


PREFACE |
[

Features
In spite of the numerous textbooks on circuit analysis
available in the market, students often find the course
difficult to learn. The main objective of this book is
to present circuit analysis in a manner that is clearer,
more interesting, and easier to understand than earlier
texts. This objective is achieved in the following
ways:
e A course in circuit analysis is perhaps the first
exposure students have to electrical engineering.
We have included several features to help stu-
dentsfeel at home with the subject. Each chapter
opens with either a historical profile of some
electrica engineering pioneers to be mentioned in
the chapter or a career discussion on a subdisci-
pline of electrical engineering. An introduction
links the chapter with the previous chapters and
states the chapter’s objectives. The chapter ends
with a summary of the key points and formulas.

e All principles are presented in a lucid, logical,
step-by-step manner. We try to avoid wordiness
and superfluous detail that could hide concepts
and impede understanding the material.

e Important formulas are boxed as a means of
helping students sort what is essential from what
is not; and to ensure that students clearly get the
gist of the matter, key terms are defined and
highlighted.

« Margina notesare used asapedagogica aid. They
serve multiple uses—hints, cross-references, more
expodition, warnings, reminders, common mis-
takes, and problem-solving insights.

 Thoroughly worked examples are liberdly given at
the end of every section. The examples are regard-
ed aspart of thetext and are explained clearly, with-
out asking the reader to fill in missing seps.
Thoroughly worked examples give students a good
understanding of the solution and the confidence to
solve problems themselves. Some of the problems
are solved in two or three ways to facilitate an
understanding and comparison of different
approaches.

« To give students practice opportunity, each illus-
trative example is immediately followed by a
practice problem with the answer. The students can
follow the example step-by-step to solve the prac-
tice problem without flipping pages or searching
the end of the book for answers. The practice prob-

lem is also intended to test students' understanding
of the preceding example. It will reinforce their
grasp of the materid before moving to the next
section.

* In recognition of ABET’s requirement on integrat-
ing computer tools, the use of Ppiceis encouraged
in a student-friendly manner. Since the Windows
verson of PSpice is becoming popular, it is used
instead of the MS-DOS version. PSpice is covered
early so that students can use it throughout the text.
Appendix D serves as a tutorid on PSpice for
Windows.

e The operationa amplifier (op amp) as abasic e
ment is introduced early in the text.

« To esse the trangition between the circuit course
and signas/systems courses, Fourier and Laplace
transforms are covered lucidly and thoroughly.

e Thelast section in each chapter is devoted to appli-
cations of the concepts covered in the chapter. Each
chapter has at least one or two practical problemsor
devices. This helps students apply the concepts to
real-life Stuations.

«  Ten multiple-choice review questions are provided
at the end of each chapter, with answers. These are
intended to cover the little “tricks’ that the exam-
ples and end-of-chapter problems may not cover.
They serve as a sdlf-test device and help students
determine how well they have mastered the chapter.

Organization

This book was written for atwo-semester or three-semes-
ter course in linear circuit anaysis. The book may
aso be used for a one-semester course by a proper selec-
tion of chapters and sections. It is broadly divided into
three parts.

e Part 1, consisting of Chapters 1 to 8, is devoted to
dc circuits. It covers the fundamental laws and the-
orems, circuit techniques, passive and active ele-
ments.

e Part 2, consisting of Chapters9to 14, dealswith ac
circuits. It introduces phasors, sinusoidal steady-
state analysis, ac power, rms values, three-phase
systems, and frequency response.

e Part 3, consigting of Chapters 15 to 18, is devoted
to advanced techniques for network analysis.
It provides a solid introduction to the Laplace
transform, Fourier series, the Fourier transform,
and two-port network analysis.

The material in three parts is more than suffi-
cient for a two-semester course, so that the instructor
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must select which chapters/sections to cover. Sections
marked with the dagger sign () may be skipped,
explained briefly, or assigned as homework. They can
be omitted without loss of continuity. Each chapter has
plenty of problems, grouped according to the sections
of the related material, and so diverse that the instruc-
tor can choose some as examples and assign some as
homework. More difficult problems are marked with a
star (*). Comprehensive problems appear last; they are
mostly applications problems that require multiple
skills from that particular chapter.

The book is as self-contained as possible. At the
end of the book are some appendixes that review
solutions of linear equations, complex numbers, math-
ematical formulas, a tutorial on PSpice for Windows,
and answers to odd-numbered problems. Answers to
all the problems are in the solutions manual, which is
available from the publisher.

Prerequisites

As with most introductory circuit courses, the main
prerequisites are physics and calculus. Although famil-
iarity with complex numbersis helpful in the later part
of the book, it is not required.

Supplements

Solutions M anual—an Ingtructor’s Solutions Manual is
available to ingtructors who adopt the text. It contains
complete solutions to al the end-of-chapter problems.
Transparency Masters—over 200 important figures
are available as transparency masters for use as over-
heads.

Student CD-ROM—100 circuit files from the book are
presented as Electronics Workbench (EWB) files; 1520
of these files are accessible using the free demo of Elec-
tronics Workbench. The students are able to experiment
with thefiles. For those who wish to fully unlock al 100
circuit files, EWB's full version may be purchased from
Interactive Image Technologies for approximately
$79.00. The CD-ROM also contains a sdlection of prob-
lem-solving, analysis and design tutorias, designed to
further support important conceptsin the text.
Problem-Solving Workbook—a paperback work-
book is for sale to students who wish to practice their
problem solving techniques. The workbook contains a
discussion of problem solving strategies and 150 addi-
tional problems with complete solutions provided.
Online Learning Center (OLC)—the Web site for
the book will serve as an online learning center for stu-
dents as a useful resource for instructors. The OLC
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will provide access to:
300 test questions—for instructors only
Downloadable figures for overhead
presentations—for instructors only
Solutions manual—for instructors only
Web links to useful sites
Sample pages from the Problem-Solving
Workbook
PageOut Lite—a service provided to adopters
who want to create their own Web site. In
just a few minutes, instructors can change
the course syllabus into a Web site using
PageOut Lite.
The URL for the web site is www.mhhe.com.alexander.
Although the textbook is meant to be self-explanatory
and act as a tutor for the student, the personal contact
involved in teaching is not to be forgotten. The book
and supplements are intended to supply the instructor
with dl the pedagogicd tools necessary to effectively
present the material.
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A NOTE TO THE STUDENT |
|

This may be your first course in electrical engineer-
ing. Although electrical engineering is an exciting and
challenging discipline, the course may intimidate you.
Thisbook was written to prevent that. A good textbook
and a good professor are an advantage—but you are
the one who does the learning. If you keep the follow-
ing ideasin mind, you will do very well in this course.

e This course is the foundation on which most
other courses in the electrical engineering cur-
riculum rest. For this reason, put in as much
effort as you can. Study the course regularly.

* Problem solving is an essential part of the learn-
ing process. Solve as many problems asyou can.
Begin by solving the practice problem following

versities. PSpice for Windows is described in
Appendix D. Make an effort to learn PSpice,
because you can check any circuit problem with
PSpice and be sure you are handing in a correct
problem solution.

Each chapter ends with a section on how the
material covered in the chapter can be applied to
real-life situations. The concepts in this section
may be new and advanced to you. No doubt, you
will learn more of the details in other courses.
We are mainly interested in gaining a general
familiarity with these ideas.

Attempt the review questions at the end of each
chapter. They will help you discover some
“tricks” not revealed in class or in the textbook.

A short review on finding determinants is cov-

each example, and then proceed to the end-of- ered in Appendix A, complex numbersin Appendix B,
chapter problems. The best way to learn isto  and mathematical formulasin Appendix C. Answersto
solve alot of problems. An asterisk in front of a  odd-numbered problems are given in Appendix E.

problem indicates a challenging problem.

e Spice, a computer circuit analysis program, is
used throughout the textbook. PSpice, the per-
sonal computer version of Spice, is the popular
standard circuit analysis program at most uni-

Have fun!

C.K.A.and M.N.O.S.

ix

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



Contents

Preface v 3.7 Nodal Versus Mesh Analysis 99
: 38 Circuit Analysis with PSpice 100
Acknowl edgments vi
) 3.9 Applications: DC Transistor Circuits 102
A Note to the Student ix 300 Summary 107
Review Questions 107
PART | | DC CIRCUITS | Problems 109
Basic Concepts 3 Comprehensive Problems 117
:; Introduction 4 (GFWEEN Circuit Theorems 9
|'3 3;622; LCJ::Irtrsent 4 6 41 Introduction 120
I. 4 Volt ge 9 41 Linearity Property 120
I.5 POWZ’g adEnergy 10 43 Superposition 122
I.6 Circuit Elements 13 44 Source Transformation 127
’r|l7 Applications 15 45 Thevenin'sTheorem 131
) PP _ 46 Norton's Theorem 137
i;% El\écTricgil:;eE;lljlge 41 Derivations of Thevenin's and Norton's
o Theorems 140
"8 Problem Solving 18 48 Maximum Power Transfer 142
_ 19 Summar y 2 49 Verifying Circuit Theorems
Erec‘)’gﬁé"n ‘S?Ua' o 2 with PSpice 144
Comprehensive Problems 25 1410 Applications 147
4.10.1 Source Modeling
O FITIAN Basic Laws 2 4.10.2 Resistance Measurement
2l Introduction 28 41l Summary 153
22 Ohm'sLaws 28 Erwlif/v Queiifgz 153
oblems
2.3 Nodes, Branches, and Loops 33 Comprehensive Problems 162
24 Kirchhoff's Laws 35
15 Series Resistors and Voltage Division 41 OFSERRIN Operational Amplifiers 165
26 Pardlel Resistorsand Current Division 42 5.1 Introduction 166
2.1 Wye-Delta Transformations 50 ' . o
n8 Applications 54 52 Operational Amplifiers 166
' o 53 Ideal OpAmp 170
gg; E‘g_‘“:%%%e&‘; o 54 Inverting Amplifier 171
o g 5.5 Noninverting Amplifier 174
_ 29 $ummar y €0 56 Summing Amplifier 176
Erec‘)’gf‘é‘r’ngu‘ﬂ'ggs 61 57 Difference Amplifier 177
Comprehensive Problems 72 5.8 Cascaded Op Amp Circuits 181
59 OpAmp Circuit Analysis
GFTSIN Methods of Analysis 75 with PSpice 183
3.1 Introduction 76 1510 Applications 185
31 Noddl Andysis 76 5102 Insrumentation Armpiliers
33 Nodal Analysis with Voltage Sources 82 o P
34 MeshAndyss 87 31 Summary 188
35 Mesh Analysiswith Current Sources 92 ﬁr%’t;ﬁ;'ng”&'fgf 190
3.6 Nodal and Mesh Analyses by Inspection 95 Comprehensive Problems 200

Xi

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



Xii

(O LI Capacitors and Inductors 201

6.1 Introduction 202
6.2 Capacitors 202
63 Seriesand Parallel Capacitors 208
64 Inductors 211
65 Seriesand Parallel Inductors 216
6.6 Applications 219
6.6.1 Integrator
6.6.2 Differentiator
6.6.3 Anaog Computer
6.7 Summary 225

Review Questions 226
Problems 227
Comprehensive Problems 235

(O FITIAN First-Order Circuits 137

1.1 Introduction 238
1.2 The Source-free RC Circuit 238
13 The Source-free RL Circuit 243
14 Singularity Functions 249
15 Step Response of an RC Circuit 257
1.6 Step Response of an RL Circuit 263
1.1 Firgt-order Op Amp Circuits 268
18 Transent Analysis with PSpice 273
19 Applications 276
7.9.1 Delay Circuits
7.9.2  Photoflash Unit
7.9.3 Relay Circuits
7.9.4  Automobile Ignition Circuit
1.10 Summary 282

Review Questions 283
Problems 284
Comprehensive Problems 293

O EOIEIRIN Second-Order Circuits 295

8.1 Introduction 296
82 Finding Initial and Final Values 296

8.3 The Source-Free Series RLC Circuit 301

84 The Source-Free Parallel RLC Circuit
8.5 Step Response of a SeriesRLC

Circuit 314
8.6 Step Response of aParallel RLC
Circuit 319

8.7 Genera Second-Order Circuits 322
8.8 Second-Order Op Amp Circuits 327
89 PSpice Anaysisof RLC Circuits 330
8.10 Duality 332
811 Applications 336

8.11.1 Automobile Ignition System
8.11.2 Smoothing Circuits

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents

CONTENTS

8.12 Summary 340

Review Questions 340
Problems 341
Comprehensive Problems 350

PART 2 | AC CIRCUITS 351
(O ELIEIRA Sinusoids and Phasors 353

9.1 Introduction 354
92 Sinusoids 355
93 Phasors 359
94  Phasor Relationships for Circuit
Elements 367
9.5 Impedance and Admittance 369
9.6  Kirchhoff's Laws in the Frequency
Domain 372
9.7 Impedance Combinations 373
198 Applications 379
9.81 Phase-Shifters
9.82 AC Bridges
99  Summary 384

Review Questions 385
Problems 385
Comprehensive Problems 392

(OFIEIIR Sinusoidal Steady-State Analysis 393

10.I  Introduction 394
102 Noda Anaysis 394
103 MeshAnadysis 397
104 Superposition Theorem 400
105 Source Transformation 404
106  Thevenin and Norton Equivalent
Circuits 406
107 OpAmpAC Circuits 411
108 ACAnaysisUsing PSpice 413
1109  Applications 416
10.9.1 Capacitance Multiplier
10.9.2 Oscillators
10.10 Summary 420

Review Questions 421
Problems 422

(O FIIMIN AC Power Analysis 433

Il.I  Introduction 434
112 Instantaneous and Average Power 434

I3 Maximum Average Power Transfer 440

114  Effective or RMS Value 443

1.5  Apparent Power and Power Factor 447

1,6 Complex Power 449
t1.7  Conservation of AC Power 453



CONTENTS xii

118 Power Factor Correction 457 144 Bode Plots 589
TIL9  Applications 459 145  Series Resonance 600
11.9.2 Electricity Consumption Cost 147 Passive Filters 608
.10 Summary 464 1471  LowpassFilter
Review Questions 465 14.7.2 Highpass Filter
Problems 466 14.7.3 Bandpass Filter
Comprehensive Problems 474 14.7.4 Bandstop Filter
o 148  Active Filters 613
OISV Three-Phase Circuits 477 ) ,
1481 First-Order Lowpass Filter
121 Introduction 478 14.82  First-Order Highpass Filter
14.8.3 Bandpass Filter
122 Balanced Three-Phase Vol t""g% 4n 1484  Bandreject (or Notch) Filter
123 Baanced Wye-Wye Connection 482 ; .
124 Balanced Wye-Delta Connection 486 149 Scaling 619
125  Bdanced Delta-Delta Connection 488 1491  Magnitude Scaling
; 14.9.2 Frequency Scaling
126 Bd anc_ed Delta-Wye Connection 490 1493  Magnitude and Frequency Scaling
127 PowerinaBaanced System 494 .
128 Unbalanced Three-Phase Systems 500 1410 Frequency Response Using
129  PSpice for Three-Phase Circuits 504 . PSice 622
1210 Applications 508 1411 Applications 626

14111 Radio Receiver
14.11.2  Touch-Tone Telephone
14.11.3  Crossover Network

1412 Summary 631

12.10.1  Three-Phase Power Measurement
12.10.2  Residentia Wiring

1211 Summary 516
Review Questions 517

Problems 518 Review Questions 633
Comprehensive Problems 525 Problems 633
Comprehensive Problems 640
(O EEIMEN Magnetically Coupled Circuits 57
31" Introduction 528 PART 3 | ADVANCED CIRCUIT ANALYSIS 643
132 Mutual Inductance 528 The Laolace Transt o5
133 Energy in a Coupled Circuit 535 e. apiace franstorm
134 Linear Transformers 539 [5.1 Introduction 646
135 Idea Transformers 545 152 Definition of the Laplace
13.6 Ideal Autotransformers 552 Transform 646
137 Three-Phase Transformers 556 153 Properties of the Laplace
138 PSpice Analysis of Magnetically Coupled Transform 649
Circuits 559 154  The Inverse Laplace Transform 659
7139  Applications 563 1541  Simple Poles

1542  Repested Poles

13.9.1 Transformer as an Isolation Device
154.3 Complex Poles

13.9.2 Transformer as a Matching Device

1393  Power Distribution IS5  Applicaton to Circuits 666
13.10 Summary 569 156  Transfer Functions 672
Review Questions 570 157 The Convolution Integral 677

Problems 571

Comprehensive Problems 582 158  Application to Integrodifferential

Equations 685

(O ELICIMEN Frequency Response 583 1159  Applications 687

141 Introduction 584 1591  Network Stability
142  Transfer Function 584 1592 Network Synthesis
1143  The Decibel Scale 588 1510 Summary 694

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



Xiv

Review Questions 696
Problems 696
Comprehensive Problems 705

OFWEIMEN The Fourier Series 707

16.I  Introduction 708
162  Trigonometric Fourier Series 708
163  Symmetry Considerations 717
16.3.1 Even Symmetry
16.3.2 Odd Symmetry
16.3.3  Half-Wave Symmetry
164 Circuit Applicatons 727
165 Average Power and RMS Vaues 730
166 Exponential Fourier Series 734
16,7  Fourier Analysis with PSpice 740

16.7.1  Discrete Fourier Transform
16.7.2  Fast Fourier Transform

7168  Applications 746

16.8.1  Spectrum Analyzers
16.8.2 Filters
169  Summary 749

Review Questions 751
Problems 751
Comprehensive Problems 758

OFIIMVA Fourier Transform 759

171 Introduction 760
172 Definition of the Fourier Transform 760
173 Properties of the Fourier Transform 766
174  Circuit Applications 779
175  Parseval’s Theorem 782
176  Comparing the Fourier and Laplace
Transforms 784
TI1.71  Applications 785

17.71  Amplitude Modulation
17.7.2  Sampling

CONTENTS

178 Summary 789

Review Questions 790
Problems 790
Comprehensive Problems 794

(O FEIMER Two-Port Networks 795

18.1  Introduction 796
182  Impedance Parameters 796
183  Admittance Parameters 801
184 Hybrid Parameters 804
185  Transmission Parameters 809
T18.6  Relationships between Parameters 814
187 Interconnection of Networks 817
188  Computing Two-Port Parameters Using
PSpice 823
t189  Applications 826

189.1 Transistor Circuits
18.9.2  Ladder Network Synthesis

18.10  Summary 833

Review Questions 834
Problems 835
Comprehensive Problems 844

Appendix A Solution of Simultaneous Equations Using
Cramer'sRule 845

AppendixB Complex Numbers 851

Appendix C  Mathematical Formulas 859

Appendix D PSpice for Windows 865

Appendix E Answers to Odd-Numbered Problems 893
Selected Bibliography 929

Index 933

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



DC CIRCUITS

Chapter é Basic Concepts

Chapter é Basic Laws

Chapter é Methods of Analysis

Chapter b Circuit Theorems

Chapter é Operational Amplifier

Chapter é Capacitors and Inductors

Chapter é First-Order Circuits

Chapter é Second-Order Circuits

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER]| |

BASIC CONCEPTS

It is engineering that changes the world.
—Isaac Asimov

Historical Profiles

Alessandro Antonio Volta (1745-1827), an ltalian physicist, invented the electric
battery—which provided the first continuous flow of electricity—and the capacitor.
Born into a noble family in Como, Italy, Volta was performing electrical
experiments at age 18. His invention of the battery in 1796 revolutionized the use
electricity. The publication of his work in 1800 marked the beginning of electric circui
theory. Volta received many honors during his lifetime. The unit of voltage or potentia
difference, the volt, was named in his honor.

Andre-Marie Ampere (1775-1836), a French mathematician and physicist, laid thg
foundation of electrodynamics. He defined the electric current and developed a way
measure it in the 1820s.

Born in Lyons, France, Ampere at age 12 mastered Latin in a few weeks, as
was intensely interested in mathematics and many of the best mathematical works w
in Latin. He was a brilliant scientist and a prolific writer. He formulated the laws of
electromagnetics. He invented the electromagnet and the ammeter. The unit of eleg
current, the ampere, was named after him.
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Figure 1.1

Current

A simple electric circuit.

PART | DC Circuits

|.I  INTRODUCTION

Electric circuit theory and electromagnetic theory are the two fundamen-
tal theories upon which all branches of electrical engineering are built.
Many branches of electrical engineering, such as power, electric ma-
chines, control, electronics, communications, and instrumentation, are
based on electric circuit theory. Therefore, the basic electric circuit the-
ory course is the most important course for an electrical engineering
student, and always an excellent starting point for a beginning student
in electrical engineering education. Circuit theory is also valuable to
students specializing in other branches of the physical sciences because
circuits are a good model for the study of energy systems in general, and
because of the applied mathematics, physics, and topology involved.

In electrical engineering, we are often interested in communicating
or transferring energy from one point to another. To do this requires an
interconnection of electrical devices. Such interconnection is referred to
as anelectric circuit, and each component of the circuit is known as an
element.

B |

i An electric circuit is an interconnection of electrical elements.

A simple electric circuit is shown in Fig. 1.1. It consists of three
basic components: abattery, alamp, and connecting wires. Such a simple
circuit can exist by itself; it has several applications, such as a torch light,
a search light, and so forth.

A complicated real circuit isdisplayedin Fig. 1.2, representing the
schematic diagram for aradio receiver. Although it seems complicated,
this circuit can be analyzed using the techniques we cover in this book.

Our godl inthistextistolearn variousanalytical techniquesand computer
software applications for describing the behavior of acircuit like this.

Electric circuits are used in numerous electrical systemsto accom-
plish different tasks. Our objectivein thisbook isnot the study of various
uses and applications of circuits. Rather our major concern is the anal-
ysis of the circuits. By the analysis of a circuit, we mean a study of the
behavior of the circuit: How does it respond to a given input? How do
the interconnected elements and devicesin the circuit interact?

We commence our study by defining some basic concepts. These
concepts include charge, current, voltage, circuit elements, power, and
energy. Before defining these concepts, we must first establish a system
of unitsthat we will use throughout the text.

1.2 SYSTEMS OF UNITS

As electrical engineers, we deal with measurable quantities. Our mea-
surement, however, must be communicated in a standard language that
virtually all professionals can understand, irrespective of the country
where the measurement is conducted. Such an international measure-
ment language is the International System of Units (Sl), adopted by the
General Conference on Weights and Measures in 1960. In this system,
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Basic Concepts
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Figure [.2  Electric circuit of aradio receiver.

(Reproduced with permission from QST, August 1995, p. 23.)

there are six principal units from which the units of all other physical
guantities can be derived. Table 1.1 shows the six units, their symbols,
and the physical quantitiesthey represent. The S units are used through-

out this text. TABLEI2  TheSl prefixes.
One great advantage of the Sl unit isthat it uses prefixes based on - _
the power of 10 to relate larger and smaller units to the basic unit. Table Multiplier  Prefix  Symbol
1.2 showsthe Sl prefixes and their symbols. For example, the following 1018 exa E
are expressions of the same distance in meters (m): 1015 peta p
600,000,000 mm  600,000m 600 km 10% tera T
10° giga G
106 mega M
10° kilo k
; ; : 102 hecto h
TABLE[.I  Thesix basic SI units. 10 deka da
Quantity Basic unit  Symbol 10° deci d
102 centi c
Length meter m 1073 milli m
Mass kilogram kg 10-° micro m
Time second S 10°° nano n
Electric current ampere A 10722 pico p
Thermodynamic temperature  kelvin K 107% femto f
Luminous intensity candela cd 10718 atto a
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6 PART | DC Circuits

1.3 CHARGE AND CURRENT

The concept of electric charge is the underlying principle for explaining
al eectrical phenomena. Also, the most basic quantity in an electric
circuit is the electric charge. We all experience the effect of electric
charge when we try to remove our wool sweater and have it stick to our
body or walk across a carpet and receive a shock.

Charge is an electrical property of the atomic particles of which
matter consists, measured in coulombs (C).

We know from elementary physicsthat al matter is made of fundamental

building blocks known as atoms and that each atom consists of electrons,

protons, and neutrons. We also know that the charge e on an electron is

negative and equal in magnitudeto 1.602 x 10~1° C, whileaproton carries

apositive charge of the same magnitude as the el ectron. The presence of

equal numbers of protonsand electrons|eaves an atom neutrally charged.
The following points should be noted about electric charge:

1. The coulomb isalarge unit for charges. In 1 C of charge, there
are 1/(1.602 x 1071%) = 6.24 x 10'® electrons. Thusrealistic
or laboratory values of charges are on the order of pC, nC, or
uC.l

2. According to experimental observations, the only charges that
occur in nature are integral multiples of the electronic charge
e=—-1.602x 1079 C.

3. Thelaw of conservation of charge states that charge can neither
be created nor destroyed, only transferred. Thus the algebraic
sum of the electric charges in a system does not change.

We now consider the flow of electric charges. A unique feature of
| electric charge or dectricity is the fact that it is mobile; that is, it can
’ :_'éa:_'éa be transferred from one place to another, where it can be converted to
another form of energy.

When aconducting wire (consisting of several atoms) is connected
- to a battery (a source of electromotive force), the charges are compelled

Battery to move; positive charges move in one direction while negative charges

move in the opposite direction. This motion of charges creates electric

Figure |.3 Electric current due to flow current. It is conventional to take the current flow as the movement of

of electronic charge in a conductor. positive charges, that is, opposite to the flow of negative charges, as Fig.

1.3 illustrates. This convention was introduced by Benjamin Franklin

A convention s a standard way of describing (1706-1790), the American scientist and inventor. Although we now

something so that others in the profession can know that current in metallic conductors is due to negatively charged

understand what we mean. We will be using [EEE electrons, we will follow the universally accepted convention that current
conventions throughout this book. isthe net flow of positive charges. Thus,

IHowever, alarge power supply capacitor can store up to 0.5 C of charge.
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{ Electric current is the time rate of change of charge, measured in amperes (A).

Mathematically, the relationship between current i, charge ¢, and time ¢
is

. dq
= — 11
! dt @) I

where current is measured in amperes (A), and

1 ampere = 1 coulomb/second

The charge transferred between time 7o and ¢ is obtained by integrating
both sides of Eqg. (1.1). We obtain

0 t
t
q=/im 12) @
fo
[
Theway we define current asi in Eq. (1.1) suggeststhat current need not
be a constant-valued function. Asmany of the examplesand problemsin
this chapter and subsequent chapters suggest, there can be several types
of current; that is, charge can vary with time in several ways that may be /\ R
represented by different kinds of mathematical functions. \/ Yy
If the current does not change with time, but remains constant, we
cal it adirect current (dc).
(b)
{ A direct current (dc) is a current that remains constant with time. Figure |4 Two common types of
current: (a) direct current (dc),

(b) dternating current (ac).
By convention the symbol 7 is used to represent such a constant current.
A time-varying current is represented by the symbol i. A com-
mon form of time-varying current is the sinusoidal current or alternating
current (ac).

{ An alternating current (ac) is a current that varies sinusoidally with time.

Such current is used in your household, to run the air conditioner, refrig-
erator, washing machine, and other electric appliances. Figure 1.4 shows
direct current and alternating current; these are the two most common 5A /
types of current. We will consider other types later in the book.

Once we define current as the movement of charge, we expect cur-
rent to have an associated direction of flow. As mentioned earlier, the
directionof current flow isconventionally taken asthedirection of positive
charge movement. Based on this convention, a current of 5 A may be @ ®)
represented positively or negatively asshownin Fig. 1.5. In other words, Figure |5 Conventional current flow:
a negative current of —5 A flowing in one direction as shown in Fig. (4 ositive current flow, (b) negative current
1.5(b) isthe same as a current of +5 A flowing in the opposite direction.  flow.

—SA/
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Exaiip L N

PRACTICE PROBLEM

How much chargeis represented by 4,600 electrons?

Solution:

Each electron has —1.602 x 10~*° C. Hence 4,600 electrons will have
—1.602 x 10~1° C/electron x 4,600 electrons = —7.369 x 1076 C

Calculate the amount of charge represented by two million protons.
Answer: +3.204 x 10713 C.

£ XA 7 L E I

PRACTICE PROBLEM

Thetota charge entering aterminal isgiven by ¢ = 5¢ sindzt mC. Cal-
culatethecurrentatr = 0.5s.

Solution:
. dg d . .
i = T E(Stsm4m) MC/s = (5sin4xt + 20t cos4drt) mA
Atr = 0.5,
i =5s8in27r + 107 cos2r = 0+ 107 = 31.42 mA
| .2

If in Example 1.2, ¢ = (10 — 10e=%) mC, find the current at r = 0.5 s.
Answer: 7.36 mA.

£ XA P L E NI

PRACTICE PROBLEM

Determinethetotal chargeenteringaterminal betweens = 1sand: = 2s
if the current passing the terminal isi = (3t — 1) A.

Solution:
2 2
q:/ idl:/(3t2—t)dl
=1 1
2 2
3 t 1
=|r-—=) =8-2—-(1--]=55C
(*-3)=e-2-(-3)
| .3
The current flowing through an element is
. 2A, O<t<1
"Tlaza, 11

Calculate the charge entering the element froms = 0tor = 2s.
Answer: 6.667 C.
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.4 VOLTAGE

As explained briefly in the previous section, to move the electron in a
conductor in aparticular direction requires somework or energy transfer.
Thiswork isperformed by an external el ectromotiveforce (emf), typically
represented by the battery in Fig. 1.3. Thisemf isaso known as voltage
or potential difference. The voltage v,;, between two pointsa and b in
an electric circuit is the energy (or work) needed to move a unit charge
from a to b; mathematically,

dw
dq
where w is energy in joules (J) and g is charge in coulombs (C). The
voltage v, or simply v is measured in volts (V), named in honor of the

Italian physicist Alessandro Antonio Volta (1745-1827), who invented
thefirst voltaic battery. From Eq. (1.3), it is evident that

Vap = 13

1 volt = 1 joule/coulomb = 1 newton meter/coulomb

Thus,
—2 a
W o _ | |
Voltage (or potential difference) is the energy required to move D Vo
a unit charge through an element, measured in volts (V).
L ob
Figure 1.6 shows the voltage across an element (represented by a Figure 1.6 Polarity
rectangular block) connected to pointsa and b. The plus (+) and minus of voltage vap.

(—) signs are used to define reference direction or voltage polarity. The
vap Can be interpreted in two ways: (1) point a is at a potential of vy,
volts higher than point b, or (2) the potential at point a with respect to — oa — oa
point b isv,,;,. It followslogicaly that in general

Vab = —Vba (1.4 |:i| 9V |:i| -9V

For example, in Fig. 1.7, we have two representations of the same vol- ~ +

tage. InFig. 1.7(a), pointa is+9V abovepoint b; inFig. 1.7(b), pointb is —ob L—ob

—9V abovepointa. Wemay say thatinFig. 1.7(a), thereisa9-V voltage @ ®)

drop from a to b or equivalently a9-V voltage rise from b to a. In other

words, a voltage drop from a to b is equivalent to a voltage rise from Figure |7 Two equivalent

btoa. representations of the same
Current and voltage are the two basic variables in electric circuits. voltage v, (8) point ais 9 V

. . . . above point b, (b) point b is
The common term signal isused for an electric quantity such asacurrent —9V above point a.

or avoltage (or even el ectromagnetic wave) when it isused for conveying
information. Engineers prefer to call such variables signals rather than
mathematical functions of time because of their importance in commu-

nlC&tIOhS and Other d|$| p“nes. L|ke eleCtrIC Current, a constant VOlt@e Keep in mind that electric current is a|way5
is called a dc voltage and is represented by V, whereas a sinusoidally through an element and that electric voltage is al-
time-varying voltage is called an ac voltage and is represented by v. A ways across the element or between two points.

dc voltageis commonly produced by a battery; ac voltage is produced by
an electric generator.
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1.5 POWER AND ENERGY

Although current and voltage are the two basic variables in an electric
circuit, they are not sufficient by themselves. For practical purposes,
we need to know how much power an electric device can handle. We
al know from experience that a 100-watt bulb gives more light than a
60-watt bulb. We also know that when we pay our bills to the electric
utility companies, we are paying for the electric energy consumed over a
certain period of time. Thus power and energy cal culations areimportant
in circuit analysis.

To relate power and energy to voltage and current, we recall from
physics that:

t Power is the time rate of expending or absorbing energy, measured in watts (W).

We write this relationship as

dw

= (1.5)

p

where p is power in watts (W), w isenergy in joules (J), and ¢ istimein
seconds (s). From Egs. (1.1), (1.3), and (1.5), it follows that

dw dw dgqg .
p=—=— " =i (1.6)
dt dg dt
or
p =vi (17

The power p in Eq. (1.7) is a time-varying quantity and is called the
instantaneouspower. Thus, thepower absorbed or supplied by an element
is the product of the voltage across the element and the current through
it. If the power has a + sign, power is being delivered to or absorbed
[ i by the element. If, on the other hand, the power has a — sign, power is

—o —o being supplied by the element. But how do we know when the power has
anegative or a positive sign?

D y D y Current direction and voltage polarity play a mgjor role in deter-

mining the sign of power. It istherefore important that we pay attention

_ _ to therelationship between current i and voltage v in Fig. 1.8(a). Thevol-

—0 —0 tage polarity and current direction must conform with those shownin Fig.

= p== 1.8(a) in order for the power to have a positive sign. This is known as

@ (b) the passive sign convention. By the passive sign convention, current en-

tersthrough the positive polarity of the voltage. Inthiscase, p = +vi or

Figure |8 Reference vi > Oimpliesthat the element isabsorbing power. However, if p = —vi

polarities for power using orvi < 0, asinFig. 1.8(b), the element is releasing or supplying power.

the passive sign conven-
tion: (a) absorbing power,
(b) supplying power.

Passive sign convention is satisfied when the current enters through
the positive terminal of an element and p = 4. If the current
enters through the negative terminal, p = —vi.
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Unless otherwise stated, wewill follow the passive sign convention

throughout thistext. For example, the element in both circuits of Fig. 1.9 When the voltage and current directions con-
has an absorbing power of +12 W because a positive current enters the form to Fig, 1.8(t), we have the acte sgn cor-
positive terminal in both cases. In Fig. 1.10, however, the element is ventonand p = .

supplying power of —12 W because a positive current enters the negative

terminal. Of course, an absorbing power of +12 W is equivalent to a

supplying power of —12 W. In general,

Power absorbed = —Power supplied

3A 3A 3A 3A
—_— ——— —-— —_—
+

o SOE— O o
av U a U av D av U
_ + _ +

@ (b) @ (b)
Figure [.9 Two cases of an Figure 110 “Two cases of
element with an absorbing an element with a supplying
power of 12 W: power of 12 W:
@p=4x3=12W, @p=4x(=3)=-12W,
() p=4x3=12W. (b) p=4x(-3)=-12W.

In fact, the law of conservation of energy must be obeyed in any
electric circuit. For this reason, the algebraic sum of power in a circuit,
at any instant of time, must be zero:

Z p=0 (18)

This again confirms the fact that the total power supplied to the circuit
must balance the total power absorbed.
From Eq. (1.6), the energy absorbed or supplied by an element from

timer totimer is
t t
w:/pdt:/vidt (19
Io Io

B |
t Energy is the capacity to do work, measured in joules ().

Theelectric power utility companies measure energy in watt-hours (Wh),
where

£ XA L E NI

An energy sourceforcesaconstant current of 2 A for 10 sto flow through
alightbulb. If 2.3 kJis given off in the form of light and heat energy,
calculate the voltage drop across the bulb.

1Wh=23,600J
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Solution:
Thetotal chargeis

Ag=iAt=2x10=20C
Thevoltage dropis

A 2. 3
po Aw _23x10° o
Ag 20

PRACTICE PROBLEMMNENE

To move charge g from point a to point b requires —30 J. Find the voltage
drop v, if: (@)g =2C, (b)g=—-6C.
Answer: (a) —15V, (b) 5V.

e L B

Find the power delivered to an element at ¢+ = 3 msif the current entering
its positive terminal is

i =5c0s60rt A

and the voltageis: (d) v = 3i, (b) v = 3di/dr.
Solution:
(a) Thevoltageisv = 3i = 15c0s60r ¢; hence, the power is

p = vi = 75c08 607t W
Atr =3 ms,
p = 75c08°(60r x 3 x 107%) = 75c0s%0.187 = 53.48 W

(b) We find the voltage and the power as
v = 3% = 3(—607)5sin60rt = —9007 Sin60r ¢ V

p = vi = —45007 sin60rr¢ cos60rt W
Atr =3ms,
p = —45007r sin0.187 c0s0.187 W
= —14137.167sin32.4° c0s32.4° = —6.396 KW

PRACTICE PROBLEMEEE

Find the power delivered to the element in Example 1.5 at r = 5 msiif
the current remains the same but the voltage is: (&) v = 2/ V, (b) v =

t
<10+5/ idt) V.
0

Answer: (@) 17.27 W, (b) 29.7 W.
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How much energy does a 100-W €lectric bulb consume in two hours?
Solution:

w = pt = 100 (W) x 2 (h) x 60 (min/h) x 60 (s/min)
= 720,000 J = 720 kJ

Thisisthe same as

w = pt = 100W x 2 h = 200 Wh ’@

PRACTICE PROBLEMBE Network Analysis

A stove element draws 15 A when connected to a 120-V line. How long
does it take to consume 30 kJ?

Answer: 16.67s.

1.6 CIRCUIT ELEMENTS

Aswediscussed in Section 1.1, an element is the basic building block of
acircuit. Anelectric circuit issimply an interconnection of the elements.
Circuit analysis is the process of determining voltages across (or the
currents through) the elements of the circuit.

There are two types of elements found in electric circuits: passive
elementsand active elements. An active element is capable of generating
energy while a passive element is not. Examples of passive elements
are resistors, capacitors, and inductors. Typical active elements include
generators, batteries, and operational amplifiers. Our aim in this section
isto gain familiarity with some important active elements.

The most important active elements are voltage or current sources
that generally deliver power to the circuit connected to them. There are
two kinds of sources. independent and dependent sources.

An ideal independent source is an active element that provides a specified voltage
or current that is completely independent of other circuit variables.

——O ——O

In other words, an ideal independent voltage source deliversto the circuit v <+> \j |

whatever current is necessary to maintain its terminal voltage. Physical - .

sources such as batteries and generators may be regarded as approxima-

tions to ideal voltage sources. Figure 1.11 shows the symbols for inde- —o —o

pendent voltage sources. Noticethat both symbolsin Fig. 1.11(a) and (b) @ (b)

can be used to represent a dc voltage source, but only the symbol in Fig.

1.11(a) can be used for atime-varying voltage source. Similarly, an ideal Figure LI symbols for

independent current source is an active element that provides a specified independent voltage sources:
letely independent of the voltage acrossthe source. That is (8) used for constant or

current comp y _ep g ag " " g time-varying voltage, (b) used for

the current source delivers to the circuit whatever voltage is necessary to constant voltage (dc).
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maintain the designated current. The symbol for an independent current
source is displayed in Fig. 1.12, where the arrow indicates the direction
of current i.

An ideal dependent (or controlled) source is an active element in which the source
' quantity is controlled by another voltage or current.
Figure .12 symbol
for independent

current source.

Dependent sources are usually designated by diamond-shaped symbols,
as shown in Fig. 1.13. Since the control of the dependent source is ac-
hieved by a voltage or current of some other element in the circuit, and
the source can be voltage or current, it followsthat there are four possible
types of dependent sources, namely:

— ° 0 1. A voltage-controlled voltage source (VCVS).
o _ 2. A current-controlled voltage source (CCVS).
'S < 3. A voltage-controlled current source (VCCS).
4. A current-controlled current source (CCCS).

L—o L—o

Dependent sources are useful in modeling elements such as transistors,

@ (b) operational amplifiers and integrated circuits. An example of a current-
Figure 113 symbols for: controlled voltage source is shown on the right-hand side of Fig. 1.14,
@ depe'ndem voltage source, where the voltage 10i of the voltage source depends on the current i
(b) dependent current source. through element C. Students might be surprised that the value of the
dependent voltage sourceis 10; V (and not 10; A) becauseit isavoltage
source. The key idea to keep in mind is that a voltage source comes
with polarities (+ —) in its symbol, while a current source comes with
an arrow, irrespective of what it depends on.

It should be noted that an ideal voltage source (dependent or in-
dependent) will produce any current required to ensure that the terminal
voltage is as stated, whereas an idea current source will produce the
necessary voltage to ensure the stated current flow. Thus an ideal source
could in theory supply an infinite amount of energy. It should also be
noted that not only do sources supply power to acircuit, they can absorb
power from acircuit too. For avoltage source, we know the voltage but

10i

Figure |14 The source on the right-hand not the current supplied or drawn by it. By the same token, we know the
side is a current-controlled voltage source. current supplied by a current source but not the voltage acrossiit.
o LE N
I=5A P2 Calculate the power supplied or absorbed by each element in Fig. 1.15.
— .
pra— l6n Solution:
12V

. We apply the sign convention for power shown in Figs. 1.8 and 1.9. For
} sv p < 021 p1, the5-A current is out of the positive terminal (or into the negative
- terminal); hence,

20v @ p{

p1 = 20(—5) = —100 W Supplied power

Figre 115 For Example 1.7. For p» and p3, the current flowsinto the positive terminal of the element
in each case.
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p2 =12(5) = 60 W Absorbed power

p3 = 8(6) = 48W Absorbed power
For p4, weshould notethat thevoltageis8V (positive at thetop), thesame
as the voltage for ps, since both the passive element and the dependent
source are connected to the same terminals. (Remember that voltage is

always measured across an element in acircuit.) Since the current flows
out of the positive terminal,

pa=8(—0.2I) =8(-0.2 x 5 = -8W Supplied power

We should observe that the 20-V independent voltage source and 0.21
dependent current source are supplying power to the rest of the network,
while the two passive elements are absorbing power. Also,

p1+p2+p3+pa=-100+60+48-8=0

In agreement with Eq. (1.8), the total power supplied equals the total
power absorbed.

PRACTICE PROBLEMMENN

Computethe power absorbed or supplied by each component of thecircuit
inFig. 1.16.

Answer: pL= —40W, P2 = 16w, p3 = 9W, P4 = 15W.

Figure 1.16

For Practice Prob. 1.7.

1.7 APPLICATIONS?

Inthissection, wewill consider two practical applications of the concepts
developed in this chapter. The first one deals with the TV picture tube
and the other with how electric utilities determine your electric hill.

[.7.1 TV Picture Tube
One important application of the motion of electrons is found in both
the transmission and reception of TV signals. At the transmission end, a
TV camerareduces a scene from an optical imageto an electrical signal.
Scanning is accomplished with athin beam of electronsin aniconoscope
cameratube.

At the receiving end, the image is reconstructed by using a cath-
ode-ray tube (CRT) located in the TV receiver.® The CRT is depicted in

2The dagger sign preceding a section heading indicates a section that may be skipped,
explained briefly, or assigned as homework.
SModern TV tubes use a different technology.
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Fig. 1.17. Unlike the iconoscope tube, which produces an electron beam
of constant intensity, the CRT beam varies in intensity according to the
incoming signal. The electron gun, maintained at a high potential, fires
the electron beam. The beam passesthrough two sets of platesfor vertical
and horizontal deflections so that the spot on the screen where the beam
strikes can moveright and left and up and down. When the electron beam
strikesthe fluorescent screen, it gives off light at that spot. Thusthe beam
can be madeto “paint” a picture onthe TV screen.

Horizontal
deflection
Electron gun plates

(@ —
q ------------------- Bright spot on

fluorescent screen

de‘Trti c_aI Electron
ection trajectory
plates

Figure .17 cathode-ray tube.
(Source: D. E. Tilley, Contemporary College Physics [Menlo Park, CA:
Benjamin/Cummings, 1979], p. 319.)

Figure I.18 A simplified diagram of the
cathode-ray tube; for Example 1.8.

PRACTICE PROBLEM

Theelectron beaminaTV picture tube carries 10'° el ectrons per second.
As adesign engineer, determine the voltage V,, needed to accelerate the
electron beam to achieve 4 W.
Solution:
The charge on an electronis
e=-16x10"°C

If the number of electronsisn, then g = ne and

. dq dn —19 15 —4

i T edt (=16 x 107 7)(10™) 6 x 10
The negative sign indicates that the electron flows in adirection opposite
to electron flow as shown in Fig. 1.18, which is a simplified diagram of
the CRT for the case when the vertical deflection plates carry no charge.
The beam power is
r_ %
i 16x10-4
Thusthe required voltage is 25 kV.

p=V,i or V, = = 25,000V

| .8

If an electron beaminaTV picturetube carries 10* electrons/second and
is passing through plates maintained at a potential difference of 30 kV,
calculate the power in the beam.

Answer: 48 mW.
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1.7.2  Electricity Bills

The second application deal swith how an el ectric utility company charges
their customers. The cost of electricity depends upon the amount of
energy consumed in kilowatt-hours (kwWh). (Other factors that affect the
cost include demand and power factors; we will ignore these for now.)
However, even if a consumer uses no energy at all, there is a minimum
service charge the customer must pay because it costs money to stay
connected to the power line. As energy consumption increases, the cost
per kWhdrops. Itisinteresting to note the average monthly consumption
of household appliances for afamily of five, shown in Table 1.3.

TABLE I3 Typica average monthly consumption of household

appliances.

Appliance kWh consumed Appliance kWh consumed
Water heater 500 Washing machine 120
Freezer 100 Stove 100
Lighting 100 Dryer 80
Dishwasher 35 Microwave oven 25
Electriciron 15 Personal computer 12

TV 10 Radio 8
Toaster 4 Clock 2

£ X AP LE NI

A homeowner consumes 3,300 kWhin January. Determinetheelectricity
bill for the month using the following residential rate schedule;

Base monthly charge of $12.00.
First 100 kWh per month at 16 cents’/kWh.
Next 200 kWh per month at 10 cents/kWh.
Over 200 kWh per month at 6 cents/kWh.
Solution:
We calculate the electricity bill asfollows.

Base monthly charge = $12.00

First 100 kWh @ $0.16/kWh = $16.00

Next 200 kWh @ $0.10/kWh = $20.00
Remaining 100 kWh @ $0.06/kWh = $6.00

Total Charge = $54.00

$54
A s=— > _ 135 centskWh
Verage €08 = 100+ 200 + 100 oen
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Referring to the residentia rate schedule in Example 1.9, calculate the
average cost per kWh if only 400 kWh are consumed in July when the
family is on vacation most of the time.

Answer: 13.5 centskWh.

fl.8  PROBLEM SOLVING

Although the problems to be solved during one’s career will vary in

complexity and magnitude, the basic principles to be followed remain

the same. The process outlined here is the one developed by the authors

over many years of problem solving with students, for the solution of

engineering problems in industry, and for problem solving in research.
We will list the steps simply and then elaborate on them.

1. Carefully Define the problem.
2. Present everything you know about the problem.

3. Establish aset of Alternative solutions and determine the one
that promises the greatest likelihood of success.

4. Attempt aproblem solution.
5. Evaluate the solution and check for accuracy.

6. Hasthe problem been solved Satisfactorily? If so, present the
solution; if not, then return to step 3 and continue through the
process again.

1. Carefully Define the problem. This may be the most important
part of the process, becauseit becomesthefoundation for all therest of the
steps. In general, the presentation of engineering problems is somewhat
incomplete. You must do all you can to make sure you understand the
problem as thoroughly as the presenter of the problem understands it.
Time spent at this point clearly identifying the problem will save you
considerable time and frustration later. As a student, you can clarify a
problem statement in a textbook by asking your professor to help you
understand it better. A problem presented to you in industry may require
that you consult several individuals. Atthisstep, itisimportant to develop
guestionsthat need to be addressed before continuing the sol ution process.
If you have such questions, you need to consult with the appropriate
individuals or resources to obtain the answers to those questions. With
those answers, you can now refine the problem, and use that refinement
as the problem statement for the rest of the solution process.

2. Present everything you know about the problem. You are now
ready to write down everything you know about the problem and its
possible solutions. Thisimportant step will save you time and frustration
later.
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3. Establish a set of Alternative solutions and determine the one
that promises the greatest likelihood of success. Almost every problem
will haveanumber of possible pathsthat canleadtoasolution. Itishighly
desirabletoidentify asmany of those pathsaspossible. At thispoint, you
also need to determine what tools are available to you, such as Matlab
and other software packages that can greatly reduce effort and increase
accuracy. Again, we want to stress that time spent carefully defining the
problem and investigating alternative approaches to its solution will pay
big dividends later. Evaluating the alternatives and determining which
promises the greatest likelihood of success may be difficult but will be
well worth the effort. Document this process well since you will want to
come back to it if the first approach does not work.

4. Attempt a problem solution. Now is the time to actually begin
solving the problem. The process you follow must be well documented
in order to present a detailed solution if successful, and to evaluate the
process if you are not successful. This detailed evaluation may lead to
corrections that can then lead to a successful solution. It can also lead to
new aternatives to try. Many times, it is wise to fully set up a solution
before putting numbers into equations. Thiswill help in checking your
results.

5. Evaluate the solution and check for accuracy. You now thor-
oughly evaluate what you have accomplished. Decide if you have an
acceptable solution, one that you want to present to your team, boss, or
professor.

6. Has the problem been solved Satisfactorily? If so, present the
solution; if not, then return to step 3 and continue through the process
again. Now you need to present your solution or try another alternative.
At this point, presenting your solution may bring closure to the process.
Often, however, presentation of a solution leads to further refinement of
the problem definition, and the process continues. Following this process
will eventually lead to a satisfactory conclusion.

Now let us look at this process for a student taking an electrical
and computer engineering foundations course. (The basic process aso
applies to almost every engineering course.) Keep in mind that although
the steps have been simplified to apply to academic types of problems,
the process as stated always needs to be followed. We consider asimple
example.

Assumethat we have been given the following circuit. Theinstruc-
tor asks usto solve for the current flowing through the 8-ohm resistor.

2Q 4Q

5V 8Q 3V

1. Carefully Define the problem. Thisis only a simple example,
but we can aready see that we do not know the polarity on the 3-V
source. We have the following options. We can ask the professor what
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the polarity should be. If we cannot ask, then we need to make adecision
on what to do next. If we have time to work the problem both ways, we
can solvefor the current when the 3-V sourceis pluson top and then plus
on the bottom. If we do not have the timeto work it both ways, assume a
polarity and then carefully document your decision. Let us assume that
the professor tells us that the source is plus on the bottom.

2. Present everything you know about the problem. Presenting all
that we know about the problem involves labeling the circuit clearly so
that we define what we seek.

Given the following circuit, solve for igq.

2Q 4Q

Wenow check withtheprofessor, if reasonable, to seeif the problem
is properly defined.

3. Establish a set of Alternative solutions and determine the one
that promises the greatest likelihood of success. There are essentialy
three techniques that can be used to solve this problem. Later in the text
you will seethat you can use circuit analysis (using Kirchoff’s laws and
Ohm’slaw), nodal analysis, and mesh analysis.

To solve for igg using circuit analysis will eventually lead to a
solution, but it will likely take more work than either nodal or mesh
analysis. To solve for ign using mesh analysis will require writing two
simultaneous equations to find the two loop currents indicated in the
following circuit. Using nodal analysis requires solving for only one
unknown. Thisis the easiest approach.

i i
20 1, 3 40
W "
Vi #iz V3

Therefore, we will solve for igg using nodal analysis.

4. Attempt a problem solution. We first write down all of the
equations we will need in order to find igg.

U1 U1

igo = I2, ip = 8’ igo = )

0

v1—5 v1—0 v1+3
2 T8 "4 T
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Now we can solve for v.

v1—5 v1—0 v1+3
8 =0
R

leadsto (4vy — 20) + (vy) + (2v1+6) =0
2
Tvi=+14, v =42V, g = % = £=025A
5. Evaluate the solution and check for accuracy. We can now use
Kirchoff’s voltage law to check the results.

U1—5_2—5_ 3

= ST2_ _2_ _15A
=T 2 2
i» = igo = 0.25 A
2
= W3 2735 o5

4 4 4
i1+i2+i3=-15+025+125=0 (Checks.)
Applying KVL to loop 1,
—S54+vi4+v2=-54+(—i1 x2)+ (i x 8
= -5+ (—(—-15)2) + (0.25 x 8)
=-543+2=0 (Checks.)
Applying KVL to loop 2,
—vp+v3—3=—(ip x8 +(i3x4)—3
=—(025%x8 +(125x4) -3
=-245-3=0 (Checks.)

So we now have a very high degree of confidence in the accuracy
of our answer.

6. Has the problem been solved Satisfactorily? If so, present the
solution; if not, then return to step 3 and continue through the process
again. This problem has been solved satisfactorily.

The current through the 8-ohm resistor is 0.25 amp flowing
down through the 8-ohm resistor.

1.9 SUMMARY

1. An€lectric circuit consists of electrical €lements connected
together.

2. TheInternational System of Units (Sl) isthe international mea-
surement language, which enables engineers to communicate their
results. From the six principal units, the units of other physical
quantities can be derived.

3. Current isthe rate of charge flow.

. dq
1= —
dt
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4. Voltageisthe energy required to move 1 C of charge through an
element.

dw
V= —
dq

5. Power isthe energy supplied or absorbed per unit time. It isalso the
product of voltage and current.
_dw
p = I = vi
6. According to the passive sign convention, power assumes a positive
sign when the current enters the positive polarity of the voltage
across an element.

7. Anideal voltage source produces a specific potential difference
across itsterminals regardless of what is connected to it. Anideal
current source produces a specific current through its terminals
regardless of what is connected to it.

8. Voltage and current sources can be dependent or independent. A
dependent source is one whose value depends on some other circuit
variable.

9. Two areas of application of the concepts covered in this chapter are
the TV picture tube and electricity billing procedure.

REVIEW QUESTIONS

11 One millivolt is one millionth of avolt. 18 The voltage across a 1.1 kW toaster that produces a

(@ True (b) False current of 10A is:

11 kV b) 1100V 110V d 11V
12 The prefix micro stands for: @ ®) © @

(@ 10° (b) 10° (c) 103 (d) 10°° 19 Which of theseis not an electrical quantity?
. h i I
13 The voltage 2,000,000 V can be expressed in powers (& charge (b) time (c) voltage
of 10 as: (d) current (e) power
(@ 2mv  (b) 2kv  (¢) 2MV  (d) 2GV 110  The dependent sourcein Fig. 1.19is:
14 A charge of 2 C flowing past a given point each (a) voltage-controlled current source
second isacurrent of 2 A. (b) voltage-controlled voltage source
(@ True (b) False ¢) current-controlled voltage source
g
15 A 4-A current charging a dielectric material will (d) current-controlled current source
accumulate a charge of 24 C after 6 s. { i
(a True (b) False °
1.6 The unit of current is: % @) 6io
(8 Coulomb (b) Ampere
(c) Volt (d) Joule
1.7  Voltageis measured in: Figure .19 For Review Question 1.10.
(a) Waetts (b) Amperes
(c) Volts (d) Joules per second Answers. 1.1b, 1.2d, 1.3c, 1.4a, 1.5a, 1.6b, 1.7c, 1.8¢, 1.9b, 1.10d.
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PROBLEMS

Section 1.3 Charge and Current q(C) 4

11 How many coulombs are represented by these 0r
amounts of electrons:

(a) 6.482 x 10Y7 (o) 1.24 x 10 0 L L )
(C) 2.46 x 10° (d) 1.628 x 10%° 2 4\\*/ 8 t(y

12 Find the current flowing through an element if the =50 -
charge flow is given by:

@ g(r) = (1 +2) mC Figre |21 For Prob. 1.7.
(b) g(t) = (5t2+ 4t —3) C

= 10e~% pC . . L
(3) a(1) B 206 5pO c 18 The current flowing past apoint in adevice is shown
) q() = COS_ i n inFig. 1.22. Calculate the total charge through the
(€) ¢(r) = 5e~* sin100r uC point.

13 Find the charge ¢ (¢) flowing through a device if the

current is: i (MA)
@@ i(t) =3A,q(0)=1C 10
(b) i(1) = (2t +5) mA, g(0) = 0
(¢) i(t) = 20cos(10¢ + 7 /6) uA, q(0) = 2uC
N _ —30f o _ 1
(d) i(r) = 10e™" sin40r A, q(0) =0 0 1 2 t(ms

14 The current flowing through adeviceis
i(r) = 5sin6rt A. Calculate the total charge flow Figure .22 For Prob. 1.8.
through the devicefrom¢t = 0tor = 10 ms.

15  Determinethetotal charge flowing into an element 19  Thecurrent through an element is shown in Fig.
for 0 < ¢ < 2 swhen the current entering its 1.23. Determine the total charge that passed through
positive terminal isi(¢) = e~% mA. the element at:

1.6 The charge entering a certain element is shown in @r=1s (b) r=3s (©) 1=5s
Fig. 1.20. Find the current at: _

@tr=1ms (b)t=6ms (c)t=10ms H(A)
10
5 -
q(t) (mC) 1 1 1 1 >
g0 | . 0 1 2 3 4 51t(
Figure .23 For Prob. 1.9.
: : Sections 1.4 and 1.5 Voltage, Power, and
: : Energy
: : 1.10 A certain electrical element draws the current
T S S S i(t) = 10cos4t A at avoltage v(¢) = 120cos4t V.
0 2 4 6 8 10 12 t(my Find the energy absorbed by the element in 2 s.
. 111 Thevoltage v across adevice and the current
Figure 20 For Prob. 1.6. through it are
v(t) = 50082t V, i(t) =10(1 — e *%) A
Caculate:
1.7  Thechargeflowing in awireis plotted in Fig. 1.21. (a) thetotal chargeinthedeviceatr = 1s

Sketch the corresponding current.

(b) the power consumed by the deviceatr = 1s.
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112  The current entering the positive termina of a 116 Determine I, inthecircuit of Fig. 1.27.
deviceisi(t) = 3e~% A and the voltage across the
deviceisv(t) = 5di/dt V. 12V
(a) Find the charge delivered to the device between i
t=0andr =2s. ?SA wol—' ¢3A
(b) Calculate the power absorbed. + +
(c) Determine the energy absorbed in 3 s. 20V C:) 20V 8V
1.13  Figure 1.24 showsthe current through and the - -
voltage across a device. Find the total energy
absorbed by the device for theperiodof 0 < ¢t < 4s. -
3A
i (mA)
50 Figure .27 For Prob. 1.16.
117  Find V, inthecircuit of Fig. 1.28.
L 1
0 2 4 t(s) Io=2A
—
v (V) —
10 28V
6A 12V_ 1A
" "
1 1
3A | + -
| | > + 28V
0 1 3 4 A
t v @ v, D > 5l
Figure 124 For Prob. 1.13. )
: rre 6At }3A
Section 1.6 Circuit Elements
114  Figure 1.25 shows acircuit with five elements. If Figure .28 For Prob. 1.17.
p1=—205W, p, =60W, py =45W, ps =30 W,
calculate the power p3 received or delivered by Section 1.7 Applications
element 3. '
118 It takeseight photonsto strike the surface of a
2 4 photodetector in order to emit one electron. If
4 x 10™ photons/second strike the surface of the
photodetector, calculate the amount of current flow.
1.19  Find the power rating of the following electrical
appliancesin your household:
_ (@ Lightbulb (b) Radio set
Figure 125 For Prob. 1.14. () TV set (d) Refrigerator
115  Find the power absorbed by each of the elementsin (e) Personal computer  (f) PC printer
Fig. 1.26. (9) Microwave oven (h) Blender
|=10A 10V 8V 4A 1.20 A 1.5-kW €ectric heater is connected to a 120-V
— g - source.
‘p—z' * A ‘T' (@ How much current does the heater draw?
(b) If the heater is on for 45 minutes, how much
¥ + A ps energy is consumed in kilowatt-hours (kWh)?
30V <i> o] 20V D Ps 12v <4 (c) Calculate the cost of operating the heater for 45
- -y o4 minutes if energy costs 10 cents/kWh.
121 A 1.2-kW toaster takes roughly 4 minutes to heat
four slices of bread. Find the cost of operating the

Figure 1.26

For Prob. 1.15.

toaster once per day for 1 month (30 days). Assume
energy costs 9 cents/kWh.
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122 A flashlight battery has arating of 0.8 ampere-hours otherwise dark staircase. Determine:
(Ah) and alifetime of 10 hours. (8 the current through the lamp,
(@) How much current can it deliver? (b) the cost of operating the light for one non-leap
(b) How much power can it giveif itsterminal year if electricity costs 12 cents per kWh.
voltageis6 V? . . .
. . . 1.25  An €electric stove with four burners and an ovenis
(c) How much energy is stored in the battery in used in preparing ameal as follows.
5 :
kWh Burner 1: 20 minutes Burner 2: 40 minutes
1.23 A constant current of 3 A for 4 hoursisrequired to Burner 3: 15 minutes Burner 4: 45 minutes
charge an automotive battery. If the terminal voltage Oven: 30 minutes
'S 1?]+ 1/2 Vr,]w:eret.ls n hourséd It of th If each burner israted at 1.2 kW and the oven at
@ ;’W r_nuc’) charge s transported asaresult of the 1.8 kW, and electricity costs 12 cents per kWh,
charging _ calculate the cost of electricity used in preparing the
(b) how much energy is expended? meal.
i ?
(c) how much does the charging cost? Assume 126  PECO (the dlectric power company in Philadelphia)
electricity costs 9 cents/kWh. )
charged a consumer $34.24 one month for using
1.24 A 30-W incandescent lamp is connected to a 120-V 215 kWh. If the basic service charge is $5.10, how
source and is left burning continuously in an much did PECO charge per kwWh?
COMPREHENSIVE PROBLEMS
1.27 A telephone wire has a current of 20 A flowing Calculate the total energy in MWh consumed by the
through it. How long does it take for a charge of plant.
15 C to pass through the wire?
1.28 A lightning bolt carried a current of 2 kA and lasted p (MW) A
for 3 ms. How many coulombs of charge were 8r
contained in the lightning bolt? sf
129  The power consumption for a certain household for 4 ——|—|_
aday isshown in Fig. 1.29. Determine: 3t
(a) thetotal energy consumed in KWh C | | | | | Ly
(b) the average power per hour. 800 805 810 815 820 825 830t
o(0) Figure 130 For Prob. 1.30.
1200 W
1000 W 1.31 A battery may berated in ampere-hours (Ah). An
lead-acid battery israted at 160 Ah.
(@) What isthe maximum current it can supply for
40 h?
400 W 400 W (b) How many days will it last if it is discharged at
200W 1mA?
P T S T T T R S S SR N . 1.32  How much work is done by a 12-V automobile
12 2 4 6 8 1012 2 4 6 8 10 12 battery in moving 5 x 10%° electrons from the
noon (hour) positive terminal to the negative terminal?
Figure 129 For Prob. 1.29. 133 How much energy does a 10-hp motor deliver in 30
minutes? Assume that 1 horsepower = 746 W.
1.30 Thegraphin Fig. 1.30 represents the power drawn 134 A 2-kW dlectriciron is connected to a120-V line.

by an industrial plant between 8:00 and 8:30 A.M.

Calculate the current drawn by the iron.

Go to the Student OLC
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CHAPTER

BASIC LAWS

Thechesshoardistheworld, the piecesarethe phenomena of the universe,
the rules of the game are what we call the laws of Nature. The player
on the other side is hidden from us, we know that his play is always fair,
just, and patient. But also we know, to our cost, that he never overlooks
a mistake, or makes the smallest allowance for ignorance.

— Thomas Henry Huxley

Historical Profiles

Georg Simon Ohm (1787-1854), a German physicist, in 1826 experimentally deter
mined the most basic law relating voltage and current for a resistor. Ohm’s work wx
initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw himself intg
electrical research. His efforts resulted in his famous law. He was awarded the Cop
Medal in 1841 by the Royal Society of London. In 1849, he was given the Profess
of Physics chair by the University of Munich. To honor him, the unit of resistance wa
named the ohm.

4

AMA—

Gustav Robert Kirchhoff (1824-1887), a German physicist, stated two basic laws
in 1847 concerning the relationship between the currents and voltages in an electri
network. Kirchhoff’s laws, along with Ohm’s law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff entere
the University of Konigsberg at age 18 and later became a lecturer in Berlin. H
collaborative work in spectroscopy with German chemist Robert Bunsen led to tf
discovery of cesium in 1860 and rubidium in 1861. Kirchhoff was also credited wit
the Kirchhoff law of radiation. Thus Kirchhoff is famous among engineers, chemist:
and physicists.
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2.1 INTRODUCTION

Chapter 1 introduced basic concepts such as current, voltage, and power
in an electric circuit. To actually determine the values of these variables
in a given circuit requires that we understand some fundamental laws that
govern electric circuits. These laws, known as Ohm'’s law and Kirchhoff’s
laws, form the foundation upon which electric circuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some
techniques commonly applied in circuit design and analysis. These tech-
nigues include combining resistors in series or parallel, voltage division,
current division, and delta-to-wye and wye-to-delta transformations. The
application of these laws and techniques will be restricted to resistive cir-
cuits in this chapter. We will finally apply the laws and techniques to
real-life problems of electrical lighting and the design of dc meters.

A 1.2 OHM'S LAW
\ ~ Materials in general have a characteristic behavior of resisting the flow

o
l' of electric charge. This physical property, or ability to resist current, is
known agresistance and is represented by the symlial The resistance
of any material with a uniform cross-sectional aredepends om and
Y % R its length¢, as shown in Fig. 2.1(a). In mathematical form,
Material with
. resistivity p R = p£ (2.1)
Cross-sectional A
acah wherep is known as theesistivity of the material in ohm-meters. Good
conductors, such as copper and aluminum, have low resistivities, while
Figure 2.1 () Resistor, (b) Circuit symbol insulators, such as mica and paper, have high. resistivities. Tablg 2.1
for resistance. presents the values @f for some common materials and shows which
materials are used for conductors, insulators, and semiconductors.

@ (b)

TABLE2|  Resigtivities of common materials.

Material Resigtivity (£2-m) Usage
Silver 1.64 x 10°8 Conductor
Copper 1.72 x 1078 Conductor
Aluminum 2.8x 1078 Conductor
Gold 2.45 x 10°8 Conductor
Carbon 4% 1075 Semiconductor
Germanium 47 x 1072 Semiconductor
Silicon 6.4 x 10? Semiconductor
Paper 1010 Insulator

Mica 5 x 101 Insul ator
Glass 1012 Insulator
Teflon 3 x 10%? Insul ator

Thecircuit element used to model the current-resi sting behavior of
amaterial istheresistor. For thepurposeof constructing circuits, resistors
areusually madefrom metallic alloysand carbon compounds. Thecircuit
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symbol for the resistor is shown in Fig. 2.1(b), where R stands for the
resistance of the resistor. The resistor is the simplest passive element.

Georg Simon Ohm (1787-1854), a German physicist, is credited
with finding the relationship between current and voltage for a resistor.
Thisrelationship is known as Ohm's law.

Ohm's law states that the voltage v across a resistor is directly proportional
to the current i flowing through the resistor.

Thatis,
v i (2.2

Ohm defined the constant of proportionality for aresistor to betheresis-
tance, R. (Theresistance is amateria property which can change if the
internal or external conditions of the element are altered, e.g., if thereare
changes in the temperature.) Thus, Eq. (2.2) becomes

v=1iR (2.3

whichisthe mathematical form of Ohm'slaw. R in Eq. (2.3) ismeasured
in the unit of ohms, designated 2. Thus,

The resistance R of an element denotes its ability to resist the flow
of electric current; it is measured in ohms ().
We may deduce from Eg. (2.3) that
+ |
rR="1 2.4) '
l
v=0[R=0
so that
1Q=1VIA -

To apply Ohm's law as stated in Eq. (2.3), we must pay careful
attention to the current direction and voltage polarity. The direction of @
current i and the polarity of voltage v must conform with the passive sign
convention, asshownin Fig. 2.1(b). Thisimpliesthat current flows from

a higher potentia to a lower potential in order for v = iR. If current + li:O
flows from alower potential to a higher potential, v = —i R.

Sincethevalue of R can range from zero to infinity, it isimportant V R=oo
that we consider the two extreme possible values of R. An element with
R = Oiscalledashort circuit, asshownin Fig. 2.2(a). For ashort circuit, -
v=iR=0 (25
. . ) (b)
showing that the voltage is zero but the current could be anything. In
practice, a short circuit is usually a connecting wire assumed to be a Figure 22 (a) Short dirauiit (R = 0),
perfect conductor. Thus, (b) Opencircuit (R = c0).
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(b)

Figure 2.3 Fixed resistors: (g) wire-
wound type, (b) carbon film type.
(Courtesy of Tech America.)

@ (b)

Figure 24 Circuit symbol for: (a) a variable
resistor in general, (b) a potentiometer.

Figure 26 Resistors in a thick-film circuit.
(Source: G. Daryanani, Principles of Active
Network Synthesis and Design [New York:
John Wiley, 1976], p. 461c.)

PART | DC Circuits

{ A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with R = oo isknown as an open circuit, as shown
in Fig. 2.2(b). For an open circuit,

i = lim Yo 0 (2.6)
R—x R

indicating that the current is zero though the voltage could be anything.
Thus,

{ An open circuit is a circuit element with resistance approaching infinity.

A resistor iseither fixed or variable. Most resistors are of the fixed
type, meaning their resistance remains constant. The two common types
of fixed resistors (wirewound and composition) are shown in Fig. 2.3.
The composition resistors are used when large resistance is needed. The
circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resistors
have adjustable resistance. The symbol for a variable resistor is shown
in Fig. 2.4(a). A common variable resistor is known as a potentiometer
or pot for short, with the symbol shown in Fig. 2.4(b). The pot is a
three-terminal element with a sliding contact or wiper. By dliding the
wiper, the resistances between the wiper terminal and the fixed terminals
vary. Likefixed resistors, variableresistors can either be of wirewound or
composition type, as shown in Fig. 2.5. Although resistors like those in
Figs. 2.3and 2.5areused incircuit designs, today most circuit components
including resistors are either surface mounted or integrated, as typically
shownin Fig. 2.6.

@ (b)

Figure 15 Variable resistors: (a) composition type, (b) slider pot.
(Courtesy of Tech America.)

It should be pointed out that not all resistors obey Ohm's law. A
resistor that obeys Ohm’s law is known as alinear resistor. It hasacon-
stant resistance and thusits current-voltage characteristicis asillustrated
in Fig. 2.7(a): itsi-v graph is a straight line passing through the ori-
gin. A nonlinear resistor does not obey Ohm’s law. Its resistance varies
with current and its i-v characteristic is typically shown in Fig. 2.7(b).
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Examples of devices with nonlinear resistance are the lightbulb and the v
diode. Although al practical resistors may exhibit nonlinear behavior
under certain conditions, we will assume in this book that all elements
actually designated asresistors are linear.

A useful quantity in circuit analysis isthe reciprocal of resistance Slope=R
R, known as conductance and denoted by G:

1 i
= - = (3
G R v @7)

The conductance isameasure of how well an element will conduct
electric current. The unit of conductance is the mho (ohm spelled back-
ward) or reciprocal ohm, with symbol &, the inverted omega. Although
engineers often use the mhos, in this book we prefer to use the siemens

(S), the Sl unit of conductance: Slope=R
PR i
1S=18=1A/V 28) (b)
Thus, ,
Flgure 27 Thei-v characteristic of:
(a) alinear resistor,
. 5 , . ‘ (b) anonlinear resistor.
Conductance is the ability of an element to conduct electric current; it is
measured in mhos (8) or siemens (S).

The same resistance can be expressed in ohms or siemens. For
example, 10 Q isthesame as 0.1 S. From Eq. (2.7), we may write

i=Gv (2.9

The power dissipated by aresistor can be expressed in terms of R.
Using Egs. (1.7) and (2.3),

=vi =i’R=— 2.10
p=v=1 R (2.10)
The power dissipated by a resistor may also be expressed in terms of G
as
2
—vi=1G == (2.11)
P G

We should note two things from Egs. (2.10) and (2.11):

1. The power dissipated in aresistor isanonlinear function of
either current or voltage.

2. Since R and G are positive quantities, the power dissipated in
aresistor is aways positive. Thus, aresistor always absorbs
power from the circuit. This confirmsthe ideathat aresistor is
apassive element, incapable of generating energy.

£ X AP LENE

|
An electriciron draws 2 A at 120 V. Find its resistance.
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PRACTICE PROBLEMNEE

PART | DC Circuits

Solution:
From Ohm’s law,

- = =600

The essential component of a toaster is an electrical element (aresistor)
that convertselectrical energy to heat energy. How much current isdrawn
by atoaster with resistance 12 Q2 at 110V ?

Answer: 9.167 A.

£ XA P L E I

v @

‘ i

+

5kQ§V

Figure 28 For Example 2.2,

In the circuit shown in Fig. 2.8, calculate the current i, the conductance
G, and the power p.

Solution:

The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same pair
of terminals. Hence, the current is

v 30
=R T 5x1m oM
The conductanceis
1 1
G=—=——=02mS
R 5x10° m

We can calcul ate the power in variouswaysusing either Egs. (1.7), (2.10),
or (2.11).

p = vi =30(6 x 107%) = 180 mW
or
p =i’R = (6 x 107%)25 x 10° = 180 mW
or

p = v2G = (30)20.2 x 10~2 = 180 mW

PRACTICE PROBLEMNEE

Figure 2.9

For Practice Prob. 2.2

For the circuit shown in Fig. 2.9, calculate the voltage v, the conductance
G, and the power p.

Answer: 20V, 100 uS, 40 mW.
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£ X AP LE NI

A voltage source of 20sinzt V isconnected across a5-k<2 resistor. Find
the current through the resistor and the power dissipated.

Solution:
. v 20sinnt
| = — =

R = W=4Sinnt mA

Hence,

p =vi =80sinzr mW

PRACTICE PROBLEM K

A resistor absorbs an instantaneous power of 20cos?r mW when con-
nected to a voltage source v = 10cost V. Findi and R.

Answer: 2cost mA, 5ke.

7.3 NODES, BRANCHES, AND LOOPS

Since the elements of an electric circuit can be interconnected in several
ways, weneed to understand somebasi ¢ conceptsof network topology. To
differentiate between acircuit and anetwork, we may regard anetwork as
an interconnection of elements or devices, whereas acircuit is a network
providing one or more closed paths. The convention, when addressing
network topology, is to use the word network rather than circuit. We
do this even though the words network and circuit mean the same thing
when used in this context. In network topology, we study the properties
relating to the placement of elements in the network and the geometric
configuration of the network. Such elements include branches, nodes,
and loops.

{ A branch represents a single element such as a voltage source or a resistor.

In other words, abranch represents any two-terminal element. Thecircuit
in Fig. 2.10 has five branches, namely, the 10-V voltage source, the 2-A
current source, and the three resistors.

{ A node is the point of connection between two or more branches. J

A node is usually indicated by a dot in a circuit. If a short circuit (a
connecting wire) connects two nodes, the two nodes constitute a single
node. The circuit in Fig. 2.10 has three nodes a, b, and ¢. Notice that
the three points that form node b are connected by perfectly conducting
wires and therefore constitute asingle point. The sameistrue of the four
points forming node ¢c. We demonstrate that the circuit in Fig. 2.10 has
only three nodes by redrawing thecircuit in Fig. 2.11. Thetwo circuitsin

wv@ 20330 @ 2

c

Figure 2.10

Nodes, branches, and loops.

2A

v
c

Figure 2.1 Thethree-nodecircuit of Fig. 2.10

isredrawn.
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Figs. 2.10 and 2.11 are identical. However, for the sake of clarity, nodes
b and ¢ are spread out with perfect conductors asin Fig. 2.10.

B |
t A loop is any closed path in a circuit.

A loop is a closed path formed by starting at a node, passing through a
set of nodes, and returning to the starting node without passing through
any node morethan once. A loop issaid to beindependent if it containsa
branch which is not in any other loop. Independent loops or paths result
in independent sets of equations.

For example, the closed path abca containing the 2-Q2 resistor in
Fig. 2.11 isaloop. Another loop is the closed path bcb containing the
3-Q resistor and the current source. Although one can identify six loops
in Fig. 2.11, only three of them are independent.

A network with b branches, n nodes, and I independent loops will
satisfy the fundamental theorem of network topology:

b=Il+n-1 (212

Asthe next two definitions show, circuit topology is of great value
to the study of voltages and currentsin an electric circuit.

Two or more elements are in series if they are cascaded or connected sequentially
and consequently carry the same current.
Two or more elements are in parallel if they are connected to the same two nodes
and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected se-
quentialy, end to end. For example, two elements are in series if they
share one common node and no other element is connected to that com-
mon node. Elementsin parallel are connected to the same pair of termi-
nals. Elements may be connected in away that they are neither in series
nor in parallel. In the circuit shown in Fig. 2.10, the voltage source and
the 5-Q resistor are in series because the same current will flow through
them. The 2-Q resistor, the 3-Q resistor, and the current source are in
parallel because they are connected to the same two nodes (b and c)
and consequently have the same voltage across them. The 5-Q and 2-Q
resistors are neither in series nor in parallel with each other.

Determine the number of branches and nodesin the circuit shownin Fig.
2.12. Identify which elements are in series and which are in parallel.

Solution:

Since there are four elementsin the circuit, the circuit has four branches;
10V,5Q, 6 Q, and 2 A. The circuit has three nodes as identified in
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Fig. 2.13. The 5-Q resistor is in series with the 10-V voltage source
because the same current would flow in both. The 6-Q resistor isin
parallel with the 2-A current source because both are connected to the
same nodes 2 and 3.

50 1 5Q 2

10V 6Q 2A 1ov (& 60 $)2A

C |
3

Figure .12 For Example 2.4.

Figure 2.13  The three nodes in the circuit
of Fig. 2.12.

PRACTICE PROBLEMNEE

How many branchesand nodesdoesthecircuitin Fig. 2.14 have? Identify
the elements that arein seriesand in parallel.

Answer: Five branches and three nodes areidentified in Fig. 2.15. The
1-Q and 2-Q2 resistors are in parallel. The 4-Q resistor and 10-V source
areasoin paralel.

5Q 1 3Q 2
T AWV T
1Q 2Q 10V £4Q 10 2Q élov 40
CI 1 I)
3

Figure .14 For Practice Prob. 2.4.
Figure .15 Answer for Practice Prob. 2.4.

24 KIRCHHOFF'S LAWS

Ohm's law by itself is not sufficient to analyze circuits. However, when
it is coupled with Kirchhoff’s two laws, we have a sufficient, powerful
set of tools for analyzing a large variety of electric circuits. Kirchhoff’'s
lawswerefirst introduced in 1847 by the German physicist Gustav Robert
Kirchhoff (1824-1887). These laws are formally known as Kirchhoff’s
current law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff'sfirst law is based on the law of conservation of charge,
which requires that the algebraic sum of charges within a system cannot
change.
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Figure2.16  Currents at
a node illustrating KCL.

o Closed boundary

Figure .17 Applying KCL to aclosed

boundary.

Two sources (or circuits in general) are said to be
equivalent if they have the same i-v relationship
at a pair of terminals.

PART | DC Circuits

Kirchhoff’s current law (KCL) states that the algebraic sum of currents entering
anode (or a closed boundary) is zero.

Mathematically, KCL implies that

Y in=0 (213)

where N is the number of branches connected to the node and i, is the
nth current entering (or leaving) the node. By thislaw, currents entering
anode may be regarded as positive, while currents leaving the node may
be taken as negative or vice versa.

To prove KCL, assume a set of currents i, (z),k = 1,2, ..., flow
into anode. The algebraic sum of currents at the nodeis
iT(t) =i1(t) +i2(t) +iz(t) +--- (214
Integrating both sides of Eq. (2.14) gives
qr (1) = qa(t) + q2(1) + g3(t) + - - - (215

where g, (1) = [ix(t) dr and g7 (t) = [ iz (1) dt. But thelaw of conser-
vation of electric chargerequiresthat the algebraic sum of electric charges
at the node must not change; that is, the node stores no net charge. Thus
qgr(t) = 0— ip(t) = 0, confirming the validity of KCL.

Consider the node in Fig. 2.16. Applying KCL gives

i1+ (—i2) +iz+is+ (—is) =0 (2.16)

since currents iy, i3, and i4 are entering the node, while currents i, and
is areleaving it. By rearranging the terms, we get

i1+i3+ig=1ir+is (2.17)
Equation (2.17) is an aternative form of KCL:
[ , , |
The sum of the currents entering a node is equal to the sum
of the currents leaving the node.
|

Note that KCL also applies to a closed boundary. This may be
regarded as a generalized case, because a node may be regarded as a
closed surface shrunk to a point. In two dimensions, a closed boundary
is the same as a closed path. As typicaly illustrated in the circuit of
Fig. 2.17, thetotal current entering the closed surface is equal to the total
current leaving the surface.

A simple application of KCL is combining current sources in par-
alel. The combined current is the algebraic sum of the current supplied
by theindividual sources. For example, the current sources shownin Fig.
2.18(a) can be combined asin Fig. 2.18(b). The combined or equivalent
current source can be found by applying KCL to node a.

Ir+hL=hL+1I3
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or

Ir=L—-L+13 (2.18)

A circuit cannot contain two different currents, 7; and I, in series, unless
I, = I; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservation of
energy:

J> Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages
around a closed path (or loop) is zero.

L, |
Expressed mathematically, KVL states that
M
> vn=0 (219
m=1

where M isthe number of voltagesin theloop (or the number of branches
in the loop) and v,, isthe mth voltage.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on
each voltage is the polarity of the terminal encountered first as we travel
around the loop. We can start with any branch and go around the loop
either clockwise or counterclockwise. Suppose we start with the voltage
source and go clockwise around the loop as shown; then voltages would
be —vy, +vy, +v3, —v4, and +us, inthat order. For example, aswereach
branch 3, the positiveterminal ismet first; hencewehave +vs. For branch
4, we reach the negative terminal first; hence, —v4. Thus, KVL yields

—vi+vot+vz—v4+v5=0 (2.20)
Rearranging terms gives
v2+v3+vs =v1+v4 (2.21)
which may be interpreted as
Sum of voltage drops = Sum of voltage rises (2.22)

Thisisan dternative form of KVL. Notice that if we had traveled coun-
terclockwise, the result would have been +vq, —vs, +vs4, —v3, and —uv,,
which is the same as before except that the signs are reversed. Hence,
Egs. (2.20) and (2.21) remain the same.

When voltage sources are connected in series, KV L can be applied
to obtain the total voltage. The combined voltage is the algebraic sum
of the voltages of the individual sources. For example, for the voltage
sources shown in Fig. 2.20(a), the combined or equivalent voltage source
in Fig. 2.20(b) is obtained by applying KVL.

—Vap+Vi+Vo—V3=0

37

Is=l1—lx+13

(b)

Figure 2.18  Current sources in parallel:
(a) origina circuit, (b) equivalent circuit.

KVL can be appliedin two ways: by taking eithera
clockwise or a counterclockwise trip around the
loop.  Either way, the algebraic sum of voltages
around the loop is zero.

Vo _ Vz _

+

@ () @«
||

- Vg +

+

Figure .19 A single-loop circuit
illustrating KVL.
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or
Vib=Vi+Vo— V3 (2.23)

To avoid violating KVL, a circuit cannot contain two different voltages
Vi and Vs in parallel unless V; = V.

@ (b)

Figure 220 Voltage sourcesin series:
(a) original circuit, (b) equivalent circuit.

For the circuit in Fig. 2.21(a), find voltages v, and v,.

2Q 2Q
AW

oy -

+y -
20v @ v, <30 20v @ ﬁ) v, 230

+ +

@ (b)

Figure 22| For Example 2.5.

Solution:

To find v; and vy, we apply Ohm’s law and Kirchhoff’s voltage law.
Assume that current i flows through the loop as shown in Fig. 2.21(b).
From Ohm’s law,

vy = 2i, vy = —3i (25.1)
Applying KVL around the loop gives
—20+ v, —vp,=0 (25.2)
Substituting Eg. (2.5.1) into Eq. (2.5.2), we obtain
—-20+2i4+3i=0 or 5i =20 = i=4A
Substituting i in Eg. (2.5.1) finally gives
vy =8V, v, =—-12V
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Find v, and v, in the circuit of Fig. 2.22.
Answer: 12V, —-6V.

4Q
oV 8V

2Q

Figure 222 For Practice Prob. 2.5

e L B

Determine v, and i in the circuit shown in Fig. 2.23(a).

' 40 2, 40 2V,
A

12v @ awv @ 12v @ Q w @

6Q
MW AW
+ Vo T + Vo T
@ (b)

Figure .23 For Example 2.6.

Solution:
We apply KVL around the loop as shown in Fig. 2.23(b). Theresultis

—124+4i+2v,—4+6i =0 (2.6.1)
Applying Ohm'’s law to the 6-$2 resistor gives
v, = —6i (262
Substituting Eqg. (2.6.2) into Eq. (2.6.1) yields
—16+10i —12i =0 - i=-8A
and v, =48 V.

PRACTICE PROBLEMNE

Find v, and v, in the circuit of Fig. 2.24.
Answer: 10V, -5V.

1OQ
+ v~
X

Figure .24 For Practice Prob. 2.6.
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e L BB

a Find current i, and voltage v, in the circuit shownin Fig. 2.25.
l io Solution:
+ . :
05, {8 v % 40 G 3A Applying KCL to node a, we obtain
- 3+ 0.5, =1, = i,=6A

For the 4-Q2 resistor, Ohm'’s law gives

Figure 2.25  For Example 2.7. v, =4i, =24V
PRACTICE PROBLEMNBEM
*i Find v, and i,, in the circuit of Fig. 2.26.
° A . 8V, 4A.
sa@ 20 If{ 80 =% nswer

Figure 2.26  For Practice Prob. 2.7.

Find the currents and voltages in the circuit shown in Fig. 2.27(a).

80 L a3 80 L.l
+Vl— *iz +Vl_ *iz

+ + + +
30V ’:) V2§3Q V3§6§2 30V ’:) Loop 1 V2§3Q @ v3§69

€) (b)
Figure 227  For Example 2.8.

Solution:
We apply Ohm'’s law and Kirchhoff’s laws. By Ohm'’s law,

v1 = 8iy, vy = 3ip, v3 = Bi3 (2.8.1)

Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are redly looking for three things. (v, vo, v3) OF
(i1, i2, i3). At node a, KCL gives

i1—ip—izg=0 (28.2)
Applying KVL toloop 1 asin Fig. 2.27(b),
—-30+4+v1+v2=0
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We express thisin terms of i; and i, asin Eq. (2.8.1) to obtain
—30+8i1+3i2=0

or
30— 3i
i1 = % (283)
Applying KVL to loop 2,
—vy+v3=0 — V3 = U2 (2.8.4)

as expected since the two resistors are in parallel. We express v1 and vy
interms of i1 and i, asin Eq. (2.8.1). Equation (2.8.4) becomes

i

6i3 = 3iy - i3 = 5 (2.8.5)
Substituting Egs. (2.8.3) and (2.8.5) into (2.8.2) gives
0-3i, . i
=< =0
g 22
or i = 2 A. From the value of i», we now use Egs. (2.8.1) to (2.8.5) to

obtain

ii=3A.,  is=1A, v, =24V. 1, =6V. 13=6V @
PRACTICE PROBLEMpmwm Network Analysis

Find the currents and voltages in the circuit shown in Fig. 2.28.

ANSWEr: v =3V, vp=2V,vs =5V, iy = 15A, ip = 0.25 A, M-
is=125A. Vi piz" Vs

+
5V vzgsg 3V

iy
20 't '3 40

—

Figure 228 For Practice Prob. 2.8.

2.5 SERIES RESISTORS AND VOLTAGE DIVISION

The need to combineresistorsin seriesor in parallel occurs so frequently i, R R,
that it warrants special attention. The process of combining the resistors =

is facilitated by combining two of them at atime. With this in mind, T T
consider the single-loop circuit of Fig. 2.29. The two resistors are in v

series, since the same current i flows in both of them. Applying Ohm’s
law to each of the resistors, we obtain

b
v1 = iRy, vo = iR (2.24) ‘
Flgure 229 A single-loop circuit
If weapply KVL totheloop (moving in the clockwise direction), we have with two resistors in series.
—v+v1+v2=0 (2.25)
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Combining Egs. (2.24) and (2.25), we get

v=1v1+v2=i(R1+ R2) (2.26)
i or
. :
| = 2.2

TvoT l Ri+ R (2D

v Notice that Eq. (2.26) can be written as
v =1iRg (2.28)
b implying that the two resistors can be replaced by an equivalent resistor

. Req; that is,
Flgure 230 Equivalent circuit <

of the Fig. 2.29 circuit. Rg=R1+ R (2.29)

Thus, Fig. 2.29 can bereplaced by the equivalent circuit in Fig. 2.30. The
two circuitsin Figs. 2.29 and 2.30 are equivalent because they exhibit the
same voltage-current relationships at the terminals a-b. An equivalent
circuit such as the one in Fig. 2.30 is useful in simplifying the analysis
of acircuit. In general,

The equivalent resistance of any number of resistors connected in series
is the sum of the individual resistances.

——— - , For N resistorsin series then,
Resistors in series behave as a single resistor

whose resistance is equal to the sum of the re-
sistances of the individual resistors.

N
Rq=Ri+Ry+ -+ Ry=) R, (2:30)
n=1

To determine the voltage across each resistor in Fig. 2.29, we sub-
stitute Eq. (2.26) into Eq. (2.24) and obtain

Ry Rz
v, Uy =
Ri+ R> Ri+ R>

V1 = v (2.31)

Notice that the source voltage v is divided among the resistors in direct
proportion to their resistances; the larger the resistance, the larger the
voltage drop. This is called the principle of voltage division, and the
circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage

divider has N resistors(Ry, Ry, ..., Ry) inserieswith the source voltage
v, thenth resistor (R,) will have a voltage drop of
R,
Up (2.32)

= v
Ri+Rx+---+ Ry

2.6 PARALLEL RESISTORS AND CURRENT DIVISION

Consider the circuit in Fig. 2.31, where two resistors are connected in
parallel and therefore have the same voltage across them. From Ohm's
law,

v=1i1R1 = i2R>»
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or i

. v . v . Node a
1= —, g = — .
R]_ R2 |l+ |2+
Applying KCL at node a givesthe total current i as v <+> R R
= 1 2
i=i1+1i (2.34)
Substituting EQ. (2.33) into Eq. (2.34), we get
Node b
) v v ( 1 1 ) v
R Rz R Ry Req Figure 231 Two resistors in parallel.
where R is the equivalent resistance of the resistors in parallel:
t_1 + ! 2.36
Rq Ri R (230
or
1 Ri+R
Req  RiR>
or
Ri1R>
= 2.3
T R+ R, @37
Thus,

The equivalent resistance of two parallel resistors is equal to the product
of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in parallel.
From Eq. (2.37), if Ry = R, then Req = R1/2.

We can extend theresult in Eq. (2.36) to the general case of acircuit
with N resistorsin parallel. The equivalent resistanceis

i=i+i+...+i (2.38)
Rq R1 R Ry
Notethat Req isalways smaller than the resistance of the smallest resistor
inthe parallel combination. If Ry = R, = --- = Ry = R, then
Req = R (2.39)
N

For example, if four 100-C2 resistorsare connected in parallel, their equiv-
alent resistanceis 25 Q.

Itisoften more convenient to use conductancerather than resistance
when dealing with resistorsin parallel. From Eqg. (2.38), the equivalent
conductance for N resistorsin paralel is

Conductances in parallel behave as a single con-
ductance whose value is equal to the sum of the
individual conductances.

Gq=G1+G2+Gs+---+ Gy (2.40)

where Geg = 1/Req, G1 = 1/R1, G2 = 1/R2, G3 = 1/Rs, ..., Gy =
1/Ry. Equation (2.40) states:
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The equivalent conductance of resistors connected in parallel is the sum
of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in
i Fig. 2.32. Notice the similarity between Egs. (2.30) and (2.40). The
equivalent conductance of parallel resistors is obtained the same way
as the equivalent resistance of series resistors. In the same manner, the
v <+> v S Ry 0r Gy equivalent conductance of resistorsin seriesisobtained just the sameway
astheresistance of resistorsin parallel. Thusthe equivalent conductance

Geq Of N resistorsin series (such as shown in Fig. 2.29) is

b R S (241
Figure 2.32  Equivalent circuit to Geg G1 G2 Gs Gy '
Fig. 2.31.

Given the total current i entering node « in Fig. 2.31, how do we
obtain current i, and i,? We know that the equivalent resistor has the
same voltage, or

‘R {R1R2 2.42)
V=1 = .
" Ri+R
Combining Egs. (2.33) and (2.42) resultsin
. Ry i . Rqi
11 = s 1o = 2.43
"TRit R " Rit R @4

which shows that the total current i is shared by the resistorsin inverse
proportion to their resistances. Thisisknown as the principle of current
division, and thecircuitin Fig. 2.31isknown asacurrent divider. Notice
that the larger current flows through the smaller resistance.
Asan extreme case, supposeone of theresistorsinFig. 2.31iszero,
[ say R, = 0; that is, R, isashort circuit, as shown in Fig. 2.33(a). From
o o Eq. (2.43), R, = Oimpliesthat iy = 0, i, = i. This means that the
* i1=0 * 121 entire current i bypasses R; and flows through the short circuit R, = O,
the path of least resistance. Thus when a circuit is short circuited, as

R R,=0
! 2 shown in Fig. 2.33(a), two things should be kept in mind:
o 1. Theequivalent resistance Req = 0. [See what happens when
R, =0inEq. (2.37).]
@ 2. Theentire current flows through the short circuit.
i As another extreme case, sUppose R, = oo, that is, R, is an open
o —0 circuit, as shown in Fig. 2.33(b). The current till flows through the path
li1=i Ol 2- of least resistance, R;. By taking the limit of Eq. (2.37) as R, — oo, we
R, R, = o obtain Reg = Ry inthiscase.
o) If we divide both the numerator and denominator by R1R», EQ.
(2.43) becomes
[e;
. G1 .
(b) 1= —G1 n Ggl (2.443)
Figure 233 (a) A shorted circuit, ) G, .
(b) an open circuit. I = ml (2.44b)
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Thus, ingenerd, if acurrent divider has N conductors(Gi, G, ..., Gy)
in parallel with the source current i, the nth conductor (G,) will have
current
G, .
G1+G2+~-~+GNl
In general, it is often convenient and possible to combine resistors
in seriesand parallel and reduce aresistive network to asingle equivalent
resistance Re. Such an equivalent resistance is the resistance between
the designated terminals of the network and must exhibit the same i-v
characteristics as the original network at the terminals.

(2.45)

In

mﬂz.9

Find R for the circuit shownin Fig. 2.34. 4Q 10
O
Solution: -
To get Req, We combine resistors in series and in parallel. The 6-Q and Req 50
3-Q resistorsarein parallel, so their equivalent resistance is -—
6x 3 80 6Q 3Q
6Q|3Q= =2Q
(The wmbo_l II'is u%c! to in_dicateaparall_el combi nation._) Also, _the 1-Q Figure 234 For Example 2.9.
and 5-Q2 resistors are in series; hence their equivalent resistanceis
1Q0+5Q=6Q 40
O
Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In Fig.
2.35(a), wenoticethat thetwo 2-Q resistorsarein series, so the equivalent Re 2Q
resistance is — % 6Q
2Q42Q=4Q ga 3°°
This4-Q resistor is now in parallel with the 6-2 resistor in Fig. 2.35(a); @
their equivalent resistance is
4x6 4Q
4Q6Q= Fx0 =24Q
4+6
ThecircuitinFig. 2.35(a) isnow replaced withthat in Fig. 2.35(b). InFig. Req. 24Q
2.35(b), the threeresistors are in series. Hence, the equivalent resistance 80
for the circuitis
Ry=4Q+24Q+8Q=144Q (b)
Figure 2.35  Equivalent circuits for
Example 2.9.
PRACTICE PROBLEMEEE
By combining the resistorsin Fig. 2.36, find Reg. 2Q 3Q 4Q
Answer: 6.
Req
—
10
Figure .36 For Practice Prob. 2.9.
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| 0

10Q (10

2Q

bo

d

3Q 6Q

@

100

2Q

bo

3Q

b
(b)

Figure 2.38

Equivalent
Example 2

circuits for

.10.

Calculate the equivalent resistance R,;, inthe circuit in Fig. 2.37.

1Q
AWV

10Q c 1Q d
a o— VW

AN
6Q
3Q§ %49
b b

Rao

—

%59

12Q

b o

Figure .37 For Example 2.10.

Solution:

The 3-Q and 6-Q2 resistors are in parallel because they are connected to
the same two nodes ¢ and b. Their combined resistance is

3060= "0

| ~ 3+6

Similarly, the 12-Q2 and 4-Q2 resistors are in parallel since they are con-

nected to the same two nodes d and . Hence

12Q14Q= 2x4 _

12+ 4
Also the 1-Q and 5-Q resistors are in series;, hence, their equivalent
resistanceis

=20 (2.10.2)

(2.10.2)

1Q+5Q=6Q

With these three combinations, we canreplacethecircuitin Fig. 2.37 with
thatinFig. 2.38(a). InFig. 2.38(a), 3-Q2 in paralld with 6-Q gives2-L2, as
calculated in Eq. (2.10.1). This2-Q equivalent resistanceisnow in series
withthe 1-Q resistanceto giveacombinedresistanceof 1 2+2 Q2 = 3 Q.
Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In
Fig. 2.38(b), we combine the 2-Q2 and 3-Q2 resistorsin parallel to get

(2.10.3)

2x3
2Q13Q=——=12%
| 2+3

This 1.2-Q2 resistor isin series with the 10-Q2 resistor, so that
Rypy=10+12=112¢Q

PRACTICE PROBLEMEEN

20Q
ANV
8Q 5Q
a ANV AV
Rap 18Q § 20Q §
— 1Q
9Q
2Q
b ANV
Figure 239 For Practice Prob. 2.10.

Find R, for thecircuit in Fig. 2.39.
Answer: 11 Q.
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M2.||

Find the equivalent conductance G for the circuit in Fig. 2.40(a).
Solution:
The 8-Sand 12-Sresistors are in parallel, so their conductanceis

85+125=20S

This 20-S resistor is how in series with 5 S as shown in Fig. 2.40(b) so
that the combined conductanceis

20x 5

20+5
Thisisin parallel with the 6-S resistor. Hence

Geg=6+4=10S

We should note that the circuit in Fig. 2.40(a) isthe same asthat in
Fig. 2.40(c). Whiletheresistorsin Fig. 2.40(a) are expressed in siemens,
they are expressed in ohmsin Fig. 2.40(c). To show that the circuits are
the same, we find Req for the circuit in Fig. 2.40(c).

R 1 1+1 1\ 1 1+1 11
A4~ 6|\5" 8|12) 6|\5 20/ 6|4
L 1
Q

X

ol
Bl

+1710

ol
FNT

1
eq

Thisisthe same as we obtained previously.

PRACTICE PROBLEMEEEN

55
AV
Geq
— 6S 8S 125
@
55
G
=, 205
(b)
1
EQ
AMAA
M. Zio Ste e

(©

Figure 240  For Example 2.11: (a) original
circuit, (b) its equivalent circuit, (c) same
circuit asin (a) but resistors are expressed in
ohms.

Calculate G inthecircuit of Fig. 2.41.
Answer: 48S.

—_—
6S
% 25 1o %
o %45
Figure 24| For Practice Prob. 2.11.

M2.|2

Find i, and v, in the circuit shown in Fig. 2.42(a). Calculate the power
dissipated in the 3-$2 resistor.

Solution:
The 6-Q and 3-Q resistors are in parallel, so their combined resistanceis
6x3
6Q3Q=—-=2Q
” 6+ 3
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—I> 40 a i»
+
12v 6Q Y%<=3Q
b
@
: 40 a
+
2v @ V=20
b
(b)
Figure 242 For Example 2.12: (a) original

circuit, (b) its equivalent circuit.

PRACTICE PROBLEMWE

PART | DC Circuits

Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that v, is
not affected by the combination of the resistors because the resistors are
in parallel and therefore have the same voltage v,. From Fig. 2.42(b), we
can obtain v, in two ways. One way isto apply Ohm’s law to get

12
=ir2T
and hence, v, = 2i = 2 x 2 = 4 V. Another way is to apply voltage
division, since the 12 V in Fig. 2.42(b) is divided between the 4-Q2 and

2-Q resistors. Hence,
2
Vo = m(lZV) =4V
Similarly, i, can be obtained in two ways. Oneapproachisto apply
Ohm'’slaw to the 3-2 resistor in Fig. 2.42(a) now that we know v,,; thus,
. 4
— l, = é

Another approachisto apply current division to thecircuit in Fig. 2.42(a)
now that we know i, by writing
4

6 2
i, = i =—-Q2A)=-A
b=gya —3CMN =3
The power dissipated in the 3-Q resistor is

Vp = 3io =4

4
Do = Voiy = 4 (§> —=5333W

| 2

i
1 120
AWV
+ Vg T
6Q
MWy .
e
+

%10(2 V2§4OQ

15v @

Figure 243 For Practice Prob. 2.12.

Find v, and v, in the circuit shownin Fig. 2.43. Also calculatei; and i
and the power dissipated in the 12-Q and 40-2 resistors.

Answer: vy =5V, i; =416.7mA, p; = 2.083W, v, =10V,

ip = 250 MA, po = 2.5 W.

mz.m

For the circuit shown in Fig. 2.44(a), determine: (@) the voltage v, (b)
the power supplied by the current source, (c) the power absorbed by each
resistor.

Solution:

(a) The 6-k2 and 12-k<2 resistors are in series so that their combined
valueis6 + 12 = 18 k2. Thusthecircuit in Fig. 2.44(a) reduces to that
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shown in Fig. 2.44(b). We now apply the current division technique to
find i1 and i».
18,000
™ 9000 + 18,000
9000
~ 9000 + 18,000

11 (B30mA) = 20 mA

iz (B0A) =10mA

Notice that the voltage across the 9-k2 and 18-k<2 resistors is the same,
and v, = 9,000i; = 18,000i, = 180V, as expected.
(b) Power supplied by the source is
Po = Voi, = 180(30) MW = 5.4 W
(c) Power absorbed by the 12-k<2 resistor is
p =iv=iyiR) =i5R = (10 x 1073)2(12,000) = 1.2 W
Power absorbed by the 6-kS2 resistor is
p =i5R = (10 x 107%)?(6000) = 0.6 W
Power absorbed by the 9-k2 resistor is

(180)2
=36W
9000 36

vy
e
or

P = v,i1 = 180(20) MW = 3.6 W

Noticethat the power supplied (5.4 W) equal s the power absorbed (1.2+
0.6 4+ 3.6 = 5.4 W). Thisis one way of checking results.

PRACTICE PROBLEMNEEE

49

6 kQ

30 mA Yo = 9kQ 12kQ

30 mA Vo%QkQ %18k§2

(b)
Figure 244 For Example 2.13:
(a) origina circuit,
(b) its equivalent circuit.

For the circuit shown in Fig. 2.45, find: (@) v1 and v,, (b) the power dis-
sipated in the 3-k2 and 20-k<2 resistors, and (c) the power supplied by
the current source.

1kQ

+ +
3kQ%V1 %>mmA §5kQ V2 S 20kQ

Figure 2.45

For Practice Prob. 2.13.

Answer: (a) 15V, 20V, (b) 75 mW, 20 mW, (c) 200 mW.

@

Network Analysis
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.7 WYE-DELTA TRANSFORMATIONS

R Situations often arise in circuit analysis when the resistors are neither in

AMA parallel nor in series. For example, consider the bridge circuit in Fig.

2.46. How do we combine resistors R; through Rg when the resistors

R Rs are neither in series nor in parallel? Many circuits of the type shown in

" CD R, Fig. 2.46 can be simplified by using three-terminal equivalent networks.

themselves or as part of alarger network. They are used in three-phase
networks, electrical filters, and matching networks. Our main interest
hereisin how to identify them when they occur as part of a network and
how to apply wye-delta transformation in the analysis of that network.

MWy These are the wye (Y) or tee (T) network shown in Fig. 2.47 and the
\7%\ /§7 delta(A) or pi (IT) network shownin Fig. 2.48. These networks occur by
Rs Rs

Figure 246 The bridge network.

2 4 2 4
@ (b)

Figure 247 Two forms of the same network: @Y, (b)T.

Deltato Wye Conversion
1 «/ch» 3 Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose awye
R, R, network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye
network, we compare the two networks and make sure that the resistance
2 4 between each pair of nodes in the A (or IT) network is the same as the
@ resistance between the same pair of nodesinthe Y (or T) network. For
R terminals 1 and 2 in Figs. 2.47 and 2.48, for example,
Ri>(Y)=R1+ R
1 A 3 12(Y) 1 3 246
R12(A) =Ry || (Ra + R.)
Ro Ra Setting R1o(Y)= R12(A) gives
Rb(Ra + Rc)
Ri» =R Ry= ——— 2.47
2 4 12 1+ R3 R.+ Ry + R. (2.473)
(b) .
Similarly,
Figure 248 Two forms of the Ris = Ri+4 Ry = R.(R, + Rp) 0 47
same network: (a) A, (b) TI. 13=R1 2= R.+ Ry + R, (2.47b)
Ra (Rh + RE)
Ry =R Ry= ——— 2.47
34 2+ R3 R, + Ry + R, (2.47¢c)
Subtracting Eqg. (2.47¢) from Eq. (2.47a), we get
Rc(Rb - Ra)
Ri—-Ry= — "~ 2.48
! 2 Ra + Rb + Rc ( )
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Adding Egs. (2.47b) and (2.48) gives

Ry R,
Ri=——— (2.49)
R,+ Ry + R,
and subtracting Eq. (2.48) from Eq. (2.47b) yields
R.R,
Ry= ———M— (2.50)
Ra + Rb + Rc
Subtracting Eqg. (2.49) from Eq. (2.478), we obtain
Ra Rb
Ry= ——M— (2.51)
R, + Ry + R,

We do not need to memorize Egs. (2.49) to (2.51). To transform a A
network to Y, we create an extranode n as shown in Fig. 2.49 and follow
this conversion rule:

| |
tEach resistor in the Y network is the product of the resistors in the two adjacent A

branches, divided by the sum of the three A resistors.

Wyeto Delta Conversion

To aobtain the conversion formulas for transforming awye network to an
equivalent delta network, we note from Egs. (2.49) to (2.51) that

R.R,R.(R, + R, + R.) Figure 249 Superposition of Y and A
R1R2 + RoR3 + R3Ry = (R. + Ry + R.)2 networks as an aid in transforming one to
a b ¢ (252) the other.
_ R, Ry R,
N Ra + Rb + RC
Dividing Eq. (2.52) by each of Egs. (2.49) to (2.51) leadsto thefollowing
equations:
R1R RoR R3R
R, = 1R2 + RoR3 + R3Ry (259
Ry
RiR; + RoR3 + R3Ry
b= (254
R>
R1R R>R R3R
R = 1R2 + ;34— 3R] (255)
3

From Egs. (2.53) to (2.55) and Fig. 2.49, the conversion rulefor Y to A
isasfollows:
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Each resistor in the A network is the sum of all possible products of Y resistors
taken two at a time, divided by the opposite Y resistor.

TheY and A networks are said to be balanced when
R1 =Ry, = R3= Ry, R, =R, = R. = Rx (2.56)

Under these conditions, conversion formul as become

Ry = — or Rar = 3Ry (257)

One may wonder why Ry islessthan R,. Well, we notice that the Y-
connection islike a“series’” connection while the A-connection islike a
“parallel” connection.

Notethat in making the transformation, wedo not take anything out
of thecircuit or put in anything new. We are merely substituting different
but mathematically equivalent three-terminal network patterns to create
acircuit in which resistors are either in series or in paralel, allowing us
to calculate Req if necessary.

Convert the A network in Fig. 2.50(a) to an equivalent Y network.

a Re b
o A o
250
10Q 150
R Ra Ry S30Q
c Ve

¢}

@ (b)

Figure 250 For Example 2.14: (a) origina A network, (b) Y eguivalent network.

Solution:
Using Egs. (2.49) to (2.51), we obtain
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e RR_ 25x10 250
Y R, fR,+R. 25+10+15 50
R.R, 25 x 15
Ry = _2X_75q
R, + R, + R, 50
R,R 15 x 10
Ry = b _ X 39
R, + R, + R, 50

The equivalent Y network is shown in Fig. 2.50(b).

PRACTICE PROBLEMEEK
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Transform the wye network in Fig. 2.51 to a delta network. R, R,
. _ _ _ a o——AMW AWMN—0 b
Answer: R, =140Q,R, =702, R. = 359. 100 00
Ry < 40Q
Cc
Figure 251 For Practice Prob. 2.14.
£ XA 7 L E I
Obtain the equivalent resistance R,;, for thecircuitin Fig. 2.52 and use it _|> a a
tofind current ;.
Solution: 00
L . . 1
Inthiscircuit, therearetwo Y networksand one A network. Transforming 1250
just one of these will simplify the circuit. If we convert the Y network +> c 5Q N § 00
comprising the 5-€2, 10-Q2, and 20-2 resistors, we may select 120V (<
150 200Q
R; =109, R, =209, R3=5Q
Thus from Egs. (2.53) to (2.55) we have b b
o RiRz+ RpR3+ RsRy 10 x 20420 x 5+ 5 x 10 Figure 252 For Example 2.15.
“ Ry N 10
350
=—=35Q
10
R1R RoR R3R 350
R, = 1R2 + R2R3+ R3 1_%P 1750
Ry 20
RiR RyR R3R
R =M 2+ R2R3 + R3 1:@:709
R3 5

Withthe Y converted to A, the equivalent circuit (with the voltage
source removed for now) is shown in Fig. 2.53(a). Combining the three
pairs of resistorsin parallel, we obtain
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70 x 30
70 || 30 = =21Q
| 70+ 30
125 x 175
125|175= ————— =7.2917Q
>[117.5 1254175 o
15%x 35
15]135=-2>_105Q
15435
so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we find
17.792 x 21
Ry =(7292+105) || 2l= —————— =9632Q
b= (7292+105)] 17.792+ 21
Then
Vg 120
| = = —— =12458A
'"T R, 9632
ao
1250 175Q ao
§ 700 § 300 72000
350 § 210
150
1050
bo bo

@ (b)

Figure 253 Equivalent circuits to Fig. 2.52, with the voltage removed.

PRACTICE PROBLEMNEE

i 130 For the bridge network in Fig. 2.54, find R, and i.
_» a
O— W\ Answer: 40, 25A.
24Q 10Q
200
100V (’:}
300 50Q

b

Figure 2.54  For Practice Prob. 2.15.

2.8 APPLICATIONS

Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, lightbulbs, electric heaters, stoves, ovens, and loudspeakers. Inthis
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section, we will consider two real-life problems that apply the concepts
developed in this chapter: electrical lighting systems and design of dc
meters.

2.8.1 Lighting Systems

Lighting systems, such asin ahouse or on a Christmastree, often consist
of N lamps connected either in parallel or in series, as shown in Fig.
2.55. Eachlampismodeled asaresistor. Assuming that al thelampsare
identical and V,, is the power-line voltage, the voltage across each lamp
isV, for the parallel connectionand V,,/ N for the series connection. The
series connection is easy to manufacture but is seldom used in practice,
for at least two reasons. Firgt, it islessreliable; when alamp fails, all the
lamps go out. Second, it is harder to maintain; when alamp is bad, one
must test all the lamps one by one to detect the faulty one.

=
N
w

D ® OO ¢

/Q’/Z

@ Lamp

55

S0 far, we have assumed that connecting wires
are perfect conductors (i.e., conductors of zero
resistance). In real physical systems, however,
the resistance of the connecting wire may be ap-
preciably large, and the modeling of the system
must include that resistance.

Figure 2.55  (a) Parallel connection of lightbulbs, (b) series connection of lightbulbs.

£ X A P L ¢ I

Three lightbulbs are connected to a 9-V battery as shownin Fig. 2.56(a).
Calculate: (@) the total current supplied by the battery, (b) the current
through each bulb, (c) the resistance of each bulb.

i
VoS R,
_ +
D 15w 9V — vl% R,
+ Z
9V — (9 20W V3 S Ry
P)10W Z
@ (b)

Figure 2.56 (a) Lighting system with three bulbs, (b) resistive circuit equivalent
model.
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Solution:
(a) The total power supplied by the battery is equal to the total power
absorbed by the bulbs, that is,
p=15+10+20=45W
Since p = V1, then the total current supplied by the battery is
P 45
I==—=—=5A
1% 9
(b) The bulbs can be modeled asresistors as shown in Fig. 2.56(b). Since
R1 (20-W bulb) isin parallel with the battery as well as the series com-
bination of R, and R3,
Vi=Vo+V3=9V
The current through R; is
D soma
Vi 9

By KCL, the current through the series combination of R, and R3

I

L=1—-1,=5-2222=2778A
(c) Since p = I?R,
N 20

R=C=_=_=a050
T2 T 22022
P2 15
Ro=22-_=_—1050
2T 2T 27
P3 10
Re=22 = _—_ 12070
T T 2T

PRACTICE PROBLEMESEE

Refer to Fig. 2.55 and assume there are 10 lightbulbs, each with a power
rating of 40 W. If the voltage at the plug is 110 V for the parallel and
series connections, calculate the current through each bulb for both cases.

Answer: 0.364 A (paralld), 3.64 A (series).

2.8.2 Design of DC Meters
By their nature, resistors are used to control the flow of current. We take
advantage of this property in several applications, such as in a poten-

Max tiometer (Fig. 2.57). The word potentiometer, derived from the words

T b potential and meter, implies that potential can be metered out. The po-

Vin CI) 2 tentiometer (or pot for short) is athree-termina device that operates on

\+/ the principle of voltage division. It is essentialy an adjustable voltage

Min = divider. Asavoltage regulator, it is used as avolume or level control on
c © radios, TVs, and other devices. In Fig. 2.57,

Figure 257 The potentiometer Vou = Vpe = &Vin (2.58)
controlling potential levels. ac

where R,. = Ry, + Rye. Thus, Vo decreases or increases as the sliding
contact of the pot moves toward ¢ or a, respectively.
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Another application whereresistorsare used to control current flow
isintheanalog dc meters—the ammeter, voltmeter, and ohmmeter, which

measure current, voltage, and resistance, respectively. Each of these me- An instrument capable of measuring voltage, cur-
ters employs the d’ Arsonval meter movement, shown in Fig. 2.58. The rent, and resistance is called a multimeter or a
movement consists essentially of a movable iron-core coil mounted on volt-ohm meter (VOM).

a pivot between the poles of a permanent magnet. When current flows
through the cail, it creates a torque which causes the pointer to deflect.
The amount of current through the coil determines the deflection of the
pointer, which is registered on a scale attached to the meter movement.
For example, if the meter movement is rated 1 mA, 50 €2, it would take
1 mA to causeafull-scal e defl ection of the meter movement. By introduc-
ing additional circuitry to the d’ Arsonval meter movement, an ammeter,
voltmeter, or ohmmeter can be constructed.

Consider Fig. 2.59, where an analog voltmeter and ammeter are
connected to an element. The voltmeter measures the voltage across a

load and is therefore connected in parallel with the element. As shown Aload is a component that s receiving energy (an
in Fig. 2.60(a), the voltmeter consists of ad’ Arsonval movement in par- energy sink), as opposed to a generator supplying
alel with aresistor whose resistance R, is deliberately made very large energy (an energy source). More about loading
(theoretically, infinite), to minimize the current drawn from the circuit. will be discussed in Section 49.1.

To extend the range of voltage that the meter can measure, series multi-
plier resistors are often connected with the voltmeters, as shown in Fig.
2.60(b). The multiple-range voltmeter in Fig. 2.60(b) can measure volt-
agefrom0to1V,0to 10V, or 0 to 100 V, depending on whether the
switch is connected to R1, Ry, Or R3, respectively.

Let uscalculate the multiplier resistor R, for the single-range volt-
meter in Fig. 2.60(8), or R, = Ri, Ry, or Rz for the multiple-range
voltmeter in Fig. 2.60(b). We need to determine the value of R, to be
connected in series with the internal resistance R,, of the voltmeter. In
any design, we consider the worst-case condition. In this case, the worst
case occurs when the full-scale current Its = 1, flows through the meter.
This should aso correspond to the maximum voltage reading or the full-
scale voltage Vis. Since the multiplier resistance R, isin series with the

Ammeter |
O—

+
Voltmeter 6/) V Element

O

permanent magnet Figure .59 Connection of a
voltmeter and an ammeter to an
element.

rotating coil
stationary iron core

Figure 258 A o’ Arsonval meter movement.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1A
B
Meter
n ‘! -
Wl
~ Probes <~
(b)

Figure 26l Ammeters: (a) single-range type,
(b) multiple-range type.

PART | DC Circuits

Multiplier ~ Meter

Figure 260  voltmeters: (a) single-range type, (b) multiple-range type.

interna resistance R,,,,

Vis = I1s(R, + Ry) (2.59)
From this, we obtain
Vi
R, = —°_R, (2.60)
Ifs

Similarly, the ammeter measures the current through the load and
isconnected in serieswithit. Asshownin Fig. 2.61(a), the ammeter con-
sistsof ad’ Arsonval movement in parallel with aresistor whoseresi stance
R,, isdeliberately made very small (theoretically, zero) to minimize the
voltage drop acrossit. To allow multiple range, shunt resistors are often
connected in parallel with R, asshown in Fig. 2.61(b). The shunt resis-
tors allow the meter to measure in the range 0-10 mA, 0-100 mA, or
0-1 A, depending on whether the switch is connected to R1, Ry, Or
R3, respectively.

Now our objectiveisto obtainthemultiplier shunt R, for thesingle-
range ammeter in Fig. 2.61(a), or R, = R1, R, or R3 for the multiple-
range ammeter in Fig. 2.61(b). We notice that R,, and R, arein parallel
and that at full-scalereading I = Its = I, + I,, where I, isthe current
through the shunt resistor R,. Applying the current division principle
yields

R,

= ——-I]
R, + R, fs

m
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or
Im
 Is—In
Theresistance R, of alinear resistor can be measured in two ways.
An indirect way is to measure the current I that flows through it by
connecting an ammeter in series with it and the voltage V across it by
connecting avoltmeter in parallel with it, as shownin Fig. 2.62(a). Then

%
R, = T (2.62)
The direct method of measuring resistance is to use an ohmmeter. An

ohmmeter consistsbasically of ad’ Arsonval movement, avariableresistor

R, (2.61)

n

or potentiometer, and a battery, as shown in Fig. 2.62(b). Applying KVL
to thecircuit in Fig. 2.62(b) gives EI:A
[
or T +
E ReSv
R, = — —(R+Ry) (2.63) -
Theresistor R is selected such that the meter gives afull-scale deflection,
that is, I,, = It;s when R, = 0. Thisimpliesthat @
E = (R+ Ryl (2.64) Ohmmeter

Substituting EqQ. (2.64) into EQ. (2.63) leads to

R, = <% - 1) (R+ Ry (2.65)

As mentioned, the types of meters we have discussed are known as
analog metersand are based onthe d’ Arsonval meter movement. Another
type of meter, called a digital meter, is based on active circuit elements
such as op amps. For example, a digital multimeter displays measure-
ments of dc or ac voltage, current, and resistance as discrete numbers,
instead of using a pointer deflection on a continuous scale as in an ana- Figure 262 Two ways of measuring
log multimeter. Digital meters are what you would most likely usein a resistance: (a) using an ammeter and a
modern lab. However, the design of digital meters is beyond the scope ~ Voltmeter, (b) using an ohmmeter.
of this book.

|§llﬂﬂ[‘r|7

Following the voltmeter setup of Fig. 2.60, design avoltmeter for thefol-
lowing multiple ranges:

@o0-1v (b)0-5V (c)0-50V (d)0-100V

Assume that theinternal resistance R,,, = 2 k2 and the full-scale current
Irs = 100 uA.

Solution:

We apply Eq. (2.60) and assumethat Ry, Ry, R3, and R4 correspond with
ranges 0-1V, 0-5V, 0-50 V, and 0—100 V, respectively.

(a) For range 01V,

B 1

~ 100 x 106

Ry — 2000 = 10,000 — 2000 = 8 k2
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(b) For range 0-5V,

R = W — 2000 = 50,000 — 2000 = 48 k<2
(c) For range 0-50 V,
R = _ 0 2000 = 500,000 — 2000 = 498 k<2
100 x 10-6
(d) For range 0100V,
‘T % — 2000 = 1,000,000 — 2000 = 998 kS2

Notethat theratio of thetotal resistance (R, + R,,) tothefull-scalevoltage
Vis is constant and equal to 1/ I;s for the four ranges. Thisratio (givenin
ohms per volt, or ©2/V) is known as the sensitivity of the voltmeter. The
larger the sensitivity, the better the voltmeter.

PRACTICE PROBLEMEEEN

Following the ammeter setup of Fig. 2.61, design an ammeter for thefol-
lowing multiple ranges:

@ 0-1A (b) 0-100 mA (c) 0-10 mA

Takethefull-scalemeter current as 1,, = 1 mA and theinternal resistance
of theammeter as R,, = 50 Q.

Answer: Shunt resistors: 0.05 2, 0.505 €2, 5.556 Q.

2.9 SUMMARY

1. A resistor isapassive element in which the voltage v acrossit is
directly proportional to the current i throughit. That is, aresistor is
a device that obeys Ohm’s law,

v=1iR

where R isthe resistance of the resistor.

2. A short circuit isaresistor (a perfectly conducting wire) with zero
resistance (R = 0). An open circuit isaresistor with infiniteresis-
tance (R = 00).

3. The conductance G of aresistor isthe reciprocal of its resistance:

1
G=—
R

4. A branchisasingle two-terminal element in an electric circuit. A
node is the point of connection between two or more branches. A
loop is aclosed path in acircuit. The number of branches b, the
number of nodes n, and the number of independent loops! in a
network are related as

b=Il+n-1
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CHAPTER 2 Basic Laws

Kirchhoff’s current law (KCL) states that the currents at any node
algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

Kirchhoff’s voltage law (KVL) states that the voltages around a
closed path algebraically sum to zero. In other words, the sum of
voltage rises equal s the sum of voltage drops.

Two elements are in series when they are connected sequentially,
end to end. When elements are in series, the same current flows
through them (i; = i,). They arein parallel if they are connected to
the same two nodes. Elementsin parallel always have the same
voltage across them (v1 = vy).

When two resistors Ry (= 1/G1) and R, (= 1/G») arein series,
their equivalent resistance R and equivalent conductance G are

_ GiGy
" G1+ G,

When two resistors Ry (= 1/G1) and R, (= 1/G») arein paralel,
their equivalent resistance R and equivalent conductance G are

Req = R1+ R», Geq

The voltage division principle for two resistorsin seriesis
Rl RZ

v, Uy =

Ri+ R Ri+R>

The current division principle for two resistorsin parallel is
Ry . ) Ry

i, lp =

Ri+ R> Ri1+ Ry

The formulas for a delta-to-wye transformation are

B RyR. o R.R,

“ R, + R, + R 2= R, + Ry + R.

V1 = v

i

i1 =

R

R, Ry
~ R.+ R, + R,
The formulas for awye-to-delta transformation are
_ RiRs> 4+ RoR3 + R3R1’ R, — R1R> + RoR3 + R3R1
R1 R>
R — R1R2 + Ra2R3 + R3Ry
R3
The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.

3

R4

6l

REVIEW QUESTIONS

21
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2.3

24

25

2.6

2.7

2.8

PART | DC Circuits

The voltage drop across a 1.5-kW toaster that draws 29
12 A of current is:

(@ 18kV
(c) 120V

(b) 125V
(d) 10.42V

The maximum current that a 2W, 80 k<2 resistor can
safely conduct is:

(8 160 kA
(c) 5mA

(b) 40 kA
(d) 25 uA

A network has 12 branches and 8 independent loops.
How many nodes are there in the network?

Which of the circuitsin Fig. 2.66 will give you
Vo =7V?

(b)

© (d)

Figure 2.66

For Review Question 2.9.

The equivalent resistance of the circuit in Fig. 2.67
is:

@ 4k (b) 5kQ () 8kQ  (d) 14k
2kQ 3kQ
O—\WWM—— W\
E’ 6kQ 3kQ
O
Figure 2.67  For Review Question 2.10.

@19 ® 17 (@©5 (@4
Thecurrent I inthecircuit in Fig. 2.63 is:
(& —08A (b) —0.2A
(c) 0.2A (d) 0.8A
s '
ANV
3V 5V
6Q
Figure 2.63  For Review Question 2.6.
Thecurrent 1, inFig. 2.64 is:
@ —4A (b —2A (c) 4A (d) 16A
o
f 10A
2.10
2A 4A
ity -
(¢} AW o}
o
0]
Figure 2.64  For Review Question 2.7.
Inthecircuitin Fig. 2.65, V is:
@ 30v (b) 14V (c) 10V (d) 6V
10V
+ -
||
R
2v @ ® sv
||
1
+ \Va
Figure 2.65  For Review Question 2.8.

Answers: 2.1c, 2.2c, 2.3b, 2.4c, 2.5¢, 2.6b, 2.7a, 2.8d, 2.9d, 2.10a.
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PROBLEMS

Section 2.2 Ohm’sLaw 2.7 Determine the number of branches and nodesin the

21 The voltage across a 5-kS2 resistor is 16 V. Find the dreutinFg. 2.71.
current through the resistor.

2.2 Find the hot resistance of alightbulb rated 60 W,
120 V.

23 When the voltage across aresistor is 120 V, the 50
current through it is 2.5 mA. Calculateits
conductance. 20 _
2.4 (@) Calculate current i in Fig. 2.68 when the switch 40 | 5 C_' 10V
isin position 1. -
(b) Find the current when the switch isin position 2.
3Q 6Q
1 2
m— *~— )
Figure 2.7 For Prob. 2.7.
100Q § ? ! § 150 Q
3V
Section 2.4 Kirchhoff’sLaws

2.8 Use KCL to obtain currentsiy, i», and i3 in the

Figure 2,68 For Prob. 2.4. circuit shownin Fig. 2.72.

Section 2.3 Nodes, Branches, and L oops
25 For the network graph in Fig. 2.69, find the number
of nodes, branches, and loops. 12 mA
i1
8mA
Aij i3
9ImA
Figure 2.72 For Prob. 2.8.
Figure 269 For Prob. 2.5. 2.9  Findiy, ip, and iz inthecircuit in Fig. 2.73.

2.6 In the network graph shown in Fig. 2.70, determine
the number of branches and nodes.

>< >< 10Al Til izl T3A

Figure .70 For Prob. 2.6. Figure .73 For Prob. 2.9.
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210 Determinei; and i, inthecircuitin Fig. 2.74. 213  Find v; and vy inthecircuit in Fig. 2.77.

+ V1

VWWA
+
6V Vi

4A/ \\_2A 12v oV -
©—©

NWY
+V2—

Figure .77 For Prob. 2.13.

Figure .74 For Prob. 2.10. 2.14  Obtain v; through vg in the circuit of Fig. 2.78.
211  Determine vy through vs in the circuit in Fig. 2.75. + &;f—

- +

2v @ L §V3 @ wv

I G 12V
+
Figure 278 For Prob. 2.14.
_BV 4
T T 215 Find I and V,, inthecircuit of Fig. 2.79.
I _ 30 WV 4 50
A V3 + *I
30V Vap 8V

Figure .75 For Prob. 2.11. b

Figure .79 For Prob. 2.15.

212 InthecircuitinFig. 2.76, obtain vy, vy, and vs.
216  Fromthecircuitin Fig. 2.80, find I, the power
dissipated by the resistor, and the power supplied by

each source.
10V
© i
25V
-+
12v ‘ § 30
+
20V ‘
-8V
Figure 2.76  For Prob. 2.12. Figure 280 For Prob. 2.16.
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2.18

219

2.20

CHAPTER 2

Determine i, in the circuit of Fig. 2.81.

b 40

v @) é 5i,
Figure 2.8

Calculate the power dissipated in the 5-€2 resistor in
the circuit of Fig. 2.82.

For Prob. 2.17.

10

v @) 0 3,
5Q

Figure 2.82  For Prob. 2.18.

Find V, inthecircuit in Fig. 2.83 and the power
dissipated by the controlled source.

4Q
AWV
ty, T

60 @ 104 2V,

Figure 283 For Prob. 2.19.
For the circuitin Fig. 2.84, find V, /V in terms of
o, R, Ry, R3, and Ry. If R, = = R3 = Ry,

what value of o will produce |V, /V | =107

967

221

5mA

Figure 2.84

For the network in Fig. 2.85, find the current,
voltage, and power associated with the 20-k$2
resistor.

For Prob. 2.20.

10kQ 2V, 001V, < 5kQ

Figure 2.85  For Prob. 2.21.

20 kQ

Sections 2.5 and 2.6

222

2.23

224

225

Basic Laws 65

Seriesand Parallel
Resistors

For the circuit in Fig. 2.86, find i; and i,.

20 mA ﬁD

Figure 2.86

PRI

6 kQ 4kQ

For Prob. 2.22.

Find v, and v, inthecircuit in Fig. 2.87.

3kQ

AN
+oy -

+

Vz%QkQ

24v @

Figure 287 For Prob. 2.23.

Find vq, vz, and vz in the circuit in Fig. 2.88.

14 Q

aov @

Figure 2.88  For Prob. 2.24.

Calculate vy, i1, v2, and i, in the circuit of Fig. 2.89.

4Q 6 Q
MY ANV .
+Vl_ l|1 l|2

+

3Q§V2

12v @

Figure 289 For Prob. 2.25.
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226 Findi, v, and the power dissipated in the 6-Q2

resistor in Fig. 2.90.

8Q
AMA
[
LR

on @® § 6Q v % 40

Figure 290  For Prob. 2.26.
2.27 Inthecircuitin Fig. 2.91, find v, i, and the power

absorbed by the 4-Q2 resistor.

5Q 4Q
l [
+

20v @ v100Q 6Q

Figure 291 For Prob. 2.27.
2.28  Findi; through i inthecircuitin Fig. 2.92.

100 _l4 2 200
w00 T o300
3 1
@ 204

Figure 2.92  For Prob. 2.28.

229 Obtainvandi inthecircuitin Fig. 2.93.

i
1 as 6S
AW
+
9A ? v % 1s % 2s 3s
Figure 2.93  For Prob. 2.29.

DC Circuits

2.30

28V '

231

2.32

2.33

Determine iy, i», v1, and v, in the ladder network in
Fig. 2.94. Calculate the power dissipated in the 2-Q
resistor.

40 2

i
R -To! 6Q l2_ 20
AW WA MAR
+ +
v S 12Q 150 10Q V2 S 13Q
Figure 2.94  For Prob. 2.30.

Calculate V, and I, in the circuit of Fig. 2.95.

700 300
sov @

200 5Q
Figure 295 For Prob. 2.31.

Find V, and 1, in the circuit of Fig. 2.96.

8Q
lo 10
WW—
T
4v 30 $60 v,
2Q -
Figure 2.96  For Prob. 2.32.

In the circuit of Fig. 2.97, find R if V, = 4V.

16Q
WA
+
20v @ 60 RSV,
Figure 2.97  For Prob. 2.33.
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234  Find I and V; inthecircuit of Fig. 2.98 if the current 237  If Reg =50 Q inthecircuitin Fig. 2.101, find R.
through the 3-Q resistor is2 A.

120

10Q

WWA
@
<
—-—
N
>

60 30 Figure 2.101 For Prob. 2.37.

2.38  Reduce each of the circuitsin Fig. 2.102 to asingle

Figure 298 For Prob. 2.34. resistor at terminals a-b.

5Q
WA
2.35 Find the equivalent resistance at terminals a-b for a b
each of the networksin Fig. 2.99. 80 200 —°
VWW
a L\/\/\/\/‘—‘
ao 30Q
R R R
@
O O
% R 2Q 4Q 5Q
R R R R a o—/ W\ VWA VW ob
bo bo 50 3Q 10Q
MW
@ (b) ©
8Q 40
R M
a W a
[e; [e; (b)
3R % R % R % R% IR % 3R % Figure 2.102  For Prob. 2.38.
239  Cadlculate the equivalent resistance R, at terminals
b o b o a-b for each of the circuitsin Fig. 2.103.
(d) C] 5Q
Figure .99 For Prob. 2.35. a
20Q 10Q 40Q
2.36  For theladder network in Fig. 2.100, find 7 and Req. bo
@
I
3Q 2Q 1Q 10Q
W WA ao VWA
o 800Q
10v @ 40 60 20 600 %209 %309
bo
| Reg (b)
Figure 2.100  For Prob. 2.36. Figure 2.103  For Prob. 2.39.
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240  Obtain the equivalent resistance at the terminals a-b 242  Find the equivalent resistance R,;, in the circuit of

for each of the circuitsin Fig. 2.104. Fig. 2.106.
ao
10Q
60 Q 30Q
bo VWA VWWWA—
20Q
@

Figure 2.106  For Prob. 2.42.

50 60Q 8Q 90
a o— MM VWA VWWA
50
150 10Q 10
200 4Q

4Q

b o— /MW
(b)

Figure 2.104  For Prob. 2.40. . .
Section 2.7 Wye-Delta Transfor mations

241  Find Req at terminals a-b for each of the circuitsin

Fig. 2.105. 243  Convert thecircuitsin Fig. 2.107 from Y to A.
70Q
100 100 300 20Q
a a b a b
300 400 10Q 50 Q
60 Q
b C Cc
b
200 @ ®)
@ Figure 2.107  For Prob. 2.43.

244  Transform the circuitsin Fig. 2.108 from A to Y.

120 60Q
a AW b a AV b
10Q 500
4Q 120 120 30Q 100
b o—WA
70Q 800
C C
(b) @ (b)
Figure 2.105  For Prob. 2.41. Figure 2.108  For Prob. 2.44.
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245 What value of R inthecircuit of Fig. 2.109 would a o—\WW\, MW
cause the current source to deliver 800 mW to the
resistors?
R R
b oM
soma @) w
(b)
R R .
Figure 2.1 For Prob. 2.47.

*2.48  Obtain the equivalent resistance R, in each of the

. circuits of Fig. 2.112. In (b), al resistors have a
Figure 2.109  For Prob. 2.45. value of 30 O,

246  Obtain the equivalent resistance at the terminals a-b

for each of the circuitsin Fig. 2.110. 30Q 400Q
ao 200
ao
100Q 20Q
100Q
00 § 60Q 50Q 8Q
100 200 bo
b o @
@ ao
30Q 30Q
AW
25Q 100 20Q
ao A MWW AW
50 150 bo VW MWWy
(b)
bo
(b) Figure 2.112 For Prob. 2.48.

Figure 2110 For Prob. 2.46. 249 Cdculate I, inthe circuit of Fig. 2.113.

*2.47  Find the equivalent resistance R, in each of the

IO
circuits of Fig. 2.111. Each resistor is 100 2. -
ao MW 200 60 Q
00
v @

50 Q

bo AW
@ Figure .13 For Prob. 2.49.

*An asterisk indicates a challenging problem.
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250 Determine V inthecircuit of Fig. 2.114.
30Q
MWV
16Q 150 100
+
100V V S3Q 12Q 20Q
2.54
Figure 2.114 " For Prob. 2.50.
255
*251  Find Req and I inthecircuit of Fig. 2.115.
! a0 20
6Q 1Q
20V t) 8Q 20
10Q 3Q
Req
Figure 2,115 For Prob. 2.51. 2.56
Section 2.8 Applications
252  Thelightbulbin Fig. 2.116 israted 120 V, 0.75 A. 2.57
Calculate V; to make the lightbulb operate at the
rated conditions.
40 Q
A IO Bub <800
Figure .16 For Prob. 2.52.
2.58
253  Threelightbulbs are connected in seriesto a 100-V

battery as shown in Fig. 2.117. Find the current 1
through the bulbs.

30w 40w 50W

.9 @
1oov<’:>

Figure .17 For Prob. 2.53.

If the three bulbs of Prob. 2.53 are connected in
parallel to the 100-V battery, calculate the current
through each bulb.

As adesign engineer, you are asked to design a
lighting system consisting of a 70-W power supply
and two lightbulbs as shown in Fig. 2.118. You must
select the two bulbs from the following three
available bulbs.

R; =80, cost = $0.60 (standard size)
R, =90 Q, cost = $0.90 (standard size)
R3 = 100 €, cost = $0.75 (nonstandard size)

The system should be designed for minimum cost
suchthat 7 = 1.2 A £ 5 percent.

—

+ |
70W
Power
Supply

10 -

Figure 2.118  For Prob. 2.55.

If an ammeter with an internal resistance of 100
and a current capacity of 2 mA isto measure5 A,
determine the value of the resistance needed.
Calculate the power dissipated in the shunt resistor.

The potentiometer (adjustable resistor) R, in Fig.
2.119isto be designed to adjust current i, from 1 A
to 10 A. Calculate the values of R and R, to achieve
this.

110V

Figure .19 For Prob. 2.57.

A d’Arsonval meter with an internal resistance of 1
k<2 requires 10 mA to produce full-scal e deflection.
Calculate the value of a series resistance needed to
measure 50 V of full scale.
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A 20-k2/V voltmeter reads 10 V full scale.

(8) What seriesresistance is required to make the
meter read 50 V full scale?

(b) What power will the series resistor dissipate
when the meter reads full scale?

(a) Obtain the voltage v, in the circuit of Fig.
2.120(a).

(b) Determine the voltage v, measured when a
voltmeter with 6-k<2 internal resistanceis
connected as shown in Fig. 2.120(b).

(c) Thefinite resistance of the meter introduces an
error into the measurement. Calculate the
percent error as

v, — U,

x 100%

Vo

(d) Find the percent error if the internal resistance
were 36 kQ2.

1kQ
AW
+
2mA 5kQ 4kQ 2 Vo
@
1kQ
2mA 5kQ

+
4kQ = Vo e@ \oltmeter

(b)

Figure 2.120  For Prob. 2.60.

(a) Find the current i inthe circuit of Fig. 2.121(a).

(b) Anammeter with an internal resistanceof 1 Q is
inserted in the network to measure i’ asshown in
Fig. 2.121(b). What isi'?

(c) Calculate the percent error introduced by the
meter as

./

i —1

x 100%

I 160

—

4V 40Q 60 Q

@

2.62

2.63

2.64

Basic Laws 71

(b)
Figure 2.121

A voltmeter is used to measure V, in the circuit in
Fig. 2.122. The voltmeter model consists of an ideal
voltmeter in parallel with a 100-ks2 resistor. Let

V, =40V, R, = 10k, and R; = 20k2. Calculate
V,, with and without the voltmeter when

(@ R, =1k (b) R, = 10k

() R, =100k

For Prob. 2.61.

100 kQ

Figure 2.122

An ammeter model consists of anideal ammeter in
serieswith a 20-2 resistor. It is connected with a
current source and an unknown resistor R, as shown
in Fig. 2.123. The ammeter reading is noted. When
a potentiometer R isadded and adjusted until the
ammeter reading drops to one half its previous
reading, then R = 65 Q. What isthe value of R, ?

For Prob. 2.62.

Figure 2.123

Thecircuit in Fig. 2.124 isto control the speed of a
motor such that the motor draws currents5 A, 3 A,

For Prob. 2.63.
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and 1 A when the switch is at high, medium, and 2.65

low positions, respectively. The motor can be
modeled as aload resistance of 20 m2. Determine
the series dropping resistances R1, R, and Rs.

R1
10-A, 0.01-Q fuse

Medium

High \§ R
F "

Figure 2.124  For Prob. 2.64.

6V —

An ohmmeter is constructed with a 2-V battery and
0.1-mA (full-scale) meter with 100-<2 internal
resistance.

(a) Calculate the resistance of the (variable) resistor
required to be in series with the meter and the
battery.

(b) Determine the unknown resistance across the
terminals of the ohmmeter that will cause the
meter to deflect half scale.

COMPREHENSIVE PROBLEMS

2.66

2.67

2.68

An electric heater connected to a 120-V source 2.69
consists of two identical 0.4-Q2 elements made of

Nichrome wire. The elements provide low heat

when connected in series and high heat when

connected in parallel. Find the power at low and

high heat settings.

Suppose your circuit laboratory has the following
standard commercialy available resistorsin large
quantities:

18¢Q 20 Q2 300 24 kQ 56 kQ

Using series and parallel combinations and a
minimum number of available resistors, how would
you obtain the following resistances for an
electronic circuit design?

@ 59
(©) 40 k2

2.70
(b) 311.8

(d) 52.32k2

In the circuit in Fig. 2.125, the wiper divides the
potentiometer resistance between « R and (1 — o) R,
0<a =<1 Findwv,/v.

271

Figure 2.125  For Prob. 2.68.

An electric pencil sharpener rated 240 m\W, 6V is
connected to a 9-V battery as shown in Fig. 2.126.
Calculate the value of the series-dropping resistor
R, needed to power the sharpener.

switch R

ov £T 4
|

Figure 2.126

For Prob. 2.69.

A loudspeaker is connected to an amplifier as shown
inFig. 2.127. If a10-Q2 loudspesaker draws the
maximum power of 12 W from the amplifier,
determine the maximum power a 4-2 loudspeaker
will draw.

Amplifier (]

[ Loudspeaker

Figure 2.127  For Prob. 2.70.

In acertain application, the circuit in Fig. 2.128
must be designed to meet these two criteria:

@ V,/V, = 0.05 (b) Req= 40K
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If the load resistor 5 k2 isfixed, find R, and R to 2.73  Two delicate devices are rated as shown in Fig.
meet the criteria 2.130. Find the values of theresistors R; and R»
R needed to power the devices using a 24-V battery.
1
o Ww 60-mA, 2-Q fuse

+
Vs (2 R§ V%SKQ 24V, 480 mW
@ o F E
24V

I .
9V, 45 mW

Figure 2.128  For Prob. 2.71.

2.72  Thepin diagram of aresistance array is shownin Figre 2130 For Pron 2.73.

Fig. 2.129. Find the equivalent resistance between
the following:

(@ land2 (b) 1and 3 (c) land4

4 3
n 0

20Q 20Q

> 40 Q

10Q
80Q

o O
1 2

Figure 2.129  For Prob. 2.72.

Go to the Student OLC
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CHAPTER]| 3

METHODS OF ANALYSIS

Scientists study the world as it is, engineers create the world that never
has been.
—Theodore von Karman

Enhancing Your Career

Career in Electronics One area of application for electric
circuitanalysis is electronics. The teahectronicswas orig-
inally used to distinguish circuits of very low current levels.
This distinction no longer holds, as power semiconductor de
vices operate at high levels of current. Today, electronics is
regarded as the science of the motion of chargesina gas, va
uum, or semiconductor. Modern electronics involves tran-
sistors and transistor circuits. The earlier electronic circuits
were assembled from components. Many electronic circuits
are now produced as integrated circuits, fabricated in a sem
conductor substrate or chip.

Electronic circuits find applications in many areas, [

such as automation, broadcasting, computers, and instr "W

mentation. The range of devices that use electronic circuits
is enormous and is limited only by our imagination. Radio,
television, computers, and stereo systems are but a few.
An electrical engineer usually performs diverse func- roupjeshooting an electronic circuit board. Source: T. J. Mal-
tions and is likely to use, design, or construct systems thabney, Modern Industrial Electronics, 3rd ed. Englewood Cliffs, NJ:
incorporate some form of electronic circuits. Therefore, anprentice Hall, 1996, p. 408.
understanding of the operation and analysis of electronics
is essential to the electrical engineer. Electronics has
become a specialty distinct from other disciplines within (IEEE). With a membership of over 300,000, the IEEE is
electrical engineering. Because the field of electronicsthe largest professional organization in the world. Members
is ever advancing, an electronics engineer must updat®enefitimmensely from the numerous magazines, journals,
his/her knowledge from time to time. The best way to do transactions, and conference/symposium proceedings [pub-
this is by being a member of a professional organizationlished yearly by IEEE. You should consider becoming|an
such as the Institute of Electrical and Electronics EngineerdEEE member.

75
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Network Analysis

Electronic Testing Tutorials

Nodal analysis is also known as the node-voltage
method.

PART | DC Circuits

3.1 INTRODUCTION

Having understood the fundamental laws of circuit theory (Ohm’s law and
Kirchhoff's laws), we are now prepared to apply these laws to develop
two powerful techniques for circuit analysis: nodal analysis, which is
based on a systematic application of Kirchhoff’s current law (KCL), and
mesh analysis, which is based on a systematic application of Kirchhoff’s
voltage law (KVL). The two techniques are so important that this chapter
should be regarded as the most important in the book. Students are
therefore encouraged to pay careful attention.

With the two techniques to be developed in this chapter, we can
analyze almost any circuit by obtaining a set of simultaneous equations
that are then solved to obtain the required values of current or voltage.
One method of solving simultaneous equations involves Cramer’s rule,
which allows usto calculate circuit variables as a quotient of determinants.
The examples in the chapter will illustrate this method; Appendix A also
briefly summarizes the essentials the reader needs to know for applying
Cramer’s rule.

Also in this chapter, we introduce the useR&pice for Windows, a
circuit simulation computer software program that we will use throughout
thetext. Finally, we apply the techniques learned in this chapter to analyze
transistor circuits.

3.2 NODAL ANALYSIS

Nodal analysis provides a general procedure for analyzing circuits using
node voltages as the circuit variables. Choosing node voltages instead
of element voltages as circuit variables is convenient and reduces the
number of equations one must solve simultaneously.

To simplify matters, we shall assume in this section that circuits do
not contain voltage sources. Circuits that contain voltage sources will be
analyzed in the next section.

In nodal analysis, we are interested in finding the node voltages.
Given a circuit withn nodes without voltage sources, the nodal analysis
of the circuit involves taking the following three steps.

Steps to Determine Node Voltages:

1. Select a node as the reference node. Assign voltages
vy, U, . . ., U,_1 t0 the remaining: — 1 nodes. The voltages are
referenced with respect to the reference node.

2. Apply KCL to each of the: — 1 nonreference nodes. Use Ohm'’s
law to express the branch currents in terms of node voltages.

3. Solve the resulting simultaneous equations to obtain the unknown
node voltages.

We shall now explain and apply these three steps.

The first step in nodal analysis is selecting a node asdfiegence
ordatum node. The reference node is commonly called ¢neund since
it is assumed to have zero potential. A reference node is indicated by
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any of the three symbols in Fig. 3.1. The type of ground in Fig. 3.1(b) is
called achassis ground and is used in devices where the case, enclosure,
or chassis acts as a reference point for all circuits. When the potential of
the earth is used as reference, we usestnth ground in Fig. 3.1(a) or

(c). We shall always use the symbol in Fig. 3.1(b).

Once we have selected a reference node, we assign voltage desig-  The number of nonreference nodes s equal to
nations to nonreference nodes. Consider, for example, the circuit in Fig.  the number of independent equations that we
3.2(a). Node 0 is the reference node= 0), while nodes 1 and 2 are will derive.
assigned voltages; andv,, respectively. Keep in mind that the node

voltages are defined with respect to the reference node. As illustrated in
Fig. 3.2(a), each node voltage is the voltage rise from the reference node I l
(b) ©

to the corresponding nonreference node or simply the voltage of that node
with respect to the reference node.

Asthe second step, we apply K CL to each nonreference nodein the @
circuit. To avoid putting too much information on the same circuit, the
circuit in Fig. 3.2(a) isredrawn in Fig. 3.2(b), where we now add i1, iz,
and i3 as the currents through resistors Ry, R, and R3, respectively. At
node 1, applying KCL gives

Figure 3.1 common symbols for
indicating a reference node.

ILh=0L+i1+i» 31
At node 2,
I +i=1i3 (3.2

We now apply Ohm'’s law to express the unknown currents iy, i, and i3 Iy
in terms of node voltages. The key idea to bear in mind is that, since
resistance is a passive element, by the passive sign convention, current

must always flow from a higher potential to alower potential.

t Current flows from a higher potential to a lower potential in a resistor.

We can express this principle as

. Uhigher — V|
i = w 3.3) I

Notethat thisprincipleisin agreement with theway we defined resistance
in Chapter 2 (see Fig. 2.1). With thisin mind, we obtain from Fig. 3.2(b), =
(b)

. vn-—20 .
1=— or 11 = G1U1
Ry Figure 3.2 Typical circuitfor nodal
V71—V alysis.
ip = ! 2 or ir = Ga(vy — V) (34) anayss
R
=279 o hog
13 = RS 13 = G3L2
Substituting Eq. (3.4) in Egs. (3.1) and (3.2) resullts, respectively, in
V1 V1 — V2
IL =1 — 3.5
1 2+ R + R (3.5)
V1 — VU vV
L+ —2=2 (36)

R,  R3

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



78 PART | DC Circuits

In terms of the conductances, Egs. (3.5) and (3.6) become

I =1L+ Givi+ Ga(vy — v2) (37
I + G2(v1 — v2) = Gav (38)

Thethird step in nodal analysisisto solve for the node voltages. If
we apply KCL ton — 1 nonreference nodes, we obtain n — 1 simultaneous
equations such as Egs. (3.5) and (3.6) or (3.7) and (3.8). For the circuit
of Fig. 3.2, we solve Egs. (3.5) and (3.6) or (3.7) and (3.8) to obtain the
node voltages v1 and v, using any standard method, such as the substitu-

Appendix A discusses how to use Cramer's rule. tion method, the elimination method, Cramer’srule, or matrix inversion.
To use either of the last two methods, one must cast the simultaneous
equations in matrix form. For example, Egs. (3.7) and (3.8) can be cast
in matrix form as

G1+ G -Gy vi| |h—1I 39)

-Gy Go+ Gzl |va| I '
which can be solved to get v1 and v,. Equation 3.9 will be generalized
in Section 3.6. The simultaneous equations may also be solved using

calculators such as HP48 or with software packages such as Matlab,
Mathcad, Maple, and Quattro Pro.

Calculate the node voltages in the circuit shown in Fig. 3.3(a).

5A )
@ Solution:
~ Consider Fig. 3.3(b), wherethecircuit in Fig. 3.3(a) hasbeen prepared for
1 «13» 2 nodal analysis. Natice how the currents are selected for the application
of KCL. Except for the brancheswith current sources, the labeling of the
20 60 § 10A currents is arbitrary but consistent. (By consistent, we mean that if, for
example, weassumethat i, entersthe 4 Q resistor from theleft-hand side,
i> must leave the resistor from the right-hand side.) The reference node
= is selected, and the node voltages v, and v, are now to be determined.
@ At node 1, applying KCL and Ohm’s law gives
— -0
5A i1 =1I>+1i3 B 5= I v
Q 4 2
$i1=5 g fi1=5 Multiplying each term in the last equation by 4, we obtain
is 40 v iy=10 20=v1 — vy + 2vq
V1 — 2= or
bia 2 s | 3v; — vp = 20 (3.11)
2Q § 6Q § Q 10A At node 2, we do the same thing and get
— -0
ip+is=1i1+is == ¥+10=5+U2
= Multiplying each term by 12 resultsin
(b) 3v1 — 3vp + 120 = 60 + 2v,
Figure 3.3 For Example 3.1: (a) original or
circuit, (b) circuit for analysis. —3v; + 50, = 60 (3.12)
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Now we have two simultaneous Egs. (3.1.1) and (3.1.2). We can solve
the equations using any method and obtain the values of v1 and v;.

METHOD ii Using the elimination technique, we add Egs. (3.1.1) and
(3.1.2).

4v, = 80 — v, =20V
Substituting v, = 20in Eq. (3.1.1) gives

40
3v1 —20=20 = vy = 3= 13.33V

METHOD P4 To use Cramer's rule, we need to put Egs. (3.1.1) and

(3.1.2) in matrix form as

EIHEE

The determinant of the matrix is

3 -1
A_‘_S 5‘_15—3_12
We now obtain v, and v, as
'20 —1‘
A 60 5 100 + 60
oy = 21 _ = 20T 1333y
A A 12
‘ 3 20’
A -3 60 180 + 60
Vo= =2 = = PP v
A A 12

giving us the same result as did the elimination method.

If weneed the currents, we can easily cal culatethem from thevalues
of the nodal voltages.

i =5A, ip= 2 ; Y2 _16667A,  iz= ”—21 — 6.666

is=10A, 5= ”—62 — 3333A

The fact that i, is negative shows that the current flows in the direction

opposite to the one assumed.
PRACTICE PROBLEMEM
Obtain the node voltagesin the circuit in Fig. 3.4. 1 6Q 2
Answer: vy = —2V, vy = —14V. VYW
1A 20 70 @ 4A

Figure 34 For Practice Prob. 3.1.
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Determine the voltages at the nodesin Fig. 3.5(a).
Solution:

The circuit in this example has three nonreference nodes, unlike the pre-
vious example which hastwo nonreference nodes. We assign voltagesto
the three nodes as shown in Fig. 3.5(b) and label the currents.

4Q 4Q
A
. i . . [
X 20 ) 80 ti 20 v, 2 80 'z th
1 A 3 V1 ——W AN V3
sat| i i |}is
3n @ §4Q D a@ §4Q ) 2
0
@ (b
Figure 3.5 For Example 3.2: (a) original circit, (b) circuit for analysis.
At node 1,
. vy — v v — VU
3=y ti N 3_ 143 122
Multiplying by 4 and rearranging terms, we get
3vy — 2vp —v3 =12 (3.2.1)
At node 2,
L vi—v2  vz—v3  v2—0
iy, =12+ 13 s > = 8 2
Multiplying by 8 and rearranging terms, we get
—4vy 4+ Tvy —v3 =0 (3.2.2)

At node 3,

i1+io=2i,

=

V1 — U3

v — vz 2(v1—v2)

4 8
Multiplying by 8, rearranging terms, and dividing by 3, we get

2v1 —3va+v3=0

2

(32.3)

We have three simultaneous equations to solve to get the node voltages
v1, v2, and vs. We shall solve the equationsin two ways.

METHOD [} Using the dlimination technique, we add Egs. (3.2.1) and

(3.2.3).

5v1 — bvy, =12
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or

12
V] — Uy = T = 2.4 (3.2.4)

Adding Egs. (3.2.2) and (3.2.3) gives
—2v1 +4v, =0 — v, = 2v; (3.25)
Substituting Eq. (3.2.5) into Eq. (3.2.4) yields
200 — v, = 2.4 - vy = 2.4, vy = 2v, =48V

From Eg. (3.2.3), we get

v3=3v2 — 201 =3v2 —dvp = —vo =24V
Thus,

vy =48V, v, =24V, vz =—24V

METHOD P} To use Cramer’s rule, we put Egs. (3.2.1) to (3.2.3) in

matrix form.
3 -2 -1 V1 12
—4 7 =-1(|v| =] 0
2 -3 1 U3 0

From this, we obtain

Aq
A

Az
) U2 = =
2T A

’ U3—
A

V] =

where A, A1, A,, and Az arethedeterminantsto becalculated asfollows.
As explained in Appendix A, to calculate the determinant of a 3 by 3
matrix, we repeat the first two rows and cross multiply.

3 -2 -1
A=|-4 7 -1 =
2 -3 1

=21-124+4+14-9-8=10

Similarly, we obtain

=844+04+0-0-36-0=48

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



82 PART | DC Circuits

=04+0-24-0-0+48=24

=0+144+0-168-0—-0=-24

+
+
+

Thus, we find

Aj 48 A
TA T 10 2EAT10

24

Ay —24
Ug—X—E——24V

as we obtained with Method 1.

PRACTICE PROBLEMER
Find the voltages at the three nonreference nodesin the circuit of Fig. 3.6.

2Q

4i Answer: vy =80V, v, =-64V,v3=156V.

30 o X
@D

1 ANV -
*i hay

10 @ <40 Z60

3

Figure 3.6 For Practice Prob. 3.2.

3.3 NODAL ANALYSIS WITH VOLTAGE SOURCES

Electronic Testing Tutorials
We now consider how voltage sources affect nodal analysis. We use the
circuitinFig. 3.7forillustration. Consider thefollowingtwo possibilities.

CASE I} 1f avoltage source is connected between the reference node
and a nonreference node, we simply set the voltage at the nonreference

node equal to the voltage of the voltage source. In Fig. 3.7, for example,
vy =10V (3.10)

Thusour analysisissomewhat simplified by thisknowledge of thevoltage

at this node.
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v NW— > 25

v @ §89 §GQ

Figure 3.7 A circuit with a supernode.

CASE #4 1 the voltage source (dependent or independent) is connected
between two nonreference nodes, thetwo nonreference nodesform agen-
eralized node or supernode; we apply both KCL and KVL to determine A supernode may be regarded asa closed surface

the node voltages. enclosing the voltage source and its two nodes.

A supernode is formed by enclosing a (dependent or independent) voltage
source connected between two nonreference nodes and any
elements connected in parallel with it.

In Fig. 3.7, nodes 2 and 3 form a supernode. (We could have more than
two nodes forming a single supernode. For example, see the circuit in
Fig. 3.14.) We analyze a circuit with supernodes using the same three
steps mentioned in the previous section except that the supernodes are
treated differently. Why? Because an essential component of nodal
analysis is applying KCL, which requires knowing the current through
each element. Thereisno way of knowing the current through a voltage
source in advance. However, KCL must be satisfied at a supernode like
any other node. Hence, at the supernode in Fig. 3.7,

I1+is=1ir+ i3 (3.118)

or
V] — V2 V1 — U3 v —0 v3—0 T ,
= 3.11b) - -
2 4 8 6 S sV
To apply Kirchhoff’s voltage law to the supernodein Fig. 3.7, we redraw ' """"""""" . @ +
the circuit as shown in Fig. 3.8. Going around the loop in the clockwise ; ;
direction gives 5 V2 q Y
—v,+54+v3=0 - vp—v3=>5 (3.12) e e o
From Egs. (3.10), (3.11b), and (3.12), we obtain the node voltages. Figure 38 Applying KVL to a supernode.
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Note the following properties of a supernode:

1. The voltage source inside the supernode provides a constraint
equation needed to solve for the node voltages.

2. A supernode has no voltage of its own.
3. A supernode requires the application of both KCL and KVL.

2a @ %Q 49% @ 7~

Figure 3.9 For Example 3.3.

For the circuit shown in Fig. 3.9, find the node voltages.
Solution:
The supernode contains the 2-V source, nodes 1 and 2, and the 10-92 re-

sistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives
2=i1+ir+7
Expressing i; and i, in terms of the node voltages

U1—0 U2—0

2=
2 T2

+7 — 8=2v, +vy,+28

or
vy = —20—21; (3.3.1)

To get the relationship between v; and vy, we apply KVL to the circuit
in Fig. 3.10(b). Going around the loop, we obtain

—v1—24+v=0 == vy =v+2 (332
From Egs. (3.3.1) and (3.3.2), we write
vp=v+2=-20—21
or
3y =-22 == vy = —7.333V

and v, = v +2 = —5.333 V. Notethat the 10-2 resistor does not make
any difference because it is connected across the supernode.

L 2% : 2v :
EaN @
2A <+> § 2Q 4Q C* A i ;Vl q Vzi i
T e h ] !
= (b)
@

Figure 3.10 Applying: (a) KCL to the supernode, (b) KVL to the loop.
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PRACTICE PROBLEMENE

Find v and i in the circuit in Fig. 3.11.

3V
4Q A
Answer: —0.2V,14A. O :
+
A 3Q § v 2Q § 6Q
Figure 3.1l For Practice Prob. 3.3.

M3.4

Find the node voltagesin the circuit of Fig. 3.12.

30
AV
_______ + VX - e m————
20V 3vy
2 6Q 3
1 A A & 4

|

Figure 3.12 For Example 3.4.

Solution:

Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL to
the two supernodes asin Fig. 3.13(a). At supernode 1-2,

is+10=i1+i»

Expressing thisin terms of the node voltages,

v3—v2+10: Ul—v4+ﬂ
2
or
5v1 + vy, — v3 — 2v4 = 60 (34.1
At supernode 3-4,
. . . . V1 — VU v3 — U2 v, VU3
I1=1i3+1is+1s5 - 13 1 - 6 +T4+Z
or
4vi + 2vo — Svz — 16v4 =0 (34.2)
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30
30
AN
fll X *ll @
Wl v 6Q T 20V is 3y
l\l -------- ! t— 4_'\ -------- V4'I p AN -~ A =
I R ig iz i1, "+ N\ + 60 L +1
te e Ly | | :
20 Q 10A 40 §1Q v @ Vy! PVg @ 7%
i g Vg e B g S gy
@ (b)

Figure 313 Applying: (@) KCL to the two supernodes, (b) KVL to the loops.

We now apply KVL to the branches involving the voltage sources
as shownin Fig. 3.13(b). For loop 1,

—v1+20+v,=0 — vy — vy =20 (3.4.3)
For loop 2,
—v3+3vu, +vg=0
But v, = v; — v4 SO that
3vi —v3—2v4=0 (34.9)
For loop 3,
vy —3u, +6i3—20=0
But 6i3 = v3 — v and v, = v1 — v4. Hence
—2vy —v2+v3+ 204 =20 (3.4.5)

We need four node voltages, vy, vy, v3, and vg, and it requires
only four out of the five Egs. (3.4.1) to (3.4.5) to find them. Although
the fifth equation is redundant, it can be used to check results. We can
eliminate one node voltage so that we solve three simultaneous equations
instead of four. From Eq. (3.4.3), vo = v; — 20. Substituting this into
Egs. (3.4.1) and (3.4.2), respectively, gives

6v; — v3 — 2vs = 80 (3.4.6)
and
6v; — Svz — 16vg = 40 (3.4.7)
Equations (3.4.4), (3.4.6), and (3.4.7) can be cast in matrix form as

3 -1 -2||wn 0
6 -1 —-2||vz| =180
6 -5 16| |va 40
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Using Cramer’srule,
3 -1 -2 0o -1 -2
A=|6 -1 -2 =-18, A =180 -1 -2/ =-480
6 -5 -—-16 40 -5 -16
3 0 -2 3 -1 O
Az3=|6 80 —2|=-3120, Ay=|6 —1 80| =840
6 40 -16 6 -5 40
Thus, we arrive at the node voltages as
A —480 Az —3120
As 840

and v, = v; — 20 = 6.667 V. We have not used Eq. (3.4.5); it can be used
to cross check results.

PRACTICE PROBLEMENK

87

@

Network Analysis

Find v1, v, and vz in the circuit in Fig. 3.14 using nodal analysis.
Answer: v =3.043V, vo = —6.956 V, v3 = 0.6522 V.

6Q
v Si
2
Vi [ S Vs
* P
§ 2Q 4Q § 3Q
Figure 3.14  For Practice Prob. 3.4.

3.4 MESH ANALYSIS

Mesh analysis provides another general procedure for analyzing circuits,
using mesh currents asthe circuit variables. Using mesh currentsinstead
of element currents as circuit variables is convenient and reduces the
number of equations that must be solved simultaneously. Recall that a
loop is a closed path with no node passed more than once. A mesh isa
loop that does not contain any other loop within it.

Nodal analysis applies KCL to find unknown voltages in a given
circuit, whilemesh analysisappliesK VL tofind unknown currents. Mesh
analysis is not quite as general as nodal analysis because it is only ap-
plicable to a circuit that is planar. A planar circuit is one that can be
drawn in a plane with no branches crossing one another; otherwiseit is
nonplanar. A circuit may have crossing branches and still be planar if it
can be redrawn such that it has no crossing branches. For example, the

Electronic Testing Tutorials

Mesh analysis is also known as loop analysis or the
mesh-current method.
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S @5

4Q

8Q 7Q

@

1A

2Q

1Q 3Q
4Q
5Q A

89% m%

(b)

Figure 315 (a) A planar circuit with crossing

6Q

branches, (b) the same circuit redrawvn with no

crossing branches.

Although path abedefa is  loop and not a mesh,
KVL still holds. This is the reason for loosely
using the terms foop analysis and mesh analysis to
mean the same thing.

PART | DC Circuits

circuit in Fig. 3.15(a) has two crossing branches, but it can be redrawn
asin Fig. 3.15(b). Hence, the circuit in Fig. 3.15(a) is planar. However,
the circuit in Fig. 3.16 is nonplanar, because there is no way to redraw
it and avoid the branches crossing. Nonplanar circuits can be handled
using nodal analysis, but they will not be considered in this text.

10
AWV
50
4Q§ 7Q §ZQ
6Q
ANV 3Q
130 VW
5A 12Q §9§2
<*> § 11Q 8Q
NWY
10Q

Figure 3.16 A nonplanar circuit.

To understand mesh analysis, we should first explain more about
what we mean by a mesh.

{ A mesh is a loop which does not contain any other loops within it.

In Fig. 3.17, for example, paths abefa and bcdeb are meshes, but path
abcdefa is not a mesh. The current through a mesh is known as mesh
current. In mesh analysis, we are interested in applying KVL to find the
mesh currents in a given circuit.

Iy Ry
—
MWV

|
b _2 R,

DI
vi@ g §R3 @ )2

c

f e d

Figure 3.17 A circuit with two meshes.

In this section, we will apply mesh analysis to planar circuits that
do not contain current sources. In the next sections, we will consider
circuits with current sources. In the mesh analysis of a circuit with n
meshes, we take the following three steps.
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Steps to Determine Mesh Currents:
1. Assign mesh currentsiy, iy, . .. , i, tothe n meshes.

2. Apply KVL to each of the n meshes. Use Ohm’s law to express
the voltages in terms of the mesh currents.

3. Solve the resulting n simultaneous equations to get the mesh
currents.

To illustrate the steps, consider the circuit in Fig. 3.17. The first
step requires that mesh currents i; and i, are assigned to meshes 1 and

2. Although a meSh current may be assigned to each mesh in an arbi- The direction of the mesh current is arbitrary—
trary direction, it is conventional to assume that each mesh current flows (clockwise or counterclockwise)—and does not
clockwise. affect the validity of the solution.

As the second step, we apply KVL to each mesh. Applying KVL
to mesh 1, we obtain

—Vi4 Ryi1 + R3(iy —i2) =0
or
(R1+ R3)i1 — R3io=Vy (3.13)
For mesh 2, applying KVL gives
Raiz + Vo 4+ R3(iz —i1) =0
or
—Rzi1 + (R2+ R3)iza = — V2 (319

Notein Eq. (3.13) that the coefficient of i1 isthe sum of theresistancesin
the first mesh, while the coefficient of i, isthe negative of the resistance
common to meshes 1 and 2. Now observe that the same is true in Eq.

(3.14)_. This can serve asa shor_tcut way of writing the mesh equations. The shortcut way will not apply if one mesh cur-
We will exploit thisideain Section 3.6. rentis assumed clockwise and the other assumed
Thethird step isto solve for the mesh currents. Putting Egs. (3.13) anticlockwise, although this is permissible.
and (3.14) in matrix form yields
Ri+R3 —Rz ||i1 Vi
S = .1
|: —R3 R+ Rs] |:12:| [—V2:| 319

which can be solved to obtainthemesh currentsi; andi,. Weareat liberty
to use any technique for solving the simultaneous equations. According
to Eqg. (2.12), if a circuit has n nodes, b branches, and / independent
loops or meshes, then! = b —n + 1. Hence, I independent simultaneous
equations are required to solve the circuit using mesh analysis.

Notice that the branch currents are different from the mesh currents
unless the mesh is isolated. To distinguish between the two types of
currents, we use i for a mesh current and I for a branch current. The
current elements I, I, and I3 are algebraic sums of the mesh currents.
Itisevident from Fig. 3.17 that

Iy =iy, I =iy, I3=i1—i> (3.16)
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A

15v @ @

Figure 3.18  For Example 35.

PRACTICE PROBLEMENS

For the circuit in Fig. 3.18, find the branch currents I3, I, and I3 using
mesh analysis.

Solution:
We first obtain the mesh currents using KVL. For mesh 1,
—15+ 5i1 + 10(i; —i2) +10=0

or
3i,—2i,=1 (35.1)
For mesh 2,
6i + 4ip + 10(i; — i) —10=0
or
i1 =21 (35.2)

METHOD ] Using the substitution method, we substitute Eq. (3.5.2)

into Eq. (3.5.1), and write
6i,—3—2i,=1 - ir=1A

FromEq. (3.5.2),i1 =2i, —1=2—-1=1A. Thus,
L=i=1A, L=i,=1A,

METHOD 1 To use Cramer’srule, we cast Egs. (3.5.1) and (3.5.2) in
3

matrix form as
|1
-1 |1

We obtain the determinants

Is=i,—i,=0

1

gl

i

3 -2
A= 1 2‘:6—2:4
1 -2 3
Alz‘l 2‘:2+2=4, Azz‘_l 1‘:3+1=4

Thus,

A A

="t — 1A, ip=_2—1A

A A

as before.

20 90
A
: 120
12v<’:> @ Q 8V
2
A
40 30

Figure 3.19 For Practice Prob. 35.

Calculate the mesh currents i; and i in the circuit of Fig. 3.19.
Answer: ip=3A,i,=0A.
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|
Use mesh analysisto find the current i, in the circuit in Fig. 3.20.
Solution:
We apply KVL to the three meshesin turn. For mesh 1,

—24 4+ 10(iy — ip) + 12(iy — i3) =0

or
11i; — 5i, — 6i3 =12 (36.1)
For mesh 2,
24iy + 4A(ip — i3) + 103, —i1) =0
or
—5i1 +19i, — 2i3=0 (36.2)
For mesh 3,

4i, +12(i3 — i1) + iz —iz) =0
But at node A, i, = i1 — i, SO that
A(iy —ip) + 12(i3 — i1) + 4(i3—i2) =0
or
—i1—i2+2i3=0 (36.3)
In matrix form, Egs. (3.6.1) to (3.6.3) become

11 -5 —67[i 12
-5 19 -2||i|=]|0
1 -1 2] lis 0

We obtain the determinants as

=24 + 120= 144

10Q

v @ @

12Q

Figure 3.20  For Example 3.6.
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-5
Ay = =60 + 228= 288
— +
— 19 +
- +
We cal culate the mesh currents using Cramer’s rule as
. Al 432 . Az 144
=—=-—=225A =—=—=075A
L=) T T ERA 2T T 0P
Az 288
3=—=—=15A
BTN T 102

Thus, Ip=1i1— 2= 15A.

PRACTICE PROBLEMBEI

6Q Using mesh analysis, find i, in the circuit in Fig. 3.21.
MM
Answer: —5A.

NN
0 4Q 8Q

20v (;;S 29% <:F 101,

Figure 321 For Practice Prob. 3.6.

3.5 MESH ANALYSIS WITH CURRENT SOURCES

Applying mesh analysisto circuits containing current sources (dependent
or independent) may appear complicated. But it is actually much easier
than what we encountered in the previous section, because the presence
of the current sources reduces the number of equations. Consider the
following two possible cases.

CASE I} When acurrent source exists only in one mesh: Consider the
circuit in Fig. 3.22, for example. We set i, = —5 A and write a mesh

30
WW equation for the other mesh in the usual way, that is,
6Q @ #)SA

Electronic Testing Tutorials

—10+44i; +6(i1 — i) =0 - i1=—-2A (3.17)

4Q

ov @ (%)

CASE ] When a current source exists between two meshes: Consider

the circuit in Fig. 3.23(a), for example. We create a supermesh by ex-

Figure 322 A circuiit with a current source. cluding the current source and any elements connected in series with it,
as shown in Fig. 3.23(b). Thus,

A supermesh results when two meshes have a (dependent or independent)
current source in common.
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60Q T 10Q
, \ 60Q 100Q
/20 “ AN
20v @ @ 5 } @ 40 L ~ !
.‘ 20V ’:) : @ @ : §4Q
" BA / | 1
‘\\ R e
i 0.
! e > Excludethese (b)
(@ elements

Figure 323 (a) Two meshes having a current source in common, (b) asupermesh, created by excluding the current source.

As shown in Fig. 3.23(b), we create a supermesh as the periphery of
the two meshes and treat it differently. (If a circuit has two or more
supermeshes that intersect, they should be combined to form a larger
supermesh.) Why treat the supermesh differently? Because mesh analy-
sis applies KVL—which requires that we know the voltage across each
branch—and we do not know the voltage across a current source in ad-
vance. However, a supermesh must satisfy KVL like any other mesh.
Therefore, applying KVL to the supermesh in Fig. 3.23(b) gives

—20+6i1 +10i, +4i, =0
or
6i, + 14i, = 20 (3.18)

We apply KCL to a node in the branch where the two meshes intersect.
Applying KCL to node 0 in Fig. 3.23(a) gives

ir=1i1+6 (3.19)
Solving Egs. (3.18) and (3.19), we get
i1=—-3.2A, i»=28A (3.20)

Note the following properties of a supermesh:

1. The current source in the supermesh is not completely ignored;
it provides the constraint equation necessary to solve for the
mesh currents.

2. A supermesh has no current of its own.
3. A supermesh requires the application of both KVVL and KCL.

£ XA 7 L E IR

For the circuit in Fig. 3.24, find i; to i4 using mesh analysis.
Solution:

Notethat meshes1and 2 form asupermesh sincethey haveanindependent
current sourcein common. Also, meshes2 and 3 form another supermesh
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Figure 324 For Example 3.7.
because they have a dependent current source in common. The two

supermeshes intersect and form alarger supermesh as shown. Applying
KVL to the larger supermesh,

2i1 4 4iz + 8(iz — is) +6i, =0

or
i1+ 3ip+6i3—4i4,=0 (3.7.1)
For the independent current source, we apply KCL to node P:
ir=1i1+5 (37.2)
For the dependent current source, we apply KCL to node Q:
ir» =i3+ 3i,
But i, = —ia4, hence,
ip =i3— 3i4 (3.7.3)

Applying KVL in mesh 4,
2is+83s—i3)+10=0
or
5i4 — 4iz = -5 (3.7.4)
From Egs. (3.7.1) to (3.7.4),
i1 =—75A, ip=—25A, i3 =393A, ig = 2143 A

PRACTICE PROBLEMEN

Use mesh analysis to determine iy, i, and iz in Fig. 3.25.
20 @ 2Q  Answer: iy =3.474A,i, =0.4737A, i3 = 11052 A.

sv @ @ 3A 40
@

Figure 3.25  For Practice Prob. 3.7. Network Analysis
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3.6 NODAL AND MESH ANALYSES BY INSPECTION

This section presents ageneralized procedure for nodal or mesh analysis.
It is ashortcut approach based on mere inspection of acircuit.

When all sources in acircuit are independent current sources, we
do not need to apply KCL to each node to obtain the node-voltage equa-
tions as we did in Section 3.2. We can obtain the equations by mere
inspection of the circuit. As an example, let us reexamine the circuit in
Fig. 3.2, shown again in Fig. 3.26(a) for convenience. The circuit has I2
two nonreference nodes and the node equations were derived in Section
32as

vy G,
|:Gl + G -G ] |:v1] _ |:11 — 12] (3.21) Va
-Gy G+ Gs| v I '
Observe that each of the diagona terms is the sum of the conductances h (D Gy Gs
connected directly to node 1 or 2, while the off-diagonal terms are the
negatives of the conductances connected between the nodes. Also, each
term on the right-hand side of Eq. (3.21) is the algebraic sum of the -
currents entering the node. @
In generdl, if a circuit with independent current sources has N

nonreference nodes, the node-voltage equations can be written in terms
of the conductances as

Gu G -+ Guy V1 1:1 V1<"_D @ Rs @ (f)Vz

Ga Gz -+ Goyv || v2 i2
. . ; =1 (3.22)
Gyvi Gwn2 ... Gyn| Loy in (b)
or smply Figure 3.26  (a) Thecircuitin Fig. 3.2,
Gv =i (3.23) (b) thecircuit in Fig. 3.17.
where

G = Sum of the conductances connected to node k

G = G jx = Negative of the sum of the conductances directly
connecting nodesk and j, k £ j

vr = Unknown voltage at node k

i = Sum of all independent current sources directly
connected to node &, with currents entering the node
treated as positive

G is caled the conductance matrix, v is the output vector; and i is the
input vector. Equation (3.22) can be solved to obtain the unknown node
voltages. Keepinmindthat thisisvalid for circuitswith only independent
current sources and linear resistors.

Similarly, wecan obtain mesh-current equati onsby inspectionwhen
alinear resistive circuit has only independent voltage sources. Consider
thecircuitin Fig. 3.17, shown again in Fig. 3.26(b) for convenience. The
circuit has two nonreference nodes and the node equations were derived
in Section 3.4 as

Ri+R3 —Rs3 i1 U1
. = 24
|: —R3 Ry + R3i| |:lz] |:—v2:| (324)
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We notice that each of the diagonal termsisthe sum of the resistancesin
the related mesh, while each of the off-diagonal terms is the negative of
the resistance common to meshes 1 and 2. Each term on the right-hand
side of Eq. (3.24) isthe algebraic sum taken clockwise of all independent
voltage sourcesin the related mesh.

In general, if the circuit has N meshes, the mesh-current equations
can be expressed in terms of the resistances as

Riu Rz ... Ruwy i1 U1
Ry Rx»n ... Roy i V2
; ; . ) =1 (3.25)
Ry1 Ry2 ... Rynd Lin N
or simply
Ri=v (3.26)
where

R = Sum of the resistancesin mesh k

Ry = Rj; = Negative of the sum of the resistances in common with
meshesk and j, k # j
ir = Unknown mesh current for mesh & in the clockwise
direction

v, = Sum taken clockwise of all independent voltage sources
in mesh &, with voltage rise treated as positive

R iscalled the resistance matrix, i isthe output vector; and v isthe input
vector. We can solve Eq. (3.25) to obtain the unknown mesh currents.

Write the node-voltage matrix equations for the circuit in Fig. 3.27 by
inspection.

vi 5Q v, 8Q Vg

Vg 8Q
3n @ no  @)1LA %49 29% @ 4a
L

Figure 327 For Example 338.
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Solution:

The circuit in Fig. 3.27 has four nonreference nodes, so we need four
node equations. Thisimplies that the size of the conductance matrix G,
is4 by 4. The diagonal terms of G, in siemens, are

1 1 1 1 1
G11=E+E=0-3, G22=§+§+1:1~325
1 1 1 1 1 1
G33=§+§+Z=0-5, G44=§+§+1=1-625
The off-diagonal terms are
1
G12 = —g = —0-2, G13 = Gl4 =0

1 1
Gy =—-0.2, Gy = 3= —0.125, Gy = -1= -1

1
Gz =0, G3 = —0.125, Gz = 5= —0.125

G41 = 0, G42 = —l, G43 = -0.125
Theinput current vector i has the following terms, in amperes:
i1 =3, iph=-1—-2=-3, iz =0, is=2+4=6

Thus the node-voltage equations are

03 -02 0 0 U1 3
-02 1325 -0125 -1 v | | -3
0 -0125 05 —-0125| fwvs| | O
0o -1 —0.125 1625 | va 6

which can be solved to obtain the node voltages vy, vs, vz, and vy.

PRACTICE PROBLEM I

By inspection, obtain the node-voltage equations for the circuit in Fig. 1Q vz 4Q v,
3.28. W
Answer: 1A
13 -02 -1 0 v1 0 y 5Q v
02 02 0 0 [|w| | 3 : 2 20 @) 3a
-1 0 125 —-025||vs| | -1 oA
0 0 -025 075|]uvs 3 100
L

Figure 3.28  For Practice Prob. 3.8.

e L BB

By inspection, writethe mesh-current equationsfor thecircuitin Fig. 3.29.
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5Q

2Q 2Q

@ 4Q§ 30

2Q

- : - @® v
40 @39 @ %DGV

Figure 3.29  For Example 3.9.

Solution:

We have five meshes, so the resistance matrix is 5 by 5. The diagonal
terms, in ohms, are:

Ru=54+2+2=9  Rp=2+4+1+14+2=10
R=2+34+4=9  Ryu=1+3+4=8  Rs=1+3=4

The off-diagonal terms are:

Rip = -2, Riz = =2, Ri4=0=Rys
Ry = —2, Ryz = —4, Ros = -1, Rys=—1
Rz = -2, R3 = —4, Rz, = 0= Rgs
R4y =0, Ryp = -1, Ry =0, Riys = -3
Rs; =0, Rsp = —1, Rs3 =0, Rsq = —3

Theinput voltage vector v has the following termsin volts:

v1=4, 02210—426
v3=—-12+6=—6, vg =0, v5 = —6

Thus the mesh-current equations are:

9 -2 -2 0 O0f]|i 4
-2 10 -4 -1 -1]|i 6
-2 -4 9 0 O]||iz|=]|—-6

0 -1 0 8 -3|]|ia 0

0 -1 0 -8 4]||is —6

From this, we can obtain mesh currentsiy, io, i3, ia, and is.

By inspection, obtain the mesh-current equations for the circuit in Fig.
3.30.
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50Q

400 300 D 12V

. 100 200
2av @ @

)
@

800 @0V g
Figure 3.30  For Practice Prob. 3.9.
Answer:
170 —-40 0 -80 0] |i1 24
-40 80 -—-30 -10 0] |i2 0
0 -30 50 0 -20||iz| =|-12
—-80 -10 0 90 0] |ia 10
0 0 -20 0 80f]is -10

99

3.1 NODAL VERSUS MESH ANALYSIS

Both nodal and mesh analyses provide a systematic way of analyzing a
complex network. Someone may ask: Given a network to be analyzed,
how do we know which method is better or more efficient? The choice
of the better method is dictated by two factors.

Thefirst factor isthe nature the particular network. Networks that
contain many series-connected el ements, voltage sources, or supermeshes
are more suitable for mesh analysis, whereas networks with parallel-
connected elements, current sources, or supernodes are more suitable for
nodal analysis. Also, a circuit with fewer nodes than meshes is better
analyzed using nodal analysis, while a circuit with fewer meshes than
nodes is better analyzed using mesh analysis. The key is to select the
method that results in the smaller number of equations.

The second factor isthe information required. |f node voltages are
required, it may be expedient to apply nodal analysis. If branch or mesh
currents are required, it may be better to use mesh analysis.

Itishelpful to befamiliar with both methods of analysis, for at least
two reasons. First, one method can be used to check the results from the
other method, if possible. Second, since each method hasits limitations,
only one method may be suitable for a particular problem. For example,
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Appendix D provides a tutorial on using PSpice

for Windows.

120V
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mesh analysis is the only method to use in analyzing transistor circuits,
aswe shall seein Section 3.9. But mesh analysis cannot easily be used to
solve an op amp circuit, as we shall seein Chapter 5, because thereisno
direct way to obtain the voltage across the op amp itself. For nonplanar
networks, nodal analysisis the only option, because mesh analysis only
applies to planar networks. Also, nodal analysis is more amenable to
solution by computer, asit iseasy to program. Thisalowsoneto analyze
complicated circuits that defy hand calculation. A computer software
package based on nodal analysisisintroduced next.

3.8 CIRCUIT ANALYSIS WITH PSPICE

PSpiceisacomputer software circuit analysis program that we will grad-
ually learn to use throught the course of thistext. This section illustrates
how to use PSpice for Windows to analyze the dc circuitswe have studied
so far.

The reader is expected to review Sections D.1 through D.3 of Ap-
pendix D before proceeding in thissection. It should be noted that PSpice
isonly helpful in determining branch voltages and currents when the nu-
merical values of all the circuit components are known.

30Q 40Q

Figure 3.31

0

For Example 3.10.

3A

Use PSpice to find the node voltagesin the circuit of Fig. 3.31.
Solution:

Thefirst stepisto draw the given circuit using Schematics. If onefollows
theinstructionsgivenin Appendix sections D.2 and D.3, the schematicin
Fig. 3.32 isproduced. Sincethisisadc anaysis, we use voltage source
VDC and current source |DC. The pseudocomponent VIEWPOINTS are
added to display therequired nodevoltages. Oncethecircuitisdrawn and
saved as examn310.sch, we run PSpice by selecting Analysis’'Simulate.
The circuit is simulated and the results are displayed on VIEWPOINTS
and also saved in output file exam310.out. The output file includes the
following:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1)  120.0000 (2) 81.2900 (3) 89.0320

indicating that V; = 120V, V, = 81.29V, V3 = 89.032 V.

120. qoolo 1 8L 29“_002 Rs 890320 5
MW :
20 10
+ I DC
120 V= V1 R2<Z 30 R4§4o I1CD3A

o

Figure 3.32  For Example 3.10; the schematic of the circit in Fig. 3.31.
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PRACTICE PROBLEMERIK

For the circuit in Fig. 3.33, use PSpice to find the node voltages.

1 ﬁi > 1000 5
& AWV
3OQ§ 60Q 500 §259 (’: 200V
0

Figure 3.33  For Practice Prob. 3.10.

Answer: V3 =-40V, V, =57.14V, V3 =200 V.

M3.||

In the circuit in Fig. 3.34, determine the currentsiy, ip, and i3.
Solution:

TheschematicisshowninFig. 3.35. (Theschematicin Fig. 3.35includes
the output results, implying that it isthe schematic displayed onthe screen
after the simulation.) Notice that the voltage-controlled voltage source
ElinFig. 3.35isconnected so that itsinput isthe voltage across the 4-2
resistor; itsgainisset equal to 3. Inorder to display therequired currents,
we insert pseudocomponent IPROBES in the appropriate branches. The
schematic is saved as exam311.sch and simulated by selecting Analy-
sig/'Simulate. The results are displayed on IPROBES as shown in Fig.
3.35 and saved in output file exam311.out. From the output file or the
IPROBES, weobtaini; =i, = 1.333 A and i3 = 2.667 A.

10
AV
3
40 20

—«/vvv—<>

yin i s

L

24V 20 8Q 4Q§vo

Figure 334 For Example 3.11.
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E | El
-+
2 ©
—/\/\N\/—I | S
R5
R1 1
MW MW
4 R6
+ R2 =2 R3 =8 R4 = 4
24 V=V1
1. 333E+00 1. 333E+00 |2.667E+00

o
Figure 3.35  The schematic of the circuiit in Fig. 3.34.

PRACTICE PROBLEMENNE

Use PSpice to determine currents iy, i», and i3 in the circuit of Fig. 3.36.

_il, 4Q
MWV Answer: i; = —0.4286A,i, = 2.286 A, i3 =2A.
2A
s
e bia
20

§1Q Y il§2§z

0V

Figure 3.36  For Practice Prob. 3.11.

3.9 APPLICATIONS: DC TRANSISTOR CIRCUITS

Most of us deal with electronic products on a routine basis and have
some experience with personal computers. A basic component for the
integrated circuits found in these electronics and computers is the ac-
tive, three-termina device known as the transistor. Understanding the
transistor is essential before an engineer can start an electronic circuit
design.

Figure 3.37 depictsvariouskinds of transistorscommercially avail-
able. There are two basic types of transistors. bipolar junction transis-
tors (BJTs) and field-effect transistors (FETSs). Here, we consider only
the BJTs, which were the first of the two and are still used today. Our
objective isto present enough detail about the BJT to enable us to apply
the techniques devel oped in this chapter to analyze dc transistor circuits.

Therearetwotypesof BJTs. npnand pnp, withtheir circuit symbols
asshownin Fig. 3.38. Each type hasthree terminals, designated as emit-
ter (E), base (B), and collector (C). For thenpn transistor, the currentsand
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A

e

Figure 3.37  Various types of transistors.
(Courtesy of Tech America.)

voltages of the transistor are specified asin Fig. 3.39. Applying KCL to
Fig. 3.39(a) gives

Ig =1Ip + Ic (327

wherelg, I, and Iz areemitter, collector, and base currents, respectively.
Similarly, applying KVL to Fig. 3.39(b) gives

Vee + Veg + Vee =0 (3.28)

where Vg, Veg, and Ve are collector-emitter, emitter-base, and base-
collector voltages. The BJT can operate in one of three modes. active,
cutoff, and saturation. When transistors operate in the active mode, typ-
|Ca||y Vee =~ 0.7V,

Ic = alg (3.29)

where« iscalled the common-base current gain. In Eq. (3.29), o denotes
the fraction of electrons injected by the emitter that are collected by the
collector. Also,

Ic = Bly (3.30)

where g is known as the common-emitter current gain. Thew and g are
characteristic properties of agiven transistor and assume constant values
for that transistor. Typically, « takes valuesin the range of 0.98 to 0.999,
while 8 takes valuesin the range 50 to 1000. From Egs. (3.27) to (3.30),
it isevident that

Ig =1+ p)Is (331)

and

(3.32)

Collector

Base o— P B

m

Emitter
(€)

Collector

(@]

Base o— n B

Emitter

(b)

Figure 3.38  Two types of BJTs and
their circuit symbols: (a) npn, (b) pnp.

(b)

Figure 339 The terminal
variables of an npn transistor:
(a) currents, (b) voltages.
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In fact, transistor circuits provide motivation to
study dependent sources.

PART | DC Circuits

These equations show that, in the active mode, the BJT can be modeled as
a dependent current-controlled current source. Thus, in circuit analysis,
the dc equivalent model in Fig. 3.40(b) may be used to replace the npn
transistor in Fig. 3.40(a). Since B in Eq. (3.32) is large, a small base
current controls large currents in the output circuit. Consequently, the
bipolar transistor can serve as an amplifier, producing both current gain
and voltage gain. Such amplifiers can be used to furnish a considerable
amount of power to transducers such as loudspeakers or control motors.

C

+
I
.

Bo—— Ve
VBe _

- E

@ (b

Figure 340 (@ An npn transistor, (b) its dc equivalent
model.

It should be observed in the following examples that one cannot
directly analyze transistor circuits using nodal analysis because of the
potential difference between the terminals of the transistor. Only when
the transistor is replaced by its equivalent model can we apply nodal
analysis.

Find I, Ic, and v, in the transistor circuit of Fig. 3.41. Assumethat the
transistor operates in the active mode and that 8 = 50.

Solution:

For the input loop, KVL gives
—4+ (20 x 10°) + Vgr =0

9

Figure 34| For Example 3.12.
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Since Vg = 0.7 V in the active mode,
407

= T 165 uA
20 x 103 H

B

But
Ic = BIp =50 x 165 A = 8.25 mA
For the output loop, KVL gives
—v, — 100/ +6=0
or
v, =6—100/c = 6—0.825=5.175V

Note that v, = Vg inthis case.

PRACTICE PROBLEMENN

For the transistor circuit in Fig. 3.42, let 8 = 100 and V3 = 0.7 V. De-
termine v, and V¢g.

Answer: 2876V, 1.984V.

Figure 34)  For Practice Prob. 3.12.

M3.|3

For the BJT circuitin Fig. 3.43, 8 = 150 and Vz = 0.7 V. Find v,. 1kQ
Solution:

We can solve this problem in two ways. Oneway is by direct analysis of
the circuit in Fig. 3.43. Another way is by replacing the transistor with
its equivalent circuit.

METHOD l} We can solve the problem as we solved the problem in

the previous example. We apply KVL to the input and output loops as
shown in Fig. 3.44(a). For loop 1,

2 =100 x 10°/; 4+ 200 x 10°/, (313.1) .
For loop 2, Figure 343 For Example 3.13.

Ve = 0.7 =200 x 10°1, = L, =35uA (3132
For loop 3,
—v, —1000/c + 16 =0
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or
v, = 16 — 1000/¢ (3.13.3)
From Egs. (3.13.1) and (3.13.2),
2-07
I]_:M:].:SMA, IB:I]_—IZZQSMA

Ic = BIp = 150 x 9.5 uA = 1.425mA
Substituting for I¢ in Eq. (3.13.3),
v, =16 — 1.425 = 14575V

e 1kQ
A
+
1 100ko s
Vo Loop 3 "
+ *'2 P — 16V
2V — @ 200 kQ @ - -
@
100k ' s g c 1kQ
p2
+

2V

T 200 kQ

(b)

Figure 344 solution of the problem in Example 3.13: (a) method 1,
(b) method 2.

METHOD 1 We can modify the circuit in Fig. 3.43 by replacing the
transistor by its equivalent model in Fig. 3.40(b). Theresult isthe circuit
shown in Fig. 3.44(b). Notice that the locations of the base (B), emitter
(E), and collector (C) remain the same in both the original circuit in Fig.
3.43 and its equivalent circuit in Fig. 3.44(b). From the output loop,

v, = 16 — 1000(15015)

But

2_07 0.7
Ip=1I— I, = _ — (13— 35) uA = 9.5 4A
B=h=l2= 1655770 " 200 x 108~ ) 1 H*
and so

v, = 16 — 1000(150 x 9.5 x 107%) = 14.575V

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 3 Methods of Analysis

PRACTICE PROBLEMENIE
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The transistor circuit in Fig. 3.45has 8 = 80 and Vzg = 0.7 V. Find v,
and i,.
Answer: —3V, —150 uA.

ol
30kQ +

v —10V
+ + N 20kQ o —
1Vv —‘— Vee

Figure 345 For Practice Prob. 3.13.

3.10 SUMMARY

1. Noda analysisisthe application of Kirchhoff’s current law at the
nonreference nodes. (It is applicable to both planar and nonplanar
circuits.) We express the result in terms of the node voltages.
Solving the simultaneous equations yields the node voltages.

2. A supernode consists of two nonreference nodes connected by a
(dependent or independent) voltage source.

3. Mesh analysisisthe application of Kirchhoff’s voltage law around
meshes in aplanar circuit. We express the result in terms of mesh
currents. Solving the simultaneous equations yields the mesh
currents.

4. A supermesh consists of two meshes that have a (dependent or
independent) current source in common.

5. Nodal analysisis normally used when acircuit has fewer node
equations than mesh equations. Mesh analysisis normally used
when acircuit has fewer mesh equations than node equations.

6. Circuit analysis can be carried out using PSpice.

7. DC transistor circuits can be analyzed using the techniques cover-
ed in this chapter.

REVIEW QUESTIONS

31 At node 1 in thecircuit in Fig. 3.46, applying KCL (©) 2+

gives:

12 — V1 V1 V1 — U2
2 == d) 2

@2+ =5 =5+ (@ 2+
V1 — 12 VU1 V2 — VU1

b) 2 ==

(b) 2+ 3 6 4

12—v; O0—v; wvi—up

3 6 4

U1—12_0—U1 Vo2 — V1

3 6 4
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32

3.3

34

35

PART | DC Circuits
3.6
@ e
30 v 40
A Vo
1‘ 2
T 37
12V (=
CR 6Q § 6Q
Figure 346 For Review Questions 3.1 and 3.2,
Inthecircuitin Fig. 3.46, applying KCL at node 2
gives:
V2 — V1 V2 U2
@7 8%
V1 — U2 V2 U2
O~ *8"%
v—v2 12—v, v 3.8
©~—Z*7% ~%
Uy — V1 Uy — 12 U2
d = —
(d) i 5 39

For the circuit in Fig. 3.47, v, and v, are related as:
(a) U1=6i+8—|—1)2 (b) U1=6i—8+l}2
(C) vy = —6i +8+ vy (d) vy =—6i —8+ vy

8V
— &
12v @ I 4Q

vy 6Q AP

Figure 3.47  For Review Questions 3.3 and 3.4.
Inthecircuitin Fig. 3.47, the voltage v, is:
(@ -8V (b) —1.6V
(c) 16V (d) 8V
The current i in the circuit in Fig. 3.48 is:
(8 —2.667 A (b) —0.667 A
(c) 0.667 A (d) 2.667 A

4Q
v @ ﬁ) Dev

VW

2Q
Figure 348 For Review Questions 3.5 and 3.6.

3.10

The loop equation for the circuit in Fig. 3.48 is:
(@ —10+4i+6+2i=0

(b) 10+ 4i +6+2i =0

(c) 10+4i —6+2i=0

(d —10+4i —6+2 =0

Inthecircuit in Fig. 3.49, current iy is:

@ 4A (b) 3A (© 2A (d 1A

10
AWy

2Q
NV

20V @ v 2A I
3Q

4Q

Figure 3.49

For Review Questions 3.7 and 3.8.

The voltage v across the current source in the circuit
of Fig. 3.49is:

@ 20v (b) 15V  (c) 10V (d) 5V

The PSpice part name for a current-controlled
voltage sourceis:

(@ EX (b) FX () HX (d) GX
Which of the following statements are not true of the
pseudocomponent | PROBE:

(&) It must be connected in series.

(b) It plots the branch current.

(c) It displaysthe current through the branch in
which it is connected.

(d) It can be used to display voltage by connecting it
in parallel.

(e) Itisused only for dc analysis.

(f) 1t does not correspond to a particular circuit
element.

Answers: 3.1a, 3.2c, 3.3b, 3.4d, 3.5¢, 3.6a, 3.7d, 3.8b, 3.9c, 3.10b,d.
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PROBLEMS
Sections 3.2 and 3.3 Nodal Analysis 35  Obtain v, inthecircuit of Fig. 3.54.
31 Determine v1, v, and the power dissipated in al the
resistorsin the circuit of Fig. 3.50.
40 30V 20V +
Vl »\va V2 4kQ § VO
2kQ 5kQ -
6A 8Q 20 (@ 1w0A
Figure 3.54  For Prob. 35.
X 36 Use nodal analysisto obtain v, inthe circuit in Fig.
Figure 3.50  For Prob. 3.1. 3.55.
3.2 For the circuit in Fig. 3.51, obtain v; and vs.
4aQ oy, OV
20Q °
i [ ET O
6A
vy e vy 12v @ % 60 % 20
10Q % 50 40 % 3A L
T Figure 3.55  For Prob. 36.
Figure 3.5 For Prob. 3.2, 3.7  Usingnoda analysis, find v, in the circuit of Fig.
33 Find the currents i, through i, and the voltage v, in 3.96.
thecircuit in Fig. 3.52.
3Q 5Q
Vo AN W'A%%
¢ iy ¢ i ¢ ig i is + 3V
Yo % 20 ’ 4y,
A @ 109% 209% 309% 2A @ GOQ% - 10
L Figure 3.56  For Prob. 3.7.
Figure 3.5 For Prob. 33, 3.8 Calculate v, inthecircuit in Fig. 3.57.
34 Given the circuit in Fig. 3.53, calculate the currents
i1 through iy. 30 60
l iy l iz‘ l iy L iy 12v 8Q 2V,
an @ 5Q§ 109% 109% 59% sa @
Figure 3.57  For Prob. 3.8.
Figure 3.53  For Prob. 3.4. 39  Findi, inthecircuitin Fig. 3.58.
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311

312

3.13

314

PART |

1Q

4A 2iy

& T
SQ% 20 %m

Figure 3.58  For Prob. 3.9.

Solvefor i; and i, in the circuit in Fig. 3.22 (Section
3.5) using nodal analysis.

Use nodal analysisto find currentsi; and i, in the
circuit of Fig. 3.59.
10Q

20Q 30Q

T

24V

1

20Q

%409 @ s

Figure 3.59  For Prob. 3.11.

Calculate v; and v, inthecircuitin Fig. 3.60 using
nodal analysis.

v, 2Q 2v vy

8Q 4Q 3A

Figure 3.60  For Prob. 3.12.

Using nodal analysis, find v, in the circuit of Fig.
3.61.

5A
2Q 8Q
AW AW
10 +
Y% % 4Q @ v
a0V B
Figure 3.61  For Prob. 3.13.

Apply nodal analysisto find i, and the power
dissipated in each resistor in the circuit of Fig. 3.62.

DC Circuits

3.15

3.16

317

2A
10V 3s
AV
@
% 6S 55 ? 4
Figure 3.62  For Prob. 3.14.

Determine voltages v, through v in the circuit of
Fig. 3.63 using nodal analysis.

2s
MW
2
v v, 8S
AW V3
+
2A % 1s %< 4s ? 13V
L
Figure 3.63  For Prob. 3.15.

Using nodal analysis, find current i, in the circuit of
Fig. 3.64.

lo

—
4Q 20
100
% 8Q
60V 3,
Figure 3.64  For Prob. 3.16.

Determine the node voltages in the circuit in Fig.
3.65 using nodal analysis.

10V
20 2 2Q
1 —AW AW 3
4Q % + 5A % 8Q
L
Figure 3.65  For Prob. 3.17.
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Methods of Analysis
Use nodal analysis to determine voltages vy, v, and

CHAPTER 3
3.18 Forthecircuitin Fig. 3.66, find v; and v, using *3.22
nodal analysis. vz inthecircuitin Fig. 3.70.
4kQ
AWV 4s
3v, AW
2kQ ]
: 2
1kQ Vo
- w| 1S v, 1S |y
A A
{o
ZA‘ %23 %43 2s§ .4A

3mA?

Figure 3.66  For Prob. 3.18.
319 Determine vy and v, inthecircuit in Fig. 3.67.
8Q
—AWW
Figure 3.70  For Prob. 3.22.
20 3A
A ‘ V2 323  Using nodal analysis, find v, and i, in the circuit of
o 10 Fig. 3.71.
12V % 4Q
SV 00 120V
Figure 3.67  For Prob. 3.19.
320 Obtain v, and v, inthe circuit of Fig. 3.68. 100V
V. 8v V.
1 ‘ 2
Figure 3.71  For Prob. 3.23.
5A 10Q 5Q 2A
3.24  Find the node voltages for the circuit in Fig. 3.72
L
1Q
Figure 3.68  For Prob. 3.20. W
Vo T
321 Findv, andi, inthecircuit in Fig. 3.69. 4 o
1
. vy Joow, N v 2Q
of ‘ ‘ b
20V 20 0V + °
4Q§V0 1in @ 40 10 40 10V
10 40V 2Q B
L
Figure 372 For Prob. 3.24.

Figure 3.69  For Prob. 3.21.

*An asterisk indicates a challenging problem.
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*3.25  Obtain the node voltages vy, v, and v3 in the circuit 20
of Fig. 3.73. AW
1Q
5kQ 50
AW
7Q
Vv v, 20V % e
vy a3 AN V3
7 Z ov (& 6Q
ama @ 12V % 10kQ
+ 40
= @
; 8Q
Figure .73 For Prob. 3.25. YoV
5Q 4Q
Sections 3.4 and 3.5 Mesh Analysis VW W
3.26  Which of the circuitsin Fig. 3.74 is planar? For the
planar circuit, redraw the circuits with no crossing 1o § 6Q 3Q %
branches. 7Q 59
ANV
@
Ny
1Q 4A
ANV
(b)
3Q
4Q .
°Q Figure 3.75  For Prob. 3.27.
2Q é
VYWWWA
60 328 Rework Prob. 3.5 using mesh analysis.
@ 329 Rework Prob. 3.6 using mesh analysis.
2A 330 SolveProb. 3.7 using mesh analysis.
(@ 3.31  Solve Prob. 3.8 using mesh analysis.
3.32  For the bridge network in Fig. 3.76, find i, using
3Q ;
AA mesh analysis.
40
5Q

12v @ % 20 o z
T v @ o
(b)
Figure 3.74  For Prob. 3.26. \%\/AXT/

Figure .76 For Prob. 3.32.

3.27  Determine which of the circuitsin Fig. 3.75is
planar and redraw it with no crossing branches. 333 Apply meshanaysistofindi inFig. 3.77.
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10Q 337 Findv, andi, inthecircuit of Fig. 3.81.

wi () [ () Zsa

8V

Figure 3.77  For Prob. 3.33.

334 Usemesh andysisto find v,, and i, inthecircuitin

20Q
W i 3.38  Usemesh analysisto find the current i, in the circuit
300 l ° in Fig. 3.82.
80V
20Q +
30Q § Vab .
- IO
—

v 30Q

200 4Q 2Q

MW 10Q

% 8Q
Figure .78 For Prob. 3.34. oy 3,
3.35 Usemesh analysisto obtain i, in the circuit of Fig.

3.79.

Figure 3.82  For Prob. 3.38.

3.39  Apply mesh analysisto find v, inthe circuit in Fig.

‘ Y 3.83.

5A
Figure 3.79  For Prob. 3.35. 0 . 89
3.36  Find current i inthecircuit in Fig. 3.80. v MW
40 8Q 1Q L
AW AW <40 @ v
40V
4A
2Q 6Q =
) * AV MW\ -
|

0V ? 30 % 1o Figure 3.83  For Prob. 3.30.

. 340 Usemeshanalysistofind iy, i, and iz in the circuit
Figure 3.80  For Prob. 3.36. of Fig. 3.84.
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3.45
L) sas
Vo % 2Q % 8Q )
3A
2@ () —@
% 40 @ ‘ 2,
Figure 3.84  For Prob. 3.40.
341  Rework Prob. 3.11 using mesh analysis.
*3.42 Inthecircuit of Fig. 3.85, solvefor iy, i, and is.
0oV
‘ 347
6Q
‘\'1 1A
an@® 3 % 20
12Q '/iz 4Q
8V =
Figure 3.85  For Prob. 3.42.
343 Determine vy and vy in the circuit of Fig. 3.86.
2Q
A 3.48
+ Vl -
2Q 2Q
+
12V 2Q V2220
- 100V
Figure 3.86  For Prob. 3.43.
344  Find iy, i, and iz inthecircuit in Fig. 3.87.
30Q 3.49

300

Figure 3.87  For Prob. 3.44.

Rework Prob. 3.23 using mesh analysis.

Calculate the power dissipated in each resistor in the
circuitin Fig. 3.88.

0.5i,
4Q 8Q
o |
10 10V % 20
Figure 3.88  For Prob. 3.46.

Calculate the current gain i, /i, in the circuit of Fig.
3.89.

200 10Q
M i
. o
ig %< 300 5v, 40Q
Figure 3.89  For Prob. 3.47.

Find the mesh currents iy, i», and iz in the network
of Fig. 3.90.

8kQ 2kQ

4kQ
1 4

Figure 3.90  For Prob. 3.48.

Find v, and i, inthecircuit shownin Fig. 3.91.

x 100

ALE
a1
o]

Figure 391 For Prob. 3.49.
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350 Findv, andi, inthecircuit of Fig. 3.92. 3,53  For thecircuit shown in Fig. 3.95, write the
node-voltage equations by inspection.

50 Q «l/?/\?» 1kQ
of | * % - MM
° ° 5mA
100 é 4i, (o
100v @ § 400 v 4KQ v,| 4kQ
AW AMM— Va3

0'2"0 @ 24 20mA %21@ §2k9 (PlOmA

Figure 3.92  For Prob. 3.50.
Figure 3.95  For Prob. 3.53.

Section 3.6 Nodal and M esh Analyses by

I nspection 3.54  Write the node-voltage equations of the circuit in

Fig. 3.96 by inspection.

351  Obtain the node-voltage equations for the circuit in
Fig. 3.93 by inspection. Determine the node

voltages vy and v,. G,
AV
I3
6A &
@ Ny
G v, G
vy 10 A vy V3

@ %me @ 3 - 3

Figure 3.96  For Prob. 3.54.

Figure 3.93  For Prob. 3.51.
355  Obtain the mesh-current equations for the circuit in

Fig. 3.97 by inspection. Calculate the power
absorbed by the 8-$2 resistor.

3,52 By inspection, write the node-voltage equations for

the circuit in Fig. 3.94 and obtain the node voltages.
8Q 5Q
AWV

4Q
NWY
12A%> @ 2Q @ 2Q @ 20V

5S
AW
Vi vlvi» v, 2S , @
3
8V
oA % °S é> 2 " Figure 3.97  For Prob. 3.55.
L

. 3,56 By inspection, write the mesh-current equations for
Figure 3.94  For Prob. 352, the circuit in Fig. 3.98.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



[16 PART |
40
M
8V av @ 10
&6
5Q @ 20 @ 4Q @ ﬁ’:} 10V
Figure 3.98  For Prob. 3.56.

3.57  Write the mesh-current equations for the circuit in
Fig. 3.99.

2Q 5Q

@ (1) saz () @av

103 (8) 1032 (i) 1o

AL

N\ &
2V 3V

Figure 3.99  For Prob. 3.57.

3.58 By inspection, obtain the mesh-current equations for
the circuit in Fig. 3.100.

Ry Ry Rs

w@ () 2n () 1"
" *P ) o

Ry
Figure 3.100  For Prob. 3.58.

Section 3.8 Circuit Analysiswith PSpice
359 UsePSpiceto solve Prob. 3.44.

3.60 UsePSpiceto solve Prob. 3.22.

361 Rework Prob. 3.51 using PSpice.

DC Circuits

3.62  Findthe nodal voltages v; through v, in the circuit
in Fig. 3.101 using PSpice.

6io
10Q v, | 120
Vi AM— V3
8A § 4Q
20
vV, +
- @® v
i0
1Q
Figure .10l For Prob. 3.62.

3.63  Use PSpiceto solve the problem in Example 3.4.
3.64 If the Schematics Netlist for anetwork is asfollows,

draw the network.
R R1 1 2 2K
R R2 2 0 4K
R R3 3 0 8K
R R4 3 4 6K
R R5 1 3 3K
V_VS 4 0 DC 100
1 IS 0 1 DC 4
F F1 1 3 VFF1 2
VFF1L 5 0 0V
E E1 3 2 1 3 3

3.65 Thefollowing program is the Schematics Netlist of
aparticular circuit. Draw the circuit and determine

the voltage at node 2.

RRL 1 2 20

RRZ 2 0 50

RRZ3 2 3 70

RR4A 3 0 30

VVS 1 0 20V

I IS 2 0 DC 2A
Section 3.9 Applications

3.66 Cdculatev, and i, inthecircuit of Fig. 3.102.

b 4k0

-

A '
3mv FA;;} %P 50i, 20 kQ
o

Figure 3.102  For Prob. 3.66.

3.67  For the simplified transistor circuit of Fig. 3.103,
calculate the voltage v,,.

+ O

O<
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3.71
30 mv
Figure 3.103  For Prob. 3.67.
3.68  For thecircuitin Fig. 3.104, find the gain v, /v;.
2kQ 200Q
+ +
Vs V1 <2 500 Q 60v; 400Q = Vo
- - 372
N ¢,
Figure 3.104  For Prob. 3.68.
*3.69 Determinethegain v, /v, of the transistor amplifier

@ circuit in Fig. 3.105.
200Q 2kQ lo

—
AN
+
v 1w00s % € 40i0‘ % < 10k0
Figure 3.105  For Prob. 3.60.
3.70  For the simpletransistor circuit of Fig. 3.106, let 3.73

B =75, Vg = 0.7 V. What value of v; isrequired
to give a collector-emitter voltage of 2 V?

Methods of Analysis [17

Calculate v, for the transistor in Fig. 3.107 given
thatv, =4V, 8 = 150, Vpr = 0.7 V.

1kQ

Figure 3.107

For the transistor circuit of Fig. 3.108, find Iz, Vg,
and v,. Take g = 200, V = 0.7 V.

For Prob. 3.71.

5kQ

3V —

For Prob. 3.72.

Figure 3.108

Find Iz and V¢ for thecircuit in Fig. 3.109. Let

5kQ
2kQ
. +
Vi T
T -
Figure 3.106  For Prob. 3.70. Figure 3.109  For Prob. 3.73.
COMPREHENSIVE PROBLEMS
*3.74  Rework Example 3.11 with hand calculation. Go to the Student OLC
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CHAPTER]| 4

CIRCUIT THEOREMS

Our schools had better get on with what is their overwhelmingly most
important task: teaching their chargesto express themselves clearly and
with precision in both speech and writing; in other words, leading them
toward mastery of their own language. Failing that, all their instruction
in mathematics and science is a waste of time.

—Joseph Weizenbaum, M.1.T.

Enhancing Your Career

Enhancing Your Communication Skill Taking a course

in circuit analysis is one step in preparing yourself for a
career in electrical engineering. Enhancing your commu-
nication skill while in school should also be part of that
preparation, as a large part of your time will be spent com-
municating.

People in industry have complained again and agair
that graduating engineers are ill-prepared in written and
oral communication. An engineer who communicates ef-
fectively becomes a valuable asset.

You can probably speak or write easily and quickly.
But how effectively do you communicate? The art of ef-
fective communication is of the utmost importance to your
success as an engineer.

For engineers in industry, communication is key to
promotability. Consider the result of a survey of U.S. cor-
porations that asked what factors influence managerial prof
motion. The survey includes alisting of 22 personal qualities
and their importance in advancement. You may be surprise
to note that “technical skill based on experience” placed
fourth from the bottom. Attributes such as self-confidence,
ambition, flexibility, maturity, ability to make sound deci-
sions, getting things done with and through people, and cay,: . oy
pacity for hard work all ranked higher. At the top of the list i’?f]’;,'('f%atﬁtCs‘t’?p“:(‘jr;ﬁa;‘fgﬁcj'evﬁr‘éﬂfgf ded by eny asthe frost
was “ability to communicate.” The higher your professional (adapted from J. Sherlock, A Guiide to Technical Communication.
career progresses, the more you will need to communicateBoston, MA: Allyn and Bacon, 1985, p. 7.)

Therefore, you should regard effective communication as an
important tool in your engineering tool chest.

Learning to communicate effectively is a lifelong and speaking skills. You can do this through classroom
task you should always work toward. The best time to beginpresentations, team projects, active participation in student
is while still in school. Continually look for opportunities organizations, and enrollment in communication courses.
to develop and strengthen your reading, writing, listening, The risks are less now than later in the workplace.

19
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4.1 INTRODUCTION

A major advantage of analyzing circuitsusing Kirchhoff’slawsaswedid
in Chapter 3 is that we can analyze a circuit without tampering with its
original configuration. A major disadvantage of this approach isthat, for
alarge, complex circuit, tedious computation is involved.

The growth in areas of application of electric circuits hasled to an
evolution from simple to complex circuits. To handle the complexity,
engineers over the years have developed some theorems to simplify cir-
cuit analysis. Such theoremsinclude Thevenin'sand Norton's theorems.
Since thesetheorems are applicableto linear circuits, wefirst discussthe
concept of circuit linearity. Inadditionto circuit theorems, wediscussthe
concepts of superposition, source transformation, and maximum power
transfer in this chapter. The concepts we develop are applied in the last
section to source modeling and resistance measurement.

4.2 LINEARITY PROPERTY

Linearity is the property of an element describing a linear relationship
between cause and effect. Although the property appliesto many circuit
elements, we shall limit its applicability to resistorsin this chapter. The
property isacombination of both the homogeneity (scaling) property and
the additivity property.

The homogeneity property requiresthat if the input (also called the
excitation) is multiplied by a constant, then the output (also called the
response) is multiplied by the same constant. For aresistor, for example,
Ohm'’slaw relates the input i to the output v,

v=1iR (4.1

If the current is increased by a constant k, then the voltage increases
correspondingly by k, that is,

kiR = kv (4.2)

Theadditivity property requiresthat the responseto asum of inputs
is the sum of the responses to each input applied separately. Using the
voltage-current relationship of aresistor, if

v1 =i1R (4.39)
and
v2 = i2R (4.30)
then applying (i1 + i2) gives
v=_(>i1+i2)R=i1R+i2R=v1+ vy (4.4)

We say that a resistor is a linear element because the voltage-current
relationship satisfies both the homogeneity and the additivity properties.

Ingeneral, acircuitislinear if it isboth additive and homogeneous.
A linear circuit consists of only linear elements, linear dependent sources,
and independent sources.
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CHAPTER 4 Circuit Theorems 121

Alinear circuit is one whose output s linearly related
(or directly proportional) to its input.

Throughout this book we consider only linear circuits. Note that since
p = iR = v?/R (making it a quadratic function rather than a linear
one), therel ationship between power and voltage (or current) isnonlinear.
Therefore, the theorems covered in this chapter are not applicable to

powver. *i
To understand the linearity principle, consider the linear circuit

shown in Fig. 4.1. The linear circuit has no independent sourcesinside Vs (’:} Linear circuit R
it. Itisexcited by a voltage source v, which serves as the input. The
circuitisterminated by aload R. We may takethe current i through R as
the output. Suppose v, = 10V givesi = 2 A. According to the linearity
principle, v, = 1V will givei = 0.2 A. By the same token, i = 1 mA Figure 4.1 Alinear circuitwithinput v, and

must bedueto vy, =5 mV. output i.
i iip L KN
For thecircuit in Fig. 4.2, find i, when v, = 12V and v, = 24 V. 2Q 8Q
. AW
Solution: + v, - ly

Applying KVL to the two loops, we obtain

4Q
12iy — dip+ v, =0 wu)69§ ﬁa ﬁ) 40
vg (£

—4i; 4+ 16i, — 3v, — v, =0 412 + a,
But v, = 2i;. Equation (4.1.2) becomes
—10i1 + 16i, — vy =0 (4.1.3)
Adding Egs. (4.1.1) and (4.1.3) yields Figure4.2  For Example 4.1.

2i1+12i, =0 == i1 = —6i>
Substituting thisin Eq. (4.1.1), we get

Us
—76i, + v, =0 — i2:7_6
When v, = 12V,
o,
lo 12 76
When v, =24V,
_ 24 A
lo 12 76

showing that when the source value is doubled, i, doubles.

PRACTICE PROBLEMEN

For the circuit in Fig. 4.3, find v, when i, = 15and i; = 30 A.

Answer: 10V, 20V. +
iq 2Q 40 2\,

6Q

Figure 4.3 For Practice Prob. 4.1.
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Assume I, = 1 A and use linearity to find the actual value of I, in the
circuit in Fig. 4.4.

Iy 6Q 2V2 I, 2Q 1V1 3Q
ANV ANV ’

o

I3 I3

;=157 @) 7Q§ 40 50

MV

Figure 44 For Example 4.2.

Solution:

If1,=1A,thenV; = (3+5)1,=8VandI; = Vi1/4 =2 A. Applying
KCL at node 1 gives

ILh=5L+1,=3A
Vo=Vi+2[,=84+6=14V, I3=—=2A
Applying KCL at node 2 gives
L=I5L+1=5A

Therefore, I, = 5 A. This shows that assuming I, = 1 gives I, = 5A;
the actual source current of 15 A will give I, = 3 A asthe actua value.

PRACTICE PROBLEMER

12Q

Figure 45 For Practice Prob. 4.2

Assumethat V, = 1V and use linearity to calculate the actual value of
V, inthe circuit of Fig. 4.5.

Answer: 4V.

4.3 SUPERPOSITION

If acircuit has two or more independent sources, one way to determine
the value of aspecific variable (voltage or current) isto use nodal or mesh
analysisasin Chapter 3. Another way isto determine the contribution of
each independent source to the variable and then add them up. The latter
approach is known as the super position.
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Theidea of superposition rests on the linearity property.

The superposition principle states that the voltage across (or current through) an
element in a linear circuit is the algebraic sum of the voltages across (or currents
through) that element due to each independent source acting alone.

The principle of superposition helps us to analyze a linear circuit with
more than one independent source by cal culating the contribution of each
independent source separately. However, to apply the superposition prin-
ciple, we must keep two thingsin mind:

1. We consider one independent source at atime while all other
independent sources are turned off. Thisimplies that we
replace every voltage source by 0 V (or ashort circuit), and
every current source by 0 A (or an open circuit). Thisway we
obtain asimpler and more manageabl e circuit.

2. Dependent sources are left intact because they are controlled
by circuit variables.

With these in mind, we apply the superposition principle in three steps:

Steps to Apply Superposition Principle:

1. Turn off al independent sources except one source. Find the
output (voltage or current) due to that active source using nodal or
mesh analysis.

2. Repest step 1 for each of the other independent sources.

3. Find thetotal contribution by adding algebraicaly all the
contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: it may very likely involve more work. If the circuit has three
independent sources, we may have to analyze three simpler circuits each
providing the contribution due to the respective individual source. How-
ever, superposition does hel p reduce acomplex circuit to simpler circuits
through replacement of voltage sources by short circuits and of current
sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of the
voltage or current. If the power value is needed, the current through (or
voltage across) the element must be calculated first using superposition.

123

Superposition is not limited to circuit analysis but
is applicable in many fields where cause and effect
bear a linear relationship to one another.

Other terms such as killed, made inactive, dead-
ened, or set equal to zero are often used to con-
vey the same idea.

For example, when current i flows through re-
sistor R, the power is p; = Rif, and when current
iy flows through R, the power is py = Ri. If cur-
rent i + iy flows through R, the power absorb-
ed is py = R(iy +i)? = Rt + R + 2Rijip #
pi + pa. Thus, the power relation is nonlinear.

M4.3

Use the superposition theorem to find v in the circuit in Fig. 4.6.
Solution:
Since there are two sources, let
vV ="v1+ V2
where v; and v, are the contributions due to the 6-V voltage source and

8Q

Figure 46 For Example 4.3.
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the 3-A current source, respectively. To obtain v;, we set the current
sourceto zero, asshownin Fig. 4.7(a). Applying KVL totheloopinFig.

80 4.7(a) gives
VW Z 12i,-6=0 =  i1=05A
sv (D ) 403V Thus,
o vi=4i1=2V
@ We may also use voltage division to get vy by writing
&&'Zk M=Z%§®=2v

+

40 § v, G 3A To get v2, We set the voltage source to zero, as in Fig. 4.7(b). Using
- current division,

i3 = i(3) =2A

(b) 4438
_ Hence,
Figure 4.7 For Example 4.3:
(a) caculating vs, (b) calculating vy. v, =4i3 =8V
And wefind

v=v1+1,=2+8=10V

PRACTICE PROBLEMKERE

3Q 5Q Using the superposition theorem, find v, in the circuit in Fig. 4.8.
Answer: 12V.

Vo < 2Q 8A 20V

Figure 48  For Practice Prob. 4.3.

Find i, in the circuit in Fig. 4.9 using superposition.
Solution:

The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

iy=i,+i! (@4

wherei/ and i/ aredueto the4-A current source and 20-V voltage source
respectively. To obtain i/, we turn off the 20-V source so that we have
the circuit in Fig. 4.10(a). We apply mesh analysis in order to obtain i/ .
20V For |OOp 1,

Figure49  For Example 4.4. i1=4A (442
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20 20
AA%%Y o
sa () 0 (i)
@ 10 5i, 10 3
an@® & 7 AN >
5Q @ 4Q s § @
B o S
0 20V
@ (b)
Figure 410 For Example 4.4: Applying superposition to (a) obtain if, (b) obtain ).
For loop 2,
—3i1+6ip— Liz—5i, =0 (4.4.3)
For loop 3,
—5i1 — 1ip + 10i3+ 5, =0 (4.4.4)
But at node 0,
i3=i1—i,=4—1i (4.4.5)

Substituting Egs. (4.4.2) and (4.4.5) into Egs. (4.4.3) and (4.4.4) gives
two simultaneous equations

3i, -2, =8 (4.4.6)
ip+5i, =20 (4.4.7)
which can be solved to get
52
= — A 448
l() 17 ( )

To obtain i), we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

6is —is —5i) =0 (4.4.9)
and for loop 5,
—ig+10is —20+ 5/ =0 (4.4.10)
But is = —i, . Substituting thisin Egs. (4.4.9) and (4.4.10) gives
6is—4i) =0 (44.11)
is+5) =-20 (4.4.12)

which we solve to get
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., 60
i, = 1 A (4.4.13)
Now substituting Egs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

8
= —— — _04706 A
! 17

PRACTICE PROBLEMERK

20Q v, Use superposition to find v, in the circuit in Fig. 4.11.
Answer: v, =125V.
10V 2A 40 0.1v,
Figure 4.l For Practice Prob. 4.4.
e L BB
24V gq For the circuit in Fig. 4.12, use the superposition theoremto find ;.
% Solution:
4Q 4Q In this case, we have three sources. Let
l i i=i1+ix+i3
+
v @ § 3Q @ s whereiy, ip, and iz areduetothe 12-V, 24-V, and 3-A sourcesrespectively.
Togetiy, consider thecircuitinFig. 4.13(a). Combining 4 2 (ontheright-

hand side) in serieswith 8 Q gives 12 Q. The 12  in parallel with 4
gives12 x 4/16 = 3 Q. Thus,

) 12
llZEZZA

To get iy, consider the circuit in Fig. 4.13(b). Applying mesh analysis,

Figure4.12  For Example 4.5.

16i, — 4i, +24=0 =3 4i, — i, =—6 (45.1)

;
Tip—4i,=0 = ia= iy (452

Substituting Eq. (4.5.2) into Eq. (4.5.1) gives
ir=ip=-1
To get i3, consider the circuit in Fig. 4.13(c). Using nodal analysis,

U2 V2 — U1

3= N + y — 24 = 3vp; — 211 (45.3)
V2 — V1 V1 U1 10
T = Z + 5 — U = ?vl (4-5-4)

Substituting Eq. (4.5.4) into EQ. (4.5.3) leadsto v; = 3and
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80
AW
40 4Q 30
L AM—
¢i2 *'1
12V ’:) §3Q — 12V 30
@
24v 80 8Q
@ MAA AV
B
4Q 4Q 4Q v, 4Q
AV ¢Wv» '\/\/\/\/—<—T—’\/\/\/\/—<—V2
I2
[e]

@ §3Q §3Q @ 3A

(b) ©

Figure 4.13  For Example 4.5.

iz=—-=1A

w

Thus,
i=i1+ir+iz=2-1+1=2A

PRACTICE PROBLEMERNS

127

Find i inthecircuit in Fig. 4.14 using the superposition principle.

Figure 4.14  For Practice Prob. 4.5.

Answer: 0.75A.

4.4 SOURCE TRANSFORMATION

We have noticed that series-parallel combination and wye-deltatransfor-
mation help simplify circuits. Source transformation is another tool for
simplifying circuits. Basic to these tools is the concept of equivalence.
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We recall that an equivalent circuit is one whose v-i characteristics are
identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mereinspection of acircuit when the sourcesare
all independent current (or all independent voltage) sources. It is there-
fore expedient in circuit analysis to be able to substitute a voltage source
in serieswith aresistor for a current source in parallel with aresistor, or
viceversa, asshownin Fig. 4.15. Either substitutionisknown asasource
transformation.

a a
Vs - g R
b b

Figure 415 Transformation of independent sources.

A source transformation is the process of replacing a voltage source v,
in series with a resistor R by a current source i in parallel
with a resistor R, or vice versa.

Thetwo circuitsin Fig. 4.15 are equival ent—provided they have the same
voltage-current relation at terminals a-b. It is easy to show that they are
indeed equivalent. If the sources are turned off, the equivalent resistance
at terminalsa-b in both circuitsis R. Also, when terminalsa-b are short-
circuited, the short-circuit current flowing from a to b isi;. = vg/R in
the circuit on the left-hand side and i, = i, for the circuit on the right-
hand side. Thus, v;/R = i, in order for the two circuitsto be equivalent.
Hence, source transformation requires that

. . Vg
vy, = ixR or iy = E (4.5)

Source transformation al so applies to dependent sources, provided
we carefully handle the dependent variable. As shown in Fig. 4.16, a
dependent voltage source in series with aresistor can be transformed to
a dependent current source in parallel with the resistor or vice versa.

R
a a

Vg -~ g R
b b

Figure 416 Transformation of dependent sources.

Likethewye-deltatransformation we studied in Chapter 2, asource
transformation does not affect the remaining part of the circuit. When
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applicable, source transformation is a powerful tool that allows circuit
manipulations to ease circuit analysis. However, we should keep the
following pointsin mind when dealing with source transformation.

1. Notefrom Fig. 4.15 (or Fig. 4.16) that the arrow of the current
sourceis directed toward the positive terminal of the voltage
source.

2. Notefrom Eq. (4.5) that source transformation is not possible
when R = 0, which isthe case with an ideal voltage source.
However, for apractical, nonideal voltage source, R # 0.
Similarly, anideal current source with R = oo cannot be
replaced by afinite voltage source. More will be said on ideal
and nonideal sourcesin Section 4.10.1.

£ XA H P L E I

Use source transformation to find v, in the circuit in Fig. 4.17. 20 3Q
Solution: N
Wefirst transform the current and voltage sourcesto obtain thecircuitin - 4Q 3A 8Q 2 v, 12V

Fig. 4.18(a). Combining the 4-Q and 2-$2 resistors in series and trans- -
forming the 12-V voltage source gives us Fig. 4.18(b). We now combine
the 3-Q and 6-Q resistors in parallel to get 2-Q2. We aso combine the Figure 4.17

For Example 4.6.

2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly
applying source transformations, we obtain the circuit in Fig. 4.18(c).

4Q 20

+
12V 8Q < v, 30 4A
@
+ i * +
2A 6Q 8Q <y, 3Q 4A  8Q 2V, 20 2A

(b) ©

Figure4.18  For Example 4.6.

We use current division in Fig. 4.18(c) to get

2
=< (2)=04
i=578®@

and

v, = 8 = 8(0.4) = 3.2V
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Alternatively, sincethe 8- and 2-Q resistorsin Fig. 4.18(c) arein
parallel, they have the same voltage v, acrossthem. Hence,

v, = (8] 2(2A) = 8%02(2) —32V

PRACTICE PROBLEMER

Find i, inthe circuit of Fig. 4.19 using source transformation.

5V 10
€3
O VWY
6Q 5A 3Q 7Q 3A 4Q
Figure4.19  For Practice Prob. 4.6.
Answer: 1.78A.
i iip L KB
4Q Find v, in Fig. 4.20 using source transformation.
Solution:
20 0.25v The circuit in Fig. 4.20 involves a voltage-controlled dependent current
A - source. We transform this dependent current source as well as the 6-V
+ independent voltage source as shown in Fig. 4.21(a). The 18-V volt-
6V 20 < W 18V age source is not transformed because it is not connected in series with

any resistor. The two 2-Q2 resistors in parallel combine to give a 1-Q
resistor, which isin parallel with the 3-A current source. The current is
transformed to a voltage source as shown in Fig. 4.21(b). Notice that the
terminalsfor v, areintact. Applying KVL aroundtheloopin Fig. 4.21(b)
gives

Figure 420  For Example 4.7.

—3+5 +v,+18=0 4.7.1)

4Q 10 4Q

&> e ——ES
A @ 2Q§ 2Q§vX @snv v@® vy ﬁ) 18V

€) (b)

Figure 421 For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.
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Applying KVL to the loop containing only the 3-V voltage source, the
1-Q resistor, and v, yields

-3+1lLi+v,=0 — vy =3—1i (4.7.2)
Substituting thisinto Eq. (4.7.1), we obtain

Alternatively, we may apply KVL to the loop containing v,, the 4-Q
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage sourcein Fig. 4.21(b). We obtain

—vy+4i+v,+18=0 = i=-45A
Thus,v, =3 —i =75V.

PRACTICE PROBLEMERN

Use source transformation to find i, in the circuit shown in Fig. 4.22. 50
Answer: 1.176 A. {ix

4A 100 2,

Figure 422 For Practice Prob. 4.7.

4.5 THEVENlN’S THEOREM Electronic Testing Tutorials
It often occursin practice that aparticular element in acircuit isvariable I3
(usualy called the load) while other elements are fixed. As a typica _ 9

. . Linear +
example, a household outlet terminal may be connected to different ap- wWo-termingl v | Load
pliances constituting a variable load. Each time the variable element is circuit _
changed, the entire circuit hasto be analyzed all over again. To avoid this Ob

problem, Thevenin's theorem provides a technique by which the fixed
part of the circuit is replaced by an equivalent circuit. @
According to Thevenin's theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (Theload in Fig. 4.23 may be a — 2
single resistor or another circuit.) The circuit to the left of the terminals +
a-b in Fig. 4.23(b) is known as the Thevenin equivalent circuit; it was VY v
developedin 1883 by M. Leon Thevenin (1857-1926), aFrench telegraph o—1I
engineer. b

Load

(b)

Thevenin’s theorem states that a linear two-terminal circuit can be replaced Figure 423  Replacing a linear two-termindl
by an equivalent circuit consisting of a voltage source Vr; in series with circuit by its Thevenin equivalent: (a) original
a resistor Ry, where Vs the open-circuit voltage at the terminals dircuit, (b) the Thevenin equivalent circuit.
and Ry, is the input or equivalent resistance at the terminals when
the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent voltage
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Circuit with

all independent
sources set equal
to zero

Rrn =1~
o

@

Circuit with

all independent )
v, i

sources set equal o °

to zero

VO
Rrn =1~
o

(b)

Figure 425  Finding Ry, when circuit
has dependent sources.

Later we will see that an alternative way of finding
RTh is RTh = Vac/isc-

PART | DC Circuits

V1h and resistance Rty To do so, suppose the two circuits in Fig. 4.23
are equivalent. Two circuits are said to be equivalent if they have the
same voltage-current relation at their terminals. Let usfind out what will
make the two circuits in Fig. 4.23 equivalent. If the terminals a-b are
made open-circuited (by removing the load), no current flows, so that
the open-circuit voltage across the terminals a-b in Fig. 4.23(a) must be
equal to the voltage source Vry, in Fig. 4.23(b), since the two circuits are
equivalent. Thus Vry, is the open-circuit voltage across the terminals as
shown in Fig. 4.24(a); that is,

VTh = Vo (4.6)

. ©a Linear circuit with ©a
Linear + . R
. al independent in
two-terminal v, D
circuit e sources set equal
L ob to zero L ob
V1h = Voc Rrh = Rip

@ (b)

Figure4.24  Finding v, and Ryp.

Again, withtheload disconnected andterminalsa-b open-circuited,
we turn off all independent sources. The input resistance (or equivalent
resistance) of the dead circuit at the terminals a-b in Fig. 4.23(a) must
be equal to Rty in Fig. 4.23(b) because the two circuits are equivalent.
Thus, R, isthe input resistance at the terminals when the independent
sources are turned off, as shown in Fig. 4.24(b); that is,

Rth = Rin 47

To apply thisideain finding the Thevenin resistance Ry, we need
to consider two cases.

CASEJ} 1f the network has no dependent sources, we turn off all in-
dependent sources. Rty is the input resistance of the network looking
between terminalsa and b, as shown in Fig. 4.24(b).

CASEF} 1f the network has dependent sources, we turn off all inde-
pendent sources. Aswith superposition, dependent sources are not to be
turned off because they are controlled by circuit variables. We apply a
voltage source v, at terminals a and b and determine the resulting cur-
rent i,. Then Rty = v,/i,, as shown in Fig. 4.25(a). Alternatively, we
may insert a current source i, at terminals a-b as shown in Fig. 4.25(b)
and find the terminal voltage v,. Again Ry, = v,/i,. Either of the two
approaches will give the same result. In either approach we may assume
any value of v, and i,. For example, wemay usev, =1V ori, = 1A,
or even use unspecified values of v, or i,.

It often occurs that Rty takes a negative value. In this case, the
negativeresistance (v = —i R) impliesthat thecircuit issupplying power.
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Thisis possible in a circuit with dependent sources; Example 4.10 will

illustrate this.

Thevenin's theorem is very important in circuit analysis. It helps g
simplify acircuit. A largecircuit may bereplaced by asingleindependent Linear T
voltage source and a single resistor.  This replacement technique is a circuit % R
powerful tool in circuit design.

Asmentioned earlier, alinear circuit with avariable load can bere- b

placed by the Thevenin equivalent, exclusive of theload. The equivalent
network behaves the same way externaly as the original circuit. Con- @
sider alinear circuit terminated by aload R;, as shown in Fig. 4.26(a).
The current I; through the load and the voltage V; across the load are

R a
easily determined oncethe Thevenin equivalent of the circuit at theload's l I
terrm nals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b), we Vi (D R
obtain
\%
I Th °
(b)

= 4.8,
Rth+ R, (483
V, =R I, =Ly (4.8b)
L= L= R+ R, Th ' Figure4.26 A circuit with a load:

. . . . . igina circuit, (b) Theveni
Note from Fig. 4.26(b) that the Thevenin equivalent is a simple voltage QU?J;?;EL direuit, (b) Thevenin

divider, yielding V; by mere inspection.

M4.8

Find the Thevenin equivalent circuit of the circuit shownin Fig. 4.27, to 4Q 10 4
the left of the terminals a-b. Then find the current through R; = 6, 16,
and 36 2. 32V 120 2A R,
Solution:
We find Ry, by turning off the 32-V voltage source (replacing it with b
a short circuit) and the 2-A current source (replacing it with an open
circuit). The circuit becomeswhat is shown in Fig. 4.28(a). Thus, Figure4.27  For Example 4.8.
4x12
Rrh=4]| 12+1:T+1:4Q

Vi 10

4Q 10 40
A ANN—0
+
R : -
120 - 32v%:> @ 12Q @ 2A Vin
. _
@

()

Figure 428 For Example 4.8: () finding Rtp, (b) finding V.

To find Vrp, consider the circuit in Fig. 4.28(b). Applying mesh
analysisto the two loops, we obtain

—32+ 4ip + 12(i, — i) =0, ir=-2A
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Solving for i;, weget i = 0.5 A. Thus,
Vin = 12(i1 — i) = 12(0.5+ 2.0) = 30V

Alternatively, it is even easier to use nodal analysis. We ignore the 1-Q
resistor since no current flows through it. At the top node, KCL gives

32—V
—Th_|_2:m
4 12
or

96 — 3Vrh+24 =V — Vi =30V

as obtained before. We could also use source transformation to find V.
The Thevenin equivalent circuit is shown in Fig. 4.29. The current
through Ry is

4Q a
AMA . Vih 30
t = R iR T 31R
Th L L
v (&
<> R When R; =6,
30
Ip =—=3A
b "7 10
Figure 429 The Thevenin When R, = 16,
equivalent circuit for Example 4.8. 30
Ip = —==15A
20
When R; = 36,
30
I, =—=075A
7 a0

PRACTICE PROBLEMER

Using Thevenin's theorem, find the equivalent circuit to the left of the
terminasin the circuitin Fig. 4.30. Then find i.

6Q 6Q a

Vi

12V 2A 40 21Q
b

Figure4.30  For Practice Prob. 4.8.

Answer: Vihn=6V,Rn=3Q,i =15A.

£ XA P L E I

Find the Thevenin equivalent of the circuit in Fig. 4.31.
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Solution: v,

This circuit contains a dependent source, unlike the circuit in the previ-
ous example. To find R, we set the independent source equal to zero

but leave the dependent source alone. Because of the presence of the 20 2Q a
dependent source, however, we excite the network with a voltage source +
v, connected to the terminals as indicated in Fig. 4.32(a). We may set ¢ 40 2 v 60
v, = 1V toeasecalculation, sincethecircuit islinear. Our goal istofind -
the current i, through the terminals, and then obtain Rty = 1/i,. (Al- ob
ternatively, we may insert a 1-A current source, find the corresponding
voltage v, and obtain Rt = v,/1.) Figure 43| For Example 4.9.
2vy 2vy
) )
20 20 a 2Q 20
) A AW—0 a
T io +
+ +
49%@ @ 60Q @ V=1V 5A @ 4Q%vx i %GQ Vo
ob
b
@ (b)

Figure 432 Finding R, and Vi, for Example 4.9.
Applying meshanalysistoloop 1inthecircuitinFig. 4.32(a) results

—2v, +2(i1 —ip) =0 or Vy = i1 — I2
But —4i, = v, = i1 — ip; hence,
i1=-3i (4.9.1)
For loops 2 and 3, applying KVL produces
4iy 4 2(ip —i1) + 6(ip —iz) =0 (4.9.2)
6(iz —iz) +2i3+1=0 (4.9.3)
Solving these equations gives

1
i3 = 6 A
Buti, = —iz3 =1/6 A. Hence,

1V

R = =6Q

lO

Toget Vrn, wefind v, inthecircuit of Fig. 4.32(b). Applying mesh
analysis, we get
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i1=5 (4.9.4)
—2v, +2(i3— i) =0 - vy = i3 —i2 (4.9.5)
A(ip —i1) + 2(ip — i3) + 6i, =0

6Q or
a
20V 12i, — 4i; — 2i3=0 (4.9.6)
b But 4(i; — i2) = v,. Solving these equations leadsto i, = 10/3. Hence,
Figure 433 The Thevenin Vih = voc = 6i =20V
equivalent of the circuit in
Fig. 4.3L The Thevenin equivalent is as shown in Fig. 4.33.

PRACTICE PROBLEMENE

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the left

|
50 x 3Q
YV oa of theterminals.
Y C:SWW %% 151, 40 Answer: Vip =533V, Rihn =044 Q.
o b

Figure 434 For Practice Prob. 4.9.

mﬂ4.|o

T oa Determine the Thevenin equivalent of the circuit in Fig. 4.35(a).
'x Solution:
2ix {3 4Q § 20 § Since the circuit in Fig. 4.35(a) has no independent sources, Vi, = 0 V.
Tofind R, itisbest to apply acurrent sourcei, at theterminalsasshown
ob in Fig. 4.35(b). Applying nodal analysis gives
@ v,
ip+iy=2iy + — (4.10.2)
Vo a 4
bi But
X
i i 0—- o o
2, AQ§ 20 io i = 2” Z_UE (4.10.2)
Substituting Eg. (4.10.2) into Eq. (4.10.1) yields
(b) ° v w i w 4
py=iy+—=——7+—=—— v, = —4i,
Figure4.35  For Example 4.10. 4 2 4 4
Thus,
Rin=-"=-4Q

o

The negative value of the resistance tells usthat, according to the passive
sign convention, thecircuit in Fig. 4.35(a) issupplying power. Of course,
the resistorsin Fig. 4.35(a) cannot supply power (they absorb power); it
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is the dependent source that supplies the power. Thisis an example of
how a dependent source and resistors could be used to simulate negative
resistance.

PRACTICE PROBLEMERINK

Obtain the Thevenin equivalent of the circuit in Fig. 4.36.
Answer: Vihn =0V, Rty = —-7.5Q.
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Network Analysis
4v,
10Q
4= oa
.
vy =< 5Q 15Q
o b
Figure 436 For Practice Prob. 4.10.

4,6 NORTON’S THEOREM

In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, proposed
asimilar theorem.

Norton’s theorem states that a linear two-terminal circuit can be replaced
by an equivalent circuit consisting of a current source Iy in parallel with
aresistor Ry, where [y is the short-circuit current through the terminals
and Ry is the input or equivalent resistance at the terminals when the
independent sources are turned off.

Lo

Thus, thecircuit in Fig. 4.37(a) can bereplaced by theonein Fig. 4.37(b).
The proof of Norton’stheoremwill begiveninthe next section. For
now, we are mainly concerned with how to get Ry and Iy. Wefind Ry
in the same way we find Rty,. In fact, from what we know about source
transformation, the Thevenin and Norton resistances are equal; that is,

Ry = Rm (4.9

TofindtheNorton current I, wedeterminethe short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident
that the short-circuit current in Fig. 4.37(b) is Iy. This must be the same
short-circuit current from terminal a to » in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

Iy = i (4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin's theorem.

Observe the close relationship between Norton's and Thevenin's
theorems: Ry = Rt asin Eq. (4.9), and

Vi

Iy =
Rth

(4.12)

Electronic Testing Tutorials

Linear ©a
two-terminal
circuit ob
@
oa
In Ry
ob
(b)
Figure 437 (a) Original circuit,

(b) Norton equivalent circuit.

a
Linear
two-terminal }isc =ly
circuit

b

Figure 4.38

Finding Norton
current I .
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The Thevenin and Norton equivalent circuits are Thisis essentially source transformation. For this reason, source trans-
related by a source transformation. formation is often called Thevenin-Norton transformation.
Since Vq, Iy, and Ry, are related according to Eq. (4.11), to de-
termine the Thevenin or Norton equivalent circuit requires that we find:
e  The open-circuit voltage v, acrossterminalsa and b.
e  Theshort-circuit current i at terminalsa and b.

e Theequivalent or input resistance Rj, at terminalsa and b when
all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’'slaw. Example 4.11
will illustrate this. Also, since

Vh = v (4.129)
Iy =iy (4.12b)
Rin = 2% — Ry 4129)

iSC
the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent.

8Q Find the Norton equivalent circuit of the circuit in Fig. 4.39.
°2 golution:
4Q Wefind Ry inthe sameway we find Ry, in the Thevenin equivalent cir-
2A ‘ § 5Q cuit. Set the independent sources equal to zero. This leads to the circuit
12v in Fig. 4.40(a), from which we find Ry. Thus,
o b
20x5
80 RN=5||(8+4+8)=5||20=2—;=4Q
Figure 439 For Example 4.11. To find Iy, we short-circuit terminas a and b, as shown in Fig. 4.40(b).

We ignore the 5-2 resistor because it has been short-circuited. Applying
mesh analysis, we obtain

i1 =2A, 20i; —4i; —12=0
From these equations, we obtain
ip=1A=i.=1Iy

Alternatively, we may determine Iy from Vr,/ Rt Weobtain Vy,
asthe open-circuit voltage acrossterminalsa and b in Fig. 4.40(c). Using
mesh analysis, we obtain

iz=2A
25i4 —4i3—12=0 - is=08A
and

Voe = VTh = 5i4 =4V
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8Q 8Q a

50 % il @ "

103

12V 50
8Q 8Q
o AN, ob AN
b
@ (b)
80Q
NV O a
- +
(i) Zaa (i)
2A () 50 § Vrh = Voo
12V

8Q _

AWV o b

(©

Figure 440  For Example 4.11; finding: (8) Ry, (b) Iy = isc, (€) Vh = voc-
Hence,
4 a
V1n
= — = - = 1 A
NE R TG 1A 4Q

as obtained previously. This also servesto confirm Eq. (4.7) that R, = b
Voe/ Ise = 4/1 = 4 Q. Thus, the Norton equivalent circuit isas shown in Figire 441 Norton equiva-
Fig. 4.41. lent of the circuit in Fig. 4.39.

PRACTICE PROBLEMENIN

Find the Norton equivalent circuit for the circuit in Fig. 4.42.

30 30
ANV 0 a
Answer: Ry =3Q,Iy=45A.
15V 4A 6Q
o b

Figure 442 For Practice Prob. 4.11.

m4.|z

Using Norton’stheorem, find Ry and Iy of thecircuitin Fig. 4.43 at ter-
minalsa-b.

Solution:

Tofind Ry, we set the independent voltage source equal to zero and con-
nect a voltage source of v, = 1V (or any unspecified voltage v,) to the
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21y terminals. WeobtainthecircuitinFig. 4.44(a). Weignorethe4-Q resistor
7o) becauseitisshort-circuited. Alsodueto theshort circuit, the5-€2 resistor,
the voltage source, and the dependent current source are al in parallel.
L 50 Hence, i, = v,/5=1/5=0.2. Atnodea, —i, = i, + 2i, = 3i, = 0.6,
AAM oa and
1
4Q ) 10v Ry=2— _~ __167Q
ﬂ) N, T 06
o b Tofind Iy, weshort-circuitterminalsa and b and findthecurrent i ..,
Fioure 4.43 asindicatedinFig. 4.44(b). Notefrom thisfigurethat the4-$2 resistor, the
lgure 24> For Example 4.12. 10-V voltage source, the 5-§2 resistor, and the dependent current source
areadl in parallel. Hence,
10-0
= ——=2A
5
At node a, KCL gives
ise =iy +2i,=24+4=6A
Thus,
Iy =6A
2i 2iy
b, 50 a i, 50 a
ANV *i AW
4Q V=1V 4Q (‘_Plov e = In
b
@ (b) b

Figure 444 For Example 4.12: (g) finding Ry, (b) finding Iy.

PRACTICE PROBLEMESN

2/X

AL —

10A 20 2 v,

o b

Figure 445 For Practice Prob. 4.12.

Find the Norton equivalent circuit of the circuit in Fig. 4.45.
Answer: Ry =1, Iy =10A.

4,7 DERIVATIONS OF THEVENIN’S AND NORTON’S
THEOREMS

In this section, we will prove Thevenin’'s and Norton's theorems using
the superposition principle.
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Consider thelinear circuitin Fig. 4.46(a). It isassumed that thecir-
cuit containsresistors, and dependent and independent sources. We have
access to the circuit viaterminals a and b, through which current from
an external sourceis applied. Our objective isto ensure that the voltage-
current relation at terminals a and b isidentical to that of the Thevenin
equivalent in Fig. 4.46(b). For the sake of simplicity, suppose the linear
circuit in Fig. 4.46(a) contains two independent voltage sources vy, and
v2 and two independent current sources i;; and iz. We may obtain any
circuit variable, such astheterminal voltage v, by applying superposition.
That is, we consider the contribution due to each independent source in-
cluding the external source i. By superposition, the terminal voltage v
is

v = Agi + A1vs1 + Agvso + Azigr + Asig (413

where Ag, A1, Az, Az, and A4 are constants. Each term on theright-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, Agi isthe contribution to v due to the external current source i,
A1v, is the contribution due to the voltage source v, and so on. We
may collect termsfor the internal independent sources together as By, so
that EqQ. (4.13) becomes

v = Aol + Bg (4.149)

where By = A1vs1 + Aovgr + Asigr + Agigo. We now want to evaluate
the values of constants Ag and Bg. When theterminalsa and b are open-
circuited, i = O and v = By. Thus By is the open-circuit voltage v,,
which isthe same as Vrp, SO

Bg = Vry (4.15)

When all theinternal sources areturned off, By = 0. Thecircuit can then
be replaced by an equivalent resistance Re, Which is the same as R,
and Eq. (4.14) becomes

v = Agi = Rthi —
Substituting the values of Ag and By in Eq. (4.14) gives

Ao = Rmn (4.16)

v = Rtni + Vmn (4.17)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuitsin Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
showninFig. 4.47(a), the current flowing into the circuit can be obtained
by superposition as

i =Cov+ Dy (4.18)

where Cov isthe contributionto i dueto the external voltage source v and
D, containsthe contributionsto i dueto all internal independent sources.
Whentheterminalsa-b are short-circuited, v = 0sothati = Dg = —i,,
where i . is the short-circuit current flowing out of terminal «, which is
the same as the Norton current Iy, i.e.,

Do = —Iy (4.19)
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When all theinternal independent sources are turned off, Do = 0 and the
circuit can be replaced by an equivalent resistance Req (0r an equivalent
conductance Geg = 1/ Req), Which is the same as Rrn or Ry. Thus Eq.
(4.19) becomes

v
= — —1 4.20
I Ror N (4.20)
This expresses the voltage-current relation at terminals a-b of the circuit
inFig. 4.47(b), confirming that thetwo circuitsin Fig. 4.47(a) and 4.47(b)

are equivalent.

48 MAXIMUM POWER TRANSFER

In many practical situations, a circuit is designed to provide power to a
load. Whilefor electric utilities, minimizing power losses in the process
of transmission and distribution is critical for efficiency and economic
reasons, there are other applications in areas such as communications
whereit is desirable to maximize the power delivered to aload. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal 1osses greater than or equal to the power
delivered to the load.

Reh
. S _ The Thevenin equivalent isuseful in finding the maximum power a
l ! linear circuit can deliver to aload. We assume that we can adjust the load
Vi @) R resistance R, . If the entire ci .rcuif[ isreplaced by its Thgveni n equivalent
except for theload, as shown in Fig. 4.48, the power delivered to the load
is
b 2
V;

p=i2R, = <—Th ) R, (4.21)

Figure 448  The circuit used for R+ Ry

maximum power transfer.

For agiven circuit, Vr,, and Ry, arefixed. By varying the load resistance
R, the power delivered to the load varies as sketched in Fig. 4.49. We
notice from Fig. 4.49 that the power is small for small or large values of
R; but maximum for some value of R; between 0 and co. We now want
to show that this maximum power occurs when R; isequal to Rt,. This
is known as the maximum power theorem.

>

0 Rrh R

|
Maximum power is transferred to the load when the load resistance equals the
Thevenin resistance as seen from the load (R, = Rry).

Figure 449 Power delivered to the load

asafunction of R;. To prove the maximum power transfer theorem, we differentiate

p in EqQ. (4.21) with respect to R, and set the result equal to zero. We

obtain
dp 5 [(Rtn+ R1)?— 2R, (Rtn+ Ry)
dr, '™ (Rth+ Rp)*
) [(RTh + R, — 2RL)i| _0
= V2 - =
(Rth+ Rr)
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Thisimplies that
0= (Rth+ RL —2R.) = (Rth— Ryr) (422)
which yields

R; = Rt (4.23)

showing that the maximum power transfer takes place when the load
resistance R, equalsthe Theveninresistance Rt,. Wecanreadily confirm The source and load are s2id to be matched when
that Eq. (4.23) givesthe maximum power by showing that d2p/d R? < 0. R=Ro
The maximum power transferred is obtained by substituting Eq.
(4.23) into Eq. (4.21), for

_ Vi
Prmac = 4Rth

(4.24)

Equation (4.24) applies only when R; = Rt,. When R, # Ry, we
compute the power delivered to the load using Eq. (4.21).

M4.|3

Find the value of R; for maximum power transfer in the circuit of Fig.
4.50. Find the maximum power.

6Q 30 20 a
12V 120 #}z;\ %RL
b

Figure 450  For Example 4.13.

Solution:

We need to find the Thevenin resistance Ry, and the Thevenin voltage
Vrh acrosstheterminalsa-b. Toget Ry, weusethecircuitin Fig. 4.51(a)

and obtain
6 x 12
6Q 3Q 2Q 6Q 3Q 2Q
ANV ANMA—O AN AN ANWN—0
+
Ry
12Q - 12V @ 12Q @ 2A Vin
o o
@ (b)

Figure 451 For Example 4.13: (a) finding Ryp, (b) finding Vrh.
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To get V1, we consider the circuit in Fig. 4.51(b). Applying mesh anal-
ysis,

—12 4 18i; — 12i, = 0, ir=-2A

Solving for i;, we get i; = —2/3. Applying KVL around the outer [oop
to get Vrp, across terminals a-b, we obtain

—12+4+6i1+3i2+20) + Vi =0 = Vip = 22V
For maximum power transfer,
R, =Rm=9Q
and the maximum power is

Vi 222

Pmaxc = T 4% 9

PRACTICE PROBLEMENIE

Determine the value of R, that will draw the maximum power from the

2Q 4Q
I rest of the circuit in Fig. 4.52. Calculate the maximum power.
10 Answer: 422, 2.901 W.
9V (’:} R
3vy

Figure 452 For Practice Prob. 4.13.

4.9 VERIFYING CIRCUIT THEOREMS WITH PSPICE

Inthis section, welearn how to use PSpiceto verify the theorems covered
in this chapter. Specifically, we will consider using dc sweep analysisto
find the Thevenin or Norton equivalent at any pair of nodes in a circuit
and the maximum power transfer to aload. The reader is advised to read
Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit and
insert an independent probing current source, say, Ip, at the terminals.
The probing current source must have a part name ISRC. We then per-
form aDC Sweep on Ip, as discussed in Section D.3. Typically, we may
let the current through Ip vary from0to 1 A in 0.1-A increments. After
simulating the circuit, we use Probeto display aplot of the voltage across
Ip versus the current through Ip. The zero intercept of the plot gives us
the Thevenin equivalent voltage, while the slope of the plot is equa to
the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from0to 1V in 0.1-V increments. A plot of the current through
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Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

Tofind the maximum power transfer to aload using PSpiceinvolves
performing a dc parametric sweep on the component value of R; in Fig.
4.48 and plotting the power delivered to the load as a function of R, .
According to Fig. 4.49, the maximum power occurs when R; = Rrp.
Thisisbest illustrated with an example, and Example 4.15 provides one.

We use VSRC and I SRC as part namesfor the independent voltage
and current sources.

£ x A 1P L ¢ R

Consider thecircuitisin Fig. 4.31 (see Example 4.9). Use PSpiceto find
the Thevenin and Norton equivalent circuits.

Solution:

(a) To find the Thevenin resistance Ry, and Thevenin voltage V1, at the
terminals a-b inthe circuit in Fig. 4.31, we first use Schematics to draw
the circuit as shown in Fig. 4.53(a). Notice that a probing current source
12 is inserted at the terminals. Under Analysis/Setput, we select DC
Sweep. In the DC Sweep dialog box, we select Linear for the Sweep
Type and Current Source for the Sveep Var. Type. We enter 12 under the
Name box, 0 as Start Value, 1 as End Value, and 0.1 as Increment. After
simulation, we add trace V(12:—) from the Probe menu and obtain the
plot shown in Fig. 4.53(b). From the plot, we obtain

26—-20
=
These agree with what we got analytically in Example 4.9.

6 Q2

Vrh = Zerointercept = 20V, Rth = Slope =

rR2 R4
AN .
2 2
E1
|1<) rRRZ4 | C . RBZ6 12
GAl N=2
J7 - OA 02A 04A 06A 0.8A 1.0A
0 = V(l2:-)
@ (b)

Figure 453 For Example 4.14: (&) schematic and (b) plot for finding R and V.

(b) Tofind the Norton equivalent, we modify the schematicin Fig. 4.53(a)
by replaying the probing current source with aprobing voltage source V1.
TheresultistheschematicinFig. 4.54(a). Again, intheDC Sweepdialog
box, weselect Linear for the Sveep Typeand Voltage Sourcefor the Sweep
Var. Type. Weenter V1 under Namebox, 0 as Sart Value, 1 asEnd Value,
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and 0.1 asIncrement. When the Probeisrunning, we add trace I (V1) and
obtain the plot in Fig. 4.54(b). From the plot, we obtain

Iy = Zerointercept = 3.335 A

3.335 - 3.165
GN=S|ope=f=O.l7S
T
R2 R1
AN—e—
2 2 3
E1 i
ER0)) R4§4 1 R3§6 n@® s
GAI N=2 3
3L A iiiol. ;
J7 OV 0.2V 04V 0.6V 0.8V 1.0V
0 o (V1) V. V1
@ (b)

Figure 45 For Example 4.14: (a) schematic and (b) plot for finding Gy and Iy.

PRACTICE PROBLEMENK

Rework Practice Prob. 4.9 using PSpice.
Answer: Vqp =533V, Rty =044 Q.

M4.|5

1kQ Refer to the circuit in Fig. 4.55. Use PSpice to find the maximum power
transfer to R;..

Solution:

Weneedto performadc sweep on R; to determinewhen the power across
it is maximum. We first draw the circuit using Schematics as shown in
Fig. 4.56. Oncethe circuit is drawn, we take the following three steps to
further prepare the circuit for adc sweep.

Thefirst stepinvolvesdefiningthevalue of R, asaparameter, since

1V R

Figure 455 For Example 4.15.

PARAMVETERS: we want to vary it. To do this:
RL 2k 1. DCLICKL thevaue 1k of R2 (representing R; ) to open up
. & . the Set Attribute Value dialog box.
vi 1k 2. Replace 1k with {RL} and click OK to accept the change.
DC=1 V R < (R Note that the curly brackets are necessary.

The second step is to define parameter. To achieve this:
- 1. Select Draw/Get New Part/Libraries - - -/special.gb.
0 2. Type PARAM in the PartName box and click OK.
K _ o 3. DRAG the box to any position near the circuit.
igure 456 schematic for the circuit in
Fig. 4.55. 4. CLICKL to end placement mode.
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5. DCLICKL to open up the PartName: PARAM dialog box.

6. CLICKL on NAMEL = and enter RL (with no curly brackets)
in the Value box, and CLICKL Save Attr to accept change.

7. CLICKL onVALUEL = and enter 2k in the Value box, and
CLICKL Save Attr to accept change.

8. Click OK.

The value 2k in item 7 is necessary for a bias point calculation; it
cannot be left blank.

The third step is to set up the DC Sweep to sweep the parameter.
To do this:

1. Select Analysig/Setput to bring up the DC Sweep dialog box.

2. For the Sweep Type, select Linear (or Octave for awide range

of R;).
3. For the Swveep Var. Type, select Global Parameter. 250 uWr---
4. Under the Name box, enter RL.
5. Inthe Sart Value box, enter 100. 200 uW:
6. Inthe End Value box, enter 5k. '
7. Inthe Increment box, enter 100. 150 uw;

8. Click OK and Close to accept the parameters.

After taking these steps and saving the circuit, weareready tosim- 159 yw!
ulate. Select Analysis’'Simulate. If there are no errors, we select Add :
TraceintheProbe menuandtype —V (R2:2)*1(R2) inthe Trace Command ! ) ) .
box. [The negative sign is needed since I (R2) isnegative] Thisgivesthe ~ 50 UW=--ooooooooooo . ;
plot of the power deliveredto R, as R; variesfrom 100 2 to 5 k2. We
can also obtainthe power absorbed by R; by typing V(R2:2)*V(R2:2)/RL
in the Trace Command box. Either way, we obtain the plot in Fig. 4.57.
It is evident from the plot that the maximum power is 250 1 W. Notice Figure 457 For Example 4.15: the plot
that the maximum occurs when R;, = 1 k<2, as expected analytically. of power across Py

PRACTICE PROBLEMENIE

0- V(Re: 2) *1 (Re)
RL

Find the maximum power transferred to R; if the 1-k2 resistor in Fig.
455 isreplaced by a 2-kS2 resistor.

Answer: 125 uW.

14,10  APPLICATIONS

In this section we will discuss two important practical applications of
the concepts covered in this chapter: source modeling and resistance
measurement.

4.10.1 Source Modeling

Source modeling provides an example of the usefulness of the Thevenin
or the Norton equivalent. An active source such as a battery is often
characterized by its Thevenin or Norton equivalent circuit. An ideal
voltage source provides a constant voltage irrespective of the current
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Figure 458  (a) Practical
voltage source, (b) practical
current source.

@

Q)

Figure 460 (2 Practical current
source connected to aload Ry,
(b) load current decreases as Ry,
increases.

PART | DC Circuits

drawn by the load, while an idea current source supplies a constant
current regardiess of the load voltage. As Fig. 4.58 shows, practical
voltage and current sources are not ideal, dueto their internal resistances
or source resistances R, and R,. They become ideal as R, — 0 and
R, — oo. To show that thisis the case, consider the effect of the load
on voltage sources, as shown in Fig. 4.59(a). By the voltage division
principle, the load voltageis

R 4.25
v 3
R R (4.25)
As R; increases, the load voltage approaches a source voltage v,, as
illustrated in Fig. 4.59(b). From Eq. (4.25), we should note that:

1. Theload voltage will be constant if the internal resistance R;
of the sourceis zero or, at least, R, < R; . In other words, the
smaller R, iscompared to R, the closer the voltage sourceis
to being ideal.

2. When theload is disconnected (i.e., the source is open-
circuited so that R;, — 00), v, = vs. Thus, vy may be
regarded as the unloaded source voltage. The connection of
the load causes the terminal voltage to drop in magnitude; this
is known as the loading effect.

vy =

R

Vs <t> Vi RL

@ (b)

Figure 459 (a) Practical voltage source connected to aload Ry,
(b) load voltage decreases as R;, decreases.

The same argument can be made for a practical current source when
connected to a load as shown in Fig. 4.60(a). By the current division
principle,

__ &

" R,+R.

Figure 4.60(b) shows the variation in the load current as the load re-
sistance increases. Again, we notice a drop in current due to the load
(loading effect), and load current is constant (ideal current source) when
theinternal resistanceisvery large(i.e., R, — ocor, atleast, R, > R;).

Sometimes, we need to know the unloaded source voltage v, and
theinternal resistance R, of avoltagesource. Tofind vy and Ry, wefollow
the procedureillustrated in Fig. 4.61. First, we measure the open-circuit
voltage v, asin Fig. 4.61(a) and set

ir is (4.26)

Us = Voc (4.27)
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Then, we connect a variable load R; across the terminals as in Fig.
4.61(b). We adjust the resistance R, until we measure a load voltage
of exactly one-half of the open-circuit voltage, v; = v,./2, because now
R; = Rth = R,. At that point, we disconnect R; and measure it. We
set

R, =R, (4.29
For example, a car battery may have v, = 12V and R, = 0.05 Q.

——oO
+ +
Signal y Signal
source oc source VL RL
——O

@ (b)
Figure 461 (2) Measuring v,., (b) measuring v;..

M4.I6

|
Theterminal voltage of avoltage sourceis 12V when connected to a2-W T :

load. When theload is disconnected, theterminal voltagerisesto 12.4 V. ! R W

(a) Calculate the source voltage vy and internal resistance R;. (b) Deter- : Pt

mine the voltage when an 8- load is connected to the source. A A R
Solution: 3 L -

(a) Wereplacethesourceby its Theveninequivalent. Theterminal voltage
when the load is disconnected is the open-circuit voltage,

Vg =Vpe =124V

When the load is connected, as shown in Fig. 4.62(a), v, = 12V and 240Q
pL = 2W. Hence, ‘

L2 2 qp2 12V v 80
P R =Y _pq | o
Ry PL 2

Theload current is

pL =

vy 121

= — =_=_A (b)
TR, T2 6
The voltage across R, isthe difference between the source voltage v, and Figure 462 For Example 4.16.
the load voltage vy, or
4
12.4— 12 = 0.4 = R,i,, RS:O—=2.4S2

L
(b) Now that we have the Thevenin equivalent of the source, we connect

the 8-Q2 load across the Thevenin equivaent as shown in Fig. 4.62(b).
Using voltage division, we obtain

8
v=g12412 =95
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PRACTICE PROBLEMERK

The measured open-circuit voltage across a certain amplifier is9 V. The
voltage drops to 8 V when a 20-2 loudspesker is connected to the am-
plifier. Calculate the voltage when a 10-2 loudspeaker is used instead.

Answer: 7.2V.

Historical note: The bridge was invented by
Charles Wheatstone (1802-1875), a British
professor who also invented the telegraph, as
Samuel Morse did independently in the United
States.

Ry Rs
Galvanometer
+ ()
'@ 7
+ +
R
2 vy Vo Ry

Figure 463 The Wheatstone bridge; R, is
the resistance to be measured.

4.10.2 Resistance Measurement

Although the ohmmeter method providesthe simplest way to measurere-
sistance, more accurate measurement may be obtained using the Wheat-
stone bridge. While ohmmeters are designed to measure resistance in
low, mid, or high range, a Whesatstone bridge is used to measure resis-
tance in the mid range, say, between 1  and 1 M. Very low values of
resistances are measured with a milliohmmeter, while very high values
are measured with a Megger tester.

The Wheatstone bridge (or resistance bridge) circuit is used in a
number of applications. Here we will use it to measure an unknown re-
sistance. The unknown resistance R, isconnected to the bridge as shown
in Fig. 4.63. The variable resistance is adjusted until no current flows
through the galvanometer, which is essentially a d’ Arsonval movement
operating as a sensitive current-indicating device like an ammeter in the
microamp range. Under this condition v; = v, and the bridge is said
to be balanced. Since no current flows through the galvanometer, R,
and R, behave as though they were in series; so do Rz and R,. The fact
that no current flows through the galvanometer also impliesthat v; = v,.
Applying the voltage division principle,

RZ Rx

vl:R1+R2v:U2=R3+RXU (4.29)
Hence, no current flows through the galvanometer when
ke __K =  RoRs= RiR,
Ri+R: R3+R,
or
R, = &Rg (4.30)
Ry

If Ry = R3, and R, is adjusted until no current flows through the gal-
vanometer, then R, = Ro.

How do we find the current through the galvanometer when the
Wheatstone bridge is unbalanced? We find the Thevenin equivalent (V1
and Rvy,) with respect to the galvanometer terminals. If R, isthe resis-
tance of the galvanometer, the current through it under the unbalanced
conditionis

I— V1h
Rh+ Ry,
Example 4.18 will illustrate this.

(4.31)
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InFig. 4.63, R; = 500  and R3 = 200 Q2. The bridgeis balanced when
R, isadjusted to be 125 Q2. Determine the unknown resistance R, .
Solution:
Using Eg. (4.30),

R3 200

R, = —R,= —-125=50 Q
* T R, %27 500

PRACTICE PROBLEMENN

A Wheatstone bridge has R; = R3 = 1 kQ. R, isadjusted until no cur-
rent flows through the galvanometer. At that point, R, = 3.2 k2. What
is the value of the unknown resistance?

Answer: 3.2kS.

M4.I8

The circuit in Fig. 4.64 represents an unbalanced bridge. If the galvano-
meter has aresistance of 40 €2, find the current through the galvanometer.

3KQ 400Q
a 40Q b
220V (’:}
1kQ 600 Q

Figure4.64  Unbalanced bridge of Example 4.18.

Solution:

We first need to replace the circuit by its Thevenin equivalent at termi-
nalsa and b. The Thevenin resistance is found using the circuit in Fig.
4.65(a). Noticethat the 3-k2 and 1-k2 resistorsarein parallel; so arethe
400-22 and 600-%2 resistors. The two parallel combinations form a series
combination with respect to terminalsa and b. Hence,

Rth = 3000 || 1000 + 400 || 600
3000 x 1000 L 400 x 600
3000+ 1000 ~ 400 + 600

To find the Thevenin voltage, we consider the circuit in Fig. 4.65(b).
Using the voltage division principle,
1000 600
=——(2200 =55V, = —
1000 + 3000 %2 "2 = 600 + 400
Applying KVL around loop ab gives

= 750 + 240 = 990

v (220) = 132V

—v1+ Vrh+v2=0 or Vih=v1—1v,=55-132=-77V
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3kQ 400 Q
a Rh b
1kQ 600 Q
(@
Rrn
ANV
V1 C:)
Figure 4.65

galvanometer.

©

For Example 4.18: (&) Finding Rtp, (b) finding Vi, (c) determining the current through the

Having determined the Thevenin equivalent, we find the current through
the galvanometer using Fig. 4.65(c).

V1h

—77 = —74.76 mA

Ic

~ Rm+R, 990+40

The negative sign indicatesthat the current flowsin the direction opposite
to the one assumed, that is, from terminal b to termina a.

PRACTICE PROBLEMENE

20Q 30Q A _
<G> nswer:
§ 140
600 40Q
L
16V
Figure 4.66  For Practice Prob. 4.18.

64 mA.

Obtain the current through the gal vanometer, having aresistance of 14 2,
in the Wheatstone bridge shown in Fig. 4.66.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 4 Circuit Theorems |53

4.11  SUMMARY

1. A linear network consists of linear elements, linear dependent
sources, and linear independent sources.

2. Network theorems are used to reduce a complex circuit to asimpler
one, thereby making circuit analysis much simpler.

3. The superposition principle states that for a circuit having multiple
independent sources, the voltage across (or current through) an
element is equal to the algebraic sum of all the individual voltages
(or currents) due to each independent source acting one at atime.

4. Source transformation is a procedure for transforming a voltage
source in series with aresistor to a current source in parallel with a
resistor, or vice versa

5. Thevenin's and Norton’s theorems allow us to isolate a portion of a
network while the remaining portion of the network isreplaced by an
equivalent network. The Thevenin equivalent consists of avoltage
source Vq, in serieswith aresistor Ry, while the Norton equivalent
consists of acurrent source Iy in parallel with aresistor Ry. The
two theorems are related by source transformation.

_ Vm
Rth
6. For agiven Thevenin equivalent circuit, maximum power transfer

occurswhen R; = Ry, that is, when the load resistance is equal to
the Thevenin resistance.

7. PSpice can be used to verify the circuit theorems covered in this
chapter.

8. Source modeling and resistance measurement using the Wheatstone
bridge provide applications for Thevenin’s theorem.

Ry = R, Iy

REVIEW QUESTIONS

4.1 The current through a branch in alinear network is (@ 25Q (b) 20 Q2
2 A when the input source voltageis 10 V. If the (©) 59 (d) 4
voltageisreduced to 1 V and the polarity is
reversed, the current through the branch is:

5Q
@ -2 (b) —0.2 (© 02
@ 2 (6) 20 !
a

42  For superposition, it is not required that only one 50V C_D 200

independent source be considered at atime; any b

number of independent sources may be considered T

simultaneously.

(@ True (b) False Figure 467 For Review Questions 4.4 to 4.6.
4.3 The superposition principle applies to power 45  The Thevenin voltage across terminals a and b of

calculation. the circuit in Fig. 4.67 is:

(& True (b) False (@) 50V (b) 40V
44  Referto Fig. 4.67. The Thevenin resistance at (c) 20V (d) 10V

terminalsa and b is:
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4.6 The Norton current at terminals a and b of the
circuitinFig. 4.67 is:
(@ 10A (b) 25A
(c 2A (d OA

4.7 The Norton resistance Ry is exactly equal to the
Thevenin resistance Rtp,.

(@ True (b) Fase

4.8 Which pair of circuitsin Fig. 4.68 are equivalent?

DC Circuits

4A 5Q 20V 5Q

© (d)

Figure 468 For Review Question 4.8.

4.9 A load is connected to a network. At the terminals
to which the load is connected, Ry, = 10 Q2 and
Vrh = 40 V. The maximum power supplied to the

ab B bandd loadis:
@ aa“d (d) a”d . (3 160W (b) 80W
() aandc (d) can (©) 40W (@ 1W
5Q 5Q . . .
410 The sourceis supplying the maximum power to the
load when the load resistance equals the source
20V 4A resistance.
(& True (b) False
@ (b) Answers: 4.1b, 4.2a, 4.3b, 4.4d, 4.5b, 4.6a, 4.7a, 4.8c, 4.9¢, 4.10b.
PROBLEMS

Section 4.2 Linearity Property

41 Calculate the current i, in the current of Fig. 4.69.

What does this current become when the input
@ voltageisraisedto 10 V?

1Q 5Q

b

1V 8Q 3Q

Figure 469 For Prob. 4.1.

4.2 Find v, in the circuit of Fig. 4.70. If the source
current isreduced to 1 ©A, what isv,?

50 4Q

1A 8Q 6Q 20 =V

Figure 470 For Prob. 4.2.

4.3 (8 Inthecircuitin Fig. 4.71, calculate v, and i,
whenv, =1V.

(b) Find v, and i, when v, = 10 V.
(c) What are v, and i, when each of the 1-Q

resistorsis replaced by a 10-2 resistor and
@ v, = 10V?

Figure 471 For Prob. 4.3.

44 Use linearity to determine i, in the circuit of Fig.

4.72.
30 20
MM
o
60 40 9A

Figure 472 For Prob. 4.4.
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45 For the circuit in Fig. 4.73, assume v, = 1V, and
use linearity to find the actual value of v,.

2Q 3Q y, 20
15V 6Q 6Q 4Q
Figure 473 For Prob. 4.5.
Section 4.3 Superposition
4.6 Apply superposition to find i in the circuit of Fig.
4.74.
6Q
{i
20V 5A

Figure 474 For Prob. 4.6.

47 Given the circuit in Fig. 4.75, calculate i, and the
power dissipated by the 10-2 resistor using

superposition.
120
1o
15V 10Q 400Q 4A
Figure 475 For Prob. 4.7.

4.8 For the circuit in Fig. 4.76, find the terminal voltage

V., Using superposition.

3V,
100 ab
a
;
4v 2A Vap
ob

Figure 476 For Prob. 4.8.

49 Use superposition principleto find i in Fig. 4.77.

Circuit Theorems |55

6Q

{i

12v 2Q 3Q 4A

Figure 477 For Prob. 4.9.

410 Determinev, inthecircuit of Fig. 4.78 using the

@ superposition principle.

12V 19V

Figure 4.78

For Prob. 4.10.

411  Apply the superposition principle to find v, in the
circuit of Fig. 4.79.

6Q

MWV
2A

40 20
A AW
+
2ov’ 1A vo%:m

Figure 4.79

For Prob. 4.11.

412  For thecircuit in Fig. 4.80, use superposition to find
@ i. Calculate the power delivered to the 3-Q2 resistor.

1Q 2A
20V 4Q
b
2Q
30 16V
Figure 480  For Probs. 4.12 and 4.45.
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413  Giventhecircuitin Fig. 4.81, use superposition to
geti,.

12V

For Probs. 4.13 and 4.23.

Figure 481

414  Usesuperposition to obtain v, in the circuit of Fig.
4.82. Check your result using PSpice.

300 100 200
AV
+ V>< -
90V 600Q ' 6A 300 40V

Figure 482 For Prob. 4.14.
4.15 Find v, in Fig. 4.83 by superposition.
2Q

AN
5iy

i 10
= MW ‘
+ v, —

10V 2A?

Figure 4.83

%Q

416 Usesuperpositionto solvefor i, inthe circuit of

@ Fig. 4.84.

tix
20 'GA 4A. 8Q

®

4iy

For Prob. 4.15.

| < +
x

Figure 484 For Prob. 4.16.

DC Circuits

Section 4.4

417
4.18

4.19

4.20

421

4.22

Sour ce Transformation
Find i in Prob. 4.9 using source transformation.

Apply source transformation to determine v, and i,
in the circuit in Fig. 4.85.

Figure 485 For Prob. 4.18.

For the circuit in Fig. 4.86, use source
transformation to find ;.

ANV

s

ZA'

§4Q 20V

Figure 486 For Prob. 4.19.

Obtain v, in the circuit of Fig. 4.87 using source
transformation. Check your result using PSpice.

2A

9Q
WY

3A 4Q 5Q 6A

+ Yo

2Q gy

Figure 487 For Prob. 4.20.

Use source transformation to solve Prob. 4.14.

Apply source transformation to find v, in the circuit
of Fig. 4.88.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



50V

4.23

4.24

4.25
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CHAPTER 4

100 a 12Q p 200
—\\\\—e
+ Ve T
00 @ s 40V
Figure 488 For Probs. 4.22 and 4.32.

Given the circuit in Fig. 4.81, use source
transformation to find i,,.

Use source transformation to find v, in the circuit of
Fig. 4.89.

4kQ

2kQ

3mAﬁ*>

Figure 4.89

For Prob. 4.24.

Determine v, in the circuit of Fig. 4.90 using source
transformation.

Figure 4.90

For Prob. 4.25.

Use source transformation to find i, in the circuit of
Fig. 4.91.

100
i 150 0.5l
—_—
i
60V % 500 % 40Q
Figure 491 For Prob. 4.26.

Circuit Theorems |57

Sections 4.5 and 4.6

4.27

4.28

4.29
4.30

431

Thevenin’sand Norton's
Theorems

Determine Rt and V1h at terminals 1-2 of each of
thecircuitsin Fig. 4.92.

100
MW o1
20V 400
02
@
600
b
2A § 30Q 30V
T 2
(b)
Figure 492 For Probs. 4.27 and 4.37.

Find the Thevenin equivalent at terminals a-b of the
circuitin Fig. 4.93.

3A
100 20Q
O a
40V 40Q
ob
Figure 493 For Probs. 4.28 and 4.39.

Use Thevenin's theorem to find v, in Prob. 4.10.

Solve for the current i in the circuit of Fig. 4.94
using Thevenin'stheorem. (Hint: Find the Thevenin
equivalent across the 12-Q2 resistor.)

b
10Q 120
40Q
50V 30V
Figure 494 For Prob. 4.30.

For Prob. 4.8, obtain the Thevenin equivalent at
terminals a-b.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



158 PART |

4.32  Giventhecircuit in Fig. 4.88, obtain the Thevenin
equivalent at terminals a-b and use the result to
getv,.

*4.33  For the circuit in Fig. 4.95, find the Thevenin
equivalent between terminalsa and b.

200
é 3) 20V
100 200
ao MW O b
100
5A 100 § 100
30V
Figure 495 For Prob. 4.33.

4.34  Find the Thevenin equivalent looking into terminals
a-b of thecircuit in Fig. 4.96 and solvefor ..

10Q a 6Q b

20V 10Q

so @) 2a

Figure 496 For Prob. 4.34.

435  Forthecircuitin Fig. 4.97, obtain the Thevenin
equivalent as seen from terminals:

@ a-b (b) b-¢
30 1Q

a
24V 4Q

b

20 5Q 2A
O C

Figure 497 For Prob. 4.35.

436  Find the Norton equivalent of the circuit in Fig. 4.98.

* An asterisk indicates a challenging problem.

DC Circuits

6Q
MW 0 a
4A 6Q 4Q
o b
Figure 498 For Prob. 4.36.

437 Obtain Ry and Iy at terminals 1 and 2 of each of the
circuitsin Fig. 4.92.

4.38  Determine the Norton equivalent at terminals a-b
for the circuit in Fig. 4.99.

10i,

[o]

2a @ 40

O b

Figure 499 For Prob. 4.38.

439  Find the Norton equivalent looking into terminals
a-b of thecircuit in Fig. 4.93.

440 Obtain the Norton equivalent of the circuit in Fig.
4.100 to the left of terminals a-b. Use the result to
find current ;.

60 1V _
2 @ 4Q sa @) 4a
—

Figure 4100 For Prob. 4.40.
441 Giventhecircuit in Fig. 4.101, obtain the Norton
equivalent as viewed from terminals:
@ @ a-b (b) c-d
a b
6Q T 4Q T

O C

120V 3Q 6A 2Q

od

Figure 4101 For Prob. 4.41.
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CHAPTER 4

For the transistor model in Fig. 4.102, obtain the
Thevenin equivalent at terminals a-b.

3kQ

2 a

6V 20i,, 2kQ

Figure 4102 For Prob. 4.42.

Find the Norton equivalent at terminals a-b of the
circuitin Fig. 4.103.

0.25v,
60 20
AW oa
+
18V 303 %
o b
Figure 4103 For Prob. 4.43.

Obtain the Norton equivalent at terminals a-b of the
circuitin Fig. 4.104.

8kQ |

—
O a
+
oV 0.01V,, é 801 50kQ <V,
o b

4.45

4.46

50V

Figure 4104 For Prob. 4.44.

Use Norton's theorem to find current i in the circuit
of Fig. 4.80.

Obtain the Thevenin and Norton equivalent circuits
at the terminals a-b for the circuit in Fig. 4.105.

3Q 2Q
O a
+
6Q X Vx 05y, 100
o b
Figure 4.105  For Probs. 4.46 and 4.65.

Circuit Theorems 159

4.47

4.48

*4.49

*4.50

The network in Fig. 4.106 models a bipolar
transistor common-emitter amplifier connected to a
load. Find the Thevenin resistance seen by the load.

i R, Bip
—
Vs Ry R
Figure 4.106  For Prob. 4.47.

Determine the Thevenin and Norton equivalents at
terminals a-b of thecircuit in Fig. 4.107.

10Q 200
sa @ a b

50Q 400
Figure 4.107  For Probs. 4.48 and 4.66.

For the circuit in Fig. 4.108, find the Thevenin and
Norton equivalent circuits at terminals a-b.

For Probs. 4.49 and 4.67.

Figure 4.108

Obtain the Thevenin and Norton equivalent circuits
at terminals a-b of the circuit in Fig. 4.109.
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2Q

6Q 6Q

12v @ @ v

6Q

ZQ§ §2§2

12v

o b

Figure 4109 For Prob. 4.50.

*451  Find the Thevenin equivalent of the circuit in Fig.

4.110.
0.1i,
&1
+
10Q o
bio
40Q % 20Q
\ 4 o
2

Figure 4.110 For Prob. 4.51.

4.52  Find the Norton equivalent for the circuit in Fig.

4.111.
100
MW 0
+
Vo 2 20V 0.5%,
O
Figure 4.111 " For Prob. 4.52.

453  Obtain the Thevenin equivalent seen at terminals
a-b of thecircuit in Fig. 4.112.

40 1Q
—AM—o0 a
fix

10i, §29

O b

Figure 4.112 For Prob. 4.53.

DC Circuits

Section 4.8 M aximum Power Transfer

454  Find the maximum power that can be delivered to
theresistor R inthecircuit in Fig. 4.113.

20 0V

3Q R
MWV
20V 5Q 6A

Figure 4.113  For Prob. 4.54.

455  Refer to Fig. 4.114. For what value of R isthe
@ power dissipated in R maximum? Calculate that power.

40 6Q
30V

R

12Q 8Q

Figure 4.114  For Prob. 4.55.

*456  Compute the value of R that results in maximum
power transfer to the 10-Q resistor in Fig. 4.115.
Find the maximum power.

R

10Q
12V § 20Q
8V

Figure 4.115  For Prob. 4.56.

457  Find the maximum power transferred to resistor R

@ in the circuit of Fig. 4.116.
10kQ 22kQ

MWV

+
100V Vo £ 40kQ 3y, 30kQ R

Figure 4.116  For Prob. 4.57.
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CHAPTER 4

For the circuit in Fig. 4.117, what resistor connected
across terminals a-b will absorb maximum power
from the circuit? What is that power?

10kQ

3kQ
a
+
8V Vo 1kQ 120v, 40 kQ
o b

Figure 4.117  For Prob. 4.58.

(a) For thecircuitin Fig. 4.118, obtain the Thevenin
equivalent at terminals a-b.

(b) Calculate the currentin R, = 8 Q.
(c) Find R, for maximum power deliverableto R; .
(d) Determine that maximum power.

2A
4Q 6Q a
AWV AW
4A 20 R
4D
A\ b
20V

Figure 4.118  For Prob. 4.59.

For the bridge circuit shown in Fig. 4.119, find the
load R; for maximum power transfer and the
maximum power absorbed by the load.

Figure 4.119 For Prob. 4.60.

For the circuit in Fig. 4.120, determine the value of
R such that the maximum power delivered to the
load is3 mW.

Circuit Theorems 161

R
R
R

v @

v @® R

3V

Figure 4120 For Prob. 4.61.

Section 4.9 Verifying Circuit Theoremswith

PSpice

4.62  Solve Prob. 4.28 using PSpice.

4.63  UsePSpiceto solve Prob. 4.35.

4.64 UsePpiceto solve Prob. 4.42.

4.65  Obtain the Thevenin equivalent of the circuit in Fig.
4,105 using PSpice.

4.66 UsePSpiceto find the Thevenin equivalent circuit at
terminals a-b of the circuit in Fig. 4.107.

4.67  For thecircuitin Fig. 4.108, use PSpiceto find the
Thevenin equivaent at terminals a-b.

Section 4.10 Applications

4.68 A battery has a short-circuit current of 20 A and an
open-circuit voltage of 12 V. If the battery is
connected to an electric bulb of resistance 2 €2,
calculate the power dissipated by the bulb.

4.69  Thefollowing results were obtained from
measurements taken between the two terminals of a
resistive network.

Termina Voltage 12V oV
Terminal Current oV 15A
Find the Thevenin equivalent of the network.
470 A black box with acircuit in it is connected to a

variable resistor. Anideal ammeter (with zero
resistance) and an ideal voltmeter (with infinite
resistance) are used to measure current and voltage
asshownin Fig. 4.121. Theresults are shown in the
table below.

i
oy W
@
Black
box R

Figure 4.121

For Prob. 4.70.
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(8 Findi whenR =4 Q.
(b) Determine the maximum power from the box.

DC Circuits

4.73

(8 Inthe Wheatstone bridge circuit of Fig. 4.123,
select the values of R, and R; such that the
bridge can measure R, in the range of 0-10 €.

R(Q) V(V) i(A)
2 3 15
R R
8 8 10 ' °
14 105 0.75
v®
471 A transducer is modeled with acurrent source 7; and 500 R
aparald resistance R,. The current at the terminals %
of the source is measured to be 9.975 mA when an
ammeter with an internal resistance of 20 Q is used.
(a) If adding a2-kS2 resistor across the source )
terminals causes the ammeter reading to fall to Figure 4123 For Prob. 473
9.876 mA, calculate I; and R;.
(b) What will the ammeter reading be if the (b) Repeat for the range of 0—100 2.
i th t i i . . N .
L?ai;gjc ?Obfrgf,n e sourceterminalsis *4,74  Consider the bridge circuit of Fig. 4.124. Isthe
’ bridge balanced? If the 10-k2 resistor is replaced
472  The Wheatstone bridge circuit shown in Fig. 4.122 by an 18-kS2 resistor, what resistor connected
is used to measure the resistance of a strain gauge. between terminals a-b absorbs the maximum
The adjustable resistor has alinear taper with a power? What is this power?
maximum value of 100 2. If the resistance of the
strain gauge is found to be 42.6 €2, what fraction of 2KkO
the full slider travel isthe dider when the bridge is
balanced?
Ry
A
§§/ \%j‘ﬁ
v (£ (G)
Figure 4.124  For Prob. 4.74.
RX
Figure 4.122  For Prob. 4.72.
COMPREHENSIVE PROBLEMS
475  Thecircuit in Fig. 4.125 models a common-emitter 476  Anattenuator is an interface circuit that reduces the

transistor amplifier. Find i, using source
transformation.

Vs Ry Bix

Figure 4.125  For Prob. 4.75.

voltage level without changing the output resistance.

(a) By specifying R, and R, of the interface circuit
in Fig. 4.126, design an attenuator that will meet
the following requirements:

Y = 0.125,

Vg

(b) Using the interface designed in part (a),
calculate the current through aload of
R, =50QwhenV, =12 V.

Req = Rth = R, = 100Q
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4.79 A common-emitter amplifier circuit is shown in Fig.

Ry |+ R 4.128. Obtain the Thevenin equivalent to the |eft of
AW : points B and E.
L+
\G R 1% R
1<_j R,
s - | Load 6kQ .
Attenuator B
Rea = 12V
Figure 4.126  For Prob. 4.76. 4KO
R
E
*4.77 A dc voltmeter with a sensitivity of 20 k2/V isused 1

to find the Thevenin equivalent of alinear network.
Readings on two scales are as follows:

Obtain the Thevenin voltage and the Thevenin
resistance of the network. *4.80  For Practice Prob. 4.17, determine the current
. . ) through the 40-2 resistor and the power dissipated
*4,78 A resistance array is connected to aload resistor R by the resistor.

and a9-V battery as shown in Fig. 4.127.
@ (8 Findthevalue of R suchthat V, = 1.8 V.
(b) Calculate the value of R that will draw the

maximum current. What is the maximum
current?

Figure 4.127  For Prob. 4.78.

Go to the Student OLC
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CHAPTER]| 5

OPERATIONAL AMPLIFIERS

If A issuccessin life, then A equals X plus Y plus Z. Workis X, Y is
play and Z is keeping your mouth shut.
—Albert Einstein

Enhancing Your Career

Career in Electronic Instrumentation Engineering in-
volves applying physical principles to design devices for
the benefit of humanity. But physical principles cannot be
understood without measurement. In fact, physicists ofte
say that physics is the science that measures reality. Ju
as measurements are a tool for understanding the physic
world, instruments are tools for measurement. The opera
tional amplifier introduced in this chapter is a building block
of modern electronic instrumentation. Therefore, master
of operational amplifier fundamentals is paramount to an
practical application of electronic circuits.

Electronic instruments are used in all fields of sci-
ence and engineering. They have proliferated in science an
technology to the extent that it would be ridiculous to have
a scientific or technical education without exposure to elec
tronic instruments. For example, physicists, physiologists
chemists, and biologists must learn to use electronic instru s
ments. For electrical engineering students in particular, theElectronic Instrumentation used in medical research.
skill in operating digital and analog electronic instruments Source: Geoff Tompkinson/Science Photo Library.
is crucial. Such instruments include ammeters, voltmeters,
ohmmeters, oscilloscopes, spectrum analyzers, and signal
generators. invent and patent their inventions. Specialists in electrgnic

Beyond developing the skill for operating the instru- instruments find employment in medical schools, hospitals,
ments, some electrical engineers specialize in designing antesearch laboratories, aircraft industries, and thousands of
constructing electronic instruments. These engineers derivether industries where electronic instruments are routinely
pleasure in building their own instruments. Most of them used.
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The term operational amplifier was introduced
in 1947 by John Ragazzini and his colleagues, in
their work on analog computers for the National
Defense Research Council during World War |l.
The first op amps used vacuum tubes rather than
transistors.

An op amp may also be regarded as a voltage
amplifier with very high gain.

Figure 50 A typical operational amplifier.

(Courtesy of Tech America.)

The pin diagram in Fig. 5.2(a) corresponds to the
741 general-purpose op amp made by Fairchild
Semiconductor.

PART | DC Circuits

5.1 INTRODUCTION

Having learned the basic laws and theorems for circuit analysis, we are
now ready to study an active circuit element of paramount importance:
theoperational amplifier, or op amp for short. The op amp is a versatile
circuit building block.

The op amp is an electronic unit that behaves like a
voltage-controlled voltage source.

It can also be used in making a voltage- or current-controlled current
source. An op amp can sum signals, amplify a signal, integrate it, or
differentiate it. The ability of the op amp to perform these mathematical
operations is the reason it is called ewerational amplifier. It is also

the reason for the widespread use of op amps in analog design. Op
amps are popular in practical circuit designs because they are versatile,
inexpensive, easy to use, and fun to work with.

We begin by discussing the ideal op amp and later consider the
nonideal op amp. Using nodal analysis as a tool, we consider ideal op
amp circuits such as the inverter, voltage follower, summer, and difference
amplifier. We will analyze op amp circuits witPSpice. Finally, we learn
how an op amp is used in digital-to-analog converters and instrumentation
amplifiers.

5.2 OPERATIONAL AMPLIFIERS

An operational amplifier is designed so that it performs some mathemat-
ical operations when external components, such as resistors and capaci-
tors, are connected to its terminals. Thus,

An op amp is an active circuit element designed to perform mathematical operations
of addition, subtraction, multiplication, division, differentiation, and integration.

The op ampis an electronic device consisting of a complex arrange-
ment of resistors, transistors, capacitors, and diodes. A full discussion
of what is inside the op amp is beyond the scope of this book. It will
suffice to treat the op amp as a circuit building block and simply study
what takes place at its terminals.

Op amps are commercially available in integrated circuit packages
in several forms. Figure 5.1 shows a typical op amp package. A typical
one is the eight-pin dual in-line package (or DIP), shown in Fig. 5.2(a).
Pin or terminal 8 is unused, and terminals 1 and 5 are of little concern to
us. The five important terminals are:

1. The inverting input, pin 2.
2. The noninverting input, pin 3.
3. The output, pin 6.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 5 Operational Amplifiers 167

4. The positive power supply ™, pin 7.
5. The negative power supply—, pin 4.

The circuit symbol for the op amp is the triangle in Fig. 5.2(b); as shown,
the op amp has two inputs and one output. The inputs are marked with
minus (—) and plus(+) to specifyinverting and noninverting inputs,
respectively. An input applied to the noninverting terminal will appear
with the same polarity at the output, while an input applied to the inverting
terminal will appear inverted at the output.

V+
T !
Balance 0 1 8 o No connection Inverting input 2 o——=
. . 6 Output
Inverting input o 2 70 Vvt Noninverting input 3 O————+
Noninverting input 0 3 6 p Output
- 415
vV g4 5 b Baance V- N
Offset Null
@ (b)
Figure 52 A typical op amp: (a) pin configuration, (b) circuit symbol.

As an active element, the op amp must be powered by a voltage _ l .
supply as typicaly shown in Fig. 5.3. Although the power supplies are i ¢'+_ v
often ignored in op amp circuit diagrams for the sake of simplicity, the 20— ! o -
power supply currents must not be overlooked. By KCL, 3 } 6

. . . . . - 4 + =
lp =11+ 12+ 1i4+1i_ (5.1 i fi_ T Vie

Theequivalent circuit model of anopampisshowninFig. 5.4. The -

output section consists of a voltage-controlled source in series with the
output resistance R,. It isevident from Fig. 5.4 that the input resistance
R; isthe Thevenin equival ent resistance seen at theinput terminals, while
the output resistance R, isthe Thevenin equivalent resistance seen at the
output. The differential input voltage vy, is given by

Figure 5.3 Powering the op amp.

Vg =V — V1 (5.2

where v; isthe voltage between the inverting terminal and ground and v, - R,

isthe voltage between the noninverting terminal and ground. Theop amp Vg % R Vo
senses the difference between the two inputs, multipliesit by thegain A, + Avg

and causes the resulting voltage to appear at the output. Thus, the output

v, isgiven by Vy 0

v, = Avg = A(va — v1) (5.3)

A iscalled the open-loop voltage gain becauseit isthe gain of the op amp Figure 54 The equivalent circuit of the non-
without any external feedback from output to input. Table 5.1 shows ideal op amp.

typical values of voltage gain A, input resistance R;, output resistance
R,, and supply voltage V.

The concept of feedback is crucial to our understanding of op amp Sometimes, voltage gain is expressed in decibels
circuits. A negative feedback is achieved when the output is fed back to (dB), as discussed in Chapter |4,
the inverting terminal of the op amp. As Example 5.1 shows, when there AdB =20logjo A
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168 PART | DC Circuits

TABLES.I  Typical ranges for op amp

parameters.

Parameter Typical range ldea values
Open-loop gain, A 10° to 108 00

Input resistance, R; 108 to 1012 @ oo Q
Output resistance, R, 10t0 100 0Q

Supply voltage, V.. 5t024V

isafeedback path from output to input, the ratio of the output voltage to
theinput voltageiscalled the closed-loop gain. Asaresult of the negative
feedback, it can be shown that the closed-loop gain is amost insensitive
to the open-loop gain A of the op amp. For thisreason, op amps are used
in circuits with feedback paths.
A practica limitation of the op amp is that the magnitude of its
output voltage cannot exceed |Vcc|. In other words, the output voltage
Vo A is dependent on and is limited by the power supply voltage. Figure 5.5
illustrates that the op amp can operate in three modes, depending on the

differential input voltage v,:
Positive saturation

Ve 1. Positive saturation, v, = V.

2. Linear region, —Vee < v, = Avg < Ve
0 Vg 3. Negative saturation, v, = —V¢c.
~ ~Vec If we attempt to increase v, beyond thelinear range, the op amp becomes
saturated and yields v, = Ve or v, = —Vec. Throughout this book,
we will assume that our op amps operate in the linear mode. This means
that the output voltage is restricted by

Negative saturation

Figure 55 Op amp output voltage v, as a —Vee v, < Vee (54)

function of the differential input volt . . . .
unction ot the diterential inpt VoTiage va Although we shall always operate the op amp in the linear region, the

possibility of saturation must be borne in mind when one designs with
op amps, to avoid designing op amp circuits that will not work in the
|aboratory.

MS.I

A 741 op amp has an open-loop voltage gain of 2 x 10°, input resistance
of 2 M, and output resistance of 50 2. Theop amp isusedinthecircuit
of Fig. 5.6(a). Findtheclosed-loopgainv, /v,. Determinecurrent i when
vy =2 V.
Solution:

Using the op amp model in Fig. 5.4, we obtain the equivalent circuit of
Fig. 5.6(a) asshowninFig. 5.6(b). We now solvethecircuitin Fig. 5.6(b)
by using nodal analysis. At node 1, KCL gives

Vg — V1 _ U1 + V1 — Uy
10 x 108~ 2000 x 108 ~ 20 x 103
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20kQ
AMA,
20kQ Vi
1oka |5 bi 10kQ _, |y, R,=50Q o
> 1 * - 0
740>———0 -
y 2 o + Ve Vg S R=2MQ Avg
s Vo +
T ° T °
@ (b)
Figure 56  For Example 5.1: (a) origina circuit, (b) the equivalent circuit.
Multiplying through by 2000 x 103, we obtain
200v, = 301v; — 100v,
or
2 s o
2v;, >~ 3v1 — v, - vy = UTH (5.1.2)
At node O,
V1 — UV, v, — Avy
20x 108 50
But v; = —v; and A = 200,000. Then
vy — v, = 400(v, + 200,000v,) (5.1.2)
Substituting v; from Eq. (5.1.1) into Eq. (5.1.2) gives
0 =~ 26,667,067v, + 53,333,333, Yo _ 19999699
Vs
Thisis closed-loop gain, because the 20-kS2 feedback resistor closes the
loop between the output and input terminals. When vy, = 2V, v, =
—3.9999398 V. From Eq. (5.1.1), we obtain v; = 20.066667 V. Thus,
. V1 — Yy
= ——— =0.1999 mA
= 20xa0e 0199
It is evident that working with a nonideal op amp is tedious, as we are
dealing with very large numbers.
PRACTICE PROBLEMEM
If the same 741 op amp in Example 5.1 is used in the circuit of Fig. 5.7, J’»
calculate the closed-loop gain v, /v,. Find i, whenv, = 1V. ﬁ
Answer: 9.0041, —362 mA.
AWV
Vs C:) 40kQ +

5kQ 20kQ < v,

Figure 5.7 For Practice Prob. 5.1.
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5.3 IDEAL OP AMP

To facilitate the understanding of op amp circuits, we will assume ideal
op amps. Anop amp isided if it has the following characteristics:

1. Infinite open-loop gain, A ~ oc.
2. Infiniteinput resistance, R; > oco.
3. Zero output resistance, R, >~ 0.

An ideal op amp is an amplifier with infinite open-loop gain, infinite input
resistance, and zero output resistance.

Although assuming an ideal op amp provides only an approxi-
mate analysis, most modern amplifiers have such large gains and input
impedances that the approximate analysis is a good one. Unless stated
otherwise, we will assume from now on that every op amp isideal.

i1=0 For circuit analysis, theideal opampisillustratedin Fig. 5.8, which
° —- isderived from the nonideal model in Fig. 5.4. Two important character-
i,=0 Vg istics of theideal op amp are:
v = *h * 1. The currentsinto both input terminals are zero:
1+
— VO
_ \iz—Vl _ i1 =0, ir=0 (5.5)
O i O

= Thisisdueto infinite input resistance. An infinite resistance

between the input terminals implies that an open circuit exists
Figure 5.8 1deal op amp modl. there and current cannot enter the op amp. But the output
current is not necessarily zero according to Eqg. (5.1).

2. Thevoltage across the input terminalsis negligibly small; i.e.,

vg=vp—v1 >0 (5.6)

or

v =12 (5.7)

The two characteristics can be exploited by Thus, an ideal op amp has zero current into its two input

noting that for voltage calculations the input terminals and negligibly small voltage between the two input
port behaves as a short circuit, while for current terminals. Equations (5.5) and (5.7) are extremely important
calculations the input port behaves as an open and should be regarded as the key handles to analyzing op amp
circuit. circuits.

MS.Z

Rework Practice Prob. 5.1 using the ideal op amp model.
Solution:

We may replace the op amp in Fig. 5.7 by its equivalent model in Fig.
5.9 aswe did in Example 5.1. But we do not really need to do this. We
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just need to keep Egs. (5.5) and (5.7) in mind aswe analyze the circuit in

Fig. 5.7. Thus, theFig. 5.7 circuit is presented asin Fig. 5.9. Notice that Vo i2_=3
Vo = v, (5.2.1) Vi — + * io
1. =
Sincei; = 0, the40-k2 and 5-kS2 resistors are in series because the same - -
current flows through them. v, is the voltage across the 5-k<2 resistor. y <+> MW o *
Hence, using the voltage division principle, * & 40ka .
5kQ
5 Vo 6522) % Vo % 20kQ
V1 = Vo = —— 2. -
5+ 40 9
* T

According to Eq. (5.7), -

Vo = vy (5.23) Figure 5.9 For Example 5.2.

Substituting Egs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yieldsthe closed-loop
gain,

Yoo, %
9 Vs
whichisvery closeto the value of 8.99955796 obtai ned with the nonideal
model in Practice Prob. 5.1. Thisshowsthat negligibly small error results

from assuming ideal op amp characteristics.
At node O,

vy = =9 (5.2.4)

v() vo
= — mA 5.2.5
““=20+5 " 20 (525

From Eg. (5.2.4), when vy, = 1V, v, = 9 V. Substituting for v, =9V
in Eq. (5.2.5) produces

ip, =0.24 0.45 = 0.65mA

This, again, is close to the value of 0.649 mA obtained in Practice Prob.
5.1 with the nonideal model.

PRACTICE PROBLEMEE

Repeat Example 5.1 using the ideal op amp model.
Answer: —2,0.2mA.

5.4 INVERTING AMPLIFIER

Inthisandthefollowing sections, we consider someuseful opamp circuits
that often serve as modulesfor designing more complex circuits. Thefirst
of suchopamp circuitsistheinvertingamplifier showninFig. 5.10. Inthis Throughout this book, we assume thatan op amp
circuit, thenoninvertinginput isgrounded, v; isconnected to theinverting operates in the linear range. Keep in mind the
input through R, and the feedback resistor R ; is connected between the voltage constraint on the op amp in this mode.

inverting input and output. Our goal isto obtain the relationship between
the input voltage v; and the output voltage v,. Applying KCL at node 1,

A key feature of the inverting amplifier is that
) ' vi—Uv1 UL — U, both the input signal and the feedback are applied
i1=12 = = (58) at the inverting terminal of the op amp.

Ry Rs
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But v; = v, = 0for an ideal op amp, since the noninverting terminal is
grounded. Hence,

V; _ Vo
R1 Ry
or
Ry
Vo = ——V; 5.9
o Ri (59
Note there are two types of gains: the one here The voltage gainis A, = v,/v; = —Ry/R1. The designation of the
is the closed-loop voltage gain A,, while the op circuit in Fig. 5.10 as an inverter arises from the negative sign. Thus,

amp itself has an open-loop voltage gain A.

{ An inverting amplifier reverses the polarity of the input signal while amplifying it.

Notice that the gain is the feedback resistance divided by the input
resistance which means that the gain depends only on the externa ele-
ments connected to the op amp. Inview of Eq. (5.9), an equivalent circuit
for the inverting amplifier is shown in Fig. 5.11. The inverting amplifier
isused, for example, in a current-to-voltage converter.

i1
— Rl Vq

Figure 5.1 An equivalent circuit
for the inverter in Fig. 5.10.

Figure 5.10  The inverting amplifier.

25kQ Refer to the op amp in Fig. 5.12. If v; = 0.5V, calculate: (a) the output
VW voltage v,, and (b) the current in the 10 kS2 resistor.

Solution:
(a) Using Eq. (5.9),

:
o1 & +4)

Vo _ &_ 25

= =—-——=-25
V; Rl 10

v, = —2.5v;, = —2.5(0.5) = -1.25V

(b) The current through the 10-kS2 resistor is
v, -0 05-0
Ry 10x 108

Figure 5.12 For Example 5.3.

=50 uA

I =
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PRACTICE PROBLEMEIE

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the 15kQ
current through the feedback resistor. . MWW
Answer: —120mV, 8 uA. ;> o
40 mv Y
o

Figure .13 For Practice Prob. 5.3.

Exaip L B

Determine v, in the op amp circuit shown in Fig. 5.14.
Solution:
Applying KCL at node a,

Vo —Vp 6 — v,

40 20

v, — v, =12 — 2vu, == v, = 3v, — 12

But v, = v, = 2V for anidea op amp, because of the zero voltage drop
across the input terminals of the op amp. Hence,

v,=6—-12=-6V
Noticethat if v, = 0 = v,, then v, = —12, as expected from Eq. (5.9).

PRACTICE PROBLEMEBEK

Two kindsof current-to-voltage converters(al so known astransresistance
amplifiers) are shown in Fig. 5.15.
(a) Show that for the converter in Fig. 5.15(a),
Y~ R
Is
(b) Show that for the converter in Fig. 5.15(b),

Vo R3 Ra
Yoo Ri(14+ 22422
I 1( Ry R2>

Figure 514 For Example 5.4.

Answer: Proof.

R
A%
p—
Is Vo
o
= @ = (b)

Figure 5.5 For Practice Prob. 5.4.
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5.5 NONINVERTING AMPLIFIER

Another important application of the op amp isthe noninverting amplifier
showninFig. 5.16. Inthis case, the input voltage v; isapplied directly at

i

- vﬁm the noninverting input terminal, and resistor R; is connected between the
R, _|1> v ground and theinv_erting ter_mi r_1al. We areinteres;ed in_the outpl_Jt vol'gage
A >\_O and the voltage gain. Application of KCL at the inverting terminal gives
Vo + . . 0— V1 V1 — U
v " 11 =12 - R1 = R; (5.10)
- But vy = vy = v;. Equation (5.10) becomes
é ° —V; Vi — Vo
= % - 7
Figure 5.16  The noninverting amplifier. or
v, = (1 + ﬁ) v; (5.12)
Ry

The voltage gainis A, = v,/v; = 1+ R;/R1, which does not have a
negative sign. Thus, the output has the same polarity as the input.

A noninverting amplifier is an op amp circuit designed
to provide a positive voltage gain.

Again we notice that the gain depends only on the external resistors.

Notice that if feedback resistor Ry = 0 (short circuit) or Ry = oo
(open circuit) or both, the gain becomes 1. Under these conditions (R =
Oand R; = o0), thecircuit in Fig. 5.16 becomesthat shownin Fig. 5.17,
which is called a voltage follower (or unity gain amplifier) because the
output follows the input. Thus, for a voltage follower

Vy = V; (5.12)

Suchacircuit hasavery highinputimpedanceandistherefore useful asan
intermediate-stage (or buffer) amplifier toisolate onecircuit from another,
as portrayed in Fig. 5.18. The voltage follower minimizes interaction
between the two stages and eliminates interstage loading.

c>—Lo +
+ First + * | Second
v

stage stage

=
o

Vi Vo = Vi

== Figure 5.18 A voltage follower used to
isolate two cascaded stages of a circuit.

Figure 5.17  The voltage
follower.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 5 Operational Amplifiers 175

e L B

For the op amp circuit in Fig. 5.19, calculate the output voltage v,,. 10kQ
Solution:

4kQ

We may solve this in two ways: using superposition and using nodal a
analysis. b
Using superposition, we let oV 4V #}7
Vo = Vo1 + Vo2 % —
wherev,; isduetothe6-V voltage source, and v, isdueto the4-V input. Figure 5.19  For Example 5.9,

To get v,1, we set the 4-V source equal to zero. Under this condition, the
circuit becomes an inverter. Hence Eq. (5.9) gives

10
Vo1 = _Z(G) =-15V

To get v,2, we set the 6-V source equal to zero. The circuit becomes a
noninverting amplifier so that Eq. (5.11) applies.

10
vz =(1+5)4=14V

Thus,

Vo =Vp1 +Vp2=-154+14=-1V

METHOD §4 Applying KCL at nodea,

6_Ua Vg — Vo

4 10
But v, = v, =4, and so
6-4 4-v,
- = 5=4—y,
4 10 - v
orv, = —1V, as before.

PRACTICE PROBLEMENS

Calculate v, inthe circuit in Fig. 5.20.
Answer: 7V.

Figure 5.20  For Practice Prob. 5.5.
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i
R 't R
Vi 0— AN
i i
R 21 | 9
Vo o— AN 3 =
i +
R, _3 . +
V3 0—AMA— 0 v,
o o

Figure 5.21  The summing amplifier.

PART | DC Circuits

5.6 SUMMING AMPLIFIER

Besides amplification, the op amp can perform addition and subtraction.
The addition is performed by the summing amplifier covered in this sec-
tion; the subtraction is performed by the difference amplifier covered in
the next section.

A summing amplifier is an op amp circuit that combines several inputs and produces
an output that is the weighted sum of the inputs.

The summing amplifier, shown in Fig. 5.21, is a variation of the
inverting amplifier. It takes advantage of the fact that the inverting con-
figuration can handle many inputs at the sametime. We keep in mind that
the current entering each op amp input is zero. Applying KCL at node a
gives

I =1i1+ir+ i3 (5.13)
But
V1 — U, V2 — Vg
1= s 2=
R1 R>
(5.14)
. U3 — Vg . Vg — Vo
13 = s 1 =
R3 Ry

We note that v, = 0 and substitute Eq. (5.14) into Eq. (5.13). We get

Ry R R3

R R R
vy = — (—fvl + Loyt —fv3> (519

indicating that the output voltage is a weighted sum of the inputs. For
this reason, the circuit in Fig. 5.21 is called a summer. Needless to say,
the summer can have more than three inputs.

Cdlculate v, and i, in the op amp circuit in Fig. 5.22.

5kQ 10kQ
AV
a i
- o]
25kQ p
2V (f) . b +

2kQ SV,
1Vv -

Figure 522 For Example 5.6.
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Solution:
Thisisasummer with two inputs. Using Eq. (5.15),
10 10
v=—|—=@+—=1)|=-4+4 =-8V
v, [5()+2‘5()} (4+4)

The current i, is the sum of the currents through the 10-k2 and 2-k2

resistors. Both of these resistors have voltage v, = —8 V across them,
since v, = v, = 0. Hence,
o O o O
=2 A= _08-04=-12mA

10 2

PRACTICE PROBLEMEI

Find v, and i,, in the op amp circuit shown in Fig. 5.23.

20kQ 8kQ
AMA,
10kQ i
> O
6kQ »
15v @ ® .
2v (+ §
- 4kQ 2 v,
12V _°

Figure 5.23  For Practice Prob. 5.6.

Answer: —3.8V, —1.425mA.

5.1 DIFFERENCE AMPLIFIER

Difference (or differential) amplifiers are used in various applications The difference amplifier is lso known as the sub-
where there is need to amplify the difference between two input signals. tractor, for reasons to be shown later,

They are first cousins of the instrumentation amplifier, the most useful

and popular amplifier, which we will discussin Section 5.10.

A difference amplifier is a device that amplifies the difference between two inputs
but rejects any signals common to the two inputs.

Consider the op amp circuit shown in Fig. 5.24. Keep in mind that

zero currents enter the op amp terminals. Applying KCL to node «,
V1 — Vg Vg — VU,

Ry Ry

R, R
v, = (R_ + 1> Vg — R—vl (5.16)

or
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Ry
AA
R vl 9
AW =
R3 Vb  —— —©
AN + +
) .
V2 R, °
T o
Figure 524 Difference amplifier.
Applying KCL to node b,
V2 — Vp N vp — 0
Rs  Ra
or
Ra (517)
Vp = () .
b Rs+ Ra 2

But v, = v,. Substituting Eq. (5.17) into Eq. (5.16) yields
R> Ry R,
o=\5+1)—Fv2— —
’ <R1+ >R3-|-R4v2 Rlvl
or

R2 (1+ R1/R») R>
S el M e Y (5.18)
R1 (14 Ra/Ras) R1

o

Sinceadifferenceamplifier must reject asignal common to thetwo inputs,
the amplifier must have the property that v, = 0 when v; = v,. This
property exists when
Ri  Rs
R: R
Thus, when the op amp circuit is a difference amplifier, Eq. (5.18) be-
comes

(5.19)

Vo — (v v 5.20
R 2 1

If R, = Ry and R3 = Ry, the difference amplifier becomes a subtractor,
with the output

V, = VU2 — VU1 (5.22)
Design an op amp circuit with inputsv; and v, suchthat v, = —5v1+ 3vs.
Solution:
The circuit requires that
v, = vy — bug (5.7.1)

This circuit can be realized in two ways.
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DESIGN | If we desire to use only one op amp, we can use the op
amp circuit of Fig. 5.24. Comparing Eq. (5.7.1) with Eq. (5.18),
R
— =5 — R, =5R, (5.7.2)
Ry
Also,
(1+ Ri/Rp) N : _3
(1+ R3/Ry) 14+ R3/R4 5
or
R3
2=1+— = R3 = Ry (5.7.3)
R4
If we choose R; = 10 k2 and R3; = 20 k<2, then R, = 50 k2 and
R4 = 20kQ2.

DESIGN 2 If wedesireto use morethan one op amp, we may cascade
aninverting amplifier and atwo-input inverting summer, asshownin Fig.
5.25. For the summer,

v, = —v, — by (5.7.4)
and for the inverter,

v, = —3u, (5.7.5)

Combining Egs. (5.7.4) and (5.7.5) gives

Figure 525 For Example 5.7.

v, = 3vy — Sug

which isthe desired result. In Fig. 5.25, we may select R; = 10 k2 and
Ry = 20 k&2 orRi =Ry = 10 k2.

PRACTICE PROBLEMEEN

Design adifference amplifier with gain 4.
Answer: Typical: Ry = R3 = 10k, R, = R4 = 40kQ2.

£ X AP LE I

An instrumentation amplifier shown in Fig. 5.26 is an amplifier of low-
level signals used in process control or measurement applications and
commercially available in single-package units. Show that

Ry 2R3
=—1(1 R —
Vo Ri ( + Ra ) (v2 —v1)

Solution:

We recognize that the amplifier Az in Fig. 5.26 is a difference amplifier.
Thus, from Eq. (5.20),

Vo = — (Vo2 — Vo1) (5.8.1)
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Figure 526  Instrumentation amplifier; for Example 5.8.

Since the op amps A; and A, draw no current, current i flows through
the three resistors as though they were in series. Hence,
Vo1 — Vo2 = i(R3 + R4+ R3) = i(2R3 + R4) (582

But
Vg — Up

R4

I =

and v, = vy, v, = vo. Therefore,
. V1— V2
= 583
l Ra (58.3)
Inserting Egs. (5.8.2) and (5.8.3) into Eq. (5.8.1) gives
Ry 2R3
o=—(1+=") (v2—
! R1< " R4>(v2 "

as required. We will discuss the instrumentation amplifier in detail in
Section 5.10.

PRACTICE PROBLEM IR

Obtain i, in the instrumentation amplifier circuit of Fig. 5.27.

8.00v 40kQ
20kQ
—WW—
AW i
20kQ °
801V 40kQ % 10kQ

Figure 527 Instrumentation amplifier; for Practice Prob. 5.8.

Answer: 2 uA.
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5.8 CASCADED OP AMP CIRCUITS

Asweknow, op amp circuitsaremodulesor building blocksfor designing
complex circuits. Itisoften necessary in practical applicationsto connect
op amp circuits in cascade (i.e., head to tail) to achieve a large overall
gain. In general, two circuits are cascaded when they are connected in
tandem, one behind another in asinglefile.

A cascade connection is a head-to-tail arrangement of two or more op amp circuits
such that the output of one is the input of the next.

When op amp circuits are cascaded, each circuit in the string is
caled a stage; the original input signal is increased by the gain of the
individual stage. Op amp circuits have the advantage that they can be
cascaded without changing their input-output relationships. Thisis due
tothefact that each (ideal) op amp circuit hasinfinite input resistance and
zero output resistance. Figure 5.28 displays ablock diagram representa-
tion of three op amp circuitsin cascade. Since the output of one stageis
the input to the next stage, the overall gain of the cascade connection is
the product of the gains of the individual op amp circuits, or

A = A1A5A3 (5.22)

Although the cascade connection does not affect the op amp input-output
relationships, care must be exercised in the design of an actual op amp
circuit to ensure that the load due to the next stage in the cascade does
not saturate the op amp.

o— —o
+ + + +

Stage 1 Stage 2 Stage 3
vy A Vo = Agvq Ay V3 = AV, Aq Vo= AgVz
o— —o

Figure 5.28 A three-stage cascaded connection.

81

M5.9

Find v, and i,, in the circuit in Fig. 5.29.
Solution:

This circuit consists of two noninverting amplifiers cascaded. At the
output of the first op amp,

12
v, = <1+ ?) (20) = 100 mV
At the output of the second op amp,

10
v, = (1+ Z) Ve = (1+ 2.5)100 = 350 mV

20mv @)

Figure 5.29

For Example 5.9.
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The required current i, isthe current through the 10-k<2 resistor.
. Vo — Up
=10

But v, = v, = 100 mV. Hence,

) (350 — 100) x 103
T T 0% 108

mA

PRACTICE PROBLEMEEE

Determine v, and i, in the op amp circuit in Fig. 5.30.
[; + Answer: 10V, 1mA.

4v (’:) 6kQ Yo
4KQ §

Figure 5.30  For Practice Prob. 5.9.

WS.IO

Ifv; =1V andv, =2V, find v, in the op amp circuit of Fig. 5.31.

10kQ

Figure 531 For Example 5.10.

Solution:

The circuit consists of two inverters A and B and asummer C as shown
in Fig. 5.31. Wefirst find the outputs of theinverters.

Vg = —g(vl) =-3(1) =-3V, vy = —g(vz) =—-22) =-4V
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These become the inputs to the summer so that the output is obtained as

10 10 2
Vo ( c v, + 15vb> |: (=3) + 3( ):| 8.333

PRACTICE PROBLEMEEEK

If vy =2V and v, = 1.5V, find v, in the op amp circuit of Fig. 5.32.

60 kQ

Figure 532 Practice Prob. 5.10.

Answer: 9V.

5.9 OP AMP CIRCUIT ANALYSIS WITH PSPICE

PSpice for Windows does not have amodel for an ideal op amp, although
one may create one as a subcircuit using the Create Subcircuit linein the
Tools menu. Rather than creating an ideal op amp, wewill use one of the
four nonideal, commercially available op amps supplied in the PSpice
library eval .slb. The op amp modelshavethe part namesLF411, LM111,
LM324, and uA471, asshownin Fig. 5.33. Each of them can be obtained
from Draw/Get New Part/libraries - - -/feval.lib or by simply selecting
Draw/Get New Part and typing the part name in the PartName dialog
box, asusual. Notethat each of them requires dc supplies, without which
the op amp will not work. The dc supplies should be connected as shown
inFig. 5.3.

LF411 LML11 L\VB24 uA741

(@) JFET—input opamp  (b) Op amp subcircuit (c) Five-connection (d) Five—connection
subcircuit op amp subcircuit op amp subcircuit

Figure 533 Nonidea op amp model available in PSpice.
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Use PSpice to solve the op amp circuit for Example 5.1.
Solution:

Using Schematics, we draw the circuit in Fig. 5.6(a) as shown in Fig.
5.34. Notice that the positive termina of the voltage source v; is con-
nected to the inverting terminal (pin 2) viathe 10-k<2 resistor, while the
noninverting terminal (pin 3) isgrounded asrequired in Fig. 5.6(a). Also,
notice how the op amp is powered; the positive power supply terminal
V+ (pin 7) is connected to a 15-V dc voltage source, while the negative
power supply terminal V— (pin 4) isconnectedto —15V. Pins1and5are
| eft floating because they are used for offset null adjustment, which does
not concern us in this chapter. Besides adding the dc power supplies to
the original circuitin Fig. 5.6(a), we have al so added pseudocomponents
VIEWPOINT and IPROBE to respectively measure the output voltage v,
at pin 6 and the required current i through the 20-k<2 resistor.

%

[
vs@z2v 3P 7 =15V
‘NS -3.9983 -
L

— )
Rl _051
2| V2X - Q7O
. —9—o—- = _15 V
10 K > T

> +

&) 1. 999E-04
R2

20 K

Figure 5,34 Schematic for Example 5.11.

After saving the schematic, we simulate the circuit by selecting
Analysis/Simulate and have the results displayed on VIEWPOINT and
IPROBE. From the results, the closed-loop gainis

Yo _3‘2983 — —1.99015

Us

and i = 0.1999 mA, in agreement with the results obtained analytically
in Example 5.1.

PRACTICE PROBLEMBEIN

Rework Practice Prob. 5.1 using PSpice.
Answer: 9.0027, 0.6502 mA.
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5,10  APPLICATIONS

The op amp isafundamental building block in modern electronic instru-
mentation. It is used extensively in many devices, along with resistors
and other passive elements. Its numerous practical applications include
instrumentation amplifiers, digital-to-analog converters, analog comput-
ers, level shifters, filters, calibration circuits, inverters, summers, inte-
grators, differentiators, subtractors, logarithmic amplifiers, comparators,
gyrators, oscillators, rectifiers, regulators, voltage-to-current converters,
current-to-voltage converters, and clippers. Some of these we have al-

ready considered. We will consider two more applications here: the Digitl  o—— . Andlog
- ; . . input  © | o
digital-to-analog converter and the instrumentation amplifier. o—— DAC output
(0000-1111) |

5.10.1 Digital-to-Analog Converter @
Thedigital-to-anal og converter (DAC) transformsdigital signalsinto ana-
logform. A typical exampleof afour-bit DACisillustratedinFig. 5.35(a).
The four-bit DAC can berealized in many ways. A simplerealizationis

the binary weighted ladder, shown in Fig. 5.35(b). The hits are weights RLSR SRy SR R
according to the magnitude of their place value, by descending value of
R¢ /R, sothat each lesser bit has half the weight of the next higher. This MSB e E’SL v,
is obviously an inverting summing amplifier. The output isrelated to the
inputs as shown in Eq. (5.15). Thus, o B
v, = Ry, +ﬁv +&v +ﬁv 523)  Figure 5.35 i : i
°= R 1 R 2 Rs 3 R 4 (523)  Figure . Four-bit DAC: (a) block diagram,

(b) binary weighted ladder type.

Input V; is called the most significant bit (MSB), while input V4 is the

least significant bit (LSB). Each of the four binary inputs Vi, ..., V4 can

assume only two voltage levels: 0 or 1 V. By using the proper input In practice, the voltage levels may be typiclly 0
and feedback resistor values, the DAC provides a single output that is and 5V

proportional to the inputs.

ms.m

In the op amp circuit of Fig. 5.35(b), let Ry = 10 k2, R1 = 10 k2,
R, = 20k, Rz = 40k, and R4 = 80 k2. Obtain the analog output
for binary inputs [0000], [0001], [0010], ..., [1111].

Solution:
Substituting the given values of the input and feedback resistors in Eq.
(5.23) gives
Ry Ry Ry Ry
—V,=—Vi+ —=Vo+ —=V3+ —V,
R1 1—i—R2 2—i—R3 3+R4 4
=V;+ 05V, +0.25V5 + 0.125V,

Using this equation, a digital input [V,V2V3V,4] = [0000] produces an
analog output of —V, = 0V; [V1V,V3V,] = [0001] gives —V, =
0.125V. Similarly,
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[V1V2V3V4] = [0010] - -V, =025V

[ViVaVaVy] =[0011] =  —V,=025+0.125=0375V

[V1VLV3V,] = [0100] — -V, =05V

[V1VaV3V,] = [11117] == -V,=1+05+4+0.25+0.125
=1.875V

Table 5.2 summarizestheresult of the digital-to-anal og conversion. Note
that we have assumed that each bit has a value of 0.125 V. Thus, in
this system, we cannot represent a voltage between 1.000 and 1.125,
for example. This lack of resolution is a major limitation of digital-to-
analog conversions. For greater accuracy, a word representation with a
greater number of bitsis required. Even then a digital representation of
an analog voltage is never exact. In spite of this inexact representation,
digital representati on has been used to accomplish remarkablethingssuch
asaudio CDs and digital photography.

TABLES.2  Input and output values
of the four-bit DAC.

Binary input Output

[ViV,V3V,]  Decima value -V,
0000 0 0
0001 1 0.125
0010 2 0.25
0011 3 0.375
0100 4 0.5
0101 5 0.625
0110 6 0.75
0111 7 0.875
1000 8 10
1001 9 0.125
1010 10 0.25
1011 11 1.375
1011 12 15
1100 13 1.625
1101 14 1.75
1111 15 1.875

PRACTICE PROBLEMEEIN

A three-bit DAC isshownin Fig. 5.36.
(a) Determine |V, | for [ V1V, V3] = [010].
(b) Find |V, | if [V1V,V3] = [11Q].

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



CHAPTER 5 Operational Amplifiers 187

() If [V,| = 1.25V is desired, what should be [V V,V3] ? vy ok 1ok
(d) Toget |V,| = 1.75V, what should be [V V, V3] ? 20kO
Answer: 05V, 15V,[101], [111]. V2 oW - .
40kQ L

V3 o——AW——

Figure 5.36  Three-bit DAC; for Practice
Prob. 5.12.

5.10.2 Instrumentation Amplifiers

One of the most useful and versatile op amp circuits for precision mea-
surement and process control is the instrumentation amplifier (1A), so
called because of its widespread use in measurement systems. Typical
applications of IAsincludeisolation amplifiers, thermocouple amplifiers,
and data acquisition systems.

Theinstrumentation amplifier isan extension of the difference am-
plifier in that it amplifies the difference between its input signals. As
shown in Fig. 5.26 (see Example 5.8), an instrumentation amplifier typ-
ically consists of three op amps and seven resistors. For convenience,
the amplifier is shown againin Fig. 5.37(a), where the resistors are made
equal except for the external gain-setting resistor R, connected between
the gain set terminals. Figure 5.37(b) shows its schematic symbol. Ex-
ample 5.8 showed that

Vo = AU(UZ - 1)1) (5249
where the voltage gain is

A —1 2R
, =1+ R (5.25)
Asshown in Fig. 5.38, the instrumentation amplifier amplifies small dif-
ferential signal voltages superimposed on larger common-mode voltages.
Since the common-mode voltages are equal, they cancel each other.
The |A has three major characteristics:

Inverted input . » R

Gain set
Re 2 ! R

Gain set : > R
Noninverting input V2 ©=—]

Vo, Output

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

@ (b)

Figure 537 (8) The instrumentation amplifier with an external resistance to adjust the gain, (b) schematic diagram.
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L
I i% I

Small differential signalsriding on larger Instrumentation amplifier Amplified differential signal,
common—mode signals No common-mode signal

Figure 538  Thela rejects common voltages but amplifies small signal voltages.
(Source: T. L. Floyd, Electronic Devices, 2nd ed., Englewood Cliffs, NJ: Prentice Hall, 1996, p. 795.)

1. Thevoltage gain is adjusted by one external resistor Rg.

2. Theinput impedance of both inputsis very high and does not
vary asthe gain is adjusted.

3. Theoutput v, depends on the difference between the inputs v,
and v,, not on the voltage common to them (common-mode
voltage).

Due to the widespread use of IAs, manufacturers have devel oped
these amplifiers on single-package units. A typical example is the
LHO0036, developed by National Semiconductor. The gain can be var-
ied from 1 to 1,000 by an external resistor whose value may vary from
100 2 to 10 kS2.

InFig.5.37,let R = 10k, v; = 2.011V, and v, = 2.017 V. If R; isad-
justed to 500 €2, determine: (@) the voltage gain, (b) the output voltage v,,.

Solution:
(a) Thevoltage gainis
2R 2 x 10,000
4+ =

A, =1+ =1
* &e 500

M

(b) The output voltage is
v, = Ay(v2 — v1) = 41(2.017 — 2.011) = 41(6) mV = 246 mV

PRACTICE PROBLEMENIE

Determine the value of the external gain-setting resistor R required for
thelA in Fig. 5.37 to produce a gain of 142 when R = 25 k2.

Answer: 354.6 Q.

5.11  SUMMARY

1. The op ampisahigh-gain amplifier that has high input resistance
and low output resistance.
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2. Table 5.3 summarizes the op amp circuits considered in this
chapter. The expression for the gain of each amplifier circuit holds
whether the inputs are dc, ac, or time-varying in general.

TABLES3  Summary of basic op amp circuits.

Op amp circuit Name/output-input relationship
R, Inverting amplifier
R>
Vo = ——V;
v, ke Ry
, >
+ O Vo

Voltage follower
Vi —oO0 Vo Vo =0

R R Summer
" v, = — &Ui-l-&vz-i-&m
¢ R, R, R

Ry R, Difference amplifier
V1 0—AMA— R,
v, = R*(vz —v1)
1

V2 o—AWMA—

i

3. Anideal op amp has an infinite input resistance, a zero output
resistance, and an infinite gain.

4. For anideal op amp, the current into each of itstwo input terminals
is zero, and the voltage across its input terminalsis negligibly small.

5. Inaninverting amplifier, the output voltage is a negative multiple of
the input.

6. Inanoninverting amplifier, the output is a positive multiple of the
input.
7. Inavoltage follower, the output follows the input.

8. Inasumming amplifier, the output is the weighted sum of the
inputs.
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9. In adifference amplifier, the output is proportional to the difference
of the two inputs.

10. Op amp circuits may be cascaded without changing their
input-output relationships.
11. PSpice can be used to analyze an op amp circuit.

12. Typica applications of the op amp considered in this chapter
include the digital-to-analog converter and the instrumentation

amplifier.
REVIEW QUESTIONS
5.1 Thetwo input terminals of an op amp arelabeled as: 8kQ
(a) high and low. 4KO
(b) positive and negative. A >
(c) inverting and noninverting. a } * i
(d) differential and nondifferential. +
10V C:) Vs C:F 2kQ 2 V%o
52 For an ideal op amp, which of the following -
statements are not true? -

(a) Thedifferential voltage across the input
terminalsis zero.

(b) The current into the input terminalsis zero. Figure 540 For Review Questions55105.7.
(c) The current from the output terminal is zero.
(d) Theinput resistanceis zero.

(6) The output resistance is zero 5.6 If v, = 8V inthecircuit of Fig. 5.40, the output

voltageis:
53  Forthecircuit in Fig. 5.39, voltage v, is. 8 ;34 v Eg; 7_ 3\/
(@ -6V (b) -5V
(o) —1.2V (d —0.2Vv 5.7 Refer to Fig. 5.40. If v, = 8V, voltage v, is:
(@ -8V (b) OV
. (c) 10/3V (d) 8V
10kQ "X o
— AMAM—— 5.8 The power absorbed by the 4-k<2 resistor in Fig.
2kO 54lis
——o (@ 9Imw (b) 4 mw
:I>/ * © 2mw (d) 1 mw
v 3kQ Vo
1 ° 4kQ
> :
Figure 539 For Reivew Questions 5.3 and 5.4. sv @ 2k 3 v,
o
54 For the circuit in Fig. 5.39, current i, is:
(8 0.6A (b) 05A Figure 541 For Review Question 5.8.
(c) 0.2A (d) 1/12 A
5.9 Which of these amplifiersisused in a
55 If v, = Ointhecircuit of Fig. 5.40, current i, is: digital-to-analog converter?
(d —10A (b) —2.5A (& noninverter (b) voltage follower
(c) 10/12A (d) 10/14 A (c) summer (d) difference amplifier
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510 Difference amplifiers are used in:
(8 instrumentation amplifiers
(b) voltage followers
(c) voltage regulators
(d) buffers

Operational Amplifiers 191

(e) summing amplifiers
(f) subtracting amplifiers

Answers: 5.1c, 5.2¢,d, 5.3b, 5.4b, 5.5a, 5.6¢, 5.7d, 5.8b, 5.9¢c, 5.10a,f.

PROBLEMS

Section 5.2 Operational Amplifiers

51 The equivalent model of a certain op amp is shown
in Fig. 5.42. Determine:

(a) theinput resistance
(b) the output resistance
(c) thevoltage gainin dB.

60 Q

Vd 15MQ 8 x 10vy

Figure 542 For Prob. 5.1.

5.2 The open-loop gain of an op amp is 100,000.
Calculate the output voltage when there are inputs of
+10 wV ontheinverting terminal and + 20 1V on
the noninverting terminal .

53 Determine the output voltage when —20 iV is
applied to the inverting terminal of an op amp and
+30 wV toits noninverting terminal. Assume that
the op amp has an open-loop gain of 200,000.

5.4 The output voltage of an op amp is —4 V when the
noninverting input is 1 mV. If the open-loop gain of
the op amp is 2 x 10°, what is the inverting input?

55 For the op amp circuit of Fig. 5.43, the op amp has
an open-loop gain of 100,000, an input resistance of
10 k€2, and an output resistance of 100 2. Find the
voltage gain v, /v; using the nonideal model of the
op amp.

-

Figure 5.43  For Prob. 5.5.

5.6 Using the same parameters for the 741 op amp in
Example 5.1, find v, in the op amp circuit of Fig.
5.44.

_o .
G2
O
1mv

Figure 5,44 For Prob. 5.6.

5.7 Theop ampin Fig. 5.45 has R; = 100 k2,
R, =100 2, A = 100,000. Find the differential
voltage v, and the output voltage v,,.

=
+
10kQ 100 kQ
ANV

O
+
1mv Vo
o
Figure 545 For Prob. 5.7.
Section 5.3 Ideal Op Amp

5.8 Obtain v, for each of the op amp circuitsin Fig. 5.46.

10kQ

+

1mA

<
[N
<
9
N
5
|

@ (b)

Figure 5,46 For Prob. 5.8.

59 Determine v, for each of the op amp circuitsin Fig.
5.47.
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2kQ 4kQ
A
1kQ
——o0 VO
Lo
+
AV
1mA av v 12V A
- 4kQ %
O
1L o
Figure 5.50  For Prob. 5.12.

v @ v 2kQ S Y%

Figure 547 For Prob. 5.9.
510 Findthegainv,/v, of thecircuitin Fig. 5.48.

20kQ

- ©

Figure 548 For Prob. 5.10.
511 Findv, andi, inthecircuit in Fig. 5.49.

8kQ

2kQ

5kQ +
3V 10kQ

Figure 549 For Prob. 5.11.

5.12  Refer tothe op amp circuit in Fig. 5.50. Determine
the power supplied by the voltage source.

513 Findv, andi, inthecircuit of Fig. 5.51.

%10 kQ

Figure 5.5 For Prob. 5.13.

5.14  Determine the output voltage v, in the circuit of Fig.

5.52.
10kQ
10kQ
20kQ
AW *_O
+
2mA 5kQ v,
o
Figure 5.52  For Prob. 5.14.
Section 5.4 Inverting Amplifier

5.15 (@) For thecircuit shown in Fig. 5.53, show that the

ganis
Vo _ 1 R + R + R1R2
V; - R ! 2 R3

(b) Evaluate the gain when R = 10 k<2,
R, = 100kS2, R, = 50kS2, R3 = 25 kS2.
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5.16  Calculatethe gain v,/v; when the switch in Fig.

5.54isin:
@ (@) position1l (b) position 2

12 kQ

5kQ

CHAPTER 5

(c) position 3

Figure 5.54  For Prob. 5.16.

5.17 Cdculatethegain v,/v; of the op amp circuit in Fig.

1MQ

5.55.
10kQ 50 kQ
A
vi 20kQ

Figure 5.55  For Prob. 5.17.

5.18 Determinei, inthecircuit of Fig. 5.56.

519

5.20
521

Operational Amplifiers 193

2kQ 4kQ 10kQ

1v 4kQ
5kQ

Figure 5.56  For Prob. 5.18.

Inthecircuit in Fig. 5.57, calculate v, if v, = 0.

8kQ
2kQ
4kQ 4kQ
AW L .
+
oV Vs Vo
o

Figure 5.57  For Prob. 5.19.

Repeat the previous problem if v, = 3 V.

Design an inverting amplifier with again of —15.

Section 5.5 Noninverting Amplifier

522

523

Find v, and v, in the op amp circuit of Fig. 5.58.

Va
2V o—4>_‘7—0 VYo

3V

Figure 558 For Prob. 5.22.

Refer to Fig. 5.59.
(a) Determine the overal gain v, /v; of the circuit.

(b) What value of v; will result in
v, = 15c0s1207¢?

20kQ 1MQ
A aA%%Y
8kQ
Lo
+
Vi 2kQ Vo
O

Figure 559 For Prob. 5.23.
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524  Findi, inthe op amp circuit of Fig. 5.60. 528 Refer tothe op amp circuit in Fig. 5.64. Calculate i,
and the power dissipated by the 3-k<2 resistor.
50 kQ
A 1kQ
| i
Jio
10k 04V 20kQ
1mA 4kQ 2kQ 3kQ
5.25 Inthecircuit shownin Fig. 5.61, find i, and the 529  Design anoninverting amplifier with again of 10.

power absorbed by the 20-2 resistor. ) _ -
Section 5.6 Summing Amplifier

5.30 Determine the output of the summing amplifier in

60kQ Fig. 5.65.
¥ix
12V 30kQ 20kQ Vo joka
T‘—WW— 30kQ

20kQ

2v
Figure 5.6/ For Prob. 5.25. ‘ AW

5.26  Forthecircuitin Fig. 5.62, find i,.

+

3V 30k - Yo
12kQ ‘ VYV
AW = i
6kQ .
AV : Figure 5.65  For Prob. 5.30.
G S
531  Cadlculate the output voltage due to the summin
4mA § 3kQ - put voltag g
‘ 6kQ Yo @ amplifier shown in Fig. 5.66.
© 0mMY g
Figure 5.62  For Prob. 5.26. T‘—WW—
527 Caculatei, and v, inthecircuit of Fig. 5.63. Find 20mV - 5510
the power dissipated by the 60-kS2 resistor. f‘_wv\’_ +
% 20ka 0mV - 1oka -
i’ AN —@—w— soka |
w N 100mMV oo

amv @ S0k 60k9§ 30k9§v0 @& —w—
§10k9 - =

Figure 5.66  For Prob. 5.31.

) 5.32  Anaveraging amplifier isasummer that provides an
Figure 5.63  For Prob. 5.27. output equal to the average of theinputs. By using
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proper input and feedback resistor values, one can
get
—Vout = ;11(1)1 + v2 + v3 4 va)

Using afeedback resistor of 10 k<2, design an
averaging amplifier with four inputs.

5.33 A four-input summing amplifier has
Ri = R, = R3 = R4 = 12kQ2. What value of
feedback resistor is needed to make it an averaging

amplifier?
5.34  Show that the output voltage v, of thecircuit in Fig.
5.67is
(Rs+ Ra4)
o = = R R
v Ra(Rs + Ro) (Rav1 + Ryv2)
Ry
Rs
L : Ve
_ Rl —O Yo
Vi 0—AWW +
R,

Figure 5.67  For Prob. 5.34.

5.35  Design an op amp circuit to perform the following
operation:

v, = 3v; — 202
All resistances must be < 100 k2.

5.36  Using only two op amps, design acircuit to solve

V1 — VU2 U3

—Vout = 3 >

Section 5.7 Difference Amplifier

5.37 Find v, andi, in the differential amplifier of Fig.
5.68.

v @

Figure 5.68  For Prob. 5.37.

*An asterisk indicates a challenging problem.

Operational Amplifiers 195

538 Thecircuitin Fig. 5.69 isadifferential amplifier
@ driven by abridge. Find v,.

20 kQ 80 kQ

30kQ

+5mV

Figure 5.69  For Prob. 5.38.

5.39  Design adifference amplifier to have again of 2 and
acommon mode input resistance of 10 k2 at each
input.

540 Designacircuit to amplify the difference between
two inputs by 2.

(@) Useonly one op amp.
(b) Usetwo op amps.
541  Using two op amps, design a subtractor.

*5.42  Theordinary difference amplifier for fixed-gain
operation is shown in Fig. 5.70(a). It issimple and
reliable unless gain is made variable. One way of
providing gain adjustment without losing simplicity
and accuracy isto use the circuit in Fig. 5.70(b).
Another way isto use the circuit in Fig. 5.70(c).

Show that:
(a) forthecircuitinFig. 5.70(a),
v _ R
V; a R]_
@ (b) for thecircuit in Fig. 5.70(b),
» R 1
Fg5_70b Yo _ 22 2
Vi Ry 1+ ﬁ
2R;
@ (c) for thecircuit in Fig. 5.70(c),
v, Ry R
-1+ =
Fg5_70c v; R, ( + 2R6>
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©
Figure 5.70  For Prob. 5.42.
Section 5.8 Cascaded Op Amp Circuits

543 Theindividua gains of the stagesin a multistage

amplifier are shownin Fig. 5.71.

(a) Calculate the overal voltage gain v, /v;.

(b) Find the voltage gain that would be needed in a
fourth stage which would make the overall gain
to be 60 dB when added.

Vi O—’—’—’—ovo

Figure 5.7]  For Prob. 5.43.

DC Circuits

544

5.45

5.46

0.6V

547

5.48

In acertain electronic device, athree-stage amplifier
is desired, whose overall voltage gain is42 dB. The
individual voltage gains of the first two stages are to
be equal, while the gain of the third isto be
one-fourth of each of the first two. Calculate the
voltage gain of each.

Refer to the circuit in Fig. 5.72. Calculate i, if:
@ v, =12mVv (b) vy =10c0s377t mV.

12kQ 12KQ

6kQ 4kQ

Figure 5.7 For Prob. 5.45.

Calculate i, in the op amp circuit of Fig. 5.73.

10kQ
1kQ 2kQ

5kQ Tio

3kQ 4kQ

-
Figure 5.73  For Prob. 5.46.

Find thevoltage gain v, /v, of thecircuitin Fig. 5.74.

20kQ
AW
10kQ
5kQ
—o
Q
V,
S VO
T o
Figure 5.74  For Prob. 5.47.

Calculate the current gain i, / i of the op amp circuit
inFig. 5.75.
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4kQ Rs
AAN A
10kQ R, Ry
ANV R
1
_ AAAA Rs
. b @l [T 8 :
Is ‘ % 5kQ -
3kQ ©
3kQ 2kQ _
L Figure 5.78  For Prob. 5.51.

Flgure 315 For Prob. 5.48. 552  Forthecircuitin Fig. 5.79, find v,.

549  Find v, intermsof v; and v, inthecircuitin Fig. 25kQ
5.76. VW
40kQ 100 kQ
20kQ
. Rs Ry
2 —VWW\— 6V s
R, ‘ L
10kQ
R 4v v,
v 1 Rs AWV o
Vo 2V
O
o o] 1
' Figure 579 For Prob. 5.52.
Figure 5.76  For Prob. 5.49. :
5,53  Obtain the output v, in the circuit of Fig. 5.80.
5,50 Obtain the closed-loop voltage gain v, /v; of the
circuit in Flg 5.77. 80 kQ 80 kQ
Ry
A 0.4V
Ry
R
1 R3 L
9
Vi R4 Vo
— 0.2V
O
Figure 5.77 For Prob. 5.50. Figure 5,80 For Prob. 553,
554  Find v, inthecircuit in Fig. 5.81, assuming that
5,51  Determinethegain v,/v; of thecircuit in Fig. 5.78. R, = oo (open circuit).
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558  Determine the load voltage v, in the circuit of Fig.
E‘, o 54
15kQ
5kQ 50 kQ
+
10mv 6kQ Y § 1kQ
2kQ -
L
Figure 58] For Probs. 554 and 5.55. Figure 584 For Prob. 5.5,
555  Repeat the previous problem if R, = 10 k. . . o )
5,59  Findi, inthe op amp circuit of Fig. 5.85.
556  Determine v, in the op amp circuit of Fig. 5.82.
30KkO 10K 100 kQ 32kQ
10kQ A 10 kQ
20kQ
VO
v 06V 04V
= 60 kQ
= 10kQ 10kQ
20kQ == '
2v AAAA - Figure 5.85  For Prob. 5.59.
= 10kQ B
Section 5.9 Op Amp Circuit Analysiswith
3V PSpi ce
1 - 5,60 Rework Example5.11 using the nonideal op amp
- 10ka LM324 instead of UA741.
5,61  Solve Prob. 5.18 using PSpice and op amp uA741.
av 5.62  Solve Prob. 5.38 using PSpice and op amp LM 324.
- 5.63  UsePSpiceto obtain v, in the circuit of Fig. 5.86.
Figure 582 For Prob. 5.56.
10kQ 20kQ  30kQ  40kQ
5,57  Find theload voltage v, in the circuit of Fig. 5.83. MW MWv
100kQ 250 kQ +
AA%%Y v
1V 2V °
20kQ -
O
+ -
04V 2kQ = Vi
- Figure 586 For Prob. 5.63.
_ 5.64  Determine v, in the op amp circuit of Fig. 5.87
Figure 583 For Prob. 557. using PSpice.
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20kQ 10kQ 570 If Rz =100 Q and R = 20 k2, calculate the
—wwi voltage gain of the A in Fig. 5.37.
5V <§ q = 571  Assuming again of 200 for an |A, find its output
1S :‘J, voltage for:

(8 vy =0.402V and v, = 0.386 V

100 kQ2 (b) vy = 1.002V and v, = 1.011 V.

20kQ 10kQ 40kQ

\\}—o 1 &S +0

5.72  Figure 5.89 displays a two-op-amp instrumentation
amplifier. Derive an expression for v, in terms of v,
and v,. How can thisamplifier be used asa
subtractor?

1V

Figure 5.87  For Prob. 5.64.

5.65 UsePSpiceto solve Prob. 5.56, assuming that the op
amps are UA741.

5,66 UsePSpiceto verify theresultsin Example 5.9.
Assume nonideal op amps LM 324.

Section 5.10 Applications

5.67 A five-bit DAC coversavoltagerangeof 0to 7.75 V.
Calculate how much voltage each bit is worth.

Figure 5,89 For Prob. 5.72.

] o *5.73  Figure 5.90 shows an instrumentation amplifier
568  Design asix-bit digital-to-analog converter. driven by abridge. Obtain the gain v, /v; of the
(& If |V,| = 1.1875V isdesired, what should amplifier.
[V1V2V3V4V5V6] be?
(b) Calculate [V,| if [Vl VoVs V4V5V6] = [011011]
(c) What isthe maximum value |V, | can assume? 20kQ
*5.69 A four-bit R-2R ladder DAC is presented in Fig. 5.88.
L v
@ (@) Show that the output voltage is given by
Vi Vo V3 Va 40kQ
—V,=R;| —+ — + — + —
v f(2R+4R+8R+16R>
(b) If Ry =12kQ and R = 10 k<2, find |V,| for
[ViV,V3V,] = [1011] and [V, V,V3V,] = [0101].

R

25kQ  500kQ

2R

Vi 500 kQ
R
2R = L

V2 O— \WW—

<

Figure 5.90  For Prob. 5.73.

2R
V3 O— \WW—

R
2R

!

Figure 5.88  For Prob. 5.69.

v,
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COMPREHENSIVE PROBLEMS

574

5.75

5.76

A gain of 6 (4 or —, it does not matter) is required
in an audio system. Design an op amp circuit to
provide the gain with an input resistance of 2 k<2.

The op amp circuit in Fig. 5.91 isacurrent amplifier.
Find the current gain i,/ i; of the amplifier.

20kQ

i. @ § 5kQ

—AM—

§4kQ
flo
éZkQ

Figure 5.9

A noninverting current amplifier is portrayed in Fig.
5.92. Caculatethegaini,/i,. Take Ry = 8 k2 and

Ry, = 1kQ.

R
R, § 2

io
i §R2

For Prob. 5.75.

\

Figure 5,92 For Prob. 5.76.

577

*5.78

Refer to the bridge amplifier shown in Fig. 5.93.
Determine the voltage gain v, /v;.

60 kQ

20kQ

‘®

Figure 5,93 For Prob. 5.77.

A voltage-to-current converter is shown in Fig. 5.94,
which meansthat i; = Av; if Ri{R> = R3R4. Find

the constant term A.

Rs

.

Figure 5.94  For Prob. 5.78.

Go to the Student OLC
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CHAPTER]| 6

CAPACITORS AND INDUCTORS

The important thing about a problem is not its solution, but the strength
we gain in finding the solution.
—Anonymous

Historical Profiles

Michael Faraday (1791-1867), an English chemist and physicist, was probably th
greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by working with th
great chemist Sir Humphry Davy at the Royal Institution, where he worked for 54 yea
He made several contributions in all areas of physical science and coined such wol 2
as electrolysis, anode, and cathode. His discovery of electromagnetic inductionf
1831 was a major breakthrough in engineering because it provided a way of generat
electricity. The electric motor and generator operate on this principle. The unit (
capacitance, the farad, was named in his honor.

Joseph Henry (1797-1878), an American physicist, discovered inductance and co
structed an electric motor.

Born in Albany, New York, Henry graduated from Albany Academy and taugh
philosophy at Princeton University from 1832 to 1846. He was the first secretary of t
Smithsonian Institution. He conducted several experiments on electromagnetism 4
developed powerful electromagnets that could lift objects weighing thousands of poun
Interestingly, Joseph Henry discovered electromagnetic induction before Farad
but failed to publish his findings. The unit of inductance, the henry, was named after hi
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In contrast to a resistor, which spends or dis-
sipates energy irreversibly, an inductor or ca-
pacitor stores or releases energy (ie., has a
memory).

Dielectric with permittivity e

Metd plates,
< each with area A
-— '
d
Figure 6.1 A typical capacitor.

(V)

Figure 6.2 A capacitor
with applied voltage v.

Alternatively, capacitance s the amount of charge
stored per plate for a unit voltage difference in a
capacitor.

PART | DC Circuits

6.1 INTRODUCTION

So far we have limited our study to resistive circuits. In this chapter, we
shall introduce two new and important passive linear circuit elements:
the capacitor and the inductor. Unlike resistors, which dissipate energy,
capacitors and inductors do not dissipate but store energy, which can be
retrieved at a later time. For this reason, capacitors and inductors are
calledstorage elements.

The application of resistive circuits is quite limited. With the in-
troduction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the circuit
analysis techniques covered in Chapters 3 and 4 are equally applicable to
circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to combine
them in series or in parallel. Later, we do the same for inductors. As
typical applications, we explore how capacitors are combined with op
amps to form integrators, differentiators, and analog computers.

6.2 CAPACITORS

A capacitor is a passive element designed to store energy in its electric
field. Besides resistors, capacitors are the most common electrical com-
ponents. Capacitors are used extensively in electronics, communications,
computers, and power systems. For example, they are used in the tuning
circuits of radio receivers and as dynamic memory elements in computer
systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

A capacitor consists of two conducting plates separated
by an insulator (or dielectric).

In many practical applications, the plates may be aluminum foil whilethe
dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, asin Fig.
6.2, the source deposits a positive charge g on one plate and a negative
charge —g onthe other. The capacitor is said to store the electric charge.
The amount of charge stored, represented by ¢, is directly proportional
to the applied voltage v so that

qg=Cv (6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791-1867). From Eq. (6.1), we
may derive the following definition.

Capacitance is the ratio of the charge on one plate of a capacitor to the voltage
difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad = 1 coulomb/volt.
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Although the capacitance C of acapacitor istheratio of the charge

q per plate to the applied voltage v, it does not depend on ¢ or v. It

depends on the physical dimensions of the capacitor. For example, for

the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by
€A

C = — (6.2) - - -
d Capacitor voltage rating and capacitance are typ-

where A is the surface area of each plate, d is the distance between the 'Ecally(':ﬁr;;g (réatze)d i“red? ?:J:l%”f?'f;;ﬂ
plates, and ¢ is the permittivity of the dielectric material between the ag dIVi.s high, £ ATCNg

plates. Although Eq. (6.2) applies to only parallel-plate capacitors, we

may infer from it that, in general, three factors determine the value of the

capacitance:

1. The surface area of the plates—the larger the area, the greater
the capacitance.

2. The spacing between the plates—the smaller the spacing, the
greater the capacitance.

3. The permittivity of the material—the higher the permittivity,
the greater the capacitance.

Capacitorsarecommercially availablein different valuesand types.
Typically, capacitors have valuesin the picofarad (pF) to microfarad (uF)
range. They are described by the diel ectric material they are made of and
by whether they are of fixed or variabletype. Figure 6.3 showsthecircuit i
symbols for fixed and variable capacitors. Note that according to the ©
passive sign convention, current is considered to flow into the positive
terminal of the capacitor when the capacitor is being charged, and out of Figure 63 Gircut symbols for capaitors:
the pOSl tiVe term| nal When the CapaCI tor iS d|$harg| ng. (a) fixed capacitor' (b) variable Capacitor.
Figure6.4 showscommontypesof fixed-val uecapacitors. Polyester
capacitorsarelight in weight, stable, and their change with temperatureis
predictable. Instead of polyester, other dielectric materials such as mica
and polystyrene may be used. Film capacitors are rolled and housed in
metal or plastic films. Electrolytic capacitors produce very high capaci-
tance. Figure 6.5 shows the most common types of variable capacitors.
The capacitance of atrimmer (or padder) capacitor or aglass piston capac-
itor isvaried by turning the screw. The trimmer capacitor is often placed
in parallel with another capacitor so that the equivalent capacitance can
be varied dlightly. The capacitance of the variable air capacitor (meshed
plates) isvaried by turning the shaft. Variable capacitorsareusedinradio

@ (b) ©

Figu re64  Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.
(Courtesy of Tech America.)
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(b)

Figure 6.5  Variable capacitors:
(a) trimmer capacitor, (b) filmtrim
capacitor.

(Courtesy of Johanson.)

According to Eq. (6.4), for a capacitor to carry
current, its voltage must vary with time. Hence,
for constant voltage, i =0

~— Slope=C

0 dv/dt

Figure 6.6 Current-voltage
relationship of a capacitor.

PART | DC Circuits

receivers allowing one to tune to various stations. In addition, capacitors
are used to block dc, pass ac, shift phase, store energy, start motors, and
SuppPress noise.

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

. dg
s ©9
differentiating both sides of Eq. (6.1) gives
—c? 64
i = o (6.4)

Thisisthe current-voltage relationship for acapacitor, assuming the pos-
itive sign convention. The relationship is illustrated in Fig. 6.6 for a
capacitor whose capacitance is independent of voltage. Capacitors that
satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor, the
plot of the current-voltage relationship is not a straight line. Although
some capacitors are nonlinear, most are linear. We will assume linear
capacitors in this book.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

1 t
v:E/_ooidt (6.5)

1 /’
v=— | idt+v(tp) (6.6)
cJ, 0

or

where v(fg) = ¢(tp)/C is the voltage across the capacitor at time 7.
Equation (6.6) shows that capacitor voltage depends on the past history
of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.

The instantaneous power delivered to the capacitor is

. dv
p =i =CUE 6.7)

The energy stored in the capacitor is therefore

t t d t 1
w:/ pdt:C/ v—vdt:C/ vdv= ZCv?
—0 _so At oo 2

We note that v(—o0) = 0, because the capacitor was uncharged at ¢ =
—o00. Thus,

t
(68)

=—00

_ Ll 6.9
w = E v (6.9)
Using Eq. (6.1), we may rewrite Eq. (6.9) as
2
-1
W= on (6.10)
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Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be re-
trieved, since an ideal capacitor cannot dissipate energy. Infact, theword
capacitor is derived from this element’s capacity to store energy in an
electric field.
We should note the following important properties of a capacitor:
1. Note from Eq. (6.4) that when the voltage across a capacitor is

not changing with time (i.e., dc voltage), the current through
the capacitor is zero. Thus,

B |
t A capacitor is an open circuit to dc. ! .

However, if abattery (dc voltage) is connected across a
capacitor, the capacitor charges.

2. The voltage on the capacitor must be continuous. @ (b)
. Figure 6.7 Voltage across a capacitor:
The voltage on a capacitor cannot change abruptly. (a) alowed, (b) not allowable; an abrupt
change is not possible.

The capacitor resists an abrupt change in the voltage acrossit.
According to Eq. (6.4), a discontinuous change in voltage
requires an infinite current, which is physically impossible.
For example, the voltage across a capacitor may take the form energy can only be done over some firte time,
shown in Fig. 6.7(a), whereas it is not physically possible for voltage cannot change instantaneously across a
the capacitor voltage to take the form shown in Fig. 6.7(b) capacitor.
because of the abrupt change. Conversely, the current through

a capacitor can change instantaneously.

An alternative way of looking at this is using Eq.
(6.9), which indicates that energy is proportional
to voltage squared. Since injecting or extracting

J Leakage resistance
3. Theideal capacitor does not dissipate energy. It takes power AN
from the circuit when storing energy in itsfield and returns

previously stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage o 1€ o
resistance, as shown in Fig. 6.8. The leakage resistance may be \Capacitance
as high as 100 M2 and can be neglected for most practical
applications. For this reason, we will assume ideal capacitors Figure 6.8 Circuit model of a
in this book. nonideal capacitor.

M6.I

(a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.

Solution:
(@) Sinceg = Cv,
g =3x10"12 x 20=60pC
(b) The energy stored is
1

1
w=§Cv2=§x3x10_12x400=600pJ
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PRACTICE PROBLEMEN

What is the voltage across a 3-uF capacitor if the charge on one plateis
0.12 mC? How much energy is stored?

Answer: 40V, 2.4 mJ.

e L I

The voltage across a 5-uF capacitor is
v(t) = 10cos6000¢ V
Calculate the current through it.
Solution:
By definition, the current is

dU d
i) = C— = 1078 = (14
ity=C ; 5x 10 t( 0cos6000¢)

= —5 x 1078 x 6000 x 10sin6000r = —0.3sin6000s A

PRACTICE PROBLEMEN

If a 10-uF capacitor is connected to a voltage source with
v(r) = 50sin2000r V

determine the current through the capacitor.

Answer: co0s2000r A.

M6.3

Determine the voltage across a 2- F capacitor if the current throughiit is
i(1) = 673 mA

Assume that the initial capacitor voltage is zero.

Solution:

1 t
Sincev = 5/ i dt +v(0)andv(0) =0,
0

l t
= [ 6 411073
"7 2x 1045/0 ‘

t
— (1 _ e—3000t) V
0

3% 10 gy
=~ 3000 °

PRACTICE PROBLEMENK

The current through a 100~ F capacitor isi(r) = 50sin 1207t mA. Cal-
culate the voltage acrossitat t = 1 msand ¢ = 5ms. Take v(0) = 0.

Answer: —93.137V, —1.736 V.
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Exaip L I
Determinethecurrent through a200- 1« F capacitor whosevoltageisshown — v(t) 4
inFig. 6.9. 50
Solution:
The voltage waveform can be described mathematically as 0 ) ) .
50¢ VV 0O<t<1 SR N t
0 = 100 — 50t V 1<t<3
W= 1-200+500v  3<r<4 50
0 otherwise
Sincei = C dv/dt and C = 200 uF, wetakethe derivative of v to obtain Figure 6.9 For Example 6.4.
50 0<r<l1 (A
-5 1<r<3
L) — -6
i(t) =200 x 107° x 50 3</-4 10
0 otherwise
10 mA O<r<l1 0 1 '2 3 ” {
_J—-10mA 1<1r<3
10 mA 3<t<4
0 otherwise 0
Thus the current waveform is as shown in Fig. 6.10.
Figure 6.10  For Example 6.4.
PRACTICE PROBLEMERE
Aninitially uncharged 1-mF capacitor hasthe current shownin Fig. 6.11 1 (MA)
acrossit. Calculate the voltage acrossitatt = 2msand¢ = 5ms. 100
Answer: 100 mV, 400 mV.
0 1 1 1
2 4 6 t(ms)
Figure 6.1 For Practice Prob. 6.4.

e L B

Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc con-
ditions.

Solution:

Under dc conditions, we replace each capacitor with an open circuit, as
shownin Fig. 6.12(b). The current through the series combination of the
2-kQ and 4-k<2 resistorsis obtained by current division as

. 3
1= —F
3+2+4
Hence, the voltages v1 and v, across the capacitors are

vy = 2000i =4V vy = 4000i =8V

(6MA) = 2mA
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2mF ot Vi~
] 2kQ L
AV
2kQ
5kQ %
5kQ 6 mA 3kQ 4KQ
s ma @) 3kQ i 4KQ ® \72
4mF T ?
@ (b)

Figure 6.12  For Example 6.5.

and the energies stored in them are

1

wy = ZCpv? = -(2 x 107%)(4)? = 16 mJ

wy =

2
1
2 C2U2 ==

1
5(4 x 1073)(8)2 = 128 mJ

PRACTICE PROBLEMERNS

3kQ
1kQ
20 uF
10V 10 uF = 6kQ
Figure 6.13  For Practice Prob. 6.5.

Under dc conditions, find the energy stored in the capacitorsin Fig. 6.13.
Answer: 405 uJ, 90 uJ.

il¢ i2¢ i3¢

@

eq

(b)

Figure 6.14 (2 Parallel-connected N
capacitors, (b) equivalent circuit for the parallel
capacitors.

6.3 SERIES AND PARALLEL CAPACITORS

Weknow from resistive circuitsthat series-parallel combinationisapow-
erful tool for reducing circuits. Thistechnique can be extended to series-
parallel connectionsof capacitors, which are sometimesencountered. We
desire to replace these capacitors by asingle equivalent capacitor Cey.

In order to obtain the equivalent capacitor Ceq Of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuitisin
Fig. 6.14(b). Note that the capacitors have the same voltage v across
them. Applying KCL to Fig. 6.14(a),

i=i1+i2+iz+---+iy (6.12)
Buti, = C; dv/dt. Hence,
Cld—+C2d—U+C3d—v+ +CNd—v
dt dt dt dt
(6.12)

(Ee)s-e
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where

Cq=C1+Co+C3+---+Cy (6.13)

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistorsin series.
We now obtain Ceq Of N capacitors connected in series by compar-

ing the circuit in Fig. 6.15(a) with the equivalent circuit in Fig. 6.15(b). _|> C, C, C; (oM
Note that the same current i flows (and consequently the same charge) I I {—-----——
through the capacitors. Applying KVL totheloopin Fig. 6.15(a), +Vp— +Vp - +Vz-  +Vy -
Vv
Vv=v1+v2+Uv3+---+UyN (6.24)
1 t
But vy = — (1) dt + vi(to). Therefore,
. Qﬁm> (0 o
1 [, 1 /. [
V= — i(t) dt+vl(t0)+—f i(t) dt + va(to) —_—
Cl to C2 to
1 t
+ = i(t) dt + vy(to) v Ceq::V
CN to -
it /t'(t)dt+ (to) + va(to) ©19
— | — R e P 1 v v
ot o)l 1(fo 2(fo (b)
+ -+ vy (o) Figure 6.15 (2 Series-connected N
1 ' capac!tors, (b) equivalent circuit for the series
=— | i) dr+v(to) capacitor.
Ceq fo
where
SR TR 6.16
Cq C1 C» C3 Cw (619

The initial voltage v(zp) across Ceq is required by KVL to be the sum of
the capacitor voltages at 7. Or according to Eqg. (6.15),

v(fo) = va(to) + v2(t0) + - - - + vn (t0)
Thus, according to Eq. (6.16),

The equivalent capacitance of series-connected capacitors is the reciprocal of the
sum of the reciprocals of the individual capacitances.

Note that capacitorsin series combine in the same manner asresistorsin

parallel. For N = 2 (i.e., two capacitorsin series), Eq. (6.16) becomes
1 1 1

Ca Ci ' G
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or

et
AT+ 0

(6.17)

Find the equivalent capacitance seen between terminals a and b of the
circuitin Fig. 6.16.

5 uF 60 uF
| ——oa
Ceq
20 uF == 6 uF = 20 uF == -~
o b
Figure 6.16  For Example 6.6.
Solution:
The 20-uF and 5- F capacitorsarein series; their equivalent capacitance
is
20x5
=4 uF
20+5

This 4-uF capacitor is in parallel with the 6-uF and 20-uF capacitors;
their combined capacitanceis
44+6+4+20=30uF

This 30-uF capacitor isin series with the 60-uF capacitor. Hence, the
equivalent capacitance for the entire circuit is

_ 30x 60

== 30460 OHF
PRACTICE PROBLEMEM
50 pF Find the equivalent capacitance seen at the terminals of the circuit in Fig.
—  60uF 6.17.

o—| | Answer: 40 pF.
C H_

€q
—» 70F == 20uF ——120puF

(e

Figure 6.17  For Practice Prob. 6.6.

M6.7

For the circuit in Fig. 6.18, find the voltage across each capacitor.
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Solution:
20 mF 30 mF

Wefirst find the equivalent capacitance Ceg, Shownin Fig. 6.19. Thetwo | [
parallel capacitorsin Fig. 6.18 can be combined to get 40+ 20 = 60 mF. ‘ |

Vi — Vo —
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors. T T +
Thus, 30V 40mF == V3 == 20mF
C 1 mF = 10 mF
=71 1, 1 =
otoTH

. Figure 6.18  For Example 6.7.
Thetotal chargeis

g=Cqv=10x10°%x30=03C

Thisis the charge on the 20-mF and 30-mF capacitors, because they are 30V 4 ==Cq
in serieswith the 30-V source. (A crude way to seethisisto imaginethat
charge actslike current, sincei = dq/dt.) Therefore,

q 0.3 q 0.3 Figure 619 Equivalent
— =———=15V =—=———=10V t for Fig. 6.18.
C, 20x10°3 2=, T 30x 1038 areditiorHg

Having determined v, and vy, we now use KVL to determine v by

V1 =

v3=30—v1—v2=5V

Alternatively, sincethe 40-mF and 20-mF capacitorsarein parallel,
they have the same voltage v3 and their combined capacitance is 40 +
20 = 60 mF. This combined capacitanceisin series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

q 0.3
~ 60mF  60x 103

PRACTICE PROBLEMKN

5V

U3

Find the voltage across each of the capacitorsin Fig. 6.20. 40““': GOH“F
Answer: vy =30V,v, =30V, v3 =10V, vy =20 V. Il Il
+ Vp — + V3 —
+ +
60V Vo == 20 uF Vg =—— 30 nF

Figure 6.20  For Practice Prob. 6.7.

6.4 INDUCTORS

Aninductor is a passive element designed to store energy in its magnetic
field. Inductors find numerous applicationsin electronic and power sys-
tems. They are used in power supplies, transformers, radios, TVs, radars,
and electric motors.

Any conductor of electric current hasinductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
apractical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.
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Cross-sectional area, A t An inductor consists of a coil of conducting wire.

Core material
Number of turns, N

Figure 6.2 Typical form of an inductor.

In view of Eq. (6.18), for an inductor to have
voltage across its terminals, its current must vary
with time. Hence, v = 0 for constant current
through the inductor.

(b)

©

Figure 622 Various types of inductors:
(a) solenoidal wound inductor, (b) toroidal
inductor, (c) chip inductor.

(Courtesy of Tech America.)

If currentisallowedto passthrough aninductor, itisfound that thevoltage
across the inductor is directly proportional to the time rate of change of
the current. Using the passive sign convention,

=L— 6.18
v ar (6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of the
Americaninventor Joseph Henry (1797-1878). Itisclear from Eq. (6.18)
that 1 henry equals 1 volt-second per ampere.

Inductance is the property whereby an inductor exhibits opposition to the change
of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for the
inductor (solenoid) shown in Fig. 6.21,

N2pA
e
where N isthe number of turns, ¢ isthe length, A is the cross-sectional
area, and u is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using materia with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Likecapacitors, commercially availableinductorscomein different
values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (xH), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are shown
in Fig. 6.22. The circuit symbols for inductors are shown in Fig. 6.23,
following the passive sign convention.

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose
inductance is independent of current. Such an inductor is known as a
linear inductor. For anonlinear inductor, the plot of Eq. (6.18) will not
be a straight line because its inductance varies with current. We will
assume linear inductors in this textbook unless stated otherwise.

The current-voltage relationship is obtained from Eq. (6.18) as

L

(6.19)

1
di = —v dt
L
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Integrating gives e e @
. TS SRS ST
i = Z/_ v(t) dt (6.20) + n ¥
o i RS |
1 t
i = Z/zo v(t) dt +i(tg) (6.22) IS 4 R

@ (b) ©
where i (tg) isthe total current for —oco <t < fgandi(—o0) = 0. The
idea of making i (—oo) = O is practical and reasonable, because there  Figure 6.23  Circuit symbols for inductors:
must be atime in the past when there was no current in the inductor. i(f‘c)ma_"&)fge' (b) iron-core, (c) varizble

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Egs. (6.18) and (6.20). The power
delivered to the inductor is v

. diy .
p=vi= LZ i (6.22)

The energy stored is ~— Slope=L

t 1 dl
w:/ pdt:/ <L—>idt .
—o0 —oo \ dt 0 di/dt

(6.23)

! 1 1
= L/ idi = ELiz(Z‘) - ELiZ(—oo) Figure 6.24  Voltage-current
—00 relationship of an inductor.
Sincei(—o0) = 0,
= 1L‘2 6.24
w = 5 1 (6.24)

We should note the following important properties of an inductor.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

An inductor acts like a short circuit to dc. ‘

|

2. Animportant property of the inductor is its opposition to the
changein current flowing through it.

{ The current through an inductor cannot change instantaneously. J _ _
| |

According to Eqg. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not
physically possible. Thus, an inductor opposes an abrupt
change in the current through it. For example, the current

through an inductor may take the form shown in Fig. 6.25(a), @ (0)
whereas the inductor current cannot take the form shown in Foure 625 Current throuah an inductor:
Fig. 6.25(b) in real-life situations due to the discontinuities. (ag) allowed, (b) not allowab?e; an abrupt

However, the voltage across an inductor can change abruptly. change is not possible.
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3. Liketheideal capacitor, theideal inductor does not dissipate
energy. The energy stored in it can beretrieved at alater time.
The inductor takes power from the circuit when storing energy
and delivers power to the circuit when returning previously
stored energy.
Since an inductor is often made of a highly con- 4. A practical, nonideal inductor has a significant resistive

ducting wire, it has a very small resistance. component, as shown in Fig. 6.26. Thisis due to the fact that
the inductor is made of a conducting material such as copper,

L Ry which has some resistance. This resistanceis called the
! 3 winding resistance R,,, and it appears in series with the
eeeeees {€-------- inductance of the inductor. The presence of R,, makesit both
Cy an energy storage device and an energy dissipation device.
Since R, isusualy very small, it isignored in most cases. The
Figure 6.26  Circuit model nonideal inductor also has awinding capacitance C,, dueto
for a practical inductor. the capacitive coupling between the conducting coils. C,, is

very small and can beignored in most cases, except at high
frequencies. We will assume ideal inductors in this book.

e L I

Thecurrent througha0.1-H inductor isi (r) = 10re~> A. Findthevoltage
across the inductor and the energy stored init.

Solution:
Sincev = Ldi/dtand L = 0.1H,

d
v = O.la(lOte_SI) = 4 1(-5e = A-5)V
The energy stored is

1 1
w= ELi2 = E(O.l)lOOtze’lO’ = 5127101

PRACTICE PROBLEM I

If the current through a1-mH inductor isi (t) = 20 cos100¢t mA, find the
terminal voltage and the energy stored.

Answer: —2sin100r mV, 0.2 cos? 100z jJ.

e L I

Find the current through a 5-H inductor if the voltage acrossit is

) = 302, +t>0
A ) t<0
Also find the energy stored within0 < ¢ < 5s.

Solution:
i 1/
Sincei = Zf v(t) dt +i(tg) and L = 5H,
o

1 ! 13
i=§/0 30t2dt+0=6x§=2t3A
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The power p = vi = 60¢°, and the energy stored is then

5

5 t6
w=/pdt=/ 60r° dr = 60— | = 156.25kJ
0 6 0

Alternatively, we can obtain the energy stored using Eq. (6.13), by writing

1 1 1
wlo = ELi2(5) ~ 5L = 5(5)@2x 53)2 _ 0 = 156.25 kJ

as obtained before.

PRACTICE PROBLEMENE

Theterminal voltage of a2-H inductorisv = 10(1—r) V. Find thecurrent
flowing through it at r = 4 s and the energy stored in it within0 < ¢ <
4s. Assumei(0) = 2A.

Answer: —18A,320J.

M6.|0

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: () i, vc, _|> 10 5Q
and iy, (b) the energy stored in the capacitor and inductor. MWW MW\ l i
Solution: 40
(@) Under dc conditions, we replace the capacitor with an open circuit 12V f) + 2H %
and the inductor with ashort circuit, asin Fig. 6.27(b). It isevident from Ve .~ 1F
Fig. 6.27(b) that - T
12
i = =2A @
1+5 .
. _ i 10 50
The voltage vc isthe same asthe voltage across the 5-C2 resistor. Hence, AW AN l
I
ve =5 =10V 40
+
(b) The energy in the capacitor is v CD +
Ve
1 1 z
we = ECUE- = E(1)(102) =50J I

(b)
and that in the inductor is

Figure 6.27  For Example 6.10.
wy =

Li? = %(2)(22) =4]

PRACTICE PROBLEMENRIK

Determine vc, iy, and the energy stored in the capacitor and inductor in _'L> 0.25H
the circuit of Fig. 6.28 under dc conditions. TI " l
Answer: 3V,3A,9J 1.125J. 4Aé> %39 19% VCTZF

Network Analysis Figure 6.28  For Practice Prob. 6.10.
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(b)

Figure 629 (a) A series connection of N
inductors, (b) equivalent circuit for the
series inductors.

Ly L, Ls
o
@
i
—
+
v Leg
(b)
Figure 6.30  (a) A parallel connection of N

inductors, (b) equivalent circuit for the parall
inductors.

e
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6.5 SERIES AND PARALLEL INDUCTORS

Now that the inductor has been added to our list of passive el ements, itis
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equival ent inductance of a series-connected
or parallel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig.
6.29(a), with the equivalent circuit shown in Fig. 6.29(b). The inductors
have the same current through them. Applying KVL to the loop,

V=v1+ U2+ Vv3+ -+ UN (6.25)
Substituting v, = L di/dt resultsin
Ldi+Ldi—|—L di+ ‘L di
V= _ —_ —_— JR—
Yar 2dt Sdr Nt
di
= (L1+L2+L3+"'+LN)E (6.26)
(XN:L ) di _, di
= k _—— eq—
= dt dt
where
Lm:L1+L2+L3+~-~+LN (6.27)
Thus,

The equivalent inductance of series-connected inductors is the
sum of the individual inductances.

Inductorsin series are combined in exactly the same way as resistorsin
series.

We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The inductors
have the same voltage across them. Using KCL,

i=i1+ix+iz+---+iy (6.28)
1 t
Buti; = —/ v dr + i (f); hence,
Lk fo
t 1 t
i=— vdt+i1(to)+—/ v dt + i2(to)
1Jg L; to
1 t
+~~+—/ v dt +in(to)
LN fo
(1+1+ +1)/t dt + i1(to) + i2(t0) ©29
=\-—+t—+ -+ — v 11(fo 12(fo
L1 L Ly) Ji
+ -+ in(to)
N 1 t N 1 t
=(> ~ /vdt—l—Zik(to):—/ v dt +i(to)
iz Le ) Jio k=1 Leq J1o
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where

(6.30)

The initial current i (fo) through Leq at ¢ = 1o is expected by KCL to be
the sum of the inductor currents at #p. Thus, according to Eq. (6.29),

i(to) = i1(to) +i2(t0) + - - - +in(to)
According to Eq. (6.30),

The equivalent inductance of parallel inductors is the reciprocal of the sum of the
reciprocals of the individual inductances.

Note that theinductorsin parallel are combined in the sameway asresis-
torsin paraldl.
For two inductorsin parallel (N = 2), Eq. (6.30) becomes
1 1 1 L,L,
—=—+— O Lg=
Leq L1 Ly L1+ Lo
It isappropriate at this point to summarize the most important character-
istics of the three basic circuit elements we have studied. The summary
isgivenin Table 6.1.

(6.31)

217

TABLE6.]  Important characteristics of the basic elements. |
Relation Resistor (R) Capacitor (C) Inductor (L)
j: i R ['dt—i— (to) Ldi
-l v=1 V= — i v v=L—
vt cl, 0 d
d 1/
i-v i=v/R izcd—’; izz[oidt+i(zo)
2 v 1, 1,
porw: ]J=1R=§ lUZECU w=§Ll
. C1C2
Series: Ry =R R = Legg=1L L
eq 1+ R S Ialroren eq 1+ Lo
R1R2 LlLZ
Parallel: Ry = Ceqq=0C C Leg=
= R+R (9T ate ST i+ L,
Atdc: Same Open circuit Short circuit
Circuit variable
that cannot
change abruptly:  Not applicable v i

TPassive sign convention is assumed.

M6.II

Find the equivalent inductance of the circuit shownin Fig. 6.31.
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4H 20H Solution:
L © i S The 10-H, 12-H, and 20-H inductors are in series; thus, combining them
e, 7H 12H gives a42-H inductance. This 42-H inductor isin parallel with the 7-H
inductor so that they are combined, to give
o 2112 T
8H 10H x4 ey
7+ 42

Figure 631 For Example 6.11. This 6-H inductor isin series with the 4-H and 8-H inductors. Hence,

Leg=4+4+6+8=18H

PRACTICE PROBLEMENNE

Calculate the equivalent inductance for the inductive ladder network in

Fig. 6.32.
20 mH 100 mH 40 mH
o S11R AN
Leg
—_— 50 mH 40 mH 30 mH 20 mH

O

Figure 6.32  For Practice Prob. 6.11.

Answer: 25 mH.

i 4H For the circuit in Fig. 6.33, i (1) = 4(2 — e 1) mA. If i»(0) = —1 mA,

i_:q\zp_ {il bio find: (a) i1(0); (b) v(z), vo(r), and vo(¢); (€) i1 (¢) and ix(z).

+ Solution:
v 4H Vo 12H .

- (@ Fromi(t) = 42— e @) mA,i(0) = 42— 1) = 4mA. Sincei =
° i1+ iz,

Figure 6,33 For Example 6.12. 10 =i(0 -0 =4- (=D =5mA

(b) The equivalent inductanceis
Lgq=2+4+4]12=2+3=5H

Thus,
p
0(0) = Leg'3 = SAO(1(=10) ™ mV = 200¢ 2% mv

and

di

H)y=2
v1() 7

= 2(—4)(—10)e ¥ mV = 80~ mv

Sincev = v1 + va,

V(1) = v(t) — v1(r) = 120e7 % mv
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(c) Thecurrent i4 is obtained as
1 120 [*
il(t)Z—/ U2dl+i1(0)=—/ e 10 dt +5mA
4 Jo 4 Jo

=3 |[[+5mA=-3"+3+5=8-3""mA

Similarly,

1 (! 120 [!
(1) = — dt + i(0) = — 10 gy —1mA
i2(t) 12/0 v2 dt +i2(0) P /(; e

= —1mA= - 41-1=—""mA

Notethat i1(¢) + is(¢) = i(¢).

PRACTICE PROBLEMENRIN

In the circuit of Fig. 6.34, i1(f) = 0.6e=% A.1f i(0) = L4 A, find: i, 3H
(@ i2(0); (b) i2(r) and i (1); (C) v(r), va(t), and va(t). A —1 1
Answer: (a) 0.8A, (b) (—0.4+1.2¢7%) A, (—0.4+ 1.8¢7%) A, o + v -
(€) =7.2¢7% V, —28.8¢ % V, —36¢ % V. * T N
\% _I: 6H 7 % 8H

Figure 6.34  For Practice Prob. 6.12.

6.6 APPLICATIONS

Circuit elements such as resistors and capacitors are commercially avail-
able in either discrete form or integrated-circuit (IC) form. Unlike ca-
pacitors and resistors, inductors with appreciable inductance are difficult
to produce on IC substrates. Therefore, inductors (coils) usually come
in discrete form and tend to be more bulky and expensive. For this rea-
son, inductors are not as versatile as capacitors and resistors, and they
aremore limited in applications. However, there are severa applications
in which inductors have no practical substitute. They are routinely used
in relays, delays, sensing devices, pick-up heads, telephone circuits, ra-
dioand TV receivers, power supplies, electric motors, microphones, and
loudspeakers, to mention afew.

Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

1. The capacity to store energy makes them useful as temporary
voltage or current sources. Thus, they can be used for
generating alarge amount of current or voltage for a short
period of time.

2. Capacitors oppose any abrupt change in voltage, while
inductors oppose any abrupt change in current. This property
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makes inductors useful for spark or arc suppression and for
converting pulsating dc voltage into relatively smooth dc
voltage.

3. Capacitors and inductors are frequency sensitive. This
property makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits. We will see how useful these
properties are in later chapters. For now, consider three applications
involving capacitors and op amps: integrator, differentiator, and analog
compulter.

6.6.1 Integrator

Important op amp circuits that use energy-storage elements include inte-

grators and differentiators. These op amp circuits often involve resistors

and capacitors; inductors (coils) tend to be more bulky and expensive.
The op amp integrator is used in numerous applications, especially

in analog computers, to be discussed in Section 6.6.3.

An integrator is an op amp circuit whose output is proportional
to the integral of the input signal.

If the feedback resistor Ry in the familiar inverting amplifier of

iy Ri Fig. 6.35(a) is replaced by a capacitor, we obtain an ideal integrator, as
_ VW shownin Fig. 6.35(b). Itisinteresting that we can obtain amathematical
i Ry L O_A representation of integration thisway. At node a in Fig. 6.35(b),
* ov Lo iR =lIc (6.32)
\'A V. + *
i 2 y, But
_ - . v; C dv,
= l = —
[¢ é o] LR R’ c dr
@ Substituting these in Eq. (6.32), we obtain
) c vi dv,
ic H R C T (6.333)
ir R
O AAMA——— dv, = ———v; dt 6.33b
+ a v RC v ( )
+: Integrating both sides gives
V.
: Vo 1 [
_ _ V() — 0,(0) = —— f v; (t) dt (6.34)
° ° RC Jo
1
= To ensure that v, (0) = 0, it isalways necessary to discharge the integra-
®) tor’s capacitor prior to the application of asignal. Assuming v,(0) = 0,
Figure 6.35  Replacing the feedback resistor 1
in the inverting amplifier in (a) produces an _ - )
integrator in (b). Vo = RC J, vi (1) dt (6.35)

which shows that the circuit in Fig. 6.35(b) provides an output voltage
proportional to theintegral of theinput. In practice, the op ampintegrator
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requiresafeedback resistor to reduce dc gain and prevent saturation. Care
must be taken that the op amp operates within the linear range so that it
does not saturate.

2|

m€:.|3

If v, = 10cos2tr mV and v, = 0.5 mV, find v, in the op amp circuit in
Fig. 6.36. Assume that the voltage across the capacitor isinitialy zero.
Solution:
Thisisasumming integrator, and
U():—Rl—c U]_d[—Rz—C Uzd[
1

t
= — 10cos2t dt
3x106x2x10—6/0

1 t
— 0.5t dt
100 x 103 x 2 x 10-°© /O

= —0.833sin2r — 1.25:° mV

PRACTICE PROBLEMENIE

Il

|

|
(%2}
>S5
N
~
|

|

Vi

Vo

3MQ

100 kQ

Figure 6.36

2 uF

1o

For Example 6.13.

The integrator in Fig. 6.35 has R = 25 k2, C = 10 uF. Determine the
output voltage when a dc voltage of 10 mV is applied at + = 0. Assume
that the op amp isinitialy nulled.

Answer: —40r mV.

6.6.2 Differentiator

A differentiator is an op amp circuit whose output is proportional to
the rate of change of the input signal.

In Fig. 6.35(a), if the input resistor is replaced by a capacitor, the
resulting circuit is adifferentiator, shown in Fig. 6.37. Applying KCL at
nodea,

i =ic (6.36)

But
. Vo . dv;
= -, = C—
'R R e dt

Substituting these in Eq. (6.36) yields

dl}i
v, = —RC— (6.37)
dt

showing that the output is the derivative of the input. Differentiator cir-
cuits are electronically unstable because any electrical noise within the

Q
+
0|o<+<L

Figure 6.37

L

An op amp differentiator.
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circuit is exaggerated by the differentiator. For this reason, the differen-
tiator circuit in Fig. 6.37 is not as useful and popular as the integrator. It
is seldom used in practice.

Sketch the output voltage for the circuit in Fig. 6.38(a), given the input

5kQ voltagein Fig. 6.38(b). Tekev, =0at+ = 0.
0.2 uF VW Solution:
— Thisis adifferentiator with
v " RC=5x10°x02x10°%=10"3s
o
%— For 0 < t < 4 ms, we can express the input voltage in Fig. 6.38(b) as
L I O<t<2ms
@ ViTl8—2r  2<i<4ms
v Thisisrepeated for 4 < r < 8. Using Eq. (6.37), the output is obtained
4 as
——RC@— —-2mV O<t<2ms
Vo = dt | 2mVv 2<t<4ms
, , R Thus, the output is as sketched in Fig. 6.39.
0 2 4 6 8 t(ms)
(b) vi (mV)

2+

Figure 638 For Example 6.14.

2 4 6 8 t (ms)

Figure 6.39  Output of the circuit in Fig. 6.38(a).

PRACTICE PROBLEMENK

The differentiator in Fig. 6.37 has R = 10 k2 and C = 2 uF. Given that
v; = 3r V, determine the output v,,.

Answer: —60mV.

6.6.3 Analog Computer
Op ampswereinitially developed for el ectronic analog computers. Ana-
log computers can be programmed to solve mathematical models of me-
chanical or electrical systems. These models are usually expressed in
terms of differential equations.

To solve simple differential equations using the analog computer
requires cascading three types of op amp circuits. integrator circuits,
summing amplifiers, and inverting/noninverting amplifiers for negative/
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positivescaling. Thebest way toillustrate how an analog computer solves
adifferential equation iswith an example.
Suppose we desire the solution x(¢) of the equation
d’x dx
T2 +b dt
wherea, b, and ¢ are constants, and f(¢) isan arbitrary forcing function.
The solution isobtained by first solving the highest-order derivativeterm.

+cx = f(1), t>0 (6.38)

Solving for d?x /dt? yields
d?x f@® bdx ¢
— = = 6.39
dt? a adi a (639

To obtain dx /dt, the d?x /dt? term isintegrated and inverted. Finally, to
obtain x, thedx /dt termisintegrated and inverted. Theforcing function
isinjected at the proper point. Thus, the analog computer for solving Eq.
(6.38) is implemented by connecting the necessary summers, inverters,
and integrators. A plotter or oscilloscope may be used to view the output
x, or dx/dt, or d?x/dt?, depending on where it is connected in the
system.

Although the above exampleis on asecond-order differential equa-
tion, any differential equation can be simulated by an analog computer
comprising integrators, inverters, and inverting summers. But care must
be exercised in selecting the values of the resistors and capacitors, to
ensure that the op amps do not saturate during the solution time
interval.

The analog computers with vacuum tubes were built in the 1950s
and 1960s. Recently their use has declined. They have been superseded
by modern digital computers. However, we still study analog computers
for two reasons. First, the availability of integrated op amps has made
it possible to build analog computers easily and cheaply. Second, un-
derstanding analog computers helps with the appreciation of the digital
computers.

Me.u

Design an analog computer circuit to solve the differential equation:

%+2%+v0=105in4t t>0
subject to v,(0) = —4,v,(0) = 1, where the prime refers to the time
derivative.
Solution:
Wefirst solve for the second derivative as
i;vz” = 10sin4: — 2(2)[" -, (6.15.1)

Solving thisrequires some mathematical operations, including summing,

scaling, and integration. Integrating both sides of Eq. (6.15.1) gives
dv,
dt

! : dv,
= _f <—105m4t + 2d—vt + v0> +v,(0) (6.152)
0
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where v/ (0) = 1. We implement Eq. (6.15.2) using the summing inte-
grator shown in Fig. 6.40(a). The values of the resistors and capacitors
have been chosen so that RC = 1 for the term
1 t

—— | v, dt
RC Jy

Other terms in the summing integrator of Eq. (6.15.2) are implemented
accordingly. The initial condition dv,(0)/dr = 1 is implemented by
connecting a 1-V battery with a switch across the capacitor as shown in

Fig. 6.40(a).
+ 1V - =0
LMo — 0 + 4V - -
1uF N
~10'sin (4) f — 7]
1MQ i 11F
y & I 1MQ
° ?l%—o e 1MQ '
4. 06MQ dt v, . 1MQ
o = O VW =
dt dt i Vo + Vo
@ (b)
1MQ + 1V -
t=0 + 4V -
— o— :>St=0
10 sin (4t) 1uF — 7]
€ | 1ﬁF 1MQ
Vo A I LMo a 1m0
7L_|+ J;_|+ AWV ; —0 Y
05MQ ) = =
v,
ot
©
Figure 6.40  For Example 6.15.
The next step is to obtain v, by integrating dv,/dt and inverting
the resullt,

" dv,
v, = —/O (— T ) dt +v(0) (6.15.3)

Thisisimplemented with thecircuitin Fig. 6.40(b) with the battery giving
the initial condition of —4 V. We now combine the two circuits in Fig.
6.40 (a) and (b) to obtainthe completecircuit showninFig. 6.40(c). When
theinput signal 10sin 4z isapplied, weopentheswitchesat = Otoobtain
the output waveform v,,, which may be viewed on an oscilloscope.
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PRACTICE PROBLEMENIE

Design an analog computer circuit to solve the differential equation:

d?v, dv,
3— + 2v, = 4c0s10¢ t>0
dt? + dt tev g

subject to v, (0) = 2, v/ (0) = 0.
Answer: SeeFig. 6.41, where RC = 1s.

C
R
R

d2V ar =

i ar

dtz d2y
B dt?

cos (10t)

Figure 641 For Practice Prob. 6.15.

6.7 SUMMARY

1. The current through a capacitor is directly proportional to the time
rate of change of the voltage acrossit.

i=C—
dt

The current through a capacitor is zero unless the voltage is
changing. Thus, a capacitor acts like an open circuit to a dc source.

2. The voltage across a capacitor is directly proportional to the time
integral of the current through it.

1/ 1/
v:—/ idt:—/idt+i(to)
CJ_ CJy

The voltage across a capacitor cannot change instantly.

3. Capacitorsin seriesand in parallel are combined in the same way as
conductances.
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4. The voltage across an inductor is directly proportiona to the time

rate of change of the current through it.
=L—
v dt

The voltage across the inductor is zero unless the current is chang-
ing. Thus an inductor acts like a short circuit to adc source.

. The current through an inductor is directly proportional to the time

integral of the voltage acrossit.

1/ 1/
i=— vdt:—/ vdt + v(ty)
L\/—oo L fo

The current through an inductor cannot change instantly.

. Inductorsin seriesand in parallel are combined in the same way

resistorsin series and in parallel are combined.

. At any given time ¢, the energy stored in a capacitor is %Cvz, while

the energy stored in an inductor is %Liz.

. Three application circuits, the integrator, the differentiator, and the

analog computer, can be realized using resistors, capacitors, and op
amps.

REVIEW QUESTIONS

6.1

6.2

6.3

6.4

What chargeis on a 5-F capacitor when it is 6.5 Thetotal capacitance of two 40-mF series-connected

connected across a 120-V source?
(a) 600C (b) 300C
(c) 24C (d 12C

Capacitance is measured in:

capacitorsin parallel with a4-mF capacitor is:
(@ 3.8mF (b) 5mF (c) 24 mF
(d) 44 mF (e) 84mF

6.6 InFig. 6.43, if i = cos4t and v = sin4t, the
dementis:

(& coulombs (b) joules . ) .

(©) henrys (d) farads (a) aresistor (b) acapacitor (c) aninductor
When the total charge in a capacitor is doubled, the ‘ i

energy stored:

(8) remainsthe same (b) ishalved
(c) isdoubled (d) isquadrupled

v <t> Element

Can the voltage waveform in Fig. 6.42 be associated

with a capacitor?

(@) Yes (b) No
v(t)
10 |+
0 >
1 2 t
_10 -

Figure 6.42  For Review Question 6.4.

Figure 643 For Review Question 6.6.

6.7 A 5-H inductor changesitscurrent by 3A in0.2 s.
The voltage produced at the terminals of the

inductor is:
@ 75V (b) 8.888V
(c) 3V (d) 1.2V
6.8 If the current through a 10-mH inductor increases
from zeroto 2 A, how much energy is stored in the
inductor?
(@ 40mJ (b) 20mJ
(c) 10mJ (d) 5mJ
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6.9 Inductorsin parallel can be combined just like L,
resistorsin parallel. ) L
(@ True (b) False V1 .
6.10  For thecircuit in Fig. 6.44, the voltage divider Vs @) V2 % L2
formulais: B
Li+L Li+L
@ v="7"0 O u=" "
L, Ly Figure 6.44  For Review Question 6.10.
© vi=——0 d vi=—-us
Li+ L, Li+ L,
Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5c, 6.6b, 6.7a, 6.8b, 6.9a, 6.10d.
PROBLEMS
Section 6.2 Capacitors Vi)V
6.1 If the voltage across a 5-F capacitor is 2te=% V, find 10 -
the current and the power.
6.2 A 40-uF capacitor is charged to 120 V and is then 0 — —
allowed to discharge to 80 V. How much energy is 2 4 8 10 /12 t(ms)
lost?
_10 -
6.3 In 5 s, the voltage across a 40-mF capacitor changes
from 160 V to 220 V. Calculate the average current
through the capacitor. Figure 646 For Prob. 6.6.
6.4 A current of 6sin4r A flowsthrough a 2-F
capacitor. Find the voltage v(r) across the capacitor o
given that v(0) = 1 V. 6.7 At ¢ = 0, the voltage across a 50-mF capacitor is
10 V. Calculate the voltage across the capacitor for
6.5 If the current waveform in Fig. 6.45 isapplied to a ¢t > 0 when current 4+ mA flows through it.
20-uF capacitor, find the voltage v(r) across the o
capacitor. Assume that v(0) = 0. 6.8 The current through a 0.5-F capacitor is
6(1 — e~") A. Determine the voltage and power at
t =2s Assumev(0) = 0.
6.9 If the voltage across a 2-F capacitor is as shown in
i(0) 4 Fig. 6.47, find the current through the capacitor.
4r VD) (V) A
10 -
5
0 1
1 2t
, 0 1 1 1 1 1 1 >
Figure 645 For Prob. 6.5. 1 2 3 4 5 6 7 t(
Figure 6.47  For Prob. 6.9.
6.6 The voltage waveform in Fig. 6.46 is applied across 6.10  Thecurrent through an initially uncharged 4-uF

a 30-uF capacitor. Draw the current waveform
through it.

capacitor is shown in Fig. 6.48. Find the voltage
across the capacitor for 0 < ¢ < 3.
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i(t) (MA) 6F
° I
“ L L, L
5F T T 4F T 2F
0 > o
1 2 3 t(9)
(b)
—40 - 3F  6F
o
Figure 6.48  For Prob. 6.10. —
3F
4F T
[e;
6.11 A voltage of 60cos4rt V appears across the ©
terminals of a 3-mF capacitor. Calculate the current
through the capacitor and the energy stored in it .
fromt =0tor = 0.125s, F|gure 650 For Prob. 6.15.
6.12  Find the voltage across the capacitorsin the circuit 6.16  Find Ce for thecircuit in Fig. 6.51.
of Fig. 6.49 under dc conditions.
20uF  30uF
o—l| Il
100 50Q c ! !
VWA VWA —S, 15uF = bGuF = 40uF =
20Q + o
39% C, V1 Vo < Gy
- 60V Figure 6,51 For Prob. 6.16.

6.17  Caculate the equivalent capacitance for the circuit

) in Fig. 6.52. All capacitances arein mF.
Figure 6.49  For Prob. 6.12.

5
Il
Section 6.3 Seriesand Parallel Capacitors :
15 3
6.13 What isthetotal capacitance of four 30-mF o I I
capacitors connected in: I I
(8 pardle (b) series Ceq 1 2
E— —-— 6 - 6
6.14  Two capacitors (20 uF and 30 wF) are connected to
a100-V source. Find the energy stored in each " I
capacitor if they are connected in: o Il 1l
(@) parallel (b) series 8 4
6.15 Determine the equivalent capacitance for each of the Figure 6.52  For Prob. 6.17.

circuitsin Fig. 6.50. ) . . .
6.18  Determine the equivalent capacitance at terminals

a-b of the circuit in Fig. 6.53.

O—H } 5uF 6 uF 4 uF

l l a o—| ] |
3E 6F lZ = J—3M|: LlZMF
T T bo T i T T

@ Figure 6.53  For Prob. 6.18.
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CHAPTER 6

Obtain the equivalent capacitance of the circuit in
Fig. 6.54.

40 uF

— 10uF 10uF =
35 uF 5uF
|| | ||

|

[
Il [ Il
20 uF
— 15 uF 15 uF =

Figure 6.54  For Prob. 6.19.

For the circuit in Fig. 6.55, determine;
(a) the voltage across each capacitor,
(b) the energy stored in each capacitor.

120v @)

|

[

N
=

5
—

Figure 6.55  For Prob. 6.20.

Repeat Prob. 6.20 for the circuit in Fig. 6.56.

60 uF 20 uF
f f
I I
90V<t> —J|: 30 uF %JA-MF % 80 uF
Figure 6.56  For Prob. 6.21.

(a) Show that the voltage-division rule for two
capacitorsin seriesasin Fig. 6.57(a) is

C2 Cl
= Vs, Uy = v
Cl + C2 Cl + C2

V1 s

assuming that the initial conditions are zero.

*An asterisk indicates a challenging problem.

6.23

6.24

*6.25

6.26

Capacitors and Inductors 29

€) (b)

Figure .57 For Prob. 6.22.

(b) For two capacitorsin paralel asin Fig. 6.57(b),
show that the current-division ruleis

. Cq . . C, .
= ————i,  dp= i,
C1+C C1+C,

assuming that the initial conditions are zero.

Three capacitors, C; = 5 uF, C, = 10 uF, and
C3 = 20 uF, are connected in parallel acrossa
150-V source. Determine;

(a) thetotal capacitance,
(b) the charge on each capacitor,

(c) thetotal energy stored in the parallel
combination.

The three capacitorsin the previous problem are
placed in series with a 200-V source. Compute:

(a) thetotal capacitance,
(b) the charge on each capacitor,
(c) thetotal energy stored in the series combination.

Obtain the equivalent capacitance of the network
shown in Fig. 6.58.

}_
}_

40 uF 30 uF 50 uF
10 uF T T 20 uF

(e

Figure 6.58  For Prob. 6.25.

Determine C, for each circuit in Fig. 6.59.
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ﬁ (@ v2(0) (b) va(r) and va(1)
© L (©) i(), ia(r), and ix(t)
Ceq C \/ C i 20uF
c o——¢
‘(‘: A VA { iy * iz
o Il +
(a \ 30 uF 4~ Vo, 4~ S0 uF
c ; \_.C ©
Ceq / Figure 6.6 For Prob. 6.29.
x/ Section 6.4 Inductors
¢ g c 6.30  Thecurrent through a 10-mH inductor is 6e~'/2 A.
Find the voltage and the power at t = 3 s.
b)
®) 6.31  Thecurrentin acoil increases uniformly from 0.4 to
. 1 A in 2 sso that the voltage across the coil is
Figure 659 For Prob 6.26. 60 mV. Calculate the inductance of the coil.
6.32  Thecurrent through a 0.25-mH inductor is

6.27  Assuming that the capacitors are initially uncharged,
find v, (¢) inthe circuit in Fig. 6.60.

iy (mA)
0 6 uF
is +
3uF Vo(t)
0 —
1 2 t(9

Figure 6.60  For Prob. 6.27.

6.28 Ifv(0) =0, findv(z), i1(r),and i>(¢) inthecircuitin
Fig. 6.61.

is (MA) A
20

O 1 1 1 |
1 2 Vs t
_20_

‘il ¢i2

4 uF —

|
< +

is GMF =

Figure 6.6/ For Prob. 6.28.

6.29  For thecircuit in Fig. 6.62, let v = 10e=¥ V and
v1(0) = 2 V. Find:

6.33

6.34

6.35

6.36

6.37

6.38

12 cos2:t A. Determine the terminal voltage and the
power.
The current through a 12-mH inductor is

4sin 100 A. Find the voltage, and also the energy
stored in theinductor for 0 < ¢ < 7/200s.

The current through a 40-mH inductor is

. 0, t<0
i) = te 2 A tr>0
Find the voltage v ().

The voltage across a 2-H inductor is 20(1 — e=%) V.
If theinitia current through the inductor is0.3 A,
find the current and the energy stored in the inductor
ar=1s

If the voltage waveform in Fig. 6.63 is applied
across the terminals of a5-H inductor, calculate the
current through the inductor. Assume i (0) = —1A.

v(t) (V)4
10
0
1 2 3 4 5 t
Figure .63 For Prob. 6.36.

The current in an 80-mH inductor increases from 0
to 60 mA. How much energy is stored in the
inductor?

A voltage of (4 + 10cos2r) V isapplied to a5-H
inductor. Find the current i () through the inductor
ifi(0) = —1A.
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CHAPTER 6

10-mH inductor, find the inductor current i (z).
Assumei(0) = 0.

v(t)
5 [—

Figure 6.64

For Prob. 6.39.

6.40 Findvc, iz, and the energy stored in the capacitor
and inductor in the circuit of Fig. 6.65 under dc

conditions.

JNC))

g 0.5H

Figure 6.6

6.41  For thecircuit in Fig. 6.66, calculate the value of R
that will make the energy stored in the capacitor the

2Q
Ve 2F
% 4Q
5Q
For Prob. 6.40.

same as that stored in the inductor under dc

conditions.
R
VWA
I
IX
160 uF
5A % 2Q
Figure 6.66  For Prob. 6.41.

6.42  Under dc conditions, find the voltage across the

capacitors and the current through the inductorsin

the circuit of Fig. 6.67.

Capacitors and Inductors 3|

40 L,

30V = C
60

Figure 6.67  For Prob. 6.42.

Section 6.5 Seriesand Parallel Inductors

6.43

6.44

Find the equivalent inductance for each circuit in
Fig. 6.68.

5H 1H
O~V ——/ 1IN
6H 4H 4H
O
@
1H 2H
12H 6H 4H
[e;
(b)
[e;
2H
§4H
3H 6H
(e
©

Figure 6.68  For Prob. 6.43.

Obtain L, for the inductive circuit of Fig. 6.69. All
inductances are in mH.

10

.
o—/TI
N
512 3 6

(e,

Figure 6.69  For Prob. 6.44.
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6.45 Determine Lg at terminals a-b of the circuit in Fig. L
6.70. A11%
L L
L
10 mH l e
4A11A L L
60 mH L
AILR
25mH 20 mH Fioure 673
ao A11A A11R o b igure o. For Prob. 6.48.
30 mH

6.49 Find Ly inthecircuitinFig. 6.74.
Figure 6.70  For Prob. 6.45.

L
A11A
6.46  Find L at the terminals of the circuit in Fig. 6.71. L L
L L L
ALk
6 mH 8mH
a o—1imn 4A11A L L
5mH
12 mH o o
T Leq
8 mH g
6 mH .
4mH Figure 6.74  For Prob. 6.49.
b o— 1T LLLD .
10mH 8mH *6.50  Determine L that may be used to represent the

inductive network of Fig. 6.75 at the terminals.
Figure 6.7 For Prob. 6.46.

odi

i dt

. . . o _, 4H
6.47  Find the equivalent inductance looking into the ao TN 3 =
terminals of the circuit in Fig. 6.72.
e 3H 5H
9H bo
A1 )
10H Figure 6.75  For Prob. 6.50.
T

12H g 3H 6.51  The current waveform in Fig. 6.76 flows through a

3-H inductor. Sketch the voltage across the inductor

6H over theinterval 0 <t < 6s.

4H§

N1,

i(t)

o 0
a b 2
Figure 6.7 For Prob. 6.47.
0 1 1 1 >
1 2 3 4 5 6 t
6.48  Determine Le in the circuit in Fig. 6.73. Figure 6.76  For Prob. 6.51.
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(8) Fortwo inductorsin seriesasin Fig. 6.77(b),
show that the current-division principleis

Ly L,
= Vg, V2 = v
L+ L> Li+ L,
assuming that the initial conditions are zero.

(b) For two inductorsin parallel asin Fig. 6.77(b),
show that the current-division principleis

L, . . Ly
Iy, i) =
Li+ Ly 2 Li+ L,
assuming that the initial conditions are zero.

V1 s

i1 = i

6.53

6.54

Ll
- D
+
“du @ Fu 3u
@ (b)
Figure 6.77  For Prob. 6.52.

Inthe circuit of Fig. 6.78, let i, (1) = 6e=% MA,
t >0andi;(0) =4 mA. Find:

(@ i2(0),

(b) i1(¢) and ix(¢), t > 0,

(©) vi(r) and va(2), t > 0,

(d) the energy in eachinductor at ¢+ = 0.5s.

10mH
T
V1 i i
L
i() g 30 mH Vzg 20 mH
Figure 6.78  For Prob. 6.53.

Theinductorsin Fig. 6.79 areinitially charged and

are connected to the black box at r = 0. If

i1(0) = 4A,i,(0) = —2A, and v(¢) = 500" mV,

t > 0, find:

(a) theenergy initially stored in each inductor,

(b) thetotal energy delivered to the black box from
t=0tor = oo,

(c) ia(r) andix(1),t > 0,

(d) i), t>0.

6.55

Section 6.6

6.56

6.57

6.58

6.59

Capacitors and Inductors 233

Black box | v

Figure 6.79

Find i and v in the circuit of Fig. 6.80 assuming that
i(0) = 0=v(0).

For Prob. 6.54.

i 20mH
—

+
12sin4tmVv 60 mH v 40 mH

L11h
16 mH

Figure 6.80  For Prob. 6.55.

Applications

An op amp integrator has R = 50 k2 and
C = 0.04 uF. If theinput voltageis
v; = 10sin50¢ mV, obtain the output voltage.

A 10-V dc voltageis applied to an integrator with

R =50k, C = 100 uF at r = 0. How long will it
take for the op amp to saturate if the saturation
voltagesare +12 V and —12 V? Assume that the
initial capacitor voltage was zero.

An op amp integrator with R = 4 MQ and
C = 1 uF hasthe input waveform shown in Fig.
6.81. Plot the output waveform.

v; (mV)

ZO—L
10 |+

6 t(ms

-
\S)
w
P
[é)]

ml

For Prob. 6.58.

Figure 6.8

Using a single op amp, a capacitor, and resistors of
100 k€2 or less, design a circuit to implement

t
v, = —SOf v; (1) dt
0

Assumev, =0atr =0.
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6.60

6.61

1V

6.62

6.63

PART |

Show how you would use asingle op amp to
generate

t
v, = —/ (v1 + 4vy + 10v3) dt
0

If the integrating capacitor is C = 2 uF, obtain other
component values.

Att = 1.5ms, calculate v, due to the cascaded
integratorsin Fig. 6.82. Assume that the integrators
areresettoOV atr =0.

ZﬁF 05 uF
I I
10kQ . 20KkQ I
:‘+ MWW + Lo
;
VO
o

€

Figure 6.8 For Prob. 6.61.

Show that the circuit in Fig. 6.83 is anoninverting
integrator.

Figure 6.83  For Prob. 6.62.

The triangular waveformin Fig. 6.84(a) is applied to
the input of the op amp differentiator in Fig. 6.84(b).
Plot the output.

vi(t) 4
10 -

t (ms)

@

DC Circuits

6.64

6.65

*6.66

6.67

20kQ
0.01 uF
+
Yi Vo
o
(b)
Figure 6.84  For Prob. 6.63.

An op amp differentiator has R = 250 k2 and
C = 10 uF. Theinput voltage is aramp
r(t) = 12t mV. Find the output voltage.

A voltage waveform has the following
characteristics: apositive slope of 20 V/sfor 5 ms
followed by a negative slope of 10 V/sfor 10 ms. If
the waveform is applied to a differentiator with

R =50k, C = 10 uF, sketch the output voltage
waveform.

The output v, of the op amp circuit of Fig. 6.85(a) is
shownin Fig. 6.85(b). Let R, = R; = 1 MQ and

C = 1 uF. Determine the input voltage waveform
and sketch it.

R
—MWAA—
C
R I
=
+
Vi v
o
@
VO
4 -
0 1 1 7
1 3 4 t(ms)
_4 -
(b)
Figure 6.85  For Prob. 6.66.
Design an analog computer to simulate
d?v, _dv, .
2 , = 10sin2¢
dr? * dt v

where vo(0) = 2 and v4(0) = 0.
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6.68  Design an analog computer to solve the differential
equation

di(t)
dt

+3i(t)=2 t>0

and assume that i (0) = 1 mA.

6.69  Figure 6.86 presents an analog computer designed to
solve adifferential equation. Assuming f(¢) is
known, set up the equation for f (¢).

1MQ

1uF

1uF
— 1MQ
1MQ 500 kQ
i = v ==
100 kQ
100 kQ 200kQ
= —f(t) o—

Figure 6.86  For Prob. 6.69.

COMPREHENSIVE PROBLEMS

6.70  Your laboratory has available alarge number of
10-;1F capacitorsrated at 300 V. To design a
capacitor bank of 40-uF rated at 600 V, how many
10-uF capacitors are needed and how would you
connect them?

6.71  When acapacitor is connected to adc source, its
voltagerisesfrom 20V to 36 V in 4 uswith an
average charging current of 0.6 A. Determine the
value of the capacitance.

6.72 A square-wave generator produces the voltage
waveform shown in Fig. 6.87(8). What kind of a
circuit component is needed to convert the voltage
waveform to the triangular current waveform shown
in Fig. 6.87(b)? Calculate the value of the
component, assuming that it isinitially uncharged.

v(V)A
5 pr—
0 3>
1] 2 3 4] t(ms)
_5 -

@

6.73

i(A)

0 1 2 3 4  t(mg)
(b)

Figure 6.87  For Prob. 6.72.

In an electric power plant substation, a capacitor
bank is made of 10 capacitor strings connected in
parallel. Each string consists of eight 1000-uF
capacitors connected in series, with each capacitor
charged to 100 V.

(a) Calculatethetotal capacitance of the bank.

(b) Determine the total energy stored in the bank.

Go to the Student OLC
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CHAPTER| 7

FIRST-ORDER CIRCUITS

| often say that when you can measure what you are speaking about, and
expressit in numbers, you know something about it; but when you cannot
expressit in numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of a science, whatever the matter
may be.

—Lord Kelvin

Enhancing Your Career

Careersin Computer Engineering Electrical engineer-
ing education has gone through drastic changes in rece
decades. Most departments have come to be known as D
partment of Electrical and Computer Engineering, empha
sizing the rapid changes due to computers. Computers od.
cupy a prominent place in modern society and education
They have become commonplace and are helping to changi
the face of research, development, production, business
and entertainment. The scientist, engineer, doctor, atto
ney, teacher, airline pilot, businessperson—almost anyon
benefits from a computer’s abilities to store large amountg
of information and to process that information in very short
periods of time. The internet, a computer communication
network, is becoming essential in business, education, an - e
library science. Computer usage is growing by leaps anc{:omputer design of verylarge scaleintegrated (VLS) TGS
bounds. Source: M. E. Hazen, Fundamentals of DC and AC Circuits,
Three major disciplines study computer systems: Philadelphia: Saunders, 1990, p. 20A4.
computer science, computer engineering, and information
management science. Computer engineering has grown so
fast and wide that it is divorcing itself from electrical en-
gineering. But, in many schools of engineering, computer
engineering is still an integral part of electrical engineering. jobs in computer industries and in numerous fields where
An education in computer engineering should provide computers are being used. Companies that produce soft-
breadth in software, hardware design, and basic modelingvare are growing rapidly in number and size and providing
techniques. It should include courses in data structures, digemployment for those who are skilled in programming. An
ital systems, computer architecture, microprocessors, interexcellent way to advance one’s knowledge of computers is
facing, software engineering, and operating systems. Electo join the IEEE Computer Society, which sponsors diverse
trical engineers who specialize in computer engineering findmagazines, journals, and conferences.

a7
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N

Figure 7.1 A source-free
RC circuit.

A circuit response is the manner in which the
circuit reacts to an excitation.

PART | DC Circuits

1.1 INTRODUCTION

Now that we have considered the three passive elements (resistors, ca-
pacitors, and inductors) and one active element (the op amp) individually,
we are prepared to consider circuits that contain various combinations of
two or three of the passive elements. In this chapter, we shall examine
two types of simple circuits: a circuit comprising a resistor and capaci-
tor and a circuit comprising a resistor and an inductor. These are called
RC and RL circuits, respectively. As simple as these circuits are, they
find continual applications in electronics, communications, and control
systems, as we shall see.

We carry out the analysis &C andR L circuits by applying Kirch-
hoff's laws, as we did for resistive circuits. The only difference is that
applying Kirchhoff’s laws to purely resistive circuits results in algebraic
equations, while applying the laws ®C andRL circuits produces dif-
ferential equations, which are more difficult to solve than algebraic equa-
tions. The differential equations resulting from analyzi®g and RL
circuits are of the first order. Hence, the circuits are collectively known
asfirst-order circuits.

J A first-order circuit is characterized by a first-order differential equation.

In addition to there being two types of first-order circui®(
andRL), there are two ways to excite the circuits. The first way is by
initial conditions of the storage elements in the circuits. In these so-
called source-free circuits, we assume that energy is initially stored in
the capacitive or inductive element. The energy causes current to flow in
the circuit and is gradually dissipated in the resistors. Although source-
free circuits are by definition free of independent sources, they may have
dependent sources. The second way of exciting first-order circuits is by
independent sources. In this chapter, the independent sources we will
consider are dc sources. (In later chapters, we shall consider sinusoidal
and exponential sources.) The two types of first-order circuits and the
two ways of exciting them add up to the four possible situations we will
study in this chapter.

Finally, we consider four typical applications &C andRL cir-
cuits: delay and relay circuits, a photoflash unit, and an automobile igni-
tion circuit.

7.2 THE SOURCE-FREE RC CIRCUIT Electronic Testing Tutorials

A source-freeR C circuit occurs when its dc source is suddenly discon-
nected. The energy already stored in the capacitor is released to the
resistors.

Consider a series combination of aresistor and an initially charged
capacitor, as shown in Fig. 7.1. (The resistor and capacitor may be the
equivalent resistance and equivalent capacitance of combinations of re-
sistorsand capacitors.) Our objectiveisto determinethe circuit response,
which, for pedagogic reasons, we assume to be the voltage v(¢) across
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the capacitor. Sincethe capacitor isinitially charged, we can assume that
attimer = 0, theinitial voltage is

v(0) = Vo (7.9)
with the corresponding value of the energy stored as
1
w(0) = > cv¢ (72
Applying KCL at the top node of the circuit in Fig. 7.1,
ic+ig=0 (73
By definition, ic = C dv/dt andig = v/R. Thus,
C dv + v 0 (7.4a)
dt R '
or
dv + v 0 (7.4b)
dt = RC '

Thisisafirst-order differential equation, since only thefirst derivative of
v isinvolved. To solveit, we rearrange the terms as

dv 1
— =——dt (7.5)
v RC

Integrating both sides, we get
In ! +InA
V= ———
RC
where In A isthe integration constant. Thus,
n— =—-—— (7.6)
Taking powers of e produces
v(t) = Ae /RC
But from the initial conditions, v(0) = A = V,. Hence,
v(t) = Voe /RC @7

This shows that the voltage response of the RC circuit is an exponential
decay of theinitial voltage. Sincetheresponseisdueto theinitia energy
stored and the physical characteristics of the circuit and not due to some
external voltage or current source, it is called the natural response of the
circuit.

The natural response of a circuit refers to the behavior (in terms of voltages and
currents) of the circuit itself, with no external sources of excitation.

The natural response is illustrated graphicaly in Fig. 7.2. Note that at The natural response depends on the nature of

1= 0, we ha/ethe correct |n|t|a| COﬂdItIOﬂ %'n Eq (71) ASt InCI’eaSGS, the circuit a|0ney with no external sources. In
the voltage decreases toward zero. The rapidity with which the voltage fact, the circuit has a response only because of
decreasesisexpressed in termsof the time constant, denoted by the lower the energy initially stored in the capacitor.

case Greek letter tau, .
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The time constant of a circuit is the time required for the response to decay by a
factor of /e or 36.8 percent of s initial value.

Thisimpliesthat at t = 7, Eq. (7.7) becomes
Voe /RC€ = Vpe ! = 0.368Vp

t

Figure 7.2 The voltage response of the RC g
circuit.

T=RC (7.9)

In terms of the time constant, Eq. (7.7) can be written as

v(t) = Ve '/7 (7.9

With a calculator it is easy to show that the value of v(z)/ Vp isas
showninTable7.1. Itisevident from Table 7.1 that thevoltage v(z) isless
than 1 percent of Vj after 5t (fivetime constants). Thus, it is customary
to assume that the capacitor is fully discharged (or charged) after five
time constants. In other words, it takes 5t for the circuit to reach its final
state or steady state when no changes take place with time. Naotice that
for every timeinterval of , the voltage is reduced by 36.8 percent of its
previous value, v(r + t) = v(t)/e = 0.368v(z), regardless of the value
of 7.

TABLE7.]  Values of
v(t)/ Vo =e ",

t v(t)/ Vo

T 0.36788

2t 0.13534

3t 0.04979

4t 0.01832

5t 0.00674

V

A Observefrom Eq. (7.8) that the smaller the time constant, the more
10 rapidly the voltage decreases, that is, the faster the response. This is

illustrated in Fig. 7.4. A circuit with a small time constant gives a fast
response in that it reaches the steady state (or final state) quickly due to

0.75 quick dissipation of energy stored, whereas a circuit with a large time

050 Tangentatt=0 —_—
’ \ 1The time constant may be viewed from another perspective. Evaluating the derivative of
0.37 -3 v(t) in Eq. (7.7) a t = 0, we obtain

0.25 | d /v
dr <70> =0 T =0 T

Thusthe time constant istheinitial rate of decay, or the time taken for v/ Vy to decay from
unity to zero, assuming a constant rate of decay. Thisinitial slope interpretation of the
time constant is often used in the laboratory to find ¢ graphically from the response curve
Figu re73  Graphical determination of the displayed on an oscilloscope. To find T from the response curve, draw the tangent to the
time constant = from the response curve. curve, as shown in Fig. 7.3. The tangent intercepts with thetime axisat t = 7.

1

_ —76_1/1

1

0 T 27 3r 4t 5r t(9
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Figure 74 Plot of v/ Vo = e*/* for various values of the time constant.

constant gives a slow response because it takes longer to reach steady
state. At any rate, whether the time constant is small or large, the circuit
reaches steady state in five time constants.

With the voltage v(¢) in Eq. (7.9), we can find the current i g (¢),

v(t) — &eft/r

ip(t) = = - R (7.10)
The power dissipated in the resistor is
2
p(t) = vig = %e*z’/’ (7.11)

The energy absorbed by the resistor up totimer is

t t V2
wr() Zf pdt 2/ ?Oefzt/rdt
0 0

2 ' (7.12)
_ Ve e 2T = %Cvoz(l— e~ 2Ty, T=RC

2R

0

Noticethat ast — oo, wg(co) — 1CVE, which is the same as wc (0),
the energy initialy stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

In summary:

The Key to Working with a Source-free RC Circuit is

Finding:
1. Theinitial voltage v(0) = V, across the capacitor. The time constant is the same regardless of what
2. Thetime constant z. the output is defined to be.

When a circuit contains a single capacitor and

With these two items, we obtain the response as the capacitor voltage several resistors and dependent sources, the

ve (1) = v(r) = v(0)e™"/*. Once the capacitor voltage is first obtained, Thevenin equivalent can be found at the termi-
other variables (capacitor current ic, resistor voltage vg, and resistor nals of the capacitor to form a simple RC circuit.
current i g) can be determined. Infinding thetimeconstant t = RC, R is Also, one can use Thevenin's theorem when sev-
often the Thevenin equivalent resistance at the terminals of the capacitor; eral capacitors can be combined to form a single
that is, we take out the capacitor C and find R = Ry, at itsterminals. equivalent capacitor.
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£ XA L E

8Q
MM
E
+ +
5Q 01F == v 129§vX
Figure 7.5 For Example 7.1.

— 0.1F

ReS v

Figure 7.6 Equivalent circit
for the circuit in Fig. 7.5.

PRACTICE PROBLEMNE

InFig. 7.5, let vc(0) = 15 V. Find v¢, vy, and i, fort > O.
Solution:

We first need to make the circuit in Fig. 7.5 conform with the standard
RC circuitinFig. 7.1. Wefind the equivalent resistance or the Thevenin
resistanceat the capacitor terminals. Our objectiveisawaystofirst obtain
capacitor voltage vc. From this, we can determine v, and i, .

The 8-Q and 12-Q resistors in series can be combined to give a
20-Q2 resistor. This20-Q2 resistor in parallel with the 5-2 resistor can be
combined so that the equivalent resistanceis

_20><5_
4T 20+5

Hence, the equivalent circuit is as shown in Fig. 7.6, which is analogous
to Fig. 7.1. Thetime constant is

T =ReC =4(01) =04s
Thus,
v=10(0)e”"/" = 15704V, ve = v = 15¢72% v

From Fig. 7.5, we can use voltage division to get v, ; so

12
e L 0.6(15¢72%) = 9¢72% Vv
Finaly,
1)
iy = — = 0.75¢ > A
l 12 4

s 80
+ +
12Q 6Q < vy IF==ve

Refer tothecircuitin Fig. 7.7. Let v (0) = 30 V. Determine v¢, v,, and
i, fort > 0.

Answer: 30e 02\, 10e~02 \/, —2 5025 A

Figure 7.7 For Practice Prob. 7.1.

e LE B
30 t=0 10 The switch in the circuit in Fig. 7.8 has been closed for along time, and
itisopenedat r = 0. Find v(¢) for + > 0. Calculate theinitial energy

+ stored in the capacitor.
20V 90 v 20MF  goiytion:
T For t < 0, the switch is closed; the capacitor is an open circuit to dc, as
) represented in Fig. 7.9(a). Using voltage division
Flgure 78  For Example 7.2.
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9
1)=——=(200=15V t<0
ve (1) 9+ 3( ) ) <
Since the voltage across a capacitor cannot change instantaneously, the
voltage across the capacitor at r = 0~ isthesameat r = 0, or
ve(0) = Vo =15V

Fort > 0, the switch is opened, and we have the RC circuit shown
inFig. 7.9(b). [Notice that the RC circuit in Fig. 7.9(b) is source free;
the independent source in Fig. 7.8 is needed to provide V; or the initial
energy in the capacitor.] The 1-Q2 and 9-Q2 resistorsin series give

Ryg=14+9=10Q
The time constant is
T=RgqC=10x20x102=02s
Thus, the voltage across the capacitor for ¢+ > 0is
V() = ve(0)e /" = 15¢/02V
or
v(t) = 157> V
Theinitial energy stored in the capacitor is

1 1
we(0) = ECvg(O) =5 x20x 1073 x 15 = 2.25]

PRACTICE PROBLEMNEW

M43

3Q 1Q
AV ANV 0
+
20V 9Q vc(0)
o
(€Y
1Q
o AW
+
9Q \,=15V = 20mF

(b)

Figure 7.9 For Example 7.2: (8) 1 < O,
(b): > 0.

If the switchin Fig. 7.10 opensat t = O, find v(¢) for + > 0 and w¢(0).
Answer: 8¢ % V,5.33J.

6Q

24V %F - 12Q

< +

Figure 7.10  For Practice Prob. 7.2.

40

1.3 THE SOURCE-FREE RL CIRCUIT

Consider the series connection of aresistor and an inductor, as shown in
Fig. 7.11. Our god is to determine the circuit response, which we will
assumeto bethe current i (¢) through theinductor. We select the inductor
current as the response in order to take advantage of the idea that the
inductor current cannot change instantaneously. At ¢+ = 0, we assume
that the inductor has aninitia current I, or

i(0)=1Ip (7.13)

with the corresponding energy stored in the inductor as

1
w(0) = 5”02 (7.14)

Electronic Testing Tutorials

Figure 7.1 A source-
free RL circuit.
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i(t)

Tangentatt=0

0.3681, | -- ¢~ /

o€

Figure 7.12 The current response of the RL

circuit.

The smaller the time constant 7 of a circuit, the
faster the rate of decay of the response. The
larger the time constant, the slower the rate of
decay of the response. At any rate, the response
decays to less than | percent of its initial value
(i.e., reaches steady state) after 5.

Figure 7.12 shows an initial slope interpretation
may be given to 7.

PART | DC Circuits

Applying KVL around the loop in Fig. 7.11,
v + vg = 0 (7.15)
Butv, = Ldi/dt andvg = iR. Thus,

or
-+ —i= (7.16)

Rearranging terms and integrating gives

i gi tR
/ flz—/ —dt
Io l o L

|'® Rt , Rt
Ini = —— — Ini(t) —Inlp=——+0
I L 0 L
0
or
i(t Rt
InQ =—— (7.17)

Io L

Taking the powers of e, we have
i(t) = Ioe K/E (7.18)

This shows that the natural response of the RL circuit is an exponential
decay of the initial current. The current response is shown in Fig. 7.12.
It is evident from Eq. (7.18) that the time constant for the RL circuit is

T=— (7.19)

with = again having the unit of seconds. Thus, Eq. (7.18) may be written
as

i(r) = Ioe™ /" (7.20)

With the current in Eqg. (7.20), we can find the voltage across the
resistor as
vr(t) = iR = IoRe™"/* (7.21)
The power dissipated in the resistor is
p = Vgl = I(?Re_h/r (7.22)

The energy absorbed by the resistor is
' ! 1 ' L
wr(t) = / pdt = / I2Re™ /" dt = —ZTIZRe™?/7| | T=—
0 0 2 0 R
or

1
wr(t) = ELI§(1 — e 2Ty (7.23)

Notethat ast — oo, wg(c0) — 3LIZ, whichisthe same as w; (0), the
initial energy stored in the inductor asin Eq. (7.14). Again, the energy
initially stored in the inductor is eventually dissipated in the resistor.
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In summary:

The Key to Working with a Source-free RL Circuit is
to Find:

1. Theinitial current i (0) = I, through the inductor.

2. Thetime constant = of the circuit.

With thetwoitems, we obtain the response astheinductor currenti; () =
i(t) = i(0)e~"/*. Once we determine the inductor current i, other vari-
ables (inductor voltage v, , resistor voltage vg, and resistor current ig)
can be obtained. Note that in general, R in Eq. (7.19) is the Thevenin
resistance at the terminals of the inductor.

245

When a circuit has a single inductor and several
resistors and dependent sources, the Thevenin
equivalent can be found at the terminals of the
inductor to form a simple RL circuit. Also, one
can use Thevenin's theorem when several induc-
tors can be combined to form a single equivalent
inductor.

£ X AMPLENIE

|
Assuming that i (0) = 10 A, calculate i (r) and i, (¢) inthe circuit in Fig.
7.13.

Solution:

There are two ways we can solve this problem. One way isto obtain the
equivalent resistance at the inductor terminals and then use Eq. (7.20).
The other way is to start from scratch by using Kirchhoff’s voltage law.
Whichever approachistaken, it isalwaysbetter tofirst obtain theinductor
current.

| The equivalent resistance is the same as the Thevenin
resistance at the inductor terminals. Because of the dependent source,
we insert a voltage source with v, = 1V at the inductor terminals a-b,
asin Fig. 7.14(a). (We could also insert a 1-A current source at the ter-
minals.) Applying KVL to the two loops resultsin

21 —i2)+1=0 =

1
i1 —ip= —E (7.3.1)

5

6i, —2i; —3i;,=0 — ip = éil (7.3.2)

Substituting Eq. (7.3.2) into Eq. (7.3.1) gives

05H g

Figure 7.13

W
gZQ 3i

For Example 7.3.

vw=1v @ @ 2Q§ @ D 3

@ D

@

Figure 7.14  solving the circuiit in Fig. 7.13.

(b)
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Hence,
Rqg=Rm="2 =20
i, 3
Thetime constant is
b3 38
" Req % 2

Thus, the current through the inductor is
i(r) =i(0)e™"/* = 10e~ @3 A, >0

METHOD 1 We may directly apply KVL to the circuit as in Fig.
7.14(b). For loop 1,

1di;

s STV
> (i1—12) =0
or
di
f 1 4i1—4i=0 (7:33)
For loop 2,
. . . . S,
6i, —2i1—3i1=0 - 1p = éll (7.3.4)
Substituting Eq. (7.3.4) into Eq. (7.3.3) gives
diy 2
245 =0
i + 311
Rearranging terms,
diy 2
— = ——dt
i1 3
Sincei; = i, we may replacei; with i and integrate:
i(r) 2 |
Ini =— =t
i(0) 3o
or
In ﬂ = —g
i(0) 3

Taking the powers of ¢, we finally obtain
i(1) = i(0)e @3 = 10e~@d" A, >0

which is the same as by Method 1.
The voltage across the inductor is

di 2 10
=L— =0510)—= e ¥ = @3y
P (19 < 3) ¢ 3¢

Since the inductor and the 2-2 resistor are in parallel,

i(1) = % — 16673 A, 1>0
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PRACTICE PROBLEMNEE

2147

Find i and v, inthecircuitin Fig. 7.15. Leti(0) = 5A.
Answer: 5e 5% A, —15¢75% v,

Figure 7.15  For Practice Prob. 7.3.

£ XA H P L E I

The switch in the circuit of Fig. 7.16 has been closed for along time. At
t = 0, the switch is opened. Calculatei(¢) fort > O.

Solution:

When ¢ < 0, the switch is closed, and the inductor acts as a short circuit
to dc. The 16-2 resistor is short-circuited; the resulting circuit is shown
in Fig. 7.17(a). To get i1 in Fig. 7.17(a), we combine the 4-Q and 12-Q
resistorsin parallel to get

4x12
4412

Hence,

T 2437

We obtain i (¢) from iy in Fig. 7.17(a) using current division, by writing

i1 8A

i(t) = i1=06A, t<0

12+ 4
Since the current through an inductor cannot change instantaneously,
i(0)=i(0)=6A

When r > 0, the switch is open and the voltage source is discon-
nected. We now have the RL circuit in Fig. 7.17(b). Combining the re-
sistors, we have

Reg=(124+4) | 16 =8Q

The time constant is

Thus,

i(1) =i(0)e /" =674 A

Jio

40V 12Q glGQ §2H

Figure 7.16  For Example 7.4.

=
Jio
40V 12Q
@
4Q
ANV *i(t)
120 16Q 2H

(b)

Figure 7.17  solvingthecircuiit of Fig. 7.16: (a)
fort <0, (b)forz > 0.
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PRACTICE PROBLEM NI
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t=0

5

%129 %SQ
ANV

i(tw 50
2H

5A

Figure 7.18  For Practice Prob. 7.4.

For thecircuit in Fig. 7.18, find i () for r > 0.
Answer: 2¢ % At > 0.

mmmj
+WW_ it
t=0 §GQ §2H

Figure 7.19  For Example 7.5.

3Q
M

it

10V GQ§

(b)

Figure 720 The circuit in Fig. 7.19 for:
@r<0,(b)r>0.

In thecircuit shownin Fig. 7.19, find i, v,, and i for al time, assuming
that the switch was open for along time.

Solution:

Itisbetter tofirst find theinductor current i and then obtain other quantities
fromiit.

For ¢ < 0, the switch is open. Since the inductor acts like a short
circuit to dc, the 6-$2 resistor is short-circuited, so that we have the circuit
shown in Fig. 7.20(a). Hence, i, = 0, and

10
l(t)=m=2A, t <0

V,(t) =3i(t) =6V, t<0

Thus, i (0) = 2.

For ¢ > 0, the switch is closed, so that the voltage source is short-
circuited. We now haveasource-free RL circuit asshowninFig. 7.20(b).
At theinductor terminals,

Rm=3(6=2Q

s0 that the time constant is

Hence,
i(t) =i(0)e™ /" =27 A, t>0
Since the inductor isin parallel with the 6-Q2 and 3-Q2 resistors,
V(1) = —vp, = —L% =-2(—2e")=4e7"V, t>0
and

2
iy(t) = % = —:—se” A, t>0
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Thus, for all time,

0 0% r<0 oo [6V. 1<0 ,
R R A U2 i®

o |2A, t<0
i) = 227'A, t>0

We natice that the inductor current is continuous at ¢+ = 0, while the
current through the 6-C2 resistor drops from 0to —2/3 at + = 0, and the

/(' t
iolt)
voltage acrossthe 3-Q2 resistor dropsfrom6to4 at r = 0. We also notice

that the time constant is the same regardless of what the output is defined Figure 7.1
to be. Figure 7.21 plotsi and i,. '

PRACTICE PROBLEMESS

wIinN

A plot of i and ip.

Determinei, i,, and v, for al ¢ inthecircuit shown in Fig. 7.22. Assume 3Q
that the switch was closed for along time. WW
. [4nA, t<0 . 2A, t<0 1=0 i 1H
Answer: i = {4e_2’ A 10 "7 {—(4/3)6_2’ A 150 e ;’
° +
_ | av. 1<0 6a (d 4Q 20 2V,
Vo = {—(8/3)e‘2’ V, t>0 ® -

Figure 722 For Practice Prob. 7.5.

1.4 SINGULARITY FUNCTIONS

Before going on with the second half of this chapter, we need to digress
and consider some mathematical conceptsthat will aid our understanding
of transient analysis. A basic understanding of singularity functions will
help us make sense of the response of first-order circuits to a sudden
application of an independent dc voltage or current source.

Singularity functions (also called switching functions) are very use-
fulincircuit analysis. They serveasgood approximationsto the switching
signalsthat arisein circuitswith switching operations. They arehelpful in
the neat, compact description of some circuit phenomena, especialy the
step response of RC or RL circuits to be discussed in the next sections.
By definition,

Singularity functions are functions that either are discontinuous or have
discontinuous derivatives.

Thethree most widely used singularity functionsin circuit analysis
are the unit step, the unit impulse, and the unit ramp functions.
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Figure 7.23  The unit step
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Figure 724 (a) The unit step
function delayed by 1y, (b) the unit
step advanced by 1.

Alternatively, we may derive Eqs. (7.25) and (7.26)
from Eq. (7.24) by writing u[f (t)] = I, f(t) > 0,
where f(t) may be t — ty or t + tp.

PART | DC Circuits

{The unit step function u(t) is 0 for negative values of t and 1 for positive values of t

In mathematical terms,

0, t<0
u(t) = {1 ; i 0 (7.24)

The unit step function is undefined at + = 0, where it changes abruptly
fromOto 1. Itisdimensionless, like other mathematical functionssuch as
sine and cosine. Figure 7.23 depicts the unit step function. If the abrupt
change occurs at t = 1y (Where ro > 0) instead of + = 0, the unit step
function becomes

0, t<1

u(t —tg) = {1 ¢ > 1o (7.25)

whichisthe sameassaying that u () isdelayed by 7o seconds, asshownin
Fig. 7.24(a). To get EqQ. (7.25) from EQ. (7.24), we simply replace every
t by r — 1o. If thechangeisat t = —1g, the unit step function becomes
_ 0, t<—t
u(t +tg) = {1’ ‘> —tg (7.26)
meaning that «(¢) is advanced by ¢y seconds, as shown in Fig. 7.24(b).
We use the step function to represent an abrupt change in voltage
or current, like the changes that occur in the circuits of control systems
and digital computers. For example, the voltage

0, t<to

vln) = {Vo, t>1 (7.27)

may be expressed in terms of the unit step function as
v(t) = Vou(t — tp) (7.28)

If welet rg = 0, then v(z) is simply the step voltage Vou(z). A voltage
source of Vou(t) isshown in Fig. 7.25(a); its equivalent circuit is shown
in Fig. 7.25(b). Itisevident in Fig. 7.25(b) that terminals a-b are short-
circuited (v = 0) for r < 0 and that v = Vj appears at the terminals
fort > 0. Similarly, a current source of Ipu(t) isshownin Fig. 7.26(a),
whileits equivalent circuitisin Fig. 7.26(b). Noticethat for r < O, there
isan open circuit (i = 0), andthat i = Iy flowsfor r > 0.

————O0 a —O - a
v @ = @
L ob b
@ (b)

Figure 725 (a) Voltage source of Vou(t), (b) its equivalent circuit.
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t=0 _1_
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L ob b
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Figure 7.26 (8) Current source of Iou(t), (b) its equivalent circuit.

The derivative of the unit step function u(¢) is the unit impulse
function §(¢), which we write as

d 0, t<0
§(t) = —u(t) = {Undefined, ¢+ =0 (7.29)
dt 0, t>0

The unit impul se function—al so known as the delta function—is shown
inFig. 7.27. 5 4 (D

FC
The unit impulse function d(t) is zero everywhere except at t = 0, where
it is undefined. 0 t

. . S Figure 727 The unit
Impulsive currents and voltages occur in €lectric circuits as a result of impulse function.

switching operations or impulsive sources. Although the unit impulse
functionisnot physically realizable(just likeideal sources, ideal resistors,
etc.), it isavery useful mathematical tool.

The unit impulse may be regarded as an applied or resulting shock.
It may bevisualized asavery short duration pulse of unit area. Thismay
be expressed mathematically as

0+
f s(dt=1 (7.30)
wherer = 0~ denotes the time just beforet = 0 and ¢+ = O isthetime
just after r = 0. For this reason, it is customary to write 1 (denoting
unit area) beside the arrow that is used to symbolize the unit impulse
function, asin Fig. 7.27. The unit area is known as the strength of the
impulse function. When an impulse function has a strength other than
unity, the area of the impulse is equal to its strength. For example, an 105(t)
impulsefunction 105 () hasan areaof 10. Figure 7.28 showstheimpulse
functions 58 (+ + 2), 105 (¢), and —43(t — 3).
To illustrate how the impulse function affects other functions, let T

us evaluate the integral L

55(t + 2)

b
/ f(@®)s(t — o) dt (7.30) -45(t - 3)

wherea < tg < b. Since §(r — 1) = O except at t = 1o, theintegrandis  Figure 7.8  Three impulse functions.
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zero except at 9. Thus,

b b
/f(t)r?(t—to)dt=f fto)s(t — to) dt

b
= f(to)/ o(t — to) dt = f(to)
or ‘

b
/ F@)s(t — o) dt = f(10) (7.32)

This shows that when afunction isintegrated with the impulse function,
we obtain the value of the function at the point where the impul se occurs.
This is a highly useful property of the impulse function known as the
sampling or sifting property. The special case of Eq. (7.31) isfor 1o = 0.
Then Eq. (7.32) becomes

r(t) o*
F@s@)dr = f(0) (7.33)
o
1f---------, ‘ Integrating the unit step function u(¢) resultsin the unit ramp func-
‘ tion r(r); we write
t
r(t) =/ u(t)dt = tu(t) (7.34)
0 1 t' or o
Figure 729 The unit ramp 0, r<0
function. r(t) = f 1>0 (7.35)

r(t—ty)
1

The unit ramp function is zero for negative values of t and has a unit slope for
positive values of t.

Figure 7.29 showsthe unit ramp function. Ingeneral, arampisafunction
that changes at a constant rate.

0t ot 1t

The unit ramp function may be delayed or advanced as shown in
@ Fig. 7.30. For the delayed unit ramp function,
r(t+t,) |0, t <t
r(t —to) = {t o, t>1 (7.36)

and for the advanced unit ramp function,

0 t<—tg

’ 7.3
t—1ty, t=—1 (7.37)

V(t+to)={

We should keep in mind that the three singularity functions (im-
pulse, step, and ramp) are related by differentiation as

_ du(r) _dr(@®)
t Sy =— un == (7.38)
(0) or by integration as
Figure 730 The unit ramp _ ' _ '
fugncﬁon: @) ddmen by 1 u(t) = /_ma(r)dz, r(t) = /_oou(t)a’t (7.39)

(b) advanced by rg.
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Although there are many more singularity functions, we are only inter-
ested in these three (the impul se function, the unit step function, and the
ramp function) at this point.

£ X AP LE NI

Expressthe voltage pulsein Fig. 7.31 in terms of the unit step. Calculate
its derivative and sketch it.

Solution:

The type of pulsein Fig. 7.31 is called the gate function. It may be re-

garded as a step function that switches on at one value of 7 and switches Gate functions are used along with switches to
off at another value of . The gate function shown in Fig. 7.31 switches pass or block another signal.

onatt = 2 sand switches off at t = 5s. It consists of the sum of two

unit step functionsas shown in Fig. 7.32(a). From thefigure, it isevident V()4
that
10 |
v(t) = 10u(t — 2) — 10u(t — 5) = 10[u(t — 2) — u(t — 5)]
Taking the derivative of this gives
dv ! ! I >
— =10[6(t —2) — &(t = 9)] o 1 2 3 4 5 t

dt

whichisshownin Fig. 7.32(b). We can obtain Fig. 7.32(b) directly from  Figure 73| For Example 7.6.
Fig. 7.31 by simply observing that there is a sudden increase by 10 V at

t = 2sleadingto 105(r — 2). Att = 5, thereis a sudden decrease by

10V leadingto —10V §(r — 5).

10u(t - 2) ~10u(t - 5) 4

10 — 10

+

Ry
N -
w
»F
[¢)]
—

(€Y
dv

(b)

Figure 732 (a) Decomposition of the pulse in Fig. 7.31, (b) derivative of the pulse in Fig. 7.31.
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PRACTICE PROBLEM NI

Express the current pulse in Fig. 7.33 in terms of the unit step. Find its
integral and sketch it.

Answer: 10[u(t) —2u(t —2)+u(t —4)], 10[r (t) — 2r (t —2) +r(t — B)].

See Fig. 7.34.
i Jidt
10 20
° 2 4 1t
: i

i Figure 7.34  Integral of i(¢) in Fig. 7.33.
Figure 7.33 For Practice Prob. 7.6.

i p L Bl

V(D) Express the sawtooth function shown in Fig. 7.35 in terms of singularity
functions.
10 Solution:

Therearethree ways of solving thisproblem. Thefirst method isby mere
observation of the given function, while the other methods involve some
graphical manipulations of the function.

0 5 i’ METHOD Ml By looking at the sketch of v(r) in Fig. 7.35, it is not

hard to notice that the given function v(z) isacombination of singularity

Figure 735 For Example7.7. functions. So we let
v(t) = va(f) +va(t) + - - (7.7.0)
The function vy () isthe ramp function of slope 5, shown in Fig. 7.36(a);
that is,
v1(t) = 5r (1) (7.7.2)
vy(t) Vi +Vsy
10 10

<

N
Py
K=
NG

@ (0

(b)

Figure 7.36  Partial decomposition of v(r) in Fig. 7.35.
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Since v1(¢) goes to infinity, we need another function at ¢+ = 2 sin order
to get v(r). We let this function be v,, which is aramp function of slope
—b5, asshownin Fig. 7.36(b); that is,

vo(t) = =5r(t — 2) (7.7.3)

Adding v1 and v, gives us the signal in Fig. 7.36(c). Obviously, thisis
not the same as v(¢) in Fig. 7.35. But the difference is simply a constant
10 unitsfor ¢ > 2 s. By adding athird signal vs, where

va = —10u(t — 2) (7.7.4)

we get v(t), as shown in Fig. 7.37. Substituting Egs. (7.7.2) through
(7.7.4) into Eq. (7.7.1) gives

v(t) =5r(@) —5r(t —2) — 10u(t — 2)

Vi +Vsy v(t)
10 + o -
0 >
0 2 t 2 t 0 2 t
10 L

@ (b) ©

Figure 7.37  Complete decomposition of v(¢) in Fig. 7.35.

METHOD [} A closeobservation of Fig. 7.35 revealsthat v(¢) isamul-
tiplication of two functions; aramp function and a gate function. Thus,

v(t) = 5t[u(r) —u(r — 2)]
= 5tu(t) — 5tu(t — 2)
=5r() —5(t — 24 u(t — 2)
=5r(t) -5t —2u(t —2) — 10u(t — 2)
=5r(t) —5r(t —2) — 10u(t — 2)

the same as before.

METHOD B} This method is similar to Method 2. We observe from
Fig. 7.35 that v(r) isamultiplication of aramp function and a unit step
function, as shown in Fig. 7.38. Thus,

v(t) =5r(u(—t + 2)

If we replace u(—t) by 1 — u(r), then we can replace u(—t + 2) by
1—u(t —2). Hence,

v(@) =5 @)[1—ui — 2)]

which can be simplified asin Method 2 to get the same resullt.
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5r(t) 4
0= f u(-t+2)
X 1

0 2 t 0 2 t

Figure 7.38  Decomposition of () in Fig. 7.35.

PRACTICE PROBLEM NI

i(t) (A) Refer to Fig. 7.39. Expressi(¢) interms of singularity functions.

2\ Answer: 2u(t) —2r(t) +4r(t — 2) — 2r(t — 3).
0 1\2/3 t(9
_2_

Figure 739 For Practice Prob. 7.7.

e L B

Given the signal
3, t<0
g(t) =1 -2, O<r<l1
2t—4, t>1

express g(¢) interms of step and ramp functions.
Solution:

The signal g(z) may be regarded as the sum of three functions specified
within thethreeintervalsr < 0,0 <7 <1, andt > 1.

Fort < 0O, g(¢) may be regarded as 3 multiplied by u(—¢), where
u(—t) =1fort < 0andOfors > 0. Withinthetimeinterval 0 < ¢ < 1,
the function may be considered as —2 multiplied by a gated function
[u(t) — u(t — 1)]. Fort > 1, the function may be regarded as 2t — 4
multiplied by the unit step function u(t — 1). Thus,

g(t) =3u(=1) — 2fu@®) —u@ — D] + (2t —Hu - 1)
=3u(—t) —2u(t) + 2t —4+4+2u — 1)
= Bu(—1) — 2u(t) + 2(t — Du(t — 1)
=3u(—t)—2u(t) +2r(t — 1)

One may avoid the trouble of using u(—) by replacing it with 1 — u(z).
Then
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g)y=3[1—u@®)] -2u@®)+2rt—1)=3—-5u@)+2r(t — 1)
Alternatively, we may plot g(¢) and apply Method 1 from Example 7.7.

PRACTICE PROBLEMNEE

If

t<0

O<t<?2
—t, 2<t<6
, t>06

h(t) =

oo~ O

express i (t) in terms of the singularity functions.
Answer: 4du(t) —r(t —2) +r(t —6).

M7.9

Evaluate the following integrals involving the impul se function:
10
f (% + 4 —2)8(t — 2)dt
0

/ (8(t — L)e " cost + 8(t + Ve " sint)dt
Solution:
For thefirst integral, we apply the sifting property in Eq. (7.32).

(P +4 -8t —2)dt = (t°+4t —2),.o=4+8—-2=10
0

Similarly, for the second integral,

o0
/ (8@ — Le " cost + 8(t + L)e " sint)dt
—00

=e ' cost|j—1 +e " sint|—_1

=e tcosl+ elsin(—1) = 0.1988 — 2.2873 = —2.0885

PRACTICE PROBLEM IR

Evaluate the following integrals.

00 10
/ (2 + 52 + 10)8(r + 3) dt, / 8(t — ) cos3t dt
—00 0
Answer: 28, —1.

1.5 STEP RESPONSE OF AN RC CIRCUIT

When the dc source of an RC circuit is suddenly applied, the voltage
or current source can be modeled as a step function, and the response is
known as a step response.

Electronic Testing Tutorials
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<
O}—,
< +

@

Vu(t) t) C=—vV

(b)

Figure 740 An RC circuit with
voltage step input.

PART | DC Circuits

The step response of a circuit is its behavior when the excitation is the step
function, which may be a voltage or a current source.

Thestep responseistheresponse of thecircuit dueto asudden application
of adc voltage or current source.

Consider the RC circuitinFig. 7.40(a) which can bereplaced by the
circuit in Fig. 7.40(b), where V; is a constant, dc voltage source. Again,
we select the capacitor voltage as the circuit response to be determined.
We assume an initial voltage V, on the capacitor, although this is not
necessary for the step response. Since the voltage of a capacitor cannot
change instantaneously,

v(07) =v(0") =V (7.40)

where v(0™) isthe voltage across the capacitor just before switching and
v(0™) isitsvoltageimmediately after switching. Applying KCL, wehave

dv v — Vu(t) _

o 0
dt R
or
SR 7.41
dt  RC _ RC" (7.41)

where v isthevoltage acrossthe capacitor. For¢t > 0, EQ. (7.41) becomes

dv+v_VS 242
dt  RC  RC (7.42)

Rearranging terms gives

dv = Vs
dt  RC
or
dv dt
=—— (7.43)
v—V RC
Integrating both sides and introducing the initial conditions,
v(t) t
t
In(v — Vy) = ——
Vo RC 0
In(v(@) — V) — In(Vo — Vy) ! +0
v - Vs) ™ —Vs) = T+
0 RC
or
v—V; t
In =—— (7.44)
Vo— Vi RC
Taking the exponential of both sides
-V
2= SRLE T =RC
Vo— Vs
v=Vi= Vo= Ve "
or
v(t) = Vi + (Vo — Ve /T, t>0 (7.45)
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Thus,

Vo, t<0

v = {w + (Vo= Ve '/, 150 749

This is known as the complete response of the RC circuit to a sudden
application of a dc voltage source, assuming the capacitor is initialy
charged. Thereason for theterm “complete” will become evident alittle
later. Assuming that V; > Vq, aplot of v(z) isshownin Fig. 7.41.

If we assumethat the capacitor isuncharged initially, weset Vo = 0
in Eq. (7.46) so that

0, t<0
v(t) = {Vs(l _ eft/r)’ t>0 (7.47)
which can be written aternatively as
v(t) = Vil — e Mu(r) (7.48)

Thisis the complete step response of the RC circuit when the capacitor
isinitially uncharged. The current through the capacitor is obtained from
Eq. (7.47) usingi(t) = C dv/dt. We get

d C
in=c® =Zvye!', 1=RC, t>0
dt T
or
Vi
i(r) = Ee_l/fu(t) (7.49)

Figure 7.42 showsthe plotsof capacitor voltage v (#) and capacitor current
i(1).

Rather than going through the derivations above, there is a sys-
tematic approach—or rather, a short-cut method—for finding the step
response of an RC or RL circuit. Let usreexamine Eq. (7.45), whichis
more general than Eq. (7.48). Itisevident that v(z) hastwo components.
Thus, we may write

V="Vf+ Uy (7.50)
where
vy =V (7.51)
and
va = (Vo — Ve /" (752)

We know that v, is the natural response of the circuit, as discussed in
Section 7.2. Since this part of the response will decay to amost zero
after five time constants, it isalso called the transient response because it
isatemporary response that will die out with time. Now, v isknown as
the forced response becauseit is produced by the circuit when an external
“force” is applied (a voltage source in this case). It represents what the
circuit is forced to do by the input excitation. It is aso known as the
steady-state response, because it remains along time after the circuit is
excited.

259

v(t) 4

0 t

Figure 74| Response of an
RC circuit with initially charged
capacitor.

v(t) 4
\/S ,,,,,,,,,,,,,,,,,,,
0 t
@)
i(t)
Vs |
R
0 t

(b)

Figure 742 Step response of an
RC circuit with initially uncharged
capacitor: (a) voltage response,

(b) current response.
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The natural response or transient response is the circuit’s temporary response
that will die out with time.

The forced response or steady-state response is the behavior of the circuit
a long time after an external excitation is applied.

The complete response of the circuit is the sum of the natural response

This is the same as saying that the complete re- and the forced response. Therefore, we may write Eq. (7.45) as
sponse is the sum of the transient response and
the steady-state response. v(r) = v(00) + [V(0) — v(co)]e /" (7.53)

wherev(0) istheinitial voltageat t = 0" and v(oc0) isthefinal or steady-
statevalue. Thus, to find the step response of an RC circuit requiresthree
things:

1. Theinitia capacitor voltage v(0).
2. Thefinal capacitor voltage v(co).
3. Thetime constant t.

Once we know x(0), x(00), and 7, almost all the
circuit problems in this chapter can be solved
using the formula We obtain item 1 from the given circuit for 7 < 0 and items 2 and 3 from
x(t) = x(00)+ [x(0) - x(00)] the circuit for r > 0. Once these items are determined, we obtain the
response using Eq. (7.53). Thistechnique equally appliesto RL circuits,
as we shall seein the next section.

Note that if the switch changes position at timet = ¢ instead of at

t = 0, thereis atime delay in the response so that Eq. (7.53) becomes

v(1) = v(00) + [v(fg) — v(00)]e /T (7.54)

where v(to) istheinitial valueat 1 = 7 . Keepin mind that Eq. (7.53) or
(7.54) applies only to step responses, that is, when the input excitation is
constant.

The switchin Fig. 7.43 has been in position A for along time. Atz = 0,
the switch movesto B. Determine v(¢) for + > 0 and calculate its value
ar=1sand4s.

3kQ A B 4kQ
t=0
+

il

Figure 743 For Example 7.10.

24V 5kQ 0.5mF 30V

A
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Solution:

For r < 0, the switchisat position A. Since v isthe same as the voltage
acrossthe 5-kQ2 resistor, the voltage acrossthe capacitor just beforer = 0
is obtained by voltage division as

- 5
v(0) = —— @4 =15V

Using the fact that the capacitor voltage cannot change instantaneously,
v(0) =v(0) =v(0") =15V

Fort > 0, theswitchisinposition B. The Thevenin resistance connected
to the capacitor is R, = 4 k2, and the time constant is

T=RmC=4x10>x05x 103 =2s

Since the capacitor actslike an open circuit to dc at steady state, v(co) =
30 V. Thus,

V(1) = v(00) + [v(0) — v(oo)]e™"/
=30+ (15— 30)e /2 = (30 — 15¢ 0% V
Atr =1,
v(1) = 30 — 15¢7%° = 20.902 V
Attr =4,
v(4) = 30— 15¢72 = 27.97V

PRACTICE PROBLEMNEEK

Findv(z) forr > OinthecircuitinFig. 7.44. Assumethe switch hasbeen
open for along timeandisclosed at ¢+ = 0. Calculate v(¢) at + = 0.5.

Answer: —5415¢% V,0.5182 V.

10V 50V

Figure 744 For Practice Prob. 7.10.

M7.||

In Fig. 7.45, the switch has been closed for along time and is opened at
t = 0. Find i and v for al time.

—_
1
o

100 _,

P

30u(t) V 200

< +
f
I
N
m

@ wv

Figure 745 For Example 7.11.
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0Q I,
.
200 v 10V
@
10Q _',
+
30V 20Q v 3 F

(b)

Figure 746 Solution of Example 7.11:
(@) fort <0, (b) fors > 0.

PART | DC Circuits

Solution:

Theresistor current i can be discontinuous at ¢ = 0, while the capacitor
voltage v cannot. Hence, it is always better to find v and then obtain i
fromv.

By definition of the unit step function,

0, t<0O
30“(”2{30 >0

For t < 0, the switch is closed and 30u(r) = 0, so that the 30u(r)
voltage source is replaced by a short circuit and should be regarded as
contributing nothing to v. Since the switch has been closed for a long
time, the capacitor voltage has reached steady state and the capacitor acts
likean opencircuit. Hence, thecircuit becomesthat showninFig. 7.46(a)
for t < 0. From thiscircuit we obtain
v=10V, i=-—=-1A
10
Since the capacitor voltage cannot change instantaneously,
v(0) =v(0) =10V

For ¢+ > 0, the switch is opened and the 10-V voltage source is
disconnected from the circuit. The 30u(¢) voltage source is now opera-
tive, so the circuit becomes that shown in Fig. 7.46(b). After along time,
the circuit reaches steady state and the capacitor acts like an open circuit
again. We obtain v(co) by using voltage division, writing

v(00) = (B0) =20V

20+ 10
The Thevenin resistance at the capacitor terminalsis

10x20 20
==Q

Rmn =10 20= 3

and the time constant is

T = RmC =

w|y

Thus,
v(t) = v(00) + [v(0) — v(c0)]e "/
= 20+ (10 — 20)e~®/9" = (20 — 1006 vV

To obtain i, we notice from Fig. 7.46(b) that i isthe sum of the currents
through the 20-$2 resistor and the capacitor; that is,

=1— 0.5 4 0.25(—0.6)(—10)e %8 = (14706 A

Notice from Fig. 7.46(b) that v + 10i = 30 is sdtisfied, as expected.
Hence,

_J10v, t<0
U= 1(20-10e08)V, >0
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. |-1A, t<0
"TlA+e %A, >0

Notice that the capacitor voltage is continuous while the resistor current
is not.

PRACTICE PROBLEMNSEN

Theswitchin Fig. 7.47isclosed at + = 0. Find i (¢) and v(¢) for all time.
Notethat u(—t) = 1forr < OandOfor¢ > 0. Also, u(—1) = 1 — u(t).

; t=0
0 X
N ’

20u(—t) V V==02F 10Q 3A

Figure 747 For Practice Prob. 7.11.

o _ 0’ t<0

Answer: i(t) = {_2(1+el.5t) A, >0
_[20v, r<0

PTl0A+e IV, >0

Electronic Testing Tutorials

1.6 STEP RESPONSE OF AN RL CIRCUIT

Consider the RL circuit in Fig. 7.48(a), which may be replaced by the R
circuitin Fig. 7.48(b). Again, our goal isto find the inductor current i as .
the circuit response. Rather than apply Kirchhoff’s laws, we will use the t=0 * I
simple technique in Egs. (7.50) through (7.53). Let the response be the v, L3
sum of the natural current and the forced current, -

i=iy+if (755)

We know that the natural response is always a decaying exponential, that
is, R

i, = Ae T, T = L (7.56) "
_ _ R v @ L g V()

where A is aconstant to be determined. -
The forced response is the value of the current a long time after
the switch in Fig. 7.48(a) is closed. We know that the natural response
essentially dies out after five time constants. At that time, the inductor (0)
becomesashort circuit, and thevoltage acrossitiszero. Theentiresource

voltage V; appears across R. Thus, the forced responseis

Figure 748 An RL circuit with a
step input voltage.

.Y
ly = E (7.57)
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Substituting Egs. (7.56) and (7.57) into Eq. (7.55) gives

e Ve

i = Ae + R (7.58)
We now determine the constant A from the initial value of i. Let Iy be
theinitial current through the inductor, which may come from a source
other than V;. Since the current through the inductor cannot change
instantaneously,

i(0M) =i(07) =1 (7.59)
Thusat = 0, EQ. (7.58) becomes
Ip=A+ E
R
From this, we obtain A as
V,

A=1Iy— —
°T R

Substituting for A in Eq. (7.58), we get
Vs Vi _
i(t):E—I—(IQ—E)e t/e (7.60)

it
04 This is the complete response of the RL circuit. It isillustrated in Fig.
lo 7.49. Theresponsein Eq. (7.60) may be written as

i(1) = i(00) + [i(0) — i(c0)]e /" (7.61)

Tle<

wherei (0) and i (co) aretheinitial and final valuesof i. Thus, to find the
step response of an RL circuit requires three things:

0 t
1. Theinitia inductor current i (0) at r = O*.

Figure 749 Total response 2. Thefina inductor current i (co).
of the RL circuit with initial

inductor current Io. 3. Thetime constant 7.

We obtain item 1 from the given circuit for r < 0 anditems 2 and 3 from
the circuit for + > 0. Once these items are determined, we obtain the
response using Eq. (7.61). Keep in mind that this technique applies only
for step responses.

Again, if the switching takes place at time r = ry instead of r = 0,
Eqg. (7.61) becomes

i(1) = i(00) + [i(fo) — i(c0)]e” ¢ ~0)/T (7.62)
If Ip = 0, then
0, t<0
it) = E(l— 1y, 120 (7.633)
R ,
or
. Vs _
i(1) = E(l — e () (7.63b)

Thisisthestepresponseof the R L circuit. Thevoltageacrosstheinductor
is obtained from Eq. (7.63) using v = L di/dt. We get
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di L L
v(t):L—les—e_’/r, t=—, t>0
dt TR R
or
v(t) = Vie "u(t) (7.64)
Figure 7.50 shows the step responsesin Egs. (7.63) and (7.64).

i(t) A v(t) A
A

R

@ (b)

Figure 7.50 Step responses of an RL circuit with no initial
inductor current: (a) current response, (b) voltage response.

£ x A 1P L ¢ A

|
Findi(z) inthecircuitin Fig. 7.51 for r > 0. Assume that the switch has
been closed for along time.
Solution;
When ¢ < 0, the 3-Q resistor is short-circuited, and the inductor acts

like a short circuit. The current through the inductor at ¢+ = 0~ (i.e., just
beforer = Q) is

10
i(0) =7 =5A

Figure 751 For Example 7.12.

Since the inductor current cannot change instantaneoudly,
i(0)=i(0H) =i(0)=5A

Whent > 0, the switchisopen. The 2-Q and 3-Q2 resistors are in series,
so that

10
2+3°
The Thevenin resistance across the inductor terminalsis

Rmm=2+3=5Q

i(00) = 2A

For the time constant,

Thus,
i(t) =i(00) 4 [i(0) —i(c0)]e /"
=24+ (5-=2e B =243 A, t>0
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Check: InFig. 7.51, for ¢t > 0, KVL must be satisfied; that is,
di
10=5+L—
i+ s
. di —15¢ 1 —15¢
5 + LE =[10+ 15 ] + §(3)(—15)e =10

This confirms the result.

PRACTICE PROBLEMNEEN

i
15H
A11A

5Q >zt=0 10Q

Figure 7.52  For Practice Prob. 7.12.

3A

TheswitchinFig. 7.52 hasbeen closed for along time. It opensat = 0.
Findi(z) forr > 0.

Answer: (2+e¢ %) At >0.

M7.|3

Atr =0, switch 1in Fig. 7.53 is closed, and switch 2 is closed 4 slater.
Findi(z) fort > 0. Calculatei fort =2sandr =5s.

Figure 7.53  For Example 7.13.

Solution:

We need to consider thethreetimeintervalst <0, 0 <t <4,andt > 4
separately. For ¢ < 0, switches S; and S, are open so that i = 0. Since
the inductor current cannot change instantly,

i(0) =i(0)=i(0") =0

For 0 <t < 4, S; isclosed so that the 4-Q and 6-Q2 resistors arein
series. Hence, assuming for now that S; is closed forever,

40
i(00) = —— =4A, Rp=4+6=10Q
i(00) 16 Th +

L 5 1S
T=——=— = —
Rm 10 2
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Thus,

i(t) = i(00) +[i(0) —i(c0)]e™"/
=4+ 0—-MHe 2 =4(1—e2)A, 0<t<4
For ¢t > 4, S, is closed; the 10-V voltage source is connected, and
the circuit changes. This sudden change does not affect the inductor

current because the current cannot change abruptly. Thus, the initial
currentis

i@ =id)=41-e®~4A
To find i (00), let v be the voltage at node P in Fig. 7.53. Using KCL,

40—v+10—v_v _180V
z 2 "6 "=
v 30
j =_—=_—=2727TA
() =5=11
The Thevenin resistance at the inductor terminalsis
4x2 22
Rm=42+6=———4+6=—2C
Th |2+ 3 + 3
and
L 5 15S
T === = —
Rt % 22
Hence,

i(1) = i(00) + [i(4) —i(c0)]e —¥/7, t>4

We need (¢ — 4) in the exponential because of the time delay. Thus,

i(t) = 2727 + (4 — 2.727)e~ =9/ T = %’
= 2.727 + 1.273¢ 1466704 t>4
Putting all this together,
0, t<0
i(t) = {4(1—e?%), 0<t<4
2.727 + 1.273¢= 1466704 =t > 4
Atr =2,
i(2 =41—e* =393A
Attt =5,

i(5) = 2.727 + 1.273¢ 1467 = 3.02 A

PRACTICE PROBLEMNEEE

267

Switch S; inFig. 7.54 isclosed at + = 0, and switch S, isclosed at 1 =
2s. Calculatei(r) for all . Findi(1) and i (3).
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t=2
S 10Q
t=0 20Q li(t)
6A Q) 15Q 5H

Figure 7.54  For Practice Prob. 7.13,

PART | DC Circuits
Answer:
0, t <0
i(1)=1{2(1—e%), O<t<?2
36—16e%"2 52

i(1) =1.9997 A,i(3) = 3.589A.

@

Network Analysis

1.1 FIRST-ORDER OP AMP CIRCUITS

An op amp circuit containing a storage element will exhibit first-order
behavior. Differentiators and integrators treated in Section 6.6 are exam-
plesof first-order op amp circuits. Again, for practical reasons, inductors
are hardly ever used in op amp circuits; therefore, the op amp circuitswe
consider here are of the RC type.

As usual, we analyze op amp circuits using nodal analysis. Some-
times, the Thevenin equivalent circuit is used to reduce the op amp circuit
to onethat we can easily handle. The following three examplesillustrate
the concepts. Thefirst one dealswith a source-free op amp circuit, while
the other two involve step responses. The three examples have been care-
fully selected to cover al possible R C typesof opamp circuits, depending
on the location of the capacitor with respect to the op amp; that is, the
capacitor can be located in the input, the output, or the feedback loop.

Ry
C
e
+v - 3 + ;
Ry v, 20kQ
o
@
Figure 7.55  For Example 7.14.

For theopampcircuitinFig. 7.55(a) , find v, for ¢t > 0, giventhat v(0) =
3V.Let Ry = 80K, Ry = 20k, and C = 5 uF.

80 kQ

|
AN

+ 3V -

(b)
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Solution:
This problem can be solved in two ways:

METHOD i} Consider the circuit in Fig. 7.55(a). Let us derive the

appropriate differential equation using nodal analysis. If v; isthevoltage
at node 1, at that node, KCL gives
M = Cd—v (7.14.2)
R, dt
Since nodes 2 and 3 must be at the same potential, the potential at node
2iszero. Thus, v; — 0 = v or v; = v and Eq. (7.14.1) becomes
dv v
ar TCR T
Thisissimilar to Eq. (7.4b) so that the solution is obtained the same way
asin Section 7.2, i.e.,

(1) = Voe ', T=RC (7.14.3)

(7.14.2)

where Vj is the initial voltage across the capacitor. But v(0) = 3 = Vg
andt = 20 x 108 x 5 x 107% = 0.1. Hence,

v(t) = 37 (7.14.4)
Applying KCL at node 2 gives
dv. 00—,
dt Rf
or
R, (7.145)
v, = — — 14.
I~ dt

Now we can find vg as
v, = —80 x 10° x 5 x 1078(—=30e71) = 1271 v, >0
METHOD P4 Let us now apply the short-cut method from Eq. (7.53).
We need to find v, (0%), v,(c0), and r. Sincev(0™) = v(07) = 3V, we
apply KCL at node 2 in the circuit of Fig. 7.55(b) to obtain
3 0— v,(0")
20,000 80,000

or v, (07) = 12V. Sincethecircuit issourcefree, v(co) = 0V. Tofind ,
we need the equivalent resistance Req across the capacitor terminals. If
we remove the capacitor and replaceit by a 1-A current source, we have
the circuit shown in Fig. 7.55(c). Applying KVL to theinput loop yields

20,0001) —v =0 —  v=20KkV

=0

Then
v
Req = - = 20kQ
“T
and T = RegC = 0.1. Thus,

Vo (1) = 0,(00) + [1,(0) — v, (00)]e /"
=04 (12 = 0)e 10 = 12,101 v/, t>0
as before.
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PRACTICE PROBLEMNEK

C For theopampcircuitinFig. 7.56, find v, forz > Oif v(0) = 4V. Assume
IS that Ry = 50k, Ry = 10k, and C = 10 uF.
v

TV Answer: —4e 2 V.t > 0.
- AAMA—
Ry
D>
R, v

Figure 7.56  For Practice Prob. 7.14.

Determine v(¢) and v, (¢) in the circuit of Fig. 7.57.

Solution:

This problem can be solved in two ways, just like the previous example.
However, we will apply only the second method. Since what we are
looking for is the step response, we can apply Eg. (7.53) and write

v(1) = v(00) + [v(0) — v(c0)]e /7, t>0 (7.15.1)

where we need only find the time constant , the initial value v(0), and
the fina value v(co). Notice that this applies strictly to the capacitor
~  voltage due a step input. Since no current enters the input terminals of
the op amp, the elements on the feedback loop of the op amp constitute
an RC circuit, with

Fisure 7.57  For Example 7.15.
g or Example T =RC =50x 10° x 107 = 0.05 (7.15.2)

For ¢ < 0, the switch is open and there is no voltage across the capacitor.
Hence, v(0) = 0. For ¢ > 0O, we obtain the voltage at node 1 by voltage
division as

20
20410
Since there is no storage element in the input loop, v, remains constant
for all r. At steady state, the capacitor acts like an open circuit so that the
op amp circuit is anoninverting amplifier. Thus,

3=2V (7.15.3)

U1

50
v,(00) = (l + E)) v1=35%x2=7V (7.15.4)
But
V1 — UV, =V (7.15.5)
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so that
v(o)=2—-7=-5V
Substituting z, v(0), and v(c0) into Eq. (7.15.1) gives
v(t) = —5+[0— (=5)]e ¥ =52 — 1)V, >0 (7.156)
From Egs. (7.15.3), (7.15.5), and (7.15.6), we obtain

Vo (1) = v1(t) —v(t) = 7 —5e 22V, t>0 (7157

PRACTICE PROBLEMEEEE

Find v(¢) and v,(¢) in the op amp circuit of Fig. 7.58. 100 kQ
Answer: 40(1 — ¢ %) mV, 40(¢~1% — 1) mV.
1uF
¥4
AN
10kQ  ~
y >—3
4mV Vo
o

Figure 7.58  For Practice Prob. 7.15.

M7.I6

Find the step response v, (¢) for ¢ > 0inthe op amp circuit of Fig. 7.59.
Letv; = 2u(t) V, Ry = 20 ke, Rf = 50k, R, = R; = 10 ke,
C=2uF

Solution:

Notice that the capacitor in Example 7.14 is located in the input loop,
while the capacitor in Example 7.15 is located in the feedback loop. In
this example, the capacitor islocated in the output of the op amp. Again,
we can solve this problem directly using nodal analysis. However, using
the Thevenin equivaent circuit may simplify the problem.

We temporarily remove the capacitor and find the Thevenin equiv-
dent at itsterminals. To obtain Vy,, consider the circuit in Fig. 7.60(a). Figre 759 For Example 7.16.
Since the circuit is an inverting amplifier,
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R
A o
vi R, Rs Rrn
o
7 @ (b)

Figure 760  Obtaini ng Vn and Ry, across the capacitor in Fig. 7.59.

To obtain Ry, consider the circuit in Fig. 7.60(b), where R, isthe
output resistance of the op amp. Since we are assuming an ideal op amp,

R, =0, and
R3R3
Rmm=Ry || Rz3 =
Th 2|l R3 Ryt Rs
Substituting the given numerical values,
Rs Ry 1050
Vih=— —v; = ————2u(t) = —2.5u(t
N Tt R R T 20200 u(t)
R>R
Rih= — =2 —5kQ
R>+ R3

The Thevenin eguivalent circuit is shown in Fig. 7.61, which is similar

5kQ
W to Fig. 7.40. Hence, the solution is similar to that in Eq. (7.48); that is,
+) J 2 uF V(1) = —2.5(1 — ¢ /") u(r)

—-2.5u(t)

wherer = RmpC = 5x 103 x 2 x 1078 = 0.01. Thus, the step response
fort > 0is

Figure 761 Theveninequivalentcircuit of _100
the circuit in Fig. 7.59. Vo(1) = 2.5(e™ 7 =D u() vV

PRACTICE PROBLEMESE

Obtain the step response v, (¢) for the circuit of Fig. 7.62. Let v; = 2u(t)
V, R]_: ZOkQ,Rf =40|(Q, R2 = R3= 10k$2, C = 2/,LF

Answer: 6(1— e %)y () V.

Figure 7.62  For Practice Prob. 7.16.
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1.8 TRANSIENT ANALYSIS WITH PSPICE

Aswe discussed in Section 7.5, the transient response is the tem-

porary response of the circuit that soon disappears. PSpice can be used PSpice uses “transient’ to mean “function of
to obtain the transient response of a circuit with storage elements. Sec- time”  Therefore, the transient response in
tion D.4 in Appendix D provides a review of transient analysis using PSpice may not actually die out as expected.

PSpicefor Windows. It isrecommended that you read Section D.4 before
continuing with this section.
If necessary, dc PSpice analysisisfirst carried out to determine the
initial conditions. Then the initial conditions are used in the transient @
PSpice analysis to obtain the transient responses. It is recommended
but not necessary that during this dc analysis, al capacitors should be
open-circuited while all inductors should be short-circuited.

M7.|7

Use PSpice to find the response i (¢) for # > 0 in the circuit of Fig. 7.63. —~ 4Q
Solution: t:Vo ‘i(t)
Solving this problem by hand givesi (0) = 0,i(c0) = 2A,Rth =6, =
3/6 =055, sothat A 20 31
i(1) = i(00) + [i(0) —i(00)]e™* = 2(1 — e~ %), >0
To use PSpice, we first draw the schematic as shown in Fig. 7.64. Foure 763 For Example 7.17
We recall from Appendix D that the part name for a close switch is gure . ple f.2 0
Sw_tclose. We do not need to specify the initial condition of the in-
ductor because PSpice will determine that from the circuit. By select- tdose =0 o,
ing Analysig/Setup/Transient, we set Print Step to 25 ms and Final =17§2
Sep to 5t = 2.5 s. After saving the circuit, we simulate by selecting | DC UL 4
AnalysigSimulate. In the Probe menu, we select Trace/Add and 6 A <> I~ § 5 1153 H
display —I(L 1) asthe current through theinductor. Figure 7.65 showsthe T

plot of i (¢), which agrees with that obtained by hand calculation.

Figure 7.64  The schematic of the circuit in
Fig. 7.63.

o-1(L1)

Ti me

Figure 7.65  For Example 7.17; the response
of thecircuit in Fig. 7.63.
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Note that the negative sign on 1(L1) is needed because the current
entersthrough the upper terminal of theinductor, which happensto bethe
negative terminal after one counterclockwise rotation. A way to avoid
the negative sign isto ensure that current enters pin 1 of theinductor. To
obtain thisdesired direction of positive current flow, theinitially horizon-
tal inductor symbol should be rotated counterclockwise 270° and placed
in the desired location.

PRACTICE PROBLEMMNESN

t=0 For the circuit in Fig. 7.66, use PSpiceto find v(¢) for ¢ > 0.

Answer: v(#) =8(1—e")V,t > 0. Theresponseis similar in shape
+ tothatinFig. 7.65.
12V 60Q 05F == v(t)

3Q

Figure 7.66  For Practice Prob. 7.17.

m7.|8

In thecircuit in Fig. 7.67, determine the response v (z).

= t=0
2o '3 V0 - =X
c} | o)
01F

30V 6§2§ GQ§ 30 <>4A

Figure 7.67  For Example 7.18.

Solution:
There are two ways of solving this problem using PSpice.

METHOD | oneway istofirst do the dc PSpice analysisto determine

the initial capacitor voltage. The schematic of the revelant circuit isin
Fig. 7.68(a). Two pseudocomponent VIEWPOINTSs are inserted to mea-
sure the voltages at nodes 1 and 2. When the circuit is simulated, we
obtain the displayed valuesin Fig. 7.68(a) asV; = 0V and V, = 8 V.
Thustheinitial capacitor voltageisv(0) = V1 — Vo, = —8V. The PSpice
transient analysisusesthisvalue along with the schematicin Fig. 7.68(b).
Once the circuit in Fig. 7.68(b) is drawn, we insert the capacitor initial
voltage as IC = —8. We select Analysig/Setup/Transient and set Print
Septo0.1sand Final Septodr = 4s. After saving thecircuit, we select
AnalysisSimulate to simulate the circuit. In the Probe menu, we select
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Trace/Add and display V(R2:2) - V(R3:2) or V(C1:1) - V(C1:2) asthe
capacitor voltage v(r). Theplot of v(r) isshowninFig. 7.69. Thisagrees
with the result obtained by hand calculation, v(r) = 10 — 18¢~".

0.0000 Cl 8.0000 10 V.
L |
0.1 ;
5 Vi
rRZ6 RBZ6 R4Z3 |1C’> 4A ;
oV!
VO H
@ "5V

R I

I 10 V

12 0.1 ' s

O V(R2:2) - V(R3:2)
30 VC: Vi R2§6 R3Z6 Ti e
b
Figure 769 Response v(t) for the circuit in Fig. 7.67.
)

(b)

Figure 7.68  (a) Schematic for dc analysis to get v(0),
(b) schematic for transient analysis used in getting the
response v(z).

METHOD P We can simulate the circuit in Fig. 7.67 directly, since

PSpice can handle the open and close switches and determine the initial
conditions automatically. Using this approach, the schematic is drawn
as shown in Fig. 7.70. After drawing the circuit, we select Analysis/
Setup/Transient and set Print Sep to 0.1 sand Final Septo 4t = 4 s.
We savethecircuit, then select Analysis/Simulateto simulatethecircuit.
In the Probe menu, we select Trace/Add and display V(R2:2) - V(R3:2)
as the capacitor voltage v(z). The plot of v(z) isthe same as that shown

inFig. 7.69.
Ry tClose =0 c1 tOpen = 0
1K 2 " 1% 2
I M L
uL
12 y 01 w2
V1
30 V RZ6 R3Z6 R4Z3 |1<>4A
Yo

Figure 770 For Example 7.18.
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PRACTICE PROBLEM N

PART | DC Circuits

| 8

< 50
i o

12A D §3OQ §6Q 2H

O "™

Figure 7.71  For Practice Prob. 7.18.

The switch in Fig. 7.71 was open for along time but closed at + = 0. If
i(0) =10A,findi(z) for + > 0 by hand and also by PSpice.

Answer: i(t) = 6+ 4e~% A. The plot of i(r) obtained by PSpice
analysisisshownin Fig. 7.72.

0 s 0.5s 1.0 s
o 1(L1)
Ti me

Figure 7.72  For Practice Prob. 7.18.

7.9 APPLICATIONS

The various devices in which RC and RL circuits find applications in-
clude filtering in dc power supplies, smoothing circuits in digital com-
munications, differentiators, integrators, delay circuits, and relay circuits.
Some of these applications take advantage of the short or long time con-
stantsof the RC or RL circuits. Wewill consider four simpleapplications
here. Thefirst two are RC circuits, the last two are RL circuits.

7.9.1 Delay Circuits

An RC circuit can be used to provide various time delays. Figure 7.73
shows such a circuit. It basically consists of an RC circuit with the
capacitor connected in parallel with aneon lamp. The voltage source can
provide enough voltage to fire the lamp. When the switch is closed, the
capacitor voltage increases gradually toward 110 V at arate determined

R, S Rz(
+ 70V
110V T c

— 0.1 uF Neon
lamp

Figure 773 An RC delay circuiit.
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by the circuit’stime constant, (R + R2)C. Thelamp will act asan open
circuit and not emit light until the voltage across it exceeds a particular
level, say 70 V. When the voltage level is reached, the lamp fires (goes
on), and the capacitor dischargesthrough it. Dueto the low resistance of
the lamp when on, the capacitor voltage drops fast and the lamp turns off.
The lamp acts again as an open circuit and the capacitor recharges. By
adjusting R», we can introduce either short or long time delays into the
circuit and make the lamp fire, recharge, and fire repeatedly every time
constant T = (R1 + R»)C, because it takes a time period t to get the
capacitor voltage high enough to fire or low enough to turn off.

The warning blinkers commonly found on road construction sites
are one example of the usefulness of such an RC delay circuit.

M7.|9

Consider thecircuitinFig. 7.73, and assumethat R, = 1.5MQ,0 < R <
2.5 MQ. (a) Calculate the extreme limits of the time constant of the cir-
cuit. (b) How long doesit takefor thelamp to glow for thefirst time after
the switchis closed? Let R, assumeits largest value.

Solution:
(a) Thesmallest valuefor R, is0 €2, and the corresponding time constant
for the circuitis

T=(Ri+ R)C =(15x10°40) x0.1x 106 =0.15s

Thelargest valuefor R, is2.5 M2, and the corresponding time constant
for thecircuitis

T=(R1+R)C=(15+25x10°x01x10°%=04s

Thus, by proper circuit design, the time constant can be adjusted to in-
troduce a proper time delay in the circuit.

(b) Assuming that the capacitor isinitially uncharged, vc (0) = 0, while
ve(00) = 110. But

ve(t) = ve(00) + [ve(0) — ve(00)]e ™/ = 110[1 — e /7]

where t = 0.4 s, as calculated in part (a). The lamp glows when ve =
70V. Ifvc(r) =70V at r = 1o, then

7
70 = 110[1 — e /7] = o= 1—e "
or
4 11
—to/‘[ [ to/‘L’ —
¢ n ¢ 4

Taking the natural logarithm of both sides gives
11
fo=7ln 7= 0.4In2.75 = 0.4046 s

A more general formulafor finding 7y is
N v(0) — v(00)

0= TN ) — v(00)
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The lamp will fire repeatedly every T seconds if and only if 7o < 7. In
this example, that condition is not satisfied.

PRACTICE PROBLEMNEERK

10kQ S R The RC circuit in Fig. 7.74 is designed to operate an alarm which acti-
San . vateswhen the current through it exceeds 120 uA. If 0 < R < 6Kk, find
the range of the time delay that the circuit can cause.

Answer: Between 47.23 msand 124 ms.

+
A%

gl

Figure 774 For Practice Prob. 7.19.

7.9.2 Photoflash Unit
An electronic flash unit provides a common example of an RC circuit.
This application exploitsthe ability of the capacitor to oppose any abrupt
Ry 1 change in voltage. Figure 7.75 shows a simplified circuit. It consists
—A\WW—o0 >7— li essentially of a high-voltage dc supply, a current-limiting large resistor
High 2 . Ru, andacapacitor C in parallel with the flashlamp of low resistance R».
voltage C:) Ve c -y Whentheswitchisin position 1, the capacitor charges slowly dueto the
R, - large time constant (tr; = R1C). Asshown in Fig. 7.76, the capacitor
voltage rises gradually from zero to V;, whileits current decreases grad-
ually from I, = V,/R; to zero. The charging time is approximately five

times the time constant,

dc supply

Figure 775 Circuit for aflash unit providing
slow charge in position 1 and fast discharge in

position 2. fcharge = DR1C (7.65)

With the switchin position 2, the capacitor voltageisdischarged. Thelow
resistance R, of the photolamp permitsahigh discharge current with peak
I, = Vi /R, in ashort duration, as depicted in Fig. 7.76(b). Discharging
takes place in approximately five times the time constant,

VA

Il
T \\
O >

AL
W

@) (b)

Figure 176 (a) Capacitor voltage showing slow charge and fast discharge,
(b) capacitor current showing low charging current /; = V, /R and high discharge
current Io = Vi /R>.
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ldischarge = SR>C (7.66)

Thus, the simple RC circuit of Fig. 7.75 provides a short-duration, high-
current pulse. Such acircuit also finds applicationsin el ectric spot weld-
ing and the radar transmitter tube.

£ XA P L E D

An electronic flashgun has a current-limiting 6-k<2 resistor and 2000-F
electrolytic capacitor charged to 240 V. If the lamp resistance is 12 €,
find: (@) the peak charging current, (b) the time required for the capaci-
tor to fully charge, (c) the peak discharging current, (d) the total energy
stored in the capacitor, and (€) the average power dissipated by the lamp.

Solution:
(a) The peak charging current is
Vi 240
L=—=——-=40mA
TR 6x10°

(b) From Eq. (7.65),
feharge = BR1C = 5 x 6 x 10% x 2000 x 107® = 60 s = 1 minute
(c) The peak discharging current is

V, 240
L=-—"=""=20A
TR 12
(d) The energy stored is
1 1
W= Ecvs2 = 5 X 2000 x 1076 x 240° = 57.6 J

(e) Theenergy stored in the capacitor is dissipated acrossthe lamp during
the discharging period. From Eq. (7.66),

tdischarge = DR2C = 5 x 12 x 2000 x 10°° = 0.12s
Thus, the average power dissipated is
w 57.6

= = —— =480W
P fdischarge 0.12

PRACTICE PROBLEMNEWE

The flash unit of a camera has a 2-mF capacitor charged to 80 V.

(a) How much charge is on the capacitor?

(b) What is the energy stored in the capacitor?

(c) If the flash fires in 0.8 ms, what is the average current through the
flashtube?

(d) How much power is delivered to the flashtube?

(e) After apicture has been taken, the capacitor needs to be recharged by

apower unit which supplies a maximum of 5 mA. How much time does
it take to charge the capacitor?

Answer: (a) 0.16 C, (b) 6.4 J, (c) 200 A, (d) 8kW, (e) 32s.

4 | P | e-Text Main Menu | Textbook Table of Contents | Problem Solving Workbook Contents



280

PART | DC Circuits

7.9.3 Relay Circuits
A magnetically controlled switchiscalledarelay. A relayisessentially an
€l ectromagnetic deviceused to open or closeaswitchthat controlsanother
circuit. Figure 7.77(a) shows atypical relay circuit. Thecail circuitisan
RL circuit likethat in Fig. 7.77(b), where R and L are the resistance and
inductance of the coil. When switch Sy in Fig. 7.77(a) is closed, the coil
circuit is energized. The coil current gradually increases and produces
a magnetic field. Eventually the magnetic field is sufficiently strong to
pull the movable contact in the other circuit and close switch S,. At this
point, therelay is said to be pulled in. The time interval ¢, between the
closure of switches S; and S, is called the relay delay time.

Relays were used in the earliest digital circuits and are still used
for switching high-power circuits.

L]

s ~—— Magnetic field

. Cail

I\I\I\I\I\T
N

<
@) (b)

Figure 7.77 A relay circuit.

m7.2|

The cail of acertain relay is operated by a12-V battery. If the coil hasa
resistance of 150 2 and an inductance of 30 mH and the current needed
to pull inis50 mA, calculate the relay delay time.

Solution:
The current through the coil is given by

i(t) = i(00) + [i(0) — i(c0)]e™"/"

where
12
i(0) =0, i(00) 150 80m
L 30x10°3
T R 150 0.2ms
Thus,

i(t) =80[1—e /"] mA
If i(t;) = 50 mA, then

5
50 = 80[1 — e /"] = =1~ et/
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or

3 8

—t4/T ta/T _
e = — —t e = —
8 3

By taking the natural logarithm of both sides, we get

8 8
tg = rlné = O.2In§ ms = 0.1962 ms

PRACTICE PROBLEMNEWE

A relay hasaresistance of 200 2 and an inductance of 500 mH. Therelay
contacts close when the current through the coil reaches 350 mA. What
time elapses between the application of 110 V to the coil and contact
closure?

Answer: 2.529 ms.

7.9.4 Automobile Ignition Circuit
The ahility of inductors to oppose rapid change in current makes them
useful for arc or spark generation. An automobile ignition system takes
advantage of this feature.
The gasoline engine of an automobile requires that the fuel-air
mixture in each cylinder be ignited at proper times. This is achieved
by means of a spark plug (Fig. 7.78), which essentialy consists of a M&w—

pair of electrodes separated by an air gap. By creating a large voltage
(thousands of volts) between the electrodes, a spark is formed across the

X I Spark
air gap, thereby igniting the fuel. But how can such alarge voltage be plug
obtained from the car battery, which suppliesonly 12 V? Thisisachieved  ° _
by means of an inductor (the spark coil) L. Since the voltage across the ~—Airgap

inductor isv = L di/dt, we can make di/dt large by creating a large
changein current in a very short time. When theignition switch in Fig. . o o
7.78 is closed, the current through the inductor increases gradually and 818 118 Civault for an automobile igrition
reaches the final value of i = V,/R, where V, = 12 V. Again, the time ysem

taken for the inductor to charge is five times the time constant of the

circuit (t = L/R),

L
Icharge = 5E (7.67)

Since at steady state, i is constant, di /dr = 0 and the inductor voltage
v = 0. When the switch suddenly opens, a large voltage is devel oped
across the inductor (due to the rapidly collapsing field) causing a spark
or arcin the air gap. The spark continues until the energy stored in the
inductor is dissipated in the spark discharge. In laboratories, when one
is working with inductive circuits, this same effect causes a very nasty
shock, and one must exercise caution.

£ X AMP L & ERI

A solenoid with resistance 4 Q2 and inductance 6 mH is used in an auto-
mobile ignition circuit similar to that in Fig. 7.78. If the battery supplies
12 V, determine: the final current through the solenoid when the switch
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is closed, the energy stored in the coil, and the voltage across the air gap,
assuming that the switch takes 1 s to open.

Solution:
Thefinal current through the coil is
12
=% _3p
R 4
The energy stored in the coail is
1 1
W = §“2=§ x6x103x32=27mJ
The voltage acrossthe gap is
Al 3
= L— = 1 -3 —_— = 1 kV
Vv A7 6 x 10 XlxlO*G 8

PRACTICE PROBLEMESW

The spark coil of an automobileignition system has a 20-mH inductance
and a 5-2 resistance. With a supply voltage of 12 V, calculate: the time
needed for the coil to fully charge, the energy stored in the coil, and the
voltage developed at the spark gap if the switch opensin 2 us.

Answer: 20ms, 57.6 mJ, and 24 kV.

1.10 SUMMARY

1. Theanalysisin this chapter is applicable to any circuit that can be
reduced to an equivalent circuit comprising aresistor and asingle
energy-storage element (inductor or capacitor). Such acircuitis
first-order because its behavior is described by afirst-order differen-
tial equation. When analyzing RC and R L circuits, one must aways
keep in mind that the capacitor is an open circuit to steady-state dc
conditions while the inductor is a short circuit to steady-state dc
conditions.

2. The natural response is obtained when no independent sourceis
present. It hasthe general form

x(t) = x(0)e™'/*

where x represents current through (or voltage across) aresistor, a
capacitor, or an inductor, and x (0) isthe initial value of x. The
natural responseis aso called the transient response because it isthe
temporary response that vanishes with time.

3. Thetime constant t isthetime required for a response to decay to
1/e of itsinitial value. For RC circuits, T = RC and for RL circuits,
T=L/R.

4. Thesingularity functions include the unit step, the unit ramp func-
tion, and the unit impulse functions. The unit step function u(z) is

0, t<O
1

u(t):{ t>0
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The unit impulse function is

0, t <0
8(t) = {Undefined, r=0
0, t>0

The unit ramp function is
0, t<0
rn = {t, t>0
The forced (or steady-state) response is the behavior of the circuit
after an independent source has been applied for along time.

Thetotal or complete response consists of the natural response and
the forced response.

The step response is the response of the circuit to a sudden applica
tion of adc current or voltage. Finding the step response of afirst-
order circuit requires the initial value x(0™), the final value x (c0),
and the time constant t. With these three items, we obtain the step
response as

x(t) = x(00) + [x(0") — x(c0)]e™""
A more general form of thisequationis
x(t) = x(00) + [x(tg) — x(c0)]e /T
Or we may write it as
Instantaneous value = Final + [Initial — FinalJe= "/

PSpice is very useful for obtaining the transient response of acircuit.

Four practical applications of RC and RL circuitsare: adeay
circuit, aphotoflash unit, arelay circuit, and an automobile ignition
circuit.
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REVIEW QUESTIONS

7.1

7.2

7.3

74

An RC circuithasR =2 Q and C = 4 F. Thetime of its steady-state value is:
constant is: (@ 05s (b) 1s (© 2s
(@ 05s (b) 2s (c) 4s (d) 4s (e) none of the above
(d) 8s (e) 15s

. o 75 In the circuit of Fig. 7.79, the capacitor voltage just
The time constant for an RL circuitwithR =2 Q beforet = Qs
adL =4His @ 10V (b) 7V © 6V
(& 05s (b) 2s (c) 4s ) 4V © 0V
(d) 8s (e) 15s
A capacitor inan RC circuit with R = 2 Q and 3Q
C = 4 Fisbeing charged. Thetimerequired for the
capacitor voltage to reach 63.2 percent of its ¥ 20
steady-state value is: 10V C_D vt) == 7F
@ 2s (b) 4s (c) 8s - t=0
(d) 16s (e) none of the above
An RL circuithasR =2 Q and L = 4 H. Thetime
needed for the inductor current to reach 40 percent Figure 7.79  For Review Questions 7.5 and 7.6.
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7.6 In the circuit of Fig. 7.79, v(co) is: 7.8 In the circuit of Fig. 7.80, i (c0) is:
(@ 10V (b) 7V (c) 6V (@ 8A (b) 6A (c) 4A
(d) 4V (e OV (d) 2A (e) OA
7.7 ngr()tiheelckcgiitspf Fig. 7.80, the inductor current just 79 If v, changesfrom 2V to 4V at ¢ = 0, we may
- express v, as.
(@ 8A (b) 6A (c) 4A @ 8()V (b) 2u() V
(d 2A (€ 0A © 2u(—1) +4u@®V  (d) 24 2u(t) V
5H 7.10 ThepulseinFig. 7.110(a) can be expressed in terms
10A D § 20 of singularity functions as:
_ @ 2u(®)+2u(t—1V (b) 2u(r) —2u(t —1)V
t=0 3 (©) 2u(t) — du(t — DV (d) 2u(t) + 4u(r — 1) V
Figure 780 For Review Questions 7.7 and 7.8. Answers: 7.1d, 7.2b, 7.3c, 7.4b, 7.5d, 7.6a, 7.7c, 7.8¢, 7.9¢,d, 7.10b.
PROBLEMS
Section 7.2 The Source-Free RC Circuit R, C,
7.1 Show that Eq. (7.9) can be obtained by working with €
the current i in the RC circuit rather than working
with the voltage v. Vs R
7.2 Find the time constant for the RC circuit in Fig. €
7.81. C
2
Figure 7.83  For Prob. 7.4.
1200 120 75 The switch in Fig. 7.84 has been in position a for a
long time, until + = 4 swhen it is moved to position
b and |eft there. Determinev(r) att = 10 s.
50V 80Q 0.5mF
T 80Q t=4
a b
Figure 78] For Prob. 7.2. +
24V 01F == V(1) § 200
7.3 Determine the time constant of the circuit in Fig. T
7.82.
Figure 7.84  For Prob. 7.5.
7.6 If v(0) =20V inthecircuitin Fig. 7.85, obtain v(r)
1uF forz > 0.
I 3MF
12kQ = 4kQ w 8Q
5kQ
‘ 05V 10Q 01F =V
Figure 782 For Prob. 7.3. -
74 Obtain the time constant of the circuit in Fig. 7.83. Figure 7.85  For Prob. 7.6.
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7.7 For the circuit in Fig. 7.86, if 7.11  Theswitchinthecircuitin Fig. 7.89 has been closed
for alongtime. Atr = 0, the switch is opened.
v=10sV ad i=02"A >0 Calculatgi(z) fort > 0. >
(@ Find Rand C.
(b) Determine the time constant. t=0 30
(c) Calculate theinitial energy in the capacitor. i
(d) Obtain thetime it takes to dissipate 50 percent ‘

of theinitial energy. 12V 40 2H

—.—
Figure 789 For Prob. 7.11.
R C =V . . . . .
- 7.12  For thecircuit shown in Fig. 7.90, calculate the time
constant.
Fisure 7. 7.7 70Q 2mH
gure 7.86  For Prob. 7.7
7.8 Inthecircuit of Fig. 7.87, v(0) = 20 V. Find v(r) for 20V 00 § 800 § < 200
t > 0.
2Q

Figure 790 For Prob. 7.12.
8Q 8Q
+ 7.13  What isthe time constant of the circuit in Fig. 7.91?
0.25F v
—‘7 6Q 3Q

Figure 787 For Prob. 7.8.

30kQ 6 kQ 10 mH

20 mH 10kQ

79 Giventhat i (0) = 3A, findi(¢) forr > Ointhe
circuitin Fig. 7.88.

Figure 7.91  For Prob. 7.13.

150 7.14  Determine the time constant for each of the circuits
inFig. 7.92.
', 100
Ly L,
10mF == 4Q R,
L Ry Ry
Figure 7.88  For Prob. 7.9.
€) (b)
Section 7.3 The Source-Free RL Circuit Figure 7.92  For Prob. 7.14.
7.10 Derive Eq. (7.20) by working with voltage v across
the inductor of the RL circuit instead of working 7.15  Consider thecircuit of Fig. 7.93. Find v, (¢) if
with the current . i(0)=2Aandv(r) =0.
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30 + +
R L v
ve) @ o v )
iHo T Fieure 7.9
|gure . For Prob. 7.18.
O

7.19 InthecircuitinFig. 7.97, find the value of R for

Figure 793 For Prob. 7.15. which energy stored in the inductor will be 1 J.

400 R
7.16  Forthecircuit in Fig. 7.94, determine v, () when
i(0)=1Aandv(r) =0.
60V 80Q 2H
2Q
m o Figure 797 For Prob. 7.19.
000
Rt)’ + 7.20 Find_i(t) and v(¢) for ¢+ > Ointhecircuit of Fig.
vty @) 30 W 7.98ifi(0) = 10A.
- { i(t)
o) 2H +
50 200 § V(o)
Figure 7.94  For Prob. 7.16. 10 -
7.17  Inthecircuit of Fig. 7.95, find i(¢) for t > Oif .
i(0) = 2A. Figure 7.98  For Prob. 7.20.

7.21  Consider thecircuitin Fig. 7.99. Given that

i 6N v,(0) =2V, findv, and v, forr > 0.

3Q
100 0.5i 40Q

><<
[N
(o]

Wik
I
N
o]

O<

Figure 7.95  For Prob. 7.17.
Figure 7.99  For Prob. 7.21.

7.18  For thecircuit in Fig. 7.96, Section 7.4 Singularity Functions
v=120e""V 7.22  Expressthefollowing signalsin terms of singularity
and functions.
| = 30e 5" A, >0 [ o0 r<o0
e g @ v = {—5, >0
(8 Find L and R.
(b) Determine the time constant. 0, r<1
(c) Calculatetheinitial energy in the inductor. (b) i() = -10, 1<1<3
(d) What fraction of theinitial energy is dissipated 187 3< L= 5
in 10 ms? >
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t—1, 1<t<?2
1, 2<t<3
©xO=14_; 3.1<4
0 Otherwise
2, t<0
(d y@)=14-5 0<r<l1
0, r>1
7.23  Expressthesignalsin Fig. 7.100 in terms of
singularity functions.
vi(B) A va(t)
1 2
! N
-1 0 t 0 2 4 t
-1 (b)
€Y
va(t) A
4 -
2 Vu(t) A
L > 0
0 2 4 6 t 1 2
(© b
-2
(d)
Figure 7.100  For Prob. 7.23.
7.24  Sketch the waveform that is represented by
v(t) =u(@)+ut —1) —3u(t —2) + 2u(t — 3)
7.25  Sketch the waveform represented by
i=r®)+r¢—-1)—u@t—-2—r(it—2
+rt—=3)+u—4
7.26  Evaluate the following integrals involving the
impulse functions:
(@ / 4128t — 1) dt
L N <

First-Order Circuits 287

7.27

7.28

7.29

7.30

Section 7.5

7.31

7.32

(b) / 412 cos2m18(t — 0.5) drt

Evaluate the following integrals:
(a)/ eS8t —2)dt

(b) fw[SB(t) +e7'8(1) + cos2mt5(r)]dt

The voltage across a 10-mH inductor is
208 (t — 2) mV. Find the inductor current, assuming
that the inductor isinitially uncharged.

Find the solution of the following first-order
differential equations subject to the specified initial
conditions.

(&) 5dv/dt +3v =0, v(0) = -2

(b) 4dv/dt — 6v =0, v(0) =5

Solvefor v in the following differential equations,
subject to the stated initial condition.

@ dv/dr +v=u(), v(0) =0

(b) 2dv/dt — v = 3u(t), v(0) = —6

Step Response of an RC Circuit

Calculate the capacitor voltagefort < Oandt > 0
for each of the circuitsin Fig. 7.101.

40

20V

@

*y\tzo

12v

3Q
(b)

Figure 7.101 For Prob. 7.31.

Find the capacitor voltageforr < Oand r > O for
each of the circuitsin Fig. 7.102.
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7.33

7.34

7.35
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3Q 2Q
t=0

12v 4V 3F v

7.36

= 5F

(b)

Figure 7.102 For Prob. 7.32.
For the circuit in Fig. 7.103, find v(¢) for ¢t > 0.

7.37

[

30Q

I
< +

12v 1F =

Figure 7.103  For Prob. 7.33.

(a) If the switchin Fig. 7.104 has been open for a
long timeand isclosed a ¢ = O, find v, (¢).
(b) Suppose that the switch has been closed for a

long time and isopened at t = 0. Find v, (¢). 238

12v 4Q

Figure 7.104  For Prob. 7.34.

Consider the circuit in Fig. 7.105. Find i (¢) for

t<0Oands > 0. 7.39

t

00 5 300Q
) ¢ i
80V 3F = b osi 500
Figure 7.105  For Prob. 7.35.

The switch in Fig. 7.106 has been in position a for a
long time. Atr = 0, it movesto position b.
Cdculatei(r) foral ¢t > 0.

30V (’: 12V

§SQ - 2F

Figure 7.106  For Prob. 7.36.

Find the step responses v(r) and i (r) to
v, = 5u(?) V inthecircuit of Fig. 7.107.

120 7Q

+
Ve 40Q § 05F T v(®)

For Prob. 7.37.

Figure 7.107

Determine v(¢) for + > Qinthecircuit in Fig. 7.108
if v(0) =0.

aut-nA @) § so @ oA

Figure 7.108  For Prob. 7.38.

Find v(r) and i (r) in the circuit of Fig. 7.109.
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20Q Section 7.6 Step Response of an RL Circuit
l i 7.42  Rather than applying the short-cut technique used in
+ Section 7.6, use KVL to obtain Eq. (7.60).
u(-t) A D 10Q § 01F T v 7.43  For thecircuitin Fig. 7.112, find i (s) for > O.
Figure 7.109  For Prob. 7.39. lo@
¢ i
t=0
7.40  If thewaveform in Fig. 7.110(a) is applied to the 20V % 5H
circuit of Fig. 7.110(b), find v(¢). Assumev(0) = 0. 400
is(A) 4
Figure 7.112 For Prob. 7.43.
2
7.44  Determine the inductor current i (¢) for bothz < 0
> and ¢ > O for each of the circuitsin Fig. 7.113.
0 1 t(9
@
6Q
¢ i
+
is<> 4Q O.SFTV 25V 4H
(b) €)
Figure 7.110° For Prob. 7.40 and Review Question 7.10. L;?
*7.41 Inthecircuitin Fig. 7.111, find i, forz > O. Let
@&:Rz:1kQ,R3:2kQ,andC:O.25mF. 6A () §4Q §2Q §3H
t=0
R,
V liWW (b)
X
30mA § R ~C § Rs Figure 7.113 For Prob. 7.44.
7.45  Obtain theinductor current for bothr < Oandz > 0
Figure 7.1 For Prob. 7.41. in each of the circuitsin Fig. 7.114.

*An asterisk indicates a challenging problem.
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*' lil "2
2a @ 4Q§ 12a e sa @ 6Q§ t=o_X 200
t=0 3.5H 25H 4H

(€Y

Figure 7.117 " For Prob. 7.48.

10V 2H 749  Rework Prob. 7.15if i(0) = 10 A and
v(t) = 20u(t) V.
t=0 . :
7.50 Determine the step response v, (¢) to v, = 18u(¢) in
2Q 3Q the circuit of Fig. 7.118.
6Q
6Q
(b)

Figure 7.114  For Prob. 7.45. 40

Vg 3Q § +
7.46  Findv(t) forr < Oandr > Ointhecircuit in Fig. 15H S v,
7.115. -
i 05H Figure 7.118 " For Prob. 7.50.
= ol T
t=0
751 Findv(¢) for t > Ointhecircuit of Fig. 7.119 if the
3Q initial current in the inductor is zero.
8Q +
4, ’ 2Q § v

24V 20V .

4u(t) 5Q 8H 2002V

Figure 7.115 For Prob. 7.46.

Figure 7.119 For Prob. 7.51.

7.47  For the network shownin Fig. 7.116, find v(¢) for

r>0. 7.52 Inthecircuitin Fig. 7.120, i; changesfrom 5 A to

10A att =0;thatis, iy = 5u(—t) + 10u(t). Find v
5Q andi.

6Q *

20V _ +
oA @ 1o 2OQ§ 05H J\r/ © - @ 4Q§ O'SHgf

*7.48  Findiy(¢) and i(¢) for + > 0inthecircuit of Fig. 7.53  Forthecircuit in Fig. 7.121, calculate i (¢) if
7.117. i(0) = 0.
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3Q 6Q 10kQ
i
* 2 ukF
u(t-1)V §2H u(t) v ¢
+ v -
| >,
Figure 7.121 For Prob. 7.53.
20kQ § 10KkQ
7.54  Obtainv(¢) and () in the circuit of Fig. 7.122.
5Q . -
Figure 7.125  For Prob. 7.57.
+
10u(-t) vV 20Q 05H v
758 1If v(0) =5V, find v,(¢) for + > 0intheopamp
circuitinFig. 7.126. Let R =10kQ and C = 1 uF.
Figure 7.122 For Prob. 7.54.
755  Findv,(¢) for t > Oin thecircuit of Fig. 7.123. R
R
e’ VO
R v <C
Figure 7.126  For Prob. 7.58.
Figure 7.123  For Prob. 7.55 759 Obtain v, fort > 0inthecircuit of Fig. 7.127.
7.56 If theinput pulsein Fig. 7.124(a) is applied to the
circuit in Fig. 7.124(b), determine the response i (z).
t=0
Vs (V) A 50 t
10 l i
4v 10kQ 25 uF < Vo
Vg § 200 g 2H 10K -
0 1t L
@ (b)
Figure 7.127  For Prob. 7.59.
Figure 7.124  For Prob. 7.56.
7.60  For theop amp circuit in Fig. 7.128, find v, (¢) for
t > 0.

First-order Op Amp Circuits

Section 7.7
7.57  Find the output current i, for + > 0inthe op amp
circuit of Fig. 7.125. Let v(0) = —4 V.
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25 mF
I ©
t=0
10kQ 20kQ 100kQ T‘V _ l io
T AN —
3u(t) ‘ R
o > ;
VO
°

Figure 7.128  For Prob. 7.60.

7.61
amp circuit of Fig. 7.129.

Determine v, for t > 0 when vy = 20 mV in the op

Figure 7.131

For Prob. 7.63.
7.64  For theop amp circuit of Fig. 7.132, let R; = 10k<2,
R; =20kQ, C = 20 uF, and v(0) = 1 V. Find v,.

R
R C
H
+ Vv - +
4u(t) Vo
5

Figure 7.132  For Prob. 7.64.
5uF 7.65 Determinew,(¢) for r > 0inthe circuit of Fig.
20k 7.133. Let iy = 10u(r) nA and assume that the
§ capacitor isinitially uncharged.
1 2 uF 10kQ
— A
Figure 7.129  For Prob. 7.61. °
is 50 kQ Vo
7.62  FortheopampcircuitinFig. 7.130, find i, for t > 2. o
10K Figure 7.133  For Prob. 7.65.
10 kO 20 kO 7.66 Inthecircuit of Fig. 7.134, find v, and i,,, given that
\ AMA vy =4u(t) Vandv(0) =1V.
- [
av 100 mF 7= § k—o Y

Figure 7.130  For Prob. 7.62.

7.63 Findi, intheopamp circuitin Fig. 7.131. Assume
that v(0) = =2V, R = 10k, and C = 10 uF.

Figure 7.134 " For Prob. 7.66.
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Section 7.8 Transient Analysiswith PSpice
7.67  Repeat Prob. 7.40 using PSpice.

7.68 TheswitchinFig. 7.135 opensat t = 0. Use PSpice
to determine v(¢) for ¢ > 0.

t=0 + v -
Q
A
100 mF
sa @ 40 60 200 30V
Figure 7.135  For Prob. 7.68.
7.69  Theswitchin Fig. 7.136 moves from position a to b
att =0. UsePSpicetofindi(z) fort > 0.
i it)
108V 2H
Figure 7.136  For Prob. 7.69.
7.70  Repeat Prob. 7.56 using PSpice.
Section 7.9 Applications
7.71  Indesigning asignal-switching circuit, it was found
that a 100-uF capacitor was needed for atime
constant of 3 ms. What value resistor is necessary
for the circuit?
7.72 A simplerelaxation oscillator circuit is shown in

Fig. 7.137. The neon lamp fires when its voltage

reaches 75 V and turns off when its voltage drops to

30 V. Itsresistance is 120 & when on and infinitely

high when off.

(8 For how long isthe lamp on each time the
capacitor discharges?

First-Order Circuits

7.73

7.74

293

(b) What isthetimeinterval between light flashes?

4MQ

+
120V IT 6 uF =

Figure 7.137

Neon lamp

For Prob. 7.72.

Figure 7.138 shows a circuit for setting the length of
time voltage is applied to the electrodes of awelding
machine. Thetimeistaken as how long it takes the
capacitor to charge from O to 8 V. What is the time
range covered by the variable resistor?

100kQ to 1 MQ
Welding |, l
12V 2uF == | control ol
T unit . h
Electrode
Figure 7.138  For Prob. 7.73.

A 120-V dc generator energizes a motor whose coil
has an inductance of 50 H and a resistance of 100 €.
A field discharge resistor of 400 2 is connected in
parallel with the motor to avoid damage to the
motor, as shown in Fig. 7.139. The system isat
steady state. Find the current through the discharge
resistor 100 ms after the breaker is tripped.

Circuit breaker
N
120V Motor 400 Q
Figure 7.139  For Prob. 7.74.

COMPREHENSIVE PROBLEMS

7.75  Thecircuit in Fig. 7.140(a) can be designed as an
approximate differentiator or an integrator,
depending on whether the output is taken across the
resistor or the capacitor, and also on the time
constant r = RC of the circuit and the width T of

theinput pulsein Fig. 7.140(b). Thecircuitisa

differentiator if t <« T, say T < 0.17, or an

integrator if t > T, say t > 107.

(@) What isthe minimum pulse width that will allow
adifferentiator output to appear across the
capacitor?
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7.76

7.77
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(b) If the output isto be an integrated form of the
input, what is the maximum val ue the pulse
width can assume?

7.78

300 kQ v,

200 pF

@ (b)

Figure 7.140  For Prob. 7.75.

An RL circuit may be used as a differentiator if the
output is taken across theinductor and © <« T (say
7 < 0.1T), where T isthe width of the input pulse.
If R isfixed at 200 k€2, determine the maximum
value of L required to differentiate a pulse with

T =10 us.

An attenuator probe employed with oscilloscopes
was designed to reduce the magnitude of the input
voltage v; by afactor of 10. Asshownin Fig. 7.141,
the oscilloscope has internal resistance R, and
capacitance C,, while the probe has an internal
resistance R,. If R, isfixed at 6 M, find R, and
C, for the circuit to have atime constant of 15 us.

7.79

Probe Scope
O—ANWW o]
+ Rp +
Vi Rs % Cs = Vo
o o
Figure 7.14] " For Prob. 7.77.

Thecircuit in Fig. 7.142 is used by abiology student
to study “frog kick.” She noticed that the frog
kicked alittle when the switch was closed but
kicked violently for 5 s when the switch was
opened. Model the frog as aresistor and calculate
itsresistance. Assume that it takes 10 mA for the
frog to kick violently.

Switch
Frog

Figure 7.142  For Prob. 7.78.

To move a spot of a cathode-ray tube across the
screen requires alinear increase in the voltage
across the deflection plates, as shown in Fig. 7.143.
Given that the capacitance of the platesis 4 nF,
sketch the current flowing through the plates.

v(V)

10

>

t

Risetime=2 m;\ Droptime=5us
(not to scale)

Figure 7.143  For Prob. 7.79.

Go to the Student OLC
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CHAPTER]| 8

SECOND-ORDER CIRCUITS

“Engineering is not only a learned profession, it is also a learning pro-
fession, one whose practitioners first become and then remain students
throughout their active careers.”

—MWilliam L. Everitt

AMA—

Enhancing Your Career

To increase your engineering career opportunities after gra
uation, develop a strong fundamental understanding in § == - I
broad set of engineering areas. When possible, this migh pOtEmntla S
best be accomplished by working toward a graduate degre, forup-and:-Coming engineers
immediately upon receiving your undergraduate degree.

Each degree in engineering represents certain skills A
the students acquire. Atthe Bachelor degree level, you lear
the language of engineering and the fundamentals of engi
neering and design. At the Master’s level, you acquire the | EEE
ability ?o do adva?nced engineering projectsyand toqcommu ptworking | rCes
nicate your work effectively both orally and in writing. The 0T idwil
Ph.D. represents a thorough understanding of the fundame
tals of electrical engineering and a mastery of the skills nec e ) '
essary both for working at the frontiers of an engineering Professional organization
area and for communicating one'’s effort to others.

If you have no idea what career you should pursue af-
ter graduation, a graduate degree program will enhance you @
ability to explore career options. Since your undergraduatg "= T R ormation
degree will only provide you with the fundamentals of en- IEEE
gineering, a Master’'s degree in engineering supplemente N
by business courses benefits more engineering students th v theiviorl die
does getting a Master’s of Business Administration (MBA).
'I_'h_e best ti_me to getyour MBA is afteryo_u have been a prac- Key career p | ot p0| nts
ticing engineer for some years and decide your career pat
would be enhanced by strengthening your business skills.

Engineers should constantly educate themselvesEnhancing your career involves understanding your goals,
formally and informally, taking advantage of all means of adapting to changes, anticipating opportunities, and planning
education. Perhaps there is no better way to enhance youfPUr own niche. (Courtesy of IEEE.)
career than to join a professional society such as IEEE and
be an active member.
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Vg C ,‘\
@)
is R Cr~ L
(b)
R R,
Vg Ly Ly
©
R
Is —~ C1 C =~

(d)

Figure 8.1 Typical examples of
second-order circuits; (a) series
RLC circuit, (b) paralel RLC
circuit, (c) RL circuit, (d) RC
circuit.

PART | DC Circuits

8.1 INTRODUCTION

In the previous chapter we considered circuits with a single storage ele-
ment (a capacitor or an inductor). Such circuits are first-order because
the differential equations describing them are first-order. In this chap-
ter we will consider circuits containing two storage elements. These are
known assecond-ordecircuits because their responses are described by
differential equations that contain second derivatives.

Typical examples of second-order circuits &&C circuits, in
which the three kinds of passive elements are present. Examples of such
circuits are shown in Fig. 8.1(a) and (b). Other exampleR&r@ndR L
circuits, as shown in Fig. 8.1(c) and (d). It is apparent from Fig. 8.1 that
a second-order circuit may have two storage elements of different type or
the same type (provided elements of the same type cannot be represented
by an equivalent single element). An op amp circuit with two storage
elements may also be a second-order circuit. As with first-order circuits,
a second-order circuit may contain several resistors and dependent and
independent sources.

A second-order circuit is characterized by a second-order differential equation. It
consists of resistors and the equivalent of two energy storage elements.

Our analysis of second-order circuits will be similar to that used for
first-order. We will first consider circuits that are excited by the initial
conditions of the storage elements. Although these circuits may contain
dependent sources, they are free of independent sources. These source-
free circuits will give natural responses as expected. Later we will con-
sider circuits that are excited by independent sources. These circuits will
give both the natural response and the forced response. We consider
only dc independent sources in this chapter. The case of sinusoidal and
exponential sources is deferred to later chapters.

We begin by learning how to obtain theinitial conditionsfor thecir-
cuit variables and their derivatives, asthisis crucial to analyzing second-
order circuits. Thenwe consider seriesand parallel RLC circuitssuch as
shown in Fig. 8.1 for the two cases of excitation: by initial conditions of
the energy storage elements and by step inputs. Later we examine other
types of second-order circuits, including op amp circuits. We will con-
sider PSpice analysis of second-order circuits. Finally, we will consider
the automobile ignition system and smoothing circuits as typical appli-
cations of the circuits treated in this chapter. Other applications such as
resonant circuits and filters will be covered in Chapter 14.

8.2 FINDING INITIAL AND FINAL VALUES

Perhapsthe major problem studentsfacein handling second-order circuits
isfinding theinitial and final conditionson circuit variables. Studentsare
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usually comfortable getting theinitial and final values of v and i but often
have difficulty finding the initial values of their derivatives: dv/dr and
di/dt. For thisreason, this section is explicitly devoted to the subtleties
of getting v(0), i(0), dv(0)/dt, di(0)/dt, i(c0), and v(c0). Unless
otherwise stated in this chapter, v denotes capacitor voltage, while i is
the inductor current.

There are two key points to keep in mind in determining the initial
conditions.

First—as alwaysin circuit analysis—we must carefully handle the
polarity of voltage v(z) across the capacitor and the direction of the cur-
rent i(¢) through the inductor. Keep in mind that v and i are defined
strictly according to the passive sign convention (see Figs. 6.3 and 6.23).
One should carefully observe how these are defined and apply them ac-
cordingly.

Second, keep in mind that the capacitor voltage is always continu-
ous so that

v(0T) = v(07) (8.19)
and the inductor current is always continuous so that
i(0Y) =i(0) (8.1b)

wherer = 0~ denotesthetimejust beforeaswitchingeventand: = 0" is
the time just after the switching event, assuming that the switching event
takesplaceatt = 0.

Thus, infinding initial conditions, wefirst focus on those variables
that cannot change abruptly, capacitor voltage and inductor current, by
applying Eq. (8.1). The following examplesillustrate these ideas.

mg.|

TheswitchinFig. 8.2 hasbeen closed for alongtime. Itisopenatt = 0.
Find: (8) i (0™), v(0™), (b) di (0)dt, dv(0")/dt, (C) i (00), v(00).
Solution:

(a) If theswitchisclosed alongtimebeforer = 0, it meansthat thecircuit
has reached dc steady state at + = 0. At dc steady state, the inductor acts
like a short circuit, while the capacitor acts like an open circuit, so we
have the circuit in Fig. 8.3(a) at = 0~. Thus,

4Q |

12V 202y 12V

@ (b

297
i
4Q 0.25H
+
12v 292 g1F v
t=0
Figure 8.2 For Example 8.1.
i
4Q 1
;
12v v

Figure 8.3 Equivalent circuit of that in Fig. 8.2 for: (@) 1 = 0~, (b) # = 0", (c) r — oc.

ol
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12
4+2
Astheinductor current and the capacitor voltage cannot change abruptly,

i(07) = 2A,  w(0)=2i(0)=4V

i(0H=i(0)=2A, v(0")=v0)=4V

(b) Atz = O, theswitchisopen; theequivaent circuitisasshowninFig.
8.3(b). The same current flows through both the inductor and capacitor.
Hence,

ic(0Y) =i(0") =2A
Since C dv/dt = ic,dv/dt =ic/C, and
dv(0t)  ic(0h) 2
dt c To1- Vs
Similarly, since L di/dt = v, di/dt = v, /L. We now obtain v; by
applying KVL to theloop in Fig. 8.3(b). Theresultis

—124+4i(0") + v, (0Y) +v(0T) =0
or
v (0 =12-8-4=0
Thus,
di(0") v (0") 0
dt L 0.25

(c) Fort > 0, thecircuit undergoestransience. But ast — oo, thecircuit
reaches steady state again. The inductor acts like a short circuit and the
capacitor like an open circuit, so that the circuit becomes that shown in
Fig. 8.3(c), from which we have

=0A/s

i(c0) =0A, v(oo) =12V

PRACTICE PROBLEMEKN

The switch in Fig. 8.4 was open for along time but closed at r = 0. De-
termine: (a) i(0™), v(0™), (b) di (0M)dt, dv(0h)/dt, (C) i (c0), v(c0).

100 04H i
AN T
+
20 V= 55 F 24V

Figure 8.4 For Practice Prob. 8.1.

Answer: (@) 2A,4V,(b)50A/s,0VI/s, (c) 12A,24 V.
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£ X AP LE B

In the circuit of Fig. 8.5, caculate: (a) i (0"), vc(0h), vgr(0Oh),
(b) dip (0")dt, dvc(01)/dt, dvg(0T)/dt, (C) iz (00), ve(00), vR(00).

4Q
AW
fi

3u(t)A<> 20 2 vy C/J'g_ %0.6H

Figure 8.5  For Example 8.2.

Solution:

(@) Fort < 0,3u(r) = 0. Atr = 07, since the circuit has reached steady
state, the inductor can be replaced by a short circuit, while the capacitor
is replaced by an open circuit as shown in Fig. 8.6(a). From this figure
we obtain

ir(0)=0, wr(0)=0, wvc(0)=-20V (821

Although the derivatives of these quantitiesat + = 0~ are not required, it
is evident that they are all zero, since the circuit has reached steady state
and nothing changes.

4Q a + Vo b
[} A% i AWV i i
: . it 0 |4 i
V_C + %F;\ VC +
Vg 2Q 3A 2Q = VR - VL % 0.6 H
20V - <+ 20V -
e,
@ (b)

Figure 8.6 The circuit in Fig. 85 for: (@) 1 = 0~, (b) 1 = O*.

Fort > 0, 3u(r) = 3, so that the circuit is now equivalent to that
in Fig. 8.6(b). Since the inductor current and capacitor voltage cannot
change abruptly,

iL(OJr) =i, (07) =0, Uc(OJr) =vc(07)=-20V (822

Although the voltage across the 4-2 resistor is not required, we will use
it t