 #include <iostream>
4
5 #include <algorithm> // copy algorithm
6 #include <iterator> // ostream_iterator

Fig. 22.19 | Standard Library multiset class template. (Part 1 of 3.)

#include <set> // multiset class-template definition

878 Chapter 22 Standard Template Library (STL)

7 using namespace std;
8
9

10
11
12 int main()
13 {
14 const int SIZE = 10;
15 int a[SIZE] = { 7, 22, 9, 1, 18, 30, 100, 22, 85, 13 };
16
17 ostream_iterator< int > output(cout, " ");
18
19 cout << "There are currently " <<
20 << " values of 15 in the multiset\n";
21
22
23
24 cout << "After inserts, there are " <<
25 << " values of 15 in the multiset\n\n";
26
27 // iterator that cannot be used to change element values
28 Ims::const_iterator result;
29
30
31
32
33 if (result != intMultiset.end()) // if iterator not at end
34 cout << "Found value 15\n"; // found search value 15
35
36
37
38
39 if (result == intMultiset.end()) // will be true hence
40 cout << "Did not find value 20\n"; // did not find 20
41
42
43
44 cout << "\nAfter insert, intMultiset contains:\n";
45 copy(intMultiset.begin(), intMultiset.end(), output);
46
47 // determine lower and upper bound of 22 in intMultiset
48 cout << "\n\nLower bound of 22: "
49 << ;
50 cout << "\nUpper bound of 22: " << ;
51
52
53
54
55
56
57
58

Fig. 22.19 | Standard Library multiset class template. (Part 2 of 3.)

// define short name for multiset type used in this program
typedef multiset< int, less< int > > Ims;

Ims intMultiset; // Ims is typedef for "integer multiset"

intMultiset.count(15)

intMultiset.insert(15); // insert 15 in intMultiset
intMultiset.insert(15); // insert 15 in intMultiset

intMultiset.count(15)

// find 15 in intMultiset; find returns iterator
result = intMultiset.find(15);

// find 20 in intMultiset; find returns iterator
result = intMultiset.find(20);

// insert elements of array a into intMultiset
intMultiset.insert(a, a + SIZE);

*(intMultiset.lower_bound(22))
*(intMultiset.upper_bound(22))

// p represents pair of const_iterators
pair< Ims::const_iterator, Ims::const_iterator > p;

// use equal_range to determine lower and upper bound
// of 22 in intMultiset
p = intMultiset.equal_range(22);

22.6 Associative Containers 879

The output statement in line 19 uses function count (available to all associative con-
tainers) to count the number of occurrences of the value 15 currently in the multiset.

Lines 22–23 use one of the three versions of function insert to add the value 15 to
the multiset twice. A second version of insert takes an iterator and a value as arguments
and begins the search for the insertion point from the iterator position specified. A third
version of insert takes two iterators as arguments that specify a range of values to add to
the multiset from another container.

Line 31 uses function find (available to all associative containers) to locate the value
15 in the multiset. Function find returns an iterator or a const_iterator pointing to
the earliest location at which the value is found. If the value is not found, find returns an
iterator or a const_iterator equal to the value returned by a call to end. Line 40 dem-
onstrates this case.

Line 43 uses function insert to insert the elements of array a into the multiset. In
line 45, the copy algorithm copies the elements of the multiset to the standard output in
ascending order.

Lines 49 and 50 use functions lower_bound and upper_bound (available in all associa-
tive containers) to locate the earliest occurrence of the value 22 in the multiset and the
element after the last occurrence of the value 22 in the multiset. Both functions return
iterators or const_iterators pointing to the appropriate location or the iterator
returned by end if the value is not in the multiset.

Line 53 creates a pair object called p. Such objects associate pairs of values. In this
example, the contents of a pair are two const_iterators for our integer-based multiset.
The purpose of p is to store the return value of multiset function equal_range that
returns a pair containing the results of both a lower_bound and an upper_bound opera-
tion. Type pair contains two public data members called first and second.

Line 57 uses function equal_range to determine the lower_bound and upper_bound

of 22 in the multiset. Line 60 uses p.first and p.second, respectively, to access the

59 cout << "\n\nequal_range of 22:" << "\n Lower bound: "
60 << << "\n Upper bound: " << ;
61 cout << endl;
62 } // end main

There are currently 0 values of 15 in the multiset
After inserts, there are 2 values of 15 in the multiset

Found value 15
Did not find value 20

After insert, intMultiset contains:
1 7 9 13 15 15 18 22 22 30 85 100

Lower bound of 22: 22
Upper bound of 22: 30

equal_range of 22:
Lower bound: 22
Upper bound: 30

Fig. 22.19 | Standard Library multiset class template. (Part 3 of 3.)

*(p.first) *(p.second)

880 Chapter 22 Standard Template Library (STL)

lower_bound and upper_bound. We dereferenced the iterators to output the values at the
locations returned from equal_range.

22.6.2 set Associative Container
The set associative container is used for fast storage and retrieval of unique keys. The im-
plementation of a set is identical to that of a multiset, except that a set must have
unique keys. Therefore, if an attempt is made to insert a duplicate key into a set, the du-
plicate is ignored; because this is the intended mathematical behavior of a set, we do not
identify it as a common programming error. A set supports bidirectional iterators (but
not random-access iterators). Figure 22.20 demonstrates a set of doubles. Header <set>
must be included to use class set.

1 // Fig. 22.20: Fig22_20.cpp
2 // Standard Library class set test program.
3 #include <iostream>
4
5 #include <algorithm>
6 #include <iterator> // ostream_iterator
7 using namespace std;
8
9 // define short name for set type used in this program

10 typedef set< double, less< double > > DoubleSet;
11
12 int main()
13 {
14 const int SIZE = 5;
15 double a[SIZE] = { 2.1, 4.2, 9.5, 2.1, 3.7 };
16
17 ostream_iterator< double > output(cout, " ");
18
19 cout << "doubleSet contains: ";
20 copy(doubleSet.begin(), doubleSet.end(), output);
21
22
23
24
25
26
27
28
29 cout << "\n\n" <<
30 << (? " was" : " was not") << " inserted";
31 cout << "\ndoubleSet contains: ";
32 copy(doubleSet.begin(), doubleSet.end(), output);
33
34
35
36 cout << "\n\n" <<
37 << (? " was" : " was not") << " inserted";
38 cout << "\ndoubleSet contains: ";

Fig. 22.20 | Standard Library set class template. (Part 1 of 2.)

#include <set>

DoubleSet doubleSet(a, a + SIZE);

// p represents pair containing const_iterator and bool
pair< DoubleSet::const_iterator, bool > p;

// insert 13.8 in doubleSet; insert returns pair in which
// p.first represents location of 13.8 in doubleSet and
// p.second represents whether 13.8 was inserted
p = doubleSet.insert(13.8); // value not in set

*(p.first)
p.second

// insert 9.5 in doubleSet
p = doubleSet.insert(9.5); // value already in set

*(p.first)
p.second

22.6 Associative Containers 881

Line 10 uses typedef to create a new type name (DoubleSet) for a set of double values
ordered in ascending order, using the function object less<double>.

Line 16 uses the new type DoubleSet to instantiate object doubleSet. The con-
structor call takes the elements in array a between a and a + SIZE (i.e., the entire array) and
inserts them into the set. Line 20 uses algorithm copy to output the contents of the set.
Notice that the value 2.1—which appeared twice in array a—appears only once in dou-

bleSet. This is because container set does not allow duplicates.
Line 23 defines a pair consisting of a const_iterator for a DoubleSet and a bool

value. This object stores the result of a call to set function insert.
Line 28 uses function insert to place the value 13.8 in the set. The returned pair,

p, contains an iterator p.first pointing to the value 13.8 in the set and a bool value
that’s true if the value was inserted and false if the value was not inserted (because it was
already in the set). In this case, 13.8 was not in the set, so it was inserted. Line 35 attempts
to insert 9.5, which is already in the set. The output of lines 36–37 shows that 9.5 was
not inserted.

22.6.3 multimap Associative Container
The multimap associative container is used for fast storage and retrieval of keys and asso-
ciated values (often called key/value pairs). Many of the functions used with multisets
and sets are also used with multimaps and maps. The elements of multimaps and maps are
pairs of keys and values instead of individual values. When inserting into a multimap or
map, a pair object that contains the key and the value is used. The ordering of the keys is
determined by a comparator function object. For example, in a multimap that uses integers
as the key type, keys can be sorted in ascending order by ordering them with comparator
function object less<int>. Duplicate keys are allowed in a multimap, so multiple values
can be associated with a single key. This is called a one-to-many relationship. For exam-
ple, in a credit-card transaction-processing system, one credit-card account can have many
associated transactions; in a university, one student can take many courses, and one pro-
fessor can teach many students; in the military, one rank (like “private”) has many people.
A multimap supports bidirectional iterators, but not random-access iterators. Figure 22.21
demonstrates the multimap associative container. Header <map> must be included to use
class multimap.

39 copy(doubleSet.begin(), doubleSet.end(), output);
40 cout << endl;
41 } // end main

doubleSet contains: 2.1 3.7 4.2 9.5

13.8 was inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

9.5 was not inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

Fig. 22.20 | Standard Library set class template. (Part 2 of 2.)

882 Chapter 22 Standard Template Library (STL)

Line 8 uses typedef to define alias Mmid for a multimap type in which the key type is
int, the type of a key’s associated value is double and the elements are ordered in
ascending order. Line 12 uses the new type to instantiate a multimap called pairs. Line
14 uses function count to determine the number of key/value pairs with a key of 15.

Performance Tip 22.12
A multimap is implemented to efficiently locate all values paired with a given key.

1 // Fig. 22.21: Fig22_21.cpp
2 // Standard Library class multimap test program.
3 #include <iostream>
4 #include <map> // multimap class-template definition
5 using namespace std;
6
7
8
9

10 int main()
11 {
12 Mmid pairs; // declare the multimap pairs
13
14 cout << "There are currently " <<
15 << " pairs with key 15 in the multimap\n";
16
17
18
19
20
21 cout << "After inserts, there are " <<
22 << " pairs with key 15\n\n";
23
24
25
26
27
28
29
30
31 cout << "Multimap pairs contains:\nKey\tValue\n";
32
33
34
35
36
37
38 cout << endl;
39 } // end main

There are currently 0 pairs with key 15 in the multimap
After inserts, there are 2 pairs with key 15

Fig. 22.21 | Standard Library multimap class template. (Part 1 of 2.)

// define short name for multimap type used in this program
typedef multimap< int, double, less< int > > Mmid;

pairs.count(15)

// insert two value_type objects in pairs
pairs.insert(Mmid::value_type(15, 2.7));
pairs.insert(Mmid::value_type(15, 99.3));

pairs.count(15)

// insert five value_type objects in pairs
pairs.insert(Mmid::value_type(30, 111.11));
pairs.insert(Mmid::value_type(10, 22.22));
pairs.insert(Mmid::value_type(25, 33.333));
pairs.insert(Mmid::value_type(20, 9.345));
pairs.insert(Mmid::value_type(5, 77.54));

// use const_iterator to walk through elements of pairs
for (Mmid::const_iterator iter = pairs.begin();

iter != pairs.end(); ++iter)
cout << iter->first << '\t' << iter->second << '\n';

22.6 Associative Containers 883

Line 18 uses function insert to add a new key/value pair to the multimap. The
expression Mmid::value_type(15, 2.7) creates a pair object in which first is the key
(15) of type int and second is the value (2.7) of type double. The type Mmid::value_type
is defined as part of the typedef for the multimap. Line 19 inserts another pair object with
the key 15 and the value 99.3. Then lines 21–22 output the number of pairs with key 15.

Lines 25–29 insert five additional pairs into the multimap. The for statement in lines
34–36 outputs the contents of the multimap, including both keys and values. Line 36 uses
the const_iterator called iter to access the members of the pair in each element of the
multimap. Notice in the output that the keys appear in ascending order.

22.6.4 map Associative Container
The map associative container performs fast storage and retrieval of unique keys and asso-
ciated values. Duplicate keys are not allowed—a single value can be associated with each
key. This is called a one-to-one mapping. For example, a company that uses unique em-
ployee numbers, such as 100, 200 and 300, might have a map that associates employee
numbers with their telephone extensions—4321, 4115 and 5217, respectively. With a map
you specify the key and get back the associated data quickly. A map is also known as an
associative array. Providing the key in a map’s subscript operator [] locates the value asso-
ciated with that key in the map. Insertions and deletions can be made anywhere in a map.

Figure 22.22 demonstrates a map and uses the same features as Fig. 22.21 to demon-
strate the subscript operator. Header <map> must be included to use class map. Lines 31–
32 use the subscript operator of class map. When the subscript is a key that’s already in the
map (line 31), the operator returns a reference to the associated value. When the subscript
is a key that’s not in the map (line 32), the operator inserts the key in the map and returns
a reference that can be used to associate a value with that key. Line 31 replaces the value
for the key 25 (previously 33.333 as specified in line 19) with a new value, 9999.99. Line
32 inserts a new key/value pair in the map (called creating an association).

Multimap pairs contains:
Key Value
5 77.54
10 22.22
15 2.7
15 99.3
20 9.345
25 33.333
30 111.11

1 // Fig. 22.22: Fig22_22.cpp
2 // Standard Library class map test program.
3 #include <iostream>
4
5 using namespace std;
6

Fig. 22.22 | Standard Library map class template. (Part 1 of 3.)

Fig. 22.21 | Standard Library multimap class template. (Part 2 of 2.)

#include <map> // map class-template definition

884 Chapter 22 Standard Template Library (STL)

7
8
9

10 int main()
11 {
12
13
14
15
16
17
18
19
20
21
22
23
24 cout << "pairs contains:\nKey\tValue\n";
25
26
27
28
29
30
31
32
33
34 cout << "\nAfter subscript operations, pairs contains:\nKey\tValue\n";
35
36 // use const_iterator to walk through elements of pairs
37 for (Mid::const_iterator iter2 = pairs.begin();
38 iter2 != pairs.end(); ++iter2)
39 cout << iter2->first << '\t' << iter2->second << '\n';
40
41 cout << endl;
42 } // end main

pairs contains:
Key Value
5 1010.1
10 22.22
15 2.7
20 9.345
25 33.333
30 111.11

After subscript operations, pairs contains:
Key Value
5 1010.1
10 22.22
15 2.7
20 9.345
25 9999.99

Fig. 22.22 | Standard Library map class template. (Part 2 of 3.)

// define short name for map type used in this program
typedef map< int, double, less< int > > Mid;

Mid pairs;

// insert eight value_type objects in pairs
pairs.insert(Mid::value_type(15, 2.7));
pairs.insert(Mid::value_type(30, 111.11));
pairs.insert(Mid::value_type(5, 1010.1));
pairs.insert(Mid::value_type(10, 22.22));
pairs.insert(Mid::value_type(25, 33.333));
pairs.insert(Mid::value_type(5, 77.54)); // dup ignored
pairs.insert(Mid::value_type(20, 9.345));
pairs.insert(Mid::value_type(15, 99.3)); // dup ignored

// use const_iterator to walk through elements of pairs
for (Mid::const_iterator iter = pairs.begin();

iter != pairs.end(); ++iter)
cout << iter->first << '\t' << iter->second << '\n';

pairs[25] = 9999.99; // use subscripting to change value for key 25
pairs[40] = 8765.43; // use subscripting to insert value for key 40

22.7 Container Adapters 885

22.7 Container Adapters
The STL provides three container adapters—stack, queue and priority_queue. Adapt-
ers are not first-class containers, because they do not provide the actual data-structure im-
plementation in which elements can be stored and because adapters do not support
iterators. The benefit of an adapter class is that you can choose an appropriate underlying
data structure. All three adapter classes provide member functions push and pop that prop-
erly insert an element into each adapter data structure and properly remove an element
from each adapter data structure. The next several subsections provide examples of the
adapter classes.

22.7.1 stack Adapter
Class stack enables insertions into and deletions from the underlying data structure at one
end (commonly referred to as a last-in, first-out data structure). A stack can be implement-
ed with any of the sequence containers: vector, list and deque. This example creates
three integer stacks, using each of the sequence containers of the Standard Library as the
underlying data structure to represent the stack. By default, a stack is implemented with
a deque. The stack operations are push to insert an element at the top of the stack (im-
plemented by calling function push_back of the underlying container), pop to remove the
top element of the stack (implemented by calling function pop_back of the underlying
container), top to get a reference to the top element of the stack (implemented by calling
function back of the underlying container), empty to determine whether the stack is emp-
ty (implemented by calling function empty of the underlying container) and size to get
the number of elements in the stack (implemented by calling function size of the under-
lying container).

Figure 22.23 demonstrates the stack adapter class. Header <stack> must be included
to use class stack. Lines 18, 21 and 24 instantiate three integer stacks. Line 18 specifies a
stack of integers that uses the default deque container as its underlying data structure.
Line 21 specifies a stack of integers that uses a vector of integers as its underlying data
structure. Line 24 specifies a stack of integers that uses a list of integers as its underlying
data structure.

30 111.11
40 8765.43

Performance Tip 22.13
Each of the common operations of a stack is implemented as an inline function that calls
the appropriate function of the underlying container. This avoids the overhead of a second
function call.

Performance Tip 22.14
For the best performance, use class vector as the underlying container for a stack.

Fig. 22.22 | Standard Library map class template. (Part 3 of 3.)

886 Chapter 22 Standard Template Library (STL)

Function pushElements (lines 46–53) pushes the elements onto each stack. Line 50
uses function push (available in each adapter class) to place an integer on top of the stack.
Line 51 uses stack function top to retrieve the top element of the stack for output. Func-
tion top does not remove the top element.

Function popElements (lines 56–63) pops the elements off each stack. Line 60 uses
stack function top to retrieve the top element of the stack for output. Line 61 uses func-
tion pop (available in each adapter class) to remove the top element of the stack. Function
pop does not return a value.

1 // Fig. 22.23: Fig22_23.cpp
2 // Standard Library adapter stack test program.
3 #include <iostream>
4
5 #include <vector> // vector class-template definition
6 #include <list> // list class-template definition
7 using namespace std;
8
9 // pushElements function-template prototype

10 template< typename T > void pushElements(T &stackRef);
11
12 // popElements function-template prototype
13 template< typename T > void popElements(T &stackRef);
14
15 int main()
16 {
17
18
19
20
21
22
23
24
25
26 // push the values 0-9 onto each stack
27 cout << "Pushing onto intDequeStack: ";
28 pushElements(intDequeStack);
29 cout << "\nPushing onto intVectorStack: ";
30 pushElements(intVectorStack);
31 cout << "\nPushing onto intListStack: ";
32 pushElements(intListStack);
33 cout << endl << endl;
34
35 // display and remove elements from each stack
36 cout << "Popping from intDequeStack: ";
37 popElements(intDequeStack);
38 cout << "\nPopping from intVectorStack: ";
39 popElements(intVectorStack);
40 cout << "\nPopping from intListStack: ";
41 popElements(intListStack);
42 cout << endl;

Fig. 22.23 | Standard Library stack adapter class. (Part 1 of 2.)

#include <stack> // stack adapter definition

// stack with default underlying deque
stack< int > intDequeStack;

// stack with underlying vector
stack< int, vector< int > > intVectorStack;

// stack with underlying list
stack< int, list< int > > intListStack;

22.7 Container Adapters 887

22.7.2 queue Adapter
Class queue enables insertions at the back of the underlying data structure and deletions
from the front (commonly referred to as a first-in, first-out data structure). A queue can be
implemented with STL data structure list or deque. By default, a queue is implemented
with a deque. The common queue operations are push to insert an element at the back of
the queue (implemented by calling function push_back of the underlying container), pop
to remove the element at the front of the queue (implemented by calling function
pop_front of the underlying container), front to get a reference to the first element in the
queue (implemented by calling function front of the underlying container), back to get a
reference to the last element in the queue (implemented by calling function back of the
underlying container), empty to determine whether the queue is empty (implemented by
calling function empty of the underlying container) and size to get the number of ele-
ments in the queue (implemented by calling function size of the underlying container).

43 } // end main
44
45 // push elements onto stack object to which stackRef refers
46 template< typename T > void pushElements(T &stackRef)
47 {
48 for (int i = 0; i < 10; ++i)
49 {
50
51
52 } // end for
53 } // end function pushElements
54
55 // pop elements from stack object to which stackRef refers
56 template< typename T > void popElements(T &stackRef)
57 {
58 while ()
59 {
60
61
62 } // end while
63 } // end function popElements

Pushing onto intDequeStack: 0 1 2 3 4 5 6 7 8 9
Pushing onto intVectorStack: 0 1 2 3 4 5 6 7 8 9
Pushing onto intListStack: 0 1 2 3 4 5 6 7 8 9

Popping from intDequeStack: 9 8 7 6 5 4 3 2 1 0
Popping from intVectorStack: 9 8 7 6 5 4 3 2 1 0
Popping from intListStack: 9 8 7 6 5 4 3 2 1 0

Performance Tip 22.15
For the best performance, use class deque as the underlying container for a queue.

Fig. 22.23 | Standard Library stack adapter class. (Part 2 of 2.)

stackRef.push(i); // push element onto stack
cout << stackRef.top() << ' '; // view (and display) top element

!stackRef.empty()

cout << stackRef.top() << ' '; // view (and display) top element
stackRef.pop(); // remove top element

888 Chapter 22 Standard Template Library (STL)

Figure 22.24 demonstrates the queue adapter class. Header <queue> must be included
to use a queue. Line 9 instantiates a queue that stores double values. Lines 12–14 use func-
tion push to add elements to the queue. The while statement in lines 19–23 uses function
empty (available in all containers) to determine whether the queue is empty (line 19).
While there are more elements in the queue, line 21 uses queue function front to read
(but not remove) the first element in the queue for output. Line 22 removes the first ele-
ment in the queue with function pop (available in all adapter classes).

22.7.3 priority_queue Adapter
Class priority_queue provides functionality that enables insertions in sorted order into
the underlying data structure and deletions from the front of the underlying data struc-
ture. A priority_queue can be implemented with STL sequence containers vector or
deque. By default, a priority_queue is implemented with a vector as the underlying con-
tainer. When elements are added to a priority_queue, they’re inserted in priority order,

Performance Tip 22.16
Each of the common operations of a queue is implemented as an inline function that calls
the appropriate function of the underlying container. This avoids the overhead of a second
function call.

1 // Fig. 22.24: Fig22_24.cpp
2 // Standard Library adapter queue test program.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9

10
11
12
13
14
15
16 cout << "Popping from values: ";
17
18 // pop elements from queue
19 while ()
20 {
21
22
23 } // end while
24
25 cout << endl;
26 } // end main

Popping from values: 3.2 9.8 5.4

Fig. 22.24 | Standard Library queue adapter class templates.

#include <queue> // queue adapter definition

queue< double > values; // queue with doubles

// push elements onto queue values
values.push(3.2);
values.push(9.8);
values.push(5.4);

!values.empty()

cout << values.front() << ' '; // view front element
values.pop(); // remove element

22.7 Container Adapters 889

such that the highest-priority element (i.e., the largest value) will be the first element re-
moved from the priority_queue. This is usually accomplished by arranging the elements
in a binary tree structure called a heap that always maintains the largest value (i.e., highest-
priority element) at the front of the data structure. We discuss the STL’s heap algorithms
in Section 22.8.12. The comparison of elements is performed with comparator function
object less<T> by default, but you can supply a different comparator.

There are several common priority_queue operations. push inserts an element at the
appropriate location based on priority order of the priority_queue (implemented by
calling function push_back of the underlying container, then reordering the elements
using heapsort). pop removes the highest-priority element of the priority_queue (imple-
mented by calling function pop_back of the underlying container after removing the top
element of the heap). top gets a reference to the top element of the priority_queue

(implemented by calling function front of the underlying container). empty determines
whether the priority_queue is empty (implemented by calling function empty of the
underlying container). size gets the number of elements in the priority_queue (imple-
mented by calling function size of the underlying container).

Figure 22.25 demonstrates the priority_queue adapter class. Header <queue> must
be included to use class priority_queue. Line 9 instantiates a priority_queue that stores
double values and uses a vector as the underlying data structure. Lines 12–14 use func-
tion push to add elements to the priority_queue. The while statement in lines 19–23
uses function empty (available in all containers) to determine whether the priority_queue
is empty (line 19). While there are more elements, line 21 uses priority_queue function
top to retrieve the highest-priority element in the priority_queue for output. Line 22
removes the highest-priority element in the priority_queue with function pop (available
in all adapter classes).

Performance Tip 22.17
Each of the common operations of a priority_queue is implemented as an inline func-
tion that calls the appropriate function of the underlying container. This avoids the over-
head of a second function call.

Performance Tip 22.18
For the best performance, use class vector as the underlying container for a prior-

ity_queue.

1 // Fig. 22.25: Fig22_25.cpp
2 // Standard Library adapter priority_queue test program.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9

10

Fig. 22.25 | Standard Library priority_queue adapter class. (Part 1 of 2.)

#include <queue> // priority_queue adapter definition

priority_queue< double > priorities; // create priority_queue

890 Chapter 22 Standard Template Library (STL)

22.8 Algorithms
Until the STL, class libraries of containers and algorithms were essentially incompatible
among vendors. Early container libraries generally used inheritance and polymorphism,
with the associated overhead of virtual function calls. Early libraries built the algorithms
into the container classes as class behaviors. The STL separates the algorithms from the con-
tainers. This makes it much easier to add new algorithms. With the STL, the elements of
containers are accessed through iterators. The next several subsections demonstrate many
of the STL algorithms.

22.8.1 fill, fill_n, generate and generate_n
Figure 22.26 demonstrates algorithms fill, fill_n, generate and generate_n. Functions
fill and fill_n set every element in a range of container elements to a specific value. Func-

11
12
13
14
15
16 cout << "Popping from priorities: ";
17
18 // pop element from priority_queue
19 while ()
20 {
21
22
23 } // end while
24
25 cout << endl;
26 } // end main

Popping from priorities: 9.8 5.4 3.2

Performance Tip 22.19
The STL is implemented for efficiency. It avoids the overhead of virtual function calls.

Software Engineering Observation 22.7
STL algorithms do not depend on the implementation details of the containers on which
they operate. As long as the container’s (or array’s) iterators satisfy the requirements of the
algorithm, STL algorithms can work on C-style, pointer-based arrays, on STL containers
and on user-defined data structures.

Software Engineering Observation 22.8
Algorithms can be added easily to the STL without modifying the container classes.

Fig. 22.25 | Standard Library priority_queue adapter class. (Part 2 of 2.)

// push elements onto priorities
priorities.push(3.2);
priorities.push(9.8);
priorities.push(5.4);

!priorities.empty()

cout << priorities.top() << ' '; // view top element
priorities.pop(); // remove top element

22.8 Algorithms 891

tions generate and generate_n use a generator function to create values for every element
in a range of container elements. The generator function takes no arguments and returns a
value that can be placed in an element of the container.

1 // Fig. 22.26: Fig22_26.cpp
2 // Standard Library algorithms fill, fill_n, generate and generate_n.
3 #include <iostream>
4
5 #include <vector> // vector class-template definition
6 #include <iterator> // ostream_iterator
7 using namespace std;
8
9 char nextLetter(); // prototype of generator function

10
11 int main()
12 {
13 vector< char > chars(10);
14 ostream_iterator< char > output(cout, " ");
15
16
17 cout << "Vector chars after filling with 5s:\n";
18 copy(chars.begin(), chars.end(), output);
19
20
21
22
23 cout << "\n\nVector chars after filling five elements with As:\n";
24 copy(chars.begin(), chars.end(), output);
25
26
27
28
29 cout << "\n\nVector chars after generating letters A-J:\n";
30 copy(chars.begin(), chars.end(), output);
31
32
33
34
35 cout << "\n\nVector chars after generating K-O for the"
36 << " first five elements:\n";
37 copy(chars.begin(), chars.end(), output);
38 cout << endl;
39 } // end main
40
41 // generator function returns next letter (starts with A)
42 char nextLetter()
43 {
44 static char letter = 'A';
45 return ++letter;
46 } // end function nextLetter

Fig. 22.26 | Algorithms fill, fill_n, generate and generate_n. (Part 1 of 2.)

#include <algorithm> // algorithm definitions

fill(chars.begin(), chars.end(), '5'); // fill chars with 5s

// fill first five elements of chars with As
fill_n(chars.begin(), 5, 'A');

// generate values for all elements of chars with nextLetter
generate(chars.begin(), chars.end(), nextLetter);

// generate values for first five elements of chars with nextLetter
generate_n(chars.begin(), 5, nextLetter);

892 Chapter 22 Standard Template Library (STL)

Line 13 defines a 10-element vector that stores char values. Line 15 uses function
fill to place the character '5' in every element of vector chars from chars.begin() up
to, but not including, chars.end(). The iterators supplied as the first and second argu-
ment must be at least forward iterators (i.e., they can be used for both input from a con-
tainer and output to a container in the forward direction).

Line 21 uses function fill_n to place the character 'A' in the first five elements of
vector chars. The iterator supplied as the first argument must be at least an output iter-
ator (i.e., it can be used for output to a container in the forward direction). The second
argument specifies the number of elements to fill. The third argument specifies the value
to place in each element.

Line 27 uses function generate to place the result of a call to generator function
nextLetter in every element of vector chars from chars.begin() up to, but not
including, chars.end(). The iterators supplied as the first and second arguments must be
at least forward iterators. Function nextLetter (lines 42–46) begins with the character
'A' maintained in a static local variable. The statement in line 45 postincrements the
value of letter and returns the old value of letter each time nextLetter is called.

Line 33 uses function generate_n to place the result of a call to generator function
nextLetter in five elements of vector chars, starting from chars.begin(). The iterator
supplied as the first argument must be at least an output iterator.

22.8.2 equal, mismatch and lexicographical_compare
Figure 22.27 demonstrates comparing sequences of values for equality using algorithms
equal, mismatch and lexicographical_compare.

Vector chars after filling with 5s:
5 5 5 5 5 5 5 5 5 5

Vector chars after filling five elements with As:
A A A A A 5 5 5 5 5

Vector chars after generating letters A-J:
A B C D E F G H I J

Vector chars after generating K-O for the first five elements:
K L M N O F G H I J

1 // Fig. 22.27: Fig22_27.cpp
2 // Standard Library functions equal, mismatch and lexicographical_compare.
3 #include <iostream>
4 #include <algorithm> // algorithm definitions
5 #include <vector> // vector class-template definition
6 #include <iterator> // ostream_iterator
7 using namespace std;

Fig. 22.27 | Algorithms equal, mismatch and lexicographical_compare. (Part 1 of 3.)

Fig. 22.26 | Algorithms fill, fill_n, generate and generate_n. (Part 2 of 2.)

22.8 Algorithms 893

8
9 int main()

10 {
11 const int SIZE = 10;
12 int a1[SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
13 int a2[SIZE] = { 1, 2, 3, 4, 1000, 6, 7, 8, 9, 10 };
14 vector< int > v1(a1, a1 + SIZE); // copy of a1
15 vector< int > v2(a1, a1 + SIZE); // copy of a1
16 vector< int > v3(a2, a2 + SIZE); // copy of a2
17 ostream_iterator< int > output(cout, " ");
18
19 cout << "Vector v1 contains: ";
20 copy(v1.begin(), v1.end(), output);
21 cout << "\nVector v2 contains: ";
22 copy(v2.begin(), v2.end(), output);
23 cout << "\nVector v3 contains: ";
24 copy(v3.begin(), v3.end(), output);
25
26
27
28 cout << "\n\nVector v1 " << (result ? "is" : "is not")
29 << " equal to vector v2.\n";
30
31
32
33 cout << "Vector v1 " << (result ? "is" : "is not")
34 << " equal to vector v3.\n";
35
36 // location represents pair of vector iterators
37 pair< vector< int >::iterator, vector< int >::iterator > location;
38
39
40
41 cout << "\nThere is a mismatch between v1 and v3 at location "
42 << () << "\nwhere v1 contains "
43 << << " and v3 contains " <<
44 << "\n\n";
45
46 char c1[SIZE] = "HELLO";
47 char c2[SIZE] = "BYE BYE";
48
49
50
51 cout << c1 << (result ? " is less than " :
52 " is greater than or equal to ") << c2 << endl;
53 } // end main

Vector v1 contains: 1 2 3 4 5 6 7 8 9 10
Vector v2 contains: 1 2 3 4 5 6 7 8 9 10
Vector v3 contains: 1 2 3 4 1000 6 7 8 9 10

Vector v1 is equal to vector v2.
Vector v1 is not equal to vector v3.

Fig. 22.27 | Algorithms equal, mismatch and lexicographical_compare. (Part 2 of 3.)

// compare vectors v1 and v2 for equality
bool result = equal(v1.begin(), v1.end(), v2.begin());

// compare vectors v1 and v3 for equality
result = equal(v1.begin(), v1.end(), v3.begin());

// check for mismatch between v1 and v3
location = mismatch(v1.begin(), v1.end(), v3.begin());

location.first - v1.begin()
*location.first *location.second

// perform lexicographical comparison of c1 and c2
result = lexicographical_compare(c1, c1 + SIZE, c2, c2 + SIZE);

894 Chapter 22 Standard Template Library (STL)

Line 27 uses function equal to compare two sequences of values for equality. Each
sequence need not necessarily contain the same number of elements—equal returns false
if the sequences are not of the same length. The == operator (whether built-in or over-
loaded) performs the comparison of the elements. In this example, the elements in vector

v1 from v1.begin() up to, but not including, v1.end() are compared to the elements in
vector v2 starting from v2.begin(). In this example, v1 and v2 are equal. The three iter-
ator arguments must be at least input iterators (i.e., they can be used for input from a
sequence in the forward direction). Line 32 uses function equal to compare vectors v1
and v3, which are not equal.

There is another version of function equal that takes a binary predicate function as a
fourth parameter. The binary predicate function receives the two elements being com-
pared and returns a bool value indicating whether the elements are equal. This can be
useful in sequences that store objects or pointers to values rather than actual values,
because you can define one or more comparisons. For example, you can compare
Employee objects for age, social security number, or location rather than comparing entire
objects. You can compare what pointers refer to rather than comparing the pointer values
(i.e., the addresses stored in the pointers).

Lines 37–40 begin by instantiating a pair of iterators called location for a vector of
integers. This object stores the result of the call to mismatch (line 40). Function mismatch

compares two sequences of values and returns a pair of iterators indicating the location in
each sequence of the mismatched elements. If all the elements match, the two iterators in
the pair are equal to the last iterator for each sequence. The three iterator arguments must
be at least input iterators. Line 42 determines the actual location of the mismatch in the
vectors with the expression location.first - v1.begin(). The result of this calculation
is the number of elements between the iterators (this is analogous to pointer arithmetic,
which we studied in Chapter 8). This corresponds to the element number in this example,
because the comparison is performed from the beginning of each vector. As with function
equal, there is another version of function mismatch that takes a binary predicate function
as a fourth parameter.

Line 50 uses function lexicographical_compare to compare the contents of two
character arrays. This function’s four iterator arguments must be at least input iterators.
As you know, pointers into arrays are random-access iterators. The first two iterator argu-
ments specify the range of locations in the first sequence. The last two specify the range of
locations in the second sequence. While iterating through the sequences, the
lexicographical_compare checks if the element in the first sequence is less than the cor-
responding element in the second sequence. If so, the function returns true. If the element
in the first sequence is greater than or equal to the element in the second sequence, the
function returns false. This function can be used to arrange sequences lexicographically.
Typically, such sequences contain strings.

There is a mismatch between v1 and v3 at location 4
where v1 contains 5 and v3 contains 1000

HELLO is greater than or equal to BYE BYE

Fig. 22.27 | Algorithms equal, mismatch and lexicographical_compare. (Part 3 of 3.)

22.8 Algorithms 895

22.8.3 remove, remove_if, remove_copy and remove_copy_if
Figure 22.28 demonstrates removing values from a sequence with algorithms remove,
remove_if, remove_copy and remove_copy_if.

1 // Fig. 22.28: Fig22_28.cpp
2 // Standard Library functions remove, remove_if,
3 // remove_copy and remove_copy_if.
4 #include <iostream>
5 #include <algorithm> // algorithm definitions
6 #include <vector> // vector class-template definition
7 #include <iterator> // ostream_iterator
8 using namespace std;
9

10 bool greater9(int); // prototype
11
12 int main()
13 {
14 const int SIZE = 10;
15 int a[SIZE] = { 10, 2, 10, 4, 16, 6, 14, 8, 12, 10 };
16 ostream_iterator< int > output(cout, " ");
17 vector< int > v(a, a + SIZE); // copy of a
18 vector< int >::iterator newLastElement;
19
20 cout << "Vector v before removing all 10s:\n ";
21 copy(v.begin(), v.end(), output);
22
23
24
25 cout << "\nVector v after removing all 10s:\n ";
26 copy(v.begin(), newLastElement, output);
27
28 vector< int > v2(a, a + SIZE); // copy of a
29 vector< int > c(SIZE, 0); // instantiate vector c
30 cout << "\n\nVector v2 before removing all 10s and copying:\n ";
31 copy(v2.begin(), v2.end(), output);
32
33
34
35 cout << "\nVector c after removing all 10s from v2:\n ";
36 copy(c.begin(), c.end(), output);
37
38 vector< int > v3(a, a + SIZE); // copy of a
39 cout << "\n\nVector v3 before removing all elements"
40 << "\ngreater than 9:\n ";
41 copy(v3.begin(), v3.end(), output);
42
43
44
45 cout << "\nVector v3 after removing all elements"
46 << "\ngreater than 9:\n ";
47 copy(v3.begin(), newLastElement, output);
48

Fig. 22.28 | Algorithms remove, remove_if, remove_copy and remove_copy_if. (Part 1 of 2.)

// remove all 10s from v
newLastElement = remove(v.begin(), v.end(), 10);

// copy from v2 to c, removing 10s in the process
remove_copy(v2.begin(), v2.end(), c.begin(), 10);

// remove elements greater than 9 from v3
newLastElement = remove_if(v3.begin(), v3.end(), greater9);

896 Chapter 22 Standard Template Library (STL)

Line 24 uses function remove to eliminate all elements with the value 10 in the range
from v.begin() up to, but not including, v.end() from v. The first two iterator argu-
ments must be forward iterators so that the algorithm can modify the elements in the
sequence. This function does not modify the number of elements in the vector or destroy
the eliminated elements, but it does move all elements that are not eliminated toward the
beginning of the vector. The function returns an iterator positioned after the last vector
element that was not deleted. Elements from the iterator position to the end of the vector
have undefined values (in this example, each “undefined” position has value 0).

49 vector< int > v4(a, a + SIZE); // copy of a
50 vector< int > c2(SIZE, 0); // instantiate vector c2
51 cout << "\n\nVector v4 before removing all elements"
52 << "\ngreater than 9 and copying:\n ";
53 copy(v4.begin(), v4.end(), output);
54
55
56
57
58 cout << "\nVector c2 after removing all elements"
59 << "\ngreater than 9 from v4:\n ";
60 copy(c2.begin(), c2.end(), output);
61 cout << endl;
62 } // end main
63
64 // determine whether argument is greater than 9
65 bool greater9(int x)
66 {
67 return x > 9;
68 } // end function greater9

Vector v before removing all 10s:
10 2 10 4 16 6 14 8 12 10

Vector v after removing all 10s:
2 4 16 6 14 8 12

Vector v2 before removing all 10s and copying:
10 2 10 4 16 6 14 8 12 10

Vector c after removing all 10s from v2:
2 4 16 6 14 8 12 0 0 0

Vector v3 before removing all elements
greater than 9:

10 2 10 4 16 6 14 8 12 10
Vector v3 after removing all elements
greater than 9:

2 4 6 8

Vector v4 before removing all elements
greater than 9 and copying:

10 2 10 4 16 6 14 8 12 10
Vector c2 after removing all elements
greater than 9 from v4:

2 4 6 8 0 0 0 0 0 0

Fig. 22.28 | Algorithms remove, remove_if, remove_copy and remove_copy_if. (Part 2 of 2.)

// copy elements from v4 to c2, removing elements greater
// than 9 in the process
remove_copy_if(v4.begin(), v4.end(), c2.begin(), greater9);

22.8 Algorithms 897

Line 34 uses function remove_copy to copy all elements that do not have the value 10
in the range from v2.begin() up to, but not including, v2.end() from v2. The elements
are placed in c, starting at position c.begin(). The iterators supplied as the first two argu-
ments must be input iterators. The iterator supplied as the third argument must be an
output iterator so that the element being copied can be inserted into the copy location.
This function returns an iterator positioned after the last element copied into vector c.
Note, in line 29, the use of the vector constructor that receives the number of elements
in the vector and the initial values of those elements.

Line 44 uses function remove_if to delete all those elements in the range from
v3.begin() up to, but not including, v3.end() from v3 for which our user-defined unary
predicate function greater9 returns true. Function greater9 (defined in lines 65–68)
returns true if the value passed to it is greater than 9; otherwise, it returns false. The iter-
ators supplied as the first two arguments must be forward iterators so that the algorithm
can modify the elements in the sequence. This function does not modify the number of
elements in the vector, but it does move to the beginning of the vector all elements that
are not eliminated. This function returns an iterator positioned after the last element in
the vector that was not deleted. All elements from the iterator position to the end of the
vector have undefined values.

Line 57 uses function remove_copy_if to copy all those elements in the range from
v4.begin() up to, but not including, v4.end() from v4 for which the unary predicate
function greater9 returns true. The elements are placed in c2, starting at position
c2.begin(). The iterators supplied as the first two arguments must be input iterators. The
iterator supplied as the third argument must be an output iterator so that the element
being copied can be inserted into the copy location. This function returns an iterator posi-
tioned after the last element copied into c2.

22.8.4 replace, replace_if, replace_copy and
replace_copy_if
Figure 22.29 demonstrates replacing values from a sequence using algorithms replace,
replace_if, replace_copy and replace_copy_if.

1 // Fig. 22.29: Fig22_29.cpp
2 // Standard Library functions replace, replace_if,
3 // replace_copy and replace_copy_if.
4 #include <iostream>
5 #include <algorithm>
6 #include <vector>
7 #include <iterator> // ostream_iterator
8 using namespace std;
9

10 bool greater9(int); // predicate function prototype
11
12 int main()
13 {
14 const int SIZE = 10;

Fig. 22.29 | Algorithms replace, replace_if, replace_copy and replace_copy_if. (Part
1 of 3.)

898 Chapter 22 Standard Template Library (STL)

15 int a[SIZE] = { 10, 2, 10, 4, 16, 6, 14, 8, 12, 10 };
16 ostream_iterator< int > output(cout, " ");
17
18 vector< int > v1(a, a + SIZE); // copy of a
19 cout << "Vector v1 before replacing all 10s:\n ";
20 copy(v1.begin(), v1.end(), output);
21
22
23
24 cout << "\nVector v1 after replacing 10s with 100s:\n ";
25 copy(v1.begin(), v1.end(), output);
26
27 vector< int > v2(a, a + SIZE); // copy of a
28 vector< int > c1(SIZE); // instantiate vector c1
29 cout << "\n\nVector v2 before replacing all 10s and copying:\n ";
30 copy(v2.begin(), v2.end(), output);
31
32
33
34 cout << "\nVector c1 after replacing all 10s in v2:\n ";
35 copy(c1.begin(), c1.end(), output);
36
37 vector< int > v3(a, a + SIZE); // copy of a
38 cout << "\n\nVector v3 before replacing values greater than 9:\n ";
39 copy(v3.begin(), v3.end(), output);
40
41
42
43 cout << "\nVector v3 after replacing all values greater"
44 << "\nthan 9 with 100s:\n ";
45 copy(v3.begin(), v3.end(), output);
46
47 vector< int > v4(a, a + SIZE); // copy of a
48 vector< int > c2(SIZE); // instantiate vector c2‘
49 cout << "\n\nVector v4 before replacing all values greater "
50 << "than 9 and copying:\n ";
51 copy(v4.begin(), v4.end(), output);
52
53
54
55 cout << "\nVector c2 after replacing all values greater "
56 << "than 9 in v4:\n ";
57 copy(c2.begin(), c2.end(), output);
58 cout << endl;
59 } // end main
60
61 // determine whether argument is greater than 9
62 bool greater9(int x)
63 {
64 return x > 9;
65 } // end function greater9

Fig. 22.29 | Algorithms replace, replace_if, replace_copy and replace_copy_if. (Part
2 of 3.)

// replace all 10s in v1 with 100
replace(v1.begin(), v1.end(), 10, 100);

// copy from v2 to c1, replacing 10s with 100s
replace_copy(v2.begin(), v2.end(), c1.begin(), 10, 100);

// replace values greater than 9 in v3 with 100
replace_if(v3.begin(), v3.end(), greater9, 100);

// copy v4 to c2, replacing elements greater than 9 with 100
replace_copy_if(v4.begin(), v4.end(), c2.begin(), greater9, 100);

22.8 Algorithms 899

Line 23 uses function replace to replace all elements with the value 10 in the range
from v1.begin() up to, but not including, v1.end() in v1 with the new value 100. The
iterators supplied as the first two arguments must be forward iterators so that the algorithm
can modify the elements in the sequence.

Line 33 uses function replace_copy to copy all elements in the range from
v2.begin() up to, but not including, v2.end() from v2, replacing all elements with the
value 10 with the new value 100. The elements are copied into c1, starting at position
c1.begin(). The iterators supplied as the first two arguments must be input iterators. The
iterator supplied as the third argument must be an output iterator so that the element
being copied can be inserted into the copy location. This function returns an iterator posi-
tioned after the last element copied into c1.

Line 42 uses function replace_if to replace all those elements in the range from
v3.begin() up to, but not including, v3.end() in v3 for which the unary predicate func-
tion greater9 returns true. Function greater9 (defined in lines 62–65) returns true if
the value passed to it’s greater than 9; otherwise, it returns false. The value 100 replaces
each value greater than 9. The iterators supplied as the first two arguments must be for-
ward iterators so that the algorithm can modify the elements in the sequence.

Line 54 uses function replace_copy_if to copy all elements in the range from
v4.begin() up to, but not including, v4.end() from v4. Elements for which the unary
predicate function greater9 returns true are replaced with the value 100. The elements
are placed in c2, starting at position c2.begin(). The iterators supplied as the first two
arguments must be input iterators. The iterator supplied as the third argument must be an
output iterator so that the element being copied can be inserted into the copy location.
This function returns an iterator positioned after the last element copied into c2.

Vector v1 before replacing all 10s:
10 2 10 4 16 6 14 8 12 10

Vector v1 after replacing 10s with 100s:
100 2 100 4 16 6 14 8 12 100

Vector v2 before replacing all 10s and copying:
10 2 10 4 16 6 14 8 12 10

Vector c1 after replacing all 10s in v2:
100 2 100 4 16 6 14 8 12 100

Vector v3 before replacing values greater than 9:
10 2 10 4 16 6 14 8 12 10

Vector v3 after replacing all values greater
than 9 with 100s:

100 2 100 4 100 6 100 8 100 100

Vector v4 before replacing all values greater than 9 and copying:
10 2 10 4 16 6 14 8 12 10

Vector c2 after replacing all values greater than 9 in v4:
100 2 100 4 100 6 100 8 100 100

Fig. 22.29 | Algorithms replace, replace_if, replace_copy and replace_copy_if. (Part
3 of 3.)

900 Chapter 22 Standard Template Library (STL)

22.8.5 Mathematical Algorithms
Figure 22.30 demonstrates several common mathematical algorithms from the STL, in-
cluding random_shuffle, count, count_if, min_element, max_element, accumulate,
for_each and transform.

1 // Fig. 22.30: Fig22_30.cpp
2 // Mathematical algorithms of the Standard Library.
3 #include <iostream>
4 #include <algorithm> // algorithm definitions
5
6 #include <vector>
7 #include <iterator>
8 using namespace std;
9

10 bool greater9(int); // predicate function prototype
11 void outputSquare(int); // output square of a value
12 int calculateCube(int); // calculate cube of a value
13
14 int main()
15 {
16 const int SIZE = 10;
17 int a1[SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
18 vector< int > v(a1, a1 + SIZE); // copy of a1
19 ostream_iterator< int > output(cout, " ");
20
21 cout << "Vector v before random_shuffle: ";
22 copy(v.begin(), v.end(), output);
23
24
25 cout << "\nVector v after random_shuffle: ";
26 copy(v.begin(), v.end(), output);
27
28 int a2[SIZE] = { 100, 2, 8, 1, 50, 3, 8, 8, 9, 10 };
29 vector< int > v2(a2, a2 + SIZE); // copy of a2
30 cout << "\n\nVector v2 contains: ";
31 copy(v2.begin(), v2.end(), output);
32
33
34
35 cout << "\nNumber of elements matching 8: " << result;
36
37
38
39 cout << "\nNumber of elements greater than 9: " << result;
40
41 // locate minimum element in v2
42 cout << "\n\nMinimum element in Vector v2 is: "
43 << ;
44
45 // locate maximum element in v2
46 cout << "\nMaximum element in Vector v2 is: "
47 << ;

Fig. 22.30 | Mathematical algorithms of the Standard Library. (Part 1 of 2.)

#include <numeric> // accumulate is defined here

random_shuffle(v.begin(), v.end()); // shuffle elements of v

// count number of elements in v2 with value 8
int result = count(v2.begin(), v2.end(), 8);

// count number of elements in v2 that are greater than 9
result = count_if(v2.begin(), v2.end(), greater9);

*(min_element(v2.begin(), v2.end()))

*(max_element(v2.begin(), v2.end()))

22.8 Algorithms 901

48
49 // calculate sum of elements in v
50 cout << "\n\nThe total of the elements in Vector v is: "
51 << ;
52
53 // output square of every element in v
54 cout << "\n\nThe square of every integer in Vector v is:\n";
55
56
57 vector< int > cubes(SIZE); // instantiate vector cubes
58
59 // calculate cube of each element in v; place results in cubes
60
61 cout << "\n\nThe cube of every integer in Vector v is:\n";
62 copy(cubes.begin(), cubes.end(), output);
63 cout << endl;
64 } // end main
65
66 // determine whether argument is greater than 9
67 bool greater9(int value)
68 {
69 return value > 9;
70 } // end function greater9
71
72 // output square of argument
73 void outputSquare(int value)
74 {
75 cout << value * value << ' ';
76 } // end function outputSquare
77
78 // return cube of argument
79 int calculateCube(int value)
80 {
81 return value * value * value;
82 } // end function calculateCube

Vector v before random_shuffle: 1 2 3 4 5 6 7 8 9 10
Vector v after random_shuffle: 5 4 1 3 7 8 9 10 6 2

Vector v2 contains: 100 2 8 1 50 3 8 8 9 10
Number of elements matching 8: 3
Number of elements greater than 9: 3

Minimum element in Vector v2 is: 1
Maximum element in Vector v2 is: 100

The total of the elements in Vector v is: 55

The square of every integer in Vector v is:
25 16 1 9 49 64 81 100 36 4

The cube of every integer in Vector v is:
125 64 1 27 343 512 729 1000 216 8

Fig. 22.30 | Mathematical algorithms of the Standard Library. (Part 2 of 2.)

accumulate(v.begin(), v.end(), 0)

for_each(v.begin(), v.end(), outputSquare);

transform(v.begin(), v.end(), cubes.begin(), calculateCube);

902 Chapter 22 Standard Template Library (STL)

Line 24 uses function random_shuffle to reorder randomly the elements in the range
from v.begin() up to, but not including, v.end() in v. This function takes two random-
access iterator arguments.

Line 34 uses function count to count the elements with the value 8 in the range from
v2.begin() up to, but not including, v2.end() in v2. This function requires its two iter-
ator arguments to be at least input iterators.

Line 38 uses function count_if to count elements in the range from v2.begin() up
to, but not including, v2.end() in v2 for which the predicate function greater9 returns
true. Function count_if requires its two iterator arguments to be at least input iterators.

Line 43 uses function min_element to locate the smallest element in the range from
v2.begin() up to, but not including, v2.end(). The function returns a forward iterator
located at the smallest element, or v2.end() if the range is empty. The function’s two iter-
ator arguments must be at least input iterators. A second version of this function takes as
its third argument a binary function that compares two elements in the sequence. This
function returns the bool value true if the first argument is less than the second.

Line 47 uses function max_element to locate the largest element in the range from
v2.begin() up to, but not including, v2.end() in v2. The function returns an input iter-
ator located at the largest element. The function’s two iterator arguments must be at least
input iterators. A second version of this function takes as its third argument a binary pred-
icate function that compares the elements in the sequence. The binary function takes two
arguments and returns the bool value true if the first argument is less than the second.

Line 51 uses function accumulate (the template of which is in header <numeric>) to
sum the values in the range from v.begin() up to, but not including, v.end() in v. The
function’s two iterator arguments must be at least input iterators and its third argument
represents the initial value of the total. A second version of this function takes as its fourth
argument a general function that determines how elements are accumulated. The general
function must take two arguments and return a result. The first argument to this function
is the current value of the accumulation. The second argument is the value of the current
element in the sequence being accumulated.

Line 55 uses function for_each to apply a general function to every element in the
range from v.begin() up to, but not including, v.end(). The general function takes the
current element as an argument and may modify that element (if it’s received by refer-
ence). Function for_each requires its two iterator arguments to be at least input iterators.

Line 60 uses function transform to apply a general function to every element in the
range from v.begin() up to, but not including, v.end() in v. The general function (the
fourth argument) should take the current element as an argument, should not modify the
element and should return the transformed value. Function transform requires its first
two iterator arguments to be at least input iterators and its third argument to be at least an
output iterator. The third argument specifies where the transformed values should be
placed. Note that the third argument can equal the first. Another version of transform
accepts five arguments—the first two arguments are input iterators that specify a range of
elements from one source container, the third argument is an input iterator that specifies

Good Programming Practice 22.2
It’s a good practice to check that the range specified in a call to min_element is not empty
and that the return value is not the “past the end” iterator.

22.8 Algorithms 903

the first element in another source container, the fourth argument is an output iterator
that specifies where the transformed values should be placed and the last argument is a gen-
eral function that takes two arguments. This version of transform takes one element from
each of the two input sources and applies the general function to that pair of elements,
then places the transformed value at the location specified by the fourth argument.

22.8.6 Basic Searching and Sorting Algorithms
Figure 22.31 demonstrates some basic searching and sorting capabilities of the Standard
Library, including find, find_if, sort and binary_search.

1 // Fig. 22.31: Fig22_31.cpp
2 // Standard Library search and sort algorithms.
3 #include <iostream>
4 #include <algorithm> // algorithm definitions
5 #include <vector> // vector class-template definition
6 #include <iterator>
7 using namespace std;
8
9 bool greater10(int value); // predicate function prototype

10
11 int main()
12 {
13 const int SIZE = 10;
14 int a[SIZE] = { 10, 2, 17, 5, 16, 8, 13, 11, 20, 7 };
15 vector< int > v(a, a + SIZE); // copy of a
16 ostream_iterator< int > output(cout, " ");
17
18 cout << "Vector v contains: ";
19 copy(v.begin(), v.end(), output); // display output vector
20
21
22
23
24
25 if (location != v.end()) // found 16
26 cout << "\n\nFound 16 at location " << (location - v.begin());
27 else // 16 not found
28 cout << "\n\n16 not found";
29
30
31
32
33 if (location != v.end()) // found 100
34 cout << "\nFound 100 at location " << (location - v.begin());
35 else // 100 not found
36 cout << "\n100 not found";
37
38
39
40

Fig. 22.31 | Basic searching and sorting algorithms of the Standard Library. (Part 1 of 2.)

// locate first occurrence of 16 in v
vector< int >::iterator location;
location = find(v.begin(), v.end(), 16);

// locate first occurrence of 100 in v
location = find(v.begin(), v.end(), 100);

// locate first occurrence of value greater than 10 in v
location = find_if(v.begin(), v.end(), greater10);

904 Chapter 22 Standard Template Library (STL)

Line 23 uses function find to locate the value 16 in the range from v.begin() up to,
but not including, v.end() in v. The function requires its two iterator arguments to be at
least input iterators and returns an input iterator that either is positioned at the first ele-
ment containing the value or indicates the end of the sequence (as is the case in line 31).

Line 39 uses function find_if to locate the first value in the range from v.begin()

up to, but not including, v.end() in v for which the unary predicate function greater10

returns true. Function greater10 (defined in lines 68–71) takes an integer and returns a

41 if (location != v.end()) // found value greater than 10
42 cout << "\n\nThe first value greater than 10 is " << *location
43 << "\nfound at location " << (location - v.begin());
44 else // value greater than 10 not found
45 cout << "\n\nNo values greater than 10 were found";
46
47
48
49 cout << "\n\nVector v after sort: ";
50 copy(v.begin(), v.end(), output);
51
52 // use binary_search to locate 13 in v
53 if ()
54 cout << "\n\n13 was found in v";
55 else
56 cout << "\n\n13 was not found in v";
57
58 // use binary_search to locate 100 in v
59 if ()
60 cout << "\n100 was found in v";
61 else
62 cout << "\n100 was not found in v";
63
64 cout << endl;
65 } // end main
66
67 // determine whether argument is greater than 10
68 bool greater10(int value)
69 {
70 return value > 10;
71 } // end function greater10

Vector v contains: 10 2 17 5 16 8 13 11 20 7

Found 16 at location 4
100 not found

The first value greater than 10 is 17
found at location 2

Vector v after sort: 2 5 7 8 10 11 13 16 17 20

13 was found in v
100 was not found in v

Fig. 22.31 | Basic searching and sorting algorithms of the Standard Library. (Part 2 of 2.)

// sort elements of v
sort(v.begin(), v.end());

binary_search(v.begin(), v.end(), 13)

binary_search(v.begin(), v.end(), 100)

22.8 Algorithms 905

bool value indicating whether the integer argument is greater than 10. Function find_if

requires its two iterator arguments to be at least input iterators. The function returns an
input iterator that either is positioned at the first element containing a value for which the
predicate function returns true or indicates the end of the sequence.

Line 48 uses function sort to arrange the elements in the range from v.begin() up
to, but not including, v.end() in v in ascending order. The function requires its two iter-
ator arguments to be random-access iterators. A second version of this function takes a
third argument that’s a binary predicate function taking two arguments that are values in
the sequence and returning a bool indicating the sorting order—if the return value is true,
the two elements being compared are in sorted order.

Line 53 uses function binary_search to determine whether the value 13 is in the
range from v.begin() up to, but not including, v.end() in v. The sequence of values
must be sorted in ascending order first. Function binary_search requires its two iterator
arguments to be at least forward iterators. The function returns a bool indicating whether
the value was found in the sequence. Line 59 demonstrates a call to function
binary_search in which the value is not found. A second version of this function takes a
fourth argument that’s a binary predicate function taking two arguments that are values
in the sequence and returning a bool. The predicate function returns true if the two ele-
ments being compared are in sorted order. To obtain the location of the search key in the
container, use the lower_bound or find algorithms.

22.8.7 swap, iter_swap and swap_ranges
Figure 22.32 demonstrates algorithms swap, iter_swap and swap_ranges for swapping el-
ements. Line 18 uses function swap to exchange two values. In this example, the first and
second elements of array a are exchanged. The function takes as arguments references to
the two values being exchanged.

Common Programming Error 22.5
Attempting to sort a container by using an iterator other than a random-access iterator
is a compilation error. Function sort requires a random-access iterator.

1 // Fig. 22.32: Fig22_32.cpp
2 // Standard Library algorithms iter_swap, swap and swap_ranges.
3 #include <iostream>
4 #include <algorithm> // algorithm definitions
5 #include <iterator>
6 using namespace std;
7
8 int main()
9 {

10 const int SIZE = 10;
11 int a[SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
12 ostream_iterator< int > output(cout, " ");
13
14 cout << "Array a contains:\n ";
15 copy(a, a + SIZE, output); // display array a

Fig. 22.32 | Demonstrating swap, iter_swap and swap_ranges. (Part 1 of 2.)

906 Chapter 22 Standard Template Library (STL)

Line 24 uses function iter_swap to exchange the two elements. The function takes
two forward iterator arguments (in this case, pointers to elements of an array) and
exchanges the values in the elements to which the iterators refer.

Line 30 uses function swap_ranges to exchange the elements from a up to, but not
including, a + 5 with the elements beginning at position a + 5. The function requires three
forward iterator arguments. The first two arguments specify the range of elements in the
first sequence that will be exchanged with the elements in the second sequence starting
from the iterator in the third argument. In this example, the two sequences of values are
in the same array, but the sequences can be from different arrays or containers.

22.8.8 copy_backward, merge, unique and reverse
Figure 22.33 demonstrates STL algorithms copy_backward, merge, unique and reverse.
Line 26 uses function copy_backward to copy elements in the range from v1.begin() up
to, but not including, v1.end(), placing the elements in results by starting from the el-
ement before results.end() and working toward the beginning of the vector. The func-
tion returns an iterator positioned at the last element copied into the results (i.e., the
beginning of results, because of the backward copy). The elements are placed in results

16
17
18
19
20 cout << "\nArray a after swapping a[0] and a[1] using swap:\n ";
21 copy(a, a + SIZE, output); // display array a
22
23
24
25 cout << "\nArray a after swapping a[0] and a[1] using iter_swap:\n ";
26 copy(a, a + SIZE, output);
27
28
29
30
31
32 cout << "\nArray a after swapping the first five elements\n"
33 << "with the last five elements:\n ";
34 copy(a, a + SIZE, output);
35 cout << endl;
36 } // end main

Array a contains:
1 2 3 4 5 6 7 8 9 10

Array a after swapping a[0] and a[1] using swap:
2 1 3 4 5 6 7 8 9 10

Array a after swapping a[0] and a[1] using iter_swap:
1 2 3 4 5 6 7 8 9 10

Array a after swapping the first five elements
with the last five elements:

6 7 8 9 10 1 2 3 4 5

Fig. 22.32 | Demonstrating swap, iter_swap and swap_ranges. (Part 2 of 2.)

// swap elements at locations 0 and 1 of array a
swap(a[0], a[1]);

// use iterators to swap elements at locations 0 and 1 of array a
iter_swap(&a[0], &a[1]); // swap with iterators

// swap elements in first five elements of array a with
// elements in last five elements of array a
swap_ranges(a, a + 5, a + 5);

22.8 Algorithms 907

in the same order as v1. This function requires three bidirectional iterator arguments (it-
erators that can be incremented and decremented to iterate forward and backward through
a sequence, respectively). One difference between copy_backward and copy is that the it-
erator returned from copy is positioned after the last element copied and the one returned
from copy_backward is positioned at the last element copied (i.e., the first element in the
sequence). Also, copy_backward can manipulate overlapping ranges of elements in a con-
tainer as long as the first element to copy is not in the destination range of elements.

1 // Fig. 22.33: Fig22_33.cpp
2 // Standard Library functions copy_backward, merge, unique and reverse.
3 #include <iostream>
4 #include <algorithm> // algorithm definitions
5 #include <vector> // vector class-template definition
6 #include <iterator> // ostream_iterator
7 using namespace std;
8
9 int main()

10 {
11 const int SIZE = 5;
12 int a1[SIZE] = { 1, 3, 5, 7, 9 };
13 int a2[SIZE] = { 2, 4, 5, 7, 9 };
14 vector< int > v1(a1, a1 + SIZE); // copy of a1
15 vector< int > v2(a2, a2 + SIZE); // copy of a2
16 ostream_iterator< int > output(cout, " ");
17
18 cout << "Vector v1 contains: ";
19 copy(v1.begin(), v1.end(), output); // display vector output
20 cout << "\nVector v2 contains: ";
21 copy(v2.begin(), v2.end(), output); // display vector output
22
23 vector< int > results(v1.size());
24
25
26
27 cout << "\n\nAfter copy_backward, results contains: ";
28 copy(results.begin(), results.end(), output);
29
30 vector< int > results2(v1.size() + v2.size());
31
32
33
34
35 cout << "\n\nAfter merge of v1 and v2 results2 contains:\n";
36 copy(results2.begin(), results2.end(), output);
37
38
39
40
41
42 cout << "\n\nAfter unique results2 contains:\n";
43 copy(results2.begin(), endLocation, output);

Fig. 22.33 | Demonstrating copy_backward, merge, unique and reverse. (Part 1 of 2.)

// place elements of v1 into results in reverse order
copy_backward(v1.begin(), v1.end(), results.end());

// merge elements of v1 and v2 into results2 in sorted order
merge(v1.begin(), v1.end(), v2.begin(), v2.end(), results2.begin());

// eliminate duplicate values from results2
vector< int >::iterator endLocation;
endLocation = unique(results2.begin(), results2.end());

908 Chapter 22 Standard Template Library (STL)

Line 33 uses function merge to combine two sorted ascending sequences of values into
a third sorted ascending sequence. The function requires five iterator arguments. The first
four must be at least input iterators and the last must be at least an output iterator. The
first two arguments specify the range of elements in the first sorted sequence (v1), the
second two arguments specify the range of elements in the second sorted sequence (v2) and
the last argument specifies the starting location in the third sequence (results2) where
the elements will be merged. A second version of this function takes as its sixth argument
a binary predicate function that specifies the sorting order.

Line 30 creates vector results2 with the number of elements v1.size() +

v2.size(). Using the merge function as shown here requires that the sequence where the
results are stored be at least the size of the two sequences being merged. If you do not want
to allocate the number of elements for the resulting sequence before the merge operation,
you can use the following statements:

The argument back_inserter(results2) uses function template back_inserter (header
<iterator>) for the container results2. A back_inserter calls the container’s default
push_back function to insert an element at the end of the container. If an element is in-
serted into a container that has no more space available, the container grows in size. Thus,
the number of elements in the container does not have to be known in advance. There are
two other inserters—front_inserter (to insert an element at the beginning of a container
specified as its argument) and inserter (to insert an element before the iterator supplied
as its second argument in the container supplied as its first argument).

Line 40 uses function unique on the sorted sequence of elements in the range from
results2.begin() up to, but not including, results2.end() in results2. After this
function is applied to a sorted sequence with duplicate values, only a single copy of each

44
45 cout << "\n\nVector v1 after reverse: ";
46
47 copy(v1.begin(), v1.end(), output);
48 cout << endl;
49 } // end main

Vector v1 contains: 1 3 5 7 9
Vector v2 contains: 2 4 5 7 9

After copy_backward, results contains: 1 3 5 7 9

After merge of v1 and v2 results2 contains:
1 2 3 4 5 5 7 7 9 9

After unique results2 contains:
1 2 3 4 5 7 9

Vector v1 after reverse: 9 7 5 3 1

vector< int > results2;
merge(v1.begin(), v1.end(), v2.begin(), v2.end(),

back_inserter(results2));

Fig. 22.33 | Demonstrating copy_backward, merge, unique and reverse. (Part 2 of 2.)

reverse(v1.begin(), v1.end()); // reverse elements of v1

22.8 Algorithms 909

value remains in the sequence. The function takes two arguments that must be at least for-
ward iterators. The function returns an iterator positioned after the last element in the
sequence of unique values. The values of all elements in the container after the last unique
value are undefined. A second version of this function takes as a third argument a binary
predicate function specifying how to compare two elements for equality.

Line 46 uses function reverse to reverse all the elements in the range from
v1.begin() up to, but not including, v1.end() in v1. The function takes two arguments
that must be at least bidirectional iterators.

22.8.9 inplace_merge, unique_copy and reverse_copy
Figure 22.34 demonstrates algorithms inplace_merge, unique_copy and reverse_copy.
Line 22 uses function inplace_merge to merge two sorted sequences of elements in the
same container. In this example, the elements from v1.begin() up to, but not including,
v1.begin() + 5 are merged with the elements from v1.begin() + 5 up to, but not includ-
ing, v1.end(). This function requires its three iterator arguments to be at least bidirection-
al iterators. A second version of this function takes as a fourth argument a binary predicate
function for comparing elements in the two sequences.

1 // Fig. 22.34: Fig22_34.cpp
2 // Standard Library algorithms inplace_merge,
3 // reverse_copy and unique_copy.
4 #include <iostream>
5 #include <algorithm> // algorithm definitions
6 #include <vector> // vector class-template definition
7 #include <iterator> // back_inserter definition
8 using namespace std;
9

10 int main()
11 {
12 const int SIZE = 10;
13 int a1[SIZE] = { 1, 3, 5, 7, 9, 1, 3, 5, 7, 9 };
14 vector< int > v1(a1, a1 + SIZE); // copy of a
15 ostream_iterator< int > output(cout, " ");
16
17 cout << "Vector v1 contains: ";
18 copy(v1.begin(), v1.end(), output);
19
20
21
22
23
24 cout << "\nAfter inplace_merge, v1 contains: ";
25 copy(v1.begin(), v1.end(), output);
26
27 vector< int > results1;
28
29
30
31 cout << "\nAfter unique_copy results1 contains: ";

Fig. 22.34 | Algorithms inplace_merge, unique_copy and reverse_copy. (Part 1 of 2.)

// merge first half of v1 with second half of v1 such that
// v1 contains sorted set of elements after merge
inplace_merge(v1.begin(), v1.begin() + 5, v1.end());

// copy only unique elements of v1 into results1
unique_copy(v1.begin(), v1.end(), back_inserter(results1));

910 Chapter 22 Standard Template Library (STL)

Line 30 uses function unique_copy to make a copy of all the unique elements in the
sorted sequence of values from v1.begin() up to, but not including, v1.end(). The
copied elements are placed into vector results1. The first two arguments must be at least
input iterators and the last must be at least an output iterator. In this example, we did not
preallocate enough elements in results1 to store all the elements copied from v1. Instead,
we use function back_inserter (defined in header <iterator>) to add elements to the
end of v1. The back_inserter uses class vector’s capability to insert elements at the end
of the vector. Because the back_inserter inserts an element rather than replacing an
existing element’s value, the vector is able to grow to accommodate additional elements.
A second version of the unique_copy function takes as a fourth argument a binary predi-
cate function for comparing elements for equality.

Line 37 uses function reverse_copy to make a reversed copy of the elements in the
range from v1.begin() up to, but not including, v1.end(). The copied elements are
inserted into results2 using a back_inserter object to ensure that the vector can grow
to accommodate the appropriate number of elements copied. Function reverse_copy

requires its first two iterator arguments to be at least bidirectional iterators and its third to
be at least an output iterator.

22.8.10 Set Operations
Figure 22.35 demonstrates functions includes, set_difference, set_intersection,
set_symmetric_difference and set_union for manipulating sets of sorted values. To
demonstrate that STL functions can be applied to arrays and containers, this example uses
only arrays (remember, a pointer into an array is a random-access iterator).

Lines 25 and 31 call function includes. Function includes compares two sets of
sorted values to determine whether every element of the second set is in the first set. If so,
includes returns true; otherwise, it returns false. The first two iterator arguments must
be at least input iterators and must describe the first set of values. In line 25, the first set
consists of the elements from a1 up to, but not including, a1 + SIZE1. The last two iterator
arguments must be at least input iterators and must describe the second set of values. In
this example, the second set consists of the elements from a2 up to, but not including, a2

32 copy(results1.begin(), results1.end(), output);
33
34 vector< int > results2;
35
36
37
38 cout << "\nAfter reverse_copy, results2 contains: ";
39 copy(results2.begin(), results2.end(), output);
40 cout << endl;
41 } // end main

Vector v1 contains: 1 3 5 7 9 1 3 5 7 9
After inplace_merge, v1 contains: 1 1 3 3 5 5 7 7 9 9
After unique_copy results1 contains: 1 3 5 7 9
After reverse_copy, results2 contains: 9 9 7 7 5 5 3 3 1 1

Fig. 22.34 | Algorithms inplace_merge, unique_copy and reverse_copy. (Part 2 of 2.)

// copy elements of v1 into results2 in reverse order
reverse_copy(v1.begin(), v1.end(), back_inserter(results2));

22.8 Algorithms 911

+ SIZE2. A second version of function includes takes a fifth argument that’s a binary pred-
icate function indicating the order in which the elements were originally sorted. The two
sequences must be sorted using the same comparison function.

1 // Fig. 22.35: Fig22_35.cpp
2 // Standard Library algorithms includes, set_difference,
3 // set_intersection, set_symmetric_difference and set_union.
4 #include <iostream>
5 #include <algorithm> // algorithm definitions
6 #include <iterator> // ostream_iterator
7 using namespace std;
8
9 int main()

10 {
11 const int SIZE1 = 10, SIZE2 = 5, SIZE3 = 20;
12 int a1[SIZE1] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
13 int a2[SIZE2] = { 4, 5, 6, 7, 8 };
14 int a3[SIZE2] = { 4, 5, 6, 11, 15 };
15 ostream_iterator< int > output(cout, " ");
16
17 cout << "a1 contains: ";
18 copy(a1, a1 + SIZE1, output); // display array a1
19 cout << "\na2 contains: ";
20 copy(a2, a2 + SIZE2, output); // display array a2
21 cout << "\na3 contains: ";
22 copy(a3, a3 + SIZE2, output); // display array a3
23
24 // determine whether set a2 is completely contained in a1

26 cout << "\n\na1 includes a2";
27 else
28 cout << "\n\na1 does not include a2";
29
30 // determine whether set a3 is completely contained in a1

32 cout << "\na1 includes a3";
33 else
34 cout << "\na1 does not include a3";
35
36 int difference[SIZE1];
37
38
39
40
41 cout << "\n\nset_difference of a1 and a2 is: ";
42 copy(difference, ptr, output);
43
44 int intersection[SIZE1];
45
46
47
48

Fig. 22.35 | set operations of the Standard Library. (Part 1 of 2.)

includes(a1, a1 + SIZE1, a2, a2 + SIZE2)

includes(a1, a1 + SIZE1, a3, a3 + SIZE2)

// determine elements of a1 not in a2
int *ptr = set_difference(a1, a1 + SIZE1,

a2, a2 + SIZE2, difference);

// determine elements in both a1 and a2
ptr = set_intersection(a1, a1 + SIZE1,

a2, a2 + SIZE2, intersection);

912 Chapter 22 Standard Template Library (STL)

Lines 39–40 use function set_difference to find the elements from the first set of
sorted values that are not in the second set of sorted values (both sets of values must be in
ascending order). The elements that are different are copied into the fifth argument (in
this case, the array difference). The first two iterator arguments must be at least input
iterators for the first set of values. The next two iterator arguments must be at least input
iterators for the second set of values. The fifth argument must be at least an output iterator
indicating where to store a copy of the values that are different. The function returns an
output iterator positioned immediately after the last value copied into the set to which the
fifth argument points. A second version of function set_difference takes a sixth argu-
ment that’s a binary predicate function indicating the order in which the elements were
originally sorted. The two sequences must be sorted using the same comparison function.

Lines 47–48 use function set_intersection to determine the elements from the first
set of sorted values that are in the second set of sorted values (both sets of values must be
in ascending order). The elements common to both sets are copied into the fifth argument

49 cout << "\n\nset_intersection of a1 and a2 is: ";
50 copy(intersection, ptr, output);
51
52 int symmetric_difference[SIZE1 + SIZE2];
53
54
55
56
57
58 cout << "\n\nset_symmetric_difference of a1 and a3 is: ";
59 copy(symmetric_difference, ptr, output);
60
61 int unionSet[SIZE3];
62
63
64
65 cout << "\n\nset_union of a1 and a3 is: ";
66 copy(unionSet, ptr, output);
67 cout << endl;
68 } // end main

a1 contains: 1 2 3 4 5 6 7 8 9 10
a2 contains: 4 5 6 7 8
a3 contains: 4 5 6 11 15

a1 includes a2
a1 does not include a3

set_difference of a1 and a2 is: 1 2 3 9 10

set_intersection of a1 and a2 is: 4 5 6 7 8

set_symmetric_difference of a1 and a3 is: 1 2 3 7 8 9 10 11 15

set_union of a1 and a3 is: 1 2 3 4 5 6 7 8 9 10 11 15

Fig. 22.35 | set operations of the Standard Library. (Part 2 of 2.)

// determine elements of a1 that are not in a2 and
// elements of a2 that are not in a1
ptr = set_symmetric_difference(a1, a1 + SIZE1,

a3, a3 + SIZE2, symmetric_difference);

// determine elements that are in either or both sets
ptr = set_union(a1, a1 + SIZE1, a3, a3 + SIZE2, unionSet);

22.8 Algorithms 913

(in this case, array intersection). The first two iterator arguments must be at least input
iterators for the first set of values. The next two iterator arguments must be at least input
iterators for the second set of values. The fifth argument must be at least an output iterator
indicating where to store a copy of the values that are the same. The function returns an
output iterator positioned immediately after the last value copied into the set to which the
fifth argument points. A second version of function set_intersection takes a sixth argu-
ment that’s a binary predicate function indicating the order in which the elements were
originally sorted. The two sequences must be sorted using the same comparison function.

Lines 56–57 use function set_symmetric_difference to determine the elements in
the first set that are not in the second set and the elements in the second set that are not
in the first set (both sets must be in ascending order). The elements that are different are
copied from both sets into the fifth argument (the array symmetric_difference). The first
two iterator arguments must be at least input iterators for the first set of values. The next
two iterator arguments must be at least input iterators for the second set of values. The
fifth argument must be at least an output iterator indicating where to store a copy of the
values that are different. The function returns an output iterator positioned immediately
after the last value copied into the set to which the fifth argument points. A second version
of function set_symmetric_difference takes a sixth argument that’s a binary predicate
function indicating the order in which the elements were originally sorted. The two
sequences must be sorted using the same comparison function.

Line 64 uses function set_union to create a set of all the elements that are in either
or both of the two sorted sets (both sets of values must be in ascending order). The ele-
ments are copied from both sets into the fifth argument (in this case the array unionSet).
Elements that appear in both sets are only copied from the first set. The first two iterator
arguments must be at least input iterators for the first set of values. The next two iterator
arguments must be at least input iterators for the second set of values. The fifth argument
must be at least an output iterator indicating where to store the copied elements. The func-
tion returns an output iterator positioned immediately after the last value copied into the
set to which the fifth argument points. A second version of set_union takes a sixth argu-
ment that’s a binary predicate function indicating the order in which the elements were
originally sorted. The two sequences must be sorted using the same comparison function.

22.8.11 lower_bound, upper_bound and equal_range
Figure 22.36 demonstrates functions lower_bound, upper_bound and equal_range. Line
22 uses function lower_bound to find the first location in a sorted sequence of values at
which the third argument could be inserted in the sequence such that the sequence would
still be sorted in ascending order. The first two iterator arguments must be at least forward
iterators. The third argument is the value for which to determine the lower bound. The
function returns a forward iterator pointing to the position at which the insert can occur.
A second version of function lower_bound takes as a fourth argument a binary predicate
function indicating the order in which the elements were originally sorted.

Line 28 uses function upper_bound to find the last location in a sorted sequence of
values at which the third argument could be inserted in the sequence such that the
sequence would still be sorted in ascending order. The first two iterator arguments must
be at least forward iterators. The third argument is the value for which to determine the
upper bound. The function returns a forward iterator pointing to the position at which

914 Chapter 22 Standard Template Library (STL)

the insert can occur. A second version of upper_bound takes as a fourth argument a binary
predicate function indicating the order in which the elements were originally sorted.

1 // Fig. 22.36: Fig22_36.cpp
2 // Standard Library functions lower_bound, upper_bound and
3 // equal_range for a sorted sequence of values.
4 #include <iostream>
5 #include <algorithm> // algorithm definitions
6 #include <vector> // vector class-template definition
7 #include <iterator> // ostream_iterator
8 using namespace std;
9

10 int main()
11 {
12 const int SIZE = 10;
13 int a1[SIZE] = { 2, 2, 4, 4, 4, 6, 6, 6, 6, 8 };
14 vector< int > v(a1, a1 + SIZE); // copy of a1
15 ostream_iterator< int > output(cout, " ");
16
17 cout << "Vector v contains:\n";
18 copy(v.begin(), v.end(), output);
19
20
21
22
23 cout << "\n\nLower bound of 6 is element "
24 << << " of vector v";
25
26
27
28
29 cout << "\nUpper bound of 6 is element "
30 << << " of vector v";
31
32
33
34
35
36 cout << "\nUsing equal_range:\n Lower bound of 6 is element "
37 << << " of vector v";
38 cout << "\n Upper bound of 6 is element "
39 << << " of vector v";
40 cout << "\n\nUse lower_bound to locate the first point\n"
41 << "at which 5 can be inserted in order";
42
43
44
45 cout << "\n Lower bound of 5 is element "
46 << << " of vector v";
47 cout << "\n\nUse upper_bound to locate the last point\n"
48 << "at which 7 can be inserted in order";
49

Fig. 22.36 | Algorithms lower_bound, upper_bound and equal_range. (Part 1 of 2.)

// determine lower-bound insertion point for 6 in v
vector< int >::iterator lower;
lower = lower_bound(v.begin(), v.end(), 6);

(lower - v.begin())

// determine upper-bound insertion point for 6 in v
vector< int >::iterator upper;
upper = upper_bound(v.begin(), v.end(), 6);

(upper - v.begin())

// use equal_range to determine both the lower- and
// upper-bound insertion points for 6
pair< vector< int >::iterator, vector< int >::iterator > eq;
eq = equal_range(v.begin(), v.end(), 6);

(eq.first - v.begin())

(eq.second - v.begin())

// determine lower-bound insertion point for 5 in v
lower = lower_bound(v.begin(), v.end(), 5);

(lower - v.begin())

22.8 Algorithms 915

Line 35 uses function equal_range to return a pair of forward iterators containing
the results of performing both a lower_bound and an upper_bound operation. The first
two arguments must be at least forward iterators. The third is the value for which to locate
the equal range. The function returns a pair of forward iterators for the lower bound
(eq.first) and upper bound (eq.second), respectively.

Functions lower_bound, upper_bound and equal_range are often used to locate
insertion points in sorted sequences. Line 44 uses lower_bound to locate the first point at
which 5 can be inserted in order in v. Line 51 uses upper_bound to locate the last point at
which 7 can be inserted in order in v. Line 59 uses equal_range to locate the first and last
points at which 5 can be inserted in order in v.

22.8.12 Heapsort
Figure 22.37 demonstrates the Standard Library functions for performing the heapsort
sorting algorithm. Heapsort is a sorting algorithm in which an array of elements is ar-

50
51
52 cout << "\n Upper bound of 7 is element "
53 << << " of vector v";
54 cout << "\n\nUse equal_range to locate the first and\n"
55 << "last point at which 5 can be inserted in order";
56
57
58
59
60 cout << "\n Lower bound of 5 is element "
61 << << " of vector v";
62 cout << "\n Upper bound of 5 is element "
63 << << " of vector v" << endl;
64 } // end main

Vector v contains:
2 2 4 4 4 6 6 6 6 8

Lower bound of 6 is element 5 of vector v
Upper bound of 6 is element 9 of vector v
Using equal_range:

Lower bound of 6 is element 5 of vector v
Upper bound of 6 is element 9 of vector v

Use lower_bound to locate the first point
at which 5 can be inserted in order

Lower bound of 5 is element 5 of vector v

Use upper_bound to locate the last point
at which 7 can be inserted in order

Upper bound of 7 is element 9 of vector v

Use equal_range to locate the first and
last point at which 5 can be inserted in order

Lower bound of 5 is element 5 of vector v
Upper bound of 5 is element 5 of vector v

Fig. 22.36 | Algorithms lower_bound, upper_bound and equal_range. (Part 2 of 2.)

// determine upper-bound insertion point for 7 in v
upper = upper_bound(v.begin(), v.end(), 7);

(upper - v.begin())

// use equal_range to determine both the lower- and
// upper-bound insertion points for 5
eq = equal_range(v.begin(), v.end(), 5);

(eq.first - v.begin())

(eq.second - v.begin())

916 Chapter 22 Standard Template Library (STL)

ranged into a special binary tree called a heap. The key features of a heap are that the largest
element is always at the top of the heap and the values of the children of any node in the
binary tree are always less than or equal to that node’s value. A heap arranged in this man-
ner is often called a maxheap. Heapsort is discussed in detail in computer science courses
called “Data Structures” and “Algorithms.”

1 // Fig. 22.37: Fig22_37.cpp
2 // Standard Library algorithms push_heap, pop_heap,
3 // make_heap and sort_heap.
4 #include <iostream>
5 #include <algorithm>
6 #include <vector>
7 #include <iterator>
8 using namespace std;
9

10 int main()
11 {
12 const int SIZE = 10;
13 int a[SIZE] = { 3, 100, 52, 77, 22, 31, 1, 98, 13, 40 };
14 vector< int > v(a, a + SIZE); // copy of a
15 vector< int > v2;
16 ostream_iterator< int > output(cout, " ");
17
18 cout << "Vector v before make_heap:\n";
19 copy(v.begin(), v.end(), output);
20
21
22 cout << "\nVector v after make_heap:\n";
23 copy(v.begin(), v.end(), output);
24
25
26 cout << "\nVector v after sort_heap:\n";
27 copy(v.begin(), v.end(), output);
28
29 // perform the heapsort with push_heap and pop_heap
30 cout << "\n\nArray a contains: ";
31 copy(a, a + SIZE, output); // display array a
32 cout << endl;
33
34 // place elements of array a into v2 and
35 // maintain elements of v2 in heap
36 for (int i = 0; i < SIZE; ++i)
37 {
38 v2.push_back(a[i]);
39
40 cout << "\nv2 after push_heap(a[" << i << "]): ";
41 copy(v2.begin(), v2.end(), output);
42 } // end for
43
44 cout << endl;
45

Fig. 22.37 | Using Standard Library functions to perform a heapsort. (Part 1 of 2.)

make_heap(v.begin(), v.end()); // create heap from vector v

sort_heap(v.begin(), v.end()); // sort elements with sort_heap

push_heap(v2.begin(), v2.end());

22.8 Algorithms 917

Line 21 uses function make_heap to take a sequence of values in the range from
v.begin() up to, but not including, v.end() and create a heap that can be used to pro-
duce a sorted sequence. The two iterator arguments must be random-access iterators, so

46 // remove elements from heap in sorted order
47 for (unsigned int j = 0; j < v2.size(); ++j)
48 {
49 cout << "\nv2 after " << v2[0] << " popped from heap\n";
50
51 copy(v2.begin(), v2.end(), output);
52 } // end for
53
54 cout << endl;
55 } // end main

Vector v before make_heap:
3 100 52 77 22 31 1 98 13 40
Vector v after make_heap:
100 98 52 77 40 31 1 3 13 22
Vector v after sort_heap:
1 3 13 22 31 40 52 77 98 100

Array a contains: 3 100 52 77 22 31 1 98 13 40

v2 after push_heap(a[0]): 3
v2 after push_heap(a[1]): 100 3
v2 after push_heap(a[2]): 100 3 52
v2 after push_heap(a[3]): 100 77 52 3
v2 after push_heap(a[4]): 100 77 52 3 22
v2 after push_heap(a[5]): 100 77 52 3 22 31
v2 after push_heap(a[6]): 100 77 52 3 22 31 1
v2 after push_heap(a[7]): 100 98 52 77 22 31 1 3
v2 after push_heap(a[8]): 100 98 52 77 22 31 1 3 13
v2 after push_heap(a[9]): 100 98 52 77 40 31 1 3 13 22

v2 after 100 popped from heap
98 77 52 22 40 31 1 3 13 100
v2 after 98 popped from heap
77 40 52 22 13 31 1 3 98 100
v2 after 77 popped from heap
52 40 31 22 13 3 1 77 98 100
v2 after 52 popped from heap
40 22 31 1 13 3 52 77 98 100
v2 after 40 popped from heap
31 22 3 1 13 40 52 77 98 100
v2 after 31 popped from heap
22 13 3 1 31 40 52 77 98 100
v2 after 22 popped from heap
13 1 3 22 31 40 52 77 98 100
v2 after 13 popped from heap
3 1 13 22 31 40 52 77 98 100
v2 after 3 popped from heap
1 3 13 22 31 40 52 77 98 100
v2 after 1 popped from heap
1 3 13 22 31 40 52 77 98 100

Fig. 22.37 | Using Standard Library functions to perform a heapsort. (Part 2 of 2.)

pop_heap(v2.begin(), v2.end() - j);

918 Chapter 22 Standard Template Library (STL)

this function will work only with arrays, vectors and deques. A second version of this
function takes as a third argument a binary predicate function for comparing values.

Line 25 uses function sort_heap to sort a sequence of values in the range from
v.begin() up to, but not including, v.end() that are already arranged in a heap. The two
iterator arguments must be random-access iterators. A second version of this function
takes as a third argument a binary predicate function for comparing values.

Line 39 uses function push_heap to add a new value into a heap. We take one element
of array a at a time, appendit to the end of vector v2 and perform the push_heap opera-
tion. If the appended element is the only element in the vector, the vector is already a
heap. Otherwise, function push_heap rearranges the vector elements into a heap. Each
time push_heap is called, it assumes that the last element currently in the vector (i.e., the
one that’s appended before the push_heap function call) is the element being added to the
heap and that all other elements in the vector are already arranged as a heap. The two iter-
ator arguments to push_heap must be random-access iterators. A second version of this
function takes as a third argument a binary predicate function for comparing values.

Line 50 uses pop_heap to remove the top heap element. This function assumes that
the elements in the range specified by its two random-access iterator arguments are already
a heap. Repeatedly removing the top heap element results in a sorted sequence of values.
Function pop_heap swaps the first heap element (v2.begin()) with the last heap element
(the element before v2.end() - i), then ensures that the elements up to, but not including,
the last element still form a heap. Notice in the output that, after the pop_heap operations,
the vector is sorted in ascending order. A second version of this function takes as a third
argument a binary predicate function for comparing values.

22.8.13 min and max
Algorithms min and max determine the minimum and the maximum of two elements, re-
spectively. Figure 22.38 demonstrates min and max for int and char values.

1 // Fig. 22.38: Fig22_38.cpp
2 // Standard Library algorithms min and max.
3 #include <iostream>
4 #include <algorithm>
5 using namespace std;
6
7 int main()
8 {
9 cout << "The minimum of 12 and 7 is: " << ;

10 cout << "\nThe maximum of 12 and 7 is: " << ;
11 cout << "\nThe minimum of 'G' and 'Z' is: " << ;
12 cout << "\nThe maximum of 'G' and 'Z' is: " << ;
13 cout << endl;
14 } // end main

The minimum of 12 and 7 is: 7
The maximum of 12 and 7 is: 12
The minimum of 'G' and 'Z' is: G
The maximum of 'G' and 'Z' is: Z

Fig. 22.38 | Algorithms min and max.

min(12, 7)
max(12, 7)

min('G', 'Z')
max('G', 'Z')

22.8 Algorithms 919

22.8.14 STL Algorithms Not Covered in This Chapter
Figure 22.39 summarizes STL algorithms that are not covered in this chapter.

Algorithm Description

inner_product Calculate the sum of the products of two sequences by taking corre-
sponding elements in each sequence, multiplying those elements and
adding the result to a total.

adjacent_difference Beginning with the second element in a sequence, calculate the dif-
ference (using operator –) between the current and previous ele-
ments, and store the result. The first two input iterator arguments
indicate the range of elements in the container and the third indi-
cates where the results should be stored. A second version of this
algorithm takes as a fourth argument a binary function to perform a
calculation between the current element and the previous element.

partial_sum Calculate a running total (using operator +) of the values in a
sequence. The first two input iterator arguments indicate the range
of elements in the container and the third indicates where the results
should be stored. A second version of this algorithm takes as a fourth
argument a binary function that performs a calculation between the
current value in the sequence and the running total.

nth_element Use three random-access iterators to partition a range of elements.
The first and last arguments represent the range of elements. The
second argument is the partitioning element’s location. After this
algorithm executes, all elements before the partitioning element are
less than that element and all elements after the partitioning element
are greater than or equal to that element. A second version of this
algorithm takes as a fourth argument a binary comparison function.

partition Similar to nth_element, but requires less powerful bidirectional itera-
tors, making it more flexible. It requires two bidirectional iterators
indicating the range of elements to partition. The third argument is a
unary predicate function that helps partition the elements so that all
elements for which the predicate is true are to the left (toward the
beginning of the sequence) of those for which the predicate is false.
A bidirectional iterator is returned indicating the first element in the
sequence for which the predicate returns false.

stable_partition Similar to partition except that this algorithm guarantees that
equivalent elements will be maintained in their original order.

next_permutation Next lexicographical permutation of a sequence.

prev_permutation Previous lexicographical permutation of a sequence.

rotate Use three forward iterator arguments to rotate the sequence indi-
cated by the first and last argument by the number of positions indi-
cated by subtracting the first argument from the second argument.
For example, the sequence 1, 2, 3, 4, 5 rotated by two positions
would be 4, 5, 1, 2, 3.

Fig. 22.39 | Algorithms not covered in this chapter. (Part 1 of 2.)

920 Chapter 22 Standard Template Library (STL)

22.9 Class bitset
Class bitset makes it easy to create and manipulate bit sets, which are useful for repre-
senting a set of bit flags. bitsets are fixed in size at compile time. Class bitset is an alter-
nate tool for bit manipulation, discussed in Chapter 21. The declaration

creates bitset b, in which every bit is initially 0. The statement

sets bit bitNumber of bitset b “on.” The expression b.set() sets all bits in b “on.”

rotate_copy Identical to rotate except that the results are stored in a separate
sequence indicated by the fourth argument—an output iterator. The
two sequences must have the same number of elements.

adjacent_find Returns an input iterator indicating the first of two identical adja-
cent elements in a sequence. If there are no identical adjacent ele-
ments, the iterator is positioned at the end of the sequence.

search Searches for a subsequence of elements within a sequence of elements
and, if such a subsequence is found, returns a forward iterator that
indicates the first element of that subsequence. If there are no matches,
the iterator is positioned at the end of the sequence to be searched.

search_n Searches a sequence of elements looking for a subsequence in which
the values of a specified number of elements have a particular value
and, if such a subsequence is found, returns a forward iterator that
indicates the first element of that subsequence. If there are no matches,
the iterator is positioned at the end of the sequence to be searched.

partial_sort Use three random-access iterators to sort part of a sequence. The first
and last arguments indicate the sequence of elements. The second
argument indicates the ending location for the sorted part of the
sequence. By default, elements are ordered using operator < (a binary
predicate function can also be supplied). The elements from the sec-
ond argument to the end of the sequence are in an undefined order.

partial_sort_copy Use two input iterators and two random-access iterators to sort part
of the sequence indicated by the two input iterator arguments. The
results are stored in the sequence indicated by the two random-access
iterator arguments. By default, elements are ordered using operator <
(a binary predicate function can also be supplied). The number of
elements sorted is the smaller of the number of elements in the result
and the number of elements in the original sequence.

stable_sort The algorithm is similar to sort except that all equivalent elements
are maintained in their original order. This sort is O(n log n) if
enough memory is available; otherwise, it’s O(n(log n)2).

bitset< size > b;

b.set(bitNumber);

Algorithm Description

Fig. 22.39 | Algorithms not covered in this chapter. (Part 2 of 2.)

22.9 Class bitset 921

The statement

sets bit bitNumber of bitset b “off.” The expression b.reset() sets all bits in b “off.” The
statement

“flips” bit bitNumber of bitset b (e.g., if the bit is on, flip sets it off). The expression
b.flip() flips all bits in b. The statement

returns a reference to the bit bitNumber of bitset b. Similarly,

performs range checking on bitNumber first. Then, if bitNumber is in range, at returns a
reference to the bit. Otherwise, at throws an out_of_range exception. The statement

performs range checking on bitNumber first. If bitNumber is in range, test returns true
if the bit is on, false it’s off. Otherwise, test throws an out_of_range exception. The
expression

returns the number of bits in bitset b. The expression

returns the number of bits that are set in bitset b. The expression

returns true if any bit is set in bitset b. The expression

returns true if none of the bits is set in bitset b. The expressions

compare the two bitsets for equality and inequality, respectively.
Each of the bitwise assignment operators &=, |= and ^= can be used to combine bit-

sets. For example,

performs a bit-by-bit logical AND between bitsets b and b1. The result is stored in b.
Bitwise logical OR and bitwise logical XOR are performed by

The expression

b.reset(bitNumber);

b.flip(bitNumber);

b[bitNumber];

b.at(bitNumber);

b.test(bitNumber);

b.size()

b.count()

b.any()

b.none()

b == b1
b != b1

b &= b1;

b |= b1;
b ^= b2;

b >>= n;

922 Chapter 22 Standard Template Library (STL)

shifts the bits in bitset b right by n positions. The expression

shifts the bits in bitset b left by n positions. The expressions

convert bitset b to a string and an unsigned long, respectively.

Sieve of Eratosthenes with bitset
Figure 22.40 revisits the Sieve of Eratosthenes for finding prime numbers that we dis-
cussed in Exercise 7.29. A bitset is used instead of an array to implement the algorithm.
The program displays all the prime numbers from 2 to 1023, then allows the user to enter
a number to determine whether that number is prime.

b <<= n;

b.to_string()
b.to_ulong()

1 // Fig. 22.40: Fig22_40.cpp
2 // Using a bitset to demonstrate the Sieve of Eratosthenes.
3 #include <iostream>
4 #include <iomanip>
5 #include <cmath>
6 #include <bitset> // bitset class definition
7 using namespace std;
8
9 int main()

10 {
11 const int SIZE = 1024;
12 int value;
13
14
15
16
17
18 // perform Sieve of Eratosthenes
19 int finalBit = sqrt(static_cast< double >()) + 1;
20
21 // determine all prime numbers from 2 to 1024
22 for (int i = 2; i < finalBit; ++i)
23 {
24 if () // bit i is on
25 {
26 for (int j = 2 * i; j < SIZE; j += i)
27 ; // set bit j off
28 } // end if
29 } // end for
30
31 cout << "The prime numbers in the range 2 to 1023 are:\n";
32
33 // display prime numbers in range 2-1023
34 for (int k = 2, counter = 1; k < SIZE; ++k)
35 {

Fig. 22.40 | Class bitset and the Sieve of Eratosthenes. (Part 1 of 2.)

bitset< SIZE > sieve; // create bitset of 1024 bits
sieve.flip(); // flip all bits in bitset sieve
sieve.reset(0); // reset first bit (number 0)
sieve.reset(1); // reset second bit (number 1)

sieve.size()

sieve.test(i)

sieve.reset(j)

22.9 Class bitset 923

36 if () // bit k is on
37 {
38 cout << setw(5) << k;
39
40 if (counter++ % 12 == 0) // counter is a multiple of 12
41 cout << '\n';
42 } // end if
43 } // end for
44
45 cout << endl;
46
47 // get value from user to determine whether value is prime
48 cout << "\nEnter a value from 2 to 1023 (-1 to end): ";
49 cin >> value;
50
51 // determine whether user input is prime
52 while (value != -1)
53 {
54 if () // prime number
55 cout << value << " is a prime number\n";
56 else // not a prime number
57 cout << value << " is not a prime number\n";
58
59 cout << "\nEnter a value from 2 to 1023 (-1 to end): ";
60 cin >> value;
61 } // end while
62 } // end main

The prime numbers in the range 2 to 1023 are:
2 3 5 7 11 13 17 19 23 29 31 37
41 43 47 53 59 61 67 71 73 79 83 89
97 101 103 107 109 113 127 131 137 139 149 151
157 163 167 173 179 181 191 193 197 199 211 223
227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359
367 373 379 383 389 397 401 409 419 421 431 433
439 443 449 457 461 463 467 479 487 491 499 503
509 521 523 541 547 557 563 569 571 577 587 593
599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743
751 757 761 769 773 787 797 809 811 821 823 827
829 839 853 857 859 863 877 881 883 887 907 911
919 929 937 941 947 953 967 971 977 983 991 997

1009 1013 1019 1021

Enter a value from 2 to 1023 (-1 to end): 389
389 is a prime number

Enter a value from 2 to 1023 (-1 to end): 88
88 is not a prime number

Enter a value from 2 to 1023 (-1 to end): -1

Fig. 22.40 | Class bitset and the Sieve of Eratosthenes. (Part 2 of 2.)

sieve.test(k)

sieve[value]

924 Chapter 22 Standard Template Library (STL)

Line 13 creates a bitset of size bits (size is 1024 in this example). By default, all
the bits in the bitset are set “off.” Line 14 calls function flip to set all bits “on.” Num-
bers 0 and 1 are not prime numbers, so lines 15–16 call function reset to set bits 0 and
1 “off.” Lines 22–29 determine all the prime numbers from 2 to 1023. The integer
finalBit (line 19) is used to determine when the algorithm is complete. The basic algo-
rithm is that a number is prime if it has no divisors other than 1 and itself. Starting with
the number 2, we can eliminate all multiples of that number. The number 2 is divisible
only by 1 and itself, so it’s prime. Therefore, we can eliminate 4, 6, 8 and so on. The
number 3 is divisible only by 1 and itself. Therefore, we can eliminate all multiples of 3
(keep in mind that all even numbers have already been eliminated).

22.10 Function Objects
Many STL algorithms allow you to pass a function pointer into the algorithm to help the
algorithm perform its task. For example, the binary_search algorithm that we discussed
in Section 22.8.6 is overloaded with a version that requires as its fourth parameter a point-
er to a function that takes two arguments and returns a bool value. The binary_search

algorithm uses this function to compare the search key to an element in the collection. The
function returns true if the search key and element being compared are equal; otherwise,
the function returns false. This enables binary_search to search a collection of elements
for which the element type does not provide an overloaded equality == operator.

The STL’s designers made the algorithms more flexible by allowing any algorithm
that can receive a function pointer to receive an object of a class that overloads the paren-
theses operator with a function named operator(), provided that the overloaded operator
meets the requirements of the algorithm—in the case of binary_search, it must receive
two arguments and return a bool. An object of such a class is known as a function object
and can be used syntactically and semantically like a function or function pointer—the
overloaded parentheses operator is invoked by using a function object’s name followed by
parentheses containing the arguments to the function. Together, function objects and
functions are known as functors. Most algorithms can use function objects and functions
interchangeably.

Function objects provide several advantages over function pointers. Since function
objects are commonly implemented as class templates that are included into each source
code file that uses them, the compiler can inline an overloaded operator() to improve
performance. Also, since they’re objects of classes, function objects can have data members
that operator() can use to perform its task.

Predefined Function Objects of the Standard Template Library
Many predefined function objects can be found in the header <functional>. Figure 22.41
lists several of the STL function objects, which are all implemented as class templates. We
used the function object less<T> in the set, multiset and priority_queue examples, to
specify the sorting order for elements in a container.

Using the STL Accumulate Algorithm
Figure 22.42 demonstrates the accumulate numeric algorithm (discussed in Fig. 22.30)
to calculate the sum of the squares of the elements in a vector. The fourth argument to
accumulate is a binary function object (that is, a function object for which operator()

22.10 Function Objects 925

takes two arguments) or a function pointer to a binary function (that is, a function that
takes two arguments). Function accumulate is demonstrated twice—once with a function
pointer and once with a function object.

STL function objects Type STL function objects Type

divides< T > arithmetic logical_or< T > logical

equal_to< T > relational minus< T > arithmetic

greater< T > relational modulus< T > arithmetic

greater_equal< T > relational negate< T > arithmetic

less< T > relational not_equal_to< T > relational

less_equal< T > relational plus< T > arithmetic

logical_and< T > logical multiplies< T > arithmetic

logical_not< T > logical

Fig. 22.41 | Function objects in the Standard Library.

1 // Fig. 22.42: Fig22_42.cpp
2 // Demonstrating function objects.
3 #include <iostream>
4 #include <vector> // vector class-template definition
5 #include <algorithm> // copy algorithm
6 #include <numeric> // accumulate algorithm
7 #include <functional> // binary_function definition
8 #include <iterator> // ostream_iterator
9 using namespace std;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Fig. 22.42 | Binary function object. (Part 1 of 2.)

// binary function adds square of its second argument and the
// running total in its first argument, then returns the sum
int sumSquares(int total, int value)
{

return total + value * value;
} // end function sumSquares

// binary function class template defines overloaded operator()
// that adds the square of its second argument and running
// total in its first argument, then returns sum
template< typename T >
class SumSquaresClass : public binary_function< T, T, T >
{
public:

// add square of value to total and return result
T operator()(const T &total, const T &value)
{

return total + value * value;
} // end function operator()

}; // end class SumSquaresClass

926 Chapter 22 Standard Template Library (STL)

Lines 13–16 define a function sumSquares that squares its second argument value,
adds that square and its first argument total and returns the sum. Function accumulate

will pass each of the elements of the sequence over which it iterates as the second argument
to sumSquares in the example. On the first call to sumSquares, the first argument will be
the initial value of the total (which is supplied as the third argument to accumulate; 0 in
this program). All subsequent calls to sumSquares receive as the first argument the running
sum returned by the previous call to sumSquares. When accumulate completes, it returns
the sum of the squares of all the elements in the sequence.

Lines 21–30 define a class SumSquaresClass that inherits from the binary_function

class template (in header <functional>)—an empty base class for creating function objects
in which operator() has two parameters and returns a value. The binary_function class

31
32 int main()
33 {
34 const int SIZE = 10;
35 int array[SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
36 vector< int > integers(array, array + SIZE); // copy of array
37 ostream_iterator< int > output(cout, " ");
38 int result;
39
40 cout << "vector integers contains:\n";
41 copy(integers.begin(), integers.end(), output);
42
43
44
45
46
47
48 cout << "\n\nSum of squares of elements in integers using "
49 << "binary\nfunction sumSquares: " << result;
50
51
52
53
54
55
56 cout << "\n\nSum of squares of elements in integers using "
57 << "binary\nfunction object of type "
58 << "SumSquaresClass< int >: " << result << endl;
59 } // end main

vector integers contains:
1 2 3 4 5 6 7 8 9 10

Sum of squares of elements in integers using binary
function sumSquares: 385

Sum of squares of elements in integers using binary
function object of type SumSquaresClass< int >: 385

Fig. 22.42 | Binary function object. (Part 2 of 2.)

// calculate sum of squares of elements of vector integers
// using binary function sumSquares
result = accumulate(integers.begin(), integers.end(),

0, sumSquares);

// calculate sum of squares of elements of vector integers
// using binary function object
result = accumulate(integers.begin(), integers.end(),

0, SumSquaresClass< int >());

22.11 Wrap-Up 927

accepts three type parameters that represent the types of the first argument, second argument
and return value of operator, respectively. In this example, the type of these parameters is T
(line 22). On the first call to the function object, the first argument will be the initial value
of the total (which is supplied as the third argument to accumulate: 0 in this program) and
the second argument will be the first element in vector integers. All subsequent calls to
operator receive as the first argument the result returned by the previous call to the function
object, and the second argument will be the next element in the vector. When accumulate

completes, it returns the sum of the squares of all the elements in the vector.
Lines 45–46 call function accumulate with a pointer to function sumSquares as its

last argument. The statement in lines 53–54 calls function accumulate with an object of
class SumSquaresClass as the last argument. The expression SumSquaresClass<int>()

creates an instance of class SumSquaresClass (a function object) that’s passed to accumu-

late, which sends the object the message (invokes the function) operator. The statement
could be written as two separate statements, as follows:

The first line defines an object of class SumSquaresClass. That object is then passed to
function accumulate.

22.11 Wrap-Up
In this chapter, we introduced the Standard Template Library and discussed its three key
components—containers, iterators and algorithms. You learned the STL sequence con-
tainers, vector, deque and list, which represent linear data structures. We discussed as-
sociative containers, set, multiset, map and multimap, which represent nonlinear data
structures. You also saw that the container adapters stack, queue and priority_queue can
be used to restrict the operations of the sequence containers for the purpose of implement-
ing the specialized data structures represented by the container adapters. We then demon-
strated many of the STL algorithms, including mathematical algorithms, basic searching
and sorting algorithms and set operations. You learned the types of iterators each algo-
rithm requires and that each algorithm can be used with any container that supports the
minimum iterator functionality the algorithm requires. You also learned class bitset,
which makes it easy to create and manipulate bit sets as a container. Finally, we introduced
function objects that work syntactically and semantically like ordinary functions, but offer
advantages such as performance and the ability to store data.

The next chapter discusses the new version of the C++ standard, known as C++0x,
which will be released in 2011 or 2012. You’ll learn about the new libraries and core lan-
guage features being added to C++.

SumSquaresClass< int > sumSquaresObject;
result = accumulate(integers.begin(), integers.end(),

0, sumSquaresObject);

Summary
Section 22.1 Introduction to the Standard Template Library (STL)
• The Standard Template Library (p. 851) defines powerful, template-based, reusable components

for common data structures, and algorithms used to process those data structures.

• The STL has three key components (p. 851)—containers, iterators and algorithms.

928 Chapter 22 Standard Template Library (STL)

• There are three container-class categories (p. 851)—first-class containers, container adapters and
near containers.

• STL algorithms are functions that perform such common data manipulations as searching, sort-
ing and comparing elements or entire containers.

Section 22.2 Introduction to Containers
• Containers are divided into sequence containers, associative containers and container adapters

(p. 853).

• The sequence containers (p. 853) represent linear data structures, such as vectors and linked lists.

• Associative containers are nonlinear containers that quickly locate elements stored in them, such
as sets of values or key/value pairs (p. 853).

• Sequence containers and associative containers are collectively referred to as first-class containers.

Section 22.3 Introduction to Iterators
• First-class container function begin (p. 856) returns an iterator pointing to the first element of

a container. Function end (p. 856) returns an iterator pointer after the container’s last element—
typically used in a loop to indicate when to terminate processing of the container’s elements.

• An istream_iterator (p. 857) is capable of extracting values in a type-safe manner from an in-
put stream. An ostream_iterator (p. 857) is capable of inserting values in an output stream.

• Input and output iterators (p. 858) can move only in the forward direction one element at a time.

• A forward iterator (p. 858) combines the capabilities of input and output iterators.

• A bidirectional iterator (p. 858) has the capabilities of a forward iterator and can move backwards.

• A random-access iterator (p. 859) has the capabilities of a bidirectional iterator and the ability to
directly access any element of the container.

Section 22.4 Introduction to Algorithms
• Containers that support random-access iterators can be used with all algorithms in the STL.

Section 22.5 Sequence Containers
• The STL provides sequence containers vector, list and deque. Class templates vector and

deque both are based on arrays. Class template list implements a linked-list data structure.

Section 22.5.1 vector Sequence Container
• Function capacity (p. 864) returns the number of elements that can be stored in a vector before

the vector dynamically resizes itself to accommodate more elements.

• Sequence container function push_back (p. 866) adds an element to the end of a container.

• To use the algorithms of the STL, you must include the header <algorithm> (p. 870).

• Algorithm copy (p. 869) copies each element in a container starting with the location specified by
its first iterator argument up to, but not including, the one specified by its second iterator argument.

• Function front (p. 863) returns a reference to the first element in a sequence container. Function
begin returns an iterator pointing to the beginning of a sequence container.

• Function back (p. 863) returns a reference to the last element in a sequence container. Function
end returns an iterator pointing to the element one past the end of a sequence container.

• Sequence container function insert (p. 870) inserts value(s) before the element at a specific lo-
cation.

• Function erase (p. 871; in all first-class containers) removes specific element(s) from the container.

Summary 929

• Function empty (p. 871; in all containers and adapters) returns true if the container is empty.

• Function clear (p. 871; in all first-class containers) empties the container.

Section 22.5.2 list Sequence Container
• The list sequence container (p. 871) provides an efficient implementation for inserting and de-

leting anywhere in the container. Header <list> must be included to use class template list.

• list member function push_front (p. 874) inserts values at the beginning of a list.

• list member function sort (p. 874) arranges the elements in the list in ascending order.

• list member function splice (p. 874) removes elements in one list and inserts them into an-
other list at a specific position.

• list member function unique (p. 875) removes duplicate elements in a list.

• list member function assign (p. 875) replaces the contents of one list with those of another.

• list member function remove (p. 875) deletes all copies of a specified value from a list.

Section 22.5.3 deque Sequence Container
• Class template deque (p. 875) provides the same operations as vector, but adds member func-

tions push_front and pop_front (p. 874) to allow insertion and deletion at the beginning of a
deque, respectively. Header <deque> must be included to use class template deque.

Section 22.6 Associative Containers
• The STL’s associative containers provide direct access to store and retrieve elements via keys

(p. 877).

• The four associative containers (p. 877) are multiset, set, multimap and map.

• Class templates multiset and set provide operations for manipulating sets of values where the
values are the keys—there is not a separate value associated with each key. Header <set> must be
included to use class templates set and multiset.

• A multiset allows duplicate keys and a set does not.

Section 22.6.1 multiset Associative Container
• The multiset associative container (p. 877) provides fast storage and retrieval of keys and allows

duplicate keys. The ordering of the elements is determined by a comparator function object.

• A multiset’s keys can be sorted in ascending order by ordering the keys with comparator func-
tion object less<T> (p. 877).

• The type of the keys in all associative containers must support comparison properly based on the
comparator function object specified.

• A multiset supports bidirectional iterators.

• Header <set> (p. 877) must be included to use class multiset.

• Function count (p. 879; available to all associative containers) counts the number of occurrences
of the specified value currently in a container.

• Function find (p. 879; available to all associative containers) locates a specified value in a con-
tainer.

• Associative container functions lower_bound and upper_bound (p. 879) locate the earliest occur-
rence of the specified value in a container and the element after the value’s last occurrence, re-
spectively.

• Associative container function equal_range (p. 879) returns a pair containing the results a
lower_bound and an upper_bound operation.

930 Chapter 22 Standard Template Library (STL)

Section 22.6.2 set Associative Container
• The set associative container is used for fast storage and retrieval of unique keys.

• If an attempt is made to insert a duplicate key into a set, the duplicate is ignored.

• A set supports bidirectional iterators.

• Header <set> must be included to use class set.

Section 22.6.3 multimap Associative Container
• Containers multimap and map provide operations for manipulating values associated with keys.

• The primary difference between a multimap and a map is that a multimap allows duplicate keys
with associated values to be stored and a map allows only unique keys with associated values.

• The multimap associative container is used for fast storage and retrieval of key/value pairs.

• Duplicate keys are allowed in a multimap, so multiple values can be associated with a single key.
This is called a one-to-many relationship.

• Header <map> (p. 881) must be included to use class templates map and multimap.

Section 22.6.4 map Associative Container
• Duplicate keys are not allowed in a map, so only a single value can be associated with each key.

This is called a one-to-one mapping (p. 883).

• A map is commonly called an associative array (p. 883).

Section 22.7 Container Adapters
• The STL provides three container adapters—stack, queue and priority_queue.

• Adapters are not first-class containers, because they do not provide the actual data structure im-
plementation in which elements can be stored and they do not support iterators.

• All three adapter class templates provide member functions push and pop (p. 885) that properly
insert an element into and remove an element from each adapter data structure, respectively.

Section 22.7.1 stack Adapter
• Class template stack (p. 885) is a last-in, first-out data structure. Header <stack> must be in-

cluded to use class template stack.

• The stack member function top (p. 885) returns a reference to the top element of the stack (im-
plemented by calling function back of the underlying container).

• The stack member function empty determines whether the stack is empty (implemented by call-
ing function empty of the underlying container).

• The stack member function size returns the number of elements in the stack (implemented by
calling function size of the underlying container).

Section 22.7.2 queue Adapter
• Class template queue (p. 887) implements a FIFO data structure. Header <queue> (p. 888) must

be included to use a queue or a priority_queue.

• The queue member function front returns a reference to the first element in the queue.

• The queue member function back (p. 887) returns a reference to the last element in the queue.

• The queue member function empty determines whether the queue is empty.

• The queue member function size returns the number of elements in the queue.

Summary 931

Section 22.7.3 priority_queue Adapter
• Class template priority_queue provides functionality that enables insertions in sorted order into

the underlying data structure and deletions from the front of the underlying data structure.

• The common priority_queue (p. 888) operations are push, pop, top, empty and size.

Section 22.8.1 fill, fill_n, generate and generate_n
• Algorithms fill and fill_n (p. 890) set every element in a range of container elements to a spe-

cific value.

• Algorithms generate and generate_n (p. 891) use a generator function or function object to cre-
ate values for every element in a range of container elements.

Section 22.8.2 equal, mismatch and lexicographical_compare
• Algorithm equal (p. 894) compares two sequences of values for equality.

• Algorithm mismatch (p. 894) compares two sequences of values and returns a pair of iterators in-
dicating the location in each sequence of the mismatched elements.

• Algorithm lexicographical_compare (p. 894) compares the contents of two sequences.

Section 22.8.3 remove, remove_if, remove_copy and remove_copy_if
• Algorithm remove (p. 896) eliminates all elements with a specific value in a certain range.

• Algorithm remove_copy (p. 897) copies all elements that do not have a specific value in a certain
range.

• Algorithm remove_if (p. 897) deletes all elements that satisfy the if condition in a certain range.

• Algorithm remove_copy_if (p. 897) copies all elements that satisfy the if condition in a certain
range.

Section 22.8.4 replace, replace_if, replace_copy and replace_copy_if
• Algorithm replace (p. 899) replaces all elements with a specific value in certain range.

• Algorithm replace_copy (p. 899) copies all elements with a specific value in a certain range.

• Algorithm replace_if (p. 899) replaces all elements that satisfy the if condition in a certain
range.

• Algorithm replace_copy_if (p. 899) copies all elements that satisfy the if condition in a certain
range.

Section 22.8.5 Mathematical Algorithms
• Algorithm random_shuffle (p. 902) reorders randomly the elements in a certain range.

• Algorithm count (p. 902) counts the elements with a specific value in a certain range.

• Algorithm count_if (p. 902) counts the elements that satisfy the if condition in a certain range.

• Algorithm min_element (p. 902) locates the smallest element in a certain range.

• Algorithm max_element (p. 902) locates the largest element in a certain range.

• Algorithm accumulate (p. 902) sums the values in a certain range.

• Algorithm for_each (p. 902) applies a general function or function object to every element in a
range.

• Algorithm transform (p. 902) applies a general function or function object to every element in
a range and replaces each element with the result of the function.

932 Chapter 22 Standard Template Library (STL)

Section 22.8.6 Basic Searching and Sorting Algorithms
• Algorithm find (p. 904) locates a specific value in a certain range.

• Algorithm find_if (p. 904) locates the first value in a certain range that satisfies the if condition.

• Algorithm sort (p. 905) arranges the elements in a certain range in ascending order or an order
specified by a predicate.

• Algorithm binary_search (p. 905) if whether a specific value is in a sorted range of elements.

Section 22.8.7 swap, iter_swap and swap_ranges
• Algorithm swap (p. 905) exchanges two values.

• Algorithm iter_swap (p. 906) exchanges the two elements.

• Algorithm swap_ranges (p. 906) exchanges the elements in a certain range.

Section 22.8.8 copy_backward, merge, unique and reverse
• Algorithm copy_backward (p. 906) copies elements in a range and places the elements into a con-

tainer starting from the end and working toward the front.

• Algorithm merge (p. 908) combines two sorted ascending sequences of values into a third sorted
ascending sequence.

• Algorithm unique (p. 908) removes duplicated elements in a certain range of a sorted sequence.

• Algorithm reverse (p. 909) reverses all the elements in a certain range.

Section 22.8.9 inplace_merge, unique_copy and reverse_copy
• Algorithm inplace_merge (p. 909) merges two sorted sequences of elements in the same container.

• Algorithm unique_copy (p. 910) makes a copy of all the unique elements in the sorted sequence
of values in a certain range.

• Algorithm reverse_copy (p. 910) makes a reversed copy of the elements in a certain range.

Section 22.8.10 Set Operations
• The set function includes compares two sets of sorted values to determine whether every ele-

ment of the second set is in the first set.

• The set function set_difference (p. 912) finds the elements from the first set of sorted values
that are not in the second set of sorted values (both sets of values must be in ascending order).

• The set function set_intersection (p. 912) determines the elements from the first set of sorted
values that are in the second set of sorted values (both sets of values must be in ascending order).

• The set function set_symmetric_difference (p. 913) determines the elements in the first set
that are not in the second set and the elements in the second set that are not in the first set
(both sets of values must be in ascending order).

• The set function set_union (p. 913) creates a set of all the elements that are in either or both
of the two sorted sets (both sets of values must be in ascending order).

Section 22.8.11 lower_bound, upper_bound and equal_range
• Algorithm lower_bound (p. 913) finds the first location in a sorted sequence of values at which

the third argument could be inserted in the sequence such that the sequence would still be sorted
in ascending order.

• Algorithm upper_bound (p. 913) finds the last location in a sorted sequence of values at which
the third argument could be inserted in the sequence such that the sequence would still be sorted
in ascending order.

Self-Review Exercises 933

• Algorithm equal_range (p. 915) performs returns the lower bound and upper bound as a pair.

Section 22.8.12 Heapsort
• Algorithm make_heap (p. 917) takes a sequence of values in a certain range and creates a heap that

can be used to produce a sorted sequence.

• Algorithm sort_heap (p. 918) sorts a sequence of values in a certain range of a heap.

• Algorithm pop_heap (p. 918) removes the top heap element.

Section 22.8.13 min and max
• Algorithms min and max (p. 918) determine the minimum of two elements and the maximum of

two elements, respectively.

Section 22.9 Class bitset
• Class template bitset (p. 920) makes it easy to create and manipulate bit sets, which are useful

for representing a set of bit flags.

Section 22.10 Function Objects
• A function object (p. 924) is an instance of a class that overloads operator().

• The STL provides many predefined function objects, which can be found in header <function-
al> (p. 924).

• Binary function objects (p. 924) take two arguments and return a value. The binary_function

class template (p. 926) is an empty base class for creating binary function objects that provides
standard type names for the function’s parameters and result.

Self-Review Exercises
State whether the following are true or false , or fill in the blanks. If the answer is false, explain why,.

22.1 (T/F) The STL makes abundant use of inheritance and virtual functions.

22.2 The two types of first-class STL containers are sequence containers and contain-
ers.

22.3 The five main iterator types are , , , and .

22.4 (T/F) An iterator acts like a pointer to an element.

22.5 (T/F) STL algorithms can operate on C-like pointer-based arrays.

22.6 (T/F) STL algorithms are encapsulated as member functions within each container class.

22.7 (T/F) When using the remove algorithm on a vector, the algorithm does not decrease the
size of the vector from which elements are being removed.

22.8 The three STL container adapters are , and .

22.9 (T/F) Container member function end yields the position of the container’s last element.

22.10 STL algorithms operate on container elements indirectly, using .

22.11 The sort algorithm requires a(n) iterator.

Answers to Self-Review Exercises
22.1 False. These were avoided for performance reasons.

22.2 Associative.

934 Chapter 22 Standard Template Library (STL)

22.3 Input, output, forward, bidirectional, random access.

22.4 True.

22.5 True.

22.6 False. STL algorithms are not member functions. They operate indirectly on containers,
through iterators.

22.7 True.

22.8 stack, queue, priority_queue.

22.9 False. It actually yields the position just after the end of the container.

22.10 Iterators.

22.11 Random-access.

Exercises
22.12 (Palindromes) Write a function template palindrome that takes a vector parameter and re-
turns true or false according to whether the vector does or does not read the same forward as back-
ward (e.g., a vector containing 1, 2, 3, 2, 1 is a palindrome, but a vector containing 1, 2, 3, 4 is
not).

22.13 (Sieve of Eratosthenes) Modify Fig. 22.40, the Sieve of Eratosthenes, so that, if the number
the user inputs into the program is not prime, the program displays the prime factors of the number.
Remember that a prime number’s factors are only 1 and the prime number itself. Every nonprime
number has a unique prime factorization. For example, the factors of 54 are 2, 3, 3 and 3. When
these values are multiplied together, the result is 54. For the number 54, the prime factors output
should be 2 and 3.

22.14 (Prime Numbers) Modify Exercise 22.13 so that, if the number the user inputs into the pro-
gram is not prime, the program displays the prime factors of the number and the number of times
each prime factor appears in the unique prime factorization. For example, the output for the num-
ber 54 should be

The unique prime factorization of 54 is: 2 * 3 * 3 * 3

Recommended Reading
Ammeraal, L. STL for C++ Programmers. New York: John Wiley & Sons, 1997.

Austern, M. H. Generic Programming and the STL: Using and Extending the C++ Standard Template
Library. Boston, MA: Addison-Wesley, 2000.

Glass, G., and B. Schuchert. The STL <Primer>. Upper Saddle River, NJ: Prentice Hall PTR,
1995.

Josuttis, N. The C++ Standard Library: A Tutorial and Handbook. Boston: Addison-Wesley, 2000.

Koenig, A., and B. Moo. Ruminations on C++. Boston: Addison-Wesley, 1997.

Meyers, S. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Bos-
ton, MA: Addison-Wesley, 2001.

Musser, D. R., G. Derge and A. Saini. STL Tutorial and Reference Guide: C++ Programming with
the Standard Template Library, Second Edition. Boston: Addison-Wesley, 2010.

Musser, D. R., and A. A. Stepanov. “Algorithm-Oriented Generic Libraries,” Software Practice and
Experience, Vol. 24, No. 7, July 1994.

Recommended Reading 935

Nelson, M. C++ Programmer’s Guide to the Standard Template Library. Foster City, CA: Program-
mer’s Press, 1995.

Pohl, I. C++ Distilled: A Concise ANSI/ISO Reference and Style Guide. Boston: Addison-Wesley,
1997.

Reese, G. C++ Standard Library Practical Tips. Hingham, MA: Charles River Media, 2005.

Robson, R. Using the STL: The C++ Standard Template Library, Second Edition. New York:
Springer, 2000.

Schildt, H. STL Programming from the Ground Up, New York: Osborne McGraw-Hill, 1999.

Stepanov, A., and M. Lee. “The Standard Template Library,” Internet Distribution 31 October
1995 <www.cs.rpi.edu/~musser/doc.ps>.

Stroustrup, B. “Making a vector Fit for a Standard,” The C++ Report, October 1994.

Stroustrup, B. The Design and Evolution of C++. Boston: Addison-Wesley, 1994.

Stroustrup, B. The C++ Programming Language, Third Edition. Boston: Addison-Wesley, 2000.

Vandevoorde, D., and N. Josuttis. C++ Templates: The Complete Guide. Boston: Addison-Wesley,
2003.

Vilot, M. J. “An Introduction to the Standard Template Library,” The C++ Report, Vol. 6, No. 8,
October 1994.

Wilson, M. Extended STL, Volume 1: Collections and Iterators. Boston: Addison-Wesley, 2007

www.cs.rpi.edu/~musser/doc.ps

23 Boost Libraries, Technical
Report 1 and C++0x

The danger from computers is
not that they will eventually get
as smart as men, but we will
meanwhile agree to meet them
halfway.
—Bernard Avishai

O b j e c t i v e s
In this chapter you’ll learn:

■ Future directions for C++.

■ What the Boost Libraries are.

■ A brief history of the Boost
open source project, how
new libraries are added to
Boost, and how to install
Boost.

■ To use Boost.Regex to
search for strings, validate
data and replace parts of
strings using regular
expressions.

■ To avoid memory leaks by
using Boost.Smart_ptr
to manage dynamic memory
allocation and deallocation.

■ What Boost (and other)
libraries are included in
Technical Report 1 (TR1)—a
description of the additions
to the C++ Standard Library.

■ The changes to the core
language and Standard
Library coming in the new
C++ Standard—C++0x.

23.1 Introduction 937

23.1 Introduction
Throughout the book, we’ve discussed many of the key features of the impending new
C++ Standard (C++0x). In this chapter, we introduce the Boost C++ Libraries and Tech-
nical Report 1 (TR1), and consider additional C++0x features. The Boost C++ Libraries
are free, open source libraries created by members of the C++ community. Boost provides
useful, well-designed libraries that work well with the existing C++ Standard Library.
Boost can be used on many platforms with many different compilers. We overview some
of the popular Boost libraries and provide code examples for the regular expression and
smart pointer libraries. Technical Report 1 describes the proposed changes to the C++
Standard Library, many of which are based on current Boost libraries. These libraries add
useful functionality to C++. C++0x is the working name for the next version of the C++
Standard. It includes some additions to the core language, many of the library additions
described in TR1 and other library enhancements.

23.2 Deitel Online C++ and Related Resource Centers
We regularly post online Resource Centers on key programming, software, Web 2.0 and
Internet business topics at www.deitel.com/ResourceCenters.html. We’ve created several
online Resource Centers that provide links to key information on Boost and C++0x. Visit
the C++ Boost Libraries Resource Center at www.deitel.com/CPlusPlusBoostLibraries/
to find current information on the available libraries and new releases. You can find current
information on TR1 and C++0x in the C++0x section of the C++ Resource Center at
www.deitel.com/cplusplus/ (click C++0x in the Categories list). We used GNU C++ 4.5
and Visual C++ 2010 Express Edition to compile the examples in this chapter.

23.3 Boost Libraries
The idea for an online repository of free, peer-reviewed, open source C++ libraries was first
proposed in a paper by Beman Dawes in 1998.1 He and Robert Klarer got the idea while

23.1 Introduction
23.2 Deitel Online C++ and Related

Resource Centers
23.3 Boost Libraries
23.4 Boost Libraries Overview
23.5 Regular Expressions with the regex

Library
23.5.1 Regular Expression Example
23.5.2 Validating User Input with Regular

Expressions
23.5.3 Replacing and Splitting Strings

23.6 Smart Pointers
23.6.1 Reference Counted shared_ptr
23.6.2 weak_ptr: shared_ptr Observer

23.7 Technical Report 1
23.8 C++0x
23.9 Core Language Changes

23.10 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. “Proposal for a C++ Library Repository Web Site,” Beman G. Dawes, May 6, 1998, www.boost.org/
users/proposal.pdf.

www.deitel.com/ResourceCenters.html
www.deitel.com/CPlusPlusBoostLibraries/
www.deitel.com/cplusplus/
www.boost.org/users/proposal.pdf
www.boost.org/users/proposal.pdf

938 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

attending a C++ Standards Committee meeting. The paper suggested a website where C++
programmers could find and share libraries and foster further C++ development. That idea
eventually developed into the Boost Libraries at www.boost.org. Boost has grown to over
100 libraries, with more being added frequently. Today there are thousands of program-
mers in the Boost community.

Adding a New Library to Boost
Boost accepts useful, well-designed, portable libraries from anyone willing to contribute.
Potential Boost libraries should conform to the C++ Standard and use the C++ Standard
Library—or other appropriate Boost libraries. There is a formal acceptance process to en-
sure that libraries meet Boost’s high quality and portability standards.

The community’s interest in a library is determined by posting to mailing lists and
reading the responses. If there is interest in a library, a preliminary submission of the
library is posted in the Boost Sandbox (svn.boost.org/svn/boost/sandbox/)—a code
repository for libraries that are under development. The Sandbox allows other users to
experiment with the library and provide feedback.

When the library is ready for a formal review, the code submission is posted to the
Sandbox Vault and a review manager is selected from a list of approved volunteers. The
review manager makes sure the code is ready for formal review, sets up the review schedule,
reads all user reviews, and makes the final decision whether or not to accept the library.
The review manager may accept the library with certain corrections or improvements that
must be implemented before the library is officially added to Boost. Once a library has
been accepted, the author is responsible for its maintenance.

The Boost Software License
The Boost Software License (www.boost.org/users/license.html) grants the rights to
copy, modify, use and distribute the Boost source code and binaries for any commercial
or noncommercial use. The only requirement is that the copyright and license information
be distributed with any source code that is made public, though it isn’t required that the
source code be released. These conditions allow the Boost libraries to be used in any ap-
plication. Every Boost library must conform to these conditions.

Installing the Boost Libraries
The Boost libraries can be used with minimal setup on many platforms and compilers.
BoostPro Computing offers a free installer for using Boost with Visual Studio at
www.boostpro.com/download. Most Linux distributions offer packages for Boost, though
it is sometimes split up into separate packages for the headers and libraries. An installation
guide available at www.boost.org/more/getting_started/index.html provides setup in-
structions for many compilers and platforms.

23.4 Boost Libraries Overview
There are many Boost libraries—too many to cover in this book. In this section, we over-
view some of the most useful and popular libraries. The ones listed here are part of the next
C++ standard—C++0x. In the following sections, we demonstrate two of these libraries as
implemented by using their implementations from the C++0x standard library.

www.boost.org
www.boost.org/users/license.html
www.boostpro.com/download
www.boost.org/more/getting_started/index.html

23.4 Boost Libraries Overview 939

Array 2

Boost.Array is a wrapper for fixed-size arrays that enhances built-in arrays by supporting
most of the STL container interface described in Section 22.1. Class array allows you to
use fixed-size arrays in STL applications rather than vectors (dynamically sized arrays),
which are not as efficient when there is no need for dynamic resizing. To use class array
with compilers that support this C++0x feature, include the <array> header.

Bind 3

Boost.Bind extends the functionality of the standard functions std::bind1st and
std::bind2nd. The bind1st and bind2nd functions are used to adapt binary functions (i.e.,
functions that take two arguments) to be used with the standard algorithms which take unary
functions (i.e., functions that take one argument). Class bind enhances that functionality by
allowing you to adapt functions that take up to nine arguments. Class bind also makes it easy
to reorder the arguments passed to the function using placeholders. To use class bind with
compilers that support this C++0x feature, include the <functional> header.

Function 4

Boost.Function allows you to store function pointers, member-function pointers and func-
tion objects in a function wrapper. A function can hold any function whose arguments and
return type can be converted to match the signature of the function wrapper. For example,
if the function wrapper was created to hold a function that takes a string and returns a
string, it can also hold a function that takes a char* and returns a char*, because a char*

can be converted to a string, using a conversion constructor. To use class function with
compilers that support this C++0x feature, include the <functional> header.

Random 5

Boost.Random allows you to create various random number generators and random number
distributions. The std::rand and std::srand functions in the C++ Standard Library gen-
erate pseudo-random numbers. A pseudo-random number generator uses an initial state to
produce seemingly random numbers—using the same initial state produces the same se-
quence of numbers. The rand function always uses the same initial state, therefore it produc-
es the same sequence of numbers every time. The function srand allows you to set the initial
state to vary the sequence. Pseudo-random numbers are often used in testing—the predict-
ability enables you to confirm the results. Boost.Random provides pseudo-random number
generators as well as generators that can produce nondeterministic random numbers—a set
of random numbers that can’t be predicted. Such random number generators are used in
simulations and security scenarios where predictability is undesirable.

Boost.Random also allows you to specify the distribution of the numbers generated. A
common distribution is the uniform distribution, which assigns the same probability to
each number within a given range. This is similar to rolling a die or flipping a coin—each
possible outcome is equally as likely. You can set this range at compile time. Boost.Random

2. Documentation for Boost.Array: www.boost.org/doc/libs/1_45_0/doc/html/array.html.
3. Documentation for Boost.Bind: www.boost.org/doc/libs/1_45_0/libs/bind/bind.html.
4. Documentation for Boost.Function: www.boost.org/doc/libs/1_45_0/doc/html/function.html.
5. Jens Maurer, “A Proposal to Add an Extensible Random Number Facility to the Standard Library,”

Document Number N1452, April 10, 2003, www.open-std.org/jtc1/sc22/wg21/docs/papers/
2003/n1452.html.

www.boost.org/doc/libs/1_45_0/doc/html/array.html
www.boost.org/doc/libs/1_45_0/libs/bind/bind.html
www.boost.org/doc/libs/1_45_0/doc/html/function.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1452.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1452.html

940 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

allows you to use a distribution in combination with any random number generator and
even create your own distributions. To use these new random-number capabilities with
compilers that support these C++0x features, include the <random> header.

Regex 6

Boost.Regex provides support for processing regular expressions in C++. Regular expres-
sions are used to match specific character patterns in text. Many modern programming
languages have built-in support for regular expressions, but C++ does not. With
Boost.Regex, you can search for a particular expression in a string, replace parts of a
string that match a regular expression, and split a string into tokens using regular ex-
pressions to define the delimiters. These techniques are commonly used for text process-
ing, parsing and input validation. To use regular expressions with compilers that support
this C++0x feature, include the <regex> header. We discuss some regular expression capa-
bilities in more detail in Section 23.5.

Smart_ptr 7

Boost.Smart_ptr defines smart pointers that help you manage dynamically allocated re-
sources (e.g., memory, files and database connections). Programmers often get confused
about when to deallocate memory or simply forget to do it, especially when the memory
is referenced by more than one pointer. Smart pointers take care of these tasks automati-
cally. TR1 includes several smart pointers from the Boost.Smart_ptr library. We dis-
cussed the unique_ptr class in Chapter 16. shared_ptrs handle lifetime management of
dynamically allocated objects. The memory is released when there are no shared_ptrs ref-
erencing it. weak_ptrs allow you to observe the value held by a shared_ptr without as-
suming any management responsibilities. We discuss the shared_ptr and weak_ptr in
more detail in Section 23.6. To use the smart pointer classes with compilers that support
these C++0x features, thisinclude the <regex> header.

Tuple 8

A tuple is a set of objects. Boost.Tuple allows you to create sets of objects in a generic way
and allows generic functions to act on those sets. The library allows you to create tuples of
up to 10 objects; that limit can be extended. Class tuple is basically an extension to the
STL’s std::pair class template. Tuples are often used to return multiple values from a
function. They can also be used to store sets of elements in an STL container where each
set of elements is an element of the container. Another useful feature is the ability to set
the values of variables using the elements of a tuple. To use class tuple with compilers that
support this C++0x feature, include the <tuple> header.

Type_traits 9

The Boost.Type_traits library helps abstract the differences between types to allow ge-
neric programming implementations to be optimized. The type_traits classes allow you

6. Documentation for Boost.Regex: www.boost.org/doc/libs/1_45_0/libs/regex/doc/html/.
7. Documentation for Boost.Smart_ptr: www.boost.org/doc/libs/1_45_0/libs/smart_ptr/

smart_ptr.htm.
8. Documentation for Boost.Tuple: www.boost.org/doc/libs/1_45_0/libs/tuple/doc/tuple_

users_guide.html.
9. Documentation for Boost.Type_traits, Steve Cleary, Beman Dawes, Howard Hinnant and John

Maddock, www.boost.org/doc/libs/1_45_0/libs/type_traits/doc/html/index.html.

www.boost.org/doc/libs/1_45_0/libs/regex/doc/html/
www.boost.org/doc/libs/1_45_0/libs/smart_ptr/smart_ptr.htm
www.boost.org/doc/libs/1_45_0/libs/smart_ptr/smart_ptr.htm
www.boost.org/doc/libs/1_45_0/libs/tuple/doc/tuple_users_guide.html
www.boost.org/doc/libs/1_45_0/libs/tuple/doc/tuple_users_guide.html
www.boost.org/doc/libs/1_45_0/libs/type_traits/doc/html/index.html

23.5 Regular Expressions with the regex Library 941

to determine specific traits of a type (e.g., is it a pointer or a reference type, or does the
type have a const qualifier?) and perform type transformations to allow the object to be
used in generic code. Such information can be used to optimize generic code. For example,
sometimes it is more efficient to copy a collection of objects using the C function memcpy

rather than by iterating through all the elements of the collection, as the STL copy algo-
rithm does. With the Boost.Type_traits library, generic algorithms can be optimized by
first checking the traits of the types being processed, then performing the algorithm ac-
cordingly. C++0x compilers that support these features include them in the
<type_traits> header.

23.5 Regular Expressions with the regex Library
[Note: The C++0x library features used in this section’s examples were not fully imple-
mented in GNU C++ at the time of this writing. For now, if you wish to use these features
in GNU C++, you can install the Boost version of the regular expressions library as dis-
cussed in Section 23.3]

Regular expressions are specially formatted strings that are used to find patterns in text.
They can be used to validate data to ensure that it is in a particular format. For example, a
zip code must consist of five digits, and a last name must start with a capital letter.

The std::tr1::regex library (from header <regex>) provides several classes and
algorithms (in namespce std::tr1) for recognizing and manipulating regular expressions.
Class template basic_regex represents a regular expression. The algorithm regex_match

returns true if a string matches the regular expression. With regex_match, the entire
string must match the regular expression. The regex library also provides the algorithm
regex_search, which returns true if any part of an arbitrary string matches the regular
expression.

Regular Expression Character Classes
The table in Fig. 23.1 specifies some character classes that can be used with regular expres-
sions. A character class is not a C++ class—rather it’s simply an escape sequence that rep-
resents a group of characters that might appear in a string.

A word character is any alphanumeric character or underscore. A whitespace character
is a space, tab, carriage return, newline or form feed. A digit is any numeric character. Reg-
ular expressions are not limited to the character classes in Fig. 23.1. In Fig. 23.2, you’ll see
that regular expressions can use other notations to search for complex patterns in strings.

Character class Matches
Character
class Matches

\d any decimal digit \D any non-digit

\w any word character \W any non-word character

\s any whitespace charac-
ter

\S any non-whitespace charac-
ter

Fig. 23.1 | Character classes.

942 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

23.5.1 Regular Expression Example
The program in Fig. 23.2 tries to match birthdays to a regular expression. For demonstra-
tion purposes, the expression in line 11 matches only birthdays that do not occur in April
and that belong to people whose names begin with "J".

Creating the Regular Expression
Line 11 creates a regex object by passing a regular expression to the regex constructor. The
name regex is a typedef of the basic_regex class template that uses chars. We precede each
backslash character in the initializer string with an additional backslash. Recall that C++
treats a backslash in a string literal as the beginning of an escape sequence. To insert a literal
backslash in a string, you must escape the backslash character with another backslash. For
example, the character class \d must be represented as \\d in a C++ string literal.

The first character in the regular expression, "J", is a literal character. Any string

matching this regular expression is required to start with "J". In a regular expression, the

1 // Fig. 23.2: fig23_02.cpp
2 // Demonstrating regular expressions.
3 #include <iostream>
4 #include <string>
5 #include <regex>
6 using namespace std; // allows use of features in both std and std::tr1
7
8 int main()
9 {

10 // create a regular expression
11
12
13 // create a string to be tested
14 string string1 = "Jane's Birthday is 05-12-75\n"
15 "Dave's Birthday is 11-04-68\n"
16 "John's Birthday is 04-28-73\n"
17 "Joe's Birthday is 12-17-77";
18
19
20
21
22 // match regular expression to string and print out all matches
23 while (
24)
25 {
26 cout << << endl; // print the matching string
27
28 // remove the matched substring from the string
29
30 } // end while
31 } // end function main

Jane's Birthday is 05-12-75
Joe's Birthday is 12-17-77

Fig. 23.2 | Regular expressions checking birthdays.

regex expression("J.*\\d[0-35-9]-\\d\\d-\\d\\d");

// create an smatch object to hold the search results
smatch match;

regex_search(string1, match, expression,
regex_constants::match_not_dot_newline)

match.str()

string1 = match.suffix();

23.5 Regular Expressions with the regex Library 943

dot character "." matches any single character. When the dot character is followed by an
asterisk, as in ".*", the regular expression matches any number of unspecified characters.
In general, when the operator "*" is applied to a pattern, the pattern will match zero or
more occurrences. By contrast, applying the operator "+" to a pattern causes the pattern to
match one or more occurrences. For example, both "A*" and "A+" will match "A", but only
"A*" will match an empty string.

As indicated in Fig. 23.1, "\d" matches any decimal digit. To specify sets of characters
other than those that belong to a predefined character class, characters can be listed in square
brackets, []. For example, the pattern "[aeiou]" matches any vowel. Ranges of characters
are represented by placing a dash (-) between two characters. In the example, "[0-35-9]"
matches only digits in the ranges specified by the pattern—i.e., any digit between 0 and 3 or
between 5 and 9; therefore, the pattern matches any digit except 4. You can also specify that
a pattern should match anything other than the characters in the brackets. To do so, place ^
as the first character in the brackets. It is important to note that "[^4]" is not the same as
"[0-35-9]"; "[^4]" matches any non-digit and digits other than 4.

Although the "–" character indicates a range when it is enclosed in square brackets,
instances of the "-" character outside grouping expressions are treated as literal characters.
Thus, the regular expression in line 11 searches for a string that starts with the letter “J”,
followed by any number of characters, followed by a two-digit number (of which the
second digit cannot be 4), followed by a dash, another two-digit number, a dash and
another two-digit number.

Using the Regular Expression to Search for Matches
Line 20 creates an smatch (pronounced “ess-match”; a typedef for match_results) ob-
ject. A match_results object, when passed as an argument to one of the regex algorithms,
stores the regular expression’s match. An smatch stores an object of type
string::const_iterator that you can use to access the matching string. There are ty-

pedefs to support other string representations such as const char* (cmatch).
The while statement (lines 23–30) searches string1 for matches to the regular

expression until none can be found. We use the call to regex_search as the while state-
ment condition (lines 23–24). regex_search returns true if the string (string1) con-
tains a match to the regular expression (expression). We also pass an smatch object to
regex_search so we can access the matching string. The last argument, match_not_eol,
prevents the "." character from matching a newline character. The body of the while

statement prints the substring that matched the regular expression by callig the match
object’s str function (line 26) and removes it from the string being searched by calling
the match object’s suffix function and assigning its result back to string1 (line 29). The
call to the match_results member function suffix returns a string from the end of the
match to the end of the string being searched. The output in Fig. 23.2 displays the two
matches that were found in string1. Notice that both matches conform to the pattern
specified by the regular expression.

Quantifiers
The asterisk (*) in line 11 of Fig. 23.2 is more formally called a quantifier. Figure 23.3
lists various quantifiers that you can place after a pattern in a regular expression and the
purpose of each quantifier.

944 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

We’ve already discussed how the asterisk (*) and plus (+) quantifiers work. The ques-
tion mark (?) quantifier matches zero or one occurrences of the pattern that it quantifies.
A set of braces containing one number, {n}, matches exactly n occurrences of the pattern
it quantifies. We demonstrate this quantifier in the next example. Including a comma after
the number enclosed in braces matches at least n occurrences of the quantified pattern.
The set of braces containing two numbers, {n,m}, matches between n and m occurrences
(inclusively) of the pattern that it quantifies. All of the quantifiers are greedy—they’ll
match as many occurrences of the pattern as possible until the pattern fails to make a
match. If a quantifier is followed by a question mark (?), the quantifier becomes lazy and
will match as few occurrences as possible as long as there is a successful match.

23.5.2 Validating User Input with Regular Expressions
The program in Fig. 23.4 presents a more involved example that uses regular expressions
to validate name, address and telephone number information input by a user.

Quantifier Matches

* Matches zero or more occurrences of the preceding pattern.

+ Matches one or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

{n} Matches exactly n occurrences of the preceding pattern.

{n,} Matches at least n occurrences of the preceding pattern.

{n,m} Matches between n and m (inclusive) occurrences of the pre-
ceding pattern.

Fig. 23.3 | Quantifiers used in regular expressions.

1 // Fig. 23.4: fig23_04.cpp
2 // Validating user input with regular expressions.
3 #include <iostream>
4 #include <string>
5 #include <regex>
6 using namespace std;
7
8 bool validate(const string&, const string&); // validate prototype
9 string inputData(const string&, const string&); // inputData prototype

10
11 int main()
12 {
13 // enter the last name
14
15
16 // enter the first name
17
18

Fig. 23.4 | Validating user input with regular expressions. (Part 1 of 3.)

string lastName = inputData("last name", "[A-Z][a-zA-Z]*");

string firstName = inputData("first name", "[A-Z][a-zA-Z]*");

23.5 Regular Expressions with the regex Library 945

19 // enter the address
20
21
22
23 // enter the city
24
25
26
27 // enter the state
28
29
30
31 // enter the zip code
32
33
34 // enter the phone number
35
36
37
38 // display the validated data
39 cout << "\nValidated Data\n\n"
40 << "Last name: " << lastName << endl
41 << "First name: " << firstName << endl
42 << "Address: " << address << endl
43 << "City: " << city << endl
44 << "State: " << state << endl
45 << "Zip code: " << zipCode << endl
46 << "Phone number: " << phoneNumber << endl;
47 } // end of function main
48
49 // validate the data format using a regular expression
50 bool validate(const string &data, const string &expression)
51 {
52 // create a regex to validate the data
53
54
55 } // end of function validate
56
57 // collect input from the user
58 string inputData(const string &fieldName, const string &expression)
59 {
60 string data; // store the data collected
61
62 // request the data from the user
63 cout << "Enter " << fieldName << ": ";
64 getline(cin, data);
65
66 // validate the data
67
68 {
69 cout << "Invalid " << fieldName << ".\n";
70 cout << "Enter " << fieldName << ": ";

Fig. 23.4 | Validating user input with regular expressions. (Part 2 of 3.)

string address = inputData("address",
"[0-9]+\\s+([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

string city =
inputData("city", "([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

string state = inputData("state",
"([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

string zipCode = inputData("zip code", "\\d{5}");

string phoneNumber = inputData("phone number",
"[1-9]\\d{2}-[1-9]\\d{2}-\\d{4}");

regex validationExpression = regex(expression);
return regex_match(data, validationExpression);

while (!(validate(data, expression)))

946 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

The program first asks the user to input a last name (line 14) by calling the inputData
function. The inputData function (lines 58–75) takes two arguments, the name of the
data being input and a regular expression that it must match. The function prompts the
user (line 63) to input the specified data. Then inputData checks whether the input is in
the correct format by calling the validate function (lines 50–55). That function takes two
arguments—the string to validate and the regular expression it must match. The func-
tion first uses the expression to create a regex object (line 53). Then it calls regex_match
to determine whether the string matches the expression. If the input isn’t valid, input-
Data prompts the user to enter the information again. Once the user enters a valid input,
the data is returned as a string. The program repeats that process until all the data fields
have been validated (lines 14–36). Then we display all the information (lines 39–46).

In the previous example, we searched a string for substrings that matched a regular
expression. In this example, we want to ensure that the entire string for each input con-
forms to a particular regular expression. For example, we want to accept "Smith" as a last
name, but not "9@Smith#". We use regex_match here instead of regex_search—
regex_match returns true only if the entire string matches the regular expression. Alter-
natively, you can use a regular expression that begins with a "^" character and ends with
a "$" character. The characters "^" and "$" represent the beginning and end of a string,

71 getline(cin, data);
72 } // end while
73
74 return data;
75 } // end of function inputData

Enter last name: 12345
Invalid last name.
Enter last name: Blue
Enter first name: Betty
Enter address: 123
Invalid address.
Enter address: 123 Main Street
Enter city: SomeCity
Enter state: SomeState
Enter zip code: 1
Invalid zip code.
Enter zip code: 55555
Enter phone number: 555-555-123
Invalid phone number.
Enter phone number: 555-555-1234

Validated Data

Last name: Blue
First name: Betty
Address: 123 Main Street
City: SomeCity
State: SomeState
Zip code: 55555
Phone number: 555-555-1234

Fig. 23.4 | Validating user input with regular expressions. (Part 3 of 3.)

23.5 Regular Expressions with the regex Library 947

respectively. Together, these characters force a regular expression to return a match only if
the entire string being processed matches the regular expression.

The regular expression in line 14 uses the square bracket and range notation to match
an uppercase first letter followed by letters of any case—a-z matches any lowercase letter,
and A-Z matches any uppercase letter. The * quantifier signifies that the second range of
characters may occur zero or more times in the string. Thus, this expression matches any
string consisting of one uppercase letter, followed by zero or more additional letters.

The notation \s matches a single white-space character (lines 21, 25 and 29). The
expression \d{5}, used for the zipCode string (line 32), matches any five digits. The char-
acter "|" (lines 21, 25 and 29) matches the expression to its left or the expression to its right.
For example, Hi (John|Jane) matches both Hi John and Hi Jane. In line 21, we use the
character "|" to indicate that the address can contain a word of one or more characters or a
word of one or more characters followed by a space and another word of one or more char-
acters. Note the use of parentheses to group parts of the regular expression. Quantifiers may
be applied to patterns enclosed in parentheses to create more complex regular expressions.

The lastName and firstName variables (lines 14 and 17) both accept strings of any
length that begin with an uppercase letter. The regular expression for the address string

(line 21) matches a number of at least one digit, followed by a space, then either one or
more letters or else one or more letters followed by a space and another series of one or
more letters. Therefore, "10 Broadway" and "10 Main Street" are both valid addresses. As
currently formed, the regular expression in line 21 doesn’t match an address that does not
start with a number, or that has more than two words. The regular expressions for the city
(line 25) and state (line 29) strings match any word of at least one character or, alter-
natively, any two words of at least one character if the words are separated by a single space.
This means both Waltham and West Newton would match. Again, these regular expressions
would not accept names that have more than two words. The regular expression for the
zipCode string (line 32) ensures that the zip code is a five-digit number. The regular
expression for the phoneNumber string (line 36) indicates that the phone number must be
of the form xxx-yyy-yyyy, where the xs represent the area code and the ys the number.
The first x and the first y cannot be zero, as specified by the range [1–9] in each case.

23.5.3 Replacing and Splitting Strings
Sometimes it’s useful to replace parts of one string with another or to split a string ac-
cording to a regular expression. For this purpose, the regex library provides the algorithm
regex_replace and the regex_token_iterator class, which we demonstrate in Fig. 23.5.

1 // Fig. 23.5: fig23_05.cpp
2 // Using regex_replace algorithm.
3 #include <iostream>
4 #include <string>
5 #include <regex>
6 using namespace std;
7
8 int main()
9 {

Fig. 23.5 | Using regex_replace algorithm. (Part 1 of 3.)

948 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

10 // create the test strings
11 string testString1 = "This sentence ends in 5 stars *****";
12 string testString2 = "1, 2, 3, 4, 5, 6, 7, 8";
13 string output;
14
15 cout << "Original string: " << testString1 << endl;
16
17 // replace every * with a ^
18
19
20 cout << "^ substituted for *: " << testString1 << endl;
21
22 // replace "stars" with "carets"
23
24
25 cout << "\"carets\" substituted for \"stars\": "
26 << testString1 << endl;
27
28 // replace every word with "word"
29
30
31 cout << "Every word replaced by \"word\": " << testString1 << endl;
32
33 // replace the first three digits with "digit"
34 cout << "\nOriginal string: " << testString2 << endl;
35
36
37 for (int i = 0; i < 3; ++i) // loop three times
38 {
39
40
41 } // end for
42
43 cout << "Replace first 3 digits by \"digit\": "
44 << testString2Copy << endl;
45
46 // split the string at the commas
47 cout << "string split at commas [";
48
49
50
51
52
53
54 while () // tokenIterator isn’t empty
55 {
56 output += "\"" + + "\", ";
57 // advance the iterator
58 } // end while
59
60 // delete the ", " at the end of output string
61 cout << output.substr(0, output.length() - 2) << "]" << endl;
62 } // end of function main

Fig. 23.5 | Using regex_replace algorithm. (Part 2 of 3.)

testString1 =
regex_replace(testString1, regex("*"), string("^"));

testString1 =
regex_replace(testString1, regex("stars"), string("carets"));

testString1 =
regex_replace(testString1, regex("\\w+"), string("word"));

string testString2Copy = testString2;

testString2Copy = regex_replace(testString2Copy,
regex("\\d"), "digit", regex_constants::format_first_only);

regex splitter(",\\s"); // regex to split a string at commas
sregex_token_iterator tokenIterator(testString2.begin(),

testString2.end(), splitter, -1); // token iterator
sregex_token_iterator end; // empty iterator

tokenIterator != end

(*tokenIterator).str()
++tokenIterator;

23.5 Regular Expressions with the regex Library 949

Replacing Substrings with regex_replace
Algorithm regex_replace replaces text in a string with new text wherever the original
string matches a regular expression. In line 19, regex_replace replaces every instance of
"*" in testString1 with "^". The regular expression ("*") precedes character "*" with
a backslash, \. Typically, "*" is a quantifier indicating that a regular expression should
match any number of occurrences of a preceding pattern. However, in this case we want
to find all occurrences of the literal character "*"; to do this, we must escape character "*"
with character "\". By escaping a special regular expression character with a \, we tell the
regular expression matching engine to find the actual character "*" rather than use it as a
quantifier. Also, the first and last arguments to this version of function regex_replace must
be strings. Lines 23–24 use regex_replace to replace the string "stars" in testString1

with the string "carets". Lines 29–30 use regex_replace to replace every word in
testString1 with the string "word".

Lines 37–41 replace the first three instances of a digit ("\d") in testString2 with the
text "digit". We pass regex_constants::format_first_only as an additional argument
to regex_replace (lines 39–40). This argument tells regex_replace to replace only the
first substring that matches the regular expression. Normally regex_replace would
replace all occurrences of the pattern. We put this call inside a for loop that runs three
times; each time replacing the first instance of a digit with the text "digit". We use a copy
of testString2 (line 35) so we can use the original textString2 for the next part of the
example.

Obtaining Substrings with a regex_token_iterator
Next we use a regex_token_iterator to divide a string into several substrings. A
regex_token_iterator iterates through the parts of a string that match a regular expres-
sion. Lines 49 and 51 use sregex_token_iterator, which is a typedef that indicates the
results are to be manipulated with a string::const_iterator. We create the iterator
(lines 49–50) by passing the constructor two iterators (testString2.begin() and
testString2.end()), which represent the beginning and end of the string to iterate over
and the regular expression to look for. In our case we want to iterate over the parts of the
string that don’t match the regular expression. To do that we pass -1 to the constructor.
This indicates that it should iterate over each substring that doesn’t match the regular ex-
pression. The original string is broken at delimiters that match the specified regular ex-
pression. We use a while statement (lines 53–57) to add each substring to the string

output. The regex_token_iterator end (line 51) is an empty iterator. We’ve iterated
over the entire string when tokenIterator equals end (line 53).

Original string: This sentence ends in 5 stars *****
^ substituted for *: This sentence ends in 5 stars ^^^^^
"carets" substituted for "stars": This sentence ends in 5 carets ^^^^^
Every word replaced by "word": word word word word word word ^^^^^

Original string: 1, 2, 3, 4, 5, 6, 7, 8
Replace first 3 digits by "digit": digit, digit, digit, 4, 5, 6, 7, 8
string split at commas ["1", "2", "3", "4", "5", "6", "7", "8"]

Fig. 23.5 | Using regex_replace algorithm. (Part 3 of 3.)

950 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

23.6 Smart Pointers
[Note: The C++0x library features used in this section’s examples work in both Microsoft
Visual C++ 2010 Express and GNU C++ 4.5. GNU C++ considers these features experi-
mental and requires you to use the command line option -std:c++0x to compile the ex-
amples correctly.]

Many common bugs in C and C++ code are related to pointers. Smart pointers help you
avoid errors by providing additional functionality to standard pointers. This functionality
typically strengthens the process of memory allocation and deallocation. Smart pointers
also help you write exception safe code. If a program throws an exception before delete

has been called on a pointer, it creates a memory leak. After an exception is thrown, a smart
pointer’s destructor will still be called, which calls delete on the pointer for you.

Section 16.11 showed one of the smart pointer classes—unique_ptr—which is
responsible for managing dynamically allocated memory. A unique_ptr automatically
calls delete to free its associated dynamic memory when the unique_ptr is destroyed or
goes out of scope. A unique_ptr is a basic smart pointer. C++0x provides other smart
pointer options with additional functionality.

23.6.1 Reference Counted shared_ptr
shared_ptrs (from header <memory> hold an internal pointer to a resource (e.g., a dynam-
ically allocated object) that may be shared with other objects in the program. You can have
any number of shared_ptrs to the same resource. shared_ptrs really do share the re-
source—if you change the resource with one shared_ptr, the changes also will be “seen”
by the other shared_ptrs. The internal pointer is deleted once the last shared_ptr to the
resource is destroyed. shared_ptrs use reference counting to determine how many
shared_ptrs point to the resource. Each time a new shared_ptr to the resource is created,
the reference count increases, and each time one is destroyed, the reference count decreas-
es. When the reference count reaches zero, the internal pointer is deleted and the memory
is released.

shared_ptrs are useful in situations where multiple pointers to the same resource are
needed, such as in STL containers. shared_ptrs can safely be copied and used in STL con-
tainers.

shared_ptrs also allow you to determine how the resource will be destroyed. For most
dynamically allocated objects, delete is used. However, some resources require more
complex cleanup. In that case, you can supply a custom deleter function, or function
object, to the shared_ptr constructor. The deleter determines how to destroy the
resource. When the reference count reaches zero and the resource is ready to be destroyed,
the shared_ptr calls the custom deleter function. This functionality enables a shared_ptr
to manage almost any kind of resource.

Example Using shared_ptr
Figures 23.6–23.7 define a simple class to represent a Book with a string to represent the
title of the Book. The destructor for class Book (Fig. 23.7, lines 12–15) displays a message
on the screen indicating that an instance is being destroyed. We use this class to demon-
strate the common functionality of shared_ptr.

23.6 Smart Pointers 951

Creating shared_ptrs
The program in Fig. 23.8 uses shared_ptrs (from the header <memory>) to manage several
instances of class Book. We also create a typedef, BookPtr, as an alias for the type
shared_ptr<Book> (line 10). Line 28 creates a shared_ptr to a Book titled "C++ How to

Program" (using the BookPtr typedef). The shared_ptr constructor takes as its argument
a pointer to an object. We pass it the pointer returned from the new operator. This creates
a shared_ptr that manages the Book object and sets the reference count to one. The con-
structor can also take another shared_ptr, in which case it shares ownership of the re-
source with the other shared_ptr and the reference count is increased by one. The first
shared_ptr to a resource should always be created using the new operator. A shared_ptr

created with a regular pointer assumes it’s the first shared_ptr assigned to that resource
and starts the reference count at one. If you make multiple shared_ptrs with the same
pointer, the shared_ptrs won’t acknowledge each other and the reference count will be
wrong. When the shared_ptrs are destroyed, they both call delete on the resource.

1 // Fig. 23.6: Book.h
2 // Declaration of class Book.
3 #ifndef BOOK_H
4 #define BOOK_H
5 #include <string>
6 using namespace std;
7
8 class Book
9 {

10 public:
11 Book(const string &bookTitle); // constructor
12 ~Book(); // destructor
13 string title; // title of the Book
14 };
15 #endif // BOOK_H

Fig. 23.6 | Book header.

1 // Fig. 23.7: Book.cpp
2 // Member-function definitions for class Book.
3 #include <iostream>
4 #include <string>
5 #include "Book.h"
6 using namespace std;
7
8 Book::Book(const string &bookTitle) : title(bookTitle)
9 {

10 }
11
12 Book::~Book()
13 {
14
15 } // end of destructor

Fig. 23.7 | Book member-function definitions.

cout << "Destroying Book: " << title << endl;

952 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

1 // Fig. 23.8: fig23_08.cpp
2 // Demonstrate shared_ptrs.
3 #include <algorithm>
4 #include <iostream>
5
6 #include <vector>
7 #include "Book.h"
8 using namespace std;
9

10
11
12 // a custom delete function for a pointer to a Book
13 void deleteBook(Book* book)
14 {
15 cout << "Custom deleter for a Book, ";
16 delete book; // delete the Book pointer
17 } // end of deleteBook
18
19 // compare the titles of two Books for sorting
20 bool compareTitles(BookPtr bookPtr1, BookPtr bookPtr2)
21 {
22 return (bookPtr1->title < bookPtr2->title);
23 } // end of compareTitles
24
25 int main()
26 {
27 // create a shared_ptr to a Book and display the reference count
28
29 cout << "Reference count for Book " << << " is: "
30 << << endl;
31
32 // create another shared_ptr to the Book and display reference count
33
34 cout << "Reference count for Book " << bookPtr->title << " is: "
35 << bookPtr.use_count() << endl;
36
37 // change the Book’s title and access it from both pointers
38
39 cout << "The Book's title changed for both pointers: "
40 << "\nbookPtr: " << bookPtr->title
41 << "\nbookPtr2: " << bookPtr2->title << endl;
42
43 // create a std::vector of shared_ptrs to Books (BookPtrs)
44
45
46
47
48
49
50 // print the Books in the vector
51 cout << "\nBooks before sorting: " << endl;
52 for (int i = 0; i < books.size(); ++i)
53 cout << (books[i])->title << "\n";

Fig. 23.8 | shared_ptr example program. (Part 1 of 2.)

#include <memory>

typedef shared_ptr< Book > BookPtr; // shared_ptr to a Book

BookPtr bookPtr(new Book("C++ How to Program"));
bookPtr->title

bookPtr.use_count()

BookPtr bookPtr2(bookPtr);

bookPtr2->title = "Java How to Program";

vector< BookPtr > books;
books.push_back(BookPtr(new Book("C How to Program")));
books.push_back(BookPtr(new Book("VB How to Program")));
books.push_back(BookPtr(new Book("C# How to Program")));
books.push_back(BookPtr(new Book("C++ How to Program")));

23.6 Smart Pointers 953

Manipulating shared_ptrs
Lines 29–30 display the Book’s title and the number of shared_ptrs referencing that in-
stance. Notice that we use the -> operator to access the Book’s data member title, as we
would with a regular pointer. shared_ptrs provide the pointer operators * and ->. We get
the reference count using the shared_ptr member function use_count, which returns the
number of shared_ptrs to the resource. Then we create another shared_ptr to the in-
stance of class Book (line 33). Here we use use the shared_ptr constructor with the orig-

54
55 // sort the vector by Book title and print the sorted vector
56
57 cout << "\nBooks after sorting: " << endl;
58 for (int i = 0; i < books.size(); ++i)
59 cout << (books[i])->title << "\n";
60
61 // create a shared_ptr with a custom deleter
62 cout << "\nshared_ptr with a custom deleter." << endl;
63
64
65
66 // shared_ptrs are going out of scope
67 cout << "\nAll shared_ptr objects are going out of scope." << endl;
68 } // end of main

Reference count for Book C++ How to Program is: 1
Reference count for Book C++ How to Program is: 2

The Book's title changed for both pointers:
bookPtr: Java How to Program
bookPtr2: Java How to Program

Books before sorting:
C How to Program
VB How to Program
C# How to Program
C++ How to Program

Books after sorting:
C How to Program
C# How to Program
C++ How to Program
VB How to Program

shared_ptr with a custom deleter.
Custom deleter for a Book, Destroying Book: Small C++ How to Program

All shared_ptr objects are going out of scope.
Destroying Book: C How to Program
Destroying Book: C# How to Program
Destroying Book: C++ How to Program
Destroying Book: VB How to Program
Destroying Book: Java How to Program

Fig. 23.8 | shared_ptr example program. (Part 2 of 2.)

sort(books.begin(), books.end(), compareTitles);

BookPtr bookPtr3(new Book("Small C++ How to Program"), deleteBook);
bookPtr3.reset(); // release the Book this shared_ptr manages

954 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

inal shared_ptr as its argument. You can also use the assignment operator (=) to create a
shared_ptr to the same resource. Lines 34–35 print the reference count of the original
shared_ptr to show that the count increased by one when we created the second
shared_ptr. As mentioned earlier, changes made to the resource of a shared_ptr are
“seen” by all shared_ptrs to that resource. When we change the title of the Book using
bookPtr2 (line 38), we can see the change when using bookPtr (lines 39–41).

Manipulating shared_ptrs in an STL Container
Next we demonstrate using shared_ptrs in an STL container. We create a vector of
BookPtrs (line 44) and add four elements (recall that BookPtr is a typedef for a
shared_ptr<Book>, line 10). Lines 51–53 print the contents of the vector. Then we sort
the Books in the vector by title (line 56). We use the function compareTitles (lines 20–
23) in the sort algorithm to compare the title data members of each Book alphabetically.

shared_ptr Custom Deleter
Line 63 creates a shared_ptr with a custom deleter. We define the custom deleter func-
tion deleteBook (lines 13–17) and pass it to the shared_ptr constructor along with a
pointer to a new instance of class Book. When the shared_ptr destroys the instance of class
Book, it calls deleteBook with the internal Book * as the argument. Notice that delete-
Book takes a Book *, not a shared_ptr. A custom deleter function must take one argument
of the shared_ptr’s internal pointer type. deleteBook displays a message to show that the
custom deleter was called, then deletes the pointer. A primary use for custom deleters is
when using third-party C libraries. Rather than providing a class with a constructor and
destructor as a C++ library would, C libraries frequently provide one function that returns
a pointer to a struct representing a resource and another that does the necessary cleanup
when the resource is no longer needed. Using a custom deleter allows you to use a
shared_ptr to keep track of the resource and still ensure it is freed correctly.

Resetting a shared_ptr
We call the shared_ptr member function reset (line 64) to show the custom deleter at
work. The reset function releases the current resource and sets the shared_ptr to NULL.
If there are no other shared_ptrs to the resource, it’s destroyed. You can also pass a point-
er or shared_ptr representing a new resource to the reset function, in which case the
shared_ptr will manage the new resource. But, as with the constructor, you should only
use a regular pointer returned by the new operator.

shared_ptrs Are Destroyed When They Go Out of Scope
All the shared_ptrs and the vector go out of scope at the end of the main function and
are destroyed. When the vector is destroyed, so are the shared_ptrs in it. The program
output shows that each instance of class Book is destroyed automatically by the
shared_ptrs. There is no need to delete each pointer placed in the vector.

23.6.2 weak_ptr: shared_ptr Observer
A weak_ptr points to the resource managed by a shared_ptr without assuming any re-
sponsibility for it. The reference count for a shared_ptr doesn’t increase when a weak_ptr
references it. That means that the resource of a shared_ptr can be deleted while there are

23.6 Smart Pointers 955

still weak_ptrs pointing to it. When the last shared_ptr is destroyed, the resource is de-
leted and any remaining weak_ptrs are set to NULL. One use for weak_ptrs, as we’ll dem-
onstrate later in this section, is to avoid memory leaks caused by circular references.

A weak_ptr can’t directly access the resource it points to—you must create a
shared_ptr from the weak_ptr to access the resource. There are two ways to do this. You
can pass the weak_ptr to the shared_ptr constructor. That creates a shared_ptr to the
resource being pointed to by the weak_ptr and properly increases the reference count. If
the resource has already been deleted, the shared_ptr constructor will throw a
bad_weak_ptr exception. You can also call the weak_ptr member function lock, which
returns a shared_ptr to the weak_ptr’s resource. If the weak_ptr points to a deleted
resource (i.e., NULL), lock will return an empty shared_ptr (i.e., a shared_ptr to NULL).
lock should be used when an empty shared_ptr isn’t considered an error. You can access
the resource once you have a shared_ptr to it. weak_ptrs should be used in any situation
where you need to observe the resource but don’t want to assume any management respon-
sibilities for it. The following example demonstrates the use of weak_ptrs in circularly ref-
erential data, a situation in which two objects refer to each other internally.

Example Using weak_ptr
Figures 23.9–23.12 define classes Author and Book. Each class has a pointer to an instance
of the other class. This creates a circular reference between the two classes. Note that we
use both weak_ptrs and shared_ptrs to hold the cross reference to each class (Fig. 23.9
and 23.10, lines 20–21 in each figure). If we set the shared_ptrs, it creates a memory
leak—we’ll explain why soon and show how we can use the weak_ptrs to fix this problem.

1 // Fig. 23.9: Author.h
2 // Definition of class Author.
3 #ifndef AUTHOR_H
4 #define AUTHOR_H
5 #include <string>
6
7
8 using namespace std;
9

10 class Book; // forward declaration of class Book
11
12 // Author class definition
13 class Author
14 {
15 public:
16 Author(const string &authorName); // constructor
17 ~Author(); // destructor
18 void printBookTitle(); // print the title of the Book
19 string name; // name of the Author
20
21
22 };
23 #endif // AUTHOR_H

Fig. 23.9 | Author class definition.

#include <memory>

weak_ptr< Book > weakBookPtr; // Book the Author wrote
shared_ptr< Book > sharedBookPtr; // Book the Author wrote

956 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

Classes Author and Book define destructors that each display a message to indicate
when an instance of either class is destroyed (Figs. 23.11 and 23.12, lines 15–18). Each
class also defines a member function to print the title of the Book and Author’s name

(lines 21–34 in each figure). Recall that you can’t access the resource directly through a
weak_ptr, so first we create a shared_ptr from the weak_ptr data member (line 24 in each
figure). If the resource the weak_ptr is referencing doesn’t exist, the call to the lock func-
tion returns a shared_ptr which points to NULL and the condition fails. Otherwise, the
new shared_ptr contains a valid pointer to the weak_ptr’s resource, and we can access the
resource. If the condition in line 24 is true (i.e., bookPtr and authorPtr aren’t NULL), we
print the reference count to show that it increased with the creation of the new
shared_ptr, then we print the title of the Book and Author’s name. The shared_ptr is
destroyed when the function exits so the reference count decreases by one.

1 // Fig. 23.10: Book.h
2 // Definition of class Book.
3 #ifndef BOOK_H
4 #define BOOK_H
5 #include <string>
6
7
8 using namespace std;
9

10 class Author; // forward declaration of class Author
11
12 // Book class definition
13 class Book
14 {
15 public:
16 Book(const string &bookTitle); // constructor
17 ~Book(); // destructor
18 void printAuthorName(); // print the name of the Author
19 string title; // title of the Book
20
21
22 };
23 #endif // BOOK_H

Fig. 23.10 | Book class definition.

1 // Fig. 23.11: Author.cpp
2 // Member-function definitions for class Author.
3 #include <iostream>
4 #include <string>
5 #include <memory>
6 #include "Author.h"
7 #include "Book.h"
8
9 using namespace std;

10

Fig. 23.11 | Author member-function definitions. (Part 1 of 2.)

#include <memory>

weak_ptr< Author > weakAuthorPtr; // Author of the Book
shared_ptr< Author > sharedAuthorPtr; // Author of the Book

23.6 Smart Pointers 957

11 Author::Author(const string &authorName) : name(authorName)
12 {
13 }
14
15 Author::~Author()
16 {
17
18 } // end of destructor
19
20 // print the title of the Book this Author wrote
21 void Author::printBookTitle()
22 {
23 // if weakBookPtr.lock() returns a non-empty shared_ptr
24 if ()
25 {
26 // show the reference count increase and print the Book's title
27
28
29
30
31 } // end if
32 else // weakBookPtr points to NULL
33 cout << "This Author has no Book." << endl;
34 } // end of printBookTitle

1 // Fig. 23.12: Book.cpp
2 // Member-function definitions for class Book.
3 #include <iostream>
4 #include <string>
5
6 #include "Author.h"
7 #include "Book.h"
8
9 using namespace std;

10
11 Book::Book(const string &bookTitle) : title(bookTitle)
12 {
13 }
14
15 Book::~Book()
16 {
17
18 } // end of destructor
19
20 // print the name of this Book's Author
21 void Book::printAuthorName()
22 {
23 // if weakAuthorPtr.lock() returns a non-empty shared_ptr

25 {

Fig. 23.12 | Book member-function definitions. (Part 1 of 2.)

Fig. 23.11 | Author member-function definitions. (Part 2 of 2.)

cout << "Destroying Author: " << name << endl;

shared_ptr< Book > bookPtr = weakBookPtr.lock()

cout << "Reference count for Book " << bookPtr->title
<< " is " << bookPtr.use_count() << "." << endl;

cout << "Author " << name << " wrote the book " << bookPtr->title
<< "\n" << endl;

#include <memory>

cout << "Destroying Book: " << title << endl;

shared_ptr< Author > authorPtr = weakAuthorPtr.lock()

958 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

Figure 23.13 defines a main function that demonstrates the memory leak caused by
the circular reference between classes Author and Book. Lines 12–13 create shared_ptrs
to an instance of each class. The weak_ptr data members are set in lines 16–17. Lines 20–
21 set the shared_ptr data members for each class. The instances of classes Author and
Book now reference each other. We then print the reference count for the shared_ptrs to
show that each instance is referenced by two shared_ptrs (lines 24–27), the ones we create
in the main function and the data member of each instance. Remember that weak_ptrs
don’t affect the reference count. Then we call each class’s member function to print the
information stored in the weak_ptr data member (lines 32–33). The functions also display
the fact that another shared_ptr was created during the function call. Finally, we print
the reference counts again to show that the additional shared_ptrs created in the print-

AuthorName and printBookTitle member functions are destroyed when the functions
finish.

26 // show the reference count increase and print the Author's name
27
28
29
30
31 } // end if
32 else // weakAuthorPtr points to NULL
33 cout << "This Book has no Author." << endl;
34 } // end of printAuthorName

1 // Fig. 23.13: fig23_13.cpp
2 // Demonstrate use of weak_ptr.
3 #include <iostream>
4
5 #include "Author.h"
6 #include "Book.h"
7 using namespace std;
8
9 int main()

10 {
11 // create a Book and an Author
12
13
14
15 // reference the Book and Author to each other
16
17
18
19 // set the shared_ptr data members to create the memory leak
20
21
22

Fig. 23.13 | shared_ptrs cause a memory leak in circularly referential data. (Part 1 of 2.)

Fig. 23.12 | Book member-function definitions. (Part 2 of 2.)

cout << "Reference count for Author " << authorPtr->name
<< " is " << authorPtr.use_count() << "." << endl;

cout << "The book " << title << " was written by "
<< authorPtr->name << "\n" << endl;

#include <memory>

shared_ptr< Book > bookPtr(new Book("C++ How to Program"));
shared_ptr< Author > authorPtr(new Author("Deitel & Deitel"));

bookPtr->weakAuthorPtr = authorPtr;
authorPtr->weakBookPtr = bookPtr;

bookPtr->sharedAuthorPtr = authorPtr;
authorPtr->sharedBookPtr = bookPtr;

23.6 Smart Pointers 959

Memory Leak
At the end of main, the shared_ptrs to the instances of Author and Book we created go out
of scope and are destroyed. Notice that the output doesn’t show the destructors for classes
Author and Book. The program has a memory leak—the instances of Author and Book aren’t
destroyed because of the shared_ptr data members. When bookPtr is destroyed at the end
of the main function, the reference count for the instance of class Book becomes one—the
instance of Author still has a shared_ptr to the instance of Book, so it isn’t deleted. When
authorPtr goes out of scope and is destroyed, the reference count for the instance of class
Author also becomes one—the instance of Book still has a shared_ptr to the instance of Au-
thor. Neither instance is deleted because the reference count for each is still one.

Fixing the Memory Leak
Now, comment out lines 20–21 by placing // at the beginning of each line. This prevents
the code from setting the shared_ptr data members for classes Author and Book. Recom-
pile the code and run the program again. Figure 23.14 shows the output. Notice that the

23 // reference count for bookPtr and authorPtr is one
24 cout << "Reference count for Book " << bookPtr->title << " is "
25 << bookPtr.use_count() << endl;
26 cout << "Reference count for Author " << authorPtr->name << " is "
27 << authorPtr.use_count() << "\n" << endl;
28
29 // access the cross references to print the data they point to
30 cout << "\nAccess the Author's name and the Book's title through "
31 << "weak_ptrs." << endl;
32
33
34
35 // reference count for each shared_ptr is back to one
36 cout << "Reference count for Book " << bookPtr->title << " is "
37 << bookPtr.use_count() << endl;
38 cout << "Reference count for Author " << authorPtr->name << " is "
39 << authorPtr.use_count() << "\n" << endl;
40
41 // the shared_ptrs go out of scope, the Book and Author are destroyed
42 cout << "The shared_ptrs are going out of scope." << endl;
43 } // end of main

Reference count for Book C++ How to Program is 2
Reference count for Author Deitel & Deitel is 2

Access the Author's name and the Book's title through weak_ptrs.
Reference count for Author Deitel & Deitel is 3.
The book C++ How to Program was written by Deitel & Deitel

Reference count for Book C++ How to Program is 3.
Author Deitel & Deitel wrote the book C++ How to Program

Reference count for Book C++ How to Program is 2
Reference count for Author Deitel & Deitel is 2

The shared_ptrs are going out of scope.

Fig. 23.13 | shared_ptrs cause a memory leak in circularly referential data. (Part 2 of 2.)

bookPtr->printAuthorName();
authorPtr->printBookTitle();

960 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

initial reference count for each instance is now one instead of two because we don’t set the
shared_ptr data members. The last two lines of the output show that the instances of
classes Author and Book were destroyed at the end of the main function. We eliminated
the memory leak by using the weak_ptr data members rather than the shared_ptr data
members. The weak_ptrs don’t affect the reference count but still allow us to access the
resource when we need it by creating a temporary shared_ptr to the resource. When the
shared_ptrs we created in main are destroyed, the reference counts become zero and the
instances of classes Author and Book are deleted properly.

23.7 Technical Report 1
Technical Report 1 (TR1) describes proposed additions to the C++ Standard Library.
Many of the libraries in TR1 will be accepted by the C++ Standards Committee but they
are not considered part of the C++ standard until C++0x is finalized. The library additions
provide solutions for many common programming problems. Most of the additions are
based on 11 Boost libraries—the ones discussed in Section 23.4 and several other minor
ones. Descriptions of the three additional TR1 libraries follow.

Visual Studio 2010 and recent versions of GNU C++ support most of TR1 already.
Boost provides a compatibility layer that automatically falls back to the Boost implemen-
tation of each library if it was not supplied with the compiler.10

Many libraries didn’t make it into TR1 due to time constraints. Technical Report 2
(TR2), which will be released after C++0x, contains additional library proposals that
weren’t included in TR1. The release of TR2 will bring even more functionality to the
standard library without having to wait for another new standard.

Unordered Associative Containers11

The Unordered Associative Containers library defines four new containers—
unordered_set, unordered_map, unordered_multiset and unordered_multimap. These

Reference count for Book C++ How to Program is 1
Reference count for Author Deitel & Deitel is 1

Access the Author's name and the Book's title through weak_ptrs.
Reference count for Author Deitel & Deitel is 2.
The book C++ How to Program was written by Deitel & Deitel

Reference count for Book C++ How to Program is 2.
Author Deitel & Deitel wrote the book C++ How to Program

Reference count for Book C++ How to Program is 1
Reference count for Author Deitel & Deitel is 1

The shared_ptrs are going out of scope.

Fig. 23.14 | weak_ptrs used to prevent a memory leak in circularly referential data.

10. Documentation for Boost.TR1: www.boost.org/doc/libs/1_45_0/doc/html/boost_tr1.html.
11. Matthew Austern, “A Proposal to Add Hash Tables to the Standard Library,” Document Number

N1456=03-0039, April 9, 2003, www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/
n1456.html.

Destroying Author: Deitel & Deitel
Destroying Book: C++ How to Program

www.boost.org/doc/libs/1_45_0/doc/html/boost_tr1.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1456.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1456.html

23.8 C++0x 961

associative containers are implemented as hash tables. A hash table is split into sections
sometimes called “buckets.” A key is used to determine where to store an element in the
container. The key is passed to a hash function which returns a size_t. The size_t re-
turned by the hash function determines the “bucket” that the value is placed in. If two val-
ues are equal, so are the size_ts returned by the hash function. Multiple values can be
placed in the same “bucket.” You retrieve an element from the container using the key
much as you do with a set or map. The key determines which “bucket” the value was
placed in, then the “bucket” is searched for the value.

With unordered_set and unordered_multiset, the element itself is used as the key.
unordered_map and unordered_multimap use a separate key to determine where to place
the element—the arguments are passed as a pair<const Key, Value>. unordered_set and
unordered_map require that all the keys used are unique; unordered_multiset and
unordered_multimap don’t enforce that restriction. The containers are defined in the
<unordered_set> and <undordered_map> headers.

Mathematical Special Functions12

This library incorporates mathematical functions added to C99—the C standard pub-
lished in 1999—that are missing in the C++ Standard. C99 supplies trigonometric, hyper-
bolic, exponential, logarithmic, power and special functions. This library adds those
functions, among others, to C++ in the <cmath> header.

Increased Compatibility with C9913

C++ evolved from the C programming language. Most C++ compilers can also compile C
programs, but there are some incompatibilities between the languages. The goal of this li-
brary is to increase compatibility between C++ and C99. Most of this library involves add-
ing items to C++ headers to support C99 features—this is often accomplished by
including the corresponding C99 headers.

23.8 C++0x
The C++ Standards Committee is currently revising the C++ Standard. The last standard
was published in 1998. Work on the new standard, currently referred to as C++0x, began
in 2003. The new standard, likely to be released in late 2011 or early 2012, includes the
TR1 libraries and additions to the core language. Browse the C++0x section of the Deitel
C++ Resource Center at www.deitel.com/cplusplus/ and click C++0x in the Categories
list to find current information on C++0x.

Standardization Process
The International Organization for Standardization (ISO) oversees the creation of inter-
national programming language standards, including those for C and C++. Every addition
or change to the current C++ standard must be approved by the ISO/IEC JTC 1/SC 22
Working Group 21 (WG21), the committee that maintains the C++ standard. This com-

12. Walter E. Brown, “A Proposal to Add Mathematical Special Functions to the C++ Standard Library,”
Document Number N1422=03-0004, February 24, 2003, std.dkuug.dk/jtc1/sc22/wg21/docs/
papers/2003/n1422.html.

13. P. J. Plauger, “Proposed Additions to TR-1 to Improve Compatibility With C99,” Document Num-
ber N1568=04-0008, www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1568.htm.

www.deitel.com/cplusplus/
www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1568.htm

962 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

mittee of volunteers from the C++ programming community meets twice a year to discuss
issues pertaining to the standard. Smaller, unofficial meetings are held more frequently to
consider proposals between official committee meetings. ISO requires at least 5 years be-
tween new drafts of a standard.

Goals for C++0x14

Bjarne Stroustrup, creator of the C++ programming language, has expressed his vision for
the future of C++—the main goals for the new standard are to make C++ easier to learn,
improve library building capabilities, and increase compatibility with the C programming
language. He also provides an overview of C++0x’s new features in his C++0x FAQ at
www2.research.att.com/~bs/C++0xFAQ.html.

23.9 Core Language Changes
A listing of proposed changes to the core language can be found at www.open-std.org/

jtc1/sc22/wg21/docs/papers/2009/n2869.html. There are also links to the papers associ-
ated with each proposal. We briefly discuss some of the important core language changes that
have been accepted into the working draft of the new standard. The number of proposals
that make it into the working draft is likely to increase before the standard is finalized. The
GNU C++ compiler has an optional C++0x mode which allows you to experiment with a
number of the core language changes (gcc.gnu.org/projects/cxx0x.html). Visual Studio
2010 also supports some C++0x features—the Visual C++ Team Blog (blogs.msdn.com/
vcblog/) contains updates on the status of C++0x in Visual Studio.

Rvalue Reference15

The rvalue reference type in C++0x allows you to bind an rvalue (temporary object) to a
non-const reference. An rvalue reference is declared as T&& (where T is the type of the ob-
ject being referenced) to distinguish it from a normal reference T& (now called an lvalue
reference). An rvalue reference can be used to effectively implement move semantics—
instead of being copied, the state of an object is moved, leaving the original with an empty
value. For example, currently the following code creates a temporary string object and
passes it to push_back, which then copies it into the vector.

If push_back were overloaded to take an rvalue reference, the storage allocated by the tem-
porary string can be reused directly by the one in the vector. The temporary string will
be destroyed anyway when the function returns, so there’s no need for it to keep its value.

Rvalue references can also be used in “forwarding functions”—function objects that
adapt a function to take fewer arguments (e.g., std::bind1st or function objects created
using Boost.Bind). Normally, each reference parameter would need a const and non-
const version to account for lvalues, const lvalues and rvalues. With rvalue references you
need only one forwarding function.

14. Bjarne Stroustrup, “The Design of C++0x,” May 2005, www.research.att.com/~bs/rules.pdf.
15. Howard E. Hinnant, “A Proposal to Add an rvalue Reference to the C++ Language,” October 19,

2006, Document Number N2118=06-0188, www.open-std.org/jtc1/sc22/wg21/docs/papers/
2006/n2118.html.

vector< string > myVector;
myVector.push_back("message");

www2.research.att.com/~bs/C++0xFAQ.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2869.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2869.html
www.research.att.com/~bs/rules.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html

23.9 Core Language Changes 963

static_assert16

The static_assert declaration allows you to test certain aspects of the program at com-
pile time. A static_assert declaration takes a constant integral expression and a string

literal. If the expression evaluates to 0 (false), the compiler reports the error. The error mes-
sage includes the string literal provided in the declaration. The static_assert declara-
tion can be used at namespace, class or local scope.

The addition of static_assert makes learning C++ easier. The assertions can be
used to provide more informative error messages when novices make common mistakes
such as using the wrong type of argument in a function call or template instantiation.
They’re also useful in library development—incorrect usage of the library can be reported
much more effectively.

Compatibility with New C99 Features
C++0x will incorporate many changes added in the 1999 C standard. These include
changes to the preprocessor,17 the addition of the long long integer type,18 and imposing
rules on extensions that add additional integer types19 (for example, a 128-bit integer
type). These changes allow modern C code to compile correctly as C++.

Delegating Constructors20

This feature allows a constructor to delegate to another of the class’s constructors (i.e., call
another of the class’s constructors). This makes it easier to write overloaded constructors.
Currently, an overloaded constructor must duplicate the code that is common to the other
constructor. This leads to repetitive and error-prone code. A mistake in one constructor
could cause inconsistency in object initialization. By calling another version of the con-
structor, the common code doesn’t need to be repeated and the chance of error decreases.

Right Angle Brackets21

Currently, it’s necessary to put a space between trailing right angle brackets (>) when using
nested template types. Without the space, the compiler assumes that the two brackets are
the right shift operator (>>). This means that writing vector<vector<int>> causes a com-
piler error. The statement would have to be written as vector<vector<int> >. Many nov-
ices stumble on this quirk of C++. In C++0x, the C++ compiler will recognize when >> is
part of a template rather than the right-shift operator.

16. Robert Klarer, Dr. John Maddock, Beman Dawes and Howard Hinnant, “Proposal to Add Static As-
sertions to the Core Language,” Document Number N1720, October 20, 2004, www.open-
std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html.

17. Clark Nelson, “Working Draft Changes for C99 Preprocessor Synchronization,” Document Num-
ber N1653, July 16, 2004, www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm.

18. J. Stephen Adamczyk, “Adding the long long Type to C++,” Document Number N1811, April 29,
2005, www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1811.pdf.

19. J. Stephen Adamczyk, “Adding Extended Integer Types to C++,” Document Number N1988, April
19, 2006, www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1988.pdf.

20. Herb Sutter and Francis Glassborow, “Delegating Constructors,” Document Number N1986=06-
0056, April 6, 2006, www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf.

21. Daveed Vandevoorde, “Right Angle Brackets,” Document Number N1857=05-0017, January 14,
2005, www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html.

www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm
www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1811.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1988.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html

964 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

Deducing the Type of Variable from Its Initializer22

This proposal defines new functionality for the keyword auto—it automatically deter-
mines variable types based on the initializer expression. auto can be used in place of long,
complicated types that are unmanageable to type by hand. auto can also be used with
const and volatile qualifiers. You can create pointers and references with auto as you
would with the full type name. auto supports the declaration of multiple variables in one
statement (e.g., auto x = 1, y = 2). The auto keyword is meant to save time, ease the learn-
ing process and improve generic programming. The following code creates a vector of in-
stances of a hypothetical Class< T >.

Using auto, the declaration of iterator can be written as

The type of iterator is vector<Class<T>>::const_iterator. You can also create two
variables of the same type in one declaration. Both variables in

are created with the type vector<Class<T>>::const_iterator. You can also use auto with
const or volatile qualifiers and create pointers or references. The statement

creates a const reference to a vector<Class<T>>::const_iterator. auto can save you a
lot of time by automatically determining the type of the variable you’re declaring—espe-
cially with complex template types, like those used in Section 22.6.

Variadic Templates23

Currently, each class or function template has a fixed number of template parameters. If you
need a class or function template with different numbers of template parameters, you must
define a template for each case. A variadic template accepts any number of arguments, which
can greatly simplify template programming. For example, you can provide one variadic func-
tion template rather than many overloaded ones with different parameters. Many template
libraries, such as Boost.Bind, Boost.Tuple and Boost.Function, include large amounts of
duplicate code or make use of complex preprocessor macros to generate all the necessary tem-
plate definitions. Variadic templates will make it easier to implement such libraries.

Template Aliases24

Libraries often use templates with many parameters to implement generic programming.
There may be situations where it would be useful to be able to specify certain arguments

22. Jaakko Järvi, Bjarne Stroustrup and Gabriel Dos Reis, “Deducing the Type of Variable From Its Ini-
tializer Expression,” Document Number N1984=06-0054, April 6, 2006, www.open-std.org/
jtc1/sc22/wg21/docs/papers/2006/n1984.pdf.

vector< Class< T > > myVector;
vector< Class< T > >::const_iterator iterator = myVector.begin();

auto iterator = myVector.begin();

auto iteratorBegin = myVector.begin(), iteratorEnd = myVec-
tor.end();

const auto &iteratorRef = myVector.begin();

23. Douglas Gregor, Jaakko Järvi and Gary Powell, “Variadic Templates,” Document Number N2080=06-
0150, September 9, 2006, www.osl.iu.edu/~dgregor/cpp/variadic-templates.pdf.

24. Gabriel Dos Reis and Mat Marcus, “Proposal to Add Template Aliases to C++,” Document # N1449-
03-0032, April 7, 2003, www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1449.pdf.

www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf
www.osl.iu.edu/~dgregor/cpp/variadic-templates.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1449.pdf

23.9 Core Language Changes 965

for the template that remain consistent but still be able to vary the rest. This can be done
with a template alias. A template alias is similar to a typedef—it introduces a name used
to refer to a template. In a typedef, all the template parameters are specified. Using a tem-
plate alias, certain parameters are specified and others may still vary. You can use a general-
purpose template in a more specific role where many of the arguments are always the same
by using a template alias to set the consistent parameters while still being able to vary those
that change in each instantiation. For example, the following declares a template MyStack
that uses list<T> as its underlying implementation instead of the deque used by default
in std::stack.

Initializer Lists for User-Defined Types25

Currently, initializer lists can be used only with arrays and structs. In C++0x, a class can
define a constructor taking a parameter of type std::initializer_list<T>. An initializer
list can then be used to initialize an object of the class, as in:

The initializer values are stored in an initializer_list object, which is passed to the
class’s constructor. All standard library container classes will be updated to have construc-
tors taking an initializer_list.

Range-Based for Statement26

A common use of the for statement is to iterate over a container of elements. Currently,
the syntax for built-in arrays and library containers is different—built-in arrays use an in-
dex or raw pointers, and container classes use iterators returned by the begin and end

member functions. In addition to providing simpler syntax, the new range-based for

statement allows you to use the same syntax for iterating over both arrays and containers.
The following code iterates through a collection of int values.

Lambda Expressions27

Many library functions receive function pointers or function objects as parameters. Cur-
rently, the functions or function objects must be defined before they can be passed to these
library functions as arguments. Lambda expressions (or lambda functions) enable you to
define function objects as they are being passed to a function. They are defined locally in-
side functions and can “capture” (by value or by reference) the local variables of the en-
closing function then manipulate these variables in the lambda’s body. Lambda

template< typename T > using MyStack< T > =
stack< T, list< T > >;

25. J. Stephen Adamczyk, Gabriel Dos Reis and Bjarne Stroustrup, “Initializer list WP wording (Revi-
sion 2),” Document Number N2531=08-0041, www.open-std.org/jtc1/sc22/wg21/docs/
papers/2008/n2531.pdf

vector< int > second = { 4, 5, 6 }; // legal in C++0x

26. Thorsten Ottosen, “Wording for range-based for-loop (revision 3),” Document Number
N2934=07-0254, www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2394.html

for (int &item : items) // items can be an array or container
item *= 2;

27. Jaakko Järvi, John Freeman and Lawrence Crowl, “Lambda Expressions and Closures: Wording for
Monomorphic Lambdas (Revision 4),” Document Number N2550=08-0060, www.open-std.org/
jtc1/sc22/wg21/docs/papers/2008/n2550.pdf

www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2531.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2531.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2394.html
www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf

966 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

expressions are implemented in Visual Studio 2010 and GNU C++ 4.5. Figure 23.15 pro-
vides a simple lambda expression example that doubles the value of each element in an int

array.

Lines 9 and 10 declare and initialize a small array of integers. Lines 13–14 call the
for_each algorithm on the elements of the values array. The third argument to for_each

is a lambda expression. Lambdas begin with “lambda introducer” ([]), followed by a
parameter list and function body. Return types can be inferred automatically if the body
is a single statement of the form return expression;—otherwise, the return type is void by
default. The lambda expression in line 14 receives an int, multiplies it by 2 and displays
the result. The for_each algorithm passes each element of the array to the lambda.

The second call to the for_each algorithm (lines 19–20) calculates the sum of the
array elements. The lambda introducer [&sum] indicates that this lambda expression is
capturing the local variable sum by reference (note the use of the ampersand), so that the
lambda can modify sum’s value. Without the ampersand, sum would be captured by value
and the local variable would not be updated. The for_each algorithm passes each element
of the array to the lambda, which adds the value to the sum. Line 22 then displays the value
of sum.

1 // Fig. 23.15: fig23_15.cpp
2 // Example of lambda expressions in C++0x.
3 #include <iostream>
4 #include <algorithm>
5 using namespace std;
6
7 int main()
8 {
9 const int size = 4; // size of array values

10 int values[size] = { 1, 2, 3, 4 }; // initialize values
11
12 // output each element multiplied by two
13 for_each(values, values + size,
14 [](int i) { cout << i * 2 << endl; });
15
16 int sum = 0; // initialize sum to zero
17
18 // add each element to sum
19 for_each(values, values + size,
20 [&sum](int i) { sum += i; });
21
22 cout << "sum is " << sum << endl; // output sum
23 } // end main

2
4
6
8
sum is 10

Fig. 23.15 | Example of lambda expressions in C++0x.

23.10 Wrap-Up 967

23.10 Wrap-Up
In this chapter we discussed various aspects of the future of C++. We introduced the Boost
C++ Libraries and described some of the most popular libraries.

We discussed the regex library and the symbols that are used to form regular expres-
sions. We provided examples of how to use regular-expression classes, including regex,
match_results and regex_token_iterator. You learned how to find patterns in a string
and match entire strings to patterns with algorithms regex_search and regex_match. We
demonstrated how to replace characters in a string with regex_replace and how to split
strings into tokens with a regex_token_iterator.

We showed how to use the Boost.Smart_ptr library. You learned how to use the
shared_ptr and weak_ptr classes to avoid memory leaks when using dynamically allocated
memory. We demonstrated how to use custom deleter functions to allow shared_ptrs to
manage resources that require special destruction procedures. We also explained how
weak_ptrs can be used to prevent memory leaks in circularly referential data.

We overviewed the upcoming revised standard, C++0x, discussing TR1 and the
changes to the core language. We introduced the libraries accepted into TR1. We
described the new core language features including the auto keyword, rvalue reference,
improvements in compatibility with C99, initializer lists and lambda expressions.
Remember that Boost, TR1 and C++0x are constantly changing—visit our Resource Cen-
ters to stay up to date with all three.

Summary
Section 23.2 Deitel Online C++ and Related Resource Centers
• Visit the C++ Boost Libraries Resource Center at www.deitel.com/CPlusPlusBoostLibraries/

to find current information on the available libraries and new releases.

• Find current information on TR1 and C++0x (p. 937) in the C++0x category of the C++ Re-
source Center at www.deitel.com/cplusplus/.

• For more information on Visual C++, visit our Visual C++ Resource Center at www.deitel.com/
VisualCPlusPlus/.

Section 23.3 Boost Libraries
• The Boost Libraries (p. 937) at www.boost.org provide free peer-reviewed C++ libraries.

• Boost libraries must conform to the C++ standard and use the C++ Standard Library—or other
appropriate Boost libraries.

• A preliminary submission of each Boost library is posted in the Boost Sandbox Vault (p. 938).

• The review manager makes sure the code is ready for formal review, sets up the review schedule,
reads all user reviews, and makes the final decision whether or not to accept the library.

Section 23.4 Boost Libraries Overview
• Boost.Array (p. 939) provides fixed-size arrays that support the STL container interface.

• Boost.Bind (p. 939) extends the functionality provided by the standard functions bind1st and
bind2nd. It allows you to adapt functions that take up to nine arguments. It also makes it easy to
reorder the arguments passed to the function.

www.deitel.com/CPlusPlusBoostLibraries/
www.deitel.com/cplusplus/
www.deitel.com/VisualCPlusPlus/
www.deitel.com/VisualCPlusPlus/
www.boost.org

968 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

• Boost.Function (p. 939) allows you to store function pointers, member-function pointers and
function objects in a function wrapper. A function can hold any function whose arguments and
return type can be converted to match the function wrapper’s signature.

• Boost.Random (p. 939) allows you to create a variety of random number generators and distribu-
tions.

• A pseudo-random number generator uses an initial state to produce seemingly random num-
bers—using the same initial state produces the same sequence of numbers.

• Regular expressions (p. 940) are used to match character patterns in text.

• With Boost.Regex (p. 940), you can search for a particular expression in a string, replace parts of
a string that match a regular expression and split a string into tokens using regular expressions.

• Boost.Smart_ptr (p. 940) defines smart pointers that help you manage dynamically allocated re-
sources.

• shared_ptrs (p. 940) handle lifetime management of dynamically allocated objects. Memory is
released automatically when there are no shared_ptrs referencing it.

• A weak_ptr (p. 940) allowsyou to observe a shared_ptr’s value without any management respon-
sibilities.

• Boost.Tuple (p. 940) allows you to create sets of objects that can be used by generic functions.

• The type_traits (p. 940) classes allow you to determine specific traits of a type and perform
type transformations to allow the object to be used in generic code.

Section 23.5 Regular Expressions with the regex Library
• Regular expressions are specially formatted strings used to find patterns in text.

• basic_regex (p. 941) represents a regular expression.

• Algorithm regex_match (p. 941) returns true only if an entire string matches the regular expres-
sion.

• Algorithm regex_search (p. 941) returns true if any part of a string matches the regular expres-
sion.

• To use the regex library, include the header <regex>.

• A character class (p. 941) represents a group of characters.

• A word character (\w; p. 941) is any alphanumeric character or underscore. A whitespace char-
acter (\s; p. 941) is a space, tab, carriage return, newline or form feed. A digit (\d; p. 941) is any
numeric character.

Section 23.5.1 Regular Expression Example
• You must precede each character class’s backslash character with an additional backslash in

strings.

• To specify sets of characters other than those that belong to a predefined character class, list the
characters in square brackets, []. Ranges of characters are represented by placing a "-" between
two characters. Instances of the "-" character outside [] characters are treated as literals.

• Place ^ as the first character in the brackets to specify that a pattern should match anything other
than the characters in the brackets.

• A match_results (p. 943) is an object that holds a match to a regular expression. The typedef
smatch (p. 943) represents a match_results that provides access to the match result via a
string::const_iterator.

• regex_constants::match_not_eol (p. 943) prevents the "." character from matching a newline
character.

Summary 969

• match_results member function suffix (p. 943) returns a string from the end of the match to
the end of the string being searched.

• The "*" quantifier (p. 944) will match zero or more occurrences.

• The "+" quantifier (p. 944) will match one or more occurrences.

• The "?" quantifier (p. 944) will match zero or one occurrences.

• A set of braces containing one number, {n} (p. 944), matches exactly n occurrences.

• Including a comma after the number enclosed in braces (p. 944) matches at least n occurrences.

• The notation {n,m} (p. 944) matches between n and m occurrences (inclusively).

• Quantifiers are greedy (p. 944)—they’ll match as many occurrences of the pattern as possible un-
til the pattern fails to make a match.

• A quantifier followed by a question mark (?) becomes lazy and will match as few occurrences as
possible as long as there is a successful match.

Section 23.5.2 Validating User Input with Regular Expressions
• The characters "^" and "$" represent the beginning and end of a string, respectively.

• The character "|" matches the expression to its left or the expression to its right.

• You can apply quantifiers to patterns in parentheses to create more complex regular expressions.

Section 23.5.3 Replacing and Splitting Strings
• Algorithm regex_replace (p. 949) replaces text in a string with new text wherever the original

string matches a regular expression.

• Escaping a "*" character with a \ tells the regular expression matching engine to find the actual
character "*" rather than use it as a quantifier.

• regex_constants::format_first_only (p. 949) tells regex_replace to replace only the first sub-
string that matches the regular expression. Normally regex_replace would replace all occurrenc-
es of the pattern.

• A regex_token_iterator (p. 949) iterates through the parts of a string that match the regular
expression.

• Create a regex_token_iterator by passing the constructor two iterators which represent the be-
ginning and end of the string to iterate over, and the regular expression to match.

• Pass -1 to the regex_token_iterator constructor to indicate that it should iterate over each sub-
string that doesn’t match the regular expression.

Section 23.6 Smart Pointers
• Smart pointers (p. 950) avoid errors by strengthening the process of memory allocation and deal-

location.

• After an exception is thrown, a smart pointer’s destructor will call delete on the pointer for you.

Section 23.6.1 Reference Counted shared_ptr
• shared_ptrs (p. 950) hold an internal pointer to a resource (e.g., a dynamically allocated object)

that may be shared with other objects in the program.

• Changes to the resource of a shared_ptr will be “seen” by the other shared_ptrs to that resource.

• shared_ptrs use reference counting (p. 950) to determine how many shared_ptrs point to the
resource. When the reference count reaches zero, the internal pointer is deleted.

• shared_ptrs can safely be copied and can be used in STL containers.

970 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

• You can create a shared_ptr with a custom deleter function which specifies how to destroy the re-
source. A custom deleter function (p. 950) must take one argument of the internal pointer’s type.

• Include the <memory> header to use shared_ptrs.

• The shared_ptr constructor takes a pointer to an object. The constructor can also take another
shared_ptr, in which case it shares ownership of the resource with the other shared_ptr and the
reference count is increased by one.

• The first shared_ptr to a resource should always be created using the new operator.

• shared_ptrs provide the pointer operators * and ->.

• The shared_ptr member function use_count (p. 953) returns the number of shared_ptrs to the
resource.

• Function reset (p. 954) releases the current resource and sets the shared_ptr to NULL. You can also
pass a pointer or shared_ptr to the reset function; the shared_ptr will manage the new resource.

Section 23.6.2 weak_ptr: shared_ptr Observer
• A weak_ptr is used to point to the resource managed by a shared_ptr without assuming any re-

sponsibility for it—the reference count for the shared_ptr doesn’t increase.

• When the last shared_ptr is destroyed, the resource is deleted and any remaining weak_ptrs are
set to NULL.

• A weak_ptr can’t access the resource it points to—you must create a shared_ptr from the weak_ptr
to access the resource. You can pass the weak_ptr to the shared_ptr constructor. You can also call
weak_ptr function lock (p. 955), which returns a shared_ptr to the weak_ptr’s resource.

• Include the <memory> header to use weak_ptrs.

Section 23.7 Technical Report 1
• Technical Report 1 (TR1) describes additions to the C++ Standard Library. Most of the addi-

tions are based on 11 Boost libraries.

• Visual Studio 2008 SP1 and recent versions of GNU C++ support most of TR1 already.

• Boost provides a compatibility layer that automatically falls back to the Boost implementation
of each library if it was not supplied with the compiler.

• Technical Report 2 (TR2; p. 960) contains additional library proposals that were not in TR1.

• The Unordered Associative Containers library (p. 961) defines four new containers—
unordered_set, unordered_map, unordered_multiset and unordered_multimap. These associa-
tive containers are implemented as hash tables and are defined in <unordered_set> and
<unordered_map>.

• unordered_set and unordered_multiset use the element as the key. unordered_map and
unordered_multimap store key–value pairs.

• unordered_set and unordered_map require unique keys; unordered_multiset and
unordered_multimap don’t enforce that restriction.

• TR1 includes trigonometric, hyperbolic, exponential, logarithmic, power and special functions
from C99 (p. 961).

• TR1 includes C99 headers to increase compatibility between C++ and C99.

Section 23.8 C++0x
• The new standard, C++0x, includes the TR1 libraries and changes to the core language.

• The International Organization for Standardization (ISO; p. 961) oversees the creation of inter-
national programming language standards. ISO Working Group 21 maintains the C++ standard.

Self-Review Exercises 971

• The main goals for the new standard are to make C++ easier to learn, improve library building
capabilities and increase compatibility with the C programming language.

Section 23.9 Core Language Changes
• The GNU C++ compiler has an optional C++0x mode which allows you to experiment with a

number of the core language changes. Visual Studio 2010 also supports some C++0x features.

• The rvalue reference type (p. 962) in C++0x allows you to bind an rvalue (temporary object) to
a non-const reference.

• An rvalue reference is declared as T&& (where T is the type of the object being referenced).

• An rvalue reference can be used to implement move semantics.

• A static_assert declaration (p. 963) allows you to test certain aspects of the program at compile
time.

• A static_assert declaration takes a constant integral expression and a string. If the expression
evaluates to 0 (false), the compiler reports the error using the string provided in the declaration.

• C++0x will incorporate many changes added in the 1999 C standard, including changes to the
preprocessor, the addition of the long long integer type, and imposing rules on extensions that
add additional integer types. These changes allow modern C code to compile correctly as C++.

• A constructor can call another of the class’s constructors directly (p. 963).

• The C++ compiler will recognize when >> is part of a template.

• Keyword auto (p. 964) automatically determines a variable’s type based on its initializer expres-
sion. auto takes the place of the full type name.

• A variadic template (p. 964) accepts any number of arguments.

• Variadic templates make it easier to implement other template libraries such as Boost.Bind,
Boost.Tuple and Boost.Function.

• Unlike a typedef, when using a template alias (p. 965) certain parameters are specified and oth-
ers may still vary.

• In C++0x, a class can define a constructor that receives a std::initializer_list<T> (p. 965).
An initializer list can then be used to initialize objects of that class.

• The new range-based for statement (p. 965) will allow you to use the same syntax for iterating
over arrays and containers.

• Lambda expressions (or lambda functions; p. 965) provide a simplified syntax for defining func-
tion objects directly where they are used.

• A lambda function can capture local variables (by value or by reference) and manipulate them
inside the lambda’s body.

• Lambdas begin with the lambda introducer [], followed by a parameter and function body. Re-
turn types can be inferred automatically if the body is a single statement of the form return

expression;—otherwise, the return type is void by default.

• To capture a local variable, specify it in the lambda introducer. To capture by reference, use an
ampersand.

Self-Review Exercises
23.1 Fill in the blanks in each of the following statements:

a) The describes proposed changes to the C++ Standard Library.
b) The library helps manage the release of dynamically allocated memory to pre-

vent memory leaks.

972 Chapter 23 Boost Libraries, Technical Report 1 and C++0x

c) Boost.Bind enhances the and standard library functions.
d) shared_ptrs use a(n) to determine when to delete the resource.
e) Class represents a regular expression in Boost.Regex.
f) Class regex_token_iterator is located in namespace .
g) The Boost.Regex algorithm changes all occurrences of a pattern in a string

to a specified string.
h) Regular expression quantifier matches zero or more occurrences of an expres-

sion.
i) Regular expression operator inside square brackets will not match any of the

characters in that set of brackets.
j) The keyword in C++0x automatically determines the type of a variable when

it’s initialized.
k) Move semantics and forwarding functions in C++0x can be written using .

23.2 State whether each of the following is true or false. If false, explain why.
a) Creating a weak_ptr to a resource increases the reference count.
b) A regular expression matches a string to a pattern.
c) The expression \d in a regular expression denotes all letters.

23.3 Write statements to accomplish each of the following tasks:
a) Create a regular expression to match either a five-letter word or five-digit number.
b) Create a regular expression to match a phone number in the form of (123) 456-7890.
c) Create a shared_ptr to the int 5 called intPtr.
d) Create a weak_ptr to intPtr called weakIntPtr.
e) Access the int’s value using weakIntPtr.

Answers to Self-Review Exercises
23.1 a) TR1. b) Boost.Smart_ptr. c) bind1st, bind2nd. d) reference count. e) regex or
basic_regex. f) boost. g) regex_replace. h) *. i) ^. j) auto. k) rvalue references.

23.2 a) False. A weak_ptr assumes no ownership of its resource and doesn’t affect the reference
count. b) True. c) False. The expression \d in a regular expression denotes all decimal digits.

23.3 a) regex("\\w{5}|\\d{5}");

b) regex("\\(\\d{3}\\)\\s\\d{3}-\\d{4}");

c) shared_ptr< int > intPtr(new int(5));

d) weak_ptr< int > weakIntPtr(intPtr);

e) shared_ptr< int > sharedIntPtr = weakIntPtr.lock();

*sharedIntPtr;

Exercises
23.4 (Pig Latin) Write an application that encodes English language phrases into Pig Latin. Pig
Latin is a form of coded language often used for amusement. Many variations exist in the methods
used to form Pig Latin phrases. For simplicity, use the following algorithm:

To translate each English word into a Pig Latin word, place the first letter of the English word
at the end of the word and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the word
“the” becomes “hetay” and the word “computer” becomes “omputercay.” Blanks between words
remain blanks. Assume the following: The English phrase consists of words separated by blanks,
there are no punctuation marks and all words have two or more letters. Enable the user to input a
sentence. Use a regex_token_iterator to divide the sentence into separate words. Function get-

PigLatin should translate a single word into Pig Latin.

Exercises 973

23.5 (Using Regular Expressions to Convert to Uppercase) Write a program that uses regular ex-
pressions to convert the first letter of all words to uppercase. Have it do this for an arbitrary string
input by the user.

23.6 (Counting Character Types with Regular Expressions) Use a regular expression to count the
number of digits, characters and white-space characters in a string.

23.7 (Searching for Numbers) Write a regular expression that will search a string and match a
valid number. A number can have any number of digits, but it can have only digits and a decimal
point. The decimal point is optional, but if it appears in the number, there must be only one, and
it must have digits on its left and its right. There should be white space or a beginning- or end-of-
line character on either side of a valid number. Negative numbers are preceded by a minus sign.

23.8 (Counting HTML Tags) Write a program that will take HTML as input and will output
the number of HTML tags in the string. The program should use regular expressions to count the
number of elements nested at each level. For example, the HTML:

<p>hi</p>

has a p element (nesting level 0—i.e., not nested in another tag) and a strong element (nesting
level 1). For simplicity, use HTML in which none of the elements contain nested elements of the
same type—for example, a table element should not contain another table element.

This solution requires a regular expression concept called a back reference to determine the
start and end tags of an HTML element. To find these tags, the same word must appear in the start
and end tags. A back reference allows you to use a previous match in the expression in another part
of the regular expression. When you enclose a portion of a regular expression in parentheses, the
match for that subexpression is stored for you. You can then access the result of that expression
using the syntax \digit, where digit is a number in the range 1–9. For example, the regular expres-
sion

^(7*).*\1$

matches an entire string that starts and ends with one or more 7s. The strings "777abcd777" and
"7abcdef7" both match this regular expression. The \1 in the preceding regular expression is a back
reference indicating that whatever matched the subexpression (7*) should also appear at the end of
the string. The first parenthesized subexpression is back referenced with \1, the second is back ref-
erenced with \2, etc.

You’ll need a recursive function so that you can process the nested HTML elements. In each
recursive call, you’ll need to pass the contents of an element as the string to be processed in that
call—for example, the contents of the p element in this example’s HTML would be

hi

Use parentheses to store the content that appears between the start and end tags of a string that
matches your regular expression. This value is stored in the match_results object and can be
accessed using the [] operator on that object. As with back references, the subexpression matches
are indexed from 1 to 9.

23.9 (Removing Extra Spaces) Write a program that asks the user to enter a sentence and uses a
regular expression to check whether the sentence contains more than one space between words. If
so, the program should remove the extra spaces. For example, the string "Hello World" should
be "Hello World".

23.10 Answer the following questions about smart pointers:
a) Describe a situation in which a custom deleter function would be used.
b) Describe a situation in which you’d use a weak_ptr that is not responsible for lifetime

management of its resource.

24 Other Topics

What’s in a name? that which
we call a rose
By any other name would smell
as sweet.
—William Shakespeare

O Diamond! Diamond! thou
little knowest the mischief done!
—Sir Isaac Newton

O b j e c t i v e s
In this chapter you’ll learn:

■ To use const_cast to
temporarily treat a const
object as a non-const
object.

■ To use namespaces.

■ To use operator keywords.

■ To use mutablemembers in
const objects.

■ To use class-member pointer
operators .* and ->*.

■ To use multiple inheritance.

■ The role of virtual base
classes in multiple
inheritance.

24.1 Introduction 975

24.1 Introduction
We now consider additional C++ features. First, we discuss the const_cast operator, which
allows you to add or remove the const qualification of a variable. Next, we discuss
namespaces, which can be used to ensure that every identifier in a program has a unique
name and can help resolve naming conflicts caused by using libraries that have the same
variable, function or class names. We then present several operator keywords that are useful
for programmers who have keyboards that do not support certain characters used in oper-
ator symbols, such as !, &, ^, ~ and |. We continue our discussion with the mutable storage-
class specifier, which enables you to indicate that a data member should always be modifi-
able, even when it appears in an object that’s currently being treated as a const object by
the program. Next we introduce two special operators that we can use with pointers to class
members to access a data member or member function without knowing its name in ad-
vance. Finally, we introduce multiple inheritance, which enables a derived class to inherit
the members of several base classes. As part of this introduction, we discuss potential prob-
lems with multiple inheritance and how virtual inheritance can be used to solve those
problems.

24.2 const_cast Operator
C++ provides the const_cast operator for casting away const or volatile qualification.
You declare a variable with the volatile qualifier when you expect the variable to be mod-
ified by hardware or other programs not known to the compiler. Declaring a variable vol-
atile indicates that the compiler should not optimize the use of that variable because
doing so could affect the ability of those other programs to access and modify the vola-

tile variable.
In general, it’s dangerous to use the const_cast operator, because it allows a program

to modify a variable that was declared const. There are cases in which it’s desirable, or
even necessary, to cast away const-ness. For example, older C and C++ libraries might
provide functions that have non-const parameters and that do not modify their parame-
ters—if you wish to pass const data to such a function, you’d need to cast away the data’s
const-ness; otherwise, the compiler would report error messages.

Similarly, you could pass non-const data to a function that treats the data as if it were
constant, then returns that data as a constant. In such cases, you might need to cast away
the const-ness of the returned data, as we demonstrate in Fig. 24.1.

24.1 Introduction
24.2 const_cast Operator
24.3 mutable Class Members
24.4 namespaces
24.5 Operator Keywords
24.6 Pointers to Class Members

(.* and ->*)

24.7 Multiple Inheritance
24.8 Multiple Inheritance and virtual

Base Classes
24.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

976 Chapter 24 Other Topics

In this program, function maximum (lines 9–12) receives two C-style strings as const
char * parameters and returns a const char * that points to the larger of the two strings.
Function main declares the two C-style strings as non-const char arrays (lines 16–17);
thus, these arrays are modifiable. In main, we wish to output the larger of the two C-style
strings, then modify that C-style string by converting it to uppercase letters.

Function maximum’s two parameters are of type const char *, so the function’s return
type also must be declared as const char *. If the return type is specified as only char *,
the compiler issues an error message indicating that the value being returned cannot be
converted from const char * to char *—a dangerous conversion, because it attempts to
treat data that the function believes to be const as if it were non-const data.

Even though function maximum believes the data to be constant, we know that the orig-
inal arrays in main do not contain constant data. Therefore, main should be able to modify
the contents of those arrays as necessary. Since we know these arrays are modifiable, we
use const_cast (line 21) to cast away the const-ness of the pointer returned by maximum,
so we can then modify the data in the array representing the larger of the two C-style

1 // Fig. 24.1: fig24_01.cpp
2 // Demonstrating const_cast.
3 #include <iostream>
4 #include <cstring> // contains prototypes for functions strcmp and strlen
5 #include <cctype> // contains prototype for function toupper
6 using namespace std;
7
8 // returns the larger of two C-style strings
9 const char *maximum(const char *first, const char *second)

10 {
11 return (strcmp(first, second) >= 0 ? first : second);
12 } // end function maximum
13
14 int main()
15 {
16 char s1[] = "hello"; // modifiable array of characters
17 char s2[] = "goodbye"; // modifiable array of characters
18
19 // const_cast required to allow the const char * returned by maximum
20 // to be assigned to the char * variable maxPtr
21
22
23 cout << "The larger string is: " << maxPtr << endl;
24
25 for (size_t i = 0; i < strlen(maxPtr); ++i)
26 maxPtr[i] = toupper(maxPtr[i]);
27
28 cout << "The larger string capitalized is: " << maxPtr << endl;
29 } // end main

The larger string is: hello
The larger string capitalized is: HELLO

Fig. 24.1 | Demonstrating operator const_cast.

char *maxPtr = const_cast< char * >(maximum(s1, s2));

24.3 mutable Class Members 977

strings. We can then use the pointer as the name of a character array in the for statement
(lines 25–26) to convert the contents of the larger string to uppercase letters. Without the
const_cast in line 21, this program will not compile, because you are not allowed to
assign a pointer of type const char * to a pointer of type char *.

24.3 mutable Class Members
In Section 24.2, we introduced the const_cast operator, which allowed us to remove the
“const-ness” of a type. A const_cast operation can also be applied to a data member of
a const object from the body of a const member function of that object’s class. This en-
ables the const member function to modify the data member, even though the object is
considered to be const in the body of that function. Such an operation might be per-
formed when most of an object’s data members should be considered const, but a partic-
ular data member still needs to be modified.

As an example, consider a linked list that maintains its contents in sorted order.
Searching through the linked list does not require modifications to the data of the linked
list, so the search function could be a const member function of the linked-list class. How-
ever, it’s conceivable that a linked-list object, in an effort to make future searches more effi-
cient, might keep track of the location of the last successful match. If the next search
operation attempts to locate an item that appears later in the list, the search could begin
from the location of the last successful match, rather than from the beginning of the list.
To do this, the const member function that performs the search must be able to modify
the data member that keeps track of the last successful search.

If a data member such as the one described above should always be modifiable, C++
provides the storage-class specifier mutable as an alternative to const_cast. A mutable

data member is always modifiable, even in a const member function or const object.

mutable and const_cast are used in different contexts. For a const object with no
mutable data members, operator const_cast must be used every time a member is to be
modified. This greatly reduces the chance of a member being accidentally modified
because the member is not permanently modifiable. Operations involving const_cast are
typically hidden in a member function’s implementation. The user of a class might not be
aware that a member is being modified.

Error-Prevention Tip 24.1
In general, a const_cast should be used only when it is known in advance that the orig-
inal data is not constant. Otherwise, unexpected results may occur.

Portability Tip 24.1
The effect of attempting to modify an object that was defined as constant, regardless of
whether that modification was made possible by a const_cast or C-style cast, varies
among compilers.

Software Engineering Observation 24.1
mutable members are useful in classes that have “secret” implementation details that do
not contribute to a client’s use of an object of the class.

978 Chapter 24 Other Topics

Mechanical Demonstration of a mutable Data Member
Figure 24.2 demonstrates using a mutable member. The program defines class Test-

Mutable (lines 7–21), which contains a constructor, function getValue and a private

data member value that’s declared mutable. Lines 15–18 define function getValue as a
const member function that returns a copy of value. Notice that the function increments
mutable data member value in the return statement. Normally, a const member func-
tion cannot modify data members unless the object on which the function operates—i.e.,
the one to which this points—is cast (using const_cast) to a non-const type. Because
value is mutable, this const function can modify the data.

Line 25 declares const TestMutable object test and initializes it to 99. Line 27 calls
the const member function getValue, which adds one to value and returns its previous
contents. Notice that the compiler allows the call to member function getValue on the
object test because it’s a const object and getValue is a const member function. How-
ever, getValue modifies variable value. Thus, when line 28 invokes getValue again, the
new value (100) is output to prove that the mutable data member was indeed modified.

1 // Fig. 24.2: fig24_02.cpp
2 // Demonstrating storage-class specifier mutable.
3 #include <iostream>
4 using namespace std;
5
6 // class TestMutable definition
7 class TestMutable
8 {
9 public:

10 TestMutable(int v = 0)
11 {
12 value = v;
13 } // end TestMutable constructor
14
15 int getValue() const
16 {
17 return ++value; // increments value
18 } // end function getValue
19 private:
20
21 }; // end class TestMutable
22
23 int main()
24 {
25 const TestMutable test(99);
26
27 cout << "Initial value: " << ;
28 cout << "\nModified value: " << << endl;
29 } // end main

Initial value: 99
Modified value: 100

Fig. 24.2 | Demonstrating a mutable data member.

mutable int value; // mutable member

test.getValue()
test.getValue()

24.4 namespaces 979

24.4 namespaces
A program may include many identifiers defined in different scopes. Sometimes a variable
of one scope will “overlap” (i.e., collide) with a variable of the same name in a different
scope, possibly creating a naming conflict. Such overlapping can occur at many levels.
Identifier overlapping occurs frequently in third-party libraries that happen to use the
same names for global identifiers (such as functions). This can cause compiler errors.

The C++ standard solves this problem with namespaces. Each namespace defines a
scope in which identifiers and variables are placed. To use a namespace member, either the
member’s name must be qualified with the namespace name and the scope resolution
operator (::), as in

or a using directive must appear before the name is used in the program. Typically, such
using statements are placed at the beginning of the file in which members of the
namespace are used. For example, placing the following using directive at the beginning
of a source-code file

specifies that members of namespace MyNameSpace can be used in the file without preced-
ing each member with MyNameSpace and the scope resolution operator (::).

A using directive of the form

brings one name into the scope where the directive appears. A using directive f the form

brings all the names from the specified namespace (std) into the scope where the directive
appears.

Not all namespaces are guaranteed to be unique. Two third-party vendors might inad-
vertently use the same identifiers for their namespace names. Figure 24.3 demonstrates the
use of namespaces.

MyNameSpace::member

using namespace MyNameSpace;

using std::cout;

using namespace std;

Error-Prevention Tip 24.2
Precede a member with its namespace name and the scope resolution operator (::) if the
possibility exists of a naming conflict.

1 // Fig. 24.3: fig24_03.cpp
2 // Demonstrating namespaces.
3 #include <iostream>
4 using namespace std;
5
6 int integer1 = 98; // global variable
7
8
9

10

Fig. 24.3 | Demonstrating the use of namespaces. (Part 1 of 3.)

// create namespace Example
namespace Example
{

980 Chapter 24 Other Topics

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 int main()
33 {
34 // output value doubleInUnnamed of unnamed namespace
35 cout << "doubleInUnnamed = " << doubleInUnnamed;
36
37 // output global variable
38 cout << "\n(global) integer1 = " << integer1;
39
40 // output values of Example namespace
41 cout << "\nPI = " << << "\nE = " << Example::E
42 << "\ninteger1 = " << << "\nFISCAL3 = "
43 << << endl;
44
45
46 } // end main
47
48 // display variable and constant values
49 void Example::printValues()
50 {
51 cout << "\nIn printValues:\ninteger1 = " << integer1 << "\nPI = "
52 << PI << "\nE = " << E << "\ndoubleInUnnamed = "
53 << doubleInUnnamed << "\n(global) integer1 = " <<
54 << "\nFISCAL3 = " << Inner::FISCAL3 << endl;
55 } // end printValues

doubleInUnnamed = 88.22
(global) integer1 = 98
PI = 3.14159
E = 2.71828
integer1 = 8
FISCAL3 = 1992

Fig. 24.3 | Demonstrating the use of namespaces. (Part 2 of 3.)

// declare two constants and one variable
const double PI = 3.14159;
const double E = 2.71828;
int integer1 = 8;

void printValues(); // prototype

// nested namespace
namespace Inner
{

// define enumeration
enum Years { FISCAL1 = 1990, FISCAL2, FISCAL3 };

} // end Inner namespace
} // end Example namespace

// create unnamed namespace
namespace
{

double doubleInUnnamed = 88.22; // declare variable
} // end unnamed namespace

Example::PI
Example::integer1

Example::Inner::FISCAL3

Example::printValues(); // invoke printValues function

::integer1

24.4 namespaces 981

Defining Namespaces
Lines 9–24 use the keyword namespace to define namespace Example. The body of a
namespace is delimited by braces ({}). Namespace Example’s members consist of two con-
stants (PI and E in lines 12–13), an int (integer1 in line 14), a function (printValues
in line 16) and a nested namespace (Inner in lines 19–23). Notice that member integer1
has the same name as global variable integer1 (line 6). Variables that have the same name
must have different scopes—otherwise compilation errors occur. A namespace can contain
constants, data, classes, nested namespaces, functions, etc. Definitions of namespaces must
occupy the global scope or be nested within other namespaces. Unlike classes, different
namespace members can be defined in separate namespace blocks—each standard library
header has a namespace block placing its contents in namespace std.

Lines 27–30 create an unnamed namespace containing the member doubleInUn-

named. Variables, classes and functions in an unnamed namespace are accessible only in
the current translation unit (a .cpp file and the files it includes). However, unlike vari-
ables, classes or functions with static linkage, those in the unnamed namespace may be
used as template arguments. The unnamed namespace has an implicit using directive, so
its members appear to occupy the global namespace, are accessible directly and do not
have to be qualified with a namespace name. Global variables are also part of the global
namespace and are accessible in all scopes following the declaration in the file.

Accessing Namespace Members with Qualified Names
Line 35 outputs the value of variable doubleInUnnamed, which is directly accessible as part
of the unnamed namespace. Line 38 outputs the value of global variable integer1. For
both of these variables, the compiler first attempts to locate a local declaration of the vari-
ables in main. Since there are no local declarations, the compiler assumes those variables
are in the global namespace.

Lines 41–43 output the values of PI, E, integer1 and FISCAL3 from namespace
Example. Notice that each must be qualified with Example:: because the program does
not provide any using directive or declarations indicating that it will use members of
namespace Example. In addition, member integer1 must be qualified, because a global
variable has the same name. Otherwise, the global variable’s value is output. FISCAL3 is a
member of nested namespace Inner, so it must be qualified with Example::Inner::.

In printValues:
integer1 = 8
PI = 3.14159
E = 2.71828
doubleInUnnamed = 88.22
(global) integer1 = 98
FISCAL3 = 1992

Software Engineering Observation 24.2
Each separate compilation unit has its own unique unnamed namespace; i.e., the
unnamed namespace replaces the static linkage specifier.

Fig. 24.3 | Demonstrating the use of namespaces. (Part 3 of 3.)

982 Chapter 24 Other Topics

Function printValues (defined in lines 49–55) is a member of Example, so it can
access other members of the Example namespace directly without using a namespace qual-
ifier. The output statement in lines 51–54 outputs integer1, PI, E, doubleInUnnamed,
global variable integer1 and FISCAL3. Notice that PI and E are not qualified with
Example. Variable doubleInUnnamed is still accessible, because it’s in the unnamed
namespace and the variable name does not conflict with any other members of namespace
Example. The global version of integer1 must be qualified with the scope resolution oper-
ator (::), because its name conflicts with a member of namespace Example. Also, FISCAL3
must be qualified with Inner::. When accessing members of a nested namespace, the
members must be qualified with the namespace name (unless the member is being used
inside the nested namespace).

using Directives Should Not Be Placed in Headers
Namespaces are particularly useful in large-scale applications that use many class libraries.
In such cases, there’s a higher likelihood of naming conflicts. When working on such proj-
ects, there should never be a using directive in a header. Having one brings the corre-
sponding names into any file that includes the header. This could result in name collisions
and subtle, hard-to-find errors. Instead, use only fully qualified names in headers (for ex-
ample, std::cout or std::string).

Aliases for Namespace Names
Namespaces can be aliased. For example the statement

creates the namespace alias CPPHTP for CPlusPlusHowToProgram.

24.5 Operator Keywords
The C++ standard provides operator keywords (Fig. 24.4) that can be used in place of sev-
eral C++ operators. You can use operator keywords if you have keyboards that do not sup-
port certain characters such as !, &, ^, ~, |, etc.

Common Programming Error 24.1
Placing main in a namespace is a compilation error.

namespace CPPHTP = CPlusPlusHowToProgram;

Operator Operator keyword Description

Logical operator keywords

&& and logical AND

|| or logical OR

! not logical NOT

Inequality operator keyword

!= not_eq inequality

Fig. 24.4 | Operator keyword alternatives to operator symbols. (Part 1 of 2.)

24.5 Operator Keywords 983

Figure 24.5 demonstrates the operator keywords. Microsoft Visual C++ 2010 requires
the header <ciso646> (line 4) to use the operator keywords. In GNU C++, this header is
empty because the operator keywords are always defined.

Bitwise operator keywords

& bitand bitwise AND

| bitor bitwise inclusive OR

^ xor bitwise exclusive OR

~ compl bitwise complement

Bitwise assignment operator keywords

&= and_eq bitwise AND assignment

|= or_eq bitwise inclusive OR assignment

^= xor_eq bitwise exclusive OR assignment

1 // Fig. 24.5: fig24_05.cpp
2 // Demonstrating operator keywords.
3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {
9 bool a = true;

10 bool b = false;
11 int c = 2;
12 int d = 3;
13
14 // sticky setting that causes bool values to display as true or false
15 cout << boolalpha;
16
17 cout << "a = " << a << "; b = " << b
18 << "; c = " << c << "; d = " << d;
19
20 cout << "\n\nLogical operator keywords:";
21 cout << "\n a and a: " << ;
22 cout << "\n a and b: " << ;
23 cout << "\n a or a: " << ;
24 cout << "\n a or b: " << ;
25 cout << "\n not a: " << ;
26 cout << "\n not b: " << ;
27 cout << "\na not_eq b: " << ;
28

Fig. 24.5 | Demonstrating the operator keywords. (Part 1 of 2.)

Operator Operator keyword Description

Fig. 24.4 | Operator keyword alternatives to operator symbols. (Part 2 of 2.)

#include <ciso646> // enables operator keywords in Microsoft Visual C++

(a and a)
(a and b)
(a or a)
(a or b)
(not a)
(not b)
(a not_eq b)

984 Chapter 24 Other Topics

The program declares and initializes two bool variables and two integer variables
(lines 9–12). Logical operations (lines 21–27) are performed with bool variables a and b

using the various logical operator keywords. Bitwise operations (lines 30–36) are per-
formed with the int variables c and d using the various bitwise operator keywords. The
result of each operation is output.

24.6 Pointers to Class Members (.* and ->*)
C++ provides the .* and ->* operators for accessing class members via pointers. This is a
rarely used capability that’s used primarily by advanced C++ programmers. We provide
only a mechanical example of using pointers to class members here. Figure 24.6 demon-
strates the pointer-to-class-member operators.

29 cout << "\n\nBitwise operator keywords:";
30 cout << "\nc bitand d: " << ;
31 cout << "\nc bit_or d: " << ;
32 cout << "\n c xor d: " << ;
33 cout << "\n compl c: " << ;
34 cout << "\nc and_eq d: " << ;
35 cout << "\n c or_eq d: " << ;
36 cout << "\nc xor_eq d: " << << endl;
37 } // end main

a = true; b = false; c = 2; d = 3

Logical operator keywords:
a and a: true
a and b: false
a or a: true
a or b: true
not a: false
not b: true

a not_eq b: true

Bitwise operator keywords:
c bitand d: 2
c bit_or d: 3

c xor d: 1
compl c: -3

c and_eq d: 2
c or_eq d: 3
c xor_eq d: 0

1 // Fig. 24.6: fig24_06.cpp
2 // Demonstrating operators .* and ->*.
3 #include <iostream>
4 using namespace std;
5

Fig. 24.6 | Demonstrating the .* and ->* operators. (Part 1 of 2.)

Fig. 24.5 | Demonstrating the operator keywords. (Part 2 of 2.)

(c bitand d)
(c bitor d)
(c xor d)
(compl c)
(c and_eq d)
(c or_eq d)
(c xor_eq d)

24.6 Pointers to Class Members (.* and ->*) 985

The program declares class Test (lines 7–16), which provides public member func-
tion test and public data member value. Lines 18–19 provide prototypes for the func-
tions arrowStar (defined in lines 30–34) and dotStar (defined in lines 37–41), which
demonstrate the ->* and .* operators, respectively. Lines 23 creates object test, and line
24 assigns 8 to its data member value. Lines 25–26 call functions arrowStar and dotStar

with the address of the object test.
Line 32 in function arrowStar declares and initializes variable memPtr as a pointer to

a member function. In this declaration, Test::* indicates that the variable memPtr is a
pointer to a member of class Test. To declare a pointer to a function, enclose the pointer
name preceded by * in parentheses, as in (Test::*memPtr). A pointer to a function must

6 // class Test definition
7 class Test
8 {
9 public:

10 void func()
11 {
12 cout << "In func\n";
13 } // end function func
14
15 int value; // public data member
16 }; // end class Test
17
18 void arrowStar(Test *); // prototype
19 void dotStar(Test *); // prototype
20
21 int main()
22 {
23 Test test;
24 test.value = 8; // assign value 8
25 arrowStar(&test); // pass address to arrowStar
26 dotStar(&test); // pass address to dotStar
27 } // end main
28
29 // access member function of Test object using ->*
30 void arrowStar(Test *testPtr)
31 {
32
33
34 } // end arrowStar
35
36 // access members of Test object data member using .*
37 void dotStar(Test *testPtr2)
38 {
39
40
41 } // end dotStar

In test function
8

Fig. 24.6 | Demonstrating the .* and ->* operators. (Part 2 of 2.)

void (Test::*memberPtr)() = &Test::func; // declare function pointer
(testPtr->*memberPtr)(); // invoke function indirectly

int Test::*vPtr = &Test::value; // declare pointer
cout << (*testPtr2).*vPtr << endl; // access value

986 Chapter 24 Other Topics

specify, as part of its type, both the return type of the function it points to and the param-
eter list of that function. The function’s return type appears to the left of the left paren-
thesis and the parameter list appears in a separate set of parentheses to the right of the
pointer declaration. In this case, the function has a void return type and no parameters.
The pointer memPtr is initialized with the address of class Test’s member function named
test. The header of the function must match the function pointer’s declaration—i.e.,
function test must have a void return type and no parameters. Notice that the right side
of the assignment uses the address operator (&) to get the address of the member function
test. Also, notice that neither the left side nor the right side of the assignment in line 32 refers
to a specific object of class Test. Only the class name is used with the scope resolution oper-
ator (::). Line 33 invokes the member function stored in memPtr (i.e., test), using the -

>* operator. Because memPtr is a pointer to a member of a class, the ->* operator must be
used rather than the -> operator to invoke the function.

Line 39 declares and initializes vPtr as a pointer to an int data member of class Test.
The right side of the assignment specifies the address of the data member value. Line 40
dereferences the pointer testPtr2, then uses the .* operator to access the member to
which vPtr points. The client code can create pointers to class members for only those class
members that are accessible to the client code. In this example, both member function test

and data member value are publicly accessible.

24.7 Multiple Inheritance
In Chapters 12 and 13, we discussed single inheritance, in which each class is derived from
exactly one base class. In C++, a class may be derived from more than one base class—a tech-
nique known as multiple inheritance in which a derived class inherits the members of two
or more base classes. This powerful capability encourages interesting forms of software re-
use but can cause a variety of ambiguity problems. Multiple inheritance is a difficult concept
that should be used only by experienced programmers. In fact, some of the problems associated
with multiple inheritance are so subtle that newer programming languages, such as Java
and C#, do not enable a class to derive from more than one base class.

Common Programming Error 24.2
Declaring a member-function pointer without enclosing the pointer name in parentheses
is a syntax error.

Common Programming Error 24.3
Declaring a member-function pointer without preceding the pointer name with a class
name followed by the scope resolution operator (::) is a syntax error.

Common Programming Error 24.4
Attempting to use the -> or * operator with a pointer to a class member generates syntax
errors.

Software Engineering Observation 24.3
Great care is required in the design of a system to use multiple inheritance properly; it
should not be used when single inheritance and/or composition will do the job.

24.7 Multiple Inheritance 987

A common problem with multiple inheritance is that each of the base classes might
contain data members or member functions that have the same name. This can lead to
ambiguity problems when you attempt to compile. Consider the multiple-inheritance
example (Fig. 24.7, Fig. 24.8, Fig. 24.9, Fig. 24.10, Fig. 24.11). Class Base1 (Fig. 24.7)
contains one protected int data member—value (line 20), a constructor (lines 10–13)
that sets value and public member function getData (lines 15–18) that returns value.

Class Base2 (Fig. 24.8) is similar to class Base1, except that its protected data is a
char named letter (line 20). Like class Base1, Base2 has a public member function get-

Data, but this function returns the value of char data member letter.

1 // Fig. 24.7: Base1.h
2 // Definition of class Base1
3 #ifndef BASE1_H
4 #define BASE1_H
5
6 // class Base1 definition
7 class Base1
8 {
9 public:

10 Base1(int parameterValue)
11 {
12 value = parameterValue;
13 } // end Base1 constructor
14
15
16 {
17 return value;
18 } // end function getData
19 protected: // accessible to derived classes
20 int value; // inherited by derived class
21 }; // end class Base1
22
23 #endif // BASE1_H

Fig. 24.7 | Demonstrating multiple inheritance—Base1.h.

1 // Fig. 24.8: Base2.h
2 // Definition of class Base2
3 #ifndef BASE2_H
4 #define BASE2_H
5
6 // class Base2 definition
7 class Base2
8 {
9 public:

10 Base2(char characterData)
11 {
12 letter = characterData;
13 } // end Base2 constructor

Fig. 24.8 | Demonstrating multiple inheritance—Base2.h. (Part 1 of 2.)

int getData() const

988 Chapter 24 Other Topics

Class Derived (Figs. 24.9–24.10) inherits from both class Base1 and class Base2

through multiple inheritance. Class Derived has a private data member of type double

named real (line 20), a constructor to initialize all the data of class Derived and a public
member function getReal that returns the value of double variable real.

14
15
16 {
17 return letter;
18 } // end function getData
19 protected: // accessible to derived classes
20 char letter; // inherited by derived class
21 }; // end class Base2
22
23 #endif // BASE2_H

1 // Fig. 24.9: Derived.h
2 // Definition of class Derived which inherits
3 // multiple base classes (Base1 and Base2).
4 #ifndef DERIVED_H
5 #define DERIVED_H
6
7 #include <iostream>
8 #include "Base1.h"
9 #include "Base2.h"

10 using namespace std;
11
12 // class Derived definition
13 class Derived : public Base1, public Base2
14 {
15 friend ostream &operator<<(ostream &, const Derived &);
16 public:
17 Derived(int, char, double);
18 double getReal() const;
19 private:
20 double real; // derived class's private data
21 }; // end class Derived
22
23 #endif // DERIVED_H

Fig. 24.9 | Demonstrating multiple inheritance—Derived.h.

1 // Fig. 24.10: Derived.cpp
2 // Member-function definitions for class Derived
3 #include "Derived.h"
4
5
6

Fig. 24.10 | Demonstrating multiple inheritance—Derived.cpp. (Part 1 of 2.)

Fig. 24.8 | Demonstrating multiple inheritance—Base2.h. (Part 2 of 2.)

char getData() const

// constructor for Derived calls constructors for
// class Base1 and class Base2.

24.7 Multiple Inheritance 989

To indicate multiple inheritance we follow the colon (:) after class Derived with a
comma-separated list of base classes (line 13). In Fig. 24.10, notice that constructor
Derived explicitly calls base-class constructors for each of its base classes—Base1 and
Base2—using the member-initializer syntax (line 9). The base-class constructors are called
in the order that the inheritance is specified, not in the order in which their constructors are
mentioned; also, if the base-class constructors are not explicitly called in the member-initializer
list, their default constructors will be called implicitly.

The overloaded stream insertion operator (Fig. 24.10, lines 18–23) uses its second
parameter—a reference to a Derived object—to display a Derived object’s data. This
operator function is a friend of Derived, so operator<< can directly access all of class
Derived’s protected and private members, including the protected data member
value (inherited from class Base1), protected data member letter (inherited from class
Base2) and private data member real (declared in class Derived).

Now let’s examine the main function (Fig. 24.11) that tests the classes in Figs. 24.7–
24.10. Line 11 creates Base1 object base1 and initializes it to the int value 10, then creates
the pointer base1Ptr and initializes it to the null pointer (i.e., 0). Line 12 creates Base2
object base2 and initializes it to the char value 'Z', then creates the pointer base2Ptr and
initializes it to the null pointer. Line 13 creates Derived object derived and initializes it
to contain the int value 7, the char value 'A' and the double value 3.5.

7
8
9

10
11 // return real
12 double Derived::getReal() const
13 {
14 return real;
15 } // end function getReal
16
17 // display all data members of Derived
18 ostream &operator<<(ostream &output, const Derived &derived)
19 {
20 output << " Integer: " << derived.value << "\n Character: "
21 << derived.letter << "\nReal number: " << derived.real;
22 return output; // enables cascaded calls
23 } // end operator<<

1 // Fig. 24.11: fig24_11.cpp
2 // Driver for multiple-inheritance example.
3 #include <iostream>
4 #include "Base1.h"
5 #include "Base2.h"
6 #include "Derived.h"
7 using namespace std;

Fig. 24.11 | Demonstrating multiple inheritance. (Part 1 of 2.)

Fig. 24.10 | Demonstrating multiple inheritance—Derived.cpp. (Part 2 of 2.)

// use member initializers to call base-class constructors
Derived::Derived(int integer, char character, double double1)

: Base1(integer), Base2(character), real(double1) { }

990 Chapter 24 Other Topics

Lines 16–18 display each object’s data values. For objects base1 and base2, we invoke
each object’s getData member function. Even though there are two getData functions in
this example, the calls are not ambiguous. In line 16, the compiler knows that base1 is an
object of class Base1, so class Base1’s getData is called. In line 17, the compiler knows that
base2 is an object of class Base2, so class Base2’s getData is called. Line 18 displays the
contents of object derived using the overloaded stream insertion operator.

8
9 int main()

10 {
11 Base1 base1(10), *base1Ptr = 0; // create Base1 object
12 Base2 base2('Z'), *base2Ptr = 0; // create Base2 object
13
14
15 // print data members of base-class objects
16 cout << "Object base1 contains integer " << base1.getData()
17 << "\nObject base2 contains character " << base2.getData()
18 << "\nObject derived contains:\n" << derived << "\n\n";
19
20 // print data members of derived-class object
21 // scope resolution operator resolves getData ambiguity
22 cout << "Data members of Derived can be accessed individually:"
23 << "\n Integer: " <<
24 << "\n Character: " <<
25 << "\nReal number: " << << "\n\n";
26 cout << "Derived can be treated as an object of either base class:\n";
27
28 // treat Derived as a Base1 object
29
30 cout << "base1Ptr->getData() yields " << << '\n';
31
32 // treat Derived as a Base2 object
33
34 cout << "base2Ptr->getData() yields " << << endl;
35 } // end main

Object base1 contains integer 10
Object base2 contains character Z
Object derived contains:

Integer: 7
Character: A

Real number: 3.5

Data members of Derived can be accessed individually:
Integer: 7

Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

Fig. 24.11 | Demonstrating multiple inheritance. (Part 2 of 2.)

Derived derived(7, 'A', 3.5); // create Derived object

derived.Base1::getData()
derived.Base2::getData()
derived.getReal()

base1Ptr = &derived;
base1Ptr->getData()

base2Ptr = &derived;
base2Ptr->getData()

24.8 Multiple Inheritance and virtual Base Classes 991

Resolving Ambiguity Issues That Arise When a Derived Class Inherits Member
Functions of the Same Name from Multiple Base Classes
Lines 22–25 output the contents of object derived again by using the get member func-
tions of class Derived. However, there is an ambiguity problem, because this object con-
tains two getData functions, one inherited from class Base1 and one inherited from class
Base2. This problem is easy to solve by using the scope resolution operator. The expression
derived.Base1::getData() gets the value of the variable inherited from class Base1 (i.e.,
the int variable named value) and derived.Base2::getData() gets the value of the vari-
able inherited from class Base2 (i.e., the char variable named letter). The double value
in real is printed without ambiguity with the call derived.getReal()—there are no oth-
er member functions with that name in the hierarchy.

Demonstrating the Is-A Relationships in Multiple Inheritance
The is-a relationships of single inheritance also apply in multiple-inheritance relationships.
To demonstrate this, line 29 assigns the address of object derived to the Base1 pointer
base1Ptr. This is allowed because an object of class Derived is an object of class Base1.
Line 30 invokes Base1 member function getData via base1Ptr to obtain the value of only
the Base1 part of the object derived. Line 33 assigns the address of object derived to the
Base2 pointer base2Ptr. This is allowed because an object of class Derived is an object of
class Base2. Line 34 invokes Base2 member function getData via base2Ptr to obtain the
value of only the Base2 part of the object derived.

24.8 Multiple Inheritance and virtual Base Classes
In Section 24.7, we discussed multiple inheritance, the process by which one class inherits
from two or more classes. Multiple inheritance is used, for example, in the C++ standard
library to form class basic_iostream (Fig. 24.12).

Class basic_ios is the base class for both basic_istream and basic_ostream, each
of which is formed with single inheritance. Class basic_iostream inherits from both
basic_istream and basic_ostream. This enables class basic_iostream objects to pro-
vide the functionality of basic_istreams and basic_ostreams. In multiple-inheritance
hierarchies, the situation described in Fig. 24.12 is referred to as diamond inheritance

Because classes basic_istream and basic_ostream each inherit from basic_ios, a
potential problem exists for basic_iostream. Class basic_iostream could contain two
copies of the members of class basic_ios—one inherited via class basic_istream and one

Fig. 24.12 | Multiple inheritance to form class basic_iostream.

basic_ios

basic_ostreambasic_istream

basic_iostream

992 Chapter 24 Other Topics

inherited via class basic_ostream). Such a situation would be ambiguous and would result
in a compilation error, because the compiler would not know which version of the mem-
bers from class basic_ios to use. Of course, basic_iostream does not really suffer from
the problem we mentioned. In this section, you’ll see how using virtual base classes solves
the problem of inheriting duplicate copies of an indirect base class.

Compilation Errors Produced When Ambiguity Arises in Diamond Inheritance
Figure 24.13 demonstrates the ambiguity that can occur in diamond inheritance. Class
Base (lines 8–12) contains pure virtual function print (line 11). Classes DerivedOne

(lines 15–23) and DerivedTwo (lines 26–34) each publicly inherit from Base and override
function print. Class DerivedOne and class DerivedTwo each contain what the C++ stan-
dard refers to as a base-class subobject—i.e., the members of class Base in this example.

1 // Fig. 24.13: fig24_13.cpp
2 // Attempting to polymorphically call a function that is
3 // multiply inherited from two base classes.
4 #include <iostream>
5 using namespace std;
6
7 // class Base definition
8 class Base
9 {

10 public:
11
12 }; // end class Base
13
14 // class DerivedOne definition
15 class DerivedOne : public Base
16 {
17 public:
18
19
20
21
22
23 }; // end class DerivedOne
24
25 // class DerivedTwo definition
26 class DerivedTwo : public Base
27 {
28 public:
29
30
31
32
33
34 }; // end class DerivedTwo
35
36 // class Multiple definition
37 class Multiple : public DerivedOne, public DerivedTwo
38 {

Fig. 24.13 | Attempting to call a multiply inherited function polymorphically. (Part 1 of 2.)

virtual void print() const = 0; // pure virtual

// override print function
void print() const
{

cout << "DerivedOne\n";
} // end function print

// override print function
void print() const
{

cout << "DerivedTwo\n";
} // end function print

24.8 Multiple Inheritance and virtual Base Classes 993

Class Multiple (lines 37–45) inherits from both classes DerivedOne and DerivedTwo.
In class Multiple, function print is overridden to call DerivedTwo’s print (line 43).
Notice that we must qualify the print call with the class name DerivedTwo to specify
which version of print to call.

Function main (lines 47–61) declares objects of classes Multiple (line 49),
DerivedOne (line 50) and DerivedTwo (line 51). Line 52 declares an array of Base *

pointers. Each array element is initialized with the address of an object (lines 54–56). An
error occurs when the address of both—an object of class Multiple—is assigned to
array[0]. The object both actually contains two subobjects of type Base, so the compiler
does not know which subobject the pointer array[0] should point to, and it generates a
compilation error indicating an ambiguous conversion.

Eliminating Duplicate Subobjects with virtual Base-Class Inheritance
The problem of duplicate subobjects is resolved with virtual inheritance. When a base
class is inherited as virtual, only one subobject will appear in the derived class—a process

39 public:
40
41
42
43
44
45 }; // end class Multiple
46
47 int main()
48 {
49 Multiple both; // instantiate Multiple object
50 DerivedOne one; // instantiate DerivedOne object
51 DerivedTwo two; // instantiate DerivedTwo object
52 Base *array[3]; // create array of base-class pointers
53
54
55 array[1] = &one;
56 array[2] = &two;
57
58 // polymorphically invoke print
59 for (int i = 0; i < 3; ++i)
60 array[i] -> print();
61 } // end main

Microsoft Visual C++ compiler error message:

c:\cpphtp8_examples\ch25\Fig24_13\fig24_13.cpp(54) : error C2594: '=' :
ambiguous conversions from 'Multiple *' to 'Base *'

GNU C++ compiler error message:

fig24_13.cpp: In function ‘int main()’:
fig24_13.cpp:54: error: ‘Base’ is an ambiguous base of ‘Multiple’

Fig. 24.13 | Attempting to call a multiply inherited function polymorphically. (Part 2 of 2.)

// qualify which version of function print
void print() const
{

DerivedTwo::print();
} // end function print

array[0] = &both; // ERROR--ambiguous

994 Chapter 24 Other Topics

called virtual base-class inheritance. Figure 24.14 revises the program of Fig. 24.13 to
use a virtual base class.

1 // Fig. 24.14: fig24_14.cpp
2 // Using virtual base classes.
3 #include <iostream>
4 using namespace std;
5
6 // class Base definition
7 class Base
8 {
9 public:

10 virtual void print() const = 0; // pure virtual
11 }; // end class Base
12
13 // class DerivedOne definition
14 class DerivedOne :
15 {
16 public:
17
18
19
20
21
22 }; // end DerivedOne class
23
24 // class DerivedTwo definition
25 class DerivedTwo :
26 {
27 public:
28
29
30
31
32
33 }; // end DerivedTwo class
34
35 // class Multiple definition
36 class Multiple : public DerivedOne, public DerivedTwo
37 {
38 public:
39
40
41
42
43
44 }; // end Multiple class
45
46 int main()
47 {
48 Multiple both; // instantiate Multiple object
49 DerivedOne one; // instantiate DerivedOne object

Fig. 24.14 | Using virtual base classes. (Part 1 of 2.)

virtual public Base

// override print function
void print() const
{

cout << "DerivedOne\n";
} // end function print

virtual public Base

// override print function
void print() const
{

cout << "DerivedTwo\n";
} // end function print

// qualify which version of function print
void print() const
{

DerivedTwo::print();
} // end function print

24.8 Multiple Inheritance and virtual Base Classes 995

The key change is that classes DerivedOne (line 14) and DerivedTwo (line 25) each
inherit from Base by specifying virtual public Base. Since both classes inherit from
Base, they each contain a Base subobject. The benefit of virtual inheritance is not clear
until class Multiple inherits from DerivedOne and DerivedTwo (line 36). Since each of the
base classes used virtual inheritance to inherit class Base’s members, the compiler ensures
that only one Base subobject is inherited into class Multiple. This eliminates the ambi-
guity error generated by the compiler in Fig. 24.13. The compiler now allows the implicit
conversion of the derived-class pointer (&both) to the base-class pointer array[0] in line
55 in main. The for statement in lines 60–61 polymorphically calls print for each object.

Constructors in Multiple-Inheritance Hierarchies with virtual Base Classes
Implementing hierarchies with virtual base classes is simpler if default constructors are
used for the base classes. Figures 24.13 and 24.14 use compiler-generated ones. If a vir-

tual base class provides a constructor that requires arguments, the derived-class imple-
mentations become more complicated, because the most derived class must explicitly
invoke the virtual base class’s constructor.

Additional Information on Multiple Inheritance
Multiple inheritance is a complex topic typically covered in more advanced C++ texts. For
more information on multiple inheritance, please visit our C++ Resource Center at

In the C++ Multiple Inheritance category, you’ll find links to several articles and resources,
including a multiple inheritance FAQ and tips for using multiple inheritance.

50 DerivedTwo two; // instantiate DerivedTwo object
51
52 // declare array of base-class pointers and initialize
53 // each element to a derived-class type
54 Base *array[3];
55
56 array[1] = &one;
57 array[2] = &two;
58
59 // polymorphically invoke function print
60 for (int i = 0; i < 3; ++i)
61 array[i]->print();
62 } // end main

DerivedTwo
DerivedOne
DerivedTwo

Software Engineering Observation 24.4
Providing a default constructor for virtual base classes simplifies hierarchy design.

www.deitel.com/cplusplus/

Fig. 24.14 | Using virtual base classes. (Part 2 of 2.)

array[0] = &both;

www.deitel.com/cplusplus/

996 Chapter 24 Other Topics

24.9 Wrap-Up
In this chapter, you learned how to use the const_cast operator to remove the const qual-
ification of a variable. We then showed how to use namespaces to ensure that every identifier
in a program has a unique name and explained how they can help resolve naming conflicts.
You saw several operator keywords to use if your keyboards do not support certain characters
used in operator symbols, such as !, &, ^, ~ and |. Next, we showed how the mutable storage-
class specifier enables you to indicate that a data member should always be modifiable, even
when it appears in an object that’s currently being treated as a const. We also showed the
mechanics of using pointers to class members and the ->* and .* operators. Finally, we in-
troduced multiple inheritance and discussed problems associated with allowing a derived
class to inherit the members of several base classes. As part of this discussion, we demonstrat-
ed how virtual inheritance can be used to solve those problems.

Summary
Section 24.2 const_cast Operator
• C++ provides the const_cast operator for casting away const or volatile qualification.

• A program declares a variable with the volatile qualifier (p. 975) when that program expects
the variable to be modified by other programs. Declaring a variable volatile indicates that the
compiler should not optimize the use of that variable because doing so could affect the ability of
those other programs to access and modify the volatile variable.

• In general, it is dangerous to use the const_cast operator, because it allows a program to modify
a variable that was declared const, and thus was not supposed to be modifiable.

• There are cases in which it is desirable, or even necessary, to cast away const-ness. For example,
older C and C++ libraries might provide functions with non-const parameters and that do not
modify their parameters. If you wish to pass const data to such a function, you’d need to cast
away the data’s const-ness; otherwise, the compiler would report error messages.

• If you pass non-const data to a function that treats the data as if it were constant, then returns
that data as a constant, you might need to cast away the const-ness of the returned data to access
and modify that data.

Section 24.3 mutable Class Members
• If a data member should always be modifiable, C++ provides the storage-class specifier mutable

as an alternative to const_cast. A mutable data member (p. 977) is always modifiable, even in a
const member function or const object. This reduces the need to cast away “const-ness.”

• mutable and const_cast are used in different contexts. For a const object with no mutable data
members, operator const_cast must be used every time a member is to be modified. This greatly
reduces the chance of a member being accidentally modified because the member is not perma-
nently modifiable.

• Operations involving const_cast are typically hidden in a member function’s implementation.
The user of a class might not be aware that a member is being modified.

Section 24.4 namespaces
• A program includes many identifiers defined in different scopes. Sometimes a variable of one

scope will “overlap” with a variable of the same name in a different scope, possibly creating a
naming conflict. The C++ standard solves this problem with namespaces (p. 979).

Summary 997

• Each namespace defines a scope in which identifiers are placed. To use a namespace member
(p. 979), either the member’s name must be qualified with the namespace name and the scope
resolution operator (::) or a using directive or declaration must appear before the name is used
in the program.

• Typically, using statements are placed at the beginning of the file in which members of the
namespace are used.

• Not all namespaces are guaranteed to be unique. Two third-party vendors might inadvertently
use the same identifiers for their namespace names.

• A namespace can contain constants, data, classes, nested namespaces (p. 981), functions, etc.
Definitions of namespaces must occupy the global scope or be nested within other namespaces.

• An unnamed namespace (p. 981) has an implicit using directive, so its members appear to occu-
py the global namespace, are accessible directly and do not have to be qualified with a namespace
name. Global variables are also part of the global namespace.

• When accessing members of a nested namespace, the members must be qualified with the
namespace name (unless the member is being used inside the nested namespace).

• Namespaces can be aliased (p. 982).

Section 24.5 Operator Keywords
• The C++ standard provides operator keywords (p. 982) that can be used in place of several C++

operators. Operator keywords are useful for programmers who have keyboards that do not sup-
port certain characters such as !, &, ^, ~, |, etc.

Section 24.6 Pointers to Class Members (.* and ->*)
• C++ provides the .* and ->* operators (p. 984) for accessing class members via pointers. This is

a rarely used capability that’s used primarily by advanced C++ programmers.

• Declaring a pointer to a function requires that you enclose the pointer name preceded by an * in
parentheses. A pointer to a function must specify, as part of its type, both the return type of the
function it points to and the parameter list of that function.

Section 24.7 Multiple Inheritance
• In C++, a class may be derived from more than one base class—a technique known as multiple

inheritance (p. 986), in which a derived class inherits the members of two or more base classes.

• A common problem with multiple inheritance is that each of the base classes might contain data
members or member functions that have the same name. This can lead to ambiguity problems
when you attempt to compile.

• The is-a relationships of single inheritance also apply in multiple-inheritance relationships.

• Multiple inheritance is used in the C++ Standard Library to form class basic_iostream. Class
basic_ios is the base class for both basic_istream and basic_ostream. Class basic_iostream

inherits from both basic_istream and basic_ostream. In multiple-inheritance hierarchies, the
situation described here is referred to as diamond inheritance.

Section 24.8 Multiple Inheritance and virtual Base Classes
• The ambiguity in diamond inheritance (p. 991) occurs when a derived-class object inherits two

or more base-class subobjects (p. 992). The problem of duplicate subobjects is resolved with vir-

tual inheritance. When a base class is inherited as virtual (p. 994), only one subobject will ap-
pear in the derived class—a process called virtual base-class inheritance.

• Implementing hierarchies with virtual base classes is simpler if default constructors are used for
the base classes. If a virtual base class provides a constructor that requires arguments, the im-

998 Chapter 24 Other Topics

plementation of the derived classes becomes more complicated, because the most derived class
(p. 995) must explicitly invoke the virtual base class’s constructor to initialize the members in-
herited from the virtual base class.

Self-Review Exercises
24.1 Fill in the blanks for each of the following:

a) The operator qualifies a member with its namespace.
b) The operator allows an object’s “const-ness” to be cast away.
c) Because an unnamed namespace has an implicit using directive, its members appear to

occupy the , are accessible directly and do not have to be qualified with a
namespace name.

d) Operator is the operator keyword for inequality.
e) allows a class to be derived from more than one base class.
f) When a base class is inherited as , only one subobject of the base class will ap-

pear in the derived class.

24.2 State which of the following are true and which are false. If a statement is false, explain why.
a) When passing a non-const argument to a const function, the const_cast operator

should be used to cast away the “const-ness” of the function.
b) A mutable data member cannot be modified in a const member function.
c) namespaces are guaranteed to be unique.
d) Like class bodies, namespace bodies also end in semicolons.
e) namespaces cannot have namespaces as members.

Answers to Self-Review Exercises
24.1 a) binary scope resolution (::). b) const_cast. c) global namespace. d) not_eq.
e) multiple inheritance. f) virtual.

24.2 a) False. It is legal to pass a non-const argument to a const function. However, when pass-
ing a const reference or pointer to a non-const function, the const_cast operator
should be used to cast away the “const-ness” of the reference or pointer

b) False. A mutable data member is always modifiable, even in a const member function.
c) False. Programmers might inadvertently choose the namespace already in use.
d) False. namespace bodies do not end in semicolons.
e) False. namespaces can be nested.

Exercises
24.3 (Fill in the Blanks) Fill in the blanks for each of the following:

a) Keyword specifies that a namespace or namespace member is being used.
b) Operator is the operator keyword for logical OR.
c) Storage specifier allows a member of a const object to be modified.
d) The qualifier specifies that an object can be modified by other programs.
e) Precede a member with its name and the scope resolution operator

if the possibility exists of a scoping conflict.
f) The body of a namespace is delimited by .
g) For a const object with no data members, operator must be used

every time a member is to be modified.

24.4 (Currency namespace) Write a namespace, Currency, that defines constant members ONE,
TWO, FIVE, TEN, TWENTY, FIFTY and HUNDRED. Write two short programs that use Currency. One pro-
gram should make all constants available and the other should make only FIVE available.

Exercises 999

24.5 Given the namespaces in Fig. 24.15, determine whether each statement is true or false. Ex-
plain any false answers.

a) Variable kilometers is visible within namespace Data.
b) Object string1 is visible within namespace Data.
c) Constant POLAND is not visible within namespace Data.
d) Constant GERMANY is visible within namespace Data.
e) Function function is visible to namespace Data.
f) Namespace Data is visible to namespace CountryInformation.
g) Object map is visible to namespace CountryInformation.
h) Object string1 is visible within namespace RegionalInformation.

24.6 Compare and contrast mutable and const_cast. Give at least one example of when one
might be preferred over the other. [Note: This exercise does not require any code to be written.]

24.7 (Modifying a const Variable) Write a program that uses const_cast to modify a const vari-
able. [Hint: Use a pointer in your solution to point to the const identifier.]

24.8 (virtual Base Classes) What problem do virtual base classes solve?

24.9 (virtual Base Classes) Write a program that uses virtual base classes. The class at the top
of the hierarchy should provide a constructor that takes at least one argument (i.e., do not provide
a default constructor). What challenges does this present for the inheritance hierarchy?

24.10 (Find the Code Errors) Find the error(s) in each of the following. When possible, explain
how to correct each error.

a) namespace Name {

int x;

int y;

mutable int z;

};
b) int integer = const_cast< int >(double);

c) namespace PCM(111, "hello"); // construct namespace

1 namespace CountryInformation
2 {
3 using namespace std;
4 enum Countries { POLAND, SWITZERLAND, GERMANY,
5 AUSTRIA, CZECH_REPUBLIC };
6 int kilometers;
7 string string1;
8
9 namespace RegionalInformation

10 {
11 short getPopulation(); // assume definition exists
12 MapData map; // assume definition exists
13 } // end RegionalInformation
14 } // end CountryInformation
15
16 namespace Data
17 {
18 using namespace CountryInformation::RegionalInformation;
19 void *function(void *, int);
20 } // end Data

Fig. 24.15 | namespaces for Exercise 24.5.

This page intentionally left blank

Chapters on the Web

The following chapters are available as PDF documents from this book’s Companion
Website, which is accessible from www.pearsonhighered.com/deitel/:

• Chapter 25, ATM Case Study, Part 1: Object-Oriented Design with the UML

• Chapter 26, ATM Case Study, Part 2: Implementing an Object-Oriented Design

• Game Programming with OGRE (from C++ How to Program, Seventh Edition)

These files can be viewed in Adobe® Reader® (get.adobe.com/reader). The index entries
for these chapters include the chapter number and an underscore, as in 25_1.

New copies of this book come with a Companion Website access code that is located
on the card inside the book’s front cover. If the access code is already visible or there is no
card, you purchased a used book or an edition that does not come with an access code. In
this case, you can purchase access directly from the Companion Website.

www.pearsonhighered.com/deitel/

A
Operator Precedence and Associativity

Operators are shown in decreasing order of precedence from top to bottom (Fig. A.1).

Operator Type Associativity

::

::

binary scope resolution
unary scope resolution

left to right

() grouping parentheses [See caution in
Fig. 2.10]

()

[]

.

->

++

--

typeid

dynamic_cast < type >

static_cast< type >

reinterpret_cast< type >

const_cast< type >

function call
array subscript
member selection via object
member selection via pointer
unary postfix increment
unary postfix decrement
runtime type information
runtime type-checked cast
compile-time type-checked cast
cast for nonstandard conversions
cast away const-ness

left to right

++
--
+
-
!
~
sizeof

&

*
new

new[]
delete

delete[]

unary prefix increment
unary prefix decrement
unary plus
unary minus
unary logical negation
unary bitwise complement
determine size in bytes
address
dereference
dynamic memory allocation
dynamic array allocation
dynamic memory deallocation
dynamic array deallocation

right to left

(type) C-style unary cast right to left

Fig. A.1 | Operator precedence and associativity chart. (Part 1 of 2.)

Operator Precedence and Associativity 1003

.*
->*

pointer to member via object
pointer to member via pointer

left to right

*
/
%

multiplication
division
modulus

left to right

+
-

addition
subtraction

left to right

<<
>>

bitwise left shift
bitwise right shift

left to right

<
<=
>
>=

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to

left to right

==
!=

relational is equal to
relational is not equal to

left to right

& bitwise AND left to right

^ bitwise exclusive OR left to right

| bitwise inclusive OR left to right

&& logical AND left to right

|| logical OR left to right

?: ternary conditional right to left

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left-shift assignment
bitwise right-shift assignment

right to left

, comma left to right

Operator Type Associativity

Fig. A.1 | Operator precedence and associativity chart. (Part 2 of 2.)

B
ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalents (0–127) of
the character codes, and the digits at the top of the table are the right digits of the character
codes. For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set that represents characters from most of the world’s languages.

ASCII Character Set

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. B.1 | ASCII character set.

C
Fundamental Types

Figure C.1 lists C++’s fundamental types. The C++ Standard Document does not provide
the exact number of bytes required to store variables of these types in memory. However,
the C++ Standard Document does indicate how the memory requirements for fundamen-
tal types relate to one another. By order of increasing memory requirements, the signed
integer types are signed char, short int, int and long int. This means that a short int

must provide at least as much storage as a signed char; an int must provide at least as
much storage as a short int; and a long int must provide at least as much storage as an
int. Each signed integer type has a corresponding unsigned integer type that has the same
memory requirements. Unsigned types cannot represent negative values, but can represent
twice as many positive values as their associated signed types. By order of increasing mem-
ory requirements, the floating-point types are float, double and long double. Like inte-
ger types, a double must provide at least as much storage as a float and a long double

must provide at least as much storage as a double.

The exact sizes and ranges of values for the fundamental types are implementation
dependent. The header files <climits> (for the integral types) and <cfloat> (for the
floating-point types) specify the ranges of values supported on your system.

Integral types Floating-point types

bool float

char double

signed char long double

unsigned char

short int

unsigned short int

int

unsigned int

long int

unsigned long int

wchar_t

Fig. C.1 | C++ fundamental types.

1006 Appendix C Fundamental Types

The range of values a type supports depends on the number of bytes that are used to
represent that type. For example, consider a system with 4 byte (32 bit) ints. For the
signed int type, the nonnegative values are in the range 0 to 2,147,483,647 (231 – 1). The
negative values are in the range –1 to –2,147,483,648 (–231). This is a total of 232 possible
values. An unsigned int on the same system would use the same number of bits to repre-
sent data, but would not represent any negative values. This results in values in the range
0 to 4,294,967,295 (232 – 1). On the same system, a short int could not use more than
32 bits to represent its data and a long int must use at least 32 bits.

C++ provides the data type bool for variables that can hold only the values true and
false. The new C++ standard introduces the types long long and unsigned long long—
typically for 64-bit integer values (though this is not required by the standard).

DNumber Systems

Here are only numbers ratified.
—William Shakespeare

O b j e c t i v e s
In this appendix you’ll learn:

■ To understand basic number
systems concepts, such as
base, positional value and
symbol value.

■ To understand how to work
with numbers in the binary,
octal and hexadecimal
number systems.

■ To abbreviate binary numbers
as octal numbers or
hexadecimal numbers.

■ To convert octal numbers
and hexadecimal numbers to
binary numbers.

■ To convert back and forth
between decimal numbers
and their binary, octal and
hexadecimal equivalents.

■ To understand binary
arithmetic and how negative
binary numbers are
represented using two’s
complement notation.

1008 Appendix D Number Systems

D.1 Introduction
In this appendix, we introduce the key number systems that C++ programmers use, espe-
cially when they are working on software projects that require close interaction with ma-
chine-level hardware. Projects like this include operating systems, computer networking
software, compilers, database systems and applications requiring high performance.

When we write an integer such as 227 or –63 in a C++ program, the number is
assumed to be in the decimal (base 10) number system. The digits in the decimal number
system are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest digit is 0 and the highest is 9—one
less than the base of 10. Internally, computers use the binary (base 2) number system. The
binary number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its
highest is 1—one less than the base of 2.

As we’ll see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages, and in high-level languages like C++ that
enable them to reach down to the machine level, find it cumbersome to work with binary
numbers. So two other number systems—the octal number system (base 8) and the hexa-
decimal number system (base 16)—are popular, primarily because they make it conve-
nient to abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary and
the octal number systems have fewer digits than the decimal number system, their digits
are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires 16 digits—a
lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters and numbers like FFE consisting solely of letters. Occasionally, a hexa-
decimal number spells a common word such as FACE or FEED—this can appear strange
to programmers accustomed to working with numbers. The digits of the binary, octal,
decimal and hexadecimal number systems are summarized in Figs. D.1–D.2.

Each of these number systems uses positional notation—each position in which a
digit is written has a different positional value. For example, in the decimal number 937
(the 9, the 3 and the 7 are referred to as symbol values), we say that the 7 is written in the
ones position, the 3 is written in the tens position and the 9 is written in the hundreds
position. Note that each of these positions is a power of the base (base 10) and that these
powers begin at 0 and increase by 1 as we move left in the number (Fig. D.3).

D.1 Introduction
D.2 Abbreviating Binary Numbers as

Octal and Hexadecimal Numbers
D.3 Converting Octal and Hexadecimal

Numbers to Binary Numbers

D.4 Converting from Binary, Octal or
Hexadecimal to Decimal

D.5 Converting from Decimal to Binary,
Octal or Hexadecimal

D.6 Negative Binary Numbers: Two’s
Complement Notation

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

D.1 Introduction 1009

For longer decimal numbers, the next positions to the left would be the thousands
position (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hun-

Binary
digit Octal digit

Decimal
digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10)

B (decimal value of 11)

C (decimal value of 12)

D (decimal value of 13)

E (decimal value of 14)

F (decimal value of 15)

Fig. D.1 | Digits of the binary, octal, decimal and hexadecimal number systems.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. D.2 | Comparing the binary, octal, decimal and hexadecimal number systems.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a
power of the base (10)

102 101 100

Fig. D.3 | Positional values in the decimal number system.

1010 Appendix D Number Systems

dred-thousands position (10 to the 5th power), the millions position (10 to the 6th
power), the ten-millions position (10 to the 7th power) and so on.

In the binary number 101, the rightmost 1 is written in the ones position, the 0 is
written in the twos position and the leftmost 1 is written in the fours position. Note that
each position is a power of the base (base 2) and that these powers begin at 0 and increase
by 1 as we move left in the number (Fig. D.4). So, 101 = 22 + 20 = 4 + 1 = 5.

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position
(2 to the 5th power), the sixty-fours position (2 to the 6th power) and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is
written in the eights position and the 4 is written in the sixty-fours position. Note that
each of these positions is a power of the base (base 8) and that these powers begin at 0 and
increase by 1 as we move left in the number (Fig. D.5).

For longer octal numbers, the next positions to the left would be the five-hundred-
and-twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8
to the 4th power), the thirty-two-thousand-seven-hundred-and-sixty-eights position (8 to
the 5th power) and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position,
the D is written in the sixteens position and the 3 is written in the two-hundred-and-fifty-
sixes position. Note that each of these positions is a power of the base (base 16) and that
these powers begin at 0 and increase by 1 as we move left in the number (Fig. D.6).

For longer hexadecimal numbers, the next positions to the left would be the four-
thousand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-
hundred-and-thirty-sixes position (16 to the 4th power) and so on.

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a
power of the base (2)

22 21 20

Fig. D.4 | Positional values in the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a
power of the base (8)

82 81 80

Fig. D.5 | Positional values in the octal number system.

D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 1011

D.2 Abbreviating Binary Numbers as Octal and
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure D.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadec-
imal (8 and 16 respectively) are powers of the base of the binary number system (base 2).

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-
and-fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a
power of the base (16)

162 161 160

Fig. D.6 | Positional values in the hexadecimal number system.

Decimal
number

Binary
representation

Octal
representation

Hexadecimal
representation

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

Fig. D.7 | Decimal, binary, octal and hexadecimal equivalents.

1012 Appendix D Number Systems

Consider the following 12-digit binary number and its octal and hexadecimal equivalents.
See if you can determine how this relationship makes it convenient to abbreviate binary
numbers in octal or hexadecimal. The answers follow the numbers.

To see how the binary number converts easily to octal, simply break the 12-digit
binary number into groups of three consecutive bits each, starting from the right, and
write those groups over the corresponding digits of the octal number as follows:

Note that the octal digit you’ve written under each group of three bits corresponds
precisely to the octal equivalent of that 3-digit binary number, as shown in Fig. D.7.

The same kind of relationship can be observed in converting from binary to hexadec-
imal. Break the 12-digit binary number into groups of four consecutive bits each, starting
from the right, and write those groups over the corresponding digits of the hexadecimal
number as follows:

Notice that the hexadecimal digit you wrote under each group of four bits corre-
sponds precisely to the hexadecimal equivalent of that 4-digit binary number as shown in
Fig. D.7.

D.3 Converting Octal and Hexadecimal Numbers to
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting them as their
equivalent octal digit values or hexadecimal digit values. This process may be used in re-
verse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as
its 3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101 and the 3 as its
3-digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101 and the 5 as its 4-digit binary equivalent 0101 to form the
16-digit 1111101011010101.

D.4 Converting from Binary, Octal or Hexadecimal to
Decimal
We are accustomed to working in decimal, and therefore it is often convenient to convert
a binary, octal, or hexadecimal number to decimal to get a sense of what the number is
“really” worth. Our diagrams in Section D.1 express the positional values in decimal. To
convert a number to decimal from another base, multiply the decimal equivalent of each

Binary number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

100 011 010 001
4 3 2 1

1000 1101 0001
8 D 1

D.5 Converting from Decimal to Binary, Octal or Hexadecimal 1013

digit by its positional value and sum these products. For example, the binary number
110101 is converted to decimal 53 as shown in Fig. D.8.

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values, as shown in Fig. D.9.

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this
time using appropriate hexadecimal positional values, as shown in Fig. D.10.

D.5 Converting from Decimal to Binary, Octal or
Hexadecimal
The conversions in Section D.4 follow naturally from the positional notation conventions.
Converting from decimal to binary, octal, or hexadecimal also follows these conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Converting a binary number to decimal

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=32 1*16=16 0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0s + 1 = 53

Fig. D.8 | Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. D.9 | Converting an octal number to decimal.

Converting a hexadecimal number to decimal

Positional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=40960 D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. D.10 | Converting a hexadecimal number to decimal.

Positional values: 64 32 16 8 4 2 1

1014 Appendix D Number Systems

Then we discard the column with positional value 64, leaving:

Next we work from the leftmost column to the right. We divide 32 into 57 and
observe that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column.
We divide 16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and
write 1 in the 16 column. We divide 8 into 9 and observe that there is one 8 in 9 with a
remainder of 1. The next two columns each produce quotients of 0 when their positional
values are divided into 1, so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1, so
we write 1 in the 1 column. This yields:

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 512, yielding:

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and
write 4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in
7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 4096, yielding:

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a
remainder of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that
there are seven 1s in 7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 375 is equivalent to hexadecimal 177.

Positional values: 32 16 8 4 2 1

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

Positional values: 512 64 8 1

Positional values: 64 8 1

Positional values: 64 8 1
Symbol values: 1 4 7

Positional values: 4096 256 16 1

Positional values: 256 16 1

Positional values: 256 16 1
Symbol values: 1 7 7

D.6 Negative Binary Numbers: Two’s Complement Notation 1015

D.6 Negative Binary Numbers: Two’s Complement
Notation
The discussion so far in this appendix has focused on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation.
First we explain how the two’s complement of a binary number is formed, then we show
why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

The 32-bit representation of value is

To form the negative of value we first form its one’s complement by applying C++’s bit-
wise complement operator (~):

Internally, ~value is now value with each of its bits reversed—ones become zeros and ze-
ros become ones, as follows:

To form the two’s complement of value, we simply add 1 to value’s one’s complement.
Thus

Now if this is in fact equal to –13, we should be able to add it to binary 13 and obtain a
result of 0. Let’s try this:

The carry bit coming out of the leftmost column is discarded and we indeed get 0 as a re-
sult. If we add the one’s complement of a number to the number, the result will be all 1s.
The key to getting a result of all zeros is that the two’s complement is one more than the
one’s complement. The addition of 1 causes each column to add to 0 with a carry of 1.
The carry keeps moving leftward until it is discarded from the leftmost bit, and thus the
resulting number is all zeros.

Computers actually perform a subtraction, such as

by adding the two’s complement of value to a, as follows:

int value = 13;

00000000 00000000 00000000 00001101

onesComplementOfValue = ~value;

value:
00000000 00000000 00000000 00001101

~value (i.e., value’s one’s complement):
11111111 11111111 11111111 11110010

Two’s complement of value:
11111111 11111111 11111111 11110011

00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

00000000 00000000 00000000 00000000

x = a - value;

x = a + (~value + 1);

1016 Appendix D Number Systems

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually the
negative of value, then adding the two’s complement of value to a should produce the re-
sult 14. Let’s try this:

which is indeed equal to 14.

a (i.e., 27) 00000000 00000000 00000000 00011011
+(~value + 1) +11111111 11111111 11111111 11110011

00000000 00000000 00000000 00001110

Summary
• An integer such as 19 or 227 or –63 in a C++ program is assumed to be in the decimal (base 10)

number system. The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The
lowest digit is 0 and the highest is 9—one less than the base of 10.

• Computers use the binary (base 2) number system. The binary number system has only two dig-
its, namely 0 and 1. Its lowest digit is 0 and its highest is 1—one less than the base of 2.

• The octal number system (base 8) and the hexadecimal number system (base 16) are popular pri-
marily because they make it convenient to abbreviate binary numbers.

• The digits of the octal number system range from 0 to 7.

• The hexadecimal number system poses a problem because it requires 16 digits—a lowest digit of
0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16). By con-
vention, we use the letters A through F to represent the hexadecimal digits corresponding to dec-
imal values 10 through 15.

• Each number system uses positional notation—each position in which a digit is written has a dif-
ferent positional value.

• A particularly important relationship of both the octal and the hexadecimal number systems to
the binary system is that their bases (8 and 16 respectively) are powers of the base of the binary
number system (base 2).

• To convert from octal to binary, replace each octal digit with its three-digit binary equivalent.

• To convert a hexadecimal to a binary number, simply replace each hexadecimal digit with its
four-digit binary equivalent.

• Because we are accustomed to working in decimal, it is convenient to convert a binary, octal or
hexadecimal number to decimal to get a sense of the number’s “real” worth.

• To convert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value and sum the products.

• Computers represent negative numbers using two’s complement notation.

• To form the negative of a value in binary, first form its one’s complement by applying C++’s bit-
wise complement operator (~). This reverses the bits of the value. To form the two’s complement
of a value, simply add one to the value’s one’s complement.

Self-Review Exercises
D.1 The bases of the decimal, binary, octal and hexadecimal number systems are ,

, and respectively.

Answers to Self-Review Exercises 1017

D.2 In general, the decimal, octal and hexadecimal representations of a given binary number
contain (more/fewer) digits than the binary number contains.

D.3 (True/False) A popular reason for using the decimal number system is that it forms a con-
venient notation for abbreviating binary numbers simply by substituting one decimal digit per
group of four binary bits.

D.4 The [octal/hexadecimal/decimal] representation of a large binary value is the most concise
(of the given alternatives).

D.5 (True/False) The highest digit in any base is one more than the base.

D.6 (True/False) The lowest digit in any base is one less than the base.

D.7 The positional value of the rightmost digit of any number in either binary, octal, decimal
or hexadecimal is always .

D.8 The positional value of the digit to the left of the rightmost digit of any number in binary,
octal, decimal or hexadecimal is always equal to .

D.9 Fill in the missing values in this chart of positional values for the rightmost four positions
in each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal ... 256
binary
octal 512 ... 8 ...

D.10 Convert binary 110101011000 to octal and to hexadecimal.

D.11 Convert hexadecimal FACE to binary.

D.12 Convert octal 7316 to binary.

D.13 Convert hexadecimal 4FEC to octal. [Hint: First convert 4FEC to binary, then convert that
binary number to octal.]

D.14 Convert binary 1101110 to decimal.

D.15 Convert octal 317 to decimal.

D.16 Convert hexadecimal EFD4 to decimal.

D.17 Convert decimal 177 to binary, to octal and to hexadecimal.

D.18 Show the binary representation of decimal 417. Then show the one’s complement of 417
and the two’s complement of 417.

D.19 What’s the result when a number and its two’s complement are added to each other?

Answers to Self-Review Exercises
D.1 10, 2, 8, 16.

D.2 Fewer.

D.3 False. Hexadecimal does this.

D.4 Hexadecimal.

D.5 False. The highest digit in any base is one less than the base.

D.6 False. The lowest digit in any base is zero.

1018 Appendix D Number Systems

D.7 1 (the base raised to the zero power).

D.8 The base of the number system.

D.9 Filled in chart shown below:

decimal 1000 100 10 1
hexadecimal 4096 256 16 1
binary 8 4 2 1
octal 512 64 8 1

D.10 Octal 6530; Hexadecimal D58.

D.11 Binary 1111 1010 1100 1110.

D.12 Binary 111 011 001 110.

D.13 Binary 0 100 111 111 101 100; Octal 47754.

D.14 Decimal 2 + 4 + 8 + 32 + 64 = 110.

D.15 Decimal 7 + 1 * 8 + 3 * 64 = 7 + 8 + 192 = 207.

D.16 Decimal 4 + 13 * 16 + 15 * 256 + 14 * 4096 = 61396.

D.17 Decimal 177
to binary:

256 128 64 32 16 8 4 2 1
128 64 32 16 8 4 2 1
(1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)
10110001

to octal:

512 64 8 1
64 8 1
(2*64)+(6*8)+(1*1)
261

to hexadecimal:

256 16 1
16 1
(11*16)+(1*1)
(B*16)+(1*1)
B1

D.18 Binary:

512 256 128 64 32 16 8 4 2 1
256 128 64 32 16 8 4 2 1
(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+(1*1)
110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

110100001
001011111

000000000

D.19 Zero.

Exercises 1019

Exercises
D.20 Some people argue that many of our calculations would be easier in the base 12 than in the
base 10 (decimal) number system because 12 is divisible by so many more numbers than 10. What’s
the lowest digit in base 12? What would be the highest symbol for the digit in base 12? What are
the positional values of the rightmost four positions of any number in the base 12 number system?

D.21 Complete the following chart of positional values for the rightmost four positions in each
of the indicated number systems:

decimal 1000 100 10 1
base 6 6 ...
base 13 ... 169
base 3 27

D.22 Convert binary 100101111010 to octal and to hexadecimal.

D.23 Convert hexadecimal 3A7D to binary.

D.24 Convert hexadecimal 765F to octal. [Hint: First convert 765F to binary, then convert that
binary number to octal.]

D.25 Convert binary 1011110 to decimal.

D.26 Convert octal 426 to decimal.

D.27 Convert hexadecimal FFFF to decimal.

D.28 Convert decimal 299 to binary, to octal and to hexadecimal.

D.29 Show the binary representation of decimal 779. Then show the one’s complement of 779
and the two’s complement of 779.

D.30 Show the two’s complement of integer value –1 on a machine with 32-bit integers.

E Preprocessor

Hold thou the good; define it
well.
—Alfred, Lord Tennyson

I have found you an argument;
but I am not obliged to find you
an understanding.
—Samuel Johnson

A good symbol is the best
argument, and is a missionary
to persuade thousands.
—Ralph Waldo Emerson

Conditions are fundamentally
sound.
—Herbert Hoover [December 1929]

O b j e c t i v e s
In this appendix you’ll learn:

■ To use #include for
developing large programs.

■ To use #define to create
macros and macros with
arguments.

■ To understand conditional
compilation.

■ To display error messages
during conditional
compilation.

■ To use assertions to test if the
values of expressions are
correct.

E.1 Introduction 1021

E.1 Introduction
This chapter introduces the preprocessor. Preprocessing occurs before a program is com-
piled. Some possible actions are inclusion of other files in the file being compiled, defini-
tion of symbolic constants and macros, conditional compilation of program code and
conditional execution of preprocessor directives. All preprocessor directives begin with #,
and only white-space characters may appear before a preprocessor directive on a line. Pre-
processor directives are not C++ statements, so they do not end in a semicolon (;). Pre-
processor directives are processed fully before compilation begins.

E.2 #include Preprocessor Directive
The #include preprocessor directive has been used throughout this text. The #include

directive causes a copy of a specified file to be included in place of the directive. The two
forms of the #include directive are

The difference between these is the location the preprocessor searches for the file to be in-
cluded. If the filename is enclosed in angle brackets (< and >)—used for standard library
header files—the preprocessor searches for the specified file in an implementation-depen-
dent manner, normally through predesignated directories. If the file name is enclosed in
quotes, the preprocessor searches first in the same directory as the file being compiled, then
in the same implementation-dependent manner as for a file name enclosed in angle brack-
ets. This method is normally used to include programmer-defined header files.

The #include directive is used to include standard header files such as <iostream>
and <iomanip>. The #include directive is also used with programs consisting of several

E.1 Introduction
E.2 #include Preprocessor Directive
E.3 #define Preprocessor Directive:

Symbolic Constants
E.4 #define Preprocessor Directive:

Macros
E.5 Conditional Compilation

E.6 #error and #pragma Preprocessor
Directives

E.7 Operators # and ##
E.8 Predefined Symbolic Constants
E.9 Assertions

E.10 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Common Programming Error E.1
Placing a semicolon at the end of a preprocessor directive can lead to a variety of errors,
depending on the type of preprocessor directive.

Software Engineering Observation E.1
Many preprocessor features (especially macros) are more appropriate for C programmers
than for C++ programmers. C++ programmers should familiarize themselves with the
preprocessor, because they might need to work with C legacy code.

#include <filename>
#include "filename"

1022 Appendix E Preprocessor

source files that are to be compiled together. A header file containing declarations and def-
initions common to the separate program files is often created and included in the file.
Examples of such declarations and definitions are classes, structures, unions, enumera-
tions, function prototypes, constants and stream objects (e.g., cin).

E.3 #define Preprocessor Directive: Symbolic
Constants
The #define preprocessor directive creates symbolic constants—constants represented as
symbols—and macros—operations defined as symbols. The #define preprocessor direc-
tive format is

When this line appears in a file, all subsequent occurrences (except those inside a string)
of identifier in that file will be replaced by replacement-text before the program is compiled.
For example,

replaces all subsequent occurrences of the symbolic constant PI with the numeric constant
3.14159. Symbolic constants enable you to create a name for a constant and use the name
throughout the program. Later, if the constant needs to be modified throughout the pro-
gram, it can be modified once in the #define preprocessor directive—and when the pro-
gram is recompiled, all occurrences of the constant in the program will be modified. [Note:
Everything to the right of the symbolic constant name replaces the symbolic constant. For
example, #define PI = 3.14159 causes the preprocessor to replace every occurrence of PI
with = 3.14159. Such replacement is the cause of many subtle logic and syntax errors.] Re-
defining a symbolic constant with a new value without first undefining it is also an error.
Note that const variables in C++ are preferred over symbolic constants. Constant variables
have a specific data type and are visible by name to a debugger. Once a symbolic constant
is replaced with its replacement text, only the replacement text is visible to a debugger. A
disadvantage of const variables is that they might require a memory location of their data
type size—symbolic constants do not require any additional memory.

E.4 #define Preprocessor Directive: Macros
[Note: This section is included for the benefit of C++ programmers who will need to work
with C legacy code. In C++, macros can often be replaced by templates and inline func-
tions.] A macro is an operation defined in a #define preprocessor directive. As with sym-
bolic constants, the macro-identifier is replaced with the replacement-text before the

#define identifier replacement-text

#define PI 3.14159

Common Programming Error E.2
Using symbolic constants in a file other than the file in which the symbolic constants are
defined is a compilation error (unless they are #included from a header file).

Good Programming Practice E.1
Using meaningful names for symbolic constants makes programs more self-documenting.

E.4 #define Preprocessor Directive: Macros 1023

program is compiled. Macros may be defined with or without arguments. A macro with-
out arguments is processed like a symbolic constant. In a macro with arguments, the argu-
ments are substituted in the replacement-text, then the macro is expanded—i.e., the
replacement-text replaces the macro-identifier and argument list in the program. There is
no data type checking for macro arguments. A macro is used simply for text substitution.

Consider the following macro definition with one argument for the area of a circle:

Wherever CIRCLE_AREA(y) appears in the file, the value of y is substituted for x in the
replacement text, the symbolic constant PI is replaced by its value (defined previously) and
the macro is expanded in the program. For example, the statement

is expanded to

Because the expression consists only of constants, at compile time the value of the expres-
sion can be evaluated, and the result is assigned to area at runtime. The parentheses
around each x in the replacement text and around the entire expression force the proper
order of evaluation when the macro argument is an expression. For example, the statement

is expanded to

which evaluates correctly, because the parentheses force the proper order of evaluation. If
the parentheses are omitted, the macro expansion is

which evaluates incorrectly as

because of the rules of operator precedence.

Macro CIRCLE_AREA could be defined as a function. Function circleArea, as in

performs the same calculation as CIRCLE_AREA, but the overhead of a function call is asso-
ciated with function circleArea. The advantages of CIRCLE_AREA are that macros insert
code directly in the program—avoiding function overhead—and the program remains
readable because CIRCLE_AREA is defined separately and named meaningfully. A disadvan-
tage is that its argument is evaluated twice. Also, every time a macro appears in a program,
the macro is expanded. If the macro is large, this produces an increase in program size.
Thus, there is a trade-off between execution speed and program size (if disk space is low).

#define CIRCLE_AREA(x) (PI * (x) * (x))

area = CIRCLE_AREA(4);

area = (3.14159 * (4) * (4));

area = CIRCLE_AREA(c + 2);

area = (3.14159 * (c + 2) * (c + 2));

area = 3.14159 * c + 2 * c + 2;

area = (3.14159 * c) + (2 * c) + 2;

Common Programming Error E.3
Forgetting to enclose macro arguments in parentheses in the replacement text is an error.

double circleArea(double x) { return 3.14159 * x * x; }

1024 Appendix E Preprocessor

Note that inline functions (see Chapter 6) are preferred to obtain the performance of
macros and the software engineering benefits of functions.

The following is a macro definition with two arguments for the area of a rectangle:

Wherever RECTANGLE_AREA(a, b) appears in the program, the values of a and b are sub-
stituted in the macro replacement text, and the macro is expanded in place of the macro
name. For example, the statement

is expanded to

The value of the expression is evaluated and assigned to variable rectArea.
The replacement text for a macro or symbolic constant is normally any text on the

line after the identifier in the #define directive. If the replacement text for a macro or sym-
bolic constant is longer than the remainder of the line, a backslash (\) must be placed at
the end of each line of the macro (except the last line), indicating that the replacement text
continues on the next line.

Symbolic constants and macros can be discarded using the #undef preprocessor direc-
tive. Directive #undef “undefines” a symbolic constant or macro name. The scope of a
symbolic constant or macro is from its definition until it is either undefined with #undef

or the end of the file is reached. Once undefined, a name can be redefined with #define.
Note that expressions with side effects (e.g., variable values are modified) should not

be passed to a macro, because macro arguments may be evaluated more than once.

E.5 Conditional Compilation
Conditional compilation enables you to control the execution of preprocessor directives
and the compilation of program code. Each of the conditional preprocessor directives eval-
uates a constant integer expression that will determine whether the code will be compiled.
Cast expressions, sizeof expressions and enumeration constants cannot be evaluated in
preprocessor directives because these are all determined by the compiler and preprocessing
happens before compilation.

The conditional preprocessor construct is much like the if selection structure. Con-
sider the following preprocessor code:

Performance Tip E.1
Macros can sometimes be used to replace a function call with inline code prior to execu-
tion time. This eliminates the overhead of a function call. Inline functions are preferable
to macros because they offer the type-checking services of functions.

#define RECTANGLE_AREA(x, y) ((x) * (y))

rectArea = RECTANGLE_AREA(a + 4, b + 7);

rectArea = ((a + 4) * (b + 7));

Common Programming Error E.4
Macros often replace a name that wasn’t intended to be a use of the macro but just hap-
pened to be spelled the same. This can lead to exceptionally mysterious compilation and
syntax errors.

E.6 #error and #pragma Preprocessor Directives 1025

which determines whether the symbolic constant NULL is already defined. The expression
#ifndef NULL includes the code up to #endif if NULL is not defined, and skips the code if
NULL is defined. Every #if construct ends with #endif. Directives #ifdef and #ifndef are
shorthand for #if defined(name) and #if !defined(name). A multiple-part condition-
al preprocessor construct may be tested using the #elif (the equivalent of else if in an
if structure) and the #else (the equivalent of else in an if structure) directives.

During program development, programmers often find it helpful to “comment out”
large portions of code to prevent it from being compiled. If the code contains C-style com-
ments, /* and */ cannot be used to accomplish this task, because the first */ encountered
would terminate the comment. Instead, you can use the following preprocessor construct:

To enable the code to be compiled, simply replace the value 0 in the preceding construct
with the value 1.

Conditional compilation is commonly used as a debugging aid. Output statements
are often used to print variable values and to confirm the flow of control. These output
statements can be enclosed in conditional preprocessor directives so that the statements are
compiled only until the debugging process is completed. For example,

causes the cerr statement to be compiled in the program if the symbolic constant DEBUG
has been defined before directive #ifdef DEBUG. This symbolic constant is normally set by
a command-line compiler or by settings in the IDE (e.g., Visual Studio) and not by an
explicit #define definition. When debugging is completed, the #define directive is re-
moved from the source file, and the output statements inserted for debugging purposes are
ignored during compilation. In larger programs, it might be desirable to define several dif-
ferent symbolic constants that control the conditional compilation in separate sections of
the source file.

E.6 #error and #pragma Preprocessor Directives
The #error directive

#ifndef NULL
#define NULL 0

#endif

#if 0
code prevented from compiling

#endif

#ifdef DEBUG
cerr << "Variable x = " << x << endl;

#endif

Common Programming Error E.5
Inserting conditionally compiled output statements for debugging purposes in locations
where C++ currently expects a single statement can lead to syntax errors and logic errors.
In this case, the conditionally compiled statement should be enclosed in a compound state-
ment. Thus, when the program is compiled with debugging statements, the flow of control
of the program is not altered.

#error tokens

1026 Appendix E Preprocessor

prints an implementation-dependent message including the tokens specified in the direc-
tive. The tokens are sequences of characters separated by spaces. For example,

contains six tokens. In one popular C++ compiler, for example, when a #error directive
is processed, the tokens in the directive are displayed as an error message, preprocessing
stops and the program does not compile.

The #pragma directive

causes an implementation-defined action. A pragma not recognized by the implementa-
tion is ignored. A particular C++ compiler, for example, might recognize pragmas that en-
able you to take advantage of that compiler’s specific capabilities. For more information
on #error and #pragma, see the documentation for your C++ implementation.

E.7 Operators # and ##
The # and ## preprocessor operators are available in C++ and ANSI/ISO C. The # opera-
tor causes a replacement-text token to be converted to a string surrounded by quotes. Con-
sider the following macro definition:

When HELLO(John) appears in a program file, it is expanded to

The string "John" replaces #x in the replacement text. Strings separated by white space are
concatenated during preprocessing, so the above statement is equivalent to

Note that the # operator must be used in a macro with arguments, because the operand of
refers to an argument of the macro.

The ## operator concatenates two tokens. Consider the following macro definition:

When TOKENCONCAT appears in the program, its arguments are concatenated and used to
replace the macro. For example, TOKENCONCAT(O, K) is replaced by OK in the program. The
operator must have two operands.

E.8 Predefined Symbolic Constants
There are six predefined symbolic constants (Fig. E.1). The identifiers for each of these
begin and (except for __cplusplus) end with two underscores. These identifiers and pre-
processor operator defined (Section E.5) cannot be used in #define or #undef directives.

#error 1 - Out of range error

#pragma tokens

#define HELLO(x) cout << "Hello, " #x << endl;

cout << "Hello, " "John" << endl;

cout << "Hello, John" << endl;

cout << "Hello, John" << endl;

#define TOKENCONCAT(x, y) x ## y

E.9 Assertions 1027

E.9 Assertions
The assert macro—defined in the <cassert> header file—tests the value of an expres-
sion. If the value of the expression is 0 (false), then assert prints an error message and calls
function abort (of the general utilities library—<cstdlib>) to terminate program execu-
tion. This is a useful debugging tool for testing whether a variable has a correct value. For
example, suppose variable x should never be larger than 10 in a program. An assertion may
be used to test the value of x and print an error message if the value of x is incorrect. The
statement would be

If x is greater than 10 when the preceding statement is encountered in a program, an error
message containing the line number and file name is printed, and the program terminates.
You may then concentrate on this area of the code to find the error. If the symbolic con-
stant NDEBUG is defined, subsequent assertions will be ignored. Thus, when assertions are
no longer needed (i.e., when debugging is complete), we insert the line

in the program file rather than deleting each assertion manually. As with the DEBUG sym-
bolic constant, NDEBUG is often set by compiler command-line options or through a setting
in the IDE.

Most C++ compilers now include exception handling. C++ programmers prefer using
exceptions rather than assertions. But assertions are still valuable for C++ programmers
who work with C legacy code.

E.10 Wrap-Up
This appendix discussed the #include directive, which is used to develop larger programs.
You also learned about the #define directive, which is used to create macros. We intro-
duced conditional compilation, displaying error messages and using assertions.

Symbolic constant Description

__LINE__ The line number of the current source-code line (an integer constant).

__FILE__ The presumed name of the source file (a string).

__DATE__ The date the source file is compiled (a string of the form "Mmm dd yyyy"

such as "Aug 19 2002").

__STDC__ Indicates whether the program conforms to the ANSI/ISO C standard.
Contains value 1 if there is full conformance and is undefined otherwise.

__TIME__ The time the source file is compiled (a string literal of the form
"hh:mm:ss").

__cplusplus Contains the value 199711L (the date the ISO C++ standard was
approved) if the file is being compiled by a C++ compiler, undefined
otherwise. Allows a file to be set up to be compiled as either C or C++.

Fig. E.1 | The predefined symbolic constants.

assert(x <= 10);

#define NDEBUG

1028 Appendix E Preprocessor

Summary

Section E.2 #include Preprocessor Directive
• All preprocessor directives begin with # and are processed before the program is compiled.

• Only white-space characters may appear before a preprocessor directive on a line.

• The #include directive includes a copy of the specified file. If the filename is enclosed in quotes,
the preprocessor begins searching in the same directory as the file being compiled for the file to
be included. If the filename is enclosed in angle brackets (< and >), the search is performed in an
implementation-defined manner.

Section E.3 #define Preprocessor Directive: Symbolic Constants
• The #define preprocessor directive is used to create symbolic constants and macros.

• A symbolic constant is a name for a constant.

Section E.4 #define Preprocessor Directive: Macros
• A macro is an operation defined in a #define preprocessor directive. Macros may be defined with

or without arguments.

• The replacement text for a macro or symbolic constant is any text remaining on the line after the
identifier (and, if any, the macro argument list) in the #define directive. If the replacement text
for a macro or symbolic constant is too long to fit on one line, a backslash (\) is placed at the end
of the line, indicating that the replacement text continues on the next line.

• Symbolic constants and macros can be discarded using the #undef preprocessor directive. Direc-
tive #undef “undefines” the symbolic constant or macro name.

• The scope of a symbolic constant or macro is from its definition until it is either undefined with
#undef or the end of the file is reached.

Section E.5 Conditional Compilation
• Conditional compilation enables you to control the execution of preprocessor directives and the

compilation of program code.

• The conditional preprocessor directives evaluate constant integer expressions. Cast expressions,
sizeof expressions and enumeration constants cannot be evaluated in preprocessor directives.

• Every #if construct ends with #endif.

• Directives #ifdef and #ifndef are provided as shorthand for #if defined(name) and #if !de-

fined(name).

• A multiple-part conditional preprocessor construct is tested with directives #elif and #else.

Section E.6 #error and #pragma Preprocessor Directives
• The #error directive prints an implementation-dependent message that includes the tokens

specified in the directive and terminates preprocessing and compiling.

• The #pragma directive causes an implementation-defined action. If the pragma is not recognized
by the implementation, the pragma is ignored.

Section E.7 Operators # and ##
• The # operator causes the following replacement text token to be converted to a string surround-

ed by quotes. The # operator must be used in a macro with arguments, because the operand of #
must be an argument of the macro.

• The ## operator concatenates two tokens. The ## operator must have two operands.

Self-Review Exercises 1029

Section E.8 Predefined Symbolic Constants
• There are six predefined symbolic constants. Constant __LINE__ is the line number of the cur-

rent source-code line (an integer). Constant __FILE__ is the presumed name of the file (a
string). Constant __DATE__ is the date the source file is compiled (a string). Constant __TIME__

is the time the source file is compiled (a string). Note that each of the predefined symbolic con-
stants begins (and, with the exception of __cplusplus, ends) with two underscores.

Section E.9 Assertions
• The assert macro—defined in the <cassert> header file—tests the value of an expression. If the

value of the expression is 0 (false), then assert prints an error message and calls function abort
to terminate program execution.

Self-Review Exercises
E.1 Fill in the blanks in each of the following:

a) Every preprocessor directive must begin with .
b) The conditional compilation construct may be extended to test for multiple cases by us-

ing the and the directives.
c) The directive creates macros and symbolic constants.
d) Only characters may appear before a preprocessor directive on a line.
e) The directive discards symbolic constant and macro names.
f) The and directives are provided as shorthand notation for #if

defined(name) and #if !defined(name).
g) enables you to control the execution of preprocessor directives and the com-

pilation of program code.
h) The macro prints a message and terminates program execution if the value of

the expression the macro evaluates is 0.
i) The directive inserts a file in another file.
j) The operator concatenates its two arguments.
k) The operator converts its operand to a string.
l) The character indicates that the replacement text for a symbolic constant or

macro continues on the next line.

E.2 Write a program to print the values of the predefined symbolic constants __LINE__,
__FILE__, __DATE__ and __TIME__ listed in Fig. E.1.

E.3 Write a preprocessor directive to accomplish each of the following:
a) Define symbolic constant YES to have the value 1.
b) Define symbolic constant NO to have the value 0.
c) Include the header file common.h. The header is found in the same directory as the file

being compiled.
d) If symbolic constant TRUE is defined, undefine it, and redefine it as 1. Do not use

#ifdef.
e) If symbolic constant TRUE is defined, undefine it, and redefine it as 1. Use the #ifdef

preprocessor directive.
f) If symbolic constant ACTIVE is not equal to 0, define symbolic constant INACTIVE as 0.

Otherwise, define INACTIVE as 1.
g) Define macro CUBE_VOLUME that computes the volume of a cube (takes one argument).

Answers to Self-Review Exercises
E.1 a) #. b) #elif, #else. c) #define. d) white-space. e) #undef. f) #ifdef, #ifndef.

g) Conditional compilation. h) assert. i) #include. j) ##. k) #. l) \.

1030 Appendix E Preprocessor

E.2 (See below.)

E.3 a) #define YES 1

b) #define NO 0

c) #include "common.h"

d) #if defined(TRUE)

#undef TRUE

#define TRUE 1

#endif

e) #ifdef TRUE

#undef TRUE

#define TRUE 1

#endif

f) #if ACTIVE

#define INACTIVE 0

#else

#define INACTIVE 1

#endif

g) #define CUBE_VOLUME(x) ((x) * (x) * (x))

Exercises
E.4 Write a program that defines a macro with one argument to compute the volume of a
sphere. The program should compute the volume for spheres of radii from 1 to 10 and print the
results in tabular format. The formula for the volume of a sphere is

(4.0 / 3) * π * r3

where π is 3.14159.

E.5 Write a program that produces the following output:

1 // exF_02.cpp
2 // Self-Review Exercise E.2 solution.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 cout << "__LINE__ = " << __LINE__ << endl
9 << "__FILE__ = " << __FILE__ << endl

10 << "__DATE__ = " << __DATE__ << endl
11 << "__TIME__ = " << __TIME__ << endl
12 << "__cplusplus = " << __cplusplus << endl;
13 } // end main

__LINE__ = 9
__FILE__ = c:\cpp4e\ch19\ex19_02.CPP
__DATE__ = Jul 17 2002
__TIME__ = 09:55:58
__cplusplus = 199711L

The sum of x and y is 13

Exercises 1031

The program should define macro SUM with two arguments, x and y, and use SUM to produce the
output.

E.6 Write a program that uses macro MINIMUM2 to determine the smaller of two numeric values.
Input the values from the keyboard.

E.7 Write a program that uses macro MINIMUM3 to determine the smallest of three numeric val-
ues. Macro MINIMUM3 should use macro MINIMUM2 defined in Exercise E.6 to determine the smallest
number. Input the values from the keyboard.

E.8 Write a program that uses macro PRINT to print a string value.

E.9 Write a program that uses macro PRINTARRAY to print an array of integers. The macro
should receive the array and the number of elements in the array as arguments.

E.10 Write a program that uses macro SUMARRAY to sum the values in a numeric array. The macro
should receive the array and the number of elements in the array as arguments.

E.11 Rewrite the solutions to Exercises E.4–E.10 as inline functions.

E.12 For each of the following macros, identify the possible problems (if any) when the prepro-
cessor expands the macros:

a) #define SQR(x) x * x

b) #define SQR(x) (x * x)

c) #define SQR(x) (x) * (x)

d) #define SQR(x) ((x) * (x))

This page intentionally left blank

Appendices on the Web

The following appendices are available as PDF documents from this book’s Companion
Website, which is accessible from www.pearsonhighered.com/deitel/:

• Appendix F, C Legacy Code Topics

• Appendix G, UML 2: Additional Diagram Types

• Appendix H, Using the Visual Studio Debugger

• Appendix I, Using the GNU C++ Debugger

These files can be viewed in Adobe® Reader® (get.adobe.com/reader). The index entries
for these appendices include the appendix letter and an underscore, as in F_1.

New copies of this book come with a Companion Website access code that is located
on the card inside the book’s front cover. If the access code is already visible or there is no
card, you purchased a used book or an edition that does not come with an access code. In
this case, you can purchase access directly from the Companion Website.

www.pearsonhighered.com/deitel/

This page intentionally left blank

[Note: Page references for defining occurrences of terms appear in bold blue. The page references
for online chapters and appendices include the chapter number or appendix letter and an under-
score, as in 25_1 or F_1. You can find the online chapters and appendices on the book’s Compan-
ion Website, which is accessible from www.pearsonhighered.com/deitel/.]

Symbols
-- postfix decrement operator 135
-- prefix decrement operator 135
^ (bitwise exclusive OR operator)

797, 983
^, beginning of a string (regular

expression) 946
^= (bitwise exclusive OR assignment

operator) 805, 921, 983
, (comma operator) 156
:: (binary scope resolution

operator) 86, 437
:: (unary scope resolution operator)

982, 986
:: unary scope resolution operator

232
! (logical NOT operator) 175, 176
! (logical NOT) 982
! (logical NOT) operator truth table

177
!= (inequality operator) 51, 52, 982
?, quantifier (0 or 1) 944
?: ternary conditional operator 109,

244
.* operator 984, 986
.h filename extension 81
.h header 205
'\0', null character 355
'\n', newline character 355
[] operator for map 883
{n,} quantifier (at least n) 944
{n,m} quantifier (between n and m)

944
{n} quantifier (exactly n) 944
* (multiplication operator) 48
*, pointer dereference or indirection

operator 333, 334
*, quantifier (0 or more) 944
*= multiplication assignment

operator 135
/ (division operator) 48
/* */ (C-style multiline comment)

39
// single-line comment 39

/= division assignment operator 135
\' (single-quote-character) escape

sequence 41
\" (double-quote-character) escape

sequence 41
\\ (backslash-character) escape

sequence 41
\a (alert) escape sequence 41
\d, character class (any decimal

digit) 941, 947
\D, character class (any non-digit)

941
\n (newline) escape sequence 41
\r (carriage-return) escape sequence

41
\S, character class (any non-

whitespace character) 941
\s, character class (any whitespace

character) 941, 947
\t (tab) escape sequence 41
\W, character class (any non-word

character) 941
\w, character class (any word

character) 941
& (address operator) 983
& (bitwise AND) 797
& and * operators as inverses 335
& in a parameter list 229
& to declare reference 227
&, address operator 332, 334
&& (logical AND operator) 175, 982
&& (logical AND) operator truth

table 175
&& logical AND operator 244
&= (bitwise AND assignment

operator) 805, 921, 983
1021
preprocessor operator 1026
preprocessor operator 1026
#pragma directive 1026
#undef preprocessor directive 1024
% (modulus operator) 48
%= modulus assignment operator

135
+ (addition operator) 46, 48

+, quantifier (1 or more) 944
++ operator on an iterator 856
++ postfix increment operator 135
++ prefix increment operator 135
+= addition assignment operator

134
+= operator 700
< (less-than operator) 52
<< (left-shift operator) 797
<< (stream insertion operator) 40,

46
<<= (left-shift assignment operator)

805
<= (less-than-or-equal-to operator)

52
<Ctrl> C 11
= (assignment operator) 46, 48, 177
-= subtraction assignment operator

135
== (“is equal to”) 51
== (equality operator) 52, 177
> (greater-than operator) 52
-> (member selection via pointer)

986
->* operator 984
>= (greater-than-or-equal-to

operator) 52
>> (right shift) 797
>> (stream extraction operator) 47
>>= (right shift with sign extension

assignment operator) 805
| 983
| (bitwise inclusive OR operator)

797
|= (bitwise inclusive OR assignment

operator) 805, 921, 983
|| (logical OR operator) 175, 176,

982
|| (logical OR) operator truth table

176
|| logical OR operator 244
~ (bitwise complement operator)

797, 983
$ UNIX command-line prompt 2

Index

www.pearsonhighered.com/deitel/

1036 Index

$, end of a string (regular expression)
946

Numerics
0 (null) pointer 763
0X 612
0x 612
2-D array 297

A
abbreviating assignment expressions

134
abort 1027, 11
abort function 399, 642, 647
absolute value 197
abstract base class 549, 550, 14
Abstract Base Classes 577
abstract class 549, 550, 551, 566
abstract operation in the UML 10
accelerometer 4, 8
access a global variable 232
access function 390
access non-static class data

members and member functions
441

access private member of a class 74
access privileges 340, 342
access specifier 66, 73, 429, 2

private 73
protected 381
public 73

access the caller’s data 227
access violation 852
accessing an object’s members

through each type of object
handle 388

accessing union members 16
accessor 76
Account class (ATM case study)

25_9, 25_12, 25_15, 25_18,
25_26, 25_34, 25_35, 25_37,
25_38, 8, 48

Account class (exercise) 99
Account inheritance hierarchy

(exercise) 533
accounts-receivable program 692
accounts-receivable system 660
accumulate algorithm 863, 900,

902, 926
accumulate STL algorithm 924
accumulated outputs 46
accumulator 372, 373
action 102, 108, 110, 113
action expression 105, 108
action expression in the UML

25_23
action of an object 25_22
action state 105, 182
action state in the UML 25_23
action state symbol 105

activation in a UML sequence
diagram 25_37

activation record 221
active window 5
activity diagram 104, 105, 113, 158,

180
do…while statement 164
for statement 158
if statement 108
if…else statement 109
in the UML 25_9, 25_22,

25_24, 25_41
sequence statement 104
switch statement 172
while statement 114

activity in the UML 25_9, 25_21,
25_25

activity of a portion of a software
system 105

actor in use case in the UML 25_8
Ada Lovelace 15
Ada programming language 15
adapter 851, 885
add a new account to a file 685
add an integer to a pointer 349
addition 8, 48, 49
addition assignment operator (+=)

134
addition program that displays the

sum of two numbers 43
address of a bit field 809
address operator (&) 332, 334, 336,

346, 456, 986
addressable storage unit 810
adjacent_difference algorithm

863
adjacent_find algorithm 862, 920
“administrative” section of the

computer 8
aggregate data type 341
aggregation 387, 25_15
Agile Alliance

(www.agilealliance.org) 29
Agile Manifesto

(www.agilemanifesto.org) 29
Agile software development 29
aiming a derived-class pointer at a

base-class object 541
airline reservation system 670
airline reservation system exercise

322
Ajax (Asynchronous JavaScript and

XML) 28
alert escape sequence ('\a') 41, 814
algebraic expression 48
algorithm 102, 108, 114, 747, 851,

861, 890, 939
<algorithm> header 206, 870
algorithms

accumulate 900, 902
action 102
binary search 727

algorithms (cont.)
binary_search 903, 905
bubble sort 320, 743
bucket sort 327, 743
copy_backward 906
count 900, 902
count_if 900, 902
equal 894
equal_range 913, 915
fill 890
fill_n 890
find 903, 904
find_if 903, 904
for_each 900, 902
generate 891
generate_n 891
implace_merge 909
includes 910
inplace_merge 909
insertion sort 295, 733
iter_swap 905, 906
lexicographical_compare

892, 894
linear search 293, 328, 726
lower_bound 913
make_heap 917
max 918
max_element 900, 902
merge 906, 908
merge sort 733
min 918
min_element 900, 902
mismatch 892, 894
of the STL 580
order in which actions should

execute 102
pop_heap 918
procedure 102
push_heap 918
quicksort 744
random_shuffle 900, 902
recursive binary search 744
recursive linear search 744
remove 895, 896
remove_copy 897
remove_copy_if 895, 897
remove_if 895, 897
replace 899
replace_copy 897, 899
replace_copy_if 897, 899
replace_if 897, 899
reverse 906, 909
reverse_copy 909, 910
selection sort 328, 343, 733
separated from container 862
set_difference 910, 912
set_intersection 910, 912
set_symmetric_difference

910, 913
set_union 910, 913
sort 903, 905
sort_heap 918

www.agilealliance.org
www.agilemanifesto.org

Index 1037

algorithms (cont.)
swap 905, 905
swap_ranges 905, 906
transform 900, 902
unique 906, 908
unique_copy 909, 910
upper_bound 913

alias 229, 333, 714
for a type 855
for the name of an object 402

alignment 793
allocate 469
allocate dynamic memory 648
allocate memory 206, 469
allocator 870
allocator_type 855
Allowing Duplicates in Binary Trees

787
alpha software 31
alphabetizing

animal names 720
alphabetizing strings 820, 845
alter the flow of control 173
ALU (arithmetic and logic unit) 8
Amazon 3
Amazon S3 30
AMBER Alert 4
ambiguity problem 986, 991
American National Standards

Institute (ANSI) 2, 17
American Standard Code for

Information Interchange (ASCII)
168

analysis stage of the software life
cycle 25_7

Analytical Engine 15
analyzing a project’s requirements

25_2
and operator keyword 982
and_eq operator keyword 983
“ANDed” 800
Android 14

Android Market 15
app 27
Market 15
operating system 13, 14
smartphone 14

angle brackets (< and >) 237, 1021
angle brackets (< and >) in templates

581
anonymous union 17
ANSI (American National

Standards Institute) 17
ANSI/ISO 9899: 1990 17
any 921
Apache Software Foundation 13
append 700
append data to a file 661, 662
append output symbol (>>) 3
Apple 2
Apple TV 5
argc 5

argument coercion 203
argument for a macro 1023
argument to a function 68
arguments in correct order 202
arguments passed to member-object

constructors 423
argv[] 5
arithmetic and logic unit (ALU) 8
arithmetic assignment operators

134, 135
arithmetic calculations 48
arithmetic mean 49
arithmetic operator 48
arithmetic overflow 639
arithmetic overflow error 651
arithmetic underflow error 652
“arity” of an operator 457
array 268, 269, 341, 471, 750

name 352, 353
name as a constant pointer to

beginning of array 342, 352,
353

notation for accessing elements
353

of strings 357
subscripting 342, 353

array bounds 280
array bounds checking 280
Array class 472
Array class definition with

overloaded operators 476
Array class member-function and

friend function definitions 476
Array class test program 472
<array> header 939
array size 283
array subscript operator ([]) 475
arrays and functions 284
array-sort function 580
arrow 61, 105
arrow member selection operator (-

>) 388
arrow operator (->) 431
arrowhead in a UML sequence

diagram 25_37
artifact in the UML G_1
ASCII (American Standard Code for

Information Interchange)
Character Set 7, 62, 168, 355,

602
appendix 1004

assembler 9
assembly language 9
assert 1027
assign member function of class

string 698
assign member function of list

875
assign one iterator to another 860
assigning a union to another union

of the same type 16

assigning addresses of base-class and
derived-class objects to base-class
and derived-class pointers 538

assigning class objects 406
assignment operator

= 405
assignment operator (=) 46, 55, 456,

856
assignment operator functions 481
assignment operators 134

*= multiplication assignment
operator 135

/= division assignment operator
135

%=modulus assignment operator
135

+= addition assignment operator
135

-= subtraction assignment
operator 135

assignment statement 46, 137
associate from left to right 55, 137
associate from right to left 55, 137,

168
association 883
association (in the UML) 25_13,

25_14, 25_15, 4, 5
name 25_13

associative array 883
associative container 853, 856, 859,

877, 879
associative container functions

count 879
equal_range 879
find 879
insert 879, 883
lower_bound 879
upper_bound 879

associativity 176, 178
associativity chart 55
associativity not changed by

overloading 457
associativity of operators 49, 55
asterisk (*) 48
asynchronous call 25_36
asynchronous event 639
at 870, 921
atmember function of class string

700
at member function of string 456
at member function of vector 312
atexit function 9, 9
ATM (automated teller machine)

case study 25_2, 25_7
ATM class (ATM case study) 25_12,

25_13, 25_14, 25_18, 25_20,
25_22, 25_26, 25_33, 25_34,
25_35, 25_36, 25_37, 3

ATM system 25_8, 25_9, 25_10,
25_11, 25_12, 25_17, 25_21,
25_26, 2

atof 823

1038 Index

atoi 824
atol 824
attribute 71, 4, 5

compartment in a class diagram
25_19

declaration in the UML 25_19,
25_21

in the UML 12, 68, 25_12,
25_16, 25_17, 25_18,
25_19, 25_21, 25_25, 12

name in the UML 25_19
of a class 10
of an object 12

attributes of a variable 215
auto keyword 216
auto keyword in C++0x 964
auto storage-class specifier 215
auto_ptr object manages

dynamically allocated memory
650

automated teller machine 670
automated teller machine (ATM)

25_2, 25_3, 25_7
user interface 25_3

automatic array 271
automatic array initialization 281
automatic local array 281
automatic local object 399
automatic local variable 216, 219,

230
automatic object 644
automatic storage class 215, 216,

268, 283
automatic variable 764
automatically destroyed 219
Autos window 13

displaying state of objects 13, 14
displaying the state of

localTime 13
displaying the state of

localTime 14
average 49
average calculation 115, 123
average of several integers 189
Averaging Integers 189
avoid repeating code 398

B
Babbage, Charles 15
back member function of queue

887
back member function of sequence

containers 863, 870
back reference 973
back_inserter function template

908, 910
backslash (\) 41, 1024
backslash escape sequence (\\) 41
backward pointer 763
backward traversal 713
bad member function 622

bad_alloc exception 645, 646,
651, 749, 870

bad_cast exception 651
bad_exception exception 651
bad_typeid exception 651
bad_weak_ptr exception 955
badbit 662
badbit of stream 602, 622
balanced tree 780
BalanceInquiry class (ATM case

study) 25_12, 25_15, 25_18,
25_20, 25_22, 25_23, 25_26,
25_33, 25_34, 25_35, 25_36,
25_37, 3, 9, 10, 11

Bank account program 680
BankDatabase class (ATM case

study) 25_12, 25_15, 25_18,
25_26, 25_28, 25_33, 25_34,
25_35, 25_36, 25_37, 25_38, 3,
5

banking system 670
Bar Chart 190
bar chart 190, 276, 277
bar chart printing program 276
bar of asterisks 276, 277
base 2 797
base case(s) 239, 243, 245
base class 500, 502, 9

pointer (or reference type) 749
base-class catch 651
base-class constructor 527
base-class exception 650
base-class member accessibility in

derived class 528
base-class pointer to a derived-class

object 573
base-class private member 503
base-class subobject 992
base e 197
base specified for a stream 616
base-10 number system 197, 612
base-16 number system 612
base-8 number system 612
base-class initializer syntax 517
base-class member function

redefined in a derived class 526
BasePlusCommissionEmployee

class header 561
BasePlusCommissionEmployee

class implementation file 561
BasePlusCommissionEmployee

class represents an employee who
receives a base salary in addition
to a commission 509

BasePlusCommissionEmployee
class test program 512

BasePlusCommissionEmployee
class that inherits from class
CommissionEmployee, which
does not provide protected data
525

BASIC (Beginner’s All-Purpose
Symbolic Instruction Code) 15,
747

basic searching and sorting
algorithms of the Standard
Library 903

basic_fstream template 600, 659
basic_ifstream template 600,

659
basic_ios class 991
basic_ios template 599
basic_iostream class 600, 991
basic_iostream template 598,

599, 660
basic_istream class 991
basic_istream template 598, 660
basic_istringstream class 714
basic_ofstream template 600, 659
basic_ostream class 600, 991
basic_ostream template 660
basic_ostringstream class 714
basic_regex class 941, 942
basic_string template class 697
begin iterator 713
begin member function of class

string 713
begin member function of class

vector 728
begin member function of

containers 854
begin member function of first-

class containers 856
beginning of a file 665
beginning of a stream 665
behavior 25_26

of a class 10
behavior of the system 25_22,

25_25, 25_35
bell 41
Bell Laboratories 17
beta software 31
bidirectional iterator 858, 859, 864,

871, 877, 880, 881, 907, 909,
919

bidirectional iterator operations 861
bidirectional navigability in the

UML 3
Big O 733, 740

binary search O(log n) 740
bubble sort, O(n2) 740
insertion sort, O(n2) 740
linear search, O(n) 740
merge sort, O(n log n) 740
notation 294, 725, 726, 732,

733, 740
quicksort, best caseO(n log n)

740
quicksort, worst case O(n2) 740
recursive binary search O(log n)

740
recursive linear search, O(n) 740
selection sort, O(n2) 740

Index 1039

binary (base 2) number system 1008
binary arithmetic operator 129
binary comparison function 919
binary digit (bit) 7
binary function 919, 925, 939
binary function object 924
binary integer 149
binary number 810
binary number system 826
binary operator 46, 48
binary predicate function 874, 894,

902, 905, 908, 911, 912, 918,
920

binary scope resolution operator
(::) 86

binary search 293, 725, 727, 730,
732, 740

binary search efficiency 732
binary search tree 773, 778, 779,

787
binary search tree implementation

773
binary tree 747, 772, 778, 916

delete 248, 787
level-order traversal 780, 789
of strings 787
search 248, 788
sort 779, 790
with duplicates 787

binary_function class 926
binary_search algorithm 903,

905
binary_search STL algorithm 924
BinarySearch class 728
bind class 939
bind1st function 939
bind2nd function 939
bit 792
bit (binary digit) 7
bit field 797, 806, 809
bit-field manipulation 809
bit-field member of structure 807
bit fields save space 810
bit manipulation 797
bitand operator keyword 983
bitor operator keyword 983
“bits-and-bytes” level 797
bitset 853, 920, 922

flip 924
reset 924

<bitset> header 206, 855
bitwise AND assignment 983
bitwise AND assignment operator

(&=) 805
bitwise AND operator (&) 797, 798,

800, 802, 841
bitwise AND, bitwise inclusive-OR,

bitwise exclusive-OR and bitwise
complement operators 800

bitwise assignment operator
keywords 983

bitwise assignment operators 805,
921

bitwise complement 798, 983
bitwise complement operator (~)

797, 800, 803, 805, 1015
bitwise exclusive OR 983
bitwise exclusive OR assignment

operator (^=) 805
bitwise exclusive OR operator (^)

797, 800, 803
bitwise inclusive OR 983
bitwise inclusive OR assignment

operator (|=) 805
bitwise inclusive OR operator (|)

797, 800, 802, 803
bitwise left-shift operator (<<) 452,

803
bitwise logical OR 921
bitwise operator keywords 983
bitwise operators 797, 798, 805
bitwise right-shift operator (>>) 452
bitwise shift operator 804
BlackBerry OS 13
blank 190
blank line 45
block 54, 71, 93, 112, 113, 127,

216, 218, 219
block is active 216
block is exited 216
block of data 832
block of memory 831, 875, 14
block scope variable 388
body mass index (BMI) 35

calculator 35
body of a class definition 66
body of a function 40, 40, 67
body of a loop 113, 154, 157, 192
Böhm, C. 104, 184
Booch, Grady 25_3
bool data type 108
bool value false 108
bool value true 108
boolalpha stream manipulator

177, 612, 618
Boolean attribute in the UML

25_18
Boost

Array library 939
Bind library 939
Function library 939
Random library 939
Regex library 940
Smart_ptr library 940
Tuple library 940
Type_traits library 940

Boost C++ Libraries xxii, 31, 686,
937

Boost Sandbox 938
Boost Software License 938
Boost.Array library 939
Boost.Bind library 939, 962

bind class 939

Boost.Function library 939
function class 939

Boost.Random library 939
non-deterministic random

numbers 210, 939
pseudo-random number

generator 939
uniform distribution 939

Boost.Regex library 940
basic_regex class 942
match_results class 943
regex typedef 942
regex_match algorithm 941,

946
regex_replace algorithm 949,

967
regex_search algorithm 941,

943, 946
regex_token_iterator 947,

967
smatch typedef 943

Boost.Smart_ptr library 940
shared_ptr class 940, 950,

953, 954, 956, 959
weak_ptr class 940, 954

Boost.Tuple library 940
Boost.Type_traits library 940
Borland C++ 8
bottom of a stack 764
boundary of a storage unit 809
bounds checking 280
box 61
braces ({}) 40, 54, 93, 112, 127,

169
braces in a do…while statement

162
bracket ([]) 270
break debugger command 4
break mode 5, 5, 5
break statement 170, 173, 192, 14
break statement exiting a for

statement 173
breakpoint 2

inserting 4, 9
yellow arrow in break mode 5

breakpoints
inserting 5, 8
red circle 5

Brin, Sergey 27
brittle software 521
“brute force” computing 191
Bubble Sort 320, 320

Enhancements exercise 320
exercise 320

bubble sort 740, 743, 744
improving performance 743

bucket 743
bucket (hash table) 961
Bucket Sort 327

exercise 327
bucket sort 743
buffer is filled 600

1040 Index

buffer is flushed 600
buffered output 600
buffered standard error stream 598
buffering 622
bug 2
building-block appearance 180
building your own compiler 747
building-block approach 18
building-block approach to creating

programs 11
business-critical computing 637
business publications 32
byte 797

C
.C extension 19
C legacy code 1021, 1022, 1027, 2,

13
C-like pointer-based array 853
C programming language 10, 16,

961
C99 961

C-style char * strings 711
C-style dynamic memory allocation

13
C-style pointer-based array 890
C-style strings 711
c_str member function of class

string 712
C# programming language 16
C++ 10, 17
C++ compiler 20
C++ development environment 20,

21
C++ How to Program, 8/e

instructor resources xxix
C++ preprocessor 19, 39
C++ programming environment

196
C++ Standard Library 18, 196

<string> file 70
class template vector 308
header location 84
headers 205
string class 69

C++ standard library 18
C++0x 31, 937, 961

auto keyword 964
delegating constructors 963
initializing data members in the

class body 383
nullptr constant 332
right angle brackets 963
rvalue reference 962
static_assert declaration

963
std=C++0xGNU C++ compiler

flag xxii
template alias 965
unique_ptr class 648
variadic template 964

C++0x FAQ 962
C99 961
calculate a salesperson’s earnings

146
calculate the value of π 191
Calculating Number of Seconds

exercise 259
Calculating π 191
Calculating Salaries 191
Calculating Total Sales 191
calculations 8, 48, 104
call a function 68
call stack 341
calling environment 663
calling function (caller) 67, 74
calling functions by reference 335
calling method (caller) 196
calloc 13
camel case 67
camera 14
capacity member function of a

string 706
capacity member function of

vector 864, 866
capacity of a string 704
carbon footprint calculator 35
CarbonFootprint Abstract Class:

Polymorphism 578
Card Shuffling and Dealing 449,

450, 841
simulation 792, 794, 796

carriage return ('\r') escape
sequence 41, 810, 814

carry bit 1015
cascading member function calls

433, 434, 436
cascading stream insertion

operations 46
case label 169, 170
case sensitive 44
case study: Date class 464
CashDispenser class (ATM case

study) 25_12, 25_14, 25_18,
25_19, 25_26, 25_38

casino 212
<cassert> header 206, 1027
cast 351

downcast 543
cast away const-ness 976
cast expression 1024
cast operator 124, 128, 204, 484,

485
cast operator function 484
cast variable visible in debugger

1022
catch a base class object 651
catch all exceptions 652
Catch block 312
catch clause (or handler) 638, 644
catch handler 636
catch related errors 645
catch(...) 652

Catching All Exceptions 657
Catching Derived-Class Exceptions

657
<cctype> header 206, 810
CD 659
ceil function 197
Celsius and Fahrenheit

Temperatures 260
Celsius and Fahrenheit

Temperatures exercise 260
central processing unit (CPU) 8
cerr (standard error stream) 21
cerr (standard error unbuffered)

598, 599, 659
<cfloat> header 206
chaining stream insertion operations

46
char 44, 711, 797
char ** 825
char data type 168, 204
character 7, 792

set 7
character array 355, 711
character classes (regular

expressions) 941, 941
character constant 355
character-handling functions 810

isdigit, isalpha, isalnum
and isxdigit 811

islower, isupper, tolower
and toupper 812

isspace, iscntrl, ispunct,
isprint and isgraph 814

character manipulation 196
character packing/unpacking 841
character presentation 206
character sequences 670
character set 62, 172
character string 40, 271
character’s numerical representation

168
characters represented as numeric

codes 820
character-string manipulation 810
checked access 700
checkerboard pattern 62, 149
Checkerboard Pattern of Asterisks

exercise 149
checkout line in a supermarket 787
child 772
child node 788
cin (standard input stream) 21, 45,

598, 599, 659, 663
function getline 356

cin.clear 622
cin.eof 602, 622
cin.get function 167, 168, 603
cin.tie function 623
Circle Area exercise 264
circular include 6
circular, doubly linked list 763
circular, singly linked list 763

Index 1041

circularly referential data 955
Cisco 3
clarity 45
class 11, 1022, 25_20, 25_26,

25_30, 2
attribute 71
client-code programmer 90
constructor 77
data member 12, 71
default constructor 77, 80
define a constructor 79
define a member function 65
implementation programmer 89
instance of 73
interface 84, 85
interface described by function

prototypes 85
member function 65
member-function

implementations in a separate
source-code file 86

name 4
naming convention 66
object of 73
public services 85
services 75

class 7
class Array 472
class average on a quiz 114
class average problem 114, 123
class definition 66
class development 471
class diagram

for the ATM system model
25_16, 25_40

in the UML 25_9, 25_12,
25_15, 25_17, 25_19,
25_27, 2, 5, 11, 12, 13

class diagram (UML) 68
class hierarchy 501, 550, 573
class-implementation programmer

89
class keyword 237, 581
class libraries 161
class library 390, 529
class members default to private

access 792
class scope 218, 385, 388
class-scope variable is hidden 388
class template 580, 580, 584, 584,

697, 750
explicit specialization 591

class-template
definition 584
scope 586
specialization 580, 584
Stack 585, 587

class template auto_ptr 648
class variable 290
class’s object code 390
class’s source code 390

Classes 18
binary_function 926
BinarySearch 728
bitset 922
Complex 492
deque 852
exception 634
HugeInt 495
initializer_list 965
invalid_argument 651
list 852
Node 748
out_of_range exception 313
Polynomial 498
RationalNumber 498
runtime_error 634, 644
shared_ptr 950
string 69
unique_ptr 648
vector 307

classic stream libraries 597
classified listings 27
clear function of ios_base 622
clear member function of

containers 855
clear member function of first-

class containers 871
client 442, 443
client code 536
client-code programmer 89, 90
client of a class 25_26, 25_35
client of an object 75
<climits> header 206
clog (standard error buffered) 598,

599, 659
close a stream 9
close member function of

ofstream 663
cloud computing 30
<cmath> header 161, 205, 961
COBOL (COmmon Business

Oriented Language) 15
code 12
CodeLite 19
coefficient 498
coin tossing 207, 260
Coin Tossing exercise 260
collaboration 25_33, 25_36
collaboration diagram in the UML

25_10, 25_35
collaboration in the UML 25_32
colon (:) 218, 426, 989, 14
column 297
column headings 271
column subscript 297
combining Class Time and Class

Date exercise 412
combining control statements in

two ways 179
comma operator (,) 156, 244

comma-separated list
of parameters 44, 54, 156, 202,

332
command line 2
command-line argument 358, 6, 5
command-line prompt 2
comma-separated list of base classes

989
comment 39, 45
commercial data processing 692
commission worker 191
CommissionEmployee class header

558
CommissionEmployee class

implementation file 559
CommissionEmployee class

represents an employee paid a
percentage of gross sales 505

CommissionEmployee class test
program 507

CommissionEmployee class uses
member functions to manipulate
its private data 522

Common Programming Errors
overview xxviii

communication diagram in the
UML 25_10, 25_35, 25_36

commutative 483
commutative operation 483
comparator function object 877,

881
comparator function object less

877, 889
compare iterators 860
compare member function of class

string 702
comparing

strings 815, 819
comparing blocks of memory 831
comparing strings 700, 844
comparing unions 16
compilation error 40
compilation phase 40
compilation unit 981
compile 19
compile-time error 40
compiler 10, 40, 129, 764
compiler error 40
compiler optimization 10
compiling 747, 781, 8

multiple-source-file program 90,
7

compl operator keyword 983
complement operator (~) 798
Complex Class 631
Complex class 411, 492, 493

exercise 411
Complex class member-function

definitions 493
complex conditions 175
complex numbers 411, 492
component 10

1042 Index

component diagram in the UML
G_1

component in the UML G_1
components 195
composite structure diagram in the

UML G_1
composition 387, 423, 500, 503,

767, 25_14, 25_14, 25_40
Composition as an Alternative to

Inheritance 532
compound interest 160, 190, 191,

193
exercise 190

Compound Interest Calculation
191

compound interest calculation with
for 160

compound statement 54, 112
computation 5
computer-assisted instruction (CAI)

265, 266
computer-assisted instruction

(CAI): Difficulty Levels 266
computer-assisted instruction

(CAI): Monitoring Student
Performance 266

computer-assisted instruction
(CAI): Reducing Student Fatigue
266

computer-assisted instruction
(CAI): Varying the Types of
Problems 266

computer network 769
computer program 5
Computer Simulator exercise 375
Computerization of Health Records

100
computers in education 265
computing the sum of the elements

of an array 275
concatenate 700
concatenate strings 818
concatenate two linked list objects

784
Concatenating Lists 784
concatenation of stream insertion

operations 46
concrete class 549
concrete derived class 554
condition 51, 107, 109, 163, 174
conditional compilation 1021,

1024
conditional execution of

preprocessor directives 1021
conditional expression 109, 638
conditional operator (?:) 109
conditional preprocessor directives

1024
conditionally compiled output

statement 1025
confusing assignment (=) and

equality (==) operators 51

confusing equality (==) and
assignment (=) operators 51

confusing equality (==) and
assignment (=) operators 179

conserving memory 216
consistent state 92
const 286, 415, 462, 1022
const keyword 226
const member function 415
const member function on a const

object 419
const member function on a non-

const object 419
const object 274, 415, 419
const object must be initialized 274
const objects and const member

functions 419
const pointer 307, 471
const qualifier 273, 339, 975
const qualifier before type specifier

in parameter declaration 229
const type qualifier applied to an

array parameter 286
const variables must be initialized

274
const version of operator[] 482
const with function parameters 339
const_cast

cast away const-ness 976
const_cast demonstration 976
const_cast operator 975, 976, 977
const_iterator 713, 854, 856,

857, 860, 867, 879, 881, 883
const_pointer 856
const_reference 855
const_reverse_iterator 714,

854, 856, 860, 867
constant

floating-point 128
constant integral expression 164,

171
constant pointer 352, 431

to an integer constant 343
to constant data 340, 342, 343
to nonconstant data 340, 341

constant reference 481
constant reference parameter 229
constant runtime 726
constant variable 273, 274, 275
“const-ness” 977
constructed inside out 428
constructor 77

conversion 484, 486
copy 480
default 80
default arguments 396
defining 79
delegating constructors 963
explicit 486
function prototype 85
in a UML class diagram 80
naming 79

constructor (cont.)
parameter list 79
single argument 484, 485, 486

constructor called recursively 480
constructor in a union 16
constructors and destructors called

automatically 399
constructors cannot be virtual 573
constructors cannot specify a return

type 77
Constructors Throwing Exceptions

657
container 206, 747, 851, 853, 890
container adapter 853, 859, 885
container adapter functions

pop 885
push 885

container adapters
priority_queue 888
queue 887
stack 885

container class 390, 429, 475, 580,
591, 853

containers
begin function 854
clear function 855
empty function 854
end function 854
erase function 855
insert function 854
max_size function 854
rbegin function 854
rend function 854
size function 854
swap function 854

Continue command (debugger) 6, 6
continue debugger command 6
continue statement 173, 192, 193
continue statement terminating a

single iteration of a for statement
173, 174

continuous beta 31
control characters 814
control statement 103, 104, 106,

108
nesting 107
stacking 107, 180

control statements 106
do…while 162, 163, 164, 184
do…while repetition statement

106
for 155, 155, 156, 184
for repetition statement 106
if 51, 54, 184, 185
if single-selection statement

105
if…else 184
if…else double-selection

statement 105
nested if…else 111
nesting 108, 130
repetition statement 107

Index 1043

control statements (cont.)
selection statement 106
sequence statement 106
stacking 108
switch 164, 171, 184
while 154, 162, 184, 185
while repetition statement 106,

127
control structure 15
control variable 155
control-variable name 156
controlling expression 169
converge on the base case 245
conversion constructor 484, 486
conversion operator 484
conversions among fundamental

types 484
by cast 484

convert a binary number to decimal
1013

convert a hexadecimal number to
decimal 1013

convert among user-defined types
and built-in types 484

convert an octal number to decimal
1013

convert between types 484
convert lowercase letters 206
Converting Fahrenheit to Celsius

630
converting from a higher data type

to a lower data type 205
converting strings to C-style

strings and character arrays 711
Converting Strings to Floating-

Point Numbers 843
Converting Strings to Integers 843
Cooking with Healthier Ingredients

722
copy algorithm 862, 869
copy constructor 406, 427, 475,

480, 482, 854, 856
copy member function of class

string 675, 712
copy of the argument 340
copy_backward algorithm 862,

906
copy-and-paste approach 514
Copying a List in Reverse Order 784
copying strings 816
correct number of arguments 202
correct order of arguments 202
correctly initializing and using a

constant variable 274
cos function 197
cosine 197
count algorithm 862, 900, 902
count function of associative

container 879
count_if algorithm 862, 900, 902
counter 115, 131, 147, 216

counter-controlled repetition 115,
120, 127, 130, 131, 153, 154,
245

counter-controlled repetition with
the for statement 155

counter variable 118
Counting Character Types with

Regular Expressions 973
Counting HTML Tags 973
counting loop 154
counting up by one 120
Counting Vowels 721
cout (<<) (the standard output

stream) 598, 599, 659
cout (standard output stream) 21
cout (the standard output stream)

40, 43, 45
cout.put 601
cout.write 605
__cplusplus predefined symbolic

constant 1027
.cpp extension 19
CPU (central processing unit) 8, 21
CraigsList (www.craigslist.org)

27
Craps Game Modification exercise

264, 322
craps simulation 212, 215, 264
“crashing” 122
create your own data types 46
CreateAndDestroy class

definition 400
member-function definitions

400
creating a random access file 671
Creating a random-access file with

100 blank records sequentially
675

Creating a sequential file 661
creating an association 883
Creating and traversing a binary tree

776
Credit inquiry program 666
credit limit on a charge account 145
Credit Limits exercise 145
credit processing program 672
crossword puzzle generator 849
cryptogram 720
Cryptograms 720

Solving 721
<csignal> header 11
<cstdio> header 206
<csdtlib> header 647
<cstdlib> header 205, 207, 822, 9,

13
<cstring> header 206, 816
<ctime> header 205, 211
<Ctrl>-d 168
Ctrl key 168
<Ctrl>-z 168, 609
<Ctrl>-d 663
<Ctrl>-z 663

<cstdlib> header 207
current position in a stream 665
cursor 41
custom deleter function 950
.cxx extension 19

D
dangerous pointer manipulation

566
dangling-else problem 111, 148
dangling pointer 481
dangling reference 230
data 5
data hiding 74, 76
data hierarchy 6, 6
data member 12, 71, 73, 383, 2

private 74
data member function of class

string 712
data members 65
data persistence 659
data structure 747
data structures 268, 851
data types

bool 108
char 168, 204
double 124, 160
float 124, 204
int 43
long 172
long double 204
long int 172, 204
long long 204
long long int 204
short 172
short int 172
unsigned 210
unsigned char 204
unsigned int 204, 210, 347
unsigned long 204
unsigned long int 204
unsigned long long 204
unsigned long long int 204
unsigned short 204
unsigned short int 204

data types in the UML 71
Date class 412, 423
Date class (exercise) 100
Date class definition 423
Date class definition with

overloaded increment operators
464

Date class member function
definitions 424

Date class member-function and
friend-function definitions 465

Date Class Modification 448
Date class test program 467
__DATE__ predefined symbolic

constant 1027
date source file is compiled 1027

www.craigslist.org

1044 Index

deallocate 469
deallocate memory 469, 648, 749
debugger 1022, 2, 5

Autos window displaying state
of objects 13, 14

break command 4
break mode 5, 5, 6
breakpoint 2
Continue command 6, 6
continue command 6
convenience variable (GNU

debugger) 6
defined 2
delete command 7
finish command 11
-g compiler option 4
gdb command 4
help command 5
info break command 7
inserting a breakpoint 5
inserting breakpoints 4
Locals window 8
Locals window (Visual C++

2005 debugger) 9
logic error 2
margin indicator bar 5
next command 12
print command 6
quit command 8
run command 4
set command 8, 10
Solution Configurations

combobox 5
step command 11
Step Into command 11
Step Out command 11
Step Over command 11
suspending program execution

8, 9
watch command 13
Watch window (Visual C++

2005) 8, 9
debugging 210
debugging aid 1025
debugging tool 1027
dec stream manipulator 607, 612,

616
decimal (base 10) number system

825, 826, 1008
decimal (base-10) number system

612
decimal digit 7
decimal number 191
decimal numbers 616, 810
decimal point 123, 129, 130, 161,

601, 613
decision 107, 108
decision in the UML 25_23
decision symbol 107
deck of cards 357
declaration 43, 103
declaration of a function 85

declaring a static member
function const 441

decrement
a pointer 349

decrement a control variable 153
decrement operator (--) 135
decrement operators 463
decrypt 151
decrypter 720
deeply nested statements 183
default access mode for class is

private 74
default argument 231, 393
default arguments with constructors

393
default case 169, 170, 209, 210
default constructor 77, 80, 393,

428, 464, 474, 479, 589, 854
provided by the compiler 80
provided by the programmer 80

default copy constructor 427
default delimiter 605
default memberwise assignment

405, 406, 856
default memberwise copy 480, 856
default precision 129
default to decimal 616
default to public access 792
default type for a type parameter

591
#define 1024, 1026
define a constructor 79
define a member function of a class

65
Define class GradeBook with a

member function
displayMessage, create a
GradeBook object, and call its
displayMessage function 65

Define class GradeBook with a
member function that takes a
parameter, create a GradeBook
object and call its
displayMessage function 69

#define NDEBUG 1027
#define PI 3.14159 1022
#define preprocessor directive 382,

1022, 581
defining occurrence 22
definite repetition 115
definition 153
Deitel Resource Centers 32
delegation 765
delete 481, 648, 649, 13
delete [] (dynamic array

deallocation) 471
delete a record from a file 685
delete debugger command 7
delete function 950
delete operator 469, 573, 749
deleter function 950

deleting an item from a binary tree
780

deleting dynamically allocated
memory 481

delimiter 356, 820
delimiter (with default value '\n')

603
delimiting characters 820
Dell 3
Demonstrating a mutable data

member 978
demonstrating class template Stack

585, 587
Demonstrating composition—an

object with member objects 427
demonstrating function substr 703
demonstrating functions erase and

replace 708
demonstrating input from an

istringstream object 716
Demonstrating multiple inheritance

987
Demonstrating operator

const_cast 976
demonstrating string assignment

and concatenation 698
Demonstrating the .* and ->*

operators 984
Demonstrating the operator

keywords 983
Demonstrating the recursive

function factorial 241
demonstrating the string find

member functions 707
demonstrating the string insert

functions 710
Demonstrating the use of

namespaces 979
DeMorgan’s laws 192
Department of Defense (DOD) 15
dependent name 766
deployment diagram in the UML

G_1
Deposit class (ATM case study)

25_12, 25_15, 25_18, 25_26,
25_33, 25_34, 25_35, 25_42, 3,
9, 10

DepositSlot class (ATM case
study) 25_12, 25_14, 25_18,
25_26, 25_35, 4

Depth of a Binary Tree 787
<deque> header 206
deque class 852, 863

push_front function 875
deque sequence container 875
dequeue 769
<deque> header 855, 875
dereference

a null pointer 334
a pointer 333, 334, 336, 340

dereference a const iterator 858

Index 1045

dereference an iterator 856, 857,
860

dereference an iterator positioned
outside its container 867

dereferencing operator (*) 333
derive one class from another 387
derived class 500, 502, 528, 9, 10

indirect 560
derived-class destructor 573
derived-class catch 651
descriptive words and phrases

25_17, 25_19
deserialized object 686
design pattern 30
design process 12, 25_2, 25_8,

25_28, 25_32
design specification 25_8
destructive write 47
destructor 398, 514, 854

called in reverse order of
constructors 399

destructor in a derived class 527
destructors called in reverse order

527
dethread a node from a list 761
Dev C++ 19
diagnostics that aid program

debugging 206
dialog 45
diamond 61, 192
diamond inheritance 991
Diamond of Asterisks 192
diamond symbol 105, 107
dice game 212
Dice Rolling 321
Dice rolling exercise 321, 328
Die-rolling program using an array

instead of switch 278
difference_type 856
digit 44, 355, 1008
digit (regular expressions) 941
Digital Clock application

Autos window displaying the
state of localTime 13, 14

digital divide 4
direct access 750
direct base class 502
directive

using 53
directly reference a value 331
disk 6, 20, 21
disk drive 597
disk I/O completion 639
disk space 645, 647, 662
displacement 569
display screen 597, 599
Displaying Characters for Given

ASCII Codes 844
Distance Between Points exercise

263
distribution pass in bucket sort 743

divide-and-conquer approach 195,
196

divide by zero 21, 122, 11
DivideByZeroException 638
divides function object 925
division 8, 48, 49
do…while repetition statement

106, 162, 163, 164, 184
document a program 39
dollar amount 161
Dorsey, Jack 28
dot (.) operator 67
dot operator (.) 388, 431, 544, 649
dotted line 105
double 44, 11
double-array subscripting 492
double data type 124, 160, 204
double-ended queue 875
double-precision floating-point

number 128
double quote 41
double selection 184
double-selection statement 105
double-word boundary 793
“doubly initializing” member

objects 428
doubly linked list 853, 871, 763
downcasting 543
Drawing Patterns with Nested for

Loops 190
driver program 81
dual-core processor 8
dummy value 121
duplicate elimination 747, 780, 787

exercise 320
duplicate keys 877, 881
duplicate node values 773
DVD 659
dynamic array 13
dynamic binding 544, 565, 566,

569
dynamic casting 570
dynamic data structure 331, 747
dynamic memory 648
dynamic memory allocation 749,

750, 13
dynamic memory management 469
dynamic_cast 572, 651
dynamically allocate array of integers

476, 24
dynamically allocated memory 405,

407, 481, 573, 648
allocate and deallocate storage

399
dynamically allocated memory for

an array 13
dynamically allocated storage 480
dynamically determine function to

execute 543

E
eBay 3, 29
Eclipse 19
Eclipse Foundation 13
edit 18
edit a program 19
editor 19
efficiency of

binary search 732
bubble sort 743
insertion sort 733
linear search 727
merge sort 739
selection sort 733

Eight Queens exercise 326
Eight Queens with recursion

exercise 328
Eight Queens: brute force

approaches exercise 326
element of an array 269
elided UML diagram 25_13
#elif 1025
ellipsis 5
ellipsis (...) in a function prototype

3
emacs 19
embedded parentheses 49
embedded system 5, 14
Employee Class

enhanced 722
Employee class 423
Employee class (Exercise) 99
Employee class definition showing

composition 425
Employee class definition with a

static data member to track the
number of Employee objects in
memory 438

Employee class header 554
Employee class hierarchy driver

program 562
Employee class implementation file

555
Employee class member function

definitions, including
constructor with a member-
initializer list 426

Employee class member-function
definitions 439

employee identification number 7
empty exception specification 642
empty member function of a

string 706
empty member function of

containers 854
empty member function of

priority_queue 889
empty member function of queue

887
emptymember function of sequence

container 871

1046 Index

empty member function of stack
885

empty member function of string
455

empty parentheses 67, 70
empty quotation marks 672
empty space 672
empty statement 113
empty string 75
empty string 706
encapsulation 12, 76, 385, 404, 428
encrypt 151
encrypter 720
encryption 720, 721
end iterator 861
end line 46
end member function of class

string 714
end member function of class

vector 728
end member function of containers

854
end member function of first-class

container 856
end of a sequence 904
end of a stream 666
end of a string 748
“end of data entry” 121
end-of-file 168, 169, 356, 622
#endifpreprocessor directive 1025,

382
endl 46, 129
end-of-file 663
end-of-file indicator 663, 6
end-of-file key combination 663, 2
end-of-file marker 659
Enforcing Privacy with

Cryptography 150
English-like abbreviations 9
Enhancing Class Date exercise 412
Enhancing Class Rectangle

exercise 412
Enhancing Class Time exercise 411,

412
enqueue function 769
Enter key 45
enter key 169, 170
entry point 180
enum keyword 214
enumeration 214, 1022
enumeration constant 214, 1024
EOF 168, 602, 605, 810
eof member function 602, 622
eofbit of stream 622
equal algorithm 862, 894
equal to 52
equal_range algorithm 913, 915
equal_range function of

associative container 879
equal_to function object 925
equality and relational operators 52
equality operator (==) 471, 856

equality operators 51, 52
equality operators (== and !=) 108,

175
equation of straight line 50
erase member function of class

string 708
erase member function of

containers 855
erase member function of first-

class containers 871
Erasing Characters from a string

721
e-reader device 14
#error preprocessor directive 1025
error

off-by-one 120, 155
error bits 605
error checking 196
error detected in a constructor 644
Error-Prevention Tips overview

xxviii
error state of a stream 602, 620, 621
escape character 41
escape early from a loop 173
escape sequence 41, 42
escape sequences

\' (single-quote character) 41
\" (double-quote character) 41
\\ (backslash character) 41
\a (alert) 41
\n (newline) 41
\r (carriage return) 41
\t (tab) 41, 170

evaluating a postfix expression 786
evaluating expressions 764, 785
even integer 189
Even Numbers exercise 259
event 25_21
examination-results problem 132
<exception> header 206
exception 312, 633

handler 312
handling 308
parameter 313

exception class 634, 650
what virtual function 634

exception classes derived from
common base class 645

exception handling 206, 633
out_of_range exception class

313
what member function of an

exception object 313
Exception-handling example that

throws exceptions on attempts to
divide by zero 635

<exception> header 634, 642, 651
exception object 638
exception parameter 636
exception specification 641
exceptional condition 170

Exception-handling example that
throws exceptions on attempts to
divide by zero 635

Exceptions 313
bad_alloc 645
bad_cast 651
bad_exception 651
bad_typeid 651
length_error 651
logic_error 651
out_of_range 313, 651
overflow_error 651
underflow_error 652

executable image 20
executable program 20
executable statement 45, 103
execute a program 19, 21
execution-time error 21
execution-time overhead 566
exhaust memory 242
exit 662, 9
exit a deeply nested structure 15
exit a function 41
exit a loop 192
exit function 399, 400, 647, 9
exit point of a control statement 180
EXIT_FAILURE 9
EXIT_SUCCESS 9
exp function 197
expand a macro 1023
explicit constructor 486
explicit conversion 129
explicit keyword 486
explicit specialization of a class

template 591
explicit use of the this pointer 431
exponent 498
exponential “explosion” of calls 245
exponential complexity 245
exponential function 197
exponentiation 50, 160

exercise 258
expression 108, 109, 129, 156
extensibility 536
extensibility of C++ 462
extensibility of STL 854
extensible language 67, 242, 280
extensible markup language (XML)

686
extern 7
extern "C" 19
extern keyword 217
extern storage-class specifier 215
external linkage 8

F
F floating-point suffix 11
f floating-point suffix 11
fabs function 197
FaceBook 27
Facebook 3, 13, 16, 28

Index 1047

factorial 150, 190, 240, 241, 242
exercise 190

Factorial exercise 150
fail member function 622
failbit 662
failbit of stream 602, 606, 622
false 51
false 108, 109, 245, 618
fatal error 122, 377
fatal logic error 51, 122
fatal runtime error 21, 122
fault-tolerant programs 312, 633
feature-complete 31
Fibonacci series 242, 245
Fibonacci Series exercise 261
field 7
field of a class 7
field width 162, 271, 606, 609
fields larger than values being

printed 615
FIFO 853, 875, 887
FIFO (first-in, first-out) 769
figE_02.cpp 4
figE_03.cpp 6
figE_04.cpp 9
figE_06.cpp 12
figE_07.cpp 14
figE_08.cpp 17
figE_09.cpp 18
file 7, 659, 665
File Matching 692
File Matching Enhancement 693
File Matching Test 693
File Matching Test Data 692
file of n bytes 659
file open mode 661, 664
file open modes

ios::app 661
ios::ate 662
ios::binary 662, 675, 677
ios::in 662, 664
ios::out 661
ios::trunc 662

__FILE__ predefined symbolic
constant 1027

file processing 597, 600
file processing program 692
file scope 218, 388
file system directory 747
filename 661, 664
filename extensions 19

.h 81
file-position pointer 665, 677, 685
file-processing classes 600
fill algorithm 862, 890
fill character 384, 606, 609, 614,

615
fill member function 613, 615
fill member function of basic_ios

622
fill_n algorithm 862, 890
final state 105, 180

final state in the UML 25_23
final value of a control variable 153,

157
find algorithm 862, 903, 904
find function of associative

container 879
find member function of class

string 706, 707
Find the Error exercise 264, 265
Find the Largest exercise 147
Find the Minimum exercise 260
Find the Minimum Value in a

vector exercise 328
Find the Minimum Value in an

Array exercise 328
Find the Smallest Integer 190
Find the Two Largest Numbers

exercise 147
find_each algorithm 862
find_end algorithm 862
find_first_not_of member

function of class string 708
find_first_of algorithm 862
find_first_of member function

of class string 708
find_if algorithm 862, 903, 904
find_last_of member function of

class string 708
finding strings and characters in a

string 706
finish debugger command 11
first data member of pair 879
first refinement 121, 131
first-class container 851, 855, 856,

859, 867, 871
begin member function 856
clear function 871
end member function 856
erase function 871

first-in, first-out (FIFO) 769, 853,
875, 887

fixed notation 601, 612, 617
fixed-point format 129
fixed-point value 162
fixed stream manipulator 613
fixed stream manipulator 129,

612, 617
flag value 121
flags member function of

ios_base 619
flash drive 659
Flickr 27
flight simulator 577
flip of bitset 924
float 11
float data type 124, 204
floating point 612, 617
floating-point arithmetic 452
floating-point constant 128
floating-point division 129
floating-point literal

double by default 128

floating-point number 123, 129
double data type 124
double precision 128
float data type 124
single precision 128

floating-point size limits 206
floating-point constant not suffixed

11
floating-point exception 11
floating-point number in scientific

format 617
floor 258
floor function 197
flow of control 113, 127
flow of control in the if…else

statement 109
flow of control of a virtual

function call 567
flush a stream 9
flush buffer 622
flush output buffer 46
flushing stream 606
fmod function 197
fmtflags data type 619
for repetition statement 106, 155,

155, 156, 184
for repetition statement examples

158
for_each algorithm 900, 902
force a decimal point 601
forcing a plus sign 614
form feed ('\f') 810, 814
formal parameter 202
formal type parameter 237
format error 622
format of floating-point numbers in

scientific format 617
format state 606, 619
format-state stream manipulators

612
format_first_only 949
formatted data file processing 659
formatted I/O 597
formatted input/output 669
formatted text 670
formulating algorithms 115, 120
Fortran (FORmula TRANslator) 15
forward class declaration 442
forward declaration 6
forward iterator 858, 864, 899, 905,

906, 909, 919
forward iterator operations 860
forward pointer 763
Foursquare 3, 17, 27, 29
fractional parts 128
fractions 498
fragile software 521
free 13
free memory 749
free store 469
friend function 429, 503

1048 Index

friend functions to enhance
performance 429

friend of a derived class 989
friends are not member functions

429
Friends can access private

members of class 430
friendship granted, not taken 429
friendship not symmetric 429
friendship not transitive 429
Friis, Janus 29
front member function of queue

887
frontmember function of sequence

containers 863, 870
front_inserter function template

908
<fstream> header 206
fstream 660, 661, 675, 685, 686
<fstream> header 659
function 18, 21, 39, 203

argument 68
empty parentheses 67, 70
header 67, 346
local variable 71
multiple parameters 71
name 358
parameter 68, 70
parameter list 70
prototype 85, 337
return a result 74

function body 67
function call 68, 196, 202
function call operator () 487, 569
function call overhead 226
function call stack 221, 341
function class 939
function declaration 203
function definition 202, 218
function name 217, 8, 9
function object 877, 881, 924, 939

binary 924
predefined in the STL 924

function object less< int > 877
function object less< T > 881, 889
function objects

divides 925
equal_to 925
greater 925
greater_equal 925
less 925
less_equal 925
logical_end 925
logical_not 925
logical_or 925
minus 925
modulus 925
multiplies 925
negate 925
not_equal_to 925
plus 925

function overhead 1023

function overloading 234, 596, 3
function pointer 358, 566, 569, 925
function prototype 85, 161, 202,

203, 218, 227, 429, 1022, 3, 7, 8,
19
parameter names optional 86

function prototype for rand in
<cstdlib> 207

function prototype for srand in
<cstdlib> 210

function prototype for time in
<ctime> 211

function prototype scope 218
function raise 11
function scope 218
function signature 203, 235
function template 237, 580, 584

maximum 265
minimum 265

Function Template maximum
exercise 265

Function Template minimum
exercise 265

Function Template Overloading
594

function template specialization 237
function that calls itself 239
function that takes no arguments

225
<functional> header 206, 924,

926, 939
functional structure of a program 40
functions 18
functions for manipulating data in

the standard library containers
206

functions with empty parameter lists
225

function-template definition 581
function-template specialization

580
functor (function object or

function) 924
fundamental type 44

G
-g command-line compiler option 4
game of “guess the number” 260
game of chance 212
game of craps 212, 215
game playing 207
game programming 4
games

Call of Duty 2: Modern Warfare 4
Farmville 4
Kinect for Xbox 360 5
Mafia Wars 4
social gaming 4
video game console 4
Xbox 360 5

gaming console 14

“garbage” value 118
Gas Mileage exercise 145
gathering pass in bucket sort 743
gcd 262
gcount function of istream 606
gdb command 4
general class average problem 120
general utilities library <cstdlib>

1027
generalities 536
generalization in the UML 9
general-utilities library <cstdlib>

822, 9, 13
generate algorithm 862, 891
generate_n algorithm 862, 891
generating mazes randomly 247
generating values to be placed into

elements of an array 273
generator function 891
generic algorithms 862
generic class 584
generic programming 580, 851, 852
gesture 15
get a value 75
get and set functions 75
get member function 602, 603
get pointer 665
getline function for use with class

string 698
getline function of cin 604
getline function of the string

header 70, 75
gets the value of 51
gigabyte 8
global 87
global function 197
global identifier 979
global namespace 981
global namespace scope 218, 437,

18
global object constructors 399
Global Positioning System (GPS) 4
global scope 401, 981
global variable 217, 218, 219, 221,

232, 283, 981, 7
global variable name 8
Global Warming Facts Quiz 193
golden mean 242
golden ratio 242
good function of ios_base 622
Good Programming Practices

overview xxviii
goodbit of stream 622
Google 3, 27

Goggles 27
Storage 30
TV 5

Gosling, James 16
goto elimination 104
goto-less programming 104
goto statement 104, 218, 14
GPS (Global Positioning System) 4

Index 1049

GPS device 8
grade-point average 191
GradeBook Modification 191
GradeBook.cpp 116, 124
GradeBook.h 116, 124
graph 190
graph information 277
graphical representation of a binary

tree 772
graphics package 577
greater function object 925
greater_equal function object

925
greater-than operator 52
greater-than-or-equal-to operator 52
greatest common divisor (GCD)

260, 262
Greatest Common Divisor exercise

260
greedy quantifier 944
gross pay 146
Groupon 3, 27, 28
guard condition 107, 108
guard condition in the UML 25_23
Guess the Number Game exercise

260
Guess the Number Game

Modification exercise 261
guillemets (« and ») in the UML 80

H
half-word 793
handle on an object 388
hangman 720
Hangman Game 720
hard disk 659
hard drive 5, 9
hardcopy printer 21
hardware 5, 9
Hardware Inventory 694
hardware platform 17
has-a relationship 500, 25_14, 423
hash function 961
hash table 961

bucket 961
head of a queue 747, 769
header 81, 90, 205, 382, 529, 1021,

8
headers

<algorithm> 870
<array> 939
<cmath> 161
<csignal> 11
<deque> 875
<exception> 634
<fstream> 659
<functional> 924, 939
<iomanip.h> 129
<iostream> 39, 168
<list> 871
<map> 881, 883

headers (cont.)
<memory> 648, 950
<numeric> 862
<queue> 888, 889
<random> 940
<regex> 940, 941
<set> 877
<stack> 885
<stdexcept> 634, 651
<string> 70
<tuple> 940
<type_traits> 941
<vector> 307
how they are located 83
name enclosed in angle brackets

(< >) 83
name enclosed in quotes (" ")

83
<typeinfo> 572

heap 469, 889, 916, 918
heapsort sorting algorithm 915
help debugger command 5
helper function 390
heuristic 325
Hewlett Packard 2
Hewlett-Packard 851
hex stream manipulator 607, 612,

616
hexadecimal 191, 826

integer 334
hexadecimal (base 16) number

system 1008
hexadecimal (base-16) number 601,

607, 612, 616, 825
hexadecimal notation 601
hexadecimal number system 810
hide implementation details 196,

428, 442
hide names in outer scopes 218
hide private data from clients 390
hierarchical boss function/worker

function relationship 196
hierarchy of exception classes 650
hierarchy of shapes 549
high-level language 10
highest level of precedence 49
“highest” type 204
high-level I/O 597
Hopper, Grace 15
horizontal tab ('\t') 41, 810, 814
host environment 9
host object 423
Huge integers 497
HugeInt class 495
HugeInteger Class exercise 413
Hughes, Chris 28
Human Genome Project 3
hypotenuse 191
hypotenuse 253, 258
Hypotenuse Calculations exercise

258

I
IBM 2
IBM Corporation 15
IDE (integrated development

environment) 19
identifier 44, 106, 218
identifiers for variable names 215
#if 1025
#if preprocessor directive 1025
if single-selection statement 105,

108, 184, 185
if statement 51, 54, 107
if statement activity diagram 108
if…else double-selection

statement 105, 108, 109, 184
if…else statement activity

diagram 109
#ifdef preprocessor directive 1025
#ifndef preprocessor directive 382,

1025
ifstream 660, 661, 664, 665, 678,

6
ifstream constructor function 664
ignore 460
ignore function of istream 605
illegal instruction 11
Implementation class definition

442
implementation file 443
implementation inheritance 552
implementation of a member

function changes 398
implementation of merge sort 734
implementation phase 13
implementation process 25_28, 2
implementing the binary search tree

773
implicit conversion 129, 484, 485,

486
via conversion constructors 486

implicit first argument 431
implicit handle 388
implicit, user-defined conversions

484
implicitly virtual 544
imprecision of floating-point

numbers 161
improper implicit conversion 485
improve performance of bubble sort

743
in-memory formatting 714
in-memory I/O 714
#include 1021
#include <cstring> 7
#include 1021
#include "filename" 1021
#include <iomanip> 129
#include <iostream> 39
#include preprocessor directive

203, 1021
includes algorithm 910, 910

1050 Index

including a header multiple times
382

increment
a pointer 349

increment a control variable 153,
157

increment an iterator 861
increment operator 463
increment operator (++) 135
indefinite repetition 121
indentation 54, 107, 111
independent software vendor (ISV)

18, 390
index 269
indexed access 875
indexed list 790
indirect base class 502
indirect derived class 560
indirection 331
indirection operator (*) 333, 335
indirectly reference a value 331
inefficient sorting algorithm 733
ineqality operator (!=) 471
inequality 982
inequality operator keywords 982
infinite loop 113, 128, 150, 157,

242
infinite recursion 480
infix arithmetic expression 785
infix notation 785
infix-to-postfix conversion

algorithm 785
Infix-to-Postfix Conversion 785
info break debugger command 7
information hiding 12, 346
inherit implementation 576
inherit interface 549, 576
inherit members of an existing class

500
inheritance 12, 381, 387, 500, 502,

890, 8, 9, 12, 13
implementation vs. interface

inheritance 552
multiple 986
virtual base class 994

Inheritance Advantage 532
inheritance examples 501
inheritance hierarchy 544
Inheritance hierarchy for university

CommunityMembers 501
inheritance relationships of I/O-

related classes 600
inheritance relationships of the I/O-

related classes 660
inheriting interface versus inheriting

implementation 576
initial state 105
initial state in the UML 180, 25_22,

25_23
initial value of a control variable

153, 155
initial value of an attribute 25_20

initialization phase 121
initialize a constant of a built-in data

type 420
initialize a pointer 332
initialize pointer to 0 (null) 752
initialize with an assignment

statement 422
initializer 272
initializer list 272, 356
initializer_list class template

965
initializing a pointer declared const

342
initializing a reference 229
initializing an array’s elements to

zeros and printing the array 271
initializing multidimensional arrays

298
initializing the elements of an array

with a declaration 272
inline 226, 458, 482, 1024
inline function 225
inline function 390, 790, 885,

888, 889, 1022, 1024
inline function to calculate the

volume of a cube 226
inline keyword 226
inner block 218
inner_product algorithm 863
innermost pair of parentheses 49
inorder traversal 773, 789
inOrderTraversal 779
inplace_merge algorithm 909
input a line of text 604
Input and output stream iterators

857
input device 8
input from string in memory 206
input iterator 858, 860, 894, 897,

899, 902, 908, 910, 912, 913,
920

input line of text into an array 356
input/output (I/O) 196, 596
input/output library functions 206
input/output of objects 686
input/output operations 105
input/output stream header

<iostream> 39
input sequence 857
input stream 602, 603
input stream iterator 857
input stream object (cin) 43, 45
input unit 8
Inputting Decimal, Octal and

Hexadecimal Values 630
inputting from strings in memory

714
insert function of associative

container 879, 883
insert member function of class

string 710

insert member function of
containers 854

insert member function of
sequence container 870

Insert/Delete Anywhere in a Linked
List 790

inserter function template 908
inserting a breakpoint 5
insertion 747
insertion at back of vector 863
insertion sort 732, 733, 739, 740
insertion sort algorithm 295
insertion sort efficiency 733
instance 11
instance of a class 73
instant access processing 679
instant-access application 670
instruction 21
instruction execution cycle 376
instructor resources for C++ How to

Program, 8/e xxix
int 40, 45, 204
int & 227
int operands promoted to double

129
integer 40, 43, 149
integer arithmetic 452
Integer class definition 648
integer division 48, 128
integer promotion 129
integerPower 258
integers prefixed with 0 (octal) 616
integers prefixed with 0x or 0X

(hexadecimal) 616
IntegerSet Class 448
IntegerSet class 448
integral size limits 206
integrated case studies xxiii
integrated development

environment (IDE) 19
Intel 3
interaction diagram in the UML

25_35
interaction overview diagram in the

UML G_2
interactions among objects 25_32,

25_36
interactive attention signal 11
interactive computing 45
interactive signal 11
interest on deposit 193
interest rate 160, 190
interface 84
Interface class definition 443
Interface class member-function

definitions 443
interface inheritance 552
interface of a class 85
internal linkage 8
internal spacing 614
internal stream manipulator 377,

612, 614

Index 1051

International Organization for
Standardization (ISO) 961

International Standards
Organization (ISO) 2, 17

Internet 3
Internet telephony 27
Internet TV 5
interpreter 10
interrupt 11
intToFloat 254
invalid access to storage 11
invalid_argument class 651
invalid_argument exception 870

<stdexcept> include to
prevent errors in GNU C++
384

invalid_argument exception class
384

Invoice class (exercise) 99
invoke a method 196
invoking a non-const member

function on a const object 416
<iomanip> header 205, 1021, 598,

607
<iomanip.h> header 129
iOS 13
ios_base base class 620
ios_base class

precision function 607
width member function 609

ios::app file open mode 661
ios::ate file open mode 662
ios::beg seek direction 665
ios::binary file open mode 662,

675, 677
ios::cur seek direction 665
ios::end seek direction 666
ios::in file open mode 662, 664,

686
ios::out file open mode 661, 686
ios::trunc file open mode 662
<iostream> header 39, 205, 598,

599, 1021, 168, 659
iPhone 27, 29
is a 989
is-a (inheritance) 528
is-a relationship (inheritance) 500
isalnum 810, 811
isalpha 810, 811
iscntrl 810, 813
isdigit 810, 811, 812
isgraph 811, 813
islower 810, 812
ISO 2
ISO (International Organization for

Standardization) 961
ISO/IEC C++ Standard xxv
isprint 811, 813
ispunct 810, 813
isspace 810, 813
istream 600

istream class 665, 671, 678, 685,
686, 714
peek function 605
seekg function 665
tellg function 666

istream member function ignore
460

istream_iterator 857
istringstream class 714, 715, 716
isupper 810, 812
isxdigit 810, 811
iter_swap algorithm 862, 905,

906
iterating 118
iteration 115, 245, 246
iterations of a loop 115
Iterative factorial solution 245
iterative model 25_7
iterative solution 240, 246
<iterator> 908, 910
<iterator> header 206
iterator 551, 580, 713, 851
iterator 714, 854, 856, 857, 860,

879
iterator class 429, 551
iterator operations 860
iterator pointing to first element past

the end of container 856
iterator pointing to the first element

of the container 856
iterator typedef 860
iterator-category hierarchy 859

J
Jacobson, Ivar 25_3
Jacopini, G. 104, 184
Java programming language 14
JavaJava programming language 16
justified field 615

K
kernel 13
key 877
key/value pair 853, 881, 882
keyboard 5, 21, 45, 167, 373, 597,

599, 659, 2
keyboard input 127
Keypad class (ATM case study)

25_9, 25_12, 25_14, 25_26,
25_33, 25_34, 25_35, 25_37, 4

keyword 40
keywords 106

and 982
and_eq 983
auto 216
bitand 983
bitor 983
class 237, 581
compl 983
const 226

keywords (cont.)
enum 214
explicit 486
extern 217
inline 226
mutable 977
namespace 979, 981
not 982
not_eq 982
or 982
or_eq 983
private 73
public 66
return 196
static 217
table of keywords 106
template 581, 581
throw 638
typedef 598
typename 581
void 67
xor 983
xor_eq 983

Knight’s Tour exercise 324
Knight’s Tour: brute force

approaches exercise 325
Knight’s Tour: closed tour test

exercise 327

L
L floating-point suffix 11
l floating-point suffix 11
L integer suffix 10
l integer suffix 10
label 218
label specified in a goto statement

14
labels in a switch structure 218
Lady Ada Lovelace 15
lambda expression 965
lambda function 965
lambda introducer 966
LAMP 30, 30
large object 229
last-in, first-out (LIFO) 221

data structure 764, 853, 885
order 584, 588

late binding 544
lazy quantifier 944
leading 0 616
leading 0x and leading 0X 612, 616
leaf node 772, 788
Lee, Meng 851
left brace ({) 40, 43
left child 772
left justification 162, 614
left node 778
left-shift operator (<<) 452, 797,

798, 803, 805, 841
left side of an assignment 180, 269,

402, 475

1052 Index

left stream manipulator 613
left stream manipulator 162, 612,

613
left subtree 772, 778, 779, 788
left-to-right pass of an expression

785
left-to-right associativity 137
left value 180
left-shift assignment operator (<<=)

805
left-shift operator (<<) 599
left-to-right associativity 55
left-to-right evaluation 49, 50
legacy C code 1022
legacy code 1027, 2, 13
length member function of class

string 91, 698
length of a string 356
length of a substring 487
length_error exception 651, 704,

870
less function object 925
less_equal function object 925
less< double > 881
less< int > 877, 881
less-than operator 52, 856
less-than-or-equal-to operator 52
letter 7
Letter Pyramid 721
level of indentation 109
level-order traversal of a binary tree

780, 789
Level-Order Binary Tree Traversal

789
lexicographical 702
lexicographical permutator 919
lexicographical_compare

algorithm 892, 894
lifeline of an object in a UML

sequence diagram 25_37
LIFO (last-in, first-out) 221, 853,

885
order 584, 588, 764

limerick 845
<limits> header 207
line 50
line number 1027
line of communication with a file

662, 664
line of text 604
__LINE__ predefined symbolic

constant 1027
linear data structure 749, 772
linear runtime 726
linear search 293, 725, 726, 728,

732, 740
exercise 328
of an array 293

link 19, 748, 772
link to a class’s object code 390
linkage 215, 981
linkage specifications 19

linked list 747, 749, 750, 751, 756,
763

linked list class template 790
linked list Implementation 750
linker 20, 7
linking 8
Linux 13

shell prompt 22
Linux operating system 13, 13
<list> header 206
list 748, 885
List and Queues without Tail

Pointers 790
list class 852, 863
List class template 752, 764, 767,

769
List class-template definition 752
list debugger command 5
list functions

assign 875
merge 874
pop_back 874
pop_front 874
push_front 874
remove 875
sort 874
splice 874
swap 875
unique 875

<list> header 855, 871
list processing 751
list searching performance 790
list sequence container 871
List< STACKTYPE > 768
ListNode class-template definition

751
live-code approach xxvi
load 19
loader 20, 20
local automatic object 401
local scope 218, 388
local variable 71, 216, 217, 219, 17
Local Variable Destructors 657
<locale> header 206
Locals window 8
Locals window (Visual C++ 2005

debugger) 9
location in memory 47
lock member function of class

weak_ptr 955, 956
log function 197
log10 function 197
log2n levels in a binary search tree

with n elements 780
logarithm 197
logarithmic runtime 732
logic error 19, 51, 2
logic_error exception 651
logical AND 982
logical AND (&&) 175, 192
logical decision 5
logical negation 175, 176

logical NOT (!) 175, 176, 192, 982
logical operator keywords 982
logical operators 175
logical OR (||) 175, 176, 192, 803,

982
logical unit 7
logical_and function object 925
logical_not function object 925
logical_or function object 925
Logo language 323
long 10
long data type 172
long double 11
long double data type 204
long int 241
long int data type 172, 204
long long data type 204
long long int data type 204
loop 106, 114, 115, 122
loop-continuation condition 106,

153, 155, 157, 162, 163
loop-continuation test 192
loop counter 153
loop iterations 115
loop nested within a loop 131
loop-continuation condition fails

245
looping statement 106
Lord Byron 15
loss of data 622
Lovelace, Ada 15
lower_bound algorithm 913
lower_bound function of

associative container 879
lowercase letter 7, 810, 812
lowercase letters 44, 62, 206
“lowest type” 204
low-level I/O capabilities 597
lvalue ("left value") 180, 229, 269,

333, 366, 402, 403, 475, 483,
876

lvalues as rvalues 180

M
m-by-n array 297
Mac OS X 13
machine dependent 9, 350
machine language 9, 216

code 162, 764
programming 372

Macintosh 609
macro 205, 3, 5
macro argument 1023
macro definition 1026
macro expansion 1023
macro-identifier 1022
macros 581, 1021
macros defined in header

<cstdarg> 3
magic numbers 275
magnitude 614

Index 1053

magnitude right justified 612
mail order house 191
main 39, 43, 9
make utility 8
“make your point” 212
make_heap algorithm 917
makefile 8
malloc 13
mandatory function prototypes 203
mangled function name 235
Manhattan 193
manipulating a linked list 756
manipulating individual characters

810
manipulator 162
manipulators 660
“manufacturing” section of the

computer 8
many-to-one relationship 25_15
<map> header 206, 855, 881, 883
mapped values 877
margin indicator bar 5
mask 799
“masked off” 800
match_not_eol 943
match_results class 943

suffix member function of
class match_results 943

matching catch block 636
math library 205
math library functions 161, 197,

253
ceil 197
cos 197
exp 197
fabs 197
floor 197
fmod 197
log 197
log10 197
pow 198
sin 198
sqrt 198
tan 198

Math Library Functions exercise
264

mathematical algorithms 900
mathematical algorithms of the

Standard Library 900
mathematical calculation 196
mathematical computations 15
Matsumoto, Yukihiro “Matz” 17
max algorithm 918
max_element algorithm 900, 902
max_size member function of a

string 706
max_size member function of

containers 854
maxheap 916
maximum function 198
maximum length of a string 706
maximum size of a string 704

mean 49
medical imaging 3
member function 11, 65, 66, 2

implementation in a separate
source-code file 86

member function automatically
inlined 385

member function call 11
member function calls for const

objects 415
member function calls often concise

385
member function defined in a class

definition 385
Member function definitions of

class Integer 649
member functions 65
member functions that take no

arguments 385
member initializer 420, 422, 480
member initializer for a const data

member 423
member initializer list 989
member-initializer list 421, 423,

426
member-initializer syntax 420
Member initializer used to initialize

a constant of a built-in data type
420

Member Object Destructors 657
member-object initializer 427
member object’s default constructor

428
member selection operator (.) 388,

431, 544, 649
member-function

parameter 68
member-function argument 68
memberwise assignment 405, 456
memberwise copy 480
memchr 832, 834
memcmp 832, 834
memcpy 832, 832
memmove 832, 833
<memory> header 206
memory 6, 8, 43, 47, 216
memory address 331
memory consumption 566
memory functions of the string-

handling library 832
memory handling

function memchr 835
function memcmp 834
function memcpy 833
function memmove 833
function memset 835

<memory> header 648, 950
memory leak 470, 648, 650, 712,

852
prevent 650

memory location 47, 115
memory not allocated 13

memory unit 8
memory-access violation 852
memset 832, 835
merge algorithm 906, 908
merge in the UML 25_23
merge member function of list

874
merge sort 733, 740
merge sort (a recursive

implementation) 733
merge sort algorithm 733, 739
merge sort efficiency 739
merge sort implementation 734
merge sort recursive implementation

734
merge symbol 114
merge two arrays 733
merge two ordered list objects 784
Merging Ordered Lists 784
message in the UML 25_32, 25_35,

25_36, 25_37
message passing in the UML 25_37
metric conversion program 848
microblogging 27, 28
Microsoft 3

Image Cup 36
SYNC 4
Visual C++ 19

Microsoft Visual C++ 983, 8
Microsoft Windows 168
mileage obtained by automobiles

145
min algorithm 918
min_element algorithm 900, 902
minus function object 925
minus sign (-) indicating private

visibility in the UML 2
minus sign, – (UML) 77
mismatch algorithm 862, 892, 894
mission-critical computing 637
mixed-type expression 204
mobile application 2
mobile check-in 27
model 375
model of a software system 25_13,

25_21, 11
modifiable lvalue 456, 475, 483
modify a constant pointer 342
modify address stored in pointer

variable 342
Modifying Class GradeBook

(Exercise) 99
modularizing a program with

functions 196
modulus function object 925
modulus operator (%) 48, 49, 62,

149, 207, 212
monetary calculations 161
monetary formats 206
Moore’s Law 6
Morse Code 848
Moskovitz, Dustin 28

1054 Index

most derived class 995
motion information 8
Motorola 3
mouse 5
Mozilla Foundation 13
MP3 player 14
multi-core processor 8
multidimensional array 297, 298,

299
multimap associative container 881
multiple 48
multiple 259
multiple inheritance 502, 502, 599,

986, 987, 988, 989, 991
multiple inheritance demonstration

987
multiple parameters to a function 71
multiple-selection statement 105,

164
multiple-source-file program

compilation and linking process
89

multiple-statement body 54
Multiples exercise 259
Multiples of 2 with an Infinite Loop

exercise 150
multiple-source-file programs 7, 8
multiplication 48, 49
Multiplication Via Bit Shifting 841
multiplicative operators (*, /, %)

129
multiplicity 25_13
multiplies function object 925
Multipurpose sorting program using

function pointers 359
multitouch screen 15
Musser, David 851
mutable

data member 977, 977, 978
demonstration 978
keyword 215, 977

mutating-sequence algorithms 862
mutator 76
MySQL 30
mystery recursive exercise 247

N
name decoration 235
name function of class type_info

572
name handle 388

on an object 388
name mangling 235
name mangling to enable type-safe

linkage 235
name of a control variable 153
name of a source file 1027
name of a user-defined class 66
name of a variable 47, 215
name of an array 269, 336
named constant 274

namespace 41
alias 982
global 981
nested 981
qualifier 982
unnamed 981

namespace
unnamed 8

namespace alias 982
namespace keyword 979, 981
namespace member 979
namespace scope 218
namespaces 979
naming conflict 979
natural logarithm 197
navigability arrow in the UML 2
NDEBUG 1027
near container 851, 853
negate function object 925
nested blocks 218
nested building block 185
nested control statement 130, 183
nested control structure 15
nested for statement 277, 300, 304
nested if…else statement 110,

111, 112
nested message in the UML 25_37
nested namespace 981
nested namespace 981
nested parentheses 49
nesting 108, 154, 185
nesting rule 183
NetBeans 19
network connection 597
network message arrival 639
network node 769
new 480, 13
new block of memory 14
new calls the constructor 470
new fails 644
new failure handler 647
<new> header 645
new operator 469
new returning 0 on failure 646
new stream manipulators 610
new throwing bad_alloc on failure

645, 646
newline ('\n') escape sequence 41,

46, 170, 355, 602, 814
newline (’\n’) escape sequence 54
nickname 333
Nirvanix 30
noboolalpha stream manipulator

618
node 749
non-member, friend function 461
non-member function to overload

an operator 483
non-static member function 484
non-const member function 420
non-const member function called

on a const object 419

non-const member function on a
non-const object 419

nonconstant pointer to constant
data 340, 341

nonconstant pointer to nonconstant
data 340

noncontiguous memory layout of a
deque 875

non-dependent name 766
nondestructive read 47
non-deterministic random numbers

210, 939
nonfatal logic error 51
nonfatal runtime error 21
nonlinear data structures 749
nonlinear, two-dimensional data

structure 772
nonmodifiable function code 387
nonmodifying sequence algorithm

862
nonparameterized stream

manipulator 129
nonrecoverable failures 622
non-static member function 431,

441
non-type template parameter 590
nonvirtual destructor 573
nonzero treated as true 179, 187
noshowbase stream manipulator

612, 616
noshowpoint stream manipulator

613
noshowpos stream manipulator

376, 612, 614
noskipws stream manipulator 612
NOT (!; logical NOT) 175
not equal 52
not operator keyword 982
not_eq operator keyword 982
not_equal_to function object 925
note 105
nothrow object 646
nothrow_t type 646
noun phrase in requirements

specification 25_11, 25_17
nouppercase stream manipulator

612, 618
nth_element 919
NULL 332
null character ('\0') 355, 356, 606,

748, 816, 822
null pointer (0) 332, 334, 663, 748,

788, 816, 13
null statement 113
null string 672
null terminated 711
null-terminated string 357, 601,

357
nullptr constant 332
number of arguments 202
number of elements in an array 348
Number Systems Table 191

Index 1055

<numeric> 902
numeric algorithm 924
numeric algorithms 862
<numeric> header 862
numerical data type limits 207

O
O(1) time 726
O(log n) time 732
O(n log n) time 740
O(n) 739
O(n) time 726, 727, 733
O(n2) algorithms 727, 733
O(n2) time 726
object 2, 10
object (or instance) 12, 25_35
object code 20, 90, 390
object diagram in the UML G_1
object handle 388
object leaves scope 398
object module 390
object of a derived class 537, 540
object of a derived class is

instantiated 527
object-oriented analysis and design

(OOAD) 12, 25_2
object-oriented design (OOD)

25_2, 25_8, 25_11, 25_17,
25_21, 25_25, 2, 429

object-oriented language 12
object-oriented programming

(OOP) 2, 5, 12, 381, 500, 17
object serialization 686
object’s vtable pointer 569
objects contain only data 387
oct stream manipulator 607, 612,

616
octal 191
octal (base-8) number system 607,

612, 825
octal number 601, 616, 810, 826
octal number system (base 8) 1008
odd integer 189
odd number 192
Odersky, Martin 17
off-by-one error 120, 155, 270
offset 569
offset from the beginning of a file

666
offset to a pointer 352
ofstream 660, 661, 662, 663, 665,

675, 677, 679, 6
open function 662

ofstream constructor 662
“old-style” headers 205
One Laptop Per Child (OLPC) 4
one’s complement 803, 1015
one’s complement operator (~) 798
one-pass algorithm 858
ones position 1008
one-to-many mapping 853

one-to-many relationship 881,
25_15

one-to-one mapping 853, 883
one-to-one relationship 25_15
OOAD (object-oriented analysis

and design) 12, 25_2
OOD (object-oriented design)

25_2, 25_8, 25_11, 25_17,
25_21, 25_25

OOP (object-oriented
programming) 12, 17, 500

open a file for input 662
open a file for output 662
open a nonexistent file 662
open function of ofstream 662
Open Handset Alliance 14
open source 13, 14
opened 659
operand 41, 46, 48, 109, 373
operating system 13, 14, 663
operation (UML) 68
operation code 373
operation compartment in a class

diagram 25_27
operation in the UML 68, 25_12,

25_26, 25_30, 4, 7, 12
operation parameter in the UML 71,

25_27, 25_30
operator

associativity 178
overloading 46, 236, 452, 596,

798
precedence 48, 137, 178, 806
precedence and associativity

chart 55
operator keywords 456, 982, 983
operator keywords demonstration

983
operator overloading

decrement operators 463
in templates 594
increment operators 463

operator void* 665
operator void* member function

622
operator void* member function

of ios 663
operator! member function 462,

622, 662
operator!= 482
operator() 492
operator() overloaded operator

924
operator[]

const version 482
non-const version 482

operator+ 456
operator++ 463, 469
operator++(int) 463
operator<< 461, 479
operator= 481, 854
operator== 482, 894

operator>> 460, 479
operators

! (logical NOT operator) 175,
176

!= (inequality operator) 51, 52
.* and ->* 984
() (parentheses operator) 49
* (multiplication operator) 48
* (pointer dereference or

indirection) 333, 334
*= multiplication assignment

135
/ (division operator) 48
/= division assignment 135
&& (logical AND operator) 175
% (modulus operator) 48
%= modulus assignment 135
+ (addition operator) 46, 48
+= 700
+= addition assignment 135
< (less-than operator) 52
<< (stream insertion operator)

40, 46
<= (less-than-or-equal-to

operator) 52
= (assignment operator) 46, 48,

177
-= subtraction assignment 135
== (equality operator) 52, 177
> (greater-than operator) 52
>= (greater-than-or-equal-to

operator) 52
>> (stream extraction operator)

47
|| (logical OR operator) 175,

176
addition assignment (+=) 134
address (&) 334
arithmetic 135
arrow member selection (->)

388
assignment 134
binary scope resolution (::) 86
conditional (?:) 109
const_cast 975
decrement (--) 135, 136
delete 469, 749
dot (.) 67
increment (++) 135
member selection (.) 388
multiplicative (*, /, %) 129
new 469
parentheses (()) 129
postfix decrement 135
postfix increment 135, 137
prefix decrement 135
prefix increment 135, 137
sizeof 347, 348, 387, 749
static_cast 128
ternary 109
typeid 572
unary minus (-) 129

1056 Index

operators (cont.)
unary plus (+) 129
unary scope resolution (::) 232

optimization 10
optimizations on constants 415
optimizing compiler 162, 217
OR (||; logical OR) 175
or operator keyword 982
or_eq operator keyword 983
order 1 726
order in which actions should

execute 102, 115
order in which constructors and

destructors are called 401
order in which destructors are called

399
order in which operators are applied

to their operands 244
order log n 732
order n 726
order n-squared 726
order of evaluation 244
order of evaluation of operators 61
Order of Exception Handlers 657
orientation information 8
original format settings 620
ostream 665, 671, 679, 686
ostream class 598

seekp function 665
tellp function 666

ostream_iterator 857
ostringstream class 714, 714, 715
other character sets 697
out-of-range array subscript 639
out-of-range element 475
out of scope 221
out_of_bounds exception 870
out_of_range class 483
out_of_range exception 651, 700,

870, 921
<stdexcept> include to

prevent errors in GNU C++
313

out_of_range exception class 313
outCredit 677
outer block 218
outer for structure 300
output a floating-point value 612
output buffering 622
output data items of built-in type

600
output device 8
output format of floating-point

numbers 617
output iterator 858, 860, 892, 899,

910, 912, 913, 920
output of char * variables 601
output of characters 601
output of floating-point values 601
output of integers 601
output of standard data types 601
output of uppercase letters 601

output sequence 857
output stream 869
output to string in memory 206
output unit 8
outputting to strings in memory

714
overflow 639, 11
overflow_error exception 651
overhead of a function call 1023
overhead of an extra function call

482
overhead of virtual function 890
overload an operator as a

nonmember, non-friend
function 458

overload the addition operator (+)
456

overload unary operator ! 462
overloaded [] operator 475
overloaded << operator 462
overloaded addition assignment

operator (+=) 464
overloaded assignment (=) operator

475, 481
overloaded binary operators 457
overloaded cast operator function

484
overloaded equality operator (==)

475, 482
overloaded function 235, 580, 583
overloaded function call operator ()

487
overloaded function definitions 234
overloaded increment operator 464
overloaded inequality operator 474,

482
overloaded operator

() 924
overloaded operator += 468
overloaded operator[] member

function 482
overloaded postfix increment

operator 464, 468
overloaded prefix increment

operator 464, 468
overloaded stream insertion and

stream extraction operators 459
overloaded stream insertion

operator 989
overloaded subscript operator 475,

482
overloading 46, 234

a member function 388
overloading + 457
overloading << and >> 236
overloading binary operator < 457
overloading binary operators 457
overloading function call operator

() 487, 492
overloading operators 236
overloading postfix increment

operator 463, 469

overloading prefix and postfix
decrement operators 463

overloading prefix and postfix
increment operators 463

overloading resolution 583
overloading stream insertion and

stream extraction operators 458,
464, 468, 474, 475, 479

overloading template functions 583
overloading the stream insertion

operator 686
override a function 543

P
PaaS (Platform as a Service) 30, 30
package G_1
package diagram in the UML G_1
Package Inheritance Hierarchy 577
Package inheritance hierarchy 532
Package inheritance hierarchy

exercise 532
packet 769
Packing Characters into Unsigned

Integers 841
pad with specified characters 601
padding 809
padding characters 609, 612, 613,

615
padding in a structure 809
Page, Larry 27
pair 879, 894, 940
pair of braces {} 54, 93
pair of iterators 861
palidrome exercise 328
palindrome 785

counting 721
exercise 149
testing with stacks 785

palindrome function 934
parameter 68, 70, 216
parameter in the UML 71, 25_27,

25_30
parameter list 70, 79
parameterized stream manipulator

129, 162, 598, 607, 610, 665
parameterized type 584, 594
parent node 773, 788
parentheses operator (()) 49, 129
parentheses to force order of

evaluation 55
Parking Charges exercise 257
partial_sort algorithm 920
partial_sort_copy algorithm 920
partial_sum algorithm 863
partition algorithm 862
partition step in quicksort 744, 745
partitioning element 919
partitioning element in quicksort

744
partitioning step 371
Pascal case 66

Index 1057

Pascal programming language 15
pass-by-reference 227, 283, 331,

336, 337, 339, 343
with a pointer parameter used to

cube a variable’s value 337
with pointer parameters 335
with reference parameters 228,

335
pass-by-reference with pointers 229
pass-by-value 227, 228, 283, 335,

336, 337, 338, 346
used to cube a variable’s value

336
pass size of an array 346
pass size of an array as an argument

283
Pass-by-Value vs. Pass-by-Reference

exercise 264
passing a filename to a program 5
passing an array element 284
passing an entire array 284
passing an object by value 407
passing arguments by value and by

reference 228
passing arrays and individual array

elements to functions 284
passing arrays to functions 283
passing large objects 229
passing options to a program 358, 5
“past the end” iterator 902
pattern of 1s and 0s 7
Payroll System Modification 577

exercise 577, 578
peek function of istream 605
percent sign (%) (modulus operator)

48
perfect number 260
Perfect Numbers exercise 260
perform a task 67
perform an action 40
performance 18
Performance of Binary Tree Sorting

and Searching 790
Performance Tips overview xxviii
Perl (Practical Extraction and

Report Language) 16
permutation 919
persistent 9
Peter Minuit problem 162, 193
phases of a program 121
Phishing Scanner 695
photo sharing 27
PHP 16, 30
PI 1022, 1023
Pi (π) 61, 191
pieceworker 191
Pig Latin 845, 972
pipe (|) 2
piping 2
Platform as a Service (PaaS) 30, 30
Plauger, P.J. 18
plus function object 925

plus sign 614
plus sign (+) indicating public

visibility in the UML 2
plus sign, + (UML) 68
Point Class 631
pointer 331, 349
pointer 855
pointer arithmetic 349, 351, 353,

866
machine dependent 350

pointer assignment 351
pointer-based strings 354
pointer comparison 352
pointer dereference (*) operator

333, 334
pointer expression 349, 352
pointer handle 388
pointer link 749
pointer manipulation 566, 747
pointer notation 353
pointer operators & and * 334
pointer to a function 358, 361, 9
pointer to an object 341
pointer to void (void *) 351, 351
pointer variable 648
pointer/offset notation 352
pointer/subscript notation 353
pointers and array subscripting 352,

353
pointers and arrays 352
pointers declared const 342
pointers to dynamically allocated

storage 433, 482
pointer-to-member operators

.* 984
->* 984

point-of-sale system 670
poker playing program 450
poll analysis program 279
Polling exercise 328
Polymorphic Banking Program

Exercise Using Account
hierarchy 577

Polymorphic Banking Program
Using Account hierarchy 577

polymorphic exception processing
645

polymorphic programming 549,
551, 569

polymorphic screen manager 536
Polymorphic Screen Manager Using

Shape Hierarchy (Project) 577
polymorphically invoking functions

in a derived class 992
polymorphism 172, 529, 535, 890
polymorphism and references 566
polymorphism as an alternative to

switch logic 576
polynomial 51
Polynomial class 498
pop 588, 589

pop function of container adapters
885

pop member function of
priority_queue 889

pop member function of queue 887
pop member function of stack 885
pop off a stack 221
pop_backmember function of list

874
pop_front 871, 876, 887
pop_heap algorithm 918
Portability Tips overview xxviii
portable 17
position number 269
positional notation 1008
positional value 149, 1008, 1009
positional values in the decimal

number system 1009
postdecrement 136, 137
postfix decrement operator 135
Postfix Evaluation 786
Postfix Evaluation Enhanced 787
postfix expression 786
postfix expression evaluation

algorithm 785
postfix increment operator 135, 137
postfix notation 785
postincrement 136, 468
postincrement an iterator 860
postorder traversal 773, 787, 789
postOrderTraversal 780
pow function 50, 160, 162, 198
power 198
power 141
Practical Extraction and Report

Language (Perl) 16
precedence 48, 49, 50, 55, 137, 156,

176, 244
precedence chart 55
precedence not changed by

overloading 457
precedence of the conditional

operator 109
precision 129, 601, 606

format of a floating-point
number 130

precision function of ios_base
607

precision of a floating-point value
124

precision of floating-point numbers
607

precision setting 607
precompiled object file 443
predecrement 135, 137
predefined function objects 924
predefined symbolic constants

1026, 1027
predicate function 390, 752, 874,

894, 897, 899, 902, 904, 905,
908, 911, 912, 918

prefix decrement operator 135, 136

1058 Index

prefix increment operator 135, 137
preincrement 135, 468
preorder traversal 773
prepackaged data structures 747
“prepackaged” functions 196
preprocessor 18, 19, 203, 1021
preprocessor directives 19, 39, 43

#ifndef 382
#define 382
#endif 382

preprocessor wrapper 382
prev_permutation 919
prevent class objects from being

copied 482
prevent memory leak 650
prevent one class object from being

assigned to another 482
preventing headers from being

included more than once 382
primary memory 8, 20
prime 260
prime factorization 934
prime number 922
Prime Numbers exercise 260
primitive data type promotion 129
principal 160, 193
principle of least privilege 216, 286,

337, 339, 346, 390, 415, 664,
860, 7, 8

print a line of text 38
print a linked list backwards 751
print a list backwards 787
print a string backward recursively

exercise 328
print an array recursively exercise

328
Print Array Range 593
print debugger command 6
print spooling 769
printArray function template 581
printer 21, 597
printing

binary tree in a two-dimensional
tree format 780

dates 847
Decimmal Equivalent of a

Binary Number exercise 149
line of text with multiple

statements 42
multiple lines of text with a

single statement 42
Sentence in Reverse Order with

a Stack 785
string Backward 720
tree 789
unsigned integer in bits 798

priority_queue adapter class 888
empty function 889
pop function 889
push function 889
size function 889
top function 889

private
access specifier 73, 2
base class 528
base-class data cannot be

accessed from derived class
515

inheritance 502, 764
inheritance as an alternative to

composition 528
members of a base class 502
static data member 438

private libraries 20
probability 207
procedure 102
processing phase 121
processing unit 5
product of odd integers 190
program 5
program control 103
program development environment

18
program development tool 107, 123
program execution stack 221
program in the general 535, 576
program in the specific 535
program termination 401, 9
programmer 5
programmer-defined function 196

maximum 198
programmer-defined termination

function 642
projects 8
promotion 129
promotion hierarchy for built-in

data types 204, 205
promotion rules 204
prompt 45, 45, 127, 2
prompting message 622
proprietary classes 529
protected 503
protected access specifier 381
protected base class 528
protected base-class data can be

accessed from derived class 520
protected inheritance 502, 528
Protected vs. Private Base Classes

532
proxy class 390, 442, 444
pseudocode 103, 103, 107, 109,

115, 130
first refinement 121
second refinement 121
top 121
top-down, stepwise refinement

123
two levels of refinement 123

pseudo-random number generator
939

pseudorandom numbers 210
public

keyword 2, 7
method 384

public access specifier 66
public base class 528
public inheritance 500, 502
public keyword 66
public member of a derived class

503
public services of a class 85
public static class member 437
public static member function

438
punctuation mark 820
pure specifier 550
pure virtual function 550, 566
purpose of the program 39
push 588, 589, 764
push function of container adapters

885
push member function of

priority_queue 889
push member function of queue

887
push member function of stack

885
push onto a stack 221
push_back member function of

vector 866
push_front member function of

deque 875
push_front member function of

list 874
push_heap 918
put file-position pointer 671, 675
put member function 601, 602
put pointer 665
putback function of istream 605
Pythagorean triples 191
Python 16

Q
quad-core processor 8
quadratic runtime 726
Quadrilateral Inheritance Hierarchy

532
qualified name 526
Quality Points for Numeric Grades

260
qualityPoints 260
quantifier (regular expressions) 943
<queue> header 206
queue 747, 748, 749, 763, 768
queue adapter class 887, 888

back function 887
empty function 887
front function 887
pop function 887
push function 887
size function 887

Queue class-template definition 769
queue grows infinitely 787
<queue> header 855, 888, 889
queue in a computer network 769

Index 1059

queue object 787
Queue-processing program 770
Quick Info box 6
quicksort algorithm 370, 740, 744
quit debugger command 8
quotation marks 40

R
radians 197
radius of a circle 150
raise 11
raise to a power 187, 198
rand function 207, 321, 939
RAND_MAX symbolic constant 207
<random> header 940
random integers in range 1 to 6 207
random intervals 787
random number 210
random number distribution 939
random number generator 939
random_shuffle algorithm 862,

900, 902
random-access file 659, 670, 671,

677, 678, 679
random-access iterator 858, 859,

864, 867, 875, 877, 894, 902,
905, 910, 917, 918, 919, 920

random-access iterator operations
861

randomizing 210
randomizing the die-rolling

program 210
Randomly Creating Sentences 844
range 857, 902
range checking 471, 700, 863
range-based for statement 965
Rational Class exercise 411
Rational Software Corporation

25_9
Rational Unified Process™ 25_9
RationalNumber class 498
raw array 471
raw data 669
raw data processing 659
rbegin member function of class

string 714
rbegin member function of

containers 854
rbeginmember function of vector

867
rdstate function of ios_base 622
read 671, 678
read a line of text 70
read characters with getline 70
read data sequentially from a file 664
read function of istream 605
read member function 606
read member function of istream

671, 685
read-only variable 274
readability 131

Reading a random-access file
sequentially 678

Reading and printing a sequential
file 664

real number 123
realloc 13
“receiving” section of the computer

8
record 7, 660, 679, 693
record format 672
record key 693
recover from errors 622
Rectangle Class exercise 412
recursion 239, 245, 246, 261
recursion examples and exercises

247
recursion exercises

binary search 744
linear search 744

recursion step 239, 243, 744
recursive binary search 247, 740,

744
recursive binary tree delete 248
recursive binary tree insert 247
recursive binary tree printing 248
recursive binary tree search 248
recursive call 239, 243
recursive Eight Queens 247
recursive Eight Queens exercise 328
Recursive Exponentiation exercise

261
recursive factorial function 247
recursive Fibonacci function 247
recursive function 239, 751
recursive function call 764
Recursive Greatest Common

Divisor 262
recursive greatest common divisor

247
recursive implementation of merge

sort 734
recursive inorder traversal of a

binary tree 247
recursive linear search 247, 293,

740, 744
recursive linear search exercise 328
Recursive main exercise 263
recursive maze traversal 247
recursive mergesort 247
recursive postorder traversal of a

binary tree 248
recursive preorder traversal of a

binary tree 247
recursive quicksort 247
recursive selection sort 247
recursive selection sort exercise 328
recursive solution 246
recursive step 371
recursive Towers of Hanoi 247
recursive utility function 778
recursively calculate minimum value

in an array 247

recursively check if a string is a
palindrome 247

recursively determine whether a
string is a palindrome exercise
328

recursively find the minimum value
in an array exercise 328

recursively print a linked list
backward 248

recursively print a list backwards
787

recursively print a string backward
247

recursively print a string backward
exercise 328

recursively print an array 247
recursively print an array exercise

328
recursively raising an integer to an

integer power 247
recursively search a linked list 248
recursively search a list 787
red breakpoint circle, solid 5
redirect input symbol 2
redirect input/output on UNIX,

LINUX, Mac OS X and
Windows systems 2

redirect inputs to come from a file 2
redirect output of one program to

input of another program 2
redirect output symbol > 3
redirect outputs to a file 2
redirecting input on a DOS system 2
redundant parentheses 50, 175
refactoring 29, 29

tool 29
reference 331, 596, 855
reference argument 335
reference count 950
reference counting 950
reference parameter 227, 228
reference to a constant 229
reference to a private data member

402
reference to an automatic variable

230
reference to an int 227
referencing array elements 353
referencing array elements with the

array name and with pointers 353
refinement process 121
<regex> header 940, 941
<tuple> header 940
regex library 941

basic_regex class 941
regex_constants::match_no

t_eol 943
regex_token_iterator 949

regex typedef 942
regex_constants

match_not_eol 943

1060 Index

regex_constants::format_firs
t_only 949

regex_match algorithm 941, 946
regex_replace algorithm 949,

967
regex_search algorithm 941, 943,

946
regex_token_iterator 947, 949,

967
register a function for atexit 9
register declaration 216
register storage-class specifier 215
regular expression xxii, 32, 940

^ beginning of a string 946
? quantifier (0 or 1) 944
{n,} quantifier (at least n) 944
{n,m} quantifier (between n and

m) 944
{n} quantifier (exactly n) 944
* quantifier (0 or more) 944
\d character class (any decimal

digit) 941, 947
\D character class (any non-

digit) 941
\S character class (any non-

whitespace character) 941
\s character class (any

whitespace character) 941,
947

\W character class (any non-word
character) 941

\w character class (any word
character) 941

+ quantifier (1 or more) 944
$ end of a string 946
character class 941
digit 941
quantifier 943
validating user input 944
whitespace character 941
word character 941

regular expressions
back reference 973

regular expressions checking
birthdays 942

reinterpret_cast operator 351,
671, 675, 678

reinventing the wheel 11, 18
relational operator 51, 52
relational operators >, <, >=, and <=

155, 174
release candidate 31
release dynamically allocated

memory 481
reliable software 14
remainder after integer division 48
remove algorithm 862, 896
remove member function of list

875
remove_copy algorithm 862, 895,

897

remove_copy_if algorithm 862,
895, 897

remove_if algorithm 862, 895,
897

Removing Extra Spaces 973
Removing the continue Statement

193
rend member function of class

string 714
rendmember function of containers

854
rend member function of vector

867
repetition 184

counter controlled 115, 127
definite 115
indefinite 121
sentinel controlled 121, 123

repetition statement 104, 107, 113,
122
do…while 162, 163, 164, 184
for 155, 155, 156, 184
while 113, 127, 154, 162, 184,

185
repetition terminates 113
replace 897
replace == operator with = 179
replace algorithm 862, 899
replace member function of class

string 708, 710
replace_copy algorithm 862, 897,

899
replace_copy_if algorithm 862,

897, 899
replace_if algorithm 862, 897,

899
replacement node 788
replacement text 1023, 1026

for a macro or symbolic constant
1022, 1024

Replacing Punctuation and
Tokenizing strings 721

requirements 12, 25_2, 25_7
requirements document 25_7, 25_8
requirements gathering 25_7
requirements specification 25_3
reset 921
reset member function of class

shared_ptr 954
reset of bitset 924
resize member function of class

string 706
resource leak 642, 645
restore a stream’s state to “good”

622
resumption model of exception

handling 637
rethrow an exception 640
Rethrowing Exceptions 657
return a result 202
return a value 40
Return key 45

return keyword 196
return message in the UML 25_37
return statement 41, 74, 196, 202,

239
return type 67

void 67, 75
return type in a function header 203
return type in the UML 25_27,

25_32
returning a reference from a

function 230
returning a reference to a private

data member 403
Returning Error Indicators from

Class Time’s set Functions
exercise 412

reusability 347, 583, 584, 587
reusable software component 10
reuse 11, 81, 387
reverse algorithm 862, 906, 909
Reverse Digits exercise 260
reverse order of bits in unsigned

integer 841
reverse_copy algorithm 862, 909,

910
reverse_iterator 714, 854, 856,

860, 867
Reversing a string with Iterators

721
using Recursion 721

Reversing Bits 841
rfind member function of class

string 708
Richer Shape Hierarchy 532
right angle brackets 963
right brace (}) 40, 41, 127
right child 772
right justification 162, 612, 613
right operand 41
right shift (>>) 797
right shift operator (>>) 452
right shift with sign extension

assignment operator (>>=) 805
right stream manipulator 162,

612, 613
right subtree 772, 778, 779, 788
right-to-left associativity 137
right triangle 150, 191
right value 180
rightmost (trailing) arguments 231
rightmost node of a subtree 788
right-shift operator (>>) 599, 798,

805, 841
right-shifting a signed value is

machine dependent 805
right-to-left associativity 55
rise-and-shine algorithm 102
Ritchie, D. 17
Ritchie, Dennis 16
robot 4
robust application 633, 637
role in the UML 25_14

Index 1061

role name in the UML 25_14
rolling a die 208
rolling a six-sided die 6000 times

208
rolling two dice 212, 321
root node 772, 778
root node of the left subtree 772
root node of the right subtree 772
rotate algorithm 862, 919
rotate_copy algorithm 862, 920
round a floating-point number for

display purposes 130
rounded rectangle (for representing

a state in a UML state diagram)
25_22

Rounding 630
rounding 130
rounding numbers 197
Rounding Numbers exercise 258
row subscript 297
rows 297
RTTI (runtime type information)

570, 574
Ruby on Rails 17
Ruby programming language 17
rules for forming structured

programs 180
rules of operator precedence 48
Rumbaugh, James 25_3
run debugger command 4
running total 121
runtime error 21
runtime type information (RTTI)

570, 574
runtime_error class 634, 644, 651

what function 639
rvalue ("right value") 180, 229, 475,

483
rvalue reference 962

S
SaaS (Software as a Service) 30
SalariedEmployee class header

556
SalariedEmployee class

implementation file 557
Salary Calculator exercise 146
Sales Commission Calculator

exercise 146
Sales summary exercise 323
Salesforce 27
SalesPerson class definition 390
SalesPerson class member-

function definitions 391
Salesperson Salary Ranges exercise

319, 328
Saverin, Eduardo 28
savings account 160
SavingsAccount Class 448
SavingsAccount class 448
Scala 17

scalable 275
scale 275
scaling 207
scaling factor 207, 212
scanning images 8
scientific notation 129, 601, 617
scientific notation floating-point

value 618
scientific stream manipulator

612, 617
scope 156, 979, 7
scope of a symbolic constant or

macro 1024
scope of an identifier 215, 217
scope resolution operator (::) 86,

437, 586, 979, 982, 986, 991
scopes

class 218
file 218
function 218
function prototype 218
local 218
namespace 218

scoping example 219
screen 5, 8, 21, 39
Screen class (ATM case study)

25_12, 25_14, 25_26, 25_33,
25_34, 25_35, 25_36, 25_37,
25_38, 4

screen-manager program 536
scrutinize data 382
SDK (Software Development Kit)

30
search a linked list 751, 790
search algorithm 862, 920
search algorithms 725

binary search 727
linear search 293, 328, 726
recursive binary search 744
recursive linear search 744

search functions of the string-
handling library 827

search key 293, 725, 727, 877
search_n algorithm 862, 920
searching 747, 903
searching algorithms 903
searching arrays 293
searching blocks of memory 831
searching data 725
Searching for Characters 843
Searching for Substrings 843
searching performance 790
searching strings 815, 822
second data member of pair 879
second-degree polynomial 51
Second Life 27
second refinement 121, 132
secondary storage 6
secondary storage device 659
secondary storage devices

CD 659
DVD 659

secondary storage devices (cont.)
flash drive 659
hard disk 659
tape 659

secondary storage unit 8
second-degree polynomial 50
“secret” implementation details 977
security 407
seed 211
seed function rand 210
seek direction 665
seek get 665
seek put 665
seekg function of istream 665,

685
seekp function of ostream 665,

675
segmentation violation 11
select a substring 487
selection 183, 184
selection sort 328, 732, 733, 739,

740
exercise 328

selection sort algorithm 343
selection sort efficiency 733
Selection Sort Function Template

593
selection sort with call-by-reference

344
selection statement 104, 106
self assignment 481
self-assignment 433
self-documenting 44
self-referential class 748, 749
Selvadurai, Naveen 29
semicolon (;) 40, 54, 113, 1021
semicolon that terminates a

structure definition 793
send a message to an object 11
sentinel-controlled repetition 123,

122, 127
sentinel value 121, 122, 127, 168
separate interface from

implementation 84
Separating Digits exercise 259
sequence 182, 184, 857, 905, 906,

908, 919
sequence container 853, 859, 863,

870, 874
back function 863, 870
empty function 871
front function 863, 870
insert function 870

sequence diagram in the UML
25_10, 25_35

sequence of integers 189
sequence of messages in the UML

25_36
sequence of random numbers 210
sequence statement 104, 104, 106
sequence-statement activity diagram

104

1062 Index

sequential execution 104
sequential file 659, 660, 661, 664,

669, 670
serialized object 686
services of a class 75
<set> header 206
set a value 75
set and get functions 75
set associative container 880
set debugger command 8
set function 428
<set> header 855, 877, 880
set_intersection 913
set_new_handler function 645,

646
set of recursive calls to method

Fibonacci 244
set operations of the Standard

Library 911
set_terminate function 642
set_unexpected function 642,

651
set_difference algorithm 910,

912
set_intersection algorithm 910,

912
set_new_handler specifying the

function to call when new fails
647

set_symmetric_difference
algorithm 910, 913

set_union algorithm 910, 913
setbase stream manipulator 607,

607
setfill stream manipulator 377,

384, 613, 615
setprecision stream manipulator

129, 161, 607
setw 271, 460
setw parameterized stream

manipulator 162
setw stream manipulator 356, 609,

613
Shakespeare, William 846
Shape class hierarchy 502, 532
Shape hierarchy 577
Shape hierarchy exercise 577
shape of a tree 790
shared_ptr class 940, 950, 950,

953, 954, 956, 959
custom deleter function 950
reset member function of class

shared_ptr 954
use_count member function of

class shared_ptr 953
shared_ptr example program 952
shared_ptrs cause a memory leak

in circularly referential data 958
sheer brute force 191
shell prompt on Linux 22
shift a range of numbers 207
shifted, scaled integers 208

shifted, scaled integers produced by
1 + rand() % 6 207

Shifting and Printing an Integer 841
shiftingValue 212
“shipping” section of the computer

8
short-circuit evaluation 176
short data type 172
short int data type 172
showbase stream manipulator 612,

616
showpoint stream manipulator

130, 612
showpos stream manipulator 376,

612, 614
shuffle cards 841
shuffling algorithm 795
sibling 772
side effect 227
side effect of an expression 217, 227,

244
side effects 581
sides of a right triangle 150
Sides of a Right Triangle exercise

150
sides of a square 191
sides of a triangle 150
Sides of a Triangle exercise 150
Sieve of Eratosthenes 922, 934
Sieve of Eratosthenes exercise 327
SIGABRT 11
SIGFPE 11
SIGILL 11
SIGINT 11
sign extension 798
sign left justified 612
signal 11
signal 11
signal handler 11
signal handling 12
signal-handling library 11
signal number 11
signal value 121
signals defined in header <csignal>

11
signature 203, 235, 463
signatures of overloaded prefix and

postfix increment operators 463
significant digits 613
SIGSEGV 11
SIGTERM 11
simple condition 174, 176
Simple Decryption 721
simplest activity diagram 180, 182
Simpletron Machine Language

(SML) 377, 747
Simpletron Simulator 377, 748
simulation 375
Simulation: Tortoise and the Hare

exercise 368
sin function 198
sine 198

single-argument constructor 484,
485, 486

single entry point 180
single-entry/single-exit control

statement 107, 108, 180
single exit point 180
single inheritance 502, 991
single-line comment 39
single-precision floating-point

number 128
single quote 41
single quote (') 355
single selection 184
single-selection if statement 105,

111
singly linked list 763
six-sided die 207
size function of string 675
size member function of class

string 698
sizemember function of containers

854
size member function of

priority_queue 889
size member function of queue

887
size member function of stack

885
size member function of vector

283, 311
size of a string 704
size of a variable 47, 215
size of an array 347
size_t 671
size_t type 347
size_type 856
sizeof 431, 677, 827, 1024
sizeof operator 347, 348, 387,

695, 749
used to determine standard data

type sizes 348
sizeof operator when applied to an

array name returns the number of
bytes in the array 347

sizes of the built-in data types 695
skip remainder of switch statement

173
skip remaining code in loop 174
skipping whitespace 606
skipping white-space characters 612
skipws stream manipulator 612
Skype 27
small circle symbol 105
smallest 253
smallest of several integers 190
“smart array” 281
smart pointer xxii, 32, 950
smart pointers

shared_ptr 950
unique_ptr 950

smartphone 2, 14
smatch typedef 943

Index 1063

SML 372
SML operation code 373
SMS Language 723
social commerce 27, 28
social networking 27
software 2, 5
Software as a Service (SaaS) 30
Software Development Kit (SDK)

30
software engineering 84

data hiding 74, 76
encapsulation 76
reuse 81, 84
separate interface from

implementation 84
set and get functions 75

Software Engineering Observations
overview xxviii

software life cycle 25_7
software reuse 11, 18, 196, 500,

581, 583, 584, 587, 986
solid circle (for representing an

initial state in a UML diagram) in
the UML 25_22, 25_23

solid circle enclosed in an open circle
(for representing the end of a
UML activity diagram) 25_23

solid circle symbol 105
solid diamonds (representing

composition) in the UML 25_14
Solution Configurations combobox

5
sort algorithm 903, 905
sort algorithms

bubble sort 320, 743
bucket sort 327, 743
insertion sort 295, 733
merge sort 733
quicksort 744
selection sort 328, 343, 733

sort function 580
sort key 725
sort member function of list 874
sort standard library function 728,

728
sort_heap algorithm 918
sorting 660, 747, 903
sorting algorithms 732, 903
sorting arrays 294
sorting data 725, 732
sorting order 905, 908
Sorting strings 722
sorting strings 206
source code 19, 390, 529
source-code file 81
source file 8
SourceForge 13
space (' ') 44
space cannot be allocated 14
spaces for padding 615
space-time trade-off 679
Spam Scanner 723

speaking to a computer 8
special character 355
special characters 44
Special Section: Building Your Own

Computer 372
special symbol 7
specialization in the UML 10
spelling checker 849
spiral 242
splice member function of list

874
split the array in merge sort 733
spooler 769
sqrt function of <cmath> header

198
square 149
square function 205
Square of Any Character exercise

259
Square of Asterisks exercise 149, 259
square root 198, 608
srand function 210, 939
srand(time(0)) 211
<sstream> header 206, 714, 714
stable_partition algorithm 862
stable_sort algorithm 920
Stack 584
<stack> header 206
stack 221, 584, 587, 747, 748, 749,

763, 766
stack adapter class 885

empty function 885
pop function 885
push function 885
size function 885
top function 885

stack class 580
Stack class template 584, 590, 764,

767, 790
definition 765
definition with a composed

List object 768
stack frame 221
<stack> header 855, 885
stack overflow 222
Stack test program 766
stack unwinding 638, 643, 644, 657
Stack< double > 587, 589, 766
stack<int> 589
Stack<T> 586, 589
stacked building blocks 184
stacking 108, 185
stacking rule 182
stack-of-float class 580
stack-of-int class 580
stack-of-string class 580
stacks used by compilers 785
standard algorithm 861
standard data type sizes 348
standard error stream (cerr) 21
standard exception classes 651
standard input 2

standard input object (cin) 45
standard input stream (cin) 21, 598
standard input stream object (cin)

659
Standard Library 196

class string 453
container classes 853
container headers 855
deque class template 876
exception classes 651
exception hierarchy 650
function sort 728
headers 207, 1021
list class template 872
map class template 883
multimap class template 882
multiset class template 877
priority_queue adapter class

889
queue adapter class templates

888
set class template 880
stack adapter class 886
vector class template 865

standard output 2
standard output object (cout) 40,

598
standard output stream (cout) 21
standard output stream object

(cout) 659
standard signals 11
standard stream libraries 598
Standard Template Library (STL)

851
standard template library (STL)

566, 580
“warehouse” section of the

computer 8
state 25_9
state bits 602
state diagram for the ATM object

25_22
state diagram in the UML 25_22
state in the UML 25_9, 25_23
state machine diagram in the UML

25_9, 25_22
state of an object 25_17, 25_21,

25_22
statement 40, 67
statement spread over several lines

54
statement terminator (;) 40
statements

break 170, 173, 192
continue 173, 192, 193
do…while 162, 163, 164, 184
for 155, 155, 156, 184
if 51, 54, 184, 185
if…else 184
return 41, 196
switch 164, 171, 184
throw 384

1064 Index

statements (cont.)
try 312
while 154, 162, 184, 185

static 8, 16, 18
static array initialization 281
static array initialization and

automatic array initialization 281
static binding 544
static_cast<int> 168
static data member 290, 437, 438
static data member tracking the

number of objects of a class 440
static data members save storage

437
static keyword 217
static linkage specifier 981
static local object 399, 400, 401
static local variable 219, 221, 281,

892
static member 437
static member function 438
static storage class 215, 217
static storage-class specifier 215
static_assert declaration 963
static_cast 138, 178
static_cast (compile-time type-

checked cast) 270
static_cast operator 128
status bits 622
std namespace 697
std::cin 43, 45
std::cout 40
std::endl stream manipulator 46
std::tr1 namespace 941
std::tr1::regex library 941
__STDC__ predefined symbolic

constant 1027
<stdexcept> header 206, 634, 651

must include in GNU C++ to
use invalid_argument 384

must include in GNU C++ to
use out_of_range 313

step debugger command 11
Step Into command (debugger) 11
Step Out command (debugger) 11
Step Over command (debugger) 11
Stepanov, Alexander 851
“sticky” setting 384
sticky setting 162, 177
STL 851
STL (Standard Template Library)

851
STL algorithms

accumulate 924
binary_search 924

STL container functions 855
STL exception types 870
Stone, Isaac “Biz” 28
storage alignment 793
storage class 215, 217, 7
storage unit 810

storage-class specifiers 215
auto 215
extern 215
mutable 215
register 215
static 215

storage-unit boundary 809
str member function 714
str member function of class

ostringstream 714
straight-line form 48, 50
straight-time 146
strcat 8
strcat function of header

<cstring> 816, 818
strchr 827
strcmp 8
strcmp function of header

<cstring> 816, 819
strcpy function of header

<cstring> 815, 816
strcspn 827, 829
stream base 607
stream classes 660
stream extraction operator 599
stream extraction operator >> ("get

from") 43, 45, 54, 236, 452, 458,
479, 599, 602, 686

stream I/O class hierarchy 660
stream input 599, 602
stream input/output 39
stream insertion operator << ("put

to") 41, 42, 46, 236, 452, 458,
479, 599, 601, 663, 989

stream manipulator 46, 162, 606,
610, 614, 665

stream manipulators 129
boolalpha 177, 618
dec 607
fixed 129, 617
hex 607
internal 614
left 162, 613
noboolalpha 618
noshowbase 616
noshowpoint 613
noshowpos 376, 612, 614
nouppercase 612, 618
oct 607
right 162, 613
scientific 617
setbase 607
setfill 377, 384, 615
setprecision 129, 161, 607
setw 162, 356, 609
showbase 616
showpoint 130, 612
showpos 614
std::endl (end line) 46

stream of bytes 597
stream of characters 40
stream operation failed 622

stream output 599
<string> header 206
string 853

size function 675
string array 357
string assignment 698
string being tokenized 821
string class 69, 452, 455, 698

at member function 456
length member function 91
substr member function 92,

455
string class copy constructor 697
string class from the Standard

Library 206
string comparison 700
string concatenation 698, 720
string constant 355
string-conversion function 822

atof 823
atoi 824
atol 824
strtod 825
strtol 826
strtoul 826

string find member function 707
<string> header 70, 697, 83
string insert member function

710
string Iterators 720
string length 822
string literal 40, 355
string manipulation 196
string object

empty string 75
initial value 75

string of characters 40
string-search function

strchr 828
strcspn 829
strpbrk 829
strrchr 830
strspn 830
strstr 831

string stream processing 714
string::npos 706
strings as full-fledged objects 354
Strings Beginning with b 843
Strings Ending with ED 844
strlen function 816, 822
strncat function 816, 818
strncmp function 816, 819
strncpy function 815, 817
Stroustrup, B. 17
strpbrk 828, 829
strrchr 827, 830
strspn 827, 830
strstr 828, 831
strtod 823, 825
strtok function 816, 820
strtol 823, 825, 826
strtoul 823, 826

Index 1065

struct 793, 16
structure 268, 792, 1022
structure definition 792, 806
structure member 793
structure member operator (.) 16
structure members default to

private access 792
structure name 793
structure of a system 25_21, 25_22
structure type 793
structured program 180
structured programming 5, 102,

104, 174, 14
structured programming summary

180
Student Inheritance Hierarchy 532
student-poll-analysis program 279
subclass 500
subobject

base class 992
subproblem 239
subscript 269
subscript 0 (zero) 269
subscript operator 876
subscript operator [] 700
subscript operator [] used with

strings 698
subscript operator for map 883
subscript operator of map 883
subscript out of range 870
subscript through a vector 870
subscripted name of an array

element 284
subscripted name used as an rvalue

475
subscripting 875
subscripting with a pointer and an

offset 353
substr member function of class

string 92, 703
substrmember function of string

455
substring 487
substring length 487
substring of a string 703
subtract an integer from a pointer

349
subtract one pointer from another

349
subtraction 8, 48, 49
suffix member function of class

match_results 943
suit values of cards 358
sum of the elements of an array 275
Summing and Averaging Elements

in a List 784
Summing Integers 189
summing integers with the for

statement 159
superclass 500
supermarket checkout line 768
supermarket simulation 787

survey 278, 280
svn.boost.org/svn/boost/

sandbox/ 938
swap algorithm 862, 905
swap member function of class

string 703
swapmember function of containers

854
swap member function of list 875
swap_ranges algorithm 862, 905,

906
swapping strings 703
swapping two strings 703
swapping values 295, 344
swapping values (in sorting

algorithms) 733
switch logic 172, 549
switch multiple-selection

statement 164, 171, 184
switch multiple-selection

statement activity diagram with
break statements 172

symbol 697
symbol values 1008
symbolic constant 1021, 1022,

1024, 1026, 1027
symbolic constant NDEBUG 1027
symbolic constant PI 1023
symmetric key encryption 720
synchronize operation of an

istream and an ostream 623
synchronous call 25_35
synchronous error 639
synonym 333, 336
syntax 40
syntax error 40
system 25_9
system behavior 25_9
system requirements 25_7
system structure 25_9

T
tab 54
tab escape sequence \t 170
Tab key 40
tab stop 41
table of values 297
tablet computer 14
tabular format 271
Tabular Output exercise 147
tail of a list 790
tail of a queue 747, 769
tail pointer 790
tails 207
tan function 198
tangent 198
tape 659
Target-Heart-Rate Calculator 100
Tax Plan Alternatives 193
technical publications 32

Technical Report 1 (TR1) xxii, 31,
937, 960

Technical Report 2 (TR2) 960
Telephone Number Word

Generator 694
tellg function of istream 666
tellp function of ostream 666
template 580, 747, 750, 764, 1022

dependent name 766
template alias 965
template definition 237
template function 237, 581
template keyword 237, 581
template parameter 581, 589
template parameter list 237
templates

class template 584
function template 581

temporary object 484
temporary value 128, 204
terabyte 9
terminate a loop 122
terminate a program 647, 9
terminate a repetition structure 14
terminate function 640, 642
terminate normally 663
terminate successfully 41
terminating condition 241
terminating null character 356, 712,

817, 822
terminating right brace (}) of a

block 218
termination condition 280
termination housekeeping 399
termination model of exception

handling 637
termination order from the

operating system 11
termination phase 121
termination request sent to the

program 11
termination test 245
ternary conditional operator (?:)

244
ternary operator 109
test 921
test characters 206
test state bits after an I/O operation

602
Testing Characters with the

<cctype> Functions 841
text analysis 846
text editor 663
text file 679
text-printing program 38
text substitution 1023
The “FairTax” 193
this pointer 431, 431, 441, 481
this pointer used explicitly 431
this pointer used implicitly and

explicitly to access members of an
object 432

1066 Index

throw a conditional expression 638
throw an exception 312, 312, 636
throw an exception 384
throw an int 638
throw exceptions derived from

standard exceptions 652
throw exceptions not derived from

standard exceptions 652
throw keyword 638
throw list 641
throw point 637
throw standard exceptions 652
throw() exception specification

642
Throwing Exceptions from a catch

657
Throwing the Result of a

Conditional Expression 657
throws an exception 384
TicTacToe Class exercise 413
tie an input stream to an output

stream 623
tilde character (~) 398
time-and-a-half 146, 191
Time class 412
Time class containing a constructor

with default arguments 394
Time class definition 381
Time class definition modified to

enable cascaded member-
function calls 433

Time class member function
definitions, including const
member functions 417

Time class member-function
definitions 382

Time class member-function
definitions, including a
constructor that takes arguments
394

Time Class Modification 449
Time class with const member

functions 416
time function 211
__TIME__ predefined symbolic

constant 1027
time source file is compiled 1027
timing diagram in the UML G_2
token 816, 820
tokenize a sentence into separate

words 787
Tokenizing and Reversing a

Sentence 845
Tokenizing Phone Numbers 845
tokenizing strings 815, 820
tolower 810, 812
top 121
top-down, stepwise refinement 121,

123
top member function of

priority_queue 889
top member function of stack 885

top of a stack 747, 764
Tortoise and the Hare exercise 368
total 115, 115, 121, 216
toupper 810, 812, 812
Towers of Hanoi 261, 261

Iterative Version 262
TR1 (Technical Report 1)

Boost.Array library 939
Boost.Bind library 939
Boost.Function library 939
Boost.Random library 939
Boost.Regex library 940
Boost.Smart_ptr library 940
Boost.Tuple library 940
Boost.Type_traits library

940
std::tr1::regex library 941
unordered_map container 961
unordered_multimap

container 961
unordered_multiset

container 961
unordered_set container 961

TR1 (Technical Report 1)
(Technical Report 1) xxii, 31,
937, 960

TR1 (Technical Report 1)
(Technical Report 2) 960

trailing zeros 612, 613
transaction 692
Transaction class (ATM case

study) 9, 10, 11, 14, 48
transaction file 692
transaction processing 881
transaction record 693
transaction-processing program 679
transaction-processing system 670
transfer of control 104
transform algorithm 862, 900, 902
transition 105
transition arrow 105, 107, 113, 114
transition between states in the

UML 25_22
translation 9, 20
translation unit 981
translator program 9
trap unexpected event 11
traversal 713
traversals forwards and backwards

763
traverse a binary tree 773, 780
traverse the left subtree 779
traverse the right subtree 779
traversing a container 747
tree 748, 772, 780
Tree class template 774, 778
Tree<int> 778
TreeNode class template 773
trigonometric cosine 197
trigonometric sine 198
trigonometric tangent 198
tripleByReference 264

tripleByValue 264
true 51
true 107, 108, 109
truncate 48, 120, 128, 662
truncate fractional part of a double

204
truth table 175

! (logical NOT) operator 177
&& (logical AND) operator 175
|| (logical OR) operator 176

try block 312, 636, 640, 644
try block expires 637
try statement 312
tuple 940
Turing Machine 104
turtle graphics 323
Turtle Graphics exercise 323
Twitter 3, 17, 27, 28

tweet 28
two-dimensional array 297, 297,

298, 300, 747
two-dimensional array

manipulations 300
two largest values 147
two levels of refinement 123
two’s complement 1015
two’s complement notation 1015
twos position 1010
tying an output stream to an input

stream 622
type checking 581, 1023, 1024
type field 686
type information 686
type name (enumerations) 214
type of a variable 47, 215
type of the this pointer 431
type parameter 237, 581, 585, 590
type qualifier 286
type-safe linkage 235
type template parameter 581
type_info class 572
<type_traits> header 941
typedef 598, 697, 714, 794, 855,

877, 882, 883
fstream 600
ifstream 600
in first-class containers 855
iostream 598
istream 598
ofstream 600
ostream 598

typeid 572, 651
<typeinfo> header 206, 572
typename 237, 581
typename keyword 581
type-safe I/O 596
type-safe linkage 18

U
U integer suffix 10
u integer suffix 10

Index 1067

UL integer suffix 10
ul integer suffix 10
UML (Unified Modeling Language)

12, 68, 25_2, 25_3, 25_9,
25_13, 25_19, 25_21, 9
action expression 105, 108
action state 105
activity diagram 104, 105, 113
arrow 105
attribute 68
class diagram 68
constructor in a class diagram 80
data types 71
decision 108
decision symbol 107
diagram 25_9
diamond symbol 105, 107
dotted line 105
final state 105
guard condition 107, 108
guillemets (« and ») 80
initial state 105
merge symbol 114
minus sign (–) 77
note 105
plus sign (+) 68
public operation 68
Resource Center

(www.deitel.com/UML/)
25_10

small circle symbol 105
solid circle symbol 105
String type 71
transition 105
transition arrow 105, 107, 113,

114
UML activity diagram 158

solid circle (for representing an
initial state) in the UML
25_23

solid circle enclosed in an open
circle (for representing the
end of an activity) in the
UML 25_23

UML class diagram
attribute compartment 25_19
constructor 80
operation compartment 25_27

UML sequence diagram
activation 25_37
arrowhead 25_37
lifeline 25_37

UML state diagram
rounded rectangle (for

representing a state) in the
UML 25_22

solid circle (for representing an
initial state) in the UML
25_22

UML use case diagram
actor 25_8
use case 25_8

unary cast operator 128
unary decrement operator (--) 135
unary function 939
unary increment operator (++) 135
unary minus (-) operator 129
unary operator 129, 176, 177, 332
unary operator overload 457, 462
unary plus (+) operator 129
unary predicate function 874, 897,

899
unary scope resolution operator (::)

232
unbuffered output 600
unbuffered standard error stream

598
uncaught exceptions 657
unconditional branch 14
#undef preprocessor directive 1024,

1026
undefined area in memory 794
undefined value 118
underflow_error exception 652
underlying container 885
underlying data structure 888
underscore (_) 44
unexpected event 11
unexpected function 642, 651
unformatted I/O 597, 598, 605
unformatted output 601, 602
Unicode 697
Unicode character set 597
Unified Modeling Language (UML)

12, 25_2, 25_3, 25_9, 25_13,
25_19, 25_21, 9

uniform distribution 939
unincremented copy of an object

469
uninitialized local reference causes a

syntax error 230
uninitialized variable 118
union 15, 16
union constructor 16
union functions cannot be virtual

16
union with no constructor 16
unique algorithm 862, 906, 908
unique keys 877, 880, 883
unique member function of list

875
unique_copy algorithm 862, 909,

910
unique_ptr class

Classes
unique_ptr 950

unique_ptr class (C++0x) 648
universal-time format 384
UNIX 609, 663, 5, 8, 11
UNIX command line 2
unmodifiable lvalue 456
unnamed bit field 809
unnamed bit field with a zero width

809

unnamed namespace 981
unnamed namespace 8
unnamed object 17
unordered_map container 961
unordered_multimap container

961
unordered_multiset container

961
unordered_set container 961
Unpacking Characters from

Unsigned Integers 841
unresolved references 7
unsigned 204, 10
unsigned char data type 204
unsigned data type 210
unsigned int data type 204, 210,

347
unsigned integer in bits 798
unsigned long 242, 826, 10
unsigned long data type 204
unsigned long int 241
unsigned long int data type 204
unsigned long long data type 204
unsigned long long int data type

204
unsigned short data type 204
unsigned short int data type 204
unspecified number of arguments 3
unsuccessful termination 9
untie an input stream from an

output stream 623
unwinding the function call stack

642
update a record 694
update records in place 670
upper_bound algorithm 913
upper_bound function of

associative container 879
uppercase letter 44, 62
uppercase letter (A-Z) 812
uppercase letters 206, 810
uppercase stream manipulator

612, 616, 618
use case diagram in the UML 25_8,

25_9
use case in the UML 25_7, 25_8
use case modeling 25_7
use_count member function of

class shared_ptr 953
user-defined class name 66
user-defined function 196, 198
user-defined type 67, 214, 484
using a dynamically allocated

ostringstream object 715
using a function template 237
Using a static data member to

maintain a count of the number
of objects of a class 438

using an anonymous union 18
using an iterator to output a string

713
using arrays instead of switch 278

www.deitel.com/UML/

1068 Index

using command-line arguments 6
using directive 53, 979
using function swap to swap two

strings 703
using functions exit and atexit 9
using goto 14
using regex_replace algorithm

947
Using Regular Expressions to

Convert to Uppercase 973
using signal handling 12
using Standard Library functions to

perform a heapsort 916
using template functions 581
Using the erase Functions with

Iterator Arguments 721
using variable-length argument lists

4
Using virtual base classes 994
<utility> header 207
utility function 390
utility function demonstration 392
utility make 8

V
va_arg 3, 3, 4
va_end 3, 4
va_list 3, 4
va_start 3, 4
<valarray> header 855
Validating User Input exercise 147
validating user input with regular

expressions 944
validation 90, 714
validity checking 90
value 45
value of a variable 47, 215
value of an array element 269
value_type 855, 883
van Rossum, Guido 16
variable 43
variable arguments header

<cstdarg> 3
variable-length argument list 4
variable name 47

argument 71
parameter 71

variable size 47
variable type 47
variable-length argument list 3
variadic template 964
<vector> header 206
vector class 307

capacity function 864, 866
push_back function 866
rbegin function 867
rend function 867

vector class template 864
vector class template element-

manipulation functions 868
<vector> header 307, 855

vector member function begin
728

vector member function end 728
verb phrase in requirements

specification 25_26
vertical spacing 155
vertical tab (‘v’) 810, 814
vi 19
video I/O 598
video sharing 27
virtual base class 975, 992, 994,

994, 996
virtual destructor 573
virtual function 535, 543, 566,

568, 890, 992, 16
call 568
call illustrated 567
table (vtable) 566

virtual inheritance 993
virtual memory 645, 647, 749
virtual world 27
visibility in the UML 2
visibility marker in the UML 2
Visual Basic programming language

16
Visual C# programming language

16, 16
Visual C++ programming language

16
Visual Studio 2005

Quick Info box 6
Visual Studio 2010 Express Edition

19
visualizing recursion 247, 262
VMS 7
void * 351, 832
void keyword 67, 75
void return type 203
VoIP (Voice over IP 29
volatile 10
volatile information 8
volatile qualifier 975
volume of a cube 226
vtable 566, 568, 569
vtable pointer 569

W
walk a list 762
“walk off” either end of an array 471
watch debugger command 13
Watch window (Visual C++ 2005

debugger) 8, 9
waterfall model 25_7
wchar_t 697
wchar_t character type 598
weak_ptr class 940, 954

bad_weak_ptr exception 955
lock member function of class

weak_ptr 955, 956

weak_ptrs used to prevent memory
leak in circularly referential data
960

“weakest” iterator type 858, 859
Web 2.0 27
Websites

svn.boost.org/svn/boost/
sandbox/ 938

what member function of an
exception object 313

what virtual function of class
exception 634, 639, 645

while repetition statement 106,
113, 127, 154, 162, 184, 185

while statement activity diagram
114

white-space characters 39, 40, 54,
602, 603, 606, 810, 813, 941,
1021, 1026

whole number 43
whole/part relationship 25_14
width implicitly set to 0 609
width member function of class

ios_base 609
width of a bit field 806
width of random number range 211
width setting 609
Wikipedia 16, 27
Williams, Evan 28
Windows 13, 168, 2, 11
Windows operating system 13
Wirth, Niklaus 15
Withdrawal class (ATM case study)

25_12, 25_13, 25_15, 25_18,
25_23, 25_26, 25_33, 25_34,
25_35, 25_37, 25_38, 4, 5, 7, 9,
10, 11, 13, 14, 15

word 372, 793
word boundary 793
word character (regular expressions)

941
word equivalent of a check amount

847
word processing 847
Words Ending in “r” or “ay” 720
workflow of a portion of a software

system 105
workflow of an object in the UML

25_22
World Community Grid 3
World Population Growth 151
worst-case runtime for an algorithm

725
wraparound 469
Write 844
write 671, 675
write function of ostream 601,

605
Write Your Own Character

Handling Functions 844
Write Your Own Memory Handling

Functions 844

Index 1069

Write Your Own String
Comparison Functions 845

Write Your Own String Conversion
Functions 844

Write Your Own String Copy and
Concatenation Functions 845

Write Your Own String Length
Function 845

Write Your Own String Searching
Functions 844

writing data randomly to a random-
access file 675

www 29

X
XML (extensible markup language)

686
xor operator keyword 983
xor_eq operator keyword 983

Y
Yahoo! 3
yellow arrow in break mode 5
YouTube 27, 29
Yukihiro 17

Z
zero-based counting 156
zeroth element 269
zero-width bit field 809
Zuckerberg, Mark 28
Zynga 4

This page intentionally left blank

25ATM Case Study, Part 1:
Object-Oriented Design with
the UML

Action speaks louder than words
but not nearly as often.
—Mark Twain

Always design a thing by
considering it in its next larger
context.
—Eliel Saarinen

Oh, life is a glorious cycle of
song.
—Dorothy Parker

The Wright brothers’ design …
allowed them to survive long
enough to learn how to fly.
—Michael Potts

O b j e c t i v e s
In this chapter you’ll learn:

■ A simple object-oriented
design methodology.

■ What a requirements
document is.

■ To identify classes and class
attributes from a
requirements document.

■ To identify objects’ states,
activities and operations from
a requirements document.

■ To determine the
collaborations among objects
in a system.

■ To work with the UML’s use
case, class, state, activity,
communication and
sequence diagrams to
graphically model an object-
oriented system.

25-2 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

25.1 Introduction
Now we begin the optional portion of our object-oriented design and implementation case
study. In this chapter and Chapter 26, you’ll design and implement an object-oriented au-
tomated teller machine (ATM) software system. The case study provides you with a con-
cise, carefully paced, complete design and implementation experience. You’ll perform the
steps of an object-oriented design (OOD) process using the UML while relating them to
the object-oriented concepts discussed in Chapters 2–13. In this chapter, you’ll work with
six popular types of UML diagrams to graphically represent the design. In Chapter 26,
you’ll tune the design with inheritance and polymorphism, then fully implement the
ATM in an 850-line C++ application (Section 26.4).

This is not an exercise; rather, it’s an end-to-end learning experience that concludes
with a detailed walkthrough of the complete C++ code that implements our design. It will
acquaint you with the kinds of substantial problems encountered in industry.

These chapters can be studied as a continuous unit after you’ve completed the intro-
duction to object-oriented programming in Chapters 2–13. Or, you can pace the sections
after Chapters 3–7, 9 and 13. Each section of the case study begins with a note telling you
the chapter after which it can be covered.

25.2 Introduction to Object-Oriented Analysis and Design
What if you were asked to create a software system to control thousands of automated tell-
er machines for a major bank? Or suppose you were asked to work on a team of 1000 soft-
ware developers building the next U.S. air traffic control system. For projects so large and
complex, you cannot simply sit down and start writing programs.

To create the best solutions, you should follow a process for analyzing your project’s
requirements (i.e., determining what the system should do) and developing a design that
satisfies them (i.e., deciding how the system should do it). Ideally, you’d go through this
process and carefully review the design (or have your design reviewed by other software
professionals) before writing any code. If this process involves analyzing and designing
your system from an object-oriented point of view, it’s called an object-oriented analysis
and design (OOAD) process. Analysis and design can save many hours by helping you to
avoid an ill-planned system-development approach that has to be abandoned part of the
way through its implementation, possibly wasting considerable time, money and effort.
Small problems do not require an exhaustive OOAD process. It may be sufficient to write
pseudocode before you begin writing C++ code.

25.1 Introduction
25.2 Introduction to Object-Oriented

Analysis and Design
25.3 Examining the ATM Requirements

Document
25.4 Identifying the Classes in the ATM

Requirements Document
25.5 Identifying Class Attributes

25.6 Identifying Objects’ States and
Activities

25.7 Identifying Class Operations
25.8 Indicating Collaboration Among

Objects
25.9 Wrap-Up

25.3 Examining the ATM Requirements Document 25-3

As problems and the groups of people solving them increase in size, the methods of
OOAD become more appropriate than pseudocode. Ideally, members of a group should
agree on a strictly defined process for solving their problem and a uniform way of commu-
nicating the results of that process to one another. Although many different OOAD pro-
cesses exist, a single graphical language for communicating the results of any OOAD
process has come into wide use. This language, known as the Unified Modeling Language
(UML), was developed in the mid-1990s under the initial direction of three software
methodologists—Grady Booch, James Rumbaugh and Ivar Jacobson.

25.3 Examining the ATM Requirements Document
[Note: This section can be studied after Chapter 3.]
We begin our design process by presenting a requirements document that specifies the
ATM system’s overall purpose and what it must do. Throughout the case study, we refer
to the requirements document to determine what functionality the system must include.

Requirements Document
A local bank intends to install a new automated teller machine (ATM) to allow users (i.e.,
bank customers) to perform basic financial transactions (Fig. 25.1). Each user can have only
one account at the bank. ATM users should be able to view their account balance, withdraw
cash (i.e., take money out of an account) and deposit funds (i.e., place money into an account).

The user interface of the automated teller machine contains the following hardware
components:

• a screen that displays messages to the user

Fig. 25.1 | Automated teller machine user interface.

Welcome!

Please enter your account number: 12345

Enter your PIN: 54321

Keypad

Screen

Deposit Slot

Cash Dispenser

Insert deposit envelope hereInsert deposit envelope hereInsert deposit envelope here

Take cash hereTake cash hereTake cash here

25-4 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

• a keypad that receives numeric input from the user

• a cash dispenser that dispenses cash to the user and

• a deposit slot that receives deposit envelopes from the user.

The cash dispenser begins each day loaded with 500 $20 bills. [Note: Owing to the limited
scope of this case study, certain elements of the ATM described here do not accurately
mimic those of a real ATM. For example, a real ATM typically contains a device that reads
a user’s account number from an ATM card, whereas this ATM asks the user to type an
account number using the keypad. A real ATM also usually prints a receipt at the end of
a session, but all output from this ATM appears on the screen.]

The bank wants you to develop software to perform the financial transactions initi-
ated by bank customers through the ATM. The bank will integrate the software with the
ATM’s hardware at a later time. The software should encapsulate the functionality of the
hardware devices (e.g., cash dispenser, deposit slot) within software components, but it
need not concern itself with how these devices perform their duties. The ATM hardware
has not been developed yet, so instead of writing your software to run on the ATM, you
should develop a first version of the software to run on a personal computer. This version
should use the computer’s monitor to simulate the ATM’s screen, and the computer’s key-
board to simulate the ATM’s keypad.

An ATM session consists of authenticating a user (i.e., proving the user’s identity)
based on an account number and personal identification number (PIN), followed by cre-
ating and executing financial transactions. To authenticate a user and perform transac-
tions, the ATM must interact with the bank’s account information database. [Note: A
database is an organized collection of data stored on a computer.] For each bank account,
the database stores an account number, a PIN and a balance indicating the amount of
money in the account. [Note: For simplicity, we assume that the bank plans to build only
one ATM, so we do not need to worry about multiple ATMs accessing this database at the same
time. Furthermore, we assume that the bank does not make any changes to the information in
the database while a user is accessing the ATM. Also, any business system like an ATM faces
reasonably complicated security issues that go well beyond the scope of a first- or second-
semester computer science course. We make the simplifying assumption, however, that
the bank trusts the ATM to access and manipulate the information in the database without
significant security measures.]

Upon first approaching the ATM, the user should experience the following sequence
of events (shown in Fig. 25.1):

1. The screen displays a welcome message and prompts the user to enter an account
number.

2. The user enters a five-digit account number, using the keypad.

3. The screen prompts the user to enter the PIN (personal identification number)
associated with the specified account number.

4. The user enters a five-digit PIN, using the keypad.

5. If the user enters a valid account number and the correct PIN for that account,
the screen displays the main menu (Fig. 25.2). If the user enters an invalid ac-
count number or an incorrect PIN, the screen displays an appropriate message,
then the ATM returns to Step 1 to restart the authentication process.

25.3 Examining the ATM Requirements Document 25-5

After the ATM authenticates the user, the main menu (Fig. 25.2) displays a num-
bered option for each of the three types of transactions: balance inquiry (option 1), with-
drawal (option 2) and deposit (option 3). The main menu also displays an option that
allows the user to exit the system (option 4). The user then chooses either to perform a
transaction (by entering 1, 2 or 3) or to exit the system (by entering 4). If the user enters
an invalid option, the screen displays an error message, then redisplays to the main menu.

If the user enters 1 to make a balance inquiry, the screen displays the user’s account
balance. To do so, the ATM must retrieve the balance from the bank’s database.

The following actions occur when the user enters 2 to make a withdrawal:

1. The screen displays a menu (shown in Fig. 25.3) containing standard withdrawal
amounts: $20 (option 1), $40 (option 2), $60 (option 3), $100 (option 4) and
$200 (option 5). The menu also contains an option to allow the user to cancel
the transaction (option 6).

2. The user enters a menu selection (1–6) using the keypad.

3. If the withdrawal amount chosen is greater than the user’s account balance, the
screen displays a message stating this and telling the user to choose a smaller
amount. The ATM then returns to Step 1. If the withdrawal amount chosen is less
than or equal to the user’s account balance (i.e., an acceptable withdrawal
amount), the ATM proceeds to Step 4. If the user chooses to cancel the transaction
(option 6), the ATM displays the main menu (Fig. 25.2) and waits for user input.

4. If the cash dispenser contains enough cash to satisfy the request, the ATM pro-
ceeds to Step 5. Otherwise, the screen displays a message indicating the problem
and telling the user to choose a smaller withdrawal amount. The ATM then re-
turns to Step 1.

Fig. 25.2 | ATM main menu.

Insert deposit envelope hereInsert deposit envelope hereInsert deposit envelope here

Take cash hereTake cash hereTake cash here

Main menu:
1 - View my balance
2 - Withdraw cash
3 - Deposit funds
4 - Exit

Enter a choice:

25-6 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

5. The ATM debits (i.e., subtracts) the withdrawal amount from the user’s account
balance in the bank’s database.

6. The cash dispenser dispenses the desired amount of money to the user.

7. The screen displays a message reminding the user to take the money.

The following actions occur when the user enters 3 (while the main menu is dis-
played) to make a deposit:

1. The screen prompts the user to enter a deposit amount or to type 0 (zero) to can-
cel the transaction.

2. The user enters a deposit amount or 0, using the keypad. [Note: The keypad does
not contain a decimal point or a dollar sign, so the user cannot type a real dollar
amount (e.g., $1.25). Instead, the user must enter a deposit amount as a number
of cents (e.g., 125). The ATM then divides this number by 100 to obtain a num-
ber representing a dollar amount (e.g., 125 ÷ 100 = 1.25).]

3. If the user specifies a deposit amount, the ATM proceeds to Step 4. If the user
chooses to cancel the transaction (by entering 0), the ATM displays the main
menu (Fig. 25.2) and waits for user input.

4. The screen displays a message telling the user to insert a deposit envelope into the
deposit slot.

5. If the deposit slot receives a deposit envelope within two minutes, the ATM cred-
its (i.e., adds) the deposit amount to the user’s account balance in the bank’s da-
tabase. This money is not immediately available for withdrawal. The bank first must
physically verify the amount of cash in the deposit envelope, and any checks in the en-

Fig. 25.3 | ATM withdrawal menu.

Insert deposit envelope hereInsert deposit envelope hereInsert deposit envelope here

Take cash hereTake cash hereTake cash here

Withdrawal options:
1 - $20 4 - $100
2 - $40 5 - $200
3 - $60 6 - Cancel transaction

Choose a withdrawal option (1-6):

25.3 Examining the ATM Requirements Document 25-7

velope must clear (i.e., money must be transferred from the check writer’s account to
the check recipient’s account). When either of these events occurs, the bank appropri-
ately updates the user’s balance stored in its database. This occurs independently of the
ATM system. If the deposit slot does not receive a deposit envelope within this
time period, the screen displays a message that the system has canceled the trans-
action due to inactivity. The ATM then displays the main menu and waits for
user input.

After the system successfully executes a transaction, the system should redisplay the
main menu (Fig. 25.2) so that the user can perform additional transactions. If the user
chooses to exit the system (option 4), the screen should display a thank you message, then
display the welcome message for the next user.

Analyzing the ATM System
The preceding statement is a simplified example of a requirements document. Typically,
such a document is the result of a detailed requirements gathering process that might in-
clude interviews with potential users of the system and specialists in fields related to the sys-
tem. For example, a systems analyst who is hired to prepare a requirements document for
banking software (e.g., the ATM system described here) might interview financial experts
to gain a better understanding of what the software must do. The analyst would use the in-
formation gained to compile a list of system requirements to guide systems designers.

The process of requirements gathering is a key task of the first stage of the software
life cycle. The software life cycle specifies the stages through which software evolves from
the time it’s first conceived to the time it’s retired from use. These stages typically include:
analysis, design, implementation, testing and debugging, deployment, maintenance and
retirement. Several software life-cycle models exist, each with its own preferences and spec-
ifications for when and how often software engineers should perform each of these stages.
Waterfall models perform each stage once in succession, whereas iterative models may
repeat one or more stages several times throughout a product’s life cycle.

The analysis stage of the software life cycle focuses on defining the problem to be
solved. When designing any system, one must certainly solve the problem right, but of equal
importance, one must solve the right problem. Systems analysts collect the requirements
that indicate the specific problem to solve. Our requirements document describes our
ATM system in sufficient detail that you do not need to go through an extensive analysis
stage—it has been done for you.

To capture what a proposed system should do, developers often employ a technique
known as use case modeling. This process identifies the use cases of the system, each of
which represents a different capability that the system provides to its clients. For example,
ATMs typically have several use cases, such as “View Account Balance,” “Withdraw
Cash,” “Deposit Funds,” “Transfer Funds Between Accounts” and “Buy Postage Stamps.”
The simplified ATM system we build in this case study allows only the first three of these
use cases (Fig. 25.4).

Each use case describes a typical scenario in which the user uses the system. You’ve
already read descriptions of the ATM system’s use cases in the requirements document;
the lists of steps required to perform each type of transaction (i.e., balance inquiry, with-
drawal and deposit) actually described the three use cases of our ATM—“View Account
Balance,” “Withdraw Cash” and “Deposit Funds.”

25-8 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

Use Case Diagrams
We now introduce the first of several UML diagrams in our ATM case study. We create
a use case diagram to model the interactions between a system’s clients (in this case study,
bank customers) and the system. The goal is to show the kinds of interactions users have
with a system without providing the details—these are provided in other UML diagrams
(which we present throughout the case study). Use case diagrams are often accompanied
by informal text that describes the use cases in more detail—like the text that appears in
the requirements document. Use case diagrams are produced during the analysis stage of
the software life cycle. In larger systems, use case diagrams are simple but indispensable
tools that help system designers remain focused on satisfying the users’ needs.

Figure 25.4 shows the use case diagram for our ATM system. The stick figure repre-
sents an actor, which defines the roles that an external entity—such as a person or another
system—plays when interacting with the system. For our automated teller machine, the
actor is a User who can view an account balance, withdraw cash and deposit funds from
the ATM. The User is not an actual person, but instead comprises the roles that a real
person—when playing the part of a User—can play while interacting with the ATM. Note
that a use case diagram can include multiple actors. For example, the use case diagram for
a real bank’s ATM system might also include an actor named Administrator who refills
the cash dispenser each day.

We identify the actor in our system by examining the requirements document, which
states, “ATM users should be able to view their account balance, withdraw cash and
deposit funds.” So, the actor in each of the three use cases is the User who interacts with
the ATM. An external entity—a real person—plays the part of the User to perform finan-
cial transactions. Figure 25.4 shows one actor, whose name, User, appears below the actor
in the diagram. The UML models each use case as an oval connected to an actor with a
solid line.

Software engineers (more precisely, systems analysts) must analyze the requirements
document or a set of use cases and design the system before programmers implement it.
During the analysis stage, systems analysts focus on understanding the requirements doc-
ument to produce a high-level specification that describes what the system is supposed to
do. The output of the design stage—a design specification—should specify clearly how
the system should be constructed to satisfy these requirements. In the next several sections,
we perform the steps of a simple object-oriented design (OOD) process on the ATM

Fig. 25.4 | Use case diagram for the ATM system from the User’s perspective.

Deposit Funds

Withdraw Cash

View Account Balance

User

25.3 Examining the ATM Requirements Document 25-9

system to produce a design specification containing a collection of UML diagrams and
supporting text. Recall that the UML is designed for use with any OOD process. Many
such processes exist, the best known of which is the Rational Unified Process™ (RUP)
developed by Rational Software Corporation (now a division of IBM). RUP is a rich pro-
cess intended for designing “industrial strength” applications. For this case study, we
present our own simplified design process.

Designing the ATM System
We now begin the ATM system’s design. A system is a set of components that interact to
solve a problem. To perform the ATM system’s designated tasks, our ATM system has a
user interface (Fig. 25.1), contains software that executes financial transactions and inter-
acts with a database of bank account information. System structure describes the system’s
objects and their interrelationships. System behavior describes how the system changes as
its objects interact with one another. Every system has both structure and behavior—de-
signers must specify both. There are several distinct types of system structures and behav-
iors. For example, the interactions among objects in the system differ from those between
the user and the system, yet both constitute a portion of the system behavior.

The UML 2 specifies 13 diagram types for documenting the models of systems. Each
models a distinct characteristic of a system’s structure or behavior—six diagrams relate to
system structure; the remaining seven relate to system behavior. We list here only the six
types of diagrams used in our case study—one of these (class diagrams) models system
structure—the remaining five model system behavior. We overview the remaining seven
UML diagram types in Appendix G, UML 2: Additional Diagram Types.

1. Use case diagrams, such as the one in Fig. 25.4, model the interactions between
a system and its external entities (actors) in terms of use cases (system capabilities,
such as “View Account Balance,” “Withdraw Cash” and “Deposit Funds”).

2. Class diagrams, which you’ll study in Section 25.4, model the classes, or “build-
ing blocks,” used in a system. Each noun or “thing” described in the requirements
document is a candidate to be a class in the system (e.g., “account,” “keypad”).
Class diagrams help us specify the structural relationships between parts of the
system. For example, the ATM system class diagram will specify that the ATM is
physically composed of a screen, a keypad, a cash dispenser and a deposit slot.

3. State machine diagrams, which you’ll study in Section 25.6, model the ways in
which an object changes state. An object’s state is indicated by the values of all
the object’s attributes at a given time. When an object changes state, that object
may behave differently in the system. For example, after validating a user’s PIN,
the ATM transitions from the “user not authenticated” state to the “user authen-
ticated” state, at which point the ATM allows the user to perform financial trans-
actions (e.g., view account balance, withdraw cash, deposit funds).

4. Activity diagrams, which you’ll also study in Section 25.6, model an object’s ac-
tivity—the object’s workflow (sequence of events) during program execution. An
activity diagram models the actions the object performs and specifies the order in
which it performs these actions. For example, an activity diagram shows that the
ATM must obtain the balance of the user’s account (from the bank’s account in-
formation database) before the screen can display the balance to the user.

25-10 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

5. Communication diagrams (called collaboration diagrams in earlier versions of
the UML) model the interactions among objects in a system, with an emphasis
on what interactions occur. You’ll learn in Section 25.8 that these diagrams show
which objects must interact to perform an ATM transaction. For example, the
ATM must communicate with the bank’s account information database to re-
trieve an account balance.

6. Sequence diagrams also model the interactions among the objects in a system,
but unlike communication diagrams, they emphasize when interactions occur.
You’ll learn in Section 25.8 that these diagrams help show the order in which in-
teractions occur in executing a financial transaction. For example, the screen
prompts the user to enter a withdrawal amount before cash is dispensed.

In Section 25.4, we continue designing our ATM system by identifying the classes
from the requirements document. We accomplish this by extracting key nouns and noun
phrases from the requirements document. Using these classes, we develop our first draft of
the class diagram that models the structure of our ATM system.

Web Resources
We’ve created an extensive UML Resource Center (www.deitel.com/UML/) that contains
many links to additional information, including introductions, tutorials, blogs, books, cer-
tification, conferences, developer tools, documentation, e-books, FAQs, forums, groups,
UML in C++, podcasts, security, tools, downloads, training courses, videos and more.

Self-Review Exercises for Section 25.3
25.1 Suppose we enabled a user of our ATM system to transfer money between two bank ac-
counts. Modify the use case diagram of Fig. 25.4 to reflect this change.

25.2 model the interactions among objects in a system with an emphasis on when these
interactions occur.

a) Class diagrams
b) Sequence diagrams
c) Communication diagrams
d) Activity diagrams

25.3 Which of the following choices lists stages of a typical software life cycle in sequential order?
a) design, analysis, implementation, testing
b) design, analysis, testing, implementation
c) analysis, design, testing, implementation
d) analysis, design, implementation, testing

25.4 Identifying the Classes in the ATM Requirements
Document
[Note: This section can be studied after Chapter 3.]
Now we begin designing the ATM system that we introduced in Section 25.3. In this sec-
tion, we identify the classes that are needed to build the ATM system by analyzing the
nouns and noun phrases that appear in the requirements document. We introduce UML
class diagrams to model the relationships between these classes. This is an important first
step in defining the structure of our system.

www.deitel.com/UML/

25.4 Identifying the Classes in the ATM Requirements Document 25-11

Identifying the Classes in a System
We begin our OOD process by identifying the classes required to build the ATM system.
We’ll eventually describe these classes using UML class diagrams and implement these
classes in C++. First, we review the requirements document of Section 25.3 and find key
nouns and noun phrases to help us identify classes that comprise the ATM system. We
may decide that some of these nouns and noun phrases are attributes of other classes in the
system. We may also conclude that some of the nouns do not correspond to parts of the
system and thus should not be modeled at all. Additional classes may become apparent to
us as we proceed through the design process.

Figure 25.5 lists the nouns and noun phrases in the requirements document. We list
them from left to right in the order in which they appear in the requirements document.
We list only the singular form of each noun or noun phrase.

We create classes only for the nouns and noun phrases that have significance in the
ATM system. We don’t need to model “bank” as a class, because it’is not a part of the ATM
system—the bank simply wants us to build the ATM. “Customer” and “user” also repre-
sent outside entities—they are important because they interact with our ATM system, but
we do not need to model them as classes in the ATM software. Recall that we modeled an
ATM user (i.e., a bank customer) as the actor in the use case diagram of Fig. 25.4.

We do not model “$20 bill” or “deposit envelope” as classes. These are physical objects
in the real world, but they are not part of what’s being automated. We can adequately rep-
resent the presence of bills in the system using an attribute of the class that models the cash
dispenser. (We assign attributes to classes in Section 25.5.) For example, the cash dispenser
maintains a count of the number of bills it contains. The requirements document doesn’t
say anything about what the system should do with deposit envelopes after it receives them.
We can assume that acknowledging the receipt of an envelope—an operation performed
by the class that models the deposit slot—is sufficient to represent the presence of an enve-
lope in the system. (We assign operations to classes in Section 25.7.)

In our simplified ATM system, representing various amounts of “money,” including
an account’s “balance,” as attributes of other classes seems most appropriate. Likewise, the
nouns “account number” and “PIN” represent significant information in the ATM system.
They are important attributes of a bank account. They do not, however, exhibit behaviors.
Thus, we can most appropriately model them as attributes of an account class.

Though the requirements document frequently describes a “transaction” in a general
sense, we do not model the broad notion of a financial transaction at this time. Instead,

Nouns and noun phrases in the requirements document

bank money / fund account number ATM

screen PIN user keypad

bank database customer cash dispenser balance inquiry

transaction $20 bill / cash withdrawal account

deposit slot deposit balance deposit envelope

Fig. 25.5 | Nouns and noun phrases in the requirements document.

25-12 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

we model the three types of transactions (i.e., “balance inquiry,” “withdrawal” and
“deposit”) as individual classes. These classes possess specific attributes needed for exe-
cuting the transactions they represent. For example, a withdrawal needs to know the
amount of money the user wants to withdraw. A balance inquiry, however, does not
require any additional data. Furthermore, the three transaction classes exhibit unique
behaviors. A withdrawal includes dispensing cash to the user, whereas a deposit involves
receiving deposit envelopes from the user. In Section 26.3, we “factor out” common features
of all transactions into a general “transaction” class using the object-oriented concepts of abstract
classes and inheritance.

We determine the classes for our system based on the remaining nouns and noun
phrases from Fig. 25.5. Each of these refers to one or more of the following:

• ATM

• screen

• keypad

• cash dispenser

• deposit slot

• account

• bank database

• balance inquiry

• withdrawal

• deposit

The elements of this list are likely to be classes we’ll need to implement our system.
We can now model the classes in our system based on the list we’ve created. We cap-

italize class names in the design process—a UML convention—as we’ll do when we write
the actual C++ code that implements our design. If the name of a class contains more than
one word, we run the words together and capitalize the first letter of each word (e.g., Mul-
tipleWordName). Using this convention, we create classes ATM, Screen, Keypad, CashDis-
penser, DepositSlot, Account, BankDatabase, BalanceInquiry, Withdrawal and
Deposit. We construct our system using all of these classes as building blocks. Before we
begin building the system, however, we must gain a better understanding of how the
classes relate to one another.

Modeling Classes
The UML enables us to model, via class diagrams, the ATM system’s classes and their in-
terrelationships. Figure 25.6 represents class ATM. Each class is modeled as a rectangle with
three compartments. The top compartment contains the name of the class, centered hori-
zontally and in boldface. The middle compartment contains the class’s attributes. (We dis-
cuss attributes in Section 25.5 and Section 25.6.) The bottom compartment contains the
class’s operations (discussed in Section 25.7). In Fig. 25.6 the middle and bottom compart-
ments are empty, because we’ve not yet determined this class’s attributes and operations.

Class diagrams also show the relationships among the classes of the system.
Figure 25.7 shows how our classes ATM and Withdrawal relate to one another. For the
moment, we choose to model only this subset of classes for simplicity; we present a more

25.4 Identifying the Classes in the ATM Requirements Document 25-13

complete class diagram later in this section. Notice that the rectangles representing classes
in this diagram are not subdivided into compartments. The UML allows the suppression
of class attributes and operations in this manner, when appropriate, to create more read-
able diagrams. Such a diagram is said to be an elided diagram—one in which some infor-
mation, such as the contents of the second and third compartments, is not modeled. We’ll
place information in these compartments in Section 25.5 and Section 25.7.

In Fig. 25.7, the solid line that connects the two classes represents an association—a
relationship between classes. The numbers near each end of the line are multiplicity
values, which indicate how many objects of each class participate in the association. In this
case, following the line from one end to the other reveals that, at any given moment, one
ATM object participates in an association with either zero or one Withdrawal objects—zero
if the current user is not currently performing a transaction or has requested a different
type of transaction, and one if the user has requested a withdrawal. The UML can model
many types of multiplicity. Figure 25.8 lists and explains the multiplicity types.

An association can be named. For example, the word Executes above the line con-
necting classes ATM and Withdrawal in Fig. 25.7 indicates the name of that association.
This part of the diagram reads “one object of class ATM executes zero or one objects of class

Fig. 25.6 | Representing a class in the UML using a class diagram.

Fig. 25.7 | Class diagram showing an association among classes.

Symbol Meaning

0 None

1 One

m An integer value

0..1 Zero or one

m, n m or n

m..n At least m, but not more than n

* Any nonnegative integer (zero or more)

0..* Zero or more (identical to *)

1..* One or more

Fig. 25.8 | Multiplicity types.

ATM

Executes1

currentTransaction

0..1
WithdrawalATM

25-14 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

Withdrawal.” Association names are directional, as indicated by the filled arrowhead—so
it would be improper, for example, to read the preceding association from right to left as
“zero or one objects of class Withdrawal execute one object of class ATM.”

The word currentTransaction at the Withdrawal end of the association line in
Fig. 25.7 is a role name, which identifies the role the Withdrawal object plays in its rela-
tionship with the ATM. A role name adds meaning to an association between classes by iden-
tifying the role a class plays in the context of an association. A class can play several roles
in the same system. For example, in a school personnel system, a person may play the role
of “professor” when relating to students. The same person may take on the role of “col-
league” when participating in a relationship with another professor, and “coach” when
coaching student athletes. In Fig. 25.7, the role name currentTransaction indicates that
the Withdrawal object participating in the Executes association with an object of class ATM
represents the transaction currently being processed by the ATM. In other contexts, a
Withdrawal object may take on other roles (e.g., the previous transaction). Notice that we
do not specify a role name for the ATM end of the Executes association. Role names in class
diagrams are often omitted when the meaning of an association is clear without them.

In addition to indicating simple relationships, associations can specify more complex
relationships, such as objects of one class being composed of objects of other classes. Con-
sider a real-world automated teller machine. What “pieces” does a manufacturer put
together to build a working ATM? Our requirements document tells us that the ATM is
composed of a screen, a keypad, a cash dispenser and a deposit slot.

In Fig. 25.9, the solid diamonds attached to the association lines of class ATM indicate
that class ATM has a composition relationship with classes Screen, Keypad, CashDispenser
and DepositSlot. Composition implies a whole/part relationship. The class that has the
composition symbol (the solid diamond) on its end of the association line is the whole (in this
case, ATM), and the classes on the other end of the association lines are the parts—in this case,
classes Screen, Keypad, CashDispenser and DepositSlot. The compositions in Fig. 25.9
indicate that an object of class ATM is formed from one object of class Screen, one object of
class CashDispenser, one object of class Keypad and one object of class DepositSlot. The
ATM has a screen, a keypad, a cash dispenser and a deposit slot. The has-a relationship
defines composition. (We’ll see in Section 26.3 that the is-a relationship defines inheritance.)

Fig. 25.9 | Class diagram showing composition relationships.

1 1 1 1

1

1

1

1

Screen

ATM

Keypad

DepositSlot CashDispenser

25.4 Identifying the Classes in the ATM Requirements Document 25-15

According to the UML specification, composition relationships have the following
properties:

1. Only one class in the relationship can represent the whole (i.e., the diamond can
be placed on only one end of the association line). For example, either the screen
is part of the ATM or the ATM is part of the screen, but the screen and the ATM
cannot both represent the whole in the relationship.

2. The parts in a composition relationship exist only as long as the whole, and the
whole is responsible for creating and destroying its parts. For example, the act of
constructing an ATM includes manufacturing its parts. Furthermore, if the ATM
is destroyed, its screen, keypad, cash dispenser and deposit slot are also destroyed.

3. A part may belong to only one whole at a time, although the part may be removed
and attached to another whole, which then assumes responsibility for the part.

The solid diamonds in our class diagrams indicate composition relationships that ful-
fill these three properties. If a has-a relationship does not satisfy one or more of these cri-
teria, the UML specifies that hollow diamonds be attached to the ends of association lines
to indicate aggregation—a weaker form of composition. For example, a personal com-
puter and a computer monitor participate in an aggregation relationship—the computer
has a monitor, but the two parts can exist independently, and the same monitor can be
attached to multiple computers at once, thus violating the second and third properties of
composition.

Figure 25.10 shows a class diagram for the ATM system. This diagram models most
of the classes that we identified earlier in this section, as well as the associations between
them that we can infer from the requirements document. [Note: Classes BalanceInquiry
and Deposit participate in associations similar to those of class Withdrawal, so we’ve
chosen to omit them from this diagram to keep it simple. In Section 26.3, we expand our
class diagram to include all the classes in the ATM system.]

Figure 25.10 presents a graphical model of the structure of the ATM system. This
class diagram includes classes BankDatabase and Account and several associations that
were not present in either Fig. 25.7 or Fig. 25.9. The class diagram shows that class ATM
has a one-to-one relationship with class BankDatabase—one ATM object authenticates
users against one BankDatabase object. In Fig. 25.10, we also model the fact that the
bank’s database contains information about many accounts—one object of class BankDa-
tabase participates in a composition relationship with zero or more objects of class
Account. Recall from Fig. 25.8 that the multiplicity value 0..* at the Account end of the
association between class BankDatabase and class Account indicates that zero or more
objects of class Account take part in the association. Class BankDatabase has a one-to-
many relationship with class Account—the BankDatabase contains many Accounts. Sim-
ilarly, class Account has a many-to-one relationship with class BankDatabase—there can
be many Accounts contained in the BankDatabase. [Note: Recall from Fig. 25.8 that the
multiplicity value * is identical to 0..*. We include 0..* in our class diagrams for clarity.]

Figure 25.10 also indicates that if the user is performing a withdrawal, “one object of
class Withdrawal accesses/modifies an account balance through one object of class Bank-
Database.” We could have created an association directly between class Withdrawal and
class Account. The requirements document, however, states that the “ATM must interact
with the bank’s account information database” to perform transactions. A bank account

25-16 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

contains sensitive information, and systems engineers must always consider the security of
personal data when designing a system. Thus, only the BankDatabase can access and
manipulate an account directly. All other parts of the system must interact with the data-
base to retrieve or update account information (e.g., an account balance).

The class diagram in Fig. 25.10 also models associations between class Withdrawal

and classes Screen, CashDispenser and Keypad. A withdrawal transaction includes
prompting the user to choose a withdrawal amount and receiving numeric input. These
actions require the use of the screen and the keypad, respectively. Furthermore, dispensing
cash to the user requires access to the cash dispenser.

Classes BalanceInquiry and Deposit, though not shown in Fig. 25.10, take part in
several associations with the other classes of the ATM system. Like class Withdrawal, each
of these classes associates with classes ATM and BankDatabase. An object of class Balan-

ceInquiry also associates with an object of class Screen to display the balance of an
account to the user. Class Deposit associates with classes Screen, Keypad and Deposit-

Slot. Like withdrawals, deposit transactions require use of the screen and the keypad to
display prompts and receive input, respectively. To receive deposit envelopes, an object of
class Deposit accesses the deposit slot.

We’ve now identified the classes in our ATM system (although we may discover
others as we proceed with the design and implementation). In Section 25.5, we determine
the attributes for each of these classes, and in Section 25.6, we use these attributes to
examine how the system changes over time. In Section 25.7, we determine the operations
of the classes in our system.

Fig. 25.10 | Class diagram for the ATM system model.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1 1 1 1

1

0..*

0..1
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

1

1

Self-Review Exercises for Section 25.4 25-17

Self-Review Exercises for Section 25.4
25.4 Suppose we have a class Car that represents a car. Think of some of the different pieces that
a manufacturer would put together to produce a whole car. Create a class diagram (similar to
Fig. 25.9) that models some of the composition relationships of class Car.

25.5 Suppose we have a class File that represents an electronic document in a stand-alone, non-
networked computer represented by class Computer. What sort of association exists between class
Computer and class File?

a) Class Computer has a one-to-one relationship with class File.
b) Class Computer has a many-to-one relationship with class File.
c) Class Computer has a one-to-many relationship with class File.
d) Class Computer has a many-to-many relationship with class File.

25.6 State whether the following statement is true or false, and if false, explain why: A UML dia-
gram in which a class’s second and third compartments are not modeled is said to be an elided diagram.

25.7 Modify the class diagram of Fig. 25.10 to include class Deposit instead of class Withdrawal.

25.5 Identifying Class Attributes
[Note: This section can be studied after Chapter 4.]
In Section 25.4, we began the first stage of an object-oriented design (OOD) for our ATM
system—analyzing the requirements document and identifying the classes needed to im-
plement the system. We listed the nouns and noun phrases in the requirements document
and identified a separate class for each one that plays a significant role in the ATM system.
We then modeled the classes and their relationships in a UML class diagram (Fig. 25.10).

Classes have attributes (data) and operations (behaviors). Class attributes are imple-
mented in C++ programs as data members, and class operations are implemented as
member functions. In this section, we determine many of the attributes needed in the
ATM system. In Section 25.6, we examine how these attributes represent an object’s state.
In Section 25.7, we determine class operations.

Identifying Attributes
Consider the attributes of some real-world objects: A person’s attributes include height,
weight and whether the person is left-handed, right-handed or ambidextrous. A radio’s attri-
butes include its station setting, its volume setting and its AM or FM setting. A car’s attri-
butes include its speedometer and odometer readings, the amount of gas in its tank and what
gear it’s in. A personal computer’s attributes include its manufacturer (e.g., Dell, HP, Apple
or IBM), type of screen (e.g., LCD or CRT), main memory size and hard disk size.

We can identify many attributes of the classes in our system by looking for descriptive
words and phrases in the requirements document. For each one we find that plays a sig-
nificant role in the ATM system, we create an attribute and assign it to one or more of the
classes identified in Section 25.4. We also create attributes to represent any additional data
that a class may need, as such needs become apparent throughout the design process.

Figure 25.11 lists the words or phrases from the requirements document that describe
each class. We formed this list by reading the requirements document and identifying any
words or phrases that refer to characteristics of the classes in the system. For example, the
requirements document describes the steps taken to obtain a “withdrawal amount,” so we
list “amount” next to class Withdrawal.

25-18 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

Figure 25.11 leads us to create one attribute of class ATM. Class ATM maintains infor-
mation about the state of the ATM. The phrase “user is authenticated” describes a state of
the ATM (we introduce states in Section 25.6), so we include userAuthenticated as a
Boolean attribute (i.e., an attribute that has a value of either true or false). The UML
Boolean type is equivalent to the bool type in C++. This attribute indicates whether the
ATM has successfully authenticated the current user—userAuthenticated must be true
for the system to allow the user to perform transactions and access account information.
This attribute helps ensure the security of the data in the system.

Classes BalanceInquiry, Withdrawal and Deposit share one attribute. Each transac-
tion involves an “account number” that corresponds to the account of the user making the
transaction. We assign an integer attribute accountNumber to each transaction class to
identify the account to which an object of the class applies.

Descriptive words and phrases in the requirements document also suggest some dif-
ferences in the attributes required by each transaction class. The requirements document
indicates that to withdraw cash or deposit funds, users must enter a specific “amount” of
money to be withdrawn or deposited, respectively. Thus, we assign to classes Withdrawal
and Deposit an attribute amount to store the value supplied by the user. The amounts of
money related to a withdrawal and a deposit are defining characteristics of these transac-
tions that the system requires for them to take place. Class BalanceInquiry, however,
needs no additional data to perform its task—it requires only an account number to indi-
cate the account whose balance should be retrieved.

Class Account has several attributes. The requirements document states that each bank
account has an “account number” and “PIN,” which the system uses for identifying accounts

Class Descriptive words and phrases

ATM user is authenticated

BalanceInquiry account number

Withdrawal account number
amount

Deposit account number
amount

BankDatabase [no descriptive words or phrases]

Account account number
PIN
balance

Screen [no descriptive words or phrases]

Keypad [no descriptive words or phrases]

CashDispenser begins each day loaded with 500
$20 bills

DepositSlot [no descriptive words or phrases]

Fig. 25.11 | Descriptive words and phrases from the
ATM requirements.

25.5 Identifying Class Attributes 25-19

and authenticating users. We assign to class Account two integer attributes: accountNumber
and pin. The requirements document also specifies that an account maintains a “balance” of
the amount of money in the account and that money the user deposits does not become
available for a withdrawal until the bank verifies the amount of cash in the deposit envelope,
and any checks in the envelope clear. An account must still record the amount of money that
a user deposits, however. Therefore, we decide that an account should represent a balance
using two attributes of UML type Double: availableBalance and totalBalance. Attribute
availableBalance tracks the amount of money that a user can withdraw from the account.
Attribute totalBalance refers to the total amount of money that the user has “on deposit”
(i.e., the amount of money available, plus the amount waiting to be verified or cleared). For
example, suppose an ATM user deposits $50.00 into an empty account. The totalBalance
attribute would increase to $50.00 to record the deposit, but the availableBalance would
remain at $0. [Note: We assume that the bank updates the availableBalance attribute of
an Account soon after the ATM transaction occurs, in response to confirming that $50
worth of cash or checks was found in the deposit envelope. We assume that this update
occurs through a transaction that a bank employee performs using some piece of bank soft-
ware other than the ATM. Thus, we do not discuss this transaction in our case study.]

Class CashDispenser has one attribute. The requirements document states that the
cash dispenser “begins each day loaded with 500 $20 bills.” The cash dispenser must keep
track of the number of bills it contains to determine whether enough cash is on hand to
satisfy withdrawal requests. We assign to class CashDispenser an integer attribute count,
which is initially set to 500.

For real problems in industry, there is no guarantee that requirements specifications
will be rich enough and precise enough for the object-oriented systems designer to deter-
mine all the attributes or even all the classes. The need for additional (or fewer) classes,
attributes and behaviors may become clear as the design process proceeds. As we progress
through this case study, we too will continue to add, modify and delete information about
the classes in our system.

Modeling Attributes
The class diagram in Fig. 25.12 lists some of the attributes for the classes in our system—
the descriptive words and phrases in Fig. 25.11 helped us identify these attributes. For
simplicity, Fig. 25.12 does not show the associations among classes—we showed these in
Fig. 25.10. This is a common practice of systems designers when designs are being devel-
oped. Recall from Section 25.4 that in the UML, a class’s attributes are placed in the mid-
dle compartment of the class’s rectangle. We list each attribute’s name and type separated
by a colon (:), followed in some cases by an equal sign (=) and an initial value.

Consider the userAuthenticated attribute of class ATM:

This attribute declaration contains three pieces of information about the attribute. The at-
tribute name is userAuthenticated. The attribute type is Boolean. In C++, an attribute
can be represented by a fundamental type, such as bool, int or double, or a class type.
We’ve chosen to model only primitive-type attributes in Fig. 25.12—we discuss the rea-
soning behind this decision shortly. [Note: Figure 25.12 lists UML data types for the at-
tributes. When we implement the system, we’ll associate the UML types Boolean, Integer
and Double with the C++ fundamental types bool, int and double, respectively.]

userAuthenticated : Boolean = false

25-20 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

We can also indicate an initial value for an attribute. The userAuthenticated attri-
bute in class ATM has an initial value of false. This indicates that the system initially does
not consider the user to be authenticated. If an attribute has no initial value specified, only
its name and type (separated by a colon) are shown. For example, the accountNumber attri-
bute of class BalanceInquiry is an Integer. Here we show no initial value, because the
value of this attribute is a number that we do not yet know—it will be determined at exe-
cution time based on the account number entered by the current ATM user.

Figure 25.12 does not include any attributes for classes Screen, Keypad and
DepositSlot. These are important components of our system, for which our design
process simply has not yet revealed any attributes. We may still discover some, however,
in the remaining design phases or when we implement these classes in C++. This is per-
fectly normal for the iterative process of software engineering.

Figure 25.12 also does not include attributes for class BankDatabase. Recall that attri-
butes can be represented by either fundamental types or class types. We’ve chosen to

Fig. 25.12 | Classes with attributes.

Software Engineering Observation 25.1
At the early stages in the design process, classes often lack attributes (and operations). Such
classes should not be eliminated, however, because attributes (and operations) may
become evident in the later phases of design and implementation.

ATM

userAuthenticated : Boolean = false

BalanceInquiry

accountNumber : Integer

CashDispenser

count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

accountNumber : Integer
amount : Double

BankDatabase

Deposit

accountNumber : Integer
amount : Double

Account

accountNumber : Integer
pin : Integer
availableBalance : Double
totalBalance : Double

Self-Review Exercises for Section 25.5 25-21

include only fundamental-type attributes in the class diagram in Fig. 25.12 (and in similar
class diagrams throughout the case study). A class-type attribute is modeled more clearly
as an association (in particular, a composition) between the class with the attribute and the
class of the object of which the attribute is an instance. For example, the class diagram in
Fig. 25.10 indicates that class BankDatabase participates in a composition relationship
with zero or more Account objects. From this composition, we can determine that when
we implement the ATM system in C++, we’ll be required to create an attribute of class
BankDatabase to hold zero or more Account objects. Similarly, we’ll assign attributes to
class ATM that correspond to its composition relationships with classes Screen, Keypad,
CashDispenser and DepositSlot. These composition-based attributes would be redun-
dant if modeled in Fig. 25.12, because the compositions modeled in Fig. 25.10 already
convey the fact that the database contains information about zero or more accounts and
that an ATM is composed of a screen, keypad, cash dispenser and deposit slot. Software
developers typically model these whole/part relationships as compositions rather than as
attributes required to implement the relationships.

The class diagram in Fig. 25.12 provides a solid basis for the structure of our model,
but the diagram is not complete. In Section 25.6, we identify the states and activities of
the objects in the model, and in Section 25.7 we identify the operations that the objects
perform. As we present more of the UML and object-oriented design, we’ll continue to
strengthen the structure of our model.

Self-Review Exercises for Section 25.5
25.8 We typically identify the attributes of the classes in our system by analyzing the in
the requirements document.

a) nouns and noun phrases
b) descriptive words and phrases
c) verbs and verb phrases
d) All of the above.

25.9 Which of the following is not an attribute of an airplane?
a) length
b) wingspan
c) fly
d) number of seats

25.10 Describe the meaning of the following attribute declaration of class CashDispenser in the
class diagram in Fig. 25.12:

count : Integer = 500

25.6 Identifying Objects’ States and Activities
[Note: This section can be studied after Chapter 5.]
In Section 25.5, we identified many of the class attributes needed to implement the ATM
system and added them to the class diagram in Fig. 25.12. In this section, we show how
these attributes represent an object’s state. We identify some key states that our objects may
occupy and discuss how objects change state in response to various events occurring in the
system. We also discuss the workflow, or activities, that objects perform in the ATM sys-
tem. We present the activities of BalanceInquiry and Withdrawal transaction objects in
this section, as they represent two of the key activities in the ATM system.

25-22 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

State Machine Diagrams
Each object in a system goes through a series of discrete states. An object’s current state is
indicated by the values of the object’s attributes at a given time. State machine diagrams
(commonly called state diagrams) model key states of an object and show under what cir-
cumstances the object changes state. Unlike the class diagrams presented in earlier case
study sections, which focused primarily on the structure of the system, state diagrams mod-
el some of the behavior of the system.

Figure 25.13 is a simple state diagram that models some of the states of an object of
class ATM. The UML represents each state in a state diagram as a rounded rectangle with
the name of the state placed inside it. A solid circle with an attached stick arrowhead des-
ignates the initial state. Recall that we modeled this state information as the Boolean attri-
bute userAuthenticated in the class diagram of Fig. 25.12. This attribute is initialized to
false, or the “User not authenticated” state, according to the state diagram.

The arrows with stick arrowheads indicate transitions between states. An object can
transition from one state to another in response to various events that occur in the system.
The name or description of the event that causes a transition is written near the line that
corresponds to the transition. For example, the ATM object changes from the “User not
authenticated” state to the “User authenticated” state after the database authenticates the
user. Recall from the requirements document that the database authenticates a user by
comparing the account number and PIN entered by the user with those of the corre-
sponding account in the database. If the database indicates that the user has entered a valid
account number and the correct PIN, the ATM object transitions to the “User authenti-
cated” state and changes its userAuthenticated attribute to a value of true. When the
user exits the system by choosing the “exit” option from the main menu, the ATM object
returns to the “User not authenticated” state in preparation for the next ATM user.

Activity Diagrams
Like a state diagram, an activity diagram models aspects of system behavior. Unlike a state
diagram, an activity diagram models an object’s workflow (sequence of events) during pro-
gram execution. An activity diagram models the actions the object will perform and in
what order. Recall that we used UML activity diagrams to illustrate the flow of control for
the control statements presented in Chapters 4 and 5.

Figure 25.14 models the actions involved in executing a BalanceInquiry transaction.
We assume that a BalanceInquiry object has been initialized and assigned a valid account

Fig. 25.13 | State diagram for the ATM object.

Software Engineering Observation 25.2
Software designers do not generally create state diagrams showing every possible state and
state transition for all attributes—there are simply too many of them. State diagrams
typically show only the most important or complex states and state transitions.

User not authenticated User authenticated

bank database authenticates user

user exits system

25.6 Identifying Objects’ States and Activities 25-23

number (that of the current user), so the object knows which balance to retrieve. The dia-
gram includes the actions that occur after the user selects a balance inquiry from the main
menu and before the ATM returns the user to the main menu—a BalanceInquiry object
does not perform or initiate these actions, so we do not model them here. The diagram
begins with retrieving the available balance of the user’s account from the database. Next,
the BalanceInquiry retrieves the total balance of the account. Finally, the transaction dis-
plays the balances on the screen. This action completes the execution of the transaction.

The UML represents an action in an activity diagram as an action state modeled by a
rectangle with its left and right sides replaced by arcs curving outward. Each action state
contains an action expression—for example, “get available balance of user’s account from
database”—that specifies an action to be performed. An arrow with a stick arrowhead con-
nects two action states, indicating the order in which the actions represented by the action
states occur. The solid circle (at the top of Fig. 25.14) represents the activity’s initial
state—the beginning of the workflow before the object performs the modeled actions. In
this case, the transaction first executes the “get available balance of user’s account from
database” action expression. Second, the transaction retrieves the total balance. Finally, the
transaction displays both balances on the screen. The solid circle enclosed in an open circle
(at the bottom of Fig. 25.14) represents the final state—the end of the workflow after the
object performs the modeled actions.

Figure 25.15 shows an activity diagram for a Withdrawal transaction. We assume that
a Withdrawal object has been assigned a valid account number. We do not model the user
selecting a withdrawal from the main menu or the ATM returning the user to the main
menu because these are not actions performed by a Withdrawal object. The transaction
first displays a menu of standard withdrawal amounts (Fig. 25.3) and an option to cancel
the transaction. The transaction then inputs a menu selection from the user. The activity
flow now arrives at a decision symbol. This point determines the next action based on the
associated guard conditions. If the user cancels the transaction, the system displays an
appropriate message. Next, the cancellation flow reaches a merge symbol, where this
activity flow joins the transaction’s other possible activity flows (which we discuss shortly).

Fig. 25.14 | Activity diagram for a BalanceInquiry transaction.

get available balance of user’s account from database

display balances on screen

get total balance of user’s account from database

25-24 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

Fig. 25.15 | Activity diagram for a Withdrawal transaction.

display error message

display error message

[user canceled transaction]

[user selected an amount]

[amount > available balance]

[amount <= available balance]

[sufficient cash available]

[insufficient cash available]

display menu of withdrawal amounts and option to cancel

input the menu selection

interact with database to debit amount from user’s account

dispense cash

instruct user to take cash

set amount attribute

test whether sufficient cash is available in cash dispenser

get available balance of user’s account from database

display cancel message

[cash not dispensed
and user did not cancel]

[cash dispensed or
user canceled transaction]

Self-Review Exercises for Section 25.6 25-25

A merge can have any number of incoming transition arrows, but only one outgoing tran-
sition arrow. The decision at the bottom of the diagram determines whether the transac-
tion should repeat from the beginning. When the user has canceled the transaction, the
guard condition “cash dispensed or user canceled transaction” is true, so control transi-
tions to the activity’s final state.

If the user selects a withdrawal amount from the menu, the transaction sets amount
(an attribute of class Withdrawal originally modeled in Fig. 25.12) to the value chosen by
the user. The transaction next gets the available balance of the user’s account (i.e., the
availableBalance attribute of the user’s Account object) from the database. The activity
flow then arrives at another decision. If the requested withdrawal amount exceeds the
user’s available balance, the system displays an appropriate error message informing the
user of the problem. Control then merges with the other activity flows before reaching the
decision at the bottom of the diagram. The guard decision “cash not dispensed and user
did not cancel” is true, so the activity flow returns to the top of the diagram, and the trans-
action prompts the user to input a new amount.

If the requested withdrawal amount is less than or equal to the user’s available balance,
the transaction tests whether the cash dispenser has enough cash to satisfy the withdrawal
request. If it does not, the transaction displays an appropriate error message and passes
through the merge before reaching the final decision. Cash was not dispensed, so the activity
flow returns to the beginning of the activity diagram, and the transaction prompts the user
to choose a new amount. If sufficient cash is available, the transaction interacts with the data-
base to debit the withdrawal amount from the user’s account (i.e., subtract the amount from
both the availableBalance and totalBalance attributes of the user’s Account object). The
transaction then dispenses the desired amount of cash and instructs the user to take the cash
that is dispensed. The main flow of activity next merges with the two error flows and the can-
cellation flow. In this case, cash was dispensed, so the activity flow reaches the final state.

We’ve taken the first steps in modeling the ATM system’s behavior and have shown
how an object’s attributes participate in the object’s activities. In Section 25.7, we investi-
gate the operations of our classes to create a more complete model of the system’s behavior.

Self-Review Exercises for Section 25.6
25.11 State whether the following statement is true or false, and if false, explain why: State dia-
grams model structural aspects of a system.

25.12 An activity diagram models the that an object performs and the order in which
it performs them.

a) actions
b) attributes
c) states
d) state transitions

25.13 Based on the requirements document, create an activity diagram for a deposit transaction.

25.7 Identifying Class Operations
[Note: This section can be studied after Chapter 6.]
In Sections 25.4–25.6, we performed the first few steps in the object-oriented design of
our ATM system. In Section 25.4, we identified the classes that we’ll need to implement

25-26 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

and we created our first class diagram. In Section 25.5, we described some attributes of our
classes. In Section 25.6, we examined object states and modeled object state transitions
and activities. Now, we determine some of the class operations (or behaviors) needed to
implement the ATM system.

Identifying Operations
An operation is a service that objects of a class provide to clients of the class. Consider the
operations of some real-world objects. A radio’s operations include setting its station and
volume (typically invoked by a person adjusting the radio’s controls). A car’s operations
include accelerating (invoked by the driver pressing the accelerator pedal), decelerating
(invoked by the driver pressing the brake pedal or releasing the gas pedal), turning and
shifting gears. Software objects can offer operations as well—for example, a software
graphics object might offer operations for drawing a circle, drawing a line, drawing a
square and the like. A spreadsheet software object might offer operations like printing the
spreadsheet, totaling the elements in a row or column and graphing information in the
spreadsheet as a bar chart or pie chart.

We can derive many of the operations of each class by examining the key verbs and
verb phrases in the requirements document. We then relate each of these to particular
classes in our system (Fig. 25.16). The verb phrases in Fig. 25.16 help us determine the
operations of each class.

Modeling Operations
To identify operations, we examine the verb phrases listed for each class in Fig. 25.16. The
“executes financial transactions” phrase associated with class ATM implies that class ATM in-
structs transactions to execute. Therefore, classes BalanceInquiry, Withdrawal and De-

posit each need an operation to provide this service to the ATM. We place this operation

Class Verbs and verb phrases

ATM executes financial transactions

BalanceInquiry [none in the requirements document]

Withdrawal [none in the requirements document]

Deposit [none in the requirements document]

BankDatabase authenticates a user, retrieves an account balance, credits a deposit
amount to an account, debits a withdrawal amount from an account

Account retrieves an account balance, credits a deposit amount to an account,
debits a withdrawal amount from an account

Screen displays a message to the user

Keypad receives numeric input from the user

CashDispenser dispenses cash, indicates whether it contains enough cash to satisfy a
withdrawal request

DepositSlot receives a deposit envelope

Fig. 25.16 | Verbs and verb phrases for each class in the ATM system.

25.7 Identifying Class Operations 25-27

(which we’ve named execute) in the third compartment of the three transaction classes in
the updated class diagram of Fig. 25.17. During an ATM session, the ATM object will in-
voke the execute operation of each transaction object to tell it to execute.

The UML represents operations (which are implemented as member functions in
C++) by listing the operation name, followed by a comma-separated list of parameters in
parentheses, a colon and the return type:

Each parameter in the comma-separated parameter list consists of a parameter name, fol-
lowed by a colon and the parameter type:

For the moment, we do not list the operations’ parameters—we’ll identify and model
the parameters of some of the operations shortly. For some, we do not yet know the return

Fig. 25.17 | Classes in the ATM system with attributes and operations.

operationName(parameter1, parameter2, …, parameterN) : return type

parameterName : parameterType

ATM

userAuthenticated : Boolean = false

BalanceInquiry

accountNumber : Integer

CashDispenser

count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

accountNumber : Integer
amount : Double

BankDatabase

Deposit

accountNumber : Integer
amount : Double

authenticateUser() : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit()
debit()

Account

accountNumber : Integer
pin : Integer
availableBalance : Double
totalBalance : Double

validatePIN() : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit()
debit()

execute()

execute()
displayMessage()

dispenseCash()
isSufficientCashAvailable() : Boolean

getInput() : Integerexecute()

isEnvelopeReceived() : Boolean

25-28 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

types, so we also omit them from the diagram. These omissions are perfectly normal at this
point. As our design and implementation proceed, we’ll add the remaining return types.

Operations of Class BankDatabase and Class Account
Figure 25.16 lists the phrase “authenticates a user” next to class BankDatabase—the database
is the object that contains the account information necessary to determine whether the ac-
count number and PIN entered by a user match those of an account held at the bank. There-
fore, class BankDatabase needs an operation that provides an authentication service to the
ATM. We place the operation authenticateUser in the third compartment of class Bank-
Database (Fig. 25.17). However, an object of class Account, not class BankDatabase, stores
the account number and PIN that must be accessed to authenticate a user, so class Account
must provide a service to validate a PIN obtained through user input against a PIN stored in
an Account object. Therefore, we add a validatePIN operation to class Account. We specify
return type Boolean for the authenticateUser and validatePIN operations. Each opera-
tion returns a value indicating either that the operation was successful in performing its task
(i.e., a return value of true) or that it was not (i.e., a return value of false).

Figure 25.16 lists several additional verb phrases for class BankDatabase: “retrieves an
account balance,” “credits a deposit amount to an account” and “debits a withdrawal
amount from an account.” Like “authenticates a user,” these remaining phrases refer to
services that the database must provide to the ATM, because the database holds all the
account data used to authenticate a user and perform ATM transactions. However, objects
of class Account actually perform the operations to which these phrases refer. Thus, we
assign an operation to both class BankDatabase and class Account to correspond to each
of these phrases. Recall from Section 25.4 that, because a bank account contains sensitive
information, we do not allow the ATM to access accounts directly. The database acts as an
intermediary between the ATM and the account data, thus preventing unauthorized
access. As we’ll see in Section 25.8, class ATM invokes the operations of class BankDatabase,
each of which in turn invokes the operation with the same name in class Account.

The phrase “retrieves an account balance” suggests that classes BankDatabase and
Account each need a getBalance operation. However, recall that we created two attributes
in class Account to represent a balance—availableBalance and totalBalance. A balance
inquiry requires access to both balance attributes so that it can display them to the user,
but a withdrawal needs to check only the value of availableBalance. To allow objects in
the system to obtain each balance attribute individually, we add operations getAvail-

ableBalance and getTotalBalance to the third compartment of classes BankDatabase

and Account (Fig. 25.17). We specify a return type of Double for each of these operations,
because the balance attributes which they retrieve are of type Double.

The phrases “credits a deposit amount to an account” and “debits a withdrawal
amount from an account” indicate that classes BankDatabase and Account must perform
operations to update an account during a deposit and withdrawal, respectively. We there-
fore assign credit and debit operations to classes BankDatabase and Account. You may
recall that crediting an account (as in a deposit) adds an amount only to the totalBalance
attribute. Debiting an account (as in a withdrawal), on the other hand, subtracts the
amount from both balance attributes. We hide these implementation details inside class
Account. This is a good example of encapsulation and information hiding.

If this were a real ATM system, classes BankDatabase and Account would also provide
a set of operations to allow another banking system to update a user’s account balance after

25.7 Identifying Class Operations 25-29

either confirming or rejecting all or part of a deposit. Operation confirmDepositAmount,
for example, would add an amount to the availableBalance attribute, thus making
deposited funds available for withdrawal. Operation rejectDepositAmount would sub-
tract an amount from the totalBalance attribute to indicate that a specified amount,
which had recently been deposited through the ATM and added to the totalBalance, was
not found in the deposit envelope. The bank would invoke this operation after deter-
mining either that the user failed to include the correct amount of cash or that any checks
did not clear (i.e, they “bounced”). While adding these operations would make our system
more complete, we do not include them in our class diagrams or our implementation
because they are beyond the scope of the case study.

Operations of Class Screen
Class Screen “displays a message to the user” at various times in an ATM session. All visual
output occurs through the screen of the ATM. The requirements document describes
many types of messages (e.g., a welcome message, an error message, a thank you message)
that the screen displays to the user. The requirements document also indicates that the
screen displays prompts and menus to the user. However, a prompt is really just a message
describing what the user should input next, and a menu is essentially a type of prompt con-
sisting of a series of messages (i.e., menu options) displayed consecutively. Therefore, rath-
er than assign class Screen an individual operation to display each type of message, prompt
and menu, we simply create one operation that can display any message specified by a pa-
rameter. We place this operation (displayMessage) in the third compartment of class
Screen in our class diagram (Fig. 25.17). We do not worry about the parameter of this
operation at this time—we model the parameter later in this section.

Operations of Class Keypad
From the phrase “receives numeric input from the user” listed by class Keypad in Fig. 25.16,
we conclude that class Keypad should perform a getInput operation. Because the ATM’s
keypad, unlike a computer keyboard, contains only the numbers 0–9, we specify that this
operation returns an integer value. Recall from the requirements document that in different
situations the user may be required to enter a different type of number (e.g., an account
number, a PIN, the number of a menu option, a deposit amount as a number of cents).
Class Keypad simply obtains a numeric value for a client of the class—it does not determine
whether the value meets any specific criteria. Any class that uses this operation must verify
that the user enters appropriate numbers, and if not, display error messages via class
Screen). [Note: When we implement the system, we simulate the ATM’s keypad with a
computer keyboard, and for simplicity we assume that the user does not enter nonnumeric
input using keys on the computer keyboard that do not appear on the ATM’s keypad.]

Operations of Class CashDispenser and Class DepositSlot
Figure 25.16 lists “dispenses cash” for class CashDispenser. Therefore, we create opera-
tion dispenseCash and list it under class CashDispenser in Fig. 25.17. Class CashDis-

penser also “indicates whether it contains enough cash to satisfy a withdrawal request.”
Thus, we include isSufficientCashAvailable, an operation that returns a value of UML
type Boolean, in class CashDispenser. Figure 25.16 also lists “receives a deposit envelope”
for class DepositSlot. The deposit slot must indicate whether it received an envelope, so
we place an operation isEnvelopeReceived, which returns a Boolean value, in the third

25-30 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

compartment of class DepositSlot. [Note: A real hardware deposit slot would most likely
send the ATM a signal to indicate that an envelope was received. We simulate this behav-
ior, however, with an operation in class DepositSlot that class ATM can invoke to find out
whether the deposit slot received an envelope.]

Operations of Class ATM
We do not list any operations for class ATM at this time. We are not yet aware of any services
that class ATM provides to other classes in the system. When we implement the system with
C++ code, however, operations of this class, and additional operations of the other classes
in the system, may emerge.

Identifying and Modeling Operation Parameters
So far, we’ve not been concerned with the parameters of our operations—we’ve attempted
to gain only a basic understanding of the operations of each class. Let’s now take a closer
look at some operation parameters. We identify an operation’s parameters by examining
what data the operation requires to perform its assigned task.

Consider the authenticateUser operation of class BankDatabase. To authenticate a
user, this operation must know the account number and PIN supplied by the user. Thus
we specify that operation authenticateUser takes integer parameters userAccountNumber
and userPIN, which the operation must compare to the account number and PIN of an
Account object in the database. We prefix these parameter names with “user” to avoid con-
fusion between the operation’s parameter names and the attribute names that belong to
class Account. We list these parameters in the class diagram in Fig. 25.18 that models only
class BankDatabase. [Note: It’s perfectly normal to model only one class in a class diagram.
In this case, we are most concerned with examining the parameters of this one class in par-
ticular, so we omit the other classes. In class diagrams later in the case study, in which
parameters are no longer the focus of our attention, we omit the parameters to save space.
Remember, however, that the operations listed in these diagrams still have parameters.]

Recall that the UML models each parameter in an operation’s comma-separated
parameter list by listing the parameter name, followed by a colon and the parameter type
(in UML notation). Figure 25.18 thus specifies that operation authenticateUser takes
two parameters—userAccountNumber and userPIN, both of type Integer. When we
implement the system in C++, we’ll represent these parameters with int values.

Class BankDatabase operations getAvailableBalance, getTotalBalance, credit

and debit also each require a userAccountNumber parameter to identify the account to

Fig. 25.18 | Class BankDatabase with operation parameters.

BankDatabase

authenticateUser(userAccountNumber : Integer, userPIN : Integer) : Boolean
getAvailableBalance(userAccountNumber : Integer) : Double
getTotalBalance(userAccountNumber : Integer) : Double
credit(userAccountNumber : Integer, amount : Double)
debit(userAccountNumber : Integer, amount : Double)

25.7 Identifying Class Operations 25-31

which the database must apply the operations, so we include these parameters in the class
diagram of Fig. 25.18. In addition, operations credit and debit each require a Double

parameter amount to specify the amount of money to be credited or debited, respectively.
The class diagram in Fig. 25.19 models the parameters of class Account’s operations.

Operation validatePIN requires only a userPIN parameter, which contains the user-spec-
ified PIN to be compared with the PIN associated with the account. Like their counter-
parts in class BankDatabase, operations credit and debit in class Account each require a
Double parameter amount that indicates the amount of money involved in the operation.
Operations getAvailableBalance and getTotalBalance in class Account require no
additional data to perform their tasks. Class Account’s operations do not require an
account number parameter—each of these operations can be invoked only on a specific
Account object, so including a parameter to specify an Account is unnecessary.

Figure 25.20 models class Screen with a parameter specified for operation display-

Message. This operation requires only a String parameter message that indicates the text
to be displayed. Recall that the parameter types listed in our class diagrams are in UML
notation, so the String type listed in Fig. 25.20 refers to the UML type. When we imple-
ment the system in C++, we’ll in fact use a C++ string object to represent this parameter.

The class diagram in Fig. 25.21 specifies that operation dispenseCash of class Cash-
Dispenser takes a Double parameter amount to indicate the amount of cash (in dollars) to
be dispensed. Operation isSufficientCashAvailable also takes a Double parameter
amount to indicate the amount of cash in question.

We do not discuss parameters for operation execute of classes BalanceInquiry,
Withdrawal and Deposit, operation getInput of class Keypad and operation isEnvelope-

Received of class DepositSlot. At this point in our design process, we cannot determine

Fig. 25.19 | Class Account with operation parameters.

Fig. 25.20 | Class Screen with operation parameters.

Account

accountNumber : Integer
pin : Integer
availableBalance : Double
totalBalance : Double

validatePIN(userPIN: Integer) : Boolean
getAvailableBalance() : Double
getTotalBalance() : Double
credit(amount : Double)
debit(amount : Double)

Screen

displayMessage(message : String)

25-32 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

whether these operations require additional data to perform their tasks, so we leave their
parameter lists empty. As we progress through the case study, we may decide to add param-
eters to these operations.

In this section, we’ve determined many of the operations performed by the classes in
the ATM system. We’ve identified the parameters and return types of some of the opera-
tions. As we continue our design process, the number of operations belonging to each class
may vary—we might find that new operations are needed or that some current operations
are unnecessary—and we might determine that some of our class operations need addi-
tional parameters and different return types.

Self-Review Exercises for Section 25.7
25.14 Which of the following is not a behavior?

a) reading data from a file
b) printing output
c) text output
d) obtaining input from the user

25.15 If you were to add to the ATM system an operation that returns the amount attribute of class
Withdrawal, how and where would you specify this operation in the class diagram of Fig. 25.17?

25.16 Describe the meaning of the following operation listing that might appear in a class diagram
for an object-oriented design of a calculator:

25.8 Indicating Collaboration Among Objects
[Note: This section can be studied after Chapter 7.]
In this section, we concentrate on the collaborations (interactions) among objects in our
ATM system. When two objects communicate with each other to accomplish a task, they
are said to collaborate—they do this by invoking one another’s operations. A collabora-
tion consists of an object of one class sending a message to an object of another class. Mes-
sages are sent in C++ via member-function calls.

In Section 25.7, we determined many of the operations of the system’s classes. Next,
we concentrate on the messages that invoke these operations. To identify the collabora-
tions, we return to the requirements document in Section 25.3. Recall that this document
specifies the range of activities that occur during an ATM session (e.g., authenticating a
user, performing transactions). The steps used to describe how the system must perform
each of these tasks are our first indication of the collaborations in our system. As we pro-
ceed through this and the remaining sections, we may discover additional collaborations.

Fig. 25.21 | Class CashDispenser with operation parameters.

add(x : Integer, y : Integer) : Integer

CashDispenser

dispenseCash(amount : Double)
isSufficientCashAvailable(amount : Double) : Boolean

count : Integer = 500

25.8 Indicating Collaboration Among Objects 25-33

Identifying the Collaborations in a System
We identify the collaborations in the system by carefully reading the requirements docu-
ment sections that specify what the ATM should do to authenticate a user and to perform
each transaction type. For each action or step described, we decide which objects in our
system must interact to achieve the desired result. We identify one object as the sending
object (i.e., the object that sends the message) and another as the receiving object (i.e., the
object that offers that operation to clients of the class). We then select one of the receiving
object’s operations (identified in Section 25.7) that must be invoked by the sending object
to produce the proper behavior. For example, the ATM displays a welcome message when
idle. We know that an object of class Screen displays a message to the user via its dis-

playMessage operation. Thus, we decide that the system can display a welcome message
by employing a collaboration between the ATM and the Screen in which the ATM sends a
displayMessage message to the Screen by invoking the displayMessage operation of
class Screen. [Note: To avoid repeating the phrase “an object of class…,” we refer to each
object simply by using its class name preceded by an article (“a,” “an” or “the”)—for ex-
ample, “the ATM” refers to an object of class ATM.]

Figure 25.22 lists the collaborations that can be derived from the requirements docu-
ment. For each sending object, we list the collaborations in the order in which they are
discussed in the requirements document. We list each collaboration involving a unique
sender, message and recipient only once, even though the collaboration may occur several
times during an ATM session. For example, the first row in Fig. 25.22 indicates that the
ATM collaborates with the Screen whenever the ATM needs to display a message to the user.

An object of class… sends the message…
to an object
of class…

ATM displayMessage

getInput

authenticateUser

execute

execute

execute

Screen

Keypad

BankDatabase

BalanceInquiry

Withdrawal

Deposit

BalanceInquiry getAvailableBalance

getTotalBalance

displayMessage

BankDatabase

BankDatabase

Screen

Withdrawal displayMessage

getInput

getAvailableBalance

isSufficientCashAvailable

debit

dispenseCash

Screen

Keypad

BankDatabase

CashDispenser

BankDatabase

CashDispenser

Deposit displayMessage

getInput

isEnvelopeReceived

credit

Screen

Keypad

DepositSlot

BankDatabase

Fig. 25.22 | Collaborations in the ATM system. (Part 1 of 2.)

25-34 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

Let’s consider the collaborations in Fig. 25.22. Before allowing a user to perform any
transactions, the ATM must prompt the user to enter an account number, then to enter a
PIN. It accomplishes each of these tasks by sending a displayMessage message to the
Screen. Both of these actions refer to the same collaboration between the ATM and the
Screen, which is already listed in Fig. 25.22. The ATM obtains input in response to a
prompt by sending a getInput message to the Keypad. Next, the ATM must determine
whether the user-specified account number and PIN match those of an account in the
database. It does so by sending an authenticateUser message to the BankDatabase. Recall
that the BankDatabase cannot authenticate a user directly—only the user’s Account (i.e.,
the Account that contains the account number specified by the user) can access the user’s
PIN to authenticate the user. Figure 25.22 therefore lists a collaboration in which the
BankDatabase sends a validatePIN message to an Account.

After the user is authenticated, the ATM displays the main menu by sending a series of
displayMessage messages to the Screen and obtains input containing a menu selection by
sending a getInput message to the Keypad. We’ve already accounted for these collabora-
tions. After the user chooses a type of transaction to perform, the ATM executes the transac-
tion by sending an execute message to an object of the appropriate transaction class (i.e.,
a BalanceInquiry, a Withdrawal or a Deposit). For example, if the user chooses to per-
form a balance inquiry, the ATM sends an execute message to a BalanceInquiry.

Further examination of the requirements document reveals the collaborations
involved in executing each transaction type. A BalanceInquiry retrieves the amount of
money available in the user’s account by sending a getAvailableBalance message to the
BankDatabase, which responds by sending a getAvailableBalance message to the user’s
Account. Similarly, the BalanceInquiry retrieves the amount of money on deposit by
sending a getTotalBalance message to the BankDatabase, which sends the same message
to the user’s Account. To display both measures of the user’s balance at the same time, the
BalanceInquiry sends a displayMessage message to the Screen.

A Withdrawal sends the Screen several displayMessage messages to display a menu
of standard withdrawal amounts (i.e., $20, $40, $60, $100, $200). The Withdrawal sends
the Keypad a getInput message to obtain the user’s menu selection, then determines
whether the requested withdrawal amount is less than or equal to the user’s account bal-
ance. The Withdrawal can obtain the amount of money available in the account by
sending the BankDatabase a getAvailableBalance message. The Withdrawal then tests
whether the cash dispenser contains enough cash by sending the CashDispenser an
isSufficientCashAvailable message. A Withdrawal sends the BankDatabase a debit

BankDatabase validatePIN

getAvailableBalance

getTotalBalance

debit

credit

Account

Account

Account

Account

Account

An object of class… sends the message…
to an object
of class…

Fig. 25.22 | Collaborations in the ATM system. (Part 2 of 2.)

25.8 Indicating Collaboration Among Objects 25-35

message to decrease the user’s account balance. The BankDatabase sends the same message
to the appropriate Account. Recall that debiting funds from an Account decreases both the
totalBalance and the availableBalance. To dispense the requested amount of cash, the
Withdrawal sends the CashDispenser a dispenseCash message. Finally, the Withdrawal

sends a displayMessage message to the Screen, instructing the user to take the cash.
A Deposit responds to an execute message first by sending a displayMessage mes-

sage to the Screen to prompt the user for a deposit amount. The Deposit sends a get-

Input message to the Keypad to obtain the user’s input. The Deposit then sends a
displayMessage message to the Screen to tell the user to insert a deposit envelope. To
determine whether the deposit slot received an incoming deposit envelope, the Deposit

sends an isEnvelopeReceived message to the DepositSlot. The Deposit updates the
user’s account by sending a credit message to the BankDatabase, which subsequently
sends a credit message to the user’s Account. Recall that crediting funds to an Account

increases the totalBalance but not the availableBalance.

Interaction Diagrams
Now that we’ve identified possible collaborations between the objects in our ATM system,
let’s graphically model these interactions using the UML. Several types of interaction di-
agrams model the behavior of a system by showing how objects interact with one another.
The communication diagram emphasizes which objects participate in collaborations.
[Note: Communication diagrams were called collaboration diagrams in earlier versions of
the UML.] Like the communication diagram, the sequence diagram shows collaborations
among objects, but it emphasizes when messages are sent between objects over time.

Communication Diagrams
Figure 25.23 shows a communication diagram that models the ATM executing a
BalanceInquiry. Objects are modeled in the UML as rectangles containing names in the
form objectName : ClassName. In this example, which involves only one object of each
type, we disregard the object name and list only a colon followed by the class name. [Note:
Specifying the name of each object in a communication diagram is recommended when
modeling multiple objects of the same type.] Communicating objects are connected with
solid lines, and messages are passed between objects along these lines in the direction
shown by arrows. The name of the message, which appears next to the arrow, is the name
of an operation (i.e., a member function) belonging to the receiving object—think of the
name as a service that the receiving object provides to sending objects (its “clients”).

The solid filled arrow in Fig. 25.23 represents a message—or synchronous call—in
the UML and a function call in C++. This arrow indicates that the flow of control is from
the sending object (the ATM) to the receiving object (a BalanceInquiry). Since this is a syn-
chronous call, the sending object may not send another message, or do anything at all, until the
receiving object processes the message and returns control to the sending object—the sender just

Fig. 25.23 | Communication diagram of the ATM executing a balance inquiry.

: ATM : BalanceInquiry

execute()

25-36 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

waits. For example, in Fig. 25.23, the ATM calls member function execute of a BalanceIn-
quiry and may not send another message until execute has finished and returns control
to the ATM. [Note: If this were an asynchronous call, represented by a stick arrowhead, the
sending object would not have to wait for the receiving object to return control—it would
continue sending additional messages immediately following the asynchronous call. Asyn-
chronous calls often can be implemented in C++ using platform-specific libraries provided
with your compiler. Such techniques are beyond the scope of this book.]

Sequence of Messages in a Communication Diagram
Figure 25.24 shows a communication diagram that models the interactions among objects
in the system when an object of class BalanceInquiry executes. We assume that the object’s
accountNumber attribute contains the account number of the current user. The collabora-
tions in Fig. 25.24 begin after the ATM sends an execute message to a BalanceInquiry (i.e.,
the interaction modeled in Fig. 25.23). The number to the left of a message name indicates
the order in which the message is passed. The sequence of messages in a communication
diagram progresses in numerical order from least to greatest. In this diagram, the number-
ing starts with message 1 and ends with message 3. The BalanceInquiry first sends a
getAvailableBalance message to the BankDatabase (message 1), then sends a getTotal-
Balance message to the BankDatabase (message 2). Within the parentheses following a
message name, we can specify a comma-separated list of the names of the parameters sent
with the message (i.e., arguments in a C++ function call)—the BalanceInquiry passes at-
tribute accountNumber with its messages to the BankDatabase to indicate which Account’s
balance information to retrieve. Recall from Fig. 25.18 that operations getAvailableBal-
ance and getTotalBalance of class BankDatabase each require a parameter to identify an
account. The BalanceInquiry next displays the availableBalance and the totalBalance
to the user by passing a displayMessage message to the Screen (message 3) that includes
a parameter indicating the message to be displayed.

Fig. 25.24 | Communication diagram for executing a balance inquiry.

: BalanceInquiry

: Screen

: BankDatabase : Account

3: displayMessage(message)

1: getAvailableBalance(accountNumber)
2: getTotalBalance(accountNumber)

1.1: getAvailableBalance()
2.1: getTotalBalance()

25.8 Indicating Collaboration Among Objects 25-37

Figure 25.24 models two additional messages passing from the BankDatabase to an
Account (message 1.1 and message 2.1). To provide the ATM with the two balances of the
user’s Account (as requested by messages 1 and 2), the BankDatabase must pass a
getAvailableBalance and a getTotalBalance message to the user’s Account. Messages
passed within the handling of another message are called nested messages. The UML rec-
ommends using a decimal numbering scheme to indicate nested messages. For example,
message 1.1 is the first message nested in message 1—the BankDatabase passes a get-

AvailableBalance message while processing BankDatabase’s message of the same name.
[Note: If the BankDatabase needed to pass a second nested message while processing mes-
sage 1, the second message would be numbered 1.2.] A message may be passed only when
all the nested messages from the previous message have been passed—e.g., the BalanceIn-
quiry passes message 3 only after messages 2 and 2.1 have been passed, in that order.

The nested numbering scheme used in communication diagrams helps clarify pre-
cisely when and in what context each message is passed. For example, if we numbered the
messages in Fig. 25.24 using a flat numbering scheme (i.e., 1, 2, 3, 4, 5), someone looking
at the diagram might not be able to determine that BankDatabase passes the
getAvailableBalance message (message 1.1) to an Account during the BankDatabase’s
processing of message 1, as opposed to after completing the processing of message 1. The
nested decimal numbers make it clear that the second getAvailableBalance message
(message 1.1) is passed to an Account within the handling of the first getAvailableBal-
ance message (message 1) by the BankDatabase.

Sequence Diagrams
Communication diagrams emphasize the participants in collaborations but model their
timing a bit awkwardly. A sequence diagram helps model the timing of collaborations
more clearly. Figure 25.25 shows a sequence diagram modeling the sequence of interac-
tions that occur when a Withdrawal executes. The dotted line extending down from an
object’s rectangle is that object’s lifeline, which represents the progression of time. Actions
typically occur along an object’s lifeline in chronological order from top to bottom—an ac-
tion near the top typically happens before one near the bottom.

Message passing in sequence diagrams is similar to message passing in communica-
tion diagrams. A solid arrow with a filled arrowhead extending from the sending object to
the receiving object represents a message between two objects. The arrowhead points to an
activation on the receiving object’s lifeline. An activation, shown as a thin vertical rect-
angle, indicates that an object is executing. When an object returns control, a return mes-
sage, represented as a dashed line with a stick arrowhead, extends from the activation of
the object returning control to the activation of the object that initially sent the message.
To eliminate clutter, we omit the return-message arrows—the UML allows this practice
to make diagrams more readable. Like communication diagrams, sequence diagrams can
indicate message parameters between the parentheses following a message name.

The sequence of messages in Fig. 25.25 begins when a Withdrawal prompts the user
to choose a withdrawal amount by sending a displayMessage message to the Screen. The
Withdrawal then sends a getInput message to the Keypad, which obtains input from the
user. We’ve already modeled the control logic involved in a Withdrawal in the activity dia-
gram of Fig. 25.15, so we do not show this logic in the sequence diagram of Fig. 25.25.
Instead, we model the best-case scenario in which the balance of the user’s account is
greater than or equal to the chosen withdrawal amount, and the cash dispenser contains a

25-38 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

sufficient amount of cash to satisfy the request. For information on how to model control
logic in a sequence diagram, please refer to the web resources at the end of Section 25.3.

After obtaining a withdrawal amount, the Withdrawal sends a getAvailableBalance
message to the BankDatabase, which in turn sends a getAvailableBalance message to the
user’s Account. Assuming that the user’s account has enough money available to permit
the transaction, the Withdrawal next sends an isSufficientCashAvailable message to
the CashDispenser. Assuming that there is enough cash available, the Withdrawal

decreases the balance of the user’s account (i.e., both the totalBalance and the avail-

ableBalance) by sending a debit message to the BankDatabase. The BankDatabase

responds by sending a debit message to the user’s Account. Finally, the Withdrawal sends
a dispenseCash message to the CashDispenser and a displayMessage message to the
Screen, telling the user to remove the cash from the machine.

Fig. 25.25 | Sequence diagram that models a Withdrawal executing.

getAvailableBalance()
getAvailableBalance(accountNumber)

dispenseCash(amount)

: CashDispenser: BankDatabase: Screen

: Account: Keypad: Withdrawal

debit(amount)

isSufficientCashAvailable(amount)

debit(accountNumber, amount)

displayMessage(message)

getInput()

displayMessage(message)

Self-Review Exercises for Section 25.8 25-39

We’ve identified the collaborations among the ATM system’s objects and modeled
some of them using UML interaction diagrams—both communication diagrams and
sequence diagrams. In Section 26.2, we enhance the structure of our model to complete a
preliminary object-oriented design, then we implement the ATM system in C++.

Self-Review Exercises for Section 25.8
25.17 A(n) consists of an object of one class sending a message to an object of another class.

a) association
b) aggregation
c) collaboration
d) composition

25.18 Which form of interaction diagram emphasizes what collaborations occur? Which form em-
phasizes when collaborations occur?

25.19 Create a sequence diagram that models the interactions among objects in the ATM system
that occur when a Deposit executes successfully, and explain the sequence of messages modeled by
the diagram.

25.9 Wrap-Up
In this chapter, you learned how to work from a detailed requirements document to de-
velop an object-oriented design. You worked with six popular types of UML diagrams to
graphically model an object-oriented automated teller machine software system. In
Section 26.3, we tune the design using inheritance, then completely implement the design
in an 850-line C++ application.

Answers to Self-Review Exercises
25.1 Figure 25.26 shows a use case diagram for a modified version of our ATM system that
also allows users to transfer money between accounts.

25.2 b.

25.3 d.

Fig. 25.26 | Use case diagram for a modified version of our ATM system that also allows
users to transfer money between accounts.

Transfer Funds
Between Accounts

Deposit Funds

Withdraw Cash

View Account Balance

User

25-40 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

25.4 [Note: Answers may vary.] Figure 25.27 presents a class diagram that shows some of the
composition relationships of a class Car.

25.5 c. [Note: In a computer network, this relationship could be many-to-many.]

25.6 True.

25.7 Figure 25.28 presents an ATM class diagram including class Deposit instead of class With-
drawal. Note that Deposit does not access CashDispenser, but does access DepositSlot.

Fig. 25.27 | Class diagram showing composition relationships of a class Car.

Fig. 25.28 | Class diagram for the ATM system model including class Deposit.

Car

Wheel

Windshield

SeatBeltSteeringWheel
11 5

2

1

1

4

1

Accesses/modifies an
account balance through

Executes

1

1

1

1

1

1

1

1

1 1 1 1

1

0..*

0..1
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Deposit

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

Answers to Self-Review Exercises 25-41

25.8 b.

25.9 c. Fly is an operation or behavior of an airplane, not an attribute.

25.10 This indicates that count is an Integer with an initial value of 500. This attribute keeps
track of the number of bills available in the CashDispenser at any given time.

25.11 False. State diagrams model some of the behavior of a system.

25.12 a.

25.13 Figure 25.29’s activity diagram models the actions that occur after the user chooses the de-
posit option from the main menu and before the ATM returns the user to the main menu. Recall
that part of receiving a deposit amount from the user involves converting an integer number of cents
to a dollar amount. Also recall that crediting a deposit amount to an account involves increasing
only the totalBalance attribute of the user’s Account object. The bank updates the availableBal-

Fig. 25.29 | Activity diagram for a Deposit transaction.

[user canceled transaction]

[user entered an amount]

[deposit envelope received][deposit envelope not received]

prompt user to enter a deposit amount or cancel

receive input from user

attempt to receive deposit envelope

display error message

set amount attribute

instruct user to insert deposit envelope

interact with database
to credit amount
to user’s account

display cancel message

25-42 Chapter 25 ATM Case Study, Part 1: Object-Oriented Design with the UML

ance attribute of the user’s Account object only after confirming the amount of cash in the deposit
envelope and after the enclosed checks clear—this occurs independently of the ATM system.

25.14 c.

25.15 To specify an operation that retrieves the amount attribute of class Withdrawal, the following
operation would be placed in the operation (i.e., third) compartment of class Withdrawal:

getAmount() : Double

25.16 This is an operation named add that takes integers x and y as parameters and returns an in-
teger value.

25.17 c.

25.18 Communication diagrams emphasize what collaborations occur. Sequence diagrams em-
phasize when collaborations occur.

25.19 Figure 25.30 presents a sequence diagram that models the interactions between objects that
occur when a Deposit executes successfully. A Deposit first sends a displayMessage message to the
Screen to ask the user to enter a deposit amount. Next, it sends a getInput message to the Keypad to
receive input from the user. Then, it instructs the user to insert a deposit envelope by sending a
displayMessage message to the Screen. It then sends an isEnvelopeReceived message to the Depos-

itSlot to confirm that the deposit envelope has been received. Finally, it increases the totalBalance

attribute (but not the availableBalance attribute) of the user’s Account by sending a credit message
to the BankDatabase. The BankDatabase responds by sending the same message to the user’s Account.

Fig. 25.30 | Sequence diagram that models a Deposit executing.

: Account: DepositSlot: Screen

: BankDatabase: Keypad: Deposit

isEnvelopeReceived()

credit(accountNumber, amount)

getinput()

displayMessage(message)

credit(amount)

displayMessage(message)

26ATM Case Study, Part 2:
Implementing an Object-
Oriented Design

You can’t work in the abstract.
—I. M. Pei

To generalize means to think.
—Georg Wilhelm Friedrich Hegel

We are all gifted. That is our
inheritance.
—Ethel Waters

Let me walk through the fields
of paper
touching with my wand
dry stems and stunted
butterflies…
—Denise Levertov

O b j e c t i v e s
In this chapter you’ll learn:

■ Incorporate inheritance into
the design of the ATM.

■ Incorporate polymorphism
into the design of the ATM.

■ Fully implement in C++ the
UML-based object-oriented
design of the ATM software.

■ Study a detailed code
walkthrough of the ATM
software system that explains
the implementation issues.

26-2 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

26.1 Introduction
In Chapter 25, we developed an object-oriented design for our ATM system. We now be-
gin implementing our object-oriented design in C++. In Section 26.2, we show how to con-
vert class diagrams to C++ code. In Section 26.3, we tune the design with inheritance and
polymorphism. Then we present a full C++ code implementation of the ATM software in
Section 26.4. The code is carefully commented and the discussions of the implementation
are thorough and precise. Studying this application provides the opportunity for you to see
a more substantial application of the kind you’re likely to encounter in industry.

26.2 Starting to Program the Classes of the ATM System
[Note: This section can be studied after Chapter 9.]

Visibility
We now apply access specifiers to the members of our classes. Access specifiers public and
private determine the visibility or accessibility of an object’s attributes and operations to
other objects. Before we can begin implementing our design, we must consider which at-
tributes and operations of our classes should be public and which should be private.

Previously, we observed that data members normally should be private and that
member functions invoked by clients of a given class should be public. Member functions
that are called only by other member functions of the class as “utility functions,” however,
normally should be private. The UML employs visibility markers for modeling the vis-
ibility of attributes and operations. Public visibility is indicated by placing a plus sign (+)
before an operation or an attribute; a minus sign (–) indicates private visibility.
Figure 26.1 shows our updated class diagram with visibility markers included. [Note: We
do not include any operation parameters in Fig. 26.1. This is perfectly normal. Adding vis-
ibility markers does not affect the parameters already modeled in the class diagrams of
Figs. 25.18–25.21.]

Navigability
Before we begin implementing our design in C++, we introduce an additional UML nota-
tion. The class diagram in Fig. 26.2 further refines the relationships among classes in the
ATM system by adding navigability arrows to the association lines. Navigability arrows
(represented as arrows with stick arrowheads in the class diagram) indicate in which direction
an association can be traversed and are based on the collaborations modeled in communica-

26.1 Introduction
26.2 Starting to Program the Classes of the

ATM System
26.3 Incorporating Inheritance into the

ATM System
26.4 ATM Case Study Implementation

26.4.1 Class ATM
26.4.2 Class Screen
26.4.3 Class Keypad

26.4.4 Class CashDispenser
26.4.5 Class DepositSlot
26.4.6 Class Account
26.4.7 Class BankDatabase
26.4.8 Class Transaction
26.4.9 Class BalanceInquiry

26.4.10 Class Withdrawal
26.4.11 Class Deposit
26.4.12 Test Program ATMCaseStudy.cpp

26.5 Wrap-Up

26.2 Starting to Program the Classes of the ATM System 26-3

tion and sequence diagrams (see Section 25.8). When implementing a system designed using
the UML, you use navigability arrows to help determine which objects need references or
pointers to other objects. For example, the navigability arrow pointing from class ATM to class
BankDatabase indicates that we can navigate from the former to the latter, thereby enabling
the ATM to invoke the BankDatabase’s operations. However, since Fig. 26.2 does not contain
a navigability arrow pointing from class BankDatabase to class ATM, the BankDatabase can-
not access the ATM’s operations. Associations in a class diagram that have navigability arrows
at both ends or do not have navigability arrows at all indicate bidirectional navigability—
navigation can proceed in either direction across the association.

Like the class diagram of Fig. 25.10, the class diagram of Fig. 26.2 omits classes
BalanceInquiry and Deposit to keep the diagram simple. The navigability of the associa-
tions in which these classes participate closely parallels the navigability of class Withdrawal’s
associations. Recall from Section 25.4 that BalanceInquiry has an association with class
Screen. We can navigate from class BalanceInquiry to class Screen along this association,
but we cannot navigate from class Screen to class BalanceInquiry. Thus, if we were to

Fig. 26.1 | Class diagram with visibility markers.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

– accountNumber : Integer

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

– accountNumber : Integer
– amount : Double

BankDatabase

Deposit

– accountNumber : Integer
– amount : Double

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

Account

– accountNumber : Integer
– pin : Integer
– availableBalance : Double
– totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

+ execute()

+ execute()
+ displayMessage()

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer+ execute()

+ isEnvelopeReceived() : Boolean

26-4 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

model class BalanceInquiry in Fig. 26.2, we would place a navigability arrow at class
Screen’s end of this association. Also recall that class Deposit associates with classes Screen,
Keypad and DepositSlot. We can navigate from class Deposit to each of these classes, but
not vice versa. We therefore would place navigability arrows at the Screen, Keypad and
DepositSlot ends of these associations. [Note: We model these additional classes and asso-
ciations in our final class diagram in Section 26.3, after we have simplified the structure of
our system by incorporating the object-oriented concept of inheritance.]

Implementing the ATM System from Its UML Design
We are now ready to begin implementing the ATM system. We first convert the classes in
the diagrams of Fig. 26.1 and Fig. 26.2 into C++ header files. This code will represent the
“skeleton” of the system. In Section 26.3, we modify the header files to incorporate the
object-oriented concept of inheritance. In Section 26.4, we present the complete working
C++ code for our model.

As an example, we begin to develop the header file for class Withdrawal from our
design of class Withdrawal in Fig. 26.1. We use this figure to determine the attributes and
operations of the class. We use the UML model in Fig. 26.2 to determine the associations
among classes. We follow the following five guidelines for each class:

1. Use the name in the first compartment of a class in a class diagram to define the
class in a header file (Fig. 26.3). Use #ifndef, #define and #endif preprocessor di-
rectives to prevent the header from being included more than once in a program.

Fig. 26.2 | Class diagram with navigability arrows.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

1

0..*

0..11
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

26.2 Starting to Program the Classes of the ATM System 26-5

2. Use the attributes located in the class’s second compartment to declare the data
members. For example, the private attributes accountNumber and amount of
class Withdrawal yield the code in Fig. 26.4.

3. Use the associations described in the class diagram to declare references (or point-
ers, where appropriate) to other objects. For example, according to Fig. 26.2,
Withdrawal can access one object of class Screen, one object of class Keypad, one
object of class CashDispenser and one object of class BankDatabase. Class With-
drawal must maintain handles on these objects to send messages to them, so lines
19–22 of Fig. 26.5 declare four references as private data members. In the imple-
mentation of class Withdrawal in Section 26.4, a constructor initializes these data
members with references to actual objects. Lines 6–9 #include the header files
containing the definitions of classes Screen, Keypad, CashDispenser and BankDa-

tabase so that we can declare references to objects of these classes in lines 19–22.

4. It turns out that including the header files for classes Screen, Keypad, CashDis-
penser and BankDatabase in Fig. 26.5 does more than is necessary. Class With-
drawal contains references to objects of these classes—it does not contain actual
objects—and the amount of information required by the compiler to create a ref-
erence differs from that which is required to create an object. Recall that creating
an object requires that you provide the compiler with a definition of the class that

1 // Fig. 26.3: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3
4
5
6
7 {
8 }; // end class Withdrawal
9

10

Fig. 26.3 | Definition of class Withdrawal enclosed in preprocessor wrappers.

1 // Fig. 26.4: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 class Withdrawal
7 {
8 private:
9

10
11
12 }; // end class Withdrawal
13
14 #endif // WITHDRAWAL_H

Fig. 26.4 | Adding attributes to the Withdrawal class header file.

#ifndef WITHDRAWAL_H
#define WITHDRAWAL_H

class Withdrawal

#endif // WITHDRAWAL_H

// attributes
int accountNumber; // account to withdraw funds from
double amount; // amount to withdraw

26-6 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

introduces the name of the class as a new user-defined type and indicates the data
members that determine how much memory is required to store the object. Declar-
ing a reference (or pointer) to an object, however, requires only that the compiler
knows that the object’s class exists—it does not need to know the size of the object.
Any reference (or pointer), regardless of the class of the object to which it refers,
contains only the memory address of the actual object. The amount of memory re-
quired to store an address is a physical characteristic of the computer’s hardware.
The compiler thus knows the size of any reference (or pointer). As a result, includ-
ing a class’s full header file when declaring only a reference to an object of that class
is unnecessary—we need to introduce the name of the class, but we do not need to
provide the data layout of the object, because the compiler already knows the size
of all references. C++ provides a statement called a forward declaration that signi-
fies that a header file contains references or pointers to a class, but that the class def-
inition lies outside the header file. We can replace the #includes in the Withdrawal
class definition of Fig. 26.5 with forward declarations of classes Screen, Keypad,
CashDispenser and BankDatabase (lines 6–9 in Fig. 26.6). Rather than #include

the entire header file for each of these classes, we place only a forward declaration
of each class in the header file for class Withdrawal. If class Withdrawal contained
actual objects instead of references (i.e., if the ampersands in lines 19–22 were omit-
ted), then we’d need to #include the full header files.

Using a forward declaration (where possible) instead of including a full header
file helps avoid a preprocessor problem called a circular include. This problem oc-

1 // Fig. 26.5: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6
7
8
9

10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18
19
20
21
22
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

Fig. 26.5 | Declaring references to objects associated with class Withdrawal.

#include "Screen.h" // include definition of class Screen
#include "Keypad.h" // include definition of class Keypad
#include "CashDispenser.h" // include definition of class CashDispenser
#include "BankDatabase.h" // include definition of class BankDatabase

// references to associated objects
Screen &screen; // reference to ATM’s screen
Keypad &keypad; // reference to ATM's keypad
CashDispenser &cashDispenser; // reference to ATM's cash dispenser
BankDatabase &bankDatabase; // reference to the account info database

26.2 Starting to Program the Classes of the ATM System 26-7

curs when the header file for a class A #includes the header file for a class B and vice
versa. Some preprocessors are not be able to resolve such #include directives, caus-
ing a compilation error. If class A, for example, uses only a reference to an object of
class B, then the #include in class A’s header file can be replaced by a forward dec-
laration of class B to prevent the circular include.

5. Use the operations located in the third compartment of Fig. 26.1 to write the
function prototypes of the class’s member functions. If we’ve not yet specified a
return type for an operation, we declare the member function with return type
void. Refer to the class diagrams of Figs. 6.22–6.25 to declare any necessary pa-
rameters. For example, adding the public operation execute in class Withdraw-
al, which has an empty parameter list, yields the prototype in line 15 of
Fig. 26.7. [Note: We code the definitions of member functions in .cpp files when
we implement the complete ATM system in Section 26.4.]

This concludes our discussion of the basics of generating class header files from UML
diagrams. In Section 26.3, we demonstrate how to modify the header files to incorporate
the object-oriented concept of inheritance.

1 // Fig. 26.6: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6
7
8
9

10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18 // references to associated objects
19 Screen &screen; // reference to ATM’s screen
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 BankDatabase &bankDatabase; // reference to the account info database
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

Fig. 26.6 | Using forward declarations in place of #include directives.

Software Engineering Observation 26.1
Several UML modeling tools can convert UML-based designs into C++ code, considerably
speeding the implementation process. For more information on these “automatic” code
generators, refer to our UML Resource Center at www.deitel.com/UML/.

class Screen; // forward declaration of class Screen
class Keypad; // forward declaration of class Keypad
class CashDispenser; // forward declaration of class CashDispenser
class BankDatabase; // forward declaration of class BankDatabase

www.deitel.com/UML/

26-8 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Self-Review Exercises for Section 26.2
26.1 State whether the following statement is true or false, and if false, explain why: If an attribute
of a class is marked with a minus sign (-) in a class diagram, the attribute is not directly accessible
outside of the class.

26.2 In Fig. 26.2, the association between the ATM and the Screen indicates that:
a) we can navigate from the Screen to the ATM

b) we can navigate from the ATM to the Screen

c) Both a and b; the association is bidirectional
d) None of the above

26.3 Write C++ code to begin implementing the design for class Account.

26.3 Incorporating Inheritance into the ATM System
[Note: This section can be studied after Chapter 13.]
We now revisit our ATM system design to see how it might benefit from inheritance. To
apply inheritance, we first look for commonality among classes in the system. We create an
inheritance hierarchy to model similar (yet not identical) classes in a more efficient and
elegant manner that enables us to process objects of these classes polymorphically. We then
modify our class diagram to incorporate the new inheritance relationships. Finally, we
demonstrate how our updated design is translated into C++ header files.

1 // Fig. 26.7: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 class Screen; // forward declaration of class Screen
7 class Keypad; // forward declaration of class Keypad
8 class CashDispenser; // forward declaration of class CashDispenser
9 class BankDatabase; // forward declaration of class BankDatabase

10
11 class Withdrawal
12 {
13 public:
14 // operations
15
16 private:
17 // attributes
18 int accountNumber; // account to withdraw funds from
19 double amount; // amount to withdraw
20
21 // references to associated objects
22 Screen &screen; // reference to ATM’s screen
23 Keypad &keypad; // reference to ATM's keypad
24 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
25 BankDatabase &bankDatabase; // reference to the account info database
26 }; // end class Withdrawal
27
28 #endif // WITHDRAWAL_H

Fig. 26.7 | Adding operations to the Withdrawal class header file.

void execute(); // perform the transaction

26.3 Incorporating Inheritance into the ATM System 26-9

In Section 25.4, we encountered the problem of representing a financial transaction
in the system. Rather than create one class to represent all transaction types, we decided to
create three individual transaction classes—BalanceInquiry, Withdrawal and Deposit—
to represent the transactions that the ATM system can perform. Figure 26.8 shows the
attributes and operations of these classes, which have one attribute (accountNumber) and
one operation (execute) in common. Each class requires attribute accountNumber to
specify the account to which the transaction applies. Each class contains operation exe-

cute, which the ATM invokes to perform the transaction. Clearly, BalanceInquiry,
Withdrawal and Deposit represent types of transactions. Figure 26.8 reveals commonality
among the transaction classes, so using inheritance to factor out the common features
seems appropriate for designing these classes. We place the common functionality in base
class Transaction and derive classes BalanceInquiry, Withdrawal and Deposit from
Transaction (Fig. 26.9).

The UML specifies a relationship called a generalization to model inheritance.
Figure 26.9 is the class diagram that models the inheritance relationship between base class
Transaction and its three derived classes. The arrows with triangular hollow arrowheads
indicate that classes BalanceInquiry, Withdrawal and Deposit are derived from class

Fig. 26.8 | Attributes and operations of classes BalanceInquiry, Withdrawal and Deposit.

Fig. 26.9 | Class diagram modeling generalization relations\hip between base class
Transaction and derived classes BalanceInquiry, Withdrawal and Deposit.

BalanceInquiry

- accountNumber : Integer

Withdrawal

- accountNumber : Integer
- amount : Double

Deposit

- accountNumber : Integer
- amount : Double

+ execute()

+ execute() + execute()

Transaction

– accountNumber : Integer

BalanceInquiry

+ getAccountNumber()
+ execute()

+ execute()

Withdrawal

+ execute()

– amount : Double

Deposit

+ execute()

– amount : Double

26-10 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Transaction. Class Transaction is said to be a generalization of its derived classes. The
derived classes are said to be specializations of class Transaction.

Classes BalanceInquiry, Withdrawal and Deposit share integer attribute account-

Number, so we factor out this common attribute and place it in base class Transaction. We
no longer list accountNumber in the second compartment of each derived class, because
the three derived classes inherit this attribute from Transaction. Recall, however, that
derived classes cannot access private attributes of a base class. We therefore include
public member function getAccountNumber in class Transaction. Each derived class
inherits this member function, enabling the derived class to access its accountNumber as
needed to execute a transaction.

According to Fig. 26.8, classes BalanceInquiry, Withdrawal and Deposit also share
operation execute, so base class Transaction should contain public member function
execute. However, it does not make sense to implement execute in class Transaction,
because the functionality that this member function provides depends on the specific type
of the actual transaction. We therefore declare member function execute as a pure vir-

tual function in base class Transaction. This makes Transaction an abstract class and
forces any class derived from Transaction that must be a concrete class (i.e., BalanceIn-
quiry, Withdrawal and Deposit) to implement pure virtual member function execute

to make the derived class concrete. The UML requires that we place abstract class names
(and pure virtual functions—abstract operations in the UML) in italics, so Transaction

and its member function execute appear in italics in Fig. 26.9. Operation execute is not
italicized in derived classes BalanceInquiry, Withdrawal and Deposit. Each derived class
overrides base class Transaction’s execute member function with an appropriate imple-
mentation. Figure 26.9 includes operation execute in the third compartment of classes
BalanceInquiry, Withdrawal and Deposit, because each class has a different concrete
implementation of the overridden member function.

Processing Transactions Polymorphically
A derived class can inherit interface and/or implementation from a base class. Compared
to a hierarchy designed for implementation inheritance, one designed for interface inher-
itance tends to have its functionality lower in the hierarchy—a base class signifies one or
more functions that should be defined by each class in the hierarchy, but the individual
derived classes provide their own implementations of the function(s). The inheritance hi-
erarchy designed for the ATM system takes advantage of this type of inheritance, which
provides the ATM with an elegant way to execute all transactions “in the general.” Each class
derived from Transaction inherits some implementation details (e.g., data member ac-
countNumber), but the primary benefit of incorporating inheritance into our system is that
the derived classes share a common interface (e.g., pure virtual member function exe-

cute). The ATM can aim a Transaction pointer at any transaction, and when the ATM in-
vokes execute through this pointer, the version of execute appropriate to that transaction
(i.e., the version implemented in that derived class’s .cpp file) runs automatically. For ex-
ample, suppose a user chooses to perform a balance inquiry. The ATM aims a Transaction

pointer at a new object of class BalanceInquiry; the compiler allows this because a Bal-

anceInquiry is a Transaction. When the ATM uses this pointer to invoke execute, Bal-
anceInquiry’s version of execute is called.

This polymorphic approach also makes the system easily extensible. Should we wish to
create a new transaction type (e.g., funds transfer or bill payment), we would just create

26.3 Incorporating Inheritance into the ATM System 26-11

an additional Transaction derived class that overrides the execute member function with
a version appropriate for the new transaction type. We would need to make only minimal
changes to the system code to allow users to choose the new transaction type from the
main menu and for the ATM to instantiate and execute objects of the new derived class. The
ATM could execute transactions of the new type using the current code, because it executes
all transactions identically.

As you learned earlier in the chapter, an abstract class like Transaction is one for
which you never intend to instantiate objects. An abstract class simply declares common
attributes and behaviors for its derived classes in an inheritance hierarchy. Class Transac-
tion defines the concept of what it means to be a transaction that has an account number
and executes. You may wonder why we bother to include pure virtual member function
execute in class Transaction if execute lacks a concrete implementation. Conceptually,
we include this member function because it’s the defining behavior of all transactions—
executing. Technically, we must include member function execute in base class Transac-
tion so that the ATM (or any other class) can polymorphically invoke each derived class’s
overridden version of this function through a Transaction pointer or reference.

Additional Attribute of Classes Withdrawal and Deposit
Derived classes BalanceInquiry, Withdrawal and Deposit inherit attribute accountNum-

ber from base class Transaction, but classes Withdrawal and Deposit contain the addi-
tional attribute amount that distinguishes them from class BalanceInquiry. Classes
Withdrawal and Deposit require this additional attribute to store the amount of money
that the user wishes to withdraw or deposit. Class BalanceInquiry has no need for such
an attribute and requires only an account number to execute. Even though two of the three
Transaction derived classes share this attribute, we do not place it in base class Transac-
tion—we place only features common to all the derived classes in the base class, so derived
classes do not inherit unnecessary attributes (and operations).

Class Diagram with Transaction Hierarchy Incorporated
Figure 26.10 presents an updated class diagram of our model that incorporates inheritance
and introduces class Transaction. We model an association between class ATM and class
Transaction to show that the ATM, at any given moment, either is executing a transaction
or is not (i.e., zero or one objects of type Transaction exist in the system at a time). Because
a Withdrawal is a type of Transaction, we no longer draw an association line directly be-
tween class ATM and class Withdrawal—derived class Withdrawal inherits base class Trans-
action’s association with class ATM. Derived classes BalanceInquiry and Deposit also
inherit this association, which replaces the previously omitted associations between classes
BalanceInquiry and Deposit and class ATM. Note again the use of triangular hollow arrow-
heads to indicate the specializations of class Transaction, as indicated in Fig. 26.9.

We also add an association between class Transaction and the BankDatabase

(Fig. 26.10). All Transactions require a reference to the BankDatabase so they can access
and modify account information. Each Transaction derived class inherits this reference, so
we no longer model the association between class Withdrawal and the BankDatabase. The
association between class Transaction and the BankDatabase replaces the previously
omitted associations between classes BalanceInquiry and Deposit and the BankDatabase.

We include an association between class Transaction and the Screen because all
Transactions display output to the user via the Screen. Each derived class inherits this

26-12 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

association. Therefore, we no longer include the association previously modeled between
Withdrawal and the Screen. Class Withdrawal still participates in associations with the
CashDispenser and the Keypad. We do not move these associations to base class Trans-
action, because the association with the Keypad applies only to classes Withdrawal and
Deposit, and the association with the CashDispenser applies only to class Withdrawal.

Our class diagram incorporating inheritance (Fig. 26.10) also models Deposit and
BalanceInquiry. We show associations between Deposit and both the DepositSlot and
the Keypad. BalanceInquiry takes part in no associations other than those inherited from
class Transaction—a BalanceInquiry interacts only with the BankDatabase and the
Screen.

Figure 26.1 showed attributes and operations with visibility markers. Now we present
a modified class diagram in Fig. 26.11 that includes abstract base class Transaction. This
abbreviated diagram does not show inheritance relationships (these appear in Fig. 26.10),
but instead shows the attributes and operations after we’ve employed inheritance in our
system. Abstract class name Transaction and abstract operation name execute in class
Transaction appear in italics. To save space, we do not include those attributes shown by
associations in Fig. 26.10—we do, however, include them in the C++ implementation.
We also omit all operation parameters, as we did in Fig. 26.1—incorporating inheritance
does not affect the parameters already modeled in Figs. 25.18–25.21.

Fig. 26.10 | Class diagram of the ATM system (incorporating inheritance). Note that
abstract class name Transaction appears in italics.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

11

1

0..1

0..11
0..1

0..1 0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Transaction

BalanceInquiry

Withdrawal
DepositSlot

ATM

CashDispenser

Screen

Deposit

Account

BankDatabase

26.3 Incorporating Inheritance into the ATM System 26-13

Implementing the ATM System Design Incorporating Inheritance
We now modify our implementation to incorporate inheritance, using class Withdrawal
as an example.

Fig. 26.11 | Class diagram after incorporating inheritance into the system.

Software Engineering Observation 26.2
A complete class diagram shows all the associations among classes and all the attributes
and operations for each class. When the number of class attributes, operations and
associations is substantial (as in Fig. 26.10 and Fig. 26.11), a good practice that promotes
readability is to divide this information between two class diagrams—one focusing on
associations and the other on attributes and operations. However, when examining classes
modeled in this fashion, it’s crucial to consider both class diagrams to get a complete view
of the classes. For example, one must refer to Fig. 26.10 to observe the inheritance
relationship between Transaction and its derived classes that is omitted from Fig. 26.11.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad
Withdrawal

– amount : Double

BankDatabase

Deposit

– amount : Double

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

Account

– accountNumber : Integer
– pin : Integer
– availableBalance : Double
– totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

+ execute()

Transaction

– accountNumber : Integer

+ getAccountNumber()
+ execute()

+ execute()

+ displayMessage()

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer

+ execute()

+ isEnvelopeReceived() : Boolean

26-14 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

1. If a class A is a generalization of class B, then class B is derived from (and is a spe-
cialization of) class A. For example, abstract base class Transaction is a general-
ization of class Withdrawal. Thus, class Withdrawal is derived from (and is a
specialization of) class Transaction. Figure 26.12 contains a portion of class
Withdrawal’s header file, in which the class definition indicates the inheritance
relationship between Withdrawal and Transaction (line 9).

2. If class A is an abstract class and class B is derived from class A, then class B must
implement the pure virtual functions of class A if class B is to be a concrete class.
For example, class Transaction contains pure virtual function execute, so class
Withdrawal must implement this member function if we want to instantiate a
Withdrawal object. Figure 26.13 contains the C++ header file for class Withdraw-
al from Fig. 26.10 and Fig. 26.11. Class Withdrawal inherits data member ac-
countNumber from base class Transaction, so Withdrawal does not declare this
data member. Class Withdrawal also inherits references to the Screen and the
BankDatabase from its base class Transaction, so we do not include these refer-
ences in our code. Figure 26.11 specifies attribute amount and operation execute

for class Withdrawal. Line 19 of Fig. 26.13 declares a data member for attribute
amount. Line 16 contains the function prototype for operation execute. Recall
that, to be a concrete class, derived class Withdrawal must provide a concrete im-
plementation of the pure virtual function execute in base class Transaction.
The prototype in line 16 signals your intent to override the base class pure vir-

tual function. You must provide this prototype if you’ll provide an implementa-
tion in the .cpp file. We present this implementation in Section 26.4. The
keypad and cashDispenser references (lines 20–21) are data members derived
from Withdrawal’s associations in Fig. 26.10. In the implementation of this class
in Section 26.4, a constructor initializes these references to actual objects. Once
again, to be able to compile the declarations of the references in lines 20–21, we
include the forward declarations in lines 8–9.

ATM Case Study Wrap-Up
This concludes our object-oriented design of the ATM system. A complete C++ imple-
mentation of the ATM system in 850 lines of code appears in Section 26.4. This working

1 // Fig. 26.12: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 #include "Transaction.h" // Transaction class definition
7
8
9

10 {
11 }; // end class Withdrawal
12
13 #endif // WITHDRAWAL_H

Fig. 26.12 | Withdrawal class definition that derives from Transaction.

// class Withdrawal derives from base class Transaction
class Withdrawal : public Transaction

Self-Review Exercises for Section 26.3 26-15

implementation uses key programming notions, including classes, objects, encapsulation,
visibility, composition, inheritance and polymorphism. The code is abundantly comment-
ed and conforms to the coding practices you’ve learned. Mastering this code is a wonderful
capstone experience.

Self-Review Exercises for Section 26.3
26.4 The UML uses an arrow with a to indicate a generalization relationship.

a) solid filled arrowhead
b) triangular hollow arrowhead
c) diamond-shaped hollow arrowhead
d) stick arrowhead

26.5 State whether the following statement is true or false, and if false, explain why: The UML
requires that we underline abstract class names and operation names.

26.6 Write a C++ header file to begin implementing the design for class Transaction specified
in Fig. 26.10 and Fig. 26.11. Be sure to include private references based on class Transaction’s as-
sociations. Also be sure to include public get functions for any of the private data members that
the derived classes must access to perform their tasks.

26.4 ATM Case Study Implementation
This section contains the complete working implementation of the ATM system that we
designed in Chapter 25 and this chapter. We consider the classes in the order in which we
identified them in Section 25.4:

1 // Fig. 26.13: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 #include "Transaction.h" // Transaction class definition
7
8 class Keypad; // forward declaration of class Keypad
9 class CashDispenser; // forward declaration of class CashDispenser

10
11 // class Withdrawal derives from base class Transaction
12 class Withdrawal : public Transaction
13 {
14 public:
15 // member function overriding execute in base class Transaction
16 virtual void execute(); // perform the transaction
17 private:
18 // attributes
19 double amount; // amount to withdraw
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 }; // end class Withdrawal
23
24 #endif // WITHDRAWAL_H

Fig. 26.13 | Withdrawal class header file based on Fig. 26.10 and Fig. 26.11.

26-16 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

• ATM

• Screen

• Keypad

• CashDispenser

• DepositSlot

• Account

• BankDatabase

• Transaction

• BalanceInquiry

• Withdrawal

• Deposit

We apply the guidelines discussed in Sections 26.2 and 26.3 to code these classes based on
how we modeled them in the UML class diagrams of Figs. 26.10 and 26.11. To develop
the definitions of classes’ member functions, we refer to the activity diagrams presented in
Section 25.6 and the communication and sequence diagrams presented in Section 25.8.
Note that our ATM design does not specify all the program logic and may not specify all
the attributes and operations required to complete the ATM implementation. This is a
normal part of the object-oriented design process. As we implement the system, we com-
plete the program logic and add attributes and behaviors as necessary to construct the
ATM system specified by the requirements specification in Section 25.3.

We conclude the discussion by presenting a C++ program (ATMCaseStudy.cpp) that
starts the ATM and puts the other classes in the system in use. Recall that we’re developing
a first version of the ATM system that runs on a personal computer and uses the com-
puter’s keyboard and monitor to approximate the ATM’s keypad and screen. We also only
simulate the actions of the ATM’s cash dispenser and deposit slot. We attempt to imple-
ment the system, however, so that real hardware versions of these devices could be inte-
grated without significant changes in the code.

26.4.1 Class ATM
Class ATM (Figs. 26.14–26.15) represents the ATM as a whole. Figure 26.14 contains the
ATM class definition, enclosed in #ifndef, #define and #endif preprocessor directives to
ensure that this definition gets included only once in a program. We discuss lines 6–11
shortly. Lines 16–17 contain the function prototypes for the class’s public member func-
tions. The class diagram of Fig. 26.11 does not list any operations for class ATM, but we
now declare a public member function run (line 17) in class ATM that allows an external
client of the class (i.e., ATMCaseStudy.cpp) to tell the ATM to run. We also include a func-
tion prototype for a default constructor (line 16), which we discuss shortly.

1 // ATM.h
2 // ATM class definition. Represents an automated teller machine.
3 #ifndef ATM_H

Fig. 26.14 | Definition of class ATM, which represents the ATM. (Part 1 of 2.)

26.4 ATM Case Study Implementation 26-17

Lines 19–25 of Fig. 26.14 implement the class’s attributes as private data members.
We determine all but one of these attributes from the class diagrams of Figs. 26.10– 26.11.
We implement the UML Boolean attribute userAuthenticated in Fig. 26.11 as a bool

data member in C++ (line 19). Line 20 declares a data member not found in our UML
design—an int data member currentAccountNumber that keeps track of the account
number of the current authenticated user. We’ll soon see how the class uses this data
member.

Lines 21–24 create objects to represent the parts of the ATM. Recall from the class
diagram of Fig. 26.10 that class ATM has composition relationships with classes Screen,
Keypad, CashDispenser and DepositSlot, so class ATM is responsible for their creation.
Line 25 creates a BankDatabase, with which the ATM interacts to access and manipulate
bank account information. [Note: If this were a real ATM system, the ATM class would
receive a reference to an existing database object created by the bank. However, in this
implementation we are only simulating the bank’s database, so class ATM creates the Bank-
Database object with which it interacts.] Lines 6–10 #include the class definitions of

4 #define ATM_H
5
6 #include "Screen.h" // Screen class definition
7 #include "Keypad.h" // Keypad class definition
8 #include "CashDispenser.h" // CashDispenser class definition
9 #include "DepositSlot.h" // DepositSlot class definition

10 #include "BankDatabase.h" // BankDatabase class definition
11 class Transaction; // forward declaration of class Transaction
12
13 class ATM
14 {
15 public:
16 ATM(); // constructor initializes data members
17 void run(); // start the ATM
18 private:
19 bool userAuthenticated; // whether user is authenticated
20 int currentAccountNumber; // current user's account number
21 Screen screen; // ATM's screen
22 Keypad keypad; // ATM's keypad
23 CashDispenser cashDispenser; // ATM's cash dispenser
24 DepositSlot depositSlot; // ATM's deposit slot
25 BankDatabase bankDatabase; // account information database
26
27 // private utility functions
28 void authenticateUser(); // attempts to authenticate user
29 void performTransactions(); // performs transactions
30 int displayMainMenu() const; // displays main menu
31
32 // return object of specified Transaction derived class
33 Transaction *createTransaction(int);
34 }; // end class ATM
35
36 #endif // ATM_H

Fig. 26.14 | Definition of class ATM, which represents the ATM. (Part 2 of 2.)

26-18 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Screen, Keypad, CashDispenser, DepositSlot and BankDatabase so that the ATM can
store objects of these classes.

Lines 28–30 and 33 contain function prototypes for private utility functions that the
class uses to perform its tasks. We’ll see how these functions serve the class shortly.
Member function createTransaction (line 33) returns a Transaction pointer. To
include the class name Transaction in this file, we must at least include a forward decla-
ration of class Transaction (line 11). Recall that a forward declaration tells the compiler
that a class exists, but that the class is defined elsewhere. A forward declaration is sufficient
here, as we are using a Transaction pointer as a return type—if we were creating or
returning an actual Transaction object, we would need to #include the full Transaction
header file.

ATM Class Member-Function Definitions
Figure 26.15 contains the member-function definitions for class ATM. Lines 3–7 #include

the header files required by the implementation file ATM.cpp. Including the ATM header file
allows the compiler to ensure that the class’s member functions are defined correctly. This
also allows the member functions to use the class’s data members.

1 // ATM.cpp
2 // Member-function definitions for class ATM.
3 #include "ATM.h" // ATM class definition
4 #include "Transaction.h" // Transaction class definition
5 #include "BalanceInquiry.h" // BalanceInquiry class definition
6 #include "Withdrawal.h" // Withdrawal class definition
7 #include "Deposit.h" // Deposit class definition
8
9 // enumeration constants represent main menu options

10 enum MenuOption { BALANCE_INQUIRY = 1, WITHDRAWAL, DEPOSIT, EXIT };
11
12 // ATM default constructor initializes data members
13 ATM::ATM()
14 : userAuthenticated (false), // user is not authenticated to start
15 currentAccountNumber(0) // no current account number to start
16 {
17 // empty body
18 } // end ATM default constructor
19
20 // start ATM
21 void ATM::run()
22 {
23 // welcome and authenticate user; perform transactions
24 while (true)
25 {
26 // loop while user is not yet authenticated
27 while (!userAuthenticated)
28 {
29 screen.displayMessageLine("\nWelcome!");
30 authenticateUser(); // authenticate user
31 } // end while
32

Fig. 26.15 | ATM class member-function definitions. (Part 1 of 4.)

26.4 ATM Case Study Implementation 26-19

33 performTransactions(); // user is now authenticated
34 userAuthenticated = false; // reset before next ATM session
35 currentAccountNumber = 0; // reset before next ATM session
36 screen.displayMessageLine("\nThank you! Goodbye!");
37 } // end while
38 } // end function run
39
40 // attempt to authenticate user against database
41 void ATM::authenticateUser()
42 {
43 screen.displayMessage("\nPlease enter your account number: ");
44 int accountNumber = keypad.getInput(); // input account number
45 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
46 int pin = keypad.getInput(); // input PIN
47
48 // set userAuthenticated to bool value returned by database
49 userAuthenticated =
50 bankDatabase.authenticateUser(accountNumber, pin);
51
52 // check whether authentication succeeded
53 if (userAuthenticated)
54 {
55 currentAccountNumber = accountNumber; // save user's account #
56 } // end if
57 else
58 screen.displayMessageLine(
59 "Invalid account number or PIN. Please try again.");
60 } // end function authenticateUser
61
62 // display the main menu and perform transactions
63 void ATM::performTransactions()
64 {
65 // local pointer to store transaction currently being processed
66 Transaction *currentTransactionPtr;
67
68 bool userExited = false; // user has not chosen to exit
69
70 // loop while user has not chosen option to exit system
71 while (!userExited)
72 {
73 // show main menu and get user selection
74 int mainMenuSelection = displayMainMenu();
75
76 // decide how to proceed based on user's menu selection
77 switch (mainMenuSelection)
78 {
79 // user chose to perform one of three transaction types
80 case BALANCE_INQUIRY:
81 case WITHDRAWAL:
82 case DEPOSIT:
83 // initialize as new object of chosen type
84 currentTransactionPtr =
85 createTransaction(mainMenuSelection);

Fig. 26.15 | ATM class member-function definitions. (Part 2 of 4.)

26-20 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

86
87 currentTransactionPtr->execute(); // execute transaction
88
89 // free the space for the dynamically allocated Transaction
90 delete currentTransactionPtr;
91
92 break;
93 case EXIT: // user chose to terminate session
94 screen.displayMessageLine("\nExiting the system...");
95 userExited = true; // this ATM session should end
96 break;
97 default: // user did not enter an integer from 1-4
98 screen.displayMessageLine(
99 "\nYou did not enter a valid selection. Try again.");
100 break;
101 } // end switch
102 } // end while
103 } // end function performTransactions
104
105 // display the main menu and return an input selection
106 int ATM::displayMainMenu() const
107 {
108 screen.displayMessageLine("\nMain menu:");
109 screen.displayMessageLine("1 - View my balance");
110 screen.displayMessageLine("2 - Withdraw cash");
111 screen.displayMessageLine("3 - Deposit funds");
112 screen.displayMessageLine("4 - Exit\n");
113 screen.displayMessage("Enter a choice: ");
114 return keypad.getInput(); // return user's selection
115 } // end function displayMainMenu
116
117 // return object of specified Transaction derived class
118 Transaction *ATM::createTransaction(int type)
119 {
120 Transaction *tempPtr; // temporary Transaction pointer
121
122 // determine which type of Transaction to create
123 switch (type)
124 {
125 case BALANCE_INQUIRY: // create new BalanceInquiry transaction
126 tempPtr = new BalanceInquiry(
127 currentAccountNumber, screen, bankDatabase);
128 break;
129 case WITHDRAWAL: // create new Withdrawal transaction
130 tempPtr = new Withdrawal(currentAccountNumber, screen,
131 bankDatabase, keypad, cashDispenser);
132 break;
133 case DEPOSIT: // create new Deposit transaction
134 tempPtr = new Deposit(currentAccountNumber, screen,
135 bankDatabase, keypad, depositSlot);
136 break;
137 } // end switch
138

Fig. 26.15 | ATM class member-function definitions. (Part 3 of 4.)

26.4 ATM Case Study Implementation 26-21

Line 10 declares an enum named MenuOption that contains constants corresponding to
the four options in the ATM’s main menu (i.e., balance inquiry, withdrawal, deposit and
exit). Note that setting BALANCE_INQUIRY to 1 causes the subsequent enumeration constants
to be assigned the values 2, 3 and 4, as enumeration constant values increment by 1.

Lines 13–18 define class ATM’s constructor, which initializes the class’s data members.
When an ATM object is first created, no user is authenticated, so line 14 uses a member ini-
tializer to set userAuthenticated to false. Likewise, line 15 initializes currentAccount-
Number to 0 because there is no current user yet.

ATM Member Function run
ATM member function run (lines 21–38) uses an infinite loop (lines 24–37) to repeatedly
welcome a user, attempt to authenticate the user and, if authentication succeeds, allow the
user to perform transactions. After an authenticated user performs the desired transactions
and chooses to exit, the ATM resets itself, displays a goodbye message to the user and re-
starts the process. We use an infinite loop here to simulate the fact that an ATM appears
to run continuously until the bank turns it off (an action beyond the user’s control). An
ATM user has the option to exit the system, but does not have the ability to turn off the
ATM completely.

Authenticating a User
Inside member function run’s infinite loop, lines 27–31 cause the ATM to repeatedly wel-
come and attempt to authenticate the user as long as the user has not been authenticated (i.e.,
!userAuthenticated is true). Line 29 invokes member function displayMessageLine of
the ATM’s screen to display a welcome message. Like Screen member function displayMe-

ssage designed in the case study, member function displayMessageLine (declared in line
13 of Fig. 26.16 and defined in lines 20–23 of Fig. 26.17) displays a message to the user, but
this member function also outputs a newline after displaying the message. We’ve added this
member function during implementation to give class Screen’s clients more control over the
placement of displayed messages. Line 30 of Fig. 26.15 invokes class ATM’s private utility
function authenticateUser (lines 41–60) to attempt to authenticate the user.

We refer to the requirements specification to determine the steps necessary to authen-
ticate the user before allowing transactions to occur. Line 43 of member function authen-

ticateUser invokes member function displayMessage of the ATM’s screen to prompt the
user to enter an account number. Line 44 invokes member function getInput of the ATM’s
keypad to obtain the user’s input, then stores the integer value entered by the user in a local
variable accountNumber. Member function authenticateUser next prompts the user to
enter a PIN (line 45), and stores the PIN input by the user in a local variable pin (line 46).
Next, lines 49–50 attempt to authenticate the user by passing the accountNumber and pin

entered by the user to the bankDatabase’s authenticateUser member function. Class ATM
sets its userAuthenticated data member to the bool value returned by this function—
userAuthenticated becomes true if authentication succeeds (i.e., accountNumber and
pin match those of an existing Account in bankDatabase) and remains false otherwise.

139 return tempPtr; // return the newly created object
140 } // end function createTransaction

Fig. 26.15 | ATM class member-function definitions. (Part 4 of 4.)

26-22 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

If userAuthenticated is true, line 55 saves the account number entered by the user (i.e.,
accountNumber) in the ATM data member currentAccountNumber. The other member
functions of class ATM use this variable whenever an ATM session requires access to the user’s
account number. If userAuthenticated is false, lines 58–59 use the screen’s display-
MessageLine member function to indicate that an invalid account number and/or PIN
was entered and the user must try again. Note that we set currentAccountNumber only
after authenticating the user’s account number and the associated PIN—if the database
could not authenticate the user, currentAccountNumber remains 0.

After member function run attempts to authenticate the user (line 30), if user-

Authenticated is still false, the while loop in lines 27–31 executes again. If userAuthen-
ticated is now true, the loop terminates and control continues with line 33, which calls
class ATM’s utility function performTransactions.

Performing Transactions
Member function performTransactions (lines 63–103) carries out an ATM session for an
authenticated user. Line 66 declares a local Transaction pointer, which we aim at a Bal-

anceInquiry, Withdrawal or Deposit object representing the ATM transaction currently
being processed. We use a Transaction pointer here to allow us to take advantage of poly-
morphism. Also, we use the role name included in the class diagram of Fig. 25.7—cur-

rentTransaction—in naming this pointer. As per our pointer-naming convention, we
append “Ptr” to the role name to form the variable name currentTransactionPtr. Line
68 declares another local variable—a bool called userExited that keeps track of whether
the user has chosen to exit. This variable controls a while loop (lines 71–102) that allows
the user to execute an unlimited number of transactions before choosing to exit. Within this
loop, line 74 displays the main menu and obtains the user’s menu selection by calling an
ATM utility function displayMainMenu (defined in lines 106–115). This member function
displays the main menu by invoking member functions of the ATM’s screen and returns a
menu selection obtained from the user through the ATM’s keypad. Note that this member
function is const because it does not modify the contents of the object. Line 74 stores the
user’s selection returned by displayMainMenu in local variable mainMenuSelection.

After obtaining a main menu selection, member function performTransactions uses
a switch statement (lines 77–101) to respond to the selection appropriately. If main-

MenuSelection is equal to any of the three enumeration constants representing transac-
tion types (i.e., if the user chose to perform a transaction), lines 84–85 call utility function
createTransaction (defined in lines 118–140) to return a pointer to a newly instantiated
object of the type that corresponds to the selected transaction. Pointer currentTransac-
tionPtr is assigned the pointer returned by createTransaction. Line 87 then uses cur-
rentTransactionPtr to invoke the new object’s execute member function to execute the
transaction. We’ll discuss Transaction member function execute and the three Trans-

action derived classes shortly. Finally, when the Transaction derived class object is no
longer needed, line 90 releases the memory dynamically allocated for it.

We aim the Transaction pointer currentTransactionPtr at an object of one of the
three Transaction derived classes so that we can execute transactions polymorphically. For
example, if the user chooses to perform a balance inquiry, mainMenuSelection equals
BALANCE_INQUIRY, leading createTransaction to return a pointer to a BalanceInquiry

object. Thus, currentTransactionPtr points to a BalanceInquiry, and invoking current-
TransactionPtr->execute() results in BalanceInquiry’s version of execute being called.

26.4 ATM Case Study Implementation 26-23

Creating a Transaction
Member function createTransaction (lines 118–140) uses a switch statement (lines
123–137) to instantiate a new Transaction derived class object of the type indicated by
the parameter type. Recall that member function performTransactions passes main-

MenuSelection to this member function only when mainMenuSelection contains a value
corresponding to one of the three transaction types. Therefore type equals either
BALANCE_INQUIRY, WITHDRAWAL or DEPOSIT. Each case in the switch statement aims the
temporary pointer tempPtr at a newly created object of the appropriate Transaction de-
rived class. Each constructor has a unique parameter list, based on the specific data re-
quired to initialize the derived class object. A BalanceInquiry requires only the account
number of the current user and references to the ATM’s screen and the bankDatabase. In
addition to these parameters, a Withdrawal requires references to the ATM’s keypad and
cashDispenser, and a Deposit requires references to the ATM’s keypad and depositSlot.
As you’ll soon see, the BalanceInquiry, Withdrawal and Deposit constructors each spec-
ify reference parameters to receive the objects representing the required parts of the ATM.
Thus, when member function createTransaction passes objects in the ATM (e.g., screen
and keypad) to the initializer for each newly created Transaction derived class object, the
new object actually receives references to the ATM’s composite objects. We discuss the trans-
action classes in more detail in Sections 26.4.8–26.4.11.

Exiting the Main Menu and Processing Invalid Selections
After executing a transaction (line 87 in performTransactions), userExited remains
false and the while loop in lines 71–102 repeats, returning the user to the main menu.
However, if a user does not perform a transaction and instead selects the main menu op-
tion to exit, line 95 sets userExited to true, causing the condition of the while loop
(!userExited) to become false. This while is the final statement of member function
performTransactions, so control returns to the calling function run. If the user enters an
invalid main menu selection (i.e., not an integer from 1–4), lines 98–99 display an appro-
priate error message, userExited remains false and the user returns to the main menu to
try again.

Awaiting the Next ATM User
When performTransactions returns control to member function run, the user has chosen
to exit the system, so lines 34–35 reset the ATM’s data members userAuthenticated and
currentAccountNumber to prepare for the next ATM user. Line 36 displays a goodbye
message before the ATM starts over and welcomes the next user.

26.4.2 Class Screen
Class Screen (Figs. 26.16–26.17) represents the screen of the ATM and encapsulates all
aspects of displaying output to the user. Class Screen approximates a real ATM’s screen
with a computer monitor and outputs text messages using cout and the stream insertion
operator (<<). In this case study, we designed class Screen to have one operation—dis-

playMessage. For greater flexibility in displaying messages to the Screen, we now declare
three Screen member functions—displayMessage, displayMessageLine and display-

DollarAmount. The prototypes for these member functions appear in lines 12–14 of
Fig. 26.16.

26-24 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Screen Class Member-Function Definitions
Figure 26.17 contains the member-function definitions for class Screen. Line 5 #includes
the Screen class definition. Member function displayMessage (lines 9–12) takes a string
as an argument and prints it to the console using cout and the stream insertion operator
(<<). The cursor stays on the same line, making this member function appropriate for dis-

1 // Screen.h
2 // Screen class definition. Represents the screen of the ATM.
3 #ifndef SCREEN_H
4 #define SCREEN_H
5
6 #include <string>
7 using namespace std;
8
9 class Screen

10 {
11 public:
12 void displayMessage(string) const; // output a message
13 void displayMessageLine(string) const; // output message with newline
14 void displayDollarAmount(double) const; // output a dollar amount
15 }; // end class Screen
16
17 #endif // SCREEN_H

Fig. 26.16 | Screen class definition.

1 // Screen.cpp
2 // Member-function definitions for class Screen.
3 #include <iostream>
4 #include <iomanip>
5 #include "Screen.h" // Screen class definition
6 using namespace std;
7
8 // output a message without a newline
9 void Screen::displayMessage(string message) const

10 {
11 cout << message;
12 } // end function displayMessage
13
14 // output a message with a newline
15 void Screen::displayMessageLine(string message) const
16 {
17 cout << message << endl;
18 } // end function displayMessageLine
19
20 // output a dollar amount
21 void Screen::displayDollarAmount(double amount) const
22 {
23 cout << fixed << setprecision(2) << "$" << amount;
24 } // end function displayDollarAmount

Fig. 26.17 | Screen class member-function definitions.

26.4 ATM Case Study Implementation 26-25

playing prompts to the user. Member function displayMessageLine (lines 15–18) also
prints a string, but outputs a newline to move the cursor to the next line. Finally, member
function displayDollarAmount (lines 21–24) outputs a properly formatted dollar amount
(e.g., $123.45). Line 23 uses stream manipulators fixed and setprecision to output a
value formatted with two decimal places.

26.4.3 Class Keypad
Class Keypad (Figs. 26.18–26.19) represents the keypad of the ATM and is responsible for
receiving all user input. Recall that we are simulating this hardware, so we use the computer’s
keyboard to approximate the keypad. A computer keyboard contains many keys not found
on the ATM’s keypad. However, we assume that the user presses only the keys on the com-
puter keyboard that also appear on the keypad—the keys numbered 0–9 and the Enter key.
Line 9 of Fig. 26.18 contains the function prototype for class Keypad’s one member function
getInput. This member function is declared const because it does not change the object.

Keypad Class Member-Function Definition
In the Keypad implementation file (Fig. 26.19), member function getInput (defined in
lines 9–14) uses the standard input stream cin and the stream extraction operator (>>) to
obtain input from the user. Line 11 declares a local variable to store the user’s input. Line
12 reads input into local variable input, then line 13 returns this value. Recall that get-
Input obtains all the input used by the ATM. Keypad’s getInput member function simply
returns the integer input by the user. If a client of class Keypad requires input that satisfies
some particular criteria (i.e., a number corresponding to a valid menu option), the client
must perform the appropriate error checking. [Note: Using the standard input stream cin

and the stream extraction operator (>>) allows noninteger input to be read from the user.
Because the real ATM’s keypad permits only integer input, however, we assume that the
user enters an integer and do not attempt to fix problems caused by noninteger input.]

1 // Keypad.h
2 // Keypad class definition. Represents the keypad of the ATM.
3 #ifndef KEYPAD_H
4 #define KEYPAD_H
5
6 class Keypad
7 {
8 public:
9 int getInput() const; // return an integer value entered by user

10 }; // end class Keypad
11
12 #endif // KEYPAD_H

Fig. 26.18 | Keypad class definition.

1 // Keypad.cpp
2 // Member-function definition for class Keypad (the ATM's keypad).
3 #include <iostream>

Fig. 26.19 | Keypad class member-function definition. (Part 1 of 2.)

26-26 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

26.4.4 Class CashDispenser
Class CashDispenser (Figs. 26.20–26.21) represents the cash dispenser. Figure 26.20
contains the function prototype for a default constructor (line 9). Class CashDispenser
declares two additional public member functions—dispenseCash (line 12) and isSuf-

ficientCashAvailable (line 15). The class trusts that a client (i.e., Withdrawal) calls dis-
penseCash only after establishing that sufficient cash is available by calling
isSufficientCashAvailable. Thus, dispenseCash simply simulates dispensing the re-
quested amount without checking whether sufficient cash is available. Line 17 declares
private constant INITIAL_COUNT, which indicates the initial count of bills in the cash dis-
penser when the ATM starts (i.e., 500). Line 18 implements attribute count (modeled in
Fig. 26.11), which keeps track of the number of bills remaining in the CashDispenser at
any time.

4 using namespace std;
5
6 #include "Keypad.h" // Keypad class definition
7
8 // return an integer value entered by user
9 int Keypad::getInput() const

10 {
11 int input; // variable to store the input
12 cin >> input; // we assume that user enters an integer
13 return input; // return the value entered by user
14 } // end function getInput

1 // CashDispenser.h
2 // CashDispenser class definition. Represents the ATM's cash dispenser.
3 #ifndef CASH_DISPENSER_H
4 #define CASH_DISPENSER_H
5
6 class CashDispenser
7 {
8 public:
9 CashDispenser(); // constructor initializes bill count to 500

10
11 // simulates dispensing of specified amount of cash
12 void dispenseCash(int);
13
14 // indicates whether cash dispenser can dispense desired amount
15 bool isSufficientCashAvailable(int) const;
16 private:
17 static const int INITIAL_COUNT = 500;
18 int count; // number of $20 bills remaining
19 }; // end class CashDispenser
20
21 #endif // CASH_DISPENSER_H

Fig. 26.20 | CashDispenser class definition.

Fig. 26.19 | Keypad class member-function definition. (Part 2 of 2.)

26.4 ATM Case Study Implementation 26-27

CashDispenser Class Member-Function Definitions
Figure 26.21 contains the definitions of class CashDispenser’s member functions. The
constructor (lines 6–9) sets count to the initial count (i.e., 500). Member function
dispenseCash (lines 13–17) simulates cash dispensing. If our system were hooked up to a
real hardware cash dispenser, this member function would interact with the hardware de-
vice to physically dispense cash. Our simulated version of the member function simply de-
creases the count of bills remaining by the number required to dispense the specified
amount (line 16). Line 15 calculates the number of $20 bills required to dispense the spec-
ified amount. The ATM allows the user to choose only withdrawal amounts that are mul-
tiples of $20, so we divide amount by 20 to obtain the number of billsRequired. Also, it’s
the responsibility of the class’s client (i.e., Withdrawal) to inform the user that cash has
been dispensed—CashDispenser cannot interact directly with Screen.

Member function isSufficientCashAvailable (lines 20–28) has a parameter
amount that specifies the amount of cash in question. Lines 24–27 return true if the Cash-
Dispenser’s count is greater than or equal to billsRequired (i.e., enough bills are avail-
able) and false otherwise (i.e., not enough bills). For example, if a user wishes to
withdraw $80 (i.e., billsRequired is 4), but only three bills remain (i.e., count is 3), the
member function returns false.

1 // CashDispenser.cpp
2 // Member-function definitions for class CashDispenser.
3 #include "CashDispenser.h" // CashDispenser class definition
4
5 // CashDispenser default constructor initializes count to default
6 CashDispenser::CashDispenser()
7 {
8 count = INITIAL_COUNT; // set count attribute to default
9 } // end CashDispenser default constructor

10
11 // simulates dispensing of specified amount of cash; assumes enough cash
12 // is available (previous call to isSufficientCashAvailable returned true)
13 void CashDispenser::dispenseCash(int amount)
14 {
15 int billsRequired = amount / 20; // number of $20 bills required
16 count -= billsRequired; // update the count of bills
17 } // end function dispenseCash
18
19 // indicates whether cash dispenser can dispense desired amount
20 bool CashDispenser::isSufficientCashAvailable(int amount) const
21 {
22 int billsRequired = amount / 20; // number of $20 bills required
23
24 if (count >= billsRequired)
25 return true; // enough bills are available
26 else
27 return false; // not enough bills are available
28 } // end function isSufficientCashAvailable

Fig. 26.21 | CashDispenser class member-function definitions.

26-28 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

26.4.5 Class DepositSlot
Class DepositSlot (Figs. 26.22–26.23) represents the deposit slot of the ATM. Like the
version of class CashDispenser presented here, this version of class DepositSlot merely
simulates the functionality of a real hardware deposit slot. DepositSlot has no data mem-
bers and only one member function—isEnvelopeReceived (declared in line 9 of
Fig. 26.22 and defined in lines 7–10 of Fig. 26.23)—that indicates whether a deposit en-
velope was received.

Recall from the requirements specification that the ATM allows the user up to two
minutes to insert an envelope. The current version of member function isEnvelope-

Received simply returns true immediately (line 9 of Fig. 26.23), because this is only a
software simulation, and we assume that the user has inserted an envelope within the
required time frame. If an actual hardware deposit slot were connected to our system,
member function isEnvelopeReceived might be implemented to wait for a maximum of
two minutes to receive a signal from the hardware deposit slot indicating that the user has
indeed inserted a deposit envelope. If isEnvelopeReceived were to receive such a signal
within two minutes, the member function would return true. If two minutes elapsed and
the member function still had not received a signal, then the member function would
return false.

1 // DepositSlot.h
2 // DepositSlot class definition. Represents the ATM's deposit slot.
3 #ifndef DEPOSIT_SLOT_H
4 #define DEPOSIT_SLOT_H
5
6 class DepositSlot
7 {
8 public:
9 bool isEnvelopeReceived() const; // tells whether envelope was received

10 }; // end class DepositSlot
11
12 #endif // DEPOSIT_SLOT_H

Fig. 26.22 | DepositSlot class definition.

1 // DepositSlot.cpp
2 // Member-function definition for class DepositSlot.
3 #include "DepositSlot.h" // DepositSlot class definiton
4
5 // indicates whether envelope was received (always returns true,
6 // because this is only a software simulation of a real deposit slot)
7 bool DepositSlot::isEnvelopeReceived() const
8 {
9 return true; // deposit envelope was received

10 } // end function isEnvelopeReceived

Fig. 26.23 | DepositSlot class member-function definition.

26.4 ATM Case Study Implementation 26-29

26.4.6 Class Account
Class Account (Figs. 26.24–26.25) represents a bank account. Lines 9–15 in the class def-
inition (Fig. 26.24) contain function prototypes for the class’s constructor and six member
functions, which we discuss shortly. Each Account has four attributes (modeled in
Fig. 26.11)—accountNumber, pin, availableBalance and totalBalance. Lines 17–20
implement these attributes as private data members. Data member availableBalance

represents the amount of funds available for withdrawal. Data member totalBalance rep-
resents the amount of funds available, plus the amount of deposited funds still pending
confirmation or clearance.

Account Class Member-Function Definitions
Figure 26.25 presents the definitions of class Account’s member functions. The class’s
constructor (lines 6–14) takes an account number, the PIN established for the account,
the initial available balance and the initial total balance as arguments. Lines 8–11 assign
these values to the class’s data members using member initializers.

Member function validatePIN (lines 17–23) determines whether a user-specified
PIN (i.e., parameter userPIN) matches the PIN associated with the account (i.e., data
member pin). Recall that we modeled this member function’s parameter userPIN in the
UML class diagram of Fig. 25.19. If the two PINs match, the member function returns
true (line 20); otherwise, it returns false (line 22).

Member functions getAvailableBalance (lines 26–29) and getTotalBalance (lines
32–35) are get functions that return the values of double data members availableBal-
ance and totalBalance, respectively.

1 // Account.h
2 // Account class definition. Represents a bank account.
3 #ifndef ACCOUNT_H
4 #define ACCOUNT_H
5
6 class Account
7 {
8 public:
9 Account(int, int, double, double); // constructor sets attributes

10 bool validatePIN(int) const; // is user-specified PIN correct?
11 double getAvailableBalance() const; // returns available balance
12 double getTotalBalance() const; // returns total balance
13 void credit(double); // adds an amount to the Account balance
14 void debit(double); // subtracts an amount from the Account balance
15 int getAccountNumber() const; // returns account number
16 private:
17 int accountNumber; // account number
18 int pin; // PIN for authentication
19 double availableBalance; // funds available for withdrawal
20 double totalBalance; // funds available + funds waiting to clear
21 }; // end class Account
22
23 #endif // ACCOUNT_H

Fig. 26.24 | Account class definition.

26-30 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Member function credit (lines 38–41) adds an amount of money (i.e., parameter
amount) to an Account as part of a deposit transaction. Note that this member function
adds the amount only to data member totalBalance (line 40). The money credited to an
account during a deposit does not become available immediately, so we modify only the
total balance. We assume that the bank updates the available balance appropriately at a
later time. Our implementation of class Account includes only member functions required
for carrying out ATM transactions. Therefore, we omit the member functions that some
other bank system would invoke to add to data member availableBalance (to confirm a
deposit) or subtract from data member totalBalance (to reject a deposit).

1 // Account.cpp
2 // Member-function definitions for class Account.
3 #include "Account.h" // Account class definition
4
5 // Account constructor initializes attributes
6 Account::Account(int theAccountNumber, int thePIN,
7 double theAvailableBalance, double theTotalBalance)
8 : accountNumber(theAccountNumber),
9 pin(thePIN),

10 availableBalance(theAvailableBalance),
11 totalBalance(theTotalBalance)
12 {
13 // empty body
14 } // end Account constructor
15
16 // determines whether a user-specified PIN matches PIN in Account
17 bool Account::validatePIN(int userPIN) const
18 {
19 if (userPIN == pin)
20 return true;
21 else
22 return false;
23 } // end function validatePIN
24
25 // returns available balance
26 double Account::getAvailableBalance() const
27 {
28 return availableBalance;
29 } // end function getAvailableBalance
30
31 // returns the total balance
32 double Account::getTotalBalance() const
33 {
34 return totalBalance;
35 } // end function getTotalBalance
36
37 // credits an amount to the account
38 void Account::credit(double amount)
39 {
40 totalBalance += amount; // add to total balance
41 } // end function credit

Fig. 26.25 | Account class member-function definitions. (Part 1 of 2.)

26.4 ATM Case Study Implementation 26-31

Member function debit (lines 44–48) subtracts an amount of money (i.e., parameter
amount) from an Account as part of a withdrawal transaction. This member function sub-
tracts the amount from both data member availableBalance (line 46) and data member
totalBalance (line 47), because a withdrawal affects both measures of an account balance.

Member function getAccountNumber (lines 51–54) provides access to an Account’s
accountNumber. We include this member function in our implementation so that a client
of the class (i.e., BankDatabase) can identify a particular Account. For example, BankDa-
tabase contains many Account objects, and it can invoke this member function on each
of its Account objects to locate the one with a specific account number.

26.4.7 Class BankDatabase
Class BankDatabase (Figs. 26.26–26.27) models the bank’s database with which the ATM
interacts to access and modify a user’s account information. The class definition
(Fig. 26.26) declares function prototypes for the class’s constructor and several member
functions. We discuss these momentarily. The class definition also declares the BankData-
base’s data members. We determine one data member for class BankDatabase based on
its composition relationship with class Account. Recall from Fig. 26.10 that a BankData-

base is composed of zero or more objects of class Account. Line 24 of Fig. 26.26 imple-
ments data member accounts—a vector of Account objects—to implement this
composition relationship. Lines 6–7 allow us to use vector in this file. Line 27 contains
the function prototype for a private utility function getAccount that allows the member
functions of the class to obtain a pointer to a specific Account in the accounts vector.

42
43 // debits an amount from the account
44 void Account::debit(double amount)
45 {
46 availableBalance -= amount; // subtract from available balance
47 totalBalance -= amount; // subtract from total balance
48 } // end function debit
49
50 // returns account number
51 int Account::getAccountNumber() const
52 {
53 return accountNumber;
54 } // end function getAccountNumber

1 // BankDatabase.h
2 // BankDatabase class definition. Represents the bank's database.
3 #ifndef BANK_DATABASE_H
4 #define BANK_DATABASE_H
5
6 #include <vector> // class uses vector to store Account objects
7 using namespace std;

Fig. 26.26 | BankDatabase class definition. (Part 1 of 2.)

Fig. 26.25 | Account class member-function definitions. (Part 2 of 2.)

26-32 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

BankDatabase Class Member-Function Definitions
Figure 26.27 contains the member-function definitions for class BankDatabase. We im-
plement the class with a default constructor (lines 6–15) that adds Account objects to data
member accounts. For the sake of testing the system, we create two new Account objects
with test data (lines 9–10), then add them to the end of the vector (lines 13–14). The
Account constructor has four parameters—the account number, the PIN assigned to the
account, the initial available balance and the initial total balance.

8
9 #include "Account.h" // Account class definition

10
11 class BankDatabase
12 {
13 public:
14 BankDatabase(); // constructor initializes accounts
15
16 // determine whether account number and PIN match those of an Account
17 bool authenticateUser(int, int); // returns true if Account authentic
18
19 double getAvailableBalance(int); // get an available balance
20 double getTotalBalance(int); // get an Account's total balance
21 void credit(int, double); // add amount to Account balance
22 void debit(int, double); // subtract amount from Account balance
23 private:
24 vector< Account > accounts; // vector of the bank's Accounts
25
26 // private utility function
27 Account * getAccount(int); // get pointer to Account object
28 }; // end class BankDatabase
29
30 #endif // BANK_DATABASE_H

1 // BankDatabase.cpp
2 // Member-function definitions for class BankDatabase.
3 #include "BankDatabase.h" // BankDatabase class definition
4
5 // BankDatabase default constructor initializes accounts
6 BankDatabase::BankDatabase()
7 {
8 // create two Account objects for testing
9 Account account1(12345, 54321, 1000.0, 1200.0);

10 Account account2(98765, 56789, 200.0, 200.0);
11
12 // add the Account objects to the vector accounts
13 accounts.push_back(account1); // add account1 to end of vector
14 accounts.push_back(account2); // add account2 to end of vector
15 } // end BankDatabase default constructor
16

Fig. 26.27 | BankDatabase class member-function definitions. (Part 1 of 3.)

Fig. 26.26 | BankDatabase class definition. (Part 2 of 2.)

26.4 ATM Case Study Implementation 26-33

17 // retrieve Account object containing specified account number
18 Account * BankDatabase::getAccount(int accountNumber)
19 {
20 // loop through accounts searching for matching account number
21 for (size_t i = 0; i < accounts.size(); i++)
22 {
23 // return current account if match found
24 if (accounts[i].getAccountNumber() == accountNumber)
25 return &accounts[i];
26 } // end for
27
28 return NULL; // if no matching account was found, return NULL
29 } // end function getAccount
30
31 // determine whether user-specified account number and PIN match
32 // those of an account in the database
33 bool BankDatabase::authenticateUser(int userAccountNumber,
34 int userPIN)
35 {
36 // attempt to retrieve the account with the account number
37 Account * const userAccountPtr = getAccount(userAccountNumber);
38
39 // if account exists, return result of Account function validatePIN
40 if (userAccountPtr != NULL)
41 return userAccountPtr->validatePIN(userPIN);
42 else
43 return false; // account number not found, so return false
44 } // end function authenticateUser
45
46 // return available balance of Account with specified account number
47 double BankDatabase::getAvailableBalance(int userAccountNumber)
48 {
49 Account * const userAccountPtr = getAccount(userAccountNumber);
50 return userAccountPtr->getAvailableBalance();
51 } // end function getAvailableBalance
52
53 // return total balance of Account with specified account number
54 double BankDatabase::getTotalBalance(int userAccountNumber)
55 {
56 Account * const userAccountPtr = getAccount(userAccountNumber);
57 return userAccountPtr->getTotalBalance();
58 } // end function getTotalBalance
59
60 // credit an amount to Account with specified account number
61 void BankDatabase::credit(int userAccountNumber, double amount)
62 {
63 Account * const userAccountPtr = getAccount(userAccountNumber);
64 userAccountPtr->credit(amount);
65 } // end function credit
66
67 // debit an amount from Account with specified account number
68 void BankDatabase::debit(int userAccountNumber, double amount)
69 {

Fig. 26.27 | BankDatabase class member-function definitions. (Part 2 of 3.)

26-34 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Recall that class BankDatabase serves as an intermediary between class ATM and the
actual Account objects that contain users’ account information. Thus, the member func-
tions of class BankDatabase do nothing more than invoke the corresponding member
functions of the Account object belonging to the current ATM user.

We include private utility function getAccount (lines 18–29) to allow the Bank-

Database to obtain a pointer to a particular Account within vector accounts. To locate
the user’s Account, the BankDatabase compares the value returned by member function
getAccountNumber for each element of accounts to a specified account number until it
finds a match. Lines 21–26 traverse the accounts vector. If the account number of the
current Account (i.e., accounts[i]) equals the value of parameter accountNumber, the
member function immediately returns the address of the current Account (i.e., a pointer
to the current Account). If no account has the given account number, then line 28 returns
NULL. Note that this member function must return a pointer, as opposed to a reference,
because there is the possibility that the return value could be NULL—a reference cannot be
NULL, but a pointer can.

Note that vector function size (invoked in the loop-continuation condition in line
21) returns the number of elements in a vector as a value of type size_t (which is usually
unsigned int). As a result, we declare the control variable i to be of type size_t, too. On
some compilers, declaring i as an int would cause the compiler to issue a warning mes-
sage, because the loop-continuation condition would compare a signed value (i.e., an int)
and an unsigned value (i.e., a value of type size_t).

Member function authenticateUser (lines 33–44) proves or disproves the an ATM
user’s identity. This function takes a user-specified account number and user-specified
PIN as arguments and indicates whether they match the account number and PIN of an
Account in the database. Line 37 calls utility function getAccount, which returns either a
pointer to an Account with userAccountNumber as its account number or NULL to indicate
that userAccountNumber is invalid. We declare userAccountPtr to be a const pointer
because, once the member function aims this pointer at the user’s Account, the pointer
should not change. If getAccount returns a pointer to an Account object, line 41 returns
the bool value returned by that object’s validatePIN member function. BankDatabase’s
authenticateUser member function does not perform the PIN comparison itself—
rather, it forwards userPIN to the Account object’s validatePIN member function to do
so. The value returned by Account member function validatePIN indicates whether the
user-specified PIN matches the PIN of the user’s Account, so member function authen-

ticateUser simply returns this value to the client of the class (i.e., ATM).
BankDatabase trusts the ATM to invoke member function authenticateUser and

receive a return value of true before allowing the user to perform transactions. BankData-
base also trusts that each Transaction object created by the ATM contains the valid account
number of the current authenticated user and that this is the account number passed to
the remaining BankDatabase member functions as argument userAccountNumber.

70 Account * const userAccountPtr = getAccount(userAccountNumber);
71 userAccountPtr->debit(amount);
72 } // end function debit

Fig. 26.27 | BankDatabase class member-function definitions. (Part 3 of 3.)

26.4 ATM Case Study Implementation 26-35

Member functions getAvailableBalance (lines 47–51), getTotalBalance (lines 54–58),
credit (lines 61–65) and debit (lines 68–72) therefore simply retrieve a pointer to the
user’s Account object with utility function getAccount, then use this pointer to invoke the
appropriate Account member function on the user’s Account object. We know that the
calls to getAccount within these member functions will never return NULL, because user-
AccountNumber must refer to an existing Account. Note that getAvailableBalance and
getTotalBalance return the values returned by the corresponding Account member func-
tions. Also, credit and debit simply redirect parameter amount to the Account member
functions they invoke.

26.4.8 Class Transaction
Class Transaction (Figs. 26.28–26.29) is an abstract base class that represents the notion
of an ATM transaction. It contains the common features of derived classes BalanceInqui-
ry, Withdrawal and Deposit. Figure 26.28 expands upon the Transaction header file
first developed in Section 26.3. Lines 13, 17–19 and 22 contain function prototypes for
the class’s constructor and four member functions, which we discuss shortly. Line 15 de-
fines a virtual destructor with an empty body—this makes all derived-class destructors
virtual (even those defined implicitly by the compiler) and ensures that dynamically al-
located derived-class objects get destroyed properly when they are deleted via a base-class
pointer. Lines 24–26 declare the class’s private data members. Recall from the class dia-
gram of Fig. 26.11 that class Transaction contains an attribute accountNumber (imple-
mented in line 24) that indicates the account involved in the Transaction. We derive data
members screen (line 25) and bankDatabase (line 26) from class Transaction’s associa-
tions modeled in Fig. 26.10—all transactions require access to the ATM’s screen and the
bank’s database, so we include references to a Screen and a BankDatabase as data members
of class Transaction. As you’ll soon see, Transaction’s constructor initializes these refer-
ences. The forward declarations in lines 6–7 signify that the header file contains references
to objects of classes Screen and BankDatabase, but that the definitions of these classes lie
outside the header file.

1 // Transaction.h
2 // Transaction abstract base class definition.
3 #ifndef TRANSACTION_H
4 #define TRANSACTION_H
5
6 class Screen; // forward declaration of class Screen
7 class BankDatabase; // forward declaration of class BankDatabase
8
9 class Transaction

10 {
11 public:
12 // constructor initializes common features of all Transactions
13 Transaction(int, Screen &, BankDatabase &);
14
15 virtual ~Transaction() { } // virtual destructor with empty body
16

Fig. 26.28 | Transaction class definition. (Part 1 of 2.)

26-36 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

17 int getAccountNumber() const; // return account number
18 Screen &getScreen() const; // return reference to screen
19 BankDatabase &getBankDatabase() const; // return reference to database
20
21 // pure virtual function to perform the transaction
22 virtual void execute() = 0; // overridden in derived classes
23 private:
24 int accountNumber; // indicates account involved
25 Screen &screen; // reference to the screen of the ATM
26 BankDatabase &bankDatabase; // reference to the account info database
27 }; // end class Transaction
28
29 #endif // TRANSACTION_H

1 // Transaction.cpp
2 // Member-function definitions for class Transaction.
3 #include "Transaction.h" // Transaction class definition
4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6
7 // constructor initializes common features of all Transactions
8 Transaction::Transaction(int userAccountNumber, Screen &atmScreen,
9 BankDatabase &atmBankDatabase)

10 : accountNumber(userAccountNumber),
11 screen(atmScreen),
12 bankDatabase(atmBankDatabase)
13 {
14 // empty body
15 } // end Transaction constructor
16
17 // return account number
18 int Transaction::getAccountNumber() const
19 {
20 return accountNumber;
21 } // end function getAccountNumber
22
23 // return reference to screen
24 Screen &Transaction::getScreen() const
25 {
26 return screen;
27 } // end function getScreen
28
29 // return reference to bank database
30 BankDatabase &Transaction::getBankDatabase() const
31 {
32 return bankDatabase;
33 } // end function getBankDatabase

Fig. 26.29 | Transaction class member-function definitions.

Fig. 26.28 | Transaction class definition. (Part 2 of 2.)

26.4 ATM Case Study Implementation 26-37

Class Transaction has a constructor (declared in line 13 of Fig. 26.28 and defined in
lines 8–15 of Fig. 26.29) that takes the current user’s account number and references to
the ATM’s screen and the bank’s database as arguments. Because Transaction is an
abstract class, this constructor will never be called directly to instantiate Transaction

objects. Instead, the constructors of the Transaction derived classes will use base-class ini-
tializer syntax to invoke this constructor.

Class Transaction has three public get functions—getAccountNumber (declared in
line 17 of Fig. 26.28 and defined in lines 18–21 of Fig. 26.29), getScreen (declared in
line 18 of Fig. 26.28 and defined in lines 24–27 of Fig. 26.29) and getBankDatabase

(declared in line 19 of Fig. 26.28 and defined in lines 30–33 of Fig. 26.29). Transaction
derived classes inherit these member functions from Transaction and use them to gain
access to class Transaction’s private data members.

Class Transaction also declares a pure virtual function execute (line 22 of
Fig. 26.28). It does not make sense to provide an implementation for this member func-
tion, because a generic transaction cannot be executed. Thus, we declare this member
function to be a pure virtual function and force each Transaction derived class to pro-
vide its own concrete implementation that executes that particular type of transaction.

26.4.9 Class BalanceInquiry
Class BalanceInquiry (Figs. 26.30–26.31) derives from abstract base class Transaction
and represents a balance-inquiry ATM transaction. BalanceInquiry does not have any
data members of its own, but it inherits Transaction data members accountNumber,
screen and bankDatabase, which are accessible through Transaction’s public get func-
tions. Line 6 #includes the definition of base class Transaction. The BalanceInquiry

constructor (declared in line 11 of Fig. 26.30 and defined in lines 8–13 of Fig. 26.31)
takes arguments corresponding to the Transaction data members and simply forwards
them to Transaction’s constructor, using base-class initializer syntax (line 10 of
Fig. 26.31). Line 12 of Fig. 26.30 contains the function prototype for member function
execute, which is required to indicate the intention to override the base class’s pure vir-

tual function of the same name.

1 // BalanceInquiry.h
2 // BalanceInquiry class definition. Represents a balance inquiry.
3 #ifndef BALANCE_INQUIRY_H
4 #define BALANCE_INQUIRY_H
5
6 #include "Transaction.h" // Transaction class definition
7
8 class BalanceInquiry : public Transaction
9 {

10 public:
11 BalanceInquiry(int, Screen &, BankDatabase &); // constructor
12 virtual void execute(); // perform the transaction
13 }; // end class BalanceInquiry
14
15 #endif // BALANCE_INQUIRY_H

Fig. 26.30 | BalanceInquiry class definition.

26-38 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Class BalanceInquiry overrides Transaction’s pure virtual function execute to
provide a concrete implementation (lines 16–37 of Fig. 26.31) that performs the steps
involved in a balance inquiry. Lines 19–20 get references to the bank database and the
ATM’s screen by invoking member functions inherited from base class Transaction.
Lines 23–24 retrieve the available balance of the account involved by invoking member
function getAvailableBalance of bankDatabase. Line 24 uses inherited member func-
tion getAccountNumber to get the account number of the current user, which it then
passes to getAvailableBalance. Lines 27–28 retrieve the total balance of the current
user’s account. Lines 31–36 display the balance information on the ATM’s screen. Recall
that displayDollarAmount takes a double argument and outputs it to the screen for-
matted as a dollar amount. For example, if a user’s availableBalance is 700.5, line 33
outputs $700.50. Line 36 inserts a blank line of output to separate the balance information

1 // BalanceInquiry.cpp
2 // Member-function definitions for class BalanceInquiry.
3 #include "BalanceInquiry.h" // BalanceInquiry class definition
4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6
7 // BalanceInquiry constructor initializes base-class data members
8 BalanceInquiry:: BalanceInquiry(int userAccountNumber, Screen &atmScreen,
9 BankDatabase &atmBankDatabase)

10 : Transaction(userAccountNumber, atmScreen, atmBankDatabase)
11 {
12 // empty body
13 } // end BalanceInquiry constructor
14
15 // performs transaction; overrides Transaction's pure virtual function
16 void BalanceInquiry::execute()
17 {
18 // get references to bank database and screen
19 BankDatabase &bankDatabase = getBankDatabase();
20 Screen &screen = getScreen();
21
22 // get the available balance for the current user's Account
23 double availableBalance =
24 bankDatabase.getAvailableBalance(getAccountNumber());
25
26 // get the total balance for the current user's Account
27 double totalBalance =
28 bankDatabase.getTotalBalance(getAccountNumber());
29
30 // display the balance information on the screen
31 screen.displayMessageLine("\nBalance Information:");
32 screen.displayMessage(" - Available balance: ");
33 screen.displayDollarAmount(availableBalance);
34 screen.displayMessage("\n - Total balance: ");
35 screen.displayDollarAmount(totalBalance);
36 screen.displayMessageLine("");
37 } // end function execute

Fig. 26.31 | BalanceInquiry class member-function definitions.

26.4 ATM Case Study Implementation 26-39

from subsequent output (i.e., the main menu repeated by class ATM after executing the Bal-
anceInquiry).

26.4.10 Class Withdrawal
Class Withdrawal (Figs. 26.32–26.33) derives from Transaction and represents a with-
drawal ATM transaction. Figure 26.32 expands upon the header file for this class developed
in Fig. 26.13. Class Withdrawal has a constructor and one member function execute, which
we discuss shortly. Recall from the class diagram of Fig. 26.11 that class Withdrawal has one
attribute, amount, which line 16 implements as an int data member. Figure 26.10 models
associations between class Withdrawal and classes Keypad and CashDispenser, for which
lines 17–18 implement references keypad and cashDispenser, respectively. Line 19 is the
function prototype of a private utility function that we soon discuss.

Withdrawal Class Member-Function Definitions
Figure 26.33 contains the member-function definitions for class Withdrawal. Line 3 #in-

cludes the class’s definition, and lines 4–7 #include the definitions of the other classes used
in Withdrawal’s member functions. Line 11 declares a global constant corresponding to the
cancel option on the withdrawal menu. We’ll soon discuss how the class uses this constant.

1 // Withdrawal.h
2 // Withdrawal class definition. Represents a withdrawal transaction.
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 #include "Transaction.h" // Transaction class definition
7 class Keypad; // forward declaration of class Keypad
8 class CashDispenser; // forward declaration of class CashDispenser
9

10 class Withdrawal : public Transaction
11 {
12 public:
13 Withdrawal(int, Screen &, BankDatabase &, Keypad &, CashDispenser &);
14 virtual void execute(); // perform the transaction
15 private:
16 int amount; // amount to withdraw
17 Keypad &keypad; // reference to ATM's keypad
18 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
19 int displayMenuOfAmounts() const; // display the withdrawal menu
20 }; // end class Withdrawal
21
22 #endif // WITHDRAWAL_H

Fig. 26.32 | Withdrawal class definition.

1 // Withdrawal.cpp
2 // Member-function definitions for class Withdrawal.
3 #include "Withdrawal.h" // Withdrawal class definition

Fig. 26.33 | Withdrawal class member-function definitions. (Part 1 of 4.)

26-40 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6 #include "Keypad.h" // Keypad class definition
7 #include "CashDispenser.h" // CashDispenser class definition
8
9 // global constant that corresponds to menu option to cancel

10 static const int CANCELED = 6;
11
12 // Withdrawal constructor initialize class's data members
13 Withdrawal::Withdrawal(int userAccountNumber, Screen &atmScreen,
14 BankDatabase &atmBankDatabase, Keypad &atmKeypad,
15 CashDispenser &atmCashDispenser)
16 : Transaction(userAccountNumber, atmScreen, atmBankDatabase),
17 keypad(atmKeypad), cashDispenser(atmCashDispenser)
18 {
19 // empty body
20 } // end Withdrawal constructor
21
22 // perform transaction; overrides Transaction's pure virtual function
23 void Withdrawal::execute()
24 {
25 bool cashDispensed = false; // cash was not dispensed yet
26 bool transactionCanceled = false; // transaction was not canceled yet
27
28 // get references to bank database and screen
29 BankDatabase &bankDatabase = getBankDatabase();
30 Screen &screen = getScreen();
31
32 // loop until cash is dispensed or the user cancels
33 do
34 {
35 // obtain the chosen withdrawal amount from the user
36 int selection = displayMenuOfAmounts();
37
38 // check whether user chose a withdrawal amount or canceled
39 if (selection != CANCELED)
40 {
41 amount = selection; // set amount to the selected dollar amount
42
43 // get available balance of account involved
44 double availableBalance =
45 bankDatabase.getAvailableBalance(getAccountNumber());
46
47 // check whether the user has enough money in the account
48 if (amount <= availableBalance)
49 {
50 // check whether the cash dispenser has enough money
51 if (cashDispenser.isSufficientCashAvailable(amount))
52 {
53 // update the account involved to reflect withdrawal
54 bankDatabase.debit(getAccountNumber(), amount);
55
56 cashDispenser.dispenseCash(amount); // dispense cash

Fig. 26.33 | Withdrawal class member-function definitions. (Part 2 of 4.)

26.4 ATM Case Study Implementation 26-41

57 cashDispensed = true; // cash was dispensed
58
59 // instruct user to take cash
60 screen.displayMessageLine(
61 "\nPlease take your cash from the cash dispenser.");
62 } // end if
63 else // cash dispenser does not have enough cash
64 screen.displayMessageLine(
65 "\nInsufficient cash available in the ATM."
66 "\n\nPlease choose a smaller amount.");
67 } // end if
68 else // not enough money available in user's account
69 {
70 screen.displayMessageLine(
71 "\nInsufficient funds in your account."
72 "\n\nPlease choose a smaller amount.");
73 } // end else
74 } // end if
75 else // user chose cancel menu option
76 {
77 screen.displayMessageLine("\nCanceling transaction...");
78 transactionCanceled = true; // user canceled the transaction
79 } // end else
80 } while (!cashDispensed && !transactionCanceled); // end do...while
81 } // end function execute
82
83 // display a menu of withdrawal amounts and the option to cancel;
84 // return the chosen amount or 0 if the user chooses to cancel
85 int Withdrawal::displayMenuOfAmounts() const
86 {
87 int userChoice = 0; // local variable to store return value
88
89 Screen &screen = getScreen(); // get screen reference
90
91 // array of amounts to correspond to menu numbers
92 int amounts[] = { 0, 20, 40, 60, 100, 200 };
93
94 // loop while no valid choice has been made
95 while (userChoice == 0)
96 {
97 // display the menu
98 screen.displayMessageLine("\nWithdrawal options:");
99 screen.displayMessageLine("1 - $20");
100 screen.displayMessageLine("2 - $40");
101 screen.displayMessageLine("3 - $60");
102 screen.displayMessageLine("4 - $100");
103 screen.displayMessageLine("5 - $200");
104 screen.displayMessageLine("6 - Cancel transaction");
105 screen.displayMessage("\nChoose a withdrawal option (1-6): ");
106
107 int input = keypad.getInput(); // get user input through keypad
108

Fig. 26.33 | Withdrawal class member-function definitions. (Part 3 of 4.)

26-42 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Class Withdrawal’s constructor (defined in lines 13–20 of Fig. 26.33) has five param-
eters. It uses a base-class initializer in line 16 to pass parameters userAccountNumber, atm-
Screen and atmBankDatabase to base class Transaction’s constructor to set the data
members that Withdrawal inherits from Transaction. The constructor also takes refer-
ences atmKeypad and atmCashDispenser as parameters and assigns them to reference data
members keypad and cashDispenser using member initializers (line 17).

Class Withdrawal overrides Transaction’s pure virtual function execute with a
concrete implementation (lines 23–81) that performs the steps involved in a withdrawal.
Line 25 declares and initializes a local bool variable cashDispensed. This variable indi-
cates whether cash has been dispensed (i.e., whether the transaction has completed success-
fully) and is initially false. Line 26 declares and initializes to false a bool variable
transactionCanceled that indicates whether the transaction has been canceled by the
user. Lines 29–30 get references to the bank database and the ATM’s screen by invoking
member functions inherited from base class Transaction.

Lines 33–80 contain a do…while statement that executes its body until cash is dis-
pensed (i.e., until cashDispensed becomes true) or until the user chooses to cancel (i.e.,
until transactionCanceled becomes true). This loop continuously returns the user to
the start of the transaction if an error occurs (i.e., the requested withdrawal amount is
greater than the user’s available balance or greater than the amount of cash in the cash dis-
penser). Line 36 displays a menu of withdrawal amounts and obtains a user selection by
calling private utility function displayMenuOfAmounts (defined in lines 85–129). This
function displays the menu of amounts and returns either an int withdrawal amount or
the int constant CANCELED to indicate that the user has chosen to cancel the transaction.

Member function displayMenuOfAmounts (lines 85–129) first declares local variable
userChoice (initially 0) to store the value that the member function will return (line 87).

109 // determine how to proceed based on the input value
110 switch (input)
111 {
112 case 1: // if the user chose a withdrawal amount
113 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
114 case 3: // corresponding amount from amounts array
115 case 4:
116 case 5:
117 userChoice = amounts[input]; // save user's choice
118 break;
119 case CANCELED: // the user chose to cancel
120 userChoice = CANCELED; // save user's choice
121 break;
122 default: // the user did not enter a value from 1-6
123 screen.displayMessageLine(
124 "\nIvalid selection. Try again.");
125 } // end switch
126 } // end while
127
128 return userChoice; // return withdrawal amount or CANCELED
129 } // end function displayMenuOfAmounts

Fig. 26.33 | Withdrawal class member-function definitions. (Part 4 of 4.)

26.4 ATM Case Study Implementation 26-43

Line 89 gets a reference to the screen by calling member function getScreen inherited from
base class Transaction. Line 92 declares an integer array of withdrawal amounts that cor-
respond to the amounts displayed in the withdrawal menu. We ignore the first element in
the array (index 0) because the menu has no option 0. The while statement in lines 95–126
repeats until userChoice takes on a value other than 0. We’ll see shortly that this occurs
when the user makes a valid selection from the menu. Lines 98–105 display the withdrawal
menu on the screen and prompt the user to enter a choice. Line 107 obtains integer input
through the keypad. The switch statement in lines 110–125 determines how to proceed
based on the user’s input. If the user selects a number between 1 and 5, line 117 sets user-
Choice to the value of the element in amounts at index input. For example, if the user
enters 3 to withdraw $60, line 117 sets userChoice to the value of amounts[3] (i.e., 60).
Line 118 terminates the switch. Variable userChoice no longer equals 0, so the while in
lines 95–126 terminates and line 128 returns userChoice. If the user selects the cancel
menu option, lines 120–121 execute, setting userChoice to CANCELED and causing the
member function to return this value. If the user does not enter a valid menu selection, lines
123–124 display an error message and the user is returned to the withdrawal menu.

The if statement in line 39 in member function execute determines whether the user
has selected a withdrawal amount or chosen to cancel. If the user cancels, lines 77–78 exe-
cute to display an appropriate message to the user and set transactionCanceled to true.
This causes the loop-continuation test in line 80 to fail and control to return to the calling
member function (i.e., ATM member function performTransactions). If the user has
chosen a withdrawal amount, line 41 assigns local variable selection to data member
amount. Lines 44–45 retrieve the available balance of the current user’s Account and store
it in a local double variable availableBalance. Next, the if statement in line 48 deter-
mines whether the selected amount is less than or equal to the user’s available balance. If
it isn’t, lines 70–72 display an appropriate error message. Control then continues to the
end of the do…while, and the loop repeats because both cashDispensed and transac-

tionCanceled are still false. If the user’s balance is high enough, the if statement in line
51 determines whether the cash dispenser has enough money to satisfy the withdrawal
request by invoking the cashDispenser’s isSufficientCashAvailable member func-
tion. If this member function returns false, lines 64–66 display an appropriate error mes-
sage and the do…while repeats. If sufficient cash is available, then the requirements for
the withdrawal are satisfied, and line 54 debits amount from the user’s account in the data-
base. Lines 56–57 then instruct the cash dispenser to dispense the cash to the user and set
cashDispensed to true. Finally, lines 60–61 display a message to the user that cash has
been dispensed. Because cashDispensed is now true, control continues after the
do…while. No additional statements appear below the loop, so the member function
returns control to class ATM.

In the function calls in lines 64–66 and lines 70–72, we divide the argument to
Screen member function displayMessageLine into two string literals, each placed on a
separate line in the program. We do so because each argument is too long to fit on a single
line. C++ concatenates (i.e., combines) string literals adjacent to each other, even if they are on
separate lines. For example, if you write "Happy " "Birthday" in a program, C++ will view
these two adjacent string literals as the single string literal "Happy Birthday". As a result,
when lines 64–66 execute, displayMessageLine receives a single string as a parameter,
even though the argument in the function call appears as two string literals.

26-44 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

26.4.11 Class Deposit
Class Deposit (Figs. 26.34–26.35) derives from Transaction and represents a deposit
ATM transaction. Figure 26.34 contains the Deposit class definition. Like derived classes
BalanceInquiry and Withdrawal, Deposit declares a constructor (line 13) and member
function execute (line 14)—we discuss these momentarily. Recall from the class diagram
of Fig. 26.11 that class Deposit has one attribute amount, which line 16 implements as an
int data member. Lines 17–18 create reference data members keypad and depositSlot

that implement the associations between class Deposit and classes Keypad and Deposit-

Slot modeled in Fig. 26.10. Line 19 contains the function prototype for a private utility
function promptForDepositAmount that we’ll discuss shortly.

Deposit Class Member-Function Definitions
Figure 26.35 presents the Deposit class implementation. Line 3 #includes the Deposit

class definition, and lines 4–7 #include the class definitions of the other classes used in
Deposit’s member functions. Line 9 declares a constant CANCELED that corresponds to the
value a user enters to cancel a deposit. We’ll soon discuss how the class uses this constant.

1 // Deposit.h
2 // Deposit class definition. Represents a deposit transaction.
3 #ifndef DEPOSIT_H
4 #define DEPOSIT_H
5
6 #include "Transaction.h" // Transaction class definition
7 class Keypad; // forward declaration of class Keypad
8 class DepositSlot; // forward declaration of class DepositSlot
9

10 class Deposit : public Transaction
11 {
12 public:
13 Deposit(int, Screen &, BankDatabase &, Keypad &, DepositSlot &);
14 virtual void execute(); // perform the transaction
15 private:
16 double amount; // amount to deposit
17 Keypad &keypad; // reference to ATM's keypad
18 DepositSlot &depositSlot; // reference to ATM's deposit slot
19 double promptForDepositAmount() const; // get deposit amount from user
20 }; // end class Deposit
21
22 #endif // DEPOSIT_H

Fig. 26.34 | Deposit class definition.

1 // Deposit.cpp
2 // Member-function definitions for class Deposit.
3 #include "Deposit.h" // Deposit class definition
4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6 #include "Keypad.h" // Keypad class definition

Fig. 26.35 | Deposit class member-function definitions. (Part 1 of 3.)

26.4 ATM Case Study Implementation 26-45

7 #include "DepositSlot.h" // DepositSlot class definition
8
9 static const int CANCELED = 0; // constant representing cancel option

10
11 // Deposit constructor initializes class's data members
12 Deposit::Deposit(int userAccountNumber, Screen &atmScreen,
13 BankDatabase &atmBankDatabase, Keypad &atmKeypad,
14 DepositSlot &atmDepositSlot)
15 : Transaction(userAccountNumber, atmScreen, atmBankDatabase),
16 keypad(atmKeypad), depositSlot(atmDepositSlot)
17 {
18 // empty body
19 } // end Deposit constructor
20
21 // performs transaction; overrides Transaction's pure virtual function
22 void Deposit::execute()
23 {
24 BankDatabase &bankDatabase = getBankDatabase(); // get reference
25 Screen &screen = getScreen(); // get reference
26
27 amount = promptForDepositAmount(); // get deposit amount from user
28
29 // check whether user entered a deposit amount or canceled
30 if (amount != CANCELED)
31 {
32 // request deposit envelope containing specified amount
33 screen.displayMessage(
34 "\nPlease insert a deposit envelope containing ");
35 screen.displayDollarAmount(amount);
36 screen.displayMessageLine(" in the deposit slot.");
37
38 // receive deposit envelope
39 bool envelopeReceived = depositSlot.isEnvelopeReceived();
40
41 // check whether deposit envelope was received
42 if (envelopeReceived)
43 {
44 screen.displayMessageLine("\nYour envelope has been received."
45 "\nNOTE: The money deposited will not be available until we"
46 "\nverify the amount of any enclosed cash, and any enclosed "
47 "checks clear.");
48
49 // credit account to reflect the deposit
50 bankDatabase.credit(getAccountNumber(), amount);
51 } // end if
52 else // deposit envelope not received
53 {
54 screen.displayMessageLine("\nYou did not insert an "
55 "envelope, so the ATM has canceled your transaction.");
56 } // end else
57 } // end if
58 else // user canceled instead of entering amount
59 {

Fig. 26.35 | Deposit class member-function definitions. (Part 2 of 3.)

26-46 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Like class Withdrawal, class Deposit contains a constructor (lines 12–19) that passes
three parameters to base class Transaction’s constructor using a base-class initializer (line
15). The constructor also has parameters atmKeypad and atmDepositSlot, which it assigns
to its corresponding data members (line 16).

Member function execute (lines 22–62) overrides pure virtual function execute in
base class Transaction with a concrete implementation that performs the steps required
in a deposit transaction. Lines 24–25 get references to the database and the screen. Line
27 prompts the user to enter a deposit amount by invoking private utility function
promptForDepositAmount (defined in lines 65–81) and sets data member amount to the
value returned. Member function promptForDepositAmount asks the user to enter a
deposit amount as an integer number of cents (because the ATM’s keypad does not con-
tain a decimal point; this is consistent with many real ATMs) and returns the double value
representing the dollar amount to be deposited.

Line 67 in member function promptForDepositAmount gets a reference to the ATM’s
screen. Lines 70–71 display a message on the screen asking the user to input a deposit
amount as a number of cents or “0” to cancel the transaction. Line 72 receives the user’s
input from the keypad. The if statement in lines 75–80 determines whether the user has
entered a real deposit amount or chosen to cancel. If the user chooses to cancel, line 76
returns the constant CANCELED. Otherwise, line 79 returns the deposit amount after con-
verting from the number of cents to a dollar amount by casting input to a double, then
dividing by 100. For example, if the user enters 125 as the number of cents, line 79 returns
125.0 divided by 100, or 1.25—125 cents is $1.25.

The if statement in lines 30–61 in member function execute determines whether
the user has chosen to cancel the transaction instead of entering a deposit amount. If the
user cancels, line 60 displays an appropriate message, and the member function returns. If

60 screen.displayMessageLine("\nCanceling transaction...");
61 } // end else
62 } // end function execute
63
64 // prompt user to enter a deposit amount in cents
65 double Deposit::promptForDepositAmount() const
66 {
67 Screen &screen = getScreen(); // get reference to screen
68
69 // display the prompt and receive input
70 screen.displayMessage("\nPlease enter a deposit amount in "
71 "CENTS (or 0 to cancel): ");
72 int input = keypad.getInput(); // receive input of deposit amount
73
74 // check whether the user canceled or entered a valid amount
75 if (input == CANCELED)
76 return CANCELED;
77 else
78 {
79 return static_cast< double >(input) / 100; // return dollar amount
80 } // end else
81 } // end function promptForDepositAmount

Fig. 26.35 | Deposit class member-function definitions. (Part 3 of 3.)

26.5 Wrap-Up 26-47

the user enters a deposit amount, lines 33–36 instruct the user to insert a deposit envelope
with the correct amount. Recall that Screen member function displayDollarAmount out-
puts a double formatted as a dollar amount.

Line 39 sets a local bool variable to the value returned by depositSlot’s isEnvelope-
Received member function, indicating whether a deposit envelope has been received.
Recall that we coded isEnvelopeReceived (lines 7–10 of Fig. 26.23) to always return
true, because we are simulating the functionality of the deposit slot and assume that the
user always inserts an envelope. However, we code member function execute of class
Deposit to test for the possibility that the user does not insert an envelope—good software
engineering demands that programs account for all possible return values. Thus, class
Deposit is prepared for future versions of isEnvelopeReceived that could return false.
Lines 44–50 execute if the deposit slot receives an envelope. Lines 44–47 display an appro-
priate message to the user. Line 50 then credits the deposit amount to the user’s account
in the database. Lines 54–55 will execute if the deposit slot does not receive a deposit enve-
lope. In this case, we display a message to the user stating that the ATM has canceled the
transaction. The member function then returns without modifying the user’s account.

26.4.12 Test Program ATMCaseStudy.cpp

ATMCaseStudy.cpp (Fig. 26.36) is a simple C++ program that allows us to start, or “turn
on,” the ATM and test the implementation of our ATM system model. The program’s
main function (lines 6–11) does nothing more than instantiate a new ATM object named
atm (line 8) and invoke its run member function (line 9) to start the ATM.

26.5 Wrap-Up
In this chapter, you used inheritance to tune the design of the ATM software system, and
you fully implemented the ATM in C++. Congratulations on completing the entire ATM
case study! We hope you found this experience to be valuable and that it reinforced many
of the object-oriented programming concepts that you’ve learned.

1 // ATMCaseStudy.cpp
2 // Driver program for the ATM case study.
3 #include "ATM.h" // ATM class definition
4
5 // main function creates and runs the ATM
6 int main()
7 {
8 ATM atm; // create an ATM object
9 atm.run(); // tell the ATM to start

10 } // end main

Fig. 26.36 | ATMCaseStudy.cpp starts the ATM system.

Answers to Self-Review Exercises
26.1 True. The minus sign (–) indicates private visibility. We’ve mentioned “friendship” as an
exception to private visibility. Friendship is discussed in Chapter 10.

26-48 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

26.2 b.

26.3 The design for class Account yields the header file in Fig. 26.37.

26.4 b.

26.5 False. The UML requires that we italicize abstract class names and operation names.

26.6 The design for class Transaction yields the header file in Fig. 26.38. In the implementa-
tion, a constructor initializes private reference attributes screen and bankDatabase to actual ob-
jects, and member functions getScreen and getBankDatabase access these attributes. These member
functions allow classes derived from Transaction to access the ATM’s screen and interact with the
bank’s database.

1 // Fig. 26.37: Account.h
2 // Account class definition. Represents a bank account.
3 #ifndef ACCOUNT_H
4 #define ACCOUNT_H
5
6 class Account
7 {
8 public:
9 bool validatePIN(int); // is user-specified PIN correct?

10 double getAvailableBalance(); // returns available balance
11 double getTotalBalance(); // returns total balance
12 void credit(double); // adds an amount to the Account
13 void debit(double); // subtracts an amount from the Account
14 private:
15 int accountNumber; // account number
16 int pin; // PIN for authentication
17 double availableBalance; // funds available for withdrawal
18 double totalBalance; // funds available + funds waiting to clear
19 }; // end class Account
20
21 #endif // ACCOUNT_H

Fig. 26.37 | Account class header file based on Fig. 26.1 and Fig. 26.2.

1 // Fig. 36.38: Transaction.h
2 // Transaction abstract base class definition.
3 #ifndef TRANSACTION_H
4 #define TRANSACTION_H
5
6 class Screen; // forward declaration of class Screen
7 class BankDatabase; // forward declaration of class BankDatabase
8
9 class Transaction

10 {
11 public:
12 int getAccountNumber(); // return account number
13 Screen &getScreen(); // return reference to screen
14 BankDatabase &getBankDatabase(); // return reference to bank database

Fig. 26.38 | Transaction class header file based on Fig. 26.10 and Fig. 26.11. (Part 1 of 2.)

Answers to Self-Review Exercises 26-49

15
16 // pure virtual function to perform the transaction
17 virtual void execute() = 0; // overridden in derived classes
18 private:
19 int accountNumber; // indicates account involved
20 Screen &screen; // reference to the screen of the ATM
21 BankDatabase &bankDatabase; // reference to the account info database
22 }; // end class Transaction
23
24 #endif // TRANSACTION_H

Fig. 26.38 | Transaction class header file based on Fig. 26.10 and Fig. 26.11. (Part 2 of 2.)

This page intentionally left blank

FC Legacy Code Topics

We’ll use a signal I have tried
and found far-reaching and
easy to yell. Waa-hoo!
—Zane Grey

It is quite a three-pipe problem.
—Sir Arthur Conan Doyle

But yet an union in partition.
—William Shakespeare

O b j e c t i v e s
In this appendix you’ll learn

■ To redirect keyboard input to
come from a file and redirect
screen output to a file.

■ To write functions that use
variable-length argument
lists.

■ To process command-line
arguments.

■ To process unexpected
events within a program.

■ To allocate memory
dynamically for arrays, using
C-style dynamic memory
allocation.

■ To resize memory
dynamically allocated using
C-style dynamic memory
allocation.

F-2 Appendix F C Legacy Code Topics

F.1 Introduction
This chapter presents several topics not ordinarily covered in introductory courses. Many
of the capabilities discussed here are specific to particular operating systems, especially
UNIX/LINUX/Mac OS X and/or Windows. Much of the material is for the benefit of
C++ programmers who will need to work with older C legacy code.

F.2 Redirecting Input/Output on UNIX/Linux/
Mac OS X and Windows Systems
Normally, the input to a program is from the keyboard (standard input), and the output
from a program is displayed on the screen (standard output). On most computer sys-
tems—UNIX, LINUX, Mac OS X and Windows systems in particular—it is possible to
redirect inputs to come from a file, and redirect outputs to be placed in a file. Both forms
of redirection can be accomplished without using the file-processing capabilities of the
standard library.

There are several ways to redirect input and output from the UNIX command line.
Consider the executable file sum that inputs integers one at a time, keeps a running total
of the values until the end-of-file indicator is set, then prints the result. Normally the user
inputs integers from the keyboard and enters the end-of-file key combination to indicate
that no further values will be input. With input redirection, the input can be stored in a
file. For example, if the data are stored in file input, the command line

causes program sum to be executed; the redirect input symbol (<) indicates that the data
in file input (instead of the keyboard) is to be used as input by the program. Redirecting
input in a Windows Command Prompt is performed identically.

Note that $ represents the UNIX command-line prompt. (UNIX prompts vary from
system to system and between shells on a single system.) Redirection is an operating-
system function, not another C++ feature.

The second method of redirecting input is piping. A pipe (|) causes the output of
one program to be redirected as the input to another program. Suppose program random

F.1 Introduction
F.2 Redirecting Input/Output on UNIX/

Linux/Mac OS X and Windows
Systems

F.3 Variable-Length Argument Lists
F.4 Using Command-Line Arguments
F.5 Notes on Compiling Multiple-Source-

File Programs
F.6 Program Termination with exit and

atexit

F.7 Type Qualifier volatile
F.8 Suffixes for Integer and Floating-Point

Constants
F.9 Signal Handling

F.10 Dynamic Memory Allocation with
calloc and realloc

F.11 Unconditional Branch: goto
F.12 Unions
F.13 Linkage Specifications
F.14 Wrap-Up

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

$ sum < input

F.3 Variable-Length Argument Lists F-3

outputs a series of random integers; the output of random can be “piped” directly to pro-
gram sum using the UNIX command line

This causes the sum of the integers produced by random to be calculated. Piping can be
performed in UNIX, LINUX, Mac OS X and Windows.

Program output can be redirected to a file by using the redirect output symbol (>).
(The same symbol is used for UNIX, LINUX, Mac OS X and Windows.) For example, to
redirect the output of program random to a new file called out, use

Finally, program output can be appended to the end of an existing file by using the
append output symbol (>>). (The same symbol is used for UNIX, LINUX, Mac OS X
and Windows.) For example, to append the output from program random to file out cre-
ated in the preceding command line, use the command line

F.3 Variable-Length Argument Lists
It is possible to create functions that receive an unspecified number of arguments.1An el-
lipsis (...) in a function’s prototype indicates that the function receives a variable number
of arguments of any type.1 Note that the ellipsis must always be placed at the end of the
parameter list, and there must be at least one argument before the ellipsis. The macros and
definitions of the variable arguments header <cstdarg> (Fig. F.1) provide the capabili-
ties necessary to build functions with variable-length argument lists.

$ random | sum

$ random > out

$ random >> out

1. In C++, programmers use function overloading to accomplish much of what C programmers accom-
plish with variable-length argument lists.

Identifier Description

va_list A type suitable for holding information needed by macros
va_start, va_arg and va_end. To access the arguments in a vari-
able-length argument list, an object of type va_list must be
declared.

va_start A macro that is invoked before the arguments of a variable-length
argument list can be accessed. The macro initializes the object
declared with va_list for use by the va_arg and va_end macros.

va_arg A macro that expands to an expression of the value and type of the
next argument in the variable-length argument list. Each invoca-
tion of va_arg modifies the object declared with va_list so that
the object points to the next argument in the list.

va_end A macro that performs termination housekeeping in a function
whose variable-length argument list was referred to by the
va_start macro.

Fig. F.1 | The type and the macros defined in header <cstdarg>.

F-4 Appendix F C Legacy Code Topics

Figure F.2 demonstrates function average that receives a variable number of argu-
ments. The first argument of average is always the number of values to be averaged, and
the remainder of the arguments must all be of type double.

Function average uses all the definitions and macros of header <cstdarg>. Object
list, of type va_list, is used by macros va_start, va_arg and va_end to process the vari-

1 // Fig. F.2: figF_02.cpp
2 // Using variable-length argument lists.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8
9

10 int main()
11 {
12 double double1 = 37.5;
13 double double2 = 22.5;
14 double double3 = 1.7;
15 double double4 = 10.2;
16
17 cout << fixed << setprecision(1) << "double1 = "
18 << double1 << "\ndouble2 = " << double2 << "\ndouble3 = "
19 << double3 << "\ndouble4 = " << double4 << endl
20 << setprecision(3)
21 << "\nThe average of double1 and double2 is "
22 << average(2, double1, double2)
23 << "\nThe average of double1, double2, and double3 is "
24 << average(3, double1, double2, double3)
25 << "\nThe average of double1, double2, double3"
26 << " and double4 is "
27 << average(4, double1, double2, double3, double4)
28 << endl;
29 } // end main
30
31 // calculate average
32 double average(int count,)
33 {
34 double total = 0;
35
36
37
38
39 // process variable-length argument list
40 for (int i = 1; i <= count; i++)
41
42
43 va_end(list); // end the va_start
44 return total / count;
45 } // end function average

Fig. F.2 | Using variable-length argument lists. (Part 1 of 2.)

#include <cstdarg>

double average(int, ...);

...

va_list list; // for storing information needed by va_start

va_start(list, count);

total += va_arg(list, double);

F.4 Using Command-Line Arguments F-5

able-length argument list of function average. The function invokes va_start to initialize
object list for use in va_arg and va_end. The macro receives two arguments—object
list and the identifier of the rightmost argument in the argument list before the ellipsis—
count in this case (va_start uses count here to determine where the variable-length argu-
ment list begins).

Next, function average repeatedly adds the arguments in the variable-length argu-
ment list to the total. The value to be added to total is retrieved from the argument list
by invoking macro va_arg. Macro va_arg receives two arguments—object list and the
type of the value expected in the argument list (double in this case)—and returns the value
of the argument. Function average invokes macro va_end with object list as an argu-
ment before returning. Finally, the average is calculated and returned to main. Note that
we used only double arguments for the variable-length portion of the argument list.

Variable-length argument lists promote variables of type float to type double. These
argument lists also promote integral variables that are smaller than int to type int (vari-
ables of type int, unsigned, long and unsigned long are left alone).

F.4 Using Command-Line Arguments
On many systems it is possible to pass arguments to main from a command line by includ-
ing parameters int argc and char *argv[] in the parameter list of main. Parameter argc
receives the number of command-line arguments. Parameter argv is an array of char *’s
pointing to strings in which the actual command-line arguments are stored. Common uses
of command-line arguments include printing the arguments, passing options to a program
and passing filenames to a program.

Figure F.3 copies a file into another file one character at a time. The executable file
for the program is called copyFile (i.e., the executable name for the file). A typical com-
mand line for the copyFile program on a UNIX system is

double1 = 37.5
double2 = 22.5
double3 = 1.7
double4 = 10.2

The average of double1 and double2 is 30.000
The average of double1, double2, and double3 is 20.567
The average of double1, double2, double3 and double4 is 17.975

Software Engineering Observation F.1
Variable-length argument lists can be used only with fundamental-type arguments and with
struct-type arguments that do not contain C++ specific features such as virtual functions,
constructors, destructors, references, const data members and virtual base classes.

Common Programming Error F.1
Placing an ellipsis in the middle of a function parameter list is a syntax error. An ellipsis
may be placed only at the end of the parameter list.

$ copyFile input output

Fig. F.2 | Using variable-length argument lists. (Part 2 of 2.)

F-6 Appendix F C Legacy Code Topics

This command line indicates that file input is to be copied to file output. When the pro-
gram executes, if argc is not 3 (copyFile counts as one of the arguments), the program
prints an error message (line 11). Otherwise, array argv contains the strings "copyFile",
"input" and "output". The second and third arguments on the command line are used
as file names by the program. The files are opened by creating ifstream object inFile and
ofstream object outFile (lines 14 and 23). If both files are opened successfully, characters
are read from file input with member function get and written to file output with mem-
ber function put until the end-of-file indicator for file input is set (lines 35–39). Then the
program terminates. The result is an exact copy of file input. Note that not all computer

1 // Fig. F.3: figF_03.cpp
2 // Using command-line arguments
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 int main()l
8 {
9 // check number of command-line arguments

10 if ()
11 cout << "Usage: copyFile infile_name outfile_name" << endl;
12 else
13 {
14 ifstream inFile(, ios::in);
15
16 // input file could not be opened
17 if (!inFile)
18 {
19 cout << << " could not be opened" << endl;
20 return -1;
21 } // end if
22
23 ofstream outFile(, ios::out);
24
25 // output file could not be opened
26 if (!outFile)
27 {
28 cout << << " could not be opened" << endl;
29 inFile.close();
30 return -2;
31 } // end if
32
33 char c = inFile.get(); // read first character
34
35 while (inFile)
36 {
37 outFile.put(c); // output character
38 c = inFile.get(); // read next character
39 } // end while
40 } // end else
41 } // end main

Fig. F.3 | Using command-line arguments.

int argc, char *argv[]

argc != 3

argv[1]

argv[1]

argv[2]

argv[2]

F.5 Notes on Compiling Multiple-Source-File Programs F-7

systems support command-line arguments as easily as UNIX, LINUX, Mac OS X and
Windows. Some VMS and older Macintosh systems, for example, require special settings
for processing command-line arguments. See the manuals for your system for more infor-
mation on command-line arguments.

F.5 Notes on Compiling Multiple-Source-File Programs
As stated earlier in the text, it is normal to build programs that consist of multiple source
files (see Chapter 9). There are several considerations when creating programs in multiple
files. For example, the definition of a function must be entirely contained in one file—it
cannot span two or more files.

In Chapter 6, we introduced the concepts of storage class and scope. We learned that
variables declared outside any function definition are of storage class static by default and
are referred to as global variables. Global variables are accessible to any function defined
in the same file after the variable is declared. Global variables also are accessible to func-
tions in other files; however, the global variables must be declared in each file in which
they are used. For example, if we define global integer variable flag in one file, and refer
to it in a second file, the second file must contain the declaration

prior to the variable’s use in that file. In the preceding declaration, the storage class-spec-
ifier extern indicates to the compiler that variable flag is defined either later in the same
file or in a different file. The compiler informs the linker that unresolved references to vari-
able flag appear in the file. (The compiler does not know where flag is defined, so it lets
the linker attempt to find flag.) If the linker cannot locate a definition of flag, a linker
error is reported. If a proper global definition is located, the linker resolves the references
by indicating where flag is located.

Just as extern declarations can be used to declare global variables to other program
files, function prototypes can be used to declare functions in other program files. (The
extern specifier is not required in prototypes.) This is accomplished by including the func-
tion prototype in each file in which the function is invoked, then compiling each source file
and linking the resulting object code files together. Function prototypes indicate to the
compiler that the specified function is defined either later in the same file or in a different
file. The compiler does not attempt to resolve references to such a function—that task is
left to the linker. If the linker cannot locate a function definition, an error is generated.

As an example of using function prototypes to extend the scope of a function, consider
any program containing the preprocessor directive #include <cstring>. This directive

extern int flag;

Performance Tip F.1
Global variables increase performance because they can be accessed directly by any func-
tion—the overhead of passing data to functions is eliminated.

Software Engineering Observation F.2
Global variables should be avoided unless application performance is critical or the
variable represents a shared global resource such as cin, because they violate the principle
of least privilege, and they make software difficult to maintain.

F-8 Appendix F C Legacy Code Topics

includes in a file the function prototypes for functions such as strcmp and strcat. Other
functions in the file can use strcmp and strcat to accomplish their tasks. The strcmp and
strcat functions are defined for us separately. We do not need to know where they are
defined. We are simply reusing the code in our programs. The linker resolves our refer-
ences to these functions. This process enables us to use the functions in the standard
library.

It is possible to restrict the scope of a global variable or function to the file in which
it is defined. The storage-class specifier static, when applied to a global namespace scope
variable or a function, prevents it from being used by any function that is not defined in
the same file. This is referred to as internal linkage. Global variables (except those that
are const) and functions that are not preceded by static in their definitions have external
linkage—they can be accessed in other files if those files contain proper declarations and/
or function prototypes.

The global variable declaration

creates variable pi of type double, initializes it to 3.14159 and indicates that pi is known
only to functions in the file in which it is defined.

The static specifier is commonly used with utility functions that are called only by
functions in a particular file. If a function is not required outside a particular file, the prin-
ciple of least privilege should be enforced by using static. If a function is defined before
it is used in a file, static should be applied to the function definition. Otherwise, static
should be applied to the function prototype. Identifiers defined in the unnamed
namespace also have internal linkage. The C++ standard recommends using the unnamed
namespace rather than static.

When building large programs from multiple source files, compiling the program
becomes tedious if making small changes to one file means that the entire program must
be recompiled. Many systems provide special utilities that recompile only source files
dependent on the modified program file. On UNIX systems, the utility is called make.
Utility make reads a file called Makefile that contains instructions for compiling and
linking the program. Systems such as Borland C++ and Microsoft Visual C++ for PCs pro-
vide make utilities and “projects.” For more information on make utilities, see the manual
for your particular system.

Software Engineering Observation F.3
Creating programs in multiple source files facilitates software reusability and good
software engineering. Functions may be common to many applications. In such instances,
those functions should be stored in their own source files, and each source file should have
a corresponding header file containing function prototypes. This enables programmers of
different applications to reuse the same code by including the proper header file and
compiling their application with the corresponding source file.

Portability Tip F.1
Some systems do not support global variable names or function names of more than six
characters. This should be considered when writing programs that will be ported to mul-
tiple platforms.

static double pi = 3.14159;

F.6 Program Termination with exit and atexit F-9

F.6 Program Termination with exit and atexit
The general utilities library (<cstdlib>) provides methods of terminating program execu-
tion other than a conventional return from main. Function exit forces a program to ter-
minate as if it executed normally. The function often is used to terminate a program when
an error is detected or if a file to be processed by the program cannot be opened.

Function atexit registers a function in the program to be called when the program
terminates by reaching the end of main or when exit is invoked. Function atexit takes a
pointer to a function (i.e., the function name) as an argument. Functions called at pro-
gram termination cannot have arguments and cannot return a value.

Function exit takes one argument. The argument is normally the symbolic constant
EXIT_SUCCESS or EXIT_FAILURE. If exit is called with EXIT_SUCCESS, the implementa-
tion-defined value for successful termination is returned to the calling environment. If
exit is called with EXIT_FAILURE, the implementation-defined value for unsuccessful ter-
mination is returned. When function exit is invoked, any functions previously registered
with atexit are invoked in the reverse order of their registration, all streams associated
with the program are flushed and closed, and control returns to the host environment.
Figure F.4 tests functions exit and atexit. The program prompts the user to determine
whether the program should be terminated with exit or by reaching the end of main. Note
that function print is executed at program termination in each case.

1 // Fig. F.4: figF_04.cpp
2 // Using the exit and atexit functions
3 #include <iostream>
4 #include <cstdlib>
5 using namespace std;
6
7 void print();
8
9 int main()

10 {
11
12
13 cout << "Enter 1 to terminate program with function exit"
14 << "\nEnter 2 to terminate program normally\n";
15
16 int answer;
17 cin >> answer;
18
19 // exit if answer is 1
20 if (answer == 1)
21 {
22 cout << "\nTerminating program with function exit\n";
23
24 } // end if
25
26 cout << "\nTerminating program by reaching the end of main"
27 << endl;
28 } // end main

Fig. F.4 | Using functions exit and atexit. (Part 1 of 2.)

atexit(print); // register function print

exit(EXIT_SUCCESS);

F-10 Appendix F C Legacy Code Topics

Terminating a program with function exit runs the destructors for only the static and
global objects in the program. Terminating with function abort ends the program
without running any destructors.

F.7 Type Qualifier volatile
The volatile type qualifier is applied to a definition of a variable that may be altered from
outside the program (i.e., the variable is not completely under the control of the program).
Thus, the compiler cannot perform optimizations (such as speeding program execution or
reducing memory consumption, for example) that depend on “knowing that a variable’s
behavior is influenced only by program activities the compiler can observe.”

F.8 Suffixes for Integer and Floating-Point Constants
C++ provides integer and floating-point suffixes for specifying the types of integer and
floating-point constants. The integer suffixes are: u or U for an unsigned integer, l or L for
a long integer, and ul or UL for an unsigned long integer. The following constants are of
type unsigned, long and unsigned long, respectively:

If an integer constant is not suffixed, its type is int; if the constant cannot be stored in an
int, it is stored in a long.

29
30
31
32
33
34
35

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1

Terminating program with function exit
Executing function print at program termination
Program terminated

174u
8358L
28373ul

Fig. F.4 | Using functions exit and atexit. (Part 2 of 2.)

// display message before termination
void print()
{

cout << "Executing function print at program termination\n"
<< "Program terminated" << endl;

} // end function print

F.9 Signal Handling F-11

The floating-point suffixes are f or F for a float and l or L for a long double. The
following constants are of type long double and float, respectively:

A floating-point constant that is not suffixed is of type double. A constant with an im-
proper suffix results in either a compiler warning or an error.

F.9 Signal Handling
An unexpected event, or signal, can terminate a program prematurely. Such events in-
clude interrupts (pressing <Ctrl> C on a UNIX, LINUX, Mac OS X or Windows system),
illegal instructions, segmentation violations, termination orders from the operating
system and floating-point exceptions (division by zero or multiplying large floating-
point values). The signal-handling library provides function signal to trap unexpected
events. Function signal receives two arguments—an integer signal number and a pointer
to a signal-handling function. Signals can be generated by function raise, which takes an
integer signal number as an argument. Figure F.5 summarizes the standard signals defined
in header file <csignal>. The next example demonstrates functions signal and raise.

Figure F.6 traps an interactive signal (SIGINT) with function signal. The program
calls signal with SIGINT and a pointer to function signalHandler. (Recall that a func-
tion’s name is a pointer to that function.) When a signal of type SIGINT occurs, function
signalHandler is called, a message is printed and the user is given the option to continue
normal program execution. If the user wishes to continue execution, the signal handler is
reinitialized by calling signal again (some systems require the signal handler to be reini-
tialized), and control returns to the point in the program at which the signal was detected.
In this program, function raise is used to simulate an interactive signal. A random
number between 1 and 50 is chosen. If the number is 25, then raise is called to generate
the signal. Normally, interactive signals are initiated outside the program. For example,
pressing <Ctrl> C during program execution on a UNIX, LINUX, Mac OS X or Windows
system generates an interactive signal that terminates program execution. Signal handling
can be used to trap the interactive signal and prevent the program from terminating.

3.14159L
1.28f

Signal Explanation

SIGABRT Abnormal termination of the program (such as a
call to abort).

SIGFPE An erroneous arithmetic operation, such as a divide
by zero or an operation resulting in overflow.

SIGILL Detection of an illegal instruction.

SIGINT Receipt of an interactive attention signal.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.

Fig. F.5 | Signals defined in header <csignal>.

F-12 Appendix F C Legacy Code Topics

1 // Fig. F.6: figF_06.cpp
2 // Using signal handling
3 #include <iostream>
4 #include <iomanip>
5
6 #include <cstdlib>
7 #include <ctime>
8 using namespace std;
9

10 void signalHandler(int);
11
12 int main()
13 {
14
15 srand(time(0));
16
17 // create and output random numbers
18 for (int i = 1; i <= 100; i++)
19 {
20 int x = 1 + rand() % 50;
21
22 if (x == 25)
23
24
25 cout << setw(4) << i;
26
27 if (i % 10 == 0)
28 cout << endl; // output endl when i is a multiple of 10
29 } // end for
30 } // end main
31
32 // handles signal
33 void signalHandler(int signalValue)
34 {
35 cout << "\nInterrupt signal (" << signalValue
36 << ") received.\n"
37 << "Do you wish to continue (1 = yes or 2 = no)? ";
38
39 int response;
40
41 cin >> response;
42
43 // check for invalid responses
44 while (response != 1 && response != 2)
45 {
46 cout << "(1 = yes or 2 = no)? ";
47 cin >> response;
48 } // end while
49
50 // determine if it is time to exit
51 if (response != 1)
52 exit(EXIT_SUCCESS);
53

Fig. F.6 | Using signal handling. (Part 1 of 2.)

#include <csignal>

signal(SIGINT, signalHandler);

raise(SIGINT); // raise SIGINT when x is 25

F.10 Dynamic Memory Allocation with calloc and realloc F-13

F.10 Dynamic Memory Allocation with calloc and
realloc
In Chapter 11, we discussed C++-style dynamic memory allocation with new and delete.
C++ programmers should use new and delete, rather than C’s functions malloc and free

(header <cstdlib>). However, most C++ programmers will find themselves reading a
great deal of C legacy code, and therefore we include this additional discussion on C-style
dynamic memory allocation.

The general utilities library (<cstdlib>) provides two other functions for dynamic
memory allocation—calloc and realloc. These functions can be used to create and
modify dynamic arrays. As shown in Chapter 8, a pointer to an array can be subscripted
like an array. Thus, a pointer to a contiguous portion of memory created by calloc can
be manipulated as an array. Function calloc dynamically allocates memory for an array
and initializes the memory to zeros. The prototype for calloc is

It receives two arguments—the number of elements (nmemb) and the size of each element
(size)—and initializes the elements of the array to zero. The function returns a pointer to
the allocated memory or a null pointer (0) if the memory is not allocated.

Function realloc changes the size of an object allocated by a previous call to malloc,
calloc or realloc. The original object’s contents are not modified, provided that the
memory allocated is larger than the amount allocated previously. Otherwise, the contents
are unchanged up to the size of the new object. The prototype for realloc is

54
55
56 } // end function signalHandler

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99

Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 1
100

1 2 3 4
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 2

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

Fig. F.6 | Using signal handling. (Part 2 of 2.)

// call signal and pass it SIGINT and address of signalHandler
signal(SIGINT, signalHandler);

F-14 Appendix F C Legacy Code Topics

Function realloc takes two arguments—a pointer to the original object (ptr) and the
new size of the object (size). If ptr is 0, realloc works identically to malloc. If size is 0
and ptr is not 0, the memory for the object is freed. Otherwise, if ptr is not 0 and size is
greater than zero, realloc tries to allocate a new block of memory. If the new space cannot
be allocated, the object pointed to by ptr is unchanged. Function realloc returns either
a pointer to the reallocated memory or a null pointer.

F.11 Unconditional Branch: goto
Throughout the text we’ve stressed the importance of using structured programming tech-
niques to build reliable software that is easy to debug, maintain and modify. In some cases,
performance is more important than strict adherence to structured-programming tech-
niques. In these cases, some unstructured programming techniques may be used. For ex-
ample, we can use break to terminate execution of a repetition structure before the loop-
continuation condition becomes false. This saves unnecessary repetitions of the loop if the
task is completed before loop termination.

Another instance of unstructured programming is the goto statement—an uncondi-
tional branch. The result of the goto statement is a change in the flow of control of the
program to the first statement after the label specified in the goto statement. A label is an
identifier followed by a colon. A label must appear in the same function as the goto state-
ment that refers to it. Figure F.7 uses goto statements to loop 10 times and print the
counter value each time. After initializing count to 1, the program tests count to deter-
mine whether it is greater than 10. (The label start is skipped, because labels do not per-
form any action.) If so, control is transferred from the goto to the first statement after the
label end. Otherwise, count is printed and incremented, and control is transferred from
the goto to the first statement after the label start.

Common Programming Error F.2
Runtime errors may occur if you use the delete operator on a pointer resulting from mal-

loc, calloc or realloc, or if you use realloc or free on a pointer resulting from the
new operator.

1 // Fig. F.7: figF_07.cpp
2 // Using goto.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {
9 int count = 1;

10
11
12 // goto end when count exceeds 10
13 if (count > 10)
14
15

Fig. F.7 | Using goto. (Part 1 of 2.)

start: // label

goto end;

F.12 Unions F-15

In Chapters 4–5, we stated that only three control structures are required to write any
program—sequence, selection and repetition. When the rules of structured programming
are followed, it is possible to create deeply nested control structures from which it is diffi-
cult to escape efficiently. Some programmers use goto statements in such situations as a
quick exit from a deeply nested structure. This eliminates the need to test multiple condi-
tions to escape from a control structure.

F.12 Unions
A union (defined with keyword union) is a region of memory that, over time, can contain
objects of a variety of types. However, at any moment, a union can contain a maximum
of one object, because the members of a union share the same storage space. It is your re-
sponsibility to ensure that the data in a union is referenced with a member name of the
proper data type.

At different times during a program’s execution, some objects might not be relevant,
while one other object is—so a union shares the space instead of wasting storage on objects

16 cout << setw(2) << left << count;
17 ++count;
18
19
20
21
22
23 cout << endl;
24 } // end main

1 2 3 4 5 6 7 8 9 10

Performance Tip F.2
The goto statement can be used to exit deeply nested control structures efficiently but can
make code more difficult to read and maintain. Its use is strongly discouraged.

Error-Prevention Tip F.1
The goto statement should be used only in performance-oriented applications. The goto
statement is unstructured and can lead to programs that are more difficult to debug,
maintain, modify and understand.

Common Programming Error F.3
The result of referencing a union member other than the last one stored is undefined. It
treats the stored data as a different type.

Portability Tip F.2
If data are stored in a union as one type and referenced as another type, the results are
implementation dependent.

Fig. F.7 | Using goto. (Part 2 of 2.)

// goto start on line 17
goto start;

end: // label

F-16 Appendix F C Legacy Code Topics

that are not being used. The number of bytes used to store a union will be at least enough
to hold the largest member.

A union is declared in the same format as a struct or a class. For example,

indicates that Number is a union type with members int x and double y. The union defi-
nition must precede all functions in which it will be used.

The only valid built-in operations that can be performed on a union are assigning a
union to another union of the same type, taking the address (&) of a union and accessing
union members using the structure member operator (.) and the structure pointer oper-
ator (->). unions cannot be compared.

A union is similar to a class in that it can have a constructor to initialize any of its
members. A union that has no constructor can be initialized with another union of the
same type, with an expression of the type of the first member of the union or with an ini-
tializer (enclosed in braces) of the type of the first member of the union. unions can have
other member functions, such as destructors, but a union’s member functions cannot be
declared virtual. The members of a union are public by default.

A union cannot be used as a base class in inheritance (i.e., classes cannot be derived
from unions). unions can have objects as members only if these objects do not have a con-
structor, a destructor or an overloaded assignment operator. None of a union’s data mem-
bers can be declared static.

Performance Tip F.3
Using unions conserves storage.

Portability Tip F.3
The amount of storage required to store a union is implementation dependent.

union Number
{

int x;
double y;

};

Software Engineering Observation F.4
Like a struct or a class declaration, a union declaration creates a new type. Placing a
union or struct declaration outside any function does not create a global variable.

Common Programming Error F.4
Comparing unions is a compilation error, because the compiler does not know which
member of each is active and hence which member of one to compare to which member of
the other.

Common Programming Error F.5
Initializing a union in a declaration with a value or an expression whose type is different
from the type of the union’s first member is a compilation error.

F.12 Unions F-17

Figure F.8 uses the variable value of type union Number to display the value stored in
the union as both an int and a double. The program output is implementation depen-
dent. The program output shows that the internal representation of a double value can be
quite different from the representation of an int.

An anonymous union is a union without a type name that does not attempt to define
objects or pointers before its terminating semicolon. Such a union does not create a type
but does create an unnamed object. An anonymous union’s members may be accessed
directly in the scope in which the anonymous union is declared just as are any other local
variables—there is no need to use the dot (.) or arrow (->) operators.

1 // Fig. F.8: figF_08.cpp
2 // An example of a union.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9

10
11
12
13 int main()
14 {
15
16
17
18
19 cout << "Put a value in the integer member\n"
20 << "and print both members.\nint: "
21 << << "\ndouble: " <<
22 << endl;
23
24
25
26 cout << "Put a value in the floating member\n"
27 << "and print both members.\nint: "
28 << << "\ndouble: " <<
29 << endl;
30 } // end main

Put a value in the integer member
and print both members.
int: 100
double: -9.25596e+061
Put a value in the floating member
and print both members.
int: 0
double: 100

Fig. F.8 | Printing the value of a union in both member data types.

// define union Number
union Number
{

int integer1;
double double1;

}; // end union Number

Number value; // union variable

value.integer1 = 100; // assign 100 to member integer1

value.integer1 value.double1

value.double1 = 100.0; // assign 100.0 to member double1

value.integer1 value.double1

F-18 Appendix F C Legacy Code Topics

Anonymous unions have some restrictions. Anonymous unions can contain only data
members. All members of an anonymous union must be public. And an anonymous
union declared globally (i.e., at global namespace scope) must be explicitly declared
static. Figure F.9 illustrates the use of an anonymous union.

F.13 Linkage Specifications
It is possible from a C++ program to call functions written and compiled with a C com-
piler. As stated in Section 6.17, C++ specially encodes function names for type-safe link-
age. C, however, does not encode its function names. Thus, a function compiled in C will

1 // Fig. F.9: figF_09.cpp
2 // Using an anonymous union.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10
11
12
13
14
15
16
17 // declare local variables
18 int integer2 = 1;
19 double double2 = 3.3;
20 char *char2Ptr = "Anonymous";
21
22 // assign value to each union member
23 // successively and print each
24 cout << integer2 << ' ';
25
26 cout << integer1 << endl;
27
28 cout << double2 << ' ';
29
30 cout << double1 << endl;
31
32 cout << char2Ptr << ' ';
33
34 cout << charPtr << endl;
35 } // end main

1 2
3.3 4.4
Anonymous union

Fig. F.9 | Using an anonymous union.

// declare an anonymous union
// members integer1, double1 and charPtr share the same space
union
{

int integer1;
double double1;
char *charPtr;

}; // end anonymous union

integer1 = 2;

double1 = 4.4;

charPtr = "union";

F.14 Wrap-Up F-19

not be recognized when an attempt is made to link C code with C++ code, because the
C++ code expects a specially encoded function name. C++ enables you to provide linkage
specifications to inform the compiler that a function was compiled on a C compiler and
to prevent the name of the function from being encoded by the C++ compiler. Linkage
specifications are useful when large libraries of specialized functions have been developed,
and the user either does not have access to the source code for recompilation into C++ or
does not have time to convert the library functions from C to C++.

To inform the compiler that one or several functions have been compiled in C, write
the function prototypes as follows:

These declarations inform the compiler that the specified functions are not compiled in
C++, so name encoding should not be performed on the functions listed in the linkage
specification. These functions can then be linked properly with the program. C++ envi-
ronments normally include the standard C libraries and do not require you to use linkage
specifications for those functions.

F.14 Wrap-Up
This appendix introduced a number of C legacy-code topics. We discussed redirecting
keyboard input to come from a file and redirecting screen output to a file. We also intro-
duced variable-length argument lists, command-line arguments and processing of unex-
pected events. You also learned about allocating and resizing memory dynamically.

extern "C" function prototype // single function

extern "C" // multiple functions
{

function prototypes
}

Summary
Section F.2 Redirecting Input/Output on UNIX/Linux/Mac OS X and Windows
Systems
• On many systems—UNIX, LINUX, Mac OS X or Windows systems in particular—it is possible

to redirect input to a program and output from a program. Input is redirected from the UNIX,
LINUX, Mac OS X or Windows command lines using the redirect input symbol (<) or a pipe
(|). Output is redirected from the UNIX, LINUX, Mac OS X or Windows command lines using
the redirect output symbol (>) or the append output symbol (>>). The redirect output symbol
simply stores the program output in a file, and the append output symbol appends the output to
the end of a file.

Section F.3 Variable-Length Argument Lists
• The macros and definitions of the variable arguments header <cstdarg> provide the capabilities

necessary to build functions with variable-length argument lists.

• An ellipsis (…) in a function prototype indicates that the function receives a variable number of
arguments.

F-20 Appendix F C Legacy Code Topics

• Type va_list is suitable for holding information needed by macros va_start, va_arg and
va_end. To access the arguments in a variable-length argument list, an object of type va_list

must be declared.

• Macro va_start is invoked before the arguments of a variable-length argument list can be ac-
cessed. The macro initializes the object declared with va_list for use by macros va_arg and
va_end.

• Macro va_arg expands to an expression of the value and type of the next argument in the vari-
able-length argument list. Each invocation of va_arg modifies the va_list object so that the ob-
ject points to the next argument in the list.

• Macro va_end facilitates a normal return from a function whose variable argument list was re-
ferred to by the va_start macro.

Section F.4 Using Command-Line Arguments
• On many systems—UNIX, LINUX, Mac OS X and Windows in particular—it is possible to

pass command-line arguments to main by including in main’s parameter list the parameters int
argc and char *argv[]. Parameter argc is the number of command-line arguments. Parameter
argv is an array of char *’s containing the command-line arguments.

Section F.5 Notes on Compiling Multiple-Source-File Programs
• A function definition must be entirely contained in one file—it cannot span two or more files.

• Global variables must be declared in each file in which they are used.

• Function prototypes can be used to declare functions in other program files. (The extern speci-
fier is not required in a function prototype.) This is accomplished by including the function pro-
totype in each file in which the function is invoked, then linking the compiled files together.

• The storage-class specifier static, when applied to a global namespace scope variable or a func-
tion, prevents it from being used by any function that is not defined in the same file. This is re-
ferred to as internal linkage. Global variables and functions that are not preceded by static in
their definitions have external linkage—they can be accessed in other files if those files contain
proper declarations and/or function prototypes.

• The static specifier is commonly used with utility functions that are called only by functions in
a particular file. If a function is not required outside a particular file, the principle of least privi-
lege should be enforced by using static.

• When building large programs from multiple source files, compiling the program becomes te-
dious if making small changes to one file means that the entire program must be recompiled.
Many systems provide special utilities that recompile only the modified program file. On UNIX
systems, the utility is called make. Utility make reads a file called Makefile that contains instruc-
tions for compiling and linking the program.

Section F.6 Program Termination with exit and atexit
• Function exit forces a program to terminate as if it had executed normally.

• Function atexit registers a function to be called upon normal termination of the program—i.e.,
either when the program terminates by reaching the end of main, or when exit is invoked.

• Function atexit takes a pointer to a function (e.g., a function name) as an argument. Functions
called at program termination cannot have arguments and cannot return a value.

• Function exit takes one argument—normally the symbolic constant EXIT_SUCCESS or the sym-
bolic constant EXIT_FAILURE. If exit is called with EXIT_SUCCESS, the implementation-defined
value for successful termination is returned to the calling environment. If exit is called with
EXIT_FAILURE, the implementation-defined value for unsuccessful termination is returned.

Summary F-21

• When function exit is invoked, any functions registered with atexit are invoked in the reverse
order of their registration, all streams associated with the program are flushed and closed and
control returns to the host environment.

Section F.7 Type Qualifier volatile
• The volatile qualifier is used to prevent optimizations of a variable, because it can be modified

from outside the program’s scope.

Section F.8 Suffixes for Integer and Floating-Point Constants
• C++ provides integer and floating-point suffixes for specifying the types of integer and floating-

point constants. The integer suffixes are u or U for an unsigned integer, l or L for a long integer
and ul or UL for an unsigned long integer. If an integer constant is not suffixed, its type is deter-
mined by the first type capable of storing a value of that size (first int, then long int). The float-
ing-point suffixes are f or F for a float and l or L for a long double. A floating-point constant
that is not suffixed is of type double.

Section F.9 Signal Handling
• The signal-handling library provides the capability to register a function to trap unexpected

events with function signal. Function signal receives two arguments—an integer signal num-
ber and a pointer to the signal-handling function.

• Signals can also be generated with function raise and an integer argument.

Section F.10 Dynamic Memory Allocation with calloc and realloc
• The general-utilities library (cstdlib) provides functions calloc and realloc for dynamic mem-

ory allocation. These functions can be used to create dynamic arrays.

• Function calloc receives two arguments—the number of elements (nmemb) and the size of each
element (size)—and initializes the elements of the array to zero. The function returns a pointer
to the allocated memory or if the memory is not allocated, the function returns a null pointer.

• Function realloc changes the size of an object allocated by a previous call to malloc, calloc or
realloc. The original object’s contents are not modified, provided that the amount of memory
allocated is larger than the amount allocated previously.

• Function realloc takes two arguments—a pointer to the original object (ptr) and the new size
of the object (size). If ptr is null, realloc works identically to malloc. If size is 0 and the point-
er received is not null, the memory for the object is freed. Otherwise, if ptr is not null and size

is greater than zero, realloc tries to allocate a new block of memory for the object. If the new
space cannot be allocated, the object pointed to by ptr is unchanged. Function realloc returns
either a pointer to the reallocated memory or a null pointer.

Section F.11 Unconditional Branch: goto
• The result of the goto statement is a change in the program’s flow of control. Program execution

continues at the first statement after the label in the goto statement.

• A label is an identifier followed by a colon. A label must appear in the same function as the goto

statement that refers to it.

Section F.12 Unions
• A union is a data type whose members share the same storage space. The members can be almost

any type. The storage reserved for a union is large enough to store its largest member. In most
cases, unions contain two or more data types. Only one member, and thus one data type, can be
referenced at a time.

F-22 Appendix F C Legacy Code Topics

• A union is declared in the same format as a structure.

• A union can be initialized only with a value of the type of its first member or another object of
the same union type.

Section F.13 Linkage Specifications
• C++ enables you to provide linkage specifications to inform the compiler that a function was

compiled on a C compiler and to prevent the name of the function from being encoded by the
C++ compiler.

• To inform the compiler that one or several functions have been compiled in C, write the function
prototypes as follows:

extern "C" function prototype // single function

extern "C" // multiple functions
{

function prototypes
}

These declarations inform the compiler that the specified functions are not compiled in C++, so
name encoding should not be performed on the functions listed in the linkage specification.
These functions can then be linked properly with the program.

• C++ environments normally include the standard C libraries and do not require you to use link-
age specifications for those functions.

Self-Review Exercise
F.1 Fill in the blanks in each of the following:

a) Symbol redirects input data from the keyboard to come from a file.
b) The symbol is used to redirect the screen output to be placed in a file.
c) The symbol is used to append the output of a program to the end of a file.
d) A(n) is used to direct the output of a program as the input of another pro-

gram.
e) A(n) in the parameter list of a function indicates that the function can receive

a variable number of arguments.
f) Macro must be invoked before the arguments in a variable-length argument

list can be accessed.
g) Macro is used to access the individual arguments of a variable-length argu-

ment list.
h) Macro performs termination housekeeping in a function whose variable argu-

ment list was referred to by macro va_start.
i) Argument of main receives the number of arguments in a command line.
j) Argument of main stores command-line arguments as character strings.
k) The UNIX utility reads a file called that contains instructions for

compiling and linking a program consisting of multiple source files. The utility recom-
piles a file only if the file (or a header it uses) has been modified since it was last com-
piled.

l) Function forces a program to terminate execution.
m) Function registers a function to be called upon normal termination of the pro-

gram.
n) An integer or floating-point can be appended to an integer or floating-point

constant to specify the exact type of the constant.
o) Function can be used to register a function to trap unexpected events.
p) Function generates a signal from within a program.

Answers to Self-Review Exercise F-23

q) Function dynamically allocates memory for an array and initializes the ele-
ments to zero.

r) Function changes the size of a block of dynamically allocated memory.
s) A(n) is an entity containing a collection of variables that occupy the same

memory, but at different times.
t) The keyword is used to introduce a union definition.

Answers to Self-Review Exercise
F.1 a) redirect input (<). b) redirect output (>). c) append output (>>). d) pipe (|).
e) ellipsis (...). f) va_start. g) va_arg. h) va_end. i) argc. j) argv. k) make, Makefile. l) exit.
m) atexit. n) suffix. o) signal. p) raise. q) calloc. r) realloc. s) union. t) union.

Exercises
F.2 Write a program that calculates the product of a series of integers that are passed to function
product using a variable-length argument list. Test your function with several calls, each with a dif-
ferent number of arguments.

F.3 Write a program that prints the command-line arguments of the program.

F.4 Write a program that sorts an integer array into ascending order or descending order. The
program should use command-line arguments to pass either argument -a for ascending order or -d
for descending order. [Note: This is the standard format for passing options to a program in UNIX.]

F.5 Read the manuals for your system to determine what signals are supported by the signal-
handling library (<csignal>). Write a program with signal handlers for the signals SIGABRT and
SIGINT. The program should test the trapping of these signals by calling function abort to generate
a signal of type SIGABRT and by pressing <Ctrl> C to generate a signal of type SIGINT.

F.6 Write a program that dynamically allocates an array of integers using a function from
<cstdlib>, not the new operator. The size of the array should be input from the keyboard. The ele-
ments of the array should be assigned values input from the keyboard. Print the values of the array.
Next, reallocate the memory for the array to half of the current number of elements. Print the values
remaining in the array to confirm that they match the first half of the values in the original array.

F.7 Write a program that takes two filenames as command-line arguments, reads the characters
from the first file one at a time and writes the characters in reverse order to the second file.

F.8 Write a program that uses goto statements to simulate a nested looping structure that prints
a square of asterisks. The program should use only the following three output statements:

cout << '*';
cout << ' ';
cout << endl;

F.9 Provide the definition for union Data containing char charcter1, short short1, long

long1, float float1 and double double1.

F.10 Create union Integer with members char c, short s, int i and long l. Write a program
that inputs values of type char, short, int and long and stores the values in union variables of type
union Integer. Each union variable should be printed as a char, a short, an int and a long. Do the
values always print correctly?

F.11 Create union FloatingPoint with members float float1, double double1 and long double

longDouble. Write a program that inputs values of type float, double and long double and stores
the values in union variables of type union FloatingPoint. Each union variable should be printed as
a float, a double and a long double. Do the values always print correctly?

F-24 Appendix F C Legacy Code Topics

F.12 Given the union

union A
{

double y;
char *zPtr;

};

which of the following are correct statements for initializing the union?
a) A p = b; // b is of type A

b) A q = x; // x is a double

c) A r = 3.14159;
d) A s = { 79.63 };
e) A t = { "Hi There!" };
f) A u = { 3.14159, "Pi" };
g) A v = { y = –7.843, zPtr = &x };

G
UML 2: Additional Diagram Types

G.1 Introduction
If you’ve read the optional Software Engineering Case Study in Chapters 25–26, you
should now have a comfortable grasp of the UML diagram types that we use to model our
ATM system. The case study is intended for use in first- or second-semester courses, so we
limit our discussion to a concise subset of the UML. The UML 2 provides a total of 13
diagram types. The end of Section 25.3 summarizes the six diagram types that we use in
the case study. This appendix lists and briefly defines the seven remaining diagram types.

G.2 Additional Diagram Types
The following are the seven diagram types that we’ve chosen not to use in our Software
Engineering Case Study.

• Object diagrams model a “snapshot” of the system by modeling a system’s ob-
jects and their relationships at a specific point in time. Each object represents an
instance of a class from a class diagram, and several objects may be created from
one class. For our ATM system, an object diagram could show several distinct Ac-
count objects side by side, illustrating that they are all part of the bank’s account
database.

• Component diagrams model the artifacts and components—resources (which
include source files)—that make up the system.

• Deployment diagrams model the system’s runtime requirements (such as the
computer or computers on which the system will reside), memory requirements,
or other devices the system requires during execution.

• Package diagrams model the hierarchical structure of packages (which are groups
of classes) in the system at compile time and the relationships that exist between
the packages.

• Composite structure diagrams model the internal structure of a complex object
at runtime. New in UML 2, they allow system designers to hierarchically decom-
pose a complex object into smaller parts. Composite structure diagrams are be-
yond the scope of our case study. They are more appropriate for larger industrial
applications, which exhibit complex groupings of objects at execution time.

G-2 Appendix G UML 2: Additional Diagram Types

• Interaction overview diagrams, new in UML 2, provide a summary of control
flow in the system by combining elements of several types of behavioral diagrams
(e.g., activity diagrams, sequence diagrams).

• Timing diagrams, also new in UML 2, model the timing constraints imposed on
stage changes and interactions between objects in a system.

To learn more about these diagrams and advanced UML topics, please visit our UML
Resource Center at www.deitel.com/UML/.

www.deitel.com/UML/

HUsing the Visual Studio
Debugger

And so shall I catch the fly.
—William Shakespeare

We are built to make mistakes,
coded for error.
—Lewis Thomas

What we anticipate seldom
occurs; what we least expect
generally happens.
—Benjamin Disraeli

He can run but he can’t hide.
—Joe Louis

It is one thing to show a man
that he is in error, and another
to put him in possession of
truth.
—John Locke

O b j e c t i v e s
In this appendix you’ll learn:

■ To set breakpoints and run a
program in the debugger.

■ To use the Continue
command to continue
execution.

■ To use the Locals window to
view and modify the values
of variables.

■ To use the Watch window to
evaluate expressions.

■ To use the Step Into, Step
Out and Step Over
commands to control
execution.

■ To use the Autos window to
view variables that are used in
the surrounding statements.

H-2 Appendix H Using the Visual Studio Debugger

H.1 Introduction
In Chapter 2, you learned that there are two types of errors—compilation errors and logic
errors—and you learned how to eliminate compilation errors from your code. Logic errors
(also called bugs) do not prevent a program from compiling successfully, but can cause the
program to produce erroneous results when it runs. Most C++ compiler vendors provide
software called a debugger, which allows you to monitor the execution of your programs
to locate and remove logic errors. The debugger will be one of your most important pro-
gram development tools. This appendix demonstrates key features of the Visual Studio de-
bugger. Appendix I discusses the features and capabilities of the GNU C++ debugger

H.2 Breakpoints and the Continue Command
We begin our study of the debugger by investigating breakpoints, which are markers that
can be set at any executable line of code. When program execution reaches a breakpoint,
execution pauses, allowing you to examine the values of variables to help determine wheth-
er a logic error exists. For example, you can examine the value of a variable that stores the
result of a calculation to determine whether the calculation was performed correctly. Note
that attempting to set a breakpoint at a line of code that is not executable (such as a com-
ment) will actually set the breakpoint at the next executable line of code in that function.

To illustrate the features of the debugger, we use the program listed in Fig. H.3, which
creates and manipulates an object of class Account (Figs. H.1–H.2). Execution begins in
main (lines 10–27 of Fig. H.3). Line 12 creates an Account object with an initial balance
of $50.00. Account’s constructor (lines 9–21 of Fig. H.2) accepts one argument, which
specifies the Account’s initial balance. Line 15 of Fig. H.3 outputs the initial account bal-
ance using Account member function getBalance. Line 17 declares a local variable with-
drawalAmount, which stores a withdrawal amount read from the user. Line 19 prompts the
user for the withdrawal amount, and line 20 inputs the amount into withdrawalAmount.
Line 23 subtracts the withdrawal from the Account’s balance using its debit member
function. Finally, line 26 displays the new balance.

H.1 Introduction
H.2 Breakpoints and the Continue

Command
H.3 Locals and Watch Windows

H.4 Controlling Execution Using the
Step Into, Step Over, Step Out
and Continue Commands

H.5 Autos Window
H.6 Wrap-U

Summary | Self-Review Exercises | Answers to Self-Review Exercises

1 // Fig. H.1: Account.h
2 // Definition of Account class.
3 class Account
4 {

Fig. H.1 | Header file for the Account class. (Part 1 of 2.)

H.2 Breakpoints and the Continue Command H-3

5 public:
6 Account(int); // constructor initializes balance
7 void credit(int); // add an amount to the account balance
8 void debit(int); // subtract an amount from the account balance
9 int getBalance(); // return the account balance

10 private:
11 int balance; // data member that stores the balance
12 }; // end class Account

1 // Fig. H.2: Account.cpp
2 // Member-function definitions for class Account.
3 #include <iostream>
4 using namespace std;
5
6 #include "Account.h" // include definition of class Account
7
8 // Account constructor initializes data member balance
9 Account::Account(int initialBalance)

10 {
11 balance = 0; // assume that the balance begins at 0
12
13 // if initialBalance is greater than 0, set this value as the
14 // balance of the account; otherwise, balance remains 0
15 if (initialBalance > 0)
16 balance = initialBalance;
17
18 // if initialBalance is negative, print error message
19 if (initialBalance < 0)
20 cout << "Error: Initial balance cannot be negative.\n" << endl;
21 } // end Account constructor
22
23 // credit (add) an amount to the account balance
24 void Account::credit(int amount)
25 {
26 balance = balance + amount; // add amount to balance
27 } // end function credit
28
29 // debit (subtract) an amount from the account balance
30 void Account::debit(int amount)
31 {
32 if (amount <= balance) // debit amount does not exceed balance
33 balance = balance - amount;
34 else // debit amount exceeds balance
35 cout << "Debit amount exceeded account balance.\n" << endl;
36 } // end function debit
37
38 // return the account balance
39 int Account::getBalance()
40 {

Fig. H.2 | Definition for the Account class. (Part 1 of 2.)

Fig. H.1 | Header file for the Account class. (Part 2 of 2.)

H-4 Appendix H Using the Visual Studio Debugger

Creating a Project in Visual C++ 2010 Express
In the following steps, you’ll create a project that includes the code from Figs. H.1–H.3.

1. In Visual C++ 2010 Express select File > New > Project… to display the New Proj-
ect dialog.

2. In the left columns, select Win32, and in the center column, select Win32 Console
Application.

3. In the Name: field, enter a name for your project and in the Location: field, specify
where you’d like to save the project on your computer, then click OK.

4. In the Win32 Application Wizard dialog, click Next >.

5. Under Application type:, select Console application, and under Additional options:,
uncheck Precompiled header, select Empty project, then click Finish.

6. In the Visual C++’s Solution Explorer window, right click your project’s Source
Files folder and select Add > Existing Item… to display the Add Existing Item dialog.

41 return balance; // gives the value of balance to the calling function
42 } // end function getBalance

1 // Fig. H.3: figL_03.cpp
2 // Create and manipulate Account objects.
3 #include <iostream>
4 using namespace std;
5
6 // include definition of class Account from Account.h
7 #include "Account.h"
8
9 // function main begins program execution

10 int main()
11 {
12 Account account1(50); // create Account object
13
14 // display initial balance of each object
15 cout << "account1 balance: $" << account1.getBalance() << endl;
16
17 int withdrawalAmount; // stores withdrawal amount read from user
18
19 cout << "\nEnter withdrawal amount for account1: "; // prompt
20 cin >> withdrawalAmount; // obtain user input
21 cout << "\nattempting to subtract " << withdrawalAmount
22 << " from account1 balance\n\n";
23 account1.debit(withdrawalAmount); // try to subtract from account1
24
25 // display balances
26 cout << "account1 balance: $" << account1.getBalance() << endl;
27 } // end main

Fig. H.3 | Test class for debugging.

Fig. H.2 | Definition for the Account class. (Part 2 of 2.)

H.2 Breakpoints and the Continue Command H-5

7. Locate the folder containing the Appendix H example code, select all three files
and click Add.

Enabling Debug Mode and Inserting Breakpoints
In the following steps, you’ll use breakpoints and various debugger commands to examine
the value of the variable withdrawalAmount declared in Fig. H.3.

1. Enabling the debugger. The debugger is normally enabled by default. If it isn’t
enabled, you have to change the settings of the Solution Configurations combo
box (Fig. H.4) in the toolbar. To do this, click the combo box’s down arrow, then
select Debug.

2. Inserting breakpoints. Open the file figH_03.cpp by double-clicking it in the
Solution Explorer. To insert a breakpoint, click inside the margin indicator bar
(the gray margin at the left of the code window in Fig. H.5) next to the line of
code at which you wish to break or right click that line of code and select Break-
point > Insert Breakpoint. You can set as many breakpoints as necessary. Set break-
points at lines 17 and 21 of your code. A red circle appears in the margin
indicator bar where you clicked, indicating that a breakpoint has been set
(Fig. H.5). When the program runs, the debugger pauses execution at any line
that contains a breakpoint. The program is said to be in break mode when the
debugger pauses the program. Breakpoints can be set before running a program,
in break mode and while a program is running.

3. Starting to debug. After setting breakpoints in the code editor, select Debug >
Build Solution to compile the program, then select Debug > Start Debugging to be-
gin the debugging process. [Note: If you do not compile the program first, it will
still be compiled when you select Debug > Start Debugging.] When you debug a
console application, a Command Prompt window appears (Fig. H.6) in which you
can specify program input and view program output. The debugger enters break
mode when execution reaches the breakpoint at line 17.

4. Examining program execution. Upon entering break mode at the first breakpoint
(line 17), the IDE becomes the active window (Fig. H.7). The yellow arrow to
the left of line 17 indicates that this line contains the next statement to execute.

Fig. H.4 | Enabling the debugger.

Solution Configurations
combo box

H-6 Appendix H Using the Visual Studio Debugger

5. Using the Continue command to resume execution. To resume execution, select
Debug > Continue. The Continue command resumes program execution until the
next breakpoint or the end of main is encountered, whichever comes first. The
program continues executing and pauses for input at line 18. Enter 13 as the
withdrawal amount. The program executes until it stops at the next breakpoint
(line 21). Notice that when you place your mouse pointer over the variable name
withdrawalAmount, the value stored in the variable is displayed in a Quick Info
box (Fig. H.8). As you’ll see, this can help you spot logic errors in your programs.

Fig. H.5 | Setting two breakpoints.

Fig. H.6 | Inventory program running.

Fig. H.7 | Program execution suspended at the first breakpoint.

Breakpoint

Margin indicator bar

Breakpoint

Yellow arrow
that indicates

the next
statement
to execute

H.2 Breakpoints and the Continue Command H-7

6. Setting a breakpoint at main’s closing brace. Set a breakpoint at line 25 in the
source code by clicking in the margin indicator bar to the left of line 25. This will
prevent the program from closing immediately after displaying its result. When
there are no more breakpoints at which to suspend execution, the program will
execute to completion and the Command Prompt window will close. If you do not
set this breakpoint, you won’t be able to view the program’s output before the
console window closes.

7. Continuing program execution. Use the Debug > Continue command to execute
the code up to the next breakpoint. The program displays the result of its calcu-
lation (Fig. H.9).

8. Removing a breakpoint. Click the breakpoint in the margin indicator bar.

9. Finishing program execution. Select Debug > Continue to execute the program to
completion.

In this section, you learned how to enable the debugger and set breakpoints so that
you can examine the results of code while a program is running. You also learned how to
continue execution after a program suspends execution at a breakpoint and how to remove
breakpoints.

Fig. H.8 | Quick Info box showing the value of a variable.

Fig. H.9 | Program output.

Quick Info box

H-8 Appendix H Using the Visual Studio Debugger

H.3 Locals and Watch Windows
In the preceding section, you learned that the Quick Info feature allows you to examine a
variable’s value. In this section, you’ll learn to use the Locals window to assign new values
to variables while your program is running. You’ll also use the Watch window to examine
the value of more complex expressions.

1. Inserting breakpoints. Clear the existing breakpoints. Then, set a breakpoint at
line 21 in the source code by clicking in the margin indicator bar to the left of
line 21 (Fig. H.10). Set another breakpoint at line 24 by clicking in the margin
indicator bar to the left of line 24.

2. Starting debugging. Select Debug > Start. Type 13 at the Enter withdrawal amount
for account1: prompt and press Enter so that your program reads the value you
just entered. The program executes until the breakpoint at line 21.

3. Suspending program execution. The debugger enters break mode at line 21
(Fig. H.11). At this point, line 18 has input the withdrawalAmount that you en-
tered (13), lines 19–20 have output that the program will attempt to withdraw
money and line 21 is the next statement that will execute.

Fig. H.10 | Setting breakpoints at lines 25 and 28.

Fig. H.11 | Program execution suspended when debugger reaches the breakpoint at line 25.

H.3 Locals and Watch Windows H-9

4. Examining data. In break mode, you can explore the values of your local variables
using the debugger’s Locals window, which is normally displayed at the bottom
left of the IDE when you are debugging. If it is not shown, you can view the
Locals window, select Debug > Windows > Locals. Figure H.12 shows the values
for main’s local variables account1 and withdrawalAmount (13).

5. Evaluating arithmetic and boolean expressions. You can evaluate arithmetic and
boolean expressions using the Watch window. You can display up to four Watch
windows. Select Debug > Windows > Watch 1. In the first row of the Name col-
umn, type (withdrawalAmount + 3) * 5, then press Enter. The value of this ex-
pression (80 in this case) is displayed in the Value column (Fig. H.13). In the next
row of the Name column, type withdrawalAmount == 3, then press Enter. This ex-
pression determines whether the value of withdrawalAmount is 3. Expressions
containing the == operator (or any other relational or equality operator) are treat-
ed as bool expressions. The value of the expression in this case is false

(Fig. H.13), because withdrawalAmount currently contains 13, not 3.

6. Resuming execution. Select Debug > Continue to resume execution. Line 21 debits
the account by the withdrawal amount, and the debugger reenters break mode at
line 24. Select Debug > Windows > Locals or click the Locals tab at the bottom of
Visual Studio to redisplay the Locals window. The updated balance value in
account1 is now displayed in red (Fig. H.14) to indicate that it has been modi-
fied since the last breakpoint. Click the plus box to the left of account1 in the
Name column of the Locals window. This allows you to view each of account1’s
data member values individually—this is particularly useful for objects that have
several data members.

7. Modifying values. Based on the value input by the user (13), the account balance
output by the program should be $37. However, you can use the Locals window
to change the values of variables during the program’s execution. This can be

Fig. H.12 | Examining variable withdrawalAmount.

Fig. H.13 | Examining the values of expressions.

Evaluating a bool expressionEvaluating an arithmetic expression

H-10 Appendix H Using the Visual Studio Debugger

valuable for experimenting with different values and for locating logic errors. In
the Locals window, expand the account1 node and double click the Value field in
the balance row to select the value 37. Type 33, then press Enter. The debugger
changes the value of balance and displays its new value in red (Fig. H.15).

8. Setting a breakpoint at at main’s closing brace. Set a breakpoint at line 25 in the
source code to prevent the program from closing immediately after displaying its
result. If you do not set this breakpoint, you won’t be able to view the program’s
output before the console window closes.

9. Viewing the program result. Select Debug > Continue to continue program execu-
tion. Function main executes until the return statement in line 29 and displays
the result. Notice that the result is $33 (Fig. H.16). This shows that Step 7
changed the value of balance from the calculated value (37) to 33.

10. Stopping the debugging session. Select Debug > Stop Debugging. This will close
the Command Prompt window. Remove all remaining breakpoints.

In this section, you learned how to use the debugger’s Watch and Locals windows to
evaluate arithmetic and boolean expressions. You also learned how to modify the value of
a variable during your program’s execution.

Fig. H.14 | Displaying the value of local variables.

Fig. H.15 | Modifying the value of a variable.

Fig. H.16 | Output displayed after modifying the account1 variable.

Value of account1’s balance data member displayed in red

Value modified in the Locals window

H.4 Using the Step Into, Step Over, Step Out and Continue Commands H-

H.4 Controlling Execution Using the Step Into, Step
Over, Step Out and Continue Commands
Sometimes executing a program line by line can help you verify that a function’s code ex-
ecutes correctly, and can help you find and fix logic errors. The commands you learn in
this section allow you to execute a function line by line, execute all the statements of a
function at once or execute only the remaining statements of a function (if you’ve already
executed some statements within the function).

1. Setting a breakpoint. Set a breakpoint at line 21 by clicking in the margin indi-
cator bar to the left of the line.

2. Starting the debugger. Select Debug > Start. Enter the value 13 at the Enter with-
drawal amount for account1: prompt. Execution will halt when the program
reaches the breakpoint at line 21.

3. Using the Step Into command. The Step Into command executes the next state-
ment in the program (line 21), then immediately halts. If that statement is a func-
tion call (as is the case here), control transfers into the called function. This
enables you to execute each statement inside the function individually to confirm
the function’s execution. Select Debug > Step Into to enter the debit function.
Then, Select Debug > Step Into again so the yellow arrow is positioned at line 31
of Account.cpp, as shown in Fig. H.17.

4. Using the Step Over command. Select Debug > Step Over to execute the current
statement (line 31 in Fig. H.17) and transfer control to line 32 (Fig. H.18). The
Step Over command behaves like the Step Into command when the next state-
ment to execute does not contain a function call. You’ll see how the Step Over
command differs from the Step Into command in Step 10.

5. Using the Step Out command. Select Debug > Step Out to execute the remaining
statements in the function and return control to the next executable statement
(line 28 in Fig. H.3). Often, in lengthy functions, you’ll want to look at a few key
lines of code, then continue debugging the caller’s code. The Step Out command
enables you to continue program execution in the caller without having to step
through the entire called function line by line.

Fig. H.17 | Stepping into the debit function.

H-12 Appendix H Using the Visual Studio Debugger

6. Setting a breakpoint. Set a breakpoint at the end of main at line 25 of Fig. H.3.
You’ll make use of this breakpoint in the next step.

7. Using the Continue command. Select Debug > Continue to execute until the next
breakpoint is reached at line 25. Using the Continue command is useful when you
wish to execute all the code up to the next breakpoint.

8. Stopping the debugger. Select Debug > Stop Debugging to end the debugging ses-
sion. This will close the Command Prompt window.

9. Starting the debugger. Before we can demonstrate the next debugger feature, you
must start the debugger again. Start it, as you did in Step 2, and enter 13 in re-
sponse to the prompt. The debugger enters break mode at line 21.

10. Using the Step Over command. Select Debug > Step Over (Fig. H.19) Recall that
this command behaves like the Step Into command when the next statement to
execute does not contain a function call. If the next statement to execute contains
a function call, the called function executes in its entirety (without pausing exe-
cution at any statement inside the function), and the yellow arrow advances to
the next executable line (after the function call) in the current function. In this
case, the debugger executes line 21, located in main (Fig. H.3). Line 21 calls the
debit function. The debugger then pauses execution at line 24, the next execut-
able line in the current function, main.

Fig. H.18 | Stepping over a statement in the debit function.

Fig. H.19 | Using the debugger’s Step Over command.

Control
transfers to

the next
statement

The debit
function call
executes to
completion

when the Step
Over command

is selected

H.5 Autos Window H-13

11. Stopping the debugger. Select Debug > Stop Debugging. This will close the Com-
mand Prompt window. Remove all remaining breakpoints.

In this section, you learned how to use the debugger’s Step Into command to debug
functions called during your program’s execution. You saw how the Step Over command
can be used to step over a function call. You used the Step Out command to continue exe-
cution until the end of the current function. You also learned that the Continue command
continues execution until another breakpoint is found or the program exits.

H.5 Autos Window
The Autos window displays the variables used in the previous statement executed (includ-
ing the return value of a function, if there is one) and the variables in the next statement
to execute.

1. Setting breakpoints. Set breakpoints at lines 10 and 18 in main by clicking in the
margin indicator bar.

2. Using the Autos window. Start the debugger by selecting Debug > Start. When the
debugger enters break mode at line 10, open the Autos window (Fig. H.20).
Since we are just beginning the program’s execution, the Autos window lists only
the variables in the next statement that will execute—in this case, the account1

object, its value and its type. Viewing the values stored in an object lets you verify
that your program is manipulating these variables correctly. Notice that
account1 contains a large negative value. This value, which may be different each
time the program executes, is account1’s uninitialized value. This unpredictable
(and often undesirable) value demonstrates why it is important to initialize all
C++ variables before they are used.

3. Using the Step Over command. Select Debug > Step Over to execute line 10. The
Autos window updates the value of account1’s balance data member (Fig. H.21)
after it is initialized. The value of balance is displayed in red to indicate that it
just changed.

Fig. H.20 | Autos window displaying the state of account1 object.

Fig. H.21 | Autos window displaying the state of account1 object after initialization.

H-14 Appendix H Using the Visual Studio Debugger

4. Continuing execution. Select Debug > Continue to execute the program until the
second breakpoint at line 18. The Autos window displays uninitialized local vari-
able withdrawalAmount (Fig. H.22), which has a large negative value.

5. Entering data. Select Debug > Step Over to execute line 18. At the program’s in-
put prompt, enter a value for the withdrawal amount. The Autos window updates
the value of local variable withdrawalAmount with the value you entered
(Fig. H.23).

6. Stopping the debugger. Select Debug > Stop Debugging to end the debugging ses-
sion. Remove all remaining breakpoints.

H.6 Wrap-U
In this appendix, you learned how to insert, disable and remove breakpoints in the Visual
Studio debugger. Breakpoints allow you to pause program execution so you can examine
variable values. This capability will help you locate and fix logic errors in your programs.
You saw how to use the Locals and Watch windows to examine the value of an expression
and how to change the value of a variable. You also learned debugger commands Step Into,
Step Over, Step Out and Continue that can be used to determine whether a function is ex-
ecuting correctly. Finally, you learned how to use the Autos window to examine variables
used specifically in the previous and next commands.

Fig. H.22 | Autos window displaying local variable withdrawalAmount.

Fig. H.23 | Autos window displaying updated local variable withdrawalAmount.

Summary
Section H.1 Introduction
• Most C++ compiler vendors provide software called a debugger, which allows you to monitor the

execution of your programs to locate and remove logic errors.

• Breakpoints are markers that can be set at any executable line of code. When program execution
reaches a breakpoint, execution pauses.

Summary H-15

• The debugger is enabled by default. If it isn’t enabled, you have to change the settings of the So-
lution Configurations combo box.

Section H.2 Breakpoints and the Continue Command
• To insert a breakpoint, either click inside the margin indicator bar next to the line of code or

right click that line of code and select Breakpoint > Insert Breakpoint. A red circle appears where
you clicked, indicating that a breakpoint has been set.

• When the program runs, it suspends execution at any line that contains a breakpoint. It is then
said to be in break mode.

• A yellow arrow indicates that this line contains the next statement to execute.

• When you place your mouse pointer over a variable name, the value that the variable stores is
displayed in a Quick Info box.

• To disable a breakpoint, right click a line of code on which a breakpoint has been set and select
Breakpoint > Disable Breakpoint. The disabled breakpoint is indicated by a hollow circle.

• To remove a breakpoint that you no longer need, right click a line of code on which a breakpoint
has been set and select Breakpoint > Delete Breakpoint. You also can remove a breakpoint by click-
ing the circle in the margin indicator bar.

Section H.3 Locals and Watch Windows
• Once the program has entered break mode, you can explore the values of your variables using the

debugger’s Locals window. To view the Locals window, select Debug > Windows > Locals.

• You can evaluate arithmetic and boolean expressions using the Watch window.

• Updated variables are displayed in red to indicate that they’ve been modified.

• Clicking the plus box next to an object in the Name column of the Locals window allows you to
view each of object’s data member values individually.

• You can click the Value field of a variable to change its value in the Locals window.

Section H.4 Using the Step Into, Step Over, Step Out and Continue Commands
• The Step Into command executes the next statement (the yellow highlighted line) in the program.

If the next statement is to execute a function call and you select Step Into, control is transferred
to the called function.

• The Step Over command behaves like the Step Into command when the next statement to execute
does not contain a function call. If the next statement to execute contains a function call, the
called function executes in its entirety, and the yellow arrow advances to the next executable line
in the current function.

• The Step Over command executes the remaining statements in the function and returns control
to the function call.

• The Continue command will execute any statements between the next executable statement and the
next breakpoint or the end of main, whichever comes first.

Section H.5 Autos Window
• The Autos window allows you to view the contents of the variables used in the last statement that

was executed. The Autos window also lists the values in the next statement to be executed.

H-16 Appendix H Using the Visual Studio Debugger

Self-Review Exercises
H.1 Fill in the blanks in each of the following statements:

a) When the debugger suspends program execution at a breakpoint, the program is said to
be in mode.

b) The feature in Visual Studio 2005 allows you to look at the value of a variable
by positioning the mouse over the variable name in the code.

c) You can examine the value of an expression by using the debugger’s window.
d) The command behaves like the Step Into command when the next statement

to execute does not contain a function call.

H.2 State whether each of the following is true or false. If false, explain why.
a) When program execution suspends at a breakpoint, the next statement to be executed

is the statement after the breakpoint.
b) When a variable’s value is changed, it becomes yellow in the Autos and Locals windows.
c) During debugging, the Step Out command executes the remaining statements in the

current function and returns program control to the place where the function was
called.

Answers to Self-Review Exercises
H.1 a) break. b) Quick Info box. c) Watch. d) Step Over.

H.2 a) False. When program execution suspends at a breakpoint, the next statement to be exe-
cuted is the statement at the breakpoint. b) False. A variable turns red when its value is changed.
c) True.

IUsing the GNU C++
Debugger

And so shall I catch the fly.
—William Shakespeare

We are built to make mistakes,
coded for error.
—Lewis Thomas

What we anticipate seldom
occurs; what we least expect
generally happens.
—Benjamin Disraeli

O b j e c t i v e s
In this appendix you’ll learn:

■ To use the run command to
run a program in the
debugger.

■ To use the break command
to set a breakpoint.

■ To use the continue
command to continue
execution.

■ To use the print command
to evaluate expressions.

■ To use the set command to
change variable values during
program execution.

■ To use the step, finish
and next commands to
control execution.

■ To use the watch command
to see how a data member is
modified during program
execution.

■ To use the delete
command to remove a
breakpoint or a watchpoint.

I-2 Appendix I Using the GNU C++ Debugger

I.1 Introduction
In Chapter 2, you learned that there are two types of errors—compilation errors and logic
errors—and you learned how to eliminate compilation errors from your code. Logic errors
do not prevent a program from compiling successfully, but they can cause the program to
produce erroneous results when it runs. GNU includes software called a debugger that al-
lows you to monitor the execution of your programs so you can locate and remove logic
errors.

The debugger is one of the most important program development tools. Many IDEs
provide their own debuggers similar to the one included in GNU or provide a graphical
user interface to GNU’s debugger. This appendix demonstrates key features of GNU’s
debugger. Appendix H discusses the features and capabilities of the Visual Studio
debugger. Our C++ Resource Center (www.deitel.com/cplusplus/) provides links to
tutorials that can help students and instructors familiarize themselves with the debuggers
provided with various other development tools.

I.2 Breakpoints and the run, stop, continue and
print Commands
We begin our study of the debugger by investigating breakpoints, which are markers that
can be set at any executable line of code. When program execution reaches a breakpoint,
execution pauses, allowing you to examine the values of variables to help determine wheth-
er a logic error exists. For example, you can examine the value of a variable that stores the
result of a calculation to determine whether the calculation was performed correctly. Note
that attempting to set a breakpoint at a line of code that is not executable (such as a com-
ment) will actually set the breakpoint at the next executable line of code in that function.

To illustrate the features of the debugger, we use class Account (Figs. I.1–I.2) and the
program listed in Fig. I.3, which creates and manipulates an object of class Account. Exe-
cution begins in main (lines 12–30 of Fig. I.3). Line 10 creates an Account object with an
initial balance of $50.00. Account’s constructor (lines 8–20 of Fig. I.2) accepts one argu-
ment, which specifies the Account’s initial balance. Line 13 of Fig. I.3 outputs the initial
account balance using Account member function getBalance. Line 15 declares a local
variable withdrawalAmount which stores a withdrawal amount input by the user. Line 17
prompts the user for the withdrawal amount; line 18 inputs the withdrawalAmount. Line
21 uses the Account’s debit member function to subtract the withdrawalAmount from the
Account’s balance. Finally, line 24 displays the new balance.

I.1 Introduction
I.2 Breakpoints and the run, stop,

continue and print Commands
I.3 print and set Commands

I.4 Controlling Execution Using the
step, finish and next
Commands

I.5 watch Command
I.6 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises

www.deitel.com/cplusplus/

I.2 run, stop, continue and print Commands I-3

1 // Fig. I.1: Account.h
2 // Definition of Account class.
3 class Account
4 {
5 public:
6 Account(int); // constructor initializes balance
7 void credit(int); // add an amount to the account balance
8 void debit(int); // subtract an amount from the account balance
9 int getBalance(); // return the account balance

10 private:
11 int balance; // data member that stores the balance
12 }; // end class Account

Fig. I.1 | Header file for the Account class.

1 // Fig. I.2: Account.cpp
2 // Member-function definitions for class Account.
3 #include <iostream>
4 #include "Account.h" // include definition of class Account
5 using namespace std;
6
7 // Account constructor initializes data member balance
8 Account::Account(int initialBalance)
9 {

10 balance = 0; // assume that the balance begins at 0
11
12 // if initialBalance is greater than 0, set this value as the
13 // balance of the Account; otherwise, balance remains 0
14 if (initialBalance > 0)
15 balance = initialBalance;
16
17 // if initialBalance is negative, print error message
18 if (initialBalance < 0)
19 cout << "Error: Initial balance cannot be negative.\n" << endl;
20 } // end Account constructor
21
22 // credit (add) an amount to the account balance
23 void Account::credit(int amount)
24 {
25 balance = balance + amount; // add amount to balance
26 } // end function credit
27
28 // debit (subtract) an amount from the account balance
29 void Account::debit(int amount)
30 {
31 if (amount <= balance) // debit amount does not exceed balance
32 balance = balance - amount;
33 else // debit amount exceeds balance
34 cout << "Debit amount exceeded account balance.\n" << endl;
35 } // end function debit
36

Fig. I.2 | Definition for the Account class. (Part 1 of 2.)

I-4 Appendix I Using the GNU C++ Debugger

In the following steps, you’ll use breakpoints and various debugger commands to
examine the value of the variable withdrawalAmount declared in line 15 of Fig. I.3.

1. Compiling the program for debugging. To use the debugger, you must compile
your program with the -g option, which generates additional information that
the debugger needs to help you debug your programs. To do so, type

2. Starting the debugger. Type gdb figI_03 (Fig. I.4). The gdb command starts the
debugger and displays the (gdb) prompt at which you can enter commands.

3. Running a program in the debugger. Run the program through the debugger by
typing run (Fig. I.5). If you do not set any breakpoints before running your pro-
gram in the debugger, the program will run to completion.

4. Inserting breakpoints using the GNU debugger. Set a breakpoint at line 13 of
FigI_03.cpp by typing break 13. The break command inserts a breakpoint at

37 // return the account balance
38 int Account::getBalance()
39 {
40 return balance; // gives the value of balance to the calling function
41 } // end function getBalance

1 // Fig. I.3: figI_03.cpp
2 // Create and manipulate Account objects.
3 #include <iostream>
4 #include "Account.h"
5 using namespace std;
6
7 // function main begins program execution
8 int main()
9 {

10 Account account1(50); // create Account object
11
12 // display initial balance of each object
13 cout << "account1 balance: $" << account1.getBalance() << endl;
14
15 int withdrawalAmount; // stores withdrawal amount read from user
16
17 cout << "\nEnter withdrawal amount for account1: "; // prompt
18 cin >> withdrawalAmount; // obtain user input
19 cout << "\nattempting to subtract " << withdrawalAmount
20 << " from account1 balance\n\n";
21 account1.debit(withdrawalAmount); // try to subtract from account1
22
23 // display balances
24 cout << "account1 balance: $" << account1.getBalance() << endl;
25 } // end main

Fig. I.3 | Test class for debugging.

g++ -g -o figI_03 figI_03.cpp Account.cpp

Fig. I.2 | Definition for the Account class. (Part 2 of 2.)

I.2 run, stop, continue and print Commands I-5

the line number specified as its argument (i.e., 13). You can set as many break-
points as necessary. Each breakpoint is identified by the order in which it was cre-
ated. The first breakpoint is known as Breakpoint 1. Set another breakpoint at
line 21 by typing break 21 (Fig. I.6). This new breakpoint is known as Break-
point 2. When the program runs, it suspends execution at any line that contains
a breakpoint and the debugger enters break mode. Breakpoints can be set even
after the debugging process has begun. [Note: If you do not have a numbered list-
ing for your code, you can use the list command to output your code with line
numbers. For more information about the list command type help list from
the gdb prompt.]

5. Running the program and beginning the debugging process. Type run to execute
your program and begin the debugging process (Fig. I.7). The debugger enters

$ gdb FigI_03
GNU gdb 6.3-debian
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i486-linux-gnu"...Using host libthread_db
library "/ lib/tls/i686/cmov/libthread_db.so.1".

(gdb)

Fig. I.4 | Starting the debugger to run the program.

(gdb) run
Starting program: /home/nuke/AppJ/FigI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

account1 balance: $37

Program exited normally.
(gdb)

Fig. I.5 | Running the program with no breakpoints set.

(gdb) break 13
Breakpoint 1 at 0x80486f6: file FigI_03.cpp, line 13.
(gdb) break 21
Breakpoint 2 at 0x8048799: file FigI_03.cpp, line 21.
(gdb)

Fig. I.6 | Setting two breakpoints in the program.

I-6 Appendix I Using the GNU C++ Debugger

break mode when execution reaches the breakpoint at line 13. At this point, the
debugger notifies you that a breakpoint has been reached and displays the source
code at that line (13), which will be the next statement to execute.

6. Using the continue command to resume execution. Type continue. The contin-
ue command causes the program to continue running until the next breakpoint
is reached (line 21). Enter 13 at the prompt. The debugger notifies you when ex-
ecution reaches the second breakpoint (Fig. I.8). Note that figI_03’s normal
output appears between messages from the debugger.

7. Examining a variable’s value. Type print withdrawalAmount to display the cur-
rent value stored in the withdrawalAmount variable (Fig. I.9). The print com-
mand allows you to peek inside the computer at the value of one of your variables.
This can be used to help you find and eliminate logic errors in your code. In this
case, the variable’s value is 13—the value you entered that was assigned to variable
withdrawalAmount in line 18 of Fig. I.3. Next, use print to display the contents
of the account1 object. When an object is displayed with print, braces are placed
around the object’s data members. In this case, there is a single data member—
balance—which has a value of 50.

8. Using convenience variables. When you use print, the result is stored in a con-
venience variable such as $1. Convenience variables are temporary variables cre-
ated by the debugger that are named using a dollar sign followed by an integer.
Convenience variables can be used to perform arithmetic and evaluate boolean
expressions. Type print $1. The debugger displays the value of $1 (Fig. I.10),

(gdb) run
Starting program: /home/nuke/AppJ/FigI_03

Breakpoint 1, main () at FigI_03.cpp:13
13 cout << "account1 balance: $" << account1.getBalance() << endl;
(gdb)

Fig. I.7 | Running the program until it reaches the first breakpoint.

(gdb) continue
Continuing.
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Breakpoint 2, main () at FigI_03.cpp:21
21 account1.debit(withdrawalAmount); // try to subtract from account1
(gdb)

Fig. I.8 | Continuing execution until the second breakpoint is reached.

I.2 run, stop, continue and print Commands I-7

which contains the value of withdrawalAmount. Note that printing the value of
$1 creates a new convenience variable—$3.

9. Continuing program execution. Type continue to continue the program’s execu-
tion. The debugger encounters no additional breakpoints, so it continues execut-
ing and eventually terminates (Fig. I.11).

10. Removing a breakpoint. You can display a list of all of the breakpoints in the pro-
gram by typing info break. To remove a breakpoint, type delete, followed by a
space and the number of the breakpoint to remove. Remove the first breakpoint
by typing delete 1. Remove the second breakpoint as well. Now type info break
to list the remaining breakpoints in the program. The debugger should indicate
that no breakpoints are set (Fig. I.12).

(gdb) print withdrawalAmount
$2 = 13
(gdb) print account1
$3 = {balance = 50}
(gdb)

Fig. I.9 | Printing the values of variables.

(gdb) print $1
$3 = 13
(gdb)

Fig. I.10 | Printing a convenience variable.

(gdb) continue
Continuing.
account1 balance: $37

Program exited normally.
(gdb)

Fig. I.11 | Finishing execution of the program.

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x080486f6 in main at FigI_03.cpp:13

breakpoint already hit 1 time
2 breakpoint keep y 0x08048799 in main at FigI_03.cpp:21

breakpoint already hit 1 time
(gdb) delete 1
(gdb) delete 2
(gdb) info break
No breakpoints or watchpoints.
(gdb)

Fig. I.12 | Viewing and removing breakpoints.

I-8 Appendix I Using the GNU C++ Debugger

11. Executing the program without breakpoints. Type run to execute the program.
Enter the value 13 at the prompt. Because you successfully removed the two
breakpoints, the program’s output is displayed without the debugger entering
break mode (Fig. I.13).

12. Using the quit command. Use the quit command to end the debugging session
(Fig. I.14). This command causes the debugger to terminate.

In this section, you used the gdb command to start the debugger and the run com-
mand to start debugging a program. You set a breakpoint at a particular line number in
the main function. The break command can also be used to set a breakpoint at a line
number in another file or at a particular function. Typing break, then the filename, a
colon and the line number will set a breakpoint at a line in another file. Typing break,
then a function name will cause the debugger to enter the break mode whenever that func-
tion is called.

Also in this section, you saw how the help list command will provide more infor-
mation on the list command. If you have any questions about the debugger or any of its
commands, type help or help followed by the command name for more information.

Finally, you examined variables with the print command and remove breakpoints
with the delete command. You learned how to use the continue command to continue
execution after a breakpoint is reached and the quit command to end the debugger.

I.3 print and set Commands
In the preceding section, you learned how to use the debugger’s print command to exam-
ine the value of a variable during program execution. In this section, you’ll learn how to
use the print command to examine the value of more complex expressions. You’ll also
learn the set command, which allows you to assign new values to variables. We assume

(gdb) run
Starting program: /home/nuke/AppJ/FigI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

account1 balance: $37

Program exited normally.
(gdb)

Fig. I.13 | Program executing with no breakpoints set.

(gdb) quit
$

Fig. I.14 | Exiting the debugger using the quit command.

I.3 print and set Commands I-9

you are working in the directory containing this appendix’s examples and have compiled
for debugging with the -g compiler option.

1. Starting debugging. Type gdb figI_03 to start the GNU debugger.

2. Inserting a breakpoint. Set a breakpoint at line 21 in the source code by typing
break 21 (Fig. I.15).

3. Running the program and reaching a breakpoint. Type run to begin the debug-
ging process (Fig. I.16). This will cause main to execute until the breakpoint at
line 21 is reached. This suspends program execution and switches the program
into break mode. The statement in line 25 is the next statement that will execute.

4. Evaluating arithmetic and boolean expressions. Recall from Section I.2 that once
the debugger enters break mode, you can explore the values of the program’s vari-
ables using the print command. You can also use print to evaluate arithmetic
and boolean expressions. Type print withdrawalAmount - 2. This expression re-
turns the value 11 (Fig. I.17), but does not actually change the value of with-
drawalAmount. Type print withdrawalAmount == 11. Expressions containing
the == symbol return bool values. The value returned is false (Fig. I.17) because
withdrawalAmount withdrawalAmount still contains 13.

(gdb) break 21
Breakpoint 1 at 0x8048799: file FigI_03.cpp, line 21.
(gdb)

Fig. I.15 | Setting a breakpoint in the program.

(gdb) run
Starting program: /home/nuke/AppJ/FigI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Breakpoint 1, main () at FigI_03.cpp:21
21 account1.debit(withdrawalAmount); // try to subtract from account1
(gdb)

Fig. I.16 | Running the program until the breakpoint at line 25 is reached.

(gdb) print withdrawalAmount - 2
$1 = 11
(gdb) print withdrawalAmount == 11
$2 = false
(gdb)

Fig. I.17 | Printing expressions with the debugger.

I-10 Appendix I Using the GNU C++ Debugger

5. Modifying values. You can change the values of variables during the program’s
execution in the debugger. This can be valuable for experimenting with different
values and for locating logic errors. You can use the debugger’s set command to
change a variable’s value. Type set withdrawalAmount = 42 to change the value
of withdrawalAmount, then type print withdrawalAmount to display its new
value (Fig. I.18).

6. Viewing the program result. Type continue to continue program execution. Line
21 of Fig. I.3 executes, passing withdrawalAmount to Account member function
debit. Function main then displays the new balance. Note that the result is $8
(Fig. I.19). This shows that the preceding step changed the value of with-

drawalAmount from the value 13 that you input to 42.

7. Using the quit command. Use the quit command to end the debugging session
(Fig. I.20). This command causes the debugger to terminate.

In this section, you used the debugger’s print command to evaluate arithmetic and
boolean expressions. You also learned how to use the set command to modify the value
of a variable during your program’s execution.

I.4 Controlling Execution Using the step, finish and
next Commands
Sometimes you’ll need to execute a program line by line to find and fix errors. Walking
through a portion of your program this way can help you verify that a function’s code ex-

(gdb) set withdrawalAmount = 42
(gdb) print withdrawalAmount
$3 = 42
(gdb)

Fig. I.18 | Setting the value of a variable while in break mode.

(gdb) continue
Continuing.
account1 balance: $8

Program exited normally.
(gdb)

Fig. I.19 | Using a modified variable in the execution of a program.

(gdb) quit
$

Fig. I.20 | Exiting the debugger using the quit command.

I.4 step, finish and next Commands I-11

ecutes correctly. The commands in this section allow you to execute a function line by line,
execute all the statements of a function at once or execute only the remaining statements
of a function (if you’ve already executed some statements within the function).

1. Starting the debugger. Start the debugger by typing gdb figI_03.

2. Setting a breakpoint. Type break 21 to set a breakpoint at line 21.

3. Running the program. Run the program by typing run, then enter 13 at the
prompt. After the program displays its two output messages, the debugger indi-
cates that the breakpoint has been reached and displays the code at line 21. The
debugger then pauses and wait for the next command to be entered.

4. Using the step command. The step command executes the next statement in the
program. If the next statement to execute is a function call, control transfers to
the called function. The step command enables you to enter a function and
study its individual statements. For instance, you can use the print and set com-
mands to view and modify the variables within the function. Type step to enter
the debit member function of class Account (Fig. I.2). The debugger indicates
that the step has been completed and displays the next executable statement
(Fig. I.21)—in this case, line 31 of class Account (Fig. I.2).

5. Using the finish command. After you’ve stepped into the debit member func-
tion, type finish. This command executes the remaining statements in the func-
tion and returns control to the place where the function was called. The finish

command executes the remaining statements in member function debit, then
pauses at line 24 in main (Fig. I.22). In lengthy functions, you may want to look
at a few key lines of code, then continue debugging the caller’s code. The finish
command is useful for situations in which you do not want to step through the
remainder of a function line by line.

6. Using the continue command to continue execution. Enter the continue com-
mand to continue execution until the program terminates.

(gdb) step
Account::debit (this=0xbff81700, amount=13) at Account.cpp:31
31 if (amount <= balance) // debit amount does not exceed balance
(gdb)

Fig. I.21 | Using the step command to enter a function.

(gdb) finish
Run till exit from #0 Account::debit (this=0xbff81700, amount=13) at

Account.cpp:31
0x080487a9 in main () at FigI_03.cpp:21
21 account1.debit(withdrawalAmount); // try to subtract from account1
(gdb)

Fig. I.22 | Using the finish command to complete execution of a function and return to the
calling function.

I-12 Appendix I Using the GNU C++ Debugger

7. Running the program again. Breakpoints persist until the end of the debugging
session in which they are set. So, the breakpoint you set in Step 2 is still set. Type
run to run the program and enter 13 at the prompt. As in Step 3, the program
runs until the breakpoint at line 21 is reached, then the debugger pauses and waits
for the next command (Fig. I.23).

8. Using the next command. Type next. This command behaves like the step com-
mand, except when the next statement to execute contains a function call. In that
case, the called function executes in its entirety and the program advances to the
next executable line after the function call (Fig. I.24). In Step 4, the step com-
mand enters the called function. In this example, the next command executes
Account member function debit, then the debugger pauses at line 24.

9. Using the quit command. Use the quit command to end the debugging session
(Fig. I.25). While the program is running, this command causes the program to
immediately terminate rather than execute the remaining statements in main.

In this section, you used the debugger’s step and finish commands to debug func-
tions called during your program’s execution. You saw how the next command can step
over a function call. You also learned that the quit command ends a debugging session.

(gdb) run
Starting program: /home/nuke/AppJ/FigI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Breakpoint 1, main () at FigI_03.cpp:21
21 account1.debit(withdrawalAmount); // try to subtract from account1
(gdb)

Fig. I.23 | Restarting the program.

(gdb) next
24 cout << "account1 balance: $" << account1.getBalance() << endl;
(gdb)

Fig. I.24 | Using the next command to execute a function in its entirety.

(gdb) quit
The program is running. Exit anyway? (y or n) y
$

Fig. I.25 | Exiting the debugger using the quit command.

I.5 watch Command I-13

I.5 watch Command
The watch command tells the debugger to watch a data member. When that data member
is about to change, the debugger will notify you. In this section, you’ll use the watch com-
mand to see how the Account object’s data member balance is modified during execution.

1. Starting the debugger. Start the debugger by typing gdb figI_03.

2. Setting a breakpoint and running the program. Type break 10 to set a breakpoint
at line 10. Then, run the program with the command run. The debugger and pro-
gram will pause at the breakpoint at line 10 (Fig. I.26).

3. Watching a class’s data member. Set a watch on account1’s balance data mem-
ber by typing watch account1.balance (Fig. I.27). This watch is labeled as
watchpoint 2 because watchpoints are labeled with the same sequence of num-
bers as breakpoints. You can set a watch on any variable or data member of an
object currently in scope. Whenever the value of a watched variable changes, the
debugger enters break mode and notifies you that the value has changed.

4. Executing the constructor. Use the next command to execute the constructor and
initialize the account1 object’s balance data member. The debugger indicates
that the balance data member’s value changed, shows the old and new values and
enters break mode at line 18 (Fig. I.28).

(gdb) break 10
Breakpoint 1 at 0x80486e5: file FigI_03.cpp, line 10.
(gdb) run
Starting program: /home/nuke/AppJ/FigI_03

Breakpoint 1, main () at FigI_03.cpp:10
10 Account account1(50); // create Account object
(gdb)

Fig. I.26 | Running the program until the first breakpoint.

(gdb) watch account1.balance
Hardware watchpoint 2: account1.balance
(gdb)

Fig. I.27 | Setting a watchpoint on a data member.

(gdb) next
Hardware watchpoint 2: account1.balance

Old value = 0
New value = 50
Account (this=0xbfcd6b90, initialBalance=50) at Account.cpp:18
18 if (initialBalance < 0)
(gdb)

Fig. I.28 | Stepping into the constructor.

I-14 Appendix I Using the GNU C++ Debugger

5. Exiting the constructor. Type finish to complete the constructor’s execution and
return to main.

6. Withdrawing money from the account. Type continue to continue execution
and enter a withdrawal value at the prompt. The program executes normally.
Line 21 of Fig. I.3 calls Account member function debit to reduce the Account

object’s balance by a specified amount. Line 32 of Fig. I.2 inside function debit

changes the value of balance. The debugger notifies you of this change and enters
break mode (Fig. I.29).

7. Continuing execution. Type continue—the program will finish executing func-
tion main because the program does not attempt any additional changes to bal-

ance. The debugger removes the watch on account1’s balance data member
because the account1 object goes out of scope when function main ends. Remov-
ing the watchpoint causes the debugger to enter break mode. Type continue

again to finish execution of the program (Fig. I.30).

8. Restarting the debugger and resetting the watch on the variable. Type run to re-
start the debugger. Once again, set a watch on account1 data member balance

(gdb) continue
Continuing.
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Hardware watchpoint 2: account1.balance

Old value = 50
New value = 37
0x0804893b in Account::debit (this=0xbfcd6b90, amount=13) at Account.cpp:32
32 balance = balance - amount;
(gdb)

Fig. I.29 | Entering break mode when a variable is changed.

(gdb) continue
Continuing.
account1 balance: $37

Watchpoint 2 deleted because the program has left the block in
which its expression is valid.
0xb7da0595 in exit () from /lib/tls/i686/cmov/libc.so.6
(gdb) continue
Continuing.

Program exited normally.
(gdb)

Fig. I.30 | Continuing to the end of the program.

I.6 Wrap-Up I-15

by typing watch account1.balance. This watchpoint is labeled as watchpoint 3.
Type continue to continue execution (Fig. I.31).

9. Removing the watch on the data member. Suppose you want to watch a data
member for only part of a program’s execution. You can remove the debugger’s
watch on variable balance by typing delete 3 (Fig. I.32). Type continue—the
program will finish executing without reentering break mode.

In this section, you used the watch command to enable the debugger to notify you
when the value of a variable changes. You used the delete command to remove a watch
on a data member before the end of the program.

I.6 Wrap-Up
In this appendix, you learned how to insert and remove breakpoints in the debugger.
Breakpoints allow you to pause program execution so you can examine variable values with

(gdb) run
Starting program: /home/nuke/AppJ/FigI_03

Breakpoint 1, main () at FigI_03.cpp:10
10 Account account1(50); // create Account object
(gdb) watch account1.balance
Hardware watchpoint 3: account1.balance
(gdb) continue
Continuing.
Hardware watchpoint 3: account1.balance

Old value = 0
New value = 50
Account (this=0xbfd8eb90, initialBalance=50) at Account.cpp:18
18 if (initialBalance < 0)
(gdb)

Fig. I.31 | Resetting the watch on a data member.

(gdb) delete 3
(gdb) continue
Continuing.
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

account1 balance: $37

Program exited normally.
(gdb)

Fig. I.32 | Removing a watch.

I-16 Appendix I Using the GNU C++ Debugger

the debugger’s print command, which can help you locate and fix logic errors. You used
the print command to examine the value of an expression, and you used the set com-
mand to change the value of a variable. You also learned debugger commands (including
the step, finish and next commands) that can be used to determine whether a function
is executing correctly. You learned how to use the watch command to keep track of a data
member throughout the scope of that data member. Finally, you learned how to use the
info break command to list all the breakpoints and watchpoints set for a program and the
delete command to remove individual breakpoints and watchpoints.

Summary
Section I.1 Introduction
• GNU includes software called a debugger, which allows you to monitor the execution of your

programs to locate and remove logic errors.

Section I.2 Breakpoints and the run, stop, continue and print Commands
• The GNU debugger works only with executable files that were compiled with the -g compiler op-

tion, which generates information that is used by the debugger to help you debug your programs.

• The gdb command will start the GNU debugger and enable you to use its features. The run com-
mand will run a program through the debugger.

• Breakpoints are markers that can be set at any executable line of code. When program execution
reaches a breakpoint, execution pauses.

• The break command inserts a breakpoint at the line number specified after the command.

• When the program runs, it suspends execution at any line that contains a breakpoint and is said
to be in break mode.

• The continue command causes the program to continue running until the next breakpoint is
reached.

• The print command allows you to peek inside the computer at the value of one of your variables.

• When the print command is used, the result is stored in a convenience variable such as $1. Con-
venience variables are temporary variables that can be used in the debugging process to perform
arithmetic and evaluate boolean expressions.

• You can display a list of all of the breakpoints in the program by typing info break.

• To remove a breakpoint, type delete, followed by a space and the number of the breakpoint to
remove.

Section I.3 print and set Commands
• Use the quit command to end the debugging session.

• The set command allows you to assign new values to variables.

Section I.4 Controlling Execution Using the step, finish and next Commands
• The step command executes the next statement in the program. If the next statement to execute

is a function call, control transfers to the called function. The step command enables you to en-
ter a function and study the individual statements of that function.

• The finish command executes the remaining statements in the function and returns control to
the place where the function was called.

Self-Review Exercises I-17

• The next command behaves like the step command, except when the next statement to execute
contains a function call. In that case, the called function executes in its entirety and the program
advances to the next executable line after the function call.

Section I.5 watch Command
• The watch command sets a watch on any variable or data member of an object currently in scope

during execution of the debugger. Whenever the value of a watched variable changes, the debug-
ger enters break mode and notifies you that the value has changed.

Self-Review Exercises
I.1 Fill in the blanks in each of the following statements:

a) A breakpoint cannot be set at a(n) .
b) You can examine the value of an expression by using the debugger’s com-

mand.
c) You can modify the value of a variable by using the debugger’s command.
d) During debugging, the command executes the remaining statements in

the current function and returns program control to the place where the function was
called.

e) The debugger’s command behaves like the step command when the next
statement to execute does not contain a function call.

f) The watch debugger command allows you to view all changes to a(n) .

I.2 State whether each of the following is true or false. If false, explain why.
a) When program execution suspends at a breakpoint, the next statement to be executed

is the statement after the breakpoint.
b) Watches can be removed using the debugger’s remove command.
c) The -g compiler option must be used when compiling programs for debugging.

Answers to Self-Review Exercises
I.1 a) non-executable line. b) print. c) set. d) finish. e) next. f) data member.

I.2 a) False. When program execution suspends at a breakpoint, the next statement to be exe-
cuted is the statement at the breakpoint. b) False. Watches can be removed using the debugger’s
delete command. c) True.

27 Game Programming
with Ogre

Come, Watson, come! The game
is afoot.
—Sir Arthur Conan Doyle

For it’s one, two, three strikes
you’re out at the old ball game.
—Jack Norworth

The game is up.
—William Shakespeare

If you wish to avoid foreign
collision, you had better
abandon the ocean.
—Henry Clay

O b j e c t i v e s
In this chapter you’ll learn:

■ Some basics of game
programming.

■ To create games using Ogre.

■ To perform collision
detection.

■ To use Ogre to import and
display graphics.

■ To use OgreAL to integrate
the OpenAL audio library
into your games.

■ To have Ogre accept
keyboard input.

■ To create the simple game
Pong® with Ogre and
OgreAL.

■ To use Ogre to regulate the
speed of a game.

27.1 Introduction CLIX

We now introduce game programming and graphics with the Ogre 3D graphics engine.
Created in 2000 by Steve Streeting, Ogre is an open-source project maintained by the
Ogre team at www.ogre3d.org. First, we discuss basic issues involved in game program-
ming. Then we show how to use Ogre to create a simple game featuring a play mechanic
similar to the classic video game Pong®, originally developed by Atari in 1972. We dem-
onstrate how to create a scene with colored 3D graphics, smoothly animate moving ob-
jects, use timers to control animation speed, detect collisions between objects, add sound,
accept keyboard input and display text output.

Ogre is powerful and easy to use, but the installation is a bit involved and varies for differ-
ent platforms and compilers. There are two installation options—you can install the Ogre
SDK or download the source code and compile it. We use Ogre 1.4 (Eihort) in this text.
You must also install OgreAL and the OpenAL audio library. OpenAL handles the sound
functionality and OgreAL allows you to integrate the OpenAL capabilities with the Ogre
code. We provide detailed instructions for installing the Ogre SDK and all the OgreAL
components. The instructions also explain how to configure a Visual C++ 2008 project to
use Ogre and OgreAL. You can find the instructions in the Additional Resources section
of the book’s website at www.deitel.com/books/cpphtp7.

This section introduces the general fundamentals of game programming. Section 27.4
presents an implementation of the game of Pong, using the Ogre and OgreAL libraries.

Graphics
Graphics are perhaps the most crucial feature of any video game. Once a specialty, graphics
programming is becoming more accessible even to novices. There are many 3D graphics
engines available—these frameworks hide the often tedious and complex programming
required with graphics APIs and allow you to manage graphics more easily.

Ogre (Object-oriented Graphics Rendering Engine), one of the leading graphics
engines, has been used in many commercial products including video games. It provides

27.1 Introduction
27.2 Installing Ogre, OgreAL and OpenAL
27.3 Basics of Game Programming
27.4 The Game of Pong: Code

Walkthrough
27.4.1 Ogre Initialization
27.4.2 Creating a Scene
27.4.3 Adding to the Scene

27.4.4 Animation and Timers
27.4.5 User Input
27.4.6 Collision Detection
27.4.7 Sound
27.4.8 Resources
27.4.9 Pong Driver

27.5 Wrap-Up
27.6 Ogre Web Resources

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

27.1 Introduction

27.2 Installing Ogre, OgreAL and OpenAL

27.3 Basics of Game Programming

www.ogre3d.org
www.deitel.com/books/cpphtp7

CLX Chapter 27 Game Programming with Ogre

an object-oriented interface for 3D graphics programming. It supports the Direct3D and
OpenGL graphics APIs and runs on the Windows, Linux and Mac platforms. Direct3D
is Microsoft’s Windows 3D graphics API. OpenGL is a graphics specification imple-
mented by many video card vendors across all major platforms, including Windows.

Ogre is strictly a graphics rendering engine—it does not directly support sound,
physics, collision detection, networking or other game-related needs. The Ogre commu-
nity has produced many add-ons that allow users to integrate other libraries with Ogre to
support those features.

3D Models
A 3D model is a computer representation of an object which can be drawn on the screen—
a process called rendering. Materials determine an object’s appearance by setting lighting
properties, colors and textures. A texture is an image that is wrapped around the model.

Most objects displayed in 3D graphics, everything from the terrain to the characters
and the buildings, are 3D models. Many models are created in 3D modeling tools. Some
popular 3D modeling tools are Maya (usa.autodesk.com/adsk/servlet/
index?siteID=123112&id=7635018), SoftImage XSI (www.softimage.com/) and Blender
(www.blender.org/). They’re all available for Windows, Linux and Mac platforms.
Blender is free and Maya offers a free version. SoftImage has a free 30-day trial available.
The Ogre community has also produced several tools to allow users to export 3D models
from these and other popular modeling tools into Ogre.

Materials, Textures and Colors
Colors are determined by red, green and blue light intensities, which can range from 0 to
1.0—a color value of (1.0, 0, 0) will create a bright red color, (0, 1.0, 0) will create a
bright green, and (0, 0, 1.0) will make a bright blue. The first value is the red intensity,
the second is the green intensity and the third is the blue intensity. To create white, use
the maximum intensities of all three color values, (1.0, 1.0, 1.0). To create black—the
absence of all color—use (0, 0, 0). Color values sometimes include an alpha channel to
represent transparency, also ranging from 0 to 1.0, 0 being completely transparent and 1
completely opaque. Figure 27.1 shows common colors and their red, green, and blue in-
tensity values. You can find color charts on the web as well, such as the color chart at
www.tayloredmktg.com/rgb/.

Color Red value Green value Blue value

Red 1.0 0.0 0.0

Green 0.0 1.0 0.0

Blue 0.0 0.0 1.0

Orange 1.0 0.784 0.0

Pink 1.0 0.686 0.686

Cyan 0.0 1.0 1.0

Fig. 27.1 | Red, green and blue intensities of common
colors in Ogre. (Part 1 of 2.)

www.softimage.com/
www.blender.org/
www.tayloredmktg.com/rgb/

27.3 Basics of Game Programming CLXI

In 3D graphics, materials are used to determine the color of a 3D model. A material
determines how the model should reflect different types of light and applies textures to the
model. Materials can be set to use different levels of detail (LoD) depending on how far
away from the viewer the model is. When close up, the model should be rendered with as
much detail as possible. When the object in the scene is far away, there is no point in
wasting computing power rendering details that the viewer can’t see. To increase perfor-
mance, the object can be rendered with much less detail.

Lighting
There are four different types of light in a 3D scene—ambient, diffuse, emissive and spec-
ular.1 Ambient light is the general lighting in the scene that has been reflected off so many
surfaces that it doesn’t appear to have any definite source. Diffuse light appears to come
from a particular direction and is reflected evenly off any surfaces it hits. Emissive light
appears to come from an object in the scene. Emissive light won’t affect the objects around
it but will make the object emitting it seem brighter. Specular light comes from a partic-
ular direction and is reflected off an object based on the direction to the viewer. This is
used to make an object appear shiny.

Collision Detection and Response
Collision detection is the process of determining whether two objects in a game are touch-
ing. You must know which objects to test and must deal with some complex mathematics.
Checking whether one square hits another is relatively simple if each is parallel to flat
ground. Checking circles and spheres is more difficult—the mathematics of curved surfac-
es is more complex.

Objects need to react appropriately when they collide with other objects. Some
objects, such as walls, are stationary, while others move throughout the scene. Modeling
the physics of moving objects can be complex. There are collision detection and physics
modeling libraries that handle these complexities for you. Such libraries help to create a
realistic game-playing experience.

Magenta 1.0 0.0 1.0

Yellow 1.0 1.0 0.0

Black 0.0 0.0 0.0

White 1.0 1.0 1.0

Gray 0.5 0.5 0.5

Light gray 0.75 0.75 0.75

Dark gray 0.25 0.25 0.25

1. D. Astel and K. Hawkins, Beginning OpenGL: Game Programming. Boston, MA: Thompson, 2004,
pp. 104–110.

Color Red value Green value Blue value

Fig. 27.1 | Red, green and blue intensities of common
colors in Ogre. (Part 2 of 2.)

CLXII Chapter 27 Game Programming with Ogre

Sound
Sound is crucial to the game-playing experience. Gamers want to hear the lasers on their
ships blasting away or the engines of their street racers revving up as they “peel out” at the
starting line. Audio libraries help you enrich your games with sound. Many of those librar-
ies support 3D sound. In a 3D scene, objects emitting sound may be at various distances
and directions from the user. The sound libraries take these factors into account when
playing sounds. A sound from an object close to the listener will be louder than the sound
from an object farther away. Also, sounds from one side of the listener will be played dif-
ferently than sounds from the other.

Text
Games often communicate with the user by displaying text. This can range from giving
the user instructions, to simply reporting how many points he or she has scored so far. In
many games, text is a crucial form of communication between players. You can find free
text fonts to use in your games at www.1001freefonts.com.

Timers
The speed at which a game runs can vary between systems due to differences in processor
speeds. To solve this problem, game programmers use timers to control animation speed.
If an object moves the same distance every frame (each time the screen is redrawn), then
it may move at different speeds on different computers. A game running at 100 frames per
second (fps) would be twice as fast as the same game running at 50 frames per second.
Timers help keep the game play consistent by regulating the speed.

User Experience
Games should be fun to play and should appeal to the player in as many ways as possible.
The basics we’ve discussed contribute to the overall user experience. You can get the play-
er’s attention through graphics and sound. Actions in games often have sounds associated
with them. Many web sites offer free sounds you can use in your games. Some popular
sound sites are Sound Hunter (www.soundhunter.com), Absolute Sound Effects Archive
(www.grsites.com/sounds) and the search engine FindSounds (www.findsounds.com).
You can also play a sound track in the background. Be sure to get permission to use any
copyrighted songs if you plan on releasing your game as a product.

Players need to interact with games. User input devices include the keyboard, mouse,
joystick and game controller. Keep the controls simple—the game should be easy to use,
but not easy to beat. You can communicate with the player using text.

In the next several sections, we present a complete C++/Ogre implementation of a simple
game featuring a play mechanic similar to the classic video game Pong®, originally devel-
oped by Atari in 1972. (See the original Pong coin-op game in Fig. 27.2.) We walk
through the code, explaining the Ogre capabilities as they’re encountered. This is one of
the largest example programs in the book. You should test drive the program thoroughly
before reading the code walkthrough. You’ll find all the files for this program in the ch27
folder of the book’s examples. Copy the PongResources folder to the OgreSDK\media fold-
er. Ogre will throw a runtime exception if any of the resources can’t be found. Open the

27.4 The Game of Pong: Code Walkthrough

www.1001freefonts.com
www.soundhunter.com
www.grsites.com/sounds
www.findsounds.com

27.4 The Game of Pong: Code Walkthrough CLXIII

Pong Visual C++ project. If you followed the Ogre and OgreAL installation instructions
correctly, the project should build successfully. The project’s executable file is copied to
your OgreSDK\bin\debug folder (or OgreSDK\bin\release if you build in Release mode).
Important: Remember to copy the OgreAL_d.dll (or OgreAL.dll for Release mode) and
the alut.dll files into the folder containing the Pong executable.

Pong has four major game objects, a ball, two paddles and a rectangular box
(Fig. 27.3). The ball will bounce across the screen inside the box while the players control
the paddles to keep the ball from hitting the left or right sides. If the ball hits the left or
right side of the box, the player “attacking” that side is awarded a point. The score is dis-
played at the top of the screen.

Play the game for a while, using the A and Z keys to control the left paddle and the
up and down arrow keys to control the right paddle. Notice the colors of the objects, the
ball interacting with the other objects and the score displayed at the top of the screen. Hit
the Esc key to quit—closing the window won’t stop the program.

27.4.1 Ogre Initialization
Class Pong (Figs. 27.4–27.5) represents the game of Pong. Figure 27.4 contains the Pong
class definition. Line 6 includes the Ogre.h header file. This file automatically includes the
most commonly used Ogre header files. Line 22 is the function prototype for the run func-
tion, which will start and run the game. Lines 25–26 contain the function prototypes for

Fig. 27.2 | Atari’s Pong coin-op went into commercial production in November of 1972,
selling a total of 38,000 machines. The game was designed entirely in TTL circuits, using no CPU
or game code software. Its “code” was implemented using simple “gate” chips, timers and
counter chips. This simple, fun and addictive game was the cornerstone of what became the
video game industry. (PONG® classic video game courtesy of Atari Interactive, Inc. © 2007 Atari
Interactive, Inc. All rights reserved. Used with permission.)

CLXIV Chapter 27 Game Programming with Ogre

handling user input from the keyboard. Lines 29–30 define the function prototypes for
performing game logic between frames. We also declare pointers to important Ogre ob-
jects (lines 38–42), input handling objects (lines 45–46) and the game objects (lines 49–
51). Lines 54–56 define some variables used to control the behavior of the game—we’ll
discuss these later.

Fig. 27.3 | Pong game objects.

1 // Pong.h
2 // Pong class definition (represents a game of Pong).
3 #ifndef PONG_H
4 #define PONG_H
5
6 #include <Ogre.h> // Ogre class definitions
7 #include <OIS/OISEvents.h> // OISEvents class definition
8 #include <OIS/OISInputManager.h> // OISInputManager class definition
9 #include <OIS/OISKeyboard.h> // OISKeyboard class definition

10 using namespace Ogre;
11
12 class Ball; // forward declaration of class Ball
13 class Paddle; // forward declaration of class Paddle
14
15 enum Players { PLAYER1, PLAYER2 };
16
17 class Pong : public FrameListener, public OIS::KeyListener
18 {
19 public:
20 Pong(); // constructor

Fig. 27.4 | Pong class definition (represents a game of Pong). (Part 1 of 2.)

27.4 The Game of Pong: Code Walkthrough CLXV

21 ~Pong(); // destructor
22 void run(); // run a game of Pong
23
24 // handle keyPressed and keyReleased events
25
26
27
28 // move the game objects and control interactions between frames
29
30
31 static void updateScore(Players player); // update the score
32
33 private:
34 void createScene(); // create the scene to be rendered
35 static void updateScoreText(); // update the score on the screen
36
37 // Ogre objects
38
39
40
41
42
43
44 // OIS input objects
45 OIS::InputManager *inputManagerPtr; // pointer to the InputManager
46 OIS::Keyboard *keyboardPtr; // pointer to the Keyboard
47
48 // game objects
49 Ball *ballPtr; // pointer to the Ball
50 Paddle *leftPaddlePtr; // pointer to player 1's Paddle
51 Paddle *rightPaddlePtr; // pointer to player 2's Paddle
52
53 // variables to control game states
54 bool quit, pause; // did user quit or pause the game?
55 Real time; // used to delay the motion of a new Ball
56 static bool wait; // should the Ball's movement be delayed?
57
58 static int player1Score; // player 1's score
59 static int player2Score; // player 2's score
60 }; // end class Pong
61
62 #endif // PONG_H

1 // Pong.cpp
2 // Pong class member-function definitions.
3 #include <sstream>
4 #include <stdexcept>
5 #include <Ogre.h> // Ogre class definitions
6 #include <OgreAL.h> // OgreAL class definitions

Fig. 27.5 | Pong class member-function definitions. (Part 1 of 7.)

Fig. 27.4 | Pong class definition (represents a game of Pong). (Part 2 of 2.)

bool keyPressed(const OIS::KeyEvent &keyEventRef);
bool keyReleased(const OIS::KeyEvent &keyEventRef);

virtual bool frameStarted(const FrameEvent &frameEvent);
virtual bool frameEnded(const FrameEvent &frameEvent);

Root *rootPtr; // pointer to Ogre's Root object
SceneManager *sceneManagerPtr; // pointer to the SceneManager
RenderWindow *windowPtr; // pointer to RenderWindow to render scene in
Viewport *viewportPtr; // pointer to Viewport, area that a camera sees
Camera *cameraPtr; // pointer to a Camera in the scene

CLXVI Chapter 27 Game Programming with Ogre

7 #include <OgreStringConverter.h> // OgreStringConverter class definition
8 #include <OIS/OISEvents.h> // OISEvents class definition
9 #include <OIS/OISInputManager.h> // OISInputManager class definition

10 #include <OIS/OISKeyboard.h> // OISKeyboard class definition
11 #include "Ball.h" // Ball class definition
12 #include "Paddle.h" // Paddle class definition
13 #include "Pong.h" // Pong class definition
14 using namespace std;
15 using namespace Ogre;
16
17 int Pong::player1Score = 0; // initialize player 1's score to 0
18 int Pong::player2Score = 0; // initialize player 2's score to 0
19 bool Pong::wait = false; // initialize wait to false
20
21 // directions to move the Paddles
22
23
24
25 // constructor
26 Pong::Pong()
27 {
28 // initialize Root object
29
30 // use the Ogre Config Dialog Box to choose the settings
31
32
33
34 // get a pointer to the RenderWindow
35
36
37 // create the SceneManager
38
39
40 // create the Camera
41
42
43
44
45
46
47 // create the Viewport
48
49
50
51 // set the Camera's aspect ratio
52
53
54
55 // set the scene's ambient light
56
57
58 // create the Light

Fig. 27.5 | Pong class member-function definitions. (Part 2 of 7.)

const Vector3 PADDLE_DOWN = Vector3(0, -15, 0);
const Vector3 PADDLE_UP = Vector3(0, 15, 0);

rootPtr = new Root();

if (!(rootPtr->showConfigDialog())) // user canceled the dialog box
 throw runtime_error("User Canceled Ogre Setup Dialog Box.");

windowPtr = rootPtr->initialise(true, "Pong");

sceneManagerPtr = rootPtr->createSceneManager(ST_GENERIC);

cameraPtr = sceneManagerPtr->createCamera("PongCamera");
cameraPtr->setPosition(Vector3(0, 0, 200)); // set Camera position
cameraPtr->lookAt(Vector3(0, 0, 0)); // set where Camera looks
cameraPtr->setNearClipDistance(5); // near distance Camera can see
cameraPtr->setFarClipDistance(1000); // far distance Camera can see

viewportPtr = windowPtr->addViewport(cameraPtr);
viewportPtr->setBackgroundColour(ColourValue(0, 0, 0));

cameraPtr->setAspectRatio(Real(viewportPtr->getActualWidth()) /
 (viewportPtr->getActualHeight()));

sceneManagerPtr->setAmbientLight(ColourValue(0.75, 0.75, 0.75)

27.4 The Game of Pong: Code Walkthrough CLXVII

59
60
61
62
63
64
65
66 // add the window to the ParamList
67
68
69
70 // create the InputManager
71
72
73
74
75
76 // add this Pong as a FrameListener
77
78 // load resources for Pong
79
80
81
82
83 quit = pause = false; // player has not quit or paused the game
84 time = 0; // initialize the time since Ball was reset to 0
85 } // end Pong constructor
86
87 // Pong destructor erases objects contained in a Pong object
88 Pong::~Pong()
89 {
90 // free dynamically allocated memory for Keyboard
91 inputManagerPtr->destroyInputObject(keyboardPtr);
92 OIS::InputManager::destroyInputSystem(inputManagerPtr);
93
94 // free dynamically allocated memory for Root
95 delete rootPtr; // release memory pointer points to
96 rootPtr = 0; // point pointer at 0
97
98 // free dynamically allocated memory for Ball
99 delete ballPtr; // release memory pointer points to
100 ballPtr = 0; // point pointer at 0
101
102 // free dynamically allocated memory for Paddle
103 delete leftPaddlePtr; // release memory pointer points to
104 leftPaddlePtr = 0; // point pointer at 0
105
106 // free dynamically allocated memory for Paddle
107 delete rightPaddlePtr; // release memory pointer points to
108 rightPaddlePtr = 0; // point pointer at 0
109 } // end Pong destructor
110

Fig. 27.5 | Pong class member-function definitions. (Part 3 of 7.)

Light *lightPtr = sceneManagerPtr->createLight("Light"); // a Light
lightPtr->setPosition(0, 0, 50); // set the Light's position

unsigned long hWnd; // variable to hold the window handle
windowPtr->getCustomAttribute("WINDOW", &hWnd); // get window handle
OIS::ParamList paramList; // create an OIS ParamList

paramList.insert(OIS::ParamList::value_type("WINDOW",
 Ogre::StringConverter::toString(hWnd)));

inputManagerPtr = OIS::InputManager::createInputSystem(paramList);
keyboardPtr = static_cast< OIS::Keyboard* >(inputManagerPtr->
 createInputObject(OIS::OISKeyboard, true)); // create a Keyboard
keyboardPtr->setEventCallback(this); // add a KeyListener

rootPtr->addFrameListener(this);

ResourceGroupManager::getSingleton().addResourceLocation(
 "resources", "FileSystem", "Pong");
ResourceGroupManager::getSingleton().initialiseAllResourceGroups();

CLXVIII Chapter 27 Game Programming with Ogre

111 // create the scene to be displayed
112 void Pong::createScene()
113 {
114 // get a pointer to the Score Overlay
115
116
117
118
119 // make the game objects
120 ballPtr = new Ball(sceneManagerPtr); // make the Ball
121 ballPtr->addToScene(); // add the Ball to the scene
122 rightPaddlePtr = new Paddle(sceneManagerPtr, "RightPaddle", 90);
123 rightPaddlePtr->addToScene(); // add a Paddle to the scene
124 leftPaddlePtr = new Paddle(sceneManagerPtr, "LeftPaddle", -90);
125 leftPaddlePtr->addToScene(); // add a Paddle to the scene
126
127 // create the walls
128
129
130
131
132
133 // create the SceneNode for the left wall
134
135
136
137
138
139 entityPtr = sceneManagerPtr->createEntity("WallRight", "cube.mesh");
140 entityPtr->setMaterialName("wall"); // set material for right wall
141 entityPtr->setNormaliseNormals(true); // fix the normals when scaled
142
143 // create the SceneNode for the right wall
144 nodePtr = sceneManagerPtr->getRootSceneNode()->
145 createChildSceneNode("WallRight");
146 nodePtr->attachObject(entityPtr); // attach right wall to SceneNode
147 nodePtr->setPosition(95, 0, 0); // set the right wall's position
148 nodePtr->setScale(.05, 1.45, .1); // set the right wall's size
149 entityPtr = sceneManagerPtr->createEntity("WallBottom", "cube.mesh");
150 entityPtr->setMaterialName("wall"); // set material for bottom wall
151 entityPtr->setNormaliseNormals(true); // fix the normals when scaled
152
153 // create the SceneNode for the bottom wall
154 nodePtr = sceneManagerPtr->getRootSceneNode()->
155 createChildSceneNode("WallBottom");
156 nodePtr->attachObject(entityPtr); // attach bottom wall to SceneNode
157 nodePtr->setPosition(0, -70, 0); // set the bottom wall's position
158 nodePtr->setScale(1.95, .05, .1); // set bottom wall's size
159 entityPtr = sceneManagerPtr->createEntity("WallTop", "cube.mesh");
160 entityPtr->setMaterialName("wall"); // set the material for top wall
161 entityPtr->setNormaliseNormals(true); // fix the normals when scaled
162

Fig. 27.5 | Pong class member-function definitions. (Part 4 of 7.)

Overlay *scoreOverlayPtr =
 OverlayManager::getSingleton().getByName("Score");
scoreOverlayPtr->show(); // show the Overlay

Entity *entityPtr = sceneManagerPtr->
 createEntity("WallLeft", "cube.mesh"); // create the left wall
entityPtr->setMaterialName("wall"); // set material for left wall
entityPtr->setNormaliseNormals(true); // fix the normals when scaled

SceneNode *nodePtr = sceneManagerPtr->getRootSceneNode()->
 createChildSceneNode("WallLeft");
nodePtr->attachObject(entityPtr); // attach left wall to SceneNode
nodePtr->setPosition(-95, 0, 0); // set the left wall's position
nodePtr->setScale(.05, 1.45, .1); // set the left wall's size

27.4 The Game of Pong: Code Walkthrough CLXIX

163 // create the SceneNode for the top wall
164 nodePtr = sceneManagerPtr->getRootSceneNode()->
165 createChildSceneNode("WallTop");
166 nodePtr->attachObject(entityPtr); // attach top wall to the SceneNode
167 nodePtr->setPosition(0, 70, 0); // set the top wall's position
168 nodePtr->setScale(1.95, .05, .1); // set the top wall's size
169 } // end function createScene
170
171 // start a game of Pong
172 void Pong::run()
173 {
174 createScene(); // create the scene
175 // start rendering frames
176 } // end function run
177
178 // update the score
179 void Pong::updateScore(Players player)
180 {
181 // increase the correct player's score
182 if (player == PLAYER1)
183 player1Score++;
184 else
185 player2Score++;
186
187 wait = true; // the game should wait to restart the Ball
188 updateScoreText(); // update the score text on the screen
189 } // end function updateScore
190
191 // update the score text
192 void Pong::updateScoreText()
193 {
194 ostringstream scoreText; // text to be displayed
195
196 scoreText << "Player 2 Score: " << player2Score; // make the text
197
198 // get the right player's TextArea
199 OverlayElement *textElementPtr =
200 OverlayManager::getSingletonPtr()->getOverlayElement("right");
201 textElementPtr->setCaption(scoreText.str()); // set the text
202
203 scoreText.str(""); // reset the text in scoreText
204 scoreText << "Player 1 Score: " << player1Score; // make the text
205
206 // get the left player's TextArea
207 textElementPtr =
208 OverlayManager::getSingletonPtr()->getOverlayElement("left");
209 textElementPtr->setCaption(scoreText.str()); // set the text
210 } // end function updateScoreText
211
212 // respond to user keyboard input
213 bool Pong::keyPressed(const OIS::KeyEvent &keyEventRef)
214 {

Fig. 27.5 | Pong class member-function definitions. (Part 5 of 7.)

rootPtr->startRendering();

CLXX Chapter 27 Game Programming with Ogre

215 // if the game is not paused
216 if (!pause)
217 {
218 // process KeyEvents that apply when the game is not paused
219 switch (keyEventRef.key)
220 {
221 case OIS::KC_ESCAPE: // escape key hit: quit
222 quit = true;
223 break;
224 case OIS::KC_UP: // up-arrow key hit: move the right Paddle up
225 rightPaddlePtr->movePaddle(PADDLE_UP);
226 break;
227 case OIS::KC_DOWN: //down-arrow key hit: move the right Paddle down
228 rightPaddlePtr->movePaddle(PADDLE_DOWN);
229 break;
230 case OIS::KC_A: // A key hit: move the left Paddle up
231 leftPaddlePtr->movePaddle(PADDLE_UP);
232 break;
233 case OIS::KC_Z: // Z key hit: move the left Paddle down
234 leftPaddlePtr->movePaddle(PADDLE_DOWN);
235 break;
236 case OIS::KC_P: // P key hit: pause the game
237 pause = true; // set pause to true when the user pauses the game
238
239
240
241 break;
242 } // end switch
243 } // end if
244 else // game is paused
245 {
246 // user hit 'R' on the keyboard
247 if (keyEventRef.key == OIS::KC_R)
248 {
249 pause = false; // set pause to false when user resumes the game
250
251
252
253 } // end if
254 } // end else
255 return true;
256 } // end function keyPressed
257
258 // process key released events
259 bool Pong::keyReleased(const OIS::KeyEvent &keyEventRef)
260 {
261 return true;
262 } // end function keyReleased
263
264 // return true if the program should render the next frame
265
266 {

Fig. 27.5 | Pong class member-function definitions. (Part 6 of 7.)

Overlay *pauseOverlayPtr =
 OverlayManager::getSingleton().getByName("PauseOverlay");
pauseOverlayPtr->show(); // show the pause Overlay

Overlay *pauseOverlayPtr =
 OverlayManager::getSingleton().getByName("PauseOverlay");
pauseOverlayPtr->hide(); // hide the pause Overlay

bool Pong::frameEnded(const FrameEvent &frameEvent)

27.4 The Game of Pong: Code Walkthrough CLXXI

Before we can display any graphics, we need to initialize the Ogre engine settings and
create certain Ogre objects. The OGRE Engine Rendering Setup dialog box (Fig. 27.6)
enables the user to choose the rendering settings, including which rendering subsystem to
use (Direct3D or OpenGL), resolution, color depth, full-screen mode, and other options
that are beyond the scope of this chapter. Direct3D is exclusively for Windows. OpenGL
is supported on all major platforms. The resolution is defined by two values, width and
height, which determine the number of pixels used to draw the scene. The resolution
options for both rendering subsystems can range from 640 × 400 to 1680 × 1050 or
higher, depending on your hardware. A higher resolution will produce more detailed
graphics. If you choose to turn off full-screen mode, the resolution will also determine the
size of the window in which the game is displayed. We run the game at a resolution of 800
× 600. A color depth of n bits means that 2n possible colors can be displayed on the screen.
A lower color depth will make the program require less memory, but the graphics may not
be as good. Direct3D and OpenGL each support 16-bit and 32-bit color depths. In 32-
bit colors, only 24 bits are used for the color; the other eight bits represent the alpha value
(i.e., transparency).

To display the dialog box, you must create a Root object (Fig. 27.5, line 28)—the
Ogre object used to start the engine. The only Ogre object that can be created before Root
is the LogManager—but that is beyond the scope of this book. Next, we call the

267 return !quit; // quit = false if the user hasn't quit yet
268 } // end function frameEnded
269
270 // process game logic, return true if the next frame should be rendered
271
272 {
273 keyboardPtr->capture(); // get keyboard events
274 // the game is not paused and the Ball should move
275 if (!wait && !pause)
276 {
277 // move the Ball
278 ballPtr->moveBall();
279 } // end if
280 // don't move the Ball if wait is true
281 else if (wait)
282 {
283 // increase time if it is less than 4 seconds
284 if (time < 4)
285 // add the seconds since the last frame
286 time += ;
287 else
288 {
289 wait = false; // shouldn't wait to move the Ball any more
290 time = 0; // reset the control variable to 0
291 } // end else
292 } // end else
293
294 return !quit; // quit = false if the user hasn't quit yet
295 } // end function frameStarted

Fig. 27.5 | Pong class member-function definitions. (Part 7 of 7.)

bool Pong::frameStarted(const FrameEvent &frameEvent)

frameEvent.timeSinceLastFrame

frameEvent.timeSinceLastFrame

CLXXII Chapter 27 Game Programming with Ogre

showConfigDialog function of the Root class (line 31) to display the dialog. Once you hit
OK, Ogre saves the settings and uses them as the default settings the next time the dialog
box is displayed. The program should end if the user selects Cancel, because the settings
may not be properly configured and could cause errors. We throw a runtime_error if
showConfigDialog returns false (i.e., the user selected Cancel).

Once the rendering subsystem and window options have been set, we can create the
RenderWindow, a window in which Ogre will render graphics, by calling the initialise
function of class Root (line 35). The first parameter, true, tells Ogre to create the window
with the settings the user chose in the dialog box. Passing false to this parameter allows
you to manually create the window at a later time. The second, "Pong", is the name of the
window within the engine and will also appear in the title bar of the window if it isn’t full
screen. Notice the British spelling of initialise and of colour in Fig. 27.6, reflecting
Ogre’s origin in the United Kingdom.

27.4.2 Creating a Scene
Now that we’ve initialized Ogre and set up a window to render our graphics in, we’ll add
some objects to create our scene—the collection of images that we display on the screen.

SceneManager
To control the scene we use Ogre’s SceneManager object (line 38). The SceneManager
manages the scene graph, a data structure that contains all the objects in the scene, both
visible and nonvisible. The SceneManager is used to create objects that will be added to
the scene graph and determines which objects will be rendered. Excluding objects that are
not within the visible scene from being rendered, known as culling, decreases rendering

Fig. 27.6 | OGRE Engine Rendering Setup dialog box.

27.4 The Game of Pong: Code Walkthrough CLXXIII

time and increases performance. This is done automatically. We’ll keep a pointer to this
SceneManager object, as it will be used extensively throughout the game.

Several types of SceneManagers have been designed to handle different types of scenes,
such as indoor scenes or expansive landscape scenes. An Ogre application can use more
than one SceneManager, separately or at the same time. For the purposes of this chapter,
we use only one instance of the generic scene type (ST_GENERIC), a SceneManager that’s
not optimized for any particular type of scene.

Camera
Once we have a SceneManager, we can start constructing our scene. First we add a Camera.
A Camera in Ogre is the eye through which you view the scene. A 3D scene is usually too
large to be displayed in one window. The Camera looks into the scene and tells Ogre what
part you can actually see. Cameras can be placed at any location in the scene or attached to
SceneNodes—we’ll discuss these shortly. If attached to a SceneNode, the Camera will follow
that node if it moves within the scene. Ogre supports multiple Cameras in a single scene,
but we need only one.

We use the SceneManager to create the Camera (line 41), then we set the position, ori-
entation, clip distances and Viewport (lines 42–49). Position is the location of the Camera
within the scene. We position the Camera 200 units from the origin along the positive z-
axis, toward the player. This places the Camera far enough away from the origin of the
scene so that we can center the game around it. We can set all of the z-coordinates to 0
and not have to change them. The orientation is the direction in which the Camera is
looking. We have the Camera look at the origin (line 43) because we center the game
around that point. The clip distances define how near and how far the Camera can see. If
something is closer to the Camera than the near clip distance, or farther away than the far
clip distance, then the Camera won’t be able to see it. The Viewport is the area of the screen
used to display what the Camera can see. We set the Viewport’s background color to white.
A Camera can have more than one Viewport, but we’ll use only one for our game. Cameras
have many other features and functions, but this is all we need for our game.

Light
One of the most important aspects of a 3D scene is lighting. Ogre has three types of
Lights—Point, Spot and Directional. Point lights have a position in space and radiate
light in all directions. Spot lights have a position in space like Point lights, but radiate
light in only one direction; the strength of the light fades as the distance from the source
increases. Directional lights do not have a position in space, they have only a direction
in which they shine—the light is assumed to come from the same direction no matter
where you are in the scene.

We use a Point light in our game. Lines 59–60 use the SceneManager to create the
Light and set its position within the scene. The argument to the createLight function is
the name by which we’ll refer to the Light. We set the Light’s position by specifying its
x-, y- and z-coordinates. Our scene is now ready for use.

27.4.3 Adding to the Scene
As we mentioned earlier, Pong has four major game objects—a ball, two paddles and a rect-
angular box. All of these elements must be added to the scene before they can be displayed.

CLXXIV Chapter 27 Game Programming with Ogre

Add the Ball
Class Ball (Figs. 27.7–27.8) represents the ball that bounces around the screen. We must
add the Ball to the scene before it can be displayed. Member function addToScene
(Fig. 27.8, lines 26–51) creates an Entity that represents the Ball, adds it to the scene and
creates sounds associated with the Ball; we’ll discuss the sounds later. An Entity is a mesh
instance within the scene. A mesh is a file that contains the geometry information of a 3D
model. Many Entity objects can be based on the same mesh as long as each Entity has a
unique name. Lines 29–30 create the Entity, which is referenced through a pointer. The
first argument is the name of the Entity. The second argument, "sphere.mesh", is the
mesh file used to determine the Entity’s shape. We use the sphere mesh provided with the
Ogre SDK. You can find the mesh in the OgreSDK\media\models folder on your computer.

1 // Ball.h
2 // Ball class definition (represents a bouncing ball).
3 #ifndef BALL_H
4 #define BALL_H
5
6 #include <Ogre.h> // Ogre class definitions
7 #include <OgreAL.h> // OgreAL class definitions
8 using namespace Ogre;
9

10 class Paddle; // forward declaration of class Paddle
11
12 const int RADIUS = 5; // the radius of the Ball
13
14 class Ball
15 {
16 public:
17 Ball(SceneManager *sceneManagerPtr); // constructor
18 ~Ball(); // destructor
19
20
21
22 private:
23 SceneManager *sceneManagerPtr; // pointer to the SceneManager
24 SceneNode *nodePtr; // pointer to the SceneNode
25
26
27
28
29 int speed; // speed of the Ball
30 Vector3 direction; // direction of the Ball
31
32 // private utility functions
33 void reverseHorizontalDirection(); // change horizontal direction
34 void reverseVerticalDirection(); // change vertical direction
35 void hitPaddle(); // control the Ball hitting the Paddles
36 }; // end class Ball
37
38 #endif // BALL_H

Fig. 27.7 | Ball class definition (represents a bouncing ball).

void addToScene(); // add the Ball to the scene
void moveBall(Real time); // move the Ball across the screen

OgreAL::SoundManager *soundManagerPtr; // pointer to the SoundManager
OgreAL::Sound *wallSoundPtr; // sound played when Ball hits a wall
OgreAL::Sound *paddleSoundPtr; // sound played when Ball hits a Paddle
OgreAL::Sound *scoreSoundPtr; // sound played when someone scores

27.4 The Game of Pong: Code Walkthrough CLXXV

1 // Ball.cpp
2 // Ball class member-function definitions.
3 #include <Ogre.h> // Ogre class definitions
4 #include <OgreAL.h> // OgreAL class definitions
5 #include "Ball.h" // Ball class definition
6 #include "Paddle.h" // Paddle class definition
7 #include "Pong.h" // Pong class definition
8 using namespace Ogre;
9

10 // Ball constructor
11 Ball::Ball()
12 {
13 sceneManagerPtr = ptr; // set pointer to the SceneManager
14 // create SoundManager
15 speed = 100; // speed of the Ball
16 direction = Vector3(1, -1, 0); // direction of the Ball
17 } // end Ball constructor
18
19 // Ball destructor
20 Ball::~Ball()
21 {
22 // empty body
23 } // end Ball destructor
24
25 // add the Ball to the scene
26 void Ball::addToScene()
27 {
28 // create Entity and attach it to a node in the scene
29
30
31
32
33
34
35
36
37
38 // attach sounds to Ball so they will play from where Ball is
39
40
41
42
43
44
45
46
47
48
49
50
51 } // end function addToScene
52

Fig. 27.8 | Ball class member-function definitions. (Part 1 of 4.)

SceneManager *ptr

soundManagerPtr = new OgreAL::SoundManager();

Entity *entityPtr =
 sceneManagerPtr->createEntity("Ball", "sphere.mesh");
entityPtr->setMaterialName("ball"); // set material for the Ball
entityPtr->setNormaliseNormals(true); // fix the normals when scaled
nodePtr = sceneManagerPtr->getRootSceneNode()->
 createChildSceneNode("Ball"); // create a SceneNode
nodePtr->attachObject(entityPtr); // attach the Entity to SceneNode
nodePtr->setScale(.05, .05, .05); // scale SceneNode

wallSoundPtr = soundManagerPtr->
 createSound("wallSound", "wallSound.wav", false);
nodePtr->attachObject(wallSoundPtr); // attach a sound to SceneNode
paddleSoundPtr = soundManagerPtr->
 createSound("paddleSound", "paddleSound.wav", false);
nodePtr->attachObject(paddleSoundPtr); // attach sound to SceneNode
scoreSoundPtr = soundManagerPtr->
 createSound("cheer", "cheer.wav", false); // create a Sound

 // attach the score sound to its own node centered at (0, 0, 0)
 sceneManagerPtr->getRootSceneNode()->createChildSceneNode("score")->
 attachObject(scoreSoundPtr);

CLXXVI Chapter 27 Game Programming with Ogre

53 // move the Ball across the screen
54 void Ball::moveBall(Real time)
55 {
56
57
58
59 // get the positions of the four walls
60
61
62 Vector3 bottomPosition = sceneManagerPtr->
63 getSceneNode("WallBottom")->getPosition();
64 Vector3 leftPosition = sceneManagerPtr->
65 getSceneNode("WallLeft")->getPosition();
66 Vector3 rightPosition = sceneManagerPtr->
67 getSceneNode("WallRight")->getPosition();
68
69 const int WALL_WIDTH = 5; // the width of the walls
70
71 // check if the Ball hit the left side
72
73 {
74 nodePtr->setPosition(0, 0, 0); // place Ball in center of screen
75 Pong::updateScore(PLAYER2); // update the score
76 // play a sound when player 2 scores
77 } // end if
78 // check if the Ball hit the right side
79
80
81 {
82 nodePtr->setPosition(0, 0, 0); // place Ball in center of screen
83 Pong::updateScore(PLAYER1); // update the score
84 // play a sound when player 1 scores
85 } // end else
86 // check if the Ball hit the bottom wall
87
88
89
90 {
91 // place the Ball on the bottom wall
92
93
94 reverseVerticalDirection(); // make the Ball start moving up
95 } // end else
96 // check if the Ball hit the top wall
97
98
99
100 {
101 // place the Ball on the top wall
102
103
104 reverseVerticalDirection(); // make the Ball start moving down
105 } // end else

Fig. 27.8 | Ball class member-function definitions. (Part 2 of 4.)

nodePtr->translate((direction * (speed * time))); // move Ball
Vector3 position = nodePtr->getPosition(); // get Ball's new position

Vector3 topPosition = sceneManagerPtr->
 getSceneNode("WallTop")->getPosition();

if ((position.x - RADIUS) <= leftPosition.x + (WALL_WIDTH / 2))

scoreSoundPtr->play();

else if (
 (position.x + RADIUS) >= rightPosition.x - (WALL_WIDTH / 2))

scoreSoundPtr->play();

else if (
 (position.y - RADIUS) <= bottomPosition.y + (WALL_WIDTH / 2) &&
 direction.y < 0)

nodePtr->setPosition(position.x,
 (bottomPosition.y + (WALL_WIDTH / 2) + RADIUS), position.z);

else if (
 (position.y + RADIUS) >= topPosition.y - (WALL_WIDTH / 2) &&
 direction.y > 0)

nodePtr->setPosition(position.x,
 (topPosition.y - (WALL_WIDTH / 2) - RADIUS), position.z);

27.4 The Game of Pong: Code Walkthrough CLXXVII

106
107 hitPaddle(); // check if the Ball hit a Paddle
108 } // end function moveBall
109
110 // reverse the Ball's horizontal direction
111 void Ball::reverseHorizontalDirection()
112 {
113
114
115 } // end function reverseHorizontalDirection
116
117 // reverse the Ball's vertical direction
118 void Ball::reverseVerticalDirection()
119 {
120
121
122 } // end function reverseVerticalDirection
123
124 // control the Ball colliding with the Paddle
125 void Ball::hitPaddle()
126 {
127 // get the position of the Paddles and the Ball
128 Vector3 leftPaddlePosition = sceneManagerPtr->
129 getSceneNode("LeftPaddle")->getPosition(); // left Paddle
130 Vector3 rightPaddlePosition = sceneManagerPtr->
131 getSceneNode("RightPaddle")->getPosition(); // right Paddle
132 Vector3 ballPosition = nodePtr->getPosition(); // the Ball's position
133
134 const int PADDLE_WIDTH = 2; // width of the Paddle
135 const int PADDLE_HEIGHT = 30; // height of the Paddle
136
137 // is the Ball in range of the left Paddle?
138 if ((ballPosition.x - RADIUS) <
139 (leftPaddlePosition.x + (PADDLE_WIDTH / 2)))
140 {
141 // check for collision with left Paddle
142 if ((ballPosition.y - RADIUS) <
143 (leftPaddlePosition.y + (PADDLE_HEIGHT / 2)) &&
144 (ballPosition.y + RADIUS) >
145 (leftPaddlePosition.y - (PADDLE_HEIGHT / 2)))
146 {
147 reverseHorizontalDirection(); // reverse the Ball's direction
148
149 // place the Ball at the edge of the Paddle
150 nodePtr->setPosition(
151 (leftPaddlePosition.x + (PADDLE_WIDTH / 2) + RADIUS),
152 ballPosition.y, ballPosition.z);
153 } // end if
154 } // end if
155 // is the Ball in range of the right Paddle?
156 else if ((ballPosition.x + RADIUS) >
157 (rightPaddlePosition.x - (PADDLE_WIDTH / 2)))
158 {

Fig. 27.8 | Ball class member-function definitions. (Part 3 of 4.)

direction *= Vector3(-1, 1, 1); // reverse the horizontal direction
paddleSoundPtr->play(); // play the "paddleSound" sound effect

direction *= Vector3(1, -1, 1); // reverse the vertical direction
wallSoundPtr->play(); // play the "wallSound" sound effect

CLXXVIII Chapter 27 Game Programming with Ogre

Line 31 sets the material used to color the Entity. The argument, "ball", is the name
of the material used to color the Ball. In Ogre, a material is usually created with a script,
though it can also be created directly in the program. A material script (Fig. 27.9) is a text
file that Ogre uses to create a material. Save the text file with a .material extension.

Notice that the ball material’s structure looks similar to C++ code, with curly braces
enclosing each section. Line 2 indicates that we’re defining a material called ball. Within
the material, we define a technique—i.e., how to render the object (lines 5–15). You can
define multiple techniques for a material, but that is beyond our scope. Within each
technique, one or more passes are defined (lines 8–14). Each pass defines a single step
in the material’s rendering process. Using multiple passes is beyond our scope. The color
is determined in the pass by setting color values for the different types of lighting in the
scene. We want the Ball to be violet, so set the color values to (0.58, 0, 0.827) (lines 11–
13). The numbers after each type of light (ambient, diffuse and specular) represent color

159 // check for collision with right Paddle
160 if ((ballPosition.y - RADIUS) <
161 (rightPaddlePosition.y + (PADDLE_HEIGHT / 2)) &&
162 (ballPosition.y + RADIUS) >
163 (rightPaddlePosition.y - (PADDLE_HEIGHT / 2)))
164 {
165 reverseHorizontalDirection(); // reverse the Ball's direction
166
167 // place the Ball at the edge of the Paddle
168 nodePtr->setPosition(
169 (rightPaddlePosition.x - (PADDLE_WIDTH / 2) - RADIUS),
170 ballPosition.y, ballPosition.z);
171 } // end if
172 } // end else
173 } // end function hitPaddle

1 // ball material definition
2 material ball
3 {
4 // define one technique for rendering the Ball
5 technique
6 {
7 // render the Ball in one pass
8 pass
9 {

10 // color the Ball violet
11 ambient 0.58 0 0.827
12 diffuse 0.58 0 0.827
13 specular 0.58 0 0.827 120
14 }
15 }
16 }

Fig. 27.9 | ball material script.

Fig. 27.8 | Ball class member-function definitions. (Part 4 of 4.)

27.4 The Game of Pong: Code Walkthrough CLXXIX

values. The fourth number in specular (120) determines how shiny the Ball is. It can be
any value greater than 0. The higher the value the shinier the object appears.

Note that "ball" is not the name of the file that the material is defined in, but rather
the name of the material within that file. A material file can define multiple materials.
The same material can be used for multiple Entity objects, but each material defined
must have a unique name.

We’ve created the Entity for our Ball, but it isn’t part of the scene yet. Lines 33–35
(Fig. 27.8) add it to the scene so it will be rendered on the screen. We use the SceneMan-
ager to create a SceneNode—a Node within the scene graph that holds information about
an object and its position in the scene, visible or nonvisible. A SceneNode may have many
child SceneNodes attached to it, but can have only one parent Node. The argument,
"Ball", is the name by which the SceneNode will be referred to in the Ogre engine. Every
SceneNode in the scene graph must have a unique name. The call to getRootSceneNode
retrieves the topmost node within the scene graph. The root node is the parent of all other
nodes. When you create a child of the root node, its initial position is (0, 0, 0). Line 35
attaches the Entity representing the Ball to the newly created SceneNode. The Ball is
now part of the scene and will be rendered. Notice that all of the functions used to add the
Ball to the scene are member functions of the SceneManager. That is why the Ball con-
structor takes a pointer to the SceneManager as a parameter—the Ball object must be able
to access the SceneManager to add itself to the scene.

The sphere mesh provided with the Ogre SDK has a radius of 100. This is much larger
than we need. Line 36 changes the size of the Entity attached to the SceneNode, but it
does not affect the size of the actual mesh that the node’s Entity is based on. We supply
a scaling factor for each axis (x, y and z). We pass .05 as the scaling factor for all three axes.
Using the same scaling factor for all three axes uniformly scales the mesh so it maintains
its original shape. The function multiplies the radius of the sphere on each axis by the
scaling factor to change the radius from 100 to 5. When you scale a mesh, the lighting
effects become somewhat distorted. We fix that by having the Entity calculate the new
normals for the mesh each time it’s scaled (line 32). [Note: In Ogre 1.6 (Shoggoth), this
function doesn’t exist—the operation is performed automatically. You will need to com-
ment or remove this line and similar ones in other files to get the example to compile.] A
normal in this case refers to the direction each facet (i.e., small section) of the object’s sur-
face is facing. If the facet is facing toward the light, it’s brighter. If it’s facing away from
the light, it’s darker.

There is also a function scale that will change the size of the Entity. The difference
is that scale changes the size based on the current size, while setScale changes it based
on the original size of the node. These functions also scale all children of the SceneNode
by the same factor. This can be changed by telling each child of the parent node that you
do not wish to have it scaled when the parent is scaled—to do that, call the setInherit-
Scale function and pass it false.

Add the Paddles
Class Paddle (Figs. 27.10–27.11) represents the Paddles. We add a Paddle to the scene
in much the same way that we added the Ball. The member function addToScene
(Fig. 27.11, lines 23–34) uses the same first five Ogre functions, but with different argu-
ments.

CLXXX Chapter 27 Game Programming with Ogre

1 // Paddle.h
2 // Paddle class definition (represents a paddle in the game).
3 #ifndef PADDLE_H
4 #define PADDLE_H
5
6 #include <Ogre.h> // Ogre class definitions
7 using namespace Ogre;
8
9 class Paddle

10 {
11 public:
12 // constructor
13 Paddle(SceneManager *sceneManagerPtr, String paddleName,
14 int positionX);
15 ~Paddle(); // destructor
16 void addToScene(); // add a Paddle to the scene
17 void movePaddle(const Vector3 &direction); // move a Paddle
18
19 private:
20
21
22 String name; // name of the Paddle
23 int x; // x-coordinate of the Paddle
24 }; // end of class Paddle
25
26 #endif // PADDLE_H

Fig. 27.10 | Paddle class definition (represents a paddle in the game).

1 // Paddle.cpp
2 // Paddle class member-function definitions.
3 #include <Ogre.h> // Ogre class definitions
4 #include "Paddle.h" // Paddle class definition
5 using namespace Ogre;
6
7 // constructor
8 Paddle::Paddle(SceneManager *ptr, String paddleName,
9 int positionX)

10 {
11 sceneManagerPtr = ptr; // set the pointer to the SceneManager
12 name = paddleName; // set the Paddle's name
13 x = positionX; // set the Paddle's x-coordinate
14 } // end Paddle constructor
15
16 // destructor
17 Paddle::~Paddle()
18 {
19 // empty body
20 } // end Paddle default destructor
21

Fig. 27.11 | Paddle class member-function definitions. (Part 1 of 2.)

SceneManager* sceneManagerPtr; // pointer to the SceneManager
SceneNode *nodePtr; // pointer to a SceneNode

27.4 The Game of Pong: Code Walkthrough CLXXXI

First we create an Entity to represent the Paddle on the screen (lines 25–26). Here
we use the name supplied to the constructor as the Entity name. We can’t just use
"Paddle" as we used "Ball" because each Entity must have a unique name, and there are
two Paddles in the game. We use the cube mesh provided with the Ogre SDK as the
model for the Paddle. The cube mesh is located in the OgreSDK\media\models folder. We
color both Paddles dark orange with the same material (Fig. 27.12). This material
script is almost identical to the script used for the ball. The only differences are the name
of the material (line 2) and the color values (lines 11–13).

Then we create a child SceneNode of the root node to hold the data for the Paddle
(Fig. 27.11, lines 29–30). We use the name provided to the constructor for the Node’s
name as we did for the Entity. This is allowed because Nodes and Entity objects are sep-
arate types, so there is not a name conflict.

Next we attach the Entity to the node (line 31) and scale the node to an appropriate
size (line 32). The cube mesh is 100 × 100 × 100, but we scale it to 2 × 30 × 10 to make
it an appropriate size for a Paddle. We also set the Entity to recalculate its normals (line
28) as we did with the Ball. The only new Ogre function we use is setPosition (line 33).
This function places the node at the given coordinates in the scene relative to its parent.
We didn’t need to use this function in the Ball class, because we wanted Ball’s SceneNode
to start at (0, 0, 0), which is the default position of any node attached to the root node.
We want the Paddle to be positioned at the edge of the screen, so we have to move it there.
In line 33, x is a data member of class Paddle that defines the Paddle’s x-coordinate.

22 // add the Paddle to the scene
23 void Paddle::addToScene()
24 {
25 Entity *entityPtr = sceneManagerPtr->
26 createEntity(name, "cube.mesh"); // create an Entity
27 entityPtr->setMaterialName("paddle"); // set the Paddle's material
28 entityPtr->setNormaliseNormals(true); // fix the normals when scaled
29 nodePtr = sceneManagerPtr->getRootSceneNode()->
30 createChildSceneNode(name); // create a SceneNode for the Paddle
31 nodePtr->attachObject(entityPtr); // attach Paddle to the SceneNode
32 nodePtr->setScale(.02, .3, .1); // set the Paddle's size
33 // set the Paddle's position
34 } // end function addToScene
35
36 // move the Paddle up and down the screen
37 void Paddle::movePaddle(const Vector3 &direction)
38 {
39
40
41
42
43
44 // place the Paddle at the bottom of the box
45
46 } // end function movePaddle

Fig. 27.11 | Paddle class member-function definitions. (Part 2 of 2.)

nodePtr->setPosition(x, 0, 0);

nodePtr->translate(direction); // move the Paddle
if (nodePtr->getPosition().y > 52.5) // top of the box
 nodePtr->setPosition(x, 52.5, 0); // place Paddle at top of box
else if (nodePtr->getPosition().y < -52.5) // bottom of the box

nodePtr->setPosition(x, -52.5, 0);

CLXXXII Chapter 27 Game Programming with Ogre

Add the Walls
Now we’ll add the box that contains the bouncing Ball and the moving Paddles. We cre-
ate this box in the createScene function of class Pong (Fig. 27.5, lines 128–168). We use
the same cube mesh, provided with the Ogre SDK, for all four walls—scaling the walls
appropriately to make the box and recalculating the normals for lighting. The walls are
added to the scene similarly to the Ball and Paddles. We create an Entity using the cube
mesh to represent each wall. We use a simple material to color all the walls cyan
(Fig. 27.13). The material script looks just like the other two we’ve seen, only the name
and color values differ.

Now position and scale the walls. The left and right walls are each placed 95 units
from the origin in the x-direction. The top and bottom walls are each placed 70 units from
the origin in the y-direction. Each wall is then scaled to the correct size. The top and

1 // paddle material definition
2 material paddle
3 {
4 // define one technique for rendering a Paddle
5 technique
6 {
7 // render a Paddle in one pass
8 pass
9 {

10 // color the Paddle dark orange
11 ambient 1 0.549 0
12 diffuse 1 0.549 0
13 specular 1 0.549 0 120
14 }
15 }
16 }

Fig. 27.12 | Paddle material script.

1 // wall material definition
2 material wall
3 {
4 // define one technique for rendering a wall
5 technique
6 {
7 // render a wall in one pass
8 pass
9 {

10 // color the wall cyan
11 ambient 0 0.545 0.545
12 diffuse 0 0.545 0.545
13 specular 0 0.545 0.545 120
14 }
15 }
16 }

Fig. 27.13 | Wall material script.

27.4 The Game of Pong: Code Walkthrough CLXXXIII

bottom walls are positioned 140 units apart in the y-direction. We give both a width of 5
units. This width is an arbitrary value. You can change the width to make the game look
as you want it to. If you change this, you’ll also have to change the collision detection
code—you’ll see why when we discuss the collision logic. For the left and right walls to
stretch between the top and bottom walls, they must be 145 units long (140 plus the half-
width of each wall). So the x-scaling factor for the left and right walls is 1.45. The left and
right walls are also given a width of 5 units and are positioned 185 units apart in the x-
direction. For the top and bottom walls to stretch between the left and right walls, they
must be 195 units long, so their y-scaling factor is 1.95.

Add the Text
We use an Ogre Overlay to display the score of the game as text. An Overlay refers to
anything you want to render on top of the 3D elements of the scene. We use Overlays
only for text in this chapter. The Overlay is defined by a script saved in a .overlay file.

Overlays are composed of OverlayElements. The first element in an Overlay must
be an OverlayContainer. An OverlayContainer can hold any type of OverlayElement.
A TextAreaOverlayElement holds the text that will be displayed on the screen. Every
object in an Overlay has three main attributes—metrics mode, position and size. The
position is determined by the top-left corner of the object and is always relative to the
parent OverlayContainer of the object. Size is determined by width and height. The met-
rics mode determines how the object is positioned and sized. Pixel mode will size the
object based on the width and height declared in pixels. Relative mode will position and
size the object relative to the size of the parent OverlayContainer (or the window if it’s
the outermost OverlayContainer). In relative mode, size and position values range from
0.0 to 1.0—think of it as a percentage of the parent OverlayElement’s size. If you position
an element at (0.0, 0.0), it will be at the top-left corner of the parent element; (0.5, 0.0)
would be 50 percent across the top.

To display the score, we create an Overlay (Fig. 27.14). Line 2 names the Overlay
Score. A single overlay file can hold several Overlay definitions. Ogre will reference each
Overlay by the name rather than the file. The z-order of the Overlay (line 5) is used to
define what this Overlay should be rendered over. When using multiple Overlays, an
Overlay with a higher z-order will be rendered on top of an Overlay with a lower z-order.
Lines 8–58 create a PanelOverlayElement container that holds two TextAreaOver-
layElements. The OverlayContainer is positioned in the top-left corner of the screen
(lines 13–14) and runs along the entire width (line 17). The container is 10 percent of the
height of the window (line 18). The first TextAreaOverlayElement (lines 21–38) is posi-
tioned at the top of the container 5 percent away from the left side, runs half the width
and is the same height as the container (lines 28–31). The other TextAreaOverlayElement
(lines 40–57) is positioned 69 percent of the way across the top of the container and runs
to the end. The TextAreaOverlayElements also declare a font to use (which is defined by
a script in a .fontdef file in the PongResources folder), the character height, font color
(note the British spelling, “colour”) and the caption (lines 34–37 and 53–56).

Figure 27.15 is the .fontdef file that defines the BlueBold font. Line 2 gives the font
a name that Ogre will refer to. Line 5 tells Ogre what type of font it is. True type is a
common font file format (a .ttf file). The source (line 8) is the file that contains the font.
We put the .ttf file in the same folder as the .fontdef file. If you place the two files in

CLXXXIV Chapter 27 Game Programming with Ogre

1 // An Overlay to display the score
2 Score
3 {
4 // set a high z-order, displays on top of anything with lower z-order
5 zorder 500
6
7 // create a PanelOverlayElement container to hold the text areas
8 container Panel(ScorePanel)
9 {

10 // use relative metrics mode to position this container at the
11 // top-left corner of the screen
12 metrics_mode relative
13 left 0.0
14 top 0.0
15
16 // make it 1/10 the height and the full width of the screen
17 width 1.0
18 height .1
19
20 // create a TextAreaOverlayElement to display player 1's score
21 element TextArea(left)
22 {
23 // position and size the element relative to the container
24 metrics_mode relative
25
26 // position it at the top of the container 5% from the left and
27 // make it the same height and half as long as the container
28 left 0.05
29 top 0.0
30 width 0.5
31 height 1.0
32
33 // set font used for caption and set the size and color
34 font_name BlueBold
35 char_height .05
36 colour 1.0 0 0
37 caption Player 1 Score: 0
38 }
39 // create a TextAreaOverlayElement to display player 2's score
40 element TextArea(right)
41 {
42 // position and size the element relative to the container
43 metrics_mode relative
44
45 // position it at the top of the container 69% from the left and
46 // make it the same height as the container, stretch to the end
47 left 0.69
48 top 0.0
49 width 0.5
50 height 1.0
51

Fig. 27.14 | Overlay script to display the score. (Part 1 of 2.)

27.4 The Game of Pong: Code Walkthrough CLXXXV

different locations, you’ll have to specify the path to the .ttf file in line 8 or add the folder
containing the .ttf file as a resource location (discussed in Section 27.4.8).

Lines 115–117 of class Pong (Fig. 27.5) display the score on the screen. We use the
static member function getSingleton of class OverlayManager to get a pointer to the
OverlayManager object. We use that object to get a pointer to the score Overlay, then we
call the show function to display it on the screen. When a player scores, we need to update
the text within the Overlay to reflect the change (lines 192–210). First we create the new
text. Then we get a pointer to the appropriate TextAreaOverlayElement from the
OverlayManager and use the TextAreaOverlayElement member function setCaption to
replace the text.

27.4.4 Animation and Timers
Now that we know how to draw a Ball on the screen, animating it and making it move
around the screen is straightforward. The function moveBall (Fig. 27.8, lines 54–108)
moves the Ball around the screen. In most Pong games, the ball can travel at many differ-
ent angles. However, since we are just starting out with Ogre, we want to keep things as
simple as possible. For this reason, in our Pong game, the ball has only four possible direc-
tions of travel: down-right, up-right, down-left, and up-left—all at 45-degree angles to the
x- and y-axes in our program.

52 // set font used for caption and set the size and color
53 font_name BlueBold
54 char_height 0.05
55 colour 1.0 0 0
56 caption Player 2 Score: 0
57 }
58 }
59 }

1 // define the BlueBold font
2 BlueBold
3 {
4 // define the font type
5 type truetype
6
7 // set the source file for the font
8 source bluebold.ttf
9

10 // set the font size
11 size 16
12
13 // set the font resolution (96 is standard)
14 resolution 96
15 }

Fig. 27.15 | BlueBold font definition script.

Fig. 27.14 | Overlay script to display the score. (Part 2 of 2.)

CLXXXVI Chapter 27 Game Programming with Ogre

Line 56 actually makes the Ball move; the rest of the function controls collisions with
various objects within the scene, as we’ll see shortly. The translate function takes as an
argument a Vector3, which is a three-dimensional vector type defined by Ogre. The
vector represents the direction and distance to move the Ball. We pass to the translate
function the Ball’s direction multiplied by the distance to travel (speed × time) to deter-
mine the final vector. The speed parameter is the number of units the ball will move per
second. The time parameter is the number of seconds since the last time the Ball was
moved. We’ll see where this comes from in just a moment. SceneNode translations are
done in parent space by default. That means that the node is translated with respect to its
parent node’s position and orientation (i.e., the direction the node is facing). Translations
can also be performed in world or local space by adding another parameter to the trans-
late function (TS_LOCAL or TS_WORLD). Translations in world space are done with respect
to the origin of the scene (0, 0, 0). Translations in local space are done with respect to the
node’s origin (wherever the node is positioned and whichever direction it’s facing).2

To continuously move the Ball across the screen, call the moveBall function each
time a new frame is rendered. Figure 27.4 defines the Pong class, our game’s main driving
class, which inherits from the Ogre class FrameListener. A FrameListener is a class that
processes Ogre::FrameEvents. A FrameEvent occurs every time a frame begins or ends.
Every FrameListener has two functions, frameStarted and frameEnded (lines 29–30).
These functions both return a bool. Ogre keeps rendering frames until one of these func-
tions returns false. We use the frameStarted function (Fig. 27.5, lines 271–295) to con-
trol the animation of our Ball, specifically line 278. This function is called by Ogre before
each new frame is rendered. Before every frame, the frameStarted function calls the Ball
class member function moveBall, which continuously moves the Ball across the screen.
As discussed earlier, controlling the speed of the animation is vital to creating smooth
motion. Frame rates (i.e., how quickly the scene gets redrawn) may vary greatly on dif-
ferent machines, so the Ball could move at a different speed on each one. For that reason
we pass the FrameEvent’s data member timeSinceLastFrame, in seconds, to the moveBall
function. We multiply this time by the Ball’s speed to determine the distance the Ball
should move across the screen. This is an example of using a timer to control animation.

27.4.5 User Input
Now we discuss moving the Paddle up and down on the screen with the movePaddle func-
tion of class Paddle (Fig. 27.11, lines 37–46). To move the Paddle, we again use the
SceneNode function translate (line 39). Rather than moving the Paddle based on time,
we move it based on user input from the keyboard. The user specifies a direction, up or
down, by pressing the corresponding key, and the Paddle moves accordingly. The direc-
tion is passed to movePaddle as a Vector3.

Ogre does not directly support user input from devices such as the keyboard, mouse
or joystick. The Ogre SDK does come with the Object Oriented Input System (OIS) for
handling user input. It isn’t required that you use OIS for input with Ogre, but it’s a good
choice.

We need to create an InputManager, a Keyboard and a KeyListener to handle the
user input and control the calls to movePaddle. The InputManager is used to create the

2. Junker, Gregory, Pro OGRE 3D Programming. New York: Springer-Verlag, 2006, pp. 82—89.

27.4 The Game of Pong: Code Walkthrough CLXXXVII

various input devices. We create the InputManager in class Pong’s constructor (Fig. 27.5,
line 71). To create the InputManager we must provide it with a window in which to collect
(lines 62–68).

We create a Keyboard object which represents the actual keyboard. To collect
KeyEvents, we must call the capture function of class Keyboard. We want to call this func-
tion repeatedly, so we place it in the frameStarted function, which is called at the begin-
ning of every frame. Class Pong inherits from class KeyListener, an OIS class that handles
input from the keyboard. We register it with the Keyboard (line 74) to receive KeyEvents,
i.e., indications that the player has hit a key. A KeyListener defines two member functions
(Fig. 27.4, lines 25–26)—we use only one of these (line 25). We must implement the
other one, though, because they are both declared pure virtual in the class KeyListener.

The implementation of the key-handling function is in lines 213–256. Every time we
capture a key press, the Keyboard sends the KeyEvent to this member function. OIS
defines an enumeration of all the keys on the keyboard, which we use to determine which
key was pressed. The switch statement (lines 219–242) responds only to certain keys. We
extract the key enumeration from the KeyEvent and pass it to the switch statement (line
219). If the A or Z key is being pressed, the Paddle on the left side should move up or
down, respectively. Likewise, if the user presses the up- or down-arrow key, the Paddle on
the right side should move in the corresponding direction. The directions passed to the
movePaddle function are defined as constant Vector3s (lines 22–23).

We allow the user to pause the game by hitting the P key (lines 236–241), which sets
the Pong data member pause to true. The if statement (line 216) will skip the switch
statement that controls the Paddle movement when pause is true. The pause data
member will also stop the Ball from moving when it’s true (line 275). We also use an
Overlay (Fig. 27.16) to display "Game Paused" on the screen. The game resumes when
the player hits the R key.

1 // An Overlay to display "Game Paused" when the player pauses the game
2 PauseOverlay
3 {
4 // set a high z-order, displays on top of anything with lower z-order
5 zorder 500
6
7 // create a PanelOverlayElement container to hold the text area
8 container Panel(Pause)
9 {

10 // use relative metrics mode to position and size this container
11 metrics_mode relative
12
13 // place the container at the top-left corner of the window
14 left 0.0
15 top 0.0
16
17 // make the container the same size as the window
18 width 1.0
19 height 1.0

Fig. 27.16 | Overlay script to display "Game Paused" when player pauses the game. (Part 1 of
2.)

CLXXXVIII Chapter 27 Game Programming with Ogre

If the user hits the Esc key, the game exits by setting the quit data member to true
(Fig. 27.5 lines 221–223). Recall that Ogre continues to render frames until the frame-
Started or frameEnded function returns false. These both return !quit, so when we set
quit to true, the functions return false and tell Ogre to shut down. If you don’t use the
Esc key to quit, the program won’t stop properly; it keeps running in the background. Be
sure to use the Esc key.

27.4.6 Collision Detection
The Ball collides with a number of objects as it bounces around the screen. We need to
detect these collisions to make the Ball interact correctly with its surroundings. Lines 60–
105 of Fig. 27.8 control collisions between the Ball and the walls of the playing area. The
call to SceneNode member function getPosition returns a Vector3 representing the
node’s position relative to its parent node. Because all of our nodes are direct children of
the root node, whose position is (0, 0, 0), the position returned is always relative to the
origin. There is also a _getDerivedPosition member function that will return the posi-
tion relative to the origin of any node regardless of its parent’s position.

You can retrieve any node within the scene graph by passing the name of the node to
the SceneManager member function getSceneNode. We retrieve the nodes of the four
walls (lines 60–67) and use their positions to check for collisions with the Ball. If the
Ball’s x-coordinate (minus the radius) is less than or equal to the left wall’s x-coordinate
(plus half the wall’s width), then the Ball has collided with the left wall. Once the collision

20
21 // create a TextAreaOverlayElement to display the text
22 element TextArea(pauseText)
23 {
24 // position and size the element relative to its container
25 metrics_mode relative
26
27 // center it vertically in the container
28 vert_align center
29
30 // put the left corner 4/10 from the left of the container and
31 // make it 2/10 the width of the container and 1/10 the height
32 left 0.4
33 width 0.2
34 height 0.1
35
36 // set the font used for caption and set the size and color
37 font_name BlueBold
38 char_height 0.05
39 colour 0 0 0
40 caption Game Paused
41 }
42 }
43 }

Fig. 27.16 | Overlay script to display "Game Paused" when player pauses the game. (Part 2 of
2.)

27.4 The Game of Pong: Code Walkthrough CLXXXIX

is determined, the proper actions are taken. The Ball is placed in the middle of the screen
for the next round (line 74). Player 2 is given a point (line 75) by calling the Pong class
member function updateScore. We made the updateScore function static so we can
call it from the Ball class without a reference to an instance of the Pong class. Finally, a
sound is played to indicate that a player has scored (line 76)—we’ll explain that function
call in Section 27.4.7. The process is the same to determine if the Ball hit the right side.
The Ball’s x-coordinate is checked against the right wall’s x-coordinate. If the Ball hits
the right side, the appropriate actions are taken. Figure 27.17 shows player 1 scoring a
point. The Ball is not actually going into the wall; it’s an illusion caused by the 3D
graphics.

Fig. 27.17 | Player 1 scoring a point. (Part 1 of 2.)

CXC Chapter 27 Game Programming with Ogre

The Ball is then checked against the top and bottom walls. The same collision logic
is used. If the Ball’s y-coordinate (plus or minus the radius, depending on which wall it
hits) after being moved would cross the wall’s inner y-coordinate (which is physically
impossible because they are both solid objects), the Ball has collided with either the top
or bottom wall. To prevent the Ball from overlapping the wall, we place it at the edge of
the wall after a collision (lines 92–93 and 102–103). Technically this violates the physics
of the Ball by changing the distance it moved in the given time interval. To be accurate,
we would have to determine the distance and direction it moved after hitting the wall and
draw it at that point. In the interest of keeping the code simple, we don’t deal with this
issue. The scene gets redrawn so quickly that the distance the Ball moves each frame is
extremely small. The effect on the Ball’s movement is imperceptible. Figure 27.18 shows
the Ball bouncing off the top wall.

At the end of moveBall we call the function hitPaddle (lines 125–173) to check for
collisions between the Ball and the Paddles and take appropriate actions when one
occurs. Lines 128–129 retrieve the node that the left Paddle is attached to, then return the
position of the node. Lines 130–131 do the same thing for the right Paddle. We use these
positions to detect collisions between the Paddles and the Ball. The logic is similar to the
logic used for checking the walls. We first check if the Ball’s x-coordinate is past the Pad-
dles’. We also check that the Ball is within the Paddles’ y-coordinates. Figure 27.19
shows the Ball bouncing off a Paddle.

Consider the lines that change the ball’s direction. Line 113 causes the Ball to start
moving left if it’s currently moving right, and start moving right if it’s currently moving
left. Line 120 makes the Ball start moving up if it’s currently moving down, and down if
it’s currently moving up. Why does this work? The direction of the Ball is determined by
a Vector3. Each value represents a distance along the x-, y- or z-axis. A positive x-value
means the Ball will move right along the x-axis, and a negative value will move the Ball

Fig. 27.17 | Player 1 scoring a point. (Part 2 of 2.)

27.4 The Game of Pong: Code Walkthrough CXCI

left. If the Ball is moving right, multiplying its x-value by –1 will change the sign and
reverse the direction. We do the same thing to change the vertical direction.

The collisions in our game are fairly simple cases, so we’ve kept the logic simple. There
are whole libraries dedicated to handling collisions and physics, such as Open Dynamics
Engine (ODE, www.ode.org/), Bullet (www.continuousphysics.com/Bullet/), Newton
Game Dynamics (www.newtondynamics.com/) and PhysX (www.ageia.com/). These
libraries have Ogre bindings available on the Ogre Community Add-on page.

Fig. 27.18 | The Ball bouncing off the top wall.

www.ode.org/
www.continuousphysics.com/Bullet/
www.newtondynamics.com/
www.ageia.com/

CXCII Chapter 27 Game Programming with Ogre

27.4.7 Sound
We now discuss importing sounds and playing sound files in Ogre programs, which we’ll
use to “juice up” our Pong game. We play a “boing” sound whenever the Ball hits a wall,
we play a different “boing” sound whenever the Ball hits a Paddle and we play a cheering
sound whenever a player scores.

Fig. 27.19 | The Ball bouncing off the left Paddle.

27.4 The Game of Pong: Code Walkthrough CXCIII

We’ll use OgreAL to add sound. OgreAL is a wrapper around the OpenAL audio
library. OgreAL was created by Casey Borders (www.mooproductions.org), a member of
the Ogre community. The OpenAL library is maintained by Creative Labs, devel-
oper.creative.com. The wrapper allows us to integrate sound functionality into the Ogre
code by attaching the sounds to nodes within the scene graph. Because all of the sounds
we play relate to the Ball, we place the OgreAL code in the Ball class. The OgreAL func-
tions used to import and play sounds are analogous to those used for importing and dis-
playing models in Ogre.

As with Ogre, we include the OgreAL.h header. OgreAL manages the sounds using a
SoundManager class, following the Ogre resource management scheme. We create a
SoundManager in the Ball constructor (Fig. 27.8, line 14). There can be only one Sound-
Manager. The SoundManager is used to create instances of Sounds, the OgreAL objects that
contain the sound data. We create three Sounds and attach them to nodes (lines 39–50).
The createSound function takes three parameters. The first is an Ogre::String that will
be the name of the Sound. The second is the name of the sound file associated with the
Sound. The third is a bool that determines if the Sound should be looped to continue
playing. Passing false will play the Sound through once, then stop. Passing true will con-
tinuously loop the sound until you stop it. We attach the Sounds to a node in the same
way we would attach an Entity to a node with the attachObject function.

The first Sound we create (lines 39–40) will be played whenever the Ball bounces off
the top or bottom wall. We attach it to the Ball’s node. OpenAL supports 3D sound, so
when the Sound is attached to the Ball, it will play from wherever the Ball is. Our scene
is relatively small, so you may not notice the Sound being played in 3D, but if you listen
closely, it will sound slightly different. Because we placed the call to the play function (line
121) inside our function that reverses the Ball’s vertical direction, the “boing” sound will
play whenever the Ball’s vertical direction is reversed—in other words, whenever the ball
hits the top or bottom wall.

The second Sound is created the same way as the first, and again is attached to the
Ball’s node. This sound will play whenever the Ball bounces off one of the Paddles. We
play this Sound within the reverseHorizontalDirection function (line 114) for the same
reason we play the other sound from reverseVerticalDirection.

The third Sound will play whenever a player scores. There is no particular location to
play this Sound from—we attach it directly to the root node of the scene graph, which is
positioned at the origin. We play the Sound from the moveBall function every time it’s
determined that a player has scored (lines 76 and 84).

There are a couple of things to note about Sounds in OgreAL. Each Sound must have
a unique name, just like Entity objects and Nodes. A Sound must finish playing before it
can be played again.

27.4.8 Resources
As mentioned earlier, Ogre uses scripts to create Materials, Overlays and some other ad-
vanced features that are beyond the scope of this text. Ogre also uses .mesh files to repre-
sent 3D objects. OgreAL uses sound files. All of these resources must be loaded before we
can use them. Ogre will throw a runtime exception if you try to use a resource that hasn’t
been loaded. To manage the game’s resources we use a ResourceGroupManager. To load
the resources for our game, we first tell the ResourceGroupManager where to find them.

www.mooproductions.org

CXCIV Chapter 27 Game Programming with Ogre

The addResourceLocation function (Figure 27.5, lines 79–80) takes three Ogre::String
arguments. The first is the location of the resources. We placed all the resources in a folder
called resources within the example’s directory. Normally you’d organize the resources
in different folders by type, e.g. materials, models and overlays. But for simplicity we
maintain one folder to hold all the resources we’ll need for the game. The second argument
is the type of file the resources are in. The third is the resource group these files belong to.
We’ll put these files in the "Pong" group. Now we load the resources in the location we
just added (line 81).

27.4.9 Pong Driver
The last step is to write a main function (Fig. 27.20). Ogre supports various platforms, so
you should try not to write platform-specific code when you can avoid it. The preprocessor
if else wrapper (lines 8–17) will determine whether the program is running on a Win-
dows platform. If it is, it will include the windows.h header and define the WinMain func-
tion. If not, it will define the normal main function. This allows the code to run on various
platforms without having to be changed. You may not have seen the Windows-specific
code before. The preprocessor directive to include the windows.h header gives the program
the necessary access to the Windows API to run our program. The definition of
WIN32_LEAN_AND_MEAN (line 9) will exclude rarely used headers in the windows.h header.
This will speed up the compilation time for our program.

1 // PongMain.cpp
2 // Driver program for the game of Pong
3 #include <iostream>
4 #include "Pong.h" // Pong class definition
5 using namespace std;
6
7 // If running on Windows, include windows.h and define WinMain function
8 #if OGRE_PLATFORM==PLATFORM_WIN32 || OGRE_PLATFORM==OGRE_PLATFORM_WIN32
9 #define WIN32_LEAN_AND_MEAN

10 #include "windows.h"
11
12 int WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR strCmdLine, INT)
13
14 // If not, define normal main function
15 #else
16 int main()
17 #endif
18 {
19 try
20 {
21 Pong game; // create a Pong object
22 game.run(); // start the Pong game
23 } // end try
24 catch (runtime_error &error)
25 {
26 #if OGRE_PLATFORM==PLATFORM_WIN32 || OGRE_PLATFORM==OGRE_PLATFORM_WIN32
27 MessageBoxA(NULL, error.what(), "Exception Thrown!",
28 MB_OK | MB_ICONERROR | MB_TASKMODAL);

Fig. 27.20 | Driver program for the game of Pong. (Part 1 of 2.)

27.5 Wrap-Up CXCV

The main function creates the initial Pong object in a try block (lines 19–23). Recall
that the Pong constructor throws an exception if the user cancels the Ogre configuration
dialog box. If the user hits OK in the dialog box, the Pong object is created and we call the
run member function (line 22). Class Pong member function run (Fig. 27.5, lines 172–
176) first creates the game’s scene (line 174), then calls the startRendering member func-
tion (line 175) of class Root to render the scene repeatedly until either the frameStarted
or the frameEnded function returns false.

In this chapter you learned the basics of creating computer games with Ogre. We discussed
the basic concepts of graphics, briefly describing models, lighting and colors. You saw how
to use the free Ogre 3D rendering engine to produce a 3D game. We showed you how to
use the SceneManager to create and manage your scene. You learned how to use a Camera
to view your scene. We discussed responding to user input from the keyboard with OIS.
We demonstrated how to move an object at a constant speed. We covered the basics of col-
lision detection and showed how important it is to game programming. You learned how
to display text on the screen using Overlays. We showed how Ogre uses scripts to manage
materials and Overlays without having to recompile every time you change them.We also
showed how to add sound to your games using the OgreAL wrapper for OpenAL.

This chapter should be viewed only as an introduction. We presented you with a basic
example of Pong. Use it as a foundation for your own version. Go out and find your own
sounds to use. Add new features to the game. Explore Ogre’s other capabilities and create
some cool visual effects. Really make this game your own. Game programming is all about
being creative.

www.ogre3d.org/

The Ogre home page. Here you can find the latest Ogre news, download Ogre or Ogre-related tools,
browse the documentation or check out projects that use Ogre.
www.ogre3d.org/index.php?option=com_content&task=view&id=411&Itemid=131

Prebuilt SDK download page. There are SDKs available for Code::Blocks + MingGW C++ Toolbox,
Visual C++ .Net 2003 and Visual C++ .Net 2005 (must install Service Pack 1).
www.ogre3d.org/index.php?option=com_content&task=view&id=412&Itemid=132

Ogre source-code download page. Source code available for Windows, Linux and Mac OS X. Also
download the third-party dependencies package for your platform. Also has a link to a guide to
building Ogre from source.
www.ogre3d.org/index.php?option=com_content&task=view&id=415&Itemid=144

Instructions on getting the Ogre source code from the CVS directory.

29 #else
30 cerr << "Exception Thrown: " << error.what() << endl;
31 #endif
32 } // end catch
33 } // end main

Fig. 27.20 | Driver program for the game of Pong. (Part 2 of 2.)

27.5 Wrap-Up

27.6 Ogre Web Resources

www.ogre3d.org/
www.ogre3d.org/index.php?option=com_content&task=view&id=411&Itemid=131
www.ogre3d.org/index.php?option=com_content&task=view&id=412&Itemid=132
www.ogre3d.org/index.php?option=com_content&task=view&id=415&Itemid=144

CXCVI Chapter 27 Game Programming with Ogre

www.ogre3d.org/wiki/index.php/Installing_An_SDK

Installation instructions for the Ogre SDK on Windows with Visual C++, Code::Blocks + MinGW,
Code::Blocks + MinGW + STLPort, Eclipse + MinGW + STLPort and GCC & Make/Any IDE.
Linux, Debian, Gentoo, Fedora and Ubuntu. Mac OS X.
www.ogre3d.org/wiki/index.php/Building_From_Source

Instructions for building the Ogre source code on Windows with Visual C++, Visual C++ Toolkit
2003 & Code::Blocks, and GCC. Linux with GCC & Make, Debian, Fedora, Gentoo, Ubuntu/
Kubuntu. Mac OS X with Xcode.
www.ogre3d.org/wiki/index.php/BuildFAQ

Solutions to common errors when building from the source code. Errors include not being able to
find files, unresolved external symbols and other types of errors.
www.ogre3d.org/wiki/index.php/SettingUpAnApplication

Guide to setting up an Ogre Application project on Visual C++, Code::Blocks, GCC, Autotools,
Scons, Eclipse, Anjuta IDE, KDevelop IDE.
www.ogre3d.org/phpBB2addons/viewtopic.php?t=3293

OgreAL download and installation instructions.
developer.creative.com/landing.asp?cat=1&sbcat=31&top=38

OpenAL download and installation links.
www.openal.org/downloads.html

OpenAL download page.
www.wreckedgames.com/wiki/index.php/WreckedLibs:OIS

Object Oriented Input System (OIS) wiki page includes links to the OIS manual and API reference.
www.tayloredmktg.com/rgb/

Color-code chart. Gives RGB values in hex and decimal. Colors are divided into general color range
(e.g., grays, blues, greens, oranges).
www.htmlcenter.com/tutorials/tutorials.cfm/89/General/

Color chart gives RGB and hex color values.

Tutorials
www.ogre3d.org/wiki/index.php/Ogre_Tutorials

Ogre tutorials page. Tutorials range from basic to advanced on topics including introduction to
Ogre, FrameListeners, animation multiple SceneManagers and content creation.
www.blender.org/tutorials-help/

Blender tutorials page.
en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro

The “Blender 3D: Noob to Pro” wikibook guides new Blender users through the process of 3D
modeling. Teaches you how to work with models, lighting, rendering, animation, particles and soft
bodies. Also has advanced tutorials on python scripting and advanced animation.
www.cegui.org.uk/wiki/index.php/Tutorials

Many tutorials on using Crazy Eddie’s GUI System (CEGUI) that is supported by Ogre.

Tools
www.ogre3d.org/index.php?option=com_content&task=view&id=413&Itemid=133

Download model export tools for Blender, Maya, Softimage XSI and 3DS Max.
usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7639525

Autodesk Maya Personal Learning Edition page. Free version of Maya.
www.softimage.com/downloads/default.aspx

SoftImage XSI download page. Free 30-day trial available.

www.ogre3d.org/wiki/index.php/Installing_An_SDK
www.ogre3d.org/wiki/index.php/Building_From_Source
www.ogre3d.org/wiki/index.php/BuildFAQ
www.ogre3d.org/wiki/index.php/SettingUpAnApplication
www.ogre3d.org/phpBB2addons/viewtopic.php?t=3293
www.openal.org/downloads.html
www.wreckedgames.com/wiki/index.php/WreckedLibs:OIS
www.tayloredmktg.com/rgb/
www.htmlcenter.com/tutorials/tutorials.cfm/89/General/
www.ogre3d.org/wiki/index.php/Ogre_Tutorials
www.blender.org/tutorials-help/
www.cegui.org.uk/wiki/index.php/Tutorials
www.ogre3d.org/index.php?option=com_content&task=view&id=413&Itemid=133
www.softimage.com/downloads/default.aspx

 Summary CXCVII

www.blender.org/download/get-blender/

Blender download page.

Code Examples
www.ogre3d.org/wiki/index.php/CodeSnippits#HOWTO

The Ogre Cookbook contains code samples explaining how to do various tasks relating to geometry,
rendering, materials, textures, animation, input GUI and sound.
www.ogre3d.org/phpBB2/viewtopic.php?t=27326

Asteroid Wars. A game written using Ogre for graphics. Source code is available.
www.ogre3d.org/phpBB2/viewtopic.php?t=27806

Five games written with Ogre. The source code for all the games is available.

Books
www.amazon.com/Pro-OGRE-3D-Programming/dp/1590597109/ref=pd_bbs_sr_1/102-
2583408-2260151?ie=UTF8&s=books&qid=1173888297&sr=1-1

Pro OGRE 3D Programming, by Gregory Junker.

Forums
www.ogre3d.org/phpBB2/viewtopic.php?t=5706

A forum post describing how to install Ogre on Debian GNU/Linux.
www.ogre3d.org/phpBB2/viewforum.php?f=2

Ogre Help forum. Get help from Ogre users on any problems you encounter while using Ogre.
www.ogre3d.org/phpBB2/

A number of forums on the Ogre site, including help, using Ogre in practice, content creation, pro-
gramming basics and more.
www.ogre3d.org/phpBB2addons/

Ogre add-ons forums. A number of forums dedicated to the more popular Ogre add-ons, including
OgreAL, OgreODE, NxOgre, PyOgre and more.
www.ogre3d.org/phpBB2addons/viewforum.php?f=10

OgreAL forum on the Ogre site. Information on installing and using OgreAL. Great place to find
help.
www.wreckedgames.com/forum/viewforum.php?
f=6&sid=dc5f903554a80ac5194213329f5e46e4

OIS forum. Get help on using OIS.

Summary
Section 27.3 Basics of Game Programming
• 3D graphics engines hide the tedious and complex programming required with graphics APIs.

• Ogre supports the Direct3D and OpenGL graphics APIs and runs on the Windows, Linux and
Mac platforms.

• Ogre is strictly a graphics rendering engine. The Ogre community has produced many add-ons
that allow users to integrate other libraries with Ogre to support those features.

• A 3D model is a computer representation of an object which can be drawn on the screen.

• Materials determine an object’s appearance by setting lighting properties, colors and textures.

• A texture is an image that is wrapped around the model.

www.blender.org/download/get-blender/
www.ogre3d.org/wiki/index.php/CodeSnippits#HOWTO
www.ogre3d.org/phpBB2/viewtopic.php?t=27326
www.ogre3d.org/phpBB2/viewtopic.php?t=27806
www.amazon.com/Pro-OGRE-3D-Programming/dp/1590597109/ref=pd_bbs_sr_1/102-2583408-2260151?ie=UTF8&s=books&qid=1173888297&sr=1-1
www.amazon.com/Pro-OGRE-3D-Programming/dp/1590597109/ref=pd_bbs_sr_1/102-2583408-2260151?ie=UTF8&s=books&qid=1173888297&sr=1-1
www.ogre3d.org/phpBB2/viewtopic.php?t=5706
www.ogre3d.org/phpBB2/viewforum.php?f=2
www.ogre3d.org/phpBB2/
www.ogre3d.org/phpBB2addons/
www.ogre3d.org/phpBB2addons/viewforum.php?f=10
www.wreckedgames.com/forum/viewforum.php?f=6&sid=dc5f903554a80ac5194213329f5e46e4
www.wreckedgames.com/forum/viewforum.php?f=6&sid=dc5f903554a80ac5194213329f5e46e4

CXCVIII Chapter 27 Game Programming with Ogre

• Colors are determined by red, green and blue light intensities and an optional alpha value to rep-
resent transparency. Values can range from 0 to 1.0.

• There are four different types of light in a 3D scene—ambient, diffuse, emissive and specular.

• Collision detection is the process of determining whether two objects in a game are touching and
reacting appropriately.

• There are collision detection and physics modeling libraries that handle the complexities for you.

• Audio libraries enrich your games with sound. Many of those libraries support 3D sound.

• Games often communicate with the user by displaying text.

• Timers control animation speed and make animations look more natural.

• User input devices include the keyboard, mouse, joystick and the game controller.

Section 27.4.1 Ogre Initialization
• Root is the base object used in Ogre used to start the engine. No Ogre calls can be made until

the Root object has been created.

• Call the showConfigDialog function of the Root class to display the dialog. The OGRE Engine

Rendering Setup dialog box enables the user to choose the rendering settings.

• The resolution is defined by two values, width and height, which determine the number of pixels
used to draw the scene. A higher resolution will produce more detailed graphics.

• A color depth of n bits means that 2n possible colors can be displayed on the screen.

• The RenderWindow is a window in which Ogre will render graphics.

Section 27.4.2 Creating a Scene
• A scene is a collection of images that make up our graphics.

• The SceneManager manages the scene graph, a data structure that contains all the scene’s objects.

• The SceneManager is used to create objects and determine which objects will be rendered. An
Ogre application can use more than one SceneManager.

• A Camera is the eye through which you view the scene. Cameras can be placed at any location in
the scene or attached to SceneNodes. Ogre supports multiple Cameras in a single scene.

• The Viewport is the area of the screen used to display what the Camera can see. A Camera can have
more than one Viewport.

• Ogre has three types of Lights—Point, Spot and Directional. Lights are created with the
createLight function of class SceneManager.

Section 27.4.3 Adding to the Scene
• An Entity is an instance of a mesh within the scene. A mesh is a file that contains the geometry

information of a 3D model. Many Entity objects can be based on the same mesh, as long as each
Entity has a unique name.

• Use the SceneManager to create SceneNodes that hold information about an object and its posi-
tion in the scene.

• The root node is the parent of all other nodes. When you create a child of the root node, its initial
position is (0, 0, 0).

• Attach Entity objects to SceneNodes with the attachObject function of class SceneNode.

• scale changes the size of the Entity attached to the SceneNode, but it does not affect the size of
the actual mesh that the node’s Entity is based on. setScale changes the size based on the orig-

 Summary CXCIX

inal size of the Entity. These functions also scale all children of the SceneNode by the same factor.
To change that, call the setInheritScale function and pass it false.

• setPosition function places the node at the given coordinates in the scene.

• Ogre uses a material script to create a material. Save the file with a .material extension. A ma-
terial file can define multiple materials; every material must have a unique name.

• An Overlay is defined by a script saved in an .overlay file. A single .overlay file can hold several
Overlay definitions. Every object in an Overlay has three main attributes—metrics mode, posi-
tion and size.

• Overlays are composed of OverlayElements. The first element in an Overlay must be an Over-
layContainer. An OverlayContainer can hold any OverlayElement. A TextAreaOverlayElement
holds text. Call the show function to display the Overlay on the screen

• Use TextAreaOverlayElement to display text. Call setCaption to change text on the screen.

• An Overlay with a higher z-order will be rendered on top of an Overlay with a lower z-order.

• Fonts are defined by a script in a fontdef file.

• Use the static member function getSingleton of class OverlayManager to get the Overlay-
Manager object.

Section 27.4.4 Animation and Timers
• The translate function moves a SceneNode.

• SceneNode translations are done in parent space by default. Translations in parent space are done
with respect to the parent’s origin. Translations in world space are done with respect to the origin
of the scene (0, 0, 0). Translations in local space are done with respect to the node’s origin.

• A FrameListener processes Ogre::FrameEvents. A FrameEvent occurs when a frame begins or ends.

Section 27.4.5 User Input
• Ogre does not directly support user input from devices such as the keyboard, mouse or joystick.

• Use the Object Oriented Input System (OIS) for handling user input.

• The InputManager is used to create the various input devices. To create the InputManager we
must provide it with a window in which to collect input.

• A Keyboard object collects KeyEvents and sends them to a KeyListener.

• OIS defines an enumeration of all the keys on the keyboard, which we use to determine which
key was pressed.

Section 27.4.6 Collision Detection
• getPosition returns a Vector3 representing the node’s position relative to its parent node;

_getDerivedPosition returns the position relative to the origin.

• The SceneManager can retrieve any node within the scene graph by referencing the name given
to the node when it was created.

• The direction of the Ball is determined by a Vector3. A positive x-value means the Ball will
move right along the x-axis, and a negative value will move the Ball left. If the Ball is moving
right, multiplying its x-value by –1 will change the sign and reverse the direction.

• There are whole libraries dedicated to handling collisions and physics.

Section 27.4.7 Sound
• OgreAL is a wrapper around the OpenAL audio library. The wrapper allows us to integrate

sound functionality into the Ogre code by attaching the sounds to nodes within the scene graph.

CC Chapter 27 Game Programming with Ogre

• We must have the preprocessor directive to include the OgreAL.h header.

• Sound is the OgreAL object that contains the sound data. Use the createSound function of class
SoundManager to create sounds. There can be only one SoundManager.

• The createSound function takes three parameters. The first is an Ogre::String that will be the
name of the Sound within the OgreAL system. The second is the name of the sound file associated
with the Sound. The third is a bool that determines whether the Sound should be looped to con-
tinue playing. Passing false will play the Sound through once, then stop. Passing true will con-
tinuously loop the sound until you stop it.

• Attach the Sounds to a node with the attachObject function.

• Each Sound must have a unique name.

• A Sound must finish playing before it can be played again.

Section 27.4.8 Resources
• All of the resources must be loaded before we can use them.

• Use a ResourceGroupManager to manage the game’s resources.

• The addResourceLocation function takes three Ogre::String arguments. The first is the loca-
tion of the resources. The second is the type of file the resources are in. The third is the resource
group these files belong to.

Section 27.4.9 Pong Driver
• Ogre supports various platforms, so you should try not to write platform-specific code when you

can avoid it.

Terminology
3D graphics engine CLIX
3D model CLX
3D modeling tool CLX
3D sound CLXII
alpha channel CLX
ambient light CLXI
Camera class CLXXIII
collision detection CLXI
color CLX
color depth CLXXI
culling CLXXII
diffuse light CLXI
Direct3D CLX
Directional lights CLXXIII
emissive light CLXI
Entity class CLXXIV
export 3D models CLX
frame CLXII
FrameEvent class CLXXXVI
FrameListener class CLXXXVI
Keyboard class CLXXXVII
KeyEvent class CLXXXVII

KeyListener class CLXXXVII
levels of detail (LoD) CLXI
Light class CLXXIII
local space CLXXXVI
material CLX
mesh CLXXIV
metrics mode CLXXXIII
normal CLXXIX
Object Oriented Input System

(OIS) CLXXXVI
Ogre (Object-oriented Graphics Rendering

Engine) CLIX
OgreAL CXCIII
OpenAL audio library CXCIII
OpenGL CLX
Overlay class CLXXXIII
OverlayContainer class CLXXXIII
PanelOverlayElement class CLXXXIII
parent space CLXXXVI
pixel mode CLXXXIII
Point light CLXXIII
relative mode CLXXXIII

 Self-Review Exercises CCI

rendering CLX
rendering subsystem CLXXI
RenderWindow class CLXXII
resolution CLXXI
ResourceGroupManager class CXCIII
root node CLXXIX
scene CLXXII
scene graph CLXXII
SceneManager class CLXXII
SceneNode class CLXXIX
script CLXXVIII

Sound class CXCIII
SoundManager class CXCIII
specular light CLXI
Spot light CLXXIII
TextAreaOverlayElement class CLXXXIII
texture CLX
timer CLXII
Viewport class CLXXIII
world space CLXXXVI
z-order CLXXXIII

Self-Review Exercises
27.1 Fill in the blanks in each of the following statements:

a) The header includes the most commonly used Ogre header files.
b) The object must be created before any other Ogre function (other than log-

ging) is called.
c) The main type defined by OgreAL for pointing to sound-file data is .
d) A(n) object is used to represent a color in Ogre.
e) The header includes the most commonly used OgreAL header files.
f) are used to define materials and overlays for Ogre programs.
g) The object is used to load resources for Ogre programs.
h) Ogre uses a(n) object to manage the scene.
i) A 3D model is defined in an Ogre file.

27.2 State whether each of the following is true or false. If false, explain why.
a) The coordinates (0, 0) refer to the bottom-left corner of an OverlayContainer.
b) If Ogre attempts to load an external file that does not exist, a runtime error will occur.
c) Color values in Ogre range from 0 to 255.
d) Passing a value of false to the createSound function will cause the sound file to play

continuously.
e) An Overlay that draws text on the screen must specify a font in which that text should

be drawn.
f) Every Entity must have a unique name.

27.3 Write statements to accomplish each of the following:
a) Attach an Entity pointer named entityPtr to a SceneNode pointer name nodePtr.
b) Scale the Entity from the previous question to half its original size.
c) Create the Sound sample that loops the sound.wav file.
d) If the spacebar is being pressed, set the value of the int number to 0.
e) Set an Overlay Element to position itself relative to the size of its parent Container.
f) Add a folder named sounds in the media folder as a "General" resource location.
g) Move a SceneNode 15 units left, 4 units up and 8 units toward you.

27.4 Find the error in each of the following:
a) SceneNode node;
b) ColourValue(0, 0, 255);
c) Root *rootPtr = new Root();

rootPtr->initialize(true, "Window");
d) viewportPtr = sceneManagerPtr->addViewport(cameraPtr);

CCII Chapter 27 Game Programming with Ogre

Answers to Self-Review Exercises
27.1 a) Ogre.h. b) Root. c) Sound. d) ColourValue. e) OgreAL.h. f) scripts. g) ResourceGroup-
Manager or ResourceManager. h) SceneManager. i) .mesh.

27.2 a) False. The coordinates (0, 0) refer to the top-left corner of an OverlayContainer.
b) True.
c) False. Color values in Ogre range from 0.0 to 1.0.
d) False. The sound will play once, then stop.
e) True.
f) True.

27.3 a) nodePtr->attachObject(entityPtr);
b) nodePtr->setScale(.5, .5, .5);
c) soundManagerPtr->createSound("sample", "sound.wav", true);
d) if (keyEvent.key == OIS::KC_SPACE)

 number = 0;
e) metrics_mode relative;
f) ResourceGroupManager::getSingleton().addResourceLocation("media/sounds",

 "FileSystem", "General");
g) sceneNodePtr->translate(-15, 4, 8);

27.4 a) The variable node should instead be declared as a pointer to a SceneNode. All of Ogre’s
SceneNode functions either take a pointer as a parameter or return a pointer.

b) The ColourValue object can accept parameters only with values between 0 and 1.
c) Ogre uses British spelling, the function is spelled initialise. Also, the render settings

must be set before you call initialise.
d) addViewport is a function of the RenderWindow class, not SceneManager.

Exercises
27.5 Look through the resources available in our Game Programming Resource Center at
www.deitel.com/computergames/gameprogramming/ and the C++ Game Programming Resource
Center at www.deitel.com/CplusplusGameProgramming/.

27.6 (Pong Win Condition) Modify the Pong game so that when a player reaches 21 points, the
game ends and displays a message that the left or right player has won.

27.7 (Ball Speed Increase) In most Pong games, when a rally between the two players lasts for a
long time, the ball begins to speed up in order to prevent a stalemate. Modify the Pong game so that
the ball’s speed increases for every ten times that it is hit in a rally. When either player scores, the
ball should return to its original speed.

27.8 (Paddle Speed Decrease) Some Pong games also modify the speed of one or both players’
paddles in an effort to keep the game balanced. Modify the Pong game so that when one player has
a lead of at least 5 points, his or her paddle begins to slow down. The greater that player’s lead, the
slower his or her paddle should move. If the player’s lead falls to under 5 points, his or her paddle
should return to normal speed.

27.9 (Pong Menu) Modify the Pong game so that before the game begins, a menu appears on the
screen that allows the players to choose from several different ball and paddle speeds.

www.deitel.com/computergames/gameprogramming/
www.deitel.com/CplusplusGameProgramming/

 Exercises CCIII

27.10 (Rotating Sphere) Write a program that draws the mesh sphere.mesh in the center of the
screen. When the user presses one of the arrow keys, the mesh should move ten units in that direction.

27.11 (Rotating Sphere Modification) Modify the program from Exercise 27.10 so that if the user
holds down an arrow key, the sphere will move only once every second.

27.12 (The Game of Snake) The object of the game of snake is to maneuver the snake throughout
the game area trying to eat bits of food. The snake is represented with a string of contiguous spheres
in the game area, which is a two-dimensional grid. The snake can move up, down, left or right. If
the snake eats a piece of food (shown by the “F”), it grows by adding another sphere to the end
(Fig. 27.21). If the snake hits a wall of the game area (i.e., would be out of the array), the player loses
(Fig. 27.22). If the snake runs into itself, the player loses (Fig. 27.23).

27.13 (Snake with Obstacles) Modify the program from Exercise 27.12 to add obstacles to the
game area (Fig. 27.24). If the snake runs into an obstacle, the player loses.

o

Fig. 27.21 | The snake grows when it eats.

F

CCIV Chapter 27 Game Programming with Ogre

Fig. 27.22 | The snake dies if it hits a wall.

Fig. 27.23 | The snake dies if it hits itself.

Fig. 27.24 | The snake dies if it hits an obstacle.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized authoring and corporate training organization.
The company offers instructor-led courses delivered at client sites worldwide on programming languages
and other software topics such as C++, Visual C++®, C, Java™, C#®, Visual Basic®, Objective-C®, XML®,
Python®, JavaScript, object technology, Internet and web programming, and Android and iPhone app
development. The company’s clients include many of the world’s largest companies, as well as govern-
ment agencies, branches of the military and academic institutions. To learn more about Deitel Pearson
Higher Education publications and Dive Into® Series corporate training, e-mail deitel@deitel.com
or visit www.deitel.com/training/. Follow Deitel on Facebook® at www.deitel.com/deitelfan/
and on Twitter® @deitel.

Deitel® How to Program Series Cover Theme
The cover theme for the DEITEL® HOW TO PROGRAM SERIES emphasizes social consciousness issues such
as going green, clean energy, recycling, sustainability and more. Within the text, in addition to conven-
tional programming exercises, we’ve included our Making a Difference exercise set to raise awareness of
issues such as global warming, population growth, affordable healthcare, accessibility, privacy of electronic
records and more. In this book, you’ll use C++ to program applications that relate to these issues.
We hope that what you learn in C++ How to Program, 8/e will help you to make a difference.

Rainforests
The world’s rainforests are often referred to as the “Earth’s lungs,” the “jewels
of the Earth” and the “world’s largest pharmacy.” Approximately 50% of the
world’s tropical rainforests are in Central and South America, over 33% are in
Asia and Oceania (which consists of Australia, New Zealand and various South
Pacific Islands), and 15% are in Africa. Rainforests absorb from the atmos-
phere vast amounts of carbon dioxide—a gas that many scientists blame for
global warming—and they provide approximately 40% of the world’s oxygen.
They regulate water flow to surrounding areas preventing mudslides and crop
loss. Rainforests also support the livelihoods of 1.6 billion people, providing
food, fresh water, medicines and more. Approximately 25% of Western med-
icines used to treat infections, viruses, cancer and more are derived from plants

found in rainforests. The U.S. National Cancer Institute has found about 2100 rainforest plant species
that are effective against cancer cells. Fewer than one percent of rainforest plant species have been tested
for medical use.

Rainforests are being deforested at an alarming rate. According to a March 2010 report by the United
Nations Food and Agriculture Organization, deforestation has slowed over the last 10 years,
but more than 30 million acres of forests are still lost annually, and they’re not easily renewed.
The United Nations Environment Programme Plant for the Planet: Billion Tree Campaign is one of
many reforestation initiatives. To learn more about how you can make a difference, visit
www.unep.org/billiontreecampaign/index.asp. For further information visit:

www.rain-tree.com/facts.htm

www.savetherainforest.org/savetherainforest_007.htm

en.wikipedia.org/wiki/Rainforest

www.rainforestfoundation.org/

❝I really like the Making a Difference programming exercises. The game programming [in the Functions chapter] gets
students excited.❞—Virginia Bailey, Jackson State University

❝It’s great that the text introduces object-oriented programming early. The car analogy was well-thought out. An
extremely meticulous treatment of control structures. The virtual function figure and corresponding explanation in the
Polymorphism chapter is thorough and truly commendable .❞—Gregory Dai, eBay, Inc.

❝An excellent ‘objects first’ coverage of C++ that remains accessible to beginners. The example-driven presentation is
enriched by the optional OO design case study that contextualizes the material in a software engineering project.❞
—Gavin Osborne, Saskatchewan Institute of Applied Science and Technology

❝It is excellent that [the authors] use the STL and standard libraries early.❞—John Dibling, SpryWare

❝Provides a complete basis of fundamental instruction in all core aspects of C++. Examples provide a solid grounding in
the construction of C++ programs. A solid overview of C++ Stream I/O.❞
—Peter DePasquale, The College of New Jersey

❝Great discussion about the mistakes resulted from using = for == and vice versa!❞
—Wing-Ning Li, University of Arkansas

❝Thorough and detailed coverage of exceptions from an object-oriented point of view.❞
—Dean Mathias, Utah State University

❝Chapter 20 (Data Structures) is very good. The examples are accessible to CS, IT, software engineering and business stu-
dents.❞—Thomas J. Borrelli, Rochester Institute of Technology

❝The Simpletron exercises are brilliant. The Polymorphism chapter explains one of the hardest topics to understand
in OOP in a clear manner. Great job! The writing is excellent, the examples are well developed and the exercises
are interesting.❞— José Antonio González Seco, Parliament of Andalusia, Spain

❝Introducing the UML early is a great idea.❞—Raymond Stephenson, Microsoft

❝Good use of diagrams, especially of the activation call stack and recursive functions.❞
—Amar Raheja, California State Polytechnic University, Pomona

❝Terrific discussion of pointers—the best I have seen.❞—Anne B. Horton, Lockheed Martin

❝Great coverage of polymorphism and how the compiler implements polymorphism ‘under the hood.’ I wish I had such a
clear presentation of data structures when I was a student.❞—Ed James-Beckham, Borland

❝A nice introduction to searching and sorting, and Big-O.❞—Robert Myers, Florida State University

❝Will get you up and running quickly with the memory management and regular expression libraries.❞
—Ed Brey, Kohler Co.

❝Excellent introduction to the Standard Template Library (STL). The best book on C++ programming for the serious
student!❞—Richard Albright, Goldey-Beacom College

❝Each code example is completely reviewed. This is a critical step for students to learn good programming practices.❞
—Jack R. Hagemeister, Washington State University

❝The most thorough C++ treatment I’ve seen. Replete with real-world case studies covering the full software
development lifecycle. Code examples are extraordinary!❞—Terrell Hull, Logicalis Integration Solutions

Continued from Back Cover

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	1 Introduction to Computers and C++
	1.1 Introduction
	1.2 Computers: Hardware and Software
	1.3 Data Hierarchy
	1.4 Computer Organization
	1.5 Machine Languages, Assembly Languages and High-Level Languages
	1.6 Introduction to Object Technology
	1.7 Operating Systems
	1.8 Programming Languages
	1.9 C++ and a Typical C++ Development Environment
	1.10 Test-Driving a C++ Application
	1.11 Web 2.0: Going Social
	1.12 Software Technologies
	1.13 Future of C++: TR1, the New C++ Standard and the Open Source Boost Libraries
	1.14 Keeping Up-to-Date with Information Technologies
	1.15 Wrap-Up

	2 Introduction to C++ Programming
	2.1 Introduction
	2.2 First Program in C++: Printing a Line of Text
	2.3 Modifying Our First C++ Program
	2.4 Another C++ Program: Adding Integers
	2.5 Memory Concepts
	2.6 Arithmetic
	2.7 Decision Making: Equality and Relational Operators
	2.8 Wrap-Up

	3 Introduction to Classes, Objects and Strings
	3.1 Introduction
	3.2 Defining a Class with a Member Function
	3.3 Defining a Member Function with a Parameter
	3.4 Data Members, set Functions and get Functions
	3.5 Initializing Objects with Constructors
	3.6 Placing a Class in a Separate File for Reusability
	3.7 Separating Interface from Implementation
	3.8 Validating Data with set Functions
	3.9 Wrap-Up

	4 Control Statements: Part 1
	4.1 Introduction
	4.2 Algorithms
	4.3 Pseudocode
	4.4 Control Structures
	4.5 if Selection Statement
	4.6 if…else Double-Selection Statement
	4.7 while Repetition Statement
	4.8 Formulating Algorithms: Counter-Controlled Repetition
	4.9 Formulating Algorithms: Sentinel-Controlled Repetition
	4.10 Formulating Algorithms: Nested Control Statements
	4.11 Assignment Operators
	4.12 Increment and Decrement Operators
	4.13 Wrap-Up

	5 Control Statements: Part2
	5.1 Introduction
	5.2 Essentials of Counter-Controlled Repetition
	5.3 for Repetition Statement
	5.4 Examples Using the for Statement
	5.5 do…while Repetition Statement
	5.6 switch Multiple-Selection Statement
	5.7 break and continue Statements
	5.8 Logical Operators
	5.9 Confusing the Equality (==) and Assignment (=) Operators
	5.10 Structured Programming Summary
	5.11 Wrap-Up

	6 Functions and an Introduction to Recursion
	6.1 Introduction
	6.2 Program Components in C++
	6.3 Math Library Functions
	6.4 Function Definitions with Multiple Parameters
	6.5 Function Prototypes and Argument Coercion
	6.6 C++ Standard Library Headers
	6.7 Case Study: Random Number Generation
	6.8 Case Study: Game of Chance; Introducing enum
	6.9 Storage Classes
	6.10 Scope Rules
	6.11 Function Call Stack and Activation Records
	6.12 Functions with Empty Parameter Lists
	6.13 Inline Functions
	6.14 References and Reference Parameters
	6.15 Default Arguments
	6.16 Unary Scope Resolution Operator
	6.17 Function Overloading
	6.18 Function Templates
	6.19 Recursion
	6.20 Example Using Recursion: Fibonacci Series
	6.21 Recursion vs. Iteration
	6.22 Wrap-Up

	7 Arrays and Vectors
	7.1 Introduction
	7.2 Arrays
	7.3 Declaring Arrays
	7.4 Examples Using Arrays
	7.4.1 Declaring an Array and Using a Loop to Initialize the Array's Elements
	7.4.2 Initializing an Array in a Declaration with an Initializer List
	7.4.3 Specifying an Array's Size with a Constant Variable and Setting Array Elements with Calculations
	7.4.4 Summing the Elements of an Array
	7.4.5 Using Bar Charts to Display Array Data Graphically
	7.4.6 Using the Elements of an Array as Counters
	7.4.7 Using Arrays to Summarize Survey Results
	7.4.8 Static Local Arrays and Automatic Local Arrays

	7.5 Passing Arrays to Functions
	7.6 Case Study: Class GradeBook Using an Array to Store Grades
	7.7 Searching Arrays with Linear Search
	7.8 Sorting Arrays with Insertion Sort
	7.9 Multidimensional Arrays
	7.10 Case Study: Class GradeBook Using a Two-Dimensional Array
	7.11 Introduction to C++ Standard Library Class Template vector
	7.12 Wrap-Up

	8 Pointers
	8.1 Introduction
	8.2 Pointer Variable Declarations and Initialization
	8.3 Pointer Operators
	8.4 Pass-by-Reference with Pointers
	8.5 Using const with Pointers
	8.6 Selection Sort Using Pass-by-Reference
	8.7 sizeof Operator
	8.8 Pointer Expressions and Pointer Arithmetic
	8.9 Relationship Between Pointers and Arrays
	8.10 Pointer-Based String Processing
	8.11 Arrays of Pointers
	8.12 Function Pointers
	8.13 Wrap-Up

	9 Classes: A Deeper Look, Part 1
	9.1 Introduction
	9.2 Time Class Case Study
	9.3 Class Scope and Accessing Class Members
	9.4 Separating Interface from Implementation
	9.5 Access Functions and Utility Functions
	9.6 Time Class Case Study: Constructors with Default Arguments
	9.7 Destructors
	9.8 When Constructors and Destructors Are Called
	9.9 Time Class Case Study: A Subtle Trap—Returning a Reference to a private Data Member
	9.10 Default Memberwise Assignment
	9.11 Wrap-Up

	10 Classes: A Deeper Look, Part 2
	10.1 Introduction
	10.2 const (Constant) Objects and const Member Functions
	10.3 Composition: Objects as Members of Classes
	10.4 friend Functions and friend Classes
	10.5 Using the this Pointer
	10.6 static Class Members
	10.7 Proxy Classes
	10.8 Wrap-Up

	11 Operator Overloading; Class string
	11.1 Introduction
	11.2 Using the Overloaded Operators of Standard Library Class string
	11.3 Fundamentals of Operator Overloading
	11.4 Overloading Binary Operators
	11.5 Overloading the Binary Stream Insertion and Stream Extraction Operators
	11.6 Overloading Unary Operators
	11.7 Overloading the Unary Prefix and Postfix ++ and -- Operators
	11.8 Case Study: A Date Class
	11.9 Dynamic Memory Management
	11.10 Case Study: Array Class
	11.10.1 Using the Array Class
	11.10.2 Array Class Definition

	11.11 Operators as Member Functions vs. Non-Member Functions
	11.12 Converting between Types
	11.13 explicit Constructors
	11.14 Building a String Class
	11.15 Wrap-Up

	12 Object-Oriented Programming: Inheritance
	12.1 Introduction
	12.2 Base Classes and Derived Classes
	12.3 protected Members
	12.4 Relationship between Base Classes and Derived Classes
	12.4.1 Creating and Using a CommissionEmployee Class
	12.4.2 Creating a BasePlusCommissionEmployee Class Without Using Inheritance
	12.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	12.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Data
	12.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Data

	12.5 Constructors and Destructors in Derived Classes
	12.6 public, protected and private Inheritance
	12.7 Software Engineering with Inheritance
	12.8 Wrap-Up

	13 Object-Oriented Programming: Polymorphism
	13.1 Introduction
	13.2 Introduction to Polymorphism: Polymorphic Video Game
	13.3 Relationships Among Objects in an Inheritance Hierarchy
	13.3.1 Invoking Base-Class Functions from Derived-Class Objects
	13.3.2 Aiming Derived-Class Pointers at Base-Class Objects
	13.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
	13.3.4 Virtual Functions

	13.4 Type Fields and switch Statements
	13.5 Abstract Classes and Pure virtual Functions
	13.6 Case Study: Payroll System Using Polymorphism
	13.6.1 Creating Abstract Base Class Employee
	13.6.2 Creating Concrete Derived Class SalariedEmployee
	13.6.3 Creating Concrete Derived Class CommissionEmployee
	13.6.4 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	13.6.5 Demonstrating Polymorphic Processing

	13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding "Under the Hood"
	13.8 Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info
	13.9 Virtual Destructors
	13.10 Wrap-Up

	14 Templates
	14.1 Introduction
	14.2 Function Templates
	14.3 Overloading Function Templates
	14.4 Class Templates
	14.5 Nontype Parameters and Default Types for Class Templates
	14.6 Wrap-Up

	15 Stream Input/Output
	15.1 Introduction
	15.2 Streams
	15.2.1 Classic Streams vs. Standard Streams
	15.2.2 iostream Library Headers
	15.2.3 Stream Input/Output Classes and Objects

	15.3 Stream Output
	15.3.1 Output of char * Variables
	15.3.2 Character Output Using Member Function put

	15.4 Stream Input
	15.4.1 get and getline Member Functions
	15.4.2 istream Member Functions peek, putback and ignore
	15.4.3 Type-Safe I/O

	15.5 Unformatted I/O Using read, write and gcount
	15.6 Introduction to Stream Manipulators
	15.6.1 Integral Stream Base: dec, oct, hex and setbase
	15.6.2 Floating-Point Precision (precision, setprecision)
	15.6.3 Field Width (width, setw)
	15.6.4 User-Defined Output Stream Manipulators

	15.7 Stream Format States and Stream Manipulators
	15.7.1 Trailing Zeros and Decimal Points (showpoint)
	15.7.2 Justification (left, right and internal)
	15.7.3 Padding (fill, setfill)
	15.7.4 Integral Stream Base (dec, oct, hex, showbase)
	15.7.5 Floating-Point Numbers; Scientific and Fixed Notation (scientific, fixed)
	15.7.6 Uppercase/Lowercase Control (uppercase)
	15.7.7 Specifying Boolean Format (boolalpha)
	15.7.8 Setting and Resetting the Format State via Member Function flags

	15.8 Stream Error States
	15.9 Tying an Output Stream to an Input Stream
	15.10 Wrap-Up

	16 Exception Handling: A Deeper Look
	16.1 Introduction
	16.2 Example: Handling an Attempt to Divide by Zero
	16.3 When to Use Exception Handling
	16.4 Rethrowing an Exception
	16.5 Exception Specifications
	16.6 Processing Unexpected Exceptions
	16.7 Stack Unwinding
	16.8 Constructors, Destructors and Exception Handling
	16.9 Exceptions and Inheritance
	16.10 Processing new Failures
	16.11 Class unique_ptr and Dynamic Memory Allocation
	16.12 Standard Library Exception Hierarchy
	16.13 Wrap-Up

	17 File Processing
	17.1 Introduction
	17.2 Files and Streams
	17.3 Creating a Sequential File
	17.4 Reading Data from a Sequential File
	17.5 Updating Sequential Files
	17.6 Random-Access Files
	17.7 Creating a Random-Access File
	17.8 Writing Data Randomly to a Random-Access File
	17.9 Reading from a Random-Access File Sequentially
	17.10 Case Study: A Transaction-Processing Program
	17.11 Object Serialization
	17.12 Wrap-Up

	18 Class string and String Stream Processing
	18.1 Introduction
	18.2 string Assignment and Concatenation
	18.3 Comparing strings
	18.4 Substrings
	18.5 Swapping strings
	18.6 string Characteristics
	18.7 Finding Substrings and Characters in a string
	18.8 Replacing Characters in a string
	18.9 Inserting Characters into a string
	18.10 Conversion to C-Style Pointer-Based char * Strings
	18.11 Iterators
	18.12 String Stream Processing
	18.13 Wrap-Up

	19 Searching and Sorting
	19.1 Introduction
	19.2 Searching Algorithms
	19.2.1 Efficiency of Linear Search
	19.2.2 Binary Search

	19.3 Sorting Algorithms
	19.3.1 Efficiency of Selection Sort
	19.3.2 Efficiency of Insertion Sort
	19.3.3 Merge Sort (A Recursive Implementation)

	19.4 Wrap-Up

	20 Custom Templatized Data Structures
	20.1 Introduction
	20.2 Self-Referential Classes
	20.3 Dynamic Memory Allocation and Data Structures
	20.4 Linked Lists
	20.5 Stacks
	20.6 Queues
	20.7 Trees
	20.8 Wrap-Up

	21 Bits, Characters, C Strings and structs
	21.1 Introduction
	21.2 Structure Definitions
	21.3 typedef
	21.4 Example: Card Shuffling and Dealing Simulation
	21.5 Bitwise Operators
	21.6 Bit Fields
	21.7 Character-Handling Library
	21.8 Pointer-Based String Manipulation Functions
	21.9 Pointer-Based String-Conversion Functions
	21.10 Search Functions of the Pointer-Based String-Handling Library
	21.11 Memory Functions of the Pointer-Based String-Handling Library
	21.12 Wrap-Up

	22 Standard Template Library (STL)
	22.1 Introduction to the Standard Template Library (STL)
	22.2 Introduction to Containers
	22.3 Introduction to Iterators
	22.4 Introduction to Algorithms
	22.5 Sequence Containers
	22.5.1 vector Sequence Container
	22.5.2 list Sequence Container
	22.5.3 deque Sequence Container

	22.6 Associative Containers
	22.6.1 multiset Associative Container
	22.6.2 set Associative Container
	22.6.3 multimap Associative Container
	22.6.4 map Associative Container

	22.7 Container Adapters
	22.7.1 stack Adapter
	22.7.2 queue Adapter
	22.7.3 priority_queue Adapter

	22.8 Algorithms
	22.8.1 fill, fill_n, generate and generate_n
	22.8.2 equal, mismatch and lexicographical_compare
	22.8.3 remove, remove_if, remove_copy and remove_copy_if
	22.8.4 replace, replace_if, replace_copy and replace_copy_if
	22.8.5 Mathematical Algorithms
	22.8.6 Basic Searching and Sorting Algorithms
	22.8.7 swap, iter_swap and swap_ranges
	22.8.8 copy_backward, merge, unique and reverse
	22.8.9 inplace_merge, unique_copy and reverse_copy
	22.8.10 Set Operations
	22.8.11 lower_bound, upper_bound and equal_range
	22.8.12 Heapsort
	22.8.13 min and max
	22.8.14 STL Algorithms Not Covered in This Chapter

	22.9 Class bitset
	22.10 Function Objects
	22.11 Wrap-Up

	23 Boost Libraries, Technical Report 1 and C++0x
	23.1 Introduction
	23.2 Deitel Online C++ and Related Resource Centers
	23.3 Boost Libraries
	23.4 Boost Libraries Overview
	23.5 Regular Expressions with the regex Library
	23.5.1 Regular Expression Example
	23.5.2 Validating User Input with Regular Expressions
	23.5.3 Replacing and Splitting Strings

	23.6 Smart Pointers
	23.6.1 Reference Counted shared_ptr
	23.6.2 weak_ptr: shared_ptr Observer

	23.7 Technical Report 1
	23.8 C++0x
	23.9 Core Language Changes
	23.10 Wrap-Up

	24 Other Topics
	24.1 Introduction
	24.2 const_cast Operator
	24.3 mutable Class Members
	24.4 namespaces
	24.5 Operator Keywords
	24.6 Pointers to Class Members (.* and ->*)
	24.7 Multiple Inheritance
	24.8 Multiple Inheritance and virtual Base Classes
	24.9 Wrap-Up

	Chapters on the Web
	A: Operator Precedence and Associativity
	B: ASCII Character Set
	C: Fundamental Types
	D: Number Systems
	D.1 Introduction
	D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers
	D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers
	D.4 Converting from Binary, Octal or Hexadecimal to Decimal
	D.5 Converting from Decimal to Binary, Octal or Hexadecimal
	D.6 Negative Binary Numbers: Two's Complement Notation

	E: Preprocessor
	E.1 Introduction
	E.2 #include Preprocessor Directive
	E.3 #define Preprocessor Directive: Symbolic Constants
	E.4 #define Preprocessor Directive: Macros
	E.5 Conditional Compilation
	E.6 #error and #pragma Preprocessor Directives
	E.7 Operators # and ##
	E.8 Predefined Symbolic Constants
	E.9 Assertions
	E.10 Wrap-Up

	Appendices on the Web
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	25 ATM Case Study, Part 1: Object-Oriented Design with the UML
	25.1 Introduction
	25.2 Introduction to Object-Oriented Analysis and Design
	25.3 Examining the ATM Requirements Document
	25.4 Identifying the Classes in the ATM Requirements Document
	25.5 Identifying Class Attributes
	25.6 Identifying Objects' States and Activities
	25.7 Identifying Class Operations
	25.8 Indicating Collaboration Among Objects
	25.9 Wrap-Up

	26 ATM Case Study, Part 2: Implementing an Object-Oriented Design
	26.1 Introduction
	26.2 Starting to Program the Classes of the ATM System
	26.3 Incorporating Inheritance into the ATM System
	26.4 ATM Case Study Implementation
	26.4.1 Class ATM
	26.4.2 Class Screen
	26.4.3 Class Keypad
	26.4.4 Class CashDispenser
	26.4.5 Class DepositSlot
	26.4.6 Class Account
	26.4.7 Class BankDatabase
	26.4.8 Class Transaction
	26.4.9 Class BalanceInquiry
	26.4.10 Class Withdrawal
	26.4.11 Class Deposit
	26.4.12 Test Program ATMCaseStudy.cpp

	26.5 Wrap-Up

	F: C Legacy Code Topics
	F.1 Introduction
	F.2 Redirecting Input/Output on UNIX/Linux/Mac OS X and Windows Systems
	F.3 Variable-Length Argument Lists
	F.4 Using Command-Line Arguments
	F.5 Notes on Compiling Multiple-Source-File Programs
	F.6 Program Termination with exit and atexit
	F.7 Type Qualifier volatile
	F.8 Suffixes for Integer and Floating-Point Constants
	F.9 Signal Handling
	F.10 Dynamic Memory Allocation with calloc and realloc
	F.11 Unconditional Branch: goto
	F.12 Unions
	F.13 Linkage Specifications
	F.14 Wrap-Up

	G: UML 2: Additional Diagram Types
	G.1 Introduction
	G.2 Additional Diagram Types

	H: Using the Visual Studio Debugger
	H.1 Introduction
	H.2 Breakpoints and the Continue Command
	H.3 Locals and Watch Windows
	H.4 Controlling Execution Using the Step Into, Step Over, Step Out and Continue Commands
	H.5 Autos Window
	H.6 Wrap-Up

	I: Using the GNU C++ Debugger
	I.1 Introduction
	I.2 Breakpoints and the run, stop, continue and print Commands
	I.3 print and set Commands
	I.4 Controlling Execution Using the step, finish and next Commands
	I.5 watch Command
	I.6 Wrap-Up

