
Relation between Linear and
Angular Kinematics for a Particle
Moving in a Plane

SUPPLEMENTARY TOPIC I

In Section 11-6 we discussed the relations between the linear and angular kine-
matic variables for a particle moving in a plane but confined to move in a circle
about an axis at right angles to the plane. Such a particle might be any particle in
a rigid body rotating about a fixed axis. Here we relax the restriction and allow
the particle to move freely in the plane. A planet moving in a1 elliptical orbit
about the sun is an example.

We start from Eq. 11-11. r = uj, in which, however, we now take both u,- and r
to be variables; the particle is no longer confined to a circle of constant radius.
We find the velocity by differentiation, or

dr dr	 du
V	 = U+r-j-

Equation 11-13 shows us that dnr/dt = u. Thus we can write

dr
= u,. + u,wr,	 (I-i)

which shows that v has two components, a radial component v, = dr/dt and a
component at right angles, V1 = wr. If we hold r constant, then dr/d 0 and
Eq. I-i reduces to Eq. 11-14a as it must.

To find the acceleration we differentiate Eq. I-i, remembering that all five

quantities on the right are variables. We obtain 	 -

dv	 d2r dr du,	 I dr	 do\	 I du,
Ur
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Now du,/dt = uw, du,/dl = - u,I (see Eq. 11-16), and do.',/dt	 a. Substi-
tuting and rearranging leads us finally to

a =	 - w sr)+ ue(ar +2) .	(1-2)

Once again, if r	 a constant, then dr1'dt = d 2r/dt 2	 0 and Eq. 1-2 reduces to
Eq. 11-17, which we derived especially for this case.

The two new terms in Eq. 1-2, urd 2r/d1 2 and u 82w dr/dt, need a little explana-
tion. The first of these terms is simple and we can understand it by imagining
that the particle moving in the plane is not rotating about the axis. If we put

= a = 0 in Eq. 1-2 this equation reduces to
dr

a = Ur jj'

which is just the familiar acceleration of a particle moving along a straight line.
Hence this term in Eq. 1-2 gives the radial acceleration due to the change in the
magnitude of r, the other radial acceleration term arising from the changing direc-
tion of r as the particle rotates.

There are also two 0-directed acceleration terms. The first one, u,ar, arises
simply from the angular acceleration a of a particle in circular motion (r = con-
stant) and is the tangential acceleration of Section 11-5. To understand the
second term, ue2, dr/dt, consider a man walking outward along a radial line
painted on the floor of a merry-go-round. The merry-go-round is rotating with
constant angular velocity w so that its angular acceleration a is now zero. If the
man were simply to stand still on the merry-go-round, (dr/dt = 0, and r = con-
stant) his acceleration, as seen by an observer in a reference frame on the ground
(see Eq. 1-2), would be simply the familiar centripetal acceleration —u,wr,
directed radially inward. If he walks outward, however, dr/dt 0 0 and then
Eq. 1-2 predicts that the ground observer would also measure a 0-directed
acceleration given by U2Vr, where yr = dr/dt. This is called a Coriolis accelera-
tion. It arises from the fact that even though the angular velocity of the man is
constant his speed increases as r increases. Let us convince ourselves that this
effect really exists.*

Figure I-la shows the walking man (point P) as he appears to the gr'ound observer
at times t and t + .t. We show at time this radially directed velocity v, (= u, dr/dt)
and also a 8-directed velocity caused by the rotation of the merry-go-round and
given by v( = u 8wr). At a time At later each of these velocities has changed. The
radial velocity has changed in direction, although its magnitude remains dr/dt.
The 0-directed velocity has not only changed direction (we have learned to account
for this as a centripetal acceleration), but, because the man has moved outward to a
point at which the floor is moving faster, its magnitude has also changed, from W r to
w(r + sr).

Figure I-lb shows the change in velocity caused by the change in direction of
the radial line along which the man is walking. If A O in the triangle shown is
small enough, we have

Dividing by M and letting A t approach zero yields
,	 dv,	 dO

a =	 =	 v,.w.
dt

The change in tangential velocity caused by the fact that the man is moving
radially outward is

	

Ave = c,(r + r) -	 = wr.

See "The Coriolis Effect," James E. McDonald, Scientific American, May 1952.
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Fig. I-i (a) A merry-go-round, rotating about a fixed axis, is observed by an observer
in inertial reference frame x, j. A man walks along a radial line at constant speed u.
In a time interval At this line, as seen by the ground. observer, sweeps through an angle

8 and the man moves between the positions shown. His r- and 6-directed velocities
are shown for each position. (b) Showing the change AVr in the walking man's r-directed
velocity. Note that, as At	 0, Av, points in the 6-direction at P.

Dividing by At and letting At approach zero yields

all	 dv	 dr

Now both a' and a" are magnitudes of vectors that point in the same direction,
namely the direction of increasing 0 at point P(t). The total acceleration in this
direction is then

a' + all 	 v,w + ojv, - 2wv,

which is just what we set out to prove.
If there is indeed an acceleration iii the 0-direction in Fig. 1-1, there must be

a force in this direction. For a man walking outward along a radial line on a
rotating merry-go-round this force can only he provided by the friction between
his feet and the floor.

We remember that we can interpret classical mechanics most simply if we
always view events from an inertial frame. If we do we can always associate
accelerations with forces exerted by bodies that we can point to in the environment.
We can still apply classical mechanics, however, if we select a noninertial reference
frame, such as a rotating frame. The small penalty that we must pay is that we
must introduce pseudo-forces, that is, forces that we cannot associate with objects
in the environment and which cannot be detected by an observer in an inertial
frame. In Section 6-4 we saw that centrifugal force is such a pseudo-force.

Consider an observer on the rotating merry-go-round watching a man walk
along a radial line at a constant speed v, = dr/dt. He would say that the man is in
equilibrium because he has no acceleration. Yet the floor is exerting a (very real)
frictional force on the soles of the man's feet. This force has one component
F-43
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(-u,!",) that points radially inward and one (ueF) that points in the 0-direction,
that is, in the direction of rotation.

From the point of view of the ground observer these forces are understandable
and, indeed, quite necessary. F, is associated with the centripetal acceleration
w 2r and F8 with the Coriolis acceleration 2wv,. The observer on the merry-go-round
does not see either of these accelerations however; to him the walking man is in
equilibrium. How can this he, in view of the frictional forces that act on the soles
of the walking man's shoes? The man himself is well aware of these forces; if he
did not lean to compensate for their turning effect, they would knock him off his
feet!

The observer on the merry-go-round saves the situation by declaring that two
pseudo-forces act on the walking man, just canceling the (real) frictional forces.
One of these pseudo-forces, called the centrifugal force, has magnitude P. and acts
radially outward. The other, called the Coriolis force, has magnitude F8 and acts
in the negative 0-direction, that is, opposite to the direction of rotation. By intro-
ducing these forces, which seem quite "real" to him although he cannot point to
any body in the environment that is causing them, the observer in the rotating
(noninertial) reference frame can apply classical mechanics in ehe usual way. The
ground observer, who is in an inertial frame, cannot detect these pseudo-forces.
Indeed there is no need for them—and no room for them—in his applications of
classical mechanics.

Equations I-I and 1-2 are general kinematical descriptions for the motion of a
particle in two dimensions. An obvious extension, which we will not attempt here,
is to derive corresponding descriptions for motion in three dimensions; this will
require us to introduce a third unit vector to define the third dimension.*

* See, for example, Mechanics, Section 3-5, by Keith R. Symon, Addison-Wesley
Publishing Co., 2nd ed., 1960.



Polar Vectors and Axial Vectors
SUPPLEMENTARY TOPIC II

Some vectors called axial vectors, such as , a, T, and I, differ in a rather impor-
tant way from other vectors called polar vectors, of which r, v, a, F, and p are
examples. Although w shall not need to take this difference into account in this
book, it may prove to be instructive and interesting to the student to examine
briefly what the difference is.

Consider a typical polar vector such as r. If a student leaves his dormitory
and goes to a classroom, his displacement vector r points from the dormitory to the
classroom; there is no question as to our choice of direction. This direction is both
"physical" and "natural." Similar remarks apply to the other typical polar
vectors listed, namely, v, a, F, and p.

If a student sees a wheel rotating about a fixed axis, he can assign an angular
velocity w to the wheel and can give direction to w by the right-hand rule (see
Section 11-4). This direction, however, is a convention only, based on this arbi-
trary rule. A left-hand rule would have given the opposite direction. The things
that are "physical" and "natural" about the wheel are the axis of rotation and the
sense of rotation, that is, is it going clockwise or counterclockwise as the student
looks at it from a particular end of the axis? Whether is chosen to point in one
way or the other along the axis does not really matter as long as we are consistent.
The same remarks apply to the angular acceleration a and to the other axial
vectors listed, namely r(= r x F) and l( r X p). It is for this reason that we
sometimes find it more comfortable to say "torque around an axis" than "torque
along an axis" although they mean the same thing, All vectors defined as the
vector product of two polar vectors are axial vectors because they all depend for
their direction assignment on the (arbitrary) right-hand rule.

We have stressed that the laws of physics remain the same no matter how we
change the inertial reference frame in which they are expressed. In Section 2-5
we discussed this for translations and rotations of the reference frame and noted
that laws expressed in vector form remained unchanged (that is, invariant) under
such transformations. We also noted that something special may occur when we
change the reference frame in another way, namely, by substituting a left-handed
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Fig. 11-1 (a) Polar vectors, showing, on the right, the displacements rj, r, and Ta

between a dormitory D and three classrooms C i, C 3, and C3. On the left we have the
mirror images of D, C 1, C2, and C 3, along with the corresponding displacements.
(l) Axial vectors, showing, on the right, the angular velocities w2, and of three
wheels rotating as shown. On the left we have the mirror images of these wheels, along
with the angular velocities assigned'iising the usual right hand rule.

/

(
frame for a right-handed one. There is an easy way to make such a transforma-
tion: Build a right-handed frame and look at its image in a mirror; it will be con-
verted to a left-handed frame (see Fig. Il--i) because of the well-known property
of a mirror to reverse right and left.

Figure 11-la shows the vector displacement of a student from his dormitory to
each of three classrooms. In the mirror each displacement i still from the dormi-
tory D to a classroom C. In Fig. II-lb, however, we show a rotating wheel in
three orientations. If we establish the directions of w for both the wheels and
their mirror images by the right-hand rule, we see that the image vectors are
reversed in comparison to the corresponding image vectors in Fig. 11-la (toward
the origin rather than away from the origin). Polar vectors and axial vectors
behave differently when we transform reference frames by mirror reflection! This
behavior of axial vectors under mirror reflection is not hard to understand. If we
imagine ourselves physically applying the right-hand rule to a real rotating wheel,
in the mirror, we shall scent to be applying a left-hand rule because the image of our
right hand is our left hand. A left-hand rule, of course, will give us the opposite
direction for .

Hence an axial vector is a vector whose sense of direction depends on the handed-
ness of the reference frame. It is sometimes called a pseudovector. A polar vector
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is a vector that has a direction independent of the reference frame. We mention
these facts (1) to stress the arbitrary character of the direction assigned to axial
vectors and (2) to stress the importance of testing experiments and physical laws
for invariance under translation, rotation, and mirror reflection of the inertial
reference frame.' In Section 2-5 we referred briefly to some experiments that were
not invariant under a reflection transformation. This fact, which constituted a
violation under certain circumstances of a law of physics previously thought to be
well founded (the law of conservation of parity) ,has posed some challenging prob-
lems and is leading us to an understanding of the physical world at a deeper level.*

See "The Overthrow of Parity," by Philip Morrison, Scientific American, April 1957.



The Wave Equation for
a Stretched String

SUPPLEMENTARY TOPIC III

Figure 111-1 shows a section of a long string which is under tension F. The
string has been pulled transversel y in the y-direction so that a displacement wave
travels along the string in the z-direction. We consider a differential element of
the string dx and apply Newton's second law -of  motion to it in order to find how the
wave moves along the string.

Let j be the mass per unit length of the string, so that the mass of element dx is
u dz. The net force in the y-direction acting on this element is

F sin 0+a - F sin 8.

We consider only small transverse displacements of the string, so that the restoring
force will vary linearly with displacement and the principle of superposition will
hold (see Section 19-4). This means that 0 in Fig. III-1 will be small, so that we
may replace sin 0 by tan 0. Now tan 0 is simply the slope of the string, that is,
it equals ay/ax. We must use partial derivatives because the transverse displace-
ment y depends not only on x but also on t. The net force in the y-direction is then

F
(ax)
 

.	 (ax)
—F.

which we may write as

3x \äx/

or	 Fô_dx.
ox2

I
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Fig. Ill—I

The mass of the element of the string is g dx and its transverse acceleration is
simply 8 2y/31 2. Hence, Newton's second law, applied to the transverse motion
of the string, is

	

3

-2y

	02

-

or	 - = - -.	 (IN-i)
Ox2 F&

Equation 111-1, called the wave equation, is the differential equation that
describes wave propagation in a string of mass per unit length 1A and tension F.

To prove this we show that Eqs. 19-2 and 19-3

1! = f(' ± vi),	 (111-2)

which is the general equation representing a wave of any shape travePng along x, is
a solution of Eq. Ill-i. Recall that v in Eq. 111-2 is the speed of the wave dis-
turbance and f is any function of (x ± vi).

Let us see whether Eq. 111-2 is indeed a solution of Eq. 111-1 by substituting the
former equation into the latter. To do so we note that the two second partial
derivatives of I' are

32	 32.

	

=f"	 and	 -- = v2f"
YX 2	 at,

in which f" is the second derivative of the functionf of Eq. 111-2 with respect to
(x ± vi). Substitution of these derivatives into Eq. I1I-1yields

f" = 

JA 711,

which we may write as (see Eq. 19-12)

(111-3)

Thus we conclude that Eq. 111-2 is indeed a solution of the partial differential equa-
tion Eq. 111-1 if the speed of the wave disturbance described by this equation is
givell by Eq. 111-3.
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In particular, let us check that Eq. 19-10

y	 l". sin (kx ± wt)	 (19-10)

is a solution of Eq. Ill-I. We know that it must be because Eq. 19-10 is simply a
special case of the general relation Eq. 111-2, which we have just shown to be a
solution. Even so it is instructive to test this important specific function of
(x ± vi) by substitution into Eq. Ill-i.

The second derivatives of Eq. 19-10 are

a 2 y_
-

OX2	
-k'y,,, sin (kx± w€)

and	
a2 y

-w 2y,,, sin (kx ± we).
at2

Substitution into Eq. III-1 yields

-k2 ,,,, sin (kx ± ,t) = () ( -w 'y,., sin (kx ± wt)]

or	 =

Since w/k = v (see Eq. 19-1I), this relation is identical with Eq. 111-3, and Eq.
19-10, as we expect, is indeed a solution of Eq. Ill-i.



Derivation of Maxwell's Speed

Distribution Law

SUPPLEMENTARY TOPIC IV

Boltzmann 
'

in 1876, derived the Maxwell speed distribution law from this line of
argument: Let a uniform gravitational field g act on an ideal gas maintained at a
fixed temperature T. The number of molecules per unit volume n will then
decrease with altitude z according to the law of atmospheres (see Example 1,
Chapter 17). From what we know about the statistical-mechanical interpretation
of temperature, however, the speed distribution law—whose form we assume that
we do not yet know—must remain the same at all altitudes because it depends only
on the temperature. However this law determines the rate at which molecules
move vertically in the atmosphere at any altitude and must thus be intimately
related to the decrease of n with z. By exploring this relationship in detail we can,
in fact, deduce the speed distribution law.

The weight of gas per unit area between the levels z and z + dz in Fig. IV-1 is
nmg dz in which m is the mass of a single molecule. For equilibrium, this weight
per unit area must equal the difference in pressure between z and z + dz, or

nmgdz —dp	 (IV-1)

in which we have inserted a minus sign because p decreases as z increases.
We can write the equation of state of an ideal gas, pV = pRT, as

p - nkT	 (IV-2)

because ju- nV/No, where No (= R/k) is Avogadro's number, the number of
11
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molecules per mole, and k is Boltzmanfl's constant.
Combining Eqs. IV-1 and IV-2 yields

dz.
P	 n	 kT

.

	

	 For a constant temperature, we can integrate this rela-
tion to yield

4	
n constant e_ jkT	 (IV-3)

[	 jl	 which, in view of Eq. IV-2, agrees with the result of

j

Example 1, Chapter 17
- 0

	

	 We can find the change in n as we go from z to
z + dz by differentiating Eq. IV-3, or

dn = - constant e "e'11'? dz.	 (IV-4)

Fig. IV-1	 We associate this decrease in a over the interval dz

with the fact that, at z = 0 (which can be any level we
choose) there are some upward-directed molecules—we

call them "special molecules" temporarily for convenience whose vertical velocity
components lie in a particular range v, to v, + dv, such that (neglecting collisions;
see below) they can rise as high as z but not as high as z + dz. Such molecules pass

upward through the level z, reverse their direction and pass downward again, as
Fig. IV-1 shows. At this point we see more clearly the relationship between
Eq. IV-3 and the speed distribution law. Molecules that pass through the interval
dz (from above or below) or molecules that never reach the interval cannot con-
tribute to the decrease dn of Eq. IV-4.

The rate per unit area at which "special molecules" leave level z 0 (and arrive

at level z) is v,nv,) dv,. Here n(v,) dv, is the number of molecules per unit volume
whose vertical velocity components lie between v, and v, + dv,;

Now the rate per unit area at which the "special molecules" arrive at level z,

but not as high as level z + dz, is proportional to the magnitude of the density
difference dn between z and z + dz, or, from Eq. IV-4,

v,n(v,) do,	 constant	 dz,	 (1V5)

in which the constant is independent of z. Equation IV-5, which requires that the

change dn be accounted for by the "special molecules" is, in fact, the defining
equation for n(v,).

From conservation of energy the special molecules have the property that

imv,2 mgz

or	 my, do. = mg dz.

We use these two relations to eliminate z and dz from Eq. IV-5, obtaining, as the

student should verify,

n(v,) dv, = constant e"	 dv,	 (IV-6a)

* If we consider coilisions this result is still true on the average for the many molecules
that start at z — 0 with a given value of v, and move to the interval z to z + dz, having

V S — 0 there, even though such molecules would follow very erratic paths because of the
collisions.
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in which n(v,) do, is the number of molecules per unit volume whose vertical
velocity components lie between v, and v, + dv,. Note that Eq. IV-6a does not
contain g or z. The gravitational field of Fig. IV-1, introduced to allow us to
calculate the speed distribution, has served its purpose. We may apply Eq.
IV-6a to a gas for which g = 0 or in which gravitational effects are negligible. In
such a case the vertical direction, which we have identified as the z-direction, no
longer has any special meaning. That is, the speed distribution for one component
of velocity should be the same for another component of velocity since there is no
special or preferred direction in a gas in equilibrium free of external forces. Thus
we can write

n(v,) dv, = constant e'/2tT dv,	 (TV-fib)

and	 n(v,,) dv,,	 constant 6—,,2I2kD dv,,,	 (IV-6c)

for the other two velocity components.
We now seek to find Maxwell's speed distribution (Eq. 24-2); it is expressed in

terms of the speed v, rather than in terms of the separate components v,, v,,, and v,.
We are not concerned here wth the direction of v,
because we assume it to be completely random.
We can represent any velocity v as a vector ex-
tending from the origin in Fig. IV-2; the projec-
tions of the vector in the x-y- and z-directions
are v,, v,,, and v,, respectively. We commonly
say that the axes of Fig. IV-2 define a "velocity 	 v
space," which has many formal similarities to	 ^dvy.

ordinary (or coordinate) space, in which the axes
are x, y, and z.

We also show in Fig. IV-2a small "volume"
element, whose sides are dv,, dv, and dr; we say
that this element has a volume dv, dv,, dv, in ye-	 Fig. IV-2
locity space. A point in this element corresponds
to a particle whose velocity components lie be-
tween v, and v, + dv,; v,, and v,, + dv,,; and v, and v, + dv,. We can regard
n(v,) in Eq. .IV-6a as giving the probability that a given molecule will have a
velocity component in the specified range v, to v. + dvi, with similar interpreta-
tions for n(v,) and n(vv). The probability that a given molecule will have all three
of its velocity components in the specified ranges, that is, the probability that the
tip of the velocity vector v will lie inside the volume element of Fig. IV-2, is the
product of the three (independent) probabilities given in Eq. IV-6, or

constant	 Fe	 ,'f2kTf2kT do. A,dv,
which, since

V2	 v, 2 + v,, 2 + v,2,
we may write as

constant e_'12kT(dv, dv,, dv,).	 (IV-7)

The quantity in parentheses above is a volume element in velocity space. Since
in Maxwell's speed distribution law we are not concerned with the direction of
molecular velocities but only with their speeds, it is more convenient to substitute
a different volume element for the above, namely one corresponding to all mole-
cules whose speeds lie between v and v + dv, regardless of direction. This volume
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element is not a "cube" but is the space between two concentric spheres, one of
radius v and one of radius v + dv. The volume of this element in velocity space

is (47rv2)(dv). Substituting this for the quantity enclosed in parentheses in Eq.
IV-7 yields for the number of molecules per unit volume whose speeds lie between

v and v + dv,

n(v) dv = constant	 I2k?(4TV2 dv)

or
n(v) = Cv2e12hT

in which C is a constant. If we sum up over all possible speeds we simply obtain
the total number of molecules per unit volume, regardless of speed. Hence, we
can find C by requiring that

n(v)dvn,

where n is the total number of particles per unit volume, regardless of speed. The
student, guided by the methods of Example 3 (Chapter 24), should show that

C 41rn(m/2TkT)

so that
n(v) =	 (IV-8)

Let us consider a finite number N of molecules contained in abox of volume V.

If we multiply each side of the above equation by V, we can replace nV on the

right by N and n(v)V on the left by N(v), which gives us Eq. 24-2.


