
Measurement
CHAPTER 1

1-1 Measurement

When plans were being made to lay the first Atlantic telegraph cable, the
company in charge of the construction hired a young engineer, William
Thomson (1824-1907), as a consultant. To solve some of the problems
raised by this undertaking, Thomson made many accurate electrical
measurements. Often he used instruments which he himself had invented.
His advice, based on his own experiments, was ignored, chiefly because the
principles involved were not clearly understood or accepted by those in
authority. The subsequent failures of the project later led to a more
careful consideration of Thomson's views. Their adoption led to the
successful completion of the cable in 1858.* This experience may have
helped Thomson form his often quoted view:

I often say that when you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge, but you have scar'elv, in your thoughts, advanced to the
stage of Science, whatever the matter may be.

Although other scientists would deny that they should deal only with
ideas that are strictly measurable, none would deny the great importance
Of measurement to science. Often in the history of science small but sig-
nificant discrepancies between theory and accurate measurements have led

In 1,992, Thomson, then one of Britain's foremost, scientists, was raised to the
peerage as Lord Kelvin. Among his other achievements, he was one of the founders
of the science of thermodynamics.
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to the development of new and more general theories. Such advances in
our understanding would not have occurred if scientists had been satisfied
with only a qualitative explanation of the phenomena of nature.

1-2 Physical Quantities, Standards, and Units

The building blocks of physics are the physical quantities in terms of
which the laws of physics are expressed. Among these are force, time,
velocit y , density, tempetature, charge, magnetic susceptibility, and numer-
ous others. Many of these terms, such as force and temperature, are part
of our everyday vocabulary. When these terms are so used, their mean-
ings may be vague or may differ from their scientific meanings.

For the purposes of physics the basic quantities must be defined clearly
and precisely. One view is that the definition of a physical quantity has
been given when the procedures for measuring that quantity have been
given. This is called the operational point of view because the definition is
at root, a set of laboratory operations leading to a number with a unit.
The operations may include mathematical calculations.

Physical quantities are often divided into fundamental quantities and
derived quantities. Such a division is arbitrary in that a given quantity
can be regarded as fundamental in one set of operations and as derived in
another. Derived quantities are those whose defining operations are
based on other physical quantities. Examples of quantities usually viewed
as derived are velocity, acceleration, and volume. Fundamental quanti-
ties are not defined in terms of other physical quantities. The number of
quantities regarded as fundamental is the minimum number needed to give
a consistent and unambiguous description of all the quantities of physics.
Examples of quantities usually viewed as fundamental are length and time.
Their operational definitions involve two steps: first, the choice of a stand-
ard, and second, the establishment of procedures for comparing the stand-
ard to the quantity to be measured so that a number and a unit are deter-
mined as the measure of that quantity.

An ideal standard has two principal characteristics: it is accessible and
it is invariable. These two requirements are often incompatible and a
compromise has to be made between them. At first greater emphasis was
placed on accessibility, but the growing requirements of science and tech-
nology introduced the need for greater invariability. The familiar yard,
foot., and inch, for example, are descended directly from the human arm,
foot, and upper thumb. Today, such rough measures of length are not
satisfactory and a much less variable standard must be used even at the
expense of accessibility.

Suppose that we have chosen our standard of length to be a bar whose
length we define as one meter. If by direct comparison of this bar with a
second bar we conclude that the second bar is three times as long as the
standard, we say that the second bar has a length of three meters. In
practice, most quantities cannot be measured by direct comparison to a pri-
mary standard. An indirect approach, using more involved procedures,
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is usually necessary. Certain assumptions are made to relate the results
of an indirect measurement to the direct operation.

Suppose, for example, that the distance from a rocket launching station
to the surface of the moon must be known at a certain time. One indirect
way to determine this distance would be to send out a radar signal from the
station which will be reflected from the surface of the moon back to a
receiver at the sending station. If the time between sending and receiving
the signal is measured and the speed of the radar signal is known, the dis-
tance can be obtained as the product of the speed and one-half the time
interval. We assume here that the speed of the signal is constant and
that the signal has traveled in a straight line. The speed must be measured
in a subsidiary experiment, and it is here that the standard of length
ppears in the operational procedure.
Astronomical distances, such as the distances of stars from the earth,

cannot be measured in a direct way. A few stars are close enough so that
triangulation measurements can be made. The position of the star with
respect to the background of much more distant stars is observed at six-
month intervals, when the earth has moved from one point of its orbit to a
diametrically opposite point. From these data the desired distance can
be obtained using the diameter of the earth's orbit as a baseline. Distances
of nebulae many millions of light years from the earth are measured by
indirect procedures more involved than triangulation (one light year is
approximately 10 16 meters; see Problem 6).

Just as we use indirect methods for measuring large distances, so we must
also use aik indirect approach to measure very small distances, such as those
within atoms and molecules. The effective radius of the proton, for
example, has been measured by particle scattering experiments to be
1.2. X 10- 11 meter. Table 1-1 shows the vast range over which length
measurements can be made.

1-3 Reference Frames

The same physical quantity may have different values if it is measured
by observers who are moving with respect to each other. The velocity of
a train has one value if measured by an observer on the ground, a different
value if measured from a speeding car, and the value zero if measured by
an observer sitting in the train itself. None of these values has any funda-
mental advantage over any other; each is equally ." correct" from the point
of view of the observer making the measurement.

In general, the measured value of a physical quantity depends on the
reference frame of the observer who is making the measurement. This is
clear enough if the physical quantity is a velocity, as above. it is also
true, however, if the physical quantity is, say, a displacement of a particle,
a time interval between two events, an electric field, or a magnetic field,
although a full appreciation of these four examples must await the study
of the theory of relativity.

In the early days of physics it was believed that one particular reference
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Table 1-1

SOME MEASURED LENGTHS

Distance to the most-distant quasar yet detected' (1964)
Distance to the nearest nebula (Great Nebula in Andromeda)
Radius of our galaxy
Distance to the nearest star (Alpha Centauri)
Mean orbit radius for the most distant planet (Pluto)
Radius of the sun
Radius of the earth
Highest free balloon ascension (1959)
Height of a man
Thickness of this book (Part I)
Thickness of a page in this book
Size of a poliomyelitis virus
Radius of a hydrogen atom
Effective radius of a proton

'quasar = quasi-stellar radio source.

Meters

6 X 1025

2 X 1022
6 X 10"

4.3 x 1016
5.9 X 10's
6.9 X 108
6.4 x 106
4.6 X 10'
1.8 X 100

4 x 10-2
1 X i0-

1.2 X 10'
5.0 x 10-"
1.2 X 10's

frame, a so-called absolute frame, existed that had some fundamental
advantage over all other frames. For an observer at rest in such a frame
physical quantities would have their "true" or "absolute" values. This
viewpoint has now been abandoned because, over many decades, experi-
mental effQrts to find this absolute reference frame have failed completely.

Consider reference frames moving with uniform velocity with respect to
each other and with respect to the fled stars. Such (uriaccelerated, non-
rotating) reference frames are called inertial reference frames. Experiment
shows that all inertial reference frames are equivalent for the measurement
of physical phenomena. Observers in different frames may obtain differ-
ent numerical values for measured physical quantities, but the relationships
between the measured quantities, that is, the laws of physics, will be the same
for all observers.

Suppose, for example, that observers in different inertial frames measure
the momenta of the particles involved in an atomic collision. They will
obtain different numerical values both for the momenta of the individual
particles and for the total momentum of the system of particles. Each
observer, however, will note that the total momentum of the system of
particles, whatever value he measured it to be, is the same after the col-
lision as before. In other words, each observer will note that the collision
obeys the law of conservation of momentum; we shall discuss this law in
detail in Chapter 9.

Although physical laws are the same in all reference frames, the measured
values of the physical quantities, as we have seen, may not be. It is
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important, therefore, that the student always realize what his reference
frame is in a particular problem.

1-4 Standard of Length*

The first truly international standard of length was a bar of a platinum-
iridium alloy called the standard meter, kept at the International Bureau of
Weights and Measures near Paris, France. The distance between two fine
lines engraved on gold plugs near the ends of the bar (when the bar was at
0 .000 C and supported mechanically in a prescribed way) was defined to be
one meter. Historically, the meter was intended to be a convenient frac-
tion (one ten-millionth) of a distance from pole to equator along the
meridian line through Paris. However, accurate measurements taken
after the standard meter bar was constructed show that it differs slightly
(about 0.023%) from its intended value.

Because the standard meter was not very accessible, accurate master
copies of it were made and sent to standardizing laboratories throughout
the civilized world. These secondary standards were used o calibrate
other, still more accessible, measuring rods. Thus until recently every
ruler, micrometer, or vernier caliper derived its legal authority from the
standard meter through a complicated chain of comparisons using micro-
scopes and dividing engines. This statement was also true for the yard

used in English-speaking countries. Since 1959 one yard has been defined,
by international agreement, to be

1 yard = 0.9144 meter, exactly,

which is equivalent to

1 in. = 2.54 cm, exactly.

There are several objections to the meter bar as the primary standard
of length: It is potentially destructible, by fire or war, for example; it is
not accurately reproducible; it is not very accessible. Most important,
the accuracy with which the necessary intercomparisons of length can be
made by the technique of comparing fine scratches, using a microscope, is
no longer great enough to meet modern requirements of science and tech-
nology. The maximum accuracy obtainable with the standard meter as a
reference is about 1 part in io; an error of this amount in the borehole of a
guidance gyroscope could cause a space shot aimed at the moon to miss by
a thousand miles.

The suggestion that the length of a light wave be used as a length stand-
ard'was first made in 1864 by Hippolyte Louis Fizeau (1819-1896). The
later development of the interferometer (see Chapter 43) provided scientists
with a precision optical device in which light waves can be used as a length

* See "The Metre" by H. Barrel], in Contemporary Physics, Vol. 3, . 415, 1962, for

an excellent discussion of the standard of length.
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Fig. 1-1 A Kr88 light source shown removed from the container in which it is
housed. In operation the lamp is cooled with liquid nitrogen. (Courtesy the
National Phyica1 Laboratories, Teddington, England. Crown copyright reserved.)

comparison probe. Light waves are about 5 X 10 cm long and length
measurements of bars some centimeters long can be made to a very small
fraction of a wavelength. An accuracy of 1 part in 10 9 in the intercom-
parison of lengths using light waves is inherently possible. As the need
for this increased accuracy in length comparisons arose, efforts were made
to determine the best light source.

In 1961 an atomic standard of length was adopted by international
agreement. The wavelength in vacuum of a particular orange radiation
(identified by the spectroscopic notation 2p° - 5d 5) emitted by atoms of
a particular Isotope of krypton (Kr") in an electrical discharge was chosen.
Specifically, oqe meter is now defined to be 1,650,763.73 wavelengths of
this light. This number of wavelengths was arrived at by carefully meas-
uring the length of the standard meter bar in terms of these light waves.
This comparison was done so that the new standard, based on the wave
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length of light; would be as consistent as possible with the old standard,
based on the meter bar. Figure 1-1 shows a krypton-86 light source, used
as the basis of the length standard.

The choice of an atomic standard offers advantages other than increased
precision in length measurements. The atoms that generate light are
available everywhere and all atoms of a given species are identical and
emit light of the same wavelength. Hence such an atomic standard is both
accessible and invariable. The particular wavelength chosen is uniquely
characteristic of krypt*n-86 and is very sharply defined. This isotope can
be obtained with great purity relatively easily and cheaply.

1-5 Standard of Time

The measurement of time has two different aspects. For civil and for
some scientific purposes, we want to know the time of day so that we can
order events in sequence. In most scientific work, we want to know how
long an event lasts. Alternatively, if we are dealing with an oscillating
system such as a microwave oscillator or an acoustic resonator, we want to
know its frequency of oscillation. Thus any time standard must be able
to answer both the question "What time is it?" and the two related ques-
tions "How long does it last?" or "What is its frequency?* Table 1-2
shows the wide range of time intervals that can be measured.

Any phenomenon that repeats itself can be used as a measure of time;

• See "Accurate Measurement of Time" by Louis Essen, in Physics Today, July 1960.
for an excellent discussion of the standard of time.

Table 1-2

SOME MEASURED TIME INTERVALS

Age of the earth
Age of the pyramid of Cheops
Human life expectancy (USA)
Time of earth's orbit around the sun (1 year)
Time of earth's rotation about its axis (1 day)
Period of the Echo II satellite
Half-life of the free neutron
Time between normal heartbeats
Period of concert-A tuning fork
Half-life of the muon
Period of oscillation of 3-cm microwaves
Typical period of rotation of a molecule
Half-life of the neutral pion
Period of oscillation of a 1-Mev gamma ray (calculated)
Time for a fast elementary particle to pass through a medium-

sized nucleus (calculated)

Seconds

1.3 X10'7
1.5 X 1011

2 X 10'
3.1 x 107
8.6 x 10'
6.1 X 10
7.0 X 102

8.0 X 10_I
2.3 X iO-
2.2 x io-6
1.0 X10'°

1 x
2.2 X 10_la

4 X 1O_21

2 X 1O_23
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the measurement consists of counting the repetitions. An oscillatii-
pendulum, coiled spring, or quartz crystal can be used, for example. 04

the many repetitive phenomena occurring in nature, the rotation of the
earth on its axis, which determines the length of the day, has been used as a
time standard from earliest times. It is still the basis of our civil and legal
time standard, one (mean solar) second being defined to be 1/86,400 of a
(mean solar) day. Time defined in terms of the rotation of the earth is
called universal time (UT).

In 1956, for reasons that will follow, the International Congress of
Weights and Measures redefined the second, for scientific purposes
requiring high precision, in terms of the earth's orbital motion about
the sun. More particularly, they defined the second to be the fraction
1/31556,925.9747 of the tropical year 1900; the selection of a particular
earth orbit in the definition automatically makes the time standard invari-
able. Time defined in terms of the earth's orbital motion is called ephem-
eris time (ET).

Both UT and ET must be determined by astronomical observations.
Since these observations must be extended over several weeks (for UT) or
severa,l years (for ET), a good secondary terrestrial clock, calibrated by the
astronomical observations, is needed. Quartz crystal clocks, based on the
electrically sustained natural periodic vibrations of a quartz wafer, serve

Fig. 1-2 This cesium atomic clock at the 1uLder Laboratories of the National
Bureau of Standards measures frequency and time intervals to an accuracy equivalent
to the loss of less than 1 sec in 3000 years.
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Fig. 1-3 A schematic diagram of a cesium atomic clock. The vertical arrows in
the shaded magnetic field areas point from the strong field to the weak field region of
the (nonuniform) magnetic field, as the variable shading also suggests.

well as secondary time standards. The best of these have kept time for a
year with a maximum error of 0.02 sec.

One of the most common uses of a time standard is the determination of
frequencies. In the radio range, frequency comparisons to a quartz clock
can be made electronically to a precision of at least 1 part in 101 and,
indeed, many situations require such precision. However, this precision is
about one hundred times greater than that with which a quartz clock itself
can be calibrated by astronomical observations. To meet the need for a
better time standard, atomic clocks have been developed in several coun-
tries, using periodic atomic vibrations as a standard.

A particular type of atomic clock, based on a characteristic frequency
associated with the cesium atom, has been in continuous operation at the
National Physical Laboratory in England since 1955. Figure 1-2 shows
a similar clock at the U. S. Bureau of Standards.

A cesium atom behaves like a tiny magnet. It experiences a sideways deflection
as it moves through a nonuniform magnetic field; the amount and the direction
of the deflection depend on the strength of this magnet and on the orientation of
the axis of the magnet in this field.

In a cesium atomic clock, the oven in Fig. 1-3 serves as a source of cesium
atoms, which enter and are deflected by nonuniform magnetic field A. The atoms
then pass through slit S located in the center of a resonating cavity C and entei
nonuniform magnetic field B. If no change in the effective magnetic strength o
the atoms occurs while they pass through the cavity, the field B just cancels out
the deflections produced by field A and the moving atoms strike the detector.

If the cavity C is filled with radiation produced by a microwave oscillator and
if this radiation has a sharply defined critical frequency sc., the cesium atoms ma
change their effective magnetic strength as they pass through the cavity. U

An atom can exist in a number of discrete configurations, or stationary states, each
with a well-defined energy. The atom can be induced to change from one of these
States to another by irradiating it with, or by stimulating it to emit, light waves or
other radiations with certain sharply defined frequencies. Radiations with frequencies
that do not belong to tiis discrete set will, in general, have no effect. When such
transitions between configurations occur, many properties of the atom, among them its

f i ve magnetic strength, may change.
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this occurs, the deflection of the atoms in field B will change (see dashed lines) and
the atomic beam will no longer strike the detector. Thus the atomic beam appara-
tus in Fig. 1-3 can be regarded as a sensitive device for determining whether the
microwave oscillator has a particular, sharply defined frequency ,'c.. Indeed, it
can be arranged that variations in the output of detector can be sent as correc-
tion signals to the microwave oscillator to insure that its frequency is always accur-
ately maintained at the characteristic value sc.. This oscillator can, in turn, be
used to control the frequency of a quartz crystal clock which, in its turn, can be
made to control the motion of the hands of a standard clock or to provide other,
'more convenient timing signals.

The cesium atoms in the apparatus of Fig. 1-3 act like a pendulum in a pendulum
clock; in each case, we have a characteristic frequency that is used to control a
time-keeping device.

The fundamental atomic frequency vc, on which the cesium clock is based has
been measured in terms of the standard second defined in terms of the earth's
orbital motion as: vc. 9,192,631,700 ± 20 vibrations/sec of ephemeris time,
the particular earth orbit being the tropical year 1957.

Figure 1-4 shows, by comparison with the cesium clock, variations in
the rate of rotation of the earth over nearly a three-year period. Note
that the earth's rotation rate is high in summer and low in winter (north-
ern 'hemisphere) and exhibits a steady decrease from year to year. It is
because of this variability of the earth's rotation, pointed up so sharply in
Fig. 1-4 but also known from astronomical observations, that UT was

replaced by ET for precise scientific work.
In connection with Fig. 1-4, it is legitimate to ask how we can be sure

that the rotating earth and not the cesium clock is "at fault." There are
two answers. (1) The relative simplicity of the atom compared to the
earth leads us to ascribe any differences between the two as timekeepers to
physical phenomena on the earth. Tidal friction between the water and
the land, for example, causes a slowing down of the earth's rotation. Also
the seasonal motion of the winds introduces a regular seasonal variation in
the rotation. Other variations may be associated with the melting of polar
icecaps and shifts of other earth masses. (2) The solar system contains
other timekeepers, such as the orbiting planets and the orbiting moons of
the planets; the rotation of the earth shows variations with respect to these,
too, which are similar to, but less accurately observable than, the variation
exhibited in Fig. 1-4.

Fig. 1-4 Variation in the rate of
rotation of the earth as revealed by
comparison with a cesium clock.
(Adapted from L. Ewen, Physics
Today, July 1960.)
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The time standard can be made available at remote locations by radio
transmission. Many countries maintain radio stations for this purpose.
Station %VWV, located in Beltsville, Maryland, and operated by the
National Bureau of Standards, is one of these: It broadcasts on carrier
frequencies of 2.5, 5, 10, 15, and 25 X 106 cycles/sec, stabilized to 1 part
in 1010 by comparison to a cesium clock. At 5-min intervals, WWV
alternately broadcasts an accurate 440-cycle/sec tone (concert A) and a
600-cycle/sec tone. Ten times per hour it broadcasts time signals, using
a binary digit coding system; the signals are based oil earth's rotation,
that is, they refer to universal time. Corrections are made for the wander-
ing of the earth's axis and the annual variation in the earth's rotational
speed.

In 1964, the second based on the cesium clock was temporarily adopted
as an international standard by the Twelfth General Conference of Weights
and Measures meeting in Paris. The action increases the accuracy of time
measurements to 1 part in 10", an improvement over the accuracy associ-
ated with astronomical methods of about 200. If two cesium clocks are
operated at this precision, and if there are no other sources of error, the
clocks will differ by only one second after running 5000 years.

Atomic clocks are still in a phase of rapid development as of 1965 and
t is for this reason that the "cesium second" was adopted only temporarily.

For example, the hydrogen maser gives promise of producing a clock with
an error of only one recond in 33,000,000 years.

1-6 Systems of Units

As already pointed out, there is a certain amount of arbitrariness in the
choice of the fundamental quantities. * For example, length, time, and
mass can be chosen as fundamental quantities; all other mechanical
qantjties, such as force, torque, density, etc., can be expressed in terms of
these fundamental quantities. However, we might equally well choose
force instead of mass as a fundamental quantity. However, having picked
the fundamental quantities and determined units for them, we thereby
utomatically determine the units of the derived quantities.
Three different systems of units are most commonly used in science and

engineering. They are the . meter-kilogram-second or mks system, the
Gaussian system, in which the fundamental mechanical units are the
centimeter, the gram, and the second (a cgs system), and the British
engineering System (a foot-pound-second or fps system). The gram and
kilogram are mass units, and the pound is a force unit; these will be defined
and discussed in Chapter 5.

We shall use the mks system principally throughout the text, except in
mechanics where the fps system will also be used. The metric system is
used universally in scientific work and provides the common Units of com-
merce in most countries of the world.

See "Dimensions, Units, and Standards" by A. G. McNish, in Physics Today,April 1957•
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Table 1-3

PREFIXES USED FOR MULTIPLES AND SUBMULTIPLES
OF METRIC QUANTITIES

10	 deci-	 deca-	 101

10- 2	centi-	 hecto-	 102

10'	 mull-	 kilo-	 10

10_6	micro-	 mega-	 106

10—	nano-	 giga-	 10

10 2	Pico-	 t,era-	 1012

Some prefixes used to identify multiples and submultiples of metric
quantities are shown in Table 1-3. Thus 1 millimeter = 10 meter,

1 nanosecond = 10 —, see, 1 megavolt = 10 6 volt, etc.
Much of the literature of physics is written in the Gaussian system.

The student of physics must become familiar with several systems of units
and must develop a facility for their manipulation. Appendix L shows

how the equations of physics, given in this book in the form appropriate to
the mks system, may be written in the form suitable to the Gaussian sys-
tem; it also provides a Gaussian units table and gives their mks equivalents.
The laws of physics, which express relations among observable physical
quantities, are unchanged in physical content and significance, however, no
matter what unit system is chosen to express them.

QUESTIONS

1. Do you think that a definition of a physical quantity for which no method of
measurement is known or given has meaning?

2. According to operational philosophy, if we cannot prescribe a feasible operation
for determining a physical quantity, the quantity is undetectable by physical means
and should be given up as having no physical reality. Not all scientists accept this
view. What are the merits and drawbacks of this point of view in your opinion?

3. What characteristics, other than accessibility and invariability, would you con-
sider desirable for a physical standard?

4. If someone told you that every dimension of every object had shrunk to half its
former value overnight, how could you refute his statement?

5. How would you criticize the following statement: "Once you have picked a physi-
cal standard, by the very meaning of standard it is invariable?"

6. What does an observer on the earth mean by "up" and "down"? Do all such
observers use the same reference frame? How could one make the meaning clearly
understood to any observer?

7. Why was it necessary to specify the temperature at which con,sons with L,

standard meter bar were to be made? Can length be called a c 'inda,nental quantity
if another physical quantity, such as temperature, must be pc3fied in choosing a
standard?
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8. Can length be measured along a curved line? If so, how?
9. Can you suggest a way to measure (a) the radius of the earth; (b) the distance

between the sun and the earth; (c) the radius of the sun?
10. Can you suggest a way to measure (a) the thickness of a sheet of paper; (b) the

thickness of a soap bubble film; (c) the diameter of an atom?
H. What criteria should a good clock satisfy?
12. Name several repetitive phenomena occurring in nature which could serve as

reasonable time standards.
13. The time it takes the moon to return to a given position as seen against the back-

ground of the fixed stars is called a siderial month. The time interval between identical
phases of the moon is called a lunar month. The lunar month is longer than a siderial
month. Why?

14. When man colonizes other planets, what drawbacks would our present standards
of length and time have? What drawbacks would atomic standards have?

15. Can you think of a way to define a length standard in terms of a time standard
or vice versa? (Think about a pendulum clock.) If so, can length and time both be
considered as fundamental quantities?

PROBLEMS

1. Express your height in the metric system of units.
2. In track meets both 100 yards and 100 meters are used as distances for dashes.

Which is longer? By how many meters is it longer? By how many feet?
3. A rocket attained a height of 300 kilometers. What is this distance in miles?
4. Machine-tool men would like to have master gauges (I in. long, say) good to

0.0000001 in. Show that the platinum-iridium meter is not measurable to this accuracy
but that the krypton-86 meter is. Use data given in this chapter.

5. Assume that the average distance of the sun from the earth is 400 times the aver-
age distance of the moon from the earth. Now consider a total eclipse of the sun and
state conclusions that can be drawn about (a) the relation between the sun's diameter
and the moon's diameter; (b) the relative volumes of sun and moon. List the assump-
tions made in arriving at these answers. (c) Find the angle intercepted at the eye by
a dime that just eclipses the full moon and from this experimental result and the given
distance between sun and earth, estimate the diameter of the moon.

6. Astronomical distances are so large compared to terrestrial ones that much larger
-units of length are used for easy comprehension of the relative distances of astronomical
objects. An astronomical unit (AU) is equal to the average distance from the earth to
the sun, about 92.9 X 106 miles. A parsec is the distance at which one astronomical
unit would subtend an angle of 1 sec of arc. A ught year is the distance that light,
traveling through a vacuum with a speed of 186,000 miles/see, would cover in one year.
(a) Express the distance from earth to sun in parsecs and in light years. (b) Express
a light year and a parsec in miles.

7. Assuming that the length of the day uniformly increases by 0.001 sec in a century,
calculate the cumulative effect on the measure of time over twenty centuries. Such
a slowing down of the earth's rotation is indicated by observations of the occurrences
of solar eclipses during this period.

8. (a) A unit of time sometimes used in microscopic physics is the shake. One shake
equals 10' sec. Are there more shakes in a second than there are seconds in a 'ear?
(b) Mankind has existed for about 106 years, whereas the universe is about 10 10 years
old. If the age of the universe is taken to be one day, for how many seconds has man-
kind existed?
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9. (a) The radius of the proton is about 10-16 meter; the radius of the observable
universe is about 10 18 cm. Identify a physically meaningful distance which is approxi-
mately halfway between these two extremes on a logarithmic scale. (b) The mean life
of a neutral pion (an elementary particle) is about 2 X 10 see. The age of the uni-
verse is about 4 X 10 9 years. Identify a physically meaningful time interval that is
approximately halfway between these two extremes on a logarithmic scale.

10. From Fig. 1-4, calculate by what length of time the earth's rotation period in
midsummer differs from that in the following spring.

11. A naval destroyer is testing five clocks. Exactly at noon, as determined by the
W WV time signal, on the successive days of a week the clocks read as follows:

Clock Sun.	 Mon.	 Tues.	 Wed.	 Thurs.	 Fri.	 Sat.

	

A	 12:36:40	 12:36:56	 12:37:12	 12:37:27	 12:37:44	 12:37:59	 12:38:14

	

B	 11:59:59	 12:00:02	 11:59:57	 12:00:07	 12:00:02	 11:59:56	 12:00:03

	

C	 15:50:45	 15:51:43	 15:52:41	 15:53:39	 15:54:37	 15:55:35	 15:56:33

	

D	 12:03:59	 12:02:52	 12:01:45	 12:00:38	 11:59:31	 11:58:24	 11:57:17

	

B	 12:03:59	 12:02:49	 12:01:54	 12:01:52	 12:01:32	 12:01:22	 12:01:12

How would you arrange these five clocks in the order of their relative value as good
timekeepers? Justify your choice.

S
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Vectors
CHAPTER 2

2-1 Vectors and Scalars

A change of position of a particle is called a displacement. If a particle
moves from position A to position B (Fig. 2-1a), we can represent its dis-
placement by drawing a line from A to B; the direction of displacement. can
be shown by putting an arrowhead at B indicating that the displacement
was from A to B. The path of the particle need not necessarily be a
straight line from A to B; the arrow represents only the net effect of the
motion, not the actual motion. 	 -

In Fig. 2-1b, for example, we plot a path followed by a particle from
A ,to B. The pa t h is not the same as the displacement AB. If we were to
take snapshots of the particle when it was at A and, later, when it was at
some intermediate position P, we could obtain the displacement vector
AP, representing the net effect of the motion during this interval, even
though we would not know the actual path taken between these points.
Furthermore, a displacement such as A'B' (Fig. 2-1a), which is parallel to
AB, similarly directed, and equal in length to A, represents the same
change in position as AB. We make no distinction between these two dis-
placements. A displacement is therefore characterized by a length and a
direction.

In a similar way, we can represent a subsequent displacement from B to
C (Fig. 2-1c). The net effect of the two displacements will be the same as
a displacement from A to C. We speak then of AC as the sum or resultant
of the displacements AB and BC. Notice that this sum is not an algebraic
sum and that a number alone cannot uniquely specify it.

15
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B\^ B

P(

(a)
	

(b)	 (e)

Fig. 2-1 Displacement vectors. (a) Vectors AR and A'B' are identical since they
have the same length and point in the same direction. (b) The actual path of the

particle in moving from A to B may be the curve shown; the displacement remains
the vector AR. At some intermediate point P the displacement from A is the vector
AP. (c) After displacement AR the particle undergoes another displacement BC.
The net effect of the two displacements is represented by the vector AC.

Quantities that behave like displacements are called vectors.* Vectors,
then, are quantities that have both magnitude and direction and combine
according to certain rules of addition. These rules are stated below. The
displacement vector can be considered as the prototype. Some other
physical quantities which are vectors are force, velocity, acceleration, elec-
tric field strength, and magnetic induction. Many of the laws of physics
can be expressed in compact form using vectors; derivations involving
these laws are often greatly simplified if this is done.

Quantities that can be completely specified by a number and unit and
that therefore have magnitude only are called scalars. Some physical
quantities which are scalars are mass, length, time, density, energy, and
temperature. Scalars can be manipulated by the rules of ordinary algebra.

2-2 Addition of Vectors, Geometrical Method

To represent a vector on a diagram we draw an arrow. We choose the
length of the arrow proportional to the magnitude of the vector (that is, we
choose a scale), and we choose the direction of the arrow to be the direction
of the vector, with the arrowhead giving the sense of the direction. For
example, a displacement of 40 ft north of east on a scale of 1.0 in. per 10 ft
would be represented by an arrow 4.0 in. long, drawn at an angle of 

450 to
the horizontal direction with the arrowhead at the top right extreme. A
vector such as this is represented conveniently, in printing by a boldface
symbol such as d. In handwriting it is convenient to put an arrow above

the symbol to denote a vector quantity, such as il.	 -

' The word vector comes from the Latin and means carrier, which suggests a displace-
ment. A good general reference on vectors is Vector and Tensor A nalysis by G. E. Hay,
Dover Publications, 1953.



Fig. 2-3 (a) The commuta-
tive law for vector sums, which
states that a+b=b+a.
(b) The associative law, which
states that 4 + e + f.
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Often we shall be interested only in the magnitude of the vector and not
in its direction. The magnitude of d may be written as dl, called the
absolute value of d; more frequently we represent the magnitude alone by
the italic letter symbol, such as d. The boldface
symbol is meant to signify both properties of the
vector, magnitude and direction

Consider now Fig 2-2 in which we have redrawn
and relabeled the vectors of Fig 2-1c The rela-
tion among these displacements (vectors) can be 	 a
written as

a+b=r.	 (2-1)

The rules to be followed in performing this (vector)

	

	 Fis. 2-2 The vec-
tor

addition geometrically are these: On a diagram 	 with Fig.
drawn to scale lay out the displacement vector a; 	 2-1c.
then draw b with its tail at the head of a, and draw
a line from the tail of a to the head of b to con-
struct the vector sum r. This is a displacement equivalent in length
and direction to the successive displacements a and b. This procedure can
be generalized to obtain the sum of any number of successive displacements.

Since vectors are new quantities, we must expect new rules for their
manipulation. The symbol "+" in Eq. 2-1 simply has a different mean-
ing from arithmetic or ordinary algebra. It tells us to carry out a different
set of operations.	 -

Using Fig. 2-3 we can prove two important properties of vector addition:

a + b = b + a,	 (commutative law)	 (2-2)

and

d + (e + f)	 (d + e) + f.	 (associative law)	 (2-3)

These laws assert that it makes no difference in what order or in what
grouping we add vectors; the sum is the same. In this respect, vector addi-
tion and scalar addition follow the same rules.

The operation of subtraction can be included in our vector algebra by
defining the negative of a vector to be another vector of equal magnitude



Fig. 2-4 The vector difference a - b
a + (—b).
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but opposite direction. Then

(2-4)

as shown in Fig. 2-4.
Remember that, although we have used displacements to illustrate these

operations, the rules apply to all vector quantities.

2-3 Resolution and Addition of Vectors, Analytic Method

The geometrical method of addtng vectors is not very useful for vectors
in three dimensions; often it is even inconvenient for the two-dimensional
case. Another way of adding vectors is the analytical method, involving
the resolution of a vector into components with respect to a particular
coordinate system.

Figure 2-5a shows a vector a whose tail has been placed at the origin of
a rectangular coordinate system. If we drop perpendicular lines from the
head of a to the axes the quantities a and a5 so formed are called the com-
ponents of the vector a. The process is called resolving a vector into its
components. Figure 2-5 shows a two-dimensional case for convenience;
the extension of our conclusions to three dimensions will be clear.

A vector may have many sets of components. For example, if we rotate
the x-axis and y-axis in Fig. 2-5a by 100 counterclockwise, the components
of a would be different. Furthermore, we may use a nonrectangular
coordinate system, that is, the angle between the two axes need not be 900.
Thus the components of a vector are only uniquely specified if we specify

FIR. 2-5 Two examples of the resolution of a vector into its scalar components in
a particular coordinate system.
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the particular coordinate system being used. The vector need not be
drawn with its tail at the origin of the coordinate system to find its com-
ponents—although we have done so for convenience; the vector may be
moved anywhere in the coordinate space and, as long as its angles with the
coordinate directions are maintained, its components will be unchanged.

The components a and au in Fig. 2-5a are found readily from.

a = a cos O	 and	 a = a sin 8,	 (2-5)

where 0 is the angle that the vector a makes with the positive x-axis,
measured counterclockwise from this axis. Note that, depending on the
angle 0, a and a can be positive or negative. For example, in Fig. 2-5b,
by is negative andlo, is positive. The components of a vector behave like
scalar quantities because, in any particular coordinate system of a given
reference frame, only a number, with an algebraic sign, is needed to specify
them.

Once a vector is resolved into its components, the components them-
selves can be used to specify the vector. Instead of the two numbers a
(magnitude of the vector) and 8 (direction of the vector relative to the
x-axis), we now have the two numbers a. and a. We can pass back and
forth between the description of a vector in terms of its components a, av
and the equivalent description in terms of magnitude and direction a and
0. To obtain a and 0 from a,r and a, we note from Fig. 2-5a that

	

a = s/ar2	 + ay2
	

(2-6a)

and

	

tan 8 = a/a.	 (2-6b)

The quadrant in which 8 lies is determined from the sign of a and a.
When resolving a vector into components it is sometimes useful to intro-

duce a vectoiof unit length in a given direction. Thus vector a in Fig.
2-6a may be written, for example, as

	

a = u0a,	 (2-7)

where u is a unit vector in the direction of a. Often it is convenient to
draw unit vectors along the particular coordinate axes chosen. In the
rectangular coordinate system the special symbols i, j, and k are usually

Fig. 2-6 (a) The vector a
may be written as. u,a in
which u is a unit vector in
the direction of a. (b) The
unit vectors i, j, and k, used
to specify the positive r-, y-.
and z-directions respectively.

7/'
/a

(a)
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•

;Jay <J2L,-	 (a)	 (b)

Fig. 2-7 Two examples of the resolution of a vector into its vector components
in a particular coordinate system; compare with Fig. 2-5.

used for unit vectors in the positive x-, y-, and z-directions, respectively;
see Fig. 2-6b. Note that i, j, and k need not be located at the origin.
Like all vectors, they can be translated anywhere in the coordinate space
as long as their directions with respect to the coordinate axes are not
changed.

The vectors a and b of Fig. 2-5 may be written in terms of their com-
ponents and the unit vectors as

	

a = ia,, + jay	 (2-8a)

and

	

b = ib + jb;	 (2-8b)

see Fig. 2-7. The vector relation Eq. 2-8a is equivalent to the scalar

relation Eq. 2-6; each relates the vector (a, or a and 0) to its components

(ar and as). Sometimes we will call quantities such as ia and jay in Eq.

2-8a the vector components of a; they are drawn as vectors in Fig. 2-7a.

The word component alone will continue to refer to the scalar quantities

a and ay.
We now consider the addition of vectors by the analytical method. Let

r be the sum of the two vectors a and b lying in the x-y plane, so that

r=a+b. (2-9)

In a given coordinate system, two vectors such as r and a + b can only be
equal if their corresponding components are equal, or

	

r. = a,, + b5	 (2-10a)

and

	

ry = ay + b.	 (2-10b)

These two algebraic equations, taken together, are equivalent to the single
vector relation Eq. 2-9. From Eqs. 2-6 we may find rand the angle 0 that

r makes with the x-axis; that is,

r = V/r,,2 f r2
and

tan 0	 r/r,,.
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Thus we have the following analytic rule for adding vectors: Resolve
each vector into its components in a given coordinate system; the algebraic
sum of the individual components along a particular axis is the component
of the sum vector along that same axis; the sum vector can be reconstructed
once its components are known. This method for adding vectors may be
generalized to many vectors and to three dimensions (see Problems 6

and 11).
The advantage of the method of breaking up vectors into components,

rather than adding directly with the use of suitable trigonometric rela-
tions, is that we always deal with right triangles and thus simplify the
calculations.

In adding vectors by the analytical method, the choice of coordinate
axes determines how simple the process will be. Sometimes the com-
ponents of the vectors with respect to a particular set of axes are known
to begin with, so that the choice of axes is obvious. Other times a judicious
choice of axes can greatly simplify the job of resolution of the vectors into
components. For example, the axes can be oriented so that at least one
of the vectors lies parallel to an axis.

Example 1. An airplane travels 130 miles on a straight course making an
angle of 22.5° east of due north. How far north and how far east did the plane
travel from its starting point?

We choose the positive z-direction to be east and

	

the positive y-direction to be north. Next (Fig. 2-8)	 ,

	

we draw a displacement vector from the origin (start- 	 dy/
5*ing point), making an angle of 22..5° with the y-axis

(north) inclined along the positive z.direction (east).
The length of the vector is chosen to represent a
magnitude of 130 miles. If we call this vector d, then
dx gives the distance traveled east of the starting
point and d gives the distance traveled north of the
starting point. We have

8 = 90.0° - 22.5° = 67.50,

so that (see Eqs. 2-5)

dx = d cos 0 = (130 miles) cos 67.5° = 50 miles,

and

dy = d sin 0 = (130 miles) sin 67.5° = 120 miles.

]

Fig. 2-8 Example I.

Example 2. An automobile travels due east on a
level road for 30 miles. It then turns due north at
an intersection and travels 40 miles before stopping. Find the resultant displace-
ment of the car.

We choose a reference frame fixed with respect to the earth, with the positive
x-direction of our coordinate system pointing east and the positive u-direction
pointing north. The two successive displacements, a and b, are then drawn as
shown in Fig. 2-9. The resultant displacement r is obtained from r	 a + 1.



Fig. 2-9 Example 2.

Fig. 2-10 Three vectors, a, b,
and a, and their vector sum r.
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Since  has no s-component and a has no y-component, we obtain (see Eqs. 2-10)

r. = aa + b5, = 30 miles + 0 30 miles,

ry = a, + by = 0 + 40 miles 40 miles.

The magnitude and direction of r are then (see Eqs. 2-8)

r = /ra2 + r 2	/(30 miles) 2 + (40 miles) 2 = 50 miles,

tan  = rv/ra 
40 

miles= 133	 0 = tan (1.33) 53°
30 miles

The resultant vector displacement r has a magnitude of 50 miles and makes an
angle of 530 north of east..

Example 3. Three coplanar vectors are expressed, with respect to a. certain
rectangular coordinate system of a given reference frame, as

a = 41 -

b —31 + 2j,

and	 c=-33,

in which the components are given in arbitrary units. Find the vector r which is
the sum of these vectors. 	 -
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From Eqs. 2-10 we have

r5 - a+b+cr 4-3+0 1,
and

ry = ay + by + c, -1 + 2 - + - 2.
Thus

	

	 -
r = ir, +jfy

i - 2j.

Figure 2-10 shows the four vectors. From Eqs. 2-6 we can calculate that the
magnitude of r is "/5 and that the angle that r makes with the positive .5-axis,
measured counterclockwise from that axis, is

tan-' (-2/1) = 297°.	 1

2-4 Multiplication of Vectors*

We have assumed in the previous discussion that the vectors being added
together are of like kind; that is, displacement vectors are added to dis-
placement vectors, or velocity vectors are added to velocity vectors. Just
as it would be meaningless to add together scalar quantities of different
kinds, such as mass and temperature, so it would be meaningless to add
together vector quantities of different kinds, such as displacement and
electric field strength.

However, like scalars, vectors of different kinds can be multiplied by one
another to generate quantities of new physical dimensions. Because
vectors have direction as well as magnitude, vector multiplication cannot
follow exactly the same rules as the algebraic rules of scalar multiplication.
We must establish new rules of multiplication for vectors.

We find it useful to define three kinds of multiplication operations for
vectors: (1) multiplication of a vector by a scalar, (2) multiplication of two
vectors in such a way as to yield a scalar, and (3) multiplication of two
vectors in such a way as to yield another vector. There are still other
possibilities, but we shall not consider them here.

The multiplication of a vector by a scalar has a simple meaning: The
product of a scalar k and a vector a, written ka, is defined to be a new
vector whose magnitude is k times the magnitude of a. The new vector
has the same direction as a if k is positive and the opposite direction if k is
negative. To divide a vector by a scalar we simply multiply the vector
by the reciprocal of the scalar.

When we multiply a vector quantity by another vector quantity, we
must distinguish between the scalar (or dot) product and the vector (or cross)
product. The scalar product of two vectors a and b, written as a b, is
defined to be

a.b = ab Cos ,	 (211)

'The material of this section will be used later in the text. The scalar product is
used fist in Chapter 7 and the vector product in Chapter 11. The instructor can post-
pone this section accordingly If he wishes. Its presentation here gives a unified treat-
ment of vector algebra and serves as a convenient reference for later work. 	 -
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where a is the magnitude of vector a, b is the magnitude of vector b, and

cos 4 is the cosine of the angle 4, between the two vectors (see Fig. 2-11).

Since a and b are scalars and cos 4, is a pure number, the scalar product

of two vectors is a scalar. The scalar product of two vectors can be regarded
as the product of the magnitude
of one vector and the component
of the other vector in the direction
of the first Because of the nota-
tion a b is also called the dot

a	 -	 product of a and b and is spoken
as "a dot b."

/	 -	 We could have defined a - b to
-	 be any operation we want, foi

t:	 acoso,

Co

b	 example, to be a"P tan (4,/2), but
this would turn out to be of no
use to us in physics With our
definition of the scalar product, a

Fig. 2-11 The scalar product a b	 number of important physical

	

a 0 cos 4,) is the product of the	 quantities can be described as the
magnitude of either vector (a, say)	 scalar product of two vectors.
by the component of the other vector Some of them are mechanical work,in the direction of the first vector
b cos 4, say).	 gravitational potential energy, elec-

trical potential, electric power, and
electromagnetic energy dencity.

When such quantities are discussed later, their connection with the scalar
product of vectors will be pointed out.

The vector product of two vectors a and b is written as a X b and is
another vector c, where c = a x b. The magnitude of c is defined by

	

c	 ab SIII 4,,	 (2-12)

where 0 is the angle between a and b.
The direction of c, the vector product of a and b, is defined to he perpen-

dicular to the plane formed by a and b. To specify the sense of the vec-
tor c we must refer to Fig. 2-12. Imagine rotating a right-handed screw
whose axis is perpendicular to the plane formed by a and li so as to turn it
front a to b through the angle 0 between them. rfIielI the direction of
advance of the screw gives the direction of the vector product a x I (Fig.
2-12a). Another convenient wa y to obtain the direction of a vector prod-
uct is the foilow-ing. Imagine an axis perpendicular tothe plane of a and b

through their origin ow wrap the fingers of the right hand around this
axis and push the vector a into the vector b through the smaller angle
between them with the fingertips, keeping the thumb erect; the direction
of the erect, thumb then gives the direction of tl	 for product a X b

* There are two different anglesbetwecn	 vectors, depending on the sense of
rotation. We always choose the swatter of - two in vector multiplication.
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(--a X b xb

<b

0L
Fig. 2-12 The vector product. (a)
Inc = a X b, the direction ofcisthat
in which a right-handed screw ad-
vances when turned from a to b
through the smaller angle. (b) The
direction of c can also be obtained
from the "right-hand rule": If the
right hand is held so that the curled
fingers follow the rotation of a into
b, the extended right thumb will point
in the direction of c. (c) The vector
product changes sign when the order
of the factors is reversed: a X b =
-b X a.

(Fig. 2_12b) . * Because of the notation, a x b is also called the cross
product of a and b and is spoken as "a cross b."

Notice that b x a is not the same vector as a x b, so that the order of
factors in a vector product is important. This is not true for scalars
because the order of factors in algebra or arithmetic does not affect the
resulting product. Actually, a x b = — b x a (Fig. 2-12c). This can
be deduced from the fact that the magnitude ab sin 0 equals the magnitude
basin 0, but the direction of a x b is opposite to that of b x a; this is so
because the right-handed screw advances in one direction when rotated
from a to b through 0 but advances in the opposite direction when rotated
from b to a, through . The student can obtain the same result by apply-
ing the right-hand rule.

If 0 is 900, a, b, and c (= a x b) are all at right angles to one another
and give the directions of a three-dimensional right-handed coordinate
system.

The reason for defining the vector product in this way is that it proves
to be useful in physics. We often encounter physical quantities that are

• The procedure described in Fig. -12 is a convention. Two vectors such as R and
b form a plane and thvrc are two directions that point away from any plane. The one
selected (by convention) employs the right, hand or a right-handed screw; the left hand
or a left-handed screw would have led to the other choice for the direction of a X K
F-4
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vectors whose product, defined as above, is a vector quantity having impor-
tant physical meaning. Some examples of physical quantities that are
vector products are torque, angular momentum, the force on a moving
charge in a magnetic field, and the flow of electromagnetic energy. When
such quantities are discussed later, their connection with the vector product
of two vectors will be pointed out.

The scalar product is the simplest product of two vectors. The order
of multiplication does not affect the product. The vector product is the
next simplest case. Here the order of multiplication does affect the prod-
uct, but only by a factor of minus one, which implies a direction reversal.
Other products of vectors are useful but more involved. For example, a
tensor can be generated by multiplying each of the three components of one
victor by the three components of another vector. Hence a tensor (bf
the second rank) has nine numbers associated with it, a vector three, and a
scalar only one. Some physical quantities that can be represented by
tensors are mechanical and electrical stress, moments and products of
inertia, and strain. Still more complex physical quantities are possible.
In this book, however, we are concerned only with scalars and vectors.

2-5 Vectors and the Laws of Physics

Vectors turn out to he very useful in physics. It will be helpful to
look a little more deeply into why this is true. Suppose that we have three
vectors a, b, and r, which have components a, ay, a; b, b, b; and r,

r i,, r, respectively in a particular coordinate system xyz of our reference
franc. Let us suppose further that the three vectors are related so that

r=a+b.	 (2-13)

By a simple extension of Eqs. 2-10 this means that

r = a + br;	 r = a y + by;	 and	 r = a + b. (2-14)

Now consider another coordinate system x'y'z' which has these proper-
ties: (1) its origin does not coincide with the origin of the first, or xyz, sys-
tem and (2) its three axes are not parallel to the corresponding axes in the
first system. In other words, the second set of coordinates has been both
translated and rotated with respect to the first..

The components of the vectors a, b, and r in the new system
would all prove, in general, to be different; we may represent them by
as' , au', as '; b; and ri' , r, respectively. These new components
would be found, however, to be related (see Problem 34) in that

= a. , + ba ' ;

	

	 r = a. , + b;	 and	 r.	 +	 (2-15)

That is, in the new system we would find once again (see Eq. 2-13) that

r = a + b.

In more formal language., Relations among vectors, of which Eq. 2-13 is

only one example, are invariant (that is, are unchanged) with respect to
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Fig. —13 Showing (a) a left-handed and (b) a
right-handed coordinate system. Notice that (a)
and (b) are related in that each may be viewed as
the image of the other in mirror MM. The
"handedness" of a coordinate system cannot be
changed by rotating it. Note that in (b), I X j = k,
whereas in (a), i X  = —k.

translation or rotation of the coordinates. Now it is a fact of experience that
the experiments on which the laws of physics are based and indeed the laws
of physics themselves are similarly, unchanged in form when we rotate or
translate the reference system. Thus the language of vectors is an ideal
one in which to express physical laws. If we can express a law in vector
form, the invariance of the law for translation and rotation of the coordi-
nate system is assured by this purely georpetrical property of vectors.

It was thought until about 1956 that all laws of physics were invariant under
another kind of transformation of coordinates, the substitution of a right-handed
coordinate system for a left-handed one (see Fig. 2-13). In that year, however,
some experiments involving the decay of certain elementary particles were studied
in which the result of the experiment did turn out to depend on the "handedness"
of the coordinate system used to express the results. In oi l er words, the experi-
ment and its image in a mirror would yield different results!* This surprising
result led to a re-examination of the whole question of the symmetry of physical
laws; as of 1965 these studies remain among the most challenging in modern physics.

QUESTIONS

1. Can two vectors of different magnitude be combined to give a zero resultant?
Can three vectors?

2. Can a vector be zero if one of its components is not zero?
3. Does it make any sense to call a quantity a vector when its magnitude is zero?
4. Name several scalar quantities. Is the value of a scalar quantity dependent on

the reference frame chosen?
5. We can order events in time. For example, event b may precede event c but fol-

low event a, giving us a time order of events a, h, c. Hence there is a sense of time,
distinguishing past, present, and future. Is timea vector therefore? If not, why not?

• C. N. Yang and T. D. Lee were awarded the Nobel prize in 1957 for their theoretical
prediction that this would be the case.
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6. Do the commutative and associative laws apply to vector subtraction?
7. Can a scalar product be a negative quantity?

PROBLEMS

1. Two vectors a and b are added. Show that the magnitude of the resultant can-
not be greater than a + b or smaller than la - bI, where the vertical bars signify
absolute value.

2. What are the properties of tvo vectors a and I, such that

(a)	 a+b -c	 and a+b=c,

(6)	 a+ba - b,

(c)	 a+b=c	 and a2+b2c1.

3. Consider two displacements, one of magnitude 3 meters and another of magnitude
4 meters. Show how the displacement vectors may be combined to get a resultant
displacement of magnitude (a) 7 meters, (b) 1 meter, and (c) 5 meters.

4. Two vectors a and b have equal magnitudes, say 10 Units. They are oriented as
shown in Fig. 2-14 and their vector sum is r. Find (a) the z- and y-components of r;
(b) the magnitude of r; and (c) the angle r makes with the x-axis.

5. Given two vectors a - 4i - 3J and b 61 + Sj, find the magnitude and direc-
tion of a, of b, of a + b, of b - a, and of a - b.

6. Generalize the analytical method of resolution and addition to the case of three
or more teeters.

7. A car is driven eastward for a distance of 50 miles, then northward for 30 miles,
and then in a direction 300 east of north for 25 miles. Draw the vector diagram r,d
determine the total displacement of thr' car from its starting point.

8. A golfer takes three strokes to gt his ball into the hole once he is on the green.
The first stroke displaces the ball 12 ft north, the second trt	 fl ft southeast, and
the third stroke 3.0 ft southwest. What displacemcn	 1 to get the ball into
the hole on the first stroke?

9. A particle undergoes three successive disp!a.wents in a plane, as fol!i'. 	 - P
meters southwest, 5.0 meters 	 t 6.0 meters in a direction 60° north of	 . Choose
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the y-axis pointing north and the x-axis pointing east and find (a) the components of
each displacement, (b) the components of the resultant displacement, (c) the magnitude
and direction of the resultant displacement, and (d) the displacement that would be
required to bring the particle back too 	 starting point.

10. Use a scale of 2 meters to the inch and add the displacements of Problem 9
graphically. Determine from your graph the magnitude and direction of the resultant.

11. Oeneralize the analytical method of resolving and adding two vectors to three

dimensions.

12. (a) A man leaves his front door, walks 1000 ft east, 2000 ft north, and then takes
a penny from his pocket and drops it from a cliff 500 ft high. Set up a coordinate sys-
tem and write down an expression, using unit vectors, for the displacement of the penny.
(b) The man then returns to his front door, following a different path on the return trip.
What is his resultant displacement for the round trip?

13. Find the sum of the vector displacements c and d whose components in miles
along three perpendicular directions are

5.0, c5 - 0, c,	 -2.0; d,	 -3.0, d5 - 4.0, d,	 6.0.

14. A vector d has a magnitude 2.5 meters and points due north. What are the
magnitudes and directions of the vectors

(a) -ci, (b) d/2.0, (a) -2.5d	 and (d) 4.0d?

15. A room has the dimensions 10 ft X 12 ft X 14 ft. A fly starting at one corner
ends up at a diametrically opposite corner. (a) What is the magnitude of its displace-
ment? (b) Could the length of its path he less than this distance? Greater than this
distance? Equal to this distance? (c) Choose a suitable coordinate system and find
the components of the displacement vector in this frame.

16. In Problem 15, if the fly does not fly but crawls, what is the length of the shortest
path it can take?

17. A man flies from Washington to Manila. Describe the displacement vector.
What is its magnitude if the latitude and longitude of the two cities are 390 N, 770 W
and 150 N, 1210 E?

18. Two vectors of lengths a and b make an angle 0 with each other when placed
tail to tail. Prove, by taking components along two perpendicular axes, that the
length of the resultant vector is

r -	 b2 + 2ab cos 0.

(9. Show for any vector a that a • a a2 and that a X a 0.
20. Use the standard (right-hand) xyz system of coordinates. Given vector a in the

+x-direction, vector b in the +y-direction, and the scalar quantity d: (a) What is the
direction of a X b (b) What is the direction of h X a? (c) What is the direction of
bid? (d) What is the magnitude of a

21. A vector a of magnitude ten units and another vector b of magnitude six units
point in directions differing by 60°. Find (a) the scalar product of the two vectors and
(b) the vector product of the two vectors.

22. In the coordinate system of Fig. 2-6b show that

i - j . J = Ii Ic - 1
and

i . j =jk °"ki -0.

23. In the right-handed coordinate system of Fig. 2-6b show that

i )( i - i Xi - k X Ic -0

ixj - k;	 kxi -j;	 jXki.
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24. (a) We have seen that the commutative law does not apply to vector products,
that is, a X b does not equal b X a. Show that the commutative law does apply to
scalar products, that is, a b - b ' a. (b) Show that the distributive law applies to
both scalar products and vector products, that is, show that

a'(b +c) a'b +a'c and that a X (b +c) a  b +a Xc.

(c) Does the associative law apply to vector products, i.e., does a X (b X c) equal
(a X b) X c? Does it make any sense to talk about an associative law for scalar
products?

U. ,Scalar product in unit vector notation. Let two vectors be represented in terms of
their coordinates as

a ia + 3 01, + kas
and

b = ib + jb. + kb,
Show analytically that

a' b a5b + a5.b1, + ab,,.
(Hint: See Problem 22.)

26. Use the definition of scalar produet a...'J 	 ab cos 0 and the fact that a b
+ a1,b1, + ab (see Problem 25) to obtn the angle between the two vectors given

by a 3i + 3j - 3k and b Zi +j + 3k.
27. Vector product in unit vector notation. Show analytically that a X b = i (a1,b. -

ab1,) +j(a.b - a,b) + k(ab,, - a5b). (Hint: See Problem 23.)
28. Show that the magnitude of a vector product gives numerically the area of the

parallelogram formed with the two component vectors as sides (see Fig. 2-15). Does
this suggest how an element of area oriented in space could be represented by a vector?

Fig. 2-15

•29. Show that the area of the triangle contained between the vectors a and his 71a X h,
where the vertical bars signify absolute value (see Fig. 2-15).

30. Show that a' (b )< c) is equal in magnitude to the volume of the parallelepiped
formed on the three vectors a, b, and c

31. Let b and c be the intersecting face diagonals of a cube of edge a, as shown in

V

4.

F12. 2-16
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Fig. 2-16. (a) Find the components of the vector d, where

d b  c.

(b) Find the values of b c, of d c, and of d b.
32. Suppose a, h, and c are any three noncoplanar vectors. They are not neces-

sarily mutually at right angles. (a) show that

	

a(b Xc)	 b'(c X a)	 c(a X b).
(b) Let

b X c	 cXa	 aXb	A-' B	 ' C

	

V	 V	 I'

where v	 a (b X c). Evaluate the dot product of each of a. b, c with each of A,
B, C. (c) If a, b, c have dimensions of length, what are the dimensions of A, B, C?

33. Let N be an integer greater than one; then

	

cos 0 + cos 2s
	 4s	 2r

+ COS - +	 + cos (N - 1)	 0;

that is,

2,-n
2 Cos --0.

Also	 -
,,- N—i

	sin--	 O.
n-0

Prove these two statements by considering the sum of N vectors of equal length, each
vector making an angle of 25-1N with that preceding.

34. Invariance of vector addition under rotation of the coordinate system. Figure 2-17
shows two vectors a and b and two systems of coordinates which differ in that the
z and z' axes and the y and y' axes each make an angle 0 with each other. Prove ana-
lytically that a + b has the same magnitude and direction no matter which system is
used to carry out the analysis.

y	-.

-L I"

	

0	 -

Fig. 2-7
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Motion in One Dimension
CHAPTER 3

3-1 Mechanics

Mechanics, the oldest of the physical sciences, is the study of the motion
of objects. The calculation of the path of an artillery shell or of a space
probe sent from Earth to Mars are among its problems. So too is the
analysis of tracks formed in bubble chambers, representing the collisions,
decay, and interactions of elementary particles (see Fig. 10-11 and
Appendix E).

When we describe motion we are dealing with that part of mechanics
called kinematics. When we relate motion to the forces associated with it-
and to the properties of the moving objects, we are dealing with dynamics.
In this chapter we shall define some kinematical quantities and study them
in detail for the special case of motion in one dimension. In Chapter 4 we
discuss some cases of two- and three-dimensional motion. Chapter .)
deals with the more general case of dynamics.

3-2 Particle Kinematics

A real object can rotate as it moves. For example, a baseball may he
spinning while it is moving as a whole in some trajectory. Also, a body may
vibrate as it moves, as, for example, a falling water droplet.. ,Thcsc corn-
l)JiCal ions can be avoided by considering the motion of a very small body
'alied a particle. _\fathcniatically, a particle is treated as a point, an
Object without extent, so that rotational and vibrational considerations
are not involved.

Actually, there is no such' thing in nature as an object without extent.
The concept of "particle" is nevertheless very useful because real objects

32
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Fig. 3-1 Translational motion of an object. 'i"raaslation can occur in three dimen-
sions, but only two are shown for simplicity.

often behave to a very good approximation as though they were particles.
A body need not be "small" in the usual sense of the vurd in order to be
treated as a particle. For example, if we consider the disLance from the
earth to the sun, with respect to this distance the earth and the sun can
usually be considered to be particles. We can find out a great deal about
the motion of the sun and planets, without appreciable error, by treating
these bodies as particles. Baseballs, molecules, protons, and electrons cal"
be often treated as particles. Even if a body is too large to be considered
a particle for a particular problem, it can always be thought of as made
up of a large number of particles, and the results of particle motion may
be useful in analyzing the problem. As a simplification, therefore, we
confine our present treatment to the motion of a particle.

Bodies that have only motion of translation behave like particles. An
observer will call motion translational if the axes of a reference frame which
is imagined rigidly attached to the object., say .r', y'; and z', always remain
parallel 10 the axes of his own reference frame, say x, y, and z. In Fig.
3-1, for example, we show the translational motion of an object moving
from positions .1 to B to C. Notice that the path taken is not necessarily
a straight line. Notice too that throughout the motion every point, of the
body undergoes the same displacements as every other point.. We can
assume time body to be a particle because in describing the motion of one
point on the body we have described the motion of the body as a whole.

3-3 Average Velocity

The velocity of a particle is the rate at which its position changes with time.
The position of a particle in a particular reference frame is given by a
position vector drawn from the origin of that frame to the particle. At
time 11, let a particle be at point .1 in Fig. 3-2a, its position in the x-y plane
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Y	 -

t2.

. t2

L____-T

(a) (b)

X

/

Fig. 3-2 (a) A particle moves from A to B in time At ( - ti) undergoing a
displacement Ar (= r - rI). The average velocity between .1 and B is in the direction
of Sr. (b) As B moves closer to A the average velocity approaches the instantaneous
velocity v at A; v is tangent to the path at A.

being described by position vector r 1. For simplicity we treat motion in
two dimensions only; the extension to three dimensions will not be difficult.

At a later time £2 let the particle be at point B, described by posit-ion
vector r 2. The displacement rector describing the change in position of
the particle as it moves from A to B is & (= r2- r 1 ) and the elapsed time
for the motion between these points is At (= 12 -11). The average velocity

for the particle during this interval is defined by

r	 displacement (a vector)	 (3-1)
At 	elapsed time (a scalar)

A bar above a symbol indicates an average value for the quantity in
question.

The quantity V is a vector, for it is obtained by dividing the vector Ar
by the scalar At. Velocity, therefore, involves both direction and magni-
tude. Its direction is the direction of Ar and its magnitude is .r/tI.
The magnitude is expressed in distance units divided by time units, as,
for example, meters per second or miles per hour.

The velocity defined by Eq. 3-1 is called an average velocity because the
measurement of the net displacement and the elapsed time does not tell
us anything at all about the motion between A and B. The path may have
been curved or straight; the motion may have been steady or erratic. The
average velocity involves simply the total displacement and the total
elapsed time. For example, suppose a man leaves his house and goes on
an automobile trip, returning tq his house in a time At after he left it.
His average velocity for the trip is zero because his displacement for this

particular time interval At is zero.
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If we were to measure the time of arrival of the particle at each of many
points along the actual path between A and B in Fig. 3-2a., we could
describe the motion in more detail. If the average velocity turned out to
be the same (in magnitude and direction) between any two points along
the path, we would conclude that the particle moved with constant velocity,

that is, along a straight line (constant direction) at a uniform rate (con-
stant magnitude).

3-4 Instantaneous Velocity

Suppose that a particle is moving in such a way that its average velocity,
measured for a number of different time intervals, does not turn out to be
constant. This particle is said to move with variable velocity. Then we
must seek to determine a velocity of the particle at any given instant of
time, called the instantaneous velocity.

Velocity can vary by a change in magnitude, by a change in direction, or
both. For the motion portrayed in Fig. 3-2a, the average velocity during
the time interval t 2 - t j may differ both in magnitude and direction from
the average velocity obtained during another time it.erval t 2 ' - t j. In
Fig. 3-26we illustrate this by choosing the point B to be successively closer
to point A. Points B' and B" show two intermediate positions of the
particle corresponding to the times t 2 ' and t 2" and described by position
vectors r 2' and r 2", respectively. The vector displacements Ar, sr', and
sr" differ in direction and become successively smaller. Likewise, the
corresponding time intervals At (= (2 - t 1 ), t' (= t 2' - t i), and At"

(= t2" - t i) become successively smaller.
As we continue this process, letting B approach A, we find that the ratio

of displacement to elapsed time approaches a definite limiting value.
Although. the displacement in this process becomes extremely small, the
time interval by which we divide it becomes small also and the ratio is not
necessarily a small quantity. Similarly, while growing smaller, the dis-
placement vector approaches a limiting direction, that of the tangent to
the path of the particle at A. This limiting value of r/t is called the
instantaneous velocity at the point. A, or the velocity of the particle at the
instant 11.

If Ar is the displacement in a small interval of time At, following the
time 1, the velocity at the time I is the limiting value approached by .r/t

as both Ar and At approach zero. That is, if we let v represent the instan-
taneous velocity,

V - urn -
Ar

—.o

The direction of v is the limiting direction that Ar takes as B approaches A
or c.s At approaches zero. As we have seen, this limiting direction is that
of the tangent to the path of the particle at point A.

In the notation of the calculus, the limiting value of r/t as At
approaches zero is written dr/dt and is called the derivative of r with respect
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to t. We have then

v	
Ar

inn - =
dr.

N_.oAt	 dt

Chap. 3

(3-2)

The magnitude v of the instantaneous velocity is called the speed and is

simply the absolute value of v. That is,

V = lvi = ldr/dtl.	 (3-3)

Speed, being the magnitude of a vector, is intrinsically positive.
Just as a particle is a physical concept making use of the mathematical

concept of a point, so here velocity is a physical concept using the mathe-
matical concept of differentiation. In fact, the calculus was invented

originally by Isaac Newton (1642-1727) in order to have a proper math'e-

matical tool for treating fundamental mechanical problems.
In the next section we shall examine the concept of instantaneous

velocity in detail for the special case of motion in one dimension, sometimes

called rectilinear motion.

3-5 One-Dimensional Motion—Variable Velocity

Figure 3-3 shows a particle moving along a path in the x-y plane. At
time I its position with respect to the origin is described by position vector

r (see Fig. 3-3a) and it has a velocity v (see Fig. 3-3b) tangent to its path

as shown. We can write (see Eq. 2-8)

r=ix+jy,	 (3-4)

where i and j are unit vectors in the positive x- and y-directions, respec-
tively, and x and y are the (scalar) components of vector r. Because i and

j are constant vectors, we have, on combining Eqs. 3-2 and 3-4,

dr •dx + •dy
V =	 = 1	 .J dt

Y

(a)	 (b)	 (c)

Fig. 3-3 A particle at time I bas (a) a position described by r, (b) an instantaneous

velocity i and (c) an instantaneo0 acceleration a. The vector components ix and jy of
Eq. 3-4, Ii',, and jv1 of Eq. 3-5, arid Ia. and jar of Eq. 3-10 are also shown, as are the
unit vectors I and J.
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Pig. 3-4 A particle is moving to the right along the x-axis.

which we can express as

V = iv. + ivy	(two-dimensional motion), 	 (3-5)

where v (= dx/di) and v, (= dy/di) are the (scalar) Components of the
Vector v.

We now consider motion in one dimension only, chosen for convenience
to be the z-axis. We must then have v, 0 so that Eq. 3-5 reduces to

v = iv	 (one-dimensional motion).	 (3-6)

Since i points in the positive x-direction, v will be positive (and equal to
+v) when v points in that direction, and negative (and equal to -v)
when it points in the other direction. Since, in one-dimensional motion,
there are only two choices as to the direction of v, the full power of the
vector method is not needed; we can work with the velocity component v
alone.

P Example 1. The limiting process. As an illustration of the limiting process
in one dimension, consider the following table of data taken for motion along the
x-axis. The first four columns are experimental data. The symbols refer to
Fig. 3-4 in which the particle is moving from left to right, that is, in the positive
x-direction. The particle was at position xi (100 cm from the origin) at time ti
(1.00 sec). It was at position x, at time £2. As we consider different values for
z2, and different corresponding times (2, we find

- z1	 £2 - £	 .x/At,
X1, cm	 £, see	 Z, cm	 £2, sec	 = &r, cm	 it, sec cm/see

	

100.0
	

1.00
	

200.0
	

11.00
	

100.0
	

10.00
	

10.0

	

100.0
	

1.00
	

180.0
	

9.60
	

80.0
	

8.60
	

9.3

	

100.0
	

1.00
	

160.0
	

7.90
	

60.0
	

6.90
	

8.7

	

100.0
	

1.00
	

140.0
	

5 90
	

40.0
	

4.90
	

8.2

	

100.0
	

1.00
	

120,0
	

3.36
	

20.0
	

2.56
	

7.8

	

100.0
	

1.00
	

110.0
	

2.33
	

10.0
	

1.33
	

7.5

	

100.0
	

1.00
	

105.0
	

1.69
	

5.0
	

0.69
	

7.3

	

100.0
	

1.00
	

103.0
	

1.42
	

3.0
	

0.42
	

7.1

	

100.0
	

1.00
	

101.0
	

1.14
	

1.0
	

0.14
	

7.1

Equation 3-2, which holds for the general case of motion in three dimensions, is

•	 ,r	 dryr
dt
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For one-dimensional motion along the x-axis we have a similar relation, scalar in
character, in which each vector quantity is replaced by its corresponding compo-
nent or

= h	
dx

m - = -.	 (3-7)
0 At	 dt

It is clear from the table that as we select values of X2 closer to x, At approaches

zero and the ratio AxlAt approaches the apparent limiting value +7.1 cm/sec.
At time 11, therefore, v = +7.1 em/sec, as closely as we are able to determine from
the data. Since v is positive, the velocity v (= iv; see Eq. 3-6) points to the
right in Fig. 3-4. This is tangent to the path in the direction of motion, as it
must be.

Example 2. Figure 3-5a shows six successive "snapshots" of a particle moving
along the x-axis with variable velocity. At t 0 it is at position x = + 1 .00  ft

to the right of the origin; at t = 2.5 sec it has come to rest at x	 +5.00 It; at

t 4.0 sec it has returned to x = ±1.40 ft. Figure 3-55 is a plot of position x

versus time I for this motion. The average velocity for the entire 4.0-sec interval
is the net displacement or change of position (+0.40 ft) divided by the elapsed
time (4.0 sec) or v +0.10 ft/sec. (We call V. average velocity and v velocity,
for one-dimensional motion, even though velocity is a vector and not a scalar.
This conforms to common usage and should cause no misunderstandings. These
quantities are not speeds because they may be negative, whereas speed is intrin-
sically positive.) The average velocity vector v points in the positive x-direction
(that is, to the right in Fig. 3-50) because the net displacement points in this direc-
tion. The quantity v can be obtained directly from the slope of the dashed line
of in Fig. 3-5b, where by slope we mean the ratio of the net displacement gf to

the elapsed time go. (The slope is not the tangent of the angle fag measured on the
graph with a protracter. This angle is arbitrary because it depends on the scales
we choose for x and I.)

The velocity v at any instant is found from the slope of the curve of Fig. 3-5b
at that instant. Equation 3-7 is in fact the relation by which the slope of the
curve is defined in the calculus. In our example the slope at 5, which is the value
of v at b, is +1.7 ft/see; the slope at d is zero and the slope at f is —6.2 ft/sec.
When we determine the slope dx/dt at each instant I, we can make a plot of v

versus I, as in Fig. 3-5c. Note that for the interval 0 < I < 2.5 sec, v is positive
so that the velocity vector v points to the right in Fig. 3-5o; for the interval
2.5 sec < I < 4.0 sec v is negative so that y points to the left in Fig. 3-50.	 4

3-6 Acceleration

Often the velocity of a moving body changes either in magnitude, in
direction, or both as the motion proceeds. The body is then said to have
an acceleration. The acceleration of a particle i8 the rate of change of it

velocity with time. Suppose that at the instant it a particle, as in Fig. 3-6,

is at point A and is moving in the x-y plane with the instantaneous velocity

V 1 , and at a later instant 12 it is at point B and moving with the instan-

taneous velocity V. The average acceleration a during the motion from

A to B is defined to be the change of velocity divided by the time interval, or

	

- 'V2 - VI	 AV	
'3-8

	t2 — it	 At
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Fig. 3-5 (a) Six consecutive "snapshots" of a particle moving along the x-axis.
The vector joined to the particle is its instantaneous velocity; that below the particle
Is its instantaneous acceleration. (b) A plot of x versus t for the motion of the

(c)
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The quantity A is a vector, for it is obtained by dividing a vector Av by a

scalar At. Acceleration is therefore characterized by magnitude and
direction. Its direction is the direction of Av and its magnitude is IAv/.11.

The magnitude of the acceleration is expressed in velocity units divided by
time units, as for example meter/sec per Sec (written meters/sec 2 and read
"meters per second squared"), cm/sec', and ft/sec'.

We call A of Eq. 3-8 the average acceleration because nothing has been
said about the time variation of velocity during the interval At. We know

only the net change in velocity and the
total elapsed time. If the change in
velocity (a vector) divided by the corre-
sponding elapsed time,AY/At, were to

I--

	

	 remain constant, regardless of the time
intervals over which we measured the

I
B	 acceleration, we would have constant

I 
Vi	 acceleration. Constant acceleration,

V2 -	
therefore, implies that the change in ve-

il
locity is uniform with time in direction
and magnitude. If there is no change in
velocity, that is, if the velocity were to

Fig. 3-6 A particle has velocity 	
remain constant both in magnitude and

vj at point A and moves to point	 direction, then iiv would be zero for all
B, where its velocity is v 2. The	 time intervals and the acceleration would
triangle shows the (vector)	 be zero.
change in velocity av (' v -	 .

V I) experienced by the particle 	
If a particle is moving in such a way

a8 it moves from A to B.	
that its average acceleration, measured
for a number of different time intervals,
does not turn out to be constant, the

particle is said to have a variable acceleration. The acceleration can vary
in magnitude, or in direction, or both. In such cases we seek to determine
c.he acceleration of the particle at any given time, called the instanta-
neous acceleration.

Thje instantaneous acceleration is defined by

tv dv
R lun——	 (3-9)

At	 dt

That is, the acceleration of a particle at time I is the limiting value of Av/At

at time t as both AY and At approach zero. The direction of the instan-
taneous acceleration a is the limiting direction of the vector change in
velocity Av. The magnitude a of the instantaneous acceleration is simply

a lal = Id'v/dtI. When the acceleration is constant the instantaneous
acceleration equals the average acceleration. The student should note
that the relation of a to v, in Eq. 3-9, is the same as that of v to r, in
Eq. 3-2.

Two special cases illustrate that acceleration can arise from a change
in either the magnitude or th r direction of the velocity. In one case we
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have motion along a straight line with uniformly changing speed (as in
Section 3-8). Here the velocity does not change in direction but its mag-
nitude changes uniformly with time. This is a case of constant accelera-
tion. In the second case we have motion in a circle at constant speed
(Section 4-4). Here the velocity vector changes continuously in direction
but its magnitude remains constant. This, too, is accelerated motion,
though the direction of the acceleration vector is not constant. Later we
will encounter other important cases of accelerated motion.

3-7 One-Dimensional Motion—Variable Acceleration

From Eqs. 3-5 and 3-9 we can write, for motion in two dimensions as in
Fig. 3-3,

dv	 dv	 •dv2,
a1+

or

	

a = ia + ja5,	 (3-10)

where a (= dvjdt) and ay (= dv5/dt) are the (scalar) components of the
acceleration vector a (see Fig. 3-3c).

We again restrict ourselves to motion in one dimension only, chosen for
convenience to be the x-axis. Since v, for such motion does not change
with time (and is, in fact, zero), a, which is dv5/dt, must also be zero so that

a = ia. (3-11)

Since i points in the positive x-direction, a,r will be positive when a points
in this direction and negative when it points in the other direction.

. Example 3. The motion of Fig. 3-5a is one of variable acceleration along the
x-axis. To find the acceleration* a, at each instant we must determine dv/dt
at each instant.. This is simply the slope of the curve of v versus t at that instant.
The slope of Fig. 3-5c at point b is -1.3 ft/sec 2 and that at point d is -1.8 ft/sec',
as shown in the figure. The result of calculating the slope for all points is shown
in Fig. 3-5d. Notice that a is negative at all instants, which means that the
acceleration vector a points in the negative r-direction. This means that v is
always decreasing with time, as is clearly seen from Fig. 3-5c. The motion is one
in which the acceleration vector has a constant direction but varies in magnitude
(see Fig. 3-5a). 4

3-8 One-Dimensional Motion—Constant Acceleration

Let us now further restrict our considerations to motion which not only
occurs in one dimension (the x-axis) but for which a a constant. For
such constant acceleration the average acceleration for any time interval is
ival to the (constant) instantaneous acceleration a. Let tj	 0 and let

• As for velocity, we commonly call a for one-dimensional motion the acceleration
even though acceleration is a vector and a is correctly an acceleration component.
For one-dimensional motion there is only one component if the axis is chosen along the
line of the motion.
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£2 be any arbitrary time £. Let v 0 be the value of v at t = 0 and let v be
its value at the arbitrary time £. With this notation we find a (see Eq.
3-8) from

a -
At

or

v. - vo + at.	 (3-12)

This equation states that the velocity v at time t is the sum of its value
v 0 at time t = 0 plus the change in velocity during time 1, which is art.

Figure 34c shows a graph of v, versus t for constant acceleration; it is
a graph of Eq. 3-12. Notice that the slope of the velocity curve is con-
stant, as it must be because the acceleration ar (= dvjdt) has been
assumed to be constant, as Fig. 3-7d shows.

When the velocity v,, changes uniformly with time, its average value
over any time interval equals one-half the sum of the values of V,r at the
beginning and at the end of the interval. That is, the average velocity

between t=O and j=gjs

= (v 0 + vi).	 (3-13)

This relation would not be true if the acceleration were mot constant, for
then the curve of v versus £ would not be a straight line.

If the position of the particle at t = 0 is x 0, the position x at £ = £ can
be found from

,= X0 +

which can be combined with Eq. 3-13 to yield

x = z0 + 4(v 0 + v)t.	 (3-14)

The displacement due to the motion in time £ is z - x0. Often the origin
is chosen so that xo = 0.

Notice that aside from initial conditions of the motion, that is, the
values of x and v, at I 0 (taken here as x = x0 and v = v,0), there are
four parameters of the motion. These are x, the displacement; v, the
velocity; a, the acceleration; and 1, the elapsed time. If we know only
that the acceleration is constant., but not necessarily its value, from any
two of these parameters we can obtain the other two. For example, if
a and I are known, Eq. 3-12 gives v, and having obtained v, we find x
from Eq. 3-14.

In most problems in uniformly accelerated motion, two parameters are
known and a third is sought. It is convenient, therefore, to obtain. rela-
jions between any three of the four parameters. Equation 3-12 contains
v, a, and I, but not x; Eq. 3-14 contains x, v, and £ but not a. To com-
plete our system of equations we need two more relations, one containing
z, a, and £ but not v, and another containing x, v, and a but not t. These
are easily obtained by combining Eqs. 3-12 and 3-14.
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Fig. 3-7 (a) Five successive "snapshots" of rectilinear motion with constant accelera-
tion. The arrows on the spheres represent v; those belo* represent a. (b) The dis-
placement increases quadratically according to z v t + -a 2 . Its slope increases
uniformly and at each instant has the value v, the velocity. (c) The velocity v
increases uniformly according to v = vo + a. Its slope is constant and at each
instant has the value a, the acceleration. (d) The acceleration a has a constant
value; its slope is zero. Figure 3-5 shows similar plots for one-dimensional motion
in which the seecleration is not constant.
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Thus, if we substitute into Eq. 3-14 the value of v from Eq. 3-12, we
thereby eliminate v,, and obtain

x	 xo + vot + at'.	 (3-15)

When Eq. 3-12 is solved for t and this value for £ is substituted into Eq.
3-14, we obtain

v,,2 = V,,ø 2 + 2a,,(x - xo).	 (3-16)

Equations 3-12, 3-14, 3-15, and 3-16 (see Table 3-1) are the complete set
of equations for motion along a straight line with constant acceleration.

Table 3-1

KINEMATIC EQUATIONS FOR STRAIGHT LINE MOTION
WITH CONSTANT ACCELERATION

(The position x0 and the velocity v,,0 at the initial instant t = 0 are the
given initial conditions)

Equation	 Contains
Number	 Equation	 x VX as

	3-12	 v,, - v,, 0 + at	 X 'I 'I 'I
	3-14	 z - zo + j(v,,o + v,,)t	 'I 'I x 'I

	

3-15	 x - zo + v,.ot + at2	'I X 'I 'I
	3-16	 v,,2 = v,,o 2 + 2a,,(x - z0)	 "I 'I 'I	 X

A special case of motion with constant acceleration is one in which the
acceleration is zero, that is, a,, = 0. In this case the four equations in
Table 3-1 reduce to the expected results o',, = v,, 0 (the velocity does not
change) and x = x 0 + v,,ot (the displacement changes linearly with time).

.11o. Example 4. The curve of Fig. 3-7b is a djsplacement-time graph for motion
with constant acceleration; that is, it is a graph of Eq. 3-15 in which xo = 0.
The slope of the tangent to the curve at time I equals the velocity v,, at that time.
Notice that the slope increases continuously with time from v,,o at I = 0. The
rate of increase of this slope should give the acceleration a,,, which is constant in this
case. The curve of Fig. 3-7b is a parabola since Eq. 3-15 is the equation for a
parabola having slope e,,e at 1 0. We obtain, on successive differentiation of
Eq. 3-15,

+ V,t +

dx/dt = v,,0 + a,,t	 or e, = v,,0 + at,

which gives the velu'ity t,, at time £ (compare Eq. 3-12), and

dv,,/dt = a,,,

the constant acceleration. The displacement-time graph for uniformly acceler-
ated rectilinear motion will therefore always be parabolic. 	 I
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3-9 Consistency of Units and Dimensions

The student should not feel compelled to memorize relations such as
those of Table 3-1. The important thing is to be able to follow the line of
reasoning used to obtain the results. These relations will be recalled
automatically after the student has used them repeatedly to solve prob-
lems, partly as a result of the familiarity acquired but chiefly as a result of
the better understanding obtained through application.

We can use any convenient units of time and distance in these equations.
If we choose to express time in seconds and distance in feet . , for self-con-
sistency we must express velocity iii ft/sec and acceleration in ft/sec 2.

If we are given data in which the units of one quantity, as velocity, are not
consistent with the units of another quantity, as acceleration, then before
using the data in our equations we should transform both quairtities to
units that are consistent with one another. Having chosen the units of
our fundamental quantities, we automatically determine the units of our
derived quantities consistent with them. In carrying out any calculation,
always remember to attach the proper units to the final result, for the result
is meaningless without this label.

Example 5. Suppose we wish to find the speed of a particle which has a
uniform acceleration of 5.00 cm/sec' for an interval of i hr if the particle has a
speed of 10.0 ft/sec at the beginning of this interval. We decide to choose the
foot as our length unit and the second as our time unit. Then

5.00 cm/sec' = 5.00 cm/sec' x
(_	 x (-2 -)2.54 e,	 1rnm.

ft/see'	 0.164 ft/sec'.
30.5

The time interval

1x( ai\ 0
0 sec)- to =	

60 i
X	 = 1800 sec.

Note that the converion factors in large parentheses are equal to unity. Taking
the initial time t 0	 0, as in Eq. 3-12, we then have

= r, 0 + a4 = 10.0 ft/sec + (0.164 ft/sec')(ISOO see)

= 305 ft/sec.	 I

One way to spot all equation is to check the dimensions of all
its terms. The dimensions of any physical quantity can always be
expressed as some combination of the ,fundamental quantities, such as
mass, length, and time, from which they are derived. The dimensions of
velocity are length (L) divided by time (T); the dimensions of acceleration
are length divided by time squared, etc. In any legitimate physical equa-
tion the dimensions of all the terms must be the same. This means, for exam-
ple, that we cannot equate a term whose total dimension is a velocity to
one whose total dimension is an acceleration. The dimensional labels
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attached to various quantities may he treated just like algebraic quantities
and may he combined, canceled, etc., just as if they were factors in the
equation. For example, to check Eq. 3-15, x = x 0 + vt + at',
dimensionally, we note that x and .r 0 have the dimension of a length.
Therefore the two remaining terms must also have the dimension of a

	

length. The dimension of the term	 is

length	 L

	

X time length	 or	 X T =
time

and that of at2 is

length	 L

time 2	 T2
	X time' = length	 or	 >< 

172 = L.

The equation is therefore dimensionally correct. The student should check
the dimensions of all-the equations he uses.

Example 6. The speed of an automobile traveling due east is uniformly
reduced from 45.0 miles/hr to 30.0 miles/hr in a distance of 264 ft.

(a) What is the magnitude and direction of the constant acceleration?
We choose, arbitrarily, the direction from west to east to be the positive x-direc-

tion. We are given x and r and we seek a. The time is not involved. Equa-
tion 3-16 is therefore appropriate (see Table 3-1). We have v = ±30.0 miles/hr,

= + 45.0 miles/hr, x -	 = ±264 ft = 0.0500 mile. From Eq. 3-16, v2

vo ± 2a(x - 10), we obtain

= -
a	

2(x -
or

(30.0 miles/hr) 2 - (
45.0 miles/hr)' = —1.13 X 10 miles/hr'

2(0.0500 mile)

= —4.58 ft/sec2.

The direction of the acceleration a is due west, that is, in the negative x-direction
because a is negative. The car is slowing down as it moves eastward, as it must
do if it is being accelerated toward the vest. When the speed of a body is decreas-
ing, we often say that it is decelerating.

(b) How much time has elapsed during this deceleration?
If we use only the original data. Table 3-1 shows that Eq. 3-14 is appropriate.

From Eq. 3-14, I	 10 + 4(vo + t')t, we obtain

= (x - x0)

f'o + I

or

(2) (0.0500 mile)
hr = 4.80 sec.

(45.0 + 30.0) miles/hr 	 750
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If we use the derived data of part (a), Eq. 3-12 is appropriate. This gives us a
check. From Eq. 3-12, t' = vo + art, we have

= -
a.

or (30.0 - 45.0) miles/hr = 1.33 X 10 hr
	 4.80 sec.£	

113 X jØ4 rniles,/hr2

(c) If one assumes that the car Continues to decelerate at the same rate, how
much time would elapse in bringing it to rest from 45.0 miles/hr?

Equation 3-12 is useful here. We have v,	 45.0 miles/hr, a	 —1.13 )< 10
miles/hr 2 , and the final velocity v	 0. Then from Eq. 3-12, v	 r0 + art, we
obtain

£ 
= VX -

a.
or

= (0 - 45.0) 
miles/hr = 4.00 )< 10- 3 hr	 14.4 sec. —1.13 >< 10 1 miles/hr2

(d) What total distance is required to bring the car to rest. from 45.0 miles/hr?
Equation 3-15 is appropriate here. We have v 0	45.0 miles

'
, br, a	 —1.13 X

10 1 miles/hr', t	 4.00 x 10 hr. From Eq. 3-15, x 	 x 0 + v 0t + lat2,we
obtain

Z -	 Vt + at2

= (45.0 miles/Fir) (4.00 X 10 hr)

= 0.0900 mile = 475 ft. + --(-1.13 X 10 miles/hr
2) (4.00 >( 10 hr)2

Example 7. The nucleus of a helium atom (alpha-particle) travels along the
inside of a straight hollow tube 2.0 meters long which forms kart of a particle
accelerator. (a) If one assumes uniform acceleration, how long is the particle
in the tube if it enters at a speed of 1000 meters/sec and leaves at 9000 meters/see?
(Li) What is its acceleration during this interval?

(a) We choose an x-axis parallel to the tube, its positive direction being that in
which the particle is moving and its origin at the tube entrance. We are given
x and fox and we seek t. The acceleration o is not involved. Hence we use Eq.
3-14, x ro + f(ro + v) t with xo = 0 or

£	
2z

-

(2)(2.0 meters)	
= 4.0 X iO see,

(1000 + 9000) meters see

r 400 microseconds.
(Li) The acceleration follows from Eq. 3-12, v = vo + art. or

- i	 (9000 - 1000jnetersi'sec 	
-.o X IO rneters;sec2,4.0 X 10 sec
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or 20 million meters per second per second! Although this acceleration is enor-
mous by standards of the previous example, it occurs over an extremely short
time. The acceleration a is in the positive z-direction, that is, in the direction in
which the particle is moving, because a is positive. 	 4

3-10 Freely Falling Bodies

The most common example of motion with (nearly) constant accelera-
tion is that of a body falling toward the earth. In the absence of air
resistance it is found that all bodies, regardless of their size, weight, or
composition, fall with the same acceleration at the same point of the earth's
surface, and if the distance covered is not too great, the acceleration
remains constant throughout . the fall. This ideal motion, in which air
resistance and the small change in acceleration with altitude are neglecWd,
is called "free fall."

The acceleration of a freely falling body is called the acceleration due to
gravity and is denoted by the symbol g. Near the earth's surface its mag-
nitude is approximately 32 ft/see 2, 9.8 meters/see 2, or 980 cm/see 2, and

it is directed down toward the center of the earth. The variation of the
exact value with latitude and altitude will be discussed later (Chapter 16).

The nature of the motion of a falling object was long ago a subject of interest in
natural philosophy. Aristotle had asserted that "the downward movement
of any body endowed with weight is quicker in proportion to its size." It was not
until many centuries later when Galileo Galilei (1564-1642), an Italian scientist of
the Renaissance, appealed to experiment 1.0 discover the truth, and then publicly
proclaimed it, that Aristotle's authority oil matter was seriously challenged.
In the later years of his life, Galileo wrote the treatise entitled Dialogues Concerning
Two New Sciences in which he detailed his studies of motion.* This treatise may
be considered as marking the beginning of the science of dynamics.

Aristotle's belief that a heavier object will fall faster is a commonly held view.
It appears to receive support from a well-known lecture demonstration in which a
ball and a sheet of paper are dropped at the same instant., the hail reaching the floor
much sooner than the paper. However, when the lecturer first crumples the paper
tightly and then repeats the demonstration, both ball and paper strike the floor at
essentially the same time. In the former ease, it is the effect of greater resistance of
the air which makes the paper fall more slowly than the ball. In the latter case, the
effect of air resistance on the paper is reduced and is about the same for both bodies,
so that they fall at about the same rate. Of course, a direct test can be made by
dropping bodies in vacuum.. Even in easily obtainable partial vacuums we can
show that a feather and a ball of lead thousands of tunes heavier drop at rates that
are practically indistinguishable.

In Galileo's time, however, there was no effective way to obtain a partial vacuum,
nor did equipment exist to time freely falling bodies with sufficient precision to
obtain reliable numerical data. Nevertheless. Galileo proved his result by showing

• Galileo made noteworthy contributions to astronomy by the application of his tele-
scope. His strong evidence in favor of the Copernican hypothesis of the solar system
served to refute the Ptolemaic system and oil account raised strong feelings against
him in the minds of the leaders of the Church. Twice he was brought before the Inquisi-
tion. He was ordered not to publish an y thing in support of the Copernican rystem and
was compelled to publicly disclaim his belief in it. It was during a period of fear and
uncertainty that he wrote his dialogue on motion, not published 'until after his death.
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first that the character of the motion of a ball rolling down an incline was the same
as that of a ball in free fall. The incline merely served to reduce the effective accel-
eration of gravity and to slow the motion thereby. Time intervals measured by
the volume of water discharged from a tank could then be used to test the speed and
acceleration of this motion. Galileo showed that if the acceleration along the
incline is constant, the acceleration due to gravity must also be constant; for the
acceleration along the incline is simply a component of the vertical acceleration of
gravity, and along an incline of constant slope the ratio of the two accelerations
remains fixed.

He found from his experiments that the distances covered in consecutive time
intervals were proportional to the odd numbers 1, 3, 5, 7, . . . , etc. Total dis-
tances for consecutive intervals thus were proportional to 1 + 3, 1 + 3 + 5,
1 + 3 + 5 + 7, etc., that is, to the squares of the integers 1, 2, 3, 4, etc. But if
the distance covered is proportional to the square of the elapsed time, velocity
acquired is proportional to the elapsed time, a result which is true only if motion is
uniformly accelerated. He found that the same results held regardless of the mass
of the ball used.

3-11 Equations of Motion in Free Fall

We shall select a reference frame rigidly attached to the earth. The
y-axis will be taken as positive vertically upward. Then the acceleration
due to gravity g will be a vector pointing vertically down (toward the
center of the earth) in the negative y-direction. (This choice is arbitrary.
In other problems it may be convenient to choose down as positive.)
Our equations for constant acceleration are applicable here. We simply
replace x by y and set yo = 0 in Eqs. 3-12, 3-14, 3-15, and 3-16, obtaining

V5 = t'o + a.51,

Y	 (r50 + v5)t,	

(3-17)
Y = u5o +

V 2 = t,2 + 2a5y,

and, for problems in free fall, we set. a 5	—g. Notice that we have chosen
the initial position as the origin, that is we have chosen I/o = 0 at t = 0.
Note also that g is the magnitude of the acceleration due to gravity.

Example 8; A body is dropped from rest and falls freely. Determine the
position and speed of the bod y after 1.0, 2.0, 3.0, and 4.0 sec have elapsed.

We choose the starting point, as the origin. We know the initial speed and the
acceleration and we are given the time. To find the position we use

y	 - gt'.

Then, t'o = 0 and g = 32 ft/see 2, and with t = 1.0 sec we obtain

Y = 0 - 02 ft,/sec 2)(1.0 sec) 2 = —16 ft.

To find the speed with I = 1.0 see, we use

115 = f'go -

and obtain	 r = 0 - (32 ft/sec 2)(1.0 see) = —32 ft/sec.



SO	 MOTION IN ONE DIMENSION	 Chap. 3

-32

Fig. 3-8 A body in free
fall; showing y, vi,, and
a. at particular limes 1.

)	 —'56	 -

After 1.0 sec of falling from rest, the body is 16 ft below its starting point and has
a velocity directed downward whose magnitude is 32 ft "sec; the negative signs
for y and v, show that the associated vectors each point in the negative y-direction,
that is, downward.

The student should now show that the values of y, vi,, and a obtained at times
2.0, 3.0, and 4.0 sec are those shown in Fig. 3-8.

Example 9. A ball is thrown vertically upward from the ground with a speed
of 80 ft/sec.

(a) How long does it take to reach its highest point?
At its highest point., v 1, = 0, and we have r50 = +80 ft/sec. To obtain the

time t we use v, = v,o - g, or

= r V0 -

g

(80 - 0) ft/sec	 2.5 sec.
32 ft/sec2

(b) How high does the ball rise? Using only the original data, we choose the
relation r	 v,02 - 2gy, or

Y 
=VY02-

(80 ft/sec) 2 - 0
+100 ft.

2 X 32 ft/sec2
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(c) At what times will the ball be 96 ft above the ground? Using y = v,, Ot-

4gt 2, we have
4gt' - t' 1,o + y - 0,

4(32 ft/sec 2)12 - (80 ft/sec)t + 96 ft = 0,
or

12-50t+60-0

which yields 1	 2.0 sec and i = 3.0 sec.
At t = 2.0 see, the ball is moving upward with a speed of 16 ft/see, for

	

= ro -	 = SOft/sec - (32 ft/sec 2)(2.0 see)	 +16 ft/sec.

At 1 3.0 see, the ball is moving downward with the same speed, for

115	t' -	 = SOft/sec - (32 ft/sec 2)(3.0 see) = —16.ft/seè.

Notice that in this 1.0-see interval the velocity changed by —32 ft/see, correspond-
ing to an acceleration of —32 ft/sec'.

The student should be able to convince himself that in the absence of air resist-
ance the ball will take as long to rise as to fall the same distance, and that it will
have the same speed going down at each point as it had going up.

QUESTIONS

1. Can you think of physical phenomena involving the earth in which the earth can-
not be treated as a particle?

2. Each second a rabbit moves half the remaining distance from his nose to ahead of
lettuce. Does he ever get to the lettuce? What is the limiting value of his average
velocity? Draw graphs showing his velocity and position as time increases.

3. Average speed can mean the magnitude of the average velocity vector. Another
meaning given to it is that average speed is the total length of path traveled divided by
the elapsed time. Are these meanings different? If so, give an example.

4. When the velocity is constant, does the average velocity over any time interval
differ from the instantaneous velocity at any instant?

5. Is the average velocity of a particle moving along the x-axis	 + e) when the
acceleration is not uniform? Prove your answer with the use of graphs.

6. Does the spoedueter on an automobile register speed as we defined it?
7. (a) Can a body have zero velocity and still be accelerating? (b) Can a body have

a constant speed and still have a varying velocity? (c) Can a body have a constant
velocity and still have a varying speed?

8. Can an object have an eastward velocity while experiencing a westward acceler-
ation?

9. Can the direction of the vclocit.y of a body change when its acceleration is constant?
10. Devise a scheme for keeping time with a "water clock" such as Galileo used.

Can you avoid repetitive operations and still keep aceurae time?
11. If a particle is released from rest (v = 0) at pa = Oat. the time t = 0, Eq. 3-17

for constant acceleration says that it is at position p at two different times, namely,
+ /2y1o5 and - v'7 . What is the meaning of the negative root of this
quadratic equation?

12. What happens to our kinematic equations under the operation of time reversal,
that is, replacing I by —I? Explain.
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13. Consider a ball thrown vertically up. Taking air resistance into account, would
you expect the time during which the ball rises to be longer or shorter than the time
during which it falls?

14. Can there he motion in two dimensions with an acceleration in onl y one dimen-

sion?
IS. A man standing on the edge of a cliff at some height above the ground below

throws one bull straight up with initial speed a and then throws another ball straight
down with the same initial speed. Which bull, if either, has the larger speed when it
hits the ground? Neglect air resistance.

16. From what you know about angular measure, what dimcnaions AN 	 you assign
to an angle? Can a quantity have units without having dimensions?

17. If rn is a light stone and 31 is a heavy one, according to Aristotle M should fall

faster than en. Galileo attempted to show that Aristotle's belief was logically incon-
sistent by the following argument. Tie in and M together to form a double stone.

Then, in falling, en should retard 211, since it tends to fall more slowly, and the combi-

nation would fall faster than en but more slowly than 211; but according to Aristotle the

double body (M + en) is heavier than 211 and hence should fall faster than M.

If you accept Galileo's reasoning as correct, can you conclude that 211 and en must fall
at the same rate? What need is there for experiment in that ease?

If you believe Galileo's reasoning is incorrect, explain why.

PROBLEMS

1. Compare your average speed in the following two cases. (a) You walk 240 ft
at a speed of 4.0 ft/sec and then run 240 ft at a speed of 10 ft/sec along a straight track.

(b) You walk for 1.0 min at a speed of 4.0 ft/sec and then run for 1.0 min at 10 ft/sec
along a straight track.

2. A train moving at an essentially constant speed of 60 miles/hr moves eastward
for 40 mm, then in a direction 450 east of north for 20 mm, and finally westward for
50 mm. What is the average velocity of the train during this run?

3. Two trains, each having a speed of 30 miles/hr, are headed at each other on the
same straight track. A bird that can fly 60 miles/hr flies off one train when they are
60 miles apart and heads directly for the other train. On reaching the other train it
flies directly hack to the first train, and so forth. (a) How many trips can the bird
make from one train to the other before they crash? (b) What is the total distance

the bird travels?
4. A particle moving along a horizont al line has the following sitions at various

instants of time:

z(meters) - 0. ON	 0.050	 0.040	 0.050	 0.080	 0.13	 0.6

£sec) -0.0	 1.0	 2.0	 3.0	 4.0	 5.0	 10

(a) Plot displacement (not position) versus time. (b) Find the average velocity of
the particle in the intervals 0.0 to 1.0 see, 0.0 to 2.0 see, 0.0 to 3.0 see, ((.0 to 4.0 sec.

(c) Find the slope of the curve drawn in part a at the points 1 1.0, 2.0, 3.0, 4.0. and

5.0. (d) Plot the slope (units?) versus time. () From the curve of part d determine

the acceleration of the particle at times I - 2.0, 3.0 and 4.0 sec.

S. A tennis ball is dropped onto the floor from a height of 40 ft. It rebounds to
a height of 3.0 ft.. If the ball was in contact with the floor for 0.010 see., what was its
average acceleration during contact?
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6. The graph of x versus (see Fig. 3-9a) is for a particle in straight line motion.
State for each interval whether the velocity v is +, -,or 0, and whether the accelera-
tion a is -I-, -, or 0. The intervals are OA, AR, BC, and CD. From the curve is
there any interval over which the acceleration is obviously not conslanl? (Ignore the
behavior at the end points of the intervals.)

BC

t	 t
(a)	 (b)	---

Fig. 3-9

7. Answer the previous questions for the motion described by the graph of Fig. 3-9b.
8. An arrow while being shot from a bow was accelerated over a distance of 2.0 ft.

If its speed at the moment it left the bow was 200 ft/sec what was the average accelera-
tion imparted by the bow? Justify any assumptions you need to make.

9. An electron with initial velocity v,o — 1.0 X 104 meters/sec enters a region where
it is electrically accelerated (Fig. 3-10). It
emerges with a velocity v = 4.0 X 10	 Nonaccelerated
meters/sec. What was its acceleration, as- 	 ( regions
sumed constant ? (Such a process occurs in	

\ ithe electron gun in a cathode-ray tube, used in 	 L 1 cmtelevision receivers and oscilloscopes.) 	 V

10. Suppose that you were called upon to 	 Path of 	 -i--- j---
give some advice to a lawyer concerning the	 electrons	 V a
physics involved in one of his cases. The 	 Accelerating_../j
question is whether a driver was exceeding a 	 region
30 miles/hr speed limit before he made an 	 L1111111
emergency stop, brakes locked and wheels
sliding. The length of skid marks on the road 	 g 3.-10was 19.2 ft. The policeman made the reason-
able assumption that the maximum decelera-
tion of the car would not exceed the acceleration of a freely falling body and arrested the
driver for speeding. Was he speeding? Explain.

11. A meson is shot with constant speed 5.00 X 106 meters/see into a region where
an electric field produces an acceleration on the meson of magnitude 1.25 )< 10's
meters/sec 2 directed opposite to the initial velocity. How far does the meson travel
before coming to rest? How long does the meson remain at rest?

12. A rocketship in free space moves with constant acceleration equal to 32 ft/sec'.
(a) If it starts from rest, how long will it take to acquire a speed one-tenth that of
light? (b) How far will it travel in so doing?

13. A train started from rest aud moved with constant acceleration. At one time it
was traveling 30 ft/see, and 160 ft fiat her on it was traveling 50 ft/sec. Calculate (a)
the acceleration, (b) the time required to travel the 160 ft mentioned, c) the time
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required to attain the speed of 30 ft/see, (d) the distance moved from rest to the time
the train had a speed of 30 ft/sec.

14. At the instant the traffic light turns green, an automobile starts with a constant
acceleration a of 6.0 ft/sec 2. At the same instant a truck, traveling with a constant
speed of 30 ft/sec, overtakes and passes the automobile. (a) How far beyond the
starting poi.Dt will the automobile overtake the truck? (h) How fast will the car be
traveling at that instant? (It is instructive to plot a qualitative graph of x versus i for
each vehicle.)

15. A car moving with constant acceleration covers the distance between two points
180 ft apart in 6.0 sec. Its speed as it passes the second point is 45 ft /sec. (a) What
is its speed at the first point? (b) What is its acceleration? (c) At what prior dis-
tance from the first point was the car at rest?

16. The engineer of a train moving at a speed vi sights a freight train a distance
d ahead of him on the same track moving in the same direction with a slower speed VC.

He puts on the brakes and gives his train a constant deceleration a. Show that

(v1 - VS)2
if d > 2a.	

, there will be no collision;

(v - ri)2
if d < 2a	

, there will be a collision.

(It is instructive to plot a qualitative graph of x versus ( for each train.)
17. Two trains, one traveling at 60 miles/hr and the other at 80 miles/hr, are headed

toward one another along a straight level track. When they are 2.0 miles apart, both
engineers simultaneously see the others train and apply their brakes. If the brakes
decelerate each train at the rate of 3.0 ft/sec 2, determine whether there is a collision.

18. A rocket-driven sled running on a straight level track is used to investigate the
physiological effects of large accelerations on humans. One such sled can attain a speed
of 1000 miles/hr in 1.8 sec starting from rest. (a) Assume the acceleration is constant
and compare it to g. (b) What is the distance traveled in this time?

19. (a) With what speed must a ball be thrown vertically upward in order to rise
to a height of 50 It? (b) How long will it he in the air'

20. Water drips from the nozzle of a shower onto the stall floor 81 in. below. The
drops fall at regular intervals of time, the first drop striking the floor at the instant the
fourth drop begins to fall. Find the location of the individual drops when a drop strikes
the floor.

21. If a body travels half its total path in the last second of its fall from rest, find the
time and height of its fall. Explain the physically unacceptable solution of the quad-
ratic time equation.

22. An artillery shell is fired directly up from it gun; a rocket, propelled by burning
fuel, takes off vertically from a launching area. Plot qualitatively (numbers not
required) possible graphs of a5 versus t, of v5 versus 1, and of y versus i for each. Take

= 0 at the instant the shell leaves the gun barrel or the rocket leaves the ground.
Continue the plots until the rocket and the shell fall back to earth; neglect air resistance;
assume that up is positive and down is negative.

23. A rocket is fired vertically and ascends with a constant vertical acceleration of
64 ft/sec' for 1.0 min. Its fuel is then all used and it continues as a free particle.
(a) What is the maximum altitude reached? (h) What is the total time elapsed from
take-off until the rocket strikes the earth?

24. A lead ball is dropped into a lake from a diving board 16 ft above the water. It
hits the water with a certain velocity and then sinks to the bottom with this same con-
stant velocity. It reaches the bottom 5.0 sec after it is dropped. (a) How deep is
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the lake? (b) What, is the average velocity of the hail? (a) Suppose all the water is
drained from the lake. The ball is thrown from the diving board so that it again
reaches the bottom in 5.0 sec. What is the initial velocity of the ball?

25. A stone is dropped into the water from a bridge 144 it above the watr. Another
stone is thrown vertically down 1.0 sec after the first is dropped. Both stones strike
the water at the same time. (a) What was the initial speed of the second stone?
(b) Plot speed versus time on a graph for each stone, taking zero time as the instant
the first stone was released.

26. A steel ball bearing is dropped from the roof of a building (the initial velocity of
the ball is zero). An observer standing in front of a window 4.0 ft high notes that the
ball takes sec to fail from the top to the bottom of the window. The bail bearing
continues to fall, makes a completely elastic collision with a horizontal sidewalk, and
reappears at the bottom of the window 2.0 sec after passing it on the way down. How
tall is the building? (The ball will have the same speed at a point going up as it had
going down after a completely elastic collision.)

27. A dog sees a flowerpot sail up and then back down past a window 5.0 it high.
If the total time the pot is in sight is 1.0 sea, find the height above the window that the
pot rises.

28. A balloon is ascending at the rate of 12 meters/sec at a height 80 meters above the
ground when a package is dropped. How long does it take the package to reach the
ground?

29. A parachutist after bailing out falls 50 meters without friction. When the
parachute opens, he decelerates downward 2.0 meters/sec 2. He reaches the ground
with a speed of 3.0 meters/sec. (a) How long is the parachutist in the air? (b) Atwhat height did he bail out?

30. An elevator ascends with an upward acceleration of 4.0 ft/sec 2. At the instant
its upward speed is 8.0 ft/see, a loose bolt drops from the ceiling of the elevator 9.0 ft
from the floor. Calculate (a) the time of flight of the bolt from ceiling to floor and (b)
the distance it has fallen relative to the elevator shaft.

31. The position of a particle moving along the x-axis depends on the time according
to the equation

x	 -

where z is in feet and tin seconds. (a) What dimensions and units must a and S have?
For the following, let their numerical values be 3.0 and 1.0, respectively. (b) At whattime does the particle reach its maximum positive I-position? (c) What total lengthOf path does the particle cover in the first 40 see? (d) What ia its displacement dur-
ing the first 4.0 see? (r) What is the particle's speed at the end of each of the first
four seconds? (J) What is the particle's acceleration at the end of each of the first
four seconds?

32. An electron, starting from rest, has an acceleration that increases linearly with
time, that is, a = ki, the change in acceleration being k (1.5 meters/sec')/sec.
(a) Plot a versus i during the first 10-sec interval. (5) From the curve of part (a)
plot the corresponding v versus I curve and estimate the electron's velocity 5.0 Sec
after its motion starts. (e) Frc,in the r versus I curve of part (b) plot the corresponding
x versus I curve and estimate how far the electron moved during the first 5.0 sec of its
motion.

33. The position of a particle moving along the x-axis depends on the time according
to the relation

V o

	

X	 (1 -

in Jiieh r and k are constants (a) Plot a curve of x versus I. Notice that z	 0at	 0 and that x	 vo/k at £ =	 ; that i, the total distance through which the
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particle moves is rio/k. (b) Show that the velocity p, given by

= voek1

so that the velocity decreases exponentially with time from its initial value of i'o,

coming to rest only in infinite time. (c) Show that the acceleration a is given by

- —kV,

so that the acceleration is directed opposite to the velocity and has a magnitude pro-

portional to the speed. (d) This particular motion is one with variable acceleration.
Give a plausible physical argument explaining how it can take an infinite time to bring

to rest a particle that travels a finite distance.



r = ix +jy,

V = dr = iv. + 3V5
dt

and
dv

a	 = ia, + ja5.
dt

Motion in a Plane
CHAPTER 4

4-1 Displacement, Velocity, and Acceleration

In this chapter we return to a consideration of motion in two dimen-

sions taken, for convenience, to be the x-y plane. Figure 4-1 shows a par-

ticle at time I moving along a curved path in this plane. Its position, or

displacement from the origin, is measured by
the vector r; its velocity is indicated by the
vector v which, as we have seen in Section
3-4, must be tangent to the path of the par- 	 y

tide. The acceleration is indicated by the
vector a; the direction of a, as we shall see
more explicitly later, does not bear any
unique relationship to the path of the par-	 -- t

tide but depends rather on the rate at which
the velocity v changes with time as the par-

 --

tide moves along its path.	 iv

The vectors r, v, and a are interrelated

(see Eqs. 3-4, 3-5, and 3-10) and can be	
01i'

expressed in terms of their components,
Fig. 4-I A particle moves

using unit vector notation, as 	 along a curved path in the

(4-1'	
x-y plane. Its position r,

'-	 velocity v, and acceleration
a are shown at time t, along

(4-2)	 with the vector components
of those vectors. Note that
X, y, v, v,,, and a are posi-

(43)	 tive but that a,, is negative.
Compare to Fig. 3-3.

5,
F-6
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These equations can easily be extended to three dimensions by adding to
them the terms kz, kv, and kay, respectively in which k is a unit vector in
the z-direction.

In Chapter 3 we considered the special case in which the particle moved
in one dimension only, say along the x-axis, where the vectors r, v, and a
were directed along this axis, either in the positive x-direction or the nega-
tive x-direction. The componentsy, v s,, and a were zero and we described
the motion in terms of equations relating the scalar quantities x, v, and a.
Or, when the particle moved along the y-axis, the components ., v, and u
were zero and the motion was described in terms of equations relating the
scalar quantities y, v i,, and a,,. In this chapter we consider motion in the
x-y plane so that, in general, both sets of components have nonzero values.

4-2 Motion in a Plane with Constant Acceleration

Let us consider first the special case of motion in a plane with constant
acceleration. Here, as the particle moves, the acceleration a does not vary
either in magnitul.' or in direction. Hence the components of a in any
particular reference frame also will not vary, that is, a = constant and
a,, constant. We then have a situation.which can be described as the
sum of two component motions occurring simultaneously with constant
acceleration along each of two perpendicular directions. The particle
will move, in general, along a curved path in the plane. This may be so
even if one component of the acceleration, say a, is zero, for then the cor-
responding component of the velocity, say v, may have a constant, non-
zero value. An example of this latter situation is the motion of an artillery
shell which follows a curved path in a vertical plane and, neglecting the
effects of air resistance, is subject to a constant acceleration g directed
down along the y-axis only.

We can obtain the general equations for plane motion with constant a
simply by setting

a, = constant	 and a,, = constant.

The equations for constant acceleration, summarized in Table 3-1, then
apply to both the x- and U-components of the position vector r, the velocity
vector v, and the acceleration vector a (see Table 4-1).

The two sets of equations in Table 4-1 are related in that the time
parameter t is the same for each, since t represents the time at which the
particle, moving in a curved path in the x-y plane, occupied a position
described by the position components x and y.

The equations of motion in Table 4—I may also be expressed in vector
form. For example, substituting Eqs. 4-4a, 4a' into Eq. 4-2 yields

V = iv + JV

= i(v,o + a,t) + j(v,, 0 + a,,t)

=	 + jv,,o) + (ia + ja,,)t.
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Table 4-1

MOTION WITH CONSTANT ACCELERATION IN THE x-y PLANE

Equation	 Equation
No.	 x-Motion Equations	 No.	 y-Motion Equations

4-4a	 V	 t'j + a,t
4-.-4b	 x = X + 0, 0 + v)t
4-4c	 x = xo + v 0t + la,0
4-4d	 + 2a(x - x0)

4-4a' t'1	 V50 + a,t
4-4b' y	 yo + -(t'o + v,)t
4-4c' Y = Yo + t'vot + layt,
4-4d' J,y2 = t'y0 2 + 2a 5 (y - yo)

The first quantity in parentheses is the initial velocity vector v 0 (see Eq.
4-2) and the second is the (constant) acceleration vector a (see Eq. 4-3).
Thus the vector relation

V = V0 + at	 (4-5a)

is equivalent to the two scalar relations Eqs. 4-4a, a' in Table 4-1. It
shows simply and compactly that the velocity v at time i is the sum of the
initial velocity v 0 which the particle would have in the absence of accelera-
tion plus the (vector) change in velocity, at, acquired during the time I
under the constant, acceleration a. Similarly, the scalar equations 4-4c,
c' are equivalent to the single vector equation

r = r 0 + vol + , at',	 (4-5)

hich is also easily interpreted. The proof of this and other relations is
left to Problem 17.

4-3 Projectile Motion

An example of curved motion with constant acceleration is projectile
motion. This is the two-dimensional motion of a particle thrown obliquely
into the air. The ideal motion of a baseball, a golf ball, or a bullet is an
example of projectile motion.* We assume that the effect the air itself
would have on their motions can be neglected.

The motion of a projectile is one of constant acceleration g, directed
downward, and thus should be described by the equations inTable 4-1.
There is no horizontal component of acceleration. If we choose a reference
frame with the positive y-axis vertically upward, we may put a,, = —g and
a5 = 0 in these equations.

Let us further choose the origin of our reference frame to be the point at
which the projectile begins its flight (see Fig. 4-2). Hence the origin will
be the point at which the ball leaves the thrower's hand or the fuel in the
rocket burns out, for example. In Table 4-1 this choice of origin implies

See Galileo Galilei, Dialogues Concerning Two New Sciences, the "Fourth Day," for
a fascinating discussion of Galileo's research on projectiles.
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Fig. 4-2 The trajectory of a projectile, showing the initial velocity v, and its vector
components and also the velocity v and its vector components at five later times.
Note that v = v.9 throughout the flight. The distance R is the horizontal range.

that x0 = yo = 0. The velocity at I = 0, the instant the projectile
begins its flight, is vo, which makes an angle Oo with the positive x-direction.
The x- and y-components.of v0 (see Fig. 4-2) are then

VXO = V0 008 0 0	 and v90	 v 0 sin Oo.

Because there is no horizontal component of acceleration, the horizontal
component of the velocity will be constant. In Eq. -4a we set a 0
and vo = vo cos 0, so that

= v 0 cos 0.	 (4-6a)

The horizontal velocity component retains its initial value throughout the
Right.

The vertical component of the velocity will change with time in accord-
ance with vertical motion with constant downward acceleration. In
Eq. 4-4a' we set

a. = —g	 and v1,0 VoSjfl Oo,
so that

VV = vo Sin 80 - gI.
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The vertical velocity component is that of free fall. Indeed, if we view
the motion of Fig. 4-2 from a reference frame that moves to the right with
a speed vo, the motion wilt he that of all thrown vertically upward
with an initial speed v 0 sin O.

The magnitude of the resultant velocity vector at any instant is

=	
+ t,,2 .	 (4-7)

The angle U that the velocity vector makes with the horizontal at that
instant is given by

tan 0 = -
V.'

The velocity vector is tangent to the path of the particle at every point,
as shown in Fig. 4-2.

The x-coordinate of the particle's position at any time, obtained from
Eq. 4-4c with Xü = 0, a = 0, and v 0 = v 0 cos 0, is

X = (v 0 cos 0o)t.	 (46c)

The y-coordinate, obtained from Eq. 4-4c' with yo = 0, a = -g, and
V VO = VO sin Oo, is

Y = (v 0 sin 0o)t - 90.	 (4-6c')

Equations 4-6c, c' give us x and y as functions of the common parameter
f, the time in flight. By combining and eliminating I from them, we obtain

Y = (tan 00)z - 
2(vo cos 6o)2 

x2,	 (4-8)

which relates y to x and is the equation of the trajectory of the projectile.
Since v 0, 0, and g are constants, this equation has the form

y = bx - cx2,

the equation of a parabola. Hence the trajectory of a projectile is
parabolic.

. Example 1. A bomber is flying at a constant horizontal velcity of 820
miles/hr at an elevation of 52,000 ft toward a point directly above its target. At
what angle of sight 0 should a bomb be released to strike the target (Fig. 4-3)?

We choose a reference frame fixed with respect to the earth, its origin 0 being
the bomb release point. The motion of the bomb at the instant of release is the
same as that of the bomber. Hence the initial projectile velocity vo is horizontal
and its magnitude is 820 miles,'hr or 1200 ft/sec. The angle of Projection 90

is zero.
The time of fall is obtained from Eq. 4-Gc'. With Pa = 0 and y = -52,000 ft,

this gives

=	 =	 2(-52,000)ft = 57 sec.
9	 32 ft/sec2
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r L__
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x

VA

Fig. 4-3 Example I. A bomb is released from an airplane with horizontal velocity vo.

Note that the time of fall of the bomb does not depend on the speed of the plane

for a horizontal projection. (See, however, Problem 10.)
The horizontal distance traveled by the bomb in this time is given by Eq. 4-6c,

X = (vo cos O)t, or x = (1200 ft/sec)(57 see) 68,030 ft so that the angle of
sight (Fig. 4--3) should be

X	 68,000
= tan'	 = tan' 52,000 =

Does the motion of the bomb appear to he parabolic when viewed from a reference
frame fixed with respect to the bomber?

Example 2. A soccer player kicks a ball at an angle of 37° from the horizontal
with an initial speed of SO ft/sec. (A right triangle, one of whose angles is 37°,
has sides in the ratio 3:4:5, or 6:8:10.) Assuming that the ball moves in a ver-
tical plane:

(a) Find the time ti at which the ball reaches the highest point of its trajectory.
At the highest point, the vertical component of velocity r, is zero. Solving Eq.
4-6a' for t, we obtain

vo SIfl Co -

With
= 0,	 V = 50 ft/see,	 Co = 37°,	 g = 32 ft/see5,

we have
I50(1zs) - 01 ft/sec = 15- sec.

	

32 ft/sec z -	 16

(b) How high does the ball go? The maximum height is reached at t	 15/16
sec. By using Eq. 4--6c',

y•= (t'0 sin 9o)t -

we have

= (50 ft/sec)(xe)(14 see) - (32 ft/secS)()2 see 2 = 14 ft
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(c) What is the horizontal range of the ball and how long is it in the air?
The horizontal distance from the starting point at which tl, ball returns to its

original elevation (ground level) is the range R. We set y 0 in Eq. 4-6c' and
find the time (2 required to traverse this range. We obtain

2v 0 sin 8	 2(50 ft/sec)(-A)	 15
(2= =—sec.

g	 32 ft/sec 2 	8

Notice that ts = 2t. This corresponds to the fact that the same time is required
for the ball to go up (reach its maximum height from ground) as is required for the
ball to come down (reach the ground from its maximum height).

The range R can then be obtained by inserting this value ( 2 for (in Eq. 4-6c.
We obtain, from x = (v 5 cos

/R	 (t' cos 80)(2 = (50 ft/sec)(-r8 ) (
1
-g-

5- see)	 75 ft.

(d) What is the velocity of the ball as it strikes the ground? From Eq. 4-6a
we obtain

= r0 coo 80 = (50 ft/sec)(j ) = 40 ft/sec.

From Eq. 4-6a' we obtain for i = t2 =	 see,

= t'o sin O - gg = (50 ft/sec)(-) .- (32 ft/see 2)(	 see) = -30 ft/sec.

Hence, from Eq. 4-7,

v =	 + v, 2 = V'(40 ft/sec) 2 + ( - 30 ft/sec) 2 	50 ft/see,

and	 tan 0 = v5/v, = ---,

so that 8	 _370, or 37° clockwise from the x-axis. Notice that 0	 -0, as we
expect from symmetry (Fig. 4-2).

Example 3. In a favorite lecture demonstration a gun is sighted at an elevated
target which is released in free fall by a trip mechanism as the bullet leaves the
muzzle. No matter what the initial speed of the bullet, it always hits the falling
target.

The simplest way to understand this is the following. If there were no acclera-
tion due to gravity, the target would not fall and the bullet would move along the
line of sight directly into the target (Fig. 4-4). The effect of gravity is to cause
each body to accelerate down at the same rate from the position it would otherwise
have had. Therefore, in the time t, the bullet will fall a distance ft2 from the
position it would have had along the line of sight and the target will fall the same
distance from its starting point. When the bullet reaches the line of fall of the
target, it will be the same distance below the target's initial position as the target
is and hence the collision. If the bullet moves faster than shown in the figure
(eo larger), it will have a greater range and will cross the line of fall at a higher
point; but since it gets there sooner, the target will fall a correspondingly smaller
distance in the same time and collide with it.A similar argument holds for slower
speeds.

For an equivalent analysis, let us use Eq. 4-56

r = r0 + v 0t + 4a:2
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T

Fig. 4-4 Example 3. In the
motion of a projectile. its
displacement front the origin
at any time I can be thought
of as the sum of two vectors:
v 0p(, directed nOflg vop, and
g 2/2, directed downward.

ir

to describe the positions of the projectile and the target at any time t. For the
projectile P, ro = 0 and a g, and we have

rp = vopt + gg2.

For the target T, ro = ref , vo = 0, and a	 g, leading to

rr	 roT + gt2.

If there is a collision, we must have rp rr. Inspection shows that this will
always occur at a time t given by roT = vopt-, that is, in the time I (= roT/cop)

required for the projectile to travel to the target position along the line of sight,
assuming that its initial velocity remains unchanged. 	 4

4-4 Uniform Circular Motion

In Section 3-6 we saw that acceleration arises from a change in velocity.
In the simple case of free fall the velocity changed in magnitude only, but
not in direction. In a particle moving in a circle with constant speed,
called uniform circular motion, the velocity vector changes continuously
in direction but not in magnitude. We seek now to obtain the acceleration
in uniform circular motion.

The situation is shown in Fig. 4-5a. Let P be the position of the par-
ticle at the time t and P its position at the time t + At. The velocity at
P is v, a vector tangent to the curve at P. The velocity at P is v', a vector
tangent to the curve at P'. Vectors v and v' are equal in magnitude, the
speed being constant, but their directions are different. The length of
path traversed during at is the are length PP', which is equal toe At, v being
the constant speed.

Now redraw the vectors v and v', as in Fig. 4-5b, so that they originate
at a common point. We are free to do this as long as the magnitude and
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direction of each vector are the same as in Fig. 4-5a. This diagram (Fig.
4-5b) enables us to see clearly the change in velocity as the particle moved
from P to F'. This change, v' - v = v, is the vector which must be
added to v to get V. Notice that it points inward, approximately toward
the center of the circle.

Now the triangle OQQ' formed by v, v', and Av is similar to the triangle
CPP' formed by the chord i'I" and the radii CF and CP'. This is so
because both are isosceles triangles having the same vertex angle; the angle
8 between v and v' is the same as the angle PCP because v is perpendicular
to CF and v' is perpendicular to CP'. We can therefore write

AV	 vt- = -'	 approximately,

the chord PP' being taken equal to the are length PP. This relation
becomes more nearly exact as t is diminished, since the chord and the arc
then approach each other. Notice also that 1v approaches closer and
closer to a direction perpendicular to v and v' as It is diminished and there-
fore approaches closer and closer to a direction pointing to the exact center
of the circle. It follows from this relation that

AV	 V2
- = -,	 approximately,
At	 r

and in the limit when At —. 0 this expression becomes exact. We therefore.
obtain

V	 V2
a= lim —= —	 (4-9)

r

as the magnitude of the acceleration. The direction of a is instantaneously
along a radius inward toward the center of the circle.

).'
Ar um v Q

(a) 	 (b)

Fig. 4-3 Uniform circular motion. The particle travels around a circle at constant
speed. Its velocity at two points P and P' is shown. Its change in velocity in going
from P to P is Av.
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Figure 4-6 shows the instantaneous relation between v and a at various
points of the motion. The magnitude of v is constant, but its direction
changes continuously. This gives rise to an acceleration a which is also

constant in magnitude (but not zero)
but continuously changing in direc-
tion. The velocity v is always tan-
gent to the circle in the direction of
motion; the acceleration a is always

a directed radiall y inward. Because
of this, a is called a radial, or
centripetal, acceleration. Centripetal

IV	
means "seeking a center."

Both in free fall and in Projectile
a motion a is constant in direction and

magnitude and we can use the equa-
tions developed for constant accel-
eration (see Table 4-1). We cannot

Fig. 4-6 Jo uniform circular i,tiofl	 use these equations for uniform cir-
the acceleration a is always  illri, ted
toward the e ,entcr of the circle	 d	 eular motion because a varies in di-

hence is perpendicular to v.	 rection and is therefore not constant.
The units of centripetal accelera-

tion are the same as those of all

 resulting from a change in the magnitude of a velocity. Dimen-
sionally, we have

v2 (leI2/ length =	
or 

L

r	 time I	 time-	 T2

which are the dimensions of acceleration. The units therefore may be
ft/see 2, metersjsec 2 ,.among others.

The acceleration resulting from a change in direction of a velocity is just
as real and just as much all acceleration in every sense as that arising from
a change in magnitude of a velocit y . By definition, acceleration is the time
rate of change of velocity, and velocity, being a vector, can change in
direction as well as magnitude. If a physical quantity is a vector, its
directional aspects cannot be ignored, for their effects will prove to be every
bit as important and real as those produced by changes iii magnitude.

It is worth emphasizing at this point that there need not be any motion
in the direction of all and that there is no fixed relation in
general between the directions of a and v. lu Fig. 4-7 we give examples in
which the angle between v and a varies from 0 to 180°. Onl y in one ease,
0 = 0', is the motion in the direction of a.

Example 4. The moon revolves about the earth, making a complete revolu-
tion in 27.3 da ys. Assume that the orbit is circular and has a radius of 239,000
miles. What is the magnitude of the acceleration of the moon toward the earth?

We have r = 239,000 miles = 3.85 X lO meters. The time for one complete
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Fig. 4-7 Showing the relation between v and a for various motions.

revolution, called the period, is T = 27.3 days = 2.36 X 101 sec. The speed of
the moon (assumed constant) is therefore

= 2irr/T 1020 meters/sec.

The centripetal acceleration is

	

V2	 (1020 meters/sec) 2	-
a = - =	 = 0.002i3 meter/see-, 	 or only 2.78 X 104g.

	

r	 3.85 X 10 1 meters

Example 5. Calculate the speed of an artificial earth satellite, as:uming that
it is traveling at an altitude 4 of 140 miles above the surface of the earth where
g = 30 ft/sec'. The radius of the earth R is 3960 miles.

Like any free object near the earth's surface the satellite has an acceleration g
toward the earth's center. It is this acceleration that causes it to follow the
circular path. Hence the centripetal acceleration is g, and from Eq. 4-9, a =

we have
g = v 2/(R + 4),

or

	

v =	 + h)g V'(3960 miles + 140 miles)(5280 ft/mile) (30 ft/sec')

2.55 X 10 1 ft/sec = 17,400 miles/hr.

Let us now derive Eq. 4-9 using vector methods. Figure 4-Sc shows a particle
in uniform circular motion about the origin 0 of a reference frame. For this
motion the polar coordinates r, 9 are more useful than the rectangular coordi-
nates x, y because r remains constant throughout the motion and 0 increases in a
simple linear wa y with time; the behavior of x and y during such motion is more
complex. The two sets of coordinates are related by

	

t w /X 2 ±y 2	 and	 0 = tan' Y1 /X	 (4-1 Oa)

or by the reciprocal relations

	

r=r cos O	 and	 y =r sin O.	 (4-10b)

In rectangular reference frames we used the unit vectors i and j to describe
motion in the x-y plane. Here we find it more convenient to introduce two new
unit vectors u, and us. - These, like i and j, have unit length and are dimension-
less; they designate direction only.

The unit vector u r at an y point is in the direction of increasing r at that point;
it is directed radiall y outard from the origin. The unit vector 11 6 at any point
is in the direction of increasing 6 at that point; it is always tangent to a circle
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I	 u(- °.
Us	 UOI

(0)	 (6)

Fig. 4-8 (a) A particle
moving counterclockwise in
a circle of radius r. (b)
The unit vectors u,, and
LIP,  at times i i and t2 re-
spectively, and the change
duo( = u,, - u.,).

through the point in a counterclockwise direction. As Fig. 4-So shows, Ur and u
are at right angles to each other. The unit vectors u, and us differ from the unit
vectors i and j in that the directions of u, and U8 vary from point to point in the

plane; the unit vectors u, and tie are thus not constant vectors.

In terms of Ur 
and us the motion of a particle moving counterclockwise at uni-

form speed v in a circle about the origin in Fig. 4--8a can be described by the vector
equation

	

V	 u,v.	 (4-11)

This relation tells us, correctly, that the direction of v (which is the same as the
direction of u,) is tangent to the circle and that the magnitude of v is the con-
stant quantity v (because the magnitude of us is unity).

To find the acceleration we combine Eqs. 4-3 and 4-11, yielding

a - .! = 1:	 .	 (4-12)
dt	 dt 

r.

Note that v in Eq. 4-11 is a constant, but U, is not since its direction changes as

the particle moves. To evaluate du,/dt, consider Fig. 4-8b which shows the unit
vectors u, and u, corresponding to an elapsed time At (= is - t1) for the moving
particle. The vector Auo (= u, — u.,) points radially inward toward the origin
in the limiting ease as At -. 0. In other words, du, at any point has the direction
of —u,. The angle between u, and u, in the figure is M, which is the angle
swept out by a radial line from the origin to the particle in time .t. The magni-
tude of Aut is simply 8; bear in mind that the vectors u, and u, in Fig. 4-8b
have the magnitude unity. Thus

dsx,AO	 dO
— = —u, hm -- -U,—
di	 A-.o

and, from Eq. 4-12,

	

duo	 dO
a	 V	 - U,. V -

Now, d8/di is the uniform angular rotation rate of the particle and is given by

dO	 21r radians	 27	 I'

di	 time for one revolution 2rr/v r

(4-13)
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Putting this into Eq. 4-13 leads us finally to

a 'Ur —r	 (4-14)

which tells us that the acceleration in uniform circular motion has a magnitude v'/'r(see Eq. 4-9) and points radially inward (note the factor —u,). The vector rela-
tion Eq. 4-14 thus tells us both the magnitude and the direction of the centripetal
acceleration a. Note that, as expected, a has a constant magnitude but changes
continually in direction because u, changes continually in direction.

4-5 Tangential Acceleration in Circular Motion

We now consider the more general case of circular motion in which the speed v
of the moving particle is not constant. We shall use vector methods in polar
coordinates.

As before, the velocity is given by Eq. 4-11, or

V - UV

except that, in this case, not only no but also v varies with time. Recalling the
formula for the derivative of a product, one obtains for the acceleration

dv	 dv	 du,a Z=

(4-15)

In Eq. 4-12 the first term in this equation was not present because, v being thereassumed to be constant, dv/dt was zero. The last terni in Eq. 4-15 reduces, as we
saw in the last section, to —u,(v2 /r). We can now write Eq. 4-15 as

a - u,ar - u,a5,	 (4-16)
in which or = du/dI and a5 v2/r The first term, uear, is the vector component
of a that is tangent to the path of the particle and arises from a change in the
magnitude of the velocity in circular motion (see Fig. 4-9). This term and ar
are called the tangential acceleration. The second term - ua5 is the vector com-
ponent of a directed radially in toward the center of the circle and arises from a

1	 - AVA

(1')

Vr

 (c)

FIg. 4-9 In nonuniform circular motion the speed is variable. The change in
velocity .v in going from P to P' is made up of two parts: Avit caused by the changein direction of v, and Avr caused by the change in magnitude of v. In the limit as
At -.0,	 points toward the center C of the circle and vr is tangent to the cir-cular path.
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Fig. 4-10 
A track left in a 10-in. liquid-hydrogen-filled ubble chamber by an

energetic spiralling electron. (Courtesy Lawrence Radiation Laboratory.) This
picture is one of a number in a collection prepared for easy stereoscop ic viewing and

published, with explanatory material, as Introduction to the Detection of Nuclear

Particles in a Bubble Chamber, 
The Ealing Press, Cambridge 40, Massachusetts

(1964). When viewed stereoscopica lly the electron is seen to be moving toward the
reader as it moves in along the spiral. Its velocity vector at any point, thus, does
not lie in the plane of the figure, but tilts up ont of it; its motion is thus three-dimen-
sional, rather than two-dimensional as we assumed for other examples in this chapter.

change in the direction of the velocity in circular motion (see Fig. 4-9). This term

and ak are called the centripetal acceleration.
The magnitude of the instantaneous acceleration is

2	 (4-17)
a = J 

If the speed is constant, theft aT dv/dt = 0 and Eq. 4-16 reduces to Eq. 4-14.

When the speed v is not constant, or is not zero and aR varies from point to point.

If the speed changes at a rate that is not constant, then ar will also vary from

point to point.



Sec. 4-6	 RELATIVE VELOCITY AND ACCELERATION	 71
If the motion is not circular, the formulas for at ( r dv/dt) and for an (= v/r)can still be applied if instead of using for r the magnitude of the radius vector from

the origin we substitute the radius of curvature of the path at the instantaneous
position of the particle. Then a T gives the component of acceleration tangent to
the curve at that position, and an gives the component of acceleration normal to
the curve at that position. Figure 4-10 shows the track left in a liquid_hydrogen_
filled bubble chamber by an energetic electron that spirals inward. The electron
loses energy as it traverses the liquid in the chamber so that its speed v is beingreduced steadily. Thus there is at every point a tangential acceleration OT given bydv/dt. The centripetal acceleration an at any point is given by t,2 

/r  where r is theradius of curvature of the track at the point in question; both v and r become
smaller as the particle loses energy. The force causing the electron to spiral is
produced by a magnetic field present in the bubble chamber and at right angles to
the plane of Fig. 4-10 (see Chapter 33).
4-6 Relative Velocity and Acceleration

In earlier sections ivv. considered the addition of velocities in a particular
reference frame. Let us now consider the relation between the velocity
of an object as determined by one observer S (= reference frame S) and
the velocity of the same object as determined by another observer 8'
(= reference frame 8') who is moving with respect to the first..

Consider observer S fixed to the earth, so that his reference frame is the
earth. The other observer S' is moving on the earth—for example, a pas-
senger sitting on a mo ing train—so that his reference frame is the train.
They each follow the motion of the same object., say an automobile oil
road or a man walking through the train. Each observer will record a dis-
placement, a velocity, and an acceleration for this object measured relative
to his reference frame. How will these measurements compare? in this
section we consider only the case in which the second frame is in motion
with respect to the first with a constant velocit y u.

In Fig. 4-11 the reference frame S represented by the x- 4nd y-axes can

Fig. 4-11 Two reference frames,
S (	 z, y ) and 8' ( = z', i");

moves to the right, relative to
8, with speed u.

y y'

I
AA

01	 X

y

sLtx
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be thought of as fixed to the earth. The shaded region indicates another

reference frame S', represented by x'- and y'-axes, which moves along the
x.axis with a constant velocity u, as measured in the S-system; it can be
thought of as drawn on the floor of a railroad flatcar.

Initially, a particle (say a ball on the flatcar) is at a position called A

in the S-frame and called A' in the S'-frame. At a time I later the flat-

car and its S' reference frame have moved a distance ut to the right and

the particle has moved to B. The displacement of the particle from its

initial position in the S-frame is the vector r from A to B. The displace-

ment of the particle from its initial position in the S'-frame is the vector

r' from A' to B. These are different vectors because the reference point

A' of the moving frame has been displaced a distance ut along the x-axis

during the motion. From the figure we see that r is the vector sum of r'

and ui:

	

= r' + Ut.	 (4-18)

Differentiating Eq. 4-18 leads to

drdr'

But dr/dt v, the instantaneous velocity of the particle measured in the

S-frame, and dr'/dt = v', the instantaneous velocity of the same particle

measured in the 8' frame, so that

	

V = Vt + U.	
(4-19)

Hence the velocity of the particle relative to the S-frame, v, is the vector
sum of the velocity of the particle relative to the S'-frame, v', and the
velocity u of the 5'-frame relative to the S-frame.

. Example 6. (a) The compass of an airplane indicates that it is heading due
east. Ground information indicates a wind blowing due north. Show on a dia-
gram the velocity of the plane with respect to the ground.

The object is the airplane. The earth is one reference frame (S) and the air is
the other reference frame (2') moving with respect to the first. Then

u is the velocity of the air with respect to the ground.
V is the velocity of the plane with respect to the air.

Y is the velocity of the plane with respect to the ground.

In thiscase u points north and v' points east. Then the relation v = v' + U

determines the velocity of the plane with respect to the ground, as shown in Fig.

4-12a.The angle a is the angle N of E of the plane's course with respect to the ground

and is given by
tan a = u/v'.

The airplane's speed with respect to the ground is given by
jT2
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Fig. 4-12 Example 6.	 (a)

(b)

For example, if the air-speed indicator shows that the plane is moving relative
to the air at a speed of 200 miles/hr, and if the speed of the wind with respect to
the ground is 40.0 miles/hr, then

v V (200)2 + (40.0)' miles/hr = 204 miles/hr

is the ground speed of the plane and

a tan'	 = 11 20'
200

gives the course of the plane N of E.
(b) Now draw the vector diagram showing the direction the pilot must steer

the plane through the air for the plane to travel due east with respect to the ground.
He would naturally head partly into the wind. His speed relative to the earth

will therefore be less than before. The vector diagram is shown in Fig. 4-12b.
The student should calculate 0 and v, using the previous data for u and V.	 I

We have seen that different velocities are assigned to a particle by dif-
ferent observers when the observers are in relative motion. These veloci-
ties always differ by the relative velocity of the two observers, which here is
a constant velocity. It follows that when the particle velocity changes, the
change will be the same for both observers. Hence they each measure the
same acceleration for the particle. The acceleration of a particle is the same
in all reference frames moving relative to one another with constant
velocity; that is, a = a'. This result follows in a formal way if we differ-
entiate Eq. 4-19. Thus dv/dt = dv'/dt + du/dt; but du/dt = 0 when
u is constant, so that a = a'.

QUESTIONS

1. In projectile motion when air resistance is negligible, is it ever necessary to oon-
alder three-dimensional notion rather than two-dimensional?

2. In broad jumping does it matter how high you jump? What factors determine
the span of the jump?
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3. Why doesn't the electron in the beam from an electron gun fall as much because of

gravity as a water molecule in the stream from a hose? Assume horizontal motion
initially in each case.

4. An aviator, pulling out of a dive, follows the are of a circle. He was said to have
"experienced 3g's" in pulling out of the dive. Explain what this statement means.

5. Describe qualitatively the acceleration acting on a bead which moves inward
with constant speed along a spiral.

6. Could the acceleratiOn of a projectile be represented in terms of a radial and a
tangential component at each point of the motion? If so, is there any advantage to this
representation?

7. A boy sitting in a railroad car moving at constant velocity throws a ball straight
up into the air. Will the ball fall behind him? In front of him? Into his hand?
What happens if the car accelerates forward or goes around a curve while the ball is
in the air?

8. A man on the observation platform of a train moving with constant velocity drops
a coin while leaning over the rail. Describe the path of the coin as seen by (a) the man'
on the train, (b) a person standing on the ground near the track, and (c) a person in a
second-train moving in the opposite direction to the first train on a parallel track.

9. A bus with a vertical windshield moves along in a rainstorm at speed vo. The
raindrops fall vertically with a terminal speed v,. At what angle do the raindrops strike
the windshield?

JO. Drops are falling vertically in a steady rain. In order to go through the rain from
one place to another in such a way as to encounter the least number of raindrops, should
you move with the greatest possible speed, the least possible speed, or some intermediate
speed?

II. An elevator is descending at a constant speed. A passenger takes a coin from his
pocket and drops it to the floor. What accelerations would (a) the passenger and (b)
a person at rest with respect to the elevator shaft observe for the falling coin?

PROBLEMS

I. Prove that for a vector a defined by

a in, + ja, + ka

the scaler components are given by

a,,=i'a,	 a..'.j•a,	 and	 a.,k'a.

2. A ball rolls off the edge of a horizontal table top 4.0 ft high. If it strikes the floor
at a point 5.0 ft horizontally away from the edge of the table, what was its speed at the
instant it left the table?

3. A ball rolls off the top of a stairway with a horizontal velocity of magmtude 5.0
ft/sec. The steps are 8.0 in. high and 8.0 in. wide. Which step will the ball hit first?

4. A shell is fired horizontally from a powerful gun located 144 It above a horizontal
plane with a muzzle speed of 800 ft/sec. (a) How long does the shell remain in the air?
(5) What A its range? (c) What is the magnitude of the vertical component of its
velocity as it strikes the target.?

5. Show that the maximum height reached by a projectile is y	 (So 5fl 8o)/2g.
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6. Show that the horizontal range of a projectile having an initial speed v, and angle
of projection Oo is R = (vo2 /g) sin 280. Then show that a projection angle of 45 gives
the maximum horizontal range
(Fig. 4-13).

7. Find the angle of projection
at which the horizontal range and
the maximum height of a projec-
tile are equal.

8. In Galileo's Two New Sci-
ences the author states that "for
elevations (angles of projection)
which exceed or fall short of 450
by equal amounts, the ranges are
equal ...... Prove this state-
ment.

9. A rifle with a muzzle veloc-
ity of 1500 ft/sec shoots a bullet 	 Fig. 4-13
at a small target 150 ft away.
How high above the target must
the gun be aimed so that the bullet will hit the target?

10. A dive bomber, diving at an angle of 530 with the vertical, releases a bomb at an
altitude- of 2400 ft. The bomb hits the ground 5.0 sec after being released. (a) What
is the speed of the bomber? (b) How far did the bomb travel horizontally during its
flight? (c) What were the horizontal and vertical components of its velocity just
before striking the ground?

11. A batter hits a pitched ball at a height 4.0 ft above ground so that its angle of
projection is 450 and its 1-orizontal range is 350 ft. The ball is fair down the left field
line where a 24-ft-high fence is located 320 ft from home plate. Will the ball clear
the fence?

12. A football is kicked off with an initial speed of 64 ft/sec at a projection angle of
450 A receiver on the goal line 60 yd away in the direction of the kick starts running to
meet the ball at that instant. What must his speed be if he is to catch the ball before it
hits the ground?

13. In a cathode-ray tube a beam of electrons is projected horizontally with a speed
of 1.0 x 109 em/Sec into the region between a pair of horizontal plates 2.0 cm long.
An electric field between the plates exerts a constant downward acceleration on the
electrons of magnitude 1.0 X 10 17 cm/sec 2. Find (a) the vertical displacement of the
beam in passing through the plates and (b) the velocity of the beam (direction and
magnitude) as it emerges from the plates.

14. (a) Show that if the acceleration of gravity changes by an amount dg, the range
of a projectile (see Problem 6) of given initial speed vo and angle of projection Oo changes
by dR where dR/fl = -dg/q. (b) If the acceleration of gravity changes by a small
amount Ag (say by going from one place to another), the range for a given projectile
system will change as well. Let the change in range be AR. If Ag, AR are small
enough, we may write ARIR = -g/g. In 1936, Jesse Owens (United States) estab-
lished a world's running broad jump record of 8.09 meters at the Olympic games at
Berlin (g 9.818 meters/sec'). By how much would his record have differed if he had
competed instead in 1956 at Melbourne (g = 9.7999 meters/see 2)? (In this con-
nection see "Bad Physics in Athletic Measurements," by P. Kirkpatrick, American
Journal of Physics, February 1944.)

15. Electrons, nuclei, atoms and molecules, like all forms of matter, will fall under the
influence of gravity. Consider separately a beam of electrons, of nuclei, of atoms; and
of molecules traveling a horizontal distance of 1.0 meter. Let the average speed be
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for an electron 3.0 X 107 meters/see, for a thermal neutron 2.2 X 10 meters/see, for a
neon atom 5,8 X 102 meters/see, and for an oxygen molecule 4.6 X 10 2 meters/sec.
Let the beams move through vacuum with initial horizontal velocities and find by how
much their paths deviate from a straight line (vertical displacement in 1.0 meter) due
to gravity. If do these results compare to that for a beam of golf balls (use reasona-
ble data)? What is the controlling factor here?

16. A radar observer on the ground is "watching' an approaching projectile. At a
certain instant he has the following information: (a) the projectile has reached maximum
altitude and is moving horizontally with a speed v; (b) the straight-line distance to the
projectile is 1; (c) the line of sight to the projectile is an anlc 0 above the horizontal.
Find the distance D between the observer and the point of impact of the projectile.
Does the projectile pass over his head or strike the ground before reaching him? D Is
to be expressed in terms of the observed quantities v, 1, and 0 and the known value of g.
Assume a flat earth; assume also that the observer lies in the plane of the projectile's
trajectory.

17. Show that Eqs. 4-4d, d' in Table 4-1 can be expressed in vector form as

V • v	 vo WI + 2a (r + ro),

that Eqs. 4-4b, b' can be expressed as

r ro + (vo + v)t,
and Eqs. 4-4c, c' as

r ro + vOt + 612.

M. Projectiles are hurled at a horizontal distance R from the edge of a cliff of height
Jo in such a way as to land a horizontal distance x from the bottom of the cliff. If you
want x to be as small as possible, how would you adjust Oo and vo, assuming that co can
he varied from zero to some maximum finite value and that 8o can be varied continu-
ously? Only one collision with the ground is allowed (see Fig. 4-14).

..

Fig. 4-14

19. Consider a projectile at the top of its trajectory. (a) What is its speed in terms of
co and 8? (b) What is its acceleration? (c) How is the direction of its acceleration
related to that of its velocity? (d) Over a short distance a circular are is a good
approximation to a parabola. What then is the radius of the circular arc approximat-
ing the projectile's motion near the top of its path?

20. A particle rests on the top of a hemisphere of radius R. Had the smallest hori-
zontal velocity that must be imparted to the particle if it is to leave the hemisphere
without sliding down it.

21. A magnetic field will deflect a charged particle perpendicular to its direction of
motion. An electron experierees a radial acceleration of 3.0 X 10 14 meters/ee 1 in one
such field. What is its speed if t.hc radius of .... 	 sd otLh is 0L1.5 meter?
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22. In Bohr's model of the hydrogen atom an electron revolves aro'ind a proton in a
circular orbit of radius 528 X 10" meter with a speed of 2.18 X 10 6 meters/sec.
What is the acceleration of the electron in the hydrogen atom?

23. Find the magnitude of the centripetal acceleration of a particle on the tip of a fan
blade, 0.30 meter in diameter, rotating at 1200 rev/mm.

24. By what factor would the speed of the earth's rotation have to increase for a body
on the equator to require a centripetal acceleration of g to keep it on the earth? Such a
body now requires a centripetal acceleration of only about 3.0 cm/sec.

25. A particle travels with constant speed on a circle of radius 3.0 meters and com-
pletes one revolution in 20 sec (Fig. 4-15). Starting from the origin 0, find (a) the
magnitude and direction of the displacement
vectors 5.0 see, 7.5 see, and 10 sec later; (b) the
magnitude and direction of the displacement in
the 50-sec interval from the fifth to the tenth
second (c) the average velocity sector in this

	

interval (d) the instantaneous velocity vector 	 I
at the beginning and at the end of this interval; I
(e) the average acceleration vector in this

	

interval and (f) the instantaneous acceleration	 I	 'i

	

vector at the beginning and at the end of this 	 I	 I
interval. I

26 An earth sateliite moves in a circular
orbit 400 miles above the earth's surface. The
time for one revolution (the period) is found to
be 98 mm. Find the acceleration of gravity at
the orbit from these data.

27. The earth revolves abouTt the sun in a
(nearly) circular orbit with a (nearly) constant
speed of 30 km/sec. What is the acceleration
of the earth toward the sun?

28. A particle moves in a plane according to

x	 R sin ut +a'it,

V R cos wt + R,

where a, and I? are constants. This curve, called a cycloid, is the path traced out by a
point on the rim of a wheel which rolls without slipping along the x-axis. (a) Sketch
the path. (b) Calculate the instantaneous velocity and acceleration when the particle
is at its maximum and minimum value of y.

29. (a) Write an expression for the position vector r for a particle describing uniform
circular motion, using rectangular coordinates and the unit vectors i and j. (b) From
(a) derive vector expressions for the velocity v and the acceleration a. (c) Prove that
the acceleration is directed toward the center of the circular motion.

30. Write an expression, using the unit vectors no and u,., for the position vector r
for a particle describing uniform circular motion and from it derive Eq. 4-11, v = UeV.

31. Express the unit vectors Ur and ue in terms of i, j, and the angle 8 in Fig. 4-8.

32. A person walks up a stalled escalator in 90 sec. When standing on the same
escalator, now moving, he is carried up in 60 see. How much time would it take him to
walk up the moving escalator?

33. Find the speed of two objects if, when they move uniformly toward each other,
they get 4.0 meters closer each second, and, when they move uniformly in the same
direction with the original speeds, they get 4.0 meters closer each 10 sec.

Fig. 4-15
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34. A man can row a boat 4.0 miles/hr in still water. (a) If he is crossing a river
where the current is 2.0 miles/hr, in what direction will his boat be headed if he wants
to reach a point directly opposite from his starting point? (b) If the river is 4.0 miles
wide, how long will it take him to cross the river? (c) How long will it take him to row
2.0 miles down the river and then back to his starting point? (d) How long will it
take him to row 2.0 miles up the river and then back to his starting point? (e) In
what direction should he head the boat if he wants to cross in the smallest possible time?

35. A man wants to cross a river 500 meters wide. His rowing speed (relative to the
water) is 3000 meters/hr. The river flows at a speed of 2000 meters/hr. If the man's
walking speed on shore is 5000 meters/hr, (a) find the path (combined rowing and
walking) he should take to get to the point directly opposite his starting point in the
shortest time. (b) How long does it take?

36. A train travels due south at 88.2 ft/sec (relative to ground) in a rain that is
blown toward the south by the wind. The path of each raindrop makes the angle
21.6 with the vertical, as measured by an observer stationary on the earth. An
observer seated in the train, however, sees perfectly vertical tracks of rain on the
windowpane. Determine the speed of each raindrop relative to the earth.

37. An airplane has a speed of 135 miles/hr in still air. It is flying straight north so
that it is at all times directly above a north-south highway. A ground observer tells
the pilot by radio that a 70-miles/hr wind is blowing, but neglects to tell him the wind
direction. The pilot observes that in spite of the wind he can travel 135 miles along
the highway in one hour. In other words, his ground speed is the same as if there were
no wind. (a) What is the direction of the wind? (I.) What is the heading of the plane,
that is, the angle between its axis and the highway?.

38. A pilot is supposed to fly due east from A to B and then back again to .1 due west.
The velocity of the plane in air is v' and the velocity of the air with respect to the ground
is u. The distance between A and 8 is I and the plane's air speed v' is constant. (a)
If u 0 (still air), show that the time for the round trip is to = 21/u'. (b) Suppose that
the air velocity is due east (or west). Show that the time for a round trip is then

— I -.
to

(c) Suppose that the air velocity is due north (or south). Show that the time for a
round trip is then

to

-

(d) In parts (b) and (c) one must assume that u < if. Why?
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Particle Dynamics—1
CHAPTER 5

5-1 Classical Mechanics

In Chapters 3 and 4, we studied the motion of a particle, with emphasis
on motion along a straight line or in a plane. We did not ask what
"caused" the motion; we simply described it in terms of the vectors r, v,
and a. Our discussion was thus largely geometrical. In this chapter
and the next we discuss the causes of motion, an aspect of mechanics called
dynamics. As before, bodies will be treated as though they were single
particles. Later in the book we shall treat groups of particles and extended
bodies as well.

The motion of a given particle is determined by the nature and the
arrangement of the other bodies that form its environment. In general,
only nearby objects need to be included in the environment, the effects of
more distant objects usually being negligible. Table 5-1 shows some
"particles" and possible environments for them.

In what follows, we limit ourselves to the very important special case of
gross objects moving at speeds that are small compared to c, the speed of
light; this is the realm of classical mechanics. Specifically, we shall not
inquire here into such questions as the motion of an electron in a uranium
atom or the collision of two protons whose speeds are, say, 0.90c. The
first.. inquiry would involve us with the quantum theory and the second with
the theory of relativity. We leave consideration of these theories, of
which classical mechanics is a special case (see Section 6-4), to later.

The central problem of classical particle mechanics is this; (1) We are
given a particle whose characteristics (mass, charge, magnetic dipole

79
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Table 5-1

System	 The Particle' 	 The Environment

1	 A block	 The spring;
•	 the rough surface

2. A golf ball	 The earthPZ

3.
An artificial

-

The earthsatellite

P

4.
J—t v 

441:	 An electron	 A large uniformly

• I	 charged sphere

5. A bar magnet	 A second bar magnet

moment, etc.) we know. (2) We place this particle, with a known initial
velocity, irl an environment of which we have a completedescription.
(3) Problem: what is the subsequent motion of the particle?

This problem was solved, at least for a large variety of environments, by
Isaac Newton (1642-1727) when he put forward his laws of motion and
formulated his law of universal gravitation. The program for solving this
problem, in terms of our present understanding of classical mechanics , * is:
(1) We introduce the concept of force F and define it in terms of the accel-
eration a experienced by a particular standard body. (2) We develop a
procedure for assigning a mass m to a body so that we may understand the
fact that different particles of the ,same kind experience different accelera-
tions in the same environment. (3) Finally, we try to find ways of calcu-
lating the forces that act on particles from the properties of the particle
and of its environment; that is, we look for force laws. Force, which is at

See "Presentation of Newtonian Mechanics" by Norman Austern, American
Jorsta1 of Physics, September 1961, "On the Classical Laws of Motion" by Leonard
Eiseabud, American Journal of Physics, March 1958, and "The Laws of Classical
Motion: What's F? What's m? What's a?" by Robert Weinstock, American Journal
of Physics, October 1961, for expositions of the laws of classical mechanics as we now
view them, almost 300 years after Newton.
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root a technique for relating the environment to the motion of the particle,
appears both in the laws of motion (which tell us what acceleration a giver
body will experience under the action of a given force) and in the force laws
(which tell us how to calculate the force that will act on a given body in s
given environment). The laws of motion and the force laws, taker
together, constitute the laws of mechanics.

The program of mechanics cannot be tested piecemeal. We must viev
it as a unit and we shall judge it to be successful if we can say "yes" t.
these two questions. (1) Does the program yield results that agree wit]
experiment? (2) Are the force laws simple in form? It is the crownin
glory of Newtonian mechanics that we can indeed answer each of thes
questions in the affirmative.

In this section we have used the terms force and mass rather unprecisely
having identified force with the influence of the environment, and mas
with the resistance of a body to be accelerated when a force acts on it,
property often called inertia. In later sections we shall refine these primi -
tive ideas about force and mass.

5-2 Newton's First Law

For centuries the problem of motion and its causes was a central thesre
of natural philosophy. It was not until the time of Galileo and Newton,
however, that dramatic progress was made. Isaac Newton, born in En
land in the year of Galileo's death, is the principal architect of classic J
mechanics . * He carried to full fruition the ideas of Galileo and others wh)
preceded him. His three laws of motion were first presented (in 1686) ii
his Principia Mathemalica Philosophiae Naturalis.

Before Galileo's time most philosophers thought that some influence o
"force" was needed to keep a body moving. They thought that a bod-
was in its "natural state" when it was at rest. For a body to move in
straight line at constant speed, for example, they believed that some exter.
nal agent had to continually propel it-; otherwise it would "naturally'
stop moving.

If we wanted to test these ideas experimentally, we would first have t
find a way to free a body from all influences of its environment or from al.
forces. This is hard to do, but in certain cases we can make the force
very small. If we study the motions as we make the forces smaller and
smaller, we shall have some idea of what the motion would be like if the
external forces were truly zero.

Let us place our test body, say a block, on a rigid horizontal plane. If
we let the block slide along this plane, we notice that it gradually slows
down and stops. This observation was used, in fact, to support the idea
that motion stopped when the external force, in this case the hand initially

• Newton also invented the (fluxional) calculus, conceived the idea of universal
gravitation and formulated its law, and discovered the composition of white light. He
was a skillful experimenter, a mathematician of first rank, and a biblical scholar as well
as what today would be called theoretical physicist.
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pushing the block, was removed. Galileo argued against this idea, how-
ever, reasoning as follows: Let us repeat our experiment, now using a
smoother block and a smoother plane and providing a lubricant. We
notice that the velocity decreases more slowly than before. Let us use
still smoother blocks and surfaces and better lubricants. We find that
the block decreases in velocity at a slower and slower rate and travels
farther each time before coming to rest . * We can now extrapolate and
say that if all friction could be eliminated, the body would continue indefi-
nitely in a straight line with constant speed. This was Galileo's conclu-
sion. Galileo asserted that some external force was necessary to change

the velocity of a body but that no external force was necessary to maintain

the velocity of a body. Our hand, for example, exerts a force on the block
when it sets it in motion. The rough plane exerts a force on it when it
slows it down. Both of these forces produce a change in the velocity,
that is, they produce an acceleration.

This principle of Galileo was adopted by Newton as the first of his three
laws of motion. Newton stated his first law in these words: "Every body

persists in its state of rest or of uniform motion in a straight line unless it is

compelled to change that state by forces impressed on it."
Newton's first law is really a statement about reference frames. For, in

general, the acceleration of a body depends on the reference frame relative
to which it is measured. The first law tells us that, if there are no nearby
objects (and by this we mean that there are no forces because every force
must be associated with an object in the environment) then it is possible to
find a family of reference frames in which a particle has no acceleration.
The fact that bodies stay at rest or retain their uniform linear motion in
the absence of applied forces is often described by assigning a property to
matter called inertia. Newton's first law is often called the law of inertia
and the reference frames to which it applies are therefore called inertial
frames. Such frames are either fixed with respect to the distant stars or
moving at uniform velocity with respect to them.

In nearly all cases in this book we will apply the laws of classical mechanics
from the point of view of an observer in an inertial frame. It is possible to solve
problems in mechanics using a noninertial frame, such as a frame rotating with
respect to the fixed stars, but to do so we have to introduce forces (often called
pseudo-forces) that cannot be associated with objects in the environment. We will
discuss this in Chapters 6, 11, and 16. A reference frame attached to the earth
can be considered to he an inertial frame for most practical purposes. We shall
see in Chapter 16 how good an approximation this is.

Notice that there is no distinction in the first law between a body at
rest and one moving with a constant velocity. Both notions are "natural"
in the absence of forces. That this is so becomes clear when a body at rest

The student may have experimented in the laboratory with a" dry  ice puck." This
is a device which can be made to move over a smooth horizontal surface, floating on a
layer of CO, gas. The friction between the puck and the surface is very low indeed
and it is hard to measure any reduction in speed for path lengths of practical dimensions.
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in one inertial frame is viewed from a second inertial frame, that is, a frame
moving with constant velocity with respect to the first. An observer in
the first frame finds the body to be at rest; an observer in the second frame
finds the same body to be moving with uniform velocity. Both observers
find the body to have no acceleration, that is, no change in velocity, and
both may conclude from the first law that no force acts on the body.

Notice, too, that by implication there is no distinction iii the first law
between the absence of all forces and the pres-
ence of forces whose resultant is zero. For

	

example, if the push of our hand on the book	 -
exactly counteracts the force of friction on it,
the book will move with uniform velocity.
Hence another way of stating the first law is:
If no net force acts on a body its acceleration a is
zero.

If there is an interaction between the body
and objects present in the environment, the

	

effect may be to change the "natural" state of	 .
the body's motion. To investigate this we
must now examine carefully the concept of

5-3 Force
Fig. 5-1 The national

	

Let us refine our concept of force by defining 	 standard kilogram No. 4,
	it operationally. In our everyday language 	 kept at the United

	

force is associated with a push or a pull, perhaps 	 States National Bureau

	

exerted by our muscles. In physics, however, 	 of Standards. It is an

we need a more precise definition.	
accurate copy of the

	

We define	 International standard

	

force here in terms of the acceleration that a 	 kept at the International

	

given standrd body experiences when placed in	 Bureau of Weights and
a suitable environment. 	 Measures near Paris.

	

As a standard body we find it convenient to 	 The standard kilogram
is the platinum cylinder

	

use (or rather to imagine that we use!) a par- 	 housed under the double

	

ticular platinum cylinder carefully preserved 	 bell-jar.
at the International Bureau of Weights and
Measures near Paris, and called the standard
kilogram (see Fig. 5-1). For usein later sections we state here that this
body has been selected as our standard of mass and has been assigned,
by definition, a mass m0 of exactly 1 kg. Later we will describe how
masses are assigned to other bodies.

As for an environment we place the standard body on a horizontal table
having negligible friction and we attach a spring to it. We hold the other
end of the spring in our hand, as in Fig. 5-2a. Now we pull the spring hori-
zontally to the right so that by trial and error the standard body experi-
ences a measured uniform acceleration of 100 meter/sec'. We then
declare, as a matter of definition., that the spring (which is the significant
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Fig. 5-2 (a) A "particle' P (the
standard kilogram) at rest; on a

	

horizontal	 frictionless	 surface.

^__ 	 (b) The body is accelerated byMrlE
pulling the spring to the right.

(b)

body in the environment) is exerting a constant force whose magnitude we
will call 11 1.00 newton" on the standard body. We note that, in imparting
this force, the spring is kept stretched an amount A l beyond its normal

unextended length, as Fig. 5-2b shows.
'We can repeat the experiment, either stretching the spring more of using

a stiffer spring, so that we measure an acceleration of 2.00 meters/sec' for
the standard body. We now declare that the spring is exerting a force of
2.00 newtons on the standard body. In general, if we observe this par-
ticular standard body to have an acceleration a in a particular environ-
ment, we then say that the environment is exerting a force F on the stand-

ard body, where F (in newtons) is numerically equal to a (in meters/sec2).
Now let us see whether force, as we have defined it, is a vector quantity.

In Fig. 5-2b we assigned a magnitude to the force F, and it is a simple
matter to assign a direction to it as well, namely, the direction of the accel-
eration that the force produces. However, to be a vector it is not enough
for a quantity to have magnitude and direction; it must also obe y the laws

of vector addition described in Chapter 2. We can learn only from experi-
ment whether forces, as we defined them, do indeed obey these laws.

Let us arrange to exert a 4.00-newton force along the x-axis and a 3.00-
newton force along the y-axis and let us apply these forces simultaneously

to the standard body placed, as before, on a horizontal, frictionless surface.
What will be the acceleration of the standard body? We would find by
experiment that it was 5.00 meters/see2, directed along a line that makes
an angle of 37° with the x-axis. In other words, we would say that the
standard body was experiencing a force of 5.00 newtons in this same direc-
tion. This same result can be obtained by adding the 4.00-newton and
3.00-newton forces vectorially according to the parallelogram method.
Experiments of this kind show conclusively that forces are vectors; they
have magnitude; they have direction; they add according to the paral-
lelogram law.	 -

The result of experiments of this general type is often stated as follows:
When several forces act on a body, each produces its own acceleration inde-

pendentty. The resulting acceleration is the vector sum of the several inde-

pendent accelerations.
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5-4 Mass; Newton's Second Law

In Section 5-3 we considered only the accelerations given to one par-
ticular object, the standard kilogram. We were able thereby to define
forces quantitatively. What effect would these forces have on other
objects? Since our standard body was chosen arbitrarily in the first place,
we know that for any given object the acceleration will be directly propor-
tional to the force'applied. The significant question remaining then is:
What effect will the same force have on different objects? Everyday experi-
ence gives us a qualitative answer. The same force will produce different
accelerations on different bodies. A baseball will be accelerated more by
a given force than will an automobile. In order to obtain a quantitative
answer to this question we need a method to measure mass, the property of
a body which determines its resistance to a change in its motion.

Let us attach a spring to our'standard body (the standard kilogram, to
which we have arbitrarily assigned a mass m0 = 1.00 kg, exactly) and
arrange to give it an acceleration a 0 of, say 2.00 meters/see', using the
method of Fig. 5-2b. Let us measure carefully the extension A l of the
spring associated with the force that the spring is exerting on the block.

Now we remove the standard kilogram and substitute an arbitrary body,
whose mass we label m 1. We apply the same force (the one that accelerated
the standard kilogram 2.00 meters/see 2) to the arbitrary body (by stretch-
ing the spring by the same amount) and we measure an acceleration a 1 of,
say, 0.50 meter/sec2.

We define the ratio of the masses of the two bodies to be the inverse ratio
of the accelerations given to these bodies by the same force, or

mi/mo ao/a i	(same force F acting).

In this example we have, numerically,

rn. 1 	 m.o(ao/a 1 )	 1.00 kg [(2.00 meters/sec 2)/0.50 meters/sec2fl

= 4.00 kg.

The second body, which has only one-fourth the acceleration of the first
body when the same force acts on it, has, by definition, four tithes the mass
of the first body. Hence mass may be regarded as a quantitative measure
of inertia.

If we repeat the preceding experiment with a different common force
acting, we find the ratio of the accelerations, ao'/aj', to be the same as in
the previous experiment, or

mi/mo 	 ao/a i	ao'/ai'.

The ratio of the masses of two bodies is thus independent of the common
force used.
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Furthermore, experiment shows that we can consistently assign masses
to any body by this procedure. For example, let us compare a second
arbitrary body with the standard body, and thus determine its mass, say

1712. We can now compare the two arbitrary bodies, m 2 and m 1 , directly,

obtaining accelerations 02" and a 1 " when the same force is applied. The

mass ratio, defined as usual from

rn 2/m i 	a i"/ao",	 (same force acting)

turns out to have the same value that we obtain by using the masses m2

and m 1 determined previously by direct comparison with the standard.,
We can show, in still another experiment of this type, that if objects of

mass m 1 and 7n 2 are fastened together they behave mechanically as a single

object of mass (?n1 + m 2). In other words, masses add like (and are

scalar quantities.
Table 5-2 show's the range of values oer which masses can be deter-

mined, using various techniques.

Table 5-2

SOME \IE.sunED MAssEs

Object	 Mass (kg)

Our galaxy	 2.2 X 10'

The sun	 2.0 X 10°

The earth	 6.0 X 10
The moon	 7.4 X 1022

Mass of all the water in the oceans	 1.4 >< 1021

An ocean liner	 7.2 x 107.

An elephant	 4.5 X 10

A man	 7.3 X 10'

• grape	 3.0 X 10'

• tobacco mosaic virus	 6.7 X 10b0

• speck of dust	 2.3 x 10's

• penicillin molecule	 5.0 X 10'
A uranium atom	 4.0,X 10

A proton	 1.7 X 10_27

An electron	 9.1 X 10''

We can now summarize all the experiments and definitions described
above in one equation, the fundamental equation of classical mechanics,

F = ma.	 (5-1)

In this equation F is the (vector) sum of all the forces acting on the body,

m is the mass of the body, and a is its (vector) acceleration. Equation
5-1 may be taken as a statement of Newton's second law. If we write it
in the form a = F1'm, we can see easily that the acceleration of the body is
directly proportional to the resultant force acting on it and parallel in
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direction to this force and that the acceleration, for a given force, is
inversely proportional to the mass of the body.

Notice that the first law of motion is contained in the second law as a
special case, for if F = 0, then a = 0. In other words, if the resultant
force on a body is zero, the acceleration of the body is zero. Therefore in
the absence of applied forces a body will move with constant velocity or be
at rest (zero velocity), which is what the first law of motion says. There-
fore of Newton's three laws of motion only two are independent, the second
and the third (Section 5-5). The division of translational particle diam-
ics that includes only systems for which the resultant force F is zero is
called statics.

Equation 5-1 is a vector equation. We can write this single vector
equation as three scalar equations,

F. = ma,,	 F,, man,	 and F. = ma,,,	 (5-2)
relating the x, y, and z components of the resultant force (Fr, F, and F,,)to the x, y, and z components of acceleration	 and a,,) for the mass m.
It should be emphasized that F. is the sum of the x-components of allthe forces, F,, is the sum of the y-components of all the forces, and F is thesum of the z-components of all the forces acting on m.

5-5 Newton's Third Law of Motion

Forces acting on a body originate in other bodies that make up its
environment. Any single force is only one aspect of a mutual interaction
between two bodies. We find by experiment that when one body exerts
a force on a second body, the second body always exerts a force on the
first. Furthermore, we find that these forces are equal in magnitude but
opposite in direction.. A single isolated force is therefore an impossibility.

If one of the two forces involved in the interaction between two bodies is
called an "action" force, the other is called the "reaction" force. Either
force maybe considered the "action" and the other the "reaction." Cause
and effect is not implied here, but a rnutualsimulf,a?Ieous interaction isimplied.

This property of forces was first stated by Newton in his third law of
motion: "To every action there is always opposed an equal reaction; or, the
mutual actions of two bodies upon each other are always equal, and directed to
contrary parts."

In other words, if body A exerts a force on body B, body B exerts an
equal-but oppositely directed force on body A; and furthermore the forces
lie along the line joining the bodies. Notice that the action and reaction
forces, which always Occur in pairs, act on different bodies. If they were
to act on the same body, we could never have accelerated motion because
the resultant force on every body would always be zero.

Imagine a boy kicking open a door. The force exerted by the boy B onthe door D accelerates the door (it flies open); at the same time, the door
D exerts an equal but Opposite force on the boy B, which decelerates the
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Fig. 5-3 Example 1. A
man pulls on a rope at-
tached to a block. (a)
The forces exerted on the
rope by the block and by
the man are equal and op-
posite. Thus the resultant
horizontal force on the rope
is zero, as is shown in
the free-body diagram. The
rope does not accelerate.
(b) The force exerted on
the rope by the man ex-
ceeds that exerted by the
block. The net horizontU
force has magnitude FMR

- 
F

OR and points to the
right. Thus the rope is
accelerated to the right.
The block is also acted
upon by a frictional force
not shown here.

boy (his foot loses forward velocity). The bovi1I be painfully aware of
the "reaction" force to his "action," particularly if his foot is bare.

The foIlowiig examples illustrate the application of the third law and

clarify its meaning.

Example 1 Consider a man pulling hrizontally on a rope attached to a
block on a horizontal table as in Fig. 5-3. The man pulls on the rope with a force
Faia. The rope exerts a reaction force F5. ' 1 on the man. According to Newton's

third law, Fii = -FRM. Also, the rope exerts a force Fn on the block, and

the block exerts a reaction force FBR on the rope. Again according to the third

law, FRB = -Faa.
Suppose that the rope has a mass ma. Then, in order to start the block and

rope moving from res!, we must have an acceleration, say a. The only forces

acting on the rope are Fan and Fan, so that the resultant force on it is FWIR + FOR,

and this must be different from zero if the rope is to accelerate: In fact, from the
second law we have

Fan + FBR = maa

Since the, forces and the acceleration are along the same line, we can drop the
vector notation and write the relation between the magnitudes of the vectors,

namely
FMR - FOR = mao.

We see therefore that in general FMR does not have the same magnitude as 
FOR

(Fig. 5-3b). l'hese two forces act on the same body and are not action and reaction

pairs.
According to Newton's third law the magnitude of Fain always equals the

magnitude of Fn!, and the iranitude of ERR always equals the magnitude of
ofticyteui inro will v-	 '
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pair of forces FMR and Fai equal in magnitude to the pair of forces F5 and F
(Fig. 5-3a). In this special case only, we could imagine that the rope merely
transmits the force exerted by the man to the block without change. This same
result holds in principle if ma = 0 In practice, we never find a massless rope.
However, we can often neglect the mass of a rope, in which ease the rope is assumed
to transmit a force unchanged. The force exerted at any paint in the rope is
called the tension at that point. We may measure the tension at any point in
the rope-by cutting a suitable length from it and inserting a spring scale; the tension
is the reading of the scale. The tension is the same at all points in the rope only
if therope is unaccelerated or assumed to be massless.

Example 2. Consider a spring attached to the ceiling and at the other end
holding a block at rest (Fig. 5-4a). Since no body is accelerating, all the forces
on any body will add vectorially to zero.
For example, the forces on the suspended
block are T, the tension in the stretched
spring, pulling vertically up on the mass,
and W, the pull of the earth acting verti-
cally down on the body, called its weight.
These are drawn in Fig. 5-4b, where we
show only the block for clarity. There
are no other forces on the block.

In Newton's second law, F represents
the sum of all the forces acting on a body,
so that for the block

F T+ W.

The block is at rest so that its acceleration
is zero, or a = 0. Hence, from the rela-
tion F ma, we obtain T + W = 0, or

(a)	 (b)	 (c)

Fig. 5-4 Example 2. (a) A block
is suspended by a spring. (b) A
free-body diagram showing all the

Therefore the tension in the spring is	 vertical forces exerted on the block.
an exact measure of the weight of the	 (c) A similar diagram for the verti-
block. We shall use this result later in 	 cal forces on the spring.
presenting a static procedure for measur-
ing foràes.

It is instructive to examine the forces exerted on the spring; they are shown in
Fig. 5-4c. T' is the pull of the block on the spring and is the reaction force of
the action force T. T' therefore has the same magnitude as T, which is W. P is
the upward pull of the ceiling on the spring, and w is the weight of the spring,
that is, the pull of the earth on it. Since the spring is at rest and all forces act
along the same line, we have

P + T' + w . = 0,
or
F-8	 P=W+w.

T= —W.

The forces act along the same line, so that
their magnitudes are equal, or

T = W.
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The ceiling therefore pulls up on the spring witb a force whose magnitude is the
aura 3f the weights of the block and spring.

From the third law of motion, the force exerted by the spring on the ceiling, 1",
must be equal in magnitude to P, which is the reaction force to the action force P'.
P' therefore has a magnitude W + w.

In general, the spring exerts different forces on the bodies attached at its different
ends, for P T. In the special case in which the weight of the spring is negligi-
ble, w 0 and P = W . = T. Therefore a weightless spring (or cord) may be
considered to transmit a force from one'end to the other without change.

It is instructive to classify all the forces in this problem according to action and
reaction pairs. The reaction to W, a force exerted by the earth on the block, must
be a force exerted by the block on the earth. Similarly, the reaction to w is a force
exerted by the spring on the earth. Because the earth is so massive, we do not
expect these forces to impart a noticeable acceleration to the earth. Since the
earth is not shown in our diagrams, these forces have not been shown. The forces
T and T' are action-reaction pairs, as are P and 1". Notice that although T =
- W in our problem, these forces are not an action-reaction pair because they act

on the same body.	 4

5-6 Systems of Mechanical Units

Unit force is defined as a force that causes a unit of acceleration when
applied to a unit mass. The mks (meter, kilogram, second) unit of mass is
the kilogram (Fig. 5-1). The cgs (centimeter, gram, second) unit of mass
is the gram, defined as one-thousandth of the kilogram mass.

In the mks system unit force is the force that will accelerate a one-
kilogram mass at one meter/see 2 ; we have seen that this unit is called the

newton. In the cgs system, which includes the Gaussian system, unit
force is the force that will accelerate a one-gram mass at one cm/see2;
this unit is called the dyne. Since 1 kg	 10 3 gm and 1 meter/sec 2 =
102 cm/sec 2, it follows that 1 nt = 10 dynes.

In each of our systems of units we have chosen mass, length, and time as
our fundamental quantities. Standards were adopted for these funda-
mental quantities and units defined in terms of these standards. Force
appears as a derived quantity, determined from the relation F = ma.

In the British engineering system of units, however, force, length, and
time are chosen as the fundamental quantities and mass is a derived quan-
tity. In this system, mass is determined from the relation m Fla.

The standard and unit of force in this system is the pound. Actually,
the pound of force was originally defined to be the pull of the earth on a
certain standard body at a certain place on the earth. We can get this
force in an operational way by hanging the standard body from a spring at
the particular point where the earth's pull on it is defined to be 1 lb of
force. If the body is at rest, the earth's pull on the body, its weight. TV, is

balanced by the tension in the spring. Therefore T = TV = 1 lb, in this
instance. We can now use this spring (or any other one thus calibrated)
to exert a force of 1 lb on any other body; to do this we simply attach the
spring to another body and stretch it the same amount as the pound force
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had stretched it. The standard body can be compared to the kilogram
and it is found to have the mass 0.45359237 kg. The acceIerat jondue to
gravity at the certain place on the earth is found to be 32.1740 ft/sec2.
The pound of force can therefore be defined from F ma as the force
that accelerates a mass of 0.45359237 kg at the rate of 32.1740 ft/sec'.

This procedure enables us to compare the pound-force with the newton.
Using the fact that 32.1740 ft/sec 2 equals 9.8066 meters/see 2 , we find that

1 lb = (0.45359237 kg)(32.1740 ft/sec')

= (0.4559237 kg) (9.8066 meters/see')

4.45 nt.

The unit of mass in the British engineering system can now be derived.
It is defined as the mass of a body whose acceleration is 1 ft/sec 2 when the
force on it is 1 lb; this mass is called the slug. Thus, in this system

F[lb]	 m [slugs] X a [ft/sec'].

Legally the pound is a unit of mass but in engineering practice the pound is
treated as a unit of force or weight.. This has given rise to the terms pound-mass
and pound-force. The pound-mass is a body of mass 0.45359237 kg; no standard
block of metal is preserved as the pound-mass, but, like the yard, it is defined in
terms of the mks standard. The pound-force is the force that gives a standard
pound an acceleration equal to the standard acceleration of gravity, 32.1740 ft/sec'.
As we shall see later, the acceleration of gravity varies with distance from the center
of the earth, and this "standard acceleration" is, therefore, the value at a particular
distance from the centei of the earth. (Any point at sea level and 45N latitude
is a good approximation.)

In this book only forces will he measured in pounds. Thus the corre-
sponding unit of mass is the slug. The units of force, mass, and accelera-
tion in the three systems are summarized in Table 5-3.

The dimensions of force are the same as those of mass times acceleration.
In a system in which mass, length, and time are the fundamental quantities,

Table 5-3

UNITS IN F = ma

Systems of Units I	 Force	 I	 Mass	 I Acceleration

Mks	
I 

newton (nt) I kilogram (kg) I meter/sec2

Cgs (Gaussian) 
I

dyne	
I
gram (gin)	

I
cm/sec'

Engineering	 I pound (lb) I slug	 I ft/sec2
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the dimensions of force are, therefore, mass X length/time 2, or MLT2.
We shall arbitrarily adopt mass, length, and time as our fundamental
mechanical quantities.

Recalling that our length and time standards are atomic standards, some have
speculated that the standard kilogram may some day he replaced by an atomic
standard of mass. This new standard might consist of a specification of a number
of atoms of a certain t ype whose collective mass under suitable circumstances is
I . kg. At the present time, however, the accuracy with which masses can be com-
pared, as on a balance, exceeds the accuracy with which we can determine the
exact number of atoms that make up a given mass.

5-7 The Force Laws

The three laws of motion that we have described are only part of the
program of mechanics that we outlined in Section 5-1. It remains to
investigate the force laws, which are the procedures by which we calculate
the force acting on a given body in terms of the properties of the body and
its environment. Newton's second law

F=ma	 (5-3)

is essentially not a law of nature but a definition of force. We need to
identify various functions of the type:

F	 a function of the properties of the particle
and of the environment	 (5-4)

so that we can, in effect, eliminate F between Eqs. 5-3 and 5-4, thus
obtaining an equation that will let us calculate the acceleration of a par-
ticle in terms of the properties of the particle and its environment. We
see here clearly that force is a concept that connects the acceleration of the
particle on the one hand with the properties of the particle and its environ-
ment on the other. We indicated earlier that one criterion for declaring
the program of mechanics to be successful would be the discovery that
simple laws of the type of Eq. 5-4 do indeed exist. Thisturns out to be the
case, and this fact constitutes the essential reason that we 'believe" the
laws of classical mechanics. If the force laws had turned out to be very
complicated, we would not be left with the feeling that we had gained much
insight into the workings of nature.

The number of possible environments for an accelerated particle is so
great that a detailed discussion of all the force laws is not feasible in this
chapter. We shall, however, indicate in Table 5-4 the force laws that
apply to the five particle-plus-environment situations of Table 5-I. At
appropriate places throughout the text we will discuss these and other
force laws in detail; several.of the laws in Table 5-4 are approximations or
special cases.
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Table 5-4

THE FORCE LAWS FOR THE SYSTEMS OF TABLE 5-1

System	 Force Law

1. A block propelled by (a) Spring force: F = -kx, where x is the extension of
a stretched spring	 the spring and k is a constant that describes the
over a rough hori-	 spring; F points to the right; see Chapter 15
zontaPsurface (b) Friction force: F = pmg, where ju is the coefficnt

of friction and mg is the weight of the block; F
points to the left; see Chapter 6

2. A golf ball in flight	 F mg; F points down (see Section 5-8)
3. An artificial satellite F = Gm3f/r 2 , where G is the gravitational constant,

M the mass of the earth, and r the orbit radius;
F points toward the center of the earth; see Chap-
ter 16. This is Newton's law of universal gravitation

4. An electron near a - 	 F = ( 1/4r€o)eQ/r 2, where Co is a constant, e is the
charged sphere	 electron charge, Q is the charge on the sphere, and

r is the distance from the electron to the center of
the sphere; F points to the right; see Chapter 26.
This is Coulomb's law of electrostatics

- 5. Two bar magnets F (3o/27)o 2/r4, where .i0 is a constant, ju is the
magnetic dipole moment of each magnet, and r is
the center-to-center separation of the magnets; we
assume that r>> 1, where I is the length of each
magnet; F points to the right

5-8 Weight and Mass

The weight of a body is the gravitational force exerted on it by the earth.
Weight being a force, is a vector quantity. The direction of this vector is
the direction of the gravitational force, that is, toward the center of the
earth. The magnitude of the weight is expressed in force units, such as
pounds or newtons.

When a body of mass m is allowed to fall freely, its acceleration is that
of gravity g and the force acting on it is its weight W. Newton's second
law, F = ma, when applied to a freely falling body, gives us W = mg.
Both W and g are vectors directed toward the center of the earth. We can
therefore write

W. = mg, (5-5)
where TV hnd g are the magnitudes of the weight and acceleration vectors.
To keep an object from falling we have to exert on it an upward force equal
in magnitude to TV, so as to make the net force zero. In Fig. 5-4a the ten-
sion in the spring supplies this force.

We stated previously that g is found experimentally to have the same
value for all objects at the same place. From this it follows that the ratio of
the weights of two objects must be equal to the ratio of their masses.
Therefore a chemical balance, which actually is an instrument for compar-
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ing two downward forces, can be used in practice to compare masses. If
a sample of salt in one pan of a balance is pulling down on that pan with
the same force as is a standard one gram-mass on the other pan, we know*
that the mass of salt is equal to one gram. \\e are likely to say that the
salt "weighs" one gram, although a gram is a unit of mass, not weight.
However, it is always important to distinguish carefully between weight

and mass.
We have seen that the weight of a body, the downward pull of the earth

on that body, is a vector quantity. The mass of a body is a scalar quan-
tity. The quantitative relation between weight and mass is given by

W = mg. Because g varies from point to point on the earth, W, the

weight of a body of mass m, is different in different localities. Thus, the
weight of a one kg-mass in a locality where g is 9.80 meters/sec' is 9.80 nt;
in a locality where g is 9.78 meters/see', the same one kg-mass weighs 9.78
nt. If these weights were determined by measuring the amount of stretch
required in a spring to balance them, the difference in weight of the same
one kg-mass at the two different localities would be evident iii the slightly
different stretch of the spring at these two localities. Hence, unlike the
mass of a body, which is an intrinsic property of the body, the weight of a
body depends on its location relative to the center of the earth. Spring
scales read differently, balances the same, at different parts of the earth.

We shall generalize the concept of weight in Chapter 16 in which we
discuss universal gravitation. There we shall see that the weight of a body
is zero in regions of space where the gravitational effects are nil, although
the inertial effects, and hence the mass of the body, remain unchanged
from those on earth. In a space ship free from the influence of gravity it is
a simple matter to lift a large block of lead (W = 0), but the astronaut

would still stub his toe if he were to kick the block (m 7^ 0).
It takes the same force to accelerate a body in gravity-free space as it

does to accelerate it along a horizontal frictionless surface on earth, for its
mass is the same in each place. But it takes a greater force to hold the
body up against the pull of the earth on the earth's surface than it does
high up in space, for its weight is different in each place.

Often, instead of being given the mass, we are given the weight of a body
on which forces are exerted. The acceleration a produed by the force F
acting on a body whose weight has a magnitude TV can be obtained by com-

bining Eq. 5-3 and Eq. 5-5. Thus from F ma and TV = mg we obtain

m = W/g,	 so that	 F	 (TV/g)a.	 (5-6)

The quantity IV/1 g plays the role of m in the equation F = ma and is, in

fact, the mass of a body whose weight has the magnitude IV. For exam-
ple, a man whose weight is 160 lb at a point where g = 32.0 ft/sec' has a

• Corrections for buoyancy, owing to the different volumes of air displaced by the salt
and the standard, must be made. These are discussed in Chapter 17.
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mass m = Wlg = (160 lb)/(32.0 ft/sec') = 5.00 slugs. Notice that his
weight at another point where g 32.2 ft/sec 2 is W mg (5.00 slugs)
(32.2 ft/sec') = 161 lb.

5-9 A Static Procedure for Mosuring Forces

In Section 5-3 we defined force by measuring the acceleration imparted
to a standard body by pulling on it with a stretched spring. That may
be called a dynamic method for measuring force. Although convenient
for the purposes of definition, it is not a particularly practical procedure
for the measurement of forces. Another method for measuring forces is
based on measuring the change in shape or size of a body (a spring, say)
on which the force is applied when the body is unaccelerated. This may
be called the static method of measuring forces.

The idea of the static method is to use the fact that when a body, under
the action of several forces, has zero acceleration, the vector sum of all the
forces acting on the body must be zero. This is, of course, just the con-
tent of the first law of motion. A single force acting on a body would pro-
duce an acceleration; this acceleration can be made zero if we apply another
force to the body equal in magnitude but oppositely directed. In practice

- we seek to keep the body at rest. If now we choose some force as our Unit
force, we are in a position to measure forces. The pull of the earth on a
standard body at a particular point can be taken as the unitforce, for
example.

The instrument most commonly used to measure forces in this way is the
spring balance. - It consists of a coiled spring having a pointer at one end
that moves over a scale. A force exerted on the balance changes the length
of the spring. If a body weighing 1.00 lb is hung from the spring, the
spring stretches until the pull of the spring on the body is equal in magni-
tude but opposite in direction to its weight. A mark can be made on the
scale next to the pointer and labeled "1.00-lb force." Similarly, 2.00-lb,
3.00-lb, etc., weights may be hung from the spring and corresponding
marks can be made on the scale next to the pointer in each case. In this
way the spring is calibrated. We assume that the force exerted on the
spring is always the same when the pointer stands at the same position.
The calibrated balance can now be used to measure any suitable unknown
force, not merely the pull of the earth on some body. 	 -

The third law is tacitly used in our static procedure because we assume
that the force exerted by the spring on the body is the same in magnitude
as the force exerted by the body on the spring. This latter force is the
force we wish to measure. The first law is used too, because we assume F is
zero wnen a is zero. It is worth noting again here that if the cceleration
were not zero, the body of weight TV would not stretch the spring to the
same length as it did with a = 0. In fact, if the spring and attached body
of wight P' were to fall freely under gravity so that a g, the spring
would not stretch at all and its tension would be zero.
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5-10 Some Applications of Newtons Laws of Motion

It will be helpful to write down some procedures for solving problems in
classical mechanics and to illustrate them by several examples. Newton's
second law states that the vector sum of all the forces acting on a body is
equal to its mass times its acceleration. The first step in problem solving
is therefore: (1) Identify the body to whose motion the problem refers.
As obvious as this seems, lack of clarity on the point as to v, hat has been or
should be picked as "the body" is a major source of mistakes. (2) Having
selected "the body," we next turn our attention to the objects in "the
environment" because these objects (inclined planes, springs, cords, the
earth, etc.) exert forces on the body. We must be clear as to the nature of
these forces. (3) The next step is to select, a suitable (inertial) referefice
frame. We should position the origin and orient the coordinate axes so as
to simplify the task of our next step as much as possible. (4) We now
make a separate diagram of the body alone, showing the reference frame

and all of the forces acting on the body. This is called a free-body diagram.

(5) Finally we apply Newton's second law, in the form of Eq. 5-2, to each

component of force and acceleration.
The following examples illustrate the method of analysis used in apply-

ing Newton's laws of motion. Each body is treated as if it were a particle
of definite mass, so that the forces acting on it may he assumed to act
at a point. Strings and pulleys are considered to have negligible mass.
Although some of the situations picked for analysis may seem simple and
artificial, they are the prototypes for many interesting real situations; but,
more important, the method of analysis—which is the chief thing to under-
stand—is applicable to all the modern and sophisticated situations of
classical mechanics, even sending a spaceship to Mars.

ExampIFigure 5-5a shows a weight W hung by strings. Consider the
knot at the jn'a1tion of the three strings to be "the body." The body remains at
rest under the action of the three forces shown in Fig. 5-5b. Suppose we are given

Fa

FA IV

17 Fc

Fig. 5-5 Example 3. (a) A thass is suspended b.N strings. (b) A free-body diagram

showing all the forces acting on the knot. The strings are assumed to be weightless.



Sec. 540 SOME APPLICATIONS OF NEWTON'S LAWS OF MOTION	 97

the magnitude of one of these forces. How can we find the magnitude of the other
forces?

F4 , F8, and Fc are all the forces acting on the body. Since the body is unac-
celerated (actually at jest), F4 + F11 + Fc = 0. Choosing the x- and y-axes as
shown, we can write this vector equation as three scalar equations:

F4 + F8 = 0,

F4 ,, + Fe,, + Fc	 0,

using Eq. 5-2. The third 'scalar equation for the 2-axis is . simply

F4 = F8 F. = 0.

That is, the vectors all lie in the x-y plane so that they have no 2-components.
From the figure we see that

F4 = -FA cos 300 = —0.866FA,

F4,, = FA sin 30° = 0.500FA,
and

= F8 cos 450 0.707F8,

F8,, = F8 sin 45° = 0.707F8.

Also,
= —F —W,

because the string C merely serves to transmit the force on one end to the junction
at its other end. Substituting these results into our original equations, we obtain

—0.866FA + 0.707F8 = 0,

0.500F4 + 0.707F8 - W = 0.

If we are given the magnitude of any one of these three forces, we can solve these
equations for the other two. For example, if W = 100 lb, we obtain FA = 73.3 lb
and FR = 89.6 lb.

Exampl' 4.. We wish to analyze the motion of a block on a smooth incline.
(a) Static case. Figure 5-6a shows a block of mass m kept at rest on a smooth

plane, inclined at an angle 0 with the horizontal, by means of a string attached to
the vertical wall. The forces acting on the block are shown in Fig. 5-6b. F i is
the force exerted on the block by the string; mg is the force exerted on the block by
the earth, that is, its weight; and F 2 is the force exerted on the block by the inclined
surface. F 2 , called the normal force, is normal to the surface of contact because
there is no frictional force between the surfaces . * If there were a frictional force,
F 2 would have a component parallel to the incline. Because we wish to analyze
the motion of the block, we choose ALL the forces acting ON the block. The student
will note that the block will exert forces on other bodies in its environment (the
string, the earth, the surface of the incline) in accordance with the action-reaction

• The normal force iq an example of a constraining force, one which limits the freedom
of movement a body might otherwise have. It is an elastic force arising from small
deformations of the bodies in contact, which are never perfectly rigid as we often
tacitly assume.
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Fig. 5-6 Example 4. (a) A block
is held on a smooth inclined plane
by a string. (b) A free-body dia-
gram showing all the forces acting on
the block.

Fag. 5-7 Example 5. A block
is being pulled along a smooth
table. The forces acting on the'
block are shown.

principle; these forces, however, are not needed to determine the motion of the
block because they do not act on the block.

Suppose 8 and m are given. how do we find Fj and F2 ? Since the bloèk is
unaceelerated, we obtain

F1 + F2 + mg = 0.

It is convenient to choose the z-axis of our reference frame to be along the incline
and the y-axis to be normal to the incline (Fig. 5-6b). With this choice of coor-
dinates, only one force, mg, must be resolved into components in solving the prob-
lem. The two scalar equations obtained by resolving mg along the x- and y-axes
are

	

F  - mg sin  = 0,	 and	 F2 - mg cos 8 = 0,

from which F 1 and F 2 can be obtained if 0 and in are given.
(b) Dynamic ca8e. Now suppose that the string is cut. Then the force F 1 , the

pull of the string on the block, will be removed. The resultant force on the block
will no longer be zero, and the block will accelerate. What is its acceleration?

From Eq. 5-2 we have F = ma and F. ma.. Using these relations we
obtain

F2 - mg cos 0 = ma, 0,
and	 -mg sin 0 = mar,
which yield	 a1, = 0,	 a = - sin 0.

The acceleration is directed down the incline with a magnitude of g sin 0.

Example 5. Consider a block of mass m pulled along a smooth horizontal
surface by a horizontal force P, as shown in Fig. 5-7. N is the normal force
exerted on the block by the frictionless surface and W is the weight of the block.

(a) If the block has a mass of 2.0 kg, what is the normal force?
From the second law of motion with a1, = 0, we obtain

F1, = ma, or N - W = 0.

Hence, N = 11 = mg = (2.0 kg)(9.8 meters/see') = 20 nt.



Sec. 5-10 SOME APPLICATIONS OF NEWTON'S LAWS OF MOTION 	 99

£8t What force P is required to give the block a horizontal velocity of 4.0
meters/sec in 2.0 sec starting from rest?

The acceleration ar follows from

Cr - VO-

- 

4.0 meters/sec - P = 2.0 meters/sec'.
 2.0 see

From the second law, Pr = Ina, or P = mar. The force P is then

P = mar = (2.0 kg)(2.0 meters/see') = 4.0 nt.

Examphl, 6. Figure 5-8a shows a block of mass mj on a smooth horizontal
surface pul	 by a string which is at-
tached to a block of mass 702 hanging
over a pulley . We assume that the
pulley has no mass and is frictionless	

-:

and that it merely serves to change the
direction of the tension in the string at
that point. Find the acceleration of	 (a)
the system and the tension in the string.

Suppose we choose the block of mass Y

mj as the bod y whose motion we investi- 	 A N
gate. The forces on this block, taken	 T 	 of T
to be a particle, are shown in Fig. 5-8b.	 r	 x
T, the tension in the string, pulls on the
block to the right; injg is the downward 	 m1g	 m29
pull of the earth on the block and N is	 (b)	 (c)

the vertiol force exerted on the block by
the smooth table. The block will aced- Fig. 5-8 Example 6. (a) Two
erate in the x-direction onl y , so that	 masses are connected by a string;
a iy = 0. We, therefore, can write

	

	 in, lies on a smooth table, oh 2 hangs
freely. ( b) A free-body diagram

N - mjg = 0 = in1aj5 ,	 showing all the forces acting on rn,.
(5-7)	 (e) A similar diagram for m.,.

and	 T = mIalr.

From these equations we conclude that .V	 m iq. We do not know T, so we can-

not solve for air.
To determine T we must consider the motion of the block 771 2 . The forces acting

on 7n2 are shown in Fig. 5-8c. Because the string and block are accelerating, we
cannot conclude that T equals in2q. III if T were to equal in 29, the resultant

force on m2 would be zero, a condition holding only if the system is not accelerated.
The equation of motion for the suspended block is

	

m2g - T = m2a25.	 (5-8)

The direction of the tension in the string changes at the pulley and, because the
string has a fixed length, it is clear that

air,

so that we call represent the acceleration of the system as simply a. We then
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obtain from Eqs. 5-7 and 5-8
in2g - T = M 2a,	 (5-9)

and
T = mia.

These yield

	

M 29	 (in 1 + m 2 )a,	 (5-10)
or

P12

in 1 + m2
and

	

T	
mimI	 (5-il)

M 1 +M2m2

which gives us the acceleration of the system c and the tension in the string T.
Notice that the tension in the string is always less than m2. ThisiF clear from

Eq. 5-11, which can he written
in1

T= M29
mi + P12

Notice also that a is always less than g, the acceleration due to gravity. Only
when inj equals zero, which means that there is no block at all on the table, do we
obtain a = g (from Eq. 5-10). In this case T = 0 (from Eq. 5-9).

We can interpret Eq. 5-10 in a simple way. The net unbalanced force on the
system of mass m 1 + m 2 is represented by ng. Hence, from F = ma, we obtain
Eq. 5-10 directly.

To make the example specific, suppose mj = 2.0 kg and ml = 1.0 kg. Then

a -
	 m2 g
	 = 3.3 meters/see',

mj + m2
and

mim2
T =	 g	 ()(9.8) kg-rn/sec 2 = 6.5 nt.

in1 + in2

Example I Consider two unequal masses connected by a string which passes
over a frictie1ess and massless pulley, as shown in Fig. 5-9a. Let m2 be greater
than m 1. Find the tension in the string and the acceleration of the masses.

We consider an upward acceleration positive. If the acceleration of ml is a, the
acceleration of m 2 must be -a. The forces acting on ml and on in2 are shown in
Fig. 5-9b in which T represents the tension in the string.

The equation of motion for in1 is

T - m 1g = m1a
and for P22 is

T - m 29 = —P12(2.

Combining these equations, we obtain

M 2 - P1j

	

a =	 g,	 (5-12)
in2 + .ini

and
2m1m2

g.
in1 + m2
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m1g

m2g
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Fig. 5-9 Example 7. (a) Two unequal masses are suspended by a string from a
pulley (Atwood's machine). (b) Free-body diagrams for m 1 and m2. (c) Free-body
diagram for the pulley, assumed massless.

For example, if m, = 2.0 slugs and rnj	 1.0 slug,

a = (32/3.0) ft/sec 2 = g13,

	

7' = (4)(32) slug-ft/sec 2	43 lb.
Notice that the magnitude of T is always intermediate between the weight of the
mass mj (32 lb in our example) and the weight of the mass m, (64 lb in our exam-
ple). This is to be expected, since 7' must exceed m 1g to give m 1 an upward
acceleration, and mlg must exceed 7' to give in 2 a downward acceleration. In the
special case when mj In 2, we obtain a = 0 and T = rn 1g m 2g, which is the
static result to be expected.

Figure 5-9c shows the forces acting on the massless pulley. If we treat the
pulley as a particle, all the forces can be taken to act through its center. P is the
upward pull of the support on the pulley and T is the downward pull of each seg-
ment of the string on the pulley. Since the pulley has no translational motion,

P = T + T = 2T.

If we were to drop our assumption of a massless pulley and assign a mass in it,
we would then be required to include a downward force mg on the support. Also,
as we shall see later, the rotational motion of the pulley results in a different tension
in each segment of the string. Friction in the bearings also affects the rotational
motion of the pulley and the tension in the strings.

Example 8. Consider an elevator moving vertically with an acceleration a.
We wish to W the force exerted b y a passenger on the floor of the elevator.

Acceleration will betaken positive upward and negative downward. Thus positive
acceleration in this case means that the elevator is either moving upward with
increasing speed or is moving downward with decreasing speed. Negative accel-
eration means that the elevator is moving upward with decreasing speed or down-
ward with increasing speed.

From Newton's third law the force exerted by the passenger on the floor will
always be equal in magnitude but opposite in direction to the force exerted by the
floor on the passenger. We can therefore calculate either the action force or the
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reaction force. When the forces acting on the passenger are used, we solve for
the latter force. When the forces acting on the floor are used, we solve for the

former force.
The situation is shown in Fig. 5-10: The passenger's true weight is W and the

force exerted on him by the floor, called P, is his apparent weight in the accelerating

elevator. The resultant force acting on him is P + W. Forces will be taken as
positive when directed upward. From the second law of motion we have

F = ma,

or
P - TV ma,	 (5-13)

where m is the mass of the passenger and a is his (and the elevator's) acceleration.
Suppose, for example, that the passenger weighs 160 lb and the acceleration is

2.0 ft/sec' upward. We have

TV 160 lb
M = - =	 = 5.0 slugs,

g	 32 ft/sec"

and from Eq. 5-13,

P - 160 lb = (5.0 slugs) (2.0 ft/sec')

or
P apparent weight = 170 lb.

If we were to measure this force directly by having the passenger stand on a spring
scale fixed to the elevator floor (or suspended from the ceiling), we would find the

scale reading to be 170 lb for a man whose weight is 160 lb. The passenger feels
himself pressing down on the floor with greater force (the floor is pressing upward
on him with greater force) than when he and the elevator are at rest. Everyone
experiences this feeling when an elevator starts upward from rest.

Fig. 5-10 Example 8. (a) A pas-
senger stands on the floor of an ele-
vator. (b) A free-body diagram for
the passenger.



r

QUESTIONS	 103
If the acceleration were taken as 2.0 ft/sec 2 downward, then a -2.0 ft/sec2

and P = 150 lb for the passenger. The passenger who weighs 160 lb feels himself
pressing down on the floor with less force than when he and the elevator are at
rest.

lithe elevator cable were to break and the elevator were to fall freely with an
acceleration a = - g, then P would equal W + (W/g)(--g) 0. Then the
passenger and floor would exert no forces on each other. The passenger's, apparent
weight, as indicated by the spring scale on the floor, would be zero.

QUESTIONS

1. What is your mass in slugs? Your weight in newtons?
2. Why do you fall forward when a moving train decelerates to a stop and fall back-

ward when a train accelerates from rest? What would happen if the train rounded a
curve at constant speed?

3. A horse is urged to pull a wagon. The horse refuses to try, citing Newton's third
law as his defense:"' The  pull of the horse on the wagon is equal butopposite to the pull
of the wagon on the horse.' If I can never exert a greater force on the wagon than it
exerts on me, how can I ever start the wagon moving?" asks the horse. how would
you reply?

4. A block of mass m is supported by a cord C from the ceiling, and another cord D is
attached to the bottom of the block (Fig. 5-11). Explain this: If you give a sudden
jerk to D it will break, but if you pull on D steadily, C will break.

10 1b	 10 lb

Fig. 5-11	 Fig. 5-12

5. Two 10-lb weights are attached to a spring scale as shown in Fig. 5-12. Does the
scale read 0 lb, 10 lb, 20 lb, or give some other reading?

6. Criticize the statement, often made, that the mass of a body is a measure of the
"quantity of matter" in it.

7. Using force, length, and time as fupdomental quantities, what are the dimensions
of mass?

8. Is the definition of mass that we have given limited to objects initially at rest?
9. Is the current standard of mass accessible, invariable, reproducible, indestructible?

Does it have simplicity for comparison purposes? Would an atomic standard be better
in any respect?
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10. Suppose the carbon atom was chosen as the standard of mass. What information
would be needed to express the mass of the standard kilogram in terms of this atomic
standard? flow could this information be obtained?

11. Suggest practical ways by which one could determine the masses of the various

objects listed in Table 5-2.
12. In a tug of war, three men pull on a rope to the left at A and three men pull t

the right at B with forces of equal magnitude. Now a weight of 5.0 lb is hung vertically
from the center of the rope. (a) Can the men get the rope .4B to be horizontal?

(b) If not explain. If so, determine the magnitude of the forces required at A and

B to do this.
13. Both the following statements are true; explain them. Two teams having a tug

of war must always pull equally hard on one another. The team that pushes harder
against the ground wins.

14. Under what circumstances would your weight be zero? Does your answer
depend on the choice of a reference system?

15. Two objects of equal mass rest on opposite pans of a trip scale. Does the scale
remain balanced when it is accelerated up or down in an elevator?

16. A massless rope is strung over a frictionless pulley. A monkey holds onto one end
of the rope and a mirror, having the same weight as the monkey, is attached to the other
end of the rope at the monkey's level. Can the monkey getaway from his image seen
in the mirror (a) by climbing up the rope, (b) by climbing down the rope, (c) by releasing

the rope?
17. A student standing on the large platform of a spring scale notes his weight. He

then takes a step on this platform and notices that the scale reads less than his weight
at the beginning of the step and more than his weight at the end of the step. Explain.

PROBLEMS

1. Two blocks, mass mi and m2 are connected by a light spring on a horizontal
frictionless table. Find the ratio of their accelerations a i and a2 after they are pulled

apart and then released.
2. Let the only forces acting on two bodies be their mutual interactions. If both

bodies start from rest, show that the distances traveled by each are inversely propor-
tional to the respective masses of the bodies.

3. A body of mass m is acted on by two forces F 1 and F2, as shown in Fig. 5-13. If

m - 5.0 kg, Fj 3.0 nt, and F2 = 4.0 nt, find the vector acceleration of the body.

ft

Af

Flu. 5-13
	 Fig. 5-14

4. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass

m, as in Fig. 5-14. A force P is applied to one end of the rope. (a) Find the accelera-
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tion of the block and the rope. (b) Find the force that the rope exerts on the block M

in terms of P, M, and m.
. A car moving initially at a speed of 50 miles/hr and weighing 3000 lb is brought to a

stop in a distance of 200 ft. (a) Find the braking force and the time required to stop.
(b) Assuming the same braking force, find the distance and time required to stop if the
car were going 25 miles/hr initially.

6. An electron travels in a straight line from the cathode of a vacuum tube to its
anode, which is exactly 1.0 cm away. It starts with zero speed and reaches the anode
with a speed of 6.0 X 10 6 meters/sec. (a) Assume constant acceleration and compute
the force on the electron. Take the electron's mass to be 9.1 x lO kg. This force
is electrical in origin. (b) Compare it with the gravitational force on the electron,
which we neglected when we ass11n'l straight-line motion. Is this assumption valid?

7. A body of mass 2.0 slugs is act:d on by the downward force of gravity and a hori-
zontal force of 130 lb. Find its acceleration and its velocity as a function of time,
assuming it starts from rest.

8. An electron is projected horizontally from an electron gun at a speed of 12 X io
meters/sec into an electric field which exerts a constant vertical force of 4.5 X 10 — ' nt
on it. The mass of the electron can be taken to be 9.1 X 10" kg. Determine the
vertical distance the electron is deflected during the time it has moved forward 3.0 cm
horizontally.

9. A space traveler whose mass is 75 kg leaves the earth. Compute his weight (a)
on the earth, (b) 400 miles above the earth (where g 8.1 meters/sec), and (c) in
interplanetary space. What is his mass at each of these locations?

10. Two blocks are in contact on a frictionless table. A horizontal force is applied
to one block, as shown in Fig. 5-15. (a) If ,n 1 = 2.0 kg, m. - 1.0 kg, and F 3.0 at,
find the force of contact between the two blocks. (b) Show that if the same force is
applied to m2 rather than to mj, the force of contact between the blocks is 2.0 nt, which
is not the same as the value derived in (a) . Explain.

F,..,
Pal

 ma

JJ4 V • .;.

Fig. 5-15

Q. Three blocks are connected, as shown in Fig. 5-16, on a horizontal frictionless
tank and pulled to the right with a force T 3 = 60 nt. If ma = 10 kg, m - 20 kg,
and m = 30 kg, find the tensions T1 and T 2. Draw an analogy to bodies being pulled
in tandem, such as an engine pulling a train of coupled cars.

fig. 5-16
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12. A charged sphere of mass 3.0 X 10 kg is suspended from a string. An electric
force acts horizontally on the sphere so that the string makes an angle of 37 0 with the
vertical when at rest (Fig. 5-17). Find (a) the magnitude of the electric force and (b)
the tension in the string.

13. How could a 100-lb object be lowered from a roof using a cord with a breaking
strength of 87 lb without breaking the rope?

\37'r

	

Fig. 5-17	 Fig. s-i•

14. Compute the initial upward acceleration of a rocket of mass 1.3 X 104 kg if the
initial upward thrust of its engine is 2.6 X 10 nt. Can you neglect the weight of the
rocket (the downward pull of the earth on it)?

1. A block of mass rnl = 3.0 slugs on a smooth inclined plane of angle 30° is con-
nected by a cord over a small frictionless pulley to a second block of mass m 2.%
slugs hanging vertically (Fig. 5-18). (a) What is the acceleration of each body?
(b) What is the tension in the cord?

16. A 10-kg monkey is climbing a massless rope attached to a 15-kg mass over a (fric-
tionless!) tree limb. (a) Explain quantitatively how the monkey can climb up the rope
so that he can raise the 15-kg mass off the ground. (b) If, after the mass has been
raised off the ground, the monkey stops climbing and holds on to the rope, what will his
acceleration and the tension in the rope now be?

17. A block, is released from rest at the top of a frictionless inclined plane 10 meters
long. It reaches the bottom 4.0 sec later. A second block is projected up the plane
from the bottom at the instant the first block is released in such a way that it returns
to the bottom simultaneously with the first block. (a) Find the acceleration of each
block on the incline. (b) What is the initial velocity of the second block? (c) How
far up the inclined plrne doe it travel?

18. A block is projected up a frictionless inclined plane with a speed v 0. The angle
of incline is 8. (a) How far up the plane does it go? (b) How long does it take to
get there? (c) What is its speed when it gets back to the bottom? Find numerical
answers for 8	 30° and co	 8.0 ft/sec.

19. A block slides down a frictionless incline making an angle 8 with an elevator
floor. Find its acceleration relative to the incline in the following cases. (a) Ele-
vator descends at constant speed v. (b) Elevator ascends at constant speed v. (c)
Elevator descends Vvith acceleration a. (d) Elevator descends with deceleration a.
(e) Elevator cable breaks.

20. An elevator weighing 6000 lb is pulled upward by a cable with an acceleration of
4.0 ft/seer. (a) What is the tension in the cable? (b) What is the tension when the
elevator is accelerating downward at 4.0 ft/sectm?
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21. A lamp hangs vertically from a cord in a descending elevator. The elevator
has a dcc1cration of 8.0 ft/sec 2 before coming to a stop. (a) If the tension in the cord
is 20 lb, what is the mass of the lamp? (I,) What is the tension in th.0 cord when the
elevator ascends with an acceleration of 8.0 It/see2?

22. A plumb bob hanging from the ceiling of it railroad ear acts as an accelerometer.
(a) Derive the general expression relating the horizontal acceleration a of the car to
the angle 0 made by the bob with the vertical. (b) Find a when 0 20°. Find 0

when a = 5.0 ft/sec2.
23. Refer to Fig. 5-6. Let the mass of the block be 2.0 slugs and the angle 9 equal

30°. (a) Find the tension in the string and the normal force acting on the block.
(5) If the string is cut, find the acceleration of the block. Neglect friction.

24. Refer to Fig. 5-8e. Let mj	 4.0 slugs and 'fl 2	 2.0 slugs. Find the tension
in the string and the acceleration of the two blocks.

25. Refer to Fig. 5-9 g. Let in = 0.50 kg and m = 1.0 kg. Find the acceleration
of the two blocks and the tension in the string.

26. A uniform flexible chain of length 1, with weight per unit length X, passes over a
small, frictionless, massless pulley. It is released from a rest position with a length of
chain x hanging from one side and a length 1 - x from the other side. (a) Under what
circumstances will it accelerate? (b) Assuming these circumstances are met, find the
acceleration a as a function of a,.

27. A triangular block of mass M with angles 30°, 60°, and 90° rests with its 30°-90°
side on'a horizontal table. A cubical block of mass in rests on the 60°-30° side (Fig.
5-19). (a) What horizontal acceleration a must 3l have relative to the table to keep en
stationary relative to the triangular block, assuming frictionless contacts? (b) What
horizontal force F must be applied to the system to achieve this result, assuming
a frictionless table top' (e) Suppose no force is supplied to M and both surfaces
are frictionless. Describe the resulting motion.

60-

I.
M	 m	 m

90.	 300

Fig. 5-19	 Fig. 5-20

28. Two particles, each of mass ne, are connected by a light string of length 21, as
shown in Fig. 5-20: A continuous force F is applied at the midpoint of the string
(x = 0) at right angles to the initial position of the string. Show that the acceleration
of in in the direction at right angles to F is given by

F	 z
2m ./j2 -

in which z is the perpendicular distance of one of the particles from the line of action of
F. Discuss the situation when x = 1.

29. Terminal telocily. The resistance of the air to the motion of bodies in free fall
depends on many factors, such as the size of the body and its shape, the density and
temperature of the air, and the velocity of the body through the air.A useful assutnp-
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tion, only approximately true is that the resisting force f R is proportional to the velocity
and oppositely directed; that is, fit = —kv, where k is a constant whose value in any
particular case is determined by factors other than velocity.

Consider free fall of an object from rest through the air.
(a) Show that Newton's second law gives

mg - ku ma or	 mg - k dy
	 dty

—

(b) Show that the body ceases to accelerate when it reaches a velocity v' - mg/k,
called the terminal velocity.

(c) Prove, by substituting it in the equation of motion of part (a), that the velocity
varies with time as

V - v'(l -
and plot v versus t.

(d) Sketch qualitatively curves of y versus I and a versus I for this motion, noing
that the initial acceleration is g and the final acceleration is zero.
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Particle Dynamics II
CHAPTER 6

6-1 Introduction

In Chapter 5 we considered particle dynamics for bodies subject to a
force that was constant in both magnitude and direction. The forces that
we dealt with were exerted by the earth or by taut cords, that is, they were
either gravitational or elastic in nature. In this chapter we consider
another kind of force, that resulting from friction.

We shall also discuss the dynamics of uniform circular motion, in which
the force, although constant in magnitude, changes in direction with time.
In Chapter 10 we shall consider problems in which the force, although
constant in direction, changes in magnitude with time, as when one body
exerts a transient force on another during a collision. Finally, in Chapter
15, we shall consider problems in which the force changes in both magnitude
and direction with time, such as the force exerted by a spring on an oscil-
lating mass suspended from it.

6-2 Frictional Forces*

If we project a block of mass m- with initial velocity vo along a long hori-
zontal table, it eventually comes to rest. This means that, while it is
moving, it experiences an average acceleration a that points in the direc-
tion opposite to its motion. If (in an inertial frame) we see that a body is
being accelerated, we always associate a force, defined from Newton's

• See "The Friction of Solids" by E. H. Freitag, in Con temporary Physics, Vol. 2,
1961, p. 198, fox a good general reference; see also the article "Friction" in the Encyclo-
pedia Brittanica.

109
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second law, with the motion. In this case we declare that the table exerts

aforce of friction, whose average value is ma, on the sliding block.
Actually, whenever the surface of one body slides over that of another,

each body exerts a frictional force on the other, parallel to the surfaces.
The frictional force on each body is in a direction opposite to its motion
relative to the other body. Frictional forces automatically oppose the
motion and never aid it. Even whelk there is no relative motion, frictional
forces may exist between surfaces.

Although we have ignored its effects up to now, friction is very important
in our daily lives. Left to act-alone it brings every rotating shaft to a halt.
In an automobile, about 20% of the engine power is used to counteract
frictional forces (only 1 or 2% in a turbojet engine, however). Friction
causes wear and seizing of moving parts and many engineering man-hours
are devoted to reducing it. On the other hand, without friction we could
not walk as we now do; we could not hold a pencil in our hand and if we'
could it would not write; wheeled transport as we know it would not be

possible.
We want to know how to express frictional forces in terms of the prop-

erties of the body and its environment; that is, we want to know the force
law for frictional forces. In what follows we consider the sliding (not
rolling) of one dry (unlubricated) surface over another. As we shall see
later, friction, viewed at the microscopic level, is a very complicated phe-
nomenon* and the force laws for dry, sliding friction are empirical in char-
acter and approximate in their predictions. They do not have the elegant
simplicity and accuracy that we find for the gravitational force law (Chap-
ter 16) or for the electrostatic force law (Chapter 26). It is remarkable,
however, considering the enormous diversity of surfaces one encounters,
that many aspects of frictional behavior can be understood qualitatively
on the basis of a few simple mechanisms.

Consider a block at rest on a horizontal table as in Fig. 6-1. Attach a
spring to it to measure the force required to set the block in motion. We
find that the block will not move even though we apply a small force. We
say that our applied force is balanced by an opposite frictional force
exerted on the block by the table, acting along the surface of contact. As
we increase the applied force we find some definite force at which the block
just begins to move. Once motion has started, this same force produces
accelerated motion. By reducing the force once motion has started, we
find that it is possible to keep the block in uniform motion without accel-
eration; this force may be small, but it is never zero.

The frictional forces acting between surfaces at rest with respect to each
other are called forces of static friction. The maximum forceforce of static

friction will be the same as the smallest force necessary to start motion.
Once motion is started, the frictional forces acting between the surfaces

• See, for example, "Stick and Slip" by Ernest RabinowicZ, in Scientific American,

May 1956.
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Fig. 6-1 A block being put
into motion as applied force	 F<)-.	 L -
F overcomes frictional forces.
In the first four drawings the
applied force is gradually in-	 .	 IN
creased from zero to magni- 	 .	 No motion;
tude u,N. No motion occurs	 f, = F
until this point because the	 .	 <)-	 I	 > f
frictional force always just bal-
ances the applied force. The	 N
instant F becomes greater than
,N, the block goes into me-

Con, as is shown in the fifth	 F
drawing. In general, 1UkN <

p.N; this leaves an unbalanced	 - -
force to the left and the block 	 -	 N
accelerates. In the last draw-
ing F has been reduced to F 	-	 I	 Acceleratet
equal POT. The net force is	 ...4,4	 moon, fk
zero, and the block continues
with constant velocity. 	 N

V Uniform
flmotion; fk=F

N

usually decrease so that a smaller force is necessary to maintain uniform
motion. The forces acting between surfaces in relative motion are called
forces of kinetic friction.

The maximum force of static friction between any pair of dry unlubri-
cated surfaces follows these two empirical laws. (1) It is approximately
independent, of the area of contact, over wide limits and (2) it is propor-
tional to the normal force. The normal force, sometimes called the loading
force, is the one which either body exerts on the other at right angles to
their mutual interface. It arises from the elastic deformation of the bodies
in contact, such bodies never really being entirely rigid. For a block
resting on a horizontal table or sliding along it, the normal force is equal
in magnitude to the weight of the block. Because the block has no vertical
acceleration, the table must be exerting a force on the block that is directed
upward and is equal in magnitude to the downward pull of the earth on
the block, that is, equal to the block's weight.

The ratio of the magnitude of the maximum force of static friction to
the magnitude of the normal force is called the coefficient of static friction
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for the surfaces involved. If f. represents the magnitude of the force of
static friction, we can write

1. :5 M.N,	 (6-3)

where s, is the coefficient of static friction and N is the magnitude of the
normal force. The equality sign holds only when f has its maximum

value.
The force of kinetic friction fk between dry, unlubricated surfaces follows

the same two laws as those of static friction. (1) It is approximately
independent of the area of contact over wide limits and (2) it is propor-
tional to the normal force. The force of kinetic friction is also reasonably
independent of the relative speed with which the surfaces move over
each other.

The two laws of friction above were discovered experimentally by Leonardo da
Vinci (1452-1519) and rediscovered, in 1699, by the French engineer C. Amonons.'
Leonardo's statement of the two laws was remarkable, coming as it did about two
centuries before the concept of force was fully developed by Newton. Leonardo's
formulation was: (1) 'Friction made by the same weight will be of equal resistance
at the beginning of the movement though the contact may be of different breadths
or lengths" and (2) "Friction produces double the amount of effort if the weight
be doubled." The French scientist, Charles A. Coulomb, (1736-1806) did many
experiments on friction and pointed out the difference between static and kinetic
friction.

The ratio of the magnitude of the force of kinetic friction to the magni-
tude of this normal force is called the coefficient of kinetic friction. If .fa

represents the magnitude of the force of
kinetic friction,

Fig. 6-2 A highly magnified
view of a section of a finely
polished steel surface. The sec-
tion,, was cut at an angle so that
vertices distances are exagger-
ated by a factor of ten with re-
spect to horizontal distances.
The surface irregularities are
several thousand atomic diam-
eters high. From Friction and
Lubrication of Solids, h F. P.
Bowden and D. Tabor, Claren-
don Press, 1950.

fk = ,LkN,	 (6-2)

where Ak is the coefficient of kinetic
friction.

Both p, and JAk are dimensionless con-
stants, each being the ratio of (the mag-
nitdes of) two forces. Usually, for a
given pair of surfaces A. > JAk. The
actual values of y. and depend on the
nature of both the surfaces in contact..
Both IA. and Zk can exceed unity, al-
though commonly they are less than one.
Notice that Eqs. 6-1 and 6-2 are rela-
tions between the magnitudes only of the
normal and frictional forces. These
forces are always directed perpendicu-
larly to one another.

On the atomic scale even the most finely pol-
ished surface is far from plane. Figure 6-2,
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(b)	 (a)

Fig. 3 Sliding friction. (a) The upper body is elidin g to the right over the lower
body in this enlarged diagram. (h) A further enlarged view showing two spots where
surface adhesion has occurred. Force is required to break these welds apart and
maintain the motion.

for example, shows an actual profile, highly magnified, of a steel surface that
would be considered to be highly polished. One can readily believe that when two
bodies are placed in contact, the actual microscopic area of contact is much less
than apparent macroscopic area of contact; in a particular case these areas can
he easily in the ratio of 1 to 10'.

The actual (microscopic) area of contact is proportional to the normal force,
because the contact points deform plastically under the great stresses that develop
at these points. Man y contact points actually become 'cold-welded" together.
This phenomenon, surface adhesion, occurs because at the contact points the mole-
cules on opposite sides of the surface are so close together that they exert strong
intermolecular forces on each other.

When one body (a metal, say) is pulled across another, the frictional resistance is
associated with the rupturing of these thousands of tiny welds, which continually
reform as new chance contacts are made (see Fig. 6-3). Radioactive tracer
experiments have shown that., in the rupturing process, small fragments of one
metallic surface may be sheared off and adhere to the other surface. If the rela-
tive speed of the two surfaces is great enough, there may be local melting at certain
contact areas even though the surface as a whole may feel only moderately warm.

The coefficient of friction depends on many variables, such as the nature of the
materials, surface finish, surface films, temperature, and extent of contamination.
For example, if two carefully cleaned metal surfaces are placed in a highly evacu-
ated chamber so that surface oxide films do not form, the coefficient of friction rises
to enormous values and the surfaces actually become firml y "welded" together.
The admission of a small amount of air to the chamber so that oxide films may form
on the opposing surfaces reduces the coefficient of friction to its 'normal" value.

With these complications it is not surprising that there is no exact theory of dry
friction and that the laws of friction are empirical. The surface adhesion theory of
friction for metals leads to a ready understanding of the two laws of friction men-
tioned above however. (I) The microscopic contact area, which determines the
frictional force fk, is proportional to the normal force N and thus 1k is proportional
to N, as Eq. 6-2 shows. (2) The fact that the frictional force is independent of
the apparent area of contact means, for example, that the force required to drag
a metal "brick" along a metal table is the same no matter which face of the brick
is in contact with the table. We can understand this only if the microscopic area
of contact is the same for all positions of the brick, and this is indeed the case.
With the largest face down, there are a relatively large number of relatively small
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area contacts supporting the load; with the smallest face down there are fewer
contacts (because the apparent contact area is smaller), but the area of an indi-
vidual contact is larger by just the same factor because of the higher pressure
exerted by the up-ended brick on this smaller number of contacts Supporting the
same load.

The frictional force that opposes one body rolling over another is much less than
that for a sliding motion and this, indeed, is the advantage of the wheel over the
sledge. This reduced friction is due in large part to the fact that, in rolling, the
m:croscopic contact welds are "peeled" apart rather than "sheared" apart as in
sliding friction. This may reduce the frictional force by as much as 1000-fold.

Frictional resistance in dry, sliding, friction can be considerably reduced by
lubrication. A mural in a grotto in Egypt dating hack to 1900 B.C. shows a large
stone statue being pulled on a sledge while a man in front of the sledge pours
lubricating oil in its path. A still more effective technique is to introduce a layer
of gas between the sliding surfaces; the "dry ice puck" mentioned on page 82
and the gas-supported bearing are two examples. Friction can be reduced still
further by suspending a rotating object in an evacuated space by means of mag-
netic forces. J. W. Beams, for example, has spun a 30-lb rotor of this type at
1000 rev/sec; when the drive was cut off, the rotor lost speed at the rate of only
I rev/sec in a day.

Examples of the application of the empirical force law for friction follow.
The coefficients of friction given are assumed to be constant. Actually

k can be regarded as a good average value that is not greatly different
from the value at any particular speed in the range.

Example 1. A block is at rest on an inclined plane making an angle 8 with the
horizontal, as in Fig. 6-4a. As the angle of incline is raised, it is found that slipping
just begins at an angle of inclination 8. What is the coefficient of static friction
between block and incline?

The forces acting on the block, considered to be a particle, are shown in Fig. 6-4b.
W is the weight of theblock, N the normal force exerted on the block by the inclined
surface, and f, the tangential force of friction exerted by the inclined surface on the
block. Notice that the resultant force exerted by the inclined surface on the block,
N + I'., is no longer perpendicular to the surface of contact, as was true for smooth
surfaces (F. = 0). The block is at rest, so that

N+f.+W=0.

Resolving our forces into x- and y-components, along the plane and the normal to

Fig. 6-4 Example I. (a)
A block at rest on a rough
inclined plane. (b) A free-
body force diagram for the
block.

: (a)	
w

* See "Ultrahigh—Speed Rotation," Jesse W. Beams in Scientific A ,ncrican, April
1961.
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Fig. 6-5 Example 2. The forces
on a decelerating automobile.

fs

the plane, respectively, we obtain

	

N - IV Cos = 0,	
(6-3)

f. - W sin 8 = 0.

However, f. ;^ If we increase the angle of incline slowly until slipping just
begins, then for that angle, 0 = 0, and we can use f. = IL.N. Substituting this
into Eqs. 6-3, we obtain

N = if' cos 0,

and	 1i.N = 
IV 

Sifl 8.,

so that	 IL. = tan 0..

Hence measurement of the angle of inclination at which slipping just starts provides
a simple experimental method for determining the coefficient of static friction
between two surfaces.

The student can make use of similar arguments to show that the angle of inclina-
tion Ok required to maintain a constant speed for the block as it slides down the plane,
once it has been started by tapping, is given by

ILk = tan Ok,

where Ok < 0,. With the aid of a ruler the student can now determine M. and ILk

for a coin sliding down his textbook.

Example 2. Consider an automobile moving along a straight horizontal road
with a speed v0. If the coefficient of static friction between the tires and the road is

IL., 
what is the shortest distance in which the automobile can be stopped?

The forces acting on the automobile, considered to be a particle, are shown in
Fig. 6-5. The 'car is assumed to be moving in the positive x-direction. If we
assume that f, is a constant force, we have uniformly decelerated motion.

From the relation (see Eq. 3-16)

V2	 C O 2 + 2ar,

with the final speed v 0, we obtain

X = —v02/2a,

where the minus sign means that a points in the negative x-direction.
To determine a, apply the second law of motion to the x-component of the

motion:
—f. = ma (W/g)a	 or	 a = —g(f,/W).
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From the v components we obtain

N - WO or N=ll',

so that	 M. = f./N 1.111,

and	 a = — peg.

Then the distance of stopping is

X = - v02/2a = vo2 112qji..	 (6-4)

The greater the initial speed, the longer the distance required to come to a stop;
in fact, this distance varies as the square of the initial velocity. Also, the greater
the coefficient of static friction between the surfaces, the less the distance required
to come to a stop.

We have used the coefficient of static friction in this problem, rather than the
coefficient of sliding friction, because we assume there is no sliding between the tires
and the road. We have neglected rolling friction. Furthermore, we have assume&
that the maximum force of static friction (f. sN) operates because the problem
seeks the shortest distance for stopping. With a smaller static frictional force the
distance for stopping would obviously be greater. The correct braking technique
required here is to keep the car just on the verge of skidding. If the surface is
smooth and the brakes are applied fully, sliding may occur. In this case P j replaces

., and the distance required to stop is seen to increase from Eq. 6-4.
As a specific example, if vo	 60 miles/hr = 88 ft/see, and 1j. = 0.60 (a typical

value), we obtain

(88 ft/see)"
= 200 ft.

2pg	 2(0.60)(32 ft/sec')

Notice that the mass of the car does not appear in Eq. 6-4. How can you
explain the practice of "weighing down" a car in order to increase safety in driving
on icy roads?

The student should now investigate how, in principle, forces of friction would
modify the results of the examples of Section 5-10.

6-3 The Dynamics of Uniform Circular Motion

In Section 4-4 we pointed out that if a body is moving at uniform speed I'

in a circle of radius r, it experiences a ccitripet.al acceleration a whose
magnitude is v 2/r. The direction of a is always radially inward toward
the center of rotation. Thus a is a variable vector because, even though
its magnitude remains constant, its direction changes continuously as the
motion progresses.

Recall that there need not be any motion in the direction of an accelera-
tion. In general, there is no fixed relation between the directions of the
acceleration a and the velocity v of a particle, as Fig. 4-7 shows. For a
particle in uniform circular motion the acceleration a and velocity v are
always at, right angles to each other.

Every accelerated body iiiust have a force F acting on it, defined by
Newton's second law (F inn). Thus (assuming that we are in an inertial
frame), if we see a body undergoing uniform circular motion, we can be
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Fig. 6-6 A disk m moves with con-
stant speed in a circular path on a
horizontal frictionless surface. The
only horizontal force acting on m is
the centripetal force T with which the
string pulls on the body.

cerkzin that a net force F, given in magnitude by

F ma = mv2/r

must be acting on the body; the body is not in equilibrium. The direction
of F at any instant must be the direction of a at that instant, namely,
radially inward. We must always be able to account for this force by
pointing to a particular object in the environment that is exerting the force
on the accelerating, circulating body.

If the body in uniform circular motion is a disc on the end of a string
moving in a circle oil frictionless horizontal table as in Fig. 6-6, the force
F on the disc is provided by the tension T in the string. This force T
is the net force acting on the disc. It accelerates the disc by constantly
changing the direction of its velocity so that the disc moves in a circle. Tis
always directed toward the pin at the center and its magnitude is rnu2/R.
If the string were to be cit where it joins the disc, there would be no net
force exerted on the disc. The disc would then move with constant speed
in a straight line along the direction of the tangent to the cirle at the point
at which the string was cut. Hence, to keep the disc moving in a circle,
a force must be supplied to it pulling it inward toward the center.

Forces resonsibie for uniform circular motion are called centripetal
forces because they are directed "toward the center" of the circular motion.
To label a force as "centripetal," however, simply means that it always
points radially inward; the name tells us nothing about the nature of the
force or about the body that is exerting it. Thus, for the revolving disc of
Fig. 6-6, the centripetal force is an elastic force provided by the string; for
the moon revolving around the earth (in an approximately circular orbit)
the centripetal force is the gravitational pull of the earth oil 	 moon; for
an electron circulating about ail nucleus the centripetal force is
electrostatic. A centripetal force is not a new kind of force but simply a
way of describing the behavior with time of forces that are attributable to
specific bodies in the environment. Thus a force can be centripetal and
elastic, centripetal and gravitational, or centripetal and electrostatic,
among other possibilities.

Let us consider some examples of foru.s that a' centripetally.
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Example 3. The Conical Pendulum. Figure 6-7a represents a small body of
mass in revolving in a horizontal circle with constant speed v at the end of it string

of length L. As the body swings around, the string sweeps over the surface of a
cone. This device is called a conical pendulum. Find the time required for one
complete revolution of the body.

lithe string makes an angle 0 with the vertical, the radius of the circular path is
R L sin 8. The forces acting on the
body of mass in are W, its weight, and T,

-	 the pull of the string as shown in Fig. 6-7b.
Z	 it is clear that T + W 59 0. Hence, the

I	 T	 resultant force acting on the body is non-

-	 /	 •	 zero, which is as it should be because a force

/ .	 is required to keel) the body moving in a

/	
r	 circle with constant speed.

We can resolve T at an y instant into t
I 1	 radial and a vertical component

(1')
7', T sin O	 and	 T = T cos 0.

S ince the body has no vertical acceleration,

T. - 1W = 0.
But

T cos 8	 and	 11' = mg,

so that
T cos 0 = mg.

(a)
Thp radial acceleration is vt/R. This se-

n.. 6-7 Example 3. (a) A mass	 celeration is supplied by 7'.., the radial
m suspended from a string of	 component of T, which is the centripetal
length L swings so as to describe 	 force acting on m. Hence
a circle. The string describes a
right circular cone of semiangle •. 	 T,	 T sin 0	 ,nv5/R.

(h) A free-body force diagram for Dividing this equation by the preceding
in. one, we obtain

tan 0 v2/Rg, or v2 Rg tan 0,

which gives the constant speed of the bob. If we let r represent the time for one

complete revolution of the body, then

27R	 /Rg tan 0
1•

or
2jr R =	 2iR	 = 27 /I/(g tan 0).
V'/Rgtan0

But R = L sin 8, so that

2iV(L cos O)/g.

This equation gives the relation between r, 1, and 0. Notice that r, called the

period of motion, does not depend on in.
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If L 3.0 ft and 0 = 300, what is the period of the motion? We have

r 
2r j(3.0ft)(O.866)	

1.8 W.
32 ft/sec2

Example 4. The Rotor. In many amusement parks we find a device called the
rotor. The rotor is a hollow cylindrical room which can he set rotating about the
central vertical axis of the cylinder. A person enters the rotor, closes the door, and
stands up against the wall. The rotor
gradually increases its rotational speed
from rest until, at a predetermined
speed, the floor below the person is
opened downward, revealing a deep pit.
The passenger does not fall but remains
"pinned up" against the wall of the rotor.
Find the coefficient of friction necessary
to prevent falling.

The forces acting on the passenger are
shown in Fig. 6-8. W is the passenger's
weight, f, is the force of static friction
between -passenger and rotor wall, and
P is the centripetal force exerted by the
wall on the passenger necessary to keep
him moving in a circle. Let the radius
of the rotor be 1? and the final speed of
the passenger be v. Since the passenger
does not move vertically, but experiences
a radial acceleration v21R at any instant,
we have

Fig. 6-s The forces on a person in

	

- ii .	0	 a "rotor" of radius R.
and

P(-ma) (W/g)(01R).

If A. is the coefficient of static friction between passenger and wall necessary to pre-

	

vent slipping, then f	 p0P and

f. = 11 =
or

lv gR=
P	 V 2

This equation gives the minimum coefficient of friction necessary to prevent slip-
ping for a rotor of radius R when a particle on its wall has a speed v. Notice that
the result does not depend on the passenger's weight.

As a practical matter the coefficient of friction between the textile material of
clothing and a typical rotor wall (canvas) is about 0.40. For a typical rotor the
radius is 7.0 ft, so that v must be about 24 ft/sec or 16 miles/hr or more.

Example 5. Let the block in Fig. 6-9a represent an automobile or railway car
moving at constant Sped I' on a level road-bed around a curve having a radius of
curvature R. In addition to two vertical forces, namely the force of gravity Wand
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a normal force N, a horizontal centripetal force P acts on the car. In the case of
the automobile this centripetal force is supplied by a sidewise frictional force
exerted by the road on the tires; in the case of the railway car the centripetal force
is supplied by the rails exerting a sidewise force on the inner rims of the car's

wheels. Neither of these sidewise
forces can besafely relied upon to be

N	 large enough at all times and both
- cause unnecessary wear. Hence, the

roadbed is banked on curves, as shown
in Fig. 6---9b. In this case, the normal
force N has not only a vertical compo-
nent, as before, but also a horizontal
component which supplies the centrip-
etal force necessary for uniform circular
motion; no additional sidewise forces
are needed, therefore, with a properly

N banked roadbed.
The correct angle 8 of banking can

be obtained as follows. There is no
vertical acceleration, so that

(6)

N cos 0 W.

The centripetal force is N sin 0, so that

N sin 0 mv2/R. Dividing the latter
equation by the former and setting
W rag, we obtain

Fig. 6-9
tan 0 v2/Rg

Notice that the proper angle of bank-
ing depends upon the speed of the car and the curvature of the road. For a given
curvature, the road is banked at an angle corresponding to an expected average
speed. Often curves are marked by signi giving the proper speed for which the
road was banked.

The student should check the banking formula for the limiting cases v 0;

R -. ; v large; and R small. He should also note the great similarity between

Fig. 6-7 of Example 3 and Fig. 6-9b of this example. 	 4

6-4 Forces and Pseudo—Forces

All forces in nature can be classified under three headings, each with a
different relative strength: (1) gravitational forces, which are relatively
very weak, (2) electromagnetic forces, which are of intermediate strength,
and (3) nuclear forces. Nuclear forces are of two types, those which bind
neutrons and protons in the nucleus (very strong) and those responsible for
beta decay (weak). These forces are "real" in the sense that we can associ-
ate them with specific objects in the environment. Such forces as the
tension in a rope, the force of friction, the force that we exert on a wall by
pushing on it, or the force exerted by a compressed spring are electro-
magnetic forces; all are macroscopic manifestations of the (electromag-
netic) attractions and repulsions between atoms.
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In our treatment of classical mechanics so far we have assumed that our meas-
urements and observations were made from an inertial frame. This, we recall, is
a reference frame that is either at rest or is moving at constant veloc i ty with respect
to the fixed stars; it is the set, of reference frames defined by Newton's first law,
namely, that set of frames in which a body will not be accelerated (a = 0) if there
are no identifiable force-producing bodies in its environment (F = 0). The choice
of a reference frame is always ours to make, so, that if we choose to select only
inertial frames, we do not restrict in any way our ability to apply classical mechan-
ics to natural phenomena.

Nevertheless we can, if we find it convenient, apply classical mechanics from the
point of view of an observer in a rioninertial frame. Such a frame might be one
that is rotating (and therefore accelerating) with respect to the fixed stars. We
sometimes choose an accelerating reference frame when we consider, for example,
the separation of liquids of different density in a spinning centrifuge, the global
circulation of the winds on the rotating earth, or the experiences of an astronaut
in an orbiting satellite.

We can apply classical mechanics in noninertial frames if we introduce forces
called pseudo-forces (or inertial forces). They are so named because, unlike the
forces that we have examined so far, we cannot associate them with any particular
body in the environment of the particle on which they act; we cannot classify them
into any of the categories listed in the first paragraph of this section. Finally, if
we view the particle from an inertial frame, the pseudo-forces disappear. These
forces are, then, simply a technique that permits us to apply classical mechanics
in the normal way to events if we insist on viewing the events from an accelerating
reference frame.

Consider a rotating merry-go-round on which a marble is lodged against a raised
rim at the outer edge. An observer on the merry-go-round is in a noninertial
system. As he kneels down and examines the marble he sees that, with respect
to him, it is not moving; if he pulls it away a bit from the rim toward the center of
rotation, he observes that it moves back again, as if under the influence of a force
directed radially outward. He would declare the marble to be in equilibrium
under the action of this outward force (a pseudo-force called, in this case, a cen-
trifugal force) and the radially inward force exerted by the rim.

An observer on the ground (an inertial frame) watching the marble would
describe it differently. He would declare the marble to be in uniform circular
motion, accelerated radially inward with a = 01R. The inward force F exerted
by the rim on the marble accounts for this acceleration from Newton's second law,
or F = ma mv2/R. The marble is definitely not in equilibrium from the point
of view of this observer or of an observer in any inertial frame. Only if the rim
were not exerting this inward force would the marble move with uniform speed in a
straight line and be in equilibrium. This observer would find no trace of a force
directed radially outward (the pseudo-force) and, indeed, there is no room for
such a force in his analysis of the motion.

It is clear from this simple example that the radially outward pseudo-force (or
centrifugal force) noted by the observer on the rotating merry-go-round must
have a magnitude mv2/R. Thus the magnitude of the pseudo-force depends on
the speed of the particle as seen from another reference frame, namely, the ground;
the speed of the particle in its own (rotating) reference frame is zero.

In mechanical problems, then, we have two choices: (I) select an inertial frame
as a reference frame and consider only "real" forces, that is, forces that we can
associate with definite bodies in the environment or (2) select a noninertial frame
as a reference frame and consider not only the "real" forces but suitably defined
pseudo-forces. Although we usually choose the first alternative, we sometimes
choose the second; both are completely equivalent and the choice is a matter of
convenience. We shall discuss noninertial frames and pseudo-forces further in
Chapters 11 and 16.
F—b
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6-5 Classical Mechanics, Relativistic Mechanics, and Quantum Mechanics

In these first chapters we have laid the groundwork of classical mechanics. We
have presented the laws of motion and have given several examples of the force
laws. In later chapters we shall discuss other kinds of forces and shall continue to
develop the structure of the theory. Here we want to point out where classical
mechanics stands in the framework of modern l)hYSiCS.

Physics is not a static body of doctrine but a developing science. Historically
there have been long periods of deep concern with a certain class of problem,
culminating, often rather suddenly and in unexpected ways, in a "breakthrough"
in the form of a new, more comprehensive theory. This occured about 1670
(Newtonian mechanics), about 1870 (Maxwell's theory of electromagnetism),
1905 (Einstein's theory of relativity), and about 1925 (quantum mechanics).
Some physicists believe that our present concern for problems in the area of ele-
mentary particles (see Appendix E) will lead us eventually to another major
"breakthrough."

As physics has evolved, many things have changed, such as the problems to be.
solved and the tools we use to investigate them. But through it all the general
method of inquiry or process of solution remains basically the same. Thus earlier
theories of physics are found to have limited ranges of validity and to be special
cases of more comprehensive theories, which in turn are found to have limitations,
and so on. However, independent of any particular area or problem in physics,
we always demand that theory meet the test of experiment, we search for quan-
tities that are invariant, we are guided by a belief in the simplicity and symmetry
of nature, and we seek and use analogies and models. Major unifying concepts
arise which are valid in all domains of physics, such as the conservation laws. All
this is important to understand for its own sake, independent of mastery of any
particular special topic, and is exemplified throughout the book. If, in addition
to mastering classical mechanics, the student comes to understand this process,
he will find it much easier to understand and master such theories as relativity
theory and quantum theory, wherein the same metho4 of inquiry applies but whose
areas of application, unlike those of classical mechanics, are not a familiar part of
his daily life experience.

Classical mechanics, like all theories in physics, is based on observations of things
that happen in nature. It will help to point out how limited are our normal experi-
ences of natural phenomena. This is particularly true during our formative years
which is the period during which we develop our intuitive notions (often false!)
of what is "common sense" in natural events and what is not.

For, example, the highest speed that can be used to transmit signals from one
point to another is the speed of light (c = 186,000 miles/sec = 3.00 x 108 meters/
see) and this seems to set an upper limit to the speeds of material objects. How-
ever, gross objects, even the fastest of them, such as jet planes or earth satellites,
have speeds v that are very much less than c. For an earth satellite moving at
17,000 miles/hr, v/c is orly 0.00025. Classical mechanics was built up over several
centuries on a body of observations of relatively slow-moving objects such as
planets, balls rolling down inclined planes, and falling bodies. Our experience
with moving objects has indeed been limited, until the last few decades, to a tiny
fraction of the range of possible speeds.

During these last decades it has become possible to make measurements on small
particles, of potentiall y high speed, such as electrons, protons, and other funda-
mental particles. A proton accelerated in the 30-billion electron volt accelerator
at the Brookhaven National Laboratories has, for example, V/c 0.98. Are we to
expect that the laws of classical mechanics, which work so beautifully when v/c < 1,
will also describe correctly the collisions, decays, and interactions of these ele-
mentary particles moving at such high speeds? This is the grossest kind of
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extrapolation and indeed we find by experiment that it simply does not work;
classical mechanics gives answers that do not agree with experiment if the speeds
of the objects involved are appreciable Compared to the speed of light. This does
not make us think less of classical mechanics, which serves so well in the region of
low speed, precisely the very important region of our daily experiences. We are
led, however, to view classical mechanics as a special case of a more general theory
which would hold for all speeds up to the speed of light.

Einstein, in 1905, first proposed this more general theory, the special theory of

relatirity. We shall discuss it in depth later but will state here its fundamental
postulate. This is that the speed of light c is the same for all observers in inertial
frames, no matter what the motion of the light source bay be. In other words, if
a liglt source is moving directly toward you at a speed 5, you would measure the
same value for c, if you observed a light pulse passing you, no matter what the
value of v; you would also obtain speed c for the light pulse f the source.were rushing
away from you at speed v. If this basic assumption seems to violate "common
sense," we must realize that our intuitive feelings are based on 'common sense at
low speeds." We have no direct experience in our daily activities about what
really happens in nature at high speeds. Furthermore, all of Einstein's predictions
(1) agree with experiment and (2) reduce to the predictions of classical mechanics
at low speeds.

We list here just one of the predictions of the theory of relativit y that is at vari-
ance with classical mechanics. If two observers watch an object moving parllel
to the common z - x'-axis in Fig. 4-11 they will find, from Eq. 4-19,

v=v'+u, (6-5)

where v' is the speed as measured by observer S', v is that measured by observer S,
and u is the relative sped of separation of the two reference frames. Note that
there is nothing in Eq. 6- 5 to prevent r from exceeding c if v' and u are large enough.

The theory of relativity predicts that Eq. 6-5 is a special case of a more general
formula, namely,

(6-6)
I + v'u/c2

Note that for v' K< c and u <c Eq. 6-6 does indeed reduce to Eq. 6-5. Also, if
v' < c and v < c, then v cannot exceed c. If v' = u = 0.8 c, for example, Eq.
6-6 yields v = 0.975 c;Eq. 6-5, on the other hand, yields v = 1.6 c, which is con-
trary to experience.

For gross objects, Eqs. 6-5 and 6-6 give the same results within experimental
error, so that we naturally use the simpler, Eq. 6-5. If two satellites moving in
opposite directions have speeds t" = u = 17,000 miles/ hr, the denominator in
Eq. 6-6 has the value 1.0000000007, so that the speed v of one satellite as seen
from the other differs very slightly indeed from the value v' + U predicted by Eq.
6-5. It would take speeds almost 3000 times as great as above, nearly 50 million
miles/hr, generally achievable only in the subatomic domain, to obtain a difference
as great as one-half of one percent in the two formulas.

We point out a second wa y in which our daily experiences are limited, namely,
that all the objects that we normally deal with have masses that greatly exceed,
for example, the electron mass (in = 9.11 X I0' kg). This turns out to have an
interesting consequence, closely related to the very concept of "particle" on which
classical mechanics is based. We have not hesitated to assign a mass in, a position

x, and a velocity v to a particle, assumed to be moving along the x-axis.* If we

We assume v <c so that considerations of relativity do not enter this new
discussion.
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are asked within what accuracy Ax and ta,. we could measure the position z and
the velocity v respectively, we would be inclined to say that, although there might
be limits in practice there are none in principle and, with sufficient attention to
methods of measurement, we can specify x and v as closely as we wish. Experi-
ment seems to confirm this view for large objects like golf balls or rise bullets.

When we deal with objects of very small mass, however, such as electrons, we
learn that the very procedures of measurement introduce fundamental uncer-
tainties and that, in fact, the more precise our knowledge of x becomes the less
precise is our knowledge of v and conversely. We can express this in terms of the
famous Heisenberg udcertainty relation, which we write as

(6-7)
M

in which h (Planck's constant) is a fundamental constant of nature and has the
value h 6.63 x 10-' kg meter'/sec. Equation 6-7 shows clearly that if v,
is very small (which means that we know v very precisely), then Ax must be rela-
tively large (which means that we do not know z very precisely). Thus it does not
seem possible to measure both the position and the velocity of a particle to any given
precision at the same time. If we cannot do this, then our whole concept of a par-
ticle as a mass point following a trajectory, which is a basic concept of classical
mechanics, is open to question.

Just as for relativity theory, these considerations of quantum mechanics simply
do not make any difference for the gross objects of our daily experience. Consider
a bullet with a speed of 19 3 meters/sec and a mass of 1.0 gm ( r= 10 kg). Let us
assume that we know the speed to be accurate to 0.1%, which means that AV, =
0.001 x 10 = 1 meter/sec. The uncertainty in the position of the bullet is now
given by Eq. 6-7 as

6.63 X 10" kg meter'/sec 	
X 10" meter(10 kg) (I meter/see)

This is such a small distance (being 10-' times smaller than an atomic nucleus!)
that we could not possibly detect any limitation on the measurement of x set by
Eq. 6-7.

Consider, however, not a bullet but an electron (rn = 9.11 x 10" kg) whose
velocity is measured to be 2 x 101 meters/see, which is about the speed of an elec-
tron in a hydrogen atom. If we assume that we know this velocity to be accurate
to, say, 1%, then AV. = 0.01 x 2 x 106 meters/sec = 2 x 104 meters/sec. The
uncertainty in position predicted by Eq. 6-7 is then

Z
6.63 X 10 11 kg meter2/sec	

= 3	 meter.- (9.11 X 10- 31 kg)(2 X 10- 1 meter/see)

Since the radius of a hydrogen atom is about 5 x 1011 meter we see that the uncer-
tainty with which we can locate the electron in the hydrogen atom, assuming that
we have measured its speed as accurately as we claim, is 600 times the radius of
the atom! The concept of "particle" does not mean much under these circum-
stances. This simply means that we cannot use classical mechanics to describe
the motions of electrons in atoms; we need quantum mechanics.

The situation is very much like that of relativity theory. Ideas that we find
acceptable in a certain region of experience (bullets) fall down when we appl y them
to a region outside our direct normal experience (electrons in atoms). Once again
the solution is the same: Classical mechanics turns out to be an important special
case of a more general theory. In this case the general theory is that of quantum
mechanics developed about 1925 to 1926 by Heisenberg, Schrodinger, Born, and
others. Once again, quantum mechanics does not detract from the merit of classi-
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cal mechanics, which continues to give results that agree admirably with experi-
ment for particles of relatively large mass.

The situation most remote from our daily experience deals with particles that
have both small mass and high speed. Here we must use a still more general theory,
relativistic quantum mechanics, which combines both relativity theory and quantum
mechanics; such a theory was first developed by Dirac in 1927.

In the rest of our treatment of mechanics we return to the familiar special case
of our daily experience, that of relatively massive and relatively slow-moving
objects (classical mechanics). From time to time we will point out parenthetically
how the predictions of classical mechanics must be modified when we depart from
this region of experience.

QUESTIONS

I. There is a limit beyond which further polishing of a surface increases rather thandecreases frictional resistance. Can you explain this?
2. Is it unreasonable to expect a coefficient of friction to exceed unity?
3. How could a person who is at rest on completely frictionless ice covering a pond

reach shore? Could he do this b y walking, rolling, swinging his arms, or kicking his
feet? How could a person be placed in such a position in the first place?

4. Explain how the range of your car's headlights limits the safe driving speed at
night.

S. Your car skids across the center line on an icy highway. Should you turn the
front wheels in the direction of skid or in the opposite direction (ay when you want to
avoid a collision with an oncoming car, (b) when no other car is near but you want to
regain control of the steering?

6. If you want to stop the car in the shortest distance on an icy road, should you (a)push hard on the brakes to lock the wheels, (b) push just hard enough to prevent slip-ping, or (c) "pump" the brakes?
7. A cube of weight W rests on a rough inclined plane which makes an angle 8 with

the horizontal. Compare the minin'um force necessary to start the cube moving down
the plane with that necessary to start the cube moving up the plane. How do these
compare with the minimum horizontal force (transverse to the slope) that will cause the
cube to move down the plane?

8. Why are the train roadbeds and highways banked on curves?
9. How does the earth's rotation affect the apparent weight of a body at the equator?
10. A car is riding on a country road that resembles a roller coaster track. If the

car travels with uniform speed, compare the force it exerts on a horizontal section of the
road to the force it exerts on the road at the top of a bill and at the bottom of
a hill. Explain.

11. Suppose you need to measure whether a table top in a train is truly horizontal.
If you use a spirit level can you determine this when the train is moving down or up
a grade? When the train is moving along a curve? (Hint: there are two horizontal
components)

12. In the conical pendulum of Example 3 what happens to the period r and thespeed v when 8 9O? Why is this angle not achievable physically? Discuss thec.se for 8 - O.
13. A coin is put on a phonograph turntable. The motor is started, but before the

final speed of rotation is reached, the coin flies off. Explain.
14. A passenger in the front seat of a car finds himself sliding toward the door as the

driver makes a sudden left turn. Describe the forces on the passenger and on the car
at this instant if (a) the motion is viewed from a reference frame attached to the earth
and (li) if attached to the car.
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15. What is the distinction between inertial reference frames and those differing
only by a translation or rotation of the axes?

PROBLEMS.

I. A fireman weighing 160 lb slides down a vertical pole with an average acceleration

of 10 ft/sec1. what is tWe average vertical force he exerts on the pole?

2. A railroad flatcar is loaded with crates having a coefficient of static friction 0.25
with the floor. If the train is moving at 30 miles/hr, in how short a distance can the
train he stopped without letting the crates slide?

3. Frictional beat generated by the moving ski is the chief factor promoting sliding
in skiing. The ski sticks at the start, but once in motion will melt, the snow beneath it.
Waxing the ski makes it water repellent and reduces friction with the film of water. A
magazine reports that a new type of plastic ski is even more water repellent and that
on a gentle 700-ft slope in the Alps, a skier reduced his time from 61 to 42soc with new.
skis. (a) Determine the average accelerations for each pair of skis. (5) Assuming

a 3°-slope compute the coefficient of kinetic friction for each case.

4. A student wants to determine the coefficients of static friction and kinetic friction
between a box and a plank. He places the box on the plank and gradually raises the
plank. When the angle of inclination with the horizontal reaches 30°, the box starts
to slip and slides 4.0 meters down the plank in 4.0 sec. Show how he can determine the
coefficients front these observations.

5. A hockey puck weighing 0.25 lb slides on the ice for 50 it before it stops. (a)
If its initial speed was 20 ft/sec, what is the force of friction between puck and ice?
(5) What is the coefficient of kinetic friction?

6. A 10-lb block of steel ill rest on a horizontal table. The coefficient of static
friction between block and table is 0.50. (a) What is the magnitude of the horizontal
force that will just start tIme block moving? (5) What is the magnitude of a force
acting upward 60° from the horizontal that, will just start the block moving? (c) if
the force acts down at 60° from the horizontal, how large can it he without causing the

block to move?
7. A piece of ice slides down a 45°-incline in twice the time it takes to slide down a

frictionless 45°-inelire. What is the coefficient of kinetic friction between the ice and
the incline?

8. A horizontal force F of 12 lb pushes a block weighing 5.0 lb against a vertical wall
(Fig. 6--10). The coefficient of static friction between the wall and the block is t).O()

F,_

-.

Fig. —1O
	

Fig. —I1
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and the coefficient of kinetic friction is 0.40. Assume the block is not moving initially.
(a) Will the block start moving? (5) What is the force exerted on the block by the
wall?

9. Block B in Fig. 6-I1 weighs 160 lb. The coefficient of static friction between
block and table is 0.25. Find the maximum weight of block .4 for which the system
will be in equilibrium.

10. A 4.0-kg block is put on top of a 5.0-kg block. In order to cause the top block
to slip on the bottom one, a horizontal force of 12 nt must be applied to the top block
(Fig. 6-12). Assume a frictionless table and find (a) the maximum horizontal force F
which can be applied to the lower block so that the blocks will move together and (5)
the resulting acceleration of the blocks.

:ALJ

CO kg
C>	 J5.0 kg

ru zwnswi	 .4. ,r .. zrrr

Fig. 6-12
	

Fig. 6-13

II. In Fig. 6-13, A is  10-lb blo
minimum weight (block C) which in
between A and the table is 0.20. (b)
acceleration of block A, if Pk between

ck and B is a 5.0-lb block. (a) Determine the
ust be placed on A to keep it from sliding, if u.
The block C is suddenly lifted off A. What is the
A and the table is 0.20?

12. The handle of a floor mop of mass rn makes an angle 8 with the vertical direction.
Let Ak be the coefficient of kinetic friction between mop and floor, and p be the coef-
ficient of static friction between mop and floor. Neglect the mass of the handle. (a)
Find the magnitude of the force F directed along the handle required to slide the mop
with uniform velocity across the floor. (b) Show that if 8 is smaller than a certain angle
Oo, the mop cannot be made to slide across the floor no matter how great a force is
directed along the handle. (a) What is the angle 0?

13. A block slides down an inclined plane of slope angle • with constant velocity.
It is then projected up the same plane with an initial speed v.. How far up the incline
will it move before coming to rest? Will it slide down again?

14. Body B weighs 100 lb and body .4 weighs 32 lb (Fig. 6-14). Given p, 0.56
and jQ — 0.25, (a) find the acceleration of the system if B is initially at rest and (b)
find the acceleration if B is moving initially.

15. Two masses, ni l — 1.65 kg and m 2 — 3.30 kg, attached by a massless rod parallel
to the incline on which both slide, as shown in Fig. 6-15, travel down along the plane
with mj trailing 'n1. The angle of incline is 0 — 30. The coefficient of kinetic friction
between m 1 and the incline is ,, — *1.226; between ins and the incline the corresponding
coefficient is — 0.113. Compute (a) the tension in the rod linking rn1 and m2 and
(6) the common acceleration of the two masses. (c) Would the answers to (a) and (5)
be changed if in2 trails nil?
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Fig. 6-14
	

Fig. 6-15

16. An 8.0-lb block and a 16-lb block connected together by a string slide down a 30
inclined plane. The coefficient of kinetic friction between the 8.0-lb block and the
plane is 0.10; between the 16-lb block and the plane it is 0.20. Find (a.) the acceleration
of the blocks and (b) the tension in the string, assuming that the 8.0-lb block leads. (c)
Describe the motion if the blocks are reversed.

X4^y ^^ 0
Fig. 6-16

17. A block of mass m slides in an inclined right-angled trough as in Fig. 6-16. If
the coefficient of kinetic friction between the block and the material èomposing the
trough isAk, find the acceleration of the block.

18. A block of mass in at the end of a string is whirled around in a vertical circle of
radius R. Find the critical speed below which the string would become slack at the
highest point.

19. A 5000-lb airplane loops the loop at a speed of 200 miles/hr. Find (a) the radius
of the largest circular loop possible and (b) the force on the plane at the bottom of this
loop.

20. In the Bohr model of the hydrogen atom, the electron revolves in a circular orbit
around the nucleus. If the radius, of the orbit is 5.3 )< IO meter and the electron
makes 6.6 X 10 15 rev/sea, find (a) the acceleration (magnitude and direction) of the
electron and (b) the centripetal force acting on the electron. (This force is due to the
attraction between the positively charged nucleus and the negatively charged electron.)
The mass of the electron is 9.1 X 10	 kg.

21. Assume that the standard kilogram would weigh exactly 9.80 nt at sea level on
the earth's equator if the earth (lid not rotate about its axis. Then take into account the
fact that the earth does rotate so that this mass moves in a circle of radius 6.40 )( 105
meters (earth's radius) at a constant speed of 465 meters/sec. (a) Determine the
centripetal force needed to keep the standard moving in its circular path. (b) Deter-
mine the force exerted by the standard kilogram on a spring balance from which it is
suspe'hdd at the equator (its weight).
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22. Because of the rotation of the earth, a plumb bob may not hang exactly along

the direction of the earth's gravitational pull (its weight) but deviates slightly from this
direction. Calculate the deviation (a) at 40 latitude, (b) at the poles, and (c) at the
equator.

23. A circular curve of highway is designed for traffic moving at 40 miles/hr. (a)
If the radius of the curve is 400 it, what is the correct angle of bunking of the road?
(b) If the curve is not banked, what is the rninirrlu:n coefficient of friction between tires
and road that would keep traffic from skidding at this speed?

24. An old streetcar rounds a corner on unbanked tracks. If the radius of the tracks
is 30 ft and the ear's speed is 10 iniles/hr, what angle vitli the vertical will he made by
the loosely hanging hand straps? Is there a force acting on these Straps? If so, is it
a centripetal or a centrifugal force? Do your answers depend on what reference
frame you choose?

25. A mass In on a frictionless table is attached to a hanging mass Ill by a cord
through a hole in the table (Fig. 6-17). Find the conditions (v and r) with which
rn must spin for M to stay at rest..

/

n::.:.:___>_It :Li
Fig. 6-17

26. Imagine that tho. disk of Fig. 6-6 is attached to a spring rather than a string.
The unstretched length of the spring is /o and the tension in the spring increases in direct
proportion to its elongation, the tension per unit elongation being k. lithe disk rotates
with a frequency f (revolutions per unit time), show that (a) the radius 1? of the uniform
circular motion is klo/(k - 4 2 rnJ1) and (b) the tension 'I , in the spring is 4s2niklof'/
(k - 4,2m).

27. (a) What is the smallest radius of a circle at which a bicyclist can travel if his
speed is 18 mi/hr and the coefficient of static friction between the tires and the road is
0.32? (b) Under these conditions what is the largest angle of inclination to the vertical
at which the bic yclist can ride without falling?

28. A small coin is placed on a flat, horizontal turntable. The turntable is observed
to make three revolutions in 3.14 sec. (a) What is the speed of the coin when it rides
without slipping at a distance 5.0 cm from the center of the turntable? (b) What is the
acceleration (magnitude and direction) of the coin in part (a)? (c) What is the fric-
tional-force acting on the coin in part (a) if the coin has a mass in? (d) What is the
coefficient of static friction hetwten the coin and the turntable if the coin is observed to
slide off the turntable when it is greater than 10 cm from the center of the turntable?

29. A very small cube of mnss in is placed on the inside of a funnel (Fig. 6-18) rotat-
ing about a vertical axis at a Constant rate of ' rev/sec. The wall of the funnel makes
an angle 0 with the horizontal. If the coefficient of static friction between the cube and
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the funnel is 1, and the center of the cube is a distance r from the axis of rotation, what
,.re the largest and smallest values of r for which thp blqck will not move with respect
to the funnel?

1
Axis of rotation

Fig. 6-18	 Fig. 6-19

30. A particle of mass Al = 0.305 kg moves counterclockwise in a horizontal circle
of radius r - 2.63 meters with uniform speed v 0.754 meter/sec as in Fig. 6-19.
Determine at the instant 8 322 (measured counterclockwise from the positive
x-direction) the following quantities: (a) the xomponent of the velocity; (b) the y-
component of the acceleration; (c) the total force on the particle; (d) the component of
total force on the particle in the direction of its velocity.
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Work and Energy
CHAPTER 7

7-1 Introduction

A fundamental problem of particle dynamics is to find how a particle
will move when we know the forces that act on it. By "how a particle will
move" we mean how its position varies with time. If the motion is one-
dimensional, the problem is to find x as a function of time, x(t). In the
previous two chapters we solved this problem for the special case of a con-
stant force. The method used is this. We find the resultant force F
actin on thethe particle from the appropriate force law. We then substitute
F and the particle mass tn into Newton's second law of motion. This gives
us the acceleration a of the particle; or

a = F/rn.

If the force F and the mass in are constant, the acceleration a must be con-
stant. Let us choose the x-axis to be along the direction of this constant
acceleration. We can then find the speed of the particle from Eq. 3-12,

± at,

and the position of the particle from Eq. 3-15 (with x 0 =0), or

x = v0t + tat';

note that, for simplicity and convenience, we have dropped the subscript x
in these equations. The last equation gives us directly what we usually
want to know, namely x(t), the position of the particle as a function of time.

The problem is more difficult, however, when the force acting on a par-
131
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tide is not Constant. In such a case we still obtain the acceleration of the
particle, as before, from Newton's second law of motion. However, in
order to got the speed or positionof the particle, we can no longer use the
formulas previously developed for constant acceleration because the accel-
eration now is not constant. To solve such problems, we use the mathe-
matical process of integration, which we consider in this chapter.

We confine our attention to forces that vary with the position of the
particle in its environment. This type of force is common in physics.
Some examples are the gravitational forces between bodies, such as the
sun and earth or earth and moon, and the force exerted by a stretched
spring on a body to which it is attached. The procedure used to determine
the motion of a particle subject to such a force leads us to the concepts of
work and kinetic energy and to the development of the workenergr
theorem, which is the central feature of this chapter. In Chapter 8 we
consider a broader view of energy, embodied in the law of conservation of
energy, a concept which has played a major role in the development of
physics.

7-2 Work Done by a Constant Force

Consider a particle acted on by a force. In the simplest case the force F
is constant and the motion takes place in a straight line in the direction of
the force. In such a situation we define the work done by the force on the
particle as the product of the magnitude of the force F and the distance d
through which the particle moves. We write this as

W = Fd.

However, the constant force acting on a particle may not act in the direc-
tion in which the particle moves. In this case we define the u.ork done by
the force on the particle as the product of the component of the force along
the line of motion by the distance d the body moves along that line. In
Fig. 7—I a constant force F makes an angle 0 with the x-axis and acts on a
particle whose displacement along the z-axis is d. If W represents the
work done by F during this displacement, then according to our definition

TV = (F coo .)d.	 (7-1)

Of course, other forces must act on a particle that moves in this way (its

Y.

[Fcos	 d

F.m. 7—I A force F makes
the block undergo a displace-
ment d. The component of
F that does the work has
magnitude P cos ; the work
done isFd cos (— F - d).
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if

N
(a) •(b)	

N2)k<Nl
(c)	 (d)

Fig. 7-2 Work is not always done by a force that is applied to a body. (a) The block
is moving to the right at constant speed t' over a frictionless surface. Work is not done
by either the weight W or the normal force N. (b) The ball moves in a circle under the
influence of a centripetal force T. There is a centripetal acceleration a but no work is
done by T. In both (a) and (b) the forces being considered (W, N, and T) are at right
angles to the displacement so that II' F . d Fd cos o = Fd cos 90 = 0. (c) A
cylinder hangs from a cord. No work is done either by T, the tension in the cord, or by
W the weight of the cylinder. (d) A cylinder rests in a groove; no work is done by
W, N i or N 2. In both (c) and (d) the work done by the individual forces is zero because
the displacement is zero.

weight and the frictional force exerted by the plane, to name two). A par-
tide acted on by only a single force may have a displacement in a direction
other than that of this single force, as in projectile motion. But it cannot
move in a straight line unless the line has the same direction as that of the
single force applied to it. Equation 7-1 refers only to the work done on the
particle by the particular force F. The work done on the particle by the other
forces must be calculated separately. The total work done on the particle is
the sum of the works done by the separate forces.

When 0 is zero, the work done by F is simply Pd, in agreement with our
previous equation. Thus, when a horizontal force draws a body hori-
zontally, or when a vertical force lifts a body vertically, the work done by
the force is the product of the magnitude of the force by the distance
moved. When 0 is 900, the force has no component in the direction of
motion. That force then does no work on the body. For instance, the
vertical force holding a body a fixed distance off the ground does no work
on the body, even if the body is moved horizontally over the ground.
Also, the centripetal force acting on a body in motion does no work on that
body because the force is always at right angles to the direction in which
the body is moving. Of course, a force does no work on a body that does
not move, for its displacement is then zero. In Fig. 7-2 we illustrate com-
mon examples in which a force applied to a body does no work on that body.

Notice that we can write Eq. 7-1 either as (F cos )d or F(d cos
This suggests that the work can be calculated in two different ways: Either
we multiply the magnitude of the displacement by the component of the
force in the direction of the displacement or we multiply the magnitude of
the force by the component of the displacement in the direction of the
for",'. These two methods always give the same result..
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Work is a scalar, although the two quantities involved in its definition,

force and displacement, are vectors. In Section 2-4 we defined the scalar

product of two vectors as the scalar quantity that we find when we multiply
the magnitude of one vector by the component of a second vector along the
direction of the first. We promised in that section that we would soon run
across physical quantities that behave like scalar products. Equation 7-1

shows that work is such a quantity. In the terminology of vector algebra
we can write this equation as

TV = Fd,	 (7-2)

where the dot indicates a scalar (or dot) product. Equation 7-2 for F and

d corresponds to Eq. 2-11 for a and b.
Work can be either positive or negative. If the particle on which a force

acts has a component of motion opposite to the direction of the force, the
work done by that force is negative. This corresponds to an obtuse angle
between the force and displacement vectors. For example, when a person
lowers an object to the floor, the work done on the object by the upward
force of his hand holding the object is negative. In this case 0 is 180°, for

F points up and d points down.
Work as we have defined it (Eq. 7-2) proves to be a very useful concept

in physics. Our special definition of the word work does not correspond to

the colloquial usage of the term. This may be confusing. A person hold-
ing a heavy weight at rest in the air may say that he is doing hard work—
and he may work hard in the physiological sense—but from the point of
view of physics we say that he is not doing any work. We say this because
the applied force causes no displacement. The word work is used only

in the strict sense of Eq. 7-2. In many scientific fields words are borrowed
from our everyday language and are used to name a very specific concept.

The words basic and cell, for example, mean quite different things in chem-

istry and biology than in everyday language.
The unit of work is the work done by a unit force in moving a body a unit

distance in the direction of the force. In the mks system the unit of work

is 1 newton-meter, called 1 joule. In the British engineering system the unit

of work is the foot-pound. In cgs systems the unit of work is I dyne-centi-

meter, called 1 erg. Using the relations between the newton, the dyne and
the pound, and the meter, the centimeter, and foot, we obtain 1 joule =

101 ergs = 0.7376 ft-lb.

Example 1. A block of mass 10.0 kg is to be raised from the bottom to the top

of an incline 5.00 meters long and 3.00 meters off the ground at the top. Assuming
frictionless surfaces, how much work must be done by a force parallel to the incline
pushing the block up at constant speed at a place where g 9.80 meters/sec,.

The situation is shown in Fig. 7-3a. The forces acting on the block are shown in

Fig. 7-3b. We must first find P, the magnitude ofthe force pushing the block up
the incline. Because the motion is not accelerated, the resultant force parallel to



Sec. 7-2	 WORK DONE BY A CONSTANT FORCE 	 135

\	
N.

A•'
meters	 .0.

3 meters:

4mete,sJ
P	 Mg

(a)	
(b)

Fig. 7-3 Example 1. (a) A force P displaces a block a distanced up an inclined plane
which makes an angle 9 with the horizontal. (b) A free-body force diagram for the
block.

the plane must be zero. Thus

P - Mg sin 8 = 0,
or

P = mg Sin 8 = (10.0 kg) (9.80 meters/see 2)()	 58.8 nt.
Then the work done by P, from Eq. 7-1 with 0 = 0, is

W	 . d Pd cos 0° Pd = (58.8 nt)(5.O0 meters) = 294 joules.

If a man were to raise the block vertically without using the incline, the work he
would do would be the vertical force mg times the ertical distance or

(98.0 nt)(3.00 meters) = 294 joules,

the same as before. The only difference is that with the incline he could apply a
smaller force (P 58.8 nt) to raise the block than is required without the incline
(mg = 98.0 nt); on the other hand, he had to push the block a greater distance
(5.00 meters) up the incline than he had to raise the block directly (3.00 meters).

Example 2. A boy pulls a 10-lb sled 30 ft along a horizontal surface at a con-stant speed. What work does he do on the sled if the coefficient of kinetic friction
is 0.20 and his pull makes an angle of 450 with the horizontal?

The situation is shown in Fig. 7-4a and the forces acting on the sled are shown in
Fig. 7-4b. P is the boy's pull, ,, the sled's weight, f the frictional force, and N the
normal force exerted by the surface on the sled. The work done by the boy on the
sled is

W = J1. d = Pd cos 4,.

To evaluate this we first must determine F, whose value has not been given. To
obtain P we refer to the force diagram.

The sled is unaccelerated, so that from the second law of motion we obtain

and	
P cos 4, - I = 0,

P sin 4, + N - w = 0.
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Fig. 7-4 Example 2. (a) A boy displaces a sled an amount il by pulling with a force P

on a rope that makes an angle O NN AI, the horizontal. (b) A free-body force diagram for

the sled.

We know also that f and N are related by

f = Pk-NT-

These three equations contain three unknown quantities, P, f, and N. To find

P we eliminate f and N from these equations and solve the remaining equation for

P. The student should verify that 	 -

	

P = J.LkW/(C0	 + 12k Sifl

With Pk = 0.20, w = 10 lb, and .= 4° we obtain

P = (0.20)(10 lb)/(0.707 + 0.141) = 2.4 lb.

Then with d = 30 It, the work done by the boy on the sled is

W = Pd cos 0 = (2.4 lb)(30 ft)(0.707) = 51 ft-lb.

The vertical component of the boy 's pull P does no work on the sled. Notice,
however, that it reduces the normal force between the sled and the surface (N =

w - P sin ) and thereby reducesthe magnitude of the force, of friction (f = N).
Would the boy do more work, less work, or the same amount of work on the sled

if he pulled horizontally instead of at 450 from the horizontal? Do any of the
other forces acting on the sled do work 	 on it?	 4

7-3 Work Done by a Variable Force—One Dimensional Case

Let us now consider the work done by a force that is not constant. We
consider first a force that varies in magnitude only. Let the force be given
as a fi:ction of position F(x) and assume that the force acts in the x-diree-
tion. Suppose a body is moved along the x-direction by this force. What
is the work done by this variable force in niotig the body from x 1 to x2?

In Fig. 7-5 we plot F versus x. Let us divide the total displacement into
a large number of small equal intervals .x (Fig. 7-5a). Consider the sinail

displacement Ax froin x i to ii + Ax. During this small displacement the
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force F has a nearly constant value and the work it does, MW, is approxi-
mately

AIV = Fax,	 (7-3)

where F is the value of the force at x1. Likewise, during the small displace-
ment from x 1 + Ax to x 1 + 2x, the force F has a nearly constant value
and the work it does is approxi-
mately MV = Fir, where F is the
value of the force at x1 + Ax. The	 F(x)

total work done by F in displacing
the body from x 1 to x 2 , TV 12, is ap-
proximately the sum of a large num-
ber of terms like that of Eq. 7-3, in

-. —xwhich F has a different value for 	 I

each term. Hence	 (a)

IT' 12 = F Ax,	 (7-4)

Where the Greek letter sigma ()
stands for sum over all intervals
from x 1 t.o x2.

To make a better approximation
we can divide the total displace-
ment from x 1 to x2 into a larger
number of equal intervals, as in Fig.
7-5b, so that & is smaller and the
value of F at the beginning of each
interval is more typical of its values
within the interval. It is clear that
we can obtain better and better ap-
proximations by taking Ax smaller
and smaller so as to have a larger
and larger number of intervals. We
can obtain an exact result for the
work done by F if we let Ax go to
zero and the number of intervals
go to infinity. Hence the exact
result is

W12 = urn F Ax. (7-5)
ri

The relation

X2

urn \' F&c	 F dx,
-o	 = JIF

F(x)

(b)
-2x

F(x)	 ______

(c)

Fig. 7-5 Computing	 F(z) dx

amounts to finding the area under the
curve F(x) between the limits xj and
X2. This can be done approximately
as in the top drawing (a) by dividing
the area into a few strips, each of
width ax. The areas of the rec-
tangles are then summed to give a
rough value of the area. In the
middle drawing (b) the strips are
narrower and the value for the area
becomes more exact as the errors at
the tops of the rectangles become
smaller. In the bottom drawing (c)
the strips are only infinitesimal in
width. The measurement of area is
exact, since the errors at the tops of
the rectangles go to zero as time strip
width dx goes to zero.

F—il
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as the student may have learned in his calculus course, defines the integral

of F with respect to x from x 1 to x 2 . Numerically, this quantity is exactly
equal to the area between the force curve and the x-axis between the limits

x 1 and x 2 (Fig. 7-5c). Hence, graphically an integral can be interpreted

as an area. The symbol f is a distorted S (for sum) and symbolizes the

integration process. We can write the total work done by F in displacing

a body froni x 1 to x 2 as

1l'12 F(x) dx.	 (7-6)
J

As an example, consider a spring attached to a wall. Let the (hori-
zontal) axis of the spring be chosen as an x-axis, and let the origin, x = 0,
coincide with the endpoint of the spring in its normal, unstretched state.
We assume that the positive x-direction points away from the wall. In
what follows we imagine that we stretch the spring so slowly that it is'
essentially in equilibrium at all times (a = 0).

If we stretch the spring so that its endpoint moves to a position x, the
spring will exert a force on the agent doing the stretching given to a good
approximation by

F = —kx,	 (7-7)

where Ic is a constant called the force constant of the spring. Equation 7-7

is the force law for springs. The direction of the force is always opposite
to the displacement of the endpoint from the origin. When the spring is
stretched, x > 0 and .F is negative; when the spring is compressed, x < 0

and F is positive. The force exerted by the spring is a restoring force in
that it always point. toward the origin. Real springs will obey Eq. 7-7,
known as Hooke's law, if we do not stretch them beyond a limited range.
We can think of Ic as the magnitude of the force per unit elongation. Thus
very stiff springs have large values ot Ic.

To stretch a spring we must exert a force F' on it equal but opposite to

the force F exerted by the spring on us. The applied force s is therefore

F' kx and the work done by the applied force in stretching the spring so
that its endpoint moves from x 1 to x 2 isf

1V 12 = j'F'(x) dx = f" (kx) dx = 11 kx 2 2 - Y'.kx12.

• If the applied force were different from F' kx., we would have a net unbalanced
force acting on the spring and its motion would he accelerated. To compute the work
done we would have to specify exactly what the applied force is at each point. No

matter what the force turned out to he, the work done would always be the same for the
same displacement x, to x,, providing the spring has the same speed initially and
finally. However, it is much easier to use the simple force F' = kx in calculating the
work done. Such an applied force leads to unaccelerated motion. It is in order to he
able to use this simple force that we specified unaccelerated motion in the first place.

t The student just becoming familiar with calculus should consult the list of integrals
in Appendix I.
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If we let xj = 0 and x 2 = x, we obtain

=	 (kx) dx =	 (7-8)

This is the work done in stretching a spring so that, its endpoint moves
from its uristretched posit i on to .x. Note that the work to compress a
spring by x is the same as that to stretch it by x because the displacement
x is squared in Eq. 7-8; either sign for x gives a positive value for TV.

We can also evaluate this integral by computing the area under the
force-displacement curve and the x-axis from r = 0 to x = x. This is
drawn as the white area in Fig. 7-6. The area is a triangle of base x and
altitude kx. The white area is therefore

(x)(kx) = fkx2.

in agreement with Eq. 7-8.

Y	 F

La
I,

- 0
	 X

Fig. 7-6 The force exerted in stretch-	 Fig. 7-7 How F and 0 might change
ing a spring is F' = ki. The area	 along a path. As .r -. 0 we may
under the force curve is the work done 	 replace it by the differential dr, which
in stretching the spring a distance x	 always- points in the direction of the
and can he found by integrating or by 	 velocity of the moving object, since
using the formula for the area of a	 v	 dr/dl, and hence is tangent to the
triangle,	 path at all points.

7-4 Work Done by a Variable Force—Two-Dimensional Case

The force F acting on a particle may vary in direction as well as in magnitude,
and the particle may move along a curved path. To compute the work in this
general case we divide the path up into a large number of small displacements

r, each pointing along the path in the direction of motion. Figure 7-7 shows two
selected displacements for a . particular situation; it also shows the value of F and
the angle 0 between F and Ar at each location. We can find the amount of work
done on the particle during a displacement .r from

dW = F•r Fc.os 4r	 (7-9)

The work done by the variable force F on the particle as the particle moves, say,
from a to b in Fig. 7-7 is found very closel y by adding UI) (summing) the elements
of work done over each of the line segments that make it up. As the line segments
r become smaller they may be replaced by differentials dr and the sum over the

1•
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line segments may be replaced by an integral, as in Eq. 7-6. The work is then
found from

I F . dr = L b F cos 4) dr.	 (7-10a)

We cannot evaluate this integral until we are able to say how F and 4) in Eq. 7-lOa
vary from point to point along the path; both are functions of the x- and y-coor-
dina.tes of the particle in Fig. 7-7.

We can obtain another equivalent expression for Eq. 7-10a by expressing F and
dr in terms of their components. Thus F = V. + iF,, and dr i dx + j dy,

so that F . dr F. dx + F,, dy. In this evaluation recall (see Problem 22, Chapter
2) that i . i =j•j 1 and i -j =j . i = 0. Substituting this result into Eq.
7-10g, we obtain

11',,,, 
=	

(F, dx + F,, dy)
	

(7-lOb)

Integrals such as those in Eqs. 7-10a and 7-10b are called line integrals.

. Example 3. As an example of a variable force consider a particle of mass
m suspended from a weightless cord of length 1. This is called a simple pendulum.
Let us displace the particle along a circular path of radius I from 4) 0 to 4) =
by applying a force that is always horizontal. We can apply such a force by pulling
horizontally on the particle with an attached string, for example. The particle
will then have been displaced a vertical distance h. Figure 7-8a shows the situa-
tion and Fig. 7-8b shows the forces acting on the particle in the arbitrary position

4). The applied force is F, T is the tension in the cord, and mg the weight of the
particle.

Again we assume that there is no acceleration (the reason is the same as before),
so that in practice the motion must be very slow. The force F is always hori-
zontal, but the displacement dr is along the arc. The direction of dr depends on
the value of 4) and is tangent to the circle at each point. F will vary in magnitude
in such a way as to balance the horizontal component of the tension. Notice that
the angle between F and dr is equal to the angular displacement 4) in this case.

Y

.\. Directon
odr

I	 •

Mg

dr J.
dy

w.

pi9. 7-s (a) A simple pendulum.
A mass point m is suspended on a
string of length 1. Its maximum
displacement is 0a. (b) A free-body
force diagram for the mass sub-
jected to an applied horizontal force.
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The work done as the mass m moves from	 0 to 0	 under the action of

the force F is

W	 ['F . dr	 'F cos 4idr	 (7-10a)Jd	
(

0	 J-O
or

IV 
=

f

_ (1-h) tan 00,W-h
(F,dz + F'1, dy).	 (7710b)

Let us evaluate Eq. 7-10b.
Note that, from Newton's first law (see Fig. 7-8b)

F= T sin t,	 and	 mg= T cos d.

Eliminating T between these relations gives us

F = mg tan 4.

We also note in Fig. 7-8b that F = 0. Substituting these values for F and F1, into
Eq. 7-106 yields

4,dx.w

Now from Fig. 7-8a we see that

tan	 dy/dr	 or	 tan 0 dx dy.

Making this substitution and noting that the integral depends only on the variable
y, we obtain finally

fv=h	 (1
II	 =° (ing) dy	 dy = mgh.

The student should now try to compute the work done in displacing the particle
along the are with constant speed by applying a force that is always directed along
the arc. Here it will he simpler to work with Eq. 7-10u. using the tangential force
and taking dr NO. The result will be the same as before, 11 mg/i. Notice
that both these results are the same as the work that would be done in raising a
mass in 	 through a height h.

What work has been clone on the particle by the tension T in the string?	 I
7-5 Kinetic Energy and the Work-Energy Theorem

In our previous examples of work done by forces, we dealt with unac-
celerated objects. Iii such cases the resultant force acting on the object is
zero. Let us suppose now that the resultant force acting on an object is
not zero, so that the object is accelerated. The conditions are the same in all
respects to those that exist when a single unbalanced force acts on the
object.

The simplest situation to consider is that of a constant resultant force F.
Such a force, acting on a particle of mass rn, will produce a constant
acceleration a. Let us choose the x-axis to be in the common direction of F
and a. What is the work done by this force on the particle in causing a
displacenieiit. .r? We have (for constant acceleration) the relations

V - V0



142	 WORK AND ENERGY	 Chap. 7

and
V + VO

X = ----- I,

which are Eqs. 3-12 and 3-14 respectively (in which we have dropped the

subscript z, for convenience, and chosen x 0 = 0 in the last equation). Here

vo is the particle's speed at I = Q and v its speed at the Time 1. Then the

work done is
W=Fx=max.

	=(-) (_±.!o) I = MV 2  	 imt,o2	 (7-11)

We call one-half the product of the mass of a body and the square of its speed

the kinetic energy of the body. If we represent kinetic energy by the symbol

K, then
K = m.v2.	 (7-12)

We may then state Eq. 7-11 in this way: The work done by the result.antforce

acting on a particle is equal to the change in the kinetic energy of the particle.

Although we have proved this result for a constant force only, it holds
whether the resultant force is constant or variable. Let the resultant force
vary in magnitude (but not in direction), for example. Take the displace-
ment to be in the direction of the force. Let this direction be the x-axis.
The work done by the resultant force in displacing the particle from Xo to

xis
IV = f F•dr =	 Fdx.

But from Newton's second law we have P = ma, and the acceleration a can

be written as
do dvdv	 dv

a = - = ---
dx = 

— v =
dt dx dt	 dx	 dx

Hence

TV = f F dx f -medx = f inc dv = mv2 - mv 0 2. (7-13)
dx

A more general ease is that in which the force varies both in direction and
magnitude and the motion is along a curved path, as in Fig. 7-7. (See
Problem 7.) Once again we find that the work done on a particle by the
resultant force is equal to the change in the kinetic energy of the particle.

The work done on a particle by the resultant force is always equal to the

change in the kinetic energy of the particle:

	

W (of the resultant force) = K - K0 = AK.	 (7-14)

Equation 7-14 is known as the work-cn.ergy theorem for a particle.
Notice that when the speed of the particle is constant, there is no change

in kinetic energy and the work done by the resultant force is zero. With
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uniform circular motion, for example, the speed of the particle is constant
and the centripetal force does no work on the particle. A force at right
angles to the direction of motion merely changes the direction, of the velocity
and not its magnitude. Only when the resultant force has a component
along the direction of motion does it change the speed of the particle or its
kinetic energy. Work is done on a particle only by that component of the
resultant force along the line of motion. This agrees with our definition of
work in terms of a scalar product, for in F . dv only the component of F
along dr contributes to the product.

If the kinetic energy of a particle decreases, the work done on it by the
resultant force is negative. The displacement and the component of the
resultant force along the line of motion are oppositely directed. The work
done on the particle by the force is the negative of the work done by the
particle on whatever produced the force. This is a consequence of New-
ton's third law of motion. Hence Eq. 7-14 can be interpreted to say that
the kinetic energy of a particle decreases by an amount just equal to the
amount of work which the particle does. A body is said to have energy
stored in it because of its motion; as it does work it slows down and loses
some of this energy. Therefore, the kinetic energy of a body in motion is
equal to the work it can do in being brought to rest. This result holds whether
the applied forces are constant or variable.

The units of kinetic energy and of work are the same. Kinetic energy,
like work, is a scalar quantity. The kinetic energy of a group of particles is,
simply the (scalar) sum of the kinetic energies of the individual particles in
the group.

Example 4. A neutron, one of the constituents of a nucleus, is found to pass
two points 6.0 meters apart in a time interval of 1.8 x 10 sec. , Assuming
its speed was constant, find its kinetic energy. The mass of a neutron is 1.7 X
10-" kg.

The speed is obtained from

d	 6.0 meters =
	 io meters/sec.=	

1.8 X 10 sec

The kinetic energy is

K = mv'	 (-1 )(1.7 X 10" kg)(3.3 X 10 1 meters/sec)' = 9.3 X 10'' joule.

For purposes of nuclear physics the joule is a very large energy unit. A unit more
commonly used is the electron volt (cv), which is equal to 1.60 x 10" joule.
The kinetic energy of the neutron in our example can then be expressed as

K = (9.3 X 10-"	 1ev	
5.8ev.

	

joule) (i.
	 joule)

" =

Example 5. Assume the force of gravity to be constant for small distances
above the surface of the earth. body is dropped from rest at a height h above
the earth's surface. What will its kinetic energy be just before it strikes the
ground?	 -
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The gain in kinetic energy is equal to the work done by the resultant force, which
here is the force of gravity. This force is constant and directed along the line of
motion, so that the work done by gravity is

lVFd = nigh.

Initially the body has a speed v 0 = 0 and finally a speed v. The gain in kinetic
energy of the body is

171V1- nv02 	mv2 - 0.

Equating these two equivalent terms we obtain

K = mv 2 = nigh

as the kinetic energy of the body just before it strikes the ground.
The speed of the body is then

The student should show that in falling from a height h 1 to a height h 5 a body will,
increase its kinetic energy from 4rnv 1 2 to rnV2 2 , where

- rnr	 ?ng(hi - he).

In this example we are dealing with a constant force and a constant acceleration.
The methods developed in previous chapters should be useful here too. Can you
show how the results obtained by energy considerations could he obtained directly
from the laws of motion for uniformly accelerated bodies?

Example 6. A block weighing 8.0 lb slides on a horizontal frictionless table
with a speed of 4.0 ft/sec. It is brought to rest in compressing a spring in its
oath. By how much is the spring compressed if its force constant is 0.25 lb/ft?

The kinetic energy of the block is

K = tnv' = -(w/g)v2.

This kinetic energy is equal to the work 11 that the block can do before it is brought
to rest. The work done in compressing the spring a distance x beyond its Un-
stretched length is

W = PX2,
so that

kz = (u'/g)v'
or	

= _8.0	 4.0 ft = 4.0 ft.	 I
IV

\ gk	 \(32)(0.25)

7-6 Significance of the Work-Energy Theorem

The work-energy theorem does not represent a new, independent law of
classical mechanics. We have simply defined work and kinetic energy and
drjvcd the relation between them directly from Newton's second law.
The work-energy theorem is useful, however, for solving problems in which
the work done by the resultant force is easily computed and in which we
are interested in finding the particle's speed at certain positions. Of
greater significance, perhaps, is the fact that the work-energy theorem is
the starting point for a sweeping generalization in physics. It has been
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emphasized that the work-energy theorem is valid when IV is interpreted as
the work done by the resultant force acting on the particle. However, it is
helpful in many problems to compute separately the work done by certain
types of force and give special names to the work done by each t ype. This
leads to the concepts of different types of energy and the principle of the
conservation of energy, which is the subject of the next chapter.

7-7 Power

Let us now consider the time involved in doing work. The same amount
of work is done in raising a given body through a given height whether it
takes one second or one year to do so. However, the rate at which work is
done is often more interesting to us than the total work performed.

We define power as the time rate at which work is done. The average
power delivered by an agent is the total work done by the agent divided by
the total time interval, or

P = wit.

The instantaneous power delivered by an agent is

P = dW/dt.	 (7-15)

If the power is constant in time, then P F and

IV = Pt.

In the mks system the unit of power is 1 joule/see, which is called 1 watt.
This unit of power is named in honor of James Watt whose steam engine
is the predecessor of today's more powerful engines. In the British engi-
neering system, the unit of power is I ft-lb/sec. Because this unit is quite
small for practical purposes, a larger unit, called the horsepower, has been
adopted. Actually Watt himself suggested as a unit of power the power
delivered by a horse as an engine. One horsepower was chosen to equal
550 ft-lb/sec. One horsepower is equal to about 746 watts or about three-
fourths of a kilowatt. A horse would not last very long at that rate.

Work carl also be expressed in units of power X time. This is the origin
of the term kilowatt-hour, for example. One kilowatt-hour is the work done
in 1 hr by an agent working at a constant rate of 1 kw.

Example 7. An automobile uses 100 hp and moves at a uniform speed of 60
miles/hr (= SS ft/see). What is the forward thrust exerted by the engine on he
car?

TV FdP = - - = F . v.
t	 I

The forward thrust F is in the direction of motion given by v, so that

P = Fv,

and	 F	
(100 hp \ (550 ftlb/sec'\ 

= 630 lb.
V	 \88 ft/sec/ \	 1 hp

Why doesn't the car accelerate? 4
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QUESTIONS

I. Can you think of other words like "work" whose colloquial meanings are often
different from their scientific meanings?

2. In a tug of war one team is slowly giving way to the other. What work is being
done and by whom?

3. The inclined plane (see Example I) is a simple machine which enables us to do
work with the application of a smaller force than is otherwise necessary. The same
statement applies to a wedge, a lever, a screw, a gear wheel, and a pulley. Do such
machines save us work?

4. Springs A and B are identical except that A is stiffer than B, that is, kA > k8.
On which spring is more work expended if (a) they are stretched by the same amount,
(b) they are stretched by the same force?

5. A man rowing a boat upstream is at rest with respect to the shore. (a) Is he doing
any work? (b) If he stops rowing and moves down with the stream, is any work being
done on him?

6. The work done by the resultant force is always equal to the change in kinetic
energy. Can it happen that the work done by one of the component forces alone will he
greater than the change in kinetic energy? If so, give examples.

7. When two children play catch on a train, does the kinetic energy of the ball
depend on the speed of the train? Does the reference frame chosen affect your answer?
If so, would you call kinetic energy a scalar quantity? (See Problem 19.)

8. Does the work done in raising a box onto a platform depend on how fast it is
raised?

PROBLEM

1. A 100-lb block of ice slides down an incline 5.0 ft long and 3.0 It high. A man
pushes upon the ice parallel to the incline so that it slides down at constant speed. The
coefficient of friction between the ice and the incline is 0.10. Find (a) the force exerted
by the man. (b) the work done by the man on the block, (c) the work done by gravity on
the block, (d) the work done by the surface of the incline on the block, (e) the work done
by the resultant force on the Mock, and (f) the change in kinetic energy of the block.

2. A man pushes a 60-lb block 30 ft along a level floor at constant speed with a force
directed 45° below the horizontal. If the coefficient of kinetic friction is 0.20, how much
work does the man do on the block?

3. A crate weighing 500 lb is suspended from the end of a rope 40 ft long. The crate
is then pushed aside 4.0 It from the vertical and held there. (a) What is the force needed
to keep the e.nte in this position? kb) Is work being done in holding it there? (e)
Was work done in moving it aside? If so, how much? (d) Does the trusiofi in the
rope perform any work on the crate?

4. A cord is used to lower vertically a block of mass M a distance d at a constant

downward acceleration of q/4. Find the work (lone by the cord on the block.
S. A block of mass m 3.57 kg is drawn at constant speed a distanced 4.06 meters

along a horizontal floor by a rope exerting s constant force of magnitude F = 7.6$ nt
making an angle 6 = 15 . 00 with the horizontal. Compute (a) the total work 10flC On
the block; (h) the work done by the rope on the block; (c) the work done by friction on
the block; (d) the coefficient f kinetic friction between block and floor.
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6. (a) Estimate the work done by the force shown on the graph (Fig. 7-9) in displac-
ing a particle from x 1 to z 3 meters. Refine your method to see how close you
can come to the exact answer of 6 joules. (b) The curve is given analytically by

F a/x2 where a = 9 nt-meters'. Show how to get the work done by the rules of

integration.

jr, meters

Fig. 7-9

7. When the force F varies both in direction and magnitude and the motion is along a
curved path the work done by F is obtained from dW = F dr, the subsequent irtegra-
tion being taken along the curved path. Notice that both F and 0, the angle between
F and dr, may vary from point to point (see Fig. 7-7). Using Example 3 as a guide,
show that for two-dimensional motion

=	 -

N% here r is the final speed and vs the initial speed.
8. Generalize the results of the previous problem to three dimensions.

9. A runninlfi man has half the kinetic energy that a boy of half his mass has. The
man speeds up by 1.0 meter/sec and then has the same kinetic energy as the boy. What
were the original speeds of man and boy?

10. From what height would an automobile have to fall to gain the kinetic energy
equivalent to what it would have when going 60 miles/br?

11. A proton (nucleus of the hydrogen atom) is being accelerated in a linear acceler-
ator. In each stage of such an accelerator the proton is accelerated along a straight line
by 3.6 X 10 meters/sec'. If a proton enters such a stage moving initially with a speed
of 2.4 X 14)7 meters/sec :nd tIe stage is 3.5 cm long, compute (a) its speed at the end of
the stage and (b) the gain in kinetic energy resultni from the acceleration. Take the
mass of the proton to be 1.67 X 10-27 kg and express the energy	 electron volts.

12. A 30-gm bullet initially traveling 500 meters/sec penetrates 12 cm into a wooden
block. What average force does it exert?

13. Show from considerations of work and kinetic energy that the iiiinimUrn stepping
distance for a car of mass in moving with speed r along a level road is 0,'2i4, where P. is

the coefficient of static friction between tires and road. (See Eariiple 2, Chapter 6.)
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14. A single force acts on a body in rectilinear motion. A plot of velocity versus
time for the body is shown in Fig. 7-10. Find the sign (positive or negative) of the
work done by the force on the body in each of the intervals AR, BC, CD. and DE.

Fig. 7-10

15. (a) A mass of 0.675 kg on a frictionless table is attached to a string which passes
through a hole in the table at the renter of the horizontal circle in which the mass moves
with constant speed. If the radius of the circle is 0.500 meter and the speed is 10.0
meters/see, compute the tension in the string. (b) It is found that drawing an addi-
tional 0.2(K) meter of the string down through the hole, thereby reducing the radius of
the circle to 0.300 meter, has the effect of multiplying the original tension in the string
by 4.63. Compute the total work done by the string on the revolving mass during the
reduction of the radius.

16. A proton starting from rest is accelerated in a cyclotron to a final speed of 3.0 X
10' meters/sec (about one-tenth the speed of light). How much work, in electron volts,
is done on the proton by the electrical force of the cyclotron which accelerates it?

17. An outfielder throws a baseball with an initial speed of 60 ft/sec. An infielder at
the same level catches the ball \vllen its speed is reduced to 40 ft/sec. What work was
done in overcoming the resistance of the air? The weight of a baseball is 9.0 oz.

18. The block of mass M shown in Fig. 7-I1 initially has a velocity vo to the right and
its position is such that the spring exerts no force on it, i.e., the spring is not stretched
or compressed. The i)hoek moves to the right a distance I before stopping in the dotted
position shown. The spring constant is k and the coefficient of kinetic friction between
block and table is ps. As the block moves the distance 1, (a) what is the work done on it
by the friction force? (b) What is the work done on it by the spring force? (c) Are
there other forces acting on the block, and, if so, what work do they do? (d) What is
the total work done on the block? (c) Use the work-energy theorem to find the value
of I in ternis of .hJ, vo, yk, g, and k.

VO I' .	 '•'
k	

•-*	 I

	

Fig. 7.11

u.s	 M

19. Work and Kinetic Energy in Moving Reference Frames. Consider two observers,
one whose frame is attached to the ground and another whose frame is attached, say,
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to at train moving with uniform velocity u with respect to the ground. Each observes
that a particle, initially at rest with respect to the train, is accelerated by a constant
force applied to it for time tin the forward direction.

(a) Show that for each observer the work done by the force is equal to the gain in
kinetic energy of the particle, but that (Inc observer measures these quantities to be

whereas the other observer measures them to be -21 ,,ia 2t + ma id. Here a is
the common acceleration of the particle of mass at.

(6) Explain the differences in work done by the same force in terms the different
distances through which the observers measure the force to act during the time t.
Explain the different final kinetic energies measured by each observer in terms of the
work the particle could do in being brought to rest relative to each observer's frame.

20. A net force of 5.0 nt acts on a 15-kg body initially at rest. Compute the work
done by the force in the first, second, and third second and the instantaneous power
exerted by the force at the end of the third second.

21. A satellite rocket weighing 100,000 lb acquires a speed of 4000 miles/hr in 1.0 mm
after launching. (a) What is its kinetic energy at the end of the first minute? (6)
What is the average power expended (luring this time, neglecting frictional and gravi-
tational forces?

22. A truck can move up a road having a grade of 1.0-ft rise every 50 ft with a speed
of 15 miles/hr. The resisting force is equal to one-twenty-fifth the weight of the truck.
How fast will the same truck move down the hill with the same horsepower?

23. A horse pulls a wagon with a force of 40 lb at an angle of 30 with the horizontal
and moves along at a speed of 6.0 miles/hr. (a) How much work does the horse do in
10 mm? (6) What is the power output of the horse?

24. The force required to tow a boat at constant velocity is proportional to the
velocity. If it takes 10 hp to tow a certain boat at a speed of 2.5 miles/hr, how much
horsepower does it take to tow it at a speed of 7.5 zniles/hr?

25. What power is developed by a grinding machine whose wheel has a radius of 8.0 in
and runs at 2.5 rev/sec when the tool to be sharpened is held against the wheel with a
force of 40 lb? The coefficient of friction between the tool and the wheel is 0.32.

26. A boy whose mass is 51.0 kg climbs, with constant speed, a vertical rope 6.(()
meters long in lot) see. (a) 1-low much work does the boy perform? (b) What is the
boy's power output during the climb?

27. A body of mass m accelerates uniformly from rest to a speed r, in time t,. (a)
Show that the work done. on the body as a function of time 1, in ternis of a1 and t, is

I	 V12
- m - i.
2	 (j

(6) As a funrhon of tune I, what is the instantaneous power delivered to the body?
(c) What is the instanteneous power at the cod of It) sec delivered to a 3200-11) body
which accelerates to 60 am iles/hr in 10 see?



The Conservation of Energy
CHAPTER 8

8-1 Introduction

In Chapter 7 we derived the work-energy theorem front second

law of motion. This theorem says that the work 11' done by the resultant
force F acting on a particle as it moves from one point to another is equal

to the change AK in the kinetic energy of the pariicle, or

TV = K.	 (8-1)

Often several forces act on a particle, the resultant force F being their
vector sum, that is, F	 F 1 + F2 +	 . F,,, in which we assume that

n forces act. The work done by the resultant force F is the algebraic sum of
the work done by these individual forces, or IV = W 1 + W 2 +
Thus we can write the work-energy theorem (Eq. 8-1) as

117 1 + TV 2 +	 + W,, = AK.	 (8-2)

In this chapter we shall consider systems in which a single particle is
acted upon by various kinds of forces and we shall compute W 1 , 11 2 , etc.,

for these forces; this will lead us to define different kinds of energy such as
potential energy and heat energy. The process culminates in lle formu-

lation of one of the great principles of science, the conservation of energy

princivie.

8-2 Cns.cvative Forces

Let us first distinguish between two types of forces, conservative and

nonconservative. We shall consider all of each type and we discuss
each example from several different, but related, points of view.

150



Sec. 8-2	 CONSERVATIVE FORCES 	 151
Imagine a spring fastened at one end to a rigid wall as in Fig. 8-1. Let

us slide a block of mass in with velocity v directly toward the spring; we
assume that the horizontal plane is frictionless and that the spring is ideal,
that is, that it obeys Hooke's law (Eq. 7-7)

F —kx, (8-3)

where F is the force exerted by the spring when its free end is displaced
through a distance x; we assume
further that the mass of the spring
is so small compared to that of 	 V

the block that we can neglect the 	 k
kinetic energy of the spring. 	 :	 (a)

Thus, in the system (mass +
spring), all the kinetic energy is
concentrated in the mass.	 X

	After the block touches the	 =	 -.
spring, the speed and hence the 	 'a 

kinetic energy of the block de-
crease until finally the block is
brought to rest by the action of
the spring force, as in Fig. 8—lb.
The block now reverses its motion 	 n	 (c)

as the compressed spring expands
It gains speed and kinetic energy
and, when it comes once again to	 Fig. 8-1 a) A block of mass ,n is pro-
itfo position of initial contact with 	 jected with speed v against a spring.

(b) The hk,ek is brought. to rest by thethe spring, we find that it . has the action of the spring force. (c) The blocksame speed and kinetic energy as 	 h;is regained its initial speed v as it
it had originally; onl y the diree-	 returns to its starting point..
tion of motion has changed. The
block loses kinetic energy during
one part of its motion but gains it all back during the other part of its
motion as it returns to its starting point. (Fig. 8-1 c).

We have interpreted the kinetic energy of a body as its ability to do work
by virtue of its motion. It is clear that at the completion of a round trip
the ability of the block in Fig. 8-1 to do work remains the same; it has
been conserved The elastic force exerted by an ideal spring, and other
forces that act in this same way, are called conservative. The force of
gravity is also conservative; if we throw a ball vertically upward, it will
(if we ass'mie air resistance to be negligible) return to our hand with the
same kinetic energy that it had when it left our hand.

If, however, a particle on which one or more forces act returns to its
initial position with either more or less kinetic energy than it had initially,
then in a round trip its ability to do work has been changed. In this case
the ability to do work has not been conserved and at least one of the forces
acting is labeled noncon8erralirc.
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To illustrate a nonconservative force let us assume that the surfaces of
the block and the plane in Fig. 8-1 are not frictionless but rather that a force
of friction f is exerted by the plane on the block. The frictional force
opposes the inot ion of the block no matter which way the block is moving
and we find that the block returns to its starting point with less kinetic
energy than it had initially. Since we showed in our first experiment that
the spring force was conservative, we must attribute this new result to the
action of time friction force . * We say that this force, and other forces that
act in this same way, are noneonservalire. The induction force in a beta-
tron (Section 33-6) is also a nonconservative force. Instead of dissipating
kinetic energy, however, it generates it, so that. all ron moving in the
circular betatron orbit will return to its initial position with more kinetic
energy than it had there originally. In a round trip the electron gaibs
kinetic energy, as it must do if the hetatromi is to be effective.

We call 	 conservative force from another point of view, that of the
work done by the force on the particle. In our first example above, the
work done by the elastic spring force oil 	 block while the spring was
being conipressed was negative, because the force exerted oil block by
the sping (to the left in Fig. 8-1a) was directed opposite to the displace-
ment of the block (to the right in Fig. 81a). While the spring was being
extended the work that the spring force did oil block was positive (force
and displacement in the same direction). In our first example the net work-
done on the block by the spring force (luring a complete cycle; or round
trip, is zero.

In our second example we considered the effect of the frictional force.
The work done oil block by this force was negative for each portion Qf
the cycle because the frictional force always opposed the motion. Hence
the work done by friction in a round trip cannot be zero. In general, then:
A force is con servat ire if the work done by the force on a particle that rnves

through any round trip is zero. A force is nonconservative if the work (lone

by the force on a particle that moves through any round trip is not zero.
The work-energy theorem shows that this second way of defining con-

servative and nonconservative forces is full y equivalent to our first defini-
tion. If there is no eliammge iii the kinetic energy of a particle moving
through any round trip then  .K = 0 and, from Eq. 8-1, IV = 0 and the
resultant force acting must be conservative. Similarly, if AK 5-6 C then,

front 8-1, iF 96 0 and at least one of the forces acting must he
nonconservative.

We can look into this matter in a little more detail. When friction is present in
the system of Fig. 8-1, four forces act on the block, the resultant force being

F = F, + W + N + I

in which the forces are the spring force F,, the weight of the block W, the normal

Actuall y two other forces :ut on the block in Fig. 8- 1, it s weight Wand tile normal
force N exerted by the plane. Since these net at right angles to the motion, they cannot
change time kinetic energy of the block and hence do not enter into this discussion.



a

(a) (6)

Sec. 8-2	 CONSERVATIVE FORCES 	 153
force exerted on the block by the I ,hLrIe N, and the frictional force f. We can write
Eq. 8-2, the work-energy theorem, as

il. + Vw + ir ± IF 1 =

where the terms on the left are the work done on the block by the four forces
above. We have seen that for a round trip 11'.= 0. Similarl y, lFw W.v 0
because the corresponding forces are at right angles to the (hisplacement of the
block. Thus the change in kinetic energy is due entirel y to IF,, the work done by
the frictional force.

We can consider the difference between conservative and nonconserva-
tive forces in still a third way. Suppose a particle goes from a to b along
path 1 and back from b to a along path 2 as in Fig. 8-2a. Several forces
may act on the particle during this round trip; we consider each force
separately. If the force being considered is conservative, the work done
on the particle by that particular
force for the round trip is zero, or

Wa61 + llTba2 = 01

which we can write as
ITT	 p
" ah,i = - II

That is, the work in going from a	 Fig. 8-2
to b along path 1 is the negative
of the work in going from b to a
along path 2. However, if we cause the particle to go from a to h along
path 2, as shown in Fig.	 2b, we irelv revcl.ftc diru	 1j-

vious motion ak.i g 2,

lV•b2 = -

Hence

which tells us that the work done on the particle by a conservative force
in going from a to b is the same for either path.

Paths I and 2 can be any paths at all as long as they go from a to b;

and a and b can he chosen to be any two points at all. We always find the
same result if the force is conservative. Hence, we have another equiva-
lent definition of conservative and nonconserVflti% forces: A force is con-

servative if the Won' done by it on a particle that moves between two points
depends only on these points and not on the path followed. A force is non-

conservative if the work done by that force on a particle that moves between
two points depends on the path taken between those points.

To illustrate this third (equivalent) definition of conservative forces, let
us consider a second kind of conservative force, that due to gravity. Sup-
pose that we take a stone of mass in in our band and raise it to a height h

above the ground, going from a to b by several different paths as in Fig.

8-3. We already know that in a round trip the total work done by a ccn-

F-12
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Fig. 8-3 A stone is raised from a
b via various paths 1, 2, 3, and 4.
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servative force is zero and that the gravitational force is conservative.
The work done on the stone by gravity along the return path bca is simply

mgh. Hence, because gravity is a conservative force, the work done by

gravity on the stone along any of the paths from a to b must be —nigh, for
only if this is true can the total work done by gravity in a round trip be
zero. This means that gravity does negative work on the stone as it

moves from a to b, or, to put it another way, work nit lone against

gravity along any of the paths ab. The student can compute directly the
result that the work done by gravity along any path ab equals —mgh.

For any of these paths can be decomposed iiito.infinitesi nal displacements
which are alternately horizontal and vertical; no work is done by gravity
in horizontal displacements, and the net vertical displacement is the same
in all cases. Hence the work done by gravity on the stone moving from

h depend	 'iv on the posit ions of a and h and not at- all-on the path

1 o onservatv( force, such as fflenoi,. I ho work done is not inde-
pendent of the path taken between two fixed points. We aced only point.
out that as we push a block over a (rough) lable between any two points
a and b by various paths, the distance traversed varies and so does the work
done by the frictional force. It depends on the path.

The definitions of conservative force which we have given are equivalent
to one another. Which one we use depends only on convenience. The
round-trip approach shows clearly that kinetic energy is conserved when
conservative forces act.. To develop the idea of potential energy, howver,
the path independence statement is preferable.

8-3 Potential Energy

In this section we shall focus attention not on the moving block of
'W'ig. 8-1 but rather on the (isolated) system (block + spring). Instead
of saying that the block is moving we prefer, from this point of view, to
say that the configuration .of the system is changing. We measure both
the position of the block and the configuration of the system at any instant
by the sal-ne parameter x, namely, the displacement of the free end of the
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spring from its normal position, corresponding to an unstretched spring.
The kinetic energy of the system is the same as that of the block because
we have assumed the spring to be massless.

We have seen that the kinetic energy of the system of Fig. 8-1 decreases

during the first half of the motion, becomes zero, and then increases during
the second half of the motion. If there is no friction, the kinetic energy of
the system when it has regained its initial configuration returns to its

initial value.
Under these circumstances (conservative forces acting) it makes sense

to introduce the concept of energy of configuration, or potential energy U,

and to say that if K for the system changes by AK as the configuration of
the system changes (that is, as the block moves in the system of Fig. 8-1),

then U for the system must change by an equal but opposite amount so
that the sum of the two changes is zero, or

K + AU = 0.	 (8-4a)

Alternatively, we can say that any change in kinetic energy K of the

system is compensated for by an equal but opposite change in the potential

energy U of the system so that their sum remains constant throughout

the motion, or
K + U = a constant.	 (8-4b)

The potential energy of a system represents a form of stored energy which
can be fully recovered and converted into kinetic energy. We cannot
associate a potential energy with a nonconservative force such as the force
of friction because the kinetic energy of a system in which such forces act

does not return to its initial value when the system returns to its initial

configuration.
Equations 8-4 apply to a closed system of interacting objects, such as

the (mass + spring) system of Fig. 8-1. In this example, because we

have taken the spring to be effectively massless, the kinetic energy may be
associated with the moving mass alone. The block slows down (or speeds
up) because a force is exerted on it by the spring; it is appropriate, then, to
associate the potential energy of the system with this force, that is to say,
with the spring. Thus in this simple case we say that kinetic energy,
localized in the mass, decreases during the first part of the motion while
potential energy, localized in the spring, increases during this same time.*

Equations 8-4 are essentially bookkeeping statements about energy.
They, and the concept of potential energy, have no real meaning, however,
until we have shown how to calculate U as a function of the configuration
of the system within which the conservative forces act; in the example of
Fig. 8-1 this means that we must be able to calculate U(x), where x is the
spring displacement.

Just as we assumed the spring to he effectively massless we also assume the block
to he rigid, that is, effectively "springless." In & more general system, kinetic and
potential energy could each be present in various portions of the system, in varying
proportions as the system configuration changed.
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To refine our concept of potential energy U let us consider the work-
energy theorem, H' = A K, in which W is the work done by the resultant
force on a particle as it moves from a to b. For simplicity let us assume
that only a single force F is acting on the particle; this is effectively true in
the system of Fig. 8-1. If F is conservative we can combine the work-
energy theorem (Eq. 8-1) with Eq. 8-4a, obtaining

W =	 —AU.	 (8 -5a)

The work W done by a conservative force depends only oil starting and
the end points of the motion and not on the path followed betweei them.
Such a force can depend only on the position of a particle; it does not depend
on the velocity of the particle or oilthe time, for example.

For motion in one dimension, Eq. 8-5a becomes

LiU = — H' = -
	

F(x) dx,	 (8-5b)

the particle moving from x 0 to x. Equation 8-5b shows how to calculate
the change in potential energy A U when a particle, acted on by a conserva-
tive force F(x), moves from point a, described by x 0, to point b, described
by x. The equation shows that we can only calculate A U if the force F
depends only oil position of the particle (that is, on the system con-
figuration), which is equivalent to saying that potential energy has meaning
only fozeonservative forces.'

Now that we know that the potential energy U depends oil 	 position

of the particle only, we call 	 Eq. 8--4b as

mv 2 + U(x) = E	 (one-dimension)	 (8-6a)

in which B, which remains constant as the particle moves,, is called the
total mechanical energy. Suppose that the particle moves from point a

(where its position is r0 and its speed is v 0) to point b (where its position is x

and its speed is v); the total mechanical energy B joust be the same for
each system configuration Mien the force is conservative, or, from Eq. 8-6a,

	

-mv 2 + U(x) = mvo 2 + U(xo).	 (8-6b)

The quantity on the right depends only oil initial position x 0 and

the initial speed 10, which have definite values; it is, therefore, constant

during the motion.. This is the constant total mechanical energy B.

Notice that force and acceleration do not appear in this equation, only
position and speed. Equations 8-6 are often ('ailed the law of conservation

of mechanical energy for conservative forces.
In many problems we find that although some of the individual forces

are not conservative, they are so small that we ran neglect them. In such
cases we call 	 Eqs. 8-6 as a good approximation. For example, air
resistance may be present but may have so little effect oil 	 inot ion that
we can ignore it.

Notice that, instead of starting with Newton's laws, we call
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problem solving when conservative forces alone are, involved by starting
with Eqs. 8-6. This relation is derived from Newton's laws, of course,
but it is one step closer to the solution (the so-called first integral of the
motion). We often solve problems without analyzing the forces or writing
down Newton's laws by looking instead for something in the motion that is
constant; here the mechanical energy is constant and we can write down
Eqs. 8-6 as the first step.

For one-dimensional motion we can also write the relation between force
and potential energy (Eq. 8-5b) as

(/U(X)
F(x) = -. -----.	 (8-7)

dx

To show this, substitute this expression for P(x) into Eq. 8-5b and observe
that you get an identity. Equation 8-7 gives us another way of looking
at potential energy. The potential energy is a function of position whose
negative derivative gives the force.

The student may have noticed that we wrote down the quantity U(x)
in Eqs. 8--6 although we are only able to calculate changes in U (from
Eq. 8-5b) and not U itself. Let us imagine that a particle moves from
a to b along the x-axis and that asingle conservative force F(x) acts on it.
To assign a value to U6 , the potential energy at point b, let us write

.iU = (-lb -

or (see Eq. 8-5b),

U6	LT+ U. - fF(x)dx+ U,.	 (8-8)

We cannot assign a value to Ub until we have assigned one to U. If
point b is any arbitrary position x, so that U6 = U(x), we give meaning
to U(x) by choosing point a to be some convenient reference position,
described by x = x 0, and by arbitrarily assigning a value to the potential
energy U = U(xo) when the body is at that point. Thus Eq. 8-8
becomes

U(x) = - fXX F(x) dx + U(xo).	 (8-9)

The ijolenlial energy when the body is at the reference position, that is,
U(xo), is usuall y given the arbitrary value zero.

It is often convenient to choose the reference position x0 to he that at
which the force acting on the particle is zero. Thus the force exerted by a
spring is zero when the spring has its normal unstreiched length; we
usuall y say that the potential energy is also zero for this comidiliomi. Also,
he attraction of (he earl Ii on a bod y decreases as the body moves away

from the earth, becoming zero at an infinite distance. We usuall y rake
infillil y as our refeie,ec position and assign t he value zero to the potential
energy associated wit Ii I lie gravitatiojl force at that position (see Chapter
16). So far, however, we have been more concerned with the gravitational
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pull oil such as baseballs, etc., which, in compariliOn to the earths
radius, never move very far from time cartli's surface. Here the gravi-

tational force ( = Pig) is essentially constant and we find it convenient to
lake the zero of potential energy to he, not at infinity, but at the surface

of the earth.
The effect of changing the coordinate of the standard reference position

x 0 , or of the arbitrary value assigned to U(.ro), is si limply to change the value

of U(x) by air eonstaiit. The presence of a ll arbitrary added con-

stnl i t , the potential energy expression (Eq. 8-9) makes no difference to the
equations that we have writ ten so far. This simply adds the same con-

stant term to each side of Eq. 8-6b, for example, leaving that equation

unchanged. Furthermore, changing U(x) by arm added constant does not

change the force calculated from Eq. 8-7 because the derivative of a cqn-

stant is zero. All this simpl y means that the choice of a reference point for

potential energy is immaterial because we are always concerned with

differences in potential energy, rather than with any absolute value of

potential energy at a given point.
There is a certain arhitrarilLesS in specifying kinetic energy also. In

order to determine speed, and hence kinetic energy, we must specify a
reference frame. The speed of a man sitting on a train is zero if we take

the train as a reference frame, but it is not zero to air oil ground
who sees the marl move by with uniform velocity. The value of the kinetic
energy depends oil reference frame used by the observer. Hence the
important thing about mechanical energy E, which is the sum of the kinetic

and the potential energies, is ri ot its actual value during a given motion

(this depends on the observer) but the fact that this value does not change

during the motion for any particular observer when the forces are

conservative.

8-4 One-Dimensional Conservative Systems

Let us now calculate the potential energy in one-dimensional motion for
two examples of conservative forces, time force of gravty for motions near
the earth's surface and the elastic restoring force of an (ideal) stretched

spring.
For the force of gravity we take the one-dimensiona l motion to be verti-

cal, along the y-axis. We take the positive direction of the y-axis to be
upward; the force of gravity is their the negative y-direct ion, or down-

ward. We have F(y) = - rng, a constant. The potential energy at

position y is found from Eq. 8-9, or

U(y) = - Joy F(y) dy + U(0) = - J0 (_rng)dY + U(0) = mgy + (1(0).

The potential energy can be taken as zero where y = 0, so that (0) = 0,

and
U(y) = tngy.	 (8-10)

The gravitational potential energy is then ingy. The relation F(y) =
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—dU/dy (Eq. 8-7) is satisfied, for —d(mgy)/dy	 —mg. We choose
= 0 to be at the surface of the earth for convenience, so that the gravi-

tational potential energy is zero at the earth's surface and increases linearly
with altitude y.

If we compare points y and y 0, the conservation of kinetic plus
potential energy, Eq. 8-6h, gives us the relation

m.v 2 ± nigy = nv02.

This is equivalent mathematically to the well-known result (see Eq. 3-17),

v2=vo2-2gy.

If our particle moves from a height h 1 to a height h2 , we can use Eq. 8-6b

to obtain

mvj2 + nigh i = mv 2 2 + nigh2.

This result is equivalent to that of Exaniple.5, Chapter 7. The total
mechanical energy E is constant and is conserved (luring the motion, even
though the kinetic energy arid the potential energy vary as the configura-
tion of the system (particle + earth) changes.

A second example of a conservative force is that exerted by an elastic
spring on a body of mass rn. attached to it moving on a horizontal friction-
less surface. If we take i-0 = 0 as the-position of the end of the spring when
unextended, the force exerted on the mass when the spring is stretched a
distance x from its unextended length is F = - kx. The potential energy
is obtained from Eq. 8-9,

U(x) = -	
F(x) dx + U(0) = -	 (—Aix) dx + U(0).

If we choose U(0) = 0, the potential energy, as well as the force, is zero
when the spring is unextended, and

U(x) = -	 (—kx) dx = 1 kx2.

The result is the same whether we stretch or compress the spring, that is,
whether x is plus or minus.

The relation F(x) = —dU/dx (Eq. 8-7) is satisfied, for —d(,'kz2)/dx =

—k-x. The elastic potential energy of the spring is then

U(x) = }kx 2 .	 (8-11)

The body of mass m will undergo a motion in which the total energy E is
conserved (Fig. 8-4). From Eq. 8-6b we have

mv 2 + kx2 = mv02.

Here v 0 is the speed of the particle for x = 0. Physically we achieve such
a result by stretching the spring with an applied force to some position,
x,,,, and their the spring. Notice that at x = 0 the energy of the
system (particle + spring) is all kinetic. At x = x (the maximum value
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F. 8-4 A mass attached to a spring slides hack and forth oil 	 frictioriless surface.
The system is railed a harmonic  oscillator. The m ot 	 of tim mass through one cycle is
illustrated. Starting at the left (9 o'clo(-k) the mass is in its extreme left position
and momentaril y at rest: K	 0. The spring is extended to its maximum length:
U = (	 (K and U are illustrated in the bar graphs below each sketch.) An
eighth-cycle later (next drawing) the mass has gained kinetic energ y , but the spring is
no longer so elongated; K and U have here the sa roe value, K 1 rn/2. At the
top the spring is neither elongated nor compressed an, I the speed is a rriaxi,n urn
U = 0, K = Kn,ss = ,,,. The cycle continues, with the totI energ y E = K + U
always the same: E =	 =	 The laar,no,,ir oscillator will he anal y zed allure
closel y in Chapter 15.

of x), v must be zero, so that here the system energy is all potential. At
z = x,,5 , we have

- MVO 

or
x. =	 V0.

For positions between r 1 and x 2 , Eq. 8-6b gives

kx + ,niv 1 2 = kx2 2 + ,mv22.
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We have seen that the kinetic energy of a body is the work that a body can
do by virtue of its motion.. We express the kinetic energy by the formula
K = nv2. We cannot give a similar universal formula by which potential
energy can be expressed. The potential energy of a system of bodies is the
work that the system of bodies eon do by virtue of the relative position of its
parts, that is, by virtue of its configuration. In each case w. must determine
how much work the system can do in passing from one configuration to
another and then take this as the difference in potential energy of the sys-
tem between these two configurations.

The potential energy of the spring depends on the relative position of the
parts of the spring. Work can be obtained by allowing the spring to return
from its extended to its unextended length, during which time it exerts a
force through a distance. If a mass is attached to the spring, as in our
example, the mass will he accelerated by this force and the potential energy
will be converted to kinetic energy. In the gravitational case an object
Occupies a position with respect to the earth. The potential energy is
a property of the object and the earth, considered as a system of bodies.
It is the relative position of the parts of this system that determines its
potential energy. The potential energy is greater when the parts are far
apart than when they are close together. The loss of potential energy is
equal to the work done in this process. This work is converted into kinetic
energy of the bodies. In our example we ignored the kinetic energy acquired
by the earth itself as an object fell toward it. III principle, this object
exerts a fore on the earth and causes it to acquire an acceleration, relative
to some inertial frame. The resulting change in speed, however, is
extremely small, and in spite of the enormous mass of the earth, its addi-
tional kinetic energy is negligible compared to that acquired by the falling
object. This will be proved in a later chapter. In other cases, such as in
planetary motion where the masses of the objects in our System may be
comparable, we cannot ignore any part of the system. In general, poten-
tial energy is not assigned to either body separately but is considered a
joint property of the system.

Example 1. What is the change in gravitational potential energy when a
1600-lb elevator moves from street level to the top of the Empire State Building,
1250 ft above street level?

The gravitational potential energy of the system (elevator + earth) is U
mgy. Then

= U2 - U i = 7n g(Y2 - yI).
But	 ing=TV=l600lb	 and	 Y2—yI =12501t,

so that	 AU = 1600 x 1250 ft-lb	 2.00 x 10 6 ft-lb.

Example 2. As an example ofe simplicity and usefulness of the energy
method of solving dynamical problem s, the problem illustrated in Fig. 8-5.
A block of mass n slides down a curved frictionless surface. The force exerted by
the surface on the block is always normal to the surface and to the direction of the
motion of the block-, so that this force does no work. Only the gravitational force



Fig. B—S A block sliding
down a frictiunkss curved
surface.
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does work on the block and that force is conservative. The mechanical energy gis,
therefore, conserved and we can write at once

-snv1 2 + rngyj	 -mv22 + mgy2.

This gives
V11 + 2g(gi - y).

The speed at the bottom of the curved surface depends only on the initial speed and
the change in vertical height but does not depend at all on the shape of the surface.
In fact., if the block is initially at rest at y	 h, and if we set y = 01 we obtain

At this point the student should recall the independence of path feature of work
done by conservative forces and should be able to justify applying the ideas devel-
oped for one-dimensional motion to this two-dimensional example.

In this problem the value of the force depends on the slope of the surface at each
point.. Heuce, the acceleration is not constant but is a function of position. To
obtain the speed b y starling with Newton's laws we would first have to determine
the acceleration at each point and then integrate the acceleration over the path.
We avoid all this labor by starting at once front fact that the mechanical energy
is constant throughout the motion.

Example 3. The spring in a spring gun has a force constant of 4.0 lb/in. It is
compressed 2.0 in. from its natural length, and a ball weighing 0.030 lb is put into
the barrel against it. Assuming no friction and a horizontal gun barrel, with what
speed will the ball leave the gun when released?

The force is conservative so that mechanical energy is conserved in the process.
The initial mechanical energy is the elastic potential energy of the spring, kx 2, and

the final mechanical energy is the kinetic energy of the ball,-rnv. Hence,

= nw2

or
[48lb/ft 4r	 - x	 I-	 -	 ( aft)	 38 ft sec.

\ (0.030 lb)/(C2)

a-s The Complete Solution of the Problem for One-Dimensional Forces
Depending on Position Only

Equation 8-Ga gives the relation between coordinate and speed for one-dimen-
sional motion when (lie force depends on position only. The force and the aceclera-
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tion have been eliminated in arriving at this equation. To complete the solution
of the dvnalnictd problem we roust eliolinate the speed and determine position as

a function of time.
We can do this in a formal way, as follows. From Eq. S-6a we have

1?,2 + U(x) = E.

Solving for v, we obtain

= dx
 = [tE—U(r)L	 (S12)

dl \m

or
dx dt

\rn IE - UI

Then the function .r(t) ma y be found by solving for z the equation

1	 -.--_ =	
= t - 10.	 (8-13)

- U(x)]	
Jo

m

Here the particle is taken to be at r0 at the time to and E is the constant total
energy. In npilvimig this equation, the sign of the square root taken corresponds
to whether v points in the positive or in the negative .r-direction. When V changes

direction during the motion it ma y be necessary to carry out the integration sepa-
rately for each part of the motion.

Even when this integral cannot be evaluated Or when the resulting equation
cannot, be solved to give an explicit solution for x(l), the equation of energy
conservation gives us useful information about the solution. For example, for a
gp, fl total energy E, Eq. 8-12 tells its that the particle is restricted to those
regions on the x-axis where E > U(x). We cannot have an imaginary speed or a
negative kinetic energy ph ysically, so that E - U(x) must he zero or greater.
Furthermore, we can obtain a good qualitative description of the types of motion
possible by plotting U(x) versus x. This description depends on the fact that the
speed is proportional to the square toot of the difference between E and U.

For example, consider the potential energy function shown in Fig. 8-6. This
could be thought of as an actual profile of a frictionless roller coaster, but in general

Fig. 9-6 A potential energy curve.
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it can represent the potential energy of a nongravitat.ional system. Since we must.
have E	 U(x) for real motion, the lowest total energy possible is E0. At this
value of the total energy, E 0 U and the kinetic energy must be zero. The
particle must he at rest at the point Xo. At a slightly higher energy E 1 the particle
can move between xi and X2 only. As it moves from X its speed decreases on
approaching either  i or x 2 . At x or X2 the particle stops and reverses its direction.
These points x 1 and '2 are, therefore, called turning p0mhz of the lulotion. At a
total energy E 2 there au . four turning points and the particle can oscillate in either
one of the two potential .vallev. At the total energy E 3 there is unIv one turning
point of the motion, at 1 3. If the particle is initially moving in the negative x-
direction, it will stop at 13 and then move in the positive 2--direction. It will
speed up as U decreases and slow down as U increases, At energies above E4
there are no turning points, and the particle will not reverse direction. Its speed
will change according to the value of the potential at each point..

At a point where U(x) has a minimum value, such as at : = 2-0, the slope of the
curve is zero so that the force is zero, that is, F(x 0) = - (dL', d:) 0 = 0. ' A
particle at rest at this point will remain at rest.. Furthermore, if the particle is
displaced slightly in either direction, the force, F(x) —d(',d.r, will tend to'
return it, and it will oscillate about the equilibrium point. This equilibrium point
is, therefore, called a point of stable equilibrium.

At a point where U(x) has a maximum value, such as at x = 1 4 , the slope of
the curve is zero so that the force is again zero, that is, F(x 4) = — (dU/dx), = 0.
A particle at rest at this point will remain at rest. However, if the particle is
displaced even the slightest distance from this point, the force, F(x) —dU/dx,
will tend to push it farther awa y from the equilibrium position. Such an equilib-
rium point is, therefore, called a point of unstable equilibrium.

In an interval in which U(x) is constant, such as near : = 15, the slope of the
curve is zero so that the force is zero, that is, F(x5) = - (d(','dx). 0. Such
an interval is called one of neutral equilibrium, since a particle can he displaced
slightly without experiencing either a repelling or a restoring force.

From this it is clear that if we know the potential energy function for the region
of: in which the body moves, we know a great deal about the motion of the body.

Example 4. The potential energy function for the force between two atoms
in a diatomic molecule can be expressed approximately as follows:

U(x) =	 -X 12	 X6

where a and b are positive constants and x is the distance between atoms.
(a) At what values of xis U(x) equal to zero? At what value of: is C(x) a mini-

mum?
In Fig. 8-7a we show C(x) versus r. The values of: at which 1'(x) equals zero

are found from

a	 b
X iS	 x

Hence

a
!-

b	 x= 'lb

('(x) also becomes zero as z - 	 [see figure or put .1' = ' into equation for ('lx)!,
so that z =	 is also a solution.
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U(x)	 =

Fig. 8-7 Example 4. (a) The po-

between two atoms in a diatornic
tential energy and (b) the force	

.52/4 -----
molecule as a function of the dis-
tance x between atoms.

Fj
X

(5)

The value of x at which U(z) is a minimum is found from

U(x) - 0.
dx

That is,
—12a 6b

X13	 xl
Or

.tI_
(b) Determine the force between the atoms.
From Eq. 8-7

F(x) = -
dx

\	 Jdx x12	 x	 x3	 x7

We plot the force as a function of the separation between the atoms in Fig. 8-7b.
Then the force is positive (from x = 0 to x 	 the atoms are repelled from
one another (force directed toward increasing x). When the force is negative (from

to x = ), the atoms are attracted to one another (force directed
'oward decreasing x). At x =	 the force is zero; this is the equilibrium
point and is a point of stable equilibrium.

(c) Assume that one of the atoms remains at rest and that the other moves along
x. Describe the possible motions.

From the analysis of this section it is clear that the atom oscillates about the
equilibrium separation at x 'b, much as a particle sliding up and down the
frictionless hills of the potential valley.
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(d) 
The energy needed to break up the molecule into separate atoms is (ailed the

dissociation energy. \Vhat is the dissociation energy of the molecule?
If one atom has enough kinetic energy to get over the potential hill, it will no

longer be bound to the other atom. Hence, the dissociation energy 
D equals the

change in potential energy from the minimum value at x
	 to the value

at x	 . This is simply

U(x = -	 - (- -	 =b	 4u2/b'	 2a,'b/	 4a

If the kinetic energy at the equilibrium position is equal to or greater than this

value, the molecule will dissociate.

8-6 Two and Three- D imensio	 Conservative Systems

So far we have discussed potential energy and energy conservation for
one-dimensional systems in which the force was directed along the line of
motion. We can easily generalize the discussion to three-dimensional

motion.
If the work done by the force F 

depends only on the end points of the

motion and is independent of the path taken between these points, the
force is conservative. We define the potential energy U by analogy with

the one-dimensional system and find that it is a function of three space

coordinates, that is, U = U(x,y,z). Again we obtain an expression for

the conservation of mechanical energy.
The generalization of Eq. 8-5b 

to motion in three dimensions is

	

AU = - fFdx - f:FdY -	
(8-5c)

or, more compactly in vector notation,

= -f r F(r) . dr	 (8-5d)

in which A U is the change in potential energy for the system as the particle

moves from the point (xo,yo,zo), described by the position vector r 0 , to

the point (x,y,z), described by the position vector r. 
F, F, and F are

the components of the conservative force F(r) = F(x,y,Z).

The generalization of Eq. 8-6b 
to t lire 3_dimension motion is

mv 2 + U(x,y,z) = m.v 02 + U(xo,yo,Zo) 	 (8-6e)

which can be written in vector notation as

!mv v + U(r) = mvr V + U(ro)	 (8-6d)

2	 2	 2	 2

in which vv =t 2 +v 2 +V 2 =v 2 and vo . vo vo +Voy +VO	 VD.

Likewise Eq. 8-6a becomes

mv 2 + U(x,y,z) = E

in three dimensions, E being the constant total mechanical energy.
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Finally, the generalization of Eq. 8-7 to three dimensions is

	

.aU .au	 3UF(r) = -I- — J --- - k — --
ax	 ay

If we substitute this expression for F into Eq. 8-3d we again obtain an
identity. In vector language the conservative force F is said to be the
negative of the gradient of the potential energy U(z,y,z).

The student can show t.hat all these expressions reduce to the correct
one-dimensional equations for motion along the x-axis.

Example 5. Consider the simple pendulum, Section 7-4, Fig. 7-8a. The
motion of the system is in the x-y plane, that is, it is a two-dimensional motion.
The tension in the cord is always at right angles to the motion of the suspended
particle, so that this force does no work on the particle. If the pendulum is dis-
placed through some angle and is then released, only the gravitational force of
attraction exerted on the particle by the earth does work on it. Since this force is
conservative, we can USC the equation of energy conservation in two dimensions,

4-mv2 + U(x.y) = E.

But L(x,y) equals mgy, where y is taken as zero at the lowest point of the are
= 0°). Then,

4rnv + ingy = B.

The particle is pulled through an angle Oo before being released. The potential
energy there is nigh, corresponding to a height y = h above the reference point. At
the release point ( = 00) the speed and die kinetic energy are zero so that the
potential energy equals the total mechanical energy at that point.

Hence,
B = nigh

and
4-mv' + mgy mgh,

or	 -
4-nw' =.mg(h - y).

The maximum speed occurs at y = 0, where v
The minimum speed occurs at y = h, where v = 0.
At y	 0 the energy is entirely kinetic, the potential energy being zero.
At y = Ii the energy is entirely potential, the kinetic energy being zero.
At intermediate positions the energy is partly kinetic and partly potential.

Notice that U Eat all points of the motion; the pendulum cannot rise higher
than y	 h, its initial release point. 	 4
8-7 Nonconseryaye Forces

So far we have considered only the action of a single conservative force
on a particle. Starting from the work-energy theorem, or

W1 + W, +	 - + TV,, = AK	 (8-2)
we saw that, if only one force, say F 1 , was acting and if it was conservative,
then we could represent the work W 1 that it did on the particle as a decrease
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in potential energy A Ui of the system (see Eq. 8-5a), or

W i = —U1.

Combining this with Eq. 8-2 yielded

K + tU i = 0.

If several conservative forces such as gravity, an elastic spring force, an
electrostatic force, etc., are acting, we can easily extend these two equa-

tions to
Z W, = -	 U	 (8-14a)

and	 AK+U0	 (8-14b)

in which Z W is the sum of the work done by the various (conservatiye)

forces and the AU's are the changes in the potential energy of the system
associated with these forces. The quantity on the left of Eq. 8-14b is.

simply AE, the change in the total mechanical energy, for the case in which
several conservative forces are acting on a particle. We can write this

equation then as
= 0	 (conservative forces),	 (8-15)

which tells us that, as the system configuration changes the total mechani-

cal energy E for the system remains constant.
Let us now suppose that, in addition to the several conservative forces,

a single nonconservative force due to friction acts on the particle. We
can then write Eq. 8-2 as

W, ±	 =

where W is again the sum of the work done by the conservative forces

and WI is the work done by friction. We can recast this (see Eq. 8-14b) as

K + Z AU WI. (8-16)

Equation 8-16 shows that, if a frictional force acts, the total mechanical

energy is not constant, but changes by the amount of work done by the

frictional force. We can write Eq. 8-16 as

E=E — Eo = W1. (8-17)

Since W1, the work done by friction on the particle, is always negative, it

follows from Eq. 8-17 that the final mechanical energy E (= K + U)

is less than the initial mechanical energy E0 (= K 0 + Z U0).

Friction is an example of a dissipative force, one which does negative
work on a body and tends to diminish the total mechanical energy of the
system. If we had used another nonconservative force, then W 1 in Eqs.

8-16 and 8-17 would be replaced by a term W,,,,, showing again that the

total mechanical energy E of the system is not constant, but changes by

the amount of work done by the nonconservative force. Hence, only when

there are no nonconseru&ive forces, or when we can neglect the work they do,

can wt assume conservation of mechanical energy.
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What happened to the "lost" mechanical energy in the case of friction?
It is transformed into heat. Heat is developed when surfaces are rubbed
together, for example. The heat energy developed is exactly equal to the
mechanical energy dissipated. We shall have much more to say about
heat energy in later chapters.

Just as the work done by a conservative force on an object is the negative
of the potential energy gain, so the work done by a frictional force on an
object is the negative of the heat energy gained. In other words, the heat
energy produced is equal to the work done by the object. Then we can

replace W1 in Eq. 8-17 by - Q, in which Q is the heat energy produced, or

E + Q - 0. (8-18)

This asserts that there is no change in the sum of the mechanical and heat
energy of the system when only conservative and frictional forces act on
the system. Writing this equation as Q = -E we see that the loss of

mechanical energy equals the gain in heat energy.

Example 6. A 10-lb blOck is thrust up a 30 0 inclined plane with an initial
speed of 16 ft/sec. It is fouivto travel 5.0 ft along the plane, stop, and slide back
to the bottom. Compute the force of friction f (assumed to have a constant mag-
nitude) acting on the block and find the speed v of the block when it returns to the
bottom of the inclined plane.

Consider first the upward motion. At the top, where this motion ends,

E = K + U = 0 + (10 lb)(5.0 ft) (sin 30°) = 25 ft-lb.

At the bottom, where this motion begins,

10th \
E0 Ko + 110 =
	

ft/see2) (16 ft/sec)' + 0 = 40 ft-lb,

But
—ft = —f(5.0 ft).

and
E - E0 =

so that
25 ft-lb - 40 ft-lb	 —f(5.0 ft)

and
I	 3.0 lb.

Now consider the downward motion. The block returns to the bottom of the
inclined plane with a speed u. Then, at the bottom, where this motion ends,

= K + [7 = (_)
b,) v

2 + 0 =	 lb sec2/ft)v2.

At the top, where this motion begins,

But

	

	 E0 = K0 + U 0 0 + (10 lb)(5.0 ft)(sin 30°) = 25 ft-lb,

—(3.0 lb)(5.0 ft) = —15 ft-lb.

and
K - Eo W,,
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SO that

lb sec 2/It)v 2 - 25 ft-lb = -15 ft-lb,
and

v = 8.0 ft/sec.	 4
8-8 The Conservation of Energy

We call the discussion of the previous section by considering not
only conservative forces and the force of friction but also other, nonfric-
tional, nonconservative forces. We can regroup the work-energy theorem
(Eq. 8-2)

W1 + IT 2 + . + ll =AK
as

	

TV. + W1 + TV,,, = AK	 (8-19)
in which Z TV, is the total work done oil particle by conservative forces,
W1 is the work done by friction, and lV,, is the total work done by non-.
conservative forces other than friction. We have seen that each conserva-
tive force can be associated with a potential energy and that friction is
associated with heat energy, or

i is',, = -	 u
and

WI =
so that Eq. 8-19 becomes

TV,,, =K+U+Q.

Now whatever the W,, are, it has always been possible to find new forms
of energy which corresponds to this work. We can then represent TV,,,,
by another change of energy term oil right-hand side of the equation,
with the result that we can alwa ys write the work-energy theorem as

0 = K +	 U + Q + (change in other forms of energy).

In other words, the total energy—kinetic plus potential plus heat plus all
other forms—does not change. Energy may be tran sformed from one kind
to another, but ii 'cannot be created or destroyed; the total energy is constant.

This statement is a generalization from our experience, so far not contra-
dicted by observation of nature. It is called the principle of the conserva-
tion of energy. Often in the history of physics this principle seemed to fail.
But its apparent failure stimulated the search for the reasons. Experi-
mentalists searched for physical phenomena besides motion that accoiu-
pany the forces of interaction between bodies. Such phenomena have
always been found. With work done against friction, heat is produced; in
other interactions energy in the form of sound, light, electricity, etc., may
be produced. Hence the concept of energy was generalized to include
forms other than kinetic and potential energy of directly observable bodies.
This-procedure, which relates the mechanics of bodies observed to be in
motion tdphenornena whih are not mechanical or in which motion is not
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directly detected, has linked mechanics to all other areas of physics. The
energy concept now permeates all of physical science and has become one of
the, unifying ideas of physics. *

In subsequent chapters we shall study various transformations of energy
—from mechanical to heal, mucchnical to electrical, nuclear to heat, etc.
It is during such transformations that we measure the energy changes in
terms of work, for it is during these transformations that forces arise and
do work.

Although the principle of the conservation of kinetic plus potential
energy is often useful, we see that it is a restricted case of the more general
principle of the conservation of energy. Kinetic and potential energy is
conserved only when conservative forces act. Total energy is always
conserved.

8-9 Mass and Energy

One of the great conservation laws of science has been the law of con-
servation of matter. From a philosophical point of view an early state-
ment of this general p,rinciple was given by the Roman poet Lucretius, a
contemporary of Julius Caesar, in his celebrated work De Rerurn Natura.
Lucretius wrote "Things cannot be born from nothing, cannot when begot-
ten be brought back to nothing." Jt.. was a long time before this concept
was established as a firm scientific principle. The principal experimental
contribution was made by Antoine Lavoisier (1743-1794), regarded by
many as the father of modern chemistry. He wrote in 1789 "We must
lay it down as an incontestable axiom, that in all the operations of art and
nature, nothing is created; an equal quantity of matter exists both before
and after the experiment. . . . and nothing takes place beyond changes and
modifications in the combinations of these elements."

This principle, subsequently called the conservation of mass, proved
extremely fruitful in chemistry and physics. Serious doubts as to the
general validity of this principle were raised by Albert. Einstein in his papers
introducing the theory of relativity. Subsequent experiments on fast-
moving electrons and on nuclear matter confirmed his conclusions.

Einstein's findings suggested that, if certain physical laws were to be
retained, the mass of a particle had to be redefined as

(8-20)

Here in, is the mass of the particle when at rest with respect t.o the observer,
called the rest mass; in is the mass of the particle measured as it moves at a
speed r' relative to the observer; and c is the speed of light, having a con-
stant value of approximately 3 x 108 meters/sec. Experimental cheeks
of this equation can be made, for example, by deflecting high-speed elec-

tSee for example, Concept of Energy in Mechanics," by R. B. Lindsay in The
&iPthfic MonTh!,.', October 1957.
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trons in magnetic fields and measuring the radii of curvature of their path.
The paths are circular and the magnetic force a centripetal one (P ,nv2/r,

F and v being known). At ordinary speeds the difference between m and
mo is too sinail to be detectable. Electrons, however, can be emitted from
radioactive nuclei with speeds greater than nine-tenths that of light. In
such- cases the results (Fig. 8-8) confirm Eq. 8-20.

It is convenient to let the ratio V/C be represented by $. Then Eq. 8-20

becomes

M moo -

To find the kinetic energy of a body, we compute the work done by the
resultant force in setting the body in motion. In Section 7- we obtained

K 
=- f F . dr = m0v2

for kinetic energy, when we assumed a constant mass m0. Suppose now
instead we take into account the variation of mass with speed and use
M = m0(1 - 2)_ in our previous equation. We find (Problem 29,
Chapter 9) that the kinetic energy is no longer given by n,. 0t' 2 but instead is

K mc2 - rn 0c 2 (m - mo)c2 = AmC2. (8-21)

The kinetic energy of a particle is, therefore, the product of c2 and the

increase in mass Am resulting from the motion.
Now, at small speeds we expect the relativistic result to agree with the

classical result. ' By the binomial theorem we can expand (1 T 2)_ as

(1 -$) = ++ +PW+

At small speeds 0 = v/c < 1 so that all terms beyond 02 are negligible.
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Then

K (rn - rno)c2 moc2[(1 - 2)_4 - 1]

= moc 2 (I + 4$2 +	 - 1) CnL JMDC1p2 =

which i8 the classical result. Notice also that when K equals zero, rn. =
as expected.

The basic idea that energy is equivalent to mass can be extended to
include energies other than kinetic. For example, when we compress a
spring and give it elastic potential energy U, its mass increases from rno to

rn.0 + U/c2. When we add heat in amount Q to an object, its mass
increases by an amount tin, where A m is Q1c 2. We arrive at a principle of
equivalence of mass and energy: For every unit of energy E of any kind
supplied to a material object, the mass of the object increases by an amount

Am = E/e2

This is the famous Einstein formula

E = imc 2 .	 (8-22)

In fact, since mass itself is just one form of energy, we can now assert
that a body at rest has an energy rn 0c 2 by virtue of its rest mass. This is
called its rest energy. If we now consider a closed system, the principle of
the conservation of energy, as generalized by Einstein, becomes

(moe 2 + &) = constant

or	 m0c2+C)0,

where M OC 2 is the total rest energy and is the total energy of all other

kinds. As Einstein wrote, "Pre-relativity physics contains two conserva-
tion laws of fundamental importance, namely the law of conservation of
energy and the law of conservation of mass; these two appear there as com-
pletely independent of each other. Through relativity theory they melt
together into one principle."

Because the factor c2 is so large, we would not expect to be able to detect
changes in mass in ordinary mechanical experiments. A change in mass of
I gin would require all of 9 X 10 13 joules. But when the mass of a
particle is quite small to begin with and high energies can be imparted to it,
the relative change in mass may be readily noticeable. This is true in
nuclear phenomena, and it is in this realm that classical mechanics breaks
down and relativistic mechanics receives its most striking verification.

A beautiful example of exchange of energy between mass and other forms
is given by the phenomenon of pair annihilation or pair production. In
this phenomenon all and a positron, elementary material particles
differing only in the sign of their electric charge, can combine and literally
disappear. In their place we find high-energy radiation, called 7-radiation,
whose radiant energy is exactly equal to the rest mass plus kinetic energies
of the disappearing particles. The process is reversible, so that a material-
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ization of mass from radiant energy can occur when a high enough energy
'-ray, under proper conditions, disappears; in its place appeals a positron-

electron pair whose total energy (rest mass + kinetic) is equal to the
radiant energy lost.

Example 7. Consider a quantitative example. On the atomic mass scale the
unit of mass is 1.66 X 10 27 kg approximately. On this scale the mass of the
proton (the nucleus of a hydrogen atom) is 1.00731 and the mass of the neutron (a
neutral particle, one of the constituents of all nuclei except h ydrogen) is 1.00867.
A deuteron (the nucleus of heav y hydrogen) is known to consist of a neutron and
a proton; the mass of the deuteron is found to he 2.01360. The mass of the deu-
teron is less than the combined masses of neutron and proton by 0.00238 atomic
mass units. The discrepancy is equivalent in energy to

E = mc 2 = (0.00238 X 1.66 X 10_ 17 kg)(3.00 X 10 8 meters/see)'

= 3.57 X 10	 joules = 2.22 X 10 5 ev.

When a neutron and a proton combine to form a deuteron, this exact amount of
energy is given off in the form of 7-radiation. Similarl y , it is found that the same
amount of energy must be added to the deuteron to break it up into a proton and a
neutron. This energy is therefore called the binding energy	 of the deuteron.	 I

QUESTIONS

1. Mountain roads rarely go straight up the slope but wind up gradually. Explain
why.

2. Is any work being done on a car moving with constant speed along a straight level
road?

3. What happens to the potential energy an elevator loses in coming down from the
top of a building to a stop at the ground floor?

4. In Example 2 (see Fig. 8-5) we asserted that the speed at the bottom does not
depend at all on the shape of the surface. Would this still be true it friction were
present?

5. Give physical examples of unstable equilibrium. Of neutral equilibrium. Of
stable equilibrium.

6. Explain, using work and energy iieas, bow a child pumps a swing up to large
amplitudes from a rest position.

7. Two disks are connected by a stiff spring. Can one press the upper disk down
enough so that when it is released it will spring hack and raise the lower disk off the
table (see Fig. 8-9)? Can mechanical energy be conserved in such a case?

Fig. e-9
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8. In the Case of work done against friction, the amount of heat generated is inde-

pendent of the velocity (or inertial reference fra me) of the ol ,si' rver. That is, differen t
o bservers would assign the same quan tit yy of jii eilia n jeal energy transform cr1 in t heat
due to frict ion. I low cull this be explalIle(l, considering that such observers measure

different quantit ies of total work done 30(1 different p hiii ilgcs ir kinetic energy in general
(see Problem 1 9, ('liuipter 7)?

9. An object is dropped :111(1 observe, I to bou nce  to one an d one-h a lfIf till 108 its origin al
height. What conclusion can you draw from this observation?

io. The driver of on automobile tra vet in g at speed r suds I en iv sees a brick wall at a
distance d (lireetiv in front of him. To avoid crashing, is it. better for him to 518111 or,
the bra kes Or to  tu rn t he en r sharply awa v from the ilall ? (lii nt: co n sid ersiil Cr the force
required in each case.)

II. .\ spring is kept com pressed by tying its ends together tightly. it IS then placed
in acid and dissolves. What happened to its stored potential energy?

PROBLEMS

I. Show that for the sa mee initial speed to, the speed t of a projectile will h e the sam e

at all points at the same elevation, regardless of the angle of project ion.

2. The string in Fig. S-it) has it length 1 = 4.0 ft. When the hail is released, it will
sN% ing down the dotted are. how fast will it be going when it reaches the lowest point
in its swing?

I-.	 •1

6J.

Fig. 8-10

3. The flail in Fig. S-It) is located a distance d below the point of suspension. Show
that d joust he at least 0.61 if t he ball is to swing completel y around in a circle centered
Oil the nail.

4. Suppose that the string of Fig. S-It) is very (last IC, mart. of rubber, say, and that
the string is IlmieXtenlled at length I when the hail is released. (a) Ex plain why you
would eN pci t tire hall to 1-vad iread it iow poin t greater t han a (I istaji Ce I below the point of
suspension. (h) Show, rising ilvn:rin mc 31111 merge considerations, that if .I is small
compared to It h at ri rig w ill st ret p h I v in 811000 t .l = 3 in g /k, where k is t lie assu in ed
force constant of the string. Notice that tile larger k is, the smaller i is, and the better
the approximation ./ < 1. (m) Show, under these circumstances, that time speed of
tIre hull at the hottouir i5 p \1'_Tg^l lefts than it would be for an inelastic
string (k =	 ). Give it physical espinnatjon for this result using energy considerations.
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S. (a) A light rigid rod of length I has a mass in attached to its end, forming a simple

pendulum. It is inverted and then released. What is its speed v at the lowest point
and what is the tension 7' in the suspension at that instant? () The same pendulum
is next put in a horizontal position and released from rest. Atwhat ang'c from the
vertical will the tension in thesuspension equal the weight in magnitude?

6. A simple pendulum of length 1, the mass of whose bob is in, is observed to have a
speed Co when the cord makes the angle 80 with the vertical 10 < •o < r/2), as in Fig.
S–Il. In terms of , and the foregoing given quantities, determine (a) the total mechani-

cal energy of the system; (b) the speed v1 of the bob when it is at its
lowest position; (c) the least value V2 that ro could have if the cord
is to achieve a horizontal position during the motion; (d) the speed

\V3 such that if co > v 3 the pendulum will not oscillate but rather
\	 will continue to move around in a vertical circle.

00 1	 7. An object is attached to a vertical spring and slowly lowered
\

	

	 to its equilibrium position. This stretches the spring by an
amount d. If the same object is attached to the same vertical

M

	

	 spring but permitted to fall instead, through what distance does it.
stretchthe spring?

8. A 2.0-kg block is dropped from a height of 0.40 meter onto a
Ng. 6-11	 spring of force constant k	 1960 nt/meter. Find the maximum

distance the spring will he compressed (neglect friction).
9. A frictionless roller coaster of mass m starts at point .4 with

speed c0 as in Fig. 8-12. Assume that the roller coaster can be considered as a point
particle and that it always remains on the track. (a) What will be the speed of the
roller coaster at points 1? and C? (b) What constant deceleration is required to stop it
at point E if the brakes are applied at point D? (c) Suppose ye = 0; how long will it
take the roller coaster to reach point B?

vo

Ii
a	 ti-i.	 a—

Fig. 1-12

10. A small block of linass in slides along the frictionless loop-the-loop track shown in
Fig. 8-13. (a) If it starts from rest at P, what is the resultant force acting on it at Q?
(b) At%%-hat height above the bottom of the loop should the block be released so that the

•,force it exerts against the track at the top of the loop is equal to its weight?
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Fig. 1-13	 Fig. 1-14

11. The particle in in Fig. 8- 14 is moving in a vertical circle of radius R inside a
track. There is no friction. When mis at its lowest position, its speed is v 0. (a) What
is the minimum value r,,, of V O for which rn will go completely around the circle without
losing contact with the track? (li) Suppose v 0 is 0.775v,,. The particle will move up
the track to some point at P at which it will lose contact with the track and travel along
a path shown roughly by the dashed line. Find the angular position 0 of point P.

12. A point mass in starts from rest and slides down the surface of a frictionless solid
sphere of radius r as in Fig. 8-15. Measure angles from the vertical and potential
energy from the top. Find (a) the change in potential energy of the mass with angle;
(b) the kinetic energy as a function of angle; (c) the radial and tangential accelerations
as a function of angle; (d) the angle at which the bass flies off the sphere. (e) If there
is friction between the mass and the sphere, does the mass fly off at a greater or lesser
angle than in part (d)?

Fig. I-IS	 Fig. 1-16

13. An ideal massless spring can be compressed L(; meter by a force of 100 nt. This
same spring is placed at the bottom of a frictionless inclined plane which makes an
angle of 0 fJ° with the horizontal (see Fig. 8-16). A 10-kg mass .11 is released from
rest at the top of the incline and is brought to rest momentarily after compressiiig the
spring 2.0 meters. (a) Through what distance does the mass slide before coming to
rest? (b) What is the speed of the mass just before it reaches the spring?
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14. A body moving along the z-axis is subject to a force repelling it from the origin,
given by F kz. (a) Find the potential energy function U(x) for the motion and
write down the conservation of energy condition. (b) Describe the motion of the sys-
tem and show that this is the kind of motion we would expect near a point of unstable
equilibrium.

15. If the magnitude of the force of attraction between a particle of mass 7flj ,nd one
of mass in2 is given by

P —

where k is a constant and x is the distance between the particles find (a) the potential
energy function and (b) the work required to increase the separation of the masses from
X = Z1 to x — Xj + d.

16. The magnitude of the force of attraction between the positively charged nucleus
and the negatively charged electron in the hydrogen atom is given by

F=

where e is the charge of the electron, k is a constant, and r is the separation between
electron and nucleus. Assume that the nucleus is fixed. The electron, initially moving
in a circle of radius R 1 about the nucleus, jumps suddenly into a circular orbit of smaller
radius R 2. (a) Calculate the change in kinetic energy of the electron, using Newton's
second law. (b) Using the relation between force and potential energy, calculate the
change in potential energy of the atom. (c) Show by how much the total energy of
the atom has changed in this process. (The total energy will prove t have decreased;
this energy is given off in the form of radiation.)

17. The potential energy corresponding to a certain two-dimensional force field is
given by U(z,y) — l'k(x 2 + y 2). (a) Derive F and b'5 and describe the vector force at
each point in terms of its Cartesian coordinates x and y. (b) Derive F, and F 8 and
describe the vector force at each point in terms of the polar coordinates r and 0 of the
point. (c) Can you think of a physical model of such a force?

18. The so-called Yukawa potential

U(r)	 - !:9 LT,_e_r/.

gives a fairly accurate description of the interaction between nucleons (that is, neutrons
and protons, the constituents of the nucleus). The constant r 0 is about 1.5 X 106
meter and the constant 1.1 0 is about 50 Mev. (a) Find the corresponding expression for
the force of attraction. (b) To show the short range of this force, compute the ratio of
the force at r = 2r 0, 4r0, and lOre to the force at r = r0.

19. An -particle (helium atom nucleus) in a large nucleus is bound by a potential
like that shown in Fig. 8-17. (a) Construct a function of x, which has this general
shape, with a minimum value U0 at x — 0 and a maximum value U 1 at x x j and
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— xi. (b) Determine the force between the a-particle and the nucleus as a function
of x. (c) Describe the possible motions.

Ufr)

Fig. 8-17

20. .A particle moves along aline in a region in whirli its potential energy varies as in
Fig. S-IS. (a) Sketch, wit Ii the same scale on the abscissa, the force F(x) acting on the
particle. Indicate on the graph the approximate numerical scale for F(x). (h) If the
particle has a constant total erIirgv of 4.0 joules, sketch the graph of its kinetic energy.
Indicate the numerical scale on the K(x) axis.

4

3
a,

2
14

0	 1	 2	 3	 4	 5	 6
x, meters

Fig. 8-la

21. A certain peculiar spring is found not to conform to Hooke's law. The force (in
rice tons) it exerts when stretched a distance x (in meters) is found to have magnitude
52.x + 3542 in the direction Opposing the stretch. (a) Compute the total work
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required to stretch the spring from x 0-50 tor = 1.00 meter. (b) Vith one end of the

spring fixed, a particle of mass 2.17 kg is at inched tothe other end of the spring when it is

extended by an amount . r — 1.00 meter. if the particle is then released from rest,

compute its speed at the instant the spring has returned to the configuration in which

the extension is x — nM) meter. (c) is the force exerted by the spring conservative or

nonconservative? Explain.

22. Show that when friction is present in an otherwise conservative nieclianical svs-

tern, the rule ti t which trieclmnimical energy is dssipteil equals the frictional force times

the speed at that instant, or

it 
(K + U)

23. A body of mass m starts from rest down a plane of length I inclined at an angle 8

with the horizontal. (ri) Take the coefficient of friction to be p and find tIe

speed at the bottom. (h) how far, d, will it slide horizontally on a similar surface alter
reaching the bottom of the incline. Solve by using energy ThOhn(IF and solve again

using Newton's laws directly.

24. A particle slides along a track with elevated ends ar'd a flat cntral part., as shown -

in Fig. 8-19. The flat part has a length 1 = 2.0 meters. The curved portions of the

track are frictionless. For the flat p . rt the coefficient of kinetic friction is ps 0.20.

The particle is released at point .1 which is a height h = 1.0 meter above the flat part
of the track. Where does the particle finally come to rest?

At

Fig. 8-19

25. A 1.0-kg block collides with a horizontal weightless spring of force constant
2.0 nt/meters (Fig. 8-20). The block compresses the spring 4.0 meters from the rest
position. Assuming that the coefficient of kinetic friction between block and horizontal
surface is 0.25, what was the speed of the block at the instant of collision?

I
-

Fig. 5-20

26. The cable of a 4000-11) elevator in Fig. 8-21 snaps when the elevator is at rest, at
the first floor sothat the bottom is a distanced 	 12 ft above a cushioning spring whc,se

spring constafl is I: 	 10,000 lb/ft .A safety device clanips the guide rails so that 	 a

constant friction force of 1000 lb opposes the motion of the elevator. (a) Find the
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speed of the elevator just before it hits the spring. (b) Find the distance s that the
spring is compressed. (c) Find the distance that the elevator will "bounce" bark up
the shaft. (d) Using the conservation of energy prineiple, find the total distance that
the elevator will move before coming to rest.

. - Ud
Fit. 1-21

27. A 40-lb body is pushed up a frictionless 30 inclined plane 10 ft long by a hori-
zontal force F. (a) If the speed at the bottom is 2.0 ft/sec and at the top is 10 ft/see,
how much work is done by F? (6) Suppose the plane is not frictionless and that
Ak = 0.15. What work will this same force do? How far up the plane does the body
go?

28. A chain is held on a frictionless table with one-fifth of its length hanging over the
edge. If the chain has a length l and a mass in, how much work is required to pull the
hanging part hack on the table?

29. An escalator joins one floor with another one 25 ft above. The escalator is
40 ft long and moves along its length at 2.0 ft/sec. (a) What power must its motor
deliver if it is required to carry a maximum of 100 persons per minute, of average mass
5.0 slugs? (b) A 160-lb man walks up the escalator in 10 sec. How much work doe.
the motor do on him? (c) if this man turned around at the middle and walked down
the escalator so as to may at tire SaTire level in apace, would the motor do Mork on him?
If so, what power does it deliver for this PUrPOSe? (d) Is there any (other?) way the
roan could walk along the escalator iiithout consuming power from the motor?

30. Show that me2 has the dimensions of energy.
31. An electron (rest mass t). I X l(r' kg) is moving with a speed 0.99e. (a) What

is its total energy ? b Find the ratio of the Newtonian kinetic energy to the rela-
tivistic kinetic energy in this case.

32. %% hat is the speed of all 	 with a kinetic energy of (a) 100,0(H) ev.
(6) 1,00tIlHtO ev

33. (a) The rest mass of a i,oriv is 0.010 kg. Whitt is its mass when it moves at a
speed of 3.0 X Ill' 10.1 irs • sir rein t iv ( to the ot Iserver ? At 2.7 )( It ) meters/see?
(6) Com pare the riassiral and ri-in t iv ist ii- kinetic i'r,(rgics for these CItSi'S. (Cr 'fiat it
Ok i ' rrilsr .. rvr. r or rrri-:isurilrg :.p;i:rr:rl us. is rirlti.g iii the is,,lv

:1*. 'l'l,i I njititi STairs r,'nr-rr,nr-.J ;I.olit Ill"M unit-hr of .lr q -lriiiri I-Ir..Igv ill I960.
Him nranv krlr,gi:r,rrs of Ilrtrthr ,,iild turn' Ii, to eo,,r;,lrtitv ilesi n. y . 0 to elrl this
energy

35. It i5 ln'lu,v,,I that the suit 'itriniris its energy i'v a fusion Process in 	 hieh Four
irvrlroge,, ntroris nrc trausui,riiri-il h,t,, to Irei j unri ritriji,	 iti, the -irrtssiotu of energy in
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various forms of radiation If a hlrogen atom has it rest mass of I .00SI atomic mass

units (see Example 7) and a helium atom has t rest muss of 4,0039 atomic mass units,

calculate the energy released in each fusion process.

36. A vacuum diode consists of a cylindrical anode enclosing a cylindrical cathode.
An electron with a potential energy relative to the anode of 4.8 X 10

-16 joule leaves
the surface of the cathode with zero initial speed. Assume that the electron
does not collide with any air molecules and that the gravitational force is negligible.
(a) What kinetic energy would the electron have when it strikes the anode? (b) Take

9.1 X 10 kg as the mass of the electron and find its final speed. (C) Were you justi-
fied in using classical relations for kinetic energy and mass rather than the relativistic

ones?
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