
Fluid Dynamics
CHAPTER 1$

18-1 General Concepts of Fluid Flow

One way of describing the motion of a fluid is to divide the fluid into
infinitesimal volume elements, which we may call fluid particles, and to
follow the motion of each of these particles. This is a formidable task.
We would give coordinates x, y, z to each such fluid particle and would
specify these ag functions of the time t. The coordinates x, y, z at the

time t of the fluid particle which was at xo, yo, z0 at the time (0 would be

determined by functions x(o,yo,zo,to,1), y(xo,yo,zo,to,t), z(x 0 , y0 ,zo,to,t), which

then describe the motion of the fluid. This procedure is a direct generali-
zation of the concepts of particle mechanics and was first developed by
Joseph Louis Lagrange (1736-1813).

There is a treatment, developed by Leonhard Euler (1707-1783), which
is more convenient for most purposes. In it we give 'up the attempt to
specify the history of each fluid particle and instead specify the density
and the velocity of the fluid at each point in space at each instant of time.
This is the method we shall follow here. We describe the motion of the
fluid by specifying the density p(x,y,z,t) and the velocity v(x,y,z,t) at the

point (x,y,z) at the time t. We thus focus our attention on what is hap-
pening at a particular point in space at a particular time, rather than on
what is happening to a particular fluid particle. Any quantity used in
describing the state of the fluid, for example the pressure p, will have a
definite value at each point in space and at each instant of time. Although
this description of fluid motion focuses attention on a point in space rather
than on a fluid particle, we cannot avoid following the fluid prticles them-
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selves, at least for short time intervals dt. For it is the particles, after all,
and not the space points, to which the laws of mechanics apply.

In order to understand the nature of the simplifications we shall make,
let us consider first some general characteristics of fluid flow.

Fluid flow can be steady or fort steady. When the fluid velocity v at any
given point is constant in time, the fluid motion is said to be steady. That
is, at any given point in a steady flow the velocity of each passing fluid
particle is always the same. At some other point a particle may travel
with a different velocity, but every other particle which passes this second
point behaves there just as this particle did when it passed this point.
These conditions can be achieved at low, flow speeds; a gently flowing
stream is an example. In nonsteady flow, as in a tidal bore, the veloci-
ties v are a function of the time. In

	

the case of turbulent flow, such as	 - -

	

rapids or a Waterfall, the velocities vary 	 -- - -

	

erratically from point to point as well	 -	 -
as from time to time.

	

Fluid flow can be rotational or irrota-	 .

	

lional. If the element of fluid t each	 -

	

point has no net angular velocity about 	 . -	 - --

	

that point, the fluid flow is irrotational. 	 -.	 -	 -
We can imagine a small paddle wheel
immersed in the moving fluid (Fig.

	

18-1 ) . If the wheel moves without	 Fig. 16-1 A small paddle wheel
placed in a flowing liquid rotates

	

rotating, the motion is irrotational;' 	 In rotational flow and does not

	

otherwise it is rotational. Irrotational 	 rotate in irrotational flow.
flow is important chiefly because it
yields fairly simple mathematical prob-
lems. Angular momentum will play no role here and v is relatively simple..
Rotational flow includes vortex motion, such as whirlpools or eddies, and
motion in which the velocity vector varies in the transverse direction.

Fluid flow can be compressible or incompressible. Liquids can usually
he considered as flowing incompressibly. But even a highly compressible
gas may sometimes undergo unimportant changes in density. Its flow is
then practically incompressible In flight at speeds much lower than the
speed of sound in air (described by subsonic aerodynamics), the motion of
the air relative to the wings is one of nearly incompsible flow. In such
cases the density p is a constant, independent of x, y, z, and t, and the
mathematical treatment of fluid flow is thereby greatly simplified.

Finally, fluid flow can be viscous or nonvjscou5. Viscosity in fluid motion
is the analog of friction in the motion of solids. In many cases, such as
in lubrication problems, it is extremely important. Sometimes, however,
it is negligible. Viscosity introduces tangential forces between layers of
fluid in relative motion and results in dissipation of mechanical energy.

We shall confine our discussion of fluid dynamics for the most part to
.steady, irrotajional, incompressible, nonviscous flow. The mathematicalF-30



442	 FLUID DYNAMICS	 Chap. 18

simplifications resulting should be obvious. We run the danger, however,
of making so many simplifying assumptions that we are no longer talking
about a meaningfully real fluid . * Furthermore, it is sometimes difficult
to decide whether a given property of a fluid—its viscosity, say—can be
neglected in a particular situation. In spite of all this the restricted analy-
sis that we are going to give has wide application in practice, a s we shall see.

18-2 Streamlines

In steady flow the velocity v at a given point is constant in time. Con-
sider the point P (Fig. 18-2) within the fluid. Since vat P does not change

in time, every particle arriving at P will pass on with the same speed in
the same direction. The same is true about the points Q and R. Hence,

if we trace out the path of the particle, as is done in the figure, that curve
will be the path of every particle arriving at P. This curve is called a

streamline. A streamline is parallel to the velocity of the fluid particles
at every point. No two streamlines can ever cross one another, for if they
did, an oncoming fluid particle could go either one way or the, other, and
the flow could not be steady. In steady flow the pattern of streamlines
in a flow is stationary with time.f

.,-
7.
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Fig. 18-2 A particle passing
through points P, Q, and R
traces out a streamline, assum-
ing steady flow. Any other
particle passing through P must
be traveling along the same
streamline in steady flow.

In principle we can draw a streamline through every point ' in the fluid..
Let us assume steady flow and select a finite number of streamlines to
form a bundle, like the streamline pattern of Fig. 18-3. This tubular
region is called a tube of flow. The boundary of such a tube consists of
streamlines and is always parallel to the velocity of the fluid particles.
Hence, no fluid can cross the boundaries of a tube of flow and the tube behaves
somewhat like a pipe of the same shape. The fluid that enters at one end
must leave at the other.

• Richard Feynman has pointed out that the 'late John von Neuman called this
idealized fluid "dry water."

f The family of streamlines in a fluid is so drawn that, at any point in the fluid, the
direction of the instantaneous velocity v for the fluid particle at that point is tangent to
the streamline at that point. In nonsteady flow the pattern of streamlines in the fluid
changes, as time goes on and the path of an individual fluid particle through the fluid
does not coincide with a streamline of a given instant. The streamline and the line of
motion of the partinle touch each other at the point, locating the particle at the instant
in question. The path or line of motion and the streamline coincide only for steady
flo'w.



Fig. 18-4 A tube of flow used in
proving the equation of continuity.
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Fig. 18-3 A tube of flow made up of
a bundle of streamlines.

18-3 The Equation of Continuity

In Fig. 18-4 we have drawn a thin tube of flow. The velocity of the
fluid inside, although parallel to the tube at any point, may have different
magnitudes at different points. Let the speed be v 1 for fluid particles at
P and v 2 for fluid particles at Q. Let A 1 and A 2 be the cross-sectional
areas of the tubes perpendicular to the streamlines at the points P and Q,
respectively. In the time interval Ata fluid element travels approximately
the distance u At. Then the mass of fluid Am, crossing A 1 in the time
interval At is approximately

m 1 = p 1 A 1v 1 At

or the mass flux m i /i is approximately p 1 A jv 1 . We must take t small
enough so that in this time interval neither v nor A varies appreciably
over the distance the fluid travels. In the limit as At —* 0, we obtain the
precise definitions:

mass flux at P = pjA 1 v 1 ,	 and

mass flux at Q = p2A2v2,

where p 1 and P2 are the fluid densities at P and Q respectively. Since no
fluid can leave through the walls of the tube and there are no "sources"
or "sinks" wherein fluid can be created or destroyed in the tube, the mass
crossing each section of the tube per unit time must be the same. In par-
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ticular, the mass flux at P must equal that at Q:

p i A jv i = p2A2v2,

or	 pAy = constant.	 (18-1)

This result (Eq. 18-1) expresses the law of conservation of mass in fluid

dynamics.
Would you expect Eq. 18-1 to hold when the flow is viscous? When

it is rotational?

In the more general case in which sources or sinks are present and in which the
density varies with time as well as position, mass must still be conserved and we
can write down (without proof) an equation of continuity that expresses this fapt.

It is
O(pv) +	 +	 + LP = S	 (18-2).

Ox	 ay	 Oz	 43t

in which v, vi,, and v are the velocity components of the fluid; like the density p
they vary both with position and with time.

Let us consider a small volume clement in such a fluid. It can be shown that:

1. The sum of the first three terms of Eq. 18-2 gives the net outflow, per unit
volume, of mass from the volume element.

2. The fourth term gives the rate, per unit volume, at which mass is accumu-
lating within the volume element.

3. The last term, 8, gives the rate, per unit volume, at which mass is being
introduced into volume element from & "source" (if S is positive) or is disappear-
ing from the volume element into a "sink" (if S is negative).

It is clear that, with these interpretations of its terms, Eq. 18-2 is a statement
of the conservation of mass for fluid flow. Is this equation dimensionally correct?

If S = 0 in Eq. 18-2, there are no sources or sinks. If the sum of the first three
terms is negative there is a net inflow of mass to the volume element. Thus the
mass contained in the element must increase with time as fluid "piles up." This
is in agreement with Eq. 18-2 because, for the conditions stated, Op/Of must be
positive, which means that the density of the fluid (and thus the mass of the fluid)
in the volume element is increasing as time goes on.

If the fluid is incompressible, as we shall henceforth assume, then P1 = p2

and Eq. 18-1 takes on the simpler form

A 1v 1 = A2v2.

or Ac = constant (18-3)

The product Ac gives the volume flux or flow rate, as it is often called.
Notice that it predicts that in steady incompressible flow the speed of
flow varies inversely with the cross-sectional area, being larger in narrower
parts of the tube. The fact that the product Ac remains constant along

Because these four quantities are functions of more than one variable we have
written the derivatives in Eq. 18-2 as partial derivatives. See, for example, Physical

Mechanics, Section 12.3, by R. B. Lindsay, D. Van Nostrand Company, 1961, for a
derivation of Eq. 18-2.



Sec. 18-4	 BERNOULLI'S EQUATION	 445

• tube of flow allows us to interpret the streamline picture somewhat. In
• narrow part of the tube the streamlines must crowd closer together than
in a wide part. Hence, as the distance between streamlines decreases, the
fluid speed must increase. Therefore, we conclude that widely spaced
streamlines indicate regions of low speed, and closely spaced streamlines
indicate regions of high speed.

We can obtain another interesting result by applying the second law of
motion to the flow of fluid between P and Q (Fig. 18-4). A fluid particle
at P with speed v 1 must be decelerated in the forward direction in acquir-
ing the smaller forward speed v 2 at Q. Hence the fluid is decelerated in
going from P to Q. The deceleration can come about from a difference
in pressure acting on the fluid particle flowing from P to Q or from the
action of gravity. In a horizontal tube of flow the gravitational force does
not change. Hence we can conclude that in steady horizontal flow the
pressure is greatest where the speed is least.

Were you ever in a crowd when it started to push its way through a small
opened door? Outside in the back of the crowd the cross-sectional area
was large, the pressure was great-, but the speed of advance rather small.
Through the door of small cross section the pressure was relieved and the

- speed of advance gratifyingly increased. This particular "human fluid"
is compressible and viscous, of course, and the flow is sometimes turbulent
and rotational.

18-4 Bernoulli's Equation

Bernoulli's equation is a fundamental relation in fluid mechanics. Like
all equations in fluid mechanics it is not a new principle but is derivable
from the basic laws of Newtonian mechanics. We will find it convenient
to derive it from the work-energy theorem (see Section 7-4), for it is essen-
tially a statement of the wark-energy theorem for fluid flow.

Consider the nonviscous, steady, incompressible flow of a fluid through
the pipeline or tube of flow in Fig. 18-5. The portion of pipe shown in
the figure has a uniform cross section A I at the left. It is horizontal there
at an elevation Yi above some reference level. It gradually widens and
rises and at the right has a uniform cross section A 2. It is horizontal there
at an elevation y. Let us concentrate our attention on the portion of
fluid represented by both cross-shading and horizontal shading and call
this fluid the "system." Consider then the motion of the system from
the position shown in (a) to that in (b). At all points in the narrow part
of the pipe the pressure is p' and the speed v i ; at all points in the wide
portion the pressure is p2 and the speed v2.

The work-energy theorem (see Eq. 7-14) states: The work done by the
resultant force acting on a system is equal to the change in kinetic energy of
the system. In Fig. 18-5 the forces that do work on the system, assuming
that we can neglect viscous forces, are the pressure forces p 1 A j. and p2A2
that act on the left- and right-hand ends of the system, respectively, and
the force of gravity. As fluid flows through the pipe the net effect, as a
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Fig. 18-5 A portion of fluid (cross-shading and horizontal shading) moves through a
section of pipeline from the position shown in (a) to that shown in (b).

comparison of Figs. 18-5a and b shows, is to raise an amount of fluid rep-

resented by the crosshatched area in Fig. 18-5a to the position shown in

Fig. 18-5b. The amount of fluid represented by the horizontal shading

is unchanged by the flow.
We can find the work W done on the system by the resultant force as

follows:

1. The work done on the system by the pressure force p i A i is p i A i All.

2. The work done on the system by the pressure force p 2 A 2 is - p 2Az 12.

Note that it is negative, 'which means that positive wrk is done by the

system.
3. The work done on the system by gravity is associated with lifting

the crosshatched fluid from height y i to height y 2 and is -ing(y 2 - y ) in

which rn is the mass of fluid in either crosshatched area. It too is negative

because work is done by the system against the gravitational force.

The work W done on the system by the resultant force is found by adding

these three terms, or

W = p 1 Ai All - p 2A 2 t12 - mg(y2 - yr).

Now A 1 l( = A 2 &2) is the volume of the crosshatched fluid element,

which we can write as m/p, in which p is the (constant) fluid density.
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Recall that the two fluid elements have the same mass, so that in setting
A 1 al l = A 2 Al2 we have assumed the fluid to be incompressible. With
this assumption we have

W = (p' - p 2)(m/p) - rng(y 2 - yj).	 (18-4a)

The change in kinetic energy of the fluid element is

AK = IMV 2 - fmv 1 2 .	 ( 18-4b)

From the work-energy theorem (Eq. 7-14) we then have

W=

or	 (p' - p2)(rn/p) - rng(y2 - Y0= mv 2 2 - +mvi 2 ,	 ( 18-5a)

which can be rearranged to read

P1 + zPVl + P9Yt = P2 ± 3pe 2 2 + pyY2 . 	( 18-5b)

Since the subscripts 1 and 2 refer to any two locations along the pipeline,
we can drop the subscripts and write

p + pv 2 + pgy = constant.	 (18-6)

Equation 18-6 is called Bernoulli's equation for steady, nonviscous, incom-
pressible flow. It was first presented by Daniel Bernoulli (1700-1782) in
his Hydrodynamica in 1738.

Bernoulli's equation is strictly applicable only to steady flow, the quanti-
ties involved being evaluated along a streamline. In our figure the stream-
line used is along the axis of the pipeline. If the flow is irrotational, how-
ever, it can be shown (see Problem .21 for a special case) that the constant
in Eq. 18-6 is the same for all streamlines.

In a nonviscous incompressible fluid we cannot change the temperature of the
fluid by mechanical means. Hence, Bernoulli's equation, as stated above, refers
to isothermal (constant temperature) processes. It is possible, however, to change
the temperature of a nonviscous compressible fluid by mechanical means. We
can generalize this equation to include a compressible fluid by adding to the left
of Eq. 18-6 a term u, which represents the internal energy per unit volume of the
fluid. This term (and the pressure p) will have a value that depends onthe
temperature.

If the flow is viscous, forces of a frictional nature act on the fluid so that some of
the work done that appeared as a change in kinetic energy in the nonviscous case
appears now as heat energy in the fluid. We must then write Eq. 18-5a as

(pi - p 1)(m/p) - mg(y 2 - yi)	 mv22 - mv1 2 + Q

where Q represents the heat energy generated in the viscous flow from point 1 to
point 2. In practice, Bernoulli's equation can be modified accordingly by use of
empirical corrections for conversion of mechanicalenergy to heat energy. However,
if the pipe is smooth and the diameter is large compared to the length, and if the
fluid flows slowly and has a small viscosity, the heat generated is negligible.
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Just as the statics of a particle is a special case of particle dynamics, so
fluid statics is a special case of fluid dynamics. It should come as no
surprise, therefore, that the law of pressure change with height in a fluid
at rest is included in Bernoulli's equation as a special case. For let the
fluid be at rest; then v 1 = V2 = 0 and Eq. 18-5b becomes

P1 + pgy I - P2 + P9Y2

or	 P2 - P1 = —pg(y - yi),

which is the same as Eq. 17-3.
In Eq. 18-6 all terms have the dimension of a pressure (check this).

The pressure p + pgh, which would be present even if there were no flow
(v = 0), is called the static pressure; the term -pv 2 is called the dynamic
pressure.

18-5 Applications of Bernoulli's Equation and the Equation of Continuity

Bernoulli's equation can be used to determine fluid speeds by means
of pressure measurements. The principle generally used in such measuring
devices is the following: The equation of continuity requires that the speed
of the fluid at a constriction increase; Bernoulli's equation then shows that
the pressure must fall there. That is, for a horizontal pipe Ipv' + p equals
a constant; if v increases and the fluid is incompressible, p must decrease.
This result was also deduced from dynamic considerations in Section 18-3.

1. The Venturi meter
This (Fig. 18-6) is a gauge put in a flow pipe to measure the flow speed

of a liquid. A liquid of density p flows through a pipe of cross-sectional
area A. At the throat the area is reduced to a and a manometer tube is
attached, as shown. Let the manometer liquid, such as mecury, have a
density p'. By applying Bernoulli's equation and the equation of con-
tinuity at points I and 2, the student can show that the speed of flow at

A

Pig. 18-6 The Venturi meter,
used to measure the speed of
flow of a fluid.
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Ais
- p)gh

V =
	 - a2)

If we want the volume flux or flow rate R, which is the volume of liquid
transported past any point per second, we simply compute

R = vA.

2. The Pitot tube
This device (Fig. 18-7) is used to measure the flow speed of a gas. Con-

sider the gas, say air, flowing past the openings at a. These openings are
parallel to the direction of flow and are set far enough back so that the
velocity and pressure outside the openings have the free-stream values.
The pressure in the left arm of the
manometer, which is connected to
these openings, is then the static
pressure in the gas stream, p,,.
The opening of the right arm of
the manometer is at right ang1e
to the stream. The velocity is
reduced to zero at b and the gas is
stagnant at that point. The pres-
sure at b is the full ram pressure,

Pb. Applying Bernoulli's equa-
tion to points a and b, we obtain

P. + pV 2 = Pb, Fig. 1-7 Cross-sectional diagram of a
Pitot tube.

where, as shown in the figure, p,

	

is greater than p. If h is the	 -
difference in height of the liquid in the manometer arms and p' is the
density of the manometer liquid, then

Pa 4- p'gh = Pb.

Comparing these two equations, we find

	

jpV 2	 p'gh

or
P

which gives the gas speed. This device can be calibrated to read v directly

and is then known as an air-speed indicator.

3. Dynamic Lift
Dynamic lift is the force that acts on a body, such as an airplane wing.

a hydrofoil, or a spinning baseball, by virtue of its motion through a fluid.
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Fig. 18-8 (a) Streamlines for air
moving past a (nonrotating) base-
ball. The velocity v is shown for
typical corresponding points 1 and 2.
(b) Streamlines for airflow around
a rotating baseball, showing the
velocities yR and —vz at points 1
and 2 respectively. (c) the super-
position of (a) and (b). The veloc-
ities at points 1 and 2 are sho*n
along with the dynamic lift F.

We must distinguish it from static lift, which is the buoyant force that acts
on an object, such as a balloon, in accord with Archimedes' principle.

Figure 18-8a shows the streamlines around a (nonspinning) baseball as
it moves through the air. For convenience, we examine the situation from
a reference frame in which the baseball is at rest and the air moves past it;
this reference frame can be realized in practice by mounting a baseball in a
wind tunnel. From the symmetry of the streamlines it is dear that the
velocity of the air is the same at corresponding points above and below the
ball, such as 1 and 2 in Fig. 18-8a. From Bernoulli's equation we then
deduce that the pressures at such corresponding points are equal and that
the air exerts no upward or downward force on the ball by virtue of its
motion; the dynamic lift is zero;

In a separate experiment let us spin a resting baseball,about an axis that
is perpendicular to the plane of Fig. 18-8b. Since the ball is not perfectly
smooth, it drags some air around with it, the streamlines associated with
this motion being shown in the figure.

Finally, let us combine both motions by throwing a baseball and spinning
it at the same time. Figure 18-8c shows the resulting streamlines from a
reference frame in which the center of mass of the ball is at rest. These
streamlines represent a distribution of velocities found by adding ('ec-
tonally) at every point the velocities in Figs. 18-8a and b. The velocities
at point 1 add numerically while those at point 2 subtract. Thus the
speed at point 1 in Fig. 18-8c is greater than the speed at point 2 as, indeed,
the crowding of the streamlines suggests. From Bernoulli's principle, then,
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the pressure at point 1 is less than the pressure at point. 2, so that there is a

net upward force (a dynamic lift) on the spinning baseball. Such forces
on actual spinning baseballs and tennis halls are well known ill practice.*

When dynamic lift oil object occurs it is always associated .w-ith an un ..rn-
metrical set of streamlines relatively close together on one side and relativeiv far
apart on the other, like those of Fig. 18-8e. that correspond, as Fig. 18-8b shows,
to circulation of fluid around the object. For the spinning baseball the circula-
tion is obtained by actually spinning the object; in other cases of dynamic lift, of
which the airplane wing is a good example, streamline patterns that contain the
necessary circulation are obtained by properly shaping the object and properly
orienting it in the moving fluid. Figure 18-9 shows streamlines around an air-
plane wing. As required, they are closer together above the wing than they are
below so that (compare Fig. 18-8e) Bernoulli's principle predicts the observed

upward dynamic lift.

Fig. 18-9 Streamlines about 	

V1	 I

an airfoil.

4. Thrust on a Rocket
As our final example let us compute the thrust on a rocket produced by

the escape of its exhaust. gases. Consider a chamber (Fig. 18-10) of cross-

sectional area A filled with a gas of density p at a pressure p. Let there be

a small orifice of cross-sectional area A 0 at the bottom of the chamber. We

wish to find the speed r 0 with which the gas escapes through the orifice.

Let us write Bernoulli's equation (Eq. 18-5b) as

P1 - P = pg(y - yj) + p(r 2 2 -

For a gas the densit y is so small that we call the variation in pres-

sure with height in a chamber (see Section 17-3). Hence, if p represents

the pressure p l in the chamber and pa represents the atmospheric pressure

See The F/eft,ier Ship, an article hr Albert Einstein in his book Essays in Science.

Philosophical Library. New York.. The Flettner ship, like a sailboat, derives its motive
power from the wind. Instead of a sail it has a large cylinder that is caused to rotate
about a vertical axis by a small motor. The resulting dynamic lift" (in this ease,
horirontal) propels the vessel.
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V0 2 =	 + v2,

P
(18-7)
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P2 just outside the orifice, we have

P - P0 = 4p(v0 2 - v2)

where v is the speed of the flowing gas inside the chamber and v 0 is the speed
of efflux of the gas through the orifice.
Although a gas is compressible and the flow
may become turbulent, we can treat the
flow as steady and incompressible for
pressure and efflux speeds that are not too
high.

Now let us assume continuity of mass
flow (in a rocket engine this is achieved
when the mass of escaping gas equals the
mass of gas created by burning the fuel), so
that (for an assumed constant density)

Av = A0v0.

If the orifice is very small so that A 0 <<A,
then v 0 > i', and we can neglect v 2 compared
to 1- 0 2 in Eq. 18-7. Hence, the speed of
efflux is

Fig. 18-10 Fluid streaming
out of a chamber.

(Section 9-7) is v 0 dM/dt.
dl is dM = pA 0v 0 dl, so that

'2(p - pa
ye = \	

)
/	 (18-8)

If our chamber is the exhaust chamber
of a rocket, the thrust on the rocket
But the mass of gas flowing out in time

dill
Vo	 = rop.4 0v0 = pAov02,

dl

and from Eq. 18-8 the thrust is

2A 0(p - pa).

18-6 Conservation of Momentum in Fluid Mechanics

(18-9)

In Newtonian particle mechanics the derivation of the laws of conservation of
linear momentum and angular momentum makes explicit use of Newton's third
law of motion. The internal forces and torques in a mechanical system cancel
one another because of this third law, leaving only the external forces and torques
to contribute to the momenta. In the case of a fluid the internal forces are rep-
resented by the pressure within the fluid. But the very concept of pressure itself
contains Newton's third law implicitly. The force produced by pressure exerted
in one direction across any surface element is equal and opposite to the force
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exerted in the opposite direction across the same sqrface element. Also, each of
these two forces is applied at the same place, namely at the surface element. Both
forces must have the same line of action. Hence, in the equations for the time rate
of change of linear momentum or of angular momentum of a fluid, the internal pres-
sures will cancel out. We can conclude then that the time rate of change of the
total linear momentum in a volume V of moving fluid is equal to the total external
force acting on it. Likewise, the time rate of change of the total angular momentum
in a volume V of moving fluid is equal to the total external torque acting on it.
The conservation laws of linear and angular momentum follow.

18-7 Fields of Flew

In the chapter on gravitation we saw how to summarize the physical state
of affairs near masses by use of a field. Each point in the field can be
regarded as having a vector associated with it, namely g, the gravitational
force per unit a., at that point. Or, alternately, we can associate a
scalar quantity with eaci. point in space, namely the gravitational potential
V. We can then draw a surface, called an equipotential surface, through
all points that have the same potential. We draw several such surfaces,
the potential on one differing by a constant amount from that on the next
one, etc. The gravitational force at any point is then directed along a line
passing through this point perpendicular to these surfaces, and its magni-
tude is determined from the rate of change of potential with distance in
this direction, as indicated by the spacing and orientation of the equi-
potential surfaces. By drawing in lines of force we can picture vividly
how space is affected by the presence of mass.

Likewise, in fluid dynamics we can summarize the physical state of
affairs within a moving fluid by means of a field of flow. In general, the
field of flow is a vector field. We associate a vector quantity with each
point in space, namely the flow velocity v at that point. For a steady flow
the field of flow is stationary. Of course, even in this ease a particular
fluid particle may still have a variable velocity as it moves from point to
point in the field. The field gives the properties of the space from which
we deduce the behavior of particles in that space. If the flow is irrota-
lional, as well as steady, we call it potential flow. Then the flow velocity v
caii be related to a velocity potential 4,, just as in gravitation g can be
related to the gravitational potential V. If we draw in surfaces of equal
velocity potential, as we drew in surfaces of equal gravitational potential,
we can deduce v from the equipotential flow surfaces just as g is deduced
from the equipotential gravitational surfaces. Hence, a field for potential
flow is analogous to a conservative force field.

A flowing fluid mass can always be divided into tubes of flow. When the flow
is steady, the tubes remain unchanged in shape and the fluid that is at one instant
in a tube remains inside this tube thereafter. We have seen that the flow velocity
inside a tube of flow is parallel to the tube and has a magnitude inversely propor-
tional to the area of the cross section (Eq. 18-1). Let us assign such cross sec-
tions to the tubes that the constant of proportionality is the same for all of them;
if possible we take this constant to be unity. That is the volume flUX IS the same
for all tubes, namely unit flux. The the magnitude of the flow velocity can be
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Fig. 18-11 Streamlines (horizon-
tal) and surfaces of equal velocity
potential (vertical) for a homogene-
ous field of flow.

p

determined from the areas of the cross sections of the tubes of flow. There is
another procedure equivalent to this which consists of setting up a unit area per-
pendicular to the direction of flow and drawing through it just as many streamlines
as the number of units of magnitude of the velocity at that point.

Let us consider some examples of fields of flow. For drawing purposes we con-
sider only two-dimensional examples. In these the flow velocity is the same at all
points on a line perpendicular to the plane at any point.

Fig. 18-12 (o) Uniform rotational field
of flow. (b) Variation of fluid velocity
from the center.

—	 /
-

.----.

•	 (a)

Fig. 18-13 (a) Vortical field of flew.
(b) Variation of fluid veloeity from the
center.
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In Fig. 18-11 we have drawn a homogeneous field of flow. Here all the stream-
lines are parallel and the flow velocity v is the same at all l)01fl15. We have seen
that there are two equivalent ways of deriving the relative magnitudes of the flow
velocities from such fields of flow: (a) from the widths of the tubes of flow and (b)
from the distances between lines of equal velocity potential. The latter method
applies to steady irrotational flow only. For such flows we draw in thd lines of
equal velocity potential as dashed lines.

In Fig. 18-12 we show the field for a uniform rotation (see Problem 22, Chapter

17). Here v is proportional to r. In Fig. 18-13 we draw the field of flow of a

vortex. In this case v is pronortional to 1/r (see Problem 19). Notice that both
uniform rotation and vortex motion are represented by circular streamlines but
are entirely different kinds of flow. Obviously, the shapes of the streamlines give
only limited information; their spacing is needed too.

Figure 18-14 represents the field of flow for a source. All streamlines are
directed radially outward. The source is a line through the center perpendicular
to the paper emitting a mass per unit time Q. The field of flow around a linear
sink is the same as the source except for the sign of the flow, which is directed
radially inward.

For a linear source and linear sink which have the same strengths, Q and —Q,
and are slightly separated, we obtain the combined field called linear dipole flow,

shown in Fig. 18-15.
As we shall see later the electrostatic field, the magnetic field, and the field of

flow for an eleètric current are also vector fields. In this connection, the homo-

(a)	 (b)

Fig. 18-14 (a) Flow fniiii a linear point source. (b) Fluid flow map of the same.
The milap in this figure is made by allowing water to flow between a horizontal layer of
plate glass and a horizontal layer of plaster. In (b) the water comes up through a hole
in the center of the plaster and flows out toward the edges. The direction of the flow
is made visible by sprinkling the plaster with potassium permnanganate crystals which
dissolve and color the water a deep red. (The fluid flow map was made and photo-
graphed by Professor A. D. Moore at the University of Michigan, and is taken from
Introduction to Electric Fields, by W. E. Rogers, McGraw-hill Book Co., 1954.)
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Fig. 18-I5 (a) Linear dipole flow. The source is on the left, the sink on the right.
(b) A fluid flow map of the same. (The fluid flow map was made and photographed
by Professor A. D. Moore at the University of Michigan, and is taken from Introduction
to Electric Fields, by W. E. Rogers, McGraw-Hill Book Co., 1954.)

geneous field (Fig. 18-11) corresponds to the electric field of a plane capacitor, the
source field or sink field (Fig. 18-14) correspond to the electric field of a cylindrical
capacitor or straight wire of positive or negative charge respectively, and the linear
dipole field (Fig. 18-15) corresponds to the electric field of two oppositely charged
wires. In all these the field of flow is potential flow and the electric fields are
conservative.

The homogeneous field of Fig. 18-I1 also represents the magnetic field inside a
solenoid. The vortex field of Fig. 18-13 represents the magnetic 'field around a
straight current-carrying wire. This last is an example of a field that is rotational
(about the vortex axis).

Because of these analogies between fluid and electromagnetic fields, we can often
determine a field of flow, which is impossible to calculate by present mathematical
methods, by experimental measurements on appropriate electrical devices.

As we have seen throughout this chapter, the basic field ideas and conservation
principles find application in many areas of physics. We shall encounter them
many times again.

QUESTIONS

1.'Can you assign a coefficient of static friction between two surfaces, one of which is
a fluid surface?

2. Describe the forces acting on an element of fluid as it flows through a pipe of non-
uniform cross section.

3. The height of the liquid in the standpipes indicates that the pressure drops along
the êhunnel, even though the channel has a uniform cross section and the flowing liquid
is incompressible (Fig. 18-16). Explain.
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Fig. 18-16

4. It is found that liquid will flow faster and more smoothly from a sealed can when
two holes are punctured in the can than when one hole is made. Explain.

5. In a lecture demonstration a ping-pong ball is kept in midair by a vertical jet
of air. Is the equilibrium stable, unstable, or neutral? Explain.

6. (a) Explain how a pitcher can make a baseball curve to his right or left. Justify
your answer by drawing a diagram of the streamlines and applying Bernoulli's equation.
(b) lVhv is it easier to throw a curve with a tennis ball than with a baseball?

7. Two rowboats moving parallel to one another in the same direction are pulled
toward one another. Two automobiles moving parallel are also pulled together:
Explain such phenomena on the basis of Bernoulli's equation.

8. Can the action of a parachute in retarding free fall be explained by Bernoulli's
equation?

9. Liquid is flowing inside a horizontal pipe which has a constriction along its length.
Vertical tube manometers are attached at both the wide portion and the narrow portion
of the pipe. If a stopcock at the exit end is closed, will the liquid in the manometer
tubes rise or fall? Explain.

10. Can you explain why water flows in a continuous stream down a vertical pipe,
whereas it breaks into drops when falling freely?

II. Can you explain why an object falling from a great height reaches a steady
terminal speed?

12. On take off would it he better for an airplane to move into the wind or with the
vind? On landing ... ?

13. Does the difference in pressure between the lower and upper surfaces of an air-
plane \ving depend on the altitude of the moving plane? Explain.

14. The accumulation of ice on an airplane wing may change its shape in such a way
that its lift is greatly reduced. Explain. 	 -

15. How is an airplane able to fly upside down?
16. Why does the factor 2 appear in Eq. 189, rather than "1 One might

naivel y expect that the thrust would simpl y be the pressure difference times the area.
that is. .4 o(p -

IT. The destructive effect of a tornado (twister) is greater near the center of the dis-
turbance than near the edge. Explain.

18. When a stopper is pulled from a filled basin, the water drains out while circulating
like a small whirlpool. The angular velocity of a fluid element about a vertical axis
through the orifice appears to be greatest near the orifice. Explain.

19. Use the criterion of the paddle wheel (Fig. 18-1) to determine which flow fields
Figs. IS-Il through I8-15) are rotational.

20. In steady flow the velocit y vector vat any point is constant. Can there then be
accelerated motion of the fluid particles? Discuss.

21. How can we justify applyi ng Bernoulli's equation to the spinning baseball of
Fig. IS-Sc? Points I and 2 are not on the same streamline.
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PROBLEMS

1. A garden hose having an internal diameter of 0.75 in. is connected to a lawn
sprinkler that consists merely of an enclosure with 24 holes, each 0.050 in. in diameter.
If the water in the hose has a speed of 3.0 ft/sec, at what speed does it leave the sprinkler
holes?

2. Models of torpedoes are sometimes tested in a pipe of flowing water, much as a
wind tunnel is used to test model airplanes. Consider a circular pipe of internal diam-
eter 10 in. and a torpedo model, aligned along the axis of the pipe, with a diameter of
2.0 in. The torpedo is to be tested with water flowing past it at 8.0 ft/sec. (a) With
what speed must the water flow in the unconstricted part of the pipe? (b) What will
the pressure difference be between the constricted and unconstricted parts of the pipe?

3. How much work is done by pressure in forcing 50 ft' of water through a 0.50,.in.
pipe if the difference in pressure at the two ends of the pipe is IS lb/in.29

4. Water falls from a height of 60 ft at the rate of 500 ft'/min and drives a water
turbine. What is the maximum power that can be developed by this turbine?

5. By applying Bernoulli's equation and the equation of continuity to points 1 and 2
of Fig. 18-6, show that the speed of flow at the entrance is

- p)gh
V = Q.44/(,4 - a2)

6. A Venturi meter has a pipe diameter of 10 in, and a throat diameter of 5.0 in. If
the water pressure in the pipe is 8.0 lb/in. 2 and in the throat is 6.0 lb/in.', determine the
rate of flow of water in 1t 3 /sec (volume flux).

7. Consider the Venturi tube of Fig. 18-6 without the manometer. Let A equal So.
Suppose the pressure at .4 is 2.0 atm. Compute the values of v at A and v' at a that
would make the pressure p' at a equal to zero. Compute the corresponding volume
flow rate if the diameter at .4 is 5.0 cm. The phenomenon at a when p' falls to nearly
zero is known as cavitation. The water vaporizes into small bubbles.

8. In a horizontal oil pipeline of constant cross-sectional area the p 'ressure decrease
between two points 1000 ft apart is 5 lb/in.'. What is the energy loss per cubic foot of
oil per unit distance?

9. Figure 18-17 shows liquid discharging from an orifice in a large tank at a distance
h below the water level. (a) Apply Bernoulli's equation to a streamline connecting

points 1, 2, and 3, and show that the speed
of efflux is

This is known as Torricelli's law. (b) If the
orifice were curved directly upward, how
high would the liquid stream rise? (c) How
would viscosity or turbulence affect the
analysis?

10. Suppose that two tanks, each with a
large opening at the top, contain different
liquids. A small hole is made in te side of
each tank at the same depth h below the
liquid surface, but one hole has twice the
cross-sectional area of the other. (a) What
is the ratio of the densities of the fluids if it
is observed that the mass flux is the same for
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each hole? (b) How do the flow rates (volume flux) from each hole compare? (c)
Could the flow rates be made equal? How?

11. A tank is filled with water to a height H. A hole is punched in one of the walls at
a depth h below the water surface (Fig. IS-IS). (a) Find the distance z from the foot
of the wall at which the stream strikes the floor. (b) Could a hole be punched at
another depth so that this second stream would have the same range? If so, at what
depth?

Fig. 18-18

12. The upper surface of water in a standpipe is a height H above level ground. At
what depth h should a small hole be put to make the emerging horizontal water stream
strike the ground at the maximum distance from the base of the standpipe? What is
this maximum distance?

13. Calculate the speed of efflux of a liquid from an opening in a tank, taking into
account the velocity of the top surface of the liquid, as follows. (a) Show, from
Bernoulli's equation, that

2	
2gh=

I -

where v is the speed of the top surface. (b) Then consider the flow as one big tube of flow
and obtain v/c 0 from the equation of continuity, so that

= 1201[l - (A o/A)2j
\vhe.re A is the tube cross section at the top and A cis the tube cross section at the open-
ing. (c) Then show that if the hole is small compared to the area of the surface,

I D	 /2qh fi + -( .4 5/A 9.
14. A Pitot tube is mounted on an airplaee wing to determine the speed of the plane

relative to the air. The tube contains alcohol and indicates a level difference of 4.9 in.
What is the plane's speed in miles, hr relative to the air?

15. Air streams horizontall y past an airplane wing of area G ft' weighing 54(1 lb.
'rue speed over the top surface is 200 ft /sec and 150 ft/see undew the I lot toni surface.
What is the lift on the \ving? The net force on it?

16. If the speed of flow past the lower surface of a wing is 350 ft/scc, what speed of
flow over the upper surface will give a lift of 20 lb/ti.27
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17. (a) Consider the stagnant air at the front edge of a wing and the air rushing over
the'wing surface at a speed v. Find the greatest value possible fort in streamline flow,
assuming air i8 incompressible and using Bernoulli's equation. Take the density of air
to be 1.2 X 10 gm/cm 5. (b) 1-low does this compare with the speed of sound of

770 miles/hr? Can you explain the differ-
ence? Why should there he any connection
between these quantities?

18. A hollow tube has a disk DD attached

	

H U	
to its end. When air is blown through the

	

H U	
tube, the disk attracts the card CC. Let

	

HH	 - -	 the area of the card he A and let v be the

	

________Rh Ii
	 D

	UI IU	 average airspeed between CC and DD (Fig.
18-19); calculate the resultant upward force

	

04	 '	 O	 on CC. Neglect the card's weight.

C	
C	 19. Before Newton proposed his theory of

gravitation, a model of planetary moi.ion
proposed by René Descartes was widely

Fig. 1819	 accepted. In Descartes' model the planets
were caught in and dragged along by a whirl-
pool of ether particles centered around the

sun. Newton showed that this vortex scheme contradicted observations, for: (a) The -
speed of an ether particle in the vortex varies inversely as its distance from the sun.

(b) The period of revolution of such a particle varies
directly as the square of its distance from the sun.

	

I	 I	 I I	 (c) This result contradicts Kepler's third law. Prove
(a), (b), and (c).

20. Consider a uniform U-tube with a diaphragm at
-	 the bottom and filled with a liquid to different heights

- in each arm (see Fig. 18-20). Now imagine that the
diaphragm is punctured so that the liquid flows from
left to right. (a) Show that application of Bernoulli's
principle to points 1 and 3 leads to a contradiction.

Diaphragm

	

	 (b) Explain why Bernoulli's principle is not applicable
here. (Hint: Is the flow steady?)

Fig. 18-20 ii. Show that the constant in Bernoulli's equation
(Eq. 18-6) is the same for all streamlines in the case
of the steady, irrotational flow of Fig. 18-11.

22. (a) Consider a stream of fluid of density p with speed v i passing abruptly from a
cylindrical pipe of cross-sectional area a l into a wider cylindrical pipe of cross-sectional
area a (see Fig. 18-21). The jet will mix with the surrounding fluid and, after the
mixing, will flow on almost uniformly with an average speed t'. Without referring to

Fig. 18-21
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the details of the mixing, use momentum ideas to show that the increase in pressure due
to the mixing is approximately

Pt - P1	 pV2(VI - Vt).

(b) Show from Bernoulli's principle that in a gradually widening pipe we would get

P2 - p1 = 1p(v 2 - V22)

and explain the loss of pressure [the difference is p(v1 - p0 9 due to the abrupt enlarge-
ment of the pipe. Can you draw an analogy with elastic and inelastic collisions in
particle mechanics?

23. A force field is conservative if / F ds = 0. The circle on the integration sign
means that the integration is to be taken along a closed curve (a round trip) in the field.
A flow is a potential flow (hence irrotational) if j r v ds = 0 for every closed path in
the field.

Using this criterion, show that the fields of Figs. 18-11 and 18-14 are fields of poten-
tial flow.

24. The so-called Poiseuille field of flow is shown in Fig. 18-22. The spacing of the
streamlines indicates that although the motion is rectilinear, there is a velocity gradient
in the transverse direction. Show that such a flew is rotational.

-s

.1

	

-	 t

Fig. 18-22

25. In flows that are sharply curved centrifugal effects are appreciable. Consider an
element of fluid which is moving with speed v along a streamline of a curved flow in a
horizontal plane (Fig. 18-23).

L	
•I/pP

•-	 •/<

Centerof
curvature

Fig. 18-23
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(a) Show that dp/dr = pv 2 1r, so that the pressure increases by an amount, pv 2 /r per unit

distance perpendicular to the streamline as we go from the concave to the convex side of
the streamline.

(b) Then use Bernoulli's equation and this result to show that yr equals a constant, so
that speeds increase toward the center of curvature. Hence, streamlines that are uni-
form!y spaced in a straight pipe will he crowded toward the inner wall of a curved
passage and widely spaced toward the outer wall. This prol'lciii should be compared
'.o Problem 17-22 in which the curved motion is produced by rotating a container.
There the speed varied directly with r, but here it varies inversely.

c) Show that this flow is irrotational.



Waves in Elastic Media

CHAPTER 19

19-1 Mechanical Waves

Wave motion appears in almost,every branch of physics. We are all
familiar with water waves. There are also sound waves, as well as light
waves, radio waves, and other electromagnetic waves. One formulation
of the mechanics of atoms and subatomic particles is called wave mechan-
ics. Clearly the properties and behavior of waves are very important in
physics.

In this chapter and the next we confine our attention to waves in deform-
able or elastic media. These waves, among which ordinary sound waves
in air are one example, might be called mechanical waves. They originate
in the displacement of some portion of an elastic medium from its normal
position, causing it to oscillate about an equilibrium position. Because of
the elastic properties of the medium, the disturbance is transmitted from
one layer to the next. This disturbance, or wave, consequently progresses
through the medium. Note that the medium itself does not move as a
whole along with the wave motion; the various parts of the medium oscil-
late only in limited paths. For example, in water waves small floating
objects like corks show that the actual motion of various parts of the water
is slightly up and down and back and forth. Yet the water waves move
steadily along the water. As they reach floating objects they set them in
motion, thus transferring energy to them.* Energy can be transmitted
over considerable distances by wave motion. The energy in the waves is
the kinetic and potential energy of the matter, but the transmission of the

• See "Ocean Waves," by Willard Bascom, Scientific American, August 1957.
463



464	 WAVES IN ELASTIC MEDIA	 Chap. 19

energy comes about by its being passed along from one part of the matter to
the next, not by any long-range motion of the matter itself. Mechanical
waves are characterized by the transport of energy through matter by the
motion of a disturbance in that matter without any corresponding bulk
motion of the matter itself.

It is necessary to have a material medium to transmit mechanical waves.
We do not need such a medium, however, to transmit electromagnetic
waves, light passing freely, for example, through the near vacuum of space
from the stars. The properties of the medium that determine the speed of
a wave through that medium, as we will see in Section 19-5, are its inertia
and its elasticity. All material media, including, say, air, water and steel,
possess these properties and can transmit mechanical waves. It is the
elasticity that gives rise to the restoring forces on any part of the medium
displaced from its equilibrium position; it is the inertia that tells us how
this displaced portion of the medium will respond to these restoring forces.
Together these two factors determine the wave speed.

19-2 Types of Waves

In listing water waves, light waves, and sound waves as examples of wave
motion, we are classifying waves according to their broad physical proper-
ties. Waves can be classified in other ways.

We can distinguish different kinds of waves by considering how the
motions of the particles of matter are related to the direction of propagation
of the waves themselves. If the motions of the matter particles conveying
the wave are perpendicular to the direction of propagation of the wave
itself, we then have a transverse wave. For example, when a vertical string
under tension is set oscillating back and forth at one end, a transverse wave
travels down the string; the disturbance moves along the stting but the
string particles vibrate at right angles to the direction of propagation of the
disturbance (Fig. 19-1a).

Light waves are not mechanical waves. The disturbance that travels
along is not a motion of matter but an electromagnetic field (Chapter 40).
But because the electric and magnetic fields are perpendicular to the direc-
tion of propagation, light waves are also transverse wages.

If, however, the motion of the particles conveying a mechanical wave is
back and forth along the direct.iou of propagation, we then have a longi-
tudinal wave. For example, when a vertical spring under tension is set
oscillating up and down at one end, a longitudinal wave travels along the
spring; the coils vibrate back and forth in the direction in which the dis-
turbance travels along the spring (Fig. 19-1b). Sound waves in a gas are
longitudinal waves. We shall discuss them in greater detail in Chapter 20.

Some waves are neither purely longitudinal nor purely transverse. For
example, in waves on the surface of water the particles of water move both
up and down and back and forth, tracing out elliptical paths as the water
waves move by.

Waves can also be classified as one-, two-, and three-dimensional waves,
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(a)

Iv

	

!7v	

c7v iv

(b)
Fig. 19.4 (a) In a transverse wave the particles of the medium (string) vibrate at
right angles to the direction in which the wave itself is propagated. (b) In a longi-
tudinal wave the particles of the medium (spring) vibrate in the same direction as that
in which the wave itself is propagated.
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according to the number of dimensions in which they propagate energy.
Waves moving along the string or the spring of Fig. 19-1 are one-dimen-
sional. Surface waves or ripples on water, caused by dropping a pebble
into a quiet pond, are two-dimensional. Sound waves and light waves
which emanate radially from a small source are three-dimensional.

Waves may he classified further according to the behavior of a particle of
the matter conveying the wave during the course of time the wave propa-
gates. For example, we can produce a pulse or a single ware traveling down
a taut rope by applying a single sidewise movement at its end. Each
particle remains at rest until the pulse reaches it, then it moves during a
short time, and then it again remains at rest. If we continue to move the
end of the rope back and forth (Fig. 19-la), we produce a train of waves
traveling along the rope. If our motion is periodic, we produce a periodic
train of waves in which each partcle of the rope has a periodic motion. The
simplest special case of a periodic wave is a simple harmonic wave which
gives each particle a simple harmonic motion.

Consider a three-dimensional pulse. We can draw a surface through
all points undergoing a similar disturbance at a given instant. As time
goes on, this surface moves along showing how the pulse propagates. We
can draw similar surfaces for subsequent. pulses. For a periodic wave we
can generalize the idea by drawing in surfaces, all of whose points are in
the same phase of motion. These surfaces are called wavefronts. If the
medium is homogeneous and isotropic, the direction of propagation is
always at right angles to the wavefront. A line normal to the wavefronts,
indicating the direction of motion of the waves, is called a ray.

Wavefronts can have many shapes. If the disturbances are propagated
in a single direction, the waves are called plane wares. At a given instant
conditions are the same everywhere on any plane perpendicular to the
direction of propagation. The wavefronts are plane and the rays are
parallel straight lines (Fig. 19-2a). Another simple case is that of spherical
waves. Here the disturbance is propagated out in all directions from a

Fig. 9-2 (a) A plane wave. The planes represent wavefronts spaced a wavelength
apart., and the arrows represent rays. (b) A spherical wave. The rays are radial and
the wavefront.s, spaced a wavelength apart, form spherical shells. Far out from the
source, however, small portions of the warefronts become nearly plane.
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point source of waves. The wavefronts are spheres and the rays are
radial lines leaving the point source in all directions (Fig. 19-2h). Far
from the source the spherical wavefronts have very small curvature, and
over a limited region they can often be regarded as plane. Of course,
there are many other possible shapes for wavefronts.

We shall refer to all these rave types as we progress through the wave
phenomena of physics. In this chapter we often use the transverse wave
in a string to illustrate the general properties of waves. In the next chap-
ter we shall see the consequences of these properties for sound, a longi-
tudinal mechanical wave. Later in the text we will discuss the properties
of nonmechanical waves such as light and matter waves.

19-3 Traveling Waves

Let us consider a long string stretched in the .r-direction along which a
transverse wave is traveling. At some instant of time, say t = 0, the shape
of the string can be represented by

Y = 1(z)	 t = 0,	 (19-1)

where y is the transverse displacement of the string at the position x. In
Fig. 19-3a we show a possible waveform (a pulse) on the string at 1 0.
Experiment shows that as time goes on such a wave travels along the string
without changing its form, provided internal frictional losses are small
enough. At some time t later the wave has traveled a distance vi to the
right, where v is magnitude of the wave velocity, assumed constant. The
equation of the curve at the time £ is therefore

Y =f(z - vi)	 I = t.	 (19-2)

This gives us the same waveform about the point z = vi at time I as we
had about x = 0 at the time £ = 0 (Fig. 19-3b). Equation 19-2 is the

Y	 y
I,t

Ox

(a)	 (b)

Fig. 19-3 (a) The shape of n string (in this case a pulse) at t = 0. (h) At a later
time I the pulse has traveled to the right a distance x
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general equation representing a wave of any shape traveling to the right. To
describe a particular shape we must specify exactly what the function! is.

Let us look more carefully at this equation. If we wish to follow a par-
ticular part (or phase) of the wave as times goes on, then in the equation
we look at a particular value of y (say, the top of the pulse just described).
Mathematically this means we look at how x changes with t when (x - Vt)
has some particular fixed value. We see at once that as t increases x must
increase in order to keep (x - vi) fixed. Hence, Eq. 19 2 does in fact

represent a wave traveling to the right (increasing x as time goes on). If
we wished to represent a wave traveling to the left, we would write

y = f(x + Vt),	 (19-3)

for here the position x of some fixed phase (x + vt) of the wave decreases-as
time goes on. The velocity of a particular phase of the wave is easily
obtained. For a particular phase of a wave traveling to the right we

require that
x - vi constant.

Then differentiation with respect to time gives

dx	 dx
--v0	 or	 —v,	 (19-4)

di	 di

so that v is really the phase velocity of the wave. For a wave traveling to
the left we obtain —v, in the same way, as its phase velocity.t

The general equation of a wave can be interpreted further. Note that
for any fixed value of the time t the equation gives y as a function of x.
This defines a curve, and this curve represents the actual shape of the
string at this chosen time. It gives us a snapshot of the wave at this time.
Suppose, on the other hand, we wish to focus our attention on one point of
the string, that is, a fixed value of x. Then the equation gives us y as a
function of the time t. This describes how the transverse position of this
point on the string changes with time.

The argument just presented holds for longitudinal waves as well as for
transverse waves. The analogous longitudinal example is that of a long
straight tube of gas whose axis is taken as the x-axis, and the wave or pulse
is a pressure change traveling along the tube. Then the same reasoning
leads us to an equation, having the form of Eqs. 19-2 and 19-3, which gives

the pressure variations with time at all points of the tube. (See Section

-20-3.)

* When we say that "i, is a function of (x - vi),-.we mean that the variables rand S

occur only in the combination x - vi. For example, sin k(x - vt), log (z - vi), and

(x - Vt) 3 are functions of x - vi, but x 1 - vS 2 is not.
In disturbances that can be represented as a group of waves, the energy may be

transported with a velocity different from the phase velocity of any individual wave.
This group velocity will be considered in Chapter 39 in connection with electromagnetic
waves. Until then whenever wb use the term wave velocity we mean the phase velocity
of the wave.
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-	 —t_o	 -.

Fig. 19-4 At t = 0, the string has a shape y = Ym sin 27x/X (solid line). At a later
time t the sine wave has moved to the right a distance z = vt, ad the string has a shape
given by y	 y,, sin 2,r(x - vi)/).

Let US now consider a particular waveform, whose importance will soon
become clear. Suppose that at the time t = 0 we have a wavetrain along
the string given by

	

y=Y sin x.	 (19-5)

The wave shape is a sine curve (Fig. 19-4). The maximum displacement
Ym is the amplitude of the sine curve. The value of the transverse displace-
ment y is the same at z as it is at x + X, x + 2X, etc. The symbol X is
called the wavelength of the wavetrain and represents the distance between
two adjacent points in the wave having the same phase. As times goes en
let the wave travel to the right with a phase velocity v. Hence, the equa-
tion of the wave at the time t is

y = y. sin 
2r
-- (x - Vt).	 (19-6)

Notice that this has the form required for a traveling wave (Eq. 19-2).
The period T is the time required for the wave to travel a distance of one

wavelength X, so that
X = vT.	 (19-7)

Putting this relation into the equation of the wave, we obtain

Y =	 sin 21r( - !).	 ( 19-8)

From this form it is clear that y, at any given time, has the same value at
x + X, x + 2X, etc., as it does at x, and that y, at any given position, has
the same value at the time t + T, t + 2T, etc., as it does at the time t.

To reduce Eq. 19-8 to a more con	 form, we define two quantities,
the wave number k and the angular fr,	 cq w (see Eq. 1.--i2). The:
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given by

k =	 and	 (19-9)

In terms of these quantities, the equation of a sine wave traveling to the
right is

Y = y,,, sin (kx - wt).	 (19-10a)

For a sine wave traveling to the left, we have

Y = i/rn sin (kx +	 (19-1Ob)

Comparing Eqs. 19-7 and 19-9, we see that the phase velocity v of the wave

is given by

(19—ii)

In the traveling waves of Eqs. 19-10a and 19-10b we have assumed that
the displacement y is zero at the position x = 0 at the time t = 0. This, of
course, need not be the case. The general expression for a sinusoidal wave-
train traveling to the right is

y = y,,. sin (Lx -	 -

wic're 0 is called the phase constant. For example, if 	 _900, the dis-
placement y at x = 0 and I = 0 is y,,,. This particular example is

y	 y,,, cos (kx -

for the cosine function is displaced by 90° from the sine function.
If we fix our attention on a given point of the string, say x 	 ir/k, the

displacement y at that point can be written* as

y = Yrn sin (.,t + ).

This is similar to Eq. 15-29 for simple harmonic motion. Hence, any par-
ticular element of the string undergoes simple harmonic motion about its
equilibrium position as this wavetrain travels along the string.

19-4 The Superposition Principle

It is an experimental fact that for many kinds of waves two or more waves

can traverse the same space independently of one another. The fact that
waves act independently of one another means that the displacement of
any particle at a given time is simply the sum of the displacements that
the individual waves alone would give it. This process of vector addition
of the displacements of a particle is called superposition. For example,
radio waves of many frequencies pass through a radio antenna; the electric
currents set up in the antenna by the superposed action of all these waves
are very complex. Nevertheless, we can still tune to a particular station,

* Using the fact that sin (Y 	 0)	 sin 0.
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the signal that we receive from it being in principle the same as that which
we would receive if all other stations were to stop broadcasting. Likewise,
in sound we can listen to notes played by individual instruments in an
orchestra, even though the sound wave reaching our ears from the full
orchestra is very complex.

For waves in deformable media the superposition principle holds when-
ever the mathematical relation between the deformation and the restoring
force is one of simple proportionality. Such a relation is expressed mathe-
matically by a linear equation. For electromagnetic waves the superposi-
tion principle holds because the mathematical relations between the elec-
tric and magnetic fields are linear.

The superposition principle seems so obvious that it is worthwhile to point out
that it does not always hold. Superposition fails when the equations governing
wave motion are not linear. Physically this happens when the wave disturbance
is relatively large and the ordinary linear laws of mechanical action no longer hold.
For example, beyond the elastic limit Hooke's law no longer holds and the linear
relation F	 —/cx can no longer be used.

As for sound, violent explosions create shock waves. Although shock waves are
longitudinal elastic waves in air, they behave differently from ordinary sound
waves. The equation governing their propagation is quadratic, and superposition
does not hold. With two very loud notes the ear hears something more than just
the two individual notes. Those familiar with high-fidelity apparatus will know
that "intermodulatjon distortion" between two tones arises when the system fails
to combine the tones linearly, and that this distortion is more apparent when the
amplitude of the tones is high. A more obvious physical example is water waves.
Ripples cannot travel independently across breakers as they can across gentle
swells.

The importance of the superposition principle physically is that, where
it holds, it makes it possible to analyze a complicated wave motion as a
combination of simple waves. In fact, as was shown by the French mathe-
matician J. Fourier (1768-1830), all that we need to build up the most
general form of periodic wave are simple harmonic waves . * Fourier
showed that any periodic niotion of a particle can be represented as a
combination of simple harmonic motions. For example, if y(t) represents
the motion of a source of waves having a period T, we can analyze y(t) as
follows:

y(t) = A o + A 1 sin o1 + A 2 siii 20 + A 3 sin 3wt + .
+Bi cos wl+B 2 cos 2ol+B 3 cos 3t+

where w = 27r/T. This expression is called a Fourier series. .PThe A's and
B's are constants which have definite values for any particular periodic
'notion y(l). (See Fig. 19-5, for example.) If the motion is not periodic,
as a pulse, the sum is replaced by all the so-called Fourier integral.
Hence, any motion of a source of waves can be represented in terms of
simple harmonic motions. Since the motion of the source creates the

* See, for example, Thomas, Calculus and Analytic Geomeh-y, Addison-Wesley, second
edition, 1953, pp. 596-599.
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Fig. 19-5 (a) The dashed line is a sawtooth "wave" commonly encountered in elec-
tronics.. It can be written y() = (e,/27)t - for 0 < £ < 2,r/..,, as Y()'= (,,J27)t -

for 2-/ < t <	 etc. The Fourier series for this function is y(t)	 - sin wi -
- sin 2et - sin 3,t - . . . . The solid line is the sum of the first six te'ms of this
series and can be seen to approximate the sawtooth quite closely, except for overshooting
near the discontinuities. As more terms of the series are included, the approximation
becomes better and better. (b) Here are shown the first six terms of the Fourier series
which, when added together, yield the solid curve in (a).

waves, it should come as no surprise that the waves themselves can be
analyzed as combinations of simple harmonic waves. Herein lies the
importance of simple harmonic motion and simple harmonic waves.

19-5 Wave Speed

Given the characteristics of the medium it should be possible to calculate
the wave speed from the basic principles of Newtonian mechanics. In this
section we continue to focus our atten'ion on transverse waves in a string
and in Supplementary Topic III we show how to calculate the speed of such
waxes in the most general way, Here wc consider two other approaches—
a treatment based on dimensional analysis and a somewhat less general
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mechanical analysis in which we compute the speed of a transverse pulse
along a stretched string.

We stated in Section 19-1 that the wave speed for a medium depends on
the elasticity of the medium and on its inertia. Fora stretched string the
elasticity is measured by the tension F in the string; the greater the tension
the greater will be the elastic restoring force on an element of the string
that is pulled sideways. The inertia characteristic is measured by h, the
mass per unit length of the string. Assuming, then, that the wave speed v
depends only on F and p, we can use dimensional analysis to find how v
depends on these quantities. In terms of mass M, length L, and time T,
the dimensions of F are MLT 2 and the dimensions of ,a are ML'. The
only way these dimensions can be combined to get a velocity (which has
he dimensions LT') is to take the square root of Flu. That is, Flu has
the dimensions L'T 2 and has the dimensions LT' of a velocity.
Dimensional analysis cannot account for any dimensionless quantities, so
that the result

p
(19-12)

may or may not be complete: The most we can say is that the wave speed
is equal to a dimensionless constant times v'7. The value of the con-
stant can be obtained from a mechanical analysis of the problem or from
experiment. These methods show that the constant is equal to unity and
that Eq. 19-12 is correct as it stands.

Now let us derive the velocity of a pulse in a stretched string by a mechanical
analysis. In Fig. 19-6 we show a wave pulse proceeding from right to left in the
string with a speed v. We can imagine the entire string to be moved from left to
right with this same speed so that the wave pulse remains fixed in space, whereas
the particles composing the string successively pass through the pulse. This
simply means that, instead of taking our reference frame to be the walls between
which the string is stretched, we choosea reference frame which is in uniform
motion with respect to that one. Because Newton'Iaws involve only accelera-
tions, which are the same in both frames, we can use them in either frame. We
just happen to choose a more convenient frame.

We consider a small section of the pulse of length Al to form an arc of  circle of
radius R, as shown in the diagram. If p is the mass per unit length of the string,
the so-called linear density, then p Al is the mass of this element. The tension F
in the string is a tangential pull at each end of this small segment of the string.
The horizontal components cancel and the vertical components are each equal to

Fig. 19-6 Derivation of wave	 F	 RF -

speed by considering the forces	 _____________________
On a section of string of length	 o
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F sin 0. Hence, the total vertical force is 2F sin 0. Since 0 j8 small, we can take

sin 88 and

This gives the force supplying the centripetal acceleration of the string particles
directed toward 0. Now the centripetal force acting on a mass JA Al moving in a

circle of radius R with speed v is 4u al vt/R; see Section 6-3. Notice that the

tangential velocity v of this mass element along the top of the arc is horizontal and
is the same as the pulse phase velocity. Combining the equivalent expressions
just given we obtain

L.Al	 Al V2

H H

or

If the amplitude of the pulse were very large compared to the length of the string,
we would not have been able to use the approximation sin 0 8. Furthermore,

the tension F in the string would be changed by the presence of the pulse, whereas
we assumed F to be unchanged from the original tension in the stretched string.
Therefore, our result, like superposition, holds only for relatively small transverse
displacements of the string—which ease, however, is widely applicable in practice.
Notice also that the wave speed is independent of the shape of the wave, for no
particular assumption about the actual shape of the pulse was used in the proof.

The frequency of a wave is naturally determined by the frequency of the
source. The speed with which the wave travels through a medium is
determined by the properties of the medium, as illustrated before. Once
the frequency p and speed v of the wave are determined, the wavelength X

is fixed. In fact, from Eq. 19-7 and the relation, p = lIT, we have

V (19-13)
p

Example 1. A transverse sinusoidal wave is generated at one end of a long
horizontal string by a bar which moves the end up and down through a distance
of I ft. . The motion is continuous and is repeated regularly twice each second.

(a) If the string has a linear density of 0.0050 slug/ft and is kept under a ten-
sion of 2.0 lb, find the speed, amplitude, frequency, and wavelength of the wave
motion.

The end moves -I- ft away from the equilibrium position, first above it, therL
below it, for a total displacement of I ft. Therefore, the amplitude y,,, is + ft.

The entire motion is repeated twice each second so that the frequency is 2.0
vibrations per second.

The wave speed is given by v	 V"F/. But F 2.01b, and - 0.0050 slug/ft,

so that

V	
lb	 - 20 ft/sec.

0.0050 slug/ft

The wavelength is given by X = v/i', so that

20 ft/sec = 10 ft.
2.0 vib/sec
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(b) Assuming the wave moves from left to right and that, at £ 0, the end of
the string described by x 	 0 is in its equilibrium position ,	 0, write the equation

of the wave.
The general expression for a transverse sinusoidal wave moving from left to

right is
y = y,., sin (kz - wt -

Requiring that y = 0 for the conditions z = 0 and t = 0 yields

0 = y.sin (- 0),

which means that the phase constant 0 must be zero. * Hence for this wave

= y,,, sin (kx - wt),

and with the values just found,

y,_ = 1 ft = 0.25 ft,

	

X=lOft	 or	
21r

	

v = 20 ft/sec	 or	 w = v/c = 4w sec,

we obtain as the equation for the wave

y = 0.25 sin (0.2rx - 4rt),

where x and y are in feet and t is in seconds.

Example 2. As this wave passes along the string, each particle of the string
moves up and down at right angles to the direction of the wave motion. Find the
velocity and acceleration of a particle 10 ft from the end.

The general form of this wave is

y = y,,. sin (kx - wt) = y.,, sin k(x - vi).

The v in this equation is the constant horizontal velocity of the wavetrain. What
we are after now is the velocity of a particle in the string through which this wave
moves; this particle velocity is neither horizontal nor constant. In fact., each par-
ticle moves vertically, that is, in the y-direction. In order to determine the par-
ticle velocity, which we shall designate by the symbol u, let us fix our attention on
a particle at a particular position x—that is, x is now a constant in this equation—
and ask how the particle displacement y changes with time. With x constant we
obtain

ay
U - =

	

at	
—y,nu cos (kx -

in which the partial derivative notation ay.lat reminds us that although in general
Y is a function of both z and t, we here assume that z remains constant so that
becomes the only variable. The acceleration a of the particle at this (constant),

• It could also be r, 2,r, 3,r, etc., but these values for 0 will not change our final results,
as the student should how.
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value of x is

ay _ aua	 - -
at

 —Y.W2 sin (kx - w() = —w'y.

This shows that for each particle through which this transverse sinusoidal wave
passes we have precisely SlIM (simple harmonic motion), for the acceleration a
is proportional to the displacement y, but oppositely directed.

For a particle at x 10 ft with the wave of Example 1, in which

	

y. = 0.25 ft,	 k = ft—',	 w = 4T sec,

we obtain	 u = — y,w cos (kx— wt)

or	 u	 —(0.25) [4ir cos (
	

- 4rt)] = —r cos (2ir - 47rt),

a = —w2y

or a = —(4ar) 20.25 sin (0.2rx - 4r) = — 41r 2 sin (21r - 4nt),

where t is expressed in seconds u in ft/sec and a in ft/sec2.
Can you describe the motion of this particle at the time 	 4 sec?

19-6 Power and Intensity in Wave Motion

In Fig. 19-7 we draw an element of the stretched string at some position x and
at a particular time t. The tran8ver8e componerrt of the tension in the stringexerted by the element to the left of x on the element of the right of x is

= —F a1,-
ax

F is the tension in the string; ay/ax gives the tangent of the angle made by the
direction of F with the horizontal at the time tin question and, because we assume
small displacements, this can be taken equal also to the sine of the angle. The
transverse force is in the direction of increasing y; in the figure the slope is nega-
tive, so the transverse force is positive. The transverse velocity of the particle
at x is ay/at, which may be positive or negative. The power being expended by

and

4

-.
---••-	 .....

-
...----	 .. .....

..	 -.	 ,..	 -

FO /0

WT

Fig. 19-7 The transverse compo-
nent of the tension in the string at
each point x is P (8y/ax).
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the force at z, or the energy passing through the position z per unit time in the
positive x-direction (see Section 7-6), is

ax at

Suppose that the wave on the string is the simple sine wave

y,,. sin (kz - wt).

Then the magnitude of the slope at x is

a1,

T
- =	 cos (kx - wt),	 [t constant]

X

and the transverse force is

= -Fky,., cos (kx - wt).
az

The transverse velocity of a particle of the string at x is

ay
U	 =	 cos (kx - wt)	 fx constant).

Hence, the power transmitted through x is

P = (-Flcy.,)(-wy,,,) coal (kx - wt),

y,,, 2kwF cos' (kx -

Notice that the power or rate of flow of energy is not constant. The power is not
constant because the power input oscillatei As the energy is passed along the
string, it is stored in each element of string as a combination of kinetic energy of
motion and potential energy of deformation. The situation is much like that in
an alternating current circuit; there energy is stored both in the inductor and in
the capacitor and, the power input oscillates. For a string the power is absorbed
by internal friction and viscous effects and appears as heat; in the circuit the power
is expended in the resistor and appears as heat. The power input to the string
or the circuit is often taken to be the average over one period of motion. The
average power delivered is

-	 1
Pd,

where 2' is the period. Using the fact that the average value of sin' x or cos 2 x

	

over one cycle is -, we obtain for the string	 -

Pr -y,,, 2kw	 ,,,F = 2 2y 2 v',

a result which does not depend on x or t. For the string, however, v
so that

P = 22y,.,2v21zv.

The fact that the rate of transfer of energy depends on the square of the wave
amplitude and square of the wave frequency is true in general, holding for all
types of waves.

The student should confirm the fact that, if we had picked a wave traveling in
the negative x-direction, we would have obtained the negative of this result.
That is, the wave delivers power in the direction of save propagation.
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In a three-dimensional wave, such as a light wave or a sound wave from a point
source, it is more significant to speak of the intensity of the wave. Intensity is
defined as the power transmitted across a unit area normal to the direction in which
the wave is traveling: Just as with power in the wave in a string, the intensity of
a space wave is always proportional to the square of the amplitude.

As a wave progresses through space, its energy may be absorbed. For example,
in a viscous medium, such as syrup or lead, mechanical waves would rapidly decay
in amplitude and disappear, owing to absorption of energy by internal friction.
In most cases of interest Lo us, however, absorption will be negligible. Through-
out this chapter we have assumed that there is no loss of energy in a given wave,
no matter how far ii. tra'.els.

Example 3. Spherical waves travel from a source of waves whose power
output is P; see Fig. 19-8. Find how the wave intensity depends on the distance
from the source- We assume that the medium is isotropic and that the source radi-
ates uniformly in all directions, that is, that its emission is spherically symmetrical.

-

A2
A

Fig. 19-8 Example 3.

rl

The intensity of a 3-dimensional wave is the power transmitted across a unit
area normal to the direction of propagation. As the wavefront expands from a
distance r, from the source at the center to a distance r 2 , its surface area increases

from 4r1 2 to 4rr22. If there is no absorption of energy, the total energy trans-
ported per second by the wave remains constant at the value P, so that

P = 4rrj 21i = 47rr2212,

where Ii and 12 are the wave intensities at r j and r 2 respectively. Hence,

- r22
.12 - r12

and the wave intensity varies inversely as the square of its distance from the
source. Since the intensity is proportional to the square of the amplitude, the
amplitude of the wave must vary inversely as the distance from the-source. 	 I

19-7 Interference of Waves

Interference refers to the physical effects of superimposing two or more
wave trains. Let us consider two waves of equal frequency and amplitude
traveling with the same speed in the same direction (+x) but with a phase
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difference 4. between them. The equations of the two waves will be

Yi = 1/rn sin (kx - wt - 4.)
	

(19-14)

and
	

1/2	 y, sin (kx - wt).	 (19-15)

We can rewrite the first equation in two equivalent forms

1 /
1/i = y,, sin 

L"	 - 
4.\ - wt (19-14)

or	 1/i = y,,, sin [kx -	 + f)].	 (19-14b)

Equations 19-14a and 19-15 suggest that if we take a "snapshot" of the
two waves at any time t, we will find them displaced from one another
along the x-axis by the constant distance 4./k. Equations 19-14b and
19-15 suggest that if we station ourselves at any position x the two waves
will give rise to two simple harmonic motions having, a constant time differ-
ence 01w. This gives some insight into the meaning of the phase difference
4..

Now let us find the resultant wave, which, on the assumption that super-
position occurs, is the sum of Eqs. 19-14 and 19-15 or

1/ = 1/1 + Y2 = Yrn1Sfl (kx — ,)i - 4.) + sin (kx - cot)].

From the trigonometri6 equation for the sum of the sines of two angles

sin B + sin C = 2 sin 4'(B ± C) cos RC - B),	 (19-16)

we obtain	 y = y,,, [2 sin(kx — wt - 4.\
	 4.1

= 2y. cos	 sin (kz —	
-	

( 19-17)

This resultant wave corresponds to a new wave having the same fre-
quency but with an amplitude 2y,,, cos (4)/2). If 4. is very small (compared
to 1800), the resultant amplitude will be nearly 2y,,,. That is, when 4. is
very small, cos (4./2) cos 00 = 1. When 4. is zero, the two waves have
the same phase everywhere. The crest of one corresponds to the crest of
the other and likewise for the troughs. The waves are then said to inter-
fere constructively. The resultant amplitude is just twice that of either
wave alone. If 0 is near 180°, on the other hand, the resultant amplitude
will be nearly zero. That is, when 4. 180°, cos (4./2) cos 900 = 0.
When 4 is exactly 180°, the crest of one wave corresponds exactly to the
trough of the other. The waves are then said to interfere destructively.
The resultant amplitude is zero.

In Fig. 19-9a we show the superposition of two wavetrains almost in
phase (4) small) and in Fig. 19-9b the superposition of two wavetrains
almost 1800 out of phase (4. 1800). Notice that in these figures the
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Fig. 19-9 (a) The superposition of two waves of equal frequency and amplitude that
are almost in phase results in a wave of almost twice the amplitude of either com-
ponent. (b) The superposition of two waves of equal frequency and amplitude and
almost 1800 out of phase results ma wave whose amplitude is nearly zero. Note that
in both the resultant frequency is unchanged. (The drawings correspond to the
instant 9 = 0.)

algebraic sum of the ordinates of the thin (component) curves at any value
of x equals the ordinate of the thick (resultant) curve. The sum of two
waves can, therefore, have different values, depending on their phase
relations.

The resultant wave will be a sine wave, even when the amplitudes of the
component sine waves are unequal. Figure 19-10, for example, illustrates
the addition of two sine waves of the same frequency and velocity but
different amplitudes. The resultant amplitude depends on the phase dif-
ference, which is taken as zero in this figure. The result for other phase
differences could be obtained by shifting one of the component waves side-
ways with respect to the other and would give a smaller resultant ampli-
tude. The smallest resultant amplitude would be the difference in the
amplitudes of the components, obtained when the phases differ by 1800.
However, the resultant- is always a sine wave. The addition of any
number of sine waves having the same frequency and velocity gives a



Fig. 9-10 The addition of
two waves of same frequency
and phase but differing ampli-
tudes 00ight lines) yields a
third wave of the same fre-
quency and phase (heavy line).
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similar result. The resultant waveform will always have a constant ampli-
tude because the component waves (and their resultant) all move with the
same velocity and maintain the same relative position. The actual state
of affairs can be pictured by having all the waves in Figs. 19-9 and 19-10
move toward the right with the same speed.

In practice, interference effects are obtained from wavetrains which
Driginate in the same source (or in sources having a fixed phase relationship
Lo one another) but which follow different paths to the point of interference.
The phase difference 0 between the waves arriving at a point can be
alculated by finding the difference between the paths traversed by them

From the source to the point of interference. The path difference is O lk or
(/2w)A. When the path difference is 0, X, 2X, 3X, etc., so that 0 = 0,
2w, 4w, etc., the two waves interfere constructively. For path differences
Df X, JX, -IX, etc., 0 is r, 3w, 5w, etc., and the waves interfere destructively.
We shall return to these matters later in more detail.

19-8 Complex Waves

The waves we have considered so far have been of the simple harmonic type, in
which the displacements at any time are represented by a sine curve. We have
seen that superposition of any number of such waves having the same frequency
and velocity, but arbitrary amplitudes and phases, still gives rise to a resultant
wave of this simple type. If, however, wa, superimpose waves that have different
frequencies, the resulting wave is complex. In a complex wave the motion of a
particle is no longer simple harmonic motion, and the wave shape is no longer a sine
curve. In this section we consider only the qualitative aspects of complex waves.
The analytical treatment of such waves will be given when we encounter physical
situations described by them. We will look at the results of adding graphically
two or more waves traveling with the same speed in the same direction but having
various relative frequencies, amplitudes, and phases.

In Figs. 19-11e and 19-11b we add two waves having the same amplitude but
having frequencies in the ratio 3 to 1; the phase relation is changed from a to b and
we see how changing the phase relation may produce a resultant of very different
form. If these represent sound waves, our eardrums will vibrate in a way repre-
sented by the resultant in each case, but we will hear and interpret these as the two
original frequencies, regardless of their phase relation. If the resultant waves
represent visible light, our eyes will receive the same sensation of a mixture of two
colors, regardless of the phase relation of the components.

In Fig. 19-12 three waves of different frequencies, and amplitudes are added.
The resultant complex wave is quite different from a simple periodic wave and, in
this respect resembles waveforms normally generated by musical instruments. In
Fig. 19-13 a wave of very high frequency is added to one of very low frequency.
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y

Fig. 19-11 The addition of two waves with frequency ratio 3:1 (light lines) yields a
wave whose shape (heavy line) depends on the phase relationship of the components
Compare (a) and (b).

y

Fig. 19-12 The addition\of three waves (top) of differing frequencies yields a complex
waveform. (bottom).

y

Fig. 19-13 The addition (heavy line) of two waves of widely differing frequency
(ligit l;nes).



X

Z

Sec. 19-9	 STANDING WAVES	 483

Fig. 19-14 The addition (bottom) of two waves with nearly the same frequency
(top), illuftrating the phenomenon of beats. (see Chapter 20.)

Each component frequenc is clearly discernible in the resultant. In Fig. 19-14
two waves of nearly the same frequency are added. The resultant wave consists
of groups which, in the case of sound, produce the familiar phenomenon of beats
(Section 20-6).

In all of these figures the resultant wave is obtained under the assumption that
the principle of superposition holds, by simply adding the displacements caused by
the individual waves at every point. Because all the component waves travel with
the same velocity, the resultant waveform moves with this same velocity and the
wave shape is unchanged.

The cathode-ray oscilloscope (Chaptcr 27) gives the simplest way of observing
how complex waves can be synthesized and analyzed in terms of simple harmonic
waves.

19-9 Standing Waves

In a one-dimensional body of finite size, such as a taut string held by two
clamps a distance 1 apart, traveling waves in the string are reflected from
the boundaries of the body, that is, from the clamps. Each such reflection
gives rise to a wave traveling in the string in the opposite direction. The
reflected waves add to the incident waves according to the principle of
superposition.

Consider two wavetrains of the same frequency, speed, and amplitude
which are traveling in opposite directions along a string. Two such waves
may be represented by the equations

y j = y,, sin (kx - wt),

Y2 = Y ' Sfl (kx + wt).

Hence, the resultant may be written as

= Yi + Y2 = Ym sin (kz - wt) + y,,, sin (kx +. cot) (19-18a)

or, making use of the trigonometric relation of Eq. 19-16, as

y = 2y,, sin kx cos cot.	 (19-186)

Equation 19-18b is the equation of a standing. wave. * Notice that a

Standing waves may slso be produced in finite bodies of two or three dimensions;
ee Sections 20-5 and 38-5 respectively for examples.
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particle at any particular point x executes simple harmonic motion as time
goes on, and that all particles vibrate with the same frequency. In a
traveling wave each particle of the string vibrates with the same amplitude.
Characteristic of a standing wave, however. j8 the fact that the amplitude is not
the same for different particles but varies with the location x of the particle.*
In fact, the amplitude, 2Ym sin he, has a maximum value of 2y,,, at positions
where

3r Sir
, etc.he = i ' -i-, -- 

A 3X 5X
or	 z = -,-' -, etc.

444

These points are called antinode8 and are spaced one-half wavelength apart.
The amplitude has a minimum value of zero at positions where

he = i, 27, 3,r, etc.

or

	

	 x = 
A
-, A -, 2A, etc.
2 ' 3X2

These points are called nodes and are spaced one-half wavelength apart.
The separation between a node and an adjacent antinode is one-quarter
wavelength.

It is clear that energy is not transported along the string to the right or
to the left, for energy cannot flow past the nodal points in the string which
are permanently at rest. Hence, the energy remains "standing" in the
string, although it alternates between vibrational kinetic energy and elastic
potential energy. We call the motion a wave motion because we can think
of it as a superposition of waves traveling in opposite directions (Eq.
19-18a). We can equally well regard the motion as an oscillation of the
string as a whole (Eq. 19-18b), each particle oscillating with SHM of
angular frequency w and with an amplitude that depends on its location.
Each small part of the string has inertia and elasticity, and the string as a
whole can be thought of as a collection of coupled oscillators. Hence, the
vibrating string is the same in principlet as a spring-mass system, except
that a spring-mass system has only one natural frequency, and a vibrating
string has a large number of natural frequencies (Section 19-10).

In Fig. 19-15, in (a), (b), (c), and (d), we show a standing wave pattern
separately at intervals of one-quarter of a period in the lower figures, 3.
The traveling waves, one moving in the positive x-direction and the other
moving in the negative x-direction, whose superposition can be considered

• The combining waves moving in opposite directions along the string will still pro-
duce standing waves even if their amplitudes are unequal. We consider only the equal-
amplitude case here; see Problem 25, however.

f For a general discussion see . "On the Teaching of 'Standing Waves,'" J. Rekveld,
American Journal of Physics, March 1958, p. 159.
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Mg. 19-15 Standing waves as the superposition of left- and right-going waves; 1 and
2 are the components, 3 the resultant.

to give rise to the standing wave, are shown for the same quarter-period
intervals in the upper figures 2 and 1. Standing waves can also be pro-
duced with electromagnetic waves and with sound waves.
• In Fig. 19-16 we show how the energy associated with the oscillating
string shifts ,ack and forth between kinetic energy of motion K and
potential energy of deformation U diiring one cycle. The student should
compare this with Fig. 8-4, which shows the same thing for a mass-spring
oscillator. Oscillating strings often vibrate so rapidly that the eye per-
ceives only a blur whose shape is that of the envelope of the motion; see
Fig. 19-17.

The superposition of an incident wave and a reflected wave, being the
sum of two waves traveling in opposite directions, will give rise to a stand-
ing wave. We shall now consider the process of reflection of a wave more
closely. Suppose a pulse travels down a stretched string which is fixed at
one end, as shown in Fig. 19-18a. When the pulse arrives at that end, it
exerts an upward force on the support. The support is rigid, however,
and does not move. By Newton's third law the support exerts an equal
but oppositely directed force on the string. This reaction force generates
a pulse at the support, which travels back along the string in a direction
opposite to that of the incident pulse. We say that the incident pulse has
been reflected at the fixed end point of the string. Notice that the reflected
pulse returns with its transverse displacement reversed. If a wavetrain is
incident on the fixed end point, a reflected wavetrain is generated at that
point in the same way. The displacement of any point along the string is
the sum of the displacements caused by the incident and reflected wave.
Since the end point is fixed, these two waves must always interfere destruc-.
tively at that point so a' to give zero displacement there. Hence, the

	

rflcf	 • .. is alwav•	 •	 phase with the incident wave at n fled



Fig. 19-17 The envelope
of a standing wave, cor-
responding to a time expo-
sure of the motion, and
showing the patterns of
nodes and antinodes.
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Fig. 19-16 A standing wave in a stretched string, showing one cycle of oscillation.
At (a) the string is momentarily at rest and the energy of the system is all potential
energy of elastic deformation associated with the transverse displace'ment of the string.
(b) An eighth-cycle later the displacement is reduced and the string is in motion. The
two arrows show the velocities of the string particles at the positions shown. K and U
have the same value. (c) The string is not displaced, but its particles have their
maximum speeds; the energy is all kinetic. The motion contjnucs until the initial
condition (a) is reached after which the cycle continues to repeat itself.
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Fig. 19-18 (a) Reflection of a
pulse at the fixed end of a string.
The drawings are spaced uni-
formly in time. The phase is
changed by 180 on reflection.
(b) Reflection of a pulse at an
end free to move in a transverse
direction. (The string is at-
tached to a ring which slides ver-
tically without friction.) The
phase is unchanged on reflection.

boundary. We say that on reflection from a fixed end a wave undergoes a
phase change of 180°.

Let us now consider the reflection of a pulse at a free end of a stretched
string, that is, at an end that is free to move transversely. This can be
achieved by attaching the end to a very light ring free to slide without
friction along a transverse rod, or (see later) to a long and very much
lighter string. When the pulse arrives at the free end, it exerts a foi ce on
the element of string there. This element is accelerated and its inertia
carries it the equilibrium point; it "overshoots" and exerts a reaction
force on the string. This generates a. pulse which travels back along the
string in a direction opposite to that of the incident pulse. Once again we
get reflection, but now at a free end. The free end will obviously suffer the
maximum displaernent of the particles on the string; an incident and a
reflected wavetrain must interfere constructively at that point if we are to
have a maximum there. Hence, the reflected wave is always in phase with
the incident wave at that point (see Fig. 19-18b). We say that at a free

end a wave is reflected without change of phase.
Hence, when we have a standing wave in a string, there will be a node at

a fixed end and an antinode at a free end. These ideas will be applied to
sound waves and electromagnetic waves in subsequent chapters.
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In the treatment just given we have assumed that there is total reflection at the
boundary. In general, at a boundary there is partial reflection and partial trans..
mission. For example, suppose that instead of being attached to a rigid wall the
string is attachedto another string.. At the boundary joining the strings the
incident wave will be partly reflected and partly transmitted. The amplitude of
the reflected wave will be less than that of the incident wave because a transmitted
wave continues along the second string and carries away some of the incident
energy. If the second string has a greater linear density than the first, the wave
reflected back into the first will still suffer a phase shift of 1800 on reflection. But
because its amplitude is less than the inèident wave, the boundary point will not
be a node and will move. Thus a net energy transfer occurs along the first string
into the second. If the second string has a smaller linear density than the first,
partial reflection occurs without change of phase, but once again energy is trans-
mitted to the second string. In practice the best way to realize a 'free end" for a
string is to attach it to a long and very much lighter string. The energy trans-
mitted is negligible, and the second string serves to maintain the tension in the
first one.

It is of interest to note that the transmitted wave travels with a different speed
than the incident and reflected waves. The wave speed is determined by the
relation v /F/iz; the tension is the same in both strings, but their densities are
different. Hence, the wave travels more slowly in the denser strings The fre-
quency of the transmitted wave is the same as that of the incident and reflected
waves. Waves having the same frequency but traveling with different speeds
have different wavelengths. Hence, from the relation A = v/i' we conclude that in
the denser string, where v is less, the wavelength is shorter. This phenomenon of
change of wavelength as a wave passes from one medium to another will be encoun-
tered frequently in our study of light waves.

19-10 Resonance

In general, whenever a system capable of oscillating is acted on by a
periodic series of impulses having a frequency equal or nearly equal to one
of the natural frequencies of oscillation of the system, the stm is set into
oscillation with a relatively large amplitude. This phenomenon is called
resonance (see Section 15-10) and the system is said to resonate with the
applied impulses.

Consider a string fixed at both ends. Oscillations or standing waves can
be established in the string. The only requirement we have to satisfy is
that the end points be nodes. There may be any number of nodes in
between or none at all, so that the wavelength associated with the stand
ing waves can take on many different values. The distance between
adjacent nodes is x/2, so that in a string of length 1 there must be exactly an
integral number n of half wavelengths, X/2. That is,

nX1=1
or	 X	

21
=—'	 n=1,2,3,.

n

But	 and v v'F/ e that the natural frequercies of oscillation



Fig. 19-19 Standing waves in
a driven string when the nat-
ural and driving frequencies
are very nearly equal.
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of the system are

n=1,2,3,	 .	 (19-JO)
21	 P

If the string is set vibrating and left to itself, the oscillations gradually
die out. The motion is damped by dissipation of energy through the
elastic supports at the ends and by the resistance of the air to th e motion.
We can pump energy into the system by applying a driving force. If the
driving frequency is near that of any natural frequency of the string, the
string will vibrate at that frequency with a large amplitude. Because the
string has a large number of natural frequencies, resonance can occur
at many different frequencies. A mas3-spring system, by contrast, has
only one resonant frequency. The difference is associated with the fact
that in the mass-spring system the inertia characteristic is concentrated
("lumped") in one part of the system—the mass—and the elastic character-
istic is concentrated in a separate part of the system—the spring. We say
that this system has lumped elements.

A stretched string, on the other hand, is said to have distributed elemmts
because every element of the string has both inertia and elastic character-
istics. In, the mass-spring system, there is only one way to exchange
energy between kinetic and potential forms as the system oscillates; energy
in kinetic form must be associated with the moving mass and energy in
potential form must be associated with tic deformed spring. In the
stretched string, however, masslike (inertia) arid springlike (elasticity)
elements are distributed uniformly along the string. There are many
possible ways, rather than a single way, of exchanging energy between
kinetic and potential forms as the system oscillates, corresponding to the
sequence of allowedvalues for n in Eq. 19-19.

Resonance in a string is often demonstrated by attachiig a string to a
fixed end, by means of a weight attached to it over a pulley, and connecting
the other end to a vibrator, as shown in Fig. 19-19. The transverse oscil-
lations of the vibrator set up a traveling wave in the string which is reflected
back from the fixd end. The frequency of the waves is that of the
vibrator, and the wavelength is determined by A = V/v. The fixed end P
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is a node, but the end Q vibrates and is not. If we now vary the tension
in the string by changing the hanging weight, for example, we can change
the wavelength. Changing the tension changes the wave velocity, and
the wavelength changes in proportion to the velocity, the frequency being
constant. Whenever the wavelength becomes nearly equal to 21/n; where
£ is the length of the string, we obtain standing waves of great amplitude.
The string now vibrates in one of its natural modes and resonates with the
vibrator. The vibrator does work on the string to maintain these oscilla-
tions against the losses due to damping. The amplitude builds up only to
the point at which the vibrator expends all its energy input, against damp-
ing losses. The point Q is almost a node because the amplitude of the
vibrator is small compared to that of the string.

Hence, with damping, the resonant frequency is almost, but not quite, a natural
frequency of the string. One end point is a node, the other almost a node; In
between there are points that are almost nodes, points at which the amplitude is
very small. These points cannot be true nodes, for energy must flow along the
string past them from the vibrator. This situation is analogous to the resonance
condition for a damped harmonic oscillator with driving force, discussed in Section
15-10. There, too, the resonant frequency was almost the same as the natural fre-
quency of the system, and the amplitude was large but not infinite. If no damping
were present, the resonant frequency would be exactly a natural frequency. Then
the amplitude would build up to infinity as the energy s pumped in. In practice,
the system would cease to obey Hooke's law, or the small-oscillations condition, as
the amplitude becomes large and the system would break. This happens even
with damping, when the damping is small or the driving force is large (as in the
Tacoma Bridge disaster, Fig. 15-21).

If the frequency of the vibrator is much different from a natural fre-
quency of the system, as given by Eq. 19-19, the wave reflected at P on

returning to Q may be much out of phase with the vibrator,and it can do
work on the vibrator. That is, the string can give up some energy to the
vibrator just as well as receive energy from it. The "standing" wave
pattern is not fixed in form but wiggles about. On the average the ampli-
tude is small and not much different from that of the vibrator. This
situation is analogous to the erratic motion of a swing being pushed
periodically with a frequency other than its hatural one. The displacement
of the swing is rather small.

Hence, the string absorbs peak energy from the vibrator at resonance.
Tuning a radio is alt analogous process. By tuning a dial the .natural fre-
quency of an alternating current in the receiving circuit is made equal to
the frequency of the waves broadcast by the station desired. The circuit
resonates with the transmitted signals and absorbs peak energy from the
signal. We shall encounter resonance conditions again in sound, in electro-
magnetism, in optics, and in atomic and nuclear physics. In these areas,
as in mechanics, the system will absorb peak energy from the source at
resonance and relatively little energy off resonance.

. Example 4. In a dehionstration with the apparatus just described, the
vibrator has a frequency v = 20 cycles/see, and the string has a linear density
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IL = 1.56 X iO slug/ft and a length 1 24 ft. The tension F is varied by pulling
down on the end of the string over the pulley. If the demonstrator wants to show
resonance, starting with one loop and then with two, three, and four loops, what
force must he exert on the string?

At resonance,

Hence, the tension F is given by

F

For one loop, n = 1, so that

F1	 412 v	 4(24 ft) 2(20 see- 1)2(l .56 X iO slug/ft)	 144 lb.
For two loops, n 2, and

P2 
= 4l'v2F1

= 361b.

	

4	 4

Likewise, for three and four loops

F1
F2 == 16 lb,

	

F4 = 	 = 9 lb.

Hence, the demonstrator gradually relaxes the tension to obtain resonance with
an increasing number of loops. Although the resonant frequency is always the
ame under these circumstances, the speed of propagation and the wavelength at
resonance decrease proportionately.

Taking damping into account, are the tensions given exactly correct?
If the tension were kept fixed, giving a definite wave speed, would we obtain

nore than one resonance condition by varying the frequency of the vibrator. 4

QUESTIONS

1. How could you prove experimentally that energy is associated with a wave?
2. Energy can be transferred by particles as well as by waves. IIowcan we dis-

inguish experimentally between these methods of energy transfer?
S. Can a wave motion be generated in which the particles of the medium vibrate with

ngular simple harmonic motion? If so, explain how and describe the wave.
4. Are torsional waves transverse or longitudinal? Can they be considered as a

uperposition of two waves, which are either transverse or longitudinal?
5. How can one create plane waves? Spherical waves?
6. The following functions in which A is a constant are of the form f(x ± vi):

y . A(x—vt),	 y=A(x+vt)2,

	

y=A .s/ T .i,	 y =Aln(z+vt).

xplain why these functions are not useful in wave motion.
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7. How do the amplitude and the intensity of surface water waves vary with the
distance from the source?

S. The inverse square law does not apply exactly to the decrease in intensity of
sounds with distance. Why not?

9. When two waves interfere, does one alter the progress of the other?
10. When waves interfere, is there a loss of energy? Explain your answer.
11. Why don't we observe interference effects between the light beams emitted from

two flashlights or between the sound waves emitted by two violins.
12. If two waves differ only in amplitude and are propagated in opposite directions

through a medium, will they produce standing waves? Is energy transported? Are
there any nodes? (See Problem 25.)

13. The partial reflection of wave energy by discontinuities in the path of trans-
mission is usually-wasteful and can be minimized by insertion of "impedance matching"
devices between the sections of the path bordering on the discontinuity. For example,
a megaphone helps match the air column of mouth and throat to the air outside the
mouth. Give other examples and explain qualitatively how such devices minimize
reflection losses (see Problem 25).

14. Is an oscillation a wave? Explain.
15. Consider the standing waves in a string to be a superposition of traveling waves

and explain, using superposition ideas, why there are no true nodes in the resonating
string of Fig. 19-19, even at the "fixed" end. (Hint: Consider damping effects.)

16. In the discussion of transverse waves in a string we have dealt only with displace-
ments in a single plane, the x-y plane. If all displacements lie in one plane the wave is
said to be plane polaji.zed. Can there be displacements in a plane other than the single
plane dealt with? If so, can two differently plane-polarized waves be combined?
What appearance would such a combined wave have?

17. A wave transmits energy. Does it transfer momentum? Can it transfer
angular momentum? (See Question 16.)

PROBLEMS

I. Show that y — y,. sin (kx - wt) may be written in the alternative forms

	

— y,.. sin k(x - el),	 y — V.. sin 2.(, -

	

v — V.. sin a' ( _*)	 — .. sin 2s( _..!).

2. The speed of electromagnetic waves in vacuum is 3 x jØS meters/sec. (a) Wave-
lengths in the visible part of the spectrum (light) range from about 4 x 10 meter in
the violet to about 7 x 10 in the red. What is the range of frequencies of light
waves? (6) The range of frequencies for shortwave radio (for example, FM radio and
VHF television) is 1.5 megaeycles/sec to 300 megacycles/sec. What is the correspond-
ing wavelength range? (c) X-rays are also electromagnetic. Their wavelength range
extends from about 5 X 10' meter to 1.0 X lO meter. What is the frequency
range for X-rays?

3. The equation of a transverse wave traveling in a rope is given by

— 10 sin r(U.U'r - 2001),
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where y and x are expressed in centimeters and tin seconds. (a) Find the amplitude,
frequency, velocity, and wavelength of the wave. (b) Find the maximum transverse
speed of a particle in the rope.

4. Write the equation for a wave traveling in the negative direction along the x-axis
and having an amplitude 0.010 meter, a frequency 550 vib/sec, and a speed 330 meters!
sec.

5. A wave of frequency 500 cycles/sec has a phase velocity of 350 meters/sec.
(a) How far apart are two points 60° out of phase? (b) What is the phase difference
between two displacements at a certain point at times 10- 3 sec apart?

6. (a) A continuous sinusoidal longitudinal wave is sent along a coil spring from a
vibrating source attached to it. The frequency of the source is 25 vib/sec, and the
distance between successive rarefactions in the spring is 24 cm. Find the wave speed.
(b) If the maximum longitudinal displacement of a particle in the spring is 3.0 cm and
the wave moves in the —x direction, write the equation for the wave. Let the source
be at z = 0 and the displacement at x 0 and t 0 be zero.

7. What is the speed of a transverse wave in a rope of length 2.0 meters and mass
0.060 kg under a tension of 500 ut?

8. Prove that the slope of a string at any point x is numerically equal to the ratio of
the particle speed to the wave speed at that point.

9. A uniform circular hoop of string is rotating clockwise in the absence of gravity
(see Fig. 19-20). The tangential speed is v0 . Find the speed of waves traveling on this
string. (Hint: The answer is independent of the radius of the circle and the mass per
unit length of the string!) 	 - -

10. (a) From Example 2 show that the maximum speed of a
particle in a string through which a sinusoidal wave is passing is
u y..e,. (b) In Example 2 we saw that the particles in the
string oscillate with simple harmonic motion. The mechanical
energy of each particle is the sum of its potential and kinetic en-
ergies and is always equal to the maximum value of its kinetic
energy. Consider an element of string of mass x Ax and show
that the energy per unit length of the string is given by

F;	 2s2pi'2y,.

o

Fig. 19-20

(c) Show finally that the average power or average rate of transfer of energy is the
product of the energy per unit length and the wave speed. (d) Do these results hold
only for a sinusoidal wave'

11. Spherical waves are emitted from a 1.0-watt source in an isotropic nonabsorbing
medium. What is the wave intensity 1.0 meter from the source?

12. (a) Show that the intensity I (the energy crossing unit area per unit time) is the
product of the energy per unit volume e and the speed of propagation v of a wave dis-
turbance. (5) Radio waves travel at a speed of 3.0 X 101 meters/sec. Find the energy
density in a radio wave 300 miles from a 50,000-watt source, assuming the waves to be
spherical and the propogation to be isotropic.

13. A line source emits a cylindrical expanding wave Assuming the medium
absorbs no energy, fihd how the amplitude and intensity of the wave depend on the
distance from the source.

14. Determine the amplitude of the resultant motion when two sinusoidal motions
having the same frequency and traveling in the same direction are combined, if their
amplitudes are 3.0 cm and 4.0 cm and they differ in phase by ,,12 radians.

15. A source S and a detector .1) of high-frequency waves are a distanced apart on the
ground. The direct wave from B is found to be in phase at D with the wave from S
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that is reflected from a horizontal layer at an altitude H (Fig. 19-21). The incident
and reflected rays make the same angle with the reflecting layer. When the layer rises
a distance h, no signal is detected at D. Neglect absorption in the atmosphere and
.nd the relation between d. I,, II, and the wavelength X of the waves.

16. Three component sinusoidal
waves have the same period, but their
amplitudes are in the ratio!, 1/2, and

A 
1/3 and their phase angles are 0 T/2
and ,r respectivel y. Plot the result
nt waveform and discuss its nature
17 Four component sine waves

have frequencies in the ratio 1 2 3
nd 4 and amplitudes in the ratio 1,

H 1/2, 1/3, and 1/4, respectively. The
first and third components are 180
out of phase with the second and

S	 fourth components. Plot the result-
-	 a	 --	 ant waveform and discuss its nature

18. A string vibrates according to
the equation

Fig. 19-21
TX

Y 5 sin - cos 404

where x and y are in centimeters and t is in seconds. (a) What are the amplitude and
velocity of the component waves whose superposition can give rise to this vibration?
(b) What is the distance between nodes? (c) What is the velocity of a particle of the
string at the position x	 1.5 cm when	 See?

19. Two pulses are traveling along a string in opposite direction, as shown in Fig.
19-22. (a) If the wave velocity is 2.0 cm/sec and the pulses are 6.0 cm apart, sketch
the patterns after 0.5, 1.0, 1.5, 2.0, 2.5 sec. (b) What has happened to the energy at

— 1.5 sec?

6.0 cm
V

I	 -v

Fig. 19-22

20. Two transverse sinusoidal waves travel in opposite directions along a string.
Each has an amplitude of 3.0cm and a wavelength of 6.0 cm. The speed of a transverse
wave in the string is 0.50 cm/sec. Plot the shape of the string at each of the following
times:	 0 (arbitrary), t	 1.5,	 3.0,	 6.0, t — 7.5, and	 9.0 sec.

21. The equation of a transverse wave traveling in a rope is given by

y = 60 cos i (0.0050x - 8.Ot - 0.57),

in which z and y are expressed in centimeters and un seconds. Write down the equa-
tion of a wave that, when added to the given one, would produce standing waves on the
rope.
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22; In a laboratory experiment on standing waves a string 3.0 ft long is attached to
the prong of an electrically driven tuning fork which vibrates perpendicular to the
length of the string at a frequency of 60 vib/sec. The weight of the string is 0.096 lb.
(a) What tension must the string be under (weights are attached to the other end) if it is
to vibrate in four loops? (b) What would happen if the tuning fork is turned so as to
vibrate parallel to the length of the string?

23. A wave travels out uniformly in all directions from a point source. Justify the
following expression for the displacement ii of the medium at any distance r from the
source:

Y.= - sin k(r - vt).

Consider the speed, direction of propagation, periodicity, and intensity of the wave.
What are the dimensions of the constant Y?

24. Consider two point sources Si and Si in Fig. 19-23 which emit waves of the same
frequency and amplitude. The waves start in the same phase, and this ph.se relation at
the sources is maintained throughout time. Consider points P at which rl is nearly

Fig. 19-23

equal to r5. (a) Show that the superposition of these two waves gives a wave whose
amplitude varies with the position P approximately according to

2Y	 k
- cos - (r j - T2),
r	 2

in which r = (Ti + T2)/2. (b) Then show that total annulment bccurs when ri -
(n + )X, a being any integer, and that total re-enforcement occurs when r - T2	 nX.

The locus of points whose difference in distance from two fixed points is a constant is
a hyperbola, the fixed points being the foci. Hence each value of n gives a hyperbolic
line of constructive interference and a hyperbolic line of destructive interference. At
points at which r j and r2 are not approximately equal (as near the sources), the ampli-
tudes of the waves from S 1 and S2 differ and the annulments are only partial.

25. If an incident traveling wave is only partially reflected from a boundary, the
resulting superposition of two waves having differcnt amplitudes and traveling in
opposite directions gives a standing wave pattern of waves whose envelope is shown in
Fig. 19-24. The standing wave ratio (SWR) is defined as (A + A,)/(A - A) =
Am/Ami,. (a) Show that for 100% reflection SWR = and that for no reflection
SWR - 1. (b) Show that a measurement of the SWH. just before the boundary reveals
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Am.s

Fig. 19-24

the per cent reflection occurring at the boundary according to the formula

% reflection = [(SWR - l) 2/(SWR + 1)2] X 100,
26. Two strings of linear density p, and 92 are knotted together at x = 0 and stretched

to a tension F. A wave y = A sin k i (x - v jt) in the string of density ,ul reaches the
junctton between the two strings, at which it is partly transmitted into the string of
density p2and partly reflected. Call these waves B sin k 2 (x - v20 and C sin k i (x + vjt),
respectively. (a) Assuming that k 2v2 = k jv i = ., and that the displacement of the knot
arising from the incident and reflected waves is the same as that arising from the trans-
mitted wave, show that A = B + C. (b) U it is assumed that botT strings near the
knot have the same slope (why?), i.e., that dyldx in string I = dy/dx in string 2, show
that

C A (k
2 - k1)

=
(1c + ki)

= A 
1 -

Dl + V2

Under what conditions is C negative?



Sound Waves
CHAPTER 20

20-1 Audible, Ultrasonic, and Infrasonic Waves

Sound waves are longitudinal mechanical waves. They can be propa-
gated in solids, liquids, and gases. The material particles transmitting
such a wave oscillate in the direction of propagation of the wave itself.
There is a large range of frequencies within which longitudinal mechanical
waves can be generated, sound waves being confined to the frequency range
which can stimulate the human ear and brain to the sensation of hearing.
This range is from about 20 cycles/sec to about 20,000 cycles/sec and is
called the audible range. A longitudinal mechanical wave whose fre-
quency is below the audible range is called an infrasonic wave, and one
whose frequency is above the audible range is called ar, ultrasonic wave.

Infrasonic waves of interest are usually generated by large sources,
earthquake waves being an example. * The high frequencies associated
with ultrasonic waves may be produced by elastic vibrations of a quartz
crystal induced by resonance with an applied alternating electric field
(piezoelectric effect). It is possible to produce ultrasonic frequencies as
high as 6 x 10 1 cycles/sec in this way; the corresponding wavelength in air
is about 5 )( 10 cm, the same as the length of visible light waves.

Audible waves originate in vibrating strings (violin, human vocal cords),
vibrating air columns (organ; clarinet), and vibrating plates and mem-
branes (xylophone, loudspeaker, drum). All of these vibrating elements
alternately compress the surrounding air on a forward movement and
rarefy it on a backward movement. The air transmits these disturbances

See "Long Earthquake Waves," by Jack Oliver, Scientific American, March 1959.
497
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outward from the source as a wave. Upon entering the ear, these waves
produce the sensation of sound. Waveforms which are approximately
periodic or consist of a small number of approximately periodic components
give rise to a pleasant sensation (if the intensity is not too high), as, for
example, musical sounds. Sound whose waveform is nonperiodic is heard
as noise. Noise can be represented as a superposition of periodic waves,
but the number of components is very large.

In this chapter we deal with the properties of longitudinal mechanical
waves, using sound waves as the prototype.

20-2 Propagation and Speed of Longitudinal Waves

Sound waves, if unimpeded, will spread out in all directions from a
source. It is simpler to deal with one-dimensional propagation, however,
than with three-dimensional propagation, so that we consider first the
transmission of longitudinal waves in a tube.

Figure 20-1 shows a piston at one end of a long tube filled with a com-
pressible medium. The vertical lines divide the compressional (ffuid)
medium into thin "slices," each of which contains the same mass of fluid.
Where the lines are relatively close together the fluid pressure and density
are greater than they are in the normal undisturbed fluid, and conversely.
We shall treat the fluid as a continuous medium and ignore for the time
being the fact that it is made up of molecules that are in continual random
motion.

If we push the piston of Fig. 20-1 forward, the fluid in front of it is com-
pressed, the fluid pressure and density rising above their normal undis-
turbed values. The compressed fluid moves forward, compressing the
fluid layers next to it, and a compressional pulse travels down the tube.
If we then withdraw the piston, the fluid in front of it expands, its pressure
and density falling below their normal undisturbed values; a pulse of
rarefaction travels down the tube. These pulses are similar to transverse
pulses traveling along a string, except that the oscillating fluid elements are

IOIIIIIIIIIIIIHHIIIIIHIOHIIII

I	 I!	 I	 [I	 I	 II
Fig. 20-1 Sound waves gener-
ated in a tube by an oscillating

II	 I	 III	 II	 111111	 piston. The vertical lines divide
the compressible medium in the
tube into layers of equal mass.

•111	 .IIIIII!IIIlIIIIIlII
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displaced along the direction of propagation (longitudinal) instead of at
right angles to this direction (transverse). If the piston oscillates back
and forth, a continuous train of compressions and rarefactions will travel
along the tube (Fig. 20-1). As for tra...,verse waves in a string (see
Section 19-5) we should be able, using Newton's laws of motion, to express
the speed of propagation of this longitudinal wave in terms of an elastic
and an inertial property of the medium. We now do so.

For the moment, let us assume that the tube is very long so that we can ignore
reflections from the other end. As for the string of Fig. 19-6, we will consider not
an extended wave but a single (compressional) pulse that we might generate by
giving the piston in Fig. 20-I a short,	 inward stroke.

Figure 20-2 shows such a pulse (labeled "compressional zone") traveling at
speed v along the tube from left to right. For simplicity we have assumed this
pulse to have sharply defined leading and trailing edges and to have a uniform fluid
pressure and density in its interior. When we analyzed the motion of a transverse
pulse in a string, we found it convenient to choose a reference frame in which the
pulse remained stationary; we will do this here also. In Fig. 20-2, then, the com-
pressional zone remains stationary in our reference frame while the fluid moves
through it from right to left with speed v, as shown.

Let us follow the motion of the element of fluid contained between the vertical
lines at P in Fig. 20-2. This element moves forward at speed v until it strikes the
compressional zone. While it is entering this zone it encounters a difference of
pressure ap between its leading and its trailing edges. The element is compressed
and decelerated, moving with a lower speed v + av within the zone, the quantity
iv being negative. The element eventually emerges from the left face of the zone
where it expands to its original volume and the pressure differential Ap acts to
accelerate it to its original speed v. The figure shows the element at point R, having
passed through the compressional zone and moving again with speed v, as at P.

Let us apply Newton's laws to the fluid element while it is entering the com.
pressional zone. The resultant force acting during entry points to the right in
Fig. 20-2 and has magnitude

F = (p + p)A - pA = apA

in which A is the cross-sectional area of the tube.
The length of the element outside the compressional zone (at P, say) is v

where At is the time required for the element to move past any given point. The
volume of the element is thus v.1 At and its mass is povA At, where Ps is the density
of the fluid outside the compressional zone. The deceleration a experienced by the

Compressional
zone

P

1.
___ II
	 fHHIVW II . l•4 

--1	 - k—vt

Fig. 20-2 A compressional pulse travels along a gas-filled tube. In a reference frame
in which the undisturbed gas is at rest the pulse moves from left to right with speed v.
We view the pulse, however, from a reference frame in which the pulse is stationary; in
such a frame the gas outside the pulse streams through the tube from right to left
with speed v, as shown. Note that .v is negative.
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element as it enters the zone is —tv/At; becauW A V is inherently negative, a is
positive, which means that, like the force ApA in Fig. 20-2, it points to the right.

Thus Newton's second law
F = ma

yields
v

tpA (povA t) —

which we may write as

- tv/V

Now the fluid that would occupy a volume V = As At at P is compressed by an

amount A (AV) A t = V on entering the compressional zone. Hence,

V Avtv

- Avi -

and we obtain	 poV2 -
- -

hp

The ratio of the change in pressure on a body, Ap, to the fractional change
in volume resulting, — AVIV, is called the bulk modulus of elasticity B of

the body. That is, B = - V ApIAV. B is positive because an increase in

pressure causes a decrease in volume. In terms of B, the speed of the

longitudinal pulse in the medium of Fig. 20-2 is

V =	 (20-1)

A more extended analysis than given above shows that Eq. 20-1 applies
not only to rectangular pulses of the type displayed in Fig. 20-2 but also

Table 20-1

SPEED OF SOUND

Speed

Medium	
Tempera-

I ture,

Air
	 0

Hydrogen
	 0

Oxygen
	 0

Water
	 15

Lead
	 20

Aluminum
	 20

Copper
	 20

Iron
	 20

Extreme values
Granite
Vulcanized rubber
	 0

'j%leters/sec 1 ,
 

Ft/sec

	

331.3
	 1,087

	

1,286
	 4,220

	

317.2
	 1,041

	

1,450
	 4,760

	

1,230
	 4,030

	

5,100
	 16,700

	

3,560
	 11,700

	

5,130
	

16,800

	

6,000
	

19,700

	

54
	

177
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to pulses of any shape and to extended wave trains. Notice that the speed
of the wave is determined by the properties of the medium through which
it propagates, and that an elastic property B and an inertial property Pa are
involved. Table 20-1 gives the speed of longitudinal (sound) waves in
various media.

If the medium is a gas, such as air, it is possible to express B in terms of

the undisturbed gas pressure P0. 
For a sound wave in a gas we obtain

V =

where 'y is a constant called the ratio of specific heats for the gas (Chapter
23).

If the medium is a solid, for a thin rod the bulk modulus is replaced by a
stretch modulus (called Young's modulus). If the solid is extended, we
must allow for the fact that, unlike a fluid, a solid offers elastic resistance
to tangential or shearing forces and the speed of longitudinal waves will
depend on the shear modulus as well as the bulk modulus.

20-3 Traveling Longitudinal Waves

• Consider again the continuous train of compressions and rarefactions
traveling down the tube of Fig. 20-1. As the wave advances along the
tube, each small volume element of fluid oscillates about its equilibrium
position. The displacement is to the right or left along the x-direction of
propagation of the wave. For convenience let us represent the displace-
ment of any such volume element (or layer of elements that move in the
same way) from its equilibrium position at x by the letter y. It is to be
understood that the displacement y is along the direction, of propagation for
a longitudinal wave, whereas for a transverse wave the displacement y is
atright angies to the direction of propagation. Then the equation of a
longitudinal wave traveling to the right may be written as

= f(x - Vt).

For the particular case of a simple harmonic oscillation we may have

Y = Yr COS 
27
- (x - Vt).

X

In this equation v is the speed of the longitudinal wave, y,, is its amplitude,
and A is its wavelength; y gives the displacement of a particle at time t from
its equilibrium position at x. As before, we may write this more com-
pactly as

y = y,,, cos (kx - wt).	 (20-2)

It is usually more convenient to deal with pressure variations in a sound
wave than with the actual displacements of the particles conveying the
wave. Let us therefore write h3 equation of the wave in terms of the
Pressure '..' 4 n rather than in terms of the displacement.
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From the relation

B—-- Ap
- AVIV

we have	 Ap=	
V

Just as we let y represent the displacement from the equilibrium position x,
so we now let p represent the change from the undisturbed pressure P0.
Then p replaces Ap, and

AV
p=

If a layer of fluid at pressure p 0 has a thickness Ax and cross-sectional ar'ea
A, its volume is V = A Ax. When the pressure changes, its volume will
change by A Ay, where Ay is the amount by which the thickness of the
layer changes during compression or rarefaction. Hence,

AV	 A Ay
p = —B-- = —B--

1'	 Ax

As we let Ax - 0 so as to shrink the fluid layer to infinitesimal thickness,
we obtain

p= —Br.	(20-3)

We have used partial derivative notation because (see Eq. 20-2) y is a
function of both x and I and we take the latter quantity as constant in this
discussion. If the particle displacement is simple harmonic, then, from
Eq. 20-2, we obtain

oy
= —ky,,, s i n (kx -

ax

and from Eq. 20-3	 p = Bky,,, sin (kx -. ml).	 (20-4)

Hence, the pressure variation at each position x is also simple harmonic.
Since v = v"7, we can write Eq. 20-4 more conenientIy as

p = [kpo0y,,] sin (kx	 wt).

Recall that p represents the change from standard pressure p0. The term
in brackets represents the maximum change in pressure and is called the
pressure amplitude. If we denote this by P, then

p = P sin (kx - wt),	 (20-5)

where	 P = kpv 2y,,,.	 (20-6)

Hence, a sound wave may be considered either as a displacement wave or
as a pressure wave. If the former is written as a cosine function, the latter
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will be a sine function and vice versa. The displacement wave is thus 90
out of phase with the pressure wave. That is, when the displacement
from equilibrium at a point is a maximum or a minimum, the excess
pressure there is zero; when the displacement at a point is zero, the excess
or deficiency of pressure there is a maximum. Equation 20-6 gives the
relation between the pressure amplitude (maximum variation of pressure
from equilibrium) and the displacement amplitude (maximum variation of
position from equilibrium). The student should check the dimensions of
each side of Eq. 20-6 for consistency. What units may the pressure
amplitude have?

The inteiisity of a wave is proportional to the square of the displacement ampli-
tude of the wave; see Section 19-6. We have just shown that for sound waves the
pressure amplitude is proportional to the displacement amplitude. Hence, the
intensity of a sound wave is proportional to the square of the pressure amplitude.
In fact, when the intensity is expressed in terms of the pressure amplitude, the fre-
quency does not appear explicitly in the expression (see Problem 9). Hence, by
measuring pressure changes, the intensities of sounds having different frequencies
can be compared directly. For this reason instruments that measure pressure
changes are preferred to those that measure displacement amplitude. As we shall
see in Example 1, the displacement amplitudes would be difficult to measure in
any case.

Example 1. (a) The maximum pressure variation P that the ear can tolerate
in loud sounds is about 28 nt/meter 2. Normal atmospheric pressure is about
100,000 nt/meter 2. Find the corresponding maximum displacement for a sound
wave in air having a frequency of 1000 cycles/sec.

From Eq. 20-6 we have
PY.=

kpav2

From Table 20-1, v = 331 meters/sec so that

27r	 2rs.	 2v X 10
k = - = - =	 meter-1 = 19 meter'.

A	 v	 331

The density of air p0 is 1.22 kg/meters . Hence, for P 28 nt/meter2 we obtain

28
ym = (i9)(1.22)(331) meter = 1.1 X 10 meter.

The displacement amplitudes for the loudest sounds are about 10 meter, a very
small value indeed.

(b) In the faintest sound that can be heard at 1000 cycles/sec the pressure
amplitude is about 2.0 x 10_ 5 nt/meter 2 . Find the corresponding displacement
amplitude.

From y. = P/kpov 2, using these values for Ic, v, and P0, we obtain, with P =
2.0 X 10 nt/meter2,

8 X 10- 12 meter	 10' meter.

This is smaller than the radius of an atom, which is about 10- 10 meter! How can
it be that the ear responds to such a small displacement? 	 4
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In our analysis we have ignored the molecular structure of matter and treated
the fluid as a continuous medium. In gases, however, the spaces between mole-
cules are large compared to the diameters of the molecules. The molecules move
about at random. The oscillations produced by a sound wave passing through are
superimposed on this random thermal motion. An impulse given to one molecule
is passed on to another molecule only after the first one has moved through the
empty space between them and collided with the second. From this brief discus-
sion, would you ever expect the speed of sound to exceed the average molecular
speed inafluid?

20-4 Standing Longitudinal Waves

Longitudinal waves traveling along a tube are reflected at the ends of the
tube, just as transverse waves in a string are reflected at its ends. Inter-
ference between the waves traveling in opposite directions gives rise Lo
standing longitudinal waves.

If the end of the tube is closed, the reflected wave is 180° out of phase
with the incident wave. This result is a necessary consequence of the fact
that the displacement of the small volume elements at a closed end must
always be zero. Hence, a closed end is a displacement node. If the end
of the tube is open, the fluid elements there are free to move. However,
the nature of the reflection there depends on whether the tube is wide or
narrow compared to the wavelength. If the tube is narrow compared to
the wavelength, as in most musical instruments, the reflected wave has
nearly the same phase as the incident wave. Then the open end is almost
a displacement antinode. The exact antinode is usually somewhere near
the opening, but the effective length of the air columns of a wind instru-
ment, for example, is not as definite as the length of a string fixed at both
ends.

Standing longitudinal waves in a gas column can be dramatially demon-
strated by means of the apparatus shown in Fig. 20-3. A source of longi-
tudinal waves, such as the speaker of an audio oscillaTor at 8, sets up vibra-
tions in a flexible diaphragm atone end of the tube. Gas fills the tube from
the inlet and passes slowly out through regularly spaced small openings
along the top. The escaping gas is lit, giving a series of flames. When a
frequency is found at which the gas column is in resonapce, the amplitude
of the standing longitudinal waves becomes rather large and we can see a
wavelike variation in the height and width of the gas flames along the tube.
The interval between nodes or antinodes is clearly visible. By varying

Fig. 20--3 - anus show to pesene of standing waves in a tul'e hued with illuminat-
ing gas A and V refer t,i disp1arent antinodes and nodes, respectively.
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the frequency we can pass from one resonance condition to another. The
natural modes of oscillation of the gas column are determined by the effec-
tive length of the column and the wave speed. The wavelength A at
resonance can be taken to be twice the distance between adjacent nodes
(or antinodes), and knowing the frequency v of the source at resonance,
we can determine the wave speed in the gas under these conditions from
v = pA. In practice there are more flexible and accurate ways to measure
the speed of sound in gases. (See Problem 17 and Example 2.)

In Fig. 20-3 the nodes and antinodes, N and A, refer to the particle dis-
placements in the standing wave. At a displacement node, the pressure
variations (above and below the averag are a maximum. Hence, a dis-
placement node corresponds to a pressure antinode. At a displacement
antinode the pressure remains constant with time. Hence, a displacement
antinode corresponds to a pressure node.

This can be understood physically by realizing that two small volume
elements of gas on opposite sides of a displacement node are vibrating ih
opposite phase. Hence, when they approach each other, the pressure at
this node is a maximum, and when they recede from each other, the
pressure at this node is a minimum. Two small elements of gas which are
on opposite sides of a displacement antinode vibrate in phase and therefore
give rise to no pressure variations at the antinode.

20-5 Vibrating Systems and Sources of Sound

If a string fixed at both ends is bowed, transverse vibrations travel along
the string; these disturbances are reflected at the fixed ends, and a standing
wave pattern is formed. The natural modes of vibration of the string are
excited and these vibrations give rise to longitudinal waves in the sur-
rounding air which transmits them to our ears as a musical sound.

We have seen (Section 19-10) that a string of length 1, fixed at botirends,
can resonate at frequencies given by

Vn = v =	 n	 1,2,3	 (20-7)
21	 21

Here v is the speed of the transverse waves in the string whose superposition
can be thought of as giving rise to the vibrations; the speed v ( /' 3 ) is
the same for all frequencies. At any one of these frequencies the string
will contain a whole number n of loops between its ends, and the condition
that the ends be nodes is met (Fig. 20-4).

The lowest frequency, -\/ 7/2l, is called the fundamental frequency vi
and the others are called overtones. Overtones . whose frequencies are
integral multiples of the fundamental are said to form a harmonic series.
The fundamental is the first harmonic. The frequency 2v i is the first
overtone or the second harmonic, the frequency 3vj is the second over-
tone or the third harmonic, and so on.

If the string is initially distorted so that its sh&ié is the same as any one
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Fig. 20-4 The first four modes
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of the possible harmonics, it will vibrate at the frequency of that particular
harmonic, when released, The initial conditions usually arise from strik-
ing or bowing the string, however, and in such cases not only the funda-'
mental but many of the overtones are present in the resulting vibration.
We have a superposition of several natural modes of oscillation. The
actual displacement is the sum of the several harmonics with various
amplitudes; see Fig. 19-12. The impulses that are sent through the air to
the ear and brain give rise to one net effect which is characteristic of the
particular stringed instrument. The quality of the sound of a particular
note (fundamental frequency) played by an instrument is determined by
the number of overtones present and their respective intensities. Figure
20-5 shows the sound spectra and corresponding waveforms for the violin
and piano.*

An organ pipe is a simple example of sound originating in a vibrating
air column. If both ends of a pipe are open and a stream of air is directed
against an edge, standing longitudinal waves can be set up' in the tube.

* See "The Physics of the Piano" by E. Donnell Blackham in Scientific American,

December 1965.
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Fig. 20-5 Waveform and sound
spectrum for two stringed instru-
ments, the violin and the piano.
The fundamental frequency in both
cases is 440 cycles/see (concert A).
In each diagram we show only four
cycles of the wave. The sound
spectrum shows the relative ampli-
tude of the various harmonic com-
ponents of the wave.. Notice the
presence of loud higher harmonics
(especially the fifth) in the violin
spectrum.
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The air column will then resonate at its natural frequencies of vibration,
given by

n=1,2,3,...

Here v is the speed of the longitudinal waves in the column whose super-
position can he thought of as giving rise to the vibrations, and n is the
number of half wavelengths in the length 1 of the column. As with the
bowed string, the fundamental and overton.s are excited at the same time.

In an open pipe the fundamental frequency corresponds (approximately)
to a displacement autinode at each end and a displacement node in the
middle, as shown in Fig. 20-6a. The succeeding drawings of Fig. 20-6a
show three of the overtones, the second, third, and fourth harmonics.
Hence, in an open pipe the fundanicatal frequency is v/21 and all har-
monics are present.

P3	 V4f
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Fig. 20-6 (a) The first four modes of an open organ pipe. The distance from the
center line of the pipe to the light lines drawn inside the pipe shows the displacement
amplitude at each place. N and A mark the locations of the displacement nodes and
antinodes. Note that both ends of the pipe are open. (b) The first four modes of
vibration of a closed organ pipe. Notice that the even-numbered harmonies are
absent and the upper end of the pipe is closed.
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In a closed pipe the closed end is a displacement node. Figure 20-6b
shows the modes of vibration of a closed pipe. The fundamental frequency
is v141 (approximately), which is one-half that of an open pipe of the same
length. The only overtones present are those that give a displacement
node at the closed end and an antinode (approximately) at the open end.
Hence, as is shown in Fig. 20-6b, the second, fourth, etc., harmonics are
missing. In a closed pipe the fundamental frequency is v/41, and only the
odd harmonics are present. The quality of the sounds from an open pipe
is therefore different from that from a closed pipe.

Vibrating rods, plates, and stretched membranes also give rise to sound
waves. Consider a stretched flexible membrane, such as a drumhead. If
it is struck a blow, a two-dimensional pulse travels outward from the
struck point and is reflected again and again at the boundary of the mem-
brane. If some point of the membrane is forced to vibrate periodically,
Continuous trains of waves travel out along the membrane. Just as in the
one-dimensional case of the string, so here too standing waves can be set
Up in the two-dimensional membrane. Each of these standing waves has
a certain frequency natural to (or characteristic of) the membrane. Again
the lowest frequency is called the fundamental and the others are over-
tones. Generally, a number of overtones are present along with the funda-
mental when the membrane is vibrating. These vibrations may excite
sound waves of the same frequency.

The nodes of a vibrating membrane are lines rather than points (as in a
vibrating string) or planes (as in a pipe). Since the boundary of the
membrane is fixed, it must be a nodal line. For a circular membrane fixed
at its edge, possible modes of vibration along with their nodal lines are
shown in Fig. 20-7. The natural frequency of each mode is given in terms
of the fundamental v i. Notice that the frequencies of the overtones are
not harmonics, that is, they are not integral multiples of v. Vibrating
rods also have a nonharmonic set of natural frequencies. Rods and plates
have limited use as musical instruments for this reason.

In general, we find that all elastic bodies will vibrate freely with a definite set of
frequencies for a given set of boundary or end conditions. These frequencies are
called proper frequencies, characteristic frequencies, or eigenfrequencjes of thesystem. In general, the eigenfrequencjes do not form a harmonic series, although
some of them may be related as the ratio of whole numbers. In all these cases we
have standing waves, and certain regions of the bodies stay at rest all the time.
These nodes are curves in two-dimensional bodies and surfaces in three-dimensional
bodies.

Recall that for a vibrating string the equation describing a standing wave (see
Eq. J 9-18b) is of the type

y = 2y. cos 2r pt sin 2rx

This holds fur a string fixed at both ends (y = 0 at x = 0 and z nA/2). The

fr,n the Gerrnan--rneaning own, individual, characteristic.
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Fig. 20-7 (a) The first six
modes of vibration of a cir-
cular drumhead clamped
around its periphery. The
lines represent nodes, the
circumference being a node 0
in every case. The + and	 V1	 52 = I.59vj.	 53 = 2.13,'j

- signs represent opposite
displacements; at an instant
when the + areas are raised,
the - areas will be de-
pressed. Note that the fre-
quency of each mode is not
an integral multiple of the
fundamental s, as is the case
for strings and tubes. (b)
A sketch of a drum-head
vibrating in mode 56. The
displacement shown here is
exaggerated for clarity.

(9-00 (9
P5 = 2.65PI	p6=292v1
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picture of the string at any time is determined by the equation

2irx fl7X
= Csin-- = Csin —j—	 (t constant),

where C is a constant "scale factor," whose value varies with time; I is the length
of the string, and n is an integer specifying the mode of vibration (the harmonic).
This function sin 27rx/X fixes the position of the nodes and is called the proper
function, characteristic function, or eigenfunction of the string.

Likewise, the nodes of any vibrating elastic body are fixed by certain functions of
position which are called the eigenfunctions of the problem. In general, these
functions are not sinusoidal functions but are functions that become zero for certain
values of the coordinates. The determination of these functions and the cor-
responding values of the eigenfrequencies is an important problem in atomic,
nuclear, and solid-state physics. They characterize the behavior of such systems.
It is in quantum mechanics that the procedure has been successfully worked out for
microscopic systems. However, the results bear a striking analogy to the results
of classical vibration and wave theory, as applied to macroscopic systems.

Example 2. Figure 20-8 shows a simple apparatus that can be used to
measure the speed of sound in air by resonance methods. A vibrating tuning fork
of frequency p is held near the open end of a tube. The tube is partly filled with
water. The length of the air column can be varied by changing the water level.
It is found that the sound intensity is a maximum when the water level is gradually
lowered from the top of the tube a distance a. Thereafter, the intensity reaches
a maximum again at distances s, 2s, 3s, etc., below the level at a. Find the
speed of sound in air.

The sound intensity reaches a maximum when the air column resonates with the
tuning fork. The air column acts like a tube closed at one end. The standing
wave pattern consists of a node at the water surface and an antinode near the
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Rg, 20-8 Example 2. Measuring the
speed of sound in air. The water level
in the tube can be adjusted by raising
or lowering the reservoir on the left
which is connected to the tube by a
rubber hose.

open end. Since the frequency of the source is fixed and the speed of sound in the
air column has a definite value, resonance occurs at one specific wavelength,

x =

The distance 8 between successive resonance positions is therefore the distance
between adjacent nodes. (See Fig. 20-8.) Hence,

or	 X=28.

Combining equations we find

2g= V-	 or	 v=28v.
I,

In an experiment with a fork of frequency v = 1080 cycles/tee, s is found to be
15.3 cm. Hence,

A 28 = '30.6 cm

and	 v = sA = (1080)(0.306) meters/sec = 330 meters/sec.

What significance does the distance a have? Could gases other than air be
used conveniently in this apparatus?	 I

20-6 Beats

When two wavetrains of the same frequency travel along the same line

in opposite directions, standing waves are formed in accord with the
principle of superposition. We may characterize these waves by drawing a



(a)

(6)

Sec. 20-6 am Sn
plot of the amplitude of oscillation as a function of distance, as in Fig. 20-4.

This illustrates a type of interference that we can call interference in space.

The same principle of superposition leads us to another type of inter-
ference, which we can call interference in time. It occurs when two wave-
trains of slightly different frequency travel through the same region. With
sound such a condition exists when, for example, two adjacent piano keys
are struck simultaneously.

Consider some one point in space through which the waves are passing.
In Fig. 20-9a we plot the displacements produced at such a point by the
two waves separately as a function of time. For simplicity we have
assumed that the two waves have equal amplitude, although this is not
necessary. The resultant vibration at that point as a function of time is
the sum of the individual vibrations and is plotted in Fig. 20-9b. We see
that the amplitude of the resultant wave at the given point is not constant
but varies in time. In the case of sound the varying amplitude gives rise to
variations in loudness which are called beats. Two strings may be tuned
to the same frequency by tightening one of them while sounding both
until the beats disappear.

Let us represent the displacement at the point produced by one wave as

Yi = y,,, cos 2wwit,

and the displacement at the point produced by the other wave of equal
amplitude as

Y2 = y,5 cos 2,rp2t.

By the superposition principle, the resultant displacement is

II	 i/i + yz = y,,,(cos 21re 1 t + cos 2rv2t),

a.—b	 a + b
and since	 cos a + cos b = 2 cos	 cos 2

y

Fig. 20-9 The beat phenomenon. Two waves of slightly different frequencies, shown
in (a), combine in (b) to give a wave whose amplitude (dashed line) varies periodically
with time. Compare with Fig. 19-14, which shows the same phenomenon displayed
as a function of di-- - -
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this can be written as.

(p1 
-_A /vj + v2'\	

(20-8)Y -• [2Ym cos 2r	
2	

j cos 2r	
2 1

The resulting vibration may then be considered to have a frequency

-	 V1+P2
2

which is the average frequency of the two waves, and an amplitude given
by the expression in brackets. Hence, the amplitude itself varies with
time with a frequency

P1 -
Vamp 

=	 2

If v 1 and 2 are nearly equal, this term is small and the amplitude fluctuates
slowly. This phenomenon is a form of amplitude modulation which has a
counterpart (side bands) in AI radio receivers.

A beat, that is, a maximum of amplitude, will occur whenever

cos 27(11 
_ 

P2)

equals 1 or —1. Since each of these values occurs once in each cycle (see
Fig. 19-14), the number of beats per second is twice the frequency Vamp or
- 2 . Hence, the number of beats per second equals the difference of

the frequencies of the component waves. Beats between two tones can be
detected by the ear up to a frequency of about seven per second. At higher
frequencies individual beats cannot be distinguished in the sound produced.

20-7 The Doppler Effect

When a listener is in motion toward a stationary source of sound, the
pitch (frequency) of the sound heard is higher than when he is at rest. If
the listener is in motion away from the Stationary source, he hears a lower
pitch than when he is at rest. We obtain similar results when the source is
in motion toward or away from a stationary listener. The pitch of the
whistle of the locomotive is higher when the source is approaching the
hearer than when it has passed and is receding.

Christian Johann Doppler (1803-1853), an Austrian, in a paper of 1842,
called attention to the fact that the color of a luminous body, just as the
pitch of a sounding body, must be changed by relative motion of the body
and the observer. This Doppler effect, as it is called, applies to waves in
general. Let us apply it now to sound waves. We consider only the
special case in which the source and observer move along the line joining
them.

Let us consider a reference frame at rest in themedium through which
the sound travels. Figure 20-10 shows a source of sound S at rest in this
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-	 .	 .	 y

Fig. 20-10 The Doppler effect due to motion of the observer (ear). The source is at
rest.

frame and an observer 0 (note the ear) moving toward the source at a
speed v0. The circles represent wavefronts, spaced one wavelength apart,
traveling through the medium. If the observer were at rest in the medium
he would receive vt/A waves in time where v is the speed of sound in the
medium and A is the wavelength. Because of his motion toward the
source, however, he receives v,t/A additional waves in this same time 1.
The frequency V that he hears is the number of waves received per unit
time or

= vt/A + v0t/A = V + V0 = V +

t	 A
That is,

PI =p
+ V0	

(i +(20-9a)
V

The frequency V heard by the observer is the ordinary frequency v heard at
rest plus the increase v(V0/v) arising from the motion of the observer.
When the observer is in motion away from the stationary source, there is a
decrease in frequency v(v0/v) corresponding to the waves that do not reach
the observer each unit of time because of his receding motion. Then

(v_vo\
V = V	 = (i - ).

	
(20-9b)
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Fig. 20-11 - The Doppler effect due to motion of the source. The observer is at rest.
Wavefront I was emitted by the source when it was at Si, wavefront 2 was emitted
when it was at S2, etc. At the instant the "snapshot" was taken, the source was at S.

Hence, the general relation holding when the source is at rest with respect
to the medium but the observer is moving through it is

=
y(v 

± v0\
) ,	 (20-9)

V

where the plus sign holds for motion toward the source and the minus sign
holds for motion away from the source. Notice that the cause of the
change here is the fact that the observer intercepts máre or fewer waves
each second because of his motion through the medium.

When the source is in motion toward a stationary observer, the effect is a
shortening of the wavelength (see Fig. 20-11), for the source is following
after the approaching waves and the crests therefore come closer together.
If the frequency of the source is v and its speed is .v, then during each
vibration it travels a distance vs/v and each wavelength is shortened by this
amount. Hence, the wavelength of the sound arriving at the observer is
not X = v/p but X' = v/v - vs/ p. Therefore, the frequency of the sound
heard by the observer is increased, being

I,' = -•=	 = (_).	 (20-1 Oa)
)	 (v—v)/v	 v — v.
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If the source moses away from the observer, the wavelength emitted is
V/w greater than X, so thit the observer hears a decreased frequency,
namely

I	 V

V -
	

( 

V___
-	 - V

(v + V,)/ p -	 v + vi	
(20-10b)

Hence, the general re'ation holding when the observer is at rest with
respect to the medium but the source is moving through it is

P

	 (20-10)

where the minus sign holds for motion toward the observer and the plus.
sign holds for motion away from the observer. Notice that the cause of
the change here is the fact that the motion of the source through the
medium shortens or increases the wavelength transmitted through the
medium.

If both source and observer move through the transmitting medium, the
student should be able to show that the observer hears a frequency

= (
v ± v0'\	

(20-11)
V + vi

where the upper signs (+ numerator, - denominator) correspond to the
source and observer moving along the line joining the two in the direction
toward the other, and the lower signs in the direction away from the other.
Notice that Eq. 20-11 reduces to Eq. 20-9 when v = 0 and to Eq. 20-10
when v0 = 0, as it must.

If a vibrating tuning fork on its resonating box is moved rapidly toward
a wall, the observer will hear two notes of different frequency. One is the
note heard directly from the receding fork and is lowered in pitch by the
motion. The other note is due to the waves reflected from the wall, and
this is raised in pitch. The superposition of these two wave trains pro-
duces beats.

The Doppler effect is important in light. The speed of light is so great that
only astronomical or atomic sources, which have high velocities compared to ter-
restrial macroscopic sources, show pronounced Doppler effects. The astronomical
effect consists of a shift in the wavelength observed from light emitted by elements
on moving astronomical bodies compared to the wavelength observed from these
same elements on earth. (See Chapter 40.) An easily observed consequence of
the Doppler effect is the broadening (or spread in frequency) of the radiation
emitted from hot gases. This broadening results from the fact that the emitting
atoms or molecules move in all directions and with varying speeds relative to the
-observing instruments, so that a spread of frequencies is detected.

There are differences, however, in the Doppler effect formula for light and for
sound. In sound it is not just the relative motion of source and observer that
determines the frequency change. In fact, as we have seen, even when the relative
motion is the same (v0 in Eq. 20-9a equals v, in Eq. 20-10a), we obtain different
quantitative results, depending on whether the source or the observer is moving.
This difference occurs because v0 and v are measured relative to the medium in
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which the sound wave is propagated and because this medium determines the wave
speed. Light, however, does not require a material medium for its transmission,
and the speed of light relative to the source or the observer is always the same
value c, regardless of the motion of these bodies relative to each other. This is a
basic postulate of the special theory of relativityl Hence, for light only the rela-
tive motion of source and observer can lead to physical changes, there being no
material medium to use as a reference frame. Although the Doppler formula for
light (Chapter 40) differs from that for sound, the effects are qualitatively the same.
We can apply Eq. 20-10 to light, as a good approximation if v. is taken to mean the

relative velocity of source and observer and if v is very small compared to the

velocity of light.

P. Example 3. Show that Eqs. 20-9 and 20-10 become practically identical
when the speed of the sources and the observer are small compared to the speed
of sound in the medium.

Let v0 = V. = u. That is, let u represent the speed of observer or source. Then

Eq. 20-9 becomes

v (i ±

We must show then that Eq. 20-10,

V = V I ----- I'
\v+uJ

reduces to the previous form when U/V << 1.

We can rewrite Eq. 20-10 as

,(
U/V

Now by the binomial expansion

But if /v is sufficiently small compared to unity that we may neglect (u/v) 2 and

higher powers, then

(-	
1

IT u/vJ	 V

and Eq. 20-10 becomes	 ' v (i ±

the same as Eq. 20-9.
As a numerical example take u = 73.0 miles/hr. The speed of sound in air is

about 730 miles/hr. Then if the source has a speed r, = u = 73.0 miles/hr
toward the stationary observer, the frequency heard by the observer is Eq. 20-10,

730 \
= V	 =	

-73.0)-

or

If the observer has a speed v,, = u = 73.0 miles/hr toward the stationary source,



Fig. 20-12 Above, right,
group of wavefronts associ-
ated with a projectile mov-
ing with supersonic speed.
The wavefront.s are spher-
ical and their envelope is a
cone. The student should
see the relation between this
figure and the previous one.
Below, right, a spark photo-
graph of a projectile under-
going this motion. (U.S.
Navy Photograph.)
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the frequency heard by the observer is Eq. 20-9,

	

= (

v + v,'\	 1730_±_73.O\

	

V J	 \	 730 )

or	 = 1.10.

Hence, when u/v = 73.0/730 = 1/10, the percentage difference in the frequency
heard between that for the moving observer and that for the moving source, the
relative motion being the same, is only 1 %.

When v0 or v, becomes comparable in magnitude to v, the formulas just given for
the Doppler effect must be modified. The modification is required because the
linear relation between restoring force and displacement assumed up until now no
longer holds in the medium. The speed of wave propagation is no longer the
normal phase velocity, and the wave shapes change in time. Components of the
motion at right angles to the line joining source and observer also contribute to the
Doppler effect at these high speeds. When v0 or v exceeds v, the Doppler formulaclearly has no meaning.

There are many instances in which the source moves through a medium at a
speed greater than the phase velocity of the wave in that medium. In such cases
the wavefront takes the shape of a cone with the moving body at its apex. Some
examples are the bow wave from a speedboat on the water and the "shock wave"
from an airplane or projectile moving through the air at a speed greater than the
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velocity of sound in that medium (supersonic speeds). The Cerenkov radiation
consistof light waves emitted by charged particles which move through a medium
with a speed greater than the phase velocity of light in that medium.*

In Fig. 20-12 we show the present positions of the spherical waves which origi-
nated at various positions of the source during its motion. The radius of each
sphere at this time is the product of the wave speed v and the time t which has
elapsed since the source was at its center. The envelope of these waves is a cone
whose surface makes an angle 8 with the direction of motion of the source. From
the figure we obtain the result

- sin 8.
V.

For water waves the cone reduces to a pair of intersecting lines. In aerodynamics
the ratio v./v is called the Mach number.

QUESTIONS

1. List some sources of infrasonic waves. Of ultrasonic waves.
2. What experimental evidence is there for assuming that the speed of sound is the

same for all wavelengths?
3. What quantity, if any, for transverse waves in a string corresponds to the pressure

amplitude for longitudinal waves in a tube?
4. A bell is rung for a short time in a school. After a while its sound is inaudible.

Trace the sound waves and the energy they transfer from the time of emission until they
become inaudible.

S. How can we experimentally locate the positions of nodes and ant .inodes in a string?
In an air column? On a vibrating surface?

6. Explain how a stringed instrument is "tuned."
7. Discuss the factors that determine the range of frequencies in your voice and the

quality of your voice.
8. The bugle has no valves. How then can we sound different notes on it? To what

notes is the bugler limited? Why?
9. Would a plucked violin string oscillate for a longer or shorter time if the violin had

no sounding board? Explain.
10. Two ships with steam whistles of the same pitch sound off in the harbor. Would

you expect this to produce an interference pattern with regions of high and low
intensity?

11. Suppose that, in the Doppler effect for sound, the source and receiver are at rest
in some reference frame but the transmitting medium is moving with respect to this
frame. Will there be a change in wavelength, or in frequency, received?

12. Is there a Doppler effect for sound when the observer or the source moves at right
angles to the line joining them? How then can we determine the Doppler effect when
the motion has a component at right angles to this line?

13. A satellite emits radio waves of constant frequency. These waves are picked up
on the ground and made to beat against some standard frequency. The beat frequency
is then sent through a loudspeaker and one "hears" the satellite signals. Describe how
the sound changes as the satellite approaches, passes overhead, and recedes from the
detector on the ground.

* See "Cerenkov Radiation: its Origin, Properties and Applications," by J. V. Jelley
in Contemporary Physics, October 1961.
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14. Two identical tuning forks emit notes of the same frequency. Explain how you
might hear beats between them.

15. Transverse waves in a string can be polarized (see, for example, Question 16 of
Chapter 19). Can sound waves be polarized?

PROBLEMS

1. The lowest pitch detectable as sound by the average human ear consists of about
20 vib/sec and the highest of about 20,000 vib/sec. What is the wavelength of each
in air?

2. A sound wave has a frequency of 440 vib/sec. What is the wavelength of this
sound in air? In water?

3. Bats emit ultrasonic waves. The shortest wavelength emitted in air by a bat is
about 0.13 in. What is the highest frequency a bat can emit?

4. (a) A loudspeaker has a diameter of 6.0 in. At what frequency will the wavelength
of the sound it emits in air be equal to its diameter? Be ten times its diameter? Be
one-tenth its diameter? (b) Make the same calculations for a speaker of diameter
12.0 in. If the wavelength is large compared to the diameter of the speaker, the sound
waves spread out almost uniformly in all directions from the speaker, but when the
wavelength is small compared to the, diameter of the speaker, the wave energy is
propagated mostly in the forward direction.

5. A rule for finding your distance from a lightning flash is to count seconds from the
time you see the flash until you hear the thunder and then divide the count by five.
The result is supposed to give the distance in miles. Explain this rule and determine
the per cent error in it at standard conditions.

6. A stone is dropped into a well. The sound of the splash is heard at a time t later.
What is the depth d of the well? Find d when t 3.0 sec.

7. (a) The speed of sound in a certain metal is V. One end of a pipe of that metal of
length I is struck a blow. A listener at the other end hears two sounds, one from the
wave that has traveled along the pipe and the other from the wave that has traveled
through the air. If v is the speed of sound inair,.what time interval f elapses between
the 'two sounds? (b) Suppose t = 1.4 sec and the metal is iron. Find the length 1.

8. The pressure in a traveling sound wave is given by the equation

p = 1.5 sin ,r(x - 330t),

where z is in meters, tin seconds,, and p in nt/meter 2. Find the pressure amplitude,
frequency, wavelength, and speed of the wave.

9. Show that the intensity of a sound wave (a) when expressed in terms of the
pressure amplitude P, is given by

2p0v

where v is the speed of the wave and po is the standard density of air, and, (b) when
expressed in terms of the displacement amplitude y,,,, is given by

I = 2w 2 
POV11ft 

2,2,

where s. is the frequency of the wave.
10. (a) If two sound waves, one in air and one in water, are equal in intensity, what is

the ratio of the pressure amplitude of the wave in water to that of the wave in air'
(b) If the pressure amplitudes are equal instead, what is the ratio of the intensities of the
waves?
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11. A note of frequency 300 vib/sec has an intensity of 1.0 microwatt/meter 2 . What
is the amplitude of the air vibrations caused by this sound?

12. Two waves give rise to pressure variations at a certain point in space given by

Pi = P sin 2,r.,f,

p2 = P sin 2,r(et -

What is the amplitude of the resultant wave at this point when 0 = 0, 0 f, =
=
13. In Fig. 20-13 we show an acoustic interferometer, used to demonstrate the inter-

ference of sound waves. S is a diaphragm that vibrates under the influence of an

	

- - -	 electromagnet. D is a sound detec-

	

.. 	 tor, such as the eror a microphone.
S11

	

•	 , -:- ..	 Path SBD can be varied in length, but

	

;
path SAD is fixed.

-	 ,..	 The interferometer contains air,
and it is found that the sound inten-

	

- 	 sity has a minimum value of 100 units
atone position of B and continuously

. - .............	 . ..	 .	 -	
climbs to a maximum value of 900

	

--'-'--.----	 - -	 units at a second position 1.65 cm
from the first. Find (a) the frequency

	

Fig. 20-1	 of the sound emitted from the source,
- and (b) the relative amplitudes of the

two waves arriving at the detector. (c) How can it happen that these waves have
different amplitudes, considering that they originate at the same Source?

14. Two loudspeakers, Si and Ss, each emit sound of frequency 200 vib/sec uni-
formly in all directions.

A

15. A spherical sound source is placed at P1

near a reflecting wall A B and a microphone is
located at point P2, as' shown in Fig. 20-14.
The frequency of the sound source P 1 is
variable. Find two different frequencies for
which the sound intensity, as observed at P2,

will be a maximum. The speed of sound in air is 1100 ft/sec.
16. The water level in a vertical glass tube 1.0 meter long can be adjusted to any

position in the tube. A tuning fork vibrating at 660 vib/sec is held just over the open
top end of the tube. At what positions of the water level will there be resonance?

17. In Fig. 20-15 a rod R is clamped at its center and a disk Dat its end projects into
a glass tube, which has cork filings spread over its interior. A plunger P is provided at
the other end of the tube. The rod is set into longitudinal vibration and the plunger is
moved until the filings form a pattern of nodes and antinodes (the filings form well-
defined ridges at the antinodes). If we know the frequency ,.of the longitudinal vibra-
tions in the rod, a measurement of the average distance d between successive antinodes

S1 has an acoustic output of 1.2 X iO watt and 8 2 one of
1.8 X 10 watt. S t and S2 vibrate in phase.
Consider a point P which is 4.0 meters from
S i and 3.0 meters from S2. (a) How are the
phases of the two waves arriving at P related?
(b) What is the intensity of sound at P with
both S1 and S2 on? (c) What is the intensity
of sound at P if 5 is turned off (9 2 on)? (d)

What is the intensity of sound at P if S 2 is

ft	 turned off (Sion)?
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Fig. 20-17

26. Two identical piano wires have a fundamental frequency of 600 vib/see when
kept under the same tension. What fractional increase in the tension of one wire will
lead to the occurrence of six beats per second when both wires vibrate simultaneously?

27. A tuning fork of unknown frequency makes three beats per second with a stand-
ard fork of frequency 384 vib/sec. The beat frequency decreases when a small piece of
wax is put on a prong of the first fork. What is the frequency of this fork?

28. Microwaves, which travel with the speed of light, are reflected from a distant
airplane approaching the wave source. It is found that when the reflected waves are
beat against the waves radiating from the source the beat frequency is 990 cycles/sec.
If the microwaves are 0.10 meter in wavelength, what is the approach speed of the
airplane?

29. Could you go through a red light fast enough to have it appear green? Would
you get a ticket for speeding? Take X = 6200 X 10' cm for red light, X 5400 ><
10 cm for green light, and c	 3 X iO'-° cm/sec as the speed of light.

30. A whistle of frequency 540 vib/sec rotates in a circle of radius 2.00 ft at an angular
speed of 15.0 radians/sec. What is the lowest and the highest frequency heard by a
listener a long distance away at rest with respect to the center of the circle?

31. A siren emitting a sound of frequency 1000 vib/sec moves away from you toward
a cliff at a speed of 10 meters/sec. (a) What is the frequency of the sdund you hear
coming directly from the siren? (b) What is the frequency of the sound you hear
reflected off the cliff? (c) What beat frequency would you hear? Take the speed of
sound in air as 330 meters/sec.

32. Trooper B is chasing speeder A along a straight stretch of road. Both are moving
at a top speed of about 100 miles/hr, which is about 150 ft/sec. Trooper B, failing to
catch up, sounds his siren again. Take the speed of sound in air to be 1100 ft/sec and
the frequency of the source to be 500 cycles/sec. Demonstrate clearly whether there
will be a Doppler shift in the frequency heard by speeder A and, if there is, what the
frequency change is.

33. A source of sound waves of frequency 1080 vib/sec moves to the right with a
speed of 108 ft/sec relative to the ground. To its right is a reflecting surface moving to
the left with a speed of 216 ft/sec relative to the ground. Take the speed of sound in
air to be 1080 ft/sec and find (a) the wavelength of the sound emitted in air by the
source, (b) the number of waves per second arriving at the reflecting surface, (c) the
speed of the reflected waves, (d) the wavelength of the reflected waves.

34. A bullet is fired with a speed of 2200 ft/sec. Find the angle made by the shock
wave with the line of motion of the bullet.

35. A jet plane passes overhead at a height of 5000 meters and a speed of Mach 1.5
(that is, 1.5 times the speed of sound). (a) Find the angle made by the shock wave with
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,14ai
Fig. 20-15

determines the speed of sound v in the gas in the tube. Show that

v	 2d.

This is Kundt's method for determining the speed of sound in various gases.
18. A tube 1.0 meter long is closed at one end. A stretched wire is placed near the

open end. The wire is 0.30 meter long and has a mass of 0.010 kg. It is held fixed at
both ends and vibrates in its fundamental mode. It sets the air column in the tube
into vibration at its fundamental frequency by resonance. Find (a) the frequency of
oscillation of the air column and (b) the tension in the wire.

19. A tube can act like an acoustic filter, discriminating against the passage through It
of sound of frequencies different from the natural frequencies of the tube. The muffler
of an automobile is an example. (a) Explain how such a
filter works. (b) How can we determine the cut-off fre-
quency, below which frequency sound is not transmitted'

20 An open organ pipe has a fundamental frequency of
300 vib/sec. The first overtone of a closed organ pipe has
the same frequency as the first overtone of the open pipe. 	 g	 •
How long is each pipe?

21. S in Fig. 20-16 is a small loudspeaker driven by an
audio oscillator and amplifier, adjustable in frequency from
1000 to 2000 cycles/sec only. D is a piece of cylindrical
sheet-metal pipe 180 in long If the velocity of sound in 	 -
air is 1130 ft/sec at the existing temperature, at what fre-
quencies will resonance occur when the frequency emitted by 	

Fig. 20-16the speaker is varied from 1000 to 2000 cycles/sec? Sketch
the displacement modes for each. Neglect end effects.

22. A certain violin string is 50 cm long between its fixed points and has a mass of
2.0 gm. The string sounds an A note (440 vib/sen) when played without fingering.
Where must one put one's finger to play a C (528 vib/sec)?

23. The strings of a cello have a length L. By what length I must they be shortened
by fingering to change the pitch by a frequency ratio r? Find I, if L 0.80 meter and
r6/5, . . . ,r3/2.

24. If a violin string is tun'ed to a certain note, by how much must the tension in the
string be increased if it is to emit a not,, of double the original frequency (that is, a note
one octave higher in pitch).

25. An aluminum wire of length Ii = 60.0 cm and of cross-sectional area 1.00 X
10 cm2 is connected to a steel wire of the same cross-sectional area. The compound
wire, loaded with a block m of mass 10.0 kg, is arranged as shown in Fig. 20-17, so that
the distance 1 2 from the joint to the supporting pulley is 86.6 cm. Transverse waves are
set up in the wire by using an external source of variable frequency. (a) Find the
lowest frequency of excitation for which standing waves are observed such that the
joint in the wire is a node. (b) What is the total number of nodes observed at this fre-
quency, excluding the two at the ends of the wire? The density of aluminum is 2.60
gm/em s, and that of steel is 7.80 gm/em'.
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the line of motion of the jet. () How long after the jet has passed directly ovtrhead
will the shock wave roach the ground?

36. The speed of light in water is about three-fourths the speed of light in vacuum.
A beam of high-speed electrons from a betatron emits Ceronkov radiation in water, the
wavefront being a cone of angle 60. Find the speed of the electrons in the water.

37. Calculate the speed of the projectile illustrated in the photograph in Fig. 20-12.
Assume the speed of sound in the medium through which the projectile is traveling to
be 380 meters/sec.



Temperature
CHAPTER 21

21-1 Macroscopic and Microscopic Descriptions

In analyzing physical situations we usually focus our attention on some
portion of matter which we separate, in our minds, from the environment
external to it. We call such a portion the system. Everything outside the

system which has a direct bearing on its behavior we call the environment.

We then seek to determine the behavior of the system by finding how it
interacts with its environment. For example, a ball can be the system and
the environment can be the air and the earth. In free fall we seek to find
how the air and the earth affect the motion of the ball. Or the gas in a
container can be the system, and a movable piston and a Bunsen burner
can be the environment. We seek to find how the behavior of the gas is
affected by the action of the piston and burner. In all uch cases we must
choose suitable observable quantities to describe the behavior of the sys-
tem. We classify these quantities, which are gross properties of the sys-
tem measured by laboratory operations, as macroscopic. For processes in

which heat is involved the laws relating the appropriate macroscopic
quantities (which include pressure, volume, temperature, internal energy.
and entropy, among others) form the basis for the science of thermo-

dynamics. Many of the macroscopic quantities (pressure, volume, and
temperature, for example) are directly associated with our sense percep-
tions. We can also adopt a microscopic point of view. Here we consider
quantities that describe the atoms and molecules that make up the system,
their speeds, energies, masses, angular momenta, behavior during collisions,
etc. These quantities, or mathematical formulations based on them, form

524
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the basis for the science of statistical mechanics. The microscopic proper-
ties are not directly associated with our sense perceptio's.

For any system the macroscopic and the microscopic quantities must he
related because they are simply different ways of describing the same
situation. In particular, we should he able to express the former in terms
of the latter. The pressure of a gas, viewed macroscopically, is measured
operationally using a manometer (Fig. 17-10). Viewed microscopically
it is related to the average rate per unit area at which the molecules of the
gas deliver momentum to the manometer fluid as they strike its surface.
In Section 23-4 we will make this microscopic definition of pressure quanti-
tative. Similarly (see Section 23-5), the temperature of a gas may he
related to the average kinetic energy of translation of the molecules.

If the macroscopic quantities can he expressed in terms of the micro-
scopic quantities, we should he able to express the laws of thermodynamics
quantitatively in the language of statistical mechanics. We can indeed
do this. In the words of R. C. Tolman:

The explanation of the complete science of thermodynamics in terms of the more
abstract science of statistical mechanics is one of the greatest achievements of
ph ysics. In addition, the more fundamental character of statistical mechanical
considerations makes it possible to supplement the ordinary principles of thermo-
dynamics to an important extent.

We begin our examination of heat phenomena in this chapter with a
study of temperature. As we progress we shall try to gain a deeper under-
standing of these phenomena by interweaving the microscopic and the
macroscopic description—statistical mechanics and thermodynamics. The
interweaving of the microscopic and the macroscopic points of view is
characteristic of modern physics.

21-2 Thermal Equilibrium-The Zeroth Law of Thermodynamics

The sense of touch is the simplest way to distinguish hot bodies from
cold bodies. By touch we can arrange bodies in the order of their hotness,
deciding that A is hotter than B, B than C, etc. We speak of this as our
temperature sense. This is a very subjective procedure for determining
the temperature of a body and certainly not very useful for purposes of
science. A simple experiment, suggested in 1690 by John Locke, shows
the unreliability of this method. Let a person immerse his hands, one in
hot water, the other in cold. Then let him put both hands in water of
intermediate hotness. This will seem cooler to the first hand and warmer
to the second hand. Our judgment of temperature can be rather mis-
leading. Further, the range of our temperature sense is limited. What
we need is an objective, numerical, measure of temperature.

To begin with, we should try to understand the meaning of temperature.
Let an object A which feels cold to the hand and an identical object B
which feels hot he placed in contact with each other. After a sufficient
length of time, A and B give rise to the same temperature sensation.
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Then A and B are said to be in thermal equilibrium with each other. We

can generalize the expression "two bodies are in thermal equilibrium" to
mean that the two bodies are in states such that, if the two were connected,

the combined systems would be in thermal equilibrium. The logical and
operational test for thermal equilibrium is to use a third or test body,
such as a thermometer. This is summarized in a postulate often called

the zeroth law of thermodynamics: If A and B are in thermal equilibrium with

a third body C (the "thermometer'), then A and B are in thermal equilibrium

with each other
This discussion expresses the idea that the temperature of a system is

a property which eventually attains the same value as that of other sys-
tems when all these systems are put in contact. This concept agrees with
the everyday idea of temperature as the measure of the hotness or coldness
of a system, because as far as our temperature sense can be trusted, the
hotness of all objects becomes the same after they have been in contact
long enough. The idea contained in the zeroth law, although simple, is
not obvious. For example, Jones and Smith each know Green, but they
may or may not know each other. Two pieces of iron attract a magnet
but they may or may not attract each other.

A more formal, but perhaps more fundamental phrasing of the zeroth law is:
There exists a scalar quantity coiled temperature, which is a property of all thermo-
dynamic systems (in equilibrium states), such that temperature equality is a necessary
and sufficient condition for thermal equilibrium. This statement justifies our use
of temperature as a thermodynamic variable; theformulation given above is the
corollary of this new statement. Speaking loosely, the essence of the zeroth law is:
there exists a useful quantity called "temperature."

21-3 Measuring Temperature

There are many measurable physical properties that vary as our physio-
logical perception of temperature varies. Among these are the volume of
a liquid, the length of a rod, the electrical resistance of a wire, the pressure
of a gas kept at constant volume, the volume of a gas kept at constant
pressure, and the color of a lamp filament. Any of these properties can be
used in the construction of a thermometer—that is, in the setting up of a
particular "private" temperature scale. Such a temperature scale is estab-
lished by choosing a particular thermometric substanéc and a particular
thermometric property of this substance. We then define the temperature

scale by an assumed continuous monotonic relation between the chosen
thermometric property of our substance and the temperature as measured
on our (private) scale. For example, the thermometric substance may be
a liquid in a glass capillary tube and the thermometric property can be the
length of the liquid column; or the thermometric substance may be a gas
kept in a container at constant volume and the thermometric property
can be the pressure of the gas; and so forth. We must realize that each

choice of thermometric substance and property—along with the assumed rela-

See J. S. Thomsen, American Journal of Physics, 30, 294, 1962.
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(ion between property and temperature—* leadsto an indwidual temperature
scale whose measurements need not necessarily agree with measurements made
on any other independently defined temperature scale.

This apparent chaos in the definition of temperature is removed by uni-
versal agreement, within the scientific community, on the use of a particu-
lar thermometric substance, a particular thermometric property, and a
particular functional relation between measurements of that property and
a universally accepted temperature scale. A private temperature scale
defined in any other way can then always be calibrated against the uni-
versal scale. We describe such a universal scale in Section 21-5 and an
equivalent one in Section 25-6.

Suppose that we have chosen a thermometric substance. Let us repre-
sent by X the thermometric property that we wish to use in setting up a
temperature scale. We arbitrarily choose the following linear function of
the property X as the temperature T which the appropriate thermometer,
and any system in thermal equilibrium with it, has:

T(X) = aX.	 (21-1)

In this expression a is a constant which we must still evaluate.. By choos-
ing this linear form for T(X) we have fixed it so that equal temperature
differences, or temperature intervals, correspond to equal changes in X.
This means, fo example, that every time the mercury column in the
mercury-in-glass thermometer changes in length by one unit, the tem-
perature changes by a definite fixed amount, no matter what the starting
temperature. It also follows that two temperatures, measured with the
same thermometer, are in the same ratio as their corresponding X's, that is

T(X1) X1

T(X2) - 12

To determine the constant a, and hence to calibrate the thermometer,.
we specify a standard fixed point at which all thermometers must give the
same reading for temperature T. This fixed point is chosen to be that at
which ice, liquid water, and water vapor coexist in equilibrium and is
called the triple point of water. This state can be achieved only at a defi-
nite pressure and is unique (Fig. 21-1). The water vapor pressure at the
triple point is 4.58 mm-Hg. The temperature at this standard fixed point
is arbitrarily* set at 273.16 degrees Kelvin and is abbreviated as 273.16° K.
The Kelvin degree is a unit temperature interval.

If we indicate values at the triple point by the subscript tr, then, for any
thermometer,

T(X)	 X

T(Xgr) =

• Adopted in 1954 at the Tenth General conference on Weights and Measures in
Paris.
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FIg. 21-1 The National Bii-
reau of Standards triple-point
cell. It contains pure water
and is sealed after all air has
been removed. It is then im-
mersed in a water-ice bath.
The system is at the triple
point when ice, water, and vapor
are all present, and in equilib-
rium, inside the cell. The
thermometer to be calibrated is
immersed in the central well.

where, for all thermometers,

T(X,) = 273.16° K,

so that
	 T(X) = 273.16° K 

XI..
	 (21-2)

Hence, when the thermometric property has the value X, the temperature
on the particular private scale selected, is given in °K by T(X), when

the value of X and X, are inserted on the right-hand side of this equation.
We can now apply Eq. 21-2 to several thermometers. For a liquid-in

glass thermometer X is L, the length of the liquid column, and Eq. 21-2

yields

T(L) = 273.16° K
L1,.

For a gas at constant pressure, X is V, the volume of the gas, and

T(V) = 273.16° K -f-	 (constant P)
Vt,.

For a gas at constant volume, X is P, the gas pressure, and

T(P)	 273.16° K --	 (constant V).
Pt,
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For a platinum resistance thermometer, X is R, the electrical resistance,

and

T(R) = 273.16°K—

and likewise for other thermometric substances and thermometric
properties.

Example 1. A certain platinum resistance thermometer has a resistance R
of 90.35 ohms when its bulb is placed in a triple-point cell like that of Fig. 21-1.
What temperature is defined by Eq. 21-2 if the bulb is placed in an environment
such that its resistance is 96.28 ohms?

From Eq. 21-2,

T(X) = 273.16°

= (273.160 K) (96.28 = 280.6° K.\ 

Note that this temperature is on a private scale, defined by applying Eq. 21-2 to a
particular device, the platinum resistance thermometer. 	 I

The question now arises whether the value we obtain for the tempera-
ture of a system depends on the choice of the thermometer we use to meas-

ure it. We have insured by definition that all the different kinds of ther-
mometers will agree at the standard fixed point, but what happens at other
points? We can imagine a series of tests in which the temperature of a
given system is measured simultaneously with many different thermome-
ters. Results of such tests show that the thermometers all read differ-
ently. Even when different thermometers of the same kind are used, such
as constant-volume gas thermometers using different gases, we obtain dif-
ferent temperature readings for a given system in a given state.state.

Hence, to obtain a definite temperature scale, we must select one par-
ticular kind of thermometer as the standard. The choice will be made,
not on the basis of experimental convenience, but by inquiring whether
the temperature scale defined by a particular thermometer proves to be
a useful quantity in the formulation of the laws of physics. The smallest
variation in readings is found among different constant-volume gas ther-
mometers, which suggests that we ehoo'e a gas as the standard thermometric
substance. It turns out that as the amount of gas used in such a ther-
mometer, and therefore its pressure, is reduced, the variation in readings
between gas thermometers using different kinds of gas is reduced also.
Hence, there seems to be something fundamental about the behavior of
a constant-volume thermometer containing a gas at low pressure.

21-4 The Constant Volume Gas Thermometer

If the volume of a gas is kept constant, its pressure depends on the tem-
perature and increases steadily with rising temperature. The constant-
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volume gas thermometer uses the pressure at constant volume as the
thermometric property.

The thermometer is shown diagrammatically in Fig. 21-2. It consists
of a bulb of glass, porcelain, quartz, platinum or platinum-iridium (depend-

ing on the temperature range over
which it is to be used), connected
by a capillary tube to a mercury

15 manometer. The bulb containing
some gas is put into the bath or
environment whose temperature is
to be measured; by raising or low-
ering the mercury reservoir the

I-

611	 mercury in the left branch of the

H3
U-tube can be made to coincide
with a fixed reference mark, thus

R keeping the confined gas at a con-
stant volume. Then we read the
height of the mercury in the right
branch. The pressure of the con-
fined gas is the difference of the
heights of the mercury columns
(times pg) plus the atmospheric
pressure, as indicated by the ba-
rometer. In practice the apparatus

Fig. 21-2 A representation of a 	 is very elaborate and we must make
stant-volume gas thermometer. As	 many corrections, for example, (1)
long as the mercury in the left manom- 	 to allow for the small volume
eter tube remains at the same Position 	 change owing to slight contractionon the scale (zero) the volume of the
confined gas will be constant. The	 or expansion of the bulb and (2) to
meniscus can always be brought to the	 allow for the fact that not all the
zero Position by raising or lowering 	 confined gas (such as that in the
reservoir R.	 capillary) has been immersed in the

bath. Assume that all corrections
have been made, and let P be the

corrected value of the pressure at the temperature of the bath. Then the
temperature is given provisionally (see below) by

T(P) = 273 . 160 K --	 (constant V).	 (21-3)
Pt,.

The constant-volume thermometer, used as described below, is the ther-
mometer which serves to establish the temperatur&scale used universally
in scientific work today.

2-5 Ideal Gas Temperature Scale

Let a certain amount of gas be put into the bulb of a constant-volume
gas thermometer so that when the bulb is surrounded by water at the
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triplu point the pressure Ps, is equal to a definite value, say 80 cm-Hg.
Now surround the bulb with steam condensing at 1-atm pressure and, with
the volume kept constant at its previous value, measure the gas pressure

P, the pressure at the steam point, in this case, P,,. Then calculate the
temperature provisionally from T(P,, 0) = 273.16° K (P,, 0180 cm-Hg).
Next remove some of the gas so that P, has a smaller value, say 40 cm-Hg.
Then measure the new value of P5 and calculate another provisional tem-

perature from T(P, 0) 273.16° K (P,/40 cm-Hg).. Continue this same
procedure, reducing the amount of gas in the bulb again, and at this new
lower value of P, calculating the temperature at the steam point T(P,).
If we pit the values T(P5) against Ps, and have enough data, we can
extrapolate the resulting curve to the intersection with the axis where

Pil = 0.
In Fig. 21-3, we plot curves obtained from such a procedure for constant-

volume thermometers of some differnt gases. These curves show that the
temperature readings of a constant-volume gas thermometer depend on
the gas used at ordinary values of the reference pressure. However, as

374.00	 I	 -

-373.75	 02-	 -

I-.
373.50 -

	 Air

-	 N2	 -

-
373.25

He

 H2

I	 I	
i	 640	 0	 100373.00	

20	
Pfr cm-Hg

Fig. 21-3 The readings of a constant-volume gas thermometer for the temperature 7'
of condensing steam as a function of Pm when different gases are used As the amount
of gas in the thermometer is reduced its pressure Pt r at the triple point decreases.
Note that at a particular P..r the values of 7' given by different gas thermometers differ.
The discrepancy is small but measurable, being about 0.2 per cent in the most extreme
cases shown (02 and H2 at 100 cm-Hg). Helium gives nearly the same 7' at all pres-
sures (the curve is almost horizontal) so that its behaviour is the most similar to that of
an ideal gas over the entire range shown.
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the reference pressure is decreased, the temperature readings of constant-
volume gas thermometers using different gases approach the same value.
Therefore, the extrapolated value of the temperature depends only on the gen-
eral properties of gases and not on any particular gas. We therefore define
an ideal gas temperature scale by the relation

T = 273.16° K	
(;)	

(constant V).	 (21-4)

Our standard thermometer is therefore chosen to be a constant-volume
gas thermometer using a temperature scale defined by Eq. 21-4.

Although our temperature scale is independent of the properties of any
one particular gas, it does depend on the properties of gases in general
(that is, on the properties of an ideal gas). Therefore, to measure a tem-
perature, a gas must be used at that temperature. The lowest tempera-
ture that can be measured with any gas thermometer is about 1° K. To
obtain this temperature we must use low-pressure helium, for helium
becomes a liquid at a temperature lower than any other gas. Therefore
we cannot give experimental meaning to temperatures below about 1° K,
by means of a gas thermometer.

We would like to define a temperature scale in a way that is independent
of the properties of any particular substance. We will show in Section 25-6
that the absolute thermodynamic temperature scale, called the Kelvin scale,
is such a scale. We will show also that the ideal gas scale and the Kelvin
scale are identical in the range of temperatures in which a gas thermometer
may be used. For this reason we can write °K after an ideal gas tempera-
ture, as we have already done.

We will also show in Section 25-6 that the Kelvin scale has an absolute
zero of 0° K and that temperatures below this do not exist. The absolute
zero of temperature has defied all attempts to reach it experimentally,
although it is possible to come arbitrarily close.* The existence of the
absolute zero is inferred by extrapolation. The student should not think
of absolute zero as a state of zero energy and no motion. The conception
that all molecular action would cease at absolute zero is. incorrect. This
notion assumes that the purely macroscopic concept of temperature is
strictly connected to the microscopic concept of molecular motion. When
we try to make such a connection, we find in fact that as we approach
absolute zero the kinetic energy of the molecules approaches a finite value,
the so-called zero-point energy. The molecular energy is a minimum, but
not zero, at absolute zero.

• It is possible to prepare systems that have negative Kelvin temperatures. Surpris-
ingly enough, such temperatu,s are not reached by passing through 00 K but by pro-
ceeding through infinite temperatures. That is, negative temperatures are not 'colder'
than absolute zero but instead are 'hotter' than infinite temperatures. See Science by
Degrees, by Castle, Emmerich, Heikes, Miller, and Rayne, published by Walker and
Company, New York, 1965. The absolute zero remains experimentally unattainable.
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Table 21-1

SOME TEMPERATURES * (°K)

Carbon thermonuclear reaction
Helium thermonuclear reaction
Solar interior
Solar corona
Shock wave in air at Mach 20
Luminous nebulae
Solar surface
Tungsten melts
Lead melts
Water freezes
Oxygen boils (1 atm)
Hydrogen boils (1 atm)
Helium (He') boils at 1 atm
He 3 boils at attainable low pressure
Adiabatic demagnetization of paramagnetic salts
Adiabatic demagnetization of nuclei

5 X 10
106
107
106
2.5 X 10
10
6 X 10'
3.6 X 10
6.0 X 102

2.7 X 102
9.0 X 101
2.0 X 101
4.2
3.0 X 10–i
10-3
10-1

See Scientific American, September 1954; special issue on heat.

In Table 21-1 we list the temperatures, on the Kelvin scale, of various
bodies and processes. -

21-6 The Celsius and Fahrenheit Scales

Two temperature scales in common use are the Celsius* and the Fahreii-
heit scales. These are defined in terms of the Kelvin scale, which is the
fundamental temperature scale in science.

The Celsius temperature scale uses a degree (the unit of temperature)
which has the same magnitude as the degree on the Kelvin scale. If we
let t represent the Celsius temperature, then

t	 T - 273.15°	 (21-5)

relates the Celsius temperature t (°C) and the Kelvin temperature T (°I).

We see that the triple point of water (= 273 . 160 K by definition) corre-
sponds to 0.01° C. By experiment the temperature at which ice and air-
saturated water are in equilibrium at atmospheric pressure—the so-called
ice point—proves to be 0 . 000 C and the temperature at which steam and
liquid water are in equilibrium at 1-atm pressure—the so-called steam
point—proves to be 100.000 C.

The Fahrenheit scale, in common use in English-speaking countries
(except in England itself, which adopted the Celsius scale for commercial

• This scale, based on a scale invented by a Swcdc flafl)Cd Celsius in 1742, was called
the 'centigrade' scale until 1045, when the Ninth Gcnend Conference on Weights and
Measures decided that the iri p should he changed.
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Triple
point - 27316'S--- HIT -------32.'F

of water	 I
Pig. 21-4 The Kelvin, Cel-
sius, and Fahrenheit tem-
perature scales.

	

Absolute U	 _____zero - (rl(	 U —273.15'C

and civil use in 1964) is not used in scientific work. The relationship
between the Fahrenheit and Celsius scales is defined to be

T = 32° F +

From this relation we can conclude that the ice point (0.00° C) equals
32.0° F, that the steam point (100.0° C) equals 212.0° F, and that one
Fahrenheit degree is exactly AF as large as one Celsius degree. In Fig. 21-4
we compare the Kelvin, Celsius, and Fahrenheit scales.

21-7 The International Practical Temperature Scale

Let us now summarize the ideas of the last few sections. The standard
fixed point in thermometry is the triple point of water which is arbitrarily
assigned a value 273.16° K. The constant-volume gas thermometer is the
standard thermometer. The extrapolated gas scale is used to define the
ideal gas temperature from T 273.16° K urn (P/Ps,). This scale is

identical with the (absolute thermodynamic) Kelvin scale in the range in
which a gas thermometer can be used.

By using the standard thermometer in this way, we can experimentally
determine other reference points for temperature measurements, called
fixed points. We list the basic fixed points adopted for experimental refer-
ence in Table 21-2. The temperatures can be expressed on the Celsius
scale, with the use of Eq. 21-5, once the Kelvin temperature is determined.

Determining ideal gas temperatures is a painstaking job. It would not
make sense to use this procedure to determine temperatures for all work.
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Table 21-2

Fixin POINTS ON THE INTERNATIONAL PRACTICAL TEMPERATURE SCALE
(1960) *

Temperature
Substance	 Designation	 ac	 OK

Oxygen
Water
Water
Sulfurt
Silver
Gold

Normal boiling point
Triple point
Normal boiling point
Normal boiling point
Normal melting point
Normal melting point

	

—182.97	 90.18

	

0.01	 273.16

	

100.00	 373.15

	

444.60	 717.75

	

960.80	 1233.95

	

1063.00	 1336.15

* All temperatures assumed exact for the purposes of establishing the scale.
f The normal melting point, of zinc (419.505° C) may be substituted.

Hence, an International Practical Temperature Scale (IPTS) was adopted
in 1927 (revised in 1948 and again in 1954 and 1960) to provide a scale
that can be used easily for practical purposes, such as for calibration of
:ndustrial or scientific instruments. This scale consists of a set of recipes
for providing in practice the best possible approximations to the Kelvin
scale. A set of fixed points, the basic points in Table 21-2, is adopted,
and a set of instruments is specified to be used in interpolating between
these fixed points and in extrapolating beyond the highest fixed point.
Formulas are specified for correcting the basic temperatures according to
the barometer reading. The IPTS departs from the Kelvin scale at tem-
peratures between the fixed points, but the difference is usually negligible.
The IPTS has become the legal standard in nearly all countries.

21-8 Temperature Expansion

Common effects of temperature changes are changes in size and changes
of state of materials. Let us consider changes of sizes which occur without
changes of state. Consider a simple model of a crystalline solid. The
atoms are held together in a regular array by forces of electrical origin.
The forces between atoms are like those that would be exerted by a set of
springs connecting the atoms, so that we can visualize the solid body as a
microscopic bedspring (Fig. 21-5). These "springs" are quite stiff (Prob-
lem 38, Chapter 15), and there are about 1022 of them per cubic centimeter.
At any temperature the atoms of the solid are vibrating. The amplitude
of vibration is about 10 cm and the frequency about 10'3/sec.

When the temperature is increased the average distance between atoms
increases. This leads to an expansion of the whole solid body as the tem-
perature is increased. The change in any linear dimension of the solid,
such as its length, width, or thickness, is called a linear expansion. If the
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Pig. 21-3 A solid behaves in many
ways as if it is a microscopic "bed-
spring" in which the molecules are held
together by elastic forces.

length of this linear dimension is 1,
the change in length, prising from
a change in temperature AT, is Al.
We find from experiment that, if
AT is small enough, this change in
length Al is proportional to the
temperature change AT and to the
original length 1. Hence, we can
write

Al = at AT, (21-6)

where a, called the coefficient of
linear expansion, has different
values for different materials. Re-
writing this formula we obtain

1 Al
a =

so that a has the meaning of a frac-
tional change in length per degree temperature change.

Strictly speaking, the value of a depends on the actual temperature and
the reference temperature chosen to determine 1 (see Problem 15). How-
ever, its variation is usually negligible compared to the accuracy with
which engineering measurements need to be made. We can safely take it
as a constant for a given material, independent of the temperature. In
Table 21-3 we list the experimental values for the average coefficient of
linear expansion of several common solids. For all the substances listed,
the change in size consists of an expansion as the temperature rises, for

is positive. The order of magnitude of the expansion is about 1 milli-
meter per meter length per 100 Celsius degrees.

Example 2. A steel metric scale is to be ruled so that the millimeter inter-
vals are accurate to within about 5 X 10 mm at a certain temperature. What
is the maximum temperature variation allowable during the ruling?

From Eq. 21-6,

Al at AT,
we have

S x l0 mm = (11 X 10/C°)(1.0 mm) AT

in which we have used a for steel, taken from Table 21-3. This yields AT
5 C. The temperature maintained during the ruling process must be maintained
when the scale is being used and it must be held constant to within about 5 C°.

Note (see Table 21-3) that if the alloy invar is used instead of steel, then for the

• One Celsius degree (1 C) is a temperature interval (ST) of one unit measured on a
Celsius scale. One degree Celsius (l C) is a specific temperature reading (T) on that
scale.
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same required tolerance one can permit a temperature variation of about 75 CO;or for the same temperature variation (T 5 C°) the tolerance achieved would
be more than an order of magnitude better.

Table 21-3

SOME VALUES* of

Substance	 (per Ce)	 Substance	 (per C°)

Aluminum	 23 X 10'
Brass	 19 )< 10'
Copper	 17 )< 10'
Glass (ordinary)	 9 X 10—'
Glass (pyrex)	 3.2 X 10'

Hard rubber	 SO X 10'
Ice	 si x 10—'
Invar	 0.7 X 10'
Lead	 29 )( 10'
Steel	 ii X 10

For the range oe C to lOOe C; except —10°C to 0°C for ice

On the microscopic level thermal expansion of a solid suggests an increase in the
average separation between the atoms in the solid. The potential energy curve
for two adjacent atoms in a crystalline solid as a function of their internuclear
separation is an asymmetric curve like that of Fig. 21-6. As the atoms move
close together, their separation decreasing from the equilibrium value r0, strongrepulsive forces come into play and the potential curve rises steeply (F = —dU/dr)'
is the atoms move farther apart, their separation increasing from the equilibrium
value, somewhat weaker attractive forces take over and the potential curve rises
nore slowly. At a given vibrational energy the separation of the atoms will

1. 21-6 Potential energy curve
or two adjacent atoms in a crystal-
ne solid as a function of inter-
uclear separation. The equilib-
ium separation is r 0. Because the
urve is asymmetric the average
sparation (r j,r 2 ) increases as the
?mperature (T 1,T2), and hence the
ibrational energy (E1 ,E2), increases.

U(r

4

iange periodically from a minimum to a maximum value, the average separation
ing greater than the equilibrium separation because of the asymmetric nature
the potential energy curve. At still higher vibrational energy the average

paration will be even greater. The effect is enhanced by the fact that in taking
time average of the motion one must allow for the longer time spent at extremeparations (lower vibrational speeds). Because the vibrational energy increases
the temperature rises, the average separation between atoms increases with

inperature and the solid as a whole expands.
Note that if the potential energy curve were symmetric about the equilibrium
-36
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separation, then no matter how large the amplitude of the vibration becomes the
average separation would coriespond to the equilibrium separation. Hence,
thermal expansion is a direct consequence of the deviation from symmetry (that
is, the asymmetry) of the potential energy curve characteristic of solids.

Some crystalline solids, in certain temperature regions, may contract as the
temperature rises. The above analysis remains valid if one assumes that only
compressional (i.e. longitudinal) modes of vibration exist or that these modes pre-
dominate. However, solids may vibrate in shear-like (i.e. transverse) modes as
well and these modes of vibration will allow the solid to contract as the temperature
rises, the average separation of the planes of atoms decreasing. For certain types
of crystalline structure and in certain temperature regions these transverse modes
of vibration may predominate over the longitudinal ones, giving a net negative
coefficient of thermal expansion.

It should be emphasized that the microscopic models presented here are over-
simplifications of a complex phenomenon which can be treated with greater care
with the use of thermodynamics and quantum theory.

For many solids, called isotropic, the per cent change in length for a
given temperature change is the same for all lines in the solid. The
expansion is quite analogous to a photographic enlargement, except that
a solid is three-dimensional. Thus, if you have a flat plate with a hole
punched in it, l/l ( aAT) for a given A T is the same for the length,
the thickness, the face diagonal, the body diagonal, and the hole diameter.
Every line, whether straight or curved, lengthens in the ratio a per
degree temperature rise. If you scratch your name on the plate, the
Ine representing your name has the same fractional change in length as
any other line, The analogy to a photographic enlargement is shown in
Fig. 21-7.

With these ideas in mind, the student should be able to show (see Prob-
lems 16 and 17) that to a high degree of accuracy the fractioral change in
area A per degree temperature change for an isotropic solid is 2a, that is,

LA = 2crA LIT,

and the fractional change in volume V per degree temperature change for

an isotropic solid is 3a, that is,

1V 3aViT.

Because the shape of a fluid is not definite, only the change in volume
with temperature is significant. Gases respond strongly to temperature
or pressure changes, whereas the change in volume of liquids with changes
in tmperature or pressure is very small. If we let 0 represent the coef-
ficient of volume expansion for a liquid, that is,

1 A V

VAT

'' find that is relatively independent of the temperature. Liquids typi-
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Fig. 21-7 The same steel rule at two different temperatures. On expansion every
dimension is increased by the same proportion: the scale, the numbers, the hole, and the
thickness are all increased by the same factor. (The expansion shown, from (a) to (b),
is obviously exaggerated, for it would correspond to an imaginary temperature rise of
about 100,000 00!)

cally expand with increasing temperature, their volume expansion being
generally about ten times greater than that of solids.

However, the most common liquid, water, does not behave like other
liquids. In Fig. 21-8 we show the expansion curve for water. Notice that
above 40 C water expands as the temperature rises, although not linearly.
As the temperature is lowered from 4 to 00 C, however, water expands
instead of contracting. Such an expansion with decreasing temperature
is not observed in ant' other common liquid; it is observed in rubberlike
substances and in certain crystalline solids over limited temperature
intervals. The density of water is a maximum at 4° C, where its value* is
1000 kg/meter 3 or 1.000 gm/cm. At all other temperatures its density is
less. This behavior of water is the reason why lakes freeze first at their
upper surface.

Fig. 21-8 (a) The variation with temperature of de.nsit' of water under atnospheric
pressure. (b) The variation between 0 and 10°C in more detail.
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QUESTIONS

I. Is temperature a microscopic or macroscopic concept?

2. Does our "temperature sense" have a built-in sense of direction; that is, does hotter
necessarily mean higher temperature, or is this just an arbitrary convention? Celsius,
by the way, originally chose the steam point as 00 C and the ice point as 1000 C.

3. How would you suggest measuring the temperature of (a) the sun, (b) the earth's

upper atmosphere, (c) an insect, (d) the moon, (e) the ocean floor, and (f) liquid helium?

4. Is one gas any better than another for purposes of a standard constant-volume gas
thermometer? What properties are desirable in a gas for such purposes?

5. State some objections to using water-in-glass as a thermometer. is mercury-in-
glass an improvement?

6. Can you explain why the column of mercury first descends and then rises when
mercury-in-glass thermometer is put in a flame?

7. What are the dimensions of a, the coefficient of linear expansion? Does the value
of a depend on the unit of length used? When F° are used instead of C 0 as a unit of
temperature change, does the numerical value of a change? If so, how?

8. A metal ball can pass through a metal ring. When the ball is heated, however, it
gets stuck in the ring. What would happen if the ring, rather than the ball, were
heated?

9. A bimetallic strip, consisting of two different metal strips riveted together, is used
as a control element in the common thermostat. Explain how it works.

10. Explain how the period of a pendulum clock can be kept constant with tempera-
ture by attaching tubes of mercury to the bottom of the pendulum. (See Problem 13).

11. Explain why some rubberlike substances contract with rising temperature. (See
Question 21, Chapter 25.)

12. Explain why the apparent expansion of a liquid in a bulb does not give the true
expansion of the liquid.

13. Does the change in volume of a body when its temperature is raised depend
on whether the body has cavities inside, other things being equal? Consider a solid
sphere and a hollow sphere, for example.

14. What difficulties would arise if you defined temperature in terms of the density
of water?

IS. Explain why lakes freeze first at the surface.

• It is to this value of unit maximum density of water that the relative sizes of the
kilogram and meter were originally supposed to correspond. Acèurate measurements
show, however, that the international standards of mass and length do not correspond
exactly to this value. The maximum density of water is actually 999.973 kg/meters
at 3•950 C.
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PROBLEMS

1. If the ideal gas temperature at the steam point is 373.15° K, what is the limiting
value of the ratio of the pressures of a gas at the steam point and at the triple point of
water when the gas is kept at constant volume?

2. Let pt, be the pressure in the bulb of a constant-volume gas thermometer when the
bulb is at the triple-point temperature of 273.16° K and p the pressure when the bulb is
at room temperature. Given three constant-volume gas thermometers: For No. 1 the
gas is oxygen and Per 20 cm-Hg; for No. 2 the gas is also oxygen but per 40 em-Hg;
for No. 3 the gas is hydrogen and pt, = 30 cm-Hg. The meaured values of p for the
three thermometers are p , p, and p. (a) An approximate value of the room tempera-
ture T can he obtained with each of the thermometers using

Ti = 273.16° K	 ; T2 = 273.16° K	 p2	
; T	 273.16° K ps

20 cm-Hg	 40 cm-Hg	 30 cm-Hg

Mark "true" or "false" each of the following statements: (1) With the method de-
scribed, all three thermometers will give the same value of T. (2) The two oxygen
thermometers will agree with each other but not with the hydrogen thermometer. (3)
Each of the three will give a different value of T. (b) In the event that there is dis-
agreement among the three thermometers, explain how you would change the method
of using them to cause all three to give the same value of T.

3. It is an everyday observation that hot and cold objects cool down or warm up to
the temperature of their surroundings. If the temperature difference AT between an
object and its surroundings is not too great, the rate of cooling or warming is approxi-
mately proportional to the temperature difference between the object and its surround-
ings; that is,

2 —KAT,
dl

where K is a constant. The minus sign appears because AT decreases with time if AT is
positive and vice versa. This is known as Newton's law of cooling. (a) On what factors
does K depend? What are its dimensions? (6) If at some instant the temperature
difference is AT0, show that it is

AT AToe
at a time I later.

4. A mercury-in-glass thermometer is placed in boiling water for a few minutes and
then removed. The temperature readings at various times after removal are as
follows:

	

t, see T,°Ct,see T,°CJt,see	 T, OCI(,see	 T, 'C

	0	 98.4	 25	 65.1	 100	 50.3	 700	 26.5

	

5	 76.1	 30	 63.9	 150	 43.7 1000	 26.1

	

10	 71.1	 40	 61.6	 200	 38.8 1400	 26.0

	

15	 67.7	 50	 59.4 300	 32.7 2000	 26.0

	

20	 66.4	 70	 55.4 500	 27.8 3000	 26.0

Plot K as a function of time, assuming Newton's law of cooling to apply (see Problem 3).
How constant is the "constant" K? What might give rise to the observed variations
of K with time?
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5. At what temperature do the Fahrenheit and Celsius scales give the same reading?
The Fahrenheit and the Kelvin scales?

6. (a) The temperature of the surface of the sun is about 6000° K. Express this
on the Fahrenheit scale. (b) Express normal human body temperature, OS.6° F, on
the Celsius scale. (c) Excluding Hawaii and Alaska, the highest recorded temperature
in the United States is 134° F at Death Valley, California, and the lowest is -70* F at
Rogers Pass, Montana. Express these extremes on the Celsius scale. (d) Express the
normal boiling point of oxygen, - 183° C, on the Fahrenheit scale. (e) At what Celsius
temperature would you find a room to be uncomfortably warm?

7. In the interval between 0 and 6600 C, a platinum resistance thermometer of
definite specifications is used for interpolating temperatures on the International Prac-
tical Temperature Scale. The temperature t is given by a formula for the variation of
resistance with temperature:

R R0 (l + At + Bt).

B0, A, and B are constants determined by measurements at the ice point, the steam
point, and the sulphur point. (a) If R equals 10.000 ohms at the ice point, 13.946 ohms
at the steam point, and 24.817 ohms at the sulphur point, find R 0, A, and B. (b) Plot

B versus tin the temperature range from 0 to 660° C.

8. (a) Show that if the lengths of two rods of different solids are inversely propor-
tional to their respective coefficients of linear expansion at some initial temperature, the
difference in length between them will be constant at all temperatures. (b) What
should be the lengths of a steel and a brass rod at 0° C so that at all temperatures their
difference in length is 0.30 meter?

9. A circular hole in an aluminum plate is 1.000 in. in diameter at 0° C. What is its
diameter when the temperature of the plate is raised to 100° C?

10. The Pyrex glass mirror in the telescope at Palomar Observatory has a diameter of
200 in. The temperature ranges from - 10 to 50° C on Mount Palomar. Determine
the maximum chnge in the diameter of the mirror.

II. A clock pendulum made of invar has a period of 0.500 sec at 20° C. If the clock
is used in a climate where the temperature averages 30° C, what correction (approxi-
mately) is necessary at the end of 30 days to the time given by the clock?

12. The distance between the towers of the main span of the Golden Gate Bridge
at San Francisco is 4200 ft. The sag of the cable halfway between the towers at 50° F
is 470 ft. Take & = 6.5 )< 10- 6/F° for the cable and compute the change in length of
the cable and the change in sag for a temperature change from —20 to 110°F. Assume
no bending or separation of the towers and a parabolic shape for the cable.

13. A glass tube nearly filled with mercury is attached to the bottom of an iron pendu-
lum rod 100 cm long. How high must the mercury he in the glass tube so that the
center of mass of this pendulum will not rise or fall with changes in temperature?

14. A steel rod is 3.000 ern in diameter at 25° C. A brass ring has an interior diam-
eter of 2.992 cm at 25° C. At what common temperature will the ring just slide onto
the rod?

15. Show that if a is treated as a variable, dependent on the temperature 7', then

L L0 [1 + Ja(fldT]

where L 0 is the length at a reference temperature T0.

16. The area A of a rectangular plate is ab. Its coefficient of linear expansion is a.
After a temperature rise A T, side a is longer by ,aa. and side b is longer by .b. Show
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that if we neglect the small area Aa Ab, shown cross-hatched and greatly exaggerated
in size in Fig. 21-9, then AA	 2eA AT.

,,j ,IqP

4'	 ///////J.Ab

Fig. 21-9

17. Prove that, if we neglect extremely small quantities, the change in volume of a
solid on expansion through a temperature rise AT is given by AV = 3V AT where a is
the coefficient of linear expansion.

18. When the temperature of a "copper" penny is raised by 1000 C, its diameter
increases by 0.18%. To two significant figures give the per cent increase in the (a) area
of a face, (b) thickness, (c) volume, and (d) mass of the penny. (e) What is the coeffi-
cient of linear expansion?

19. Find the change in volume of an aluminum sphere of 10.0-cm radius when it is
heated from 0.00 to 1000 C.

20. Consider a mercury-in-glass thermometer. Assume that the cross-section of the
capillary is constant at A 0, and that V0 is the volume of the bulb of mercury at 0.000 C.
If the mercury just fills the bulb at 0.000 C, show that the length of the mercury column
in the capillary at a temperature t° C is

I	 ( - 3e)t,
AD

that is, proportional to the temperature, where g is the volume coefficient of expansion of
mercury and a is the linear coefficient of expansion of glass.

21. Density is mass per unit volume. If the volume V is temperature dependent, so
is the density p. Show that the change in density Ap with change in temperature AT is
given by

AP -3p AT

where 9 is the volume coefficient of expansion. Explain the minus sign.
22. (a) Prove that the change in rotational inertia I with temperature of a solid

object is given by Al	 2col AT. (h) Prove that the change in period t of a physical
pendulum with temperature is given by A	 t AT.

23. Consider a uniform solid brass cylinder of mass M = 0.50 kg and radius
R = 0.030 meter. 'The cylinder is placed in frictionless bearings and set to rotate
about its cylinder axis with an angular velocity w = 60 radians/sec. (a) What is the
angular momentum of the cylinder and how much work is required to reach this rate of
rotation, starting from rest? (6) After the cylinder has reached the state of rotation
just described we heat it, without mechanical contact, from room temperature (20° C)
to 1000 C. Take the mean coefficient of linear expansion of brass to be , = 2.0 X
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10 5/C°. Find the fractional changes, if any, in the angular velocity, the angular
momentum, and the kinetic energy of rotation of the cylinder. Explain.

24. Show that when the temperature of a liquid in a barometer changes by .T, and
the pressure is constant, the height h changes by Ah - 19h AT where $ is the coefficient
of volume expansion.

25. Two vertical glass tubes filled with a liquid are connected at their lower ends by a
horizontal capillary tube. One tube is surrounded by a bath containing ice and water

Fig. 21-TO

in equilibrium (0.00 C), the other by a hot-water bath (1). The difference in height of
the liquids in the two columns is &i, and h 0 is the height of the column at 0.00 C. Sh.,w
how this apparatus (Fig. 21-10), first used in 1816 by Dulong and Petit, can be used to
measure the true coefficient of volume expansion p of a liquid (rather than the differen-
tial expansion between glass and liquid). Determine $ if i = 16 . 00 C, h 0 = 126 cm, and
Ah = 1.50 cm.



•	 ri I	 -	 -.

Heat and the First Law of
Thermodynamics

CHAPTER 22

22-1 Heat, a Form of Energy

When two systems at different temperatures
'

re placed together, the
final temperature reached by both systems is somewhere between the two
starting temperatures. This is a common observation. Man has long
sought for a deeper understanding of such phenomena. Up to the begin-
fling of the nineteenth century, they were explained by postulating that a
material substance, caloric, existed in every body. It was believed that
a body at high temperature contained more caloric than one at a low tem-
perature. When the two bodies were put together, the body rich in caloric
lost some to the other until both bodies reached the same temperature.
The caloric theory was able to describe many processes, such as heat con-
duction or the mixing of substances in a calorimeter, in a satisfactory way.
However, the concept of heat as a substance, whose total amount remained
constant, eventually could not stand the test of experiment. Neverthe-
less, we still describe many common temperature changes as the transfer
of "something" from one body at a higher temperature to one at the lower,
and this "something" we call heat. A useful but nonoperational defi-
nition, is: heat is that which is transferred between a system and its surround-
ings as a result of temperature differences only.

Eventually it became generally understood that heat is a form of energy
rather than a substance. The first conclusive evidence that heat could not
be a substance was given by Benjamin Thompson (1753-1814), an Amen-

545
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can who later became Count Rumford of Bavaria. In a paper read before
the Royal Society* in 1798 he wrote:

I . . . am persuaded, that a habit of keeping the eyes open to everything that is
going on in the ordinary course of the business of life has oftener led, as it were by
accident, or in the playful excursions of the imagination ... to useful doubts and
sensible schemes for investigation and improvement, than all the more intense
meditations of philosophers, in the hours expressly set apart for study. It was by
accident that I was led to make the Experiments of which I am about to give an
account.

Rumford made his discovery while supervising the boring of cannon for
the Bavarian government. To prevent overheating, the bore of the cannon
was kept full of water. The water was replenished as it boiled away dur-
ing the boring process. It was accepted that caloric had to be supplied to
water to boil it. The continuous production of caloric was explained by
assuming that when a substance was more finely subdivided, as in bor-
ing, its capacity for retaining caloric became smaller, and that the calorie
released in this way was what caused the water to boil. Rumford observed
in specific experiments, however, that the water boiled away even when
his boring tools became so dull that they were no longer cutting or sub-
dividing matter.

He wrote after ruling out by experiment all possible caloric interpre-
tations,

in reasoning on this subject, we must not forget to consider that most remark-
able circumstance, that the source of Heat generated by friction, in these Experi-
ments, appeared evidently to be inexhaustible ... it appears to me to be extremely
difficult, if not quite impossible, to form any distinct idea of any thing capable of
being excited and communicated in the manner the Heat was excited and com-
municated in these Experiments, except it be MOTION.

Here we have the germ of the idea that the mechanical work expended
in the boring process was responsible for the creation of heat. The idea
was not clearly put until much later, by others. Instead of the continuous
disappearance of mechanical energy and the continuous creation of heat,
neither obeying any conservation principle, the whole process is now viewed
as a transformation of energy from one form to another, the total energy
being conserved.

Although the concept of energy and its conservation seems self-evident
today, it was a novel idea as late as the 1850's and had eluded such men as
Galileo and Newton. Throughout the subsequent history of physics this
conservation idea led men to new discoveries. Its early history was
remarkable in many ways. Several thinkers arrived at this great con-
cept at about the same time; at first, all of them either met with a cold
reception or were ignored. The principle of the conservation of energy

• Rumford, an American, was founder of the Royal Institution in London. On
the other hand, the Smithsonian Institution in Washington owes its origin to an
Englishman.
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was established independently by Julius von Mayer (1814-1878) in Ger-
many, James Joule (1818-1889) in England, Hermann von Helmholtz
(1821-1894) in Germany, and L. A. Colding (1815-1888) in Denmark.*

It was Joule who showed by experiment that, when a given quantity of
mechanical energy is converted to heat, the same quantity of heat is always
developed. Thus, the equivalence of heat and mechanical work as two
forms of energy was definitely established.

Helmholtz first expressed clearly the idea that not only heat and mechani-
cal energy but all forms of energy are equivalent, and that a given amount
of one form cannot disappear without an equal amount appearing in some
of the other forms.

22-2 Quantity of Heat and Specific Heat

The unit of heat Q is defined quantitatively in terms of a specified change
produced in a body during a specified process. Thus, if the temperature
of one kilogram of water is raised from 14.5 to 15.5° C by heating, we say
that one kilocalorie (kcal) of heat has been added to the system. The
calorie (= 10 kcal) is also used as a heat unit. (Incidentally, the
"calorie" used to measure the energy content of foods is actually a kilo-
calorie.) In the engineering system the unit of heat is the British thermal
unit (Btu), which is defined as the heat necessary to raise the temperature
of one pound of water from 63 to 64° F.

The reference temperatures are stated because, near room temperature,
there is a slight variation in the heat needed for a one-degree temperature
rise with the temperature interval chosen. We will neglect this variation
for most practical purposes. The heat units are related as follows:

1.000 kcal = 1000 cal = 3.968 Btu

Substances differ from one another in the quantity of heat needed to
produce a given rise of temperature in a given mass. The ratio of the
heat AQ supplied to a bod y to its corresponding temperature rise A T is
called the heat capacity C of the body; that is,

C = heat capacity = 
AT

The word "capacity" may be misleading because it suggests the essentially
meaningless statement "the amount of heat a body can hold," whereas
what is meant is simply the heat added per unit temperature rise.

From the posthumous publication of Reflections (1872) of the French engineer Sadi
Carnot (1796-1832), it is clear that he arrived at the conservation of energy principle
before all the others. It will give the student some food for thought to realize that
of the five men who were the first to understand the conservation of energy principle,
all were young and all were professionall y outside the field of physics at the time of
their contributions. Mayer was a physician, age 28; Helmholtz, a physiologist, age 32;
Colding, an engineer, age 27; Joule, an industrialist, age 25; and Carnot, an engineer,
age 34. Rumford was an old man, age 45, by comparison.
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The heat capacity per unit mass of a body, called specific heat, is charac-

teristic of the material of which the body is composed:

heat capacity =	
(22-1)mass	 mtT

We properly speak, on the one hand, of the heat capacity of a penny but,
on the other, of the specific heat of copper.

Neither the heat capacity of a body nor the specific heat of a material is
constant but depends on the location of the temperature interval. The
previous equations give only average values for these quantities in the tem-
perature range of A T. The specific heat c of a material at any temperature
is defined by

c -

	

	
(22-2)

mdT

Hence, the heat that must be given to a body of mass m, whose material
has a specific heat capacity c, to increase its temperature from T. to T1, is

Q==mJ
"cdr	 (22-3)

ri

where c is a function of the temperature. At ordinary temperatures and
over ordinary temperature intervals, specific heats can be considered to be
constants. Figure 22-1 shows the variation in the specific heat of water
with temperature. Information of this sort is obtained by using an elec-
trical heating coil to supply heat at a rate that can be accurately deter-
mined. We see from the graph that the specific heat of water varies less
than 1 % from its value of 1.000 cal/gm C° at 15° C.

0	 20	 40	 60	 80	 100
Temperature, C

Fig. 22-1 The variation with temperature of the specific heat of water at a pressure of
1.00 atm. The circle, located at 15' C, suggests the definition of the calorie.
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Equations 22-1 and 22-2 do not define specific heat uniquely. We must
also specify the conditions under which the heat AQ is added to the speci-
men. We have implied that, the condition is that the specimen remain at
normal (constant) atmospheric pressure while we add the heat. This is a
coninton condition, but there are many other possibilities, each leading,
in general, to a different value for c. To obtain a unique value for c we
must specify the conditions, such as specific heat at constant pressure c,
specific heat at constant volume c, etc.

'fable 22-1 (second column) shows the specific heats at constant pres-
sure of some solid elements; we will discuss the specific heats of gases later.
The student should realize from the way the calorie and the Btu are defined
that 1 cal/gm C° = 1 kcal/kg C° = 1 Btu/lb F°, exactly. Note that the
specific heat of water, equal to 1.00 cal/gm C°, is large compared to that of
most substances.

Table 22—I

VALUES FOR C FOR SOME SOLIDS

(At room temperature and for p = 1.0 atm)

Molecular	 Molar
Specific heat,	 weight	 heat capacity

Substance	 cal/gm C'	 gm/mole	 cal/mole C°

Aluminum	 0.215	 27.0	 5.82
Carbon	 0.121	 12.0	 1.46
Copper	 0.0923	 63.5	 5.85
Lead	 0.0305	 207	 6.32
Silver	 0.0564	 108	 6.09
Tungsten	 0.0321	 184	 5.92

Example I. A 75-gm block of copper, taken from a furnace, is dropped into a
300-gm glass beaker containing 200-gm of water. The temperature of the water
rises from 12 to 27° C. What was the temperature of the furnace?

This is an example of two s ystems originally at different temperatures reaching
thermal equilibrium after contact. No mechanical energy is involved, only heat
exchange. Hence,

heat lost by copper = heat gained by (beaker + water),

mccc(Tc - 7',) = (tnGco + mwcw)(T. - Tw).

The subscript C stands for copper, G for glass, and W for water. The initial copper
temperature is T, the initial beaker water temperature is Tw, and T. is the final
equilibrium temperature. Substituting the given values, with cc = 0.093 call
gm Co, CG 0.12 cal/gm C', and cw = 1.0 cal/gm C', we obtain

(75 gm)(0.093 cal/gm C°)(T - 27° C) = 1(300 gm)(0.12 cal/gm C')
+ (200 gm)(1.0 cal/gm C°)](27' C - 12° C)

or, solving for T,	 Tc = 530° C
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What approximations, both experimental and theoretical, were used implicitly to
arrive at this answer?	 4

22-3 Molar Heat Capacities of Solids

From the second column of Table 22-1 we conclude that the specific heats of
solids vary widely from one material to another. However quite a different story
emerges if we compare samples of materials that contain the same number of mole-
cules rather than samples that have the same mass. We can do this by expressing
specific heats (called when so expressed molar heat capacities) in cal/mole C° rather
than in cal/gm C 0.' In 1819 Dulong and Petit pointed out that the molar heat
capacities of all substances, with few exceptions (see carbon in Table 22-1), have
values close to 6 cal/mole C°. The molar heat capacity, listed in the fourth
column of Table 22-1, is found by multiplying the specific heat (second column)
by the molecular weight (third column). We see that the amount of heat required
per molecule to raise the temperature of a solid by a given amount seems to be
about the same for almost all materials. This is striking evidence for the molecular
theory of matter.

Actually molar heat capacities vary with temperature, approaching zero as
T - 0° K and approaching the Dulong-Petit value as T -f . Since the number
of molecules rather than the kind of molecule seems to be important in determining
the heat required to increase the temperature of a body by a given amount, we are
led to expect that the molar heat capacities of different substances will vary with
temperature in much the same way. Figure 22-2 shows that, indeed, the molar
heat capacities of various substances can be made to fall on the same curve by a
simple, empirical adjustment in the temperature scale. The horizontal scale in
Fig. 22-2 is the dimensionless ratio TI TD, where T is the Kelvin temperature and
TD is a characteristic temperature, called the Debye temperature, that has a par-
ticular constant value for each material. For lead, TD has the empirical value of
88°.K and for carbon, TD 18600 K. From these data the student can show
that a scale value of T/TD 0.600 corresponds to T = 530 K for lead but to
T 1120° K for carbon. Alternatively, room temperature (-300° K) corre-
sponds to T/TD = 3.4 for lead and to T/TD = 0.16 for carbon. Thus we see
from Fig. 22-2 that in the early. days, when only room temperature specific heats
were available, lead would conform to the Dulong and Petit rule but carbon would
seem to be an exception.

The straight line! in Fig. 22-2 is the Dulong and Petit value of 1819; it agrees
with experiment at high temperature but fails at low temperatures. It corre-
sponds to the assumption that every atom in a solid vibrates independently like a
classical oscillator. Curve II is due to Debve (1912). In the Debye theory, a
characteristic temperature TD, which is directly related to a vibrational frequency
characteristic of the material, can be obtained independent of specific heat experi-

• A mole of any substance is that mass of the substance that contains a specified
number of molecules, namely, 6.02252 X 102 3, called Avogadro's number. This num-
ber is the result of the defining relation that one mole of carbon (actually, of the isotope
C' 2) shall have a mass of 12 gm, exactly. The molecular weight U of a substance is a
dimensionless quantity expressing the number of grams per mole of that substance.
Thus the molecular weight of oxygen is 32.0 gm/mole. Although the mole is a unit of
mass, we cannot translate it into, sa y , grams, until we know the chemical composition
of the substance; for this reason we find it convenient to use a special symbol ().for
masses expressed in moles.
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FIg. 22-2 The molar heat capacities (c,) showing a few selected point g only. Line I
represents the Dulong and Petit rule and curve II represents a theory due to Debye.

merits. One then uses quantum principles to analyze the coupled vibrations of
the atoms in a solid and obtains a specific heat formula which, in terms of the
dimensionless ratio T/TD, is the same for all substances. The excellent agreement
of this formula (curve II) with experiment is a triumph of quantum physics.*

The materials displayed in Fig. 22-2 are "normal" in that they do not melt, boil,
change their crystal structure, etc., in the temperature range indicated. Specific
heat measurements, which tell us how a solid absorbs energy as its temperature is
raised, are a sensitive probe to detect such molecular, atomic, or electronic rear-
rangements. Figure 22-3, for example, shows the specific heat of tantalum near

F;9. 22-3 The specific heat of
tantalum near its superconducting
transition temperature.

'I5
0

10
1

9	 Superconductor

3.0	 15	 4.0	 4.5
Temperature, 'K

Normal
conductor

5.0	 5.5

• The data reported in Fig. 22-2 are values of c, but those in Table 22-1 are c.
The former is easier to calculate theoretically because the thermal expansion need not
be taken into account, but (for solids) the latter is much easier to measure. The two
are related by the simple thermodynamic formula

Cp = c, + 7'32/p

in which j9 is the thermal coefficient of volume expansion, x (	 -VJV.p) is the
(isothermal) compressibility, and p is the 1 	 it N% At room temperature the difference
between c5 and c, for typical solids is :: 1 UL 5%.
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4390 K. Below this transition t,emIeratiire tantalum loses all its electric resist-
ance—it becomes superconducting. Above this temperature it has the resistance
expected of a normal metal.

22-4 Heat Conduction

The transfer of energy arising from the temperature difference between
adjacent parts of a body is called heal conduction.. Consider a slab of
material of cross-sectional area .4 and thickness it, whose faee.s are kept
at different temperatures. We measure the heat .Q that flows perpen-
dicular to the faces for a time .l. Experiment shows that . Q is propor-
tional to At and to the cross-sectional area A for a given temperature
difference A T, and that AQ is proportional to AT/it for a given At and A,
providing both AT and it are small. That is,

QTA -	 approximately.
At AX

In he limit of a slab of infinitesimal thickness dx, across which there is
a temperature difference dT, we obtain the fundamental law of heat
conduction

dQ _	 dT

	

--kA -.	 (22-4)

Here dQ/dt is the time rate of heat transfer across the area A, dT/dx is
called the temperature gradient, and k is a constant of proportionality called
the thermal conductivity. We choose the direction of heat flow to he the
direction tin which x increases; since heat flows in the direction of decreas-
ing 7, we introduce a minus sign in Eq. 22-4 (that is, we wish dQ/dl to he
positive when dT/dx is negative).

A substance with a large thermal conductivity k is a good heat con-
ductor; one with a small thermal conductivity 1 is a poor heat conductor,
or a good thermal insulator. The value of k depends ñn the temperature,
increasing slightly with increasing temperature, but k can he taken to he
practically constant throughout a substance if the temperature difference
between its parts is not too great. In Table 22-2 we list values of k for
various substances; we see that metals as a group are better heat con-
ductors than nonmetals, and that gases are poor heat conductors.

Let us apply Eq. 22-4 to a rod of length L and constant cross-sectional
area A in which a steady state has been reached (Fig. 22-4). In a steady
state the temperature at each point is constant in time. Hence, dQ/dt is
the same at all cross-sections. (Why?) But dQ'dt -kA (dT/dz), so
that., for a constant k and A, the temperature gradient dT/dz is the same
at all cross-sections. Hence, 7' decreases linearly along the rod so that
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Table 22-2

THERMAL CONDUCTIVITIES, KCAL/SEC METER C°

(Gases at O C; others at about room temperature)

Metals
Aluminum
Brass
Copper
Lead
Silver
Steel

Gases
Air

4.9 X 10-2
2.6 X 10-2
9.2 X 10-2
8.3 X 10-2
9.9 X 10-2
1.1 X 102

5 7 X 10-6

Hydrogen
Oxygen

Others
Asbestos
Concrete
Cork
Glass
Ice
Wood

3.3 X 10_a
5.6 X 10-6

2 X105
2 X104
4 X10
2 X104
4 X104
2 X10

—dT/dx = (T 2 - T 1)/L. Therefore, the heat A Q transferred in time it is

AQ 
= kA T

2 - TI.	
(22-5)

At -	 L

Insulator

Fixed
	 Fixed

temperature	 temperature

1'2> TI

Fig. 22-4 Conduction of heat through an insulated conducting bar.

The phenomenon of heat conduction also shows that the concepts of
heat and temperature are distinctly different. Different rods, having the
same temperature difference between their ends, may transfer entirely
different quantities of heat in the same time.

Example 2. Consider a compound slab, consisting of two materials having
different thicknesses, L 1 and L 2 , and different thermal conductivities, k 1 and k 2 . If

the temperatures of the outer surfaces are T2 and Tj, find the rate of heat transfer
through the compound slab (Fig. 22-5) in a steady state.

Let T be the temperature at the interface between the two materials. Then

AQ- - k2 A(T2 - T)

-it	 L2

and	
k1A(T - T1)

F-37	 At	 Li



Fig. 22-6 Joule's arrangement for measuring
the mechanical equivalent of heat. The
falling weights turn paddles which stir the
water in the container, thus raising its tem-
perature.
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-A

T,

Pig. 22-5 Example 2. Conduction of
heat through two layers of matter
with different thermal conductivities.

In a steady state Q 1/.t = Q2/4
so that

k 2A(T 2 - T)	 k 1.4(T - T1)

L1

Let .Q/t be the rate of heat transfer
(the same for all sections). Then,
solving for T and substituting into
either of these equations, we obtain

_ A(T2—TI)

- (L 1/k) + (L2/k2)

The extension to any number of sec-
tions in series is obviously

QA(T2—TI)	
.4

-

22-5 The Mechanical Equivalent of Heat

If heat is just another form of energy, any energy unit could be a heat
unit. The calorie and Btu originated before it was generally accepted that
heat is energy. It was Joule who first carefully measured the mechanical
energy equivalent of heat energy, that is, the number of joules equivalent
to 1 calorie, or the number of foot-pounds equivalent to 1 Btu.

The relative size of the "heat units" and the "mechanical units" can be
found from experiments in which a measured quantity of mechanical energy
is completely converted into a measured quantity of heat. Joule originally
used an apparatus in which falling weights rotated a set of paddles in a
water container (Fig. 22-6). The loss of mechanical energy was computed
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from a knowledge of the weights and the heights through which the y fell

and the gain in heat energy by determining the equivalent , mass of water
and its rise in temperature. Joule wanted to show that the same amount
of heat energy would he obtained from a given expenditure of work regard-
less of the method used to produce the work. He produced heat by stirring
mercury, by rubbing together iron rings in a mercury bath, by converting
electrical energy into heat in a wire immersed in water, and in other ways.
Always the constant of proportionality between heat produced and work
performed agreed within his experimental error of 5 0/0 . Joule did not have
at his disposal the accurately standardized thermometers of today, nor
could he make such reliable corrections for heat losses front system as
are possible now. His pioneer experiments are noteworthy not only for the
skill and ingenuity he showed but also for the influence they had in con-
vincing scientists everywhere of the correctness of the concept that heat is
a form of energy.

The accepted results (see Appendix A for more precise values) are

1 kcal = 1000 cal = 4186 joules
1 Btu = 252.0 cal = 777.9 ft lb;

that is, 4186 joules of mechanical energy, when converted to heat, will
raise the temperature of 1 kg of water from 14.5 to 15.5° C.

In modern calorimetr; heat is almost always measured in terms of the electrical
energy transferred to a 'ater bath by passing a current. through a resistor that is
immersed in the bath; it. is rarel' measured by observing the rise in temperature
of a water bath. Thus the logical practical unit of heat is the joule (1 joule =
1 watt-see) and this was indeed adopted as the accepted international unit for
heat by the Ninth General Conference on Weights and Measures (1948). Indeed,
in modern laborator y practice the caloric (or kilocalorie) is not much used or
needed. it is, however, deeply embedded in the literature of science. To per-
mit the continued use of this familiar unit—hut to recognize the practical impor-
tance of the joule—a new kilocalorie, the thernochetnical kilocalorie, is often defined:

I kilocalorie (thermochemical) = 41840 joules (exactly).

In ordinary laboratory practice this kilocalorie does not differ significantly from
that defined earlier.

22-6 Heat and Work

We have seen that heal is energy that flows froni one body to another because

of a temperature differenceCe between them. The idea that heat is something in
a body, as the caloric theory assumed, contradicts many experimental facts.
It is only as it flows, because of a temperature difference, that the energy

Henry A. Rowland. in 1579, carried out a painstaking determination of the mechan-
ical equivalent of heat which, to this da y , remains a model of careful experimentation.
His result differs from the accepted value today by only 1 part in 2000. Rowland
graduated from Rensselaer Polytechnic Institute in 1870 and in 1576 became the first
Professor of Ph ysics at the then newly established .Johns Hopkins Universit y ,where he
conducted this experiment. See 'The Education of an American Scientist, Henry A.
Rowland" by Samuel Rezneek, .4rncrican Journal of Physics, February 1960.
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is called heat energ y. If heat were a substance, or a definite kind of energy
that kept its identit y while contained iii a system, it would not he possible
to remove heat indefinitel y from a system which does not change. Yet
Rumford showed that this was possible. Iii fact, by continually perform-
ing mechanical work in Joule's apparatus, we call UTL indefinite
amount of heat out of the water, by connecting it to a cooler s ystem, for
example, without changing the condition of the water.

In the same way work is not something of which a system contains a
definite amount. We can put an indefinite amount of work into a system
without changing its condition, as Joule's apparatus again illustrates.
Work, like heat, involves a transfer of energy. In mechanics, work is
involved in energy transfers in which temperature played no role. If heat
energy is transmitted by temperature differences, we ( ,air heat
and work by defining work as energy that is transmitted from one system to
another in such a way that a difference of tern pc?ature is not direct!!, involved.
This definition is consistent with our previous use of the term. That is,
in the expression dIV = F dx, the force P call from electrical, mag-
netic, gravitational, and other sources. The term work includes all these
energy transfer processes, but it specifically excludes energ y transfer arising
from temperature differences.

Consider another simple example, that of rubbing two surfaces together.
There is no limit to the amount of heat that call removed from this
system or to the amount oEvork that can he put into it-, so that there is
no definite meaning to phrases such as "the heat in the system" or "the
work in the system." The quantities Q and H' are not characteristic of
the (equilibrium) slate of the system but rather of UA, thermodynamic process
by which the system moves from one equilibrium state to another, by inter-
acting with its environment. It is only during such e process that we can
give meaning to heat and work; we eaui their 	 Q with the heat
transferred to or from the s ystem and IL' with the work done oil by the
system. The study of such processes and of the changes iii energy involved
in the performance of work and the flow of heat is the subject matter of
thermodynamics.

In Fig. 22-7 we consider a general thermodynamic process. We must
first state definitely what- the qysteni is and what the environment is. In
the figure we draw a closed surface surrounding the system to define it.
In (a) the system is in its initial slate, in equilibrium with the environment
external to it. In (b) the system interacts with its environment through
Some specific thermodynamic process. During this process, energy in the
form of heat and/or work may go into or out of the system. Arrows repre-
senting the flow of Q or II' must pierce the surface enclosing the system.
In (c) the system has reached it final state, again in equilibrium with the
environment- external to it.

Figure 22-8 shows a falling weight. which turns a generator, which in
turn sends air current through a resistor immersed in a water you-
tamer. Let us choose the system to be the geuieiator and the attached
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electric circuit, the water, and its container Then the environment is the
weight and the earth, which pulls on the weight. The process consists of
letting the weight fall a distance h in the earth's gravitational field. Dur-
ing this process the environment (by
means of the cord) does work W on the
system. There are no temperature dif-
ferences between the system and its 	

a	 m
boundary

environment and hence Q = 0 for this
process

Our choice of a system in thermody-
namic problems is arbitrary. Let us
now choose the system to be only the

	
Environmentwater and its container in Fig. 22-8.

The environment now is the generator	
+and attached circuit as well as the	

b)weight and the earth. For this choice
of system there now is a temperature
difference beteen the environment (re- 	 System lntr-	 w
SiStor) and the system (water), and heat
O will floss into the system during the
process. No forces act through the sys-
tern boundary to product displacements, 	 Environment

however, and hence W = 0 for this pro-	
+cess. This example shows that we must

first state definitely what the system is
and what the environment is before we
can decide whether the change in the

in finalstate of the system is due to the floss	 state
of heat or to the performance of work
or both. There will be a transfer of
heat between system and environment 	 Environment

only when a temperature difference
exists across the system boundary; if no 	 Fig. 22-7 (a) A system in an
temperature difference exists, the energy 	 initial state, in equilibrium with

transfer involves work. 	 its surroundings. (b) A thermo-

Let us now compute Q and }	 dynamic process during whichfor a	
the system may exchange heat Qspecific thermod ynamic process. Con-	 or work ir with its environment.

sider a gas in a cylindrical container	 (c) A final equilibrium	 state
with a movable piston. Let the gas be	 reached as the result of the

the system. Initially it is in equilibrium	 process.

with the environment external to it (which
is the heat reservoir and the piston, shown
in 22-9) and has a pressure p i and a volume V. We can think of the
containing walls as the system boundary. Heat can flow into the system or
out of it through the bottom of the cylinder and work can be done on the
system or by the system by compressing or expanding the gas, respectively,
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Fig. 22-I Heat and work. A
weight, in falling, does work on an
electric generator which sends cur-
rent through a resistor which heats
the water in which it is immersed.

0
with the piston. Consider a process whereby the system interacts with its
environment and reaches a final equilibrium state characterized by a pres-
sure P1 and a volume V1.

In Fig. 22-9 we show the gas expanding against the piston. The work
done by the gas in displacing the
piston through an infinitesimal dis-
tance s's

dW = Fds = pAds = pdV
-----Id

.' A-'	 rJ1
Insulating

'Ia- wall

T

Heat reservoir of controllable
temperature T

Fig. 22-9 Work is done by the gas
at pressure p as it expands against the
piston. Heat may enter or leave
the system from the heat reservoir on
which the cylinder rests.

where dV is the differential change in
the volume of the gas. In general,
the pressure will not be constant dur-
ing a displacement. To obtain the
total work W done on the piston by
the gas in a large displacement, we
must know how p varies with the
displacement. Then we compute
the integral

W=fdW= f1"pdV

over the range in volume. This in-
tegral can be evaluated graphically
as the area under the curve in a p—V
diagram, as shown for a special case
in Fig. 22-10.

There are many different ways in
which the system can be taken from
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fig. 22-10 The work done by a
gas is equal to the area under a p-V

curve.

Pr - - - -

Initial state

Process	

stateFinal

IV0	 Vi	 '>1

the initial state ito the final state!. For example (Fig. 22-11), the pres-
sure may be kept constant from i to a and then the volume kept constant
from a tof. Then the work done by the expanding gas is equal to the area
under the line ia. Another possibility is the path ibf, in which case the
work done by the gas is the area under the line bf. The continuous curve
from i to f is another possible path in which the work done by the gas is
still different from the previous two paths. We can see, therefore, that
the work done by a system depends not only on the initial and final states but
also on the intermediate states, that is, on the path of the process.

A similar result follows if we compute the flow of heat during the process.
State i is characterized by a temperature T j and state f by a temperature
T,. The heat flowing into the system, say, depends on how the system is
heated. We can heat it at a constant pressure P1, for example, until we
reach the temperature T1, and then change the pressure at constant tem-
perature to the final value p. Or we can first lower the pressure to pf and

P

Fig. 22-11 The .':ork done by a sys-
tem depends not only on the initial
state (1) and the final state (1) but
on the intermediate path as well.

V
0	 V	 V1
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then heat it at that pressure to the final temperature T1. Or we can follow
many other paths. Each path gives a different result for the heat flowing
into the system. Hence, the heat lost or gained by a system depend not only
on the initial and final states but also on the intermediate stales, that is, on the
path of the process.' This is an experimental fact. As J. C. Slater has
written:

It would be pleasant to be able to say , in a gi'. eli state of the s y stem, that
the system has so and so much heat energy. Starting from the absolute zero of
temperature, where we could say that the heat energy was zero, we could heat the
body up to the state we were interested in, find fdQ from absolute zero up to this
state, and call that the heat energy. But the stubborn fact remains that we would
get different answers if we heated it up in different ways. ...There is nothing to
do about'it."

Both heat and work "depend on the path" taken; neither one is inde-
pendent of the path, and neither one can be conserved alone.

22-7 The First Law of Thermodynamics

We can now tie all these ideas together. Let a system change from an
initial equilibrium state i to a final equilibrium state f in a definite way,
the heat absorbed by the system being Q and the work done by the system
being W. Then we compute the Q - W. Now we start over and change
the system from the same state I to the same state f, but this time in
another way by a different path. We do this over and over again, using
different paths each time. We find that in every case the quantity
Q - TV is the same. That is, although Q and W separately depend on the
path taken, Q - W does not depend at all on how we took the system
from state ito st.atef but only on the initial and final. (equilibrium) states.

The student will recall from mechanics that when an object is moved
from an initial point ito a final point tin a gravitational field in the absence
of friction, the work done depends only on the positions of the two points
and not at all on the path through which the body is moved. From this
we concluded that there is a function of the space coordinates of the body
whose final value minus its initialvalue equals the work done in displacing
the body. We called it the potential energy function. Now iii thermo-
dynamics we find that when a system has its state changed from state ito
state f, the quantity Q - IV depends only on the initial and final coordi-
nates and not at all on the path taken between these end points. We
conclude that there is a function of the thermodynamic coordinates whose
final value minus its initial value equals the change Q - TV in the process.
We call this function the internal energy function.

Now Q is the energy added to the system-by the transfer of heat and W
is the energy given up by the system in performing work, so that Q - W
represents, by definition, the internal energy change of the system. Let us
represent the internal energy function by the letter U. Then the internal
energy of the system in statef, U1 , minus the internal energy of the system
in state i, U, is simply the change in internal energy of the system, and this
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quantity has a definite value independent of how the system went from state I
to stale f. We have

U1 - U1 U Q - Tv. (22-6)

Just as for potential energy, so for internal energy too it is the change that
matters. If some arbitrary value is chosen for the internal energy in some
standard reference state, its value in any other state can be given a definite
value. Equation 22-6 is known as the first law of thermodynamics. In
appl ying Eq. 2-6 we must remember that Q is considered positive when
heat enters the system and TV is positive when work is done by the system.

If our system undergoes onl y an infinitesimal change in state, only an
infinitesimal amount of heat dQ is absorbed and only an infinitesimal
amount of work dW is done, so that the internal energy change dU is also
infinitesimal. In such a case, the first law is written in differential* form as

dU = dQ - dW.	 (22-7)

We may expres the first law in words by saying Every thermodynamic system
in an equilibrium state possesses a state variable calletz me internal energy U whose
change dU in a differential process is given by Eq. 4-.7 Recall that the essential
content of the zeroth law of thermodynamics (p. 526) is, speaking loosely: there
exists a useful thermodynamic quantity called 'temperature." The essential content
of the first law is: there exists a useful thermodynamic quantity called "internal
energy"; the law also provides, in Eq. 22-6, a recipe for measuring changes in
internal energy quantitatively.

The first law of thermodynamics is thought to apply to every process
in nature that proceeds between equilibrium states. Note that the process
may or may not involve equilibrium states. We may apply the first law
to the explosion of a firecracker in an insulated steel drum, for example.
Because of its generality, the information that the first law gives is far
from complete, although exact and correct. There are some very general
questions which it cannot answer. For example, although it tells us that
energy is conserved in every process, it does not tell us whether any par-
ticular process can actually occur, An entirely different generalization,
called the second law of thermodynamics, gives us this information, and
much of the subject matter of thermodynamics depends on this second law
(Chapter 25).

22-8 Some Applications of the First Law of Thermodynamics

We have seen that when a gas expands the work it does on its environ-
ment is

W fpdr,

• Wand Q are not actual functions of the state of a system, that is, they do not depend
on the values of the system's coordinates. Hence, d Wand dQ are not exact differentials
as the term is used in mathematics. All they mean here is a very small quantity.
More advanced books write them as dQ and cIW to indicate their inexact nature. Flow-
ever, dU is an exact differential, for U is an exact function of the system's coordinates
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Fig. 22-12 Water boiling at con-
stant pressure (isobarically).
The pressure is kept constant by
the weight of the sand and the
piston.

where p is the pressure exerted on or by the gas and dV is the differential
change in volume of the gas. Consider a special case in which the pres-
sure remains constant while the volume changes by a finite amount, say
from V 1 to V1. Then

W =	 p d  = p	 dV = p(V1 - V1)	 (constant pressure).

A process taking place at constant pressure is called an isobaric process.
For example, water is heated in the boiler of a steam engine up to its boiling
point and is vaporized to steam; then the steam is superheated, all processes
proceeding at a constant pressure.

In Fig. 22-12 we show an isobaric process. The system is H 20 in a
cylindrical container. A frictionless airtight piston is loaded with sand
to produce the desired pressure on the HO and to maintain it auto-
matically. Heat can be transferred from the environment to the system
by a Bunsen burner. If the process continues long enough, the water
boils and some is converted to steam; we assume that this occurs. The
system may expand, very slowly (quasi-statically) but the pressure it exerts
on the piston is automatically always the same, for this pressure must be
equal to the constant pressure which the piston exerts on the system. If
we wedged the piston so that it could not, move, or if we added or took
away some sand during the heating process, the process would not be
isobaric.
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Let us consider the boiling process. We know that substances will
change their phase from liquid to vapor at a definite combination of values
of pressure and temperature. Water will vaporize at 1000 C and atmos-
pheric pressure, for example. For a system to undergo a change of phase
heat must be added to it, or taken from it, quite apart from the heat
necessary to bring its temperature to the required value. Consider the
change of phase of a mass rn of liquid to a vapor occurring at constant
temperature and pressure. Let V1 be the volume of liquid and V0 the
volume of vapor. The work done by this substance in expanding from

V3 to V at constant pressure is

TV = p(V0 - V0.

Let L represent the heat of vaporization, that is, the heat needed per unit
mass to change a substance from liquid to vapor at constant temperature
and pressure. Then the heat absorbed by the mass m during the change

of state is
Q = mL.

From the first law of thermodynamics, we have

AU = Q - w

so that	 AU = ML - p(V, - V3)

for this process.

Example 3. At atmospheric pressure 1.00 gin water, having a volume of
1.00 cm 3, becomes 1671 em' of steam when boiled. The heat of vaporization of
water is 539 cal/gm at 1 atm. Hence, if m 1.00 gm,

Q =L 539 cal.

This quantity, which respresents heat added to the system from the environment, is

positive.

W = p(V, - V,) = (1.013 X lob nt/meter 2 )[( 167l - 1) X 10 meter']

169.5 joules.

This quantity, which represents work done by the system on the environment, is

positive.
Since 1 cal equals 4.186 joules, TV 	 41 cal. Then,

AU =	 - U, = mL - p(V, - V,) = (539 - 41) cal

= 498 cal.

This quantity is positive; the internal energy of the system increases during this
process. Hence, of the 539 cal needed to boil 1 gin water (at 1 000 C and 1 atm),
41 cal go into external work of expansion and 498 cal go into internal energy added
to the system. This energy represents the internal work done in overcoming the
strong attraction of 1130 molecules for one another in the liquid state.

How would you expect the SO cal that are needed to melt. 1 gin of ice to water
(at 0°C and 1 atm) to be shared by the external work and the internal energy? 4



Frictionless
and airtigt

contact

Heat-
insulating
material

564	 HEAT AND THE FIRST LAW OF THERMODYNAMICS 	 Chap. 22

Fig. 22-13 In an adiabatic process there is no flow of heat to or from the system.
Here the walls are insulated and, as sand is removed or added, the volume of the gas
changes adiabatically.

A process that takes place in such a way that no heat flows into or out of
the system is called an adiabatic process. Experimentally such processes
are achieved either by sealing the system off from its surroundings with
heat insulating material or by performing the process quickly. Because
the flow of heat is somewhat slow, any process can be made practically
adiabatic if it is performed quickly enough.

For an adiabatic process Q equals zero, so that from the first laiv we
obtain

= U1 - = _TV.

Hence, the internal energy of a system increases exactly , by the amount of
work done on the system in an adiabatic process. If work is done by the
system in an adiabatic process, the internal energy of the system decreases
by exactly the amount of external work it performs. An increase of
internal energy usually raises the system's temperature and conversely, a
decrease of internal energy usually lowers the system's temperature. A
gas that expands adiabatically does external work and its internal energy
decreases; such a process is used to attain low temperatures. The increase
of temperature during an adiabatic compression of air is well known from
the heating of a bicycle pump.

In Fig. 22-13 we show a simple adiabatic process. The system is a gas
inside a cylinder made of heat-insulating material. Heat cannot enter
the system from its environment or leave the system to the environment.
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Again we have a pile of sand on a frictionless airtight piston. The only
interaction permitted between system and environment is through the
performance of work. Such a process can occur when sand is added or
removed from the piston, so that the gas can be compressed or can expand
against the piston.

Among the many engineering examples of adiabatic processes are the
expansion of steam in the cylinder of a steam engine, the expansion of hot
gases in an internal combustion engine, and the compression of air in a
Diesel engine or in an air compressor. These processes all take place
rapidly enough so that only a very small amount of heat can enter or leave
the system through its walls during that short time. The compressions
and rarefactions in a sound wave are so rapid that the behavior of the
transmitting gas is adiabatic (Example 6, Chapter 23).

The most important reason for studying adiabatic processes, however, is
that ideal engines use processes that are exactly adiabatic. These ideal
engines determine the theoretical limits to the operation and capabilities
of real engines. We shall look further into this in Chapter 25.

A process of much theoretical interest is that of free expansion. This is
an adiabatic process in which no work is performed on or by the system.
Something like this can be achieved by connecting one vessel which con-
tains a gas to another evacuated vessel with a stopcock connection, the
whole system being enclosed with thermal insulation (Fig. 22-14). If the
stopcock is suddenly opened, the gas rushes into the vacuum and expands
freely. Because of the heat insulation this process is adiabatic, and
because the walls of the vessels are rigid no external work is done on the
system. Hence, in the first law we have Q = 0 and W = 0, so thatU,, = U1 for this process. The initial and final internal energies are equal
in free expansion.

A free expansion differs from the other examples that we have given
in that there is no way to carry it out very slowly (quasi-statically). After

Initial equilibrium state	 Final equilibrium state
Fig. 22-14 Free expansion. There is no change of internal energy U since there is noflow of heat Q and no external work IV is done.
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we open the stopcock we have no further control over the process. At
intermediate states the pressure, volume and temperature do not have
unique values characteristic of the system as a whole, that is, the system
passes through non-equilibrium states so that we cannot plot the course

of the process by a curve on a p-V diagram. We can plot the initial and

final states as points on such plots because they are well-defined, equi-
librium states. The free expansion is a good example of an irreversible

process; see Section 25-2.

QUESTIONS

1. Give examples to distinguish clearly between temperature and heat.

2. (a) Show how heat conduction and calorimetry could be explained by the caloric

theory. (b) List some beet phenomena that cannot be explained by the caloric theory.

3. Can heat be considered a form of stored (or potential) energy? Would such an
interpretation contradict the concept of heat as energy in process of transfer because of a
temperature difference?

4. Apply Eq. 22-1 to boiling water.
5. Can heat be added to a substance without causing the temperature of the sub-

stance to rise? If so, does this contradict the concept of heat as energy in process of
transfer because of a temperature difference?

6. Explain the fact that the presence of a large body of water nearby, such as a sea
or ocean, tends to moderate the temperature extremes of the climate on adjacent land.

7. Theory shows that the coefficient of linear expansion a (see Sec. 21-8) is propor
tional to the heat capacity C,. Show that this is to be expected. (Hint: heat capacity
measures the rate of change of the vibrational energy with temperature.)

8. Give an examole of a process in which no heat is transferred to or from the system
but the temperature of the system changes.

9. Both heat condtction and wave propagation involve the transfer of energy. Is
there any difference in principle between these two phenomena?

10. When a hot body warms a cool one are their temperature changes equal in
magnitude? Give examples. Can one then say that temperature passes from one to
the other?

11. What connection is there between an object's feeling hot or cold and its heat
capacity? Between this and its thermal conductivity?

12. A block of wood and a block of metal are at the same temperature. When the
blocks feel cold the metal feels colder than the wood; when the blocks feel hot the metal
feels hotter than the wood. Explain, At what temperature will the blocks feel
equally cold or hot?

13. On a winter day the temperature of the inside surface of a wall is much lower than
room temperature and that of the outside surface is much higher thail the outdoor
temperature. Explain.

14. What requirements for thermal conductivity, specific heat capacity, and coeffi-
cient of expansion would you want a material to be used as a cooking utensil to satisfy?

15. In what way is steady-state heat flow analogous to the flow of an incompressible

fluid?
16. Is the mechanical equivalent of heat, J, a phys i cal quantity or merely a conver-

sion factor for converting energy from heat units to mechanical units and vice versa?
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17. Is the temperature of an isolated system (no interaction with the environment)
conserved?

18. Can one distinguish between whether the internal energy of a body was acquired
by heat transfer or acquired by performance of work?

19. If the pressure and volume of a system are given is the temperature always
uniquely determined?

20. Does a gas do any work when it expands adiabatically? If so, what is the source
of the energy needed to do this work?

21 A quantity of gas occupies an initial volume 1 7 0 at a pressure p0 and a tempera-
ture T 0. It expands to a volume V (a) at constant temperature and (h) at constant
pressure. In which case does the gas do more work?

22. Discuss the process of the freezing of water from the point of view of the first
law of thermodynamics. Remember that ice occupies a greater volume than an equal
mass of water.

23. A thermos bottle contains coffee. The thermos bottle is vigorously shaken.
Confider the coffee as the system. (a) Does its temperature rise? (b) Has heat been
added to it? (c) Has work been done on it? (d) Has its internal energy changed?

PROBLEMS

1. In a Joule experiment, a mass of 6.00 kg falls through a height of 50.0 meters and
rotates a paddle wheel which stirs 0.600 kg of water. The water is initially at 15° C.
By how much does its temperature rise?

2. Compute the possible increase in temperature for water going over Niagara Falls,
162 ft high. What factors would tend to prevent this possible rise?

3. An energetic athlete dissipates all the energy in a diet of 4000 kcal per day. If he
were to release this heat at a steady rate, how would his heat output compare with the
energy output of a 100-watt bulb?

4. A block of ice at 0° C whose mass is initially 50.0 kg slides along a horizontal sur-
face, starting at a speed of 5.38 meters/sec and finally coming to rest after traveling
28.3 meters. Compute the mass of ire melted as a result of the friction between the
block and the surface. List an y assumptions you need to make in getting your answer.

5. Calculate the specific heat of a metal from the following data. A container made
of the metal weighs 8.0 lb nd contains in addition 30 lb of water. A 4.0-lb piece of the
metal initially at a temperature of 350° F is dropped into the water. The water and
container initially have a temperature of 60° F and the final temperature of the entire
system is 65° F.

6. A thermometer of mass 0.055 kg and of specific heat 0.20 kcal/kgC° reads
15.0° C. It is then inserted into 0.300 kg of water and it comes to the same final
temperature of the water. If the thermometer reads 44.4° C and is accurate, what was
the temperature of the water before insertion of the thermometer, neglecting other heat
los&,s?

7. Count Rumford weighed a metal object at low temperature and then at high
temperature to see whethei its 'caloric content" increased. He concluded that (for
gold) the "caloric" did not weigh more than 10" the weight of the sample. (a) Should
the mass of a Sample increase when heated, according to modern theories? (b) If so,
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by what order of magnitude? (c) Was Rumford safe in rejecting the caloric theory

on this basis, in retrospect?

8. Take the average specific heat of copper to he 0.090 al/gmC° in the temperature
range 0 to 1000° C. If 1.00 kg of copper is heated from 0 to 1000° C. by how much
does its mass increase?

9. A "flow calorimeter' is used to measure the specific heat of a liquid. Heat is
added at a known rate to a stream of the liquid as it passes through the calorimeter at a
known Late. Then a measurement of the resulting temperature difference between the
inflow and the outflow points of the liquid stream enables us to compute the specific heat
of the liquid.

A liquid of density 0.85 gm/cm' flows through a calorimeter at the rate of 8.0 cm/sec.
Heat is added by means of a 250-watt electric heating coil, and a temperature difference
of 15 C 0 is established in steady-state conditions between the inflow and outflow points.
Find the specific heat of the liquid.

10. By means of a heating coil energy is transferred at a constant rate to a substance in

a thermally insulated container. The temperature of the substance is measured as a
function of the time. Show how we can deduce the way in which the heat capacity of
the body depends on the temperature from this information.

11. Suppose the specific heat of a substance is found to vary with temperature in a
parabolic fashion, that is

c A + BT2,

where A and B are constants and T is Celsius temperature. Compare the mean specific

heat of the substance in a temperature range T = 0 to T T to the specific heat at

the midpoint T/2.
12. The specific heat of silver, measured at atmospheric pressure, is found to vary

with temperature between 50 and 1000 K by the empirical equation

c9	0.076T - 0.00026T 2 - 0.15,

where c is in cal/mole K° and T is the Kelvin temperature. Calculate the quantity of
heat required to raise 216 gm of silver from 50 to 100 0 K.

.13. Power is supplied at the rate of 0.40 hp for 2.0 min in drilling a hole in a 1.0-lb
brass block. (a) How much heat is generated? (b) What is the rise in temperature
of the brass if 75% of the heat generated warms the brass? (c) What happens to the
other 25%?

14. A 2.0-gm lead bullet moving at a speed of 200 meters/sec becomes embedded in a
2.0-kg wooden block of a ballistic pendulum. Calculate the rise in temperature of the
bullet, assuming that all the heat generated raises the bullet's temperature.

15. Consider the rod shown in Fig. 22-4. Suppose L	 25 cm, A	 1.0 cm 2, and the

material is copper. If T 2 125° C, T 1 0° C, and a steady state is reached, find (a)

the temperature gradient, (b) the rate of heat transfer, and (c) the temperature at a
point in the rod 10 cm from the high-temperature end.

16. Show that in a compound slab the temperature gradient in each portion is
inversely proportional to the thermal conductivity.

17. Assume that the thermal conductivity of copper is twice that of aluminum and
four times that of brass. Three metal rods, made of copper, aluminum, and brass,
respectively, are each 6.0 in. long and 1.0 in. in diameter. These rods are placed end-to-
end, with the aluminum between the other two. The free ends of the copper and brass
rods are maintained at 100 and 0° C, respectively. Find the equilibrium temperati.fres
of the copper-aluminum junction and the aluminum-brass junction.
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10. Assuming k is constant, show that the radial rate of flow of heat in a substance
between two concentric spheres is given by

	

dQ	 (Ti - T2)4kr1r2

	

dl	 r2 -

where the inner sphere has a radius rj and temperature T 1 , and the outer sphere has a
radius r2 and temperature T2.

19. Heat generated by radioactivity within the earth is conducted outdard through
I oceans. For purposes of approximate calculation, assume the average temperature
gradient within the solid earth beneath the Ocean to be 0.07 C°/meter and the average
thermal conductivity to be 2 X 10 - kcal/meter sec C°, and determine the rate of heat
transfer per square meter. Assume that this is approximately the rate for the entire
surface of the earth, and determine how much heat is thereby transferred through the
earth's surface each day.

20. Assuming k is constant., show that the radial rate of flow of heat in a substance
between two coaxial cylinders is given by

dQ (Ti - T2)2,Lk

	

dl	 In (r2/rl)

u here the inner cylinder has a radius r 1 and temperature Ti , and the outer cylinder has a
radius r 2 and temperature 1', each cylinder having a length L.

21. A long tungsten heater wire is rated at 3.0 kw/meter and is 5.0 >( iO meter in
diameter. It is embedded along the axis of a ceramic cylinder of diameter 0.12 meter.
When operating at the rated power, the wire is at 15000 C; the outside of the cylinder is
at 20° C. Find the thermal conductivity of the ceramic; use the result given in Prob-
lem 20.

22. Determine the value of J, the mechanical equivalent of heat, from the following
data; 2000 cal of heat are supplied to a system; the system does 3350 joules of external
work during that time; the increase in internal energy during the process is 5030 joules.

28 Mien a system is taken from state ito state! along the path iaf, it is found that
50 cal aid W	 20 cal. Along the path ibf, Q	 36 cal (Fig. 22-15). (a) What

i Z=b^

Fig. 22-15

is W along the path ih(? (b) If W = - 13 cal for the curved return path fi, what is Q
foi' this path? (c) Take U 10 cal. What is U,? (d) If Ub 22 cal, what is Q
for t!e process ib? For the process bf?

4. A thermodynamic system is taken from an initial state A to another B and back
again to A, via state C, as shown by the path A-il-C-A in the p-V diagram of Fig.
22-16a. (a) ComDlete the table in Fig. 22-16b by filling in appropriate + or - mdi-
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50

C

3	 4	 5
V. m3

(a)	 (b)

Fig. 22-16

cations for the signs of the thermodynamic quantities associated with each process. (b)
Calculate the numerical value of the work done by the system for the complete cycle
A-3-t.

26. Figure 22-17a shows a cylinder containing gas and closed by a movable piston.
The cylinder is submerged in an ice-water mixture. The piston is quickly pushed down
from position (I) to position (2). The piston is held at position (2) until the gas is again
at 00 C and then is slowly raised back to position (1). Figure 22-17b is a p-V diagram
tor the process. If 100 gm of ice are melted during the cycle, how much work has been
done on the gas?

and	 Start
ter	 i	 I

V2	V1.
Volume

(a)	 (b)

Fig. 22-17

26. An iron ball is dropped onto a concrete floor from a height of 10 meters. On the
first rebound it rises to a height of 0.0 meter. Assume that all the macroscopic
mechanical energy lost in the collision with the floor goes into the ball. The specific
heat of iron is 0.12 cal/gm C°. During the collision (a) has heat been added to the ball?
(b) Has work been done on it? (c) Has its internal energy changed? If so, by how
much? (d) Pow much has the temperature of the ball risen after the first collision"

a,
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Kinetic Theory of Gases—1
CHAPTER 23

23-1 Introduction

Thermodynamics deals only with macroscopic ' riables, such as pressure,
temperature, and volume. Its basic laws, expressed in terms of such
quantities, say nothing at alt about the fact that matter is made up of
atoms. Statistical mechanics, however, which deals with the same areas
of science that thermodynamics does, presupposes the existence of atoms.
Its basic laws are the laws of mechanics, which are applied, to the atoms
that make up the system.

No existing electronic computer could solve the problem of applying
the laws of mechanics individually to every atom in a gas, say. If there
were one, the results of such calculations would be too voluminous to be
useful. Fortunately, the detailed life histories of individual atoms in a
gas are not important if we want to calculate oniy be macroscopic behavior
of the gas. We apply the laws of mechanics statistically, then, and we find

that we are able to express all the thermodynamic variables as certain
averages of atomic properties. For example, the pressure exerted by a gas
on the wall of the containing vessel is the average rate per unit area at
which the atoms of the gas transfer momentum to the wall as they collide
with it. The number of atoms in a macroscopic system is usually so
large that such averages are very sharply defined quantities indeed.

We can apply the laws of mechanics statistically to assemblies of atoms
at two different levels. At the level called kinetic theory we proceed in a

rather physical way, using relatively simple mathematical averaging tech-
niques. In this chapter we will use !hese methods to enlarge our under-

571
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standing of pressure, temperature, specific heat, and internal energy at the
atomic level. Kinetic theory was developed by Robert Boyle (1627-1691),
Daniel Bernoulli (1700-1782), James Joule (1818-1889), A. Kronig (1822-
1879), Rudolph Clausius (1822-1888), and Clerk Maxwell (1831-1879),
among others.* In this book we apply the kinetic theory to gases only,
because the interactions between atoms in gases are much weaker than in
liquids and solids; this greatly simplifies the mathematical difficulties.

At another level, we can apply the laws of mechanics statistically using
techniques that are more formal and abstract than those of kinetic theory.
This approach, developed by J. Willard Gibbs (1839-1903) and by Ludwig
Boltzmann (1844-1906) among others, is called statistical mechanics, a term
that includes kinetic theory as a sub-branch. Using these methods one
can derive the laws of thermodynamics, thus establishing that science asa
branch of mechanics. The fullest flowering of statistical mechanics
(quantum statistics) involves the statistical application of the laws of
quantum mechanics—rather than those of classical mechanics—to many-
atom systems.f

23-2 Ideal Gas--A Macroscopic Description

Let a mass TIZ of a gas be confined in a container of volume V. The
density p of the gas ison/11 and it is clear that we can reduce p either by
removing some gas from the container (reducing E) or by putting the
gas in a larger container (increasing U). We find from experiment that,
at low enough densities, all gases, no matter what their chemical composi-
tion, tend to show a certain simple relationship among the thermodynamic
variables p, V, and T. This suggests the concept of all 	 gas, one that
would have the same simple behavior under all conditions. In this section
we give a macroscopic or thermodynamic definition of an ideal gas. In
Section 23-3 we will define an ideal gas microscopically, from the stand-
point of kinetic theory, and we will see what we can learn by comparing
these two approaches.

Given a mass lZ of any gas in a state of thermal equilibrium we can
measure its pressure p, its temperature 7', and its volume V. For low
enough values of the density experiment shows that (1) for a given mass of
gas held at a constant temperature, the pressure is iiive'rsely proportional
to the volume (Boyle's law), and (2) for a given mass of gas held at a
constant pressure, the volume is directly proportional to the temperature
(law of Charles and Gay-Lussac). We can summarize these two experi-
mental results by the relation

= a constant. (for a fixed mass of gas). 	 (23-1)

See 'John James Waterston and the Kinetic Theory of Gases," by S. G. Brush, in
.4nerican Scientist, June 1961, for an interesting aspect of the histor y of kinetic theory.

t See Thermal Physics by Philip M. Morse, W. A. Benjamin, Inc.,New York, 1962,
for a fuller treatment of thermodynamics, kinetic theory, and (particulaly) statistical
mechanics proper, than we can give here.
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The volume occupied by a gas (real or ideal) at a given pressure and
temperature is proportional to its mass. Thus the constant in Eq. 23-1
must also he proportional to the mass of the gas. In Section 22-2 (see
Fig. 22-2) we saw the great simplification that occurs in studies of the
specific heats of solids if we compare samples of solids that contain the
same number of molecules rather than samples that have the same mass in
grams. We did this by using the mole as our mass unit. Let us also
do that here.

We therefore write the constant in E. 23-1 as pR, where ju is the mass
of the gas in moles and R is a constant that must he determined for
each gas by experiment. Our expectation that simplicity will emerge if we
compare gases on a molar basis is justified because experiment shows
that., at low enough densities, R has the same value for all gases, namely

1? = 8.314 joule/mole K° = 1.086 cal/mole K°.

R is called the universal gas constant. We then write Eq. 23-1 as

p V = ,R T (23-2)

and we define an ideal gas as one that obeys this relation under all condi-
tions. There is no such thing as a truly ideal gas, but it remains a useful
and simple concept connected with reality by the fact that all real gases
approach the ideal gas abstraction in their behavior if the density is low
enough. Equation 23-2 is called the equation of stale of an ideal gas.

If we could fill the bulb of an (ideal) constant-volume gas thermometer
with an ideal gas, we see from Eq. 23-2 that we could define temperature
in terms of its pressure readings, that is,

T = 273.16° K

	

	 (ideal gas)
Pr

Here ps, is the gas pressure at the triple point, at which the temperature T1,
is 273.16° K by definition. In practice we must fill our thermometer with
a real gas and measure the temperature by extrapolating to zero density
using Eq. 21-4,

T	 273.16° K urn -- (real gas).
P,,--O Pt,•

Example 1. A cylinder contains oxygen at a temperature of 200 C and a
pressure of i. atm in a volume of 100 liters. A piston is lowered into the cylinder
decreasing the volume occupied by the gas to SO liters and raising the temperature
to 250 C. Assuming oxygen to behave like an ideal gas under these conditions,
what then is the gas pressure?

From Eq. 23-1, since the mass of gas remains unchanged, we may write

P i V - pjVj
Ti	Ti
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Our initial conditions are

15 atm,	 Ti 293 K,	 I', = 100 liters.

Our final conditions are

	

p,=?,	 T,=29S°K,	 V,	 80 liters.

Hence,

	

fT1\ Pi ll ,% 	 /298°_K \ /1.5 atm x 100 liters\
P1	 iiters) 1s,	 293° K	

= 19 atm.

Example 2. Calculate the work per mole done by an ideal gas which expands
isothermally, that is, at constant tem-
perature, from an initial volume V. to
a final volume V,.

The work done may be represented as
PV = MRT

T = constant

Isothermal
process

0

IV = JVIdV

From the ideal gas law we have

pRT
p=-—,

so that W/,, the work per mole, is

TV	 fVt/'r

L	 JY, V

The temperature is constant so that

Fig. 23-1 Example 2. The shadedvc, dV	 v
area represents the work done by u	 - RT I - = RT In --
moles of gas in expanding from V.	 J . V

to V1 with the temperature held is the work per mole done b y an ideal gas
constant.	 -in an isothermal expansion at tempera-

ture T from an initial volume I
l
i to a

final volume V1.

Notice that when the gas expands, so that V1 > V, the work done by the gas
is positive; when the gas is compressed, so that V, < V, the work done by the
gas is negative. This is consistent with the sign convention adopted for ll in the
first law of thermodynamics. The work done s shown as the shaded area in
Fig. 23-1. The solid line is an isotherm, that is, a curve giving the relation of p
to V at a constant temperature.

In practice, how can we keep an expanding or contracting g-i at constant
temperature? I

23-3 An Ideal Gas--Microscopic DefInition

From the microscopic point of view we define an ideal gas by making
the following assumptions it will then be our task to apply the laws of
classical mechanics statistically to the gas atoms and to show that our
microscopic definition is consistent with the macroscopic definition of the

preceding section:
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1. A gas consists of particles called molecules. Depending on the gas,
each molecule will consist of one atom or a group of atoms. If the gas is
an element or a compound and is in a stable state, we consider all its
molecules to be identical.

2. The molecules are in random motion and obey Newton's laws of motion.
The molecules move in all directions and with various speeds. In com-
puting the properties of the motion, we assume that Newtonian mechanics
works at the microscopic level. As for all our assumptions, this one will
stand or fall depending on whether or not the experimental facts it predicts
are correct.

3. The total number of molecules is large. The direct-ion and speed of
motion of any one molecule may change abruptly on collision with the wall
or another molecule. Any particular molecule will follow a zigzag path
-because of these collisions. However, because there are so many molecules
we assume that the resulting large number of collisions maintains the
over-all distribution of molecular velocities and the randomness of the
motion.	 -

4. The volume of the molecules is a negligibly email fraction of the volume
occupied by the gas. Even though there are many molecules, they are
extremely small. Ve know that the volume occupied by a gas can be
changed through a large range of values with little difficulty, and that when
a gas condenses the volume occupied by the liquid may be thousands of
times smaller than that of the gas. Hence, our assumption is plausible.
Later we shall investigate the actual size of molecules and see whether we
need to modify this assumption.

5. No appreciable forces act on the molecules except during a collision. To
the extent that this is true a molecule moves with uniform velocity between
collisions. Because we havc assumed the molecules to be so small, the
average distance between molecules is large compared to the size of a
molecule. Hence, we assume that the range of molecular forces is compa-
rable to the molecular size.

6. - Collisions are elastic and are of negligible duration. Collisions between
molecules and with the walls of the container conserve momentum and
(we assume) kinetic energy. Because the collision time is negligible com-
pared to the time spent by a molecule between collisions, the kinetic energy
which is converted to potential energy during the collision is available
again as kinetic energy after such a brief time that we can ignore this
exchange entirely.

23-4 Kinetic Calculation of the Pressure

Let us now calculate the pressure of an ideal gas from kinetic theory.
To simplify matters, we consider a gas in a cubical vessel whose walls are
perfectly elastic. Let each edge be of length 1. Cali the faces normal to
the x-axis (Fig. 23-2) A and A.,, each of area 12. Consider a molecule
which ha a velocity v. We can resolve v into components v, vi,, and
in the directions of the edges. If this particle co lli des with A 1 , it will



Fig. 23-2 A cubical box of si.le 1,
coutainir.g an ideal gas. An',ole-
(ule is shown moving tow-an! A
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rebound with its x-componenl of velocity reversed. There will be no effect
on v, or r, so that the change Ap in the particle's momentum vil1 be

= Pi - p	 - rni' - (rnv) =

normal to .41. Hence, the momentum imparted to _4 i will be 2,nv, since
the total momentum is conserved.

Suppose that this particle reaches .4 2  without striking any other par-
tide on the way. The time required to cross the cube will be i,'c . . At
A 2 it will again have its .T-component of velocity reversed and will return
to .4 1 .  Assuming no collisions in between, the round trip will take a
time 21/1 ,i . Hence, the number of collisions per unit time this particle
makes with A 1 is 1 , / 21, so that the rate at which it transfers momentum
to A 1 is

2 nirx	
?flV

= 1.

To obtain the total force on .4 1, that is, the rate at which momentum is
inparted to A l by all the gas molecules, we must sum up ncr 2 1 for all the
particles. Then, to find the pressure, we divide this force by the area of
.1 , namely 12.

If m is the mass of each molecule, we have

P =	 (r,2 + r. +

where v is the .r-component of the velocity of particle 1, t'2 is that of
part ide 2, etc. If N is the total number of particles in the container and n

	is the number per unit volume, then .V/1 3	 ii or P = N/n. Hence,
0	 9

u.n + V2 +
P = nn
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But mn is simply the mass per unit volume, that is, the density p. The
quantity (v 1 2 + r 2 2 + )/N is the average value of v 2 for all the
particles in the container. Let us call this v 2. Then

P = pv2.

For any particle v 2 t' + v 2 + v 2. Because we have many par-
tides and because they are moving entirely at random, the averagevalues
of v 2, and v 2 are equal and the value of each is exactly one-third the
average value of v. There is no preference among the molecules for
motion along any one of the three axes. Hence, v 2 = - v 2 , so that

P = pv = pv 2 .	 (23-3)

Although we derived this result by neglecting collisions between par-
ticles, the result is true even when we consider collisions. Because of the
exchange of velocities in an elastic collision between identical particles,
there will always he some one molecule that will collide with A2 with
momentum mv corresponding to - the one that left A 1 with this same
momentum. Also, the time spent during collisions is negligible compared
to the time spent between collisions. hence, our neglect of collisions is
merely a convenient device for calculation. Likewise, we could have
chosen a container of any shape—the cube merely simplifies the calculation.
Although we have calculated the pressure exerted only on the side A 1 , it
follows from Pascal's law that the pressure is the same on all sides and
everywhere in the interior.*

The square root of v is called the root-mean-square speed of the mole-
cules and is a kind of average molecular speed.t Using Eq. 23-3, we can
calculate this root-mean-square speed from measured values of the pressure
and density of the gas. Thus,

Ur. =V =	 (23-4)

In Eq. 23-3 we relate a macroscopic quantity (the pressure p) to an
average value of a microscopic quantity (that is, to v 2 or Vrm,2. However,
averages can be taken overover short times or over long times, over small
regions of space or large regions of space. The average computed in a small
region for a short time might depend oil time or region chosen, so that
the values obtained in this way may fluctuate. This could happen in a gas
of very low density, for example. We call 	 fluctuations, however,
when the number of particles in the system is large enough.

• We neglect the weight of the gas, a negligible effect unless the gas is of very large
extent, as in the atmosphere. (See Section 17-3 and Problem 42.)

t We will consider this further in Section 24-2 in which we discuss the molecular
distribution of speeds.
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Examp1 3. Calculate the root-mean-square speed of hydrogen molecules at
0.00° C and 1.00-atm pressure, assuming h ydrogen to be an ideal gas. Under these
conditions hydrogen has a density p of 8.99 X 10 2 kg/meter'. Then, since
p = 1.00 atm = 1.01 X 101 nt/meter2,

Uma	 3p = 1S40 meters,'sec.

This is of the order of a mile per second, or 3600 miles/hr. 	 4

Table 23-1 gives the results of similar calculations for some gases at 00 C.

Table 23-1

Molecular
Gas i'rm (at 00 C), weight,*

meters/sec 
gm/mole

Translational
kinetic energy

per mole (at 0° C),
L .VVrm2

joules/mole

02	 461
	

32
	

3400
493
	

28
	

3390
Air	 485
	

28.8
	

3280
Co
	

493
	

28
	

3390
H2	 1838
	

2.02
	

3370
He	 1311
	

4,0
	

3430
Co2	 393
	

44
	

3400
H20
	

615
	

is
	

3400
N 
	

584
	

20.1
	

3420

• The molecular weight and the mole are defined on page 550. We will discuss the
last column in this table in the nest. section.

These molecular speeds are of the same order as the speed of sound at the
same temperature. For example, in air at 0° C, t'rrn. = 485 meters/see
and the speed of sound is 331 meters see; in hydrogen rr,. = 1838 meters,'
see and sound travels at 1286 meters 'see: in oxygen V,,, = 461 meters/see
and sound tiave1s at 317 meters 'see. These results are to he expected
in terms of our model of a ga 4 ; see Prob. 34. We visualize the propagation
of sound waves as a directional motion of the molecules as a whole super-
imposed on their random motion. hence, the energy of the sound wave is
carried as kinetic energy from one molecule to the next one with which it
collides. The molecules themselves, in spite of their high speeds, do not
move very far during a Period of the sound vibration; they are confined
to a rather small space b y the effects of a large number of Collisions.*

TI ON I I I.Im why there is a t hoe lag heti ceo opening an ammonia bottle at one
end of the rr.!n and inelliog it at the other end Although molecular speeds are high,
the large trititiber of collisions restrain the cilvanci if the ammonia molecules. They
diffuse through the air at speeds that are rather small compared to molecular speeds.
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However, the energy of the sound wave is communicated from one mole-
cule to the next with that high speed, even though we do not expect the
speed of sound to be exactly equal to v, a point that we will clarify in
Example 6.

Example 4. Assume that the speed of sound in a gas is the same as the root-
mean-square speed of the molecules, and show how the speed of sound for an ideal
gas depends on the temperature.

The density of a gas is

on	 jz)lf
p — v- —

in which lt is the mass of the gas, M is the molecular weight (grams/mole), and
is the mass in moles. Combining this with the ideal gas law

pV =IART

yields
p - RT

P 

We obtain from Eq. 23-4

tfm, =	 - • .1!

so that the speed of sound v 1 at a temperature T 1 is related to the speed of sound v2

in the same gas at a temperature T 2 by

- I3.
V. - \ T2

For example, if the speed of sound at 273° K is 332 meters/sec in air, its speed
in air at 300° K will be

X 332 meters/sec = 348 meters/sec.

Would our result change if the speed of sound were proportional to, rather than
equal to, the root-mean-square speed of the molecules of a gas? 	 4

23-5 Kinetic Interpretation of Temperature

If we multiply each side of Eq. 23-3 by the volume V, we obtain

PV =

where pV is simply the total mass of gas, p being the density. We can
also write the mass of gas as g .11, in which M is the mass in moles and M
is the molecular weight. Making this substitution yields

pl• =
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The quantity p.)lfv 2 is two-thirds the total kinetic energy of translation
of the molecules, that is, 4(-i.110). We can then write

pV = I(4Mv2).

The equation of state of an ideal gas is

PV pRT.

Combining these two expressions, we obtain

M V 
2 = R T.	 (23-5)

That is, the total translational kinetic energy per mole of the molecules of

an ideal gas is proportional to the temperature. We may say that this result,
Eq. 23-5, is necessary to fit the kinetic theory to the equation of state
of an ideal gas, or we may consider Eq. 23-5 as a definition of gas tempera-
ture on a kinetic theory or microscopic basis. In either case, we gain some
insight into the meaning of temperature for gases.

The temperature of a gas is related to the total translational kinetic energy
measured with respect to the center of mass of the gas. The kinetic energy
associated with the motion of the renter of mass of the gas has no bearing on the
gas temperature. In Section 23-3 we assumed random motion as part of our
statistical definition of an ideal gas and in Section 23-4 we calculated vf on this
basis. For a random distribution of molecular velocities with direction the center
of mass would he at rest, so that we must use a reference frame in which the center
of mass of the gas is at rest. For all other frames the molecules will each have
velocities greater by u (the velocity of the center of mass in that frame) than in the
center of mass frame; hence, the motions will no longer be random and we will
obtain different values for v 2. The temperature of a gas in a container does not
increase when we put the container on a moving train!

Let us now divide each side of Eq. 23-5 by Avogadro's number, No,
which (see page 550, footnote) is the number of molecules per mole of a
gas. Thus M , .V 0 (= m) is the mass of a single molecule and we have

= fmvI = (R1.V0)T.

Now gn7V 2 is the average translational kinetic energy per molecule. The
ratio R,Vo—which we ('all k, the Boltzmann constant—plays the role of the
gas constant per molecule. We have

= kT	 (23-6)11

If .V is the total number of molecules and m is the mass of each molecule, then

?flr + ?nr2 + ... =	
vV12+ t.21 +	

] - 
m\'v 2 in which ,n.V ( pM)

is the to' ti mass of the gas.
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in which*

k	
R -	 8.317joules/mole K°
Yo 6.023 X 1023 molecules/mole

= 1.380 X 10-23 joule/molecule K.

We shall return to Boltzmann's constant in Chapter 24.
In the last column of Table 23-i we list calculated values of Mum2.

As Eq. 23-5 predicts, this quantity (the translational kinetic energy per
mole) has (closely) the same value for all gases at the same temperatures,00 C in this case. From Eq. 23-6 we conclude that at the same tempera-
ture T the ratio of the root-mean-s q uare speeds of molecules of two different
gases is equal to the square root of the inverse ratio of their masses. That
is, from

=2 iniv, - 2m2v02
3k 2	 3k 2

we obtain

-	 -	
(23-7)VV 2	 Vfl	 in1

We can apply Eq. 23-7 to the diffusion of two different gases in a con-
tainer with porous wails placed in an evacuated space. The lighter gas,
whose molecules move more rapidly on the average, will escape faster than
the heavier one. The ratio of the numbers of molecules of the two gases
which find their way through the porous walls for a short time interval
is equal to the square root of the inverse ratio of their masses, V'm21rn1.
This diffusion process is one method of separating (fissionable) U235
(0.7% abundance) from a normal sample of uranium containing mostly (non-
fissionable) U 238 (99.3% abundance). To quote from the Smyth report,t

As long ago as 1896 Lord Ra y leigh showed that a mixture of gases of different
atomic weight could be partlY separated by allowing some of it to diffuse through a
porous barrier into an evacuated space. Because of their higher average speed the
molecules of the light gas diffuse through the barrier faster so that the gas which has
passed through the barrier (i.e.. the"diffusate") is enriched in the lighter constituent
and the residual gas which has not passed through the harrier is impoverished in the
lighter constituent.. The gas most highly cnriched in the lighter constituent is the
so-called "instantaneous diffusat.e"; it is the part that diffuses before the impoverish-
merit of the residue has become appreciable. ...On the assumotion that the
diffusion rates are inversely proportional to the square roots of the molecular
weights the separation factor for the instantaneous diffusate, called the "ideal

See footnote. p. 550.
.4 General Account of the Development of Methods of U.inq Atomic Energy for Military

Purposes . . . , H. D. Smyth, 1. S. Government Printing Office 1945.
Note that the ratio n1/rn 1 of tile masses of the two molecules of different gases isthe same as the ratio A f2l.lf i of their molecular weights because the molecular weights

refer to the same number of molecules. Compare Eq. 23-7.
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separation factor" a, is given by

a =

where 11 i is the mol(cuIar weight 01 the lighter gas and M 2 that of the heavier.
Applying this formula to the case of uranium will illustrate the magnitude of the
separation problem. Since uranium i self is not a gas, some gaseous compound of

uranium must be used. The (,tklV One obviously suitable is uranium hexafluoride,
..Since fluorine has unIv one isotope, the two important uranium hexa-

flcic,ridec are U 1 F 6 and F; their molecular weights are 349 [gm/mole) and
352 [gm/mole). Thus if a small fraction of a quantity of uranium hexafluoride is
allowed to diffuse through a porous barrier, the diffusate will be enriched in U235F

by a factor	 -
a = v-R = 1.0043

To separate the uranium isotopes, many successive diffusion stages (i.e.. a cascade)
must be used. ...Studies by Cohen and others show that the best flow arrange-
ment for the sucessive stages is that in which half the gas pumped into each stage
diffused through the hairier, the other (impoverished) half being returned to the
feed of the next lower stage. ...If one desires to produce 90 per cent pure C235F5,

and if one uses a cascade in which each stage has a reasonable overall enrichment
factor, then it turns out that roughly 4000 stages are required. . . . Most of the
material that eventually emerges from the cascade has been recycled many times.
Calculation shows that for an actual uranium-separation plant it may be necessary
to force through the barriers of the first stage 100,000 times the volume of gas that
conies out the top of the cascade (i.e., as desired product U235F6).

23-6 Intermolecular Forces

Forces between molecules are of electromagnetic origin. All molecules contain
electric charges in motion. These molecules are electrically neutral in the sense
that the negative charge of the electrons is equal and opposite to the charge of the
nuclei. This does not mean, however, that molecules do not interact electrically.
For example, when two molecules approach each other, the charges on each are
disturbed and depart slightly from their usual positions in such a way that the
average distance between opposite charges in the two molecules is a little smaller
than that between like charges. Hence, an attractive intermolecular force results.
This internal rearrangement takes place only when molecules are fairly Jose

together, SC) that these forces act only over short distances; they are short-range
forces. If the molecules come very close together, so that their outer charges begin
to overlap, the intermolecular force becomes repulsive. The molecules repel each
other because there is no way for a molecule to rearrange itself internally to pre-
vent repulsion of the adjacent external electrons. It is this repulsion on contact
that accounts for the billiard-ball character of molecular collisions in gases. If it
were not for this repulsion, molecules would move right through each other instead

of rebounding on collision.
It us a.ssucne that molecules are approximately spherically symmetrical. Then

we can describe intermolecular forces graphically by plotting the mutual potential
energy of two molecules, U, as a function of distance r between their centers.

The force F acting on each molecule is related to the potential energy U by F -

—dU/dr. In Fig. 23-3a we plot a typical U(r). Here we ran imagine one mole-

le to be fixed at 0. Then the other molecule will be repelled from 0 when the

slope of U is negative and will be attracted to 0 when the slope is positive. At

r 0 no force acts between the molecules; the slope is zero there. In Fig. 23-3b we

olot the mutual force F(r) corresponding to this potential	 ctwn	 The

	

I' in Fig. 23-3a represents the total mechanical ccc- 	 ci the ccc	 role-

c dc	 ice intersection of U(r) %6th this line is a	 cug point" of tb-	 con
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U

±_____

Fig. 23-3 (a) The mutual poten
tial energy of two molecules ver.
sus their separation. E shows
their total mechanical energy

K + U). (b) The mutual
force, —dU/dr, corresponding to
this potential energy. U is a
minimum at ro, at which separa-
tion F	 0.

(a)

Repulsive

Attractive

(see Section 8-5). The separation of the centers of two molecules at the turning
point is the distance of closest approach. The separation distance at which the
mutual potential energy is zero may be taken as the approximate distance of
closest approach in a collision and hence as the diameter of the molecule. For
simple molecules the diameter is about 2.5 X 10' 0 meter. The forces between
molecules practically cease at about 10 meter or 4 diameters apart, so that
molecular forces are very short-range ones. The distance r 0 at which the poten-
tial is a minimunt (the equilibrium point) is about 3.5 X 10- 10 meter for simple
molecules. Of course, different molecules have different sizes and internal arrange-
ment of charges so that intermolecular forces vary from one molecule to another.
However, they always show the qualitative behavior indicated in the figures.

In the solid state molecules vibrate about the equilibrium position r0, their totalenergy E being negative, that is, lying below the horizontal axis in Fig. 23-3a.
The molecules do not have enough energy to escape from the potential valley (that
is, from the attractive binding force). The centers of vibration 0 are more or less
fixed in a solid. In a liquid the molecules have greater vibrational energy about
centers which are free to move but which remain about the same distance from one
another. These molecules have their greatest kinetic energy in the gaseous state.
In a gas the average distance between the molecules is considerably greater than
the effective range of intermolecular forces, and the molecules move in straight
lines between collisions. Clerk Maxwell discusses the relation between the kinetic
theory model of a gas and the intermolecular forces as follows: "Instead of saying
that the particles are hard, spherical, and elastic, we may if we please say that the

See "The Force between Molecules," by B. V. Derjaguin, Scentific A ,nerican, July
1960, for a discussion of the measurement of molecular attractions between macro-
scopic bodies.
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particles are centers of force, of which the action is insensible except at a cer-
tain small distance, when it suddenly appears as a repulsive force of very great
intensity. It is evident that either assumption will lead to the same results."

It is interesting to compare the measured intermolecular forces with the gravita-
tional force of attraction betceen molecules. If we c)ioose a separation distance of
4 X 10 10 meter, for example, the force between two helium atoms is about
6 X 10	 nt. The gravitational force at that separation is about 7 X 10- 42 nt,
smaller than the intermolecular force b y a factor of 10 This is a t ypical result
and shows that gravitational forces are negligible in comparison with inter-
molecular forces . Although the intermolecular forces appear to be small by
ordinary standards, we must, remember that the mass of a molecule is so small
(about 1()-21 kg) that these forces can impart instantaneous accelerations of the
order of 10 11 meters 'see 1 (10 14g'. These accelerations may last for only a very
short tiaie, of course, heeaue one molecule can very quickly move out of the range
of inthieuce of the other.

23-7 Specific Heats of an Ideas Gas

We picture the molecules in an ideal gas as hard elastic spheres; that is,
we assume that there are no forces between the molecules except during
collisions and that the molecules are not deformed by collisions. If this is
so there is no internal potential energ y and the internal energy of an ideal
gas is entirely kinetic. We have already found that the average transla-
tional kinetic energy per molecule is -kT, so that the internal energy U
of an ideal gas containing Al molecules is

U = .VkT = bRT.	 (23-8)

This prediction of kinetic theory says that the internal energy of an ideal

gas is proportional to the Kelvin temperature and depends only on the tempera-

ture, being independent of pressure and volume. With this result we can
now obtain information about the specific heats of an ideal gas.

The specific heat of a substance is the heat required per unit mass per
unit temperature change. A convenient unit of mass is the mole. The
corresponding specific heat is called the molar heat capacity and is repre-
sented by C. Only two varieties of molar heat capacity are important for
gases, namely, that at constant volume, C, and that at constant pressure,
Cp.

Let us confine a certain number of moles of an ideal gas in a piston-
cylinder arrangement as in Fig. 23-4a. The cylinder rests on a heat
reservoir whose temperature can be raised or lowered at will, so that we
may add heat to the system or remove it, as we wish. The gas has a
pressure p such that its upward force on time (frictionless) piston just
balances the weight of the piston and its sand load. The state of the
system is represented by point a in the p-V diagram of Fig. 23-4d; this
diagram shows two isothermal lines, all points on one corresponding to a

• We will see in Section 23-8 that this result applies only to mnonatomic gases. for
which rotational and vibrational energies are not possible. Only in this ease can we
equate U to the translational kinetic energy.
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Fig. 23-4 The temperature of a given
mass of gas is raised by the same
amount by a constant-pressure process
(a --- b) and by a constant-volume
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temperature T and all poiuits on the other to a (higher) temperature
T + AT.

Now let us raise the temperature of the system by A T, by slowly increas-
ing the reservoir temperature. As we do this let us add sand to the piston
so that the volume V does not change. This constant-volume process
carries the system from the initial state of Fig. 23-4a to the final state of
Fig. 23-4c. Equivalently, it goes from point a to point c in Fig. 23-4d.
Let us apply the first law of thermodynamics

AQ = au +

to this process. By definition of Ce we have AQ	 C, AT. Also,
JV (= p V) = 0 because A 17 = 0. Thus

AU = MC,., AT.	 (23-9)

Let us restore the system to its original state and again raise its tempera-
ture by AT, this time leaving the sand load undisturbed so that the pres-
sure p does not change. This constant-pressure process carries the system
from the initial state of Fig. 23-4a to the final state of Fig. 23-4b. Equiv-
alently, it goes from point a to point b in Fig. 23-4d. Let us apply the
first law to this process. By definition of C. we have iiQ = pC,, AT.
F- -3)
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Also, W = p AV. Now for an ideal gas, U depends only on the tempera-
ture. Since processes a -s b and a - c in Fig. 23-4 involve the same
change AT in temperature, they must also involve the same change A U in
internal energy, namely, that given by Eq. 23-9 Thus for the constant-
pressure process the first law yields

C9 AT = MC,, AT + p AV.

Let us apply the equation of state pV = pRT to the constant-pressure
process a -. b. For p constant we have, by taking differences,

pV =

Combining these equations yields

C9 - C = R.	 (23-10)

This shows that the molar heat capacity of an ideal gas at constant
pressure is always larger than that at constant volume by an amount
equal to the universal gas constant R (= 8.31 joules/mole K or 1.99 cal/
mole K°). Although Eq. 23-10 is exa"t only for an ideal gas, it is nearly
true for real gases at moderate pressure (see Table 23-2). Notice that in
obtaining this result we did not use the specific relation U ART, but
only the fact that U depends on temperature alone.

If we can compute C,., then Eq. 23-10 will give us Cp and vice versa. We
can obtain C, by combining Eq. 23-9 with the kinetic theory result for the
internal energy of an ideal gas, U = bRT (Eq. 23-8). Thus, in the limit
of differential changes,

	

dU =	
[RTJ = R.	 (23-11)

C,. ,dT pd?'

This result (about 3 cal/mole K°) turns out to be rather good for mona-
tomic gases. However, it is in serious disagreement with values obtained
for diatomic and polyatomic gases (see Table 23-2). This suggests that
Eq. 23-8 is not generally correct. Since that relation followed directly
from the kinetic theory model, we conclude that we must change the model
if kinetic theory is to survive as a useful approximation to the behavior of
real gases.

Example 5. Show that for an ideal gas undergoing an adiabatic process
pV	 a constant, where y = CP/C.

Let us appl y the first law of thermodynamics

AQ = A U + MV.

For an adiabatic process AQ = 0. For 1IF we put p AV. Since the gas is
assumed to be ideal, U depends only on temperature and, from Eq. 23-9, A U
PC. T. With these substitutions we have

0 = pC, AT + p AV
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or

AVAT --

For an ideal gas pV;ART, so that, if p, V, and T are allowed to take on small
variations,

pV + V.p =
or

= p W + V

zR

Equating these two expressions and using Eq. 23-10 (C - C, = R), we obtain,
after some rearrangement,

pzVC + VpC, = 0

Dividing by pVC, and recalling that, by definition, C,/C, = 'y, we get

AP	 AV
+	 0.

P	 V

In the limiting case of differential changes this reduces to

P	 V

which (assuming y to be constant) we can integrate as

In p + In V a constant
or

pV' = a constant.	 (23-12)

The value of the constant is proportional to the quantity of gas. In Fig. 23-5
we compare the isothermal and adiabatic behaviors of an ideal gas.

Example 6. The compressions and rarefactions in a sound wave are prac-
tically adiabatic at audio frequencies. Show that in such a case the speed of sound
in an ideal gas is given by

v=.

In Chapter 20 we showed the speed of sound to be v \/'B/p, where p is the
gas density and B is the bulk modulus of the gas, B = - Tp V). However,
B will depend on the conditions that prevail as the pressure is changed. If the
pressure change is carried out slowly enough 3o that we can assume the temperature
to remain constant wc have, in the limit of differential changes,

Bi,othrn!	 - V
()	

(2313)
dv iothe,i

In an isothermal process for an ideal gas we have

pV = a constant
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Fig. 23-5 T 1, T2, and T3 show how the pressure of one mole of an ideal gas changes as
its volume is changed, the temperature being held constant (isothermal process). A1,
A 2 , and A 3 show how the pressure of an ideal gas changes as its volume is changed, no
heat being allowed to flow to or from the gas (adiabatic process). An adiabatic inerease
in volume (for example going from a to b along A ) is always accompanied by a decrease
in temperature, since at a, T = 400* K, whereas at b, T = 300 K.

or, by differentiation with respect to V,

P+V(_)
dr

Combined with Eq. 23-13 this yields

B inothermal —

In a sound wave, however, the variations are so rapid that the conditions are not
isothermal but closely adiabatic. The appiopriate bulk modulus is then

	

B.,4I. tk 	- 
V()	

(23-14)dV

In an adiabatic process for an ideal gas we have

	

pV	 a constant
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or, by differentiating with respect to V,

pi, i._i + 177 f'F)	 0.
'dV adiabatic

This, combined with Eq. 23-14, yields

- VP
and, for the speed of sound,

V =	 (23-15)

Newton, in 1710, derived a formula for the speed of sound in which he assumed
isothermal rather than adiabatic conditions, He obtained v V'p/p rather than
the (correct) value of /yp/p. The error was pointed out by Laplace in 1816.
We must remember that, at that date, the concept of energy was not yet under-
stood and the science of thermodynamics did not exist. Does this result modify
the result obtained in Example 4? Can you now explain why the speed of sound
in a gas is not the same as the root-mean-square speed of the gas molecules? 4

23-8 Equipartition of Energy

A modification of the kinetic theory model designed to explain the
specific heats of gases was first suggested by Clausius in 1857. Recall that
in our model we assumed a molecule to behave like a hard elastic sphere
and we treated its kinetic energy as purely translational. The specific heat
prediction was satisfactory for monatomic molecules. Further, because
of the SUCCCSS of this simple model in other respects in predicting the correct
behavior of gases of all kinds over wide temperature ranges, we feel
confident that it is the average kinetic energy of translation which deter-
mines what we measure as the temperature of a gas.

However, in the case of specific heals we are concerned with all possible
ways of absorbing energy and we must ask whether or not a molecule can
store energy internall y , that is, in a form other than kinetic energy of
translation. This would certainly he so if we pictured a molecule, not as a
rigid particle, but as an object with internal structure. For then a mole-
cule could rotate and vibrate as well as move with translational motion.
I n collisions, the rotational and vibrational modes of motion could be
excited, and this would contribute to the internal energy of the gas. Here
then is a model which enables us to modify the kinetic I heory formula for
the internal energy of a gas.

Let us now find the total energy of a system containing a large number
of such molecules, where each molecule is thought of as an object having
internal structure. The energy will consist of kinetic energy of transla-
tion, with terms like 4mr 2 ; of kinetic energy of rotation, with terms like
Iw,'; of kinetic energy of vibration of the atoms in a molecule, with terms

l
i
ke -j.0 (where i is the reduced mass), and of potential energy of vibration

of the atoms in a molecule, with terms like 1:x 2. Although other kinds of
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energy contributions exist, such as magnetic, for gases we can describe
the total energy quite accurately by terms such as these. Although these
terms have different origins, they all have the same mathematical form
namely, a positive constant times the square of a quantity which can take
on negative or positive values. We can show from statistical mechanics
that when the number of particles is large and Newtonian mechanics holds, all

these terms have the same average value, and this average value depends only

on the temperature. In other words, the available energy depends only
on the temperature and distributes itself in equal shares to each of the
independent ways in which the molecules can absorb energy. This

theorem, stated here without proof, is called the eqvipartitiofl of energy

and was deduced by Clerk Maxwell. Each such independent mode of
energy absorption is called a degree of freedom..

From Eq. 23-8 we know that the kinetic energy of translation per mole
of gaseous molecules is 93 RT. The kinetic energy of translation per mole

is the sum of three terms, however, namely fifv 2, + f v, 2 , and +Mv2.
The theorem of equipartition requires that each such term contribute the
same amount to the total energy per mole, or M1 RT per degree of freedom.

For monatomic gases the molecules have only translational motion (no
internal structure in kinetic theory), so that U =	 RT. It follows from

Eq. 23-11 that C,. =	 3 cal,/moie K'. Then from Eq. 23-10, C 7, =

R, and the ratio of specific heat is

C 5_

C.

For a diatomc gas we can think of each molecule as having a dumbbell
shape (two spheres joined by a rigid rod). Such a molecule can rotate
abou t any one of three mutually perpendicular axes. However, the rota-
tional inertia about an axis along the rigid rod should be negligible com-
pared to that about axes perpendicular to the rod, so that the rotational
energy should corii5t of onl y two terms, * such as 1o 2 and Each
rotational degree of freedom is required by equipartition to contribute
the same energy as each translational degree, so that, for a diatomic gas
having both rotational and translational motion,

U 34 (RT) + 2RT) =

dU
or	 C..,	 =	 5 cal/mole K'

dT

We have already ruled out the possibility that a monatomie molecule could rotate.
Actually it could spin about any one of three mutually perpendicular axes if it had any

extent, such as a finite sphore. Implicitly, therefore, we have adopted a point mass as
our model of the atom hence, in a diatomic molecule we are rid of one rotational
degree of freedom, for point masses joined by a rigid line have no motion about an axis
along that line.
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and

Cp 7
or	 -y = -- = - = 1.40.

(,,.	 )

For polyal'nnic ga.scs, each molecule contains three or more spheres
(atoms) joined together by rods in our model, so that the molecule is
capable of rotating energel)cally about each of three mutually perpen-
dicular axes. IleimeO, for a polyatomiiie gas having both rotational and
translational motion,

= 3p(RT) + 3M(RT) = 3jRT,
du

or	 C,, =	 = 3R = 6 cal/mole J°,

and	 C, = 4R,

or	 1.33.

Let us now turn to experiment to test these ideas. In Tble 23-2 we list
the experimentally determined molar heat capacities for common gases at
20° C and 1.0 atm. Notice that for monatomic and diatomic gases the
values of (i,, Ci,, and are close to the ideal gas predictions. In some dia-
tomic gases, like chlorine, and in most polyatomic gases the specific bats
are larger than the predicted values. Even -y shows no simple regularity
for polyatomic gases. This suggests that our model is not yet close enough
to reality.

We have not yet, considered energy contributions from the vibrations
of the atoms in diatomic and polyat.onc molecules. That is, we can

Table 23-2

(I V,	 Cr,
cal/mole K° cal/mole K° c' - C	 y =

4.97
	

2,98	 1.99	 1.67
4.97
	

2.98	 1.99	 ,	 1.67

6.87
	

4.88	 1.99	 1.41
7.03
	

5.03	 2.00	 1.40
6.95
	

4.96	 1.9'9	 1.40
8.29
	

6.15	 2.14	 1.35

8.83
	

6.80
	

2.03
	

I . 30
9.65
	

7 50
	

2.15
	

1.29
12.35
	

10.30
	

2.05
	

1.20
8.S0
	

6.65
	

2.15 1.31

Type of Gas	 Gas

Monatomic	 lie
A

Diatonujc	 112
02
".7
' 2

Cl2

Polyatomic	 Co2

So2

C2H6

N H1
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10	 20	 50	 100 200	 500 1000 2000	 5000 10,000
Temperature. 'K

Fig. 23-6 Variation of the molar heat C, of hydrogen with temperature. Note that
T is drawn on a logarithmic scale.

modify the dumbbell model and join the spheres instead by springs. This
new model will greatly improve our results in some cases. However,
instead of having a theoretical model for all gases, we now require an
empirical model which differs from gas togas. We can obtain a reasonably
good picture of molecular behavior this way and the empirical model is
therefore useful; however it ceases to be fundamental.

To see this more clearly, let us consider Fig. 23-6, which shows the
variation of the molar heat capacity of hydrogen with temperature. The
value of. 5 cal/mole K°, which is predicted for diatomic molecules by our
model, is characteristic of hydrogen onl y in the temperature range from
about 250 to 7500 K. Above 7500 K, C. increases steadily to 7 cal/mole K°
and below 2500 K, C, decreases steadily to 3 cal,/mole K 0. Other gases
show similar variations of molar heat with temperature.

Here is a possible explanation. At low temperatures apparently (see
Example 7) the h ydrogen molecule has translational energy only and, for
some reason, cannot rotate. As the temperature rises'rotation becomes
possible so that at "ordinary" temperatures a hydrogen molecule acts like
our dumbbell model. At high temperatures the collisions between mole-
cules cause the atoms in the molecule to vibrate and the molecule ceases to
behave as a rigid body. Different gases, because of their different molecu-
lar structure, may show these effects at different temperatures. Thus a
chlorine molecule appears to vibrate at room temperature.

Although this description is essentially correct, and we have obtained
much insight into the behavior of molecules, this behavior contradicts
classical kinetic theory. For kinetic theory is based on -Newtonian
mechanics applied to a large collection of particles, and the e1uipartition
of energy is a necessary consequence of this classical statistical mechanics.
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But if equipartition of "nergy holds, then, no matter what happens Lo the
total internal energy as the temperature changes, each part of the energy—
translational, rotational, and vibrational—must share equall y in the change.
There is no classical mechanism for changing one mode of mechanical
energy at a time in such a system. Kinetic theory requires that the specific
heats of gases be independent of the temperature.

Hence, we have come to the limit of validity of classical mechanics when
we try to explain the structure of the atom (or molecule). Just as New-
tonian principles break down at very high speeds (near the speed of light),
so here in the region of very small dimensions they also break down.
Relativity theory modifies Newtonian ideas to account for the behavior of
physical systems in the region of high speeds. It is quantum physics that
modifies Newtonian ideas to account for the behavior of physical systems in
the region of small dimensions. Both relativity theory and quantum
mechanics are generaizations of classical theory in the sense that they give
the (correct) Newtonian results in the regions in which Newtonian physics
has accurately described experimental observations. In the following two
chapters we shall confine our attention to the very fruitful application of
thermodynamics and the kinetic theory to "classical" systems.

) Example 7. According to quantum theory the internal energy of an atom
(or molecule) is "quantized"; that is, the atom cannot have any of a continuous
set of internal energies but only certain discrete ones. After being raised from its
lowest energy state to some higher one the atom can give up this energy by emitting
radiation whose energy equals the difference in energy between the upper and lower
internal energy states of the atom.

When two atoms collide, some of their tram-lational kinetic energy may he
converted into internal energy of one or both of the atoms.. In such a case the
collision is inelastic, for translational kinetic energy is not conserved. In a gas,
the average translational kinetic energy of an atom is TUT. When the temperature
is raised to a value where -2' kT is about equal to some allowed internal excitation
energy of the atom, then an appreciable number of the atoms can absorb enough
energy through inelastic collisions to be raised to this higher internal energy state.
We can detect this because, after an interval, radiation corresponding to the
absorbed energy will be emitted.

(a) Compute the average translational kinetic energy per molecule in a gas at
room temperature.

We have, for 7' = 3000 K

kT	 (l.38 X 10	 joule/molecule 0 K)(300 K)

= 6.21 X 10_21 joule/molecule

3.88 X 10_2 ev/molecule

This is about . ev per molecule. Some molecules will have larger energies and
some smaller energies than this average value.

kb) The first allowed (internal) excited state of a hydrogen atom is 10.2 cv
above its lowest (ground) state. What temperature is needed to excite a "large"
number of hydrogen atoms to emit radiation of this energy?



594	 KINETIC THEORY OF CASES-1	 Chap. 23

We require
kT = 10.2 ev

and we have from above
k(300 K) =	 ev

Hence
T = 3000 K x 10.2 1/() 	7.5 x 10 K.

Actually, because man y molecules have energies ranch greater than the average
value, appreciable excitation may occur at somewhat lower temperatures.

We can now appreciate why the kinetic theor y assun-ipt ion, that mole.Lules can be
regarded as having no internal structure and collide elasticall y with one another,
holds true at ordinary temperatures. Onl y at temperatures high enough to give
the molecules an average translational kinetic energy comparable to the energy
difference between the lowest, and the first ahl)ed excited state of the mole-
cule will the internal structure of the molecule change and the collisions become
inelastic.. Indeed, in retrospect one may say that earl y evidence that the internal
energy of an atom is quantized existed in experiments with gas collisions and that
the seeds of quantum theory lay in the kinetic theory of gases . *	 I

QUESTIONS

I. In discussing the fact that it is impossible to apply the laws of mechanics indi-
vidually to atoms in a macroscopic system, :\-layer and Mayer state: 'The very com-
plexity of the problem [that is, the fact that the number of atoms is largel is the secret
of its solution." Discuss this sentence.

2. In kinetic theory we assume that there are a large number of molecules in a gas.
Ieal gases behave like an ideal gas at low densities. Are these statements contra-
dictory? If not, what conclusion can you draw from them?

3. We have assumed that the walls of the container are elastic for molecular collisions.
Actually, the walls may he inelastic. In practice this makes no difference as long as the
walls are at the same temperature as the gas. Explain.

4. In large-scale inelastic collisions mechanical energy is lost through internal friction
resulting in a rise in temperature owing to increased internal molecular agitation. Is
there a loss of mechanical energy to heat in an inelastic collision between molecules?

5. What justification is there in neglecting the change in gravitational potential
energy of molecules in a gas?

6. We have assumed that the force exerted b y molecules on the wall of a container is
steady in time. how is this justified?

7. The average velocity of the molecules in a gas must be zero if the gas as a whole and
the container are not in translational motion. Explain how it can be that the average
speed is not zero.

8. By considering quantities which oust he conserved in an elastic collision, show
that in general molecules of a gas cannot have the same speeds after a collision as they
had before. Is it possible, then, for a gas to consist of molecules which all have tIme
same speed?

9. Justify the fact that the pressure of a gas depends on the square of the speed of its
particles by explaining the dependence of pressure on the collision frequency and the
mornentum transfer of the particles.

See "On Teaching Quantum Phenomena," by Sir N. F. Mott in Contemporary
Physics, August 1964.
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10. The gas kinetic temperature in the upper atmosphere (see Eq. 23-5) is of the

order of 10000 K. It is quite told up there. Explain this paradox.

11. Why must the time allowed for diffusion separation he relatively short?

12. Suppose we want to obtain U 118 instead of U 235 as the end product of a diffusion
process. Would we use the same process? If not, explain how the separation process
would have to be modified.

13. Can you describe a centrifugal device for gaseous separation? Is a centrifuge
better than a diffusion chamber for separation of gases?

14. Would you expect real molecules to be spherically symmetrical? If not ., how

would the potential energy function of Fig. 23-3 change?

15. Explain how we might keep a gas at a constant temperature during a thermo-

dynamic process.
16. Explain why the temperature of a gas drops in an adiabatic expansion.

17. If hot air rises, why is it cooler at the top of a mountain than near sea level?

18. A sealed rubber balloon contains a very light gas. The balloon is released and it
rises high into the atmosphere. Describe and explain the thermal and mechanical
behavior of the balloon.

19. Explain why the specific heat at constant pressure is greater than the specific heat
at constant volume.

20. It is more common to excite radiation from gaseous atoms by use of electrical
discharge than by thermal methods. Why?

PROBLEMS

1. At 0°C and 1.000-atm pressure the densities of air, oxygen, and nitrogen are,

respectively, 1.203 kg/meter 3 , 1.420 kg/meter 3 , and 1.251 kg/ineter 3 . Calculate the
percentage of nitrogen in the air from these data, assuming only these two gases to be
present.

2. Suppose that, as happened historically, we are given Boyle's law

pV = a constant (constant 'I')
and Charles' law

V/T a constant (constant p

separately. Show how these two laws may he combined to yield

pV/T = a constant.

3. An air bubble of 20-cm 3 volume is at the bottom of a lake 40 meters deep where the
temperature is 40 C. The bubble rises to the surface which is at a temperature of 20° C.
Take the temperature tobe the same as that of the surrounding water and, ,fiuid its

volume just before it reaches the surface.
3. One mole of an ideal gas undergoes an isothermal expansion. Find the heat flow

into the gas in terms of the initial and final volumes and the temperature.

5. Calculate the work done in compressing 1.00 mole of oxygen from a volume of
22.4 liters at 0° C and 1.00-atm pressure to 16.8 liters at the same temperature.

6. Oxygen gas having a volume of 1.0 liter at 400 C and a pressure of 76 cm-Hg
expands until its volume is 1.5 liters and its pressure is 80 cm-Hg. Find the mass in
moles of oxygen in the system and its final temperature.

7. An automobile tire has a volume of 1000 in. 3 and contains air at a gauge pressure of

24 lb/in. 2 when the temperature is 000. What is the gauge pressure of the air in the
tires when its temperature rises to 27° C and its volume increases to 1020 ui.59
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B. A mercury-filled manometer with two unequal arms is sealed off with the same
pressure p0 in the two arms as in Fig. 23-7. The cross-sectional area of the manometer
arms is 1.0 cm 2. With the temperature constant, an additional 10 ell) 3 of mercury is
admitted through the stopcock at the bottom; the level on the left increases 6.0 cm and
that on the right increases 4.0 cm. Find the pressure p0.

9. A thin tube, sealed at both ends, is 1.0 meter long. It lies horizontally, the middle
10 cm containing mercury and the two equal ends containing air at standard atmos-
pheric pressure. If the tube is now turned to a vertical position, by what amount
will the mercury be displaced?

10. The mass of the 112 molecule is 3.32 X 10 gm. If 10" hydrogen molecules
per second strike 2.0 cm 2 of wall at an angle of 4° with the normal when moving with
a speed of 10 cm/see, what pressure do they exert on the wall?

H. (a) Determine the average value of the kinetic energy of the molecules of an ideal
gas at 0 . 00 C and at 1000 C. (b) What is the kinetic energy per mole of an ideal gas
at these temperatures?

12. (a) Compute the root-mean-square speed of an argon atom at room temperature
(200 C). (b) At what temperature will the root-mean-square speed be half that value?
Twice that value?

13. (a) Compute the temperature at which the root -mesn-square speed is equal to
the speed of escape from the surface of the earth for h ydrogen. For oxygen. (b) Do
the same for the moon, assuming gravity on its surfae t.o be 0.164g. (c) The tempera-
ture high in the earth'- upper atmosphere is about 10000 K. Would you expect to find
much hydrogen there? Much oxygen?

14. At what temperature is the average translational kinetic energ y of a molecule
equal to the kinetic energy of an electron accelerated from rest through a potential
difference of one volt (that is, an energy of 1.0 cv)?

15. Show how to find the root-mean-square speeds of helium and argon molecules at
40° C from that of ox ygen molecules (460 meters/sec at 0.00' C). The molecular
weight of oxygen is 32 gm/mole, of argon 40, of helium 4.

16. Compute the number of molecules in a gas contained in a volume of 1.0(1 em' at a
pressure of 100 )< iO atm and a temperature of 200° K.

17. It tire water molecules in 1.0 gin of water were distributed uniforml y over tire
surface of the earth, how many such molecules would there be in 1.0 cm? of the earth's
surface?

18. Oxgen gas at 273' K and 1.00-atmn pressure is confined to a cubical container
10 cm on a side. (a) How long does it take a typical molecule to cross the container?
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10 cm on a side. Compare the change in gravitational potential energy of an oxygen
molecule falling the height of the box with its mean kinetic energy.

19. (a) Consider an ideal gas at 273' K and 1.0-atm pressure. Imagine that the
molecules are for the most part evenly spaced at the centers of identical cubes. Using
Avogadro's number and taking the diameter of a molecule to be 3.0 X 10 cm, find the
length of an edge of such a cube and compare this length to the diameter of a molecule.
(b) Now consider a mole of water having a volume of 18 em'. Again imagine the mole-
cules to be evenly spaced at the centers of identical cubes. Find the length of an edge
of such a cube and compare this length to the diameter of a molecule.

20. At 273° F and 1.00 X 10-2 atm the density of a gas is 1.24 X 10 gm/cm . (a)
Find v,5 for the gas molecules. (5) Find the molecular weight of the gas and identify it.

21. .lrogadro's law states that under the same condition of temperature and pressure
equal volumes of gas contain equal numbers of molecules. Derive this law from kinetic
theory using Eq. 23-3 and the equipartition of energy assumption.

22. Dalton's law states that when mixtures of gases having no chemical interaction are
present together in a vessel, the pressure exerted by each constituent at a given tempera-
ture is the same as it would exert if it alone filled the whole vessel, and that the total
pressure is equal to the sum of the partial pressures of each gas. Derive this law from
kinetic theory, using Eq. 23-3.

23. Plot and interpret physically (a) the variation of gas density with temperature
for an isobaric (constant-pressure) process and (b) the variation of gas density with
pressure for ar isothermal process.

24. Consider a given mass of an ideal gas. Compare curves representing constant-
pressure, constant-volume, and isothermal processes on (a) a p-V diagram, (5) a p-T
diagram and (c) a V-T diagram. (d) How do these curves depend on the mass of gas
chosen?

25. The mass of a gas molecule can be computed from the specific heat at constant
volume. Take C, - 0.75 kcal/kg K' for argon and calculate (a) the mass of an argon
atom and (b) the atomic weight of argon.

26. Take the mass of a helium atom to be 6.66 X 10 27 kg. Compute the specific
heat at constant volume for helium gas.

27. Calculate the mechanical equivalent of heat from the value of Rand the values of
C, and y for oxygen from Table 23-2.

28. The following data are the result of accurate experimental measurements:
1.000 mole of a gas occupies a volume of 2.541 X 10' meter  at a pressure of 9.480 X
104 nt/meter 2 when its temperature is 290.0° K. The same mass of gas requires
125.0 cal to raise its temperature from 290.0 to 315.0' K while its volume is held con-
stant. The ratio (c,/c,) of its specific heats is 1.430. (a) Use these data to compute
the mechanical equivalent of heat I. (b) Account for the fact that your value of J
differs from the accepted three-figure value-namely, 4.19 joules/cal.

29. One mole of oxygen is heated at a constant presbure starting at 0.00° C. How
much heat energy must be added to the gas to double its volI!me?

30. Ten grams of oxygen are heated at constant atmospheric pressure from 27.0 to
127.0° C. How much heat is transferred to the oxygen? What fraction of the heat is
used to raise the internal energy of the oxygen

31. How would you explain the observed value of C. 7.50 cal /mole K' for gaseous
SO2 at 15.0° C and 1.00 atm?

32. Show that the speed of sound in a gas is independent of the pressure and density.
33. Show that the speed of sound in air increases about 2.0 ft/sec for each Celsius

degree rise in te'peraturc.
34. The speed of sound in different gases at the same temperature depends on the

a olecular weight of the gas. Show that VI/v2 = /Af2 1M 1 (constant T) where v
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is the speed of sound in the gas of molecu1ar seight .11 anti 12 j5 the speed of sound
in the gas of molecular weight

35. Air at 0.011° C and 1.00-atm pressure has a density of 1.291 X 10 gm/em' and
the speed of sound in air is 332 meters/sec at that temperature. Compute the ratio
of specific heats of air.

36. (a) A monatoniic ideal gas initially at 17° C is suddenly compressed to one-tenth
its original volume. What is its temperature after compression? (h) Make the same
calculation for a diatomic gas.

37. The atomic weight of iodine is 127. A standing wave in a tube filled with iodine
gas at 400° K has nodes that are 6.77 em apart when the frequency is 1000 vib/sec. Is
iodine gas monatomic or diatomic?

38. A reversible heat engine carries 1.00 mole of an ideal monut.onuc gas around the
c ycle shown in Fig. 23-8. Process 1-2 takes place at constant volume, process 2-3 is
adiabatic, and process 3-1 takes place at a constant pressure. (a) Compute the approx-
imate numerical values for the heat .Q, the chit ige in internal energy .U, and the work
done li, for each of the three processes and for the cycle as a whole. (b) If the initial
pressure at point 1 is 1.00 atm, find the pressure and the volume at points 2 and 3.

= 600°I(

U 1 N bat

Tj = 3001< F3 = 4551<

Volume
Fig. 23-8

39. A mass of gas occupies a volume of 4.0 liters at a pressure of 1.0 atm and a tem-
perature of 30(1° K. It is compressed adiabaticall y to a volume of 1.0 liter. Determine
(a) the final pressure and (b) the final temperature, assuming it to be an ideal gas for
which I- = 1.5.

40. An ideal gas expands adiabaticall y from an initial temperature T 5 to a final
temperature T 2. Prove that the work done by the gas is C(Ti - T2).

41. (a) A liter of gas with I = 1.3 is at 273° K and 10-atm pressure. It is suddenly
compressed to half its original volume. Find its final pressure and temperature. (b)

The gas is now cooled back to 0° C at constant pressure. What is its final volume?
42. (a) Show that the variation in pressure in the earths atmosphere, assumed to be

isothermal, is given b y p = poe_ M5 V17 where .11 is the molecular weight of the gas.
(See Example 1, Chapter 17.) (b) Show also that a = oc' RT where n is the
number of molecules per unit volume.

43 A hydrogen atom, in its lowest (ground) state and moving with 13-ev kinetic
energy , collides head-on with another hydrogen atom which is at rest in its ground state.
(a) Use the conservation laws of energ y and momentum to show that this collision
must he elastic. The first allowed excited state is about 10.2ev above the ground state.
(h) Show that time minimusn initial kinetic energ y that the incident atom needs to raise
one of the atoms to the first excited state is tu'ice the energy difference between ground
state and first excited state.
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CHAPTER 24

24-1 Mean Free roth

Between successive collisions a molecule in a gas moves with constant
speed along a straight line. The average distance between such successive
collisions is called the mean free

path (Fig. 24-1). If molecules 0
were points, they would not collide 	 o o	

0	 0	 0	 0
0 0	 0at all and the mean free path

would he infinite. Molecules0	 0 0	 0 0

0

0	 0
0___-

however, are not points and hence 	 °	 0 0
collisions occur. If they were so	

0
0	 0

0
0 0

numerous that they completely

	

o	 o	 0
filled the Space available to them, 	 0 0

	

00	 0	 0	 0 0 0 0
leaving no room for translational 	 0	 0	 0

0motion, the mean free path would	 0	
0	 0

0	 00	 00
he zero. Thus the mean free path 	 o	 0 0
is related to the size of the mole- 	 0

	

000 0	 0	 0	 0
cules and to their number per unit 	 0	 0	 0	 0	 0
volume.	 0	 0	 0

0	 0
Consider the molecules of a gas 	 o	 0	 0

	

0	 0
to be spheres of diameter d. The	 0 0	 0 0
cross section for a collision is , then	 0	 0	 0	

0	 0
7rd 2. That is, a collision will take
place when the centers of two
molecules approach within a di

	
Fig. 24-1 A molecule traveling through
a gas, colliding with other molecules in its

tanee d of one another. An equiv-	 path. Of course, all the other molecules
alent description of collisions	 are moving in a similar fashion.

599
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Fig. 24-2 (n ) If a collision
occurs when two molecules
come within a distance d of
each other, the process can be
treated equivalently b) by
thinking of one molecule as
having an effective diameter
2d and the other as being a
point mass.

(0)	 (b)

made by any one molecule is to regard that toolecule as having a diameter
2d and all other molecules as point, particles (see Fig. 24-2).

Imagine a typical molecule of equivalent , diameter 2d moving with
speed v through a gas of equivalent point particles and let us assume, for
the time being, that the molecule and the point particles exert no forces on
each other. In time t our molecule will sweep out a c ylinder of cross-
sectional area -,rd' and length vi. If n is the number of molecules per unit
volume the cylinder will contain (r d 2ul) n particles (see Fig. 24-3). Since
our molecule and the point particles do exert forces on each other, this will
be the number of collisions experienced by the molecule in time t. The
cylinder of Fig. 24-3 will, in fact, be a broken one, changing direction with
every collision.

The mean free path 1 is the average distance between successive colli-
sions. Hence, 1 is the total distance vi covered in time I divided by the
number of collisions that take place in this time, or

vi	 1= d
2nvi = nd2

This equation is based on the picture of a molecule hitting stationary
targets. Actually the molecule hits moving targets. The collision fre-
quency is increased as a result. (see below) and the mean free path is reduced
to

	

1= 
ir V'2 nd2
	 (24--I)

°	 0

0
0	 o \ o

D2d	

0

 °

Fig. 24-3 A molecule of equiv-
alent diameter 2d traveling with
speed v sweeps out a cylinder of
base 7d 2 and length rt in a time t.
It suffers a collision with every
other molecule whose center lies
within this cylinder.
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When the target molecules are moving, the two v's in the first equation above are
not the same. The one in the numerator ( U) is the mean moleular speed meas-
ured with respect to the container. The one in the denominator (= ii) is the
mean relative speed with respect to other molecules; it is this relative speed that
determines the collision rate.

We can see qualitatively that Em > e. Thus two molecules of speed v moving
toward each other have a relative speed of 2v (> v); two molecules with speed v
moving at right angles on a collision course have a relative speed of ./2 v (also > v);
two molecules moving with speed v in the same direction have a relative speed of
zero (< v). Thus molecules arriving from all of the forward hemisphere and part of
the backward hemisphere have e > i. The molecules arriving from the rest of the
backward hemisphere have Ui < v but, since their numbers are smaller, they do
not determine the nature of the average over both hemispheres, which yields

i > U. A quantitative calculation, taking into account the actual speed dis-
tribution of the molecules, gives Uei =	 C.

Example 1. Let us calculate the magnitude of the mean free path and the
collision frequency for air molecules at 00 C and 1-atm pressure.

We take 2 X JQ cm as an effective molecular diameter d. For the conditions
stated, the average speed of air molecules is about I X 10 1 cm/sec and there are
about 3 x 10 19 molecules/cm'. The mean free path is then

1=	 =	
1	 -

7r V2 nd tm	- /2 (3 X 10 19 /cm m)(2 X 10 cm)2

= 2 X 10 cm.

This is about a thousand molecular diameters.
The corresponding collision frequency is

(1 x 10 6 cm/sec)/(2 X 10 cm)

= 5 X 109/sec.

Thus, on the average, each molecule makes five billion collisions per second! 	 4

In the earth's atmosphere the mean fi:e path of air molecules at sea level
(760 mm-Hg) is about 10 cm. At 100 km above the earth (10 -1 mm-Hg)
the mean free path is 1 meter. At 300 km (10-6 mm-Hg) it is 10 km or
6 miles, and yet there are about molecules/cm3 in this region. This
emphasizes that molecules are indeed small. At great enough heights the
mean free path concept fails because the upward-directed molecules follow
ballistic paths and may escape from the atmosphere.

In the laboratory the mean free path concept is useful in situations such
as that of Example 1. In even modest laboratory vacuums, however, it
loses some of its meaning because nearly all the collisions are with the wall
of the containing vessel rather than with other molecules. Consider a box
10 cm on edge containing air at 10 mm-Hg pressure. The mean free
path (see above) is 6 miles, so that collisions between molecules are rare
indeed. And yet this box contains about 10 12 molecules!
F-40	

V
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Even in a finite "box," however, there are some conditions in which
particles can travel great distances without striking the walls. In a
typical proton synchrotron, used to accelerate protons to the billion-
electron-volt range of energies, the protons are constrained by a magnetic
field to move in a circular path and may travel several hundred thousand

miles during the acceleration process. Mean free path considerations are
important if the accelerating protons are to have essentially no collisions
with residual air molecules. In this case the effective cross section of the
proton is so much smaller than that of the air molecules that if we have a
vacuum of about 10 mm-Hg, there is essentially no beam loss by proton
scattering from gas molecules inside the vacuum chamber.

24-2 Distribution of Molecular Speeds

In Chapter 23 we discussed the root-mean-square speed of the molecule*
of a gas. However, the speeds of individual molecules vary over a wide
range of magnitude; there is a characteristic distribution of molecular
speeds for a given gas which depends, as we will see below, on the tempera-
ture. If all the molecules of a gas had the same speed v, this situation
would not persist for very long because the molecular speeds would be
changed by collisions. However, we do not expect many molecules to have
speeds << Vim, (that is, near zero) or >> Vim, because such extreme speeds

vould require an unlikely sequence of preferential collisions.
Clerk Maxwell first solved the problem of the most probable distribution

of speeds in a large number' of molecules of a gas. His molecular speed
distribution law, for a sample of gas containing N molecules, is*

N(v) = 4TN(m12kT)"v 2e" 1121'T 	(24-2)

In this equation N(v) dv is the number of molecules in the gas sample
having speeds between v and v + dv. T is the absolute temperature, k is

Boltzmann's constant, and m is the mass of a molecule. Note that for a
given gas the speed distribution depends only on the temperature. We
find N, the total number of molecules in the sample, by adding up (that is,
by integrating) the number present in each differential speed interval
from zero to infinity, or	 -

N = ç N(v) dv.	 (24-3)

The unit of N(v) is, say, molecules/(cm/sec).
In Fig. 24-4 we plot the Maxwell distribution of speeds for molecules of

oxygen at two different temperatures. The number of molecules having a
speed between v i and v 2 equals the area under the curve between the verti-
cal lines at v 1 and V2. As Eq. 24-3 shows, the area under the speed distri-
bution curve, which is the integral in that equation, is equal to the total
number of molecules in the sample. At any temperature the number o

A derivation of Eq. 24-2 appears in Supplementary Topic IV.
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N = 106 oxygen molecules

IIj	 T=-200C(=73K)

3:0

2.0
çr0C(273K)
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Fig. 24-4 The Maxwellian distribution of speeds of 10' oxygen molecules at two dif-
ferent temperatures. Th number of molecules within a certain range of speeds
(say, 300 to 600 meters/sec) is the area under this section of the curve. The com-
plete area under either curve is the total number of molecules (equals 10 0 ); this area
must be the same for each temperature if, as in this case, the curves refer to a given
number of molecules.

molecules in a given speed interval s iv increases as the speed increases
up to a maximum (the most probable speed v) and then decreases asymp-
totically toward zero. The distribution curve is not symmetrical about
the most probable speed because the lowest speed must be zero, whereas
there is no classical limit to the upper speed a molecule can attain. In
this case the average speed 0 is somewhat larger than the most probahie
value. The root-mean-square value, Vrm., being the square root of the sum
of the squares of the speeds, is still larger.

As. the temperature increases, the root-mean-square speed vr,.,. (and
ii and v, as well) increases, in accord with our microscopic interpretation of
temperature. The range of typical speeds is now greater, so that the
distribution broadens. Since the area under the distribution curve (which

We cannot simply plot the "number of particles having speed v" against v, because
there are a finite number of particles and an infinite number of possible speeds. Hence,
the probability that a particle has a precisely stated speed, such as 279.343267
meters/see, is exactly zero. However, we can divide the range of speeds into intervals
and the probability that a particle has a speed somewhere in a given interval (such as
279 meters/sec to 280 meters/sec) has a definite nonzero value.
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is the total number of molecules in the sample) remains the same, the di-
tribution must also flatten as the temperature rises. Hence the number of
molecules which have speeds greater than some given speed increases as
the temperature increases (see Fig. 24-4). This explains many phenom-
ena, such as the increase in the rates of chemical reactions with rising
temperature.

The distribution of speeds of molecules in a liquid also resembles the
curves of Fig. 24-4. This explains why some molecules in a liquid (the
fast ones) can escape through the surface (evaporate) at temperatures well
below the normal boiling point. Only these molecules can overcome the
attraction of the molecules in the surface and escape by evaporation. The
average kinetic energy of the remaining molecules drops correspondingly,
leaving the liquid at a lower temperature. This explains why evaporatioii
is a cooling process.

From Eq. 24-2 we see that the distribution of molecular speeds depends
on the mass of the molecule as well as on the temperature. The smaller
the mass, the larger the proportion of high-speed molecules at any given
temperature. Hence hydrogen is more likely to escape from the atmos-
phere at high altitudes than oxygen or nitrogen. The moon may have a
tenuous atmosphere. For the molecules in this atmosphere not to have a
great probability of escaping from the weak gravitational pull of the moon,
even at the low temperatures there, we would expect them to be molecules
or atoms of the heavier elements. Evidence points to the heavy inert
gases, such as krypton and xenon, which were produced largely by radio-
active decay early in the moon's history. The atmospheric pressure on
the moon is believed to be about 10-13 of the earth's atmospheric pressure.

Example 2. The speeds of ten particles in meters/sec are 0, 1.0,2.0, 3.0, 3.0,
3.0, 4.0, 4.0, 5.0, and 6.0. Find (a) the average speed, (b) the root-mean-square
speed, and (c) the most probable speed of these particles.

(a) The average speed is

o + 1.0 + 2.0 + 3.0 + 3.0 + 3.0 + 4.0 + 4.0 + 5.0 + 6.0

	

=	 = 3.1 meters/sec.
10

(b) The mean-square speed is

o + (1.0)2 + (2.0)2 + (3.0)2 + (3.0)2
+ (3.0) + (4.0)2 + (4.0)2 + (5.0)' + (6.0)

10
= 12.5 meters'/sec'

and the root-mean-square speed is

v.	 V'12.5 meters 2/sec' = 3.5 meters/sec.

(c) Of the ten particles-three have speeds of 3.0 meters/sec, two have speeds of
4.0 meters/sec, and the other five each have a different speed. Hence, the most
probable speed of a particle v, is

vv = 3.0 meters/sec.
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Example 3. Use Eq. 24-2 to determine the average speed 0, the root-mean-
square speed v 0 , and the most probable speed v, of the molecules in a gas in terms
of the gas parameters.

The quantity V(v) dv is the number of particles in the sample having a speed
between .v and v + th, N(r) being given by Eq. 24-2. We find the average speed o
in the usual way: we multiply the number of particles in each speed interval by a
speed v characteristic of that interval; we sum these products over all speed inter-
vals and we divide by the total number of particles. F eplaeing the summation by
an integration, we obtain

f'N(v)vdv

Substituting Eq. 24-2 for N(t) and integrating* we obtain

JT 
= 1.59	 (average speed).

m

The mean-square speed is given by

- N(v)v' dv
V 2 =

-v
which yields

=1= v v 2 =	 = 1.73	 (root-mean-square speed).
M

The most probable speed v is the speed at which N(v) has its maximum value.
It i s given by requiring that

dv

By substituting Eq. 24-2 for N(v) we obtain, as the student should show,

Cm
- -	 1.41	 (most probable speed).

In Fig. 24-4 we show r,, i, and I'm. at 00 C for a molecular speed distribution in
oxygen.	 4

24-3 Experimental ConfIrmation of the Moxwellion Distribution

Maxwell derived his distribution law for molecular speeds (Eq. 24-2) in 1859.
At that early date it was not possible to check this law by direct measurement and,
indeed, it was not until 1920 that Stern made the first serious attempt to do so.
Techniques improved rapidly in the hands of various workers but it was not until
1955 that a high-precision experimental verification of the law (for gas molecules)
was provided, by Miller and Kusch.

Their apparatus is shown in Fig. 24-5. The walls of oven 0 were heated, in one

Let A = m/2k7'. From tables of integrals,

vie'"' dv - . Ii;	 ve" dv = 2' J° v' dv =
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Pump

Fig. 24-S The apparatus used by Miller and Kusch to verify the Maxwell speed
distribution law. The mechanism for rotating the cylinder is not shown. The who'Ie
apparatus is highly evacuated to reduce collisions with the residual gas molecules of the
thallium molecules in the beam emerging from slit S.

set of experiments, to a uniform temperature of 870 ± 4 K, some thallium having
been placed in the oven. At this temperature thallium vapor, at a pressure of
3.2 x 10 mm-Hg, fills the oven. Some molecules of thallium vapor escape from
slit S into the highly evacuated space outside the oven, falling on the rotating
cylinder R. This cylinder, bf length 1, has a number of helical grooves cut into it,
only one of them being shown in Fig. 24-5. For a given angular speed w of the
cylinder, only molecules of a sharply defined speed v can pass along the grooves
without striking the walls. The speed v can be found from:

1
time of travel along the groove = - = 

4'
-,

V W

or	 v	 (24-4)

in which 4' (see Fig. 24-5) is the angular displacement between the entrance and
the exit of a helical groove. Thus the rotating cylinder is a velocity selector, the
speed selected being proportional to the (controllable) angular speed w, as Eq. 24-4
shows. One observes the beam intensity recorded by detector D as a function of
the selected speed v. Figure 24-6 shows the remarkable agreement between theory
(the solid line) and experiment (the triangles and circles) for thallium vapor.

The distribution of speeds in the beam (as distinguished from the distribution
of speeds in the oven) is not proportional to ve" 112 , as in Eq. 24-2, but to

Consider a group of molecules in the oven whose speeds lie within s
certain small range v 1 to v i + AV, where v, is less than the most probable speed v,

We can always find another equal speed interval AV, extending from v 2 to v2 + AV

where v,, which will be greater than vi,, is chosen so that the two speed interval,
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contain the same number of molecules. However, more molecules-in the latter
interval than in the former will escape from slit S to form the beam, because mole-
cules in the latter interval "bombard" the slit with a greater frequency, by pre-
cisely the factor vt/vt. Thus, other things being equal, fast molecules are favored
in escaping from the oven, just in proportion to their speeds, and the molecules in
the beam have a "0" rather than a "0" distribution. This effect is allowed for in
computing the theoretical curve of Fig. 24-6.

Rainwater and Havens (1946) also provided a convincing experimental check of
the Maxwell speed distribution law by using a "gas" of neutrons. The neutrons
were produced (as fast neutrons) in continuous series of short bursts in a cyclotron
and allowed to fall on a block of paraffin. By repeated collisions with the nuclei
of the block, the neutrons rapidly slowed down and came into thermal equilibrium
with the block, behaving like a "neutron gas" in a container. The container, how-
ever. is a leaky one because neutrons diffuse out through the walls of the block
and move across the laboratory. It is possible, by electronic means, to measure
the time between the production of the neutrons in the cyclotron and their arrival
at a distant detector after escaping from the paraffin block. Thus one can measure
the speed distribution in a collimated beam of escaping neutrons and can compare
it to the prediction of Maxwell; the agreement of theory and experiment is excellent.

?'/VP.

Fig. 24-6 The solid line shows Maxwell's molecular speed distribution. 'The circles
(0) are experimental points for thallium atoms emerging from an oven at 870° K; the
triangles () correspond to 944' .K. The horizontal scale is a plot of v/v9 where v, is
the most probable speed. When speeds are plotted in this way the distributions for
different temperatures should fall on the some curve. At 870° K, v9 = 376 meters/sec
and at 944° K, it is 395 meters/sec. From Miller and Kusch, Physical Review, 99,
1314 (1955).
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Although the Maxwell speed distribution for gases agrees remarkably well with
ohser',ations under ordinary conditions, it fails at high densities, where the basic
assumptions of the classical kinetic theory fail. In these regions we must use
speed distributions founded on the principles of quantum physics, the Fermi-Dirac
and the Bose-Einstein distributions. These quantum distributions agree closely
with the Maxwell distribution in the classical region (low density) and agree with
experiment where the classical distribution fails. Hence there are limits to the
applicability of the Maxwell distribution, as in fact there are to any theory.

24-4 Brownian Motion

The prominence given to atomic and molecular theory during the last
quarter of the nineteenth century was deplored by many able scientists.
In spite of the many quantitative agreements between kinetic theory and
the behavior of gases, no proof of the separate existence of atoms and mol-
ecules had been obtained, nor had any observation been made that could
really demonstrate the continuous motions of the molecules. Ernst Mach
(1838-1916) saw no point to "thinking of the world as a mosaic, since we
cannot examine its individual pieces of stone." It had been established
rather early in the development of kinetic theory that an atom should be
about iO cm or iO cm in diameter. No one actually expected to see
an atom or detect the effect of a single atom.

The leader of the opposition to the atomic theory was Wilhelm Ostwald.
He was a champion of the principle of the conservation of energy an
regarded energy as the ultimate reality. Ostwald argued that with a
thermodynamical treatment of a process we know all that is essential
about the process and that further mechanical assumptions about the
mechanism of the reactions are unproved hypotheses. He abandoned the
atomic and molecular theories and fought to free science "from hypothet-
ical conception which lead to no immediate experimentally verifiable con-
clusions." Other prominent physicists were reluctant to adinit the atom
as an established scientific fact.

Ludwig Boltzmann felt compelled to protest this attitude in an article in
1897, stressing the indispensability of atomism in natural science. The
progress of science is often guided by the analogies of nature's processes
which occur in the minds of investigators. Kinetic theory was such a
mechanical analogy. As with most analogies it suggests experiments to
test the validity of our mental pictures and leads to further investigations
and clearer knowledge.

As is always true in such controversies in science, the decision rests with
experiment.. The earliest and most direct experimental evidence for the
reality Of atoms was the proof of the atomic kinetic theory provided by the
quantitative studies of Brownian motion. These observations convinced
both Mach and Ostwald of the validity of the kinetic theory and the
atomic description of matter on which it rests. The atomic theory gained
unquestioned acceptance in later years when a wide variety of experiments
all led to the same values of the fundamental atomic constants.

Brownian motion is named after the English botanist Robert Brown
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who discovered in 1827 that pollen suspended in water shows a continuous
random motion when viewed under a microscope. At first these motions
were considered a form of life, but it was soon found that small inorganic
particles behave similarly. There was no quantitative explanation of
this phenomenon until the development of kinetic theory. Then, in 1905,
Albert Einstein developed a theor y of Brownian motion.* III 	 Auto-

biographical Notes, Einstein writes, "My major aim in this was to find facts
which would guarantee as much as possible the existence of atoms of defi-
nite size. In the midst of this I discovered that, according to atomistic
theory, there would have to he a movement of suspended microscopic par-
ticles open to observation, without knowing that observations concerning
the Brownian motion were already long familiar."

The basic assumption made by Einstein was that particles suspended
in a liquid or a gas share in the thermal motions of the medium and that
on the average the translational kinetic energy of each particle is 11, T,  in
accordance with the principle of equipartition of energy. In this view the
Brownian motions result from impacts by molecules of the fluid, and the.
suspended particles acquire the same mean kinetic energy as the molecules
of the fluid.	 -

The suspended particles are extremely large compared to the molecules
of the fluid and are being continually bombarded on all sides by them. If
the particles are sufficiently large and the number of molecules is suffi-
ciently great, equal numbers of molecules strike the particles on all sides at
each instant. . For smaller particles and fewer molecules the number of
molecules striking various sides of the particle at an y instant, being merely
a matter of chance, may not be equal; that is, fluctuations occur. Hence
the particle at each instant suffers an unbalanced force causing it to move
this way or that. The particles therefore act just like very large molecules
in the fluid, and their motions should he qualitatively the same as the
motions of the fluid molecules. If Avogadro's number weie infinite there
would be no statistical unbalance (fluctuations) and no Brownian motion.
If Avogadro's number were very small, the Brownian motion would be
very large. Hence we should be able to deduce the value of Avogadro's
number from observations of the Brownian motion. Deeply ingrained in
this picture is the idea of molecular motion and the smallness of molecules.
The Brownian motion therefore offers a striking experimental test of the
kinetic theory hypotheses.

The suspended particles are under the influence of gravity and would
settle to the bottom of the fluid were it not for the molecular babardment
opposing this tendency. Since the suspended particles behave like gas
molecules we are not surprised to learn that, as for molecules in the atmos-
phere, their density drops off exponentially with respect to height in the

* Einstein's theory appeared as an article in the same issue of the Annalen der Physik
which contained his famous paper on the theory of relativity and also his paper on
the theory of the photoelectric effect. It was for his work on the photoelectric effect that
he won the Nobel prize in 1921.
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Oil,

(a)	 (b)

Fig. 24-7 (a) A gum resin suspension contained in a glass vessel viewed in a micro-
scope by Perrin in 1909. At first the distribution of particles was uniform, but in time
they settled to the distribution shown .The particles have a diameter of 0.6 X 10 cm
and the horizontal lines are 10 X 10 era apart. (b) Sketch by V. Henri in 1908 from
his cinematographic study of Brownian movement. Henri used a microscope with a
motion-picture camera which ran 20 frames/see, each exposure being IlI ff see. The
zigzag lines show the position of five rubber particles as recorded by successive frames.
The lines do riot represent the actual paths of the particles for between exposures the
particles may have traveled a similar erratic path. The scale at the boetorn is divided
into microns (10-4 cm).

fluid; they from a "miniature atmosphere"; see Example 1, Chapter 17;
Problem 42, Chapter 23; and Problem 13, this chapter. Jean Perrin, a
French physical chemist, confirmed this prediction in 1908 by determining
the numbers of small particles of guni resin suspended at different heights
in a liquid drop (Fig. 21-7, left). From his data he deduced a value of
Avogadro's number No = 6 X iO particls/muolc. Perrin also made
measurements of the displacements of Brownian particles during many
equal time intervals and found that they have the statistical distribution
required by kinetic theory and the root-mean-square displacement pre-
dicted by Einstein (Fig. 24-7, right).

Among the many subsequent experiments was that of Kapler, in 1931, who
observed the Brownian motion of a rather gross object, a small mirror (area
0.7 mm 2 ), mounted on a fine torsion fiber with light reflected from the mirror to a
moving photographic film. The mirror is mounted in a chamber with gas at low
pressure (10 mm-Hg); the record on the moving film yields the function 0(1)
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(angular displacement as a function of time). This shows clearly the rotational
Brownian motion of the mirror which consists of a series of angular displacements
produced by unbalanced impacts from the molecules. As the gas pressure is
lowered, there is a gradual decrease in the motion. From the photographic record
we can find the angular displacement 8 and the angular velocity W. The equi-
partition of energy principle requires that

1/CT,

for !w 2 is the average rotational kinetic energy of the system and -K O 2 is the
average potential energy of the system. Here I is the rotational inertia of the

system and K the torsion constant of the fiber. From his observations Kappler
could calculate Boltzmann's constant k and from the relation No = R/k he

could obtain Avogadro's number. His values were k 1.36 X 1 13 joule!

molecule K° ± 3 0/, (the accepted value today of 1.380 X •10-' joule/molecule K°
being within the limits of error) and No = 61 X 1013 particles/mole.

24-5 The van der Wools Equation of State

In the preceding chapter we discussed the behavior of an ideal gas. On
the macroscopic scale its fundamental relationship is the equation of state

pV RT.

From this equation and the principles of thermodynamics we can show
that the internal energy U of a gas depends only on the temperature.
Real gases obey these relations fairly well at low densities, but their
behavior may become markedly different as the density increases. We
cannot neglect these deviations from ideal behavior in accurate scientific
work. For example, to establish the Kelvin thermodynamic scale in the

- laboratory we must know how to make the necessary corrections to the
scale of a constant-volume gas thermometer. We must therefore know the
behavior of real gases rather accurately. Even more important, perhaps,
is the fact that the behavior of real gases gives us information onthe nature
of intermolecular forces and the structure of molecules.

Kinetic theory provides the microscopic description of the behavior of
an ideal gas. We have already suggested how the assumptions of kinetic
theory could become invalid if applied to a real gas. Under some condi-
tions we may not be justified in neglecting the facts that the molecules
occupy a fraction of the volume available to the gas and that the range of
molecular forces is greater than the size of the molecule. At high densities
we cannot ignore these effects.

J. D. van der Waals (1837-1923) deduced a modified equation of state
which takes these factors into account in a simple way. Let us imagine
the molecules to be hard spheres of diameter d. The diameter of such a
sphere would correspond to the distance between the centers of molecules
at which strong collision forces come into play. During its motion the
center of a molecule cannot approach within a distance d/2 from a wall or

a distanced from the center of another molecule. Hence the actual volume
available to a molecule is smaller than the volume of the containing vessel.
Just how much smaller depends on how many molecules there are. Let us
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represent the volume per mole, Vhs, by v. Then the "free volume" per
mole would be less than this by the "covolume" b. Hence we modify the
equation of state from the ideal relation pv = RT to

p(v - b) = RT

to allow for this. Because of the reduced volume, the number of impacts
on the wall increases, thereby increasing the pressure; this relationship was
first derived by Clausius.

We can also allow for the effect of attractive forces between molecules in
a simple way. Imagine a plane passed through a gas and consider, at any
instant, the intermolecular forces which act across it. Each molecule on
the left, say, will attract and be attracted by some small number n of those
on the right. Now compare this situation with another similar in every
way except that the number of molecules per unit volume is doubled.
Here any particular molecule on the left will interact on the average with
2n of those on the right, for the range of the molecular force is the same,
and twice as many molecules now fall into this range. Since there also are
twice as many molecules on the left as before which attract in this way, it
is clear that the number of attractive pairs across the plane has increased
fourfold. Therefore, the effect of these forces varies as the square of the
number of particles per unit volume or inversely as the square of the
volume per mole, that is, as (1/0) 2 . Because of these intermolecular foèce
bonds, the gas should, for a given external pressure, occupy a volume less
than the volume it would occupy as an ideal gas, in which there are no such
attractive forces. Or, equivalently, the gas acts as though it is subject to
a pressure in excess of the externally applied pressure. This excess pres-
sure is proportional to (i Iv) 2 or equal to a/v 2 where a is a constant. Hence
we obtain the van der Waals equation of state of a gas,

(P 
+(v - b) = RT.	 (24-5)

The values of a and b are to be found from experiment, and in this
respect the equation is empirical. We must realize that these corrections
to the ideal gas equation of state are of the simplest kind, and that failure
of the van der Waals equation in any particular case is evidence that our
assumptions are oversimplified for that cae. No one simple formula is
known which applies to all gases under all conditions.

We have seen that real gases do not follow the ideal gas law exactly.
Our discussion suggests also that for real gases the internal energy U
depends on the volume as well as on the temperature. For if there are
(long range) attractive forces between molecules, the potential energy
increases as the average distance between molecules increases. Hence, we
would expect the internal energy of most real gases to increase slightly with
the volume at, ordinary temperatures, and this is found to be the case. Of
course, collisions can he regarded as arising from repulsive forces. If the
molecules move rapidly so as to make many collisions, the potential energy
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Flu. 24-4 (a) Isotherms for an ideal gas. (b) Isotherms for a van der Wash; gas.
We have assumed a = 3.59 li 2atm/mole 2 and 6 = 0.0427 li/mole in Eq. 24.4.
These values give the best fit of this equation to p-V-T data for the real gas CO2.

= 304° K) is the critical temperature.

of the (short range) repulsive forces may be more important than that of
the attractive forces and the internal energy could decrease as the volume
increases. This is true for hydrogen and helium at ordinary temperatures.
In either case, however, the internal energy U is not a function of tempera-
turealone but depends also on the volume. The dependence of the inter-
nal energy of a gas on the volume call deduced readily from the observed
results of the free expansion experiment, discussed in Chapter 22.

. Example 4. On a pressure-volume diagram compare the behavior of an ideal
gas at constant temperature to that of a van der Waals gas.

In Fig. 24-8o we draw the isotherms (curves of constant 7') according to the
law pa = R2. Figure 24-8b shows the isotherms according to the law

(p + a/v2)(v - b) = Br.

The ideal gas isotherms are each one branch of a rectangular hyperbola, pv =
constant.. For the van der Waals gas the pressure varies with volume as

RT	 a
(v -- b) -	

(24-6)

As the volume per mole v decreases from large values, the pressure rises, but the
a/v1 term, which diminishes the pressre, climbs rapidly so that for sufficiently low
T the pressure passes through a maximum at A. As v is further decreased, the
RT/(v - b) term climbs more rapidly so that the pressure goes through a minimum
at B and then rises rapidly without bound as v tends to the value b. At neighboring
higher temperatures, the maxima and minima are less pronounced and are closer to
the inflection point that lies between them. At the so-called critical temperature
(T = they coincide in a horizontal inflection point, called the critical point.
For temperatures sufficiently higher than the critical temperature Tr the van der
Waals isotherms have no inflection point and approach the rectangular-hyperbola
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behavior of the ideal-gas isotherms. For carbon dioxide the critical temperature is
3040 K and the pressure at the critical point is 72.9 atm.

We can obtain the pressure pa,, the molar volume v, and the temperature T of
the critical point quite generally from the conditions that the tangent to the
isotherm is horizontal, dp/dv = 0 when 7' = constant, and that the point is an

inflection point, d2p/dv2 = 0 when 7' = constant. We obtain

= - RT + = 0 (T constant)
dv	 (v —b)' v

and	
dp - 2RT - = 0	 (7' = constant.)
dvt	(v—b) 2 	 v4

This gives us	 v., = 36

So
and

Putting these in Eq. 24-6, we obtain

Por = 2762

The isotherms suggest the actual experimental behavior of liquids and gases.
The maxima and minima of the isotherms below the critical temperature are not
usually observed experimentally. At some point x the gas begins to condense.
As the volume is decreased, the pressure remains constant (dotted line) until at '
all the gas has been transformed into liquid. Beyond y, as we decrease the volume,
we are compressing a liquid, with the consequent sharp rise in pressure needed to
make even small volume changes. Actually the portions xA and By of the

isotherms can be obtained experimentally by using very pure gases and liquids.
We call these supersturated vapors and supercooled liquids, and they are in meta-
stable states. The portion AB cannot be reproduced experimentally and is
unstable.

The constants a and b in van (icr Waals equation can be calculated from
the experimental values of the critical quantities. The term a1v 2 is called

an internal pressure. Some values for air are of interest. For air at 0° C
and external pressure p of 1.00 atm, the internal pressure is 0.0028 atm; at
0°C and external pressure p of 100 atm, the internal pressure is 20 atm.
For air at —75° C the corresponding values of the internal pressure are
0.0056 atm and 84.5 atm. When a gas expands under pressure and does
work against outside compressing forces, it must also jo work against these

internal forces. For air at 75° C and 100 atm, the work done against
internal forces is nearly as great as that done against external forces.
There is an important distinction between internal and external work,
however. In the case of external work, energy is transferred from the
body to an outside body; in the case of internal work, there is merely a
transfer from one kind of energy to another within the body, as from
potential to kinetic. The constant b varies from gas to gas, but is usually

of the order of 30 crn 3/niole. Hence the covolurne is about 0.15% of the
free volume available to a gas at standard conditions.
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Although the van der Waals formula is a good qualitative guide, the
quantitative experimental data cannot be matched everywhere with con-
stant values for a and b. The reason is that the model on which the for-
mula is based is still an oversimplification. Instead of assuming that the
molecules always have a well-defined diameter, for example, we must use
the actual intermolecular force (Fig. 23-3). In this way a more accurate
correction to the ideal gas law can be made. Van der Waals knew this
would be necessary for accurate quantitative work.

QUESTIONS

1. Consider the case in which the mean free path is greater than the longest straight
line in a vessel. Is this a perfect vacuum for a molecule in this vessel?

2. Give a qualitative explanation of the connection between the mean free path of
ammonia molecules in air and the time it takes to smell the ammonia when a bottle is
opened across the room.

3. The two opposite walls of a container of gas are kept at different temperatures.
Describe the mechanism of best conduction through the gas.

4. A gas can transmit only those sound waves whose wavelength is long compared
with the mean free path. Can you explain this? Where might this limitation arise?

5. If molecules are not spherical, what meaning can we give to din Eq. 24-1 for the
mean free path? In which gases would the molecules act the most nearly as rigid
spheres?

6. Suppose we dispense with the hypothesis of elastic collisions in kinetic theory and
consider the molecules as centers of force acting at a distance. Does the concept of
mean free path have any meaning under these circumstances?

T. Since the actual force between molecules depends on the distance between them,
forces can cause deflections even when molecules are far from "contact" with one
another. Furthermore, the deflection caused should depend on how long a time these
forces act and hence on the relative speed of the molecules. (a) Would you then expect
the measured mean free path to depend on temperature, even tlough the density
remains constant? (b) If so, would you expect 1 to increase or decrease with tempera-
ture? (c) How does this dependence enter into Eq. 24-1?

8. Justify qualitatively the statement that., in a mixture of molecules of different
kinds in complete equilibrium, each kind of molecule has the annie Maxwellian distribu-
tion in speed that it would have if the other kinds were not present.

9. The Maxwellian distribution of speeds among molecules in a gas is shown in Fig.
24-4. How would you expect the Maxwellian distribution of velocities to look? What
would the average velocity be?

10. The fraction of molecules within a given range A v of the root-mean-square speed
decreases as the temperature of a gas rises. Explain why.

11. (a) Do half the molecules in a gas in thermal equilibrium have speeds greater
than v,? Than fi? Than !'rm?

(b) Which speed, t', i, or c,,,,, corresponds to a molecule having average kinetic
energy?

12. The slit system in Fig. 24-5 selects only those molecules moving in the +x-direc-
tion. Does this destroy the validity of the experiment as a measure of the distribution
of speeds of molecules moving in all directions? 	 ,.. -



616	 KINETIC THEORY OF GASES—It	 Chap. 24

13. Why did Rainwater and Havens, in their investigation of the speed distribution
of neutrons (page 607), select paraffin as a material to bring fast neutrons rather quickly
into thermal equilibrium?

14. List examples of the Brownian motion in physical phenomena.
15. We have defined n to be the number of molecules per unit volume in a gas. If

we define a for a very small volume in a gas, say one equal to ten times the volume of an
atom, then a fluctuates with time through the range of values zero to some maximum
value. How then can we justify a statement that a has a definite value at every point
in the gas?

16. Show that as the volume per mole of a gas increases, the van der Waals equation
tends to the equation of state of an ideal gas.

17. The covolume b in van der Waals equation is often taken to be four times the
actual volume of the gas molecules themselves. What factors would have to be taken
into account to obtain such a result?

18. Keeping in mind that internal energy of a body consists of kinetic energy and
potential energy of its particles how would you distinguish between the internal energy
of a body and its temperature?

PROBLEMS
I. The mean free path of nitrogen molecules at 0° C and 1 atm is 0.80 X 10' cm.

At this temperature and pressure there are 2.7 X 10 19 molecules/em'. What is the
molecular diameter?

2. The best vacuum attained so fax in the laboratory is 10 10 mm-Hg. How many
molecules of gas remain per cubic centimeter at 200 C in this "vacuum"?

3. In the cosmotron at the Brookhaven National Laboratory the protons travel
around a circular path of diameter 75 ft in a chamber of lO mm-Hg pressure.

(a) Estimate the number of gas molecules per cubic centimeter at this pressure.
(b) What is the mean free path of the gas molecules under these conditions if the

molecular diameter is 2.0 X 10— cm?
4. At what frequency would the wavelength of sound be of the order of the mean free

path in oxygen at 1-atm pressure and 0°C? Take the diameter of the oxygen molecule
to be 3.00 X 10 cm.

5. For a gas in which all molecules travel with the same speed v, show that V.i

4v rather than /z 0 (which is the result obtained when we consider the actual distribu-
tion of molecular speeds). See p. 601.

6. At 2500 km above the earth's surface the density is about one molecule/cm3.
What mean free path is predicted by Eq. 24-1 and what is its significance under these
conditions?

7. The mean free path of a molecule is I. Prove that the probability that a molecule

will go at least a distance x before having its next collision is e°.
8. The mean free path 7 of the molecules of a gas may be determined from measure-

ments (e.g., from measurement of the viscosity of the gas). At 20° C and 75 cm-Hg
pressure such measurements yield values of TA (argon) 9.9 X 10 cm and 'N,

(nitrogen) 27.5 X 10 — cm. (a) Find the ratio of the e ffective cross-section diam-
eters of argon and nitrogen. (b) What would the value be of the mean free path of
argon at 20° C and 15 cm-Hg? (c) What would the value be of the mean free path of
argon at —40° C and 75 cm-Hg?

9 A molecule of hydrogen (diameter io cm) escapes from a furnace (T 4000° K)
with the root-mean-square speed into a (hamber containing atoms of cold argon (diam-
eter 3 X 10 cm) at a density of 4 X 10" atomS/em'. (a) What is the speed of the
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hydrogen molecule? (P4 On a collision between the molecule and an argon atom, what
is the closest distance between their centers, considering each as spherical? (c) What
is the initial number of collisions per unit time experienced by the hydrogen molecule?

10. You are given the following group of particles (N i represents the number of
particles which have a speed

Ni	v,(ein ,'sec)

2	 100
4	 2.00
6	 3.00
S	 400
2	 5.00

(a) Compute the average speed F. (b) Copute the root-mean-square speed	 (c)
Among the five speeds shown, which is the most probable speed r5 for the entire group?

II. Consider the distribution of specs shown in Fig. 24-9. (a) List v, f, and
VP in the order of increasing speed. (b) how does this compare Ni ith the Maxwellian
distribution?

NO)

Fig. 24-9

12. In the apparatus of Miller and Kusch (Fig. 24-5) the length ! of the rotating
cylinder is 20.4 cni and the angle 0 is (2/74.7) radians. What rotational speed cor-
responds to a selected speed v of 200 meters/sec?

13. Calculate the root-mean-square speed of smoke particles of mass 5.0 X 1014gm
in air at 00 C and 1-atm pressure.

14. Particles of mass 6.2 X 10r 14 gin are suspended in a l iquid at 27° C r.nd are
observed to have a root-mean-square speed of 1.4 cm ,'e. Calculate Avogadro's
number from the equpartition theorem and these data. 	 -

15. Colloidal particles in solutkn are buoyed up by the liquid in which they are sus-
pencled. Let p' he the density of liquid and p the density of the pail ides. If V is the
volume of a particle, show that the number of particles per unit volume in the liquid
varies with height as

,snoexp - 
N0 

T(p - p)gh

This equation was tested by Perrin in his Brownian motion studies.
16. The average speed of hydrogen molecules at 0°C is 1694 meters/sec. Compute

the average speed of colloidal particles of "molecular weight" 3.2 x 10 5 gm/mole.
17. Calculate the work done per mole in an isothermal ex pansion of a van der Waals

gas from volume Vi to V1.
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IS. The constant a in van der Weals equation is 0.37 nt-m/mo!e' for CO 2 and 0.025
nt-m 4/mole 2 for hydrogen. Compute the internal pressures for these gases for values
of v/Co (where v5 = 22.4 liters/mole) of 1, 0.01. and 0.001.

19. (a) The constant b in van der Wasis equation is 43 em'./mole for CO 2. Using
the value for a in the previous problem, compute the pressure at 00 C for a specific
volume of 0.55 liter/mole, assuming van der Weals equation to be strictly true. (b)
What is the pressure under these same conditions, assuming CO 2 behaves as an ideal
gas?	 -

20. Van der Waals' blot oxygen is 32 cm '/mole. Assume b is four times the actual
volume of a mole of "billiard-ball" 02 molecules and compute the diameter of an 02
molecule.

21. The constants a and b in the van der Waals equation are different for different
substances. Show, however, that if we take va,, p, and T0, as the uits of specific
volume, pressure, and temperature, the van der Waals equation becomes identical for all
substances.
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Entropy and the Second Law of
Thermodynamics

CHAPTER 25

25-1 Introduction

The first law of thermodynamics states that energy is conserved. How-
ever, we can think of many thermodynamic processes which conserve
energy but which actually never occur. For example, when a hot body
and a cold body are put into contact, it simply does not happen that the
hot body gets hotter and the cold body colder. Or again, a pond does not
suddenly freeze on a hot summer day by giving up heat to its environment.
And yet neither of these processes violates the first law of thermodynamics.

Similarly, the first law does not restrict our ability to convert, work into
heat or heat into work, except that energy must be conserved in the
process. And yet in practice, although we can convert a given quantity
of work completely into heat, we have never been able to find a scheme
that converts a given amount of heat completely into work. The second
law of thermodynamics deals with this question of whether processes,
assumed to be consistent with the first law, do or do not occur in nature.
Although the ideas contained in the second law may seem subtle or
abstract, in application they prove to be extremely practical.

25-2 Rpv*j'I0 and Irreversible Processes

Consider a typical system in thermodynamic equilibrium, say a mass Ut

of a (real) gas confined in a c ylinder-piston arrangement of volume V, the

gas having a pressure p and a temperature T. In an equilibrium state
69
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these thermodynamic variables remain constant with time. Suppose that
the cylinder, whose walls are an (ideal) heat insulator but whose base is an
(ideal) heat conductor is placed oil large heat reservoir maintained at
this same temperature T, as in Fig. 22-9. Now let us change the system
to another equilibrium state in which the temperature T is the same but
the volume V is reduced by one-half. Of the many wa ys in which we could
do this we discuss two extreme cases.

I. We depress the piston very rapidly; we then wait for equilibrium with
the reservoir to be re-established. During this process the gas is turbulent
and its pressure and temperature are not well defined; we cannot plot the
process as a continuous line on a p-V diagram because we would not know
what value of pressure (or temperature) to associate with a given volume.
The system passes from one equilibrium state i to anotherf through a seties
of nonequilibrium states (Fig. 25-1a).

II. We depress the piston (assumed to be frictionless) exceedingly
slowly—perhaps by adding sand to the top of the piston—so that the
pressure, volume, and temperature of the gas are, at all times, well-defined
quantities. We first drop a few grains of sand on the piston. This will
reduce the volume of the system a little and the temperature will tend to
rise; the system will depart from equilibrium, but only slightly. A small
amount of heat will be transferred to the reservoir and in a short time the
system will reach a new equilibrium state, its temperature again being that
of the reservoir. Then we drop a few more grains of sand on the piston,
reducing the volume further. Again we wait for a new equilibrium state
to be established, and so forth. By many repetitions of this procedure we
finally reduce the volume by one-half. During this entire process the
system is never in a state differing much from an equilibrium state. If
we imagine carrying out this procedure with still smaller successive
increases in pressure, the intermediate states will depart from equilibrium
even less. By indefinitely increasing the number of changes and corre-

(a)	 (b)

Fp. 25-1 We cause a real gas to go frc'n, an initial equilibrium stale i described by
p, V,, Ti to a final equilibrium state f described by pj, V 1 (= 4 1'), and Tj ( Ti).
We carry out the process (ci) irreversibly, and (5) reversibly.
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spondingly decreasing the size of each change, we arrive at an ideal
process in which the system passes through a continuous succession of
equilibrium states, which we can plot as a continuous line on a p-V diagram

(Fig. 25-1b). During this process a certain amount of heat Q is transferred
from the system to the reservoir.

Processes of type I are called irreversible and those of type If are called
reversible. A reversible process is one that, by a differential change in the
environment, can be made to retrace its path. Thus as we cause the piston to
move slowly downward, in II, the external pressure on the piston exceeds
the pressure exerted on it by the gas by only a differential amount dp. If
at any instant we reduce the external pressure ever so slightly (by removing
a few sand grains), so that it is less than the internal gas pressure by dp,
the gas will expand instead of contracting and the system will retrace the
equilibrium states through which it has just passed.* In practice all
processes are irreversible, but we can approach reversibility arbitrarily
closely by making appropriate experimental refinements. The strictly
reversible process is a simple and useful abstraction that bears a similar
relation to real processes that the ideal gas abstraction does to real gases.

The process described in II is not only reversible but isothermal, because
we have assumed that the temperature of the gas differs at all times by only
a differential amount dT from the (constant) temperature of the reservoir
on which the cylinder rests.

We could also reduce the volume adiabatically by removing the cylinder
from the heat reservoir and putting it on a nonconducting stand. In an
adiabatic process no heat is allowed to enter or to leave the system. An
adiabatic process can be either reversible or irreversible—the definition
does not exclude either. In a reversible adiabatic process we move the
piston exceedingly slowly—perhaps using the sand-loading technique; in
an irreversible adiabatic process we shove the piston down quickly.

The temperature of the gas. will rise during an adiabatic compression
because, from the first law, with Q = 0, the work TV done in pushing down
the piston must appear as an increase .XU in the internal energy of the
System. TV will have different values for different rates of pushing down
the piston, being given by f p dV—that is, by the area under a curve on
a p-V diagram—only for reversible processes (for which p has a well-defined
value). Thus A U and the corresponding temperature change A T will not
be the same for reversible and irreversible adiabatic processes.

* Not all processes carried out very slowly are reversible. For example, if the piston
in our example exerted a frictional force against the cylinder walls, it would not reverse
its motion if we made only a differential change dp in the external pressure. We would
have to make a change Ap that might be an appreciable fraction of p. Thus our cri-
terion for reversibility, which involves a response of the system to a differential change
in the environment, is not met. The word quasi-static is used to describe processes that
are carried out slowly enough so that the system passes through a continuous sequence
of equilibrium states, a quasi-static process may or may not be reversible. See
"Thermodynamics of an Irreversible Quasi-Static Process," by John S. Thomsen.
American Journal of Physwa, 28, 119, 1960.
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25-3 fhd Camel Cycle

Suppose that we have a system (a real gas, say) in an equilibrium state
in a cylinder-piston arrangement.. By using our ability to make changes in
the environment of the system we can carry out, at our pleasure, a wide
variety of processes. We can let the gas expand or we can compress it;
we can add or subtract energy in the form of heat; we can do these things
and others irreversibly or reversibly. We can also choose to carry out a
sequence of processes such that the system returns to its original equilib-
rium state; we call this a cycle. If the processes involved are all reversible,
we call it a reversible cycle.

Figure 25-2 shows a reversible cycle on a p-V diagram. Along the curve
abc we allow the system to expand,
and the area under this curve repre-
sents the work done by the system
during the expansion. Along the

	

E	 curve cda, which returns the system to
its original state, we compress the

W	 c	 system, and the area under this curve
represents the work we must do on

I a I the system during the compression.
Hence, the net work done by the
system is represented by the area
enclosed by the curve and is positive.

I	 i ,,	
If we decided to traverse the cycle in

0	 the opposite sense, that is, expanding
Fig. 25-2 A p-V diagram of a gas	 along adc and compressing along cba,
undergoing a reversible cycle. The	 the net work done by the system
shaded area W represents the net	 would be the negative of that of the
work done by the gas in the cycle. previous case.

An important reversible cycle is the
Carnot cycle, introduced by Sadi

Carnot in 1824. We shall see later that this cycle will determine the limit
of our ability to convert heat into work. The system consists of a "work-
ing substance," such as a gas, and the cycle is made upof two isothermal
and two adiabatic reversible processes. The working substance, which we
can think of as an ideal gas for concreteness, is contained in a cylinder with
a heat-conducting base and nonconducting walls and piston. We also
provide, as part of the environment, a heat reservoir in the form of a body
of large heat capacity at a temperature Ti, another reservoir of large heat
capacity at a temperature T2 , and two nonconducting stands. We carry
out the Carnot cycle in four steps, as shown in Fig. 25-3. The cycle is
shown on the p-V diagram of Fig. 25-4.

Step 1. The gas is in an initial equilibrium state represented by pi,
T 1 (a, Fig. 25-4). We put the cylinder on the heat reservoir at tempera-



Adiabatic process

Isothermal process

Adiabatic process

p3:3 T2

Fig. 25-3 A Carnot cycle. The points a, b, c and d correspond to the points so
labelled in Fig. 25.4. The cylinder-piston arrangements show intermediate steps in the
processes that connect adjacent points. The arrows on the pistons suggest expansions
(caused by removing sand) and compressions (caused by adding sand).
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P

PI

P2 -

P4 -

P3 -	

I11	 f

0	 Vj 	 v4	 V3

F9. 25-.4 The Carnot cycle il-
lustrated in the previous figure,
plotted on a p-V diagram for an
ideal gas.

V

ture T 1 , and allow the gas to expand slowly to p2, V2, 1 '1 (b, Fig. 25-4).
During the process heat energy Q is absorbed by the gas by conduction
through the base. The expansion is isothermal at T1 and the gas does
work in raising the piston and its load.
Step 2. We put the cylinder on the nonconducting stand and allow the

gas to expand slowly to p, T7 3, T2 (c, Fig. 25-4). The expansion is
adiabatic because no heat can enter or leave the system. The gas does
work in raising the piston and its temperature falls to T2.
Step S. We put the cylinder on the (colder) heat reservoir T2 and com-

press the gas slowly to p, V4 , T2 (d, Fig. 25-4). During the process heat
energy Q2 is transferred from the gas to the reservoir by conduction through
the base. The compression is isothermal at T2 and work is done on the gas
by the piston and its load.
Step 4. We put the c ylinder on a nonconducting stand and compress the

gas slowly to the initial condition P' V 1 , T 1 . The compression is adiabatic
because 110 heat can enter or leave the system. Work is done on the gas
and its temperature rises to T1.

The net work W done by the system during the cycle is represented by
the area enclosed by path abc.d of Fig. 25-4. The net amount of heat
energy received by the system in the cycle is Qi - Q2, where Qi is the heat
absorbed in Step I and Q2 is that given up in Step 3. The initial and final
states are the same so that there is no net change in the internal energy U
of the system. Hence, from the first law of thermodynamics,

13' = Qi -Q2	 (25-1)
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for the cycle, in which Qi and Q2 are taken as positive quantities. The
result of the cycle is that heat has been converted into work by the system.
Any required amount of work can be obtained by simply repeating the
cycle. Hence, the system acts like a heat engine.

We have used an ideal gas as an example of a working substance. The
working substance can be anything at all, although the p-V diagrams for
other substances would be different. Common heat engines use steam or
a mixture of fuel and air, or fuel and oxygen as their working substance.
Heat may be obtained from the combustion of a fuel such as gasoline or
coal, or from the annihilation of mass in nuclear fission processes in nuclear
reactors. Heat may be discharged at the exhaust or to a condenser.
Although real heat engines do not operate on a reversible cycle, the Carnot
cycle, which is reversible, gives useful information about the behavior of
any heat engine.

The efficiency e of a heat engine is the ratio of the net work done by the
engine during one cycle to the heat taken in from the high temperature
source in one cycle.* Hence,

W Qi — Q2 1 _ 22.
Qi	 Qi

Equation 25-2 shows that the efficiency of a heat engine is less than one
(100%) so long as the heat Qz delivered to the exhaust is not zero. Expe-
rience shows that every heat engine rejects some heat during the exhaust
stroke. This represents the heat absorbed by the engine that is not con-
verted to work in the process.

We may choose to carry out the Carnot cycle by starting at any point,
such as a in Fig. 25-4, and traversing each process in a direction opposite
to that of the arrowheads in that figure. Then an amount of heat Qi is
removed from the lower temperature reservoir at T2 , and an amount of
heat Q is delivered to the higher temperature reservoir at Ti ; work must
be done on the system by an outside agency. In this reversed cycle work
must be done on the system which extracts heat from the lower tempera-
ture reservoir. Any amount of heat can be removed from this reservoir
by simply repeating the reverse c ycle. Hence, the system acts like a
refrigerator, transferring heat from a body at a lower temperature (the
freezing compartment.) to one at a higher temperature (the room) by means
of work supplied to it (the electric, power input).

. Example 1. Show that the efficiency of a Carnot engine using an ideal gas as
the working substance is e = (T 1 - T2)/T1.

Along the isothermal path ab, the temperature, and hence the internal energy of
an ideal gas, remains constant. From the first law, the heat Q absorbed by the gas
in its expansion must be equal to the work W 1 done in this expansion. From

• The definition reflects the economic importance of engines. Work H' is the desir-
able output; the heat Qi, is the input that must be paid for in the form, say, of a fuel
bill. An efficient engine has a large ratio of W to Qj.
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Example 2, Chapter 23, we have,

Q	 W i = uRTi In (Vs/Vi).

Likewise, in the isothermal compression along the path cd, we have

= W, = pRT2 In (V3/l7).

On dividing the first equation by the second, we obtain

- Ti m (172/171)

- Tt In (1731174)

From the equation describing an isothermal process for an ideal gas we obtain for
the paths ab and cd

piVi = p2V2,

p3 V 3 = p4V4.

From the equation describing an adiabatic process for an ideal gas we have for
paths bc and da

=

= pjVi7.

Multiplying these four equations together and canceling the factor PIPSPIP'
appearing on both sides, we obtain

V 1 V 2IVzV 47 =

from which	 (1'2V4)71 = (V1V1)7—'

and	 V2/V1 = V1/V4.

Using this result in our expression for Qj/Q2, we see that

Qi/Qi = T 1/T2,	 1	 (25-3)
so that

O = 1 - Q21Qi = 1 - T81T1

- Q2 = —_Tt.
or	

Q,	 Ti

The temperatures Ti and T2 are those measured on the ideal gas scale described in
Chapter 21.	 14
25-4 The Second Law of Thermodynamics

The first heat engines constructed were very inefficient devices. Only a
small fraction of the heat absorbed at the high-temperature source could
be converted to useful work. Even as engineering design improved, a
sizable fraction of the absorbed heat was still discharged at the lower-
temperature exhaust of the engine, remaining unconverted to mechanical
energy. It remained a hope to devise an engine that could take heat from
an abundant reservoir, like the ocean, and convert it completely into useful
work. Then it would not be necessary to provide a source of heat at a
higher temperature than the outside environment by burning fuels (Fig.
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Qi	 Syste	 QU /boundamrY\L

L Lii
?i Q2)'-_-- ____-- W(= Q)

T2

Actual heat engine 	 "Perfect" heat engine

Fig. 25-5 In an actual heat engine, some of the heat Qj taken in by the engine is con-
verted into work W, but the rest is rejected as heat Q2. In a 'perfect" heat engine all
the heat input would be converted into work output..

25-5). Likewise, we might hope to he able to devise a refrigerator that
simply transfers heat from a cold body to a hot body, without requiring the
expense of outside work (Fig. 25-6). Neither of these hopeful ambitions

violates the first law of thermodynamics. The heat engine would simply Con-
vert heat energy completely into mechanical energy, the total energy being

Heat reservoir at
high temperature Ti

1,11

Li

Heat reservoir at
low temperature T2

Actual refrigerator

Heat reservoir at
high temperature Ti

I"	 I

1

I . ,., ..\
Heat reservoir at

low temperature T2

"Perfect" refrigerator

Fig. 25-6 In an actual refrigerator, work W is needed to transfer heat from a low-
temperature to a high-temperature reservoir. In a "perfect" refrigerator, heat would
flow from the low-temperature to the high-temperature reservoir without any work
being done on the engine.
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conserved in the process. In the refrigerator, the heat energy would
simply be transferred from cold body to hot body without any loss of
energy in the process. Nevertheless neither of these ambitions has ever been
achieved, and there is reason to believe they never will be.

The second law of thermodynamics, which is a generalization of experience,
is an assertion that such devices do not exist. There have been many
statements of the second law, each emphasizing another facet of the law,
but all can be shown to be equivalent to one another. Clausius stated it
as follows: It is impossible for any cyclical machine to produce no other
effect than to convey heat continuously from one body to another at a higher
temperature. This statement rules out our ambitious refrigerator, for it
implies that to convey heat continuously from a cold to a hot object it is
necessary to supply work by an outside agent. We know from experience
that when two bodies are in contact, heat energy flows from the hot body
to the cold body. The second law rules out the possibility of heat energy
flowing from cold to hot body in such a case and so determines the direction
of transfer of heat. The direction cans be reversed only by an expenditure
of work.

Kelvin (with Planck) stated the second law in words equivalent to these:
A transformation whose only final result is to transform into work heat extracted
from a source which is at the same temperature throughout is impossible.*
This statement rules out our ambitious heat engine, for it implies that we
cannot produce mechanical work by extracting heat from a single reservoir
without returning any heat to a reservoir at a lower temperature.

To show that the two statements are equivalent we need to show
that, if either statement is false, the other statement must be false also.
Suppose Clausius' statement were false so that we could have a refrigerator
operating without needing a work input. We could use an ordinary engine
to remove heat from a hot body, to do work and to return part of the heat
to a cold body. But by connecting our "perfect" refrigerator into the
system, this heat would be returned to the hot body without expenditure
of work and would become available again for use by the heat engine.
Hence, the combination of an ordinary engine and the "perfect" refrig-
erator would constitute a heat engine which violates the Kelvin-Planck
statement. Or we can reverse the argument. If the Kelvin-Planck state-
ment were incorrect, we could have a heat engine which simply takes heat
from a source and converts it completely into work. By connecting this
"perfect" heat engine to an ordinary refrigerator, we could extract heat
from the hot body, convert it completely to work, use this work to run the

• This statement needs to be supplemented if we extend thermodynamics to the
region of negative Kelvin temperatures. All other formulations of the second law, and
indeed, all other laws of thermodynamics apply to negative temperatures without
revision. See an article, "Thermodynamics and Statistical Mechanics at Negative
Absolute Temperatures," by N. F. Ramsey, in Temperature, Its Measurement and
Control in Science and Industry, Vol. 3, Part 1, Reinhold Publishing Co., New York.
1962.
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ordinary refrigerator, extract heat from the cold body, and deliver it plus
the work converted to heat by the refrigerator to the hot body. The net
result is a transfer of heat from cold to hot body without expenditure of
work and this violates Clausius' statement.

The second law tells us that many processes are irreversible. For
example, Clausius' statement specifically rules out a simple reversal of the
process of heat transfer from hot body to cold body. Not only will some
processes not run backward by themselves, but no combination of processes
can undo the effect of an irreversible process without causing another
corresponding change elsewhere. In later sections we shall develop these
ideas more fully and formulate the second law quantitatively.

25-5 The Efficiency of Engines

Carnot first wrote scientifically on the theory of heat engines. In 1824
he published Reflections on the Motive Power of Heal. By then the steam
engine was commonly used in industry. Carnot wrote:

In spite of labor of all sorts expended on the steam engine, and in spite of the
perfection to which it has been brought, its theory is ver y little advanced.

The production of motion in the steam engine is always accompanied by a cir-
cumstance which we should particularly notice. This circumstance is the passage
of caloric from one body where the temperature is more or less elevated to another
where it is lower.

The motive power of heatis independent of the agents employed to develop it;
its quantity is determined solely by the temperature of the bodies between which,
in the final result, the transfer of the caloric occurs.

Hence, Carr.ot directed attention to the facts that the difference in tem-
perature was the real source of "motive power," that the transfer of heat
played a significant role, and that the choice of working substance was of
no theoretical importance.

Carnot's achievement was remarkable when we recall that the mechan-
ical equivalence of heat and the conservation of energy principle were
not known in 1824. In his later papers, published posthumously in
1872, it became clear that Carnot had foreseen the principle of the con-
servation of energy and had made an accurate determination of the
mechanical equivalent of heat. He had planned a program of research
which included all the, important developments in the field made by
other investigators during the following several decades. However,
he died during a cholera epidemic in 1832 at the age of 36, leaving it
to others to extend his work. It was William Thomson (later Lord
Kelvin) who n'odified Carnot's reasoning to bring it into accord with
the mechanical theory of heat, and who, together with Clausius, success-
fully developed the science of thermodynamics.

Carnot developed the concept of a reversible engine and the reversible
cycle named after him. He stated a theorem of great practical importance:
The efficiency of all reversible engines operating between the -same two tempera-
tures is the same and no irreversible engine working between the same two frm-
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Fig. 25-7 Proof of Carnot's theorem.

peratures can have a greater efficiency
than this. Clausius and ICelvin
showed that this theorem was a
necessary consequence of the second
law of thermodynamics. Notice
that nothing is said about the work-
ing substance, so that the efficiency
of a reversible engine is inde-
pendent of the working substance
and depends only on the tempera-
tures. Furthermore, a reversible
engine operates at the maximum
efficiency possible for any engine
working between the same two
temperature limits. The proof of
this theorem follows.

Let us call the two reversible engines
H and H'. They operate between the

temperatures Ti and T 2 where T 1 > T2. They may differ, 88y, in their working
substance or in their initial pressures and lengths of stroke. We choose H to run

forward and H' to run backward (as a refrigerator). The forward-running engine
H takes in heat energy Qi at T and gives out heat energy Q 2 at T 2. The back-

ward-running engine (refrigerator) H' takes in heat 02' at T 2 and gives out heat

Qi' at T 1. We now connect the engines mechanically and adjust the stroke
lengths so that the work done per cycle by H is just sufficient to operate H' (Fig.

25-7). Suppose the efficiency e of H were greater than the efficiency e' of H'.

Then
e > 5',	 (assumption)

Qi - Qz > 01' - Qi'
or	 Qi	 Qi'

Since the work per cycle done by one engine equals the work per cycle done on the
other engine,

TV = W',

or	
d-

Q1
	 Cl C?

Comparing these relations, we see that (since Qi - Qi > 0)

1	 1
TI >

or
QI<QL'.

Hence (from the work equality),
C C"(2 < "( 2 l

Thus, the hot source gains heat Qi' - Qj (positive) and the cool source loses heat

Q2' - Qz (positive). But no work is done in the process by the combined system
H + H' so that we have transferred heat from a body at one temperature to a
body at a higher temperature without performing work—in direct contradiction to
Clausius' statement of the second law. Hence, we conclude that e cannot be
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greater than e'. Likewise, by reversing the engines we can use the same reasoning
to prove that e' cannot be greater than e. Hence,

proving the first part of Carrot's theorem.
Now suppose that His an irreversible engine. Then by the exact same procedure

we can prove that e, cannot be greater than e'. But H cannot be reversed, so we
cannot prove that e' cannot be greater than ear. Therefore, ej, is either equal to or
less than e'. Since e' = e =	 we have

Cirreversible	 treversible,

thus proving the second part of Carnot's theorem.

Example 2. A steam engine takes steam from the boiler at 2000 C (225
lb/in.' pressure) and exhausts directly into the air (14 lb/in.' pressure) at 1000 C.
What is its maximum possible efficiency?

Using the result of Example 1 (which applies to this case by virtue of Carnot's
theorem, which we have just proved) we have

7',— 7', 473°K-373°K
=x1007',	 473°K	 % = 21.1%.

Actual efficiencies of about 15% are usually realized. Energy is lost by friction,
turbulence, and heat conduction. Lower exhaust temperatures on more com-
plicated steam engines may raise the maximum possible efficiency to 35% and the
actual efficiency to 20%. The efficiency of an ordinary automobile engine is about
22% and that of a large Diesel oil engine about 40%. 	 4

25-6 The Thermodynamic Temperature Scale

The efficiency of a reversible engine is independent of the working substance and
depends only on the two temperatures between which the engine works. Since
e = 1 - Q2/Qj, then Q2/Q 1 can depend only on the temperatures. This led
Kelvin to suggest a new scale of temperature. If we let 9 1 and 8 2 represent these
two temperatures, his defining equation is

81/92 = Qi/Q.

That is, two temperatures on this scale are to each other as the heats absorbed and
rejected, respectively, by a Carnot engine operating between these temperatures.
Such a temperature scale is called the thermodynamic (or Kelvin) temperature scale.

To complete the definition of the thermodynamic scale, we assign the arbitrary
value of 273 . 160 to the temperature of the triple point of water. Hence, Og,. =
273.16° K. Then for a Carnot engine operating between reservoirs at the tem-
peratures 0 and 0,, we have 0 

80. - Q,,

or	 8 273.16° K	 (25-4)
Qs'

If we compare this with the corresponding equation for the ideal gas temperature
T, namely

	

7' = 273.16° K urn	 (25-5)
P0.0 P0.
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we see that on the thermodynamic scale Q plays the role of a thermometric prop-
erty. However, Q does not depend on the characteristics of any substance because
a Carnot engine is independent of the nature of the working substance. Therefore,
we obtain a scale of temperature which is free of the objection we can raise to the
ideal gas scale of Chapter 21, and in fact we arrive at a fundamental definition of
temperature.

The definition of thermodynamic temperature enables us to rewrite the equation
for the cfficicncy of a reversible engine as

01 - Q2_ 01 - 02 (25-6)e= 
01

But we have shown (Example 1) that the efficiency of a Carnot engine using an
ideal gas as working substance is

	

01 - 02 = T 1 - T2	 (25-7)e= 
Qi	 TI

where T is the temperature given by the constant-volume thermometer containing
the ideal gas. Hence, Q1/Q2 = T 1/T 2 and 01/02 = 01/92. Since 8 = To =
273.16° and 810s, = TIT, it follows that 0 = T. Hence, if an ideal gas were
available for use in a constant-volume thermometer, the thermometer would yield the
thermodynamic (or Kelvin) temperature. We have seen that, although an ideal gas
is not available, measurements made using the limiting process of Eq. 25-5 with
real gases correspond to ideal gas behavior. We shall treat the ideal gas scale and
the thermodynamic scale as identical and we shall use the designation °K inter-
changeably for each, as in fact we have already done.

In practice, we cannot have a gas below 1° K. One of the methods used in
measuring temperature below 10 K employs the thermodynamic scale directly.
The ratio of two thermodynamic temperatures is the ratio of two heats transferred
during two isothermal processes bounded by the same two adiabatics (Fig. 25-8).
The location of the adiabatic boundaries (on the p-V diagram) can be found
experimentally, and the heats transferred during two nearly reversible isothermal
processes can be measured with great precision.

From the equations

T-273.16°K	 or	 _!	 Q--- To Qg,

it is clear that the heat Q transferred in an isothermal process between two given
adiabatics decreases as the temperature 7' decreases. Conversely, the smaller Q is
the lower the corresponding temperature T is. Now the smallest possible value of
Q is zero and the corresponding T is absolute zero. That is, if a system undergoes a
reversible isothermal process with no transfer of heat, the tenip&ature at which this
process takes place is the absolute zero. Hence, at absolute zero, an isothermal and
an adiabatic process are identical (Fig. 25-8).

This definition of absolute zero applies to all substances and is independent of the
properties of any one of them. Notice that no reference is made to molecules or
molecular energy and that we have obtained a purely macroscopic definition of
absolute zero.

The efficiency of a Carnot engine is
T2

8 = 1 - -,
Ti

which is the maximum possible efficiency any engine can have operating between
temperatures T1 and T 2. To obtain 100% efficiency, T2 must be zero. Only
when the low-temperature reservoir is at absolute zero will all the heat absorbed at
the high-temperature reservoir be converted to work.
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F;,

Fig. 25-8 A series of Carnot cycles tending toward absolute-zero temperature, as
used in establishing the thermodynamic scale of temperature. The difference in elope
between isothermals and adiabatics has here been exaggerated for clarity.

The fundamental feature of all cooling processes is that the lower the tempera-
ture, the more difficult it is to go still lower. This experience has led to the
formulation of the third law of thermodynamics, which can be stated in one form as
follows: it is impossible by any procedure, no matter how idealized, to reduce any
system to the absolute zero of temperature in a finite number of operations. Hence,
because we cannot obtain a reservoir at absolute zero, a heat engine with 100%
efficiency is a practical impossibility.

25-7 Entropy—Reversible Processes

The zeroth law of thermodynamics is related to the Concept of tempera-
ture 7' and the first law is related • to the concept of internal energy U. In
this and the following sections we show that th*e second law of thermo-
dynamics is related to a thermodynamic variable called entropy, S, and
that we can express the second law quantitatively in terms of this variable.
We start by considering a Carnot cycle. For such a cycle we have seen
(Eq. 25-3) that

Qi Qz

in which the Q's were taken as positive quantities, that is, we dealt with
the magnitudes, or absolute values, only of the Q's. If we now interpret
them again as algebraic quantities, Q being positive when heat enters the
system and negative when heat leaves the system, we can write this rela-
tionas

T1 T2

This equation states that the sum of the algebraic quantities Q/T is zero
for a Carnot cycle.
F-42
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As a next step, we assert that any reversible cycle is equivalent., to as
close an approximation as we wish, to an assembly of Carnot cycles.
Figure 25-9a shows an arbitrary reversible cycle superimposed on a family
of isotherms. We can approximate the actual cycle by connecting the
isotherms by suitably chosen adiabatic lines (Fig. 25-9b), thus forming an
assembly of Carnot cycles. The student should convince himself that
traversing the individual Carnot cycles in Fig. 2-9b is exactly equivalent,
in terms of heat transferred and work done, to traversing the jagged
sequence of isotherms and adiabatic lines that approximates the actual
cycle. This is so because adjacent Carrot cycles have a common isotherm
and the two traversals, in opposite directions, cancel each other in the
region of overlap as far as heat transfer and work done are concerned. By
making the temperature interval between the isotherms in Fig. 25-9L
small enough we can approximate the actual cycle as closely as we wish by
an alternating sequence of isotherms and adiabatic lines.

V

(a)
P

0_2
o	 V

V
0 (b)

Fig. 25-9 (a) A reversible cycle su-
perimposed on a family of isotherms.
(b) The isotherms are connected by
adiabatic lines, forming an assembly
of Carnot cycles that approximates the
given cycle. (c) a and b are two
arbitrary points on the cycle and I
and 2 are reversible paths connecting
them.
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We can write, then, for the isothermal-adiabatic sequence of lines in

Fig. 25-9b,

or, in the limit of infinitesimal temperature differences between the iso-
therms of Fig. 25-9b,

dQ

- 
= 0,	 (25-8)

in which f indicates that the integral is evaluated for a complete traversal
of the cycle, starting (and ending) at any arbitrary point of the cycle.

If the integral of a quantity around any closed path is zero, that quantity
is called a state variable, that is, it has a value that is characteristic only of
the state of the system, regardless of how that state was arrived at. We
call the variable in this ease the entropy S and we have, from Eq. 25-8,

dS =	 - and	 dS = 0.	 (25-9)

Common units for entropy are joules/K° or cal/K0.
Gravitational poter tial energy U, internal energy U, pressure p, and

temperature Tare othe- state variables and equations of the form f dX 0
hold for each of them, where for X we substitute the appropriate symbol.
Heat Q and work TV are not state variables and we know that, in general,
f dQ F,5 0 and f dW /- 0, as the student can easily show for the special
case of a Carnot cycle.

The property of a state variable expressed by jr dX = 0 can'Iso be
expressed by saying that 5 dX between any two equilibrium states has the
same value for all (reversible) paths connecting those states. Let us prove
this for the state variable called entropy. We can write Eq. 25-9 (see Fig.
25-9c) as fb	

0JdS=0	 (25-10)

where a and b are arbitrary points and I and 2 describe the paths connect-
ing these points. Since the cycle is reversible, we can write Eq. 25-10 as

.F,,

Pb	 Tb
I dS— I dS=0

1 

or	 fb5 
= 2 

J 6 dS	 (25- 11)

In Eq. 25-11 we have simply decided to traverse path 2 in the opposite
direction, that is, from a to b rather than from b to a. We do this by
changing the order of the limits in the second integral of Eq. 25-10, which
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requires that we also change the sign of the integral, thus yielding Eq.

25-11. This latter equation tells us that the quantity f 
b 
dS between any

two equilibrium states of the system, such as a and b, is independent of the
path connecting those states, for 1 and 2 are quite arbitrary paths. The
student will recall our almost identical discussion in Section 8-2, where we
introduced the concept of a conservative force.

The change in entropy between a and b in Fig. 25-9c is, then

Sb - 3. = 
fb 

dS = f	 (reversible process), (25-12)

where the integral is evaluated over any reversible path connecting these
two states.

25-8 Entropy—Irreversible Processes

In Section 25-7 we spoke only of reversible processes. However,
entropy, like all state variables, depends only on the state of the system
and we must be able to calculate the change in entropy for irreversible
processes, provided only that they begin and end in equilibrium states.
Let us consider two examples.

1. Free Expansion. As in Section 22-7 (see Fig. 22-14) let a gas double
its volume by expanding into an evacuated enclosure. Since no work is
done against the vacuum, W = 0 and, since the gas is enclosed by non-
conducting walls, Q = 0. From the first law, then A U 0 or

U = U,	 (25-13)

where i and f refer to the initial and final (equilibrium) states. : , If the gas
is an ideal gas, then U depends on temperature alone and not on the
pressure or the volume so that Eq. 25-13 implies T = T,.

The free expansion is certainly irreversible because we lose control of the
environment once we turn the stopcock in Fig. 22-14. There is, however,
an entropy difference S1 - Si between the initial and final equilibrium
states, but we cannot calculate it from Eq. 25-12 because that relation
applies only to reversible paths; if we tried to use that equation we would
have the immediate difficulty that Q = 0 for the free expansion and-
further—we would not know how to assign meaningful values of T to the
intermediate, nonequilibrium states.

How, then, do we calculate S, - Si for a free expansion? We do so by
finding a reversible path (any reversible path) that connects the states
i and / and, we calculate the entropy change for that path. in the free
expansion a convenient reversible path (assuming an ideal gas) is an
isothermal expansion from Vi to V1 (= 217 ). This corresponds to the
isothermal expansion carried out between the points a and b of the Carnot
cycle of Fig. 25-4. It represents quite a different set of operations from
the free expansion and has in common with it only the fact that it connects
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the same set of equilibrium states, i and f. From Eq. 25-12 and Example 1
we have

Sf	
'dQ

- = J -- = uR In (V,/V1) Si

= uI? In 2.

This is positive so that the entropy of the system increases in this irreversi-
ble, adiabatic process.

2. Heat Conduction. For another example consider two bodies that are
similar in every respect except That one is at a temperature T1 and the
other at temperature T2, where T 1 > T2.. If we put both objects in con-
tact inside a box with nonconducting walls, they will eventually reach a
common temperature T,,,, approximately half-way between T1 and T2.
Like the free expansion, the process is irreversible because we lose control
of the environment once we put the two bodies in the box. Like the free
expansion this process is also (irreversibly) adiabatic because no heat
enters or leaves the system during the process.

To calculate the entropy change for the system during this process we
must again find a reversible process connecting the same initial and final
states and calculate the system entropy change by applying Eq. 25-12 to
that process. We can do so if we imagine that we have at our disposal a
heat reservoir of large heat capacity whose temperature T is at our control,
by turning a knob, say. We first adjust the reservoir temperature to T1
and put the first (hotter) object in contact with the reservoir. We then
slowly (reversibly) lower the reservoir temperature from T 1 to Tm, extract-
ing heat from the hot body as we do so. The hot body loses entropy in
this process, the amount being approximately

where T1, ,,, is the average of T 1 and T. and Q is the heat extracted.
We then adjust our reservoir temperature to T2 and place it in contact

with the second (cooler) object. We then slowly (reversibly) raise the
reservoir temperature from T2 to Tm, adding heat to the cool body as we
do so. The cool body gains entropy in this process, the amount being
approximately

= +
T2m

where T2 ,,, is the average of T2 and T. and Q is the heat added.
The two bodies are now at the same temperature T. and the system,

which consists of these two bodies, is now in its final equilibrium state.
The change in eiitropy for the complete system is

.sf - Si = AS I + AS2

= - Q
T1.,,.	 T2,,.
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Since T i .. > T 2 ,,,. we have S1 > S. Again, as for the free expansion, the

entropy of the system has increased in this irreversible, adiabatic process.

In each of these examples we must distinguish carefully between the
actual (irreversible) process (free expansion or heat conduction) and the
reversible process that we introduce just so that we can calculate the
entropy change in the actual process. We can choose any reversible
process, as long as it connects the same initial and final state as the actual
process; all such reversible processes will yield the same entropy change
because this depends only on the initial and final states and not on the
process connecting them—be it reversible or irreversible.

25-9 Entropy and the Second Law

We are now ready to formulate the second law of thermodynamics in
terms of entropy. Since this law is a generalization from experience we
cannot prore it but can only write it down and show that our statement is
in agreement with experiment and is equivalent to other formulations of
the second law that we have given earlier. In this spirit we assert that
the second law is.A natural process that starts in one equilibrium state and

ends in another will go in the direction that causes the entropy of the system

plus environment to increase.

Following our pattern for the zeroth law and the first law of therinody-
nainics (see page 561) the essence of the second law, speaking loosely, is:

There exists a useful therrnodynansic variable called entrophy. The second law
also tells us how to use this variable to predict whether a particular process
will occur in nature.

The two experiments of Section 25-8 (free expansion and heat conduc-
tion) are consistent with the second law. The entropy of the system
increased in each of these irreversible processes. Note that the entropy of
the environment in these two cases remains unchanged because, both being
carried out in adiabatic enclosures, there was no interchange of heat with
the environment. Thus, as required by our statement of the second law,
the entropy of the system plus environment increased for each of these
(natural) processes.

In the form that we have written it the second law applies only to
irreversible processes because only such processes have 'a 'natural direc-
tion." Indeed (see Section 25-1) the understanding of the natural
directions of such processes is the main concern of the second law. Revers-
ible processes can go equally well in either direction, however, and for

reversible processes the entropy of the system plus environment remains

unchanged. This is so because if heat dQ is transferred from the environ-
ment to the system the entropy of the environment decreases by dQ/T

while that of the system increases by dQ/T, the net change for the system
plus environment being zero. The fact that the process is reversible means
that the environment and the system can differ in temperature by only a
differential amount dT when the heat transfer takes place; this is in Sharp
contrast to our (irreversible) heat conduction problem of the previous
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section, in which the temperature difference of the two bodies placed in
contact was large.

Another class of processes of particular interest are adiabatic processes
(reversible or irreversible); they involve no transfer of heat with the
environment so that the only entropy change possible is that of the system.
From our statement of the second law and from our remarks about revers-
ible processes in the paragraph above, we conclude that

= 81	 (reversible adiabatic process)
and

S.,- > Si	(irreversible adiabatic process),

where Sd,- and Si are the final and initial entropies of the system.

Our statement of the second law is consistent with the Clausius statement (page
628) which declares that there is no such thing as a "perfect" refrigerator (see Fig.
25-6). If there were, the entropy of the lower temperature reservoir would
decrease by Q/T i ; that of the upper temperature reservoir would increase by 0/Ti;
that of the system would remain unchanged because the system traverses a cycle,
returning to its starting point. Thus the net change in the entropy of the system
plus environment is a decrease, because T2 < T i. This violates the statement of
the second law that we have just given and, if we wish to retain the state-
ment, we must conclude (with Clausius) that there is no such thing as a "perfect"
refrigerator.

Our statement of the second law is also consistent with the Kelvin-Planck state-
ment (page 628) which declares that there is no such thing as a "perfect" heat
engine (see Fig. 25-5). If thre were, the entropy of the reservoir at temperature
T would decrease by Q/T; that of the system would remain unchanged because the
systeni traverses a c ycle, returning to its starting point. Thus the net change of
entropy of the system pius environment, is a decrease. This violates the statement
of the second law that we have just given and, if we wish to retain the statement,
we must conclude (with Kelvin) that there is no such thing as a "perfect" heat
engine.

Example 3. Compute the entropy change of a system consisting of 1.00 kg
of ice at 00 C which melts (reversibly) to water at that same temperature. The
latent heat of melting is 79.6 cal/gm.

The requirement that we melt the ice reversibly means that we must put it in
contact with a heat reservoir whose temperature exceeds 0° C by only a differential
amount; if we lower the reservoir temperature until it is a differential amount
below 00 C, the melted ice will begin to freeze. Since the process is reversible, we
can use Eq. 25-12 to compute the entropy change of the system. The temperature
remains constant at 273° K. Therefore,

- s10, = 	 =	 dQ

But
Q = 10 gm X 79.6 cal/gm = 7.96 X 10 1 cal

or

-	 = 7.96 X 10' cal/'K = 292 cal/K°
273

= 1220 joules/K°.



640	 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS Chap. 25

In this example of reversible melting the entropy change of the system plus
environment is zero, as it must be for all reversible processes. The entropy change
calculated above is the increase in entropy of the system; there is an exactly equal
decrease in entropy of the environment (-1220 joules/K°) associated with the heat
that leaves the reservoir (environment), at 273° K, to melt the ice.

In practice, melting is likely to be irreversible, as when we put an ice cube in a
glass of water at room temperature. This process has only one natural direction—
the ice will melt. The entropy of the system plus environment will increase in this
process as required by the second law. The (irreversible) heat conduction example
of the previous section should make this understandable.

Example 4. Calculate the entropy change that an ideal gas undergoes in a
reversible isothermal expansion from a volume Vi to a volume V,.

From the first law
dU = dQ - p dV.

But dU 0, since U depends only on temperature for an ideal gas and the tem-
perature is constant. Hence,

dQ = pdV

and
T	 7'

But	 pV = JURT,

so that	 dS
V

t	 ,rr
I	 U' 	 L.and	 S, - =	 i.iR -	 R In—.	 (25-14) Siiv

fVj 	

V,	 V,

Since V1 > V, S1 > Si and the entropy of the gas increases.
In order to carry out this process we must have a reservoir at temperature 7'

which is in contact with the system and supplies the heat to the gas. Hence, the
entropy of the reservoir decreases by f dQ/T[ = MR In (TT,/V,)), so that in this
process the entropy of system plus environment does not change. As in the
previous example, this is characteristic of a reversible process. 	 4
25-10 Entropy and Disorder

Freeman Dyson, in an article s "What Is Heat?" writes:
"Heat is disordered energy. So with two words the nature of heat is explained.

Energy can exist without disorder. For example, a flying rifle bullet or an
atom of USs& carries ordered energy. The motion of the bullet is the kind we call
kinetic. When the bullet hits a steel plate and is stopped, the energy of its motion
is transferred to random motions of the atoms in the bullet and the plate. This
disordered energy makes itself felt in the form of heat. . . . The energy dwelling
in the uranium atom is the kind we call potential; it consists of the electric forces
which tend to push the constituent protons apart. When the atom fissions, the
enefgy of motion of the flying fragments is converted by collisions into random
motions of the electrons and other atoms nearby in the surrounding matter—that
is to say, into heat. This conversion of potential energy into heat is the working
principle of nuclear reactors.

Scientific American, September 1954.
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These two examples illustrate the general principle that energy becomes heat as

soon as it is disordered. It is conversely true that disorder can exist without
energy, and that disorder becomes heat as soon as it is energized. The atoms of

and U 235 in a piece of orQinary uranium are mixed in a random way, but this
disorder carries no energy.

In order to go further it is necessary to talk quantitatively. We must measure
heat precisely in terms of numbers. . . . First it is clear that to specify heat we
must use at least two numbers: one to measure the quantity of energy, the other to
measure the quantity of disorder. The quantity of energy is measured in terms of
a practical unit called the calorie. . . . The quantity of disorder is measured in
terms of the mathematical concept called entropy. . .

If there is a connection between disorder and entropy then disorder, like entropy,
must increase in natural processes. We will try to show that this is true by showing
that in the examples of Section 25-8, the free expansion and heat conduction, the
disorder of the system plus environment does in fact increase. We will use reason-
able qualitative concepts of disorder first and will define disorder more rigorously
afterwards.

1. Free Expansion. In a free expansion (Section 22-7) the gas molecules con-
fined to one-half of a box are permitted to fill the entire box. By any reasonable
definition of the word disorder the system has become more disordered, in the same
sense that disorder increases if the litter on one vacant lot is spread over two lots.
More precisely, the disorder has increased because we have lost some of our ability
to classify molecules. The statement: 'The molecules are in the box" is weaker
from this point of view than the statement: "The molecules are in the left half of
the box;" see below.

2. Heal Conduction. In this example two bodies of different temperatures
T 1 and 7'2 come to a uniform intermediate temperature 7' when they are placed in
contact. Here again the system has become more disordered in this natural
process because we have lost some of our ability to classify molecules. The state-
ment: "All molecules in the system correspond, by way of Eq. 23-6, to temperature
T" is weaker from this point of view than the statement: "All molecules in body 4
correspond to temperature T 1 and all molecules in body B correspond to tempera-
ture T,."

These two examples and the two given by Dyson at the beginning of this section
(the bullet striking a steel plate and the fissioning uranium nucleus in a nuclear
reactor) convince us that there is a tendency for natural processes to procee-1 toward a
slate of greater disorder.

In statistical mechanics we give a precise meaning to disorder and we express its
connection with entropy by the relation

S = kin w.	 (25-15)

Here, k is Boltzmann's constant, S is the entropy of the system, and w, which we
may call the disorder parameter, is the probabilit y that the system will exist in the
state it is in relative to all the possible states it could be in. This equation con-
nects a thermodynamic or macroscopic quantity, the entropy, with a statistical or
microscopic quantity, the probability.

Let us illustrate by computing the change in entropy of an ideal gas in an iso-
thermal expansion. Here the number of molecules and the temperature do not
change, but the volume does. The probability that a given molecule may be
found in a region having a volume V is proportional to V; that is, the greater V is,
the greater the chance of finding it in V. Hence, the probability of finding a single
molecule in V is

Wi = CV
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where c is a constant. The probability of finding N molecules simultaneously in
the volume V is the N-fold product of w 1. That is, the probability of a state con-
sisting of N molecules in a volume V is

	

W = w 1 ' = (CV) N .	 (25-16)

For example, if the probability of finding a single molecule in V is I (that is,
there is a 50 0/, chance of its being in V and a 50% chance of its being outside V), the
probability of finding two molecules in V is ... There are four equally probable
states here (both in; both out; one in, the other out; one out, the other in), and only
one of them is a state with both molecules in V.

If we now combine Eq. 25-15 and Eq. 25-16 we obtain

S kN (Inc + In V).

Hence, the difference in entropy between a state of volume V1 and a state of
volume V. (temperature and number of molecules remaining constant) is

5, - S = kN (In c + In 171) - kN (In c + In V)

	

V1 RN V1	 V1
= kNln — = —In— = R1n—

V.	 No	 V,	 V,

in exact agreement with the strictly thermodynamic result of Eq. 25-14.
It is on the basis of Eq. 25-16 that we stated above that disorder increases during

a free expansion; that equation yields (cV) N for the disorder parameter before
expansion and (c2V) N for that parameter when the volume is doubled by the
expansion.

The statistical definition of entropy, Eq. 25-15, connects the thermodynamic
and the statistical mechanical pictures and enables us to put the second law of
thermodynamics on a statistical basis. The direction in which natural processes
take place (toward higher entropy) is determined by the laws of probability (toward
a more probable state). The equilibrium state is the state of maximum entropy
thermodynamically and the most probable state statistically. We have seen,
however, that fluctuations may occur about an equilibrium distribution (for
example, the Brownian motion). From this point of view, then, it is not absolutely
ertain that the entropy increases in every spontaneous process. The entropy may

sometimes decrease. If we waited long enough, even the most improbable states
might occur: the water in a pond suddenly freezing on a hot summer day or a local
vacuum occurring suddenly in a room. Although such occurrences are possible,
the probability of their happening, when computed, turns out to be incredibly
small. Hence, the second law of thermodynamics shows us the most probable
course of events, not the only possible ones. But its area of application is so
broad and the chance of nature's contradicting it so small that it occupies the dis-
tinction of being one of the most useful and general laws in all sciences.

QUESTIONS

1. What requirements should a system meet in order to be in thermodynamic
equilibrium?

2. In the irreversible process of Fig. 25-1a can we calculate the work done in terms
of an area on a p-V diagram? Is any work done?

3. Can a given amount of mechanical energy be converted completely into heat
energy? If so, give an example.
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4. Can you suggest a reversible process whereby heat can be added to a system?
Would adding heat by means of a Bunsen burner be a reversible process?

S. Give some examples of irreversible processes in nature.
6: Give a qualitative explanation of how frictional forces between moving surfaces

produce heat energy. Does the reverse process (heat energy producing relative motion
of these surfaces) occur? Can you give a plausible explanation?

7. A block returns to its initial position after dissipating mechanical energy to heat
through friction. Is this process reversible thermodynamically?

8. To carry out a Carnot cycle we need not start at point a in Fig. 25-4, but may
equally well start at points b, c, or d, or indeed any intermediate point. Explain.

9. If a Carnot engine is independent of the working substance, then perhaps real
engines should be similarly independent, to a certain extent. Why then, for real
engines, are we so concerned to find suitable fuels such as coal, gasoline, or fissionable
material? Why not use stones as a fuel?

10. Couldn't we just as well define the efficiency of an engine as e = W/Q 2 rather

than as e = W/Q i? Why don't we?
11. What factors reduce the efficiency of a heat engine from its ideal value?

12. In order to increase the efficiency of a Carnot engine most effectively, would you
increase T1, keeping T 2 constant, or would you decrease T2, keeping T 1 constant?

13. Can a kitchen be cooled by leaving the door of an electric refrigerator open?
Explain.

14. Is there a change in entropy in purely mechanical motions?
15. Two samples of a gas initially at the same temperature and pressure are com-

pressed from a volume V to a volume (V/2), one isothermally, the other adiabatically.
In which sample is the final pressure greater? Does the entropy of the gas change in
either process?

16. Suppose we had chosen to represent the state of a system by its entropy and its
absolute temperature rather than by its pressure and volume. What wuid a Carnot
cycle look like on a T-S diagram?

17. Consider a box containing a very small number of molecules, say five. It must
sometimes happen by chance that all of these molecules find themselves in the left half
of the box, the right half being completely empty. This is just the reverse of a free
expansion, a process that we have declared to be irreversible. What is your explanation?

18. Show that the total entropy increases when work is converted into heat by fric-
tion between sliding surfaces. Describe the increase in disorder.

19. Comment on the statement "A heat engine converts disordered mechanical
motion into organized mechanical motion."

20. When we put cards together in a deck or put bricks together to build a house, for
example, we increase the order in the physical world. Does this violate the second law
of thermodynamics? Explain.

21. A rubber band feels warmer than its surroundings immediately after it is quickly
stretched; it becomes noticeably cooler when it is allowed to contract rapidly; and a
rubber band supporting a load contracts on being heated. Explain these observations
using the fact that the molecules of rubber consist of intertwined and cross-linked long
chains of atoms in roughly random orientation.

22. Explain the statement "Cosmic rays continually decrease the entropy of the earth

on which they fall." Does this contradict the second law of thermodynamics?
23. Discuss the following comment of Panofsky and Phillips: "From the standpoint

of formal physics there is only one concept which is asymmetric in the time, namely
entropy. But this makes it reasonable to assume that the second law of thermody-
namics can be used to ascertain the sense of time independently in any frame of refer-



644	 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS Chap. 25

ence; that is, we shall take the positive direction of time to be that of statistically
increasing disorder, or increasing entropy

PROBLEMS

1. An ideal gas heat engine operates in a Carnot cycle between 227 and 127° C. It
absorbs 6.0 X iO cal at the higher temperature. How much work per cycle is this
engine capable of performing?

2. (a) A Carnot engine operates between a hot reservoir at 320° K and a cold
reservoir at 260° K. If it absorbs 500 joules of heat at the hot reservoir, how much
work does it deliver? (b) If the same engine, working in reverse, functions as a refrig-
erator between the same two reservoirs, how much work must be supplied to remove
1000 joules of heat from the cold reservoir?

3. In a two-stage heat engine a quantity of heat Qj is absorbed at a temperature T1.
work W j is done, and a quantity of heat Q2 is expelled at a lower temperature T2 by the
first stage. The second stage absorbs the heat expelled by the first, does work 14 '2, and
expels a quantity of heat Qs at a lower temperature T 3. Prove that the efficiency of the
combination engine is (TI - T3)/Ti.

4. A combination mercury-steam turbine takes saturated mercury vapor from a
boiler at 876° F and exhausts it to heat a steam boiler at 460° F. The steam turbine
receives steam at this temperature and exhausts it to a condenser at 100° F. What is
the maximum efficiency of the combination?

5. Using the equation of state of an ideal gas and the equation describing an adiabatic
process for an ideal gas, show that the slope, dp/dV, on a p-V diagram of an adiabatic
can be written as - -yp/V and of an isothermal can be written as —p/V. From these
results prove that adiabatics are steeper curves than isothermals.

6. (a) Plot an exact Carnot cycle on a p-V diagram for 1 mole of an ideal gas. Let
point a correspond to p 1.0 atm, T = 300° K, and let b correspond to p = 0.5 atm,
T = 300° K; take the low temperature reservoir to be at 100° K. Let ' = 1.5. (b)
Oon,ute graphically the work done in this cycle.

X. In a Carnot cycle, the isothermal expansion of the gas takes place at 400° K and
the isothermal compression at 300° K. During the expansion 500 cal of heat energy are
transferred to the gas. Determine (a) the work performed by the gas during the iso-
thermal expansion, (b) the heat rejected from the gas during the isothermal compression,
(c) the work done on the gas during the isothermal compression.

8. (a) If the Carnot cycle is run backward, we have an ideal refrigerator. A quan-
tity of heat Q2 is taken in at the lower temperature 7'2 and a quantity of heat Qj is given
out at the higher temperature T 1. The difference is the work W that must be supplied
to run the refrigerator. Show that

IV	
T1 -

T2

(b) The coefficient of performance K of a refrigerator is defined as the ratio of the heat
extracted trom the cold source to the work needed to run the cycle. Show that ideally

K

	

	 T2
TI - T2

In actual refrigerators K has a value of 5 or 6.
9. In a mechanical refrigerator the low-temperature coils are at a temperature of

- 13° C, and the compressed gas in the condenser has a temperature of 27° C. What is
the theoretical coefficient of performance?
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10. How much work must be done to transfer 1.0 joule of heat from a reservoir at 7°C

to one at 27° C by means of a refrigerator using a Carnot cycle? From one at - 73° C
to one at 27° C? From one at - 173° C to one at 27° C? From one at —223° C to one
at 27° C?

it. rhe motor in a refrigerstor has a power output of 200 watts. If the freezing
"x4çartment is at 270° K and the outside air is at 300° K, assuming ideal efficiency,

list is the maximurp wniount of heat that can be extracted from the freezing compart-
ment in 10 mm?

12. How is the efficiency of a reversible heat engine related to the coefficient of per-
formance of the reversible refrigerator obtained by running the engine backward?

13. In s. heat pump, heat Q2 is extracted from the outside atmosphere at T2 and a
larger quantity of heat Q, is delivered to the inside of the house at T 1 , with the perform-
ance of work W. (a) Draw a schematic diagram of a heat pump. (b) How does it
differ in principle from a refrigerator? In practical use? (c) How are Qi, Q, and W
related to one another? (d) Can a heat pump be reversed for use in summer?
Explain. (e) What advantages does such a pump have over other heating devices?

14. In a heat pump, heat from the outdoors at —5° C is transferred to a room at
17° C, energy being supplied by an electric motor. How many joules of heat will be
delivered to the room for each joule of electric energy consumed, ideally?

15. Suppose that we were to take as our measure of temperature - l/T rather than T.
The unit of this new measure might be the Niviek (Kelvin spelled backwards) degree
(°N). Write a sequence of temperatiires in °N extending from positive to negative
values of T. (See footnote, page 532.)

16. (a) Show that when a substance of mass m having a constant specific heat c is
heated from T 1 to T2 the entropy change is

S2 - = mcln
Ti

() Does the entropy of the substance decrease on cooling? If so, does the total
entropy decrease in such a process? Explain.

17. In a specific heat experiment 100 gm of lead (Cr,	 0.0345 cal/gmC°) at
100° C is mixed with 200 gm of water at 20° C. Find the difference in entropy of the
system at the end from its value before mixing.

18. Four moles of an ideal gas are caused to expand from a volume V 1 to a volume
V2 ( = 2V,). (a) If the expansion is isothermal at the temperature T = 400° K,
deduce an expression for the work done by the expanding gas. (b) For the isothermal
expansion just described, deduce an expression for the change in entropy, if any. (c) If
the expansion were reversibly adiabatic instead of isothermal, would the change in
entropy be positive, negative, or zero?

19. Heat can he removed from water at 0° C and atmospheric pressure without
causing the water to freeze, if done with little disturbance of the water. Suppose the
water is cooled to —&0° C before ice begins to form. What is the change in entropy
per unit mass occurring during the sudden freezing that then takes place?

20. An 8.00-gm ice cube at - 10.0° C is dropped into a thermos flask containing
100 cm' of water at 20.0° C. What is the change in entropy of the system when a
final equilibrium state is reached?

21. A brass rod is in contact thermally with a heat reservoir at 127° C at one end and
a heat reservoir at 27° C at the other end. Compute the total change in the entropy
arising from the process of conduction of 1200 cal of heat through the rod. Does the
entropy of the rod change in the process?

22. A mole of a monatomic ideal gas is taken from an initial state of pressure p and
volume V to a final state of pressure 2p and volume 2V by two different processes.
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(I) It expands isothermally until its volume is doubled, and then its pressure is increased
at constant volume to the final state. (II) It is compressed isothermally until its
pressure is doubled, and then its volume is increased at constant pressure to the final
state.

Show the path of each process on a p-V diagram. For each process calculate in terms
of p and V, or of T, (a) the heat absorbed by the gas in each part of the process; (b) the
work done on the gas in each part of the process; (c) the change in internal energy of the
gas Uj - U1 ; (d) the change in entropy of the gas 8 1 - S1.

23. One mole of hydrogen gas and 1.0 mole of nitrogen gas are in adjacent containers
at Cie same pressure p and temperature T. The pressure and temperature are such
that both gases behave virtually ideally. (a) If the rms speed of the H 2 molecules is
1850 meters/sec at temperature T, what will the rms speed be of the N 2 molecules?
(b) For which gas will a larger percentage or fraction of the molecules have speeds within
±50 meters/sec of the rms speed? (c) If the containers are connected so that the
H 2 and N 2 mix, will the change in entropy be positive, negative, or zero?

24. (a) A body of finite mass is originally at temperature T2, higher than that of a
heat reservoir at a temperature 1'1. An engine operates in infinitesimal cycles between
the body and the reservoir until it lowers the temperature of the body from T 2 to T1.
Prove that the maximum work obtainable from the engine is W,,, = Q - T 1 (S5 - SO,
where Si - S2 is the entropy change in the body and Q is the heat extracted from the
body by the engine. (b) A body of finite mass is originally at temperature T 1, the same
as that of a heat reservoir. A refrigerator operates in infinitesimal cycles between the
body and reservoir until it lowers the temperature of the body from T 1 to T 0. Prove
that the minimum amount of work which must be supplied to the refrigerator is

- So) - Q where S 0 - Sj is the entropy change in the body and Q is the heat
extracted from the body by the refrigerator.

25. In general, the probability W15 of a complex event, which consists of two unrelated
simple events, is equal to the product of their respective probabilities Wj, WI. The
entropy 81 of a complex system which consists of two simple systems is just the sum of
their respective entropies, S i , Si. Show that Eq. 25-.-15, which relates probability and
entropy, is consistent with the additive property of entropy and the multiplicative
property of probability for a complex system.
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